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Editorial on the Research Topic 


Novel insights into the pathophysiology of diabetes-related complications: implications for improved therapeutic strategies, volume II


Diabetes mellitus (DM), particularly Type 2 diabetes (T2DM), is one of the most prevalent chronic diseases worldwide, with a wide range of complications that severely affect patients’ quality of life (1–3). Moreover, diabetic complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN), diabetic foot ulcers (DFUs), sarcopenia, and neuropathy, continue to challenge clinical management despite advances in diabetes care (4–6). The mechanisms underlying Diabetes-related complications involve various factors, including metabolic disturbances, immune responses, endothelial dysfunction, and mitochondrial impairment, and so on (7–10). In order to promote a deeper understanding of the pathophysiology of diabetes-related complications, we organized the current Research Topic, “Novel Insights into the Pathophysiology of Diabetes-related Complications: Implications for Improved Therapeutic Strategies, Volume II”, following the success of Volume I, which aimed to gather high-quality research that explores these mechanisms.

The Research Topic was initiated on May 23rd, 2023, and closed on Jan 17th, 2025. During these few months, a total of 88 submissions, including 84 manuscripts and 4 abstracts, were received. Finally, 37 high-quality articles were selected and published, covering a wide range of topics related to diabetes-related complications, including DR, DN, diabetic peripheral neuropathy (DPN), T2DM-associated periodontitis, metabolic regulation, immune-inflammatory processes, and emerging biomarkers (Yang et al., Li et al., Li et al., He et al., Xu et al.). These studies have not only provided new insights into the mechanisms driving these complications but also highlighted potential biomarkers, novel diagnostic tools such as branched-chain amino acids (BCAA)(Liu et al.) and immune-inflammatory indices (Li et al., Guo et al.), as well as non-invasive techniques infrared spectroscopy (Zupančič et al.) and single-cell RNA sequencing (Lu et al.). This editorial synthesizes the latest findings based on the accepted papers on this Research Topic, focusing on emerging pathways in the pathogenesis of diabetes-related complications and exploring novel strategies for their prevention and treatment.



1 Pathophysiological mechanisms of diabetes-related complications

Studies indicate that a complex interplay of metabolic disturbances, immune responses, and endothelial dysfunction drives the development of diabetes-related complications. These mechanisms represent key targets for developing more effective therapeutic strategies.



1.1 Systemic inflammation and immune responses

Inflammation contributes to insulin resistance and microvascular complications such as diabetic kidney disease and diabetic retinopathy (Li et al., Guo et al.). The systemic immune-inflammation index (SII), along with the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR), has been identified as important biomarkers for assessing the severity of complications like DR and DN (Li et al.). These biomarkers have shown strong associations with the progression of microvascular damage, thus providing early warning signs for at-risk patients and allowing for timely intervention.




1.2 Mitochondrial dysfunction and stress response

Mitochondrial dysfunction is central to the pathogenesis of diabetes and its complications. Research highlights the crucial role of Sestrin2 in regulating oxidative stress and mitochondrial function, both of which are vital in the progression of diabetic complications (Zhang et al.). Additionally, disturbances in NAD+ metabolism, particularly through the enzyme KMO, have been implicated in the development of diabetic kidney disease (Yang et al.). The therapeutic potential of mitochondrial transfer therapies, aimed at restoring mitochondrial function, is also emerging as a promising approach to treating metabolic diseases and diabetes-related complications (Chen and Chen). Meanwhile, excitatory neurotransmission and amyloid precursor pathways have also been implicated in diabetes-induced neuropathy. Studies examining VGLUT2 and APP family proteins in STZ-induced diabetes reveal significant neurobiochemical alterations, suggesting that targeting these pathways may offer new strategies for managing diabetic neuropathic changes (Zhang et al.).




1.3 Endothelial dysfunction and impaired angiogenesis

Endothelial dysfunction, particularly in diabetic foot ulcers, plays a significant role in delayed wound healing. Through single-cell RNA sequencing, recent studies have revealed that non-healing diabetic foot ulcers exhibit substantial endothelial dysfunction and impaired angiogenesis (Lu et al.). These findings provide important molecular signatures that could be targeted to enhance treatment outcomes for diabetic patients with chronic ulcers and other vascular complications.




1.4 Core disturbances in glucose homeostasis and β-cell function

Underlying these complications is the fundamental dysregulation of glucose homeostasis characteristic of diabetes itself (10, Guo et al., Abuhay et al., Habiba et al., Cai et al., Lu et al., Hou et al.). In T2DM, progressive insulin resistance in peripheral tissues combines with β–cell dysfunction, leading to chronic hyperglycemia and compensatory hyperinsulinemia (Guo et al., Diane et al., Cai et al.). Persistent elevations in blood glucose further drive the formation of advanced glycation end–products (AGEs) and exacerbate oxidative stress, which can potentiate inflammatory pathways and vascular injury (Zhang et al., Liang et al.). Over time, diminished β–cell mass and secretory capacity, coupled with heightened insulin resistance, creates a feedback loop that not only worsens metabolic imbalance but also sets the stage for the microvascular and macrovascular complications described above (Roomy et al.).





2 Early diagnosis and risk prediction of diabetes–related complications

Timely identification of high–risk individuals is critical for mitigating the severe consequences of diabetes–related complications. Enhanced diagnostic methods and emerging biomarkers pave the way for more targeted intervention and prevention.



2.1 Predictive models for diabetic retinopathy and other complications

Given the severe risk of blindness associated with diabetic retinopathy, early detection is essential. Predictive models based on clinical variables such as age, BMI, and HbA1c have been developed to identify patients at high risk of vision–threatening diabetic retinopathy (VTDR) (Gong et al., Kameda). These models enable clinicians to screen high–risk populations effectively, facilitating early interventions to prevent irreversible vision loss. In addition to DR, risk prediction frameworks have been proposed for other acute complications, including diabetic ketoacidosis (DKA), by leveraging large clinical datasets and machine learning approaches for improved accuracy (Liu et al.). Such tools are instrumental in guiding clinicians to tailor monitoring and intervention strategies, ultimately reducing morbidity and mortality in vulnerable groups.




2.2 Markers for diabetic kidney disease and other risk indicators

Branched–chain amino acids (BCAAs) have emerged as potential biomarkers for diabetic kidney disease progression (Liu et al.). Elevated BCAA levels correlate with the severity of kidney damage, offering a promising tool for early detection and monitoring of DKD. Beyond kidney disease, additional biomarkers have been linked to various microvascular complications. For instance, systemic immune–inflammation indices (SII), along with the Neutrophil–to–Lymphocyte Ratio (NLR) and Platelet–to–Lymphocyte Ratio (PLR), have shown strong associations with the progression of microvascular damage, thus providing early warning signs for at–risk patients (Li et al., Guo et al.). Moreover, certain circulating inflammatory proteins have been found to correlate with both the onset of Type 2 diabetes mellitus (T2DM) and its complications, potentially serving as early indicators of disease susceptibility (Liang et al.). Furthermore, bioactive leptin (bioleptin) levels have demonstrated utility in gauging metabolic status among children with Type 1 diabetes mellitus, providing a potential avenue for early intervention or tailored therapeutic strategies (Jakubek–Kipa et al.). Integrating such novel biomarkers into existing screening frameworks may refine risk assessment for diverse diabetic complications.




2.3 Emerging diagnostic technologies and broader screening approaches

Conventional diagnostic methods have limitations in detecting early stages of diabetes–related complications. Fourier–transform infrared (FTIR) spectroscopy has shown promise as a non–invasive diagnostic tool for assessing skeletal muscle changes in diabetic patients (Zupančič et al.). This technique provides a more efficient way to analyze muscle composition and metabolic changes, serving as an alternative or complement to traditional diagnostic methods. In parallel, physical performance assessments—such as lower extremity function tests—may predict diabetes onset or progression in older adults, indicating that simple functional measures could be integrated into screening protocols (Feng et al.). Furthermore, monitoring for vitamin B12 deficiency, which is highly prevalent in metformin–treated T2DM patients, may help identify individuals at risk of neuropathy or other metabolic derangements (Al Quran et al.). Combining these emerging diagnostic tools with established risk factors and biomarkers holds the potential to refine early detection and guide timely intervention strategies.





3 Novel therapeutic strategies for managing diabetes–related complications

Recent insights into the molecular and cellular processes driving diabetes–related complications have prompted the development of innovative interventions. These therapeutic strategies, spanning lifestyle modifications, pharmacological agents, and regenerative approaches, promise more comprehensive and personalized management.



3.1 Sarcopenia and diabetes management

Sarcopenia, characterized by muscle loss, is a common complication among elderly diabetic patients. Addressing sarcopenia is essential for improving patient outcomes and preventing further complications. Interventions such as physical exercise, high–protein diets, and pharmacological treatments can help preserve muscle mass and improve metabolic health (Cai et al., Hou et al.). Early detection and intervention can slow the progression of complications such as diabetic nephropathy and diabetic retinopathy. Comprehensive treatment frameworks that integrate both lifestyle and medical management are particularly crucial for elderly patients, given the heightened vulnerability to functional decline and multi–organ impairments.




3.2 Pharmacological interventions

New pharmacological treatments offer novel opportunities for managing diabetes and its complications. However, the use of insulin has been linked to an increased risk of diabetic retinopathy (Tan et al.). While other medications, such as GLP–1 receptor agonists and SGLT–2 inhibitors, do not significantly impact DR risk, their role in addressing other aspects of diabetes—such as obesity, cardiovascular health, and glycemic control—warrants further exploration (Roomy et al., Zhang et al.). Some studies have also identified potential therapeutic compounds through bioinformatic and genetic analyses, suggesting drugs like imatinib or topiramate may exert beneficial effects on metabolic pathways (Zhang et al., Zhong et al.). Moreover, stem cell–based therapies, including mesenchymal stem cell (MSC) transplantation, have shown promising outcomes in lowering insulin requirements and improving glycemic control, indicating the broader potential for diabetes care (Habiba et al.).

In the context of acute complications, fluid management remains a cornerstone of diabetic ketoacidosis (DKA) treatment. Recent findings comparing balanced crystalloids and normal saline reveal no significant differences in major clinical outcomes, though balanced crystalloids appear to reduce the incidence of hyperchloremia (Liu et al.). This nuance emphasizes the importance of individualized fluid therapy decisions in DKA management. Ultimately, clinicians must carefully balance each treatment’s risk–benefit profile when designing individualized regimens, considering both chronic and acute facets of diabetes care.




3.3 Microbial and immune modulation

The microbiome and immune responses play critical roles in the progression of diabetes–related complications. Studies have highlighted how oral pathogens can influence both diabetes and periodontal disease, suggesting that modulating microbial and immune pathways may offer a novel approach to treating these complications (Li et al.). Parallel findings have demonstrated that systemic immune–inflammation indices, such as SII, NLR, and PLR, may serve as valuable indicators for tailoring anti–inflammatory or immunomodulatory interventions (Li et al., Guo et al.). Emphasizing immune regulation and microbial balance in therapeutic protocols could potentially alleviate complications like chronic infections, periodontal disease, and tissue damage.




3.4 Mitochondrial transfer for metabolic diseases

Mitochondrial transfer has emerged as a promising therapeutic strategy for treating metabolic diseases associated with mitochondrial dysfunction. Healthy mitochondria are transferred from donor cells into damaged cells to restore cellular function (Chen and Chen). This approach holds significant potential for treating diabetes–related complications by addressing the underlying cellular dysfunction at the mitochondrial level. As further research explores the feasibility, safety, and scalability of mitochondrial transfer, this method may complement existing pharmacological and lifestyle interventions, contributing to a more holistic management of diabetes and its complications.





4 Specific diabetes–related complications and their interactions

Complications such as diabetic retinopathy, nephropathy, and neuropathy often overlap and amplify each other’s impact. Addressing these interconnected pathways holistically may help delay or mitigate multiple complications simultaneously.



4.1 Diabetic retinopathy and diabetic nephropathy

There is a growing recognition of the interrelationship between diabetic nephropathy and diabetic retinopathy, with studies indicating that DR may be more severe in patients with nephropathy (Yang et al., Kameda). This highlights the need for integrated treatment strategies that simultaneously address both renal and retinal health in diabetic patients. Attention to factors like long–term glycemic control, inflammation, and oxidative stress remains crucial in preventing the escalation of microvascular damage.




4.2 Diabetes and cardiovascular disease

Diabetic patients are at an increased risk for cardiovascular diseases, particularly atherosclerotic cardiovascular disease (ASCVD). Recent research has demonstrated that genes involved in lipid metabolism, such as ABCC5 and WDR7, play key roles in the development of both T2DM and ASCVD (Roomy et al.). Targeting lipid metabolism may offer a dual benefit in managing both diabetes and cardiovascular disease, thus improving overall patient outcomes. In addition, comorbidities such as obesity and dyslipidemia compound ASCVD risk, underscoring the importance of a multifaceted approach to metabolic control (Roomy et al., Zhong et al.).




4.3 Other intersecting complications and disease interactions

Beyond DR, DN, and ASCVD, diabetes frequently intersects with other conditions that can exacerbate the disease burden. Research has linked T2DM to acute pancreatitis, gallstone disease, and even autoimmune conditions like primary biliary cholangitis, suggesting shared pathogenic pathways or predispositions (Zhong et al., Lv et al., Yan et al.). Meanwhile, comorbidities such as depression, overactive bladder, and Alzheimer’s disease appear to intensify the progression of diabetic complications, highlighting the importance of holistic patient evaluation (Cai et al., He et al., Ouyang et al.). Furthermore, the severity of diabetic polyneuropathy (DPN) has been shown to be a strong predictor for retinopathy and nephropathy in untreated diabetic patients, underscoring the need for thorough neurological assessments as part of comprehensive risk stratification (Horinouchi et al.). Recognizing these overlapping conditions facilitates integrated management plans tailored to individual patient profiles.

All above published articles on the current Research Topichave provided valuable insights into the pathophysiology of diabetes–related complications, leading to the identification of new biomarkers and therapeutic targets. Emerging strategies such as mitochondrial transfer and immune modulation, as well as novel diagnostic tools like FTIR spectroscopy, hold promise for improving diabetes management and its complications. Targeting key mechanisms like mitochondrial dysfunction, endothelial dysfunction, and systemic inflammation offers new opportunities for personalized therapies that can better address the complex nature of diabetes–related complications.

Future research should continue to validate these biomarkers and treatment strategies through clinical trials and refine predictive models for earlier intervention. Multidisciplinary collaboration, incorporating advances in molecular biology, clinical research, and technological advances, will be essential for developing more effective therapeutic approaches for diabetes and its associated complications. This editorial aims to inspire further studies and collaborations to enhance the lives of the millions affected by diabetes worldwide, ultimately leading to more efficient prevention and treatment of its far–reaching complications.
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Introduction

The purpose of our study was tomeasure the level of leptin and biologically active leptin (bioLEP) in children with type 1 diabetes, depending on the duration of diabetes and its degree of metabolic control.





Methods

The study included 94 children (58 boys and 36 girls). In a group of children with diabetes, 40 patients were newly diagnosed with type 1 diabetes, 40 children who have diabetes for more than a year (20 with good metabolic control and 20 with poor metabolic control). The control group consisted of 14 healthy children. The serum level of leptin and bioLEP was measured using a sandwich enzyme-linked immunosorbent assay. To our knowledge, this is the first study to describe bioLEP levels among diabetic children with different forms of disease control.





Results

Lower levels of leptin were found in children with diabetes compared to healthy children. Furthermore, we found a statistically higher concentration of leptin in the group of children with newly diagnosed diabetes compared to children from the diabetic group with poor metabolic control and lower than healthy children (11.19 vs. 7.84 and 20.94 ng/mL). Moreover, children in the metabolically well-controlled group had statistically lower levels of this hormone (5.11 ng/mL) than healthy children. Leptin concentrations differed significantly between underweight, overweight, and obese children.





Discussion

In our study, the level of bioLEP differed significantly between children in the newly diagnosed diabetes group and children in the long-term, poorly controlled diabetes group and healthy controls. Despite many studies published in recent years, many aspects of leptin secretion, action, and mechanisms of its influence on carbohydrate and fat metabolism are still to be clarified. In our opinion, studies evaluating the status of bioLEP in diabetes can also contribute to a better understanding of the mechanisms regulating metabolism.
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1 Introduction

Type 1 and type 2 diabetes of youth is a major problem around the world. Reports suggest that among all cases of diabetes diagnosed in the US type 1 and type 2 diabetes account for approximately 6% and 91%, respectively (1, 2). Leptin, a 16 kDa protein hormone secreted into the circulation from white adipocytes, has been implicated in the regulation of food intake, body mass, and reproductive function and plays a role in fetal growth, pro-inflammatory immune responses, angiogenesis, and lipolysis (3, 4). Recent evidence suggests that the adiposity hormone leptin also plays an important role in controlling glucose metabolism through its actions in the brain (5). Circulating leptin is secreted into the bloodstream, reaches the brain through the blood-brain barrier, and acts on the hypothalamus (6). Both in vivo and in vitro studies suggest that insulin stimulates leptin synthesis (7). Serum leptin concentrations have been found to be higher in chronically insulin-treated diabetic children and adults with type 1 or 2 diabetes than in healthy controls and diabetics receiving other therapies (8). Furthermore, the leptin level has been reported to be lower before the start of insulin treatment in patients newly diagnosed with diabetes than in healthy controls (9, 10). According to recent reports, leptin may be present in high concentrations in some patients, but it is biologically inactive, so it cannot bind to its receptor (11, 12).

Therefore, the aim of the present study was to evaluate the status of serum leptin and biologically active leptin (bioLEP - functional leptin) levels in children with three forms of diabetes (newly diagnosed, well and poorly controlled) and healthy controls.




2 Materials and methods



2.1 Study subjects

The study included 94 children at the age of 11.53 ± 4.37 (58 boys and 36 girls). In a group of children with diabetes, 40 patients had newly diagnosed type 1 diabetes, aged 9.47 ± 3.91 years, 40 with long-term type 1 diabetes aged 12.61 ± 3.76 (long term defined as lasting more than one year). In the group of patients with long-term type 1 diabetes, 20 children had good metabolic control (aged 11.86 ± 3.94) and 20 with poor metabolic control aged 13.37 ± 3.5 years. All the parents of the children were Caucasian with no family history of type 1 or any type of diabetes. The control group consisted of 14 healthy children aged 14.33 ± 4.84 years, 9 girls and 5 boys. The diagnosis of type 1 diabetes was based on the criteria of the International Society of Pediatric and Adolescent Diabetes (13). Participants were recruited from the Department of Pediatrics, Pediatric Endocrinology and Diabetology, and the Outpatient Endocrinology Clinic between January 2019 and April 2021. Leptin and bioLEP levels were determined on the fifth day of hospitalization after stabilization of the patient’s general condition. The duration of diabetes treatment in the remaining patients was longer than 1 year. Patients with type 1 diabetes were treated with insulin analogues by intensive insulin therapy using pen or continuous subcutaneous insulin infusion with a personal insulin pump. Poor metabolic control of the disease was defined as a level of glycated hemoglobin (HbA1c) above 7%. At the same time, 14 healthy children were included in the control group. Type 1 diabetes was excluded from the control group based on medical history, clinical examination, biochemical (c-peptide and HbA1c) and immunological tests. Children with a body mass index, defined as BMI > 85th percentile for sex and age, were also included in the study in both the diabetic and healthy children. BMI above the 85th percentile was not the reason for exclusion from the study groups. Next, we divided the patients according to BMI percentiles into three groups: 1) underweight – less than the third percentile, 2) healthy weight - third percentile to less than the 85th percentile, and 3) overweight and obesity – 85th and greater than the 85th percentile.




2.2 Biochemical analyses

Venous peripheral blood was drawn to a clotting activator tube (Sarstedt, Inc., Germany). Clotted samples were centrifuged for 10 minutes in 1000xg, at 4°C in a Centrifuge 5702 R (Eppendorf AG, Germany). Serum was transferred to 0.2 ml tubes (Greiner-bio-one, Austria) and cryopreserved at -80°C until the time of the experiment. Other clinical parameters were obtained from patient clinical records.




2.3 Leptin and bioLEP assay

Quantitative determination of total leptin was made using a sandwich enzyme-linked immunosorbent assay (ELISA) (E077, Mediagnost, Germany). BioLEP was also quantified by ELISA (L07, Mediagnost, Germany), however the analyte was captured by recombinant produced leptin receptor (SOB-R) immobilized on a microtiter plate. The entire procedure was prepared according to the manufacturer’s protocol. According to the manufactures specifications, the inter- and intra-assay coefficients of variation are below 10% for both ELISAs. Absorptiometric measurements were performed on a Tecan Infinite 200 PRO multimode reader (Tecan Group Ltd.; Männedorf, Switzerland). The quotients of biologically active leptin and leptin (bioLEP/LEP) were calculated.




2.4 Statistical analysis

All statistical analyses were performed using the STATISTICA software package (version 13.3, StatSoft Inc. 2017, Tulsa, OK, USA). Data were expressed as mean and SD, as well as range. Most variables did not follow a normal distribution, which was validated using the Shapiro-Wilk test, due to the nonparametric tests that were applied. Kruskal-Wallis ANOVA was used for multiple comparisons. A p-value below 0.05 was considered statistically significant.




2.5 Ethical approval

The study protocol was approved by the Bioethics Committee of the University of Rzeszow (Poland) 2018/03/08. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Declaration of Helsinki of 1964 and its subsequent amendments or comparable ethical standards. Written informed consent was obtained from legal guardians and/or children.





3 Results

The characteristics of the study group are presented in Table 1. Children with newly diagnosed diabetes (NDM1) were statistically younger than children with long-term diabetes, metabolically poorly controlled (DM1n) (p=0.007) and healthy children (p<0.001). We did not find statistical differences between the mean age of girls and boys in the study group. Statistically, diabetes was treated longer in children in the DM1n group (p<0.001). Children with newly diagnosed diabetes had statistically lower body weight than children in the DM1n (p<0.001) and control groups (p=0.006). Children with newly diagnosed diabetes had a statistically lower BMI than children in the DM1n group (p<0.001) and healthy children (p=0.002). Moreover, children in the NDM1 group had a statistically higher level of HbA1c compared to children with long-term diabetes, metabolically well controlled (DM1w) (p<0.001) group and healthy children (p<0.001). Children with long-term and well-controlled diabetes had statistically lower HbA1c levels than children in the DM1n group (p<0.001). There were no statistical differences in cholesterol and LDL levels. We observed a statistical difference in HDL level between children from the NDM1 group and DM1w (p=0.036). Finally, children in the NDM1 group had statistically higher triglyceride levels than children in the DM1w (p<0.001), DM1n (p=0.002) group and healthy children (p=0.02).


Table 1 | General characteristics of children included in the study.*.



Figures 1, 2 present the level of leptin and bioLEP in the studied groups. We found a statistically higher concentration of leptin in the group of children with newly diagnosed diabetes compared to the children in the DM1n group (11.19 ± 52.16 vs 7.75 ± 7.94 ng/mL, p=0.046) and lower than in healthy children (11.19 ± 52.16 vs 20.94 ± 23.29 ng/mL, p<0.001). Furthermore, children in the DM1w group had statistically lower levels of this hormone than healthy children (5.11 ± 8.59 vs 20.94 ± 23.29 ng/mL, p=0.004, Figure 1). The level of bioLEP was statistically increased in children with NMD1 compared to children in the DM1n group (17.2 ± 83.66 vs 11.33 ± 11.03 ng/mL, p=0.002) and lower than in healthy children (17.2 ± 83.66 vs 20.86 ± 21.16 ng/mL, p<0.001). The bioLEP level in the participants in the DM1w group was 7.84 ± 12.45 ng/ml and did not differ statistically from other study groups.




Figure 1 | Concentration of leptin in studied groups, NDM1, patients with newly diagnosed diabetes; DM1w, patients with long-term diabetes who are metabolically well-controlled; DM1n, patients with long-term diabetes; metabolically poorly controlled.






Figure 2 | Concentration of bioLEP in studied groups, NDM1, patients with newly diagnosed diabetes; DM1w, patients with long-term diabetes who are metabolically well-controlled; DM1n, patients with long-term diabetes; metabolically poorly controlled.



Individual bioLEP/LEP quotients in children with NDM1 were significantly decreased compared to children in the DM1w and DM1n group (1.28 ± 0.52 vs. 1.72 ± 0.43, p<0.05 and 1.63 ± 0.38, p<0.05, respectively). The ratio of bioLEP to leptin in the group of healthy children was close to 1 (1.03 ± 0.19) and was statistically lower than in the DM1w and DM1n groups (p<0.001).

Table 2 presents differences in leptin, bioLEP, and bioLEP/leptin levels depending on the sex of the study participants. There were no statistical differences in the levels of leptin, bioLEP, and bioLEP/leptin among children with NDM1. Both in the DM1w and DM1n group, leptin and bioLEP were higher in girls than in boys. There was no difference in bioLEP/leptin in either group. Surprisingly, leptin and bioLEP levels were higher in healthy boys than in girls. Individual quotients of bioLEP/LEP in healthy boys and girls were close to 1.


Table 2 | Leptin parameters depending on the sex of the participants.*.



Tables 3, 4 present the level of leptin and bioLEP depending on the BMI percentiles. Children below the third percentile were only in the NDM1 group. Among children of normal weight, leptin levels were significantly different between healthy children and children with newly diagnosed diabetes, as well as participants from the DM1w group. We did not observe any difference in leptin levels between the other groups of children with a BMI between the third and 85th percentiles, and between children above the 85th percentile. Among children with newly diagnosed diabetes, leptin levels were significantly different between underweight, overweight, and obese children (p<0.001). Moreover, children of normal weight had statistically lower leptin levels than children with a BMI above the 85th percentile (p=0.003). In the group of children with DM1w and DM1n, there were no differences in leptin levels between children with normal weight and children with a BMI greater than the 85th percentile (p=0.122 and p=0.096, respectively). Moreover, there were no differences in the level of this hormone between the groups in the control group (p=0.291).


Table 3 | Concentration of leptin depending on the BMI percentile.*.




Table 4 | Concentration of bioLEP depending on the BMI percentile.*.



The level of bioLEP was significantly different between children in the NDM1 group and healthy children and children in the DM1n group. In the NDM1 group, the level of bioLEP was significantly higher in children with normal weight and overweight and obese than in the group of underweight children (p=0.037 and p<0.001, respectively). Moreover, children with a BMI between the 3rd and 85th percentiles had significantly lower bioLEP levels than overweight and obese children (p=0.013).

In the group of children with DM1w and DM1n, there was no difference in bioLEP levels between children with normal weight and children with a BMI above the 85th percentile (p=0.177 and p=0.157, respectively). In addition, there was no difference in the level of this hormone between the groups in the control group (p=0.368).

The dependence between leptin and bioLEP level and patient general characteristics was estimated using Spearman’s correlation. Spearman rank correlation coefficients and p values for each separate disease are presented in Tables 5, 6. We found a strong positive correlation between leptin level and weight and BMI in children with NDM1 and healthy controls (R=0.524, p<0.001; R=0.7, p<0.001 and R=0.59, p=0.025; R=0.6, p=0.023, respectively). In addition, in the group of children with DM1n there was a moderate and positive correlation between leptin and total cholesterol and LDL level. No other association was demonstrated between leptin concentration and other parameters analyzed.


Table 5 | Spearman’s rank correlation coefficients and p values for leptin.*.




Table 6 | Spearman’s rank correlation coefficients and p values for bioLEP.*.



Regarding bioLEP, we observed a strong positive correlation between bioLEP level and weight and BMI in children with newly diagnosed diabetes (R=0.487, p<0.001 and R=0.706, p<0.001). Furthermore, the association of bioLEP with BMI, total cholesterol, LGL, and triglycerides had a moderate and increasing trend in children with DM1n (Tab. 5). BioLEP levels were positively correlated with HDL (R=0.559, p=0.038) and negatively correlated with LDL (R=-0.54, p=0.046) in healthy children.

We did not find any additional associations between other analyzed parameters. The level of leptin and bioLEP strongly correlated with each other in all study groups (Table 7).


Table 7 | Spearman’s rank correlation coefficients and p values for leptin and bioLEP.






4 Discussion

In the current study, leptin and bioLEP concentrations were assessed in children with type I diabetes and healthy children. Lower levels of leptin were found in children with diabetes compared to healthy children. Moreover, we found a statistically higher concentration of leptin in the group of children with newly diagnosed diabetes compared to children in the diabetic group with poor metabolic control and a decrease than in healthy children. Moreover, children from the metabolically well-controlled group had statistically lower levels of this hormone than healthy children. Hanaki et al. showed lower levels of leptin in newly diagnosed children with DM1 compared to healthy children (3.3 ± 0.2 vs 6.2 ± 0.9 ng/mL; p<0.005), and its level increased with the use of insulin treatment (14). Similarly, serum from newly diagnosed children with diabetes had significantly lower levels of leptin (mean 1.28 ± 1.60 ng/ml) compared to healthy children (mean 2.2 ng/ml) in the study by Kiess et al. (10). Contrary to our results, Morales et al. showed higher serum leptin levels in children with DM1 compared to healthy children (5.1 vs 2.7 ng/mL) (15). Insulin treatment increases leptin levels (5.18 ± 5.48 ng/ml) in children with newly diagnosed diabetes, which is consistent with our results (10). However, among our patients, leptin levels in children with well-controlled DM1 were significantly lower than in healthy controls (5.11 ± 8.59 vs 20.94 ± 23.29 ng/mL). Leptin plays an essential role in maintaining body weight and glucose homeostasis (16). This is done by its central and peripheral actions. There is a direct relationship between leptin and insulin. The presence of leptin receptors in pancreatic beta cells indicates the involvement of leptin in the pancreatic endocrine system, including the regulation of insulin secretion by beta cells. It is assumed that insulin increases the production of leptin by adipose tissue, while leptin inhibits insulin secretion and insulin gene expression. The repressive effect of leptin on insulin production is regulated both by the autonomic nervous system and directly by affecting leptin receptors in beta cells (17). Leptin can inhibit basal and glucose-stimulated insulin secretion (18). This occurs through several mechanisms, including the activation of ATP-dependent potassium channels resulting in membrane hyperpolarization and suppression of insulin secretion (19–21). The above-mentioned relationships may explain the decreased level of leptin in patients with insulin deficiency during the course of type 1 diabetes.

In addition, the present study showed a significant correlation between leptin concentration and BMI. Among children with newly diagnosed DM1, leptin concentrations differed significantly between underweight, overweight, and obese children. Additionally, in the NDM1 group, children with normal body weight had statistically lower leptin levels than children with BMI above the 85th percentile. In the group of children with DM1w and DM1n, there were no differences in leptin concentration between children with normal weight and children with BMI above the 85th percentile. In addition, there was no difference in the level of this hormone between the groups according to BMI in the control group. In studies by Soliman et al., higher levels of leptin were observed in children with a higher BMI (22). Kiess et al. also found a positive correlation between leptin and BMI (R=0.42, p<0.0001) (10). In overweight patients with DM1, leptin showed a significant positive correlation with hip circumference and BMI (23).

As in the studies by Morales et al. and Kiess et al., no correlation were found between leptin concentration and HbA1c level and lipid metabolism parameters in children with NDM1 (10, 15). In the group of children with DM1n, a moderate and positive correlation was found between leptin level and total cholesterol and LDL was found. In the conducted studies, similarly to the study by Kratzsch et al., no significant differences were found in terms of leptin concentration and severity of acid-base disturbances (24).

Recent studies have shown that mutations in the leptin gene can lead to leptin dysfunction. Congenital leptin deficiency is characterized by excessive appetite and severe early obesity, as well as metabolic and endocrine disorders. The disease is caused by mutations in the leptin gene, which usually lead to defects in leptin synthesis, and thus to the absence or very low levels of this hormone in the circulation (25). Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin, but decreased hormone bioactivity due to defective receptor binding. Mutations in the leptin gene have been described in obese patients in whom circulating immunoreactive leptin levels were detectable while bioLep levels were low. The use of recombinant human leptin led to a rapid improvement in eating behavior and weight loss (11, 26).

To our knowledge, this is the first study to describe bioLEP levels among children with DM1 with different forms of disease control. In our study, the level of bioLEP differed significantly between the children of the NDM1 group (17.2 ± 83.66, range: 0.33-532 ng/mL) and the children of the DM1n group (11.33 ± 11.03, range: 1.58-44.63 ng/mL) and healthy controls (20.86 ± 21.16, range: 0.99-68.47 ng/mL). Moreover, children with NDM1 compared to children with DM1n have lower levels of leptin but higher levels of bioLEP. In the NDM1 group, the level of bioLEP was significantly higher in children with normal weight and overweight and obese than in the group of underweight children. Furthermore, children with a BMI between the 3rd and 85th percentiles had significantly lower bioLEP levels than overweight and obese children. In the group of children with DM1w and DM1n, there were no differences in bioLEP levels between children with normal weight and children with BMI greater than the 85th percentile. Additionally, there were no differences in the level of this hormone between the groups in the control group. BioLEP was correlated with BMI among children with NDM1 and DM1N. This correlation was at a level comparable to the correlation between total LEP and BMI. Furthermore, the hormone was positively correlated with LDL and glycerides among children with poor diabetes control. Interestingly, bioLEP was positively correlated with HDL and negatively with LDL among healthy children. BioLEP levels were positively correlated with age and BMI among children with severe early-onset obesity (12). The better concentration of bioLEP than total leptin might reflect the amount of hormone that is capable of exerting a biological effect (27). Niklowitz et al. found that bioLEP levels did not differ between prepubertal girls and boys, while we observed a trend for higher bioLEP levels in girls compared to boys with DM1w and DM1n (27). Similar observations have recently been made among obese children (12).

Insulin deficiency in type 1 diabetes results in a state of increased lipolysis of adipocytes, which causes an increase in circulating free fatty acids and ultimately ketonemia. Both of these metabolites can reduce the ability of adipocytes to secrete leptin, signaling an “energy deficit.” Therefore, type 1 diabetes is a condition in which one can speak of a “relative leptin deficiency” (28). Experimental studies and clinical observations indicate a relationship between insulin and leptin release (29). Despite many studies published in recent years, many aspects of leptin secretion, action, and mechanisms of its influence on carbohydrate and fat metabolism are still to be clarified. In our opinion, studies evaluating the status of bioLEP in diabetes may also contribute to a better understanding of the mechanisms that regulate metabolism. Many studies have suggested that leptin can be used as an antidiabetic drug or in addition to insulin therapy in patients with insulin-dependent diabetes (30–33). The results of experimental studies are encouraging; however, the use of such a therapy in humans requires further clinical trials.




5 Conclusion and limitation

Although our study provides new information on leptin and bioLEP among pediatric patients with varying degrees of DM1 control, several limitations of the study should be mentioned. First, this study is a single-center study with a small group of children. The COVID-19 pandemic prevented us from collecting a larger group of patients. Second, we did not analyze the soluble leptin receptor in the serum of the participants. Therefore, further research is needed containing larger groups of patients differing in sex, age, and degree of sexual maturation.
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Objective

This study aims to develop and evaluate a non-imaging clinical data-based nomogram for predicting the risk of vision-threatening diabetic retinopathy (VTDR) in diabetes mellitus type 2 (T2DM) patients.





Methods

Based on the baseline data of the Guangdong Shaoguan Diabetes Cohort Study conducted by the Zhongshan Ophthalmic Center (ZOC) in 2019, 2294 complete data of T2DM patients were randomly divided into a training set (n=1605) and a testing set (n=689). Independent risk factors were selected through univariate and multivariate logistic regression analysis on the training dataset, and a nomogram was constructed for predicting the risk of VTDR in T2DM patients. The model was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) in the training and testing datasets to assess discrimination, and Hosmer-Lemeshow test and calibration curves to assess calibration.





Results

The results of the multivariate logistic regression analysis showed that Age (OR = 0.954, 95% CI: 0.940-0.969, p = 0.000), BMI (OR = 0.942, 95% CI: 0.902-0.984, p = 0.007), systolic blood pressure (SBP) (OR =1.014, 95% CI: 1.007-1.022, p = 0.000), diabetes duration (10-15y: OR =3.126, 95% CI: 2.087-4.682, p = 0.000; >15y: OR =3.750, 95% CI: 2.362-5.954, p = 0.000), and glycated hemoglobin (HbA1C) (OR = 1.325, 95% CI: 1.221-1.438, p = 0.000) were independent risk factors for T2DM patients with VTDR. A nomogram was constructed using these variables. The model discrimination results showed an AUC of 0.7193 for the training set and 0.6897 for the testing set. The Hosmer-Lemeshow test results showed a high consistency between the predicted and observed probabilities for both the training set (Chi-square=2.2029, P=0.9742) and the testing set (Chi-square=7.6628, P=0.4671).





Conclusion

The introduction of Age, BMI, SBP, Duration, and HbA1C as variables helps to stratify the risk of T2DM patients with VTDR.





Keywords: diabetes mellitus type 2, diabetic retinopathy, vision-threatening diabetic retinopathy, risk factors, prediction model




1 Background

According to research conducted by the International Diabetes Federation (IDF), the global prevalence of diabetes was estimated to be 9.3% (463 million people) in 2019, with a predicted increase to 10.2% (578 million people) by 2030 and 10.9% (700 million people) by 2045 (1). Diabetic retinopathy (DR), a highly tissue-specific neurovascular complication of diabetes, is the leading cause of preventable blindness in the working-age population (2). In addition to vision loss, DR has been shown to be associated with other diabetes-related complications, including kidney disease, peripheral neuropathy, and cardiovascular events (3–5). Therefore, targeted monitoring and management of DR patients are of crucial clinical significance.

The International Clinical Diabetic Retinopathy Disease Severity Scale categorizes DR into five stages based on disease severity, including the first three stages with low risk, as well as the fourth stage, severe non-proliferative diabetic retinopathy (NPDR), and the fifth stage, proliferative diabetic retinopathy (PDR). Diabetic macular edema (DME) is classified as either present or absent (6). Vision-threatening diabetic retinopathy (VTDR) includes severe NPDR, PDR, and/or DME, indicating that the development of DR has seriously affected the patient’s vision, and failure to treat it in a timely manner will result in irreversible vision loss (7). The pathogenesis of DR is still not fully understood, but it may be due to excessive production of reactive oxygen species (ROS) and advanced glycation end-products (AGEs) inducing mitochondrial dysfunction, leading to dysfunction of the vascular endothelial cell barrier, neuronal cell death, and axonal degeneration, ultimately resulting in severe damage to retinal function (8). Studies have found that risk factors for DR and VTDR may include race, place of residence, refractive error, duration of diabetes, blood glucose levels, blood pressure, and kidney function, and optimizing control of these risk factors can reduce the risk of VTDR occurrence and progression (9–12).

The main treatments for VTDR include panretinal photocoagulation, intravitreal injection of anti-vascular endothelial growth factor, and vitreoretinal surgery (2). Primary healthcare providers, optometrists, and nurses who have received training can effectively manage mild to moderate DR, but management and key treatment of VTDR patients require the specialized knowledge and skills of trained ophthalmologists or retinal specialists (13, 14). According to statistics, the prevalence of VTDR in the global diabetic population is 6.17% (285.4 million people), and it is expected to increase to 448.2 million people by 2045 (7). In recent years, artificial intelligence diagnostic systems have demonstrated excellent performance in the identification and referral of VTDR patients (15, 16). However, most autonomous AI systems currently require imaging data provided by advanced ophthalmic examination equipment, such as fundus photography and OCT, and advanced ophthalmic medical resources are still scarce for physicians and patients in underdeveloped areas (14).

Logistic regression, as a commonly used statistical method, can be applied in various clinical medical scenarios, including but not limited to the following aspects: 1)Disease Prediction: Logistic regression can predict whether patients have a certain disease based on their clinical data. 2)Risk Assessment: Logistic regression can be utilized to assess the risk of patients developing a specific disease. 3)Diagnostic Assistance: Logistic regression can assist physicians in disease diagnosis. 4)Drug Development: In the drug development process, logistic regression can predict the efficacy and safety of new drugs. By establishing models, researchers can evaluate the therapeutic effects of different drugs on diseases and identify the most promising candidates. 4)Survival Analysis: In clinical observations and epidemiological studies, logistic regression can be used to analyze patients’ survival data, predict their survival rates, and identify factors that affect survival. Overall, logistic regression plays a crucial role in clinical medicine, providing an effective predictive and decision-making tool for physicians and researchers to improve patient health outcomes and the quality of medical services.

In clinical prediction models, logistic regression analysis is commonly used for predicting the onset and diagnosis of diseases by analyzing the probability of an individual developing a certain outcome event at different values of the predictive indicator. Through logistic regression analysis of multiple factors, independent influencing factors for the outcome event are identified as predictive indicators in the prediction model. Then, multiple predictive indicators are integrated and analyzed using regression analysis to generate a risk nomogram based on a certain proportion (17).

Currently, there are few clinical prediction model studies on DR and VTDR based on non-imaging data. Ke et al. constructed a risk nomogram for predicting the development of VTDR in mild NPDR patients by introducing three variables, including 2-hour C-peptide, UACR, and sural nerve conduction impairment (SNCI). The model achieved a sensitivity, specificity, and AUC of 66.7%, 89.5%, and 0.75, respectively, in the testing set (18).

In most areas of China, there are standard management and regular physical examination protocols for diabetic patients. However, the screening and management system for diabetic retinopathy (DR) remains incomplete. Therefore, the purpose of this study is to develop and validate a VTDR risk prediction scoring model based on systemic parameters and non-ophthalmic imaging data, using the T2DM cohort study data. The goal is to provide a simple scoring system for regions with limited medical resources and primary healthcare institutions. This system can be used to identify high-risk individuals for VTDR, addressing the gaps in existing medical facilities and enhancing healthcare accessibility for at-risk populations.




2 Materials and methods



2.1 The main workflow of this study

The main workflow of this study summarized in Figure 1.




Figure 1 | Workflow Diagram.






2.2 Study materials

a) The baseline data of 2677 patients were collected from the Guangdong Shaoguan Diabetes Cohort Study conducted by Zhongshan Ophthalmic Center (ZOC), Sun Yat-sen University in Guangzhou, China in 2019.

b) All patients were diagnosed with T2DM.

c) All patients underwent fundus photography and OCT examinations, and experienced ophthalmologists diagnosed and verified DR and DME. Patients with severe NPDR, PDR, and/or DME were defined as having VTDR.




2.3 Variable selection

PubMed, EMBASE, and other websites were searched using keywords such as “T2DM” and “VTDR” to identify relevant literature and determine the variables to be included in the study. The following patient data were extracted: ID number, Age, Gender, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), duration of diabetes(Duration), smoking status(Smoking), alcohol consumption(Alcohol), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), serum creatinine (SCr), uric acid (UA), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein cholesterol (LDL-C), blood glucose (GLU), glycated hemoglobin (HbA1C), and whether VTDR occurred. The extracted data were organized and merged into one file based on the patient ID number.




2.4 Variable assignment explanation

All categorical variables, including gender, duration of diabetes, smoking, alcohol consumption, residence, and whether VTDR occurred, were assigned values. The assigned values are shown in Table 1.


Table 1 | Variable Assignment Explanation.






2.5 Construction and presentation of the predictive model

Logistic regression analysis is a statistical technique used to analyze the relationships between multiple variables, where the outcome variable is a categorical variable, including binary, unordered categorical, and ordered categorical variables. The number and types of independent variables are not limited. In this study, the well-organized data was randomly divided into training and testing sets in a 7:3 ratio. Single-factor analysis was conducted on all variables in the training set, and variables with a p-value< 0.05 were included in the multivariable logistic regression to identify independent influencing factors. The multivariable logistic regression is based on the logistic regression model, which establishes a linear equation to describe the relationship between independent variables and log odds. The log odds are then converted to probabilities for predicting and interpreting the outcome categories. The logistic regression model can be represented by the following equation:

	

logit(p) represents the log odds, p is the probability of the event occurring, X1, X2,…, Xn are the independent variables, and β0, β1, β2,…, βn are the model parameters (coefficients). By estimating the parameter values, the best-fitting model can be obtained to predict the probability of the outcome variable.

We establish a predictive model to identify independent influencing factors of VTDR in patients with T2DM and present it in the form of a Nomogram.




2.6 Evaluation of the predictive model

The ROC curve and AUC was used to evaluate the discrimination of the predictive model, with an AUC range of 0-1, where 1 indicates complete consistency and 0.5 indicates poor consistency. The Hosmer-Lemeshow test and calibration plot were used to calibrate the predictive model and judge the consistency between the predicted probability and the observed probability. When P>0.05 for the Hosmer-Lemeshow test, it can be considered that the predictive model has good calibration.

The calibration plot is a commonly used visual tool for assessing the consistency between model-predicted probabilities and actual observed outcomes. In the calibration plot, the x-axis represents the predicted probabilities from the model, while the y-axis represents the frequency or probabilities of the observed outcomes. The predicted results refer to the model’s outputs obtained by predicting new, unseen samples based on input features and learned parameters. On the other hand, the observed outcomes represent the known class labels of the actual observed samples, which are used to compare the accuracy and effectiveness of the model’s predictions.





3 Statistical methods

Continuous variables that conform to normal distribution are expressed as mean and SD values, while other continuous variables are expressed as median (25-75 percentile). Categorical variables are expressed as percentages. Single-factor analysis and multivariate logistic regression were used to eliminate variables with limited predictive ability. Logistic regression was used to establish a predictive model, and a Nomogram was used to predict the incidence rate. All data were analyzed using SPSS version 27.0 and R version 4.2.2 software, and P<0.05 was considered statistically significant.




4 Results



4.1 Detection of VTDR in patients with T2DM

A total of 2677 patients with T2DM were collected and summarized. Individuals with missing variables were excluded, resulting in a final sample of 2294 patients with T2DM. Among them, 370 patients were diagnosed with VTDR, with a prevalence of 16.13%.




4.2 The statistical description of the training set and testing set

The original dataset consists of 2294 cases, which were randomly divided into a training set and a testing set. The training set includes 1605 cases (70%), and the testing set includes 689 cases (30%). The distribution differences of the 21 variables between the two groups were not statistically significant (P>0.05), as shown in Table 2.


Table 2 | Statistical description of the training and testing sets.






4.3 Model variable selection:



4.3.1 Univariate analysis

SPSS was used to perform statistical description on the relevant variables in the training set (1605 cases). The results showed that there were statistically significant differences (P<0.05) in 11 variables, including Age, BMI, SBP, DBP, Duration, ALT, AST, BUN, SCr, GLU, and HbA1C, between the two groups, as shown in Table 3.


Table 3 | Results of Univariate analysis of the training set.






4.3.2 Multivariable logistic regression analysis

The 11 variables identified through univariate analysis, including Age, BMI, SBP, DBP, Duration, ALT, AST, BUN, SCr, GLU, and HbA1C, were included in the binary logistic regression analysis using SPSS. The results showed that Age, BMI, SBP, Duration, and HbA1C (5 variables) were independent risk factors for VTDR in patients with T2DM (P<0.05), as shown in Table 4.


Table 4 | Results of multivariate logistic regression analysis.







4.4 Construction of a predictive model for nomogram

This study used the multi-factor binary logistic regression method to select the predictive factors and built a nomogram model to predict the incidence of VTDR in T2DM patients using the “rms” package in Rstudio, based on the predictive factors selected from the multiple factor analysis (Figure 2). Each predictive variable corresponds to a set of numerical values, and the score is obtained by aligning the numerical values on the scale with the point scale at the top. The sum of all the scores corresponds to the total score, which is then aligned with the total point scale at the bottom to obtain the probability of VTDR in T2DM patients.




Figure 2 | Nomogram prediction model for VTDR complications in T2DM patients.



An example application is as follows: assuming that a 55-year-old (55 points) patient who has been diagnosed with type 2 diabetes mellitus for 10 years (32 points) has a BMI of 20 (40 points), a systolic blood pressure of 160 mmHg (34 points), and an HbA1C of 10% (45 points), his total score would be approximately 206, and the corresponding score would predict that the patient would have a probability of developing VTDR of about 65%.




4.5 Evaluation of the nomogram prediction model



4.5.1 Discrimination

The discrimination results show that the training set AUC is 0.7139 (Figure 3A), and the testing set AUC is 0.6897 (Figure 3B), indicating that the model has the ability to distinguish between the occurrence and non-occurrence of VTDR, which is helpful for risk stratification.




Figure 3 | (A) ROC curve of the training set; (B) ROC curve of the testing set; (C) Calibration plot of the training set; (D) Calibration plot of the testing set.






4.5.2 Calibration



4.5.2.1 Hosmer-Lemeshow test

The results of the Hosmer-Lemeshow test show a high level of consistency between the predicted probabilities and the observed probabilities in both the training set (Chi-square=2.2029, P=0.9742) and the testing set (Chi-square=7.6628, P=0.4671).




4.5.2.2 Calibration plot

The calibration plots for both the training set (Figure 3C) and the testing set (Figure 3D) demonstrate good consistency between the predicted and observed outcomes, indicating that the model has good calibration.







5 Discuss

The statistical results of this study showed that Age, BMI, SBP, Duration, and HbA1C were independent influencing factors for VTDR in T2DM patients. Among them, the increase of SBP, Duration, and HbA1C was positively correlated with the onset of VTDR. It is worth noting that the increase of Age and BMI was negatively correlated with the onset of VTDR.

Regression analysis in this study showed an OR for Age of 0.954 (95% CI: 0.940-0.969, p = 0.000), i.e., for every 1-year increase in the age of an individual with T2DM, there was a 4.6% decrease in the risk of concurrent VTDR. This finding indicates that younger patients are at a higher risk of developing the disease compared to older patients. Contrasting with some earlier statistical studies which did not suggest age as a risk factor for DR, our results align with recent epidemiological studies (9, 10). Age, as well as the age of diabetes diagnosis, has been independently associated with macrovascular complications, including mortality, rather than microvascular complications (19, 20). For instance, Peng and Yu’s epidemiological study in Shenzhen, demonstrated a significant increase in the incidence of DR in patients over 60 years of age (21). Additionally, a cohort study on type 1 diabetes patients confirmed a correlation between the age of onset of type 1 diabetes and the occurrence and progression of DR, suggesting that older age at type 1 diabetes onset is associated with faster DR development (22). However, emerging evidence has shown that the diagnosis of type 2 diabetes in young people is linked to worse vascular risk features, higher incidence of complications, and a poorer prognosis (23, 24). Our statistical analysis supports this observation, indicating a higher risk of developing VTDR in younger patients, possibly due to poorer blood sugar control and more severe microvascular damage in this age group. Notably, evidence reveals that young patients exhibit worse blood sugar control compared to elderly patients, potentially owing to distinct phenotypes. Young patients mainly suffer from beta cell loss, whereas elderly patients experience a combination of insulin resistance and beta cell loss (20). In light of these findings, it is essential to conduct further research to clarify the complex relationship between age and DR/VTDR. Understanding the age-related factors influencing the risk of DR can contribute to improved preventive strategies and targeted treatment options.

The results of this study showed an OR for BMI of 0.942 (95% CI: 0.902-0.984, p = 0.007), i.e., for every 1-unit increase in BMI in individuals with T2DM, there was a 5.8% decrease in the risk of concurrent VTDR. Previous studies have found a possible neutral association between BMI and DR, indicating the existence of both protective and adverse effects (25). Han and X’s study showed that a higher BMI increased the risk of developing diabetes but was not related to VTDR (26). However, a large-scale epidemiological study conducted in India in 2022 demonstrated no relationship between BMI and DR, but it did reveal a negative correlation between BMI and VTDR (11). Remarkably, our study’s findings are consistent with the latter study, indicating that an increase in BMI is a protective factor for T2DM patients developing VTDR. Several reasons might account for this. Firstly, previous research has shown that individuals with T2DM and higher BMI tend to have elevated levels of C-peptide, which has been associated with a lower risk of DR (27, 28). Additionally, a higher BMI may reflect better blood sugar control and more aggressive treatment, contributing to the deceleration of DR development (25).

The logistic regression results showed an OR for SBP of 1.014 (95% CI: 1.007-1.022, p = 0.000), suggesting that for every 1-unit increase in SBP in individuals with T2DM, there was a 1.4% increase in the risk of concurrent VTDR. We found a positive correlation between the increase in SBP and the occurrence of VTDR, which is consistent with previous research (10, 29, 30). Specifically, studies have indicated that in Asian patients with well-controlled blood sugar, SBP variability is strongly linked to moderate DR (31). Additionally, a T2DM adult DR screening study in Chinese communities revealed that individuals with lower SBP (<140mmHg) had a significantly reduced risk of developing DR (32). Moreover, a large prospective cohort study of T2DM patients found that both systolic and diastolic blood pressure were associated with an increased risk of transitioning from the asymptomatic phase to mild DR and from mild DR to observable DR, suggesting that blood pressure may play a role in the early development of DR (33). The exact mechanism by which high blood pressure causes DR damage remains unclear. However, it is believed that sustained hypertension may lead to microvascular system structural damage, affecting retinal blood vessel endothelial cells, blood vessels, and surrounding tissues, resulting in retinal perfusion disorders. As a result, eyes with DR become more susceptible to excessive perfusion injury caused by hypertension, thereby accelerating the development of DR (34). Notably, current evidence supports that good blood pressure control is a controllable factor that not only reduces the probability of DR but also slows the comprehensive progression of already occurring DR (2, 33, 35). Additionally, studies have indicated that antihypertensive drugs may have a protective association with VTDR, possibly due to their protective effect on diabetes complications, in addition to their blood pressure-lowering effects (36).

As an indicator of cumulative microvascular system damage, the duration of diabetes has been shown to be positively correlated with the occurrence and development of DR and VTDR (10, 29, 30, 37). In patients with type 2 diabetes, it has been demonstrated that the duration of diabetes is independently associated with both macrovascular events and deaths and microvascular events. For every additional 5 years of diabetes, the adjusted risk of multiple microvascular events increases by 28% (20). However, as an uncontrollable factor, the duration of diabetes can only serve as a predictor and cannot be clinically intervened. Therefore, in high-risk populations, we can only reduce the risk of VTDR by controlling other controllable risk factors.

The study found an OR for HbA1C of 1.325 (95% CI: 1.221-1.438, p = 0.000), i.e., for every 1 percentage point increase in HbA1C in individuals with T2DM, there was a 32.5% increase in the risk of concurrent VTDR. Research has found that the optimal cutoff point for distinguishing HbA1C variables between patients with and without DR is 8.15% (38). However, there is currently no evidence to suggest clinical reference values for the critical point of HbA1C in relation to VTDR. Therefore, this study still considers HbA1C as a continuous variable for research. HbA1C reflects a patient’s blood glucose levels over the past 2-3 months, and its impact on the occurrence and progression of DR and VTDR has been thoroughly studied in previous research (9, 10, 29, 36, 37). The role of hyperglycemia in the occurrence and development of DR may be related to “metabolic memory,” which refers to the lasting adverse effects that high blood glucose has on the occurrence and progression of systemic complications. This mechanism may be due to the rapid changes in blood glucose control, which may not allow the retina enough time to recover from the damaging effects of previously high HbA1C levels (39). Studies have shown that when HbA1C is reduced from 8% to 7%, the risk of retinopathy will decrease by 30%-40% (40). Therefore, lowering HbA1C levels through medication or insulin therapy may be a reliable method for prevention and treatment.

After integrating all independent factors, this study included five variables, Age, BMI, SBP, Duration, and HbA1C, in the construction of a column chart model. Discrimination analysis showed that the training set AUC was 0.7193 and the testing set AUC was 0.6897, which was lower than Ke, J.’s prediction model (18). However, it should be noted that the variables used in Ke, J.’s model, including 2-hour C-peptide, UASCR, and SNCI, are not commonly used clinical observation indicators, indicating that their model may not be widely applicable in the real world (18). In contrast, this study included five clinical data that are relatively easy to obtain (Age, BMI, SBP, Duration, and HbA1C) as predictive factors in the model. Additionally, the Hosmer-Lemeshow test and calibration plot results of the model showed high consistency between the predicted and observed probabilities. Therefore, the comprehensive evaluation of this model is considered relatively ideal.

However, this study still has limitations. Although this study developed a new nomogram for T2DM complicated with VTDR, the modeling and validation data were both from epidemiological data in the same region and did not conduct application experiments in the real world. Therefore, this model still needs further improvement and validation.




6 Conclusion

Age, BMI, SBP, Duration, and HbA1C are independent factors that influence the development of VTDR in T2DM patients. Among them, the increase in SBP, Duration, and HbA1C is positively correlated with the incidence of VTDR, while the increase in age and BMI is negatively correlated with the incidence of VTDR. By introducing these 5 variables, the nomogram can help stratify the risk of VTDR in T2DM patients. However, further validation and improvement are still needed to enhance the reliability and generalizability of this model in real-world settings.
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Background

Several studies documented that metformin use contributes to vitamin B12 deficiency in patients with type 2 diabetes mellitus (T2DM). However, there has been a lack of data assessing this issue in Jordan.





Aims

Assess the vitamin B12 serum levels, frequency of vitamin B12 deficiency, and related factors among Jordanian patients with T2DM patients treated with metformin.





Methods

a total of 447 subjects attending a primary health care center were included in this cross-sectional study consisting of T2DM patients who use metformin and a control group of non-diabetics. Serum B12 levels were evaluated and B12 deficiency was defined as serum B12 levels ≤ 200 pmol/L. Associations of B12 serum levels or B12 deficiency with other factors like gender, age, and duration of T2DM were analyzed.





Results

There was no significant difference in serum B12 levels nor the frequency of vitamin B12 deficiency between T2DM metformin-treated patients and control groups. Among metformin-treated patients there was no difference relating to age, type 2 diabetes mellitus duration, proton pump inhibitors use, and metformin use (duration, dose) between patients with or without B12 deficiency.





Conclusion

The prevalence of vitamin B12 deficiency among T2DM patients on metformin treatment in this study was high (48.9%). However, the treatment with metformin and the dose of metformin use was not associated with vitamin B12 deficiency.





Keywords: metformin, type 2 diabetes mellitus, vitamin B 12 deficiency, Jordan, vitamin B12




1 Introduction

Biguanides (e.g. metformin) is still the first-line oral hypoglycemic agent used to manage type 2 diabetes mellitus (T2DM) (1). Gastrointestinal upset is one of the commonly reported side effects of metformin use (2); however, vitamin b12 deficiency is an underestimated one (3). The clinical manifestations of vitamin B12 deficiency can range in severity from asymptomatic or symptomatic megaloblastic anemia up to neurological complications which include peripheral neuropathy (4–6).

The association between metformin use and the decrease in serum B12 has been reported by several studies (7–13). Based on analysis of data from the National Health and Nutrition Examination Survey (NHANES), 1999–2006, a higher prevalence of B12 deficiency was present in patients with diabetes using metformin compared to those not using metformin nor to those without diabetes (7). A recent systematic review has stated that serum vitamin B12 concentrations were significantly lower in patients treated with metformin than in those who received a placebo or rosiglitazone. In addition, they found that the dose of metformin is inversely related to the serum level of vitamin B12 (8). Besides, other observational studies confirmed this relation (9–12). Although there has been a study comparing vitamin B12 levels in metformin user’s vs non-users, it was surprisingly found that patients within the cases group had a lower prevalence of vitamin B12 deficiency (13).

There was a high frequency of suboptimal serum vitamin B12 levels in an adult Jordanian (14). In addition, a population-based study reported that one-third of Jordanian adults have vitamin B12 deficiency regardless of gender (15). Vitamin B12 deficiency among Jordanians was found to be associated with low dairy intake, older ages, recurrent headaches, heartburn, peptic ulcer disease and Hpylori infection (16, 17), while vitamin B complex or multivitamins supplements would be protective (15). Based on the available evidence, the relation between vitamin B12 deficiency in T2DM patients taking metformin is not addressed in Jordan.




2 Method



2.1 Study design

A cross-sectional study was conducted involving subjects with T2DM who attended and were followed up at the Jordan University for Science & Technology (JUST) Health Center in Irbid City, between August 2021 to October 2022. All Patients with T2DM who had been treated with metformin prior to the study were screened.

Inclusion criteria: Patients aged 18 years old and above previously diagnosed with T2DM based on the ADA criteria (1), who are on metformin for at least one year and have at least one laboratory measurement of vitamin B12 during the last 3 months.

Exclusion criteria: Patients who have been diagnosed with type 1 diabetes Mellitus or LADA, pernicious anemia; prior bariatric surgery, gastrectomy, colectomy, or inflammatory bowel disease; ongoing critical illnesses; malignancy; liver cirrhosis or renal impairment will be excluded. Subjects who are recipients of vitamin B12 injections or supplements within the past 6 months, and those who is pregnant or lactating. The control group should neither have T2DM nor any other disease that may affect the Vitamin B12 level.




2.2 Data collection and laboratory measurements

The electronic medical records of eligible participants were reviewed. The following details were recorded per patient: age, sex, duration of T2DM, Vitamin B12 level, the dose of metformin, the duration of metformin use, and drug history (proton pump inhibitors (PPIs) or histamine H2 antagonists). Duration of T2DM and total metformin use were documented in electronic medical record\section of chronic diseases and drugs. The metformin dose had been documented during the last year.

Eligible Patients should be on metformin for at least one year. The subjects with T2DM and the control group should have measured the B12 level within the last 3 months. The vitamin B12 levels were recorded from the medical record within the last 3 months, then we went back 6 months before that date to observe if the patient took B12 supplements, Lansoprazole, or H2 blockers. Serum B12 levels were quantified using a chemiluminescent enzyme immunoassay (Access Immunoassay Systems, Beckman Coulter Inc., CA, USA). Biochemical B12 deficiency was defined as serum B12 levels ≤ 200 pmol/L which is adopted at the Jordan University for Science & Technology Health Center lab.




2.3 Statistical analysis

A prior power analysis, using data from a previous study by Reinstatler et al. (7),, was conducted using G*Power 3.1.9 software (Heinrich Heine University Düsseldorf, Düsseldorf, Germany), which suggested a planned sample size of n = 210 per group would be sufficient to estimate the prevalence of vitamin B12 deficiency within a margin error of 5% (α = 0.05) and 80% power. 447 subjects were included in this study, comprising 231 T2DM patients who use metformin and 216 healthy subjects. The results are presented as mean with standard deviations for continuous variables and count with proportions for categorical variables. Statistical analysis was performed using Statistical Package for the Social Science (SPSS, v.21.0, SPSS Inc, Chicago, IL). An independent t-test was used to evaluate the differences between the mean of two continuous variables. Associations between continuous variables and B12 deficiency were determined by an Independent t-test. Associations between categorical variables and B12 deficiency were determined by the Chi-square test. A one-way analysis of variance (ANOVA) test was used to determine the significance of more than two variables. The results were considered statistically significant if P < 0.05




2.4 Ethical considerations

Ethical approval was obtained from The Institutional Review Board (IRB) at the Jordan University for Science & Technology under number 20220560.





3 Results



3.1 Participants’ characteristics

A total of 447 subjects were involved in this study, including 231 T2DM patients who use metformin and 216 without diabetes (control). Characteristics of the T2DM patients and control are shown in Table 1. In comparison, the control ages were significantly younger than the T2DM patients, while the percentage of males in T2DM patients was higher as compared to controls. The frequency of using PPI was significantly higher in T2DM patients. Interestingly, there was no difference in serum B12 levels between T2DM metformin-treated patients and the control group (P = 0.937). In addition, no difference in the frequency of vitamin B12 deficiency was found between the T2DM patients and controls (48.9% versus 42.4%; P = 0.108). Figure 1 shows the serum B12 levels for males and females in T2DM patients using metformin and control. There was no significant difference in B12 levels between males and females for both groups.


Table 1 | General characteristics of type 2 diabetes mellitus patients and control.






Figure 1 | Serum vitamin B12 (pmol/L) for females and males in diabetes and control groups.






3.2 Type 2 diabetes mellitus patients

The characteristics of T2DM metformin-treated patients with or without B12 deficiency were further analyzed as shown in Table 2. There was no significant difference regarding age, T2DM duration, or metformin use duration between patients with and without B12 deficiency. Furthermore, there was no significant difference in the frequency of PPI use, or metformin use for more than 10 years among B12 deficient patients as compared to nondeficient patients. The prevalence of PPI use was more frequent in the B12-deficient group but not significant (40.7% versus 33%; P = 0.275). For the dose of metformin, 4 cases were excluded since they only took the low dose (850 mg) and we calculated the percentage of patients using 2,250 mg as compared to 1,700 mg. The prevalence of B12 deficiency among metformin-treated patients was not related to the dose of metformin (P = 0.133). The use of metformin for more than 10 years did not differ between T2DM patients with or without B12 deficiency (22.9% versus 24.8%; P = 0.753). Furthermore, the association between B12 levels and age, PPI blocker, the dose of metformin, duration of use of metformin and duration of T2DM was studied as shown in Table 3. Considering T2DM metformin-treated patients, there was no significant difference in B12 levels between PPI users compared to patients who did not use them (P = 0.224). Using a different dose of metformin, metformin use duration and diabetes duration also didn’t affect B12 levels.


Table 2 | Clinical and laboratory characteristics of type 2 diabetes mellitus patients with and without vitamin B12 deficiency.




Table 3 | Serum B12 (pmol/L) for clinical characteristics of type 2 diabetes mellitus patients.







4 Discussion

In this study, the level of vitamin B12 was compared between T2DM patients on metformin and healthy non-diabetic patients at the level of primary healthcare setting. The findings of this study showed no significant difference in B12 serum levels between T2DM patients on metformin and controls. Also, there was no connection between vitamin B12 deficiency and the dose of metformin or metformin use duration or T2DM duration. To our knowledge, this study is the first one in Jordan that assessed the relationship between metformin use in T2DM patients and vitamin B12 deficiency. So, these results could be of great interest to medical care in Jordan since it seems that B12 deficiency is still prevalent among Jordanians, with or without T2DM.

The prevalence of vitamin B12 deficiency in our overall study reached almost 46%, which is higher than the last reported number (30.1%) in Jordan 2014 from a study at a national level (15), but closer to older ones (around (45%) (14, 18). This variation may be attributed to the different cut-off points and sample sizes that have been used by those reports.

Among T2DM metformin-treated patients the prevalence of vitamin B12 deficiency was 48.9%, which is relatively high in comparison to the other studies worldwide (7, 8, 12, 19–21), and other Arab countries, which ranged between (9-30%) at the level of primary and tertiary health care setting (10, 13, 22). This discrepancy in vitamin B12 deficiency rates may be related to the demographics and the dietary style of Jordanians (15, 16, 18). El-Khateeb et al. showed that the rate of vitamin B12 deficiency in the northern was higher than that in the other parts of Jordan, and our sample is from the north (15). Also Abu-Shanab et al. results revealed that Low dairy intake and some gastrointestinal diseases might be considered risk factors for having low vitamin B12 levels among Jordanians (16).

Interestingly enough, our findings showed no statistically significant difference neither in serum B12 levels nor the prevalence of vitamin B12 deficiency between T2DM metformin-treated patients and non-diabetic patients. The same outcome was detected by a study in Qatar, which reported close B12 levels between Metformin and non-Metformin users. Moreover, the prevalence of B12 deficiency was lower in the metformin-treated group than the one who was not on the drug (13). However, this is in contrast with previous studies (7, 8, 12, 19–22). A systematic review included studies that enrolled patients receiving Metformin for the treatment of T2DM or polycystic ovary syndrome, stated that serum vitamin B12 concentrations were significantly lower in patients treated with metformin than in those who received placebo or rosiglitazone (8). As well, other observational studies reported the depressed vitamin B12 level in patients on metformin treatment compared to non-metformin or non-diabetics (7, 12, 19, 22).

There were contradictory results regarding the association of the duration of metformin use or its dose among T2DM metformin-treated patients. In this study, no correlation was found between the duration of metformin use or its dose and B12 deficiency. Some researchers did not find an impact of metformin dose on vitamin B12 deficiency (12, 21), while there have been reports that documented the effect of the dose of metformin on B12 level (10, 19, 22). Cross-sectional studies found that the high daily dose of metformin > 2,000 mg could be a risk factor for metformin-associated vitamin B12 deficiency (10, 22),; moreover, another study confirmed the inverse correlation with the cumulative metformin dose and serum B12 level (19).

Reinstatler et al. assessed the prevalence of biochemical B12 deficiency in relation to the duration of metformin therapy by different intervals (< 1, > = 1-3, > 3-10,> 10 years), there was no notable increase in the prevalence of B12 deficiency as the duration of metformin use increased (7). Besides, more studies confirmed the same finding (10, 21). Though, a duration of metformin treatment of more than 4 years, or more than five years, or ≥ 10 years has been presented as an associated factor for B12 deficiency by other reports, respectively (11, 12, 22). This controversy may be due to the variation in patient characteristics, as it is notable that the percent of our cases who used Metformin ≥ 10 years or took the high dose of Metformin (2,250 mg) was relatively small (15.6% and 56.4% respectively).

For B12 deficient and non-deficient T2DM patients, there were no differences related to age and the duration of T2DM. Previous studies arrived at the same finding (10, 12), Nonetheless, a prospective study reported younger age and short duration of diabetes were significantly correlated with B12 deficiency (13). The association of using PPI drugs with vitamin B12 deficiency was investigated by former studies, which was inconclusive. In this study, no linkage was found between using PPI drugs and vitamin B12 deficiency in T2DM metformin-treated patients. Calvo Romero et al. and Ko et al. found also no negative effect of using PPI drugs on vitamin B12 deficiency (21, 23). While PPI was recognized as a risk factor for metformin-associated vitamin B12 deficiency by some reports (10, 12), it’s use reduced the odds of vitamin B12 deficiency by other researchers (24).

The prevalence of vitamin B12 deficiency among T2DM metformin-treated patients in Jordan is higher than that in other reported studies. Interestingly, there was no association between developing B12 deficiency and using metformin in T2DM patients. Diet factors of Jordanians and precise cutoff point for diagnosing B12 deficiency are advised to be investigated more at the national level. However, this study has some limitations. It included a single primary healthcare center which may not be representative of the whole Jordanian population. In addition, the significantly younger age of controls and the imbalance of the gender distribution between cases and controls were considered limitation factors. It was a cross-sectional study as it depended on patients’ electronic medical records. Moreover, other risk factors for vitamin B12 deficiency such as the details of the patient’s diet, and history of over-the-counter vitamin supplements were not included. Therefore, larger prospective studies are needed to address a larger sample to focus more on dietary habits.
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A Commentary on 


Is preclinical diabetic retinopathy in diabetic nephropathy individuals more severe?
 by Yao H and Li Z (2023) Front. Endocrinol. 14:1144257. doi: 10.3389/fendo.2023.1144257




1 Introduction

We read the recent publication by Yao and Li [Yao H, Li Z. Is preclinical diabetic retinopathy in diabetic nephropathy individuals more severe?. Front. Endocrinol. (2023) 14:1144257] with considerable interest (1). The authors concluded that preclinical diabetic retinopathy (DR) may be more severe in individuals with diabetic nephropathy (DN) than in non-diabetic nephropathy (NDN) individuals with regard to microvascular and microstructural impairment. Moreover, estimated glomerular filtration rate (eGFR) may be a good indicator of retinal microvascular impairment (1). In addition to reading the study by Yao and Li, we have been investigating the association between diabetic eye disease (including the diagnostic or therapeutic agents for the disease) and DN for many years and have published several related papers (2–7). We support and appreciate the authors’ work and agree with their conclusions but have some concerns about their methods and results. Therefore, we would like to provide critical comments on these issues.




2 Is this a matched case–control study?

In the patient demographics summarized in Table 1 of the article, the two groups (NDN and DN groups) had exactly the same numbers of cases and male-to-female ratios (NDN versus DN: case: 44 versus 44; male-to-female ratio: 30:16 versus 30:16). Age and HbAlc levels were also fairly consistent between the two groups (age: 58.86 ± 11.60 versus 59.80 ± 12.55; HbAlc levels: 8.96 ± 2.88 versus 8.91 ± 1.89). The study design seemed to be an age-, sex-, and HbAlc level-matched pair case–control study (exact matching, with a ratio of 1:1). However, in the Methods section, the authors wrote that the study design was a retrospective case–control study. Moreover, the authors did not state anywhere in the article that controls included age, sex, and HbAlc levels matched in a ratio of 1:1. Therefore, there was insufficient disclosure of information about the statistical methods. If this was a matched pair case–control study, the authors should have described the correct study design, as in the study by Karat et al. (8).




3 Is the number of patients correct?

The authors stated that this study included 88 eyes of 88 patients (44 NDN and 44 DN). However, the numbers of male and female patients in Table 1 were 46 in each group; this exceeds the number of cases reported. Similarly, the number of diabetic mellitus therapy regimen of the DN group in Table 1 also appears to be discordant. We are concerned that similar miscalculations may have occurred in the data for other major outcomes. Therefore, we recommend that the authors reexamine the data of their study to determine whether the continuous variables were over- or underestimated.




4 Discussion

Data from our previous studies indicate that a decline in eGFR could have a detrimental impact on DR, and the study by Yao and Li confirmed our hypothesis. However, several of the issues that we have pointed out have compromised the quality of their manuscript. Therefore, we hope the authors provide responses to these issues that satisfy the readers.
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Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
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1 Introduction

Diabetic mellitus (DM) is a metabolic disease characterized by hyperglycemia. It is a type of disease in which defects in insulin production and activity lead to abnormal glucose metabolism. Continuous hyperglycemia leads to impaired cellular autophagy and oxidative stress response, which further induces inflammatory response and the stimulation of coagulation, and finally gives rise to the occurrence of complications in multiple organs and systems (1). In recent years, the number of patients with diabetes has increased dramatically globally due to an aging population, changes in the lifestyle, and the increase prevalence of obesity. Among various types of DM, type 2 DM (T2DM) is the major type and accounts for nearly 90% of all DM cases. Diabetes and diabetic chronic complications have become important causes of disability and death for individuals, and have posed huge economic burdens worldwide (2).

As an important member of the Sestrins (Sesns) protein family, Sestrin2 is a newly discovered stress-inducible protein widely distributed in animals. Sestrin2 gene was originally identified in human neuroblastoma cells as a hypoxia-activated gene (3). Sestrin2 accumulates in mammalian cells in various pathophysiological states such as hypoxia, starvation, radiation, oxidative stress and endoplasmic reticulum (ER) stress (4). Previous studies on Sestrin2 mostly focused on metabolic disease such as obesity, age-related diseases and malignant tumors. Recent researches indicated that Sestrin2 also plays critical roles in the pathogenesis of cardiovascular diseases, kidney diseases, liver diseases, respiratory diseases, and diseases of the nervous system and exerts protective effects on several organs (5). Complicated mechanism is involved, including regulation of oxidative stress, mitochondrial function, ER stress, autophagy, metabolism and inflammatory response (5, 6). In recent years, increasing numbers of studies report about correlations between Sestrin2 and diabetes, indicating that Sestrin2 might become a novel therapeutic target for diabetes. In this review, we summarize the recent findings and discuss the potential role and underlying mechanism of Sestrin2 in diabetes and diabetic complications.




2 Sestrin2 pathways and modulating mechanisms

As a sensitive stress receptor, Sestrin2 is activated in stress conditions. A variety of adverse stresses could promote Sestrin2 expression, such as oxidative stress, ER stress, hypoxia, energetic stress, and age- and obesity-associated metabolic pathological conditions (7–10). Up-regulated Sestrin2 exerts pleiotropic biological effects in diverse physiological and pathological states, through attenuating oxidative stress, and modulating a series of cellular events such as autophagy, ER stress, mitochondrial biogenesis, protein synthesis, cell energy homeostasis and apoptosis, while many of these responsive pathways are interconnected (5, 11–14).



2.1 Upstream factors of Sestrin2 signaling

In response to stress, Sestrin2 could be regulated by various transcription factors, including tumor-suppressor protein p53, hypoxia inducible factor-1α (HIF-1α), nuclear factor erythroid 2-related factor-2 (Nrf2), nuclear factor-κB (NF-κB), activated transcription factor 4 (ATF4), c-Jun NH(2)- terminal kinase (JNK)/c-Jun, Foxhead box O3 (FoxO), activated protein 1 (AP-1), and CCAAT. A series of stress conditions, such as oxidative stress, ER stress, DNA damage, hypoxia and mitochondrial dysfunction, provoke the release of these upstream factors, and result in altered expression and activity of Sestrin2 (15, 16). The mediating effects of Sestrin2 in stress conditions will be further discussed below.




2.2 Downstream pathways of Sestrin2 signaling

After being induced, Sestrin2 thereafter mediates several signaling pathways, including adenosine monophosphate-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway (17), Kelch-like ECH-associated protein1/Nrf2 (Keap1/Nrf2) pathway (18), the mitogen-activated protein kinase8/JNK1 (MAPK8/JNK1) pathway (19), AMPK/peroxisome proliferator-activated receptor γ coactivator-1α (AMPK/PGC-1α) pathway (20), extracellular regulated protein kinases (ERK1/2) pathway (21), thrombospondin-1/transforming growth factor-β1/Smad3 (TSP-1/TGF-β1/Smad3) pathway (22), and TGF-β/NADPH Oxidase 4 (NOX4)/ROS signaling pathway (23). Among these signaling pathways, AMPK/mTOR and Nrf2/Keap1 are the principal ones that Sestrin2 is suggested to be involved in the pathogenesis of diabetes and diabetic complications.



2.2.1 The AMPK/mTOR pathway

Comprising of two distinct protein complexes (mTORC1 and mTORC2), mTOR functions as a crucial sensor for energy, nutrient, and redox states, and thereafter regulates protein synthesis and autophagy (24). Persistent mTOR stimulation is linked with a wide range of diseases such as diabetes, obesity, cardiovascular diseases, cancer, autoimmune diseases and metabolic disorders (25). mTORC1 can phosphorylate and suppress autophagy-initiating protein kinases unc-51-like kinase 1 (ULK1), so as to inhibit cellular autophagic catabolism (26). mTORC2 is insensitive to nutrients but is sensitive to growth factors via phosphatidylinositol 3 kinase (PI3K) signaling, and thereby regulates metabolism and cytoskeletal tissue (27) and functions as a crucial controller of lipid metabolism (28). mTORC1 could negatively regulate mTORC2 activity. mTOR is strongly associated with T2DM and many of its chronic complications. Both mTORC1 and mTORC2 play significant roles in the regulation of insulin signaling. mTORC1/ribosomal protein S6 kinase 1 (S6K1) and mTORC2/protein kinase B (AKT), is critical for the maintenance of insulin sensitivity and that their dysfunction contributes to the development of T2DM (29). mTORC1 in pancreatic β-cells controls cell size, proliferation, survival, maturation, protein translation, insulin processing and secretion, and autophagy. mTORC1/S6K1 pathway regulates the apoptosis and autophagy of β-cell, while mTORC1/4E-BP2-eIF4E pathway regulates the proliferation of β-cell. Loss of β-cell-specific mTORC1 leads to diabetes and β-cell failure (30). mTORC2 is essential for maintaining a balance between the proliferation and the cell size of β-cells (31). Recently, it is reported that mTORC2 regulates glucose-stimulated insulin secretion in β-cell by enhancing actin filament remodeling (32). Besides the direct regulating effects on β-cell, mTORC2 also modulates glucose uptake in peripheral tissues including adipose, skeletal muscle and brown adipose tissues (33–35). Moreover, mTORC2 participates in the regulation of hepatic insulin sensitivity, glycolysis, and lipogenesis (35, 36).

Sestrin2 exerts antioxidant and apoptosis-associated effects in a variety of diseases through the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and/or the activation of AMPK (21–23). Sestrin2 can suppress mTORC1 through AMPK-dependent or -independent pathways. It was presumed that Sestrin2 regulates AMPK activation by orchestrating the recruitment of liver kinase B1 (LKB1), independent of calmodulin-dependent protein kinase 2 (CAMKK2), as well as promoting LKB1/AMPKα1β1γ1 complex expression (37, 38). Except the AMPK signaling pathway, Sestrin2 can also directly bind to RagA/B regulatory protein complex 2 (GATOR2), mediate the discharge of GATOR1, stimulate GATOR1 to inhibit RagA/B, and suppress mTORC1 inimitably (39). Sestrin2 promotes mTORC2 activity through its interaction with mTORC2, as well as the inhibition of feedback loop (40). GATOR2-mTORC2 axis is essential for Sestrin2-induced AKT activation (41), which exerts various glucose- and lipid-regulating effects (42).




2.2.2 The Keap1/Nrf2 pathway

As a member of a family of basic leucine transcription factors, Nrf2 is involved in a serious of important cellular events including redox regulation, DNA repair, metabolic homeostasis, and apoptosis prevention (43). Nrf2 acts as a crucial transcription factor that can modulate antioxidant gene expression through its interaction with the antioxidant response elements (AREs). Keap1 acts as a sensor of oxidative stress, as well as a inhibitor of Nrf2 (44). Under physiological circumstance, Keap1 binds to Nrf2 in the cytoplasm and is inactivated (45). Keap1/Nrf2 signaling plays a key role in diverse diseases, including diabetes, cancer, neurodegenerative diseases, airway diseases, inflammatory diseases, cardiovascular diseases, and aging (44, 46, 47). A growing body of evidence suggest Nrf2 as a key regulator in the development and progression of diabetes and its complications (43). Nrf2 contributes to the suppression of inflammation of pancreatic β-cell, the maintenance of autophagy in pancreatic β-cells under ROS stimulation, and the regulation of the ER-associated degradation (48, 49). Besides regulating β-cell function, Keap1/Nrf2 pathway also demonstrates protective effects in diabetic complications, i.e. diabetic kidney disease (50), diabetic cardiomyopathy (51) and diabetic neuropathy (52), which is further elucidated below. In fact, Nrf2 has been indicated to be involved in mediating all aspects of diabetic complications across every diabetes-relevant organ (43).

The Nrf2 activators up-regulate the expression of Sestrin2 in a time- and dose-dependent manner and the Nfr2-ARE pathway activation seems to be necessary for Sestrin2 induction. In turn, Sestrin2 can function as a positive regulator of Nrf2 signaling, activate the Nrf2 pathway by augmenting autophagy-directed degradation of Keap1, which targets and breaks down Nrf2 (6, 53). Sestrin2 overexpression suppresses oxidative stress and cell apoptosis by activating Nrf2-ARE signaling (54, 55). Also, Sestrin2/Nrf2 signaling may be important for the mediation of ER stress as a downstream regulator of the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway (56), which is illustrated below.





2.3 Sestrin2 and autophagy

Autophagy is a distinct type of programmed cellular death. Autophagy helps maintain cell survival and tissue stabilization by degrading misfolded and aged intracellular proteins and dysfunctional organelles during stress. The process of autophagy is regulated by various pathways and involves diverse organelles such as mitochondria, ER, ribosomes, peroxisomes, and lysosomes. The dysfunction of autophagy is related to a myriad of diseases, such as diabetes, cardiovascular diseases, cancer, neurodegenerative diseases, liver diseases, and inflammatory diseases (57–59). Autophagy takes part in the regulation of pancreatic β-cells and protection of insulin target tissues. Dysfunctional autophagy is detrimental for the maintenance of β-cell function and reduces insulin secretion. Furthermore, inhibition of autophagy leads to chronic ER stress and β-cell apoptosis. The disruption of autophagy also contributes to diverse diabetic complications (1, 60).

Autophagy activation is required for the antioxidant effects of Sestrin2 (61). After activated by the JNK pathways (62), Sestrin2 is involved in modulation of autophagy through AMPK/mTORC1, Keap1/Nrf2, p53/Sestrin2 and PI3K/AKT/mTOR pathways (63–65). Furthermore, Sestrin2 has been indicated to be interacted with BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), which is also a promoter of autophagy (66).




2.4 Sestrin2 and oxidative stress

Oxidative stress is considered to be an imbalance in redox properties in certain cellular environments, and plays a crucial role in the development of numerous human diseases, such as diabetes, obesity, and myocardial injury (67, 68). Oxidative stress has been proved to play key roles in the pathogenesis of diabetes and diabetic complications. The high glucose activates various molecular and biochemical pathways, causing increased ROS production, which thereby leads to insulin resistance, β-cell dysfunction and diabetic complications (69).

Sestrin2 is essential for the maintenance of cellular homeostasis under oxidative stress. In various types of diseases, Sestrin2 is up-regulated and is important for the resistance to oxidative stress injury. Under oxidative stress, Sestrin2 is activated by various transcription factors, including NF-κB, activator protein-1 (AP-1), CCAAT-enhancer-binding protein beta (C/ERPβ), forkhead box O3 (FOXO3), and p53 (70). Sestrin2 helps to maintain the balance of oxidative metabolism by exerting two major biological functions. First, as an antioxidant enzyme, Sestrin2 is able to directly reduce the accumulation of ROS (71). Second, Sestrin2 can exert antioxidant effects through several signaling pathways, such as Keap1/Nrf2 pathway (6) and AMPK/mTORC1 pathway (72), which have been described above.




2.5 Sestrin2 and ER stress

ER stress is provoked when unfolded or misfolded proteins accumulate in the endoplasmic network lumen in pathophysiological conditions (73). Many physiological and pathological factors, such as inflammation, hypoxia and oxidative stress, disturb the homeostasis of ER and lead to ER malfunction, which thereby causes ER stress and promotes the unfolded protein response (UPR). Three ER transmembrane receptors inositol-requiring enzyme 1 (IRE1, also known as ERN1), PERK and activating transcription factor 6 (ATF6) mediate ER state by regulating UPR (74). The activation of UPR impairs cellular survival by improving protein folding ability, inhibiting protein production and accumulation, inducing ER stress-related gene transcription, and strengthening the self-repair ability of ER. But if ER stress persists or continues for prolong periods, UPR is not enough to maintain ER homeostasis, and apoptosis ultimately occurs (75). ER stress has significant impact on maintaining cellular homeostasis (76). ER stress plays mediating roles in the pathogenesis of a series of diseases, such as diabetes, obesity, inflammation, neurodegenerative diseases, cancer, and autoimmune diseases (77). Numerous studies have proved the role of ER stress in diabetes. Disturbed ER homeostasis and unmitigated ER stress trigger or exacerbate β-cell dysfunction, and contribute to insulin resistance in diabetes (60, 78). Diabetic complications are closely associated with dysregulation of UPR signaling pathways (79).

Increasing evidence has shown that Sestrin2 is activated under ER stress (8, 80). How Sestrin2 expression is induced by ER stress is not fully revealed. The PERK and IRE1/X-box binding protein 1 (XBP1) arms of the UPR appear to be required (8). Also, the activation of transcription molecules, such as HIF-1, activating transcription factor 4 (ATF4) and Nrf2, is suggested to be necessary for ER stress-induced expression of Sestrin2 (72). Once induced, Sestrin2 in turn prevents protein synthesis by inhibiting mTORC1 (81). Sestrin2 inhibits the phosphorylation of JNK and p38 as well as poly ADP-ribose polymerase (PARP) cleavage, and prevents the adverse effect of excessive ER stress (80). The AMPK/mTORC1 pathway, Keap1/Nrf2 pathway, CCAAT-enhancer-binding protein homologous protein, phosphorylation of both p38 and JNK, and Sestrin2-mediated UPR is involved in the protective effects of Sestrin2 against ER stress-associated diseases (4, 82, 83).




2.6 Sestrin2 and mitochondrial function

Mitochondria are the prime organelle which not only offers energy substrates to cells but also controls the fate of cells via mediating diverse cellular processes such as autophagy, apoptosis, cellular mobilization and metabolism (84, 85). Mitochondria possess a quality control system, including mitochondrial dynamics (fusion and fission), mitophagy and mitochondrial biogenesis, which is critical for maintaining a well-functioning mitochondrial network (86, 87). Altered mitochondrial functionality is involved in a variety of diseases, such as diabetes, obesity, neurological disorders, and cardiovascular diseases (88–91). A myriad of evidence has revealed crucial roles of mitochondrial dynamics, mitophagy, and mitochondrial biogenesis in the pathogenesis of diabetes. Dysregulations of mitochondrial functions and dynamics could result in β-cell dysfunction and insulin resistance (92, 93).

Recent studies have showed that Sestrin2 may play an important role in maintaining cellular homeostasis by restoring mitochondrial function and metabolism (7, 94). Mitochondrial superoxide mediates Sestrin2 activation in the process of mitochondrial quality control (95). Sestrin2 can thereby secure the mitochondria from oxidative lesion, both in vivo and in vitro (96, 97). Mitophagy is a subtype of autophagy, which helps to remove dysfunctional mitochondria as well as is crucial for maintenance of the functionality and integrity of the mitochondrial network. Several studies indicated that Sestrin2 is involved in regulating the pace of mitophagy (95, 98). Sestrin2 stimulates ULK1- mediated phosphorylation of Beclin1 and strengthens the interaction between Beclin1 and Parkin. Then mitophagy is provoked as Parkin’s shift on the surface of mitochondria (95, 99). Sestrin2-mediated autophagy and mitophagy can ameliorate mitochondrial dysfunction and prevent cell apoptosis (100).

Several signaling pathways participate the regulating mechanisms of Sestrin2 in mitochondrial function and metabolism. Kim et al. reported that Sestrin2 suppresses the overactivation of the NLRP3 inflammasome and alleviates mitochondrial injury. Sestrin2 promotes perinuclear clustering-damaged mitochondria through regulating the aggregation of SQSTM1 and its binding to Lys63-linked ubiquitins on the surface of damaged mitochondria (98). Sestrin2 overexpression suppresses inflammation by inducing AMPK/PGC-1α-mediated mitochondrial biogenesis (101). Sestrin2/LKB1/AMPK pathway is also indicated to function in mitochondrial quality control enhancement, including mitochondrial biogenesis and mitophagy (38).




2.7 Sestrin2 and apoptosis

Apoptosis is an active programmed cell death process, characterized by specific biochemical and morphological alterations such as cellular shrinkage, nuclear condensation and chromatin condensation along the nuclear membrane (102). There are three major signaling pathways that modulate apoptosis, namely the mitochondrial, death receptor and ER pathways (103). Pancreatic β-cell apoptosis is the determining factor for the decline of β-cell function and impaired insulin secretion in diabetes (104). Also, apoptosis of organ-specific cells has been identified and characterized in the development of diabetic complications (105, 106).

In different cell types and under different pathophysiological conditions, Sestrin2 may exert opposite effects on apoptosis. In most studies targeting non-tumor cells, Sestrin2 is involved in anti-apoptotic signaling pathways. However, in most tumor studies, Sestrin2 elicits proapototic effects in cancer cells (107). Ding B et al. reported that Sestrin2 is protective for overall cell energy metabolism and mitochondrial function. Sestrin2 overexpression can reduce cell apoptosis by reducing ROS aggregation, maintaining mitochondrial membrane potential, reducing ATP consumption and restoring mitochondrial DNA level (7). However, as shown by the study of Seo K et al. (108) and Budanov AV et al. (109), Sestrin2 overexpression can promote cell apoptosis. Bidirectional regulating roles of Sestrin2 in apoptosis are indicated and require further validation (110).





3 The roles of Sestrin2 in diabetes

A summary of researches which investigated the roles of Sestrin2 in diabetes, diabetic complications and diabetes-associated conditions is presented in Table 1. Figure 1 summarizes the effects of Sestrin2 on diabetes-associated signaling pathways. As mentioned before, diabetes is characterized by changes in AMPK and mTOR, the principle nutrient level sensing mechanisms (129). The chronic continuous activation of mTORC1 is accompanied by continuous inhibition of hepatocyte autophagy, leading to insulin resistance and T2DM mainly by suppressing the phosphorylation of insulin receptor substrates (130). Continuous cellular mTORC1 activation under overnutrition promotes protein and lipid synthesis and inhibits autophagy catabolism (111). One of the major negative feedback mechanisms that prevent the harmful effects of chronic mTORC1 continuous activation is the transcriptional activation of Sestrin2. Chronic mTORC1 activation mediated by stress responses such as overnutrition eventually results in Sestrin2 overactivation (111, 131). After activation, Sestrin2 stimulates AMPK signaling, which in turn impairs mTORC1 activation and, therefore, triggers autophagy (111, 132). The major target organs and tissues of insulin resistance include liver, muscle and adipose tissue. Sestrin2 is found to be highly accumulated in muscle, liver, and adipose tissues in models of T2DM and obesity (41, 111). As reported by Lee et al., Sestrin2 can activate AMPK, attenuate mTORC1-S6K activity in the liver, thereby lowering blood glucose level in obese mice. Sestrin2 ablation activates hepatic mTORC1-S6K signaling, and enhances insulin resistance, hepatic steatosis and diabetic progression, indicating a key role of Sestrin2 in cell metabolic homeostasis (111). Insulin up-regulates Sestrin2 expression in mouse primary hepatic cells and the upregulation of Sestrin2 by insulin was shown to be regulated via PI3K/PKB/mTOR signaling pathway, indicating a feedback mediation of Sestrin2 on insulin signaling transduction (112). Also, Sestrin2 is identified to induce autophagy, maintain insulin sensitivity and glucose metabolism by regulating AMPK/mTORC1 signaling pathway (64, 113). Sestrin2/AMPK/mTORC1 signaling pathway is indicated to contribute to the maintenance of β-cell function and resistance to pathological stresses associated with diabetes (114). Therefore, based on these evidences, Sestrin2 is a potential insulin sensitizer and one of the key factors for β-cell homeostasis. Deficiency and/or dysfunction of Sestrin2 may result in insulin resistance and the development of diabetes (70).


Table 1 | The roles of Sestrin2 in diabetes and diabetic complications.







Figure 1 | Sestrin2 and Diabetes.



Besides the role in the modulation of insulin signaling, there are studies referring to the regulating effects of Sestrin2 on peripheral tissues which play key roles in the pathogenesis of diabetes, such as adipose tissues and skeletal muscle. Growing evidence displays adipose tissue as an endocrine organ which produces multiple adipokines regulating diverse aspects of β-cell function and viability. Adipose tissue malfunction is crucially involved in the development of diabetes (133, 134). Recent finding suggested Sestrin2 as a regulator of motohormesis in brown adipose tissue (135). Also, Sestrin2 was found to be related to beneficial body composition changes, including the decrease of lipid droplet size in inguinal white adipose tissue and the increase of soleus muscle mass (56). Monocytes and macrophages are critically involved in atherosclerosis and participate in the atherosclerotic lesion progression associated with diabetes (136). Sestrin2 was shown to play a principal role in regulating monocyte activation through the AMPK/mTOR pathway in diabetes and also AMPK mediates Sestrin2 in a feedback way (116).

As described before, except for the classical AMPK/mTORC1 pathway, Sestrin2 can exert downregulating effects on mTORC1 through other mechanisms such as GATOR2-GATOR1-mTORC1 signaling pathway (39). On the other hand, Sestrin2 could increase mTORC2 activity through its ability to interact with mTORC2 via GATOR2-mTORC2 signaling pathway during high-fat diet-induced obesity (41). However, these mediating pathways of Sestrin2 on mTORC have not been investigated and confirmed in diabetic models.

Several clinical studies have investigated the changes of circulatory levels of Sestrin2 in patients with obesity, T2DM, and metabolic syndrome. However, no consensus was reached. It was indicated that circulatory Sestrin2 is lowered in diabetes and negatively correlates with glycemic levels (117, 118, 123). Also, as shown by the study of Golpour et al., plasma Sestrin2 level presents a trend of decrease in obesity and T2DM (119). On the contrary, some studies reported significant high serum levels of Sestrin2 in patients with T2DM, obesity, and metabolic syndrome (120, 121). Sestrin2 concentration significantly correlates with insulin resistance and percentage body fat (120).




4 The roles of Sestrin2 in diabetic complications

Rather than a disease of mere hyperglycemia, diabetes brings real harm and devastating effects by leading to a series of complications in peripheral systems, organs and tissues such as kidney, cardiovascular system, retina, and the nervous system (137). Diabetic complications are often irreversible, causing severe injury and increasing mortality in patients with diabetes. Recent researches have suggested the contribution of alterations of Sestrin2 and the related pathways in the pathogenesis of diabetic complications.



4.1 Diabetic kidney disease

Diabetic kidney disease (DKD) is a typical chronic microvascular diabetic complication and is a major cause of chronic kidney disease and end-stage renal disease worldwide (138). About 30%-50% of patients with T1DM or T2DM eventually develop DKD, resulting a significant increase of mortality in these patients. Clinically, patients with DKD often exhibit proteinuria, hypertension and edema, while laboratory tests present increased urinary albumin excretion and decreased estimated glomerular filtration rate (eGFR). A series of signaling pathways contributes to the pathogenesis of DKD, including AMPK/mTOR pathway, MAPKs/Erk1/2 pathway, PI3K/AKT pathway and the advanced glycation end products (AGEs) pathway (139–141). As shown by Puelles et al., hyperglycemia can induce oxidative stress and other pathophysiological processes through AMPK/mTOR signaling, leading to podocyte injury and proteinuria, therefore leading to the loss of renal function (139). Activated mTORC1 signaling is a feature of DKD, which causes podocyte and tubular damage by suppressing autophagy and in turn promotes progressive kidney dysfunction (142, 143).

The activation of Sestrin2 could inhibit AMPK/mTOR signaling, promote autophagy and reduce the susceptibility of renal cells to diabetes-related damage. The potential therapeutic role of Sestrin2 in DKD was initially found in a human proximal tubule cell line (HK-2) model, illustrating that overexpression of Sestrin2 represses DKD-induced renal epithelial tubular cell epithelial-to-mesenchymal transition and ER stress, but its mechanism is still unclear. The researchers further found that administration of microRNA-4756 regulates DKD-induced renal tubular epithelial cell damage by the interaction with Sestrin2 (124). Later, Lin et al. reported that Sestrin2 activation increases the level of AMPK phosphorylation, and thereby ameliorates mitochondrial dysfunction of podocytes under high glucose conditions (122). However, it is worth noting that though overactivation of mTORC1 in diabetes aggravates kidney lesions, mTOR activity is necessary to maintain podocyte homeostasis. Genetic deletion of mTOR in mouse podocytes induces proteinuria and progressive glomerulosclerosis. A tightly balanced mTOR activity is essential to maintain normal renal function in diabetes (142). Clinically, serum Sestrin2 levels were found to significantly decrease in T2DM patients with diabetic nephropathy, especially in the ones with macroalbuminuria (123). In recent years, sodium-glucose co-transporter 2 (SGLT2) inhibitors have been well-documented to protect the renal function in patients with and without T2DM and slow down the progression towards end-stage kidney disease (144). It has been shown that the Sestrin2/AMPK pathway plays a critical role in the protective actions of SGLT2 inhibitors on metabolism, fibrosis, and organ damage in obese mice (145). Specially, studies have demonstrated that activation of AMPK by inhibiting SGLT2 is a main protective mechanism in diabetic nephropathy (146). Nevertheless, in another study investigating the working mechanisms of empagliflozin, Sestrin2/AMPK pathway was not activated in nondiabetic rats and did not participate in the renal protective effects of empagliflozin (147).

TGF-β1 is a decisive regulator of renal fibrosis and overactivation of TGF-β1 could cause progressive renal injury (148). Hyperglycemia and insulin resistance enhance the expression of Angiotensin II, which increases ROS production and activates TGF-β1 signaling (149). Smad2/3 complex, PI3K/AKT/mTOR, protein kinase C (PKC), MAPK, interleukin like kinase (ILK) and Wnt/beta-catenin signaling are among the downstream targets that modulate profibrogenic effects of TGF-β1 (150–152). Thrombospondin-1 (TSP-1) is an extracellular matrix protein that mediates a wide range of biological processes. TSP-1 is vital to maintain normal glucose metabolism. Also, TSP-1 is involved in the pathophysiology of multiple diabetic complications, including diabetic cardiomyopathy, neuropathy and nephropathy (153). TSP-1 mediates the activation of latent TGF-β1, which is indispensable for maintaining the normal function of islet. Nevertheless, during chronic hyperglycemia, TGF-β1 exacerbates diabetic nephropathy by inducing renal fibrosis (154). Both TGF-β and TSP-1 have been indicated to play causal roles in insulin resistance and obesity-related renal fibrosis, except for TGF-β-dependent and independent roles of TSP-1 (155, 156). Recently, Song et al. reported that Sestrin2 remedies podocyte injury in DKD through the coordination with TSP-1/TGF-β1/Smad3 pathway, suggesting that Sestrin2/TSP-1/TGF-β1 signaling is critically involved in renal protection (22).

The Hippo pathway, a kinase cascade that regulates cellular proliferation, differentiation, and tissue homeostasis, is inhibited in diabetic conditions. The Hippo pathway has been indicated to be involved in the development and progression of DKD (157, 158). PI3K/AKT signaling is related to the Hippo pathway and both of these pathways take part in the pathogenesis of DKD (158). Sestrin2 overexpression was found to alleviate renal damage via regulating Hippo pathway in DKD mice (125). Considering the interactions among Sestrin2 and multiple signaling pathways, Sestrin2 may be critically in involved in the development of DKD and thus may perform as a latent therapeutic target for DKD. Figure 2 summarizes Sestrin2 signaling pathways in diabetic kidney disease.




Figure 2 | Sestrin2 and Diabetic kidney disease.






4.2 Diabetic cardiovascular complications/diabetic heart disease

Diabetic heart disease (DHD) is a major cause of death in patients with diabetes. It refers to abnormal heart structure and manifestations in patients with diabetes in the absence of other cardiac risk factors. DHD is a conglomeration of coronary artery disease, heart failure, diabetic cardiomyopathy (DCM) and diabetic cardiac autonomic neuropathy, and is characterized by molecular, structural, and functional changes in the myocardium (159, 160). The pathogenesis includes the macrovascular and microvascular lesions and cardiac autonomic neuropathy caused by oxidative stress, inflammatory response, mitochondrial dysfunction, AGEs, alterations at the level of insulin signaling, gene regulation, ER stress, hypoxia, neurohumoral activation, apoptosis, and exosome dysregulation (160, 161).

mTOR signaling is found to play a key role in the development of DHD. Activation of mTORC1 either by strengthening PI3K/AKT signaling or disruption of tuberous sclerosis complex 1 (TSC1) drives cardiac hypertrophy (162, 163). Also, mTORC1 inhibition exerts cardioprotective effect against myocardial ischemia and DCM by activating autophagy (164). Inhibition of mTOR signaling by application of melatonin reduces myocardial damages and protects against DCM (165). mTORC2 seems to exert reverse effect on cardiac remodeling. Suppression of mTORC1 and activation of mTORC2 exert beneficial effects on myocardial ischemia and adverse cardiac remodeling (29). TGF-βs are central effectors of myocardial fibrosis (166). TGF-β-driven fibrosis is regulated by canonical or noncanonical pathways and is mediated by coreceptors and by interacting networks. The activation of canonical or Smad-dependent signaling pathways causes phosphorylation and activation of SMAD proteins. The activation of noncanonical pathways include PI3K/AKT, ERK, JNK, RhoA and MAPK pathways (167, 168). In the dilated cardiomyopathy model, the increase of myocardial expression of TGF-β and activation of downstream Smad 2 and Smad 3 signal cascades have been unanimously confirmed. Overexpression and activation of TGF-β1 in DCM induces cardiac fibrosis, which can be alleviated by administration of telmisartan, empagliflozin, dapagliflozin, epigallocatechin gallate, or cannabidiol, possibly due to the inhibitory effects on TGF-β signaling (169–174). TSP-1 is suggested to play a significant role in DCM. TSP-1 upregulation in the diabetic heart stabilizes the cardiac matrix and promotes vascular rarefaction in obese diabetic mice. TSP-1 enhancement in the myocardium may be a crucial regulator in diabetes-associated impaired angiogenesis (175). The effect of TSP-1 are mediated regulated by activation of TGF-β, angiostatic actions, matrix metalloproteinase inhibition and direct stimulation of CD36 signaling (176). Downregulating TSP-1 and TGF-β1 improves the heart function and ameliorates vascular fibrosis in diabetic rats (177, 178).

As previously described, Sestrin2 participates in the modulation of oxidative stress, mitochondrial biogenesis, ER stress and apoptosis. Also, the AMPK/mTOR pathway and TSP-1/TGF-β1 pathway are constitute parts of the regulating mechanism of Sestrin2. It is reasonable to postulate that Sestrin2 may take part in the pathogenesis of DHD. But the researches investigating the role of Sestrin2 in DHD are relatively few (rare). Previously, Sestrin2 is considered to be cardioprotective in several models of cardiovascular diseases, including myocardial infarction and cardiac dysfunction induced by ER stress or lipopolysaccharide, via AMPK/mTOR signaling cascade (97, 179). Besides, increasing evidence indicate a protective role for Sestrin2 against the development and progression of cardiomyopathy and heart failure in model of pressure-overload cardiac remodeling, via Nrf2/Keap1 pathway (180). Also, Sestrin2 is indicated to modulate cardiac inflammatory response through maintaining oxidative stress through MAPK/JNK pathway during ischemia and reperfusion (181). Sestrin2 suppression aggravates ER stress-induced oxidative stress and apoptosis in endothelial cells (182). Clinically, several studies have investigated the variations in plasma Sestrin2 protein levels in patients with cardiomyopathy and/or heart failure, and displayed conflicting results (183–185). Wang et al. reported that plasma Sestrin2 level was increased in patients with chronic heart failure (CHD) and was positively related to the severity of CHD. Increment of Sestrin2 concentrations prominently increased the occurrence of major adverse cardiac events and suggested poor prognosis (183). Also, plasma Sestrin2 levels were found to be increased in patients with coronary heart disease (CAD) and positively related to the severity of CAD (184, 186). However, lower serum Setrin2 levels were indicated in patients with septic cardiomyopathy and in T2DM patients with CHD (126, 185). Low Sestrin2 level was a risk factor for CHD in T2DM patients (126). The contradictory results concerning the beneficial or harmful effects of sestrin2 in cardiomyopathy and heart failure need to be further clarified. In recent years, a few studies investigated the role of Sestrin2 in DHD. Zhou et al. reported that Sestrin2 may enhance antioxidative actions and alleviate mitochondrial lesion by interacting with Nrf2 to prevent the diabetic rat heart from ischemia/reperfusion injury (18). Our previous research showed that inhibition of enhanced Sestrin2 expression attenuates cardiac injury in DCM, which may be mainly attributed to the restoration of mitochondrial function (127). Some antiglycemic agents, such as metformin and empagliflozin, were found to be cardioprotective through Sestrin2-associated mechanism. As shown by Yang et al., metformin can activate AMPK, thereby promoting autophagy by suppressing the mTOR pathway in DCM (187). Sestrin2 was suggested to participate in cardioprotective effects of metformin in a model of acute kidney injury (188). Sun et al. found that empagliflozin improves obesity-related cardiac dysfunction via regulating Sestrin2-mediated AMPK/mTOR signaling and maintaining redox homeostasis (145). Figure 3 summarizes Sestrin2 signaling pathways in diabetic heart disease.




Figure 3 | Sestrin2 and Diabetic heart disease.






4.3 Diabetic ocular complications

Diabetes can cause various ocular complications, such as diabetic retinopathy (DR), cataract, diabetic papillopathy, glaucoma, and ocular surface diseases (189). DR is a major diabetic complication characterized by retinal microvascular lesion and is a major cause of vision loss in working middle-aged adults. Complicated mechanism is included in the pathogenesis of DR, including increased free radical production, activated AMPK/mTOR signaling, renin-angiotensin pathway, TGF-β/Smad signaling, and the kallikrein-kinin system, the formation of AGEs, and increased inflammatory factors and vascular endothelial growth factor (VEGF) (190–192). mTOR signaling is considered to play multiple roles in the pathogenesis of DR. mTORC1 is indispensable for the hypoxic-induced expression of VEGF, which is an important pathogenic event in DR (193). Also, mTORC1 affects DR development by negatively regulating autophagy (194). PI3K/AKT/mTOR signaling pathway is associated with the early pathogenesis of DR (195). Promoting autophagy and enhancing AMPK/mTOR signaling pathway can protect retinal Muller cells from apoptosis caused by high glucose (196). Aberrant TGF-β signaling pathway is involved in the pathogenesis of DR (155). TGF-β1 protects retinal ganglion cells from hyperglycemia-induced oxidative damage through promoting cell antioxidation and neuroprotection pathways, including Nrf2/Keap1 signaling (197). Increased TGF-β signaling induced by diabetes protects retinal vessels in diabetic rats and may prevent rapid retinopathy progression (198).

Based on its pleiotropic modulating effects, Sestrin2 may have an impact on the pathogenesis of DR. So far there are several studies exploring the role of Sestrin2 in models of ocular lesions, but still no reports in diabetic ocular complications have been found. Previously, Hanus et al. demonstrated that upregulation of Sestrin2 protects retinal pigment epithelial cells from oxidative stress-induced necrosis (199). Sestrin2 could also secure retinal ganglion cells from oxidative stress-induced apoptosis through Keap1/Nrf2 pathway, which suggests a significant role of Sestrin2 in retinal degeneration in glaucoma (200). But on the other hand, Sestrin2 is indicated to be a negative modulator of corneal epithelial cell proliferation. The downregulation of Sestrin2 leads to the synergistic activation of mTORC1 and Hippo signaling, thus promoting reepithelialization of the corneal wound (201).




4.4 Diabetic neuropathy

Diabetic neuropathy (DN) is another frequent chronic complication of diabetes, consisting of four major types including peripheral neuropathy, autonomic neuropathy, proximal neuropathy, and mononeuropathy (202). The pathogenesis of DN is complicated, including changes of various metabolic pathways and vascular pathways. Three main pathological events contribute to the progression of DN, including chronic low-grade inflammation, endothelial dysfunction and oxidative stress (203). Consistent hyperglycemia in diabetes induces activation/inhibition of diverse pathways, including polyol, hexosamine, AGEs, PARP, MAPK, mTOR, NF-κB and tumor necrosis factor-α (TNF-α) pathway, which contribute to the pathogenesis and progression of DN (204, 205). Among them, overactive mTORC1 interferes with synaptic plasticity and is one of the main factors contribute to chronic neuropathy. Activation of mTOR exacerbates the hyperalgesia in diabetic rats, while suppression of mTORC1 activity is indicated to lead to an anti-injury effect in experimental model of diabetic small fiber neuropathy (206, 207). With the inhibition of PI3K/AKT/mTOR pathway, autophagy is enhanced and hyperalgesia is alleviated in diabetes rats (208). So far, no research exploring the role of Sestrin2 in DN can be found. But there are a few studies in other disease models. In denervated atrophy, Sestrin2 has been proved to prevent the change of muscle fiber type from slow contraction to fast contraction through AMPK/PGC-1α signaling, and protect muscle quality (209). Regulation of UPR and mitophagy is also included in the mechanism by which Sestrin2 protects against denervated muscle atrophy (210). Zhang et al. demonstrated that overexpressing Sestrin2 significantly reduces oxidative stress of neurons in model of cerebral ischemia-reperfusion injury through modulating the activity of Nrf2 (12). Mao et al. conducted a clinical study and documented that serum Sestrin2 is lowered in T2DM patients with diabetic peripheral neuropathy (128).





5 Possible pharmacological mediators of Sestrin2

The exploration of Therapeutic strategies through mediation of Sestrin2 is now underway. Several natural products and medications in diabetes have been shown to alter the expression levels of Sestrin2, which lead to the possibility of novel treatments in diabetes and diabetic complications targeting Sestrin2 and the associated pathways (211). Initially, a few studies investigated the potential mediator of Sestrin2 in the field of tumor therapies, including several small molecules (212). Recently, natural-derived mediator of Sestrin2, such as Gallic acid (213) and eupatilin (Unpublished data of our research), are also indicated to be potential therapeutic agents of obesity and diabetes. Some antidiabetic medications are indicated to be involved in the regulation of Sestrin2 signaling in diabetes-associated conditions, some of which have been illustrated in the previous sections of this review. Sestrin2 can be targeted by empagliflozin in the treatment of obesity-related nonalcoholic fatty liver disease (214). Another antidiabetic agent, liraglutide, is shown to alleviate obesity-related fatty liver disease via modulating the Sestrin2-mediated Nrf2-HO-1 pathway (215). Intervention through gene editing of Sestrin2 also presents beneficial effects in organ and tissue protection (216), but further investigation is needed in the context of diabetes.




6 Conclusions and perspectives

Diabetes is a condition causing multi-organ injuries and is a major global threaten for human health. As a stress-induced protein, Sestrin2 can be activated by diverse stresses and can exert pleiotropic effects. Sestrin2 can interact with various signaling perspectives involved in the development of diabetes. Increasing numbers of studies indicate a prominent role of Sestrin2 in the pathogenesis of diabetes and diabetic complications. Sestrin2 may functions in a multitude of ways and offer exciting prospects for the treatment of diabetes and diabetic complications, though currently the strong supporting evidence is limited. Despite of the protective roles of Sestrn2 in various conditions, the pros and cons of excessive activation or inhibition of Sestrin2 is yet to be confirmed. How to exert accurate mediation under different conditions also remains elusive. The modulation of Sestrin2 activity to effectively achieve homeostasis might be more appropriate. Further researches are needed to thoroughly reveal the relationship between Sestrin2 and diabetes which includes multi-organ injuries, to disclose associated signaling pathways and to explore potential treatment protocols.
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Objective

To investigate the dynamic changes of metabolite composition in rat supraspinatus tendons at different stages of diabetes by untargeted metabolomics analysis.





Methods

A total of 80 Sprague–Dawley rats were randomly divided into normal (NG, n = 20) and type 2 diabetes mellitus groups (T2DM, n = 60) and subdivided into three groups according to the duration of diabetes: T2DM-4w, T2DM-12w, and T2DM-24w groups; the duration was calculated from the time point of T2DM rat model establishment. The three comparison groups were set up in this study, T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group. The metabolite profiles of supraspinatus tendon were obtained using tandem mass spectrometry. Metabolomics multivariate statistics were used for metabolic data analysis and differential metabolite (DEM) determination. The intersection of the three comparison groups’ DEMs was defined as key metabolites that changed consistently in the supraspinatus tendon after diabetes induction; then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed.





Results

T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group detected 94 (86 up-regulated and 8 down-regulated), 36 (13 up-regulated and 23 down-regulated) and 86 (24 up-regulated and 62 down-regulated) DEMs, respectively. Seven key metabolites of sustained changes in the supraspinatus tendon following induction of diabetes include D-Lactic acid, xanthine, O-acetyl-L-carnitine, isoleucylproline, propoxycarbazone, uric acid, and cytidine, which are the first identified biomarkers of the supraspinatus tendon as it progresses through the course of diabetes. The results of KEGG pathway enrichment analysis showed that the main pathway of supraspinatus metabolism affected by diabetes (p < 0.05) was purine metabolism. The results of the KEGG metabolic pathway vs. DEMs correlation network graph revealed that uric acid and xanthine play a role in more metabolic pathways.





Conclusion

Untargeted metabolomics revealed the dynamic changes of metabolite composition in rat supraspinatus tendons at different stages of diabetes, and the newly discovered seven metabolites, especially uric acid and xanthine, may provide novel research to elucidate the mechanism of diabetes-induced tendinopathy.
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1 Introduction

Tendinopathy is one of the common diseases of the human motor system, and many factors, including aging, inflammation, chronic injury, and metabolic diseases, lead to tendinopathy (1). Among these, diabetes mellitus is a major factor affecting tendon quality and leading to tendinopathy (2). In recent years, the increasing number of people with diabetes has prompted a large number of studies (3, 4) to focus on the adverse effects of diabetes on tendons. Some studies have shown that diabetes alters the physical and chemical properties of tendons and the arrangement of collagen fibers, extracellular matrix composition, and biomechanics in a high-glucose microenvironment (5). The current study demonstrated that the degree of tendinopathy gradually worsens and the biomechanical properties decrease in the supraspinatus tendon of rats at 2, 4, 8, and 12 weeks after diabetes induction (6). However, studies on how diabetes leads to the continuous progression and deterioration of rotator cuff tendinopathy have not been reported; also, the changes in endogenous small molecules and the involved biological pathways with the progression of diabetes remain unclear. With the increasing development of metabolomics, metabolomic-based studies provide novel ideas for the study of tendinopathy. In a recent non-targeted metabolomics study, Sikes et al. (7) demonstrated that creatine, inositol, and lipid signaling pathways may be involved in the development of tendinopathy in mouse models. Although the subjects of this study were not animal models of diabetes, untargeted metabolomics results showed subtle differences between samples providing new insights into the mechanisms of disease development and progression.

In previous studies, metabolomics techniques have played a significant role in investigating the mechanisms by which diabetes leads to the continuous progression and deterioration of diseases in the kidney (8), microvasculature (9), and retina (10), as well as obesity (11). Peng et al. (8) found that two differential metabolites (DEMs) (Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro) increased with the progression of proteinuria in diabetic nephropathy, and the newly discovered serum metabolites could be used as biomarkers for the continuous progression of diabetic nephropathy. Li et al. (9) identified 24 metabolites that reflect the metabolic changes at different stages of diabetic peripheral vascular disease by untargeted metabolomics. Yun et al. (10) used targeted metabolomics and showed that the mechanism by which diabetes leads to the development and progression of retinopathy might be related to carnitine and phosphatidylcholine. Lv et al. (11) identified DEMs using metabolomics, which might be putative biomarkers for assessing pancreatic β-cell function at different stages of diabetes. Although several studies have investigated the mechanism by which diabetes leads to the development and progression of various complications using metabolomics techniques, the dynamic changes in the metabolic profiles of supraspinatus tendons at different stages after diabetes induction have not been reported.

Patients/animal tendons with different duration of diabetes have diverse molecular profiles of metabolites. Consequently, 40 supraspinatus tendon samples were extracted from normal and diabetic rats in this study to reveal a list of metabolites associated with the progression of diabetic tendinopathy (Figure 1). Next, we performed untargeted metabolomics testing on all samples, screened for DEMs that consistently changed throughout diabetes, and performed hierarchical cluster analysis and KEGG pathway analysis. We speculated that this study provides new ideas for exploring the mechanisms by which diabetes leads to the development and progression of rotator cuff tendinopathy.




Figure 1 | Study design and metabolomic analysis of the supraspinatus tendon in diabetic rats. Overview of the cohort (including 10 normal samples, 10 type 2 diabetes 4-week samples, 10 type 2 diabetes 12-week samples, and 10 type 2 diabetes 24-week samples) and study design (including metabolomics LC-MS/MS, database search, detection, identification, and quantitative analysis of metabolites, and screening of DEMS).






2 Materials and methods



2.1 Experimental grouping and establishment of type 2 diabetic rat model

A total of 80 Sprague–Dawley rats (6-week-old, 200–220 g, Beijing Vital River, production license No. SCXK (Zhejiang) 2019-0001) were divided into four groups according to random number table method: normal, diabetic 4-week, diabetic 12-week, and diabetic 24-week group. The normal group was fed a normal diet, and the diabetic group was fed a high-sugar and high-fat diet (Mediscience, MD12033) for 4 weeks. subsequently, diabetic rats were injected 40 mg/kg streptozotocin (STZ, Aladdin) intraperitoneally on an empty stomach (12), and rats fed a normal diet were injected with an equivalent volume of sodium citrate buffer (SSC, BIOISCO, 40 mg/kg). Three days after the injection of STZ solution, fasting blood glucose (FBG) concentration was measured in the rat tail tip blood; if the blood glucose level was ≥ 16.7 mmol/L for 3 consecutive days, the model was considered successful (13). Rats whose blood glucose did not reach the criterion were excluded and quantitatively supplemented.




2.2 Metabolite sample preparation

The bilateral supraspinatus tendons of rats were removed, the excess muscle components around the tendons were separated, the tendons were immediately placed in a precooled phosphate-buffered saline (PBS), the stains and blood on the tissue surface were washed, the liquid on the surface was blotted, and the treated tissues were rapidly placed in precooled numbered enzyme-resistant −192°C ultra-low temperature-threaded mouth cryogenic vials without enzymes, snap frozen in liquid nitrogen for 3-4 h, and placed in a −80°C freezer. The samples were stored on dry ice during shipment for metabolomics analysis. Moreover, metabolomic analysis requires at least 50 mg of tissue, and supraspinatus tendon tissue from both rotator cuffs is undermass in one animal; hence, supraspinatus tendon tissue from two animals (four shoulders) needs to be pooled to construct one metabolomic sample.




2.3 Untargeted metabolomic analysis of supraspinatus tendon

Metabolites were extracted from tendons with 50% methanol buffer. The processes of sample collection, storage, and preparation were consistent with that of Han et al. (14). Pooled quality control (QC) samples were prepared by mixing 10 μL of each extraction mixture. This analysis was carried out on an ultra-performance liquid chromatography (UPLC)–MS/MS system: a UPLC (UltiMate 3000 HPLC, Thermo Fisher Scientific, San Jose, CA, USA) connected to a high-resolution tandem mass spectrometer (Q-Exactive, Thermo Fisher Scientific, Saint Louis, MO, USA). The supernatants were collected and used for metabolomic analysis. LC/MS and untargeted metabolomics raw data were analyzed at LC-Bio Technology Co., Ltd (Hangzhou, Zhejiang Province, China). The instrument parameters were set using previously reported methods (14). A high-resolution tandem mass spectrometer Q-Exactive (Thermo Scientific) was used to detect metabolites eluted form the column. The Q-Exactive was operated in both positive and negative ion modes. Precursor spectra (70–1050 m/z) were collected at 70,000 resolution to hit an AGC target of 3e6. The maximum inject time was set to 100 ms. A top 3 configuration to acquire data was set in DDA mode. Fragment spectra were collected at 17,500 resolution to hit an AGC target of 1e5 with a maximum inject time of 80 ms. In order to evaluate the stability of the LC-MS during the whole acquisition, a quality control sample (Pool of all samples) was acquired after every 10 samples.

Metabolomics datasets were analyzed using the open-source software metaX, and univariate and multivariate analyses were performed to obtain DEMs between the three comparison groups. Collecting, identifying, and analyzing baseline data was similar to that reported in a recent study by Yang et al. (15). The p-value was adjusted by Benjamini–Hochberg’s approach. Variable Importance in Projection (VIP) value > 1, FC > 2 or < 0.5, and an adjusted p-value < 0.05 were selected as DE features and used for further analyses. These criteria were selected according to those described previously (16). The metabolites included in the intersection of DEMs between the three comparison groups were identified by Venn Diagram. The relative content of the metabolites was calculated by a Z-score plot, and then the trend change of metabolites between the three diabetes stages was analyzed. All DEM features/metabolites were annotated in KEGG (http://www.kegg.jp/) (17) and HMDB (http://www.hmdb.ca/) according to Tao et al. (18); then, the annotated metabolites were mapped to the KEGG pathway database (http://www.kegg.jp/kegg/pathway.html).




2.4 Statistical analysis

SPSS 21.0 software (IBM, Armonk, NY, USA) was used for statistical analysis of the final experimental data. GraphPad Prism 8.0 (La Jolla, CA, USA) was used to plot the histograms of the expression of seven key metabolites with mean ± standard error of the mean (SEM). Bioinformatics-related widely untargeted metabolomic analysis was performed using the OmicStudio tools (https://www.omicstudio.cn/tool) (accessed on 3 October 2022).





3 Results



3.1 Metabolic profile of supraspinatus tendon

Total ion chromatograms (TIC) of QC samples tested in positive (POS) ion mode (Figure 2A) and negative (NEG) ion mode (Figure 2B) demonstrated the repeatability and reliability of the data. A total of 335 metabolites were detected in supraspinatus tendon samples, accounting for only 3.77% of the total metabolites, as seen by the results of untargeted metabolomics analysis. A total of 201 POS-mode metabolites (Supplementary Table 1) and 134 NEG-mode metabolites (Supplementary Table 2) were tentatively identified, which could be annotated into 14 classes (Figure 2C), mainly including lipids and lipid-like molecules (39.1%), organic acids and derivatives (18.81%), and benzenes (9.85%).




Figure 2 | Total ion chromatograms of LC-MS data from metabolite profiles of QC samples detected in the POS ion mode (A) and NEG ion mode (B) X-axis represents retention time, and Y-axis represents total ion chromatogram in MS. (C) Superclass entries for all identified metabolites.






3.2 Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA)

The PCA of metabolites (Figures 3A, D, G) showed the degree of separation between tendon tissues from different courses of diabetes, indicating that various stages of diabetes had diverse effects on tendons, indicating differences in metabolites between the two groups; also, the analytical method was reproducible. In order to maximize the differences between groups, PLS-DA provided a multivariate statistical analysis method with supervised pattern recognition, revealing distinct differences between groups and better clustering of sample points within groups (Figures 3B, E, H). PLS-DA model could overfit in processing high-dimensional data, and to prevent model overfitting, the permutation tests of PLS-DA model were conducted. Q2<0 in the permutation tests diagram (Figures 3C, F, I) indicates that there is no overfitting of the model, and the differential metabolite analysis is more accurate. In addition, the data in the blue line (R2) were higher than those in the red line (Q2), indicating that the model established by the experiment had not undergone overfitting, indicating its validity that could be analyzed further.




Figure 3 | Metabolomic changes in rat supraspinatus tendon at different time points after diabetes induction compared to the normal group. PCA analysis (A), PLS-DA (B), and permutation analysis (C) in the T2DM-4w group vs. Normal group. PCA analysis (D), PLS-DA (E), and permutation analysis (F) in the T2DM-12w group vs. T2DM-4w group. PCA analysis (G), PLS-DA (H), and permutation analysis (I) in the T2DM-24w group vs. T2DM-12w group.






3.3 DEMs and their KEGG enrichment analysis

Next, we analyzed the annotated metabolites in tendon tissue, and volcano plots were used to illustrate the distribution of DEMs at various time points of diabetes (Figures 4A–C). Red and blue circles in the volcano plot are up- and downregulated metabolites, and the data showed that the number of DEMs exhibits an increasing trend in a diabetes-duration manner (Table 1). A total of 94 DEMs were detected in the T2DM-4w group compared to NG (Supplementary Table 3), including 86 up- and 8 downregulated metabolites. The most affected metabolites were organic acids and derivatives (42.55%), lipid and lipid molecules (15.56%), and organic heterocyclic compounds (14.89%) (Figure 5A). DEMs were enriched into the KEGG database, following which, we detected the enrichment of 92 pathways (Supplementary Table 6, Figure 6A), of which the top three significantly enriched metabolic pathways were protein biosynthesis and absorption, aminoacyl-tRNA digestion, and ABC transporters. We also identified 36 DEMs in the T2DM-12w compared to the T2DM-4w group (Supplementary Table 4), including 13 up- and 23 downregulated metabolites. The most affected metabolites were lipids and lipid molecules (39%), organic acids and derivatives (14%), organic heterocyclic compounds (11%), and benzene (11%) (Figure 5B). DEMs were enriched in the KEGG database, and it was found that 17 pathways were enriched (Supplementary Table 6, Figure 6B), of which the top three significantly enriched metabolic pathways were purine metabolism, choline metabolism in cancer, and glycerophospholipid metabolism. A total of 86 DEMs were found in T2DM-24w compared to the T2DM-12w group (Supplementary Table 5), including 24 up- and 62 downregulated metabolites. The most affected metabolites were lipids and lipid molecules (56%), organo-oxygenated compounds (9%), organic acids and derivatives (8%), and organic heterocyclic compounds (8%) (Figure 5C). DEMs were enriched in the KEGG database, and it was found that 86 pathways were enriched (Supplementary Table 6, Figure 6C), of which the top three significantly enriched metabolic pathways were choline metabolism in cancer, glycerophospholipid metabolism, and arginine biosynthesis. DEMs from the three comparison groups could be aggregated by hierarchical cluster analysis (Figures 5D–F), and regions of different colors represent cluster grouping to visualize the variations in metabolites between groups by color gradients.




Figure 4 | Volcano plot of DEMS between three comparison groups. Each dot represents one metabolite Red dots represent the significantly upregulated metabolites, and blue dots represent the significantly downregulated metabolites Gray dots represent no significant DEMS. (A) T2DM-4w group vs. Normal group: (B) T2DM-12w group vs. T2DM-4w group: (C) T2DM-24w group vs. T2DM-12w group.




Table 1 | Changes in differential metabolites in the three comparison groups.






Figure 5 | Classification of metabolites including T2DM-4w group vs. Normal group (A), T2DM-12w group is, T2DM-4w group (B), and T2DM-24w group vs T2DM-12w group (C); Heatmap of annotated metabolites with increasing and decreasing trend, including T2DM-4w group vs. Normal group (D), T2DM-12w group vs. T2DM-4w group (E), and T2DM- 24w group vs. T2DM-12w group (F). Each column represents a sample, and each metabolite is visualized in a row Red indicates a high abundance, and blue indicates a relatively low abundance of metabolites.






Figure 6 | KEGG pathways that the distinguished metabolites participate in different comparison groups. (A) T2DM-4w group vs. Normal group. (B) T2DM-12w group vs. T2DM-4w group; (C) T2DM-24w group vs. T2DM-12w group. The color of the point represents the p-value. The smaller the value, the higher the reliability of the test and the greater the statistical significance. The size of the point represents the number of differential metabolites in the corresponding path. The larger the point, the more DEMs in the pathway.






3.4 Metabolomic alterations associated with the progression of diabetic tendinopathy

Venn diagram (Figure 7A) shows the DEMs co-existing in the three comparison groups. We found that seven selected metabolites were common DEMs in all comparison groups (Table 2), including D-lactic acid, xanthine, O-acetyl-L-carnitine, isoleucylproline, propoxyazone, uric acid, and cytidine, all of which were the first biomarkers identified in the supraspinatus tendon with the progression of diabetes (Figures 7B–H). Seven DEMs were subjected to KEGG enrichment analysis, and the results showed that a total of 12 metabolic pathways were enriched (Table 3), of which purine metabolic pathways were significantly enriched (p < 0.05), suggesting that purine metabolism is crucial for the progression of diabetic tendinopathy (Figure 8A). The results of the network diagram of DEM correlations in KEGG-enriched pathways (Figure 8B) revealed that uric acid and xanthine play a role in several metabolic pathways, and these two biomarkers may be closely associated with the development of diabetic tendinopathy.




Figure 7 | (A) The Venn diagram compares the number of different metabolites among all three comparison groups, including the paired comparison groups of T2DM-4w group vs. Normal group, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group. The different expression levels of isoleucylproline (B), O-acetyl-L-carnitine (C), xanthine (D), D-lactic acid (E), propoxycarbazone (F), uric acid (G), and cytidine (H) between Normal group, T2DM-4w group, T2DM-8w group, and T2DM-12w group. Adjusted p-value < 0.05 were selected as DE features.




Table 2 | List of basic information on seven key metabolites associated with the progression of diabetic tendinopathy.




Table 3 | List of pathways enriched for seven key metabolites.






Figure 8 | (A) Scatter plot of seven critical metabolites with the most significant enrichment. p-value is plotted on a color map. (B) Typical KEGG pathway vs. metabolite network graphs.







4 Discussion

Metabolomics is widely used in many fields and plays a critical role in the study of mechanisms involved in diabetes and its complications and the establishment of predictive models (19, 20). Metabolomics techniques involve the identification and characterization of small molecules; the commonly used analytical techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) (21). Non-targeted metabolomics studies analyze endogenous small molecule metabolites in the body without bias, providing information on thousands of compounds detected in samples and discovering the correlation between metabolites and physiological and pathological changes (22). Because each individual’s metabolic profile is unique, fluctuations and differences in metabolite levels directly reflect the mechanisms underlying disease development and progression (23). Over the past decade, many studies have provided information regarding the mechanisms by which diabetes leads to the continuous progression and deterioration of the kidney (8), microvasculature (9), and retinal diseases (10) through untargeted metabolomics techniques. However, the correlation between metabolite profiles and the severity of diabetic tendinopathy has not yet been investigated.

This is the first study to establish a list of biomolecules that may be involved in the dynamic changes of the supraspinatus tendon of the rotator cuff with the progression of diabetes using mass spectrometry-based untargeted metabolomics techniques. In addition, we identified seven key metabolites that may be associated with the progression of rotator cuff tendinopathy, especially uric acid and xanthine play a role in metabolic pathways which might be closely related to the development of diabetic tendinopathy.

The comparison of time-dependent metabolic trajectories between diabetic and control groups provided information about metabolites that may be involved in the development of diabetic tendinopathy. In the present study, 12 pathways, such as purine, pyruvate, and microbial metabolisms in different environments, were likely to be associated with the development of diabetic tendinopathy, and one of the most significantly changed (p < 0.05) pathways was the purine metabolism pathway. Purines are critical components of the cellular energy system and are also critical components of pyrimidine, RNA, and DNA production (24). To the best of our knowledge, this is the first study reporting that diabetes alters purine metabolism in tendon samples. In addition, xanthine was first decreased at week 4 after induction of diabetes compared to the normal group, but significantly increased in tendons from week 4 to week 8 of diabetes and decreased at week 12, but the results were still higher than those in the normal group. Previous studies have also shown that the purine metabolic pathway is associated with gestational diabetes (25), and xanthine is significantly increased in the urine metabolome of subjects with gestational diabetes (26). A total of 17 metabolites were identified between type 2 diabetes and diabetic nephropathy; among these, purine metabolism is mainly involved in this disease (27). In addition, the pathophysiology of a high-sugar diet is associated with the dysregulation of purine metabolism (28). Another study recorded serum metabolomics data from 650 healthy people, showing that consumption of sugar-rich foods is closely related to elevated circulating purine levels. This finding suggested that dietary sugar affects human health through the dysregulation of purine metabolism (29).

The optimal concentrations of uric acid are essential for the normal functioning of the body (30). Compared to the control group, uric acid levels in the supraspinatus tendon of rats with diabetes for 4 weeks increased significantly and decreased gradually during the period from weeks 4–24 of diabetes. The accelerated accumulation of uric acid in the initial period after diabetes induction might contribute to the development and progression of diabetic complications. The precursor of uric acid is xanthine, which is further oxidized to uric acid by xanthine oxidase (31). Cytosol contains about 4 mg/mL of uric acid, which increases significantly after nucleic acid degradation in injured cells (32). In addition, high levels of serum uric acid levels are associated with glucose metabolism disorders (33). In a previous study, uric acid was increased in meconium or urine of newborns from mothers diagnosed with gestational diabetes (34). Elevated plasma/serum uric acid is associated with an increased risk of insulin resistance (35, 36), and pathogenic mechanisms may be related to the inhibition of insulin signaling and AMPK activity (37, 38).

However, uric acid, as a natural antioxidant in vivo, can scavenge toxic free radicals produced during physiological and pathological processes and plays a critical role in anti-oxidative stress, neuroprotection, and anti-inflammation (39). In humans, about 50% of the plasma antioxidant capacity is obtained from uric acid (40, 41). Uric acid acts as an antioxidant and can scavenge excessive reactive oxygen species (ROS) and peroxynitrite from the body (42). High levels of uric acid are detected in the cytoplasm of normal human and mammalian cells, which is also closely related to its antioxidant effects (43–45). In addition, uric acid plays a role in tissue repair, and the related mechanisms may be associated with initiating the inflammatory process and mobilizing progenitor endothelial cells (46). Uric acid also has a role in the prevention of disease; for example, peroxides and ROS can be blocked by high uric acid levels, and hence, the probability of multiple sclerosis (MS) is greatly reduced in patients with gout (47). Therefore, we hypothesized that the decrease in uric acid levels in the supraspinatus tendon from week 4–24 after diabetes induction might further aggravate oxidative stress and inflammatory response in the supraspinatus tendon, leading to the progression of tendinopathy; however, the specific mechanism needs to be verified by additional studies in the future.

According to the current results, a series of amino acids was significantly reduced in T2DM-24w compared to the T2DM-12w group, including L-citrulline, L-(+)-arginine, citrulline, and glutamic acid, which are critical substances to maintain the normal function of the human body. The metabolic processes of the body are extremely important, and glutamic acid is the most abundant amino acid in the mammalian brain. It is mainly involved in the synthesis of protein peptides and fatty acids, together with glutamine, and regulates the ammonia levels in the body (48). In addition, glutamate is an acidic amino acid, and although it is not an essential amino acid for the human body, it participates in body metabolism as a carbon and nitrogen nutrient (49). The alterations in amino acid metabolism in the supraspinatus tendon of diabetic rats may contribute to many clinical changes, and amino acid metabolites may be potential biomarkers.

T2DM-12w showed a significant increase in LysoPE (18:2), LysoPE (17:0), LysoPE (19:0), LysoPE (20:1), LysoPC (18:2), LysoPC (18:3), and LysoPC (20:2) compared to the T2DM-4w group. Lyso-phosphatidylcholine is a phospholipid closely related to metabolic diseases, such as diabetes, dyslipidemia, and atherosclerosis, and plays a key role in the inflammatory response as the key metabolite of the lipid pro-inflammatory pathway (50). Accumulation of LysoPC induces apoptosis and leads to mitochondrial dysfunction (51). In vitro studies have shown that LysoPC elicits apoptosis when incubated with cultured hepatocytes (52). However, high phosphatidylcholine levels were associated with a low risk of type 2 diabetes (20). The key metabolic pathway associated with these metabolites is glycerophospholipid metabolism, a type of lipid metabolism, and abnormal lipid metabolism is directly associated with oxidative stress and inflammatory responses (53). Compared to the T2DM-12w group, some LysoPC decreased in the T2DM-24w group, although the related mechanism needs to be explored further. The current results suggested that abnormal glycerophospholipid metabolism may be one of the metabolic pathways involved in the progression of diabetic tendinopathy.

As the first study to investigate the dynamic changes of metabolites in the supraspinatus tendon of the rotator cuff in diabetic rats using untargeted metabolomics techniques, the experimental results prompt the exploration of the mechanism of the development and progression of diabetic tendinopathy. Nevertheless, the present study has some limitations. First, we identified several metabolites that continue to change with the duration of diabetes as no similar studies have previously corroborated these findings; hence, it is difficult to understand and interpret these results in the development of diabetic tendinopathy. While the identified metabolites are promising as potential biomarkers, further validation in larger cohorts of both animals and humans is needed to confirm their specificity and relevance to tendinopathy. Second, While the study identifies key metabolites and affected pathways, it may not provide a complete mechanistic understanding of how these metabolites contribute to diabetes-induced tendinopathy. Further research is required to explore the causal relationships. Third, the development of diabetic tendinopathy can be divided into several stages, such as “early,” “middle,” and “late.” These experimental groupings also attempted to investigate the potential differences in metabolites in these three stages; however, due to the lack of stage information on the pathogenesis of tendinopathy in diabetic rats, we were unable to completely mimic the pathogenesis of diabetic tendinopathy in this study. Therefore, the present results do not facilitate definitive and straightforward conclusions unless validated in subsequent diverse samples. Fourth, because the metabolism of different individuals is different and the sample size is limited, it is difficult to include relevant experiments in three or more replicates. Therefore, future studies need to replicate the experiment in parallel control with a larger sample cohort. Finally, untargeted metabolomics, as a broad and target-less detection modality, yields results that do not allow quantitative analysis of metabolites; therefore, combining various platforms and multi-omics in further studies is crucial.




5 Conclusions

In this study, we established for the first time a biomolecule list of dynamic changes in rat supraspinatus tendon with the progression of diabetes using mass spectrometry-based untargeted metabolomics techniques. Moreover, seven key metabolites detected in the supraspinatus tendon continue to change with diabetes progression. Especially the discovery of uric acid and xanthine may provide novel ideas for exploring the mechanisms of diabetic tendinopathy progression.
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Supplementary Table 1 | A total of 201 metabolites were identified from 5758 metabolite features extracted from the raw data acquired in positive-ionization modes by untargeted metabolomics analysis.

Supplementary Table 2 | A total of 134 metabolites were identified from 3118 metabolite features extracted from the raw data acquired in negative-ionization modes.

Supplementary Table 3 | A total of 94 differential metabolites (86 up-regulated and 8 down-regulated) were identified in the T2DM-4w group compared with the normal group.

Supplementary Table 4 | A total of 36 differential metabolites (13 up-regulated and 23 down-regulated) were identified in the T2DM-12w group compared with the T2DM-4w group.


Supplementary Table 5 | A total of 86 differential metabolites (24 up-regulated and 62 down-regulated) were identified in the T2DM-24w group compared with the T2DM-12w group.

Supplementary Table 6 | KEGG pathways, in which differentially expressed metabolites from the three comparison groups are involved. Dots are colored to represent P-values. The smaller the value, the greater the reliability of the test and the greater the statistical significance. The size of the dots represents the number of differentially expressed metabolites in the corresponding path. The larger the point, the more differentially expressed metabolites in the pathway.
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Introduction

In recent years, there has been a growing association between elevated circulating levels of branched-chain amino acids (BCAA) and diabetes mellitus. However, the relationship between serum BCAA levels and diabetic kidney disease (DKD) remains ambiguous. This study aims to investigate serum BCAA levels in DKD patients at various stages and assess the correlation between BCAA and clinical characteristics.





Materials and methods

We enrolled patients with type 2 diabetes mellitus (T2DM) who were admitted to our hospital and categorized them into three groups based on different DKD stages: normal proteinuria, microproteinuria, and macroalbuminuria groups. Forty healthy volunteers were included as the control group, and we measured serum BCAA concentrations using liquid chromatography-mass spectrometry (LC-MS). Subsequently, we conducted correlation and regression analyses to assess the associations between BCAA and clinical indicators.





Results

Serum BCAA levels were significantly elevated in T2DM patients compared to healthy controls. However, these levels exhibited a gradual decline with the progression of DKD. Furthermore, after adjusting for age, gender, and disease duration, we observed an independent association between serum albumin, urinary transferrin, and urinary microalbumin with BCAA.





Discussion

Our findings suggest a noteworthy decline in serum BCAA levels alongside the advancement of DKD. Additionally, serum BCAA exhibits an independent correlation with renal function indicators. These observations point to the possibility that serum BCAA concentrations in individuals with T2DM hold promise as a crucial predictor for both the initiation and progression of DKD.





Keywords: type 2 diabetes mellitus, branched -chain amino acids, keto acids, diabetic kidney disease, proteinuria




1 Introduction

Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes (1, 2); approximately 20-40% of patients with diabetes reportedly have DKD (3). As the prevalence of diabetes continues to rise globally, DKD is becoming a major public health problem and one of the leading causes of end-stage renal disease (ESRD) (3). DKD is a progressive disease characterized primarily by impaired glomerular filtration barrier function, predominant microalbuminuria, usually with few early symptoms. The urine protein-to-creatinine ratio (UACR) is commonly used clinically to assess early DKD (4, 5); as the disease progresses, patients gradually develop glomerulosclerosis and interstitial fibrosis of the renal tubules, leading to massive proteinuria and ESRD. The pathogenesis of DKD is complex, and current research indicates that insulin resistance, glucolipid metabolism disorders, long-term chronic inflammation, oxidative stress, and endothelial dysfunction are all involved in the development of DKD (6–8). The management of DKD primarily revolves around the maintenance of optimal blood glucose control. Nevertheless, it is crucial to emphasize that early diagnosis and intervention hold the potential to mitigate and postpone the onset of ESRD. Hence, the timely identification of DKD assumes paramount significance.

Branched-chain amino acids (BCAA) are amino acids characterized by their branched side chain structures, which include leucine, isoleucine, and valine. These essential amino acids cannot be synthesized within the human body and must be obtained through dietary sources. Upon ingestion, BCAAs undergo transamination facilitated by branched-chain amino acid aminotransferase (BCAT) to form corresponding branched-chain keto acids (BCKA). These BCKAs encompass α-ketoisovaleric acid (KIV), α-ketoisocaproic acid (KIC), and α-keto-β-methylvaleric acid (KMV). Subsequently, these BCKAs undergo further oxidative degradation mediated by the branched-chain keto acid dehydrogenase complex (BCKD) (9). In addition to serving as a crucial energy source for the body, BCAAs function as signaling molecules with diverse and vital biological activities, participating in a wide array of metabolic pathways. These activities are intricately regulated in both healthy and diseased states (9, 10). Research has demonstrated that BCAA levels become elevated in the circulation of obese individuals, and this elevation is strongly associated with the development of insulin resistance (10, 11). Furthermore, recent investigations have identified elevated plasma levels of 3-Hydroxyisobutyrate (3-HIB), a BCAA metabolite, as a potential predictive marker for the future risk of type 2 diabetes mellitus (T2DM) (12). Remarkably, alterations in plasma-free amino acid profiles, particularly in BCAA levels, precede the onset of T2DM and significantly correlate with future diabetes diagnosis (13, 14). Elevated concentrations of BCAAs, both in plasma and tissues, have also been observed in the context of breast cancer, concomitant with increased expression of catabolic enzymes, including branched-chain amino acid transaminase 1 (BCAT1) (15). Moreover, our research group has uncovered that defective BCAA catabolism contributes to heart failure, a condition marked by oxidative stress and metabolic disturbances induced by mechanical overload (16). Consequently, BCAAs and their derivatives hold promise as potential biomarkers for various diseases. However, despite this extensive research, there remains a noticeable gap in our understanding regarding the relationship between BCAAs and DKD. To what extent is the catabolism of BCAAs impaired in DKD? This question remains an area of limited investigation.

The aim of this study was to assess the serum levels of BCAA and BCKA in individuals diagnosed with T2DM and examine their association with the progression of DKD.




2 Materials and methods



2.1 Participants

One hundred and twenty patients with T2DM who were admitted to the Chu Hsien-I Memorial Hospital Department of Tianjin Medical University were enrolled into this study. Forty age- and sex-matched volunteers (20 males and 20 females) from physical examination centers were enrolled as the control group. The inclusion criteria were as follows: (1) Patients aged 18-75 years; (2) The diagnosis of T2DM and DKD complied with the criteria reported previously (17, 18). (3) No additional intake of BCAA supplements. The exclusion criteria were as follows: liver disease, other renal diseases, heart disease, rheumatism, cancer, infectious disease, or other endocrine diseases (except diabetes mellitus). In addition, patients using drugs that affect glucose metabolism (except anti-diabetic drugs), such as glucocorticoids, or drugs that affect urine albumin creatine ratio (UACR), such as ACE inhibitors or angiotensin receptor blockers, were excluded. The clinical characteristics of all subjects are shown in Table 1.


Table 1 | Clinical characteristics of patients with T2DM and the controls.



Patients were divided into three groups according to UACR: DM group (normal proteinuria, UACR < 30 mg/g, n = 43), DKD group-1 (microalbuminuria, 30 ≤ UACR ≤ 300 mg/g, n = 47), and DKD group-2 (macroalbuminuria groups, UACR > 300 mg/g, n = 30). This study was approved by the Ethics Review Committee of Chu Hsien-I Memorial Hospital of Tianjin Medical University and in accordance with the Helsinki Declaration.




2.2 Laboratory examination

All participants fasted at 10:00 pm; venous blood and morning urine were collected at 8:00 am the next day. Blood samples were allowed to stand at room temperature for 30 minutes and then centrifuged at 3500 g/min for 15 minutes. The top layer was taken after centrifugation and serum was used to detect several factors, including blood glucose metabolism indicators: fasting plasma glucose (FPG), fasting insulin, fasting C-peptide, and glycohemoglobin; blood routine: hemoglobin (Hb); blood lipid metabolism indicators: high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglyceride (TG), total cholesterol (TC); liver function: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin(Alb); renal function: blood urea nitrogen (BUN), creatinine (Cr), estimated glomerular filtration pass rate (eGFR), uric acid (UA); urine biochemistry: UACR, urine microalbumin (UMA), 24-hour total urine protein(24-h TP). The remaining serum samples were stored at -80°C until the final analysis.

BCAA and BCKA levels in patient serum were determined using liquid chromatography-mass spectrometry (LC-MS). The steps are as follows: (1) Remove the previously collected serum sample stored in a -80°C freezer, thaw at 4°C, transfer 10 μL to a 1.5 mL enzyme-free EP tube and place the sample on ice. (2) Add 5 μL of the internal standard mixture and 100 μL of a 1:1 mixture of ethacrynic acid and methanol pre-cooled at -20°C. (3) Pre-cool the shaker to 4°C and vortex the EP tubes as described above for 5 min. (4) Centrifuge the EP tubes at 14,000g for 15 min in a centrifuge at 4°C. (5) Transfer the supernatant from the EP tube to a new 1.5 mL enzyme-free EP tube and blow dry with nitrogen (if not measured immediately after blowing dry with nitrogen, store temporarily in a -80°C freezer). (6) Add 100 μL of 20% methanol to the EP tube to redissolve the sample and vortex it for 2 min. (7) Place the EP tube in a 4°C centrifuge at 14,000g for 5 min. (8) Transfer the supernatant to a supersampling vial, taking care that no air bubbles appear during the process, and inject the sample via LC-MS for detection.

Insulin resistance index (19) HOMA-IR=FBG*FINS/22.5




2.3 Statistical analysis

All experimental data were sorted and analyzed using IBM SPSS version 26 (V26.0, IBM Corp, Chicago, USA). Before statistical analysis, the data were tested for normal distribution and homogeneity of variance The mean ± standard deviation was used for data with a normal distribution. In contrast, differences are expressed as medians and interquartile ranges for non-normally distributed data. One-way analysis of variance (ANOVA) was used to compare the means of multiple groups with normal distribution, whereas the rank sum test was used to compare the means of multiple groups with non-normal distribution. Data were log10 transformed where necessary. Spearman’s rank correlation was used to examine the relationship between serum BCAA levels and clinical indicators in patients with T2DM. All tests were two-tailed, and statistical significance was set at p < 0.05.





3 Results



3.1 Clinical characteristics of patients with T2DM and healthy controls

The clinical characteristics of T2DM patients and the control group are comprehensively detailed in Table 1. Gender, age, uric acid, TC, TG, and LDL-C exhibited no statistically significant differences among the four distinct groups (p > 0.05). Compared to the control group, DKD group-1 showed higher BMI, WHR, FPG, Urea, eGFR, TC, and HDL-C levels. Moreover, UACR, 24-h UMA, and 24-h TP levels were significantly elevated in DKD group-1 compared to both the control and DM groups (p < 0.001). DKD group-2 had a longer disease duration, higher BMI, WHR, Urea, Cr, UACR, 24-hour UMA, and 24-hour TP levels compared to the other groups. However, FPG, Hb, Alb, and eGFR levels were lower in DKD group-2 relative to the other groups.

These comprehensive clinical characterizations underscore the distinctions in various parameters across different groups, emphasizing the dynamic nature of clinical characteristics in T2DM and DKD progression.




3.2 Concentrations of BCAA and BCKA in the serum of patients with T2DM and healthy controls

We employed LC-MS for the quantification of serum levels of BCAA comprising leucine, isoleucine, and valine, as well as BCKA encompassing KIC, KIV and KMV. The serum levels of BCAA and BCKA across the four distinct groups are graphically depicted in Figure 1, with detailed data presented in Table S1. Notably, the serum BCAA levels exhibited a significant elevation in the DM group (527.75 ± 120.18 μmol/L) in comparison to the control group (345.98 ± 67.35 μmol/L). Moreover, a noteworthy observation emerged: BCAA levels already exhibited a reduction at the stage of microproteinuria (DKD group-1) in contrast to the DM group, with a progressive decline in BCAA levels noted with the advancement of DKD.




Figure 1 | Serum levels of BCAA and BCKA in different groups. (A–C) are leucine, isoleucine and valine concentrations in the serum of the different groups. (D) is the total branched-chain amino acids concentration in the serum of the different groups. (E–G) are α-Cketoisohexanoic aci, α-vketoisovaleric acid and α-Keto-β-methylpentanoic acid concentrations in the serum of the different groups. (H) is the total branched-chain keto acids concentration in the serum of the different groups. Leu: Leucine; Ile: Isoleucine; Val, Valine; KIC, α-Cketoisohexanoic acid; KIV, α-vketoisovaleric acid; KMV, α-Keto-β-methylpentanoic acid. BCAA, Total branched-chain amino acids; BCKA, Total branched-chain keto acids. *means compared with the control group, p < 0.05; #means compared with the normal proteinuria group, p<0.05; &means compared with microalbuminuria group, p < 0.05.



In contrast, serum BCKA levels did not display a significant disparity between the DM group (76.92 ± 19.06 μmol/L) and the healthy control group (79.85 ± 17.80 μmol/L). However, there was a discernible decrease in BCKA levels observed in DKD group-1 (69.78 ± 24.29 μmol/L), with a more pronounced decline evident in DKD group-2 (62.53 ± 23.53 μmol/L).

These findings shed light on the dynamic alterations in serum BCAA and BCKA levels across different stages of DKD and highlight the potential significance of these metabolites as biomarkers in the context of diabetes-related renal dysfunction.




3.3 Relationship between serum levels of BCAA and BCKA and clinical indicators in patients with T2DM

Correlation analysis was used to examine the relationship between serum BCAA and BCKA levels and various clinical parameters among patients with T2DM (Table S2). Serum BCAA levels exhibited positive correlations with parameters such as HbA1c, Hb, Alb, ESR, eGFR, 24-hour UA, 24-hour urine glucose, and 24-hour urine creatinine levels, indicating that higher BCAA levels were associated with higher values of these clinical parameters. Conversely, negative correlations were identified between serum BCAA levels and UACR, Cr, TRF, IgG, 24-hour UMA, and 24-hour TP levels, implying that elevated BCAA levels were linked to lower values of these clinical markers. These findings are visually represented in Figure 2 and detailed in Table S2.




Figure 2 | Total BCAA correlate with clinical indicators. (A–L) describes the correlation between total BCAA and hemoglobin, glycated hemoglobin, serum albumin, serum creatinine, eGFR, 24h uric acid, 24h urine creatinine, 24h urine glucose, 24h urine transferrin, 24h urine microalbumin, 24h total urine protein and UACR respectively. “r” represents the correlation coefficient, p<0.05 is considered statistically different.



The correlation analysis revealed significant associations between serum BCKA levels and several clinical parameters among patients with T2DM. Specifically, BCKA demonstrated positive correlations with FPG, Hb, Alb, ESR, eGFR, 24-hour uric acid, and 24-hour urine creatinine levels, indicating that higher BCKA levels were associated with elevated values of these clinical markers. Conversely, negative correlations were observed between BCKA levels and age, diabetes duration, IgG, 24-hour UMA, and 24-hour TP levels, suggesting that increased BCKA levels were linked to lower values of these parameters. These findings are visually represented in Figure 3 and detailed in Table S2.




Figure 3 | Total BCKA correlate with clinical indicators. (A–L) describes the correlation between total BCKA and age, duration, fasting blood glucose, hemoglobin, serum albumin, ESR, eGFR, 24h uric acid, 24h urine creatinine, 24h urine microalbumin, 24h total urine protein and UACR respectively; “r” represents the correlation coefficient, p<0.05 is considered statistically different.



Collectively, the data within this group emphasize the intricate relationship between glycemic control, nutritional status, and renal function in individuals with T2DM and their influence on serum BCAA and BCKA levels.




3.4 Multiple linear regression analysis of serum BCAA and BCKA

In our analysis, we utilized BCAA as the dependent variable and incorporated various patient-specific factors, including age, diabetes duration, Hb, Alb, HbA1c, eGFR, TRF, UACR, UMA, and 24-hour urinary creatinine, to establish a comprehensive multivariate regression equation (as presented in Table 2).Consequently, our analysis unveiled statistically significant associations between BCAA and different levels of Alb (β = 4.088, t = 2.003, p = 0.048), TRF (β = -1.350, t = -3.449, p = 0.001), 24-h UMA (β = -73.861, t = -4.011, p < 0.001), and 24-hour urinary creatinine (β = 7.954, t = 3.262, p = 0.016). These results underscored the independent influence of Alb, TRF, UMA, and urinary creatinine levels on BCAA concentrations. These findings are visually represented in Figure 3 and detailed in Table S2.


Table 2 | Multiple regression analysis of influencing factors of BCKA.



Similarly, we employed BCKA as the dependent variable to construct multivariate regression equations (outlined in Table 3). Our analysis indicated statistically significant relationships between BCKA levels and varying Alb levels (β = 1.088, t = 2.928, p = 0.004), TRF levels (β = -0.18, t = -2.461, p = 0.015), UMA levels (β = -7.296, t = -2.139, p = 0.035), and urinary creatinine levels (β = 1.681, t = 2.426, p = 0.017). These findings demonstrate that Alb, TRF, UMA and urinary creatinine levels all serve as independent influencing factors for BCKA concentrations.


Table 3 | Multiple regression analysis of influencing factors of BCAA.



Our comprehensive multivariate regression analysis reveals a significant association between these clinical parameters of T2DM patients and the levels of BCAA/BCKA, particularly the renal function indicators.




3.5 Correlation of BCAA and BCKA with clinical indicators in patients of different genders with T2DM

In the subsequent analysis, we proceeded to stratify all patients diagnosed with T2DM based on gender, followed by an examination of the relationship between serum BCAA and BCKA levels and various clinical indicators, as presented in Table S3.

Among the male cohort, a noteworthy positive correlation was observed between BCAA levels and FPG (r = 0.411, p = 0.001) as well as HOMA-IR (r = 0.292, p = 0.02). Intriguingly, no such correlation was identified among their female counterparts. Furthermore, within the female subgroup, BCAA and BCKA exhibited a more pronounced positive correlation with Hb levels in comparison to their male counterparts. Conversely, in males, BCAA and BCKA displayed a stronger positive correlation with Alb levels compared to females. Shifting our focus to liver function indicators, ALT and AST displayed no significant association with BCAA levels in males; however, they exhibited a robust correlation among female patients. These findings align closely with those reported in a prior study examining alterations in serum BCAA levels among individuals afflicted with Non-Alcoholic Fatty Liver Disease (NAFLD) (20).Additionally, we explored urinary renal function-related markers, namely RBP, TRF, IgG, UACR, and UMA. Strikingly, these indicators exhibited significant associations with BCAA levels in both male and female patients. Notably, the correlation coefficients were notably higher among the female cohort.

In summary, our gender-stratified analysis revealed distinct patterns of correlation between serum BCAA and BCKA levels and various clinical indicators in male and female T2DM patients. These findings underscore the importance of considering gender-specific variations in the metabolic profile of T2DM patients, providing valuable insights into potential avenues for personalized therapeutic interventions.





4 Discussion

In this study, we investigated the changes in serum BCAA and BCKA levels in patients with T2DM; our results showed that serum BCAA levels were significantly higher in the diabetic group than in the healthy controls, consistent with previously reported studies (21). In addition, a longitudinal study of adult health in Brazil (14) showed that higher levels of BCAA were independently predictive of diabetes. A study of serum amino acid measurements in patients with T2DM also found that ketogenic amino acid levels were higher than normal in patients with diabetes (22). This shows that there is a close relationship between BCAA and T2DM, with abnormalities in the catabolism of BCAA in patients with T2DM causing an increase in serum BCAA concentrations.

Patients with T2DM are usually associated with insulin resistance. Studies have shown (23, 24) that insulin resistance can reduce the activity of the branched-chain α-keto acid dehydrogenase complex in the liver and adipose tissue, inhibiting the catabolism of BCAA. Furthermore, the chronic elevation of BCAA can contribute to the development of insulin resistance in humans (25). In addition, reduced uptake of BCAA by skeletal muscle due to reduced insulin action can also increase blood levels of BCAA (25). A recent study also showed that genes involved in BCAA catabolism are suppressed in the skeletal muscles of insulin-resistant individuals (26). Elevated levels of BCAA in insulin-resistant populations has been suggested to be associated with a gut microbiome rich in BCAA biosynthesis (27). Therefore, the elevated BCAA levels found in the sera of individuals with T2DM may result from a combination of these factors.

Taken together, the elevated levels of BCAA can promote insulin resistance and diabetes progression, and previous studies have suggested that BCAA can be used as a biomarker for a variety of diseases including diabetes mellitus (14), heart failure (16), and cancer (15). Therefore, we initially speculated that elevated BCAA might act as a biomarker for the progression of DKD, but our study found that even in microproteinuria, BCAA was decreased compared to the normo-proteinuria group, which was contrary to our expectations. As protein intake did not change significantly in patients at this stage of the disease, we hypothesized that there were abnormalities in the excretion and reabsorption of BCAA in the kidneys of patients at the microproteinuria stage, leading to a decrease in BCAA levels despite no change in intake, further suggesting that BCAA may be an indicator of kidney damage. However, due to technical limitations, we lack supporting evidence for BCAA levels in the above patients, which will need to be refined in subsequent studies.

Our results showed that serum BCAA concentrations gradually decreased as the degree of proteinuria progressed in patients with DKD, which has been verified in previous studies (28). We consider that this may be due to the accumulation of uremic toxins in the patient’s body, decreased appetite, and inadequate nutritional intake of the patient. On the other hand, patients with DKD develop acid-base imbalance and metabolic acidosis is sufficient to promote the oxidative breakdown of renal BCAA by affecting the activity of the key enzyme of BCAA catabolism-BCKDH complex (29). In addition, it has been suggested that inflammation in patients with chronic kidney disease can lead to decreased plasma amino acid concentrations (30).

Similarly, we observed that the serum BCAA levels of the patients started to decrease in the microproteinuria stage compared to those in the T2DM group. The serum BCAA levels decreased further when progressing to the massive proteinuria stage. Our results showed that serum BCAA levels were negatively correlated with urinary microalbumin levels and positively correlated with Alb levels. This shows that BCAAs are closely associated with the nutritional status of patients with T2DM. The blood Alb level is an important indicator of the body’s nutritional status. Studies have reported that leucine, a BCAA, can promote Alb synthesis in rat primary hepatocytes by activating the mTOR signal transduction pathway (31–33). In patients with DKD, as the degree of proteinuria increases, the blood Alb level decreases and the BCAA is more of a compensatory synthetic protein, allowing the serum BCAA level to decrease.

Urinary TRF is a negatively-charged, medium-molecule protein that is synthesized primarily by hepatocytes in the human body for iron transport (34, 35). TRF does not normally pass freely across the glomerular filtration barrier and is present in very small amounts in the urine. If the glomerular filtration barrier is damaged, urinary TRF can pass through, entering the urine and causing proteinuria. This property makes urinary TRF an indicator of early kidney damage (36). In a study of five early biomarkers for predicting DKD, urinary TRF was significantly associated with the development of DKD and could be used to assess early glomerular damage in patients with diabetes and effectively predict the development of early DKD (37). Our study found that serum BCAA and TRF levels were negatively correlated in patients with T2DM with different stages of proteinuria. Multifactorial linear regression analysis showed that serum TRF was an independent influencing factor for BCAA and BCKA. In contrast, UMA was independently associated with serum BCAA levels in patients with T2DM. In summary, serum BCAA levels may help predict early DKD.

Our study has some limitations. First, the study was a single-center, cross-sectional study, and the role of changes in serum BCAA levels in the progression of DKD requires further prospective cohort studies with larger samples to confirm our findings. Second, due to technical limitations that we are working to resolve, our study has not yet been refined enough to determine urinary BCAA concentrations in the patients in our study.




5 Conclusion

Our study revealed that serum BCAA levels were notably elevated in individuals diagnosed with T2DM compared to the levels observed in the general population. Serum BCAA levels decreased and correlated with indicators of renal function with the progression of DKD. These findings suggest that the concentration of serum BCAA in patients with T2DM may serve as a significant predictive marker for the development of DKD.
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Background

The treatment of diabetic foot ulcers (DFUs) poses a challenging medical problem that has long plagued individuals with diabetes. Clinically, wounds that fail to heal for more than 12 weeks after the formation of DFUs are referred to as non-healing/chronic wounds. Among various factors contributing to the non-healing of DFUs, the impairment of skin microvascular endothelial cell function caused by high glucose plays a crucial role. Our study aimed to reveal the transcriptomic signatures of non-healing DFUs endothelial cells, providing novel intervention targets for treatment strategies.





Methods

Based on the GEO dataset (GSE165816), we selected DFU-Healer, DFU-Non-healer, and healthy non-diabetic controls as research subjects. Single-cell RNA transcriptomic sequencing technology was employed to analyze the heterogeneity of endothelial cells in different skin tissue samples and identify healing-related endothelial cell subpopulations. Immunofluorescence was applied to validate the sequencing results on clinical specimens.





Results

The number of endothelial cells and vascular density showed no significant differences among the three groups of skin specimens. However, endothelial cells from non-healing DFUs exhibited apparent inhibition of angiogenesis, inflammation, and immune-related signaling pathways. The expression of CCND1, ENO1, HIF1α, and SERPINE1 was significantly downregulated at the transcriptomic and histological levels. Further analysis demonstrated that healing-related endothelial cell subpopulations in non-healing DFUs has limited connection with other cell types and weaker differentiation ability.





Conclusion

At the single-cell level, we uncovered the molecular and functional specificity of endothelial cells in non-healing DFUs and highlighted the importance of endothelial cell immune-mediated capability in angiogenesis and wound healing. This provides new insights for the treatment of DFUs.
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Introduction

According to the World Health Organization (WHO), diabetes is the third most serious chronic disease threatening human health, following cancer and cardiovascular diseases. Diabetic foot ulcer (DFU) is one of the most common complications among diabetic patients. Globally, it is estimated that 9.1 to 26.1 million people will develop DFU each year, with a lifetime incidence rate of 15-25% among diabetes patients (1). The healing of DFU involves complex physiological processes that include multiple cell types and cytokine involvement (2). In clinical practice, some DFUs heal well after active treatment, while others remain unhealed. Generally, DFU wounds that do not heal within 12 weeks are considered non-healing or chronic wounds (3, 4). The mechanisms underlying the different treatment outcomes of DFUs are not yet clear. However, it has been observed that diabetic patients with concomitant peripheral vascular diseases have the worst prognosis for foot ulceration (5). This may be due to biological and functional damage to endothelial cells (ECs) caused by factors such as high glucose and hypoxia (6–8). Among the many factors influencing the healing of DFUs, the function of endothelial cells is a crucial determinant of wound healing (9, 10). However, the transcriptomic signatures of endothelial cells in non-healing DFUs have been overlooked in existing research. Endothelial cells (ECs) not only form the inner lining of arteries, veins, and capillaries but also serve as endocrine cells that mediate immune and inflammatory responses. Different subtypes of ECs exhibit tissue-specific and vascular-type-specific immunoregulatory functions (11) and play a critical role in angiogenesis through various signaling pathways (12). Single-cell RNA sequencing (scRNA-seq) technology has become the most advanced method for revealing the heterogeneity and complexity of RNA transcripts within individual cells and for uncovering the composition and functions of different cell types in tissues, organs, and organisms (13). Georgios Theocharidis et al. (14) performed debridement surgery on DFU patients and collected skin samples from the wound site for research purposes. They defined DFU-Healer as patients whose wounds healed within 12 weeks after surgery and DFU-Non-healer as patients whose wounds remained non-healing. They analyzed the single-cell transcriptomic landscape and deposited the single-cell data in the Gene Expression Omnibus (GEO) database. Based on their GEO dataset (GSE165816), our study selected DFU-Healer, DFU-Non-healer, and healthy non-diabetic controls as research subjects to reveal differentially expressed genes and functional characteristics of endothelial cells that influence the healing of DFUs, providing reference for the clinical treatment of this disease.





Methods




Subjects

The research data were obtained from the NCBI Gene Expression Omnibus (GSE165816) dataset, comprising a total of 25 samples. Non-diabetic patients (n = 10) who underwent foot surgery for various reasons, such as corrective surgery for hallux valgus, were included as healthy controls. Diabetic foot ulcer patients (n = 11) underwent surgical excision of the ulcer, providing sufficient wound and peri-wound tissue for analysis. The DFU patients were followed up for 12 weeks post-surgery and were divided into two groups based on wound healing status: the ulcer healing group and the ulcer non-healing group (healers; n = 7, non-healers; n = 4). Participants with any diseases or medications that could potentially affect wound healing, other than diabetes, were excluded from the study (14). Additionally, skin samples from DFU patients (healers; n = 5, non-healers; n = 4) and non-DFU patients (control group; n = 3) were collected by our research team according to the above criteria for immunofluorescence staining. DFU patient specimens comprised ulcers and skin located 2-10mm away from the ulcer edge.All skin specimens consisted of full-thickness skin tissue, excluding the ulcer site, encompassing the epidermis, dermis, and subcutaneous tissue, with a volume ranging from 0.8 to 2.5 cm3. Supplementary Dataset 1 includes clinical details of the participants in the study. There were no significant differences in the major biological characteristics among the groups.





Data processing and analysis

The cell UMI (Unique Molecular Identifier) data table for each sample was directly downloaded from the GSE165816 dataset. The cell UMI data from the 25 samples used in this project were extracted. Cells entering the apoptosis program were filtered based on three criteria: gene expression counts between 500 and 5,000, UMI counts between 500 and 10,000, and mitochondrial gene expression percentage not exceeding 25%. Cells expressing multiple immune cell markers [T cell: CD8A, CD3D, CD3E; B cell: CD19; Macrophage: CD14, CD163; Dendritic: CD11c(ITG AX)] were filtered out. After cell filtering, the remaining valid cells were first normalized at the cell level. The NormalizeData tool of the Seurat package was used to normalize the gene expression levels of each cell, ensuring that the total expression of each cell summed up to 10,000. Next, the ScaleData tool was used to scale the cells based on the total UMI counts and mitochondrial gene expression levels, performing linear regression on the cell expression levels. The FindVariableFeatures tool was then employed to identify variable genes based on the average gene expression and gene expression variability of cells. The threshold for variable gene selection was an average gene expression between 0.125 and 3, and the top 2,000 variable genes were selected based on decreasing gene expression variability. The RunPCA tool of the Seurat package was used to perform PCA (Principal Component Analysis) on the cells based on the expression levels of variable genes. The top 18 principal components were selected, and t-SNE (t-Distributed Stochastic Neighbor Embedding) dimensionality reduction was applied to the cells using the FindCluster tool with a resolution of 0.5 (0.8 for subclustering of vascular endothelial cells) for cell clustering. Cell types were identified based on marker information provided in the referenced article (https://doi.org/10.1101/2021.03.11.434413). The FindMarkers tool of the Seurat package was used to analyze differential gene expression in the sample cells. The enrichKEGG function of the clusterProfiler package was employed to perform KEGG Pathway enrichment analysis on significantly differentially expressed genes, with the analysis threshold set at pvalueCutoff = 1, qvalueCutoff = 1, minGSSize = 1, and maxGSSize = 1000. Enrichment results with a p-value below 0.05 were considered significant.





Differential gene analysis

Significantly differentially expressed transcription factor genes were identified based on the transcription factor information for the human species available in the Human Transcription Factor Database (HumanTFDB, http://bioinfo.life.hust.edu.cn/HumanTFDB#!/). Using the target gene data information of human transcription factors collected in the TRRUST database, a search was conducted for target genes of the transcription factors, and expressed target genes were filtered. The targeting relationships between transcription factors and target genes were listed. The enrichKEGG function in the clusterProfiler package was used to perform KEGG Pathway enrichment analysis on the target genes, specifically focusing on immune and inflammation-related pathways. The analysis thresholds were set as pvalueCutoff = 1, qvalueCutoff = 1, minGSSize = 1, and maxGSSize = 1000. Enrichment results with a p-value below 0.05 were considered significant. In the significantly differentially expressed gene enrichment pathways, immune and inflammation-related pathways were also selected. A Venn analysis was performed on the two sets of immune and inflammation-related pathways to obtain the common pathways. A Venn analysis was then conducted on the genes corresponding to the common pathways to identify the shared genes. The differential genes and target genes were analyzed for protein-protein interactions using the STRING protein interaction database (http://string-db.org/) for the human species, and the Cytoscape software was used for visualization.





Specimen collection and sectioning

	Specimen collection: Fresh tissue was fixed in 4% paraformaldehyde universal tissue fixativea (Biosharp, BL539A) for more than 24 hours. The tissue was taken out from the fixative solution and trimmed to the desired area using a surgical knife in a fume hood. The trimmed tissue was placed in a dehydration container along with the corresponding labels.

	Dehydration and paraffin embedding: The dehydration container was placed in the biological tissue Dehydrator (ZEEDO, HS-569) for gradual ethanol dehydration. The sequence of dehydration was as follows: 75% ethanol for 4 hours, 85% ethanol for 2 hours, 90% ethanol for 2 hours, 95% ethanol for 1 hour, absolute ethanol I for 30 minutes, absolute ethanol II for 30 minutes, alcohol-benzene for 5-10 minutes, xylene I for 5-10 minutes, xylene II for 5-10 minutes, 65°C melting paraffin I for 1 hour, 65°C melting paraffin II for 1 hour, 65°C melting paraffin III for 1 hour.

	Embedding: The dehydrated tissue was embedded using an embedding machine (ZEEDO, ES-300). First, the melted paraffin was placed in an embedding mold. Before the paraffin solidified, the tissue was taken out from the dehydration container, placed in the embedding mold according to the embedding surface requirements, and labeled accordingly. The embedding mold was cooled on a -20°C cold plate, and once the paraffin solidified, the paraffin block was removed from the embedding mold and trimmed.

	Sectioning: The trimmed paraffin block was cooled on a -20°C cold plate, and then placed in the paraffin microtome (ZEEDO, HS-3345)for sectioning at a thickness of 4μm. The sections were floated on a water bath at 40°C to flatten the tissue, and the tissue was lifted onto glass slides. The slides were baked in a 60°C oven to dry and deparaffinize the sections. After deparaffinization and hydration, the slides were stored at room temperature for further use.







Immunofluorescence staining and imaging

	Dewaxing of paraffin sections: The sections were sequentially placed in dewaxing solution I (Eco-friendly) (Phygene, PH1900)for 10 minutes, dewaxing solution II for 10 minutes, dewaxing solution III for 10 minutes, absolute ethanol I for 5 minutes, absolute ethanol II for 5 minutes, absolute ethanol III for 5 minutes, and then rinsed with distilled water.

	Antigen retrieval: In a transparent beaker, poured 500 mL of 50X sodium citrate antigen retrieval solution (Codow, CD434600), placed the tissue slides into the antigen retrieval solution, and put them together in a microwave oven. Heated them on high heat for 6-8 minutes. Carefully observed the heating of the retrieval solution and, once the solution boiled (to prevent excessive evaporation of the buffer and to avoid drying out the slides), turned off the heat, allowing it to cool down at room temperature.The slides were placed in PBS (pH 7.4) and washed on a decolorizing shaker for 3 times, 5 minutes each time.

	Inactivation of endogenous hydrogen peroxidase: A circle was drawn around the tissue using a peroxidase-blocking pen. The slides were then placed in a 3% hydrogen peroxide solution and incubated at room temperature, protected from light, for 25 minutes to block endogenous peroxidase. After that, the slides were placed in PBS (pH 7.4) and washed on a decolorizing shaker for 3 times, 5 minutes each time.

	Serum blocking: The PBS was removed and added 10% rabbit serum (Acmec, AC17053) for blocking for 30 minutes.

	Primary antibody incubation: The blocking solution was removed and the prepared primary antibody was added. The slides were then placed flat in a humid chamber and incubated overnight at 4°C.

	Secondary antibody/HRP inucubation: The slides were placed in PBS (pH 7.4) and washed on a decolorizing shaker for 3 times, 5 minutes each time. After excess liquid was gently shaken off, the corresponding HRP-labeled secondary antibody was added within the drawn circle and incubated at room temperature for 50 minutes.

	Addition of TSA dye: The slides were placed in PBS (pH 7.4) and washed on a decolorizing shaker for 3 times, 5 minutes each time. After excess liquid was gently shaken off, the TSA reagent was added within the drawn circle and incubated at room temperature, protected from light, for 10 minutes. After incubation, the slides were placed in TBST and washed on a decolorizing shaker for 3 times, 5 minutes each time.

	Antigen retrieval: The washed slides were subjected to the same procedure as described in step 2.

	Second round of antibody incubation: Steps 4-7 were repeated. In step 5, the second primary antibody was applied, and in step 7, the second TSA dye was used.

	DAPI counterstaining of cell nuclei: After excess liquid was gently shaken off, DAPI staining solution was added within the drawn circle and incubated at room temperature, protected from light, for 10 minutes.

	Quenching of autofluorescence: The slides were placed in PBS (pH 7.4) and washed on a decolorizing shaker for 3 times, 5 minutes each time. After excess liquid was gently shaken off, autofluorescence quenching reagent B (Servicebio, G1221-2)was added within the drawn circle, incubated for 5 minutes, and then rinsed with running water for 10 minutes.

	Mounting: The slides were mounted with anti-fluorescence quenching mounting medium (Servicebio, G1401).

	Image acquisition: The upright fluorescence microscope (Nikon, Eclipse C1) was using for image acquisition. DAPI excitation wavelength 330-380 nm, emission wavelength 420 nm; SPGreen (FITC) excitation wavelength 465-495 nm, emission wavelength 515-555 nm; SPOrange (CY3) excitation wavelength 510-560 nm, emission wavelength 590 nm.



Note: Information regarding the antibodies and fluorescent dyes used in immunofluorescence staining is provided in the Table 1:


Table 1 | Serum sPD-L1 changes before and after 3-4 cycles of PD-1 inhibitors treatment in advanced non-small cell lung cancer (NSCLC) patients.








Results




Identification and gene features of skin tissue cells

To determine the cell types and gene features of normal skin and DFU skin cells, we referred to the study by Georgios Theocharidis et al. (14) and downloaded a portion of the raw dataset (GSE165816) for single-cell expression analysis Supplementary Dataset 2. We analyzed a total of 25 samples from 11 diabetes patients (7 DFU-Healers and 4 DFU-Non-Healers) and 10 healthy non-diabetic subjects. The study groups, objectives, and analysis strategy are shown in Figure 1A. In summary, following the cell type marker information provided in the research of Georgios Theocharidis et al. (14), we analyzed 53,199 cells (24,922 from normal skin, 12,173 from DFU-Healers, and 17,743 from DFU-Non-Healers) and created a gene expression matrix for each cell. We used t-SNE plot and graph-based clustering for dimensionality reduction, resulting in the identification of 13 distinct cell types (Figure 1B). We identified most of the typical cell types observed in human skin (15, 16), including smooth muscle cells (SMCs) (TAGLN+, ACTA2+), fibroblasts (Fibro) (DCN+, CFD+), HE-fibro (DCN+, CHI3L1+), vascular endothelial cells (VasEndo) (ACKR1+), differentiated keratinocytes (DiffKera) (KRT1+, KRT10+), basal keratinocytes (BasalKera) (KRT5+, KRT14+), NK and T cells (NKT) (CD3D+, CCL5+), M1 macrophages (M1-macro) (IL1B+), M2 macrophages (M2-macro) (CD163+), melanocytes and Schwann cells (Melano/Schwann) (MLANA+, CDH19+), lymphatic endothelial cells (LymphEndo) (CCL21+), B lymphocytes (B lymphos) (CD79A+, MS4A1+), and mast cells (TPSAB1+) (Figures 1C, D, Supplementary Dataset 3). The distribution of the main markers for vascular endothelial cells is shown in the t-SNE plot (Figure 1E).




Figure 1 | Single-cell RNA-seq reveals heterogeneity in normal skin and diabetic foot ulcers. (A) Overview of the study design and the number of samples in each clinical group. (B) t-SNE plot showing the composition of the entire dataset consisting of 53,199 cells. Cells are color-coded by orthogonal-generated clusters and labeled based on manual cell type annotations (HE-Fibro, Healing-enriched fibroblasts; Fibro, Fibroblasts; SMCs, Smooth muscle cells; BasalKera, Basal keratinocytes; DiffKera, Differentiated keratinocytes; Melano/Schwann, Melanocytes and Schwann cells; Mast, Mast cells; VasEndo, Vascular endothelial cells; M1-macro, M1 macrophages; M2-macro, M2 macrophages; NKT, NK cells and T lymphocytes; LymphEndo, Lymphatic endothelial cells; B-lympho, B lymphocytes). (C) Dot plots displaying the expression of cell type-specific marker genes used for cell type annotation. The size of the dots represents the percentage of cells in each cell cluster expressing the marker gene, and the color represents the average proportion of expression levels (blue: low, red: high). (D) Heatmap showing the top highly expressed genes in each cell cluster. (E) Expression profiles of characteristic genes for vascular endothelial cells: (I) ACKR1, (II) SELE, and (III) RAMP3. The schematic diagram in (A) was created using BioRender (BioRender.com).







Exploring cellular heterogeneity in DFU-Healer, DFU-Non-Healer and healthy controls

To assess the cellular heterogeneity, gene expression, and molecular pathway changes among different clinical groups, we generated separate t-SNE plots based on samples from normal skin, DFU-Healer, and DFU-Non-Healer (Figure 2A). The results of cell abundance analysis for the three groups (Figure 2B) showed significant differences (p<0.05, Supplementary Figure 1) in B-lymphocytes, HE-Fibroblasts, Basal keratinocytes, lymphatic endothelial cells, and melanocytes/Schwann cells among the clinical groups. Specifically, B-lymphocytes were significantly higher in DFU-Healer compared to the Healthy Control group, suggesting the enrichment of B-lymphocytes following wound formation, which may be associated with increased collagen deposition and maturation, enhanced angiogenesis, and promoted nerve growth (17). Notably, B lymphocytes in DFU-Non-Healer were also significantly elevated comparing to Healthy Controls. The underlying reason could be attributed to the varying roles of different B cell subpopulations in wound healing, which warrants further research to elucidate the mechanisms involved (18). In DFU-Healer, the abundance of HE-Fibroblasts was 64.11 ± 2.06% (mean ± SE), and M1 macrophages were 50.79 ± 1.59%, while in DFU-Non-Healer, HE-Fibroblasts were 9.84 ± 0.50%, and M1 macrophages were 26.58 ± 1.16%. In the healthy Ctrl group, HE-Fibroblasts were 26.04 ± 2.19%, and M1 macrophages were 22.62 ± 0.73%. The proportion of VasEndo was almost the same among the three groups (Supplementary Dataset 4). The paraffin sections of a total of 12 clinical samples from the three groups were subjected to immunofluorescence staining,with CD31 used as the marker for endothelial cells (Figure 2C). Fluorescence microscopy was employed for observation. Any individual endothelial cell or endothelial-cell cluster stained by the CD31 antibody, regardless of whether they formed luminal structures, as long as they had clear boundaries with surrounding blood vessels, were considered countable vessels (19). The most densely vascularized areas were observed at 10× magnification, and three random subregions within these areas were selected. At 40× magnification (grid area 0.1 mm2), photographs of these three subregions were taken, and vessel numbers were counted individually. The average value of vessel numbers was calculated for each specimen, and vascular density was expressed as vessels per square millimeter (n/mm2). Finally, one-way ANOVA statistical analysis (Figure 2D) was performed to compare vascular density among the three groups, revealing no significant differences between them. The comparison of the number of significantly differentially expressed genes among different groups illustrates the upregulation or downregulation of genes (Figure 2E, Supplementary Dataset 5). And there were 31 commonly significant differentially expressed genes among the three groups (Figure 2F). In DFU-Healer vs healthy Ctrls, 254 genes were upregulated, and 213 genes were downregulated. In DFU-Healer vs DFU-Non-Healer, 74 genes were upregulated, and 56 genes were downregulated. In DFU-Non-Healer vs healthy Ctrls, 97 genes were upregulated, and 101 genes were downregulated. To compare the vascular endothelial cells differentially expressed genes more detailedly between DFU-Healer and healthy Ctrls, KEGG analysis was performed on their transcriptome profiles (Figure 2G). It was found that vascular endothelial cells exhibited upregulation in several pathways associated with ECM receptor signaling and inflammation, as shown by the heatmap of corresponding gene expression (Supplementary Figure 2). GSEA enrichment analysis revealed significant activation of the ECM-receptor interaction and IL-17 signaling pathway in DFU-Healer (FDR<0.05) (Figure 2H), which may be related to the appropriate inflammatory response mediated by vascular endothelial cells after wound formation, promoting angiogenesis and wound healing (20, 21). Further KEGG analysis of the differentially expressed genes between DFU-Non-Healer and healthy controls revealed downregulation of several pathways associated with immune response in vascular endothelial cells (Figure 2I), as shown by the heatmap of corresponding gene expression (Supplementary Figure 3). GSEA enrichment analysis showed significant inhibition of antigen processing and presentation, Th17 cell differentiation, and Th1 and Th2 cell differentiation in DFU-Non Healer (Figure 2J, Supplementary Figure 4). The failure of endothelial cells in DFU-Non-Healer to exert immune regulatory functions similar to T cells mediating inflammatory response after wound formation, may affecting wound angiogenesis and healing (11, 22, 23).




Figure 2 | Single-cell transcriptomic analysis profiles comparing Healthy Control, DFU-Healer, and DFU-Non-Healer groups, describing gene features and healing-related biological pathways. (A) Separated t-SNE plot of the Healthy Control, DFU-Healer, and DFU-Non-Healer groups. Cell clusters were manually annotated based on the expression of specific markers, representing various known and novel cell types (as shown in Figures 1C, D). (B) Stacked bar plots showing the proportions of different cell types in the three clinical groups. Green: Healthy Control, Orange: DFU-Healer, Red: DFU-Non-Healer. Cell types with significant differences among the clinical groups are marked with asterisks. (C) Immunofluorescence staining showing the distribution of blood vessels in the three groups (healers; n = 5, non-healers; n = 4, healthy controls; n=3). CD31: Red, DAPI: Blue. Scale bars are 200 μm. (D) Bar graph displaying the statistical analysis of blood vessel density in the three groups (healers; n = 5, non-healers; n = 4, healthy controls; n=3). * denotes significant differences (p<0.05), ns denotes no significant difference (one- way ANOVA with Fisher’s LSD post-hoc). (E) Bar plots comparing the number of differentially expressed genes in endothelial cells among the three clinical groups in pairwise fashion. (F) Venn diagram showing the number of commonly significant differentially expressed genes among the three clinical groups. (G) Immune and inflammation related KEGG pathways for significantly differentially expressed genes of vascular endothelial cells between DFU-Healer and Healthy Control. (H) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (G). (I) Immune and inflammation related KEGG pathways for significantly differentially expressed genes of vascular endothelial cells between DFU-Non-Healer and Healthy Control. (J) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (I).







Comparative analysis of vascular endothelial cells revealed downregulation of key healing-related gene expression in DFU-Non-Healer

The differentially expressed gene analysis in DFU-Healer and DFU-Non-Healer showed enrichment of immune and inflammation related pathways, suggesting that vascular endothelial cells mediate immune regulation and inflammatory responses (Figure 3A), as shown by the heatmap of corresponding gene expression (Supplementary Figure 5). To further compare the gene expression profiles of vascular endothelial cells between DFU-Healer and DFU-Non-Healer, we performed GSEA on their transcriptomic profiles. We found significant enrichment of eight KEGG signaling pathways in DFU-Healer, including the AGE-RAGE signaling pathway in diabetic complications, Focal adhesion, PI3K-Akt signaling pathway, Relaxin signaling pathway, IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and HIF-1 signaling pathway. All these pathways are associated with immune, inflammation, and vascularization (24) (Figure 3B, Supplementary Figure 6). This suggests that vascular endothelial cells in the DFU-Non-Healer group have weaker immune regulation, inflammatory response, and vascular generation potential compared to the DFU-Healer group.




Figure 3 | Comparison of the gene characteristics, healing-related biological pathways, and significantly differentially expressed genes between the DFU-Healer and DFU-Non-Healer groups. (A) Bubble plot illustrating the significant differences in immune and inflammation related KEGG pathway between DFU-Healer and DFU-Non-Healer endothelial cells. (B) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (A). (C) The Venn diagram showcases the intersection of 46 immune and inflammation related pathways enriched with significantly differentially expressed genes in DFU-Healer and DFU-Non Healer endothelial cells, as well as the 43 pathways enriched with immune and inflammation related target genes. The diagram reveals a total of 43 common pathways (left), where the DFU-Healer and DFU-Non-Healer endothelial cells share 46 healing-related genes and 47 target genes. The Venn diagram displays 5 genes that are common to both groups (right): CCND1, ENO1, HIF1α, MMP2, and SERPINE1. (D) The Protein-Protein Interaction Network analysis demonstrates the interactions among these 5 common genes in (C). (E) Dot plots illustrates the differential expression (p<0.05) of CCND1, ENO1, HIF1α, MMP2, and SERPINE1 between the DFU-Healer and DFU-Non Healer groups. (F) The immunofluorescence validation of protein expression, with CD31 labeled in red, CCND1, ENO1, HIF1α, and SERPINE1 labeled in green, and DAPI staining in blue. Scale bars are 200 μm.



There were 130 significantly differentially expressed genes between DFU-Healer and DFU-Non-Healer (Figure 2E), which were enriched in 193 pathways, including 46 immune and inflammation related pathways. Using the Human Transcription Factor Database (HumanTFDB), we identified two significantly differentially expressed transcription factors, HIF1α and ID1. Searching the TRRUST database for the corresponding target genes of HIF-1α and ID1, we found 77 target genes. Transcription factors and their target genes exhibit a one-to-many relationship (Supplementary Dataset 6). We performed KEGG Pathway enrichment analysis on these 77 target genes and identified a total of 208 KEGG pathways, of which 88 pathways were significantly enriched including 43 immune and inflammation related pathways. The top 30 significantly enriched pathways among the 88 pathways were selected for scatter plot display (Supplementary Figure 7). Out of the immune and inflammation related pathways enriched in significantly differentially expressed genes and target genes, 43 were exhibited a common intersection. (Figure 3C, left, Supplementary Dataset 7). Among these 43 shared pathways, there were a total of 46 significantly differentially expressed genes and 47 transcription factor target genes. Analysis of the relationship between these two gene sets revealed that five genes (CCND1, ENO1, HIF1α, MMP2, SERPINE1) were common (Figure 3C, right). Cyclin D1 (CyD1) is a key cell cycle regulatory molecule with immunoregulatory functions. It is significantly upregulated at the site of inflammation and its synergistic interaction with VEGFA promotes angiogenesis and vascular permeability (25–27). Enolase is a glycolytic enzyme that catalyzes the interconversion of 2-phosphoglycerate and phosphoenolpyruvate. Rheumatoid arthritis (RA) patients have increased surface expression of enolase-1 (ENO1) on their immune cells, leading to enhanced inflammatory response and promoting tumor angiogenesis (28–30). Hypoxia-inducible factor 1-alpha (HIF1α) is one of the major regulatory factors involved in cellular responses to hypoxia. It plays a role in regulating cell metabolism and immune cell effector function. HIF1α is a key metabolic reprogrammer that promotes the expression of inflammatory genes in inflammatory cells. Overexpression of HIF-1α promotes invasion, migration, proliferation, and tubule formation ability of endothelial cells, and it has a role in promoting tissue angiogenesis and diabetic foot ulcer healing (31–35). Matrix metalloproteinase-2 (MMP2) is one of the members of the matrix metalloproteinase gene family (MMPs) and is highly expressed in neuroinflammation. Inhibiting MMP2 expression can suppress inflammatory pathways and angiogenesis (36–38). Plasminogen activator inhibitor-1 (PAI-1, SERPINE1) is a major inhibitor of tissue plasminogen activator and is associated with tumor progression and angiogenesis. Downregulation of SERPINE1 expression in ECs can inhibit vascular formation. In cell experiments, SERPINE1 directly inhibits eNOS activity, reduces NO synthesis, and enhances endothelial cell function (39–41). Protein-Protein Interaction Network analysis using the STRING protein interaction database and Cytoscape software was performed on the 46 significantly differentially expressed genes and 47 target genes (Figure 3D). CCND1, ENO1, HIF1α, MMP2, and SERPINE1 showed significantly lower expression in DFU-Non-Healer compared to DFU-Healer (p<0.05) (Figure 3E). Immunofluorescence staining of CD31 in conjunction with CCND1, ENO1, HIF1α, MMP2, and SERPINE1 showed co-expression of CD31 with CCND1, ENO1, HIF1α, and SERPINE1 on the vascular wall in the DFU-Healer group, while no significant co-expression was observed in the DFU-Non-Healer group (Figure 3F). This suggests that the high expression of CCND1, ENO1, HIF1α, and SERPINE1 is beneficial for wound healing, while low expression may lead to non-healing wounds.It is worth noting that MMP2 was not significantly expressed in the vascular walls of both sample groups, which may be related to post-transcriptional regulation, translation, and protein degradation of mRNA (42–44).





Exploration of healing-related subpopulations in endothelial cells

We performed secondary subpopulation classification of endothelial cells, analyzing a total of 4948 cells (2136 from Healthy Control, 1578 from DFU-Healer, and 1234 from DFU-Non-Healer). A gene expression matrix was created for each cell, and t-SNE dimensionality reduction was performed. Using the FindCluster tool in the Seurat package with a resolution of 0.8, cells were clustered into 15 distinct cell types (Figure 4A). An independent t-SNE plot revealed different distributions of endothelial cell subpopulations among the three groups, indicating significant heterogeneity between the samples (Figure 4B). FindMarkers tool was used to analyze differentially expressed marker genes for each cell cluster relative to other clusters, and the results were visualized using a heatmap (Figure 4C). Comparative analysis of cell type abundance demonstrated differences in endothelial subclusters among the different clinical groups (Figure 4D). Specifically, Cluster 1 and Cluster 2 were the main subcluster types in the DFU-Healer group, with higher proportions compared to the other two groups. When analyzing Subclusters 1, 2, and 5 as a whole, we found that the expression of CCND1, ENO1, HIF1α, MMP2, and SERPINE1 was lower in the DFU-Non-Healer group compared to the DFU-Healer group (Figure 4E), with ENO1 and SERPINE1 showing significant downregulation (p<0.05). We defined Subclusters 1, 2, and 5 as Healing Enriched Vascular endothelial cell (HE-VasEndo). Further KEGG pathway enrichment analysis of significantly differentially expressed genes between the two groups identified a total of 47 enriched KEGG pathways, predominantly related to inflammation and immunity (Figure 4F). GSEA-KEGG analysis revealed that compared to DFU-Non-Healer, most of the inflammation, immunity, and extracellular matrix pathways were enriched in DFU-Healer, with significant enrichment observed in the AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway (45), Focal adhesion (46), PI3K-Akt signaling pathway (47), and ECM-receptor interaction (20) (Figure 4G), all of which are associated with angiogenesis. This suggests that HE-VasEndo plays a crucial role in promoting angiogenesis and wound healing and the absence of this endothelial subpopulation may contribute to non-healing wounds.




Figure 4 | Comparison of gene features and healing-related biological pathways in subpopulations of endothelial cells between DFU-Healer and DFU-Non-Healer groups. (A) t-SNE plot embedding of the entire dataset comprising 4948 cells. Cells are colored by orthogonal-generated clusters and labeled based on manual cell type annotations. (B) t-SNE plot showing the separation of subpopulations of endothelial cells from Healthy Control, DFU-Healer, and DFU-Non-Healer groups. (C) Heatmap displaying top highly expressed genes within each cell subpopulation. (D) Bar plot depicting the proportions of endothelial cell subpopulations. (E) Violin plot illustrating the differential expression of CCND1, ENO1, HIF1α, MMP2, and SERPINE1 between healing-related subpopulations 1, 2, and 5 (HE-VasEndo) in the DFU-Healer and DFU-Non-Healer groups. (F) KEGG pathway enrichment analysis of significantly differentially expressed genes in healing-related subpopulations 1, 2, and 5 (HE-VasEndo) of DFU-Healer and DFU-Non-Healer. (G) GSEA-KEGG showing significantly enriched pathways between DFU-Healer and DFU-Non-Healer.







Cell communication analysis revealing the intercellular connections and cell differentiation trajectories of HE-VasEndo, macrophages, smooth muscle cells (SMC), and HE-fibroblasts

In comparison to DFU-Healer, DFU-Non-Healer showed significant downregulation of 74 genes and upregulation of 54 genes. The interactions among downregulated genes and upregulated genes were separately analyzed, resulting in 602 and 201 pairs of gene interactions, respectively. The top 25 genes with scores above 900 and the highest number of interactions were selected from the downregulated gene interactions to construct an interaction network diagram (Figure 5A, left). Similarly, the top 25 genes with the most interactions were selected from the upregulated gene interactions to construct another interaction network diagram (Figure 5A, right).




Figure 5 | Analysis of potential ligand-receptor interactions and cellular state changes in the healing-related subpopulations of vascular endothelial cells (HE-VasEndo). (A) The interaction network diagrams illustrate the significantly upregulated (left) and downregulated (right) cytokine interactions in the enriched HE-VasEndo involved in healing. (B) The ligand-receptor pairs show significant and specific changes between different cell types and HE-VasEndo in the DFU-Healer and DFU-Non-Healer groups. The left panel displays the expression of receptors in HE-VasEndo, receiving ligand signals from other cell types. The right panel shows the expression of receptors in other cell types, receiving ligand signals from HE-VasEndo. (C) The circular plot demonstrates the associations between the receptors expressed in HE-VasEndo and the ligands expressed in B lymphocytes, keratinocytes and M1-Macro (left), as well as the ligands expressed in HE-VasEndo and the receptors expressed in B lymphocytes and keratinocytes (right). (D) The differentiation trajectory plots of cells associated with DFU-Healer and DFU-Non-Healer are shown. The blue panel represents the inferred evolution time of cells, while the colorful panel displays the evolutionary trajectories labeled with different cell type origins, with different colors corresponding to different cell subpopulations.



To compare the intercellular interactions between the two sample groups, we utilized the CellPhoneDB software to perform cell communication analysis across all cell populations. HE-VasEndo was considered as the receptor, while other cells served as ligands. A total of 1,172 ligand-receptor relationships were identified. From these, we selected 66 ligand-receptor pairs that met the criteria of having at least one significant relationship among 12 pairs and an average ligand-receptor score greater than 0.5 in the DFU-Non-Healer samples, or at least one significant relationship among 12 pairs and an average ligand-receptor score greater than 0.5 in the DFU-Healer samples (Figure 5B, left). The analysis of the effects of different cell types on HE-VasEndo revealed that B lymphocytes, M1 macrophages, and M2 macrophages had the strongest impact. Furthermore, compared to DFU-Healer, DFU-Non-Healer exhibited a relative deficiency in the effects of B lymphocytes, keratinocytes, and M1 macrophages on HE-VasEndo. The key differentially expressed ligands included CXCL8, CD44, and CCL5 for B lymphocytes, VEGFA, TNFRSF10A/B, SEMA4A, PLD2, and NRP2 for keratinocytes, and CXCL1, HLA-C, and NAMPT for M1 macrophages (Figure 5C, left). Additionally, when HE-VasEndo was considered as the ligand and other cells as the receptor, a total of 1,145 ligand-receptor relationships were analyzed, resulting in 76 ligand-receptor pairs (Figure 5B, right). Compared to DFU-Healer, DFU-Non-Healer exhibited a relative deficiency in the effects of HE-VasEndo on B lymphocytes and keratinocytes. The key differentially expressed ligands included FAM3C, FLT1, LGALS9, MIF, NRP1, and SELE for B lymphocytes, and NRP1/2, NOTCH1, LGALS9, and FLT1 for keratinocytes (Figure 5C, right).

To measure the transcriptional dynamics of the cell types of interest, we used Monocle (version: 2) to construct and compare the differentiation trajectories of HE-VasEndo, macrophages, SMC, and HE-fibroblasts between DFU-Healer and DFU-Non-Healer. From an evolutionary perspective of cell types analysis, the cell profiling results of the DFU-Healer suggested that HE-VasEndo cells are situated at an initial evolutionary position, followed by SMC and HE-Fibro cells, and eventually giving rise to M1-Micro and M2-Micro cells (Figure 5D, left; Supplementary Figure 8, above). However, the cell profiling results of the DFU-Non-Healer exhibited notable differences: SMC serves as the initial cell type, followed by HE-Fibro cells, with subsequent differentiation into two distinct pathways. One pathway leads to the formation of HE-VasEndo cells, while the other leads to the development of M1-Micro and M2-Micro cells (Figure 5D, right; Supplementary Figure 8, below). These results indicate that HE-VasEndo in DFU-Non-Healer represents a late-stage differentiated cell type with lower differentiation potential compared to other cells. HE-VasEndo in DFU-Healer represents an early-stage differentiated cell type with greater differentiation potential. It exhibits more stem cell-like characteristics and plays a positive role in vascular regeneration and wound healing (48, 49).






Discussion

The normal process of wound healing involves inflammation, angiogenesis, and extracellular matrix (ECM) remodeling. The cellular players involved in healing include vascular endothelial cells, fibroblasts, keratinocytes, monocyte macrophages, neutrophils, lymphocytes, and other immune cells. Cytokines such as transforming growth factor(TGF)-β1, vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (VCAM-1), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) influence wound healing (50–56). Among these, angiogenesis is crucial for wound healing, with vascular endothelial cells being the key participants (57). They actively control the dilation and constriction of blood vessels, as well as the extravasation of solutes, fluids, macromolecules, and hormones, including platelets and blood cells. They also guide inflammatory cells outside the blood vessels to areas requiring repair or defense against infection. Furthermore, endothelial cells play important roles in controlling blood flow, platelet adhesion and aggregation, leukocyte activation, adhesion, and translocation. They are closely involved in maintaining the balance between coagulation and fibrinolysis and play significant roles in regulating immune responses, inflammation, and angiogenesis (58).

Currently, the treatment strategies for DFUs include comprehensive approaches such as wound debridement, ulcer offloading, medication, and wound dressings (59). However, the management of non-healing DFUs remains a challenging clinical problem, causing significant psychological and economic burdens to individuals and consuming substantial healthcare resources (60). In the context of high blood glucose levels, reduced angiogenic factors, endothelial dysfunction, and vascular lumen narrowing impair vascularization of diabetic wounds, hindering wound healing (61). To the best of our knowledge, many studies have focused on alterations in the skin microenvironment of diabetic patients with diabetic mellitus (DM) or diabetic foot ulcers (DFUs), but there is limited research on vascular endothelial cells in recalcitrant DFUs. In this study, based on the original experimental data (GSE165816) from our previous research, we focused on the skin of healing and non-healing DFU patients, with healthy non-diabetic subjects’ skin serving as a control. This study provides the first insights into the transcriptomic signatures of vascular endothelial cells that influence vascularization and healing of diabetic wounds, laying the foundation for investigating the molecular mechanisms of non-healing vascular endothelial cells in DFUs.

The immune microenvironment of wound healing, including the proper activation, regulation, and distribution of various immune cells, is crucial for angiogenesis and healing. The process of wound angiogenesis involves the interplay between endothelial cells and the immune system. It is an integral part of both acute and chronic inflammation and is implicated in most immune-mediated diseases. In chronic inflammatory diseases, macrophages and lymphocytes infiltrate, tissue damage and repair occur simultaneously, and newly formed vessels become permanent. Angiogenesis and the inflammatory response are interdependent (62). By comparing the DFU-Healer and DFU-Non-Healer sample groups, the GSEA-KEGG pathway analysis results suggest that the inhibition of immune and inflammation related pathways in vascular endothelial cells of DFU-Non-Healer may impede vascularization and healing of DFUs. Therefore, it is evident that excessive suppression of local inflammatory responses in chronic non-healing DFU is detrimental to wound healing, while systemic suppression of inflammation is beneficial (14). Immune modulation is not exclusive to immune cells but also a characteristic of endothelial cells. The immune properties of vascular endothelial cells can mediate the wound microenvironment and maintain vascular function (11). Increasing evidence indicates that proper immune regulation and inflammation response can promote wound angiogenesis and healing, whereas excessive or dysregulated inflammatory responses lead to delayed wound healing (63, 64).

Extracellular matrix (ECM) plays a crucial role in various aspects of vascular biology. During the initiation of angiogenesis, ECM is involved in key signaling events that support the regulation of endothelial cell (EC) migration, invasion, proliferation, and survival. Moreover, temporary ECM acts as a flexible scaffold, establishing mechanical guidance between distant ECs and providing tissue cues in the absence of cell-cell contact. Lastly, through specific integrin-dependent signaling pathways, ECM controls the coordination of endothelial cell cytoskeleton to facilitate the complex process of vascular morphogenesis, wherein proliferating ECs organize into multicellular tubes with functional lumens. Therefore, the composition of ECM and its regulation of ECM degradation and remodeling play critical roles in controlling lumen and tube formation, as well as the ultimate stability and maturation of new blood vessels (65). In our study, we found that the inhibition of ECM receptor-related pathways in vascular endothelial cells of DFU-Non-Healer hinders vascularization and healing of diabetic foot ulcers.

Using single-cell transcriptomic sequencing analysis, our study revealed that five genes, CCND1, ENO1, HIF1α, MMP2, and SERPINE1, were significantly downregulated in DFU-Non-Healer compared to DFU-Healer. The differential expression of CCND1, ENO1, HIF1α, and SERPINE1 was further validated through immunofluorescence methods. These findings suggest that these genes play unique roles in promoting the healing of diabetic foot ulcers, and their deficiency impedes wound healing. However, the specific mechanisms need further verification through in vitro cell experiments. It is worth noting that single-cell sequencing showed no significant difference in the number of endothelial cells between the DFU-Healer and DFU-Non-Healer groups, and immunofluorescence revealed no significant difference in vascular density. This suggests that the healing of diabetic foot ulcers may be associated with the immune-mediated capacity of endothelial cells and vascular function, rather than cell quantity and vascular density (66, 67). Future longitudinal studies comparing DFU samples collected from the same patients at multiple time points during the wound healing process can help establish a timeline of diabetic wound healing and explore potential changes in vascular density (68).

Furthermore, this study further characterized subpopulations of vascular endothelial cells and identified HE-VasEndo as significantly associated with wound healing. Through intercellular communication analysis, we found that the interactions between B lymphocytes, keratinocytes, M1 macrophages, and HE-VasEndo were weaker in DFU-Non-Healer, highlighting the importance of cellular interactions of endothelial cells in vascular function and angiogenic capacity of the wound (17, 69, 70). Differentiation trajectory analysis showed that HE-VasEndo in DFU-Non-Healer exhibited weaker differentiation potential (71), indicating that the differentiation capacity of endothelial cells is a key factor influencing the healing of DFU wounds. In summary, we have revealed the molecular and functional specificity of vascular endothelial cells in non-healing DFUs at the single-cell level, highlighting the importance of endothelial cell immune-mediated capacity in vascular generation and wound healing. These findings provide new insights for the treatment of diabetic foot ulcers.
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It has been well documented that there is a two-way relationship between diabetes mellitus and periodontitis. Diabetes mellitus represents an established risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely modulates serum glucose levels in diabetic patients. Activated immune and inflammatory responses are noted during diabetes and periodontitis, under the modulation of similar biological mediators. These activated responses result in increased activity of certain immune-inflammatory mediators including adipokines and microRNAs in diabetic patients with periodontal disease. Notably, certain microbes in the oral cavity were identified to be involved in the occurrence of diabetes and periodontitis. In other words, these immune-inflammatory mediators and microbes may potentially serve as biomarkers for risk assessment and therapy selection in diabetes and periodontitis. In this review, we briefly provide an updated overview on different potential biomarkers, providing novel diagnostic and therapeutic insights on periodontal complications and diabetes mellitus.
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Introduction

Diabetes mellitus is clinically and genetically a heterogeneous group of disorders characterized by dysregulated nutrient metabolism, resulting from defects in insulin secretion and action (1). Hyperglycemia, the hallmark of diabetes mellitus, can lead to a range of chronic complications associated with long-term damage and dysfunction in various organs and body systems (2). Importantly, diabetic patients is more likely to develop chronic periodontitis (3), where a two-way relationship has been previously documented between diabetes and periodontitis (4, 5) (Figure 1). However, the detailed mechanisms underlying the bidirectional relationship remain largely unknown. Pathologically, the hyperactive inflammatory response plays a contributory role in the progression of these two diseases (6). Particularly, diabetes causes the activation of immune and inflammatory responses in periodontal tissues, increasing the risk of periodontitis. The activated responses subsequently result in increased secretion of cytokines, amplified oxidative damage, and disruption of receptor-mediated signaling. Altogether, these events accelerate the breakdown of periodontal connective tissues and resorption of alveolar bone, thus exacerbating periodontitis. In the other direction, periodontitis may cause dysregulated glycemic control in diabetic patients. Periodontal bacteria and their metabolic products, together with locally produced inflammatory cytokines and mediators in the inflamed periodontal tissues, enter the circulation to trigger systemic inflammation, further worsening glucose tolerance and insulin resistance (7). Certain pathogenic microbes in the oral cavity even aggravate the progression of periodontitis and diabetes mellitus by triggering host inflammation and causing burden on host immunity. Biomarkers serve as useful indicators during the onset and development of inflammatory and systemic diseases. In addition to the screening and risk assessment of diseases, biomarkers could also be applied in staging, grading, and selection of therapies (8). It has been reported that the levels of certain molecular biomarkers, such as adipokines and microRNAs, vary significantly in saliva, serum and gingival crevicular fluid (GCF) of individuals with both diabetes mellitus and periodontitis (9). Moreover, several strategies have been developed to safely and conveniently collect GCF from individuals, such as extracrevicular and intracrevicular GCF collection techniques (10). Hence, saliva, serum and GCF represent feasible sources of biomarkers for diagnostic purposes. This article aims to review the potential biomarkers in diabetes and periodontitis, providing novel diagnostic and therapeutic insights on periodontal complications in associated with diabetes mellitus.




Figure 1 | The bidirectional relationship between periodontitis and diabetes mellitus. Hyperactive immune and inflammatory responses participate in the vicious cycle between periodontitis and type 2 diabetes mellitus, associated with increased secretion of proinflammatory cytokines, higher oxidative stress and disruption of signaling pathways. Yellow cross: promotion. Up red arrows: increase.







Adipokines

Adipokines are a group of secretory proteins mainly released by an active endocrine organ, particularly adipose tissue, into the systemic circulation. Adipokines are believed to be tightly associated with energy control, insulin sensitivity, and immune-inflammatory responses (11, 12). During diabetes mellitus, abnormal metabolism in adipose tissue may affect various organs via adipokine production (13). Periodontitis can lead to a proinflammatory state and affect adipokine levels in serum, tear fluid and GCF of obese patients (14, 15). Furthermore, diabetes mellitus can promote dyslipidemia and inflammation via regulation of adipokines (16). It has been postulated that the concentration of adipokines might be indicative to chronic metabolic disorders and pathological processes in local tissues. Therefore, any variations of adipokine levels in body fluids might be indicative to the severity of diabetes mellitus and chronic periodontitis (11) (Table 1).


Table 1 | Adipokines as potential biomarkers for periodontitis and diabetes mellitus.






Adiponectin

A bidirectional relationship exists between diabetes mellitus and periodontitis (32). It has been reported that diabetic subjects with insulin resistance are more likely to develop severe periodontitis (33, 34). Adiponectin, an adipokine mainly secreted by adipocytes, exerts anti-inflammatory effects and plays a pivotal role in regulating glycemia (17). Adiponectin acts as an endogenous insulin sensitizer in the regulation of insulin sensitivity, and its level is inversely correlated with obesity and insulin resistance (18). Some intervention studies have suggested that periodontal treatment could significantly increase serum adiponectin levels in type 2 diabetic patients with periodontitis (19, 20). Furthermore, periodontal therapy has been shown to be associated with improved glycemic control and insulin resistance in diabetic patients (35). More importantly, another clinical trial stated that periodontal intervention also improved lipid profile, reduced inflammatory cytokines in serum, and elevated levels of serum adiponectin in diabetic patients (34). Adiponectin profoundly improves insulin sensitivity by inhibiting glucose output from the liver, and limiting glucose uptake by adipose tissue and muscle (36).





Resistin

Named after its apparent ability to ‘resist insulin’, resistin is another adipokine first discovered in murine. Resistin is an 11 kDa protein encoded on chromosome 8, which was once classified as a unique signaling molecule in-between obesity and type 2 diabetes mellitus (21, 26). In multiple obese animal models, resistin was shown to induce insulin resistance, where hyper-resistinemia remarkably impairs insulin sensitivity. However, the exact role of resistin in obesity and type 2 diabetes mellitus in humans have not been comprehensively defined (37–39). In contrast, human resistin is predominantly expressed in peripheral-blood mononuclear cells. It aggravates inflammation which has been conclusively associated with the development of obesity and insulin resistance (23). It has been reported that resistin acts as a proinflammatory molecule by stimulating the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-12, thereby inducing its own production via a positive feedback cycle during periodontitis (22). Of note, the elevated levels of resistin in periodontal disease may highlight its role as a specific and sensitive biomarker in the early detection and intervention of diabetes-related periodontitis. Joshi et al. has reported that GCF level of resistin was significantly higher in diabetic patients with chronic periodontitis, where its level showed no correlation with glycated hemoglobin (HbA1c) value (24). Such finding indicated that resistin is more closely related to the inflammatory condition instead of the glycemic state of the individual, suggesting resistin as an inflammatory biomarker in two diseases. Another study has shown that single-nucleotide polymorphism of resistin gene is correlated to the resistin levels in serum and GCF of diabetic patients with chronic periodontitis (25). Moreover, in vitro clues are present that release of inflammatory cytokines, such as IL-6 and TNF-α, and maturation of monocytes into macrophages could alter resistin levels. Therefore, it is reasonable to postulate that periodontal inflammation, possibly via cytokine secretion and macrophage maturation, might influence resistin expression (25). However, more long-term interventional studies in larger sample sizes are needed to fully uncover the cause-effect relationships between resistin levels and diabetes-related periodontitis (8).





Visfatin

Visfatin, also known as pre-B-cell colony enhancing factor, is a 52 kDa adipokine secreted by visceral adipose tissues (28). By binding to insulin receptor at a site distinct from that of insulin, visfatin exerts insulin-like effects to reduce glucose release and stimulate glucose utilization in adipocytes and myocytes (40). Furthermore, visfatin has been reported to induce the productions of proinflammatory cytokines, like IL-6, TNF-α and IL-1β, during infection and inflammation phases (29). During periodontal inflammation, periodontopathogens trigger local expressions of IL-6 and TNF-α in periodontal tissues. These proinflammatory cytokines, in turn, trigger visfatin production in periodontal tissues. Bahammam and Attia have found significantly elevated levels of IL-6, TNF-α, and visfatin in GCF of diabetic patients afflicted with chronic periodontitis (27). Clinically, compared to periodontally healthy individuals and diabetic patients, the mean visfatin levels remained the highest in both serum and GCF of diabetic patients afflicted with chronic periodontitis. Meanwhile, visfatin concentrations in both serum and GCF were shown positively correlated with the severity of periodontal disease (30). Importantly, non-surgical periodontal treatment was reported to remarkably reduce visfatin levels in serum and GCF of diabetic patients with periodontitis (31). These clues suggested that visfatin might serve as a potential predictor and therapeutic target in the management of diabetes mellitus and periodontitis (41).






Proinflammatory cytokines

It is well established that diabetes is a disorder of inflammation and metabolic dysregulation, associated with increased production of cytokines, including IL-6, IL-1β, and TNF-α (42, 43). It has been suggested that periodontal therapy could reduce systemic inflammation in diabetic patients by targeting intraoral bacteria and reducing periodontal inflammation (44). Poor glycemic control in type 2 diabetic patients is clinically associated with poor prognosis of periodontal tissues (45). Levels of these inflammatory cytokines are significantly higher in patients with periodontitis (46). These cytokines stimulate bone resorption by inducing osteoclast progenitor proliferation, as well as the production of chemokines, extracellular matrix metalloproteinases (MMPs), cytokines, collagenases, and prostaglandins (47). Besides, increased levels of these cytokines further alter insulin sensitivity through direct and indirect mechanisms (48), resulting in a vicious cycle between diabetes progression and periodontal damage (49). Interestingly, periodontal therapy could elicit beneficial effects on glycemic control via suppressing these cytokines, facilitating a less-pronounced inflammatory state (43, 50). Moreover, IL-6, IL-1β, and TNF-α are confirmed important modulators in bone metabolism within oral cavity. Altogether, these cytokines in serum and GCF can be potentially considered as biomarkers in the prediction, intervention and treatment of chronic periodontitis afflicted with type 2 diabetes mellitus (43, 49, 51).

Another important mediator in chronic inflammatory diseases, soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), is gaining increasing attentions recently (52). sTWEAK belongs to the TNF superfamily cytokines and elicits an immunoregulatory role in periodontitis and diabetes mellitus (53, 54). Serum sTWEAK level was shown to be significantly lower in patients with chronic periodontitis, and lowest in patients with concomitant chronic periodontitis and type 2 diabetes mellitus (55). However, another recent clinical study found that significantly higher levels of circulating sTWEAK were observed in severe periodontal patients when compared to those without periodontitis (56). More extensive studies are still needed to correlate the temporal change in circulating sTWEAK level with the progression of concomitant periodontitis and diabetes mellitus.





Oxidative stress markers

Increasing oxidative stress can be considered as a critical contributing factor during the pathogenesis of both diabetes mellitus and periodontitis (57). Some previous clinical studies have reported the alterations of oxidative stress markers in different body fluids of patients with concomitant periodontitis and diabetes mellitus. For instance, the salivary levels of the free radical marker malondialdehyde were higher in patients with chronic periodontitis when compared to healthy individuals, where the levels became even higher in patients with concomitant periodontitis and diabetes mellitus (58). Superoxide dismutase (SOD) is an antioxidant enzyme which protects against deleterious effects of high oxidative stress. Another clinical study has shown that the serum levels of superoxide dismutase were the highest in patients with concomitant periodontitis and diabetes mellitus when compared to those of periodontal patients and healthy individuals (59). Catalase is one the central antioxidant enzymes to constitute the primary defense against oxidative damage. A previous clinical trial found that the serum levels of catalase in patients with concomitant periodontitis and diabetes mellitus were lower than individuals with and without periodontitis (60). Furthermore, the serum and GCF levels of 4-hydroxy-2-nonenal, a product of lipid peroxidation, were shown to be higher in patients with both diabetes mellitus and periodontitis (61). These clinical findings suggested oxidative stress as a link between the two diseases.





MicroRNAs

MicroRNAs represent a group of small non-coding regulatory RNAs (~22 nucleotides) which post-transcriptionally lower stability and suppress gene expression (62). In mammalian cells, more than 2,500 microRNAs have been reported to regulate >60% of protein-coding genes (63). Revealed by extensive studies, microRNAs have been confirmed to regulate various physiological and pathological processes in various human diseases, including autoimmune disorders, cancers and inflammatory disorders (64). Of note, microRNAs play a regulatory role in the pathogenesis of periodontitis, where the microRNA profiles in healthy and inflamed gingival tissues significantly vary (65, 66). Meanwhile, microRNAs also play a critical role in the mediation of glucose homeostasis and progression of diabetes mellitus. Nowadays, more and more studies have recognized microRNAs as biomarkers in clinical medicine, where microRNAs can potentially be prognostic and predictive biomarkers in the treatment of chronic periodontitis and diabetes mellitus (67–69) (Table 2).


Table 2 | MicroRNAs as potential biomarkers for periodontitis and diabetes mellitus.



Various microRNAs have been demonstrated to be key regulators in inflammation. A substantial literature indicated that miR-146a is involved in the pathogenesis of multiple inflammatory disorders, such as chronic periodontitis, diabetes mellitus and coronary artery disease (70). miR-146a levels have been found significantly lower in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus (71). Notably, serum levels of miR-146a remarkably decrease in type 2 diabetic patients, which is inversely correlated to that of the proinflammatory cytokine IL-8 (72). Moreover, the miR-146a expression also changes during chronic periodontitis. Motedayyen et al. demonstrated that higher levels of miR-146a, whereas lower expressions of inflammatory cytokines, particularly IL-6 and TNF-α, were observed in the gingival tissues of periodontitis patients (73). These findings suggested miR-146a as a negative regulator for immune response (81). Since miR-146a plays crucial roles in both diabetes mellitus and periodontitis, it is reasonable to hypothesize that miR-146a may participate in the bidirectional relationship of two diseases. A recent study has revealed that expressions of inflammatory cytokines diminished upon transfection of miR-146a into lipopolysaccharides (LPS)-stimulated adipocytes and gingival fibroblasts, when co-cultured with macrophages. Similarly, transfection of miR-146a into macrophages down-regulated TNF-α expression in the presence of inflammatory stimuli. In vivo findings suggested that intravenous injection of miR-146a protected C57BL/6 mice from high-fat diet-induced inflammatory insults in adipose and gingival tissues. These findings implied a protective role of miR-146a against inflammation-related obesity and periodontal disease (82). Clinically, miR-146a level was reported to be significantly higher in GCF of type 2 diabetic patients afflicted with periodontitis, but decreased upon non-surgical periodontal treatment (69). These preclinical and clinical studies hinted that miR-146a might be a potential biomarker and therapeutic target for the treatment of periodontitis and diabetes mellitus.

Other microRNAs, including miR-214, miR-147 and miR-126, have been reported to play pivotal roles in both diabetes and periodontitis. Necroptosis, a newly discovered mode of programmed cell death, is a highly proinflammatory event involved in the pathogenesis of periodontitis and diabetes (83, 84). Previous studies have shown that miR-214 is responsible for the regulation of cell death and glucose metabolism (74–76). Ou et al. has found that miR-214 regulates necroptosis through targeting activating transcription factor 4 (ATF4) in periodontal tissues and osteoblast cells under co-stimulation by high glucose and LPS (77). In rats, experimental periodontitis was shown to promote systemic insulin resistance by inducing macrophage activation and hence inflammation in adipose tissue (85). Notably, miR-147 was reported to act as a negative regulator in attenuating inflammatory response in murine macrophages (78). However, another study showed that miR-147 seems to promote M1 polarization, the classical activation of macrophages, in periodontal tissues of obese rats (79). Further verification and mechanistic study are required to uncover the conflicting role of miR-147 in periodontitis and diabetes mellitus, especially in human subjects. Another microRNA, miR-126, has been shown to play a protective role against high glucose-induced inflammation in human gingival fibroblasts. Mechanistically, miR-126 promotes the secretion of the anti-inflammatory cytokine IL-10 via targeting tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) (80). Taken together, the emerging roles of microRNAs, including miR-146a, miR-214, miR-147 and miR-126, may provide new insights into the diagnostic and therapeutic strategies on the treatment of concomitant periodontitis and type 2 diabetes mellitus.





Glycoproteins

A chitin- and heparin-binding glycoprotein, YKL-40, is secreted by activated neutrophils and macrophages during acute or chronic inflammatory diseases (86). Among patients with chronic periodontitis, GCF levels of YKL-40 in patients with type 2 diabetes mellitus were often higher (87–89). Another acidic glycoprotein, Chromogranin A (CgA), is identified in the extracellular vesicles secreted by neurons and endocrine cells. The concentration of CgA is known to be increased in response to psychological stress, the risk factor for periodontal disease (90, 91). Zhang et al. indicated that CgA values in saliva samples of chronic periodontitis patients with or without type 2 diabetes mellitus were significantly higher than those of control groups. These findings suggested that salivary CgA could be a potential biomarker for periodontitis and diabetes mellitus (92).





Oral microbes

Our oral cavity is inhabited by diverse microbes including bacteria, fungi and protozoa, where over 700 bacterial species have been identified (93). Disruption of balance between commensal and harmful microbes in the oral cavity is associated with the pathogenesis of certain diseases, including periodontitis (94), diabetes mellitus (95), and cancers (96). In addition to the endogenous biomarkers mentioned, such as adipokines and microRNAs, the microbes in the oral cavity can also be potential biomarkers of multiple diseases. Notably, alteration in the abundance of certain bacterial species in the oral cavity may be indicative to the severity of periodontitis and diabetes mellitus (Table 3).


Table 3 | Oral bacteria as potential biomarkers for periodontitis and diabetes mellitus.






Porphyromonas gingivalis

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobe in the oral cavity, and is considered as the major pathogenic bacterium for periodontitis (121). The capacity of P. gingivalis to form subgingival biofilm, associated with increased DPPIV activity, greatly contribute to the pathogenesis of periodontitis (98). Additionally, P. gingivalis promotes pathogenesis of aggressive periodontitis by inducing the production of proinflammatory cytokines, such as IL-1β and IL-6, from peripheral T helper cells (99). Meanwhile, P. gingivalis can enhance osteoclast activation and Th1-Th17-response, which further aggravate bone resorption during the pathogenesis of destructive periodontitis (103). Clinically, the salivary concentrations of P. gingivalis, IL-1β and matrix metalloproteinase (MMP)-8 are associated with the severity of periodontitis (102). On the other hand, P. gingivalis overgrowth in the oral cavity can affect host glucose homeostasis. Once oral P. gingivalis is translocated to the liver, it can inhibit glycogen synthesis via the Akt/GSK-3β signaling, resulting in a higher glucose level (100). Oral colonization with periodontal pathogens, particularly P. gingivalis, impaired insulin resistance in high fat diet-fed mice (97). In a previous clinical study, periodontal treatment improved glycemic profiles and reduced detection rate of subgingival P. gingivalis in type 2 diabetic patients (101). These preclinical and clinical findings suggested P. gingivalis as a potential microbial biomarker for periodontitis and diabetes mellitus.





Fusobacterium nucleatum

Another periodontal pathogen, Fusobacterium nucleatum (F. Nucleatum) is also correlated to the occurrence of diabetes mellitus. F. Nucleatum is a Gram-negative anaerobe, predominantly found in biofilms of dental plaques (122). F. Nucleatum acts as an intermediate colonizer bridging the attachment of commensal and pathogenic bacteria on tooth and epithelial surfaces. Moreover, F. Nucleatum contributes to the reducing microenvironment that facilitates the colonization of oxygen-intolerant microbes (106). Coherently, F. Nucleatum significantly enhanced the invasion of human gingival epithelial cells by P. gingivalis (108). Oral infection with F. Nucleatum promotes recruitment of macrophages and osteoclasts towards gingival tissues, driving inflammation and bone resorption (105). Clinically, among patients suffering from chronic periodontitis, higher subgingival levels of F. Nucleatum were observed in those with uncontrolled type 2 diabetes mellitus (104). Meanwhile, higher F. Nucleatum levels were associated with poorer glycemic control in patients with both chronic periodontitis and type 2 diabetes mellitus (107). However, the detailed mechanism on how F. Nucleatum is related to the progression of diabetes mellitus remains elusive.





Tannerella forsythia

Tannerella forsythia (T. forsythia), another Gram-negative anaerobe, is also considered as a major contributor to the development of periodontitis. T. forsythia triggers destruction of connective tissue and resorption of alveolar bone during periodontitis progression (110). Higher subgingival T. forsythia levels were observed in obese individuals than those with normal BMIs (111), implying a higher risk of periodontitis in obese individuals. The leucine-rich-repeat protein (BspA) expressed by T. forsythia has been shown to play a contributory role in bacterial adhesion and inflammation in dental tissues. T. forsythia can stimulate the secretion of proinflammatory cytokines and chemokines from monocytes and osteoblasts respectively, driving inflammation and bone resorption (113). Additionally, T. forsythia enhances the expression of inflammatory cytokines (e.g. IL-6 and IL-10) in macrophages and dendritic cells, in a toll-like receptor 2 (TLR2)-dependent manner (112). In type 2 diabetic patients, the abundance of T. forsythia in subgingival plaque was found higher than that of non-diabetic individuals (114). Interestingly, higher levels of periodontal pathogens, including P. gingivalis and T. forsythia, were observed along with higher resistin levels in saliva of obese type 2 diabetic patients (109). In mice, oral infection with T. forsythia remarkably increased the serum levels of serum amyloid A (SAA), the subclinical inflammatory biomarker in multiple diseases like diabetes mellitus, atherosclerosis and rheumatic diseases (110).





Prevotella nigrescens

Prevotella nigrescens (P. nigrescens) is another Gram-negative and non-spore forming anaerobe commonly found in the dental plaques of periodontitis patients (118). During the progression of periodontitis, P. nigrescens shifts from commensalism to virulence via the upregulation of MMPs (120). High levels of MMPs (e.g. MMP-8 and MMP-9) often reflect periodontal inflammation (115). P. nigrescens can induce IL-1β production in dendritic cells through the activation of TLR2 and nucleotide-binding oligomerization domain like receptor pyrin domain containing 3 (NLRP3) inflammasome (117). In type 2 diabetic patients, higher abundance of P. nigrescens was also noted in periodontitis sites when compared with those of non-diabetic individuals (116). In non-diabetic pregnant women, periodontal therapy remarkably reduced P. nigrescens abundance in dental plaque, and IL-6 levels in serum and GCF (119). Therefore, it is reasonable to postulate that periodontal treatment may elicit similar anti-inflammatory effects in diabetic patients by decreasing P. nigrescens abundance.

Due to the ease of obtaining samples from saliva and dental plaques, microbes in the oral cavity might be efficient and potential biomarkers for disease diagnosis and evaluation of therapeutic outcomes in periodontitis and diabetes mellitus. However, selection of a single bacterial strain may not most accurately evaluate the severity of diseases. In contrast, selection of multiple microbial biomarkers, or even in combination with other endogenous biomarkers, may further improve the accuracy and consistency of disease prediction and evaluation.






Therapeutic insights and future perspectives

Notably, some of the mentioned biomarkers might also serve as therapeutic targets for the treatment of diabetes mellitus and periodontitis. In other words, therapeutic strategies that could suppress the levels of certain biomarkers might alleviate the progression of the two diseases, particularly when certain biomarkers are involved in the pathogenic mechanisms of both diseases. For instance, non-surgical periodontal treatment could reduce serum and GCF levels of visfatin and improve glucose homeostasis in patients with concomitant periodontitis and diabetes mellitus (22). Of note, visfatin can alter glucose metabolism and promote inflammation in gingival tissues (123). Furthermore, periodontal treatment was shown to improve glycemic profiles along with reduced persistence of P. gingivalis in type 2 diabetic patients (101), where P. gingivalis is the major pathogenic bacterium for periodontitis and can alter glucose level once translocated to liver (100). Future studies shall investigate whether other biomarkers participate in the pathogenic processes of both diseases for more therapeutic insights.

The above studies also indicate that periodontal treatment is possible to alter glycemic control in patients. On the other hand, treatment that improves glycemic control might promote periodontal health. A previous clinical study showed that effective glycemic control without periodontal treatment could also improve bleeding on probing in patients (124). It is therefore interesting to investigate whether glycemic control alone could alter biomarker levels in oral cavity (e.g. GCF) of patients in future study. Besides, further efforts are needed to clarify whether a certain biomarker is a cause or consequence of diabetes mellitus and periodontitis. Therapeutic strategies that alter the consequent biomarker might not necessarily alleviate lesions and disease progressions of both diseases.





Conclusions

Epidemiologically, periodontitis is now considered as a risk factor for diabetes mellitus, and has been designated as the sixth complication of diabetes mellitus (125, 126). It is also reasonable to consider periodontitis as a co-morbidity of diabetes mellitus (127). Increased periodontal breakdown in patients with diabetes can attribute to the activation of immune and inflammatory responses, and increased susceptibility to infection. Certain endogenous biomarkers, including adipokines, microRNAs, inflammatory mediators, oxidative stress markers, and glycoproteins have been reported to play important roles in initiating and regulating different effector stages of immune and inflammatory responses (69, 128). Potentially, these low-molecular-weight proteins or non-coding RNAs are not only therapeutic targets, but also clinical predictors for earlier diagnosis and intervention for periodontitis and diabetes mellitus (20, 129). Importantly, overgrowth of certain bacterial strains in the oral cavity might be indicative to both periodontitis and diabetes mellitus. Further biomarker research would be a worthwhile endeavor to deepen our understanding towards the bidirectional relationship between type 2 diabetes mellitus and periodontitis.
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Introduction

The global burden of diabetes mellitus is escalating, and more efficient investigative strategies are needed for a deeper understanding of underlying pathophysiological mechanisms. The crucial role of skeletal muscle in carbohydrate and lipid metabolism makes it one of the most susceptible tissues to diabetes-related metabolic disorders. In tissue studies, conventional histochemical methods have several technical limitations and have been shown to inadequately characterise the biomolecular phenotype of skeletal muscle to provide a holistic view of the pathologically altered proportions of macromolecular constituents.





Materials and methods

In this pilot study, we examined the composition of five different human skeletal muscles from male donors diagnosed with type 2 diabetes and non-diabetic controls. We analysed the lipid, glycogen, and collagen content in the muscles in a traditional manner with histochemical assays using different staining techniques. This served as a reference for comparison with the unconventional analysis of tissue composition using Fourier-transform infrared spectroscopy as an alternative methodological approach.





Results

A thorough chemometric post-processing of the infrared spectra using a multi-stage spectral decomposition allowed the simultaneous identification of various compositional details from a vibrational spectrum measured in a single experiment. We obtained multifaceted information about the proportions of the different macromolecular constituents of skeletal muscle, which even allowed us to distinguish protein constituents with different structural properties. The most important methodological steps for a comprehensive insight into muscle composition have thus been set and parameters identified that can be used for the comparison between healthy and diabetic muscles.





Conclusion

We have established a methodological framework based on vibrational spectroscopy for the detailed macromolecular analysis of human skeletal muscle that can effectively complement or may even serve as an alternative to histochemical assays. As this is a pilot study with relatively small sample sets, we remain cautious at this stage in drawing definitive conclusions about diabetes-related changes in skeletal muscle composition. However, the main focus and contribution of our work has been to provide an alternative, simple and efficient approach for this purpose. We are confident that we have achieved this goal and have brought our methodology to a level from which it can be successfully transferred to a large-scale study that allows the effects of diabetes on skeletal muscle composition and the interrelationships between the macromolecular tissue alterations due to diabetes to be investigated.
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1 Introduction

Diabetes mellitus (DM) has become a global epidemic, representing a significant public health challenge in the 21st century with a staggering burden on both healthcare systems and individuals (1, 2). According to the International Diabetes Federation (IDF), 537 million adults (20-79 years) had DM in 2021, and this number is expected to increase to 643 million by 2030. In 2021, DM caused 6.7 million deaths (3). These worrisome realities have prompted a global consensus to halt the rise in diabetes and obesity by 2025 (1), highlighting the urgent need for more effective preventive and therapeutic strategies based on a better understanding of the pathophysiological mechanisms underlying the disease. However, the multifactorial nature of DM, including its complex aetiology and diverse clinical manifestations, presents considerable challenges for diagnosis and treatment.

Among the various organs affected, skeletal muscles play a critical role in the pathophysiology and metabolic complications of DM (4–10). Comprising approximately 40% of the total body mass in humans, skeletal muscles are major contributors to whole-body glucose homeostasis and energy expenditure. As the largest endocrine tissue involved in glucose metabolism, it mediates about 80% of insulin-stimulated glucose uptake (11). Decreased sensitivity for this uptake in skeletal muscle contributes to whole-body metabolic dysregulation and cardiovascular risk and is a core pathophysiological factor in several metabolic phenotypes (12, 13). Skeletal muscles are structurally composed of multiple fascicles or bundles of physiochemically and metabolically distinct fibre types, which are classified based on the expression of different isoforms of the myosin heavy chain (14, 15). Depending on their oxidative and glycolytic capacity, healthy skeletal muscles can rapidly switch between carbohydrate and lipid fuels according to bioenergetic demand. Loss of this flexibility is one of the hallmarks of metabolic diseases (16).

The pathobiochemical changes in diabetic muscle remain a focal point of several studies aiming to clarify the molecular and cellular mechanisms of insulin resistance in diabetes and associated clinical complications. For instance, proteomic profiling of skeletal muscle from diabetic animal models and diabetic human skeletal muscle have been considered in an attempt to identify protein factors to monitor diabetic progression (17). The study by Öhman et al. (18) on the skeletal muscle proteome in biopsies of vastus lateralis muscle showed altered phosphorylation in several signalling pathways in impaired fasting glucose, impaired glucose tolerance and type 2 DM. Gilbert reviewed the role of skeletal muscle lipids in the pathogenesis of insulin resistance in obesity and type 2 DM, but left unanswered the question of whether fatty acids are causative molecular players or markers of reduced insulin sensitivity (19). It has been shown that changes in glucose transport activity appear to stem from disruptions in intramyocellular fatty acid metabolism, where fatty acids induce insulin resistance through a serine kinase cascade activation, resulting in reduced tyrosine phosphorylation of IRS-1 and diminished IRS-1-associated phosphatidylinositol 3-kinase activity, which is crucial for insulin-mediated glucose transport in muscle (20). Most studies agree that it is not intramuscular lipids per se that cause insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides, and that it is the localisation, composition and turnover of these intermediates that play an important role in the development of insulin resistance and type 2 DM (21–23). Nevertheless, lipid accumulation in skeletal muscle cells is both muscle and fibre-type specific. As shown by Umek et al. (15), intramyocellular lipid accumulation was most pronounced in type 2a and 2x/d fibres of fast-twitch gastrocnemius and intermediate plantaris muscles in obese insulin-resistant mice compared to lean mice, whereas no significant lipid accumulation was observed in the slow-twitch soleus muscle in the obese animals. He et al. (24) reported higher lipid content within each fibre type of muscles from obese and type 2 diabetic subjects. The review by Chang et al. (25) provides insight into the experimental and clinical studies implicating the role of phospholipids in a diverse range of physiological processes, including their role as critical mediators of insulin action on skeletal muscle.

In type 2 DM, a reduction of muscle glycogen was observed, where the deficit was marked in type IIa (fast oxidative) fibres, which make up almost 50% of muscle fibres in vastus lateralis, and was minor in types I and IIb (slow oxidative and fast glycolytic, respectively) fibres (26). A key novel finding by Frankenberg et al. was that the majority of glycogen in human skeletal muscle is loosely bound or cytosolic. The proportion of this diffusible glycogen pool was significantly lower in the type I fibres in type 2 diabetic muscle compared to the control group, whereby the hyperinsulinemic clamp in people with type 2 diabetes had no effect on the proportion of diffusible glycogen (27). In addition, increased collagen content has been identified as a hallmark of insulin-resistant skeletal muscle in overweight and type 2 diabetic individuals. Immunofluorescence staining of muscle biopsies showed increased abundance of type I and III collagen (28–30).

Molecular, histochemical, and immunohistochemical assays are the most commonly employed methods to investigate skeletal muscle changes in DM and other metabolic disorders. However, these techniques have several drawbacks, including the inability to provide a comprehensive molecular profile of the alterations occurring in the tissue and reliance on methods that may introduce subjective interpretation biases (31–33). To overcome these challenges, there is a need for advanced analytical techniques with improved quantitative capabilities, efficiency and objectivity.

Vibrational spectroscopy techniques, such as Fourier-transform infrared (FTIR) spectroscopy, have emerged as powerful tools that can provide a reliable and promising alternative for the analysis of biological tissues (34, 35). The spectra obtained provide highly informative data on tissue composition via characteristic absorption bands that can be used to identify and quantify different macromolecules within a sample. FTIR has the advantage of rapidness and high molecular specificity with minimal sample preparation compared to histochemical analyses (33, 36). This allows sensitive detection of biomolecular changes in many functional groups simultaneously (37). The technique has been successfully applied in diverse biological tissue analysis. For example, for the diagnosis of cutaneous neoplasia and the detection of carcinogenesis-associated bimolecular changes (38–43), for the classification of different subtypes of cancer (44) and for prediction of metastatic behaviour (45, 46). Other examples of the successful application of infrared (IR) spectroscopy include the detection of DM-induced lipid peroxidation in rat liver microsomal membranes (47), noninvasive estimation of blood haemoglobin A1c (HbA1c) levels (48), investigation of biochemical and structural changes in neurodegenerative diseases (49, 50), and other tissue dysfunctions (51–54). Regarding diabetes, the review by Ralbovsky and Lednev summarises the recent applications of vibrational spectroscopy in DM diagnostic research (55). In particular, the potential of FTIR spectroscopy for investigating of various tissues for novel biomarkers in diabetes has been reported, e.g. considering tissues such as blood (56), saliva (57–59), urine (60), bone (61, 62), pulmonary oedema fluid (63). On the other hand, there are studies presenting the use of FTIR to analyse molecular profiles of muscle tissue in animal models (64–66) and human muscle (67, 68). Nevertheless, there are only a few studies that have used FTIR spectroscopy to investigate modifications in muscle tissue associated with DM, and even these have been performed in animal models (69–71).

Our recently published study also focused on the detection of changes in skeletal muscle composition due to obesity with insulin resistance and STZ-induced diabetes in a mouse model using FTIR (72). Building on the lessons and outcomes of this study, in the present work, we aim to transition from our research on metabolic disorders affecting skeletal muscle tissue in animal models and investigate the macromolecular composition of different human skeletal muscles in type 2 DM. In this context, we present an improved methodology that combines FTIR experiments and powerful chemometric tools to study wet samples from five functionally and histologically diverse human skeletal muscles obtained from diabetic and non-diabetic male donors. The improved approach to analysing the FTIR spectra involves a multi-stage decomposition of the IR spectra into several spectral components related to the vibrational properties of the particular biomolecular constituents of skeletal muscle, allowing a detailed characterisation of their composition. We would like to emphasise that this is a pilot study whose main purpose is primarily to establish a solid methodological background for an in-depth analysis of the composition of healthy and diabetic human muscles based on vibrational spectroscopy. With this, we aim to have available a versatile and efficient experimental-chemometric tool for the large-scale study of diabetes-related alterations in skeletal muscle composition in the subsequent of our research.




2 Materials and methods

The study was conducted in accordance with the Declaration of Helsinki. The protocols for the use of human skeletal muscle tissue were reviewed and approved by the Republic of Slovenia National Medical Ethic Committee (Permit No.: 0120-536/2019/4).



2.1 Donors and skeletal muscle samples

Skeletal muscle tissue samples were harvested from 32 deceased adult (≥ 18 years) male bodies, including 16 diabetic (further abbreviated as diabetic group DM) and 16 non-diabetic donors (further abbreviated as control group CO) within 24 hours postmortem during standard autopsy procedures at the Institute of Forensic Medicine, University of Ljubljana, Slovenia. The age structure and body mass index (BMI) of the 16 diabetic male donors and 16 non-diabetic male donors are presented in Figure 1; Supplementary Figure 1 shows their scatterplots. The data are for information only, and their effects were not analysed in this pilot work but will be considered in the scale-up study with larger statistical samples in the next phase of our research. Type 2 DM status was established based on clinical and biochemical evidence from the patients’ medical records. All diabetic patients included had a history of treatment with both oral antidiabetic medications and insulin. Subjects with type 1 DM and other morbidities or recent history of therapy that is known to influence skeletal muscle fibre typology and biochemical composition (e.g. genetic myopathies, chronic heart failure, chronic obstructive pulmonary disease, glucocorticoid treatment, etc.) were excluded. The non-diabetic donors consist of male subjects with no history of diabetes or other conditions known to specifically impact skeletal muscle phenotype. For non-diabetic controls, DM or related glycaemic phenotypes were ruled out based on a thorough examination of the donors’ medical records and additionally confirmed with a normal postmortem result for the glycated haemoglobin (HbA1c), which shows the glycaemic status in the preceding two months. The donors’ basic clinical data, including age, body mass, and height, were recorded, and the obtained samples and data were pseudonymised.




Figure 1 | Age distribution of the (A) DM and (B) CO donors; (C) average age of the DM and CO donors, body mass index (BMI) distribution of the (D) DM and (E) CO donors; (F) average BMI of the DM and CO donors. Data in (C, F) are means with standard errors of the mean (SEM).



Five different skeletal muscles, including axial, appendicular, and respiratory muscles, were harvested, i.e. levator scapulae muscle (LEV), splenius capitis muscle (SPL), vastus lateralis muscle (VL), diaphragm (DIA), and external intercostal muscles (EXT). Given the structural, metabolic, and functional diversity of human skeletal muscles, a differential effect of DM on the phenotype of skeletal muscles in different anatomical regions is expected (73). Accordingly, these five functionally distinct skeletal muscles were selected to better understand the heterogeneous effects of DM on various skeletal muscle types. The VL is a commonly studied limb muscle in humans due to its easy accessibility and is, therefore, a reference muscle for biomedical investigations. However, like most locomotor muscles, physical activity status may influence its metabolic phenotype and confound disease-attributable effects (74). The EXT and DIA are respiratory muscles metabolically adapted to sustain continuous activity during life (75). The axial skeletal muscles, such as the LEV and the SPL, are less commonly investigated due to the difficulty of clinical biopsies but may be less profoundly impacted by physical activity than limb muscles. The DIA muscle was harvested from the mid-portion of the muscle along the right midclavicular line; EXT from the sixth intercostal space along the right midclavicular line; LEV from the superior aspect of the left muscle, beneath the superior aspect of the sternocleidomastoid (around C3/4 vertebral levels); SPL from the mid-portion of the left muscle, at the C4 vertebral level, along the plane of the fibres running superolaterally from the proximal attachment at the nuchal ligament to the distal attachment at the mastoid process of the left temporal bone; and VL from the mid-portion of the left muscle, midway between the greater trochanter of the femur and the upper border of the patella. Samples were immediately processed, frozen in liquid nitrogen, and stored at -80°C until sectioning for histochemical assays and spectroscopic measurements.




2.2 FTIR spectroscopy experiments

FTIR spectroscopy measurements were performed in attenuated total reflection (ATR) mode on the Bruker Vertex 80 spectrometer. For ATR sampling, the Specac Golden Gate accessory with a single reflection diamond was used. The temperature of the ATR cell was kept constant at 24°C using the temperature controller. The spectrometer optics and the ATR cell were purged with technical dry nitrogen during the measurements. One ATR-FTIR spectrum was measured for each specimen by averaging 128 interferograms in the range 4000 cm-1–600 cm-1 with a spectral resolution of 2 cm-1 using the software OPUS, version 7.8 (Bruker, Billerica, MA, USA).

One hundred and sixty (160) wet skeletal muscle specimens (5 different muscles from 32 donors) for FTIR measurements were prepared in the form of several 20 μm cryosections with a mass of about 1 mg and stored in microcentrifuge tubes at -20°C before the experiments. The frozen tissue specimen was placed on the ATR cell, and the temperature was allowed to stabilize. In the meantime, it was thoroughly kneaded with a spatula to homogenize the tissue constituents. It was then pressed against the ATR crystal to ensure good contact between the crystal and the tissue. In addition to the spectroscopic measurements of the muscle tissue, the ATR-FTIR spectrum of water was also recorded every time to serve as a reference to delineate the vibrational properties of water and macromolecular components of the wet tissue when analysing spectral data. It should be noted that for certain samples, it was not possible to mechanically remove all the adipose tissue during sample preparation. Therefore, in these cases, the measured FTIR spectra reflected not only the vibrational properties of the skeletal muscle but also those of the adipose tissue. We took this into account and managed to separate the vibrational spectrum of the adipose tissue from the spectra of the skeletal muscle by analysing the spectra chemometrically using a multi-level spectral decomposition, as explained in the sequel.




2.3 FTIR spectral data analysis

The OPUS software version 7.8 (Bruker, Billerica, MA, USA) was used for compensation of atmospheric water and CO2 and for baseline correction of the measured ATR-FTIR spectra of tissue samples and water. No ATR correction was performed. The water spectra measured each time we performed experiments were averaged, and normalisation factors were calculated based on the intensity of the OH stretching peak relative to the intensity of the OH stretching peak of the average water spectrum. These normalisation factors were further used to normalise the ATR-FTIR spectra of skeletal muscles measured on the same occasion as the corresponding water spectrum. The normalised ATR-FTIR spectra (abbreviated as   in the following) are presented in Supplementary Figure 2 in the form of average spectrum and the dispersion of the spectra around the average.

We then subjected the normalised spectra   to multivariate curve resolution decomposition with alternating least square optimization (MCR-ALS decomposition) using MATLAB software MCR-ALS GUI v4c (76, 77). The decomposition was performed in three steps, where in the first decomposition the spectral component   was identified as the one reflecting the vibrational spectrum of the adipose tissue. This component was subtracted from the spectra to treat only the spectra representing the vibrational properties of skeletal muscle tissue in the subsequent steps of the decomposition. The second MCR decomposition step resulted in the spectral component   and after its subtraction from the spectra, we obtained the spectral components  ,   and   in the third MCR decomposition step. For each decomposition step, more than 99% of the total variance was explained. Thus, after the three-step decomposition, the normalised spectra   from the experiments were split into several spectral components as follows.

	

for



The spectral component   in Eq. (1) represents the body water content in skeletal muscle and was not analysed further. In addition, the component  , representing adipose tissue, was considered a side result due to sample preparation limitations to completely remove adipose from skeletal muscle.

Eq. (2) represents the vibrational spectra   as obtained after removing the spectral components of body water   and adipose tissue   from the normalised ATR-FTIR spectra,   from Eq. (1), i.e.,

	

for



The three spectral components  ,   and  , represent vibrational properties of the skeletal muscle tissue and were used to identify its macromolecular constituents. The term   in Eq. (1) represents the remaining part that compensates for the difference from the normalised ATR-FTIR spectra as measured for the wet samples. The weights (concentrations)  ,  , and   corresponding to the spectral components  ,   and  , respectively, were further elaborated statistically by reporting their mean values with the standard error of the mean (SEM). Two-way mixed ANOVA (with Greenhouse–Geisser correction) was performed for weights  ,  , and   to analyse the statistical significance of the effects of skeletal muscle type and diabetes on macromolecular composition. We performed a post-hoc Tukey test to assess the significance of differences between muscles within the group and between DM and CO groups for a given muscle. The level of significance was 0.05.




2.4 Histochemical assays and data analysis

The histochemical analysis of skeletal muscle samples employed 10 μm thick serial transverse cryosections obtained using a Leica CM 1950 microtome (Leica Microsystems, Germany) thermostatically regulated at -25°C. Each section was mounted on a clean slide and examined prior to staining to verify the accuracy of the cross-sectional cuts. Haematoxylin- and eosin-stained slides were used to observe the general tissue morphology, following which semiquantitative methods were employed to assess the lipid, glycogen, and collagen content of the tissue based on previously published protocols (78–83). Sudan black B powder (Sigma-Aldrich Corp, St. Louis, MO, USA), which specifically stains neutral lipids black (78), was used for lipid staining. The Periodic Acid-Schiff (PAS) method described by McManus (81) was employed for staining polysaccharides, including glycogen. The staining of collagen bundles in tissue sections was performed using 0.1% Sirius red in saturated aqueous picric acid, as previously described by Junqueira et al. (83). The stained tissue sections were examined under a Nikon Eclipse 80i microscope (20x objective, numerical aperture: 0.50), which was equipped with an ODC-84 Kern-Sohndigital camera and VIS Pro microscope KERN OXM 902 software (Kern-Sohn, Germany) for image acquisition. A minimum of three randomly sampled fields of view free of artefacts were captured for each muscle section at a resolution of 5440 x 3648 pixels, using consistent settings for all similarly stained sections. Semiquantitative image analysis was performed with ImageJ (http://rsbweb.nih.gov/ij/) software, which can differentiate and precisely quantify areas stained with various colours by analysing and converting the pixels within the image into corresponding area values. The lipid content of the tissue was semiquantitatively assessed using ImageJ software, where the intensity of staining in greyscale mode was measured. The estimation of glycogen content was performed using ImageJ software, where the intensity of staining in the red channel obtained using the colour deconvolution plugin was measured. The mean grey value was calculated after converting the red channel to an 8-bit grayscale image (84). Completely white and completely black areas were assigned values of 0 and 255, respectively. The intensity of colour was expressed as relative intensity calculated as the ratio of measured mean grey value to 255. The collagen content index (defined as 100 times the ratio of the area of collagen-stained skeletal muscle tissue to the cross-sectional area of skeletal muscle tissue) was calculated using the same software by segmenting the red (collagen) and yellow (muscle fibres)-stained tissue with the thresholding and colour deconvolution plugin (82, 84). Two-way mixed ANOVA (with Greenhouse–Geisser correction) was performed for all three skeletal muscle indices (lipid, collagen and glycogen content) to analyse the statistical significance of the effects of skeletal muscle type and DM on macromolecular composition. The post-hoc Tukey test was performed to evaluate the significance of differences between muscles within the group and between DM and CO groups for a given muscle. The level of significance was 0.05. All investigative protocols, including muscle tissue sectioning, staining, and image acquisition and analysis, were performed in a blinded manner throughout the study.





3 Results



3.1 Skeletal muscle composition analysed by FTIR

In the Supplementary Figure 3 we show the spectra after removal of the body water spectral component   in the form of an average and the dispersion of the spectra around the average. The images with the most dispersed data (the most pronounced grey shaded area in Supplementary Figure 3) in the regions 3500-2700 cm-1, 1800-1700 cm-1 and 1250-700 cm-1 indicate that this variability stems from variable amount of fats. Indeed, as given in subsections 2.2 and 2.3 of the Materials and methods section, in the first MCR decomposition step we obtained the spectral component  , which is presumably attributed to the adipose tissue. This was a part of the samples that could not be mechanically removed from the skeletal muscle tissue during sample preparation. Figure 2 shows this component and the corresponding weights,  .




Figure 2 | (A) Adipose tissue spectral component   and (B) the corresponding weight   obtained for five different muscles from 16 diabetic donors (DM group) and 16 non-diabetic donors (CO group) from the first MCR decomposition step. Skeletal muscles are abbreviated as follows: diaphragm (DIA), external intercostal muscles (EXT), levator scapulae muscle (LEV), splenius capitis muscle (SPL), vastus lateralis muscle (VL). Data in (B) are means with standard errors of the mean (SEM).



The absorption bands seen in Figure 2A correspond to the absorption bands observed in the spectra of various animal body fats, as shown in the work of Rohman and Che Man (85). In addition, the spectral component   indicates the absorption peaks that are attributable to body water in adipose tissue (OH stretching band in the range between 3000-4000 cm-1), amide I and amide II bands of proteins, nucleic acids (low intensity bands in the range between 900-1000 cm-1). Here, the proportions between the intensities of the absorption bands reflect the proportions of these constituents characteristic of the composition of adipose tissue, as presented in the work of Stroh et al. (86). The weights   in Figure 2B determine the amount of adipose tissue in the analysed samples. The bar graphs indicate that the largest amount of adipose tissue was present in the EXT muscle samples. Supplementary Figure 9 shows the corresponding scatterplots of   and indicates that the EXT muscle samples had larger variance in the amount of adherent adipose tissue than other muscles. These trends are consistent with the challenges we faced in removing adipose tissue during sample preparation.

The   spectra obtained after removing the spectral components of body water and adipose tissue [see Eqs. (1) and (2)], are shown in Figure 3.




Figure 3 | Normalised ATR-FTIR spectra after removing the weighted spectral components representing body water, BW, and adipose tissue, AD (i.e.  ) for five different muscles from 16 diabetic donors (DM group) and 16 non-diabetic donors (CO group). Diagrams in the left-hand column correspond to the DM group and in the right-hand column to the CO group. Skeletal muscles are abbreviated as follows: diaphragm (DIA), external intercostal muscles (EXT), levator scapulae muscle (LEV), splenius capitis muscle (SPL), vastus lateralis muscle (VL). The solid black line in each graph shows the average spectrum for each of the five skeletal muscles for both study groups. The grey shaded area represents the dispersion of the spectra, with the lower and upper contours of this area corresponding to the spectra that deviate the most from the average.



After removing the corresponding proportion of adipose tissue from the spectra, the dispersion of the spectra around the average becomes smaller (see grey shaded areas of individual diagrams in Supplementary Figure 3; Figure 3 for comparison). The only exception here is the non-diabetic VL muscle, where the grey shaded area (dispersion of the data) remains wide, but we will see in continuation that this is due to the outlier related to the   component.

To demonstrate the intermediate results after each decomposition step, Supplementary Figure 4 shows the spectra after removing the weighted spectral components  ,   and  , and Supplementary Figure 5 shows the spectra after removing the weighted spectral components  ,  ,   and  , i.e. the   spectra. Comparing the corresponding individual plots in these two figures, it can be seen that the joint contribution of the   and   components has a relatively low dispersion (see relatively narrow grey shaded areas in Supplementary Figure 4), while the contributions of   and   separately appear to be widely dispersed (see wide grey shaded areas in Supplementary Figure 5).

The final result of the decomposition, which reflects the biochemical profiles of skeletal muscle, is shown in Figure 4 in the form of the spectral components  ,   and   with the corresponding weights  ,   and   for further consideration.




Figure 4 | (A) Three spectral components, MC1, MC2 and MC3 with the corresponding (B) weight c1, (C) weight   and (D) weight   obtained for five different muscles from 16 diabetic donors (DM group) and 16 non-diabetic donors (CO group) from the second and third MCR decomposition steps. Skeletal muscles are abbreviated as follows: diaphragm (DIA), external intercostal muscles (EXT), levator scapulae muscle (LEV), splenius capitis muscle (SPL), vastus lateralis muscle (VL). Data in (B–D) are means with standard errors of the mean (SEM).



The analysis of the spectral components shown in Figure 4A with their second derivatives enabled the identification of the absorption peak wavenumbers and the tentative assignment of vibrational bands. The second derivatives are shown in Supplementary Figures 6–8, with a list of wavenumbers in Supplementary Tables 1–3 corresponding to the peaks of the second derivative. Tentative assignment of the peaks, i.e. the absorption bands, can be found below in Table 1.


Table 1 | Tentative assignment of vibrational bands with the identification of the macromolecular constituents.



As presented in Table 1, the multi-stage MCR decomposition into spectral components gives a relatively detailed insight into the macromolecular composition of skeletal muscle that can be obtained from the vibrational spectrum of the tissue sample measured in a single experiment. In general, components   and   are dominated by proteins (except for collagen), indicating variations in the ratios of the different secondary structures and the level of protein phosphorylation, as well as nucleic acids. In  , a lipid ester band with lower intensity and an absorption range between 750-720 cm-1 also indicate the presence of lipid intermediates. The third spectral component   is dominated by the vibrational absorption of lipid esters (mainly triglycerides, but also phospholipids) and collagen. Since in the spectral component   certain absorption peaks are assigned exclusively to lipids and certain peaks exclusively to collagen, a higher/lower weight corresponding to   simultaneously means a higher/lower proportion of lipids and a higher/lower proportion of collagen. On may note that all three spectral components contain information about proteins, but it is evident (especially from the amide I and II bands, their shape, frequencies and intensity ratios) that each spectral component reflects vibrational characteristics of proteins with specific structural properties. These hidden details, which can be revealed by spectral decomposition, provide a useful basis for the search for the possible structural changes in skeletal muscle proteins due to their impairment by diabetes. It is important to emphasise [as provided in Eq. (1)] that all analysed ATR-FTIR spectra have been described as a linear combination of the same spectral components obtained from the multi-stage decomposition, where the corresponding weights define the contribution of each spectral component to a given spectrum. In other words, the same spectral components for all analysed spectra reflect the same biomolecular profiles which have been contained in different proportions in the analysed samples. Therefore, the weights determine these proportions, i.e. the contribution of the macromolecular constituents represented by a given spectral component to the overall composition of the samples. In particular, the weights  ,   and   are distinguished parameters that reflect the contribution of the macromolecular species represented by the spectral components  ,   and   in skeletal muscle tissue. Examination of the mean values of the weights   and   in Figures 4B, D indicates the differences in the macromolecular composition of the tissue between the diabetic group and the control group for a given muscle. Nevertheless, the two-way mixed ANOVA did not yield a statistically significant effect of the group, but did show statistical significance of the effect of muscle type on weights   (F3.072, 92.15 = 5.223; p = 0.0021) and   (F3.320, 99.60 = 6.847; p = 0.0002). Supplementary Figures 10–12 additionally show the scatterplots for all three weights, where we can observe a lower variance of c1 for diabetic muscles compared to non-diabetic ones. The scatterplots in Supplementary Figure 11 show a similar variance for   for diabetic and non-diabetic muscles. The variance of   for diabetic DIA, EXT and VL (when the outlier is excluded) muscles appears to be larger than for control muscles, while LEV and SPL muscles seem to have the same tendency, but it is less clear whether certain data should be considered as outliers. Further comments can be found in subsection 3.3 for comparison with the histochemical results.




3.2 Skeletal muscle composition analysed by histochemical assays

Figure 5 depicts representative images of histochemically stained sections, while Figure 6 summarises the results of the histochemical analysis of the early postmortem macromolecular composition of the skeletal muscles in diabetic and non-diabetic individuals.




Figure 5 | Representative images of the vastus lateralis muscle (VL) stained with (A, D) Sudan Black B (lipids), (B, E) Sirius red (collagen) and (C, F) PAS (glycogen). The images in the top row show the muscle VL of diabetic (DM) individuals and the images in the bottom row of non-diabetic (CO) individuals. The black bar in (A) represents 50 µm.






Figure 6 | (A) Lipid, (B) collagen and (C) glycogen composition of five different muscles from 16 diabetic donors (DM group) and 16 non-diabetic donors (CO group) determined by histochemical analysis. Skeletal muscles are abbreviated as follows: diaphragm (DIA), external intercostal muscles (EXT), levator scapulae muscle (LEV), splenius capitis muscle (SPL), vastus lateralis muscle (VL). Data are means with standard errors of the mean (SEM); *p < 0.05, two-way mixed ANOVA.



The two-way mixed ANOVA showed the statistical significance of the effect of the group (DM and CO) on lipid content (F1, 30 = 4.420; p = 0.0440), but not on collagen and glycogen content. There was also a statistically significant effect of muscle type on lipid content (F2.092, 62.77 = 8.396; p = 0.0005), collagen (F2.781, 83.42 = 3.523; p = 0.0211) and glycogen content (F2.465, 73.95 = 31.69; p< 0.0001) in different skeletal muscles. The post-hoc Tukey test revealed statistically significant differences between the diabetic (DM) group and non-diabetic (CO) group for muscles SPL and VL, as shown in Figure 6A. Supplementary Figures 13–15 show the scatterplots for the three macromolecular species. When outliers are excluded, the variance in lipid amount appears to be greater in diabetic DIA and EXT muscles than in control muscles, whereas the variances are similar in diabetic and non-diabetic LEV, SPL and VL muscles. After excluding the outliers, one may also argue that the variances of collagen and glycogen amounts are similar for diabetic and control muscles, with the exception of LEV muscle, where the variance of collagen content is greater for diabetic than for non-diabetic muscle. Further comments can be found in the following subsection 3.3 for comparison with the spectroscopic results.




3.3 Comparison of the spectroscopic and histochemical results

In order to compare the two sets of results, we had to identify the outcomes of the spectroscopic analysis that matched the outcomes of the histochemical analysis, i.e. the lipid, collagen and glycogen content. Based on the assignments of the vibrational bands of the spectral components shown in Table 1, the lipid and collagen contents in the macromolecular composition of the muscles are controlled by the weight   and the glycogen content by the weight  . The qualitative comparison of the spectroscopic and histochemical results is given across the matched parameter pairs, i.e. histochemically determined lipid content compared to  , histochemically determined collagen content compared to  , histochemically determined glycogen content compared to  .

The scatterplots in Supplementary Materials point to the greater variance in the data obtained in spectral decomposition than in the data obtained in histochemical test. Nevertheless, the two approaches provide similar overall picture about the significance of disease status (diabetic or control), both revealing differences between the diabetic and non-diabetic groups, mainly in the form of increased intramuscular lipid content. Although the spectroscopic approach showed no statistically significant differences between the groups in terms of lipid content, there is a general trend towards an increased amount of lipids in diabetic muscles compared to control muscles (see weight c3 in Figure 4D; Supplementary Figure 12). This is mainly consistent with the corresponding trends in histochemical analysis (see Figure 6A; Supplementary Figure 13). As far as collagen and glycogen content are concerned, both methods agree that up to this point there are no significant differences between the groups with regard to these two macromolecular components.

Regarding the influence of muscle type on tissue composition in general, both methods agree that muscle type has an influence on lipid content (histochemistry: p = 0.0005; ATR-FTIR via c3: p = 0.0002) and collagen content (histochemistry: p = 0.0211; ATR-FTIR via c3: p = 0.0002), but differ with respect to glycogen content (histochemistry: p< 0.0001; ATR-FTIR via c2: no statistical significance of muscle type effect on glycogen content). However, when comparing the muscles with each other, the spectroscopic analysis seems to show a somewhat different picture than the histochemistry. For example, the mean value of c3 (which determines the amount of lipids) and its variance seem to be higher for the EXT muscle (see Figure 4D; Supplementary Figure 12) than for other muscles. On the other hand, the bar graphs and scatterplots representing the lipids analysed in the histochemical test do not show the same (see Figure 6A; Supplementary Figure 13).

The observed discrepancies between the outcomes of the spectroscopic approach and the histochemical analysis could primarily be due to differences in sample preparation, the form and amount of the sample analysed and the sample treatment during the histochemical analysis.

In addition, we analysed relatively small sample sets and are aware of the natural variability of the metabolic phenotype of human skeletal muscle. Accordingly, we remain cautious about further statistical details and definitive conclusions about DM-induced changes in tissue composition. Nevertheless, we have developed the key methodological steps to obtain numerous compositional details from the vibrational spectra that can be transferred to large sample sets relevant for commenting on DM-induced alteration in skeletal muscle biomolecular phenotype.





4 Discussion

The information in a single ATR-FTIR spectrum, derived from the spectral components and their corresponding weights, can provide a very valuable insight into the macromolecular composition of the tissues. Spectral decomposition yields a set of spectral components, which reflect a set of distinct chemical profiles, i.e. particular macromolecular species, which are common to all analysed spectra. As shown in Table 1, the amide I and amide II bands of the α-helical and β-sheet protein secondary structures present in the spectral components MC1 and MC2, and the structures belonging to collagen represented by MC3, suggest the changes in the overall protein structural pattern. The changing proportions of particular protein structures, due either to different muscle types or to the effects of DM, can be tracked by the weights c1, c2 and c3 of the spectral components. Similarly, the degree of phosphorylation of proteins, elevated or decreased levels of certain amino acids, nucleic acids, glycogen, lipid intermediates can be assessed from the weights c1 and c2 and, using the weight c3, the proportions of lipids, phospholipids and collagen. These spectroscopic analyses reflect detailed insights into the potential diabetic alterations in skeletal muscle metabolic phenotype, such as changes in protein expression and post-translational modifications, intramyocellular lipid deposition, impaired glycogen synthesis and impaired mitochondrial function. Therefore, the weights obtained from the spectral decomposition can serve as the main parameters for comparing diabetic and non-diabetic muscles and for analysing the correlations between the altered proportions of particular macromolecular species.

To comment on the discrepancies between the spectroscopic and histochemical results, we would like to argue that the former reflect a more realistic picture of composition. Our arguments are based on the fact that in the spectroscopic measurements we used a larger amount of the tissue sample, which was kneaded well to distribute the constituents as evenly as possible, in contrast to the histochemical tests where individual sections were used for analysis. Additionally, the possible effects of the staining procedure and the biases in the assessment of the stained localised areas belonging to a specific molecular species under investigation should be considered. On the other hand, the use of wet samples for FTIR spectroscopy could be a potential weakness. The large amount of body water in the tissue absorbs a large amount of the energy emitted by the infrared source in the FTIR experiment. Therefore, the absorption intensities of the solid part of the tissue are relatively low compared to the absorption intensities of the water, which may affect the dispersion of the spectra of the solid part of the tissue to a certain extent. Nevertheless, it is important to work with wet samples in order to exclude possible effects of drying the samples, which can strongly alter the structural properties of the proteins.

Despite numerous studies addressing skeletal muscle myopathy as a possible cause and/or consequence of DM, the understanding of the interactions remains incomplete. While most research have focused on the specific molecular mechanism, we believe that methodological approaches that provide insight into more macromolecular indicators simultaneously are the most efficient way to obtain a comprehensive picture and a deeper understanding of the molecular mechanisms of disease and their interactions. The methodology we have proposed in this article, using FTIR spectroscopy and the resourceful spectral decomposition approach, directly follows and supports this aspect.

We are aware that our pilot study uses relatively small sample sets and it is therefore too early to draw definitive conclusions about DM-induced changes in the composition of human skeletal muscle, although the results already suggest certain trends. However, the most important contribution expected from this preliminary study has been the development of an alternative, simple and efficient methodology to study the macromolecular composition of skeletal muscle tissue. The established methodological framework will ensure the feasibility of a large-scale study with statistically representative sample sizes, which are essential for obtaining robust data on the DM-related macromolecular changes in skeletal muscle. We believe that our spectroscopic approach can make an important contribution to DM research by providing a tool for monitoring disease progression in terms of its effects on skeletal muscle composition and the interrelationships between macromolecular alterations in tissue.




5 Conclusion

In summary, this paper proposes an alternative methodology for examining macromolecular constituents of biological tissue based on information in the vibrational spectrum. The approach was developed on a pilot sample set of five different skeletal muscles from 16 diabetic and 16 non-diabetic human donors. We have shown that with appropriate spectral decomposition steps we can obtain much more information about the macromolecular composition of skeletal muscle than with several different histochemical tests. Within the proposed methodological framework we have:

	- established detailed protocols for skeletal muscle sample preparation and the implementation of the spectroscopic experiments to minimise the impact of these procedures on the measured FTIR spectra;

	- laid the foundations for the multi-stage spectral decomposition of FTIR spectra into the spectral components for the simultaneous identification of various macromolecular species and their contributions to the overall composition of skeletal muscle;

	- identified the characteristic spectral absorption bands in order to identify the individual macromolecular species represented by a particular spectral component;

	- identified the parameters for comparing the contribution of macromolecular species to the overall composition of different skeletal muscles in diabetic and non-diabetic subjects and for analysing their correlations;

	- demonstrated the versatility and efficiency of the proposed spectroscopic approach in comprehensively revealing subtle changes in the composition of skeletal muscle.



On this basis, we are confident that we have brought our methodology to a level from which it can be successfully transferred to a large-scale study that allows for statistically representative analyses and suitable conditions to search for statistically significant changes in skeletal muscle composition due to DM.
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Background

Diabetic retinopathy (DR) is the most frequent complication of type 2 diabetes and remains the leading cause of preventable blindness. Current clinical decisions regarding the administration of antidiabetic drugs do not sufficiently incorporate the risk of DR due to the inconclusive evidence from preceding meta-analyses. This umbrella review aimed to systematically evaluate the effects of antidiabetic drugs on DR in people with type 2 diabetes.





Methods

A systematic literature search was undertaken in Medline, Embase, and the Cochrane Library (from inception till 17th May 2022) without language restrictions to identify systematic reviews and meta-analyses of randomized controlled trials or longitudinal studies that examined the association between antidiabetic drugs and DR in people with type 2 diabetes. Two authors independently extracted data and assessed the quality of included studies using the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist, and evidence assessment was performed using the GRADE (Grading of recommendations, Assessment, Development and Evaluation). Random-effects models were applied to calculate relative risk (RR) or odds ratios (OR) with 95% confidence intervals (CI). This study was registered with PROSPERO (CRD42022332052).





Results

With trial evidence from 11 systematic reviews and meta-analyses, we found that the use of glucagon-like peptide-1 receptor agonists (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), or dipeptidyl peptidase-4 inhibitors (DPP-4i) was not statistically associated with the risk of DR, compared to either placebo (RR: GLP-1 RA, 0.98, 0.89-1.08; SGLT-2i, 1.00, 95% CI 0.79-1.27; DPP-4i, 1.17, 0.99-1.39) or other antidiabetic drugs. Compared to other antidiabetic drugs, meglitinides (0.34, 0.01-8.25), SGLT-2i (0.73, 0.10-5.16), thiazolidinediones (0.92, 0.67-1.26), metformin (1.15, 0.81-1.63), sulphonylureas (1.24, 0.93-1.65), and acarbose (4.21, 0.44-40.43) were not statistically associated with the risk of DR. With evidence from longitudinal studies only, insulin was found to have a higher risk of DR than other antidiabetic drugs (OR: 2.47, 95% CI: 2.04-2.99).





Conclusion

Our results indicate that antidiabetic drugs are generally safe to prescribe regarding the risk of DR among people with type 2 diabetes. Further robust and large-scale trials investigating the effects of insulin, meglitinides, and acarbose on DR are warranted.





Systematic review registration

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=332052, identifier CRD42022332052.
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Introduction

Type 2 diabetes accounts for 90% of the 537 million global cases of diabetes and is anticipated to reach 783 million by 2045 (1, 2). Along with the increasing number of individuals with type 2 diabetes, there is reason to be concerned over the long-term diabetes-related complications, attributed to the tissue-damaging effects of chronic hyperglycemia (3). The potentially alarming impact of these complications is manifested in the case of diabetic retinopathy (DR), a microvascular complication that impacts around one-third of people with type 2 diabetes throughout their lives, which is recognized as one of the five leading causes of blindness worldwide and has become a significant challenge to the healthcare systems (4, 5). The estimated cost of treating DR in people with type 2 diabetes in the UK was £51 million in 2010 and is predicted to rise to £87 million by 2035/36 (6).

There are nine classes of antidiabetic drugs for people with type 2 diabetes, including insulin, metformin, sulfonylureas, glucagon-like peptide-1 agonists (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), dipeptidyl peptidase-4 inhibitors (DPP-4i), thiazolidinediones, acarbose, and meglitinides. The effects of these drugs on glucose control have been well established, and some drugs’ additional benefits on related diabetic complications, such as GLP-1 RA, have been reported (7). However, their effects on DR remain uncertain, due to the variance in mechanisms of glucose control. For instance, GLP-1 RA operates by inhibiting insulin secretion and reducing glucagon release through enhancing the action of glucagon-like peptide-1 (8), whereas DPP-4i works through enhancing the action of incretin hormones (9), and SGLT-2i reduces renal glucose reabsorption (10). Previous systematic reviews and meta-analyses have focused on one drug class, one single drug, or only included randomized controlled trials (RCTs) or longitudinal observational studies, which limits the ability to properly inform clinical guidelines.

To provide reliable evidence to help inform clinical decisions about choices of glucose-lowering agents for people with type 2 diabetes, we conducted this umbrella review where we have systematically mapped and evaluated evidence from existing systematic reviews and meta-analyses of the effects of antidiabetic drugs on the risk of DR in people with type 2 diabetes.





Methods

This umbrella review was conducted according to the pre-specified protocol registered in PROSPERO (CRD42022332052) and is reported following the Preferred Reporting Items for Overviews of Reviews (PRIOR) (11).




Literature search

A literature search was conducted systematically using a predefined search strategy in Medline, Embase, and Cochrane Library for systematic reviews and meta-analyses that investigated the relationships between antidiabetic drugs and DR from inception till 17th of May 2022. The selection of keywords for the study underwent a rigorous evaluation process, which overseen by clinicians, experts in ophthalmology, and epidemiologists. Keywords used in the search included the following domains: systematic review or meta-analysis, type 2 diabetes, antidiabetic drugs, and DR (full search strategies are provided in Supplementary Material S1).





Study selection

Inclusion criteria were: 1) systematic reviews or meta-analyses of randomized controlled trials (RCTs) and/or cohort studies; 2) included people with type 2 diabetes; 3) intervention (exposure) was one of the following glucose-lowering drug classes, including insulin, metformin, sulphonylureas, GLP-1 RA, SGLT-2i, DPP-4i, thiazolidinediones, acarbose, and meglitinides; 4) Control (non-exposure) group should be placebo or any of other glucose-lowering drug classes; 5) the reported outcome was the presence of DR, accepting the definition in systematic reviews. Exposures, comparators, and outcomes were defined through a scoping search and after consultation with an expert panel (including ophthalmologists, diabetologists, and epidemiologists). There was no restriction on language or year of publication. The titles, abstracts, and full texts of the studies identified through the search were independently reviewed by two authors (LT and ZW). Disagreements were addressed by consensus and by seeking advice from a third person (JW).





Data extraction

Two authors independently conducted data extraction (LT and ZW), and disagreements were addressed by discussing with the third person (JW). For each included systematic review or meta-analysis, we extracted the first author, year of publication, type of included studies, number of studies included, intervention, comparison, information on population, number of participants, characteristics of participants, outcome definition, search details, quality assessment tools, analysis methodology, evaluated results (effect size and 95% CIs), reporting heterogeneity, and findings (Supplementary Table S1). For any missing or unclear information, we accessed the included primary studies or contacted the authors of the included systematic reviews for further details.





Quality assessment

AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist was applied to evaluate the methodological quality for included reviews (Supplementary Table S2) (12). Two authors (LT and ZW) evaluated the quality of included reviews independently. Any disagreement was resolved by discussing with the third person (JW).





Assessment of the degree of overlap

If two or more reviews focused on the same exposure and outcome and included similar primary studies, these studies were evaluated for their degree of overlapping relationships (13). Incorporating data from reviews with overlapping relationships could result in including primary studies more than once, causing bias in the estimates and results (14, 15). The degree of overlap was quantified by the measure of corrected covered area (CCA), which is classified as very high (CCA > 15%), high (CCA 11–15%), moderate (CCA 6–10%), and slight (CCA 0-5%) (Supplementary Material S2, Supplementary Tables S3 to S7) (13). When there was overlap between two or more reviews, preference was given to the review with the highest quality and with the highest number of primary studies if there were two or more reviews with the same quality.





Data analysis

Data were classified and analyzed according to study design (RCTs or cohort studies), drug classes, and comparison groups. We assessed and depicted the heterogeneity of each meta-analysis using I2 statistics (16), where a value of I2 over 50% indicated significant heterogeneity (17). Additionally, we estimated publication bias for comparison with at least 10 studies by using Egger’s statistical test, whereas P value less than 0.1 was considered statistically significant (18). For the comparison that included two or more studies, random-effects meta-analyses were used to update the preference review selected during overlapping assessment, by adding primary studies from other reviews. For comparison that included only one study, the original results were reported. We conducted a post hoc analysis to compare the classes of GLP-1 RA, because previous systematic reviews reported conflicting results and seven of the included systematic reviews and meta-analyses focused on GLP-1 RA or Semaglutide. All statistical analyses were performed in Review Manager 5.4 and R 4.12.

The GRADE (Grading of recommendations, Assessment, Development and Evaluation) was applied to evaluate and summarize the quality of evidence for each systematic review and meta-analysis included in the umbrella review, which grades the certainty of the evidence as high, mediate, low, or very low (Supplementary Table S8) (19).






Results




Literature search

Among the 212 records identified through our systematic search, 11 systematic reviews and meta-analyses investigated the associations between antidiabetic drugs and DR were included in this study, including 9 reviews of RCTs and 2 reviews of cohort studies (Figure 1). The characteristics of all included reviews are summarized and presented in Table 1. The list of excluded studies and the reasons for exclusion are provided in Supplementary Table S9.




Figure 1 | The flow chart of study selection.




Table 1 | Characteristics of the systematic reviews and meta-analyses included for the associations between antidiabetic medication and diabetic retinopathy in people with type 2 diabetes.







Methodology quality

Out of the 11 included systematic reviews, four (36%) were rated as high quality (20, 23, 25, 29), two (18%) were moderate quality (24, 30), and five (45%) were low or critically low quality (21, 22, 26–28) (Table 1 and Supplementary Table S10). The main limitations in the low or critically low quality studies included: 1) the risk of bias of the included primary studies was not assessed (n=2), 2) the list of the excluded studies with reasons was not provided (n=7), and 3) the statement of the study designs established before conducting review was not given (n=9).





Overlapping and non-overlapping associations

CCA assessment revealed overlapping associations in 81% (n=17) comparisons within two or more systematic reviews. Two systematic reviews had non-overlapping associations. Detailed overlapping associations are provided in Supplementary Tables S3 to Table S7.





Summary findings

The results of meta-analyses regarding the associations between antidiabetic drugs and DR in comparison to placebo or all other classes of antidiabetic medications are presented in Figures 2 through 3, organized by drug class and individual drug. The Supplementary Figures S1 and S2 present the outcomes of the meta-analyses conducted to compare various drug classes.




Figure 2 | The effect of antidiabetic medications on diabetic retinopathy compared with placebo or all other classes of antidiabetic medications, by class. * This meta-analysis result was reported by included reviews. CI, confidence interval; ; GRADE, Grading of Recommendations, Assessment, Development and Evaluation; SGLT-2i, sodium-glucose cotransporter-2 inhibitors; GLP-1 RA, glucagon-like peptide-1 agonists; DPP-4i, dipeptidyl peptidase-4 inhibitors; NA, not available.






Figure 3 | The forest plot of association between GLP-1 RA individual drugs and diabetic retinopathy compared with placebo and all other classes of antidiabetic medications. * This meta-analysis result was reported by included reviews. CI, confidence interval; GRADE, Grading of Recommendations, Assessment, Development and Evaluation; NA, not available.







Antidiabetic drugs vs. placebo

In the overall analysis, the risk of DR development or progress was not evident for two antidiabetic drug classes: GLP-1 RA (RR: 0.98, 95%CI 0.89-1.08, I2 = 0%) and SGLT-2i (1.00, 0.79-1.27, I2 = 0%), when comparing each class of antidiabetic drug with placebo. DPP-4i was observed associated with an increased risk of developing DR (1.17, 0.99-1.39, I2 = 0%), though the result was not statistically significant (Figure 2).

In the post hoc analysis among different individual GLP-1 RA, Semaglutide (1.23, 95% CI 1.01-1.49, I2 = 0%) was associated with the increased risk of DR. For Lixisenatide (0.90, 0.75-1.09, I2 = 0%) and Liraglutide (0.93, 0.62-1.39, I2 = 0%), the pooled estimate showed no significant increased risk of DR (23). Evidence for exenatide was limited with only 1 event in 484 participants (Figure 3) (23).





Antidiabetic drugs vs. all other antidiabetic drugs

In the overall analysis, there was no statistically significant association for any antidiabetic drug class, such as SGLT-2i (RR: 0.73, 95% CI 0.10-5.16, I2 = 69.1%), thiazolidinediones (0.92, 0.67-1.26, I2 = 30%), GLP-1 RA (0.93, 0.79-1.18, I2 = 0%), DPP-4i (0.93, 0.74-1.18, I2 = 0%), and metformin (1.15, 0.81-1.63, I2 = 0%), compared with all other classes of antidiabetic drugs (Figure 2). Some signals were noted for sulphonylureas (1.24, 0.93-1.65, I2 = 0%) and insulin treatment (OR: 2.47, 95%CI 2.04-2.99, I2 = 53%), which were associated with an increased risk of developing DR, though the result of insulin was taken from longitudinal observational studies (Figures 2, 4) (30).




Figure 4 | The forest plot of association between insulin and diabetic retinopathy.



In the post hoc analysis of individual drugs of GLP-1 RA, Liraglutide, Dulaglutide, and Semaglutide were not associated with the risk of DR. For Exenatide, no significantly increased risks of DR were observed in the pooled estimate, owing to insufficient evidence (Figure 3) (23).

In the comparison of each antidiabetic drug class side-by-side, sulphonylureas was associated with an increased risk of DR (RR: 1.41, 95% CI 1.00-2.00, I2 = 0%), comparing with GLP-1 RA. There were no other antidiabetic drug class associated with a significantly higher risk of DR, which could be due to the limited evidence of these pairwise comparisons (Supplementary Figure S1).

Supplementary Table S11 presents the meta-analysis findings for drug classes before and after updating the preferred review with additional missing studies noted in other reviews.

Supplementary Table S12 provides all meta-analyses results in the umbrella review, including published results, individual studies results, updated pooled results, and GRADE-evaluated risk of bias. 15% (n=6) of the associations were graded as high or moderate, 51% (n=21) of associations were graded as low quality, and 34% (n=14) of associations were very low quality.






Discussion




Main findings

To the best of our understanding, this is the first umbrella review presenting a comprehensive update on the available evidence derived from RCTs and observational studies, focusing the association between nine classes of antidiabetic drugs and the risk of DR in individuals with type 2 diabetes. Our results indicate that antidiabetic drugs are generally safe to prescribe regarding the risk of DR among people with type 2 diabetes. However, signals were observed for DPP-4i (comparing with placebo), sulphonylureas (comparing with all classes of antidiabetic drugs), and insulin potentially associated with increasing the incidence of DR, though insulin association was based on evidence from observational studies (30). In the post hoc analysis, comparing with placebo, Semaglutide (an individual GLP-1 RA) was observed associated with an increased incidence of DR. This umbrella review offers insights for clinicians and policymakers, aiding them in making informed decisions about the selection of antidiabetic medications for individuals with diabetes and DR. Furthermore, our suggest a need for further robust and large-scale clinical trials to further investigate the effects of insulin, meglitinides, and acarbose on the development of DR.

Our results showed sulphonylureas might be related to an increased risk of DR, comparing with thiazolidinediones, SGLT-2i, GLP-1 RA, and DPP-4i. On the other hand, previous research has shown conflicting results. A retrospective chart review study reported that the odds ratio (OR) of DR for people receiving sulphonylureas was reduced to 0.45 (95% CI 0.28–0.71) compared to non-users (31). Results from a cohort study showed no significant association between sulphonylureas and the risk of DR when compared with metformin (hazard ratio: 1.02, 95%CI: 0.92-1.04) (32). Given the potential bias originating from observational studies, further research, preferably from randomized trial evidence is needed.

Our results suggested a potential correlation between DPP-4i and the increased risk of DR in people with type 2 diabetes, when compared with placebo. One possible hypothesis is that DPP-4i could potentially promote vascular leakage by elevating the concentration of Stromal Cell-Derived Factor 1 alpha, thereby facilitating the process of angiogenesis and vascular leakage (33). This could have an adverse effect on DR. However, the association identified in our study was mostly contributed by the Green et al. study (34), with a median follow-up duration of three years. A published cohort study reported the adverse effect of DPP-4i on DR may be limited to the initial phase of treatment, potentially attributable to the rapid glucose improvement (35). However, the mechanism of DPP-4i on DR remains unclear, and the existing experimental results have not yielded consistent results in terms of biomarker changes in DR after DPP-4 inhibitor initiation. Thus, future research and clinical trials are warranted.

Findings from a previous meta-analysis suggested that insulin treatment increased the risk of DR (30), which was similar to results from a hospital-based study (n=134), showing that insulin was associated with a higher risk of DR in people with type 2 diabetes, compared to people treated with other antidiabetic drugs (OR 2.4, 95%CI 0.9-6.6) (36). All this evidence was observational in nature which is prone to certain biases such as indication bias that may overestimate the effect of insulin of DR risk.

Our findings showed that SGLT-2i with no effect on DR, compared with placebo. However, this association was not statistically significant. This lack of association between SGLT-2i and DR may be attributed to the limited numbers of included studies and participants. A recent literature review stated SGLT-2i could slow the progression of DR (37), through the prevention of pericyte damage, which is a critical first step in the pathogenesis of DR (38). It has also been reported that SGLT-2i might delay the progression of DR by reducing oxidative stress, one of the major causes of DR that leads to retinal damage, eventually leading to DR (39).

In the post hoc analysis, our results indicated Semaglutide might be associated with the increased risk of DR in comparison with placebo. This results are consistent with previous published studies concerning the effect of Semaglutide on DR (40, 41). Although the exact mechanism by which of Semaglutide increase DR not established, a potential explanation is that it is due to the abrupt glycemic correction following the introduction of Semaglutide, reflected by a rapid decrease in rapid HbA1c (42). Large and rapid reductions in blood glucose levels may lower intravascular osmotic pressure leading to an osmotic gradient between extracellular and intravascular areas. As water tends to flow from areas that have high osmotic to low osmotic pressure, this movement of water may have a greater effect on vessels that are low-pressure such as those in the eye. A breakdown of the blood-brain barrier and hypoxic environment (leading to VEGF upregulation) may provide the pathophysiological rationale for worsening of DR (43). Longer duration of type 2 diabetes, existing DR or other microvascular complications, higher baseline HbA1c, as well as the insulin treatment may also be significant predictor of this effect (44). Finally, the duration of trials might also provide an alternative framework for interpretation. It is therefore possible that this is not a direct effect of Semaglutide, but the net effect of several factors (including rapid decreases in glycated and ensuing osmotic changes in a setting of diminished counter-regulatory mechanisms, due to long standing type 2 diabetes) (45). However, when compared with all class of other antidiabetic drugs, Semaglutide was not associated with risk of DR.

Furthermore, with the exception of Semaglutide, our results showed that GLP-1 RA as a class were not significantly associated with DR, when compared with placebo and other drug classes. This finding is consistent with previous cardiovascular safety trials, where GLP-1 RA in were not associated with a higher risk of DR (46–49). Therefore, when Semaglutide is being considered as the next step in the treatment intensification in the setting of long-standing diabetes with pre-existing DR any detrimental effects may be counteracted by longer titration intervals between doses of Semaglutide, leading to a less steep decline in HbA1c.

After completing our study, we conducted an additional systematic literature search for cohort studies evaluating associations between antidiabetic drugs and DR in people with type 2 diabetes. Findings from recently published cohort studies were consistent with our results, such as the possible adverse impact of add-on DPP-4i treatment on DR (50), non-significant associations between GLP-1 RA and DR (51), as well as the potential association between combination therapy of SGLT-2i with metformin and the reduced risk of DR in individuals with type 2 diabetes (52).





Strength and limitations

This umbrella review applied the stringent methodological umbrella review approach of the literature, by systematically synthesizing and appraising all available evidence from published meta-analyses. This allowed for a wide scope of the effect of antidiabetic drugs on the risk of DR, since analyses were undertaken both at the level of specific glucose-lowering class and for individual antidiabetic agents within each glucose-lowering class. Additionally, the quantitative comparisons between nine antidiabetic agents, provided in the present study, can enable health-care providers with a more reliable estimation of the effects on DR for a number of glucose-lowering agents.

On the other hand, the findings of the present study should be interpreted within the context of its limitations. This umbrella review was based on evidence from published systematic reviews and meta-analyses, and thus, potential limitations and shortcomings of the published literature, inherent to study design, might undermine the validity of the findings. The AMSTAR-2 and GRADE were applied to assess the methodology and evidence quality of included studies in this review. Importantly, the heterogeneity of baseline characteristics and insufficient data collection in primary studies may limit the interpretation. This is also the case when considering the different definitions of the DR-related outcomes of interest across previous systematic reviews, which prevented a uniform estimation of the term DR. We tried to overcome this by documenting all original definitions of DR were collected and reported in Table 1. As some of the baseline characteristics such as age, sex, ethnicity, the duration of type 2 diabetes, the dosage of drugs, or documentation of diabetic complications were missing in many studies, we were not able to explore their role as potential effect modifiers.





Implications for clinical practice and public health

The high-level evidence from our study can provide useful information for clinicians when considering treatment intensification for achieving glycemic targets, especially in the setting of pre-existing DR or when risk factors for DR are present. This review also provides evidence for policy and guideline recommendations regarding the pharmacological management of type 2 diabetes and DR. For example, at the drug class level, GLP-1 RA were not significantly associated with the risk of developing DR, yet Semaglutide treatment might be correlated to a higher incidence of DR, comparing with placebo. Therefore, it might be plausible to assume that, when Semaglutide is considered the next step in treatment intensification, clinicians should verify that individuals with type 2 diabetes have been screened for the presence and severity of DR before treatment initiation. A holistic estimation of the risk-to-benefit ratio of the intervention should also be discussed and considered during the decision-making process. It might also be advisable that additional caution be applied in the setting of long-standing diabetes with pre-existing DR, which would allow for a less steep decline in HbA1c and thus, a lesser risk of DR development or progression. Finally, a follow-up DR assessment within a shorter timeframe might be contemplated in the same setting.





Implications for future research

Further exploration of the effect of antidiabetic drugs on DR outcomes is important since DR is one of the major causes of vision loss and blindness in adults, and the number of people at risk of DR is expected to increase. This study provides comprehensive evidence that antidiabetic drugs are generally safe to people at the risk of DR, while compared with placebo, Semaglutide may be associated with a higher incidence of DR. Results from the FOCUS RCT of the long-term effects of Semaglutide on DR in people with type 2 diabetes are eagerly anticipated (53). Furthermore, since primary studies included individuals both with and without baseline DR, it is not clear whether glucose-lowering drugs are associated with DR in people without evidence of DR at baseline.






Conclusions

In conclusion, the findings of this umbrella review suggest that antidiabetic drugs are generally safe to prescribe regarding the risk of DR among people with type 2 diabetes.

However, this study reveals that at the individual drug level, Semaglutide is linked to an increased incidence of DR, and at the drug class level, DPP-4i, sulphonylureas, and insulin had a potential association with a slight higher incidence of DR. It is noteworthy that the evidence derived from observational studies for insulin, which may introduce indication bias, and there is an insufficiency of statistical power in investigations assessing the effects of sulphonylureas and DPP-4i. Further robust and large-scale trials investigating the effects of insulin, meglitinides, and acarbose on DR are warranted.
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Sarcopenia and diabetes are two age-related diseases that are common in the elderly population, and have a serious effect on their general health and quality of life. Sarcopenia refers to the progressive loss of muscle mass, strength and function, whereas diabetes is a chronic disease characterized by elevated blood sugar levels. The comorbidity of sarcopenia and diabetes is particularly concerning, as people with diabetes have a higher risk of developing sarcopenia due to the combination of insulin resistance, chronic inflammation and reduced physical activity. In contrast, sarcopenia destroyed blood sugar control and exacerbated the development of people with diabetes, leading to the occurrence of a variety of complications. Fortunately, there are a number of effective treatment strategies for sarcopenia in people with diabetes. Physical exercise and a balanced diet with enough protein and nutrients have been proved to enhance the muscular quality and strength of this population. Additionally, pharmacological therapies and lifestyle changes can optimize blood sugar control, which can prevent further muscle loss and improve overall health outcomes. This review aims to summarize the pathogenesis and comprehensive treatment strategies of sarcopenia in elderly patients with type 2 diabetes, which help healthcare professionals recognize their intimate connection and provide a new vision for the treatment of diabetes and its complications in this population. Through early identification and comprehensive treatment, it is possible to improve the muscle function and general quality of life of elderly with diabetes and sarcopenia.
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1 Introduction

Sarcopenia is defined as a disease characterized by progressive loss of skeletal muscle mass and function, which usually occurred in the elderly (1, 2). The loss of skeletal muscle mass and function seriously affect the physical health and quality of life of individuals, leading to difficulties in daily activities and increased risk of falls and fractures, even shortened life expectancy of the elderly (3). Risk factors leading to sarcopenia include age, unbalanced diet and physical inactivity. In addition, inflammation and chronic diseases may accelerate its development (4). In 2016, sarcopenia was officially recognized as a disease with distinctive characteristics by the medical community (5). The prevalence of sarcopenia is approximately 10% in individuals aged 60 and above, whereas it reaches 20% to 30% in those aged 80 and above (6, 7). In view of the aging trend of global population, sarcopenia has emerged as an important health concern. The global population aged 65 years or above is expected to increase from 9% in 2019 to nearly 17% in 2050, which increase the risk of sarcopenia (8).

Diabetes mellitus is a chronic metabolic disease, which is mainly characterized by elevated blood sugar levels (9, 10). More than 60% of individuals aged 65 and above have diabetes, while 50% of the elderly people have prediabetes (11). According to the estimation of the International Diabetes Federation, the number of people with diabetes will reach up to 783 million by 2045 (12). Type 2 diabetes mellitus (T2DM) is the most common type, accounting for more than 90% of people with diabetes (13–15). Persistent hyperglycemia can lead to a range of complications, which have a serious impact on the cardiovascular system, kidneys and eyes, thereby posing serious threats to the overall health (16–19). The complications and severity of diabetes lead to a considerable morbidity and mortality rate, make it one of the most urgent worldwide public health problems (20).

Sarcopenia and diabetes in the elderly are intricately linked and have a negative impact on each other (21). Sayani Das examines the relationship between diabetes and sarcopenia in India’s elderly population revealed that individuals with diabetes had a significantly higher risk of sarcopenia (22). Moreover, recent meta-analyses have revealed that the prevalence of sarcopenia is two to three times greater among patients with diabetes in comparison to those without the condition (23, 24). Osaka et al.’s study further underscored the connection by indicating that sarcopenia elevates the risk of nephropathy in people with diabetes (25). According to Feng et al.’ study, the pooled prevalence of sarcopenia in people with diabetes reached up to 18%, which has become an urgent situation to be prevented early (26). The purpose of this paper is to review the pathogenesis and comprehensive treatment strategies of sarcopenia in patients with T2DM, which aims to help clinicians and nutritionists to identify and intervene at an early stage, ultimately enhancing the overall health and well-being of these patients.




2 Sarcopenia


2.1 Definition and prevalence of sarcopenia

In 1989, the term sarcopenia was initially coined by Rosenberg in 1989 (27, 28). The European Working Group on Sarcopenia in the Elderly (EWGSOP) first defined sarcopenia in 2010 as “age-related, generalized decrease in muscle mass and/or decrease in muscle strength or muscle physiology” (29). A similar agreement was subsequently announced in 2014 by the Asian Sarcopenia Working Group, who also altered the pertinent diagnostic cutoff for the Asian population (30). Sarcopenia was recognized as a disease on a global scale and included in the ICD-10 (M62.84) in 2016 (5). The European Sarcopenia Working Group presented a revised definition of sarcopenia in 2018 and an explanation of muscular function. Sarcopenia was defined as the gradual loss of muscle mass, strength, and muscle function (31). It is difficult to determine the prevalence of sarcopenia consistently since different cutoffs and measurement methods result in dramatically different incidences of the disease across studies. According to a meta-analysis of studies, the prevalence in adults over 60 ranges from 10 to 27 percent (32). The number of sarcopenia patients worldwide will rise year after year as the population ages.




2.2 Diagnosis process of sarcopenia

The diagnostic process for sarcopenia was updated by the European Working Group on Sarcopenia in the Elderly as Find-Assess-Confirm-Severity, as illustrates in Figure 1, noting that sarcopenia is considered severe when low muscle strength, low muscle mass and low physical function are all detected (31).




Figure 1 | The diagnostic process for sarcopenia.





2.2.1 SARC-F questionnaire

The European Working Group on Sarcopenia in the Elderly recommends using the SARC-F questionnaire to assess sarcopenia risk. The SARC-F is a simple five-item self-assessment questionnaire created by Morely (33). SARC-F is a rapid and simple screening method for sarcopenia in the elderly, which has been used widely used worldwide (34). Strength, assisted walking, getting up, climbing stairs, and falling are all assessed. A sarcopenia risk is present if the sum of the scores for each of the five items is greater than or equal to 4 points providing that the maximum total score is 10 points (35). However, due to the high specificity and relatively low to moderate sensitivity of SARC-F in predicting sarcopenia, many patients with sarcopenia may go misjudged (36–39). As a result, the SARC-CalF approach has been proposed, which adds a maximum leg circumference based on SARC-F. The results of several researches indicated that this method significantly improves the sensitivity and accuracy of evaluation (40, 41).




2.2.2 Muscle strength

Muscle strength is the maximal force that one or more muscular groups may generate. The European Working Group on Sarcopenia in the Elderly regards muscle strength as the main reference index for sarcopenia. It is recommended to utilize grip strength as an additional measure when assessing muscular strength because it has a relatively positive correlation in other body sections and is simple to use (42, 43). Upper limb muscle grip strength, which can be measured by a manual ergometer, is typically used to assess grip strength in the upper limbs. The chair stand test measures how quickly patients can stand up from the chair without the aid of their arms, and to assess the muscle strength of their lower limbs (31).




2.2.3 Muscle mass

Muscle mass refers to the total amount of skeletal muscle in the body. Computed tomography (CT), magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry (DXA), and bioelectrical impedance analysis (BIA) are common used to estimate the skeletal muscle mass (31). CT and MRI are the current gold standard for assessing muscle mass with high accuracy and reproducibility. Their use is restricted due to their high price, complexity, and high radiation exposure from CT (44). DXA is considered to be one of the ideal methods for determining muscle mass with its quick operation and minimal radiation exposure (45). However, DXA equipment cannot be widely used in hospitals and communities since it is difficult to carry. Instead, due to its simplicity, portability, and affordability, BIA is better suited for extensive hospitals and communities screening and can be used as a less expensive alternative to assess muscle mass (29, 44, 45).




2.2.4 Muscle function

Muscle function is defined as objectively measured exercise-related systemic function. Its testing methods include daily pace assessment, short-physical performance battery (SPPB), the chair rising test (CRT), and stand-up and go test (Time-up and go test, TUG). Daily Gait speed is a quick, secure and reliable sarcopenia test, which can indicate the health status and is related to their survival possibility of the elderly (46). A walking speed of less than 0.8 m/s is suggested by EWGSOP2 as a sign of severe sarcopenia (31). SPPB is a compound test method of muscle function, which is a standard method in both research and clinical application and is widely used (47, 48). Three tests are included in SPPB, with the highest score of 4 points and the full score of 12 points for each individual test. The risk of poor muscle function is indicated by a score of 9 or less.





2.3 Risk factors of sarcopenia


2.3.1 Intrinsic factors

Sarcopenia is a complicated and multifactorial process, which is influenced by both intrinsic and extrinsic factors, as depicted in Figure 2. Age is considered as a key intrinsic risk factor of sarcopenia. Because age not only directly affects muscle quality and function, but also indirectly increases the risk of sarcopenia by bringing some problems such as hormone disorder, mitochondrial damage and chronic inflammation. With the increase of individual age, the metabolic rate of human body gradually decreases. This metabolic leads to the inhibition of protein synthesis, thereby impairing muscle repair and regeneration capabilities (1). Age-related muscle tissue alterations include serious loss of muscle mass, modifications in muscle fiber morphology, deterioration of muscle function, and reduction of muscle contraction time and strength. Consequently, sarcopenia is widely regarded as an age-related disease (49). Furthermore, age also affects the structure and function of skeletal muscle fibers. As age advances, there is a gradual decrease in the quantity and size of muscle fibers with the skeletal muscle, along with an increase in the presence of fat and connective tissue within the muscle matrix, all of which contribute to the degradation of muscle mass (50). Therefore, it can be seen that age is an important factor of sarcopenia, which affects the health and function of muscles in many ways.




Figure 2 | Intrinsic and extrinsic risk factors of sarcopenia.



Moreover, the imbalance of the human endocrine system and the fluctuation of hormone levels caused by aging contribute to an increased risk of sarcopenia by affecting skeletal muscle function. An obvious example is that with adult man ages, the decrease of muscle mass and strength is closely related to steady decline testosterone levels (51). As skeletal muscle undergoes the aging process, the level of reactive oxygen species (ROS) gradually increases, disrupting the body’s ability to maintain oxidative balance. This disruption decreases myogenic differentiation and triggers regenerative errors during the skeletal muscle degeneration (52–55). ROS are mainly produced in mitochondria, which also serve as the primary target of intracellular oxidative stress. High levels of ROS can damage mitochondria, resulting in abnormal mitochondrial function, and potentially contributing to the development of sarcopenia (56–58). In addition, the proliferative and differentiation capabilities of satellite cells decline significantly with age, compromising the regenerative potential of muscle cells. These changes result in fibrosis of aging muscle, thereby considered as a pivotal factor in the initiation of sarcopenia (59–61).

Chronic inflammation related to aging is another important risk factor for sarcopenia (62). The increase of pro-inflammatory cytokine levels and the decrease of anti-inflammatory cytokine levels in vivo are indicators to assess chronic inflammation. Loss of muscle mass and strength is associated with an increase in inflammatory markers in the blood, which reduces lower limb function and physical activity (63, 64). According to several horizontal and longitudinal studies, sarcopenia is associated with high levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP). These inflammatory factors are secreted by inflammatory and immune cells, which inhibit muscle synthesis and promote muscle degradation, consequently result in sarcopenia (65–67).




2.3.2 Extrinsic factors

The decline of exercise ability are the main reasons for the loss of muscle mass and strength in the elderly (68). Muscle tissue is highly plastic, which needs constant participation and stimulation under load to maintain the proper metabolism and repair functions. Lack of exercise will result in insufficient muscle stimulation, deceleration of protein synthesis, and decrease of muscle mass (69). Moreover, fear of falling causes psychological burden to the elderly, which makes them unwilling to do exercise and increases the risk of muscle loss. At the same time, physical inactivity can easily lead to obesity in the elderly. The weight of the elderly mostly increases in the form of fat rather than thin tissue, and the occurrence of sarcopenia is usually accompanied by the growth of adipose tissue, which promotes each other (70).

In addition to physical inactivity, it is worthing noting that the elderly who have been engaged in a sedentary lifestyle for a long time face a higher risk of sarcopenia. When sedentary time exceeds 2 hours, even physically active elderly people are prone to sarcopenia, which emphasizes that physical activity itself cannot offset the harmful consequences of long-term inactivity (71). Although muscle mass and muscle fibers will naturally decrease with age, the risk of sarcopenia can be effectively reduced by performing moderate to high-intensity physical activities instead of sitting for a long time (72).

Other extrinsic factors such as muscle disuse caused by physical trauma, chronic stress and long sleep will increase the risk of muscle loss (73–75). In addition, long-term exposure to certain pollutants or toxins will adversely affect muscle health and overall health. Extreme weather conditions or geographical location may affect individuals’ ability to engage in outdoor activities and obtain fresh food, thus increasing the risk of sarcopenia. It must be recognized that the progress of sarcopenia is a dynamic process, and the early symptoms are often difficult to find, which leads to the neglect of this disease. In fact, it is very common for most elderly people to take this problem seriously only when pathological conditions and adverse consequences appear. Therefore, it is very important to pay attention to sarcopenia in the elderly at an early stage.






3 Pathogenesis of interaction between sarcopenia and T2DM


3.1 Insulin resistance and muscle mass

Insulin resistance is considered as the main pathophysiological basis of T2DM, which plays an important role in the occurrence and development of sarcopenia (76–78). Insulin is very important to control metabolism, and its main function is to promote protein synthesis, muscle growth and the absorption and utilization of glucose by muscle tissue (79). Insulin resistance occurs when the sensitivity and reactivity of insulin receptors decrease. As a result, blood sugar fails to effectively enter muscle tissue. This leads to insufficient nutrition supply of muscle tissue, which leads to muscle atrophy and reduction (80). Skeletal muscle can absorb 75% of blood sugar through insulin signaling system (81). Therefore, muscle cells with insulin signaling system problems will not be able to effectively use the glucose in the blood stream, leading to accelerated protein decomposition and accelerated muscle loss (82–84). Low muscle mass may make blood sugar control disorder, further aggravating the development of diabetes (78).




3.2 Hyperglycemia

Hyperglycemia is a significant risk factor leading to the loss of muscle mass and function during aging (85), which affect the development and progress of sarcopenia through various mechanisms. Firstly, hyperglycemia leads to an increase in the formation of advanced glycation end products, which accumulate in muscle tissue, destroy muscle contraction and endothelial function, and finally worsen muscle function (86). Secondly, the oxidative stress and inflammatory reaction caused by hyperglycemia will lead to muscle cell damage and cell death (87, 88). In addition, the increase of blood sugar level declines the responsiveness of muscle cells to insulin, which reduces the absorption and utilization of glucose and amino acids by these cells. Muscle tissue cannot get enough nutritional support, leading to the aggravation of sarcopenia (89). Lastly, hyperglycemia affects the energy metabolism of muscle cells by destroying the balance between glycogen production and decomposition. This disorder leads to the decrease of glycogen storage in muscle cells, which leads to the insufficient energy supply of these cells and accelerates the onset of sarcopenia (90). In a word, hyperglycemia poses many threats to muscle health in the process of aging, affecting the structure and function of muscle tissue.




3.3 Oxidative stress and inflammatory reaction

Muscle atrophy in people with diabetes mainly comes from oxidative stress and inflammation. Chronic inflammation, oxidative stress, insulin resistance, the formation of advanced glycation end products and hyperglycemia are all linked to cellular redox imbalance (88, 91). This factors together hinder the metabolism of protein in skeletal muscle, leading to increased oxidative damage of DNA, lipids and protein (92). The increase of lipid metabolites in patients with T2DM can lead to excessive production of ROS. This overproduction can be alleviated by antioxidant enzymes, which play a vital role in regulating muscle regeneration, inducing angiogenesis and reducing muscle fibrosis. Furthermore, the high level of ROS will reduce muscle fiber size and muscle mass, destroy muscle homeostasis, interfere with muscle production, and thus aggravate muscle atrophy (93). Inflammatory response is a complex and important biological mechanism, which responds to pathogens and injury stimuli by activating immune cells and releasing inflammatory mediators, thus protecting the body against injury (94). However, persistent chronic inflammation may represent a potential pathological condition that damages muscle tissue and promote the development and progress of sarcopenia (95).




3.4 Sarcopenic obesity

Sarcopenic obesity (SO) is defined as the co-existence of obesity and sarcopenia in a consensus achieved by the European Society for Clinical Nutrition and Metabolism and the European Association for the Study of Obesity (ESPEN-EASO) in 2022 (96). The prevalence of sarcopenic obesity is high among the elderly, with about one in every ten people suffering from it (97). A large number of studies have shown that SO can increase more negative effects than sarcopenia or obesity alone, including a significant increase in the probability of falling, disability (98). Obesity exists in both people with sarcopenia and diabetes. A study shows that more than half of diabetics are obese at the same time (99). Therefore, the coexistence of SO and T2D has become a common health problem. Studies have shown that the prevalence of SO in diabetic patients is as high as 27%, and it is related to serious adverse consequences (100). Obesity and T2D are one of the main causes of the dysfunction of skeletal muscle stem cell regeneration, which is manifested by the loss of muscle content and the progressive decline of glucose and lipid metabolism of skeletal muscle, thus accelerating the process of diabetes and entering a vicious circle (101). Therefore, we should pay attention to the early screening and identification of SO in people with diabetes, and choose appropriate intervention measures to reduce the incidence and various adverse outcomes in this population.





4 Comprehensive treatment strategies


4.1 Control of blood sugar level

Diabetes is a chronic disease characterized by elevated blood sugar level, which can lead to the occurrence of various complications. Among these, muscle loss, known as sarcopenia, is a common complication influenced by high blood sugar. The decrease of mitochondrial activity induced by hyperglycemia aggravates insulin resistance and impairs energy metabolism (102). Furthermore, the inflammatory responses triggered by hyperglycemia will further lead to insulin resistance and muscle atrophy by inhibiting insulin signaling (103). Therefore, blood sugar control is crucial for people with diabetes and sarcopenia. Effective management of blood sugar level can slow down the rate of muscle loss and reduce protein decomposition. In well-controlled people with diabetes, stable insulin level contributes to the synthesis of muscle protein and promotes muscle quality and strength. This can not only prevent the onset of sarcopenia, but also accelerate muscle growth and repair, and ultimately enhance the overall muscle quality and body function. Skeletal muscle, as the most important exercise organ of the human body, assist in storing protein, regulating glucose metabolism and stabilizing blood sugar level, contributing to overall health of the body (81, 104, 105).




4.2 Nutrition intervention

Compared with the general population, people with diabetes face a higher risk of malnutrition and are more prone to sarcopenia. Nutritional therapies have the potential to prevent or even reverse sarcopenia and frailty (106). Two elderly patients with malignant hematological diseases were studied by Matsunaga et al., and the effectiveness of rehabilitation treatment on sarcopenia was reported (107). Chan et al.’s study noted that expanding nutritional counseling for people with diabetes and effectively reduce the incidence of sarcopenia (108). Several studies demonstrate that diet is no obvious evident benefit for elderly with diabetes and sarcopenia (102, 103, 109). However, the majorities of studies have consistently shown the positive effects of diet and nutrition intervention in the prevention and control of sarcopenia (110–119). Moreover, for many elderly people who cannot exercise, nutritional intervention is still the most promising treatment and prevention strategy (120, 121). Therefore, it is crucial to emphasize the importance of a balanced diet, comprehensive nutrition and vigilant monitoring of diabetes and malnutrition in the elderly. The comprehensive overview of the relationship between nutritional intervention and sarcopenia is shown in Table 1.


Table 1 | Studies on the effect of nutritional intervention on sarcopenia in elderly people with diabetes.





4.2.1 Protein

Protein intake is beneficial to the elderly people with both sarcopenia and T2DM. Increasing protein’s habitual intake can not only effectively improve blood sugar control and maintain muscle mass, but also promote weight control, reduce inflammation and increase insulin sensitivity (122). Protein is a key basic element of muscle function and an indispensable nutrient for muscle synthesis. Wu et al. revealed that the increase of protein intake was related to the increase of grip strength and the decrease of prevalence of sarcopenia (123). Many studies have consistently confirmed that adequate intake of protein can not only stimulate the synthesis of protein in muscle, but also reduce the degradation process of protein and improve the effective utilization of nutrients in muscle (124–126). In addition, proper protein intake has a positive effect on blood sugar regulation, which helps to reduce the risk of diabetes. Protein intake can directly promote postprandial insulin secretion, which may be beneficial to the blood sugar regulation of elderly T2D patients (127). Studies have pointed out that the elderly with sarcopenia should consume 1.6g/kg of protein every day, and the ESPEN expert group and the PROT-AGE research group also suggested that people with chronic diseases (such as diabetes) should consume about 1.2-1.5g/kg/day of protein (128–130). Therefore, higher protein intake should be encouraged for the elderly people with sarcopenia and T2DM.




4.2.2 Essential amino acids

Amino acids are the basic units of muscle protein, and the impact of protein consumption on the rate of muscle synthesis mainly focus on essential amino acids (131, 132). These essential amino acids play a vital role in both muscle synthesis and maintenance, demonstrating a linear relationship with muscle protein synthesis within a specific dosage range (132). In particular, leucine stands out because of its remarkable stimulating effect (133–135). Long-term continuous intake of essential amino acids rich in leucine is related to significant enhancement of skeletal muscle mass, strength, and walking speed in the elderly (136). Rieu et al. studied the completely balanced diet of 20 healthy male subjects with or without leucine, and found that leucine is effective in promoting the synthesis of muscle protein and counteracting the influence of sarcopenia (137). A study emphasizes that leucine can act as insulin secretagogue to effectively improve postprandial blood glucose control and promote the synthesis of muscle protein (138). Therefore, ensuring adequate dietary intake of protein and essential amino acids has become a key factor to maintain overall health and function.




4.2.3 Vitamin D and calcium

Vitamin D play an important role in maintaining muscle health and has a direct impact on muscle development. Vitamin D is a fat-soluble nutrient that strengthens bone health by promoting the absorption of essential minerals such as calcium and phosphorus. A paired case-control study by Yang et al. showed that vitamin D deficiency was associated with an increased risk of sarcopenia (139). Compared with young women with sufficient vitamin D level, young women with insufficient vitamin D level showed a decrease in muscle mass, and at the same time, the fat penetration in muscle increased by about 24%, further highlighting the far-reaching influence of vitamin D on muscle strength (140). In addition, compared with people with sufficient vitamin D, the grip strength of the elderly with low serum vitamin D level is significantly reduced (141). Visser et al. conducted a longitudinal aging study and found that vitamin D deficiency is not only associated with the weakening of muscle function and the onset of sarcopenia, but also increases the risk of osteoporosis and fracture (142). Individuals with sarcopenia consume lesser essential nutrients such as calcium, iron and zinc than the general population, further aggravating the problems related to muscle health (143). Encouragingly, studies involving elderly women show that continuous supplementation of vitamin D and calcium can significantly improve skeletal muscle performance and reduce the incidence of falls (144). These comprehensive studies emphasize the potential benefits of vitamin D and calcium supplements in promoting muscle health, especially in the elderly and individuals with chronic diseases.




4.2.4 Omega-3 fatty acids

A growing body of evidences emphasize the potential role of omega-3 fatty acids in preserving and regulating the quality and function of skeletal muscle. Robinson et al.’ study on diet and its relationship to grip strength in community-dwelling older men and women revealed a positive correlation between eating fatty fish and increasing grip strength (145). Dos Reis et al.’s study revealed that the intake of omega-3 fatty acids is negatively correlated with the incidence of sarcopenia, and a favorable relationship with the skeletal muscle mass index of limbs was also proved (146). A systematic meta-analysis conducted by Bird et al. further supported these findings, emphasizing the positive effects of supplementation of omega-3 long-chain polyunsaturated fatty acids on muscle quality and strength (147). A study showed that omega-3 fatty acid supplements are also expected to reduce inflammation (148). Rats fed with a combination of omega-3 polyunsaturated fatty acids derived from fish oil and wheat oligopeptides showed significant potential to prevent age-related muscle loss and reduced oxidative stress and inflammation in skeletal muscle (149). The comprehensive findings of these studies demonstrate that omega-3 fatty acids have positive and multifaceted potential in muscle protection and inflammation reduction, and are expected to become a potential nutritional support strategy for elderly patients with sarcopenia.





4.3 Physical exercise

Physical exercise is considered as a safe and efficient intervention measures to prevent and treat diabetes mellitus complicated with sarcopenia. Participating in any form of physical activity can significantly improve sarcopenia in the elderly, which has been supported by a lot of research (116, 150–157), as shown in Table 2. On a global scale, physical exercise occupies a central position as the main prevention and treatment method of sarcopenia (31). Studies from different countries have consistently emphasized the far-reaching advantages of regular physical activity in maintaining muscle quality and function (158–162). Studies have emphasized the dual benefits of aerobic exercise and anaerobic exercise in reducing insulin resistance. Aerobic exercise can especially enhance insulin sensitivity, while resistance training and strength training can also significantly improve insulin resistance (163, 164). For those elderly who struggle with sarcopenia, physical exercise, with special emphasis on resistance training, is considered as an effective strategy to combat the decline of activity ability related to age-related chronic diseases (165–168). When combined with nutritional supplements, resistance training can maximize its intervention (169, 170). According to international guidelines, it is recommended that patients with T2DM participate in resistance training at least twice a week (171). Therefore, it is imperative to incorporate resistance training into the exercise guide tailored for the elderly.


Table 2 | Studies on the effect of physical exercise on sarcopenia in elderly people with diabetes.






4.4 Selection of antidiabetic drugs

The effect of antidiabetic drugs on sarcopenia is still ongoing research topic, with certain drugs demonstrating unclear effects. Some antidiabetic drugs, particularly long-term use of sulfonylurea drugs, such as glinide, gliclazide and glibedi, have been associated with muscle loss or injury. These drugs play a role by inhibiting KATP channel to stimulate insulin secretion (172). According to a large number of clinical reports, this mechanism is related to rapid skeletal muscle atrophy (173–175). On the contrary, some antidiabetic drugs show promise in maintaining muscle quality. In a study by Lee et al., it was observed that elderly men with diabetes experienced rapid skeletal muscle loss, but those who used insulin sensitizers such as metformin or thiazolidinedione lost significantly less weight than those who did not receive such treatment. This indicates that insulin sensitizer may weaken muscle loss (176). Some other studies have also shown that insulin administration can increase the skeletal muscle mass or gait speed of patients with diabetes, which may slow down sarcopenia in patients with T2DM (177–179). However, it is impossible to overlook the weight gain caused by insulin use (180). In conclusion, the effect of antidiabetic drugs on sarcopenia varies with specific drugs and individual conditions. Further clinical research is needed to fully clarify the complex relationship between antidiabetic drugs and sarcopenia.





5 Conclusion

In this study, the pathogenesis of sarcopenia in people with diabetes and comprehensive treatment strategies were summarized. There is a complex interrelationship between the two diseases. Type 2 diabetes leads to the progress of sarcopenia, and conversely, sarcopenia exacerbates the severity of diabetes. Lifestyle choice, age-related metabolic changes, elevated blood sugar levels and insulin resistance all contribute to sarcopenia in patients with T2DM. Therefore, healthcare professionals need to pay more attention to the early prevention of muscle loss in elderly diabetes patients.

Effective prevention and treatment of sarcopenia complicated by diabetes requires dietary intervention rich in protein, essential amino acids, vitamin D, calcium and other important nutrients (including omega-3 fatty acids). In addition, it is very necessary to advocate moderate exercise and physical exercise among patients with T2DM and sarcopenia. Considering all kinds of exercise types and intensities, it is very important to customize these activities according to the needs of the elderly. Equally important is the management of blood sugar level and the improvement of insulin resistance. When prescribing antidiabetic drugs, clinicians should include sarcopenia in the evaluation of its pharmacological effects. However, there is no specific drug for sarcopenia at present, which emphasizes the importance of active prevention.

Age-related sarcopenia has become an urgent global health challenge as the population ages. Diabetes is still one of the most common chronic diseases among the elderly. The complicated interaction and common pathogenic mechanism between these two diseases have a far-reaching impact on the health of the elderly. Health care professionals must give priority to the early detection, screening and diagnosis of sarcopenia in people with diabetes, and formulate comprehensive and reasonable preventive measures in time, and ultimately promote the well-being of the elderly population.
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Metabolic disorders remain a major global health concern in the 21st century, with increasing incidence and prevalence. Mitochondria play a critical role in cellular energy production, calcium homeostasis, signal transduction, and apoptosis. Under physiological conditions, mitochondrial transfer plays a crucial role in tissue homeostasis and development. Mitochondrial dysfunction has been implicated in the pathogenesis of metabolic disorders. Numerous studies have demonstrated that mitochondria can be transferred from stem cells to pathologically injured cells, leading to mitochondrial functional restoration. Compared to cell therapy, mitochondrial transplantation has lower immunogenicity, making exogenous transplantation of healthy mitochondria a promising therapeutic approach for treating diseases, particularly metabolic disorders. This review summarizes the association between metabolic disorders and mitochondria, the mechanisms of mitochondrial transfer, and the therapeutic potential of mitochondrial transfer for metabolic disorders. We hope this review provides novel insights into targeted mitochondrial therapy for metabolic disorders.




Keywords: mitochondria, mitochondrial transfer, transplantation, metabolic diseases, therapy




1 Introduction

Metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, and gout, are major health concerns (1, 2). Diabetes has become one of the most prevalent health disparities, with an estimated 537 million adults aged 20-79 living with diabetes worldwide in 2021. This accounts for 10.5% of the global population in that age group. It is projected to rise to 643 million (11.3%) by 2030 and 783 million (12.2%) by 2045 (3). NAFLD, a common metabolic disorder, encompasses a spectrum of liver abnormalities from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and liver cancer (4–6).

Mitochondria are semi-autonomous, semi-self-replicating, highly dynamic organelles with their own circular double-stranded DNA molecules (7–9). They are responsible for coordinating cellular energy production and are involved in calcium signaling, cell growth and differentiation, cell cycle control, and cell death processes (8, 10–12). Mitochondrial dysfunction is a common underlying pathophysiological mechanism in many diseases, characterized by the generation of reactive oxygen species and accumulation of mitochondrial DNA (mtDNA) damage, leading to mitochondrial dysfunction (13–15).

In 2004, Rustom et al. discovered the existence of mitochondrial transport through tunneling nanotubes (TNTs) (16). Subsequent studies demonstrated the widespread ability of mammalian cells to acquire organelles from other cells, including the transfer of mitochondria between mammalian cells (17–21). Further research by Rustom et al. found that mesenchymal stem cells transfer mitochondria to recipient cells, rescuing injured cells, improving oxidative phosphorylation, increasing ATP production, and restoring mitochondrial function (22). Therefore, mitochondrial transfer holds potential therapeutic effects for metabolic disorders and their complications (23–25). This article provides a comprehensive review of research progress on mitochondrial transfer in the treatment of metabolic disorders, offering valuable insights into this field.




2 Association between metabolic disorders and mitochondria

Abnormal mitochondrial function contributes to pathological changes in cellular energy metabolism, disruption of fatty acid metabolism, and increased oxidative stress, leading to the development of metabolic disorders such as type 2 diabetes, obesity, dyslipidemia, and cardiovascular diseases. This section reviews the association between diabetes, obesity, NAFLD, and mitochondrial dysfunction.



2.1 Diabetes

Type 2 diabetes mellitus (T2DM) is associated with alterations in oxidative metabolism in insulin-responsive tissues. T2DM is characterized by reduced mitochondrial oxidative phosphorylation capacity and decreased mitochondrial content in skeletal muscle cells and hepatocytes. Insulin resistance occurs many years before the onset of T2DM. Acquired insulin resistance is associated with decreased mitochondrial activity in response to insulin stimulation, while inherited insulin resistance is typically linked to reduced basal mitochondrial activity, possibly due to decreased mitochondrial content (26). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a member of the transcriptional coactivator family, plays a central role in the regulation of cellular energy metabolism (27). Activation of PGC-1α has been shown to increase mitochondrial capacity for oxidative phosphorylation, restore mitochondrial superoxide production, promote insulin secretion in pancreatic β-cells, enhance insulin sensitivity in skeletal muscle and liver, and prevent diabetes microvascular complications (28). In T2DM, decreased expression of PGC-1α and its target genes leads to decreased mitochondrial ATP production (29) and increased ROS generation (30). Similar studies have also suggested that in some tissues associated with diabetic complications, exposure to excessive glucose or nutrient stress leads to decreased mitochondrial superoxide production, oxidative phosphorylation, and mitochondrial ATP generation (28). Obesity, T2DM, and aging are associated with impaired skeletal muscle oxidative capacity, reduced mitochondrial content, and decreased oxidative phosphorylation rates (31). Mitochondrial dysfunction may accelerate the progression of insulin resistance and subsequent organ dysfunction by increasing reactive oxygen species production, while lifestyle and pharmacological interventions can improve insulin resistance by enhancing oxidative phosphorylation capacity and mitochondrial content in early-stage diabetes cases (26).




2.2 NAFLD

NAFLD is considered a mitochondrial disease (32). In mouse models of simple steatosis or NASH, mitochondrial ATP synthesis is reduced, and mitochondria cannot oxidize sufficient fatty acids, leading to hepatic fat accumulation. Additionally, high-fat diet feeding leads to excessive calcium uptake by liver mitochondria, disrupting respiration and increasing ROS production (33). Mitochondrial fragmentation, mediated by Drp1 and MFF, has been shown to increase fatty acid oxidation in adipocytes and serves as a compensatory mechanism against nutrient overload (34, 35). Studies have demonstrated that hepatocyte-specific loss of mitochondrial fusion protein 2 (Mfn2) exacerbates NAFLD progression, inflammation, and hyperglycemia in high-fat diet-fed mice (36). Mitochondrial fragmentation may drive steatosis and NASH by reducing fatty acid oxidation. Moreover, mitochondrial fragmentation can activate mitophagy for the clearance of damaged mitochondria (34). It has been demonstrated that increased levels of fatty acids and ceramides raise the lysosomal pH in hepatocytes, impairing lysosomal function and halting autophagy, leading to the accumulation of damaged mitochondria (37). A recent study showed that hepatocyte-specific loss of Parkin, which selectively targets damaged mitochondria for mitophagy, exacerbates hepatic steatosis and insulin resistance in high-fat diet-fed mice (38). Therefore, reduced mitochondrial engulfment in NASH liver may be due to the failure or dormancy of mechanisms for the removal of damaged mitochondria, allowing the presence of a large number of damaged mitochondria (39).




2.3 Obesity

Mitochondria are closely associated with fatty acid synthesis metabolism and adipocyte function, thus influencing the development of obesity. Similar to diabetes, mitochondrial biogenesis is also reduced in obese individuals (40). Research by Forner et al. revealed that mitochondria in white and brown fat utilize specific isoforms for fatty acid degradation and biosynthesis. Mitochondrial isoforms Gpam, AGPAT2, AGPAT3, DGAT1, Agk, and Acp6 are enriched in the white mitochondrial fraction, and their activities are closely related to triglyceride biosynthesis in adipocytes (41). Studies have shown that decreased mitochondrial transfer from adipocytes to macrophages is associated with obesity in mice (42). Another hallmark of metabolically unhealthy adipocytes is mitochondrial dysfunction (43), which affects adipogenesis, adipokine secretion, lipid turnover, and lipolysis (44). Evidence suggests that obesity is associated with mitochondrial dysfunction in white adipose tissue, characterized by decreased mitochondrial DNA (mtDNA) content, decreased expression of electron transport chain (ETC) genes, impaired mitochondrial oxidative capacity, and elevated reactive oxygen species (ROS) levels (45). Additionally, Yu et al. reported that dysregulation of amyloid precursor protein impairs mitochondrial function in adipose tissue and promotes obesity (46).





3 Mechanisms of intercellular mitochondrial transfer

Since the discovery of mitochondrial transfer from endothelial progenitor cells to cardiomyocytes by Masamichi Koyanagi in 2005 (47), numerous scientists have identified additional evidences of intercellular mitochondrial transfer and investigated their underlying molecular mechanisms. Most studies indicate that mitochondria can be transferred through TNTs, extracellular vesicles (EVs), gap junction channels (GJCs), cell fusion, and mitochondrial extrusion. This section provides a review of the identified modes of mitochondrial transfer to date.



3.1 Mitochondrial transfer via tunneling nanotubes

In 2004, Rustom et al. observed the presence of TNTs in rat pheochromocytoma PC12 cells using 3D microscopy (16). TNTs are intercellular structures with diameters ranging from 50 to 200 nm. Subsequently, the formation of TNTs between endothelial progenitor cells and cardiomyocytes was demonstrated using MitoTracker labeling (47). Since the discovery of mitochondrial transfer through TNTs in mammalian cells, increasing evidence has emerged regarding their roles in apoptosis and tumorigenesis (Figure 1A). Wang and Gerdes found that mitochondrial transfer via TNTs could rescue apoptosis in UV-treated PC12 cells (48). Co-culturing UV-treated PC12 cells with untreated PC12 cells resulted in the formation of a novel type of TNT, through which mitochondria from healthy cells were transferred to UV-treated PC cells, protecting them from apoptosis (48). In 2022, Yang et al. demonstrated that marrow stromal cells could acquire mitochondria from rotenone-induced mitochondrial dysfunction myeloid cells through TNTs in co-culture systems, preventing mitochondrial dysfunction and apoptosis in recipient myeloid cells (49). Recent research has also revealed that tumor cells can “steal” mitochondria from immune cells through TNTs, highlighting the clinical relevance of this phenomenon (50). As mitochondria contain a separate mtDNA, their transfer through TNTs not only directly influences the metabolism of recipient cells but also affects the mitochondrial genome of the recipient cells. Valdebenito et al. found that TNTs were formed between GBM cells and primary astrocytes under co-culture and stress conditions. Mitochondria from tumor cells were transferred to primary astrocytes, and the transferred mtDNA contained genetic variants that altered the metabolism of the recipient cells (51).




Figure 1 | Mitochondrial transfer pathways. (A) Tunnel Nanotubes (TNTs). (B) Extracellular Vesicles (EVs). (C) Mitochondrial Extrusion. (D) Cell fusion. (E) Gap junction channels. Red mitochondria refer to mitochondria originating from the donor cell, whereas green mitochondria denote mitochondria originating from the recipient cell.






3.2 Mitochondrial transfer via extracellular vesicles

Cells can communicate with adjacent or distant cells through the secretion of EVs. EVs can be categorized into two types: microvesicles, which bud from the plasma membrane and have diameters ranging from 100 nm to 1000 nm, and exosomes, which are smaller vesicles (diameter < 150 nm) enriched with nuclear-derived components. While exosomes cannot carry intact mitochondria due to their small size, larger EVs have the capacity to transport complete mitochondria. Once attached to target cells, EVs can induce signal transduction through receptor-ligand interactions and can be internalized through endocytosis and/or phagocytosis or fuse with the target cell membrane, delivering their cargo into the cytoplasm (52). In 2012, Islam et al. demonstrated that bone marrow-derived mesenchymal stem cell (BMSC)-derived EVs can deliver mitochondria to damaged alveolar epithelial cells in a mouse model of lipopolysaccharide-induced acute lung injury, thereby preventing acute lung injury (53). Since then, more evidence of mitochondrial transfer via vesicles has been discovered (Figure 1B). Phinney et al. found that bone marrow-derived mesenchymal stem cells can transfer mitochondria to macrophages through microvesicles (54). Additionally, Peruzzotti-Jametti et al. demonstrated that EVs secreted by neural stem cells can rescue mitochondrial function in L929 Rho0 cells with mtDNA defects and integrate into the mitochondrial network of host inflammatory macrophages (55). Not only stem cells, but various cell types have been shown to transfer mitochondria through EVs to exert various biological functions. Hayakawa et al. found that astrocytes release extracellular mitochondrial particles after a stroke, which enter post-stroke neurons and promote ATP production and neuronal recovery (56). Hough et al. discovered that extracellular vesicles mediate mitochondrial transfer from airway myeloid progenitors to T cells (57). Collectively, these studies suggest that mitochondrial transfer through various types of extracellular vesicles is an effective mechanism for restoring cellular functionality.




3.3 Mitochondrial transfer via mitochondrial extrusion or internalization

In 2008, Nakajima et al. first described mitochondrial extrusion. Mitochondrial extrusion is a unique form of cell death mediated by tumor necrosis factor α, as it is not observed in cell death induced by the genotoxic drug cisplatin. During mitochondrial extrusion, fragmented mitochondria are detached from the cell via cell membrane vesicles, which engulf the mitochondrial fragments. When the membrane enclosing the mitochondria fuses with the cell membrane, the exposed mitochondria are released into the extracellular space, inducing cell death (Figure 1C). Mitochondrial extrusion and membrane blebbing require intact cellular scaffolds composed of actin and microtubules. Under physiological conditions, red blood cells extrude mitochondria during maturation, while under pathological conditions, cytoplasmic vesicles engulf mitochondrial fragments injected into mice with anti-Fas antibodies are extruded from hepatocytes (58). Additionally, Lyamzaev et al. found that mitochondria cluster near the cell nucleus, forming mitochondrial clusters that separate from the cytoplasm through membrane fission, termed “mitoptotic bodies,” which are then released from the cell (59).

Naked mitochondria or mitochondrial components can also be extruded and internalized without a carrier, a process known as blebbing and internalization (60). Kitani et al. demonstrated that isolated mitochondria can be internalized into cells through simple co-incubation using genetically labeled mitochondria. Mitochondrial internalization significantly improved mitochondrial function in cells depleted of mtDNA, and this effect was sustained for several days (61).




3.4 Mitochondrial transfer via cell fusion

While cell fusion can mediate mitochondrial transfer, related research in this area is limited. Cell fusion refers to the process whereby two independent cells merge their cell membranes, share organelles and cytoplasm, while maintaining intact cell nuclei. Permanent cell fusion results in the sharing of cytoplasm and the formation of a unique nuclear configuration, whereas partial cell fusion allows transient cell communication or exchange of organelles, such as mitochondria (23). Adrien et al. demonstrated that human mesenchymal stem cells can reprogram myocytes into an immature state through partial cell fusion and mitochondrial transfer (Figure 1D) (62). Co-culture of cardiac myocytes with human multipotent adipose-derived stem cells allowed partial cell fusion, facilitating the exchange of materials and mitochondria (62).




3.5 Mitochondrial transfer via gap junction channels

Gap junction channels (GJCs) are intercellular channels formed by the docking of two adjacent hemichannels (HCs) located in the plasma membranes of neighboring cells. Each HC is composed of six connexin (Cx) subunits, forming a hollow tubular structure (63). Direct transfer of mitochondria through GJCs is not possible due to the much smaller pore size of GJCs compared to mitochondria (63, 64). However, Alarcon-Martinez et al. discovered interstitial primitive TNTs (IP-TNTs), which consist of both TNTs and a distal Cx43-GJC connecting two recipient cells. Live imaging revealed the presence of mitochondria within IP-TNTs and their movement within these structures (Figure 1E) (65). However, mitochondrial transfer did not occur between recipient cells, indicating that GJCs cannot directly mediate mitochondrial transfer (65). Nonetheless, evidence suggests that GJCs based on Cx43 may play a role in TNT-mediated mitochondrial transfer. Norris used 3D electron microscopy and immunogold labeling of Cx43 to reveal that recipient cell mitochondria can internalize through Cx43-based GJC-mediated endocytosis into double-membrane autophagosome-like GJCs (66). Yao et al. observed that Cx43 in TNTs between induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) and BEAS2B cells was crucial for TNT formation, and knocking down Cx43 expression significantly affected TNT formation and reduced mitochondrial transfer between the two cell types (67). In contrast, enhanced Cx43 expression promoted mitochondrial transfer from astrocytes to neurons through TNT-like structures (68). These findings suggest that Cx43-based GJCs may contribute to TNT-mediated mitochondrial transfer.

In summary, while GJCs cannot directly mediate mitochondrial transfer, they may facilitate TNT-mediated mitochondrial transfer.





4 Methods of mitochondrial transplantation

Mitochondria can not only naturally transfer from cell to cell, but they can also be extracted, concentrated, and modified before transplantation into various cells for the treatment of metabolic diseases associated with mitochondrial dysfunction. In 1988, King et al. applied microinjection (Figure 2A) to inject isolated mitochondria containing chloramphenicol-resistant markers encoded by mitochondrial DNA (mtDNA) into human 143BTK- and HT1080-6TG cells, and found evidence of endogenous mitochondrial DNA replacement (69). However, microinjection can damage cells and is less effective than co-culture (70). In 2014, Tomoya Kitani discovered that genetically labeled mitochondria can be transferred to homogeneic and xenogeneic cells through simple co-culture (Figure 2B) (61). However, the internalization of isolated mitochondria into cells is challenging due to their relatively large size and negatively charged surface. To address this issue, Andres Caicedo developed a technique called MitoCeption, which involves slowly adding a suspension of mitochondria to recipient cells in a culture dish, followed by centrifugation and incubation in a culture incubator to enhance the efficiency of mitochondrial transplantation (Figure 2C) (71). However, this method has limitations as direct fusion and transfer between transferred and endogenous mitochondria are not possible, and the transfer efficiency is generally low. To overcome these challenges, Ting-Hsiang Wu and colleagues invented a novel method for transferring isolated mitochondria from donor mammalian cells to recipient cells using a photothermal nanoblade (Figure 2D), which consists of a 532 nm nanosecond pulsed laser, a nanoblade delivery micropipette, and a microscope. Under laser pulsation, pressure drives liquid flow in the micropipette, delivering mitochondria into the recipient cytoplasm (72). As this method requires complex laser and optical systems to operate, the team developed “MitoPunch” based on the technology of photothermal nanoblades, a pressure-driven mitochondrial transfer device that can simultaneously deliver isolated mitochondria to many target mammalian cells. This is a force-based mitochondrial transfer method previously described, which can generate stable isolated mitochondrial recipient (SIMR) cells that retain exogenous mtDNA permanently (Figure 2E). The MitoPunch device is versatile and has low assembly costs, making it a higher-throughput and more user-friendly system (73). While these methods offer high purity, the transplantation efficiency is relatively low. Mi Jin Kim developed a simple centrifugation-based method for mitochondrial transfer that can be applied to any type of cell (Figure 2F) (74). This method successfully transfers isolated mitochondria to target cells (74). Magnetic bead labeled mitochondria with the assistance of magnetic plates have also been found to be a method to improve the efficiency of mitochondrial transfer (Figure 2G) (75). Other substances have been found to facilitate the uptake of mitochondria by cells, such as cell-penetrating peptides Pep-1 (Figure 2H), biocompatible polymers (dextran‐triphenylphosphonium), which promote the uptake of mitochondria by recipient cells (76, 77). SS31, a novel cell-permeable antioxidant peptide, shows the ability to effectively mitigate and decrease the production of reactive oxygen species within isolated mitochondria (78). Furthermore, research finding indicates that doxycycline, an antibiotic drug, exhibit the potential to augment mitochondrial transfer within cancer cells, thereby facilitating the restoration of mitochondrial function (79).




Figure 2 | Mitochondrial transmission strategy. (A) Transfer isolated mitochondria to recipient cells via microinjection. (B) Co-incubate isolated mitochondria with recipient cells to facilitate mitochondria transfer. (C) Mitoception: Add mitochondrial suspension to the entire culture surface, followed by centrifugation of the culture plate at 1500 g for 15 minutes at 4°C. Subsequently, place them in a 37°C cell culture incubator and perform a second centrifugation under the same conditions after two hours. Incubate in the incubator for 24 hours. (D) Photo-nanotube: Employ laser pulses to induce pressure-driven liquid flow in the micropipette, facilitating the delivery of mitochondria into the recipient cytoplasm. (E) Mitopunch: Utilize a pressure-driven mitochondrial transfer device. (F) Centrifugal: Prepare mitochondria by centrifuging at 1500 g for 5 minutes without requiring additional incubation. (G) Magnetomitotransfer: Perform mitochondrial transfer of magnetically labeled mitochondria with the aid of magnetic plates. (H) Enhance mitochondrial transfer through peptide encapsulation on the mitochondrial surface.






5 Therapeutic potential of mitochondrial transfer in metabolic diseases

Cell therapy, as an emerging therapeutic approach, can be applied to the treatment of various diseases, including cancer, immune system disorders, and genetic diseases. However, the immunological rejection of xenogeneic cells severely limits their application. Many metabolic diseases are closely associated with mitochondrial dysfunction or mutations in mitochondrial DNA. Moreover, compared to cell therapy, mitochondria have lower immunogenicity, making them a potential tool for the treatment of various diseases through mitochondrial transfer. Clinical trials have demonstrated the application of mitochondrial transplantation in cardiovascular treatment. Pediatric patients, susceptible to myocardial ischemia-reperfusion injury following surgery, benefit from the direct injection of autologous mitochondria into the ischemic myocardium. These transplanted mitochondria enhance recovery and cell viability for up to 28 days without triggering adverse immune reactions (80). Retrospective studies involving pediatric patients with Ischemia-Reperfusion Injury (IRI) showcase the effectiveness of mitochondrial transplantation in reducing recovery duration and mitigating cardiovascular incidents (81). Furthermore, mitochondrial transplantation shows promise in addressing infertility and contributing to advancements in reproductive medicine. Despite the absence of conducted clinical trials for mitochondrial transplantation in metabolic diseases, numerous in vivo and in vitro experiments highlight its potential in treating such disorders (Figure 3).




Figure 3 | Treatment of metabolic diseases with mitochondrial transfer.





5.1 Applications of mitochondrial transfer in the treatment of diabetes and its complications

Complications of diabetes, including cardiovascular disease, neuropathy, nephropathy, and retinopathy, have been extensively documented (82–85). The utilization of mitochondria for the treatment of diabetes has also been widely explored. Rackham et al. found that under co-culture conditions, adipose-derived mesenchymal stem cells can transfer mitochondria to human pancreatic beta cells, thereby enhancing their insulin secretion function (86).

Mitochondrial dysfunction caused by T2DM increases the susceptibility of the myocardium to ischemia-reperfusion injury. Doulamis et al. studied the therapeutic effect of mitochondria isolated from diabetic or non-diabetic rats on ischemia-reperfusion injury in the hearts of diabetic rats. The results showed that mitochondria derived from diabetic rats produced significantly less ATP than those from non-diabetic rats. Furthermore, the study found that mitochondrial transplantation significantly enhanced post-ischemic myocardial function recovery and significantly reduced cardiomyocyte damage in diabetic hearts (87). A similar conclusion was drawn from another study where offspring rats exposed to pre-gestational diabetes and a high-fat diet displayed cardiac dysfunction, mitochondrial dysfunction, and compromised cellular bioenergetics. The extracellular transplantation of healthy mitochondria into cardiac cells of these offspring rats significantly improved cellular respiration in male rats and reduced apoptosis, but increased apoptosis in female rats (88).

Diabetic nephropathy (DN) is a common complication of T2DM that reduces the quality of life of patients. Yuan et al. found that mitochondrial transfer from mesenchymal stem cells (MSCs) to macrophages (Mφ) can inhibit inflammation in the kidneys of diabetic nephropathy mice by activating PGC-1. Under co-culture conditions of MSCs and Mφ, mitochondria from MSCs (MSCs-Mito) were transferred to Mφ, improving mitochondrial function in Mφ and alleviating kidney damage in DN mice (89).

Diabetes-associated cognitive impairment (DACI) poses a risk to patient health and increases the risk of major cardiovascular events, cardiovascular death, and all-cause mortality (90). Ma et al. evaluated the cognitive behavior of db/db mice using the Morris water maze test to investigate whether transplantation of platelet-derived mitochondria (Mito-Plt) could improve DACI. The results showed that Mito-Plt injected into the lateral ventricle were internalized into hippocampal neurons. One month after Mito-Plt transplantation, DACI in db/db mice was alleviated, mitochondrial quantity increased, mitochondrial function recovered, oxidative stress and neuronal apoptosis were reduced, and the accumulation of Aβ and Tau in the hippocampus was decreased. In conclusion, Mito-Plt transplantation alleviated cognitive impairment and mitochondrial dysfunction in db/db mice. This method may have potential applications in the treatment of DACI (91).

The above evidence suggests that mitochondrial transfer has therapeutic effects in diabetes and its complications including diabetic nephropathy, diabetic cardiomyopathy, and diabetes-associated cognitive impairment.




5.2 Application of mitochondrial transfer in the treatment of NAFLD

In 2017, Fu et al. reported the utilization of isolated mitochondria from liver cancer cells as a therapeutic agent for treating high-fat diet-induced fatty liver in mice. After intravenous injection of mitochondria into mice, serum transaminase activity and cholesterol levels decreased in a dose-dependent manner. Furthermore, this mitochondrial treatment reduced lipid accumulation and oxidative damage in the livers of fatty liver mice, improving energy production in liver cells and restoring liver function. This treatment strategy provides a potential new approach for the treatment of NAFLD (92). Similarly, Paliwal et al. used mitochondria isolated from normal rat chest muscles to treat metabolic syndrome rats induced by a high-fat diet (HFD) and streptozotocin (STZ). The results showed that mitochondrial transplantation reduced the levels of systolic and diastolic blood pressure, decreased blood glucose levels, and significantly decreased blood lipid levels in metabolic syndrome rats. Histopathological analysis showed improvements in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and significant restoration of liver morphology. In addition, enhanced mitochondrial biogenesis, reduced oxidative stress and inflammatory markers were observed (93). Hsu et al. demonstrated that bone marrow-derived mesenchymal stem cells (MSCs) can also treat non-alcoholic steatohepatitis (NASH). They transplanted bone marrow-derived MSCs into the livers of a non-alcoholic steatohepatitis mouse model, resulting in improvements in liver lipid content, tissue inflammation, and fibrosis. Co-culture of liver cells and MSCs revealed that mitochondria were transferred from MSCs to liver cells through TNTs. Therefore, MSCs can contribute to lipid breakdown in liver cells by providing oxidative capacity through the donation of mitochondria to liver cells, promoting the recovery of metabolic and tissue damage induced by NASH (94). Furthermore, Fu and colleagues injected isolated mitochondria from human hepatocellular carcinoma (Hep G2 cells) into the livers of fatty liver mice and found that this treatment improved liver energy production, reduced liver lipid accumulation and oxidative damage, and restored liver cell activity (92). Therefore, mitochondrial transfer may be a promising approach for the treatment of NAFLD.




5.3 Applications of mitochondrial transfer in the treatment of obesity

To date, there have been no reports on the use of mitochondrial transfer for the treatment of obesity, but studies have shown a relationship between obesity and mitochondrial transfer. Clemente-Postigo et al. found that pro-inflammatory cytokines such as interferon (IFN)-γ and lipopolysaccharide (LPS) activate macrophages toward an M1 polarization in white adipose tissue (WAT) of obese patients, while anti-inflammatory cytokines such as interleukin (IL)-4 and IL-13 drive macrophages toward an M2 polarization (95). Brestoff et al. also found that macrophages polarized to an M1 phenotype when treated with IFN-γ and LPS, resulting in reduced expression of the heparan sulfate (HS) biosynthetic genes in BV2 cells and impaired mitochondrial transfer from adipocytes to macrophages. Furthermore, in obese patients induced by a high-fat diet (HFD), both M1 and M2 macrophage populations showed reduced mitochondrial transfer (42). These studies suggest that reduced mitochondrial transfer from adipocytes to macrophages is a feature of obesity, and therefore, mitochondrial transfer may be a potential approach for the treatment of obesity.





6 Challenges

Although mitochondrial transplantation holds great potential, there are several challenges that hinder its clinical application. First, mitochondria possess their own DNA, which can be inherited through cytoplasmic transmission, raising safety concerns. During preclinical assessments of mitochondrial donation, a significant safety concern is the gradual increase in initial low levels of “mtDNA carryover” that co-transmits with the nuclear genome during mitochondrial transplantation, potentially increasing during pregnancy and posing a risk of severe mtDNA disease in offspring (96–98).

Second, xenogeneic mitochondrial transplantation raises concerns about immunological reactions, although the reaction is relatively low compared to cell transplantation. Xenogeneic mitochondria can activate innate immunity, with pattern recognition receptors (such as Toll-like receptors and Nod-like receptors) recognizing damage-associated molecular patterns (DAMPs) (99, 100). Transplantation of xenogeneic mitochondria into various tissues has been associated with increased markers of self-immunity and inflammation (101). Lin et al. further elucidated that mitochondrial stimulation directly triggers inflammatory responses in endothelial cells, leading to adhesion and activation of alloreactive T cells, ultimately increasing the risk of alloreactive transplantation rejection (102). Autologous and transplanted mitochondria may also interact with each other.

Next, it is crucial to take into account the potential impact of the isolation procedure on the structure and functionality of mitochondria obtained from cells or tissues. Research has demonstrated that this process elevates mitochondrial stress levels and promotes the generation of free radicals (103). Additionally, the isolation procedure may lead to the disruption of the outer mitochondrial membrane, facilitating the entry of cytochrome C into the buffer solution. Consequently, this disruption hampers oxygen consumption and ATP production (104). Hence, it is imperative to conduct various assays, including the utilization of fluorescent probes and electron microscopy, to thoroughly evaluate mitochondrial integrity and function prior to engaging in mitochondria transplantation (105–107).

Moreover, the efficiency of mitochondrial transplantation is often suboptimal. Despite the emergence of various methods to improve transfer efficiency, mitochondrial function is still affected. The commonly used differential centrifugation-based method suffers from low purity and is time-consuming (60, 108). However, recent advantages have introduced techniques like MitoPunch, which can simultaneously transfer mitochondria to 100,000 or more recipient cells, significantly improving the throughput and efficiency compared to existing methods (71). Continued advancements in techniques will increase the efficiency of future mitochondrial transplantation and make this approach more viable.

Additionally, the storage of mitochondria remains a challenge (109). Isolated mitochondria can maintain activity for 1-2 hours on ice. However, even with the use of preservatives, the integrity of the mitochondrial outer membrane is damaged when stored at -80°C (110). While storing mitochondria with cryoprotectants like DMSO and trehalose preserves outer membrane integrity, it impairs mitochondrial function (111, 112). Therefore, it is crucial to develop storage methods that maintain the stability and functionality of mitochondria (108).

Another consideration is whether transplanted mitochondria can effectively engage with other cellular organelles to ensure their functionality. Notably, previous studies have provided evidence that upon transplantation, exogenous mitochondria undergo fusion with endogenous counterparts (113). This transplantation process facilitates the integration of transferred mitochondria into the mitochondrial network of the recipient cell. Consequently, there exists the potential for transplanted mitochondria to establish functional associations with other organelles within the recipient cells (114).

Addressing these challenges will pave the way for the realization of mitochondrial transplantation as a viable therapeutic approach for treating various diseases including metabolic diseases.




7 Conclusion

This article provides a comprehensive review of the relationship between metabolic diseases and mitochondria, as well as the role of mitochondrial transfer in their treatment. However, despite the well-established association between mitochondrial dysfunction and metabolic diseases, there is a scarcity of studies exploring the therapeutic potential of mitochondrial transplantation or transfer. Most studies focus primarily on common diseases such as diabetes and NAFLD, leaving other metabolic diseases with limited research. In addition, most of the studies on mitochondrial transfer have been conducted in animal models, and their translation into clinical applications is yet to be realized.

Mitochondria exhibit low immunogenicity, offer convenient accessibility, and present minimal ethical concerns. As a result, employing mitochondria for the treatment of metabolic diseases holds remarkable advantages. Despite the limited number of clinical trials on mitochondrial therapy (115), advancements in technology hold immense potential for its extensive application, particularly in the treatment of metabolic disorders.
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Background

The relationship between type 2 diabetes mellitus (T2DM) and gallstone disease (GSD) have been incompletely understood. We aimed to investigate their phenotypic and genetic associations and evaluate the biological mechanisms underlying these associations.





Methods

We first evaluated the phenotypic association between T2DM and GSD using data from the UK Biobank (n>450,000) using a prospective observational design. We then conducted genetic analyses using summary statistics from a meta-analysis of genome-wide association studies of T2DM, with and without adjusting for body mass index (BMI) (Ncase=74,124, Ncontrol=824,006; T2DMadjBMI: Ncase=50,409, Ncontrol=523,897) and GSD (Ncase=43,639, Ncontrol=506,798).





Results

A unidirectional phenotypic association was observed, where individuals with T2DM exhibited a higher GSD risk (hazard ratio (HR)=1.39, P<0.001), but not in the reverse direction (GSD→T2DM: HR=1.00, P=0.912). The positive T2DM-GSD genetic correlation (rg=0.35, P=7.71×10-23) remained even after adjusting for BMI (T2DMadjBMI: rg=0.22, P=4.48×10-10). Mendelian randomization analyses provided evidence of a unidirectional causal relationship (T2DM→GSD: odds ratio (OR)=1.08, P=4.6×10-8; GSD→T2DM: OR=1.02, P=0.48), even after adjusting for important metabolic confounders (OR=1.02, P=0.02). This association was further corroborated through a comprehensive functional analysis reflected by 23 pleiotropic single nucleotide polymorphisms, as well as multiple neural and motor-enriched tissues.





Conclusion

Through comprehensive observational and genetic analyses, our study clarified the causal relationship between T2DM and GSD, but not in the reverse direction. These findings might provide new insights into prevention and treatment strategies for T2DM and GSD.





Keywords: type 2 diabetes mellitus, gallstone disease, Mendelian randomization, bidirectional, causal relationship, genetic association, cohort





Introduction

Both type 2 diabetes mellitus (T2DM) and gallstone disease (GSD) are prevalent and expensive global public health issues (1, 2). The coexistence of these two conditions, known as multimorbidity, poses complex challenges for clinical management (3). For example, while laparoscopic cholecystectomy is the gold standard treatment for GSD (4), individuals with diabetes are usually high-risk candidates for any surgery. Therefore, it is imperative to comprehend the association between T2DM and GSD, as well as the underlying biological mechanisms, to ensure effective prevention and management of this multimorbidity.

The association between T2DM and GSD has been studied, but results have been inconsistent (5, 6). A Meta-analysis of prospective cohort studies found no association between diabetes and GSD risk (7), while two latest large-scale prospective cohorts reported a 31%-87% increased risk of GSD in individual with diabetes (5, 8). Conversely, three prospective cohort studies shown that GSD increased the risk of T2DM by 17%-42% (6, 9, 10). However, these observational studies are prone to bias, confounding, and reverse causality, making it difficult to establish a causal relationship. Mendelian randomization (MR) studies, which address confounding factors and reverse causation (11) have been used to evaluate the causal relationship between T2DM and GSD. Three MR studies consistently suggest that T2DM causally increases GSD risk (12–14), one study explored and refuted a reverse causal association (6). Despite the knowledge gained from exiting MR analyses advancing our understanding of causal relationships underlying T2DM and GSD, a few major gaps remain. Firstly, the only previous MR suggesting that GSD does not cause T2DM may be inaccurate due to its insufficient statistical power, using merely eight single nucleotide polymorphisms (SNPs) (15). Additionally, multivariable MR (MVMR) can be used to control for pleiotropic impact (16). However, previous MR studies either controlled for no potential confounders (6, 14) or only controlled for body mass index (BMI) (12, 13).

Despite the increasing number of studies reporting evidence between T2DM and GSD, the biological mechanisms linking these two conditions remain unclear. Genome-wide cross-trait analysis presents an opportunity to comprehensively characterize the shared genetic architectures across traits, shedding light on the underlying biological mechanisms of complex diseases (17). Moreover, both T2DM and GSD are moderately heritable, with SNP-heritability estimates of 25% for GSD (18) and 25%-69% for T2DM (19). Large-scale genome-wide association studies (GWASs) have identified a number of disease-associated variants for GSD (20) (N=62) and T2DM (21) (N=386), of which, several risk loci, including PNPLA3, are shared by both conditions (22). However, to the best of our knowledge, no genome-wide cross-trait analysis has been performed to systematically investigate the underlying shared genetic architectures of T2DM and GSD.

Therefore, we conducted a comprehensive bidirectional analysis to investigate the phenotypic and genetic associations between T2DM and GSD. Furthermore, we sought to identify the shared genetic architecture between T2DM and GSD in order to elucidate the underlying biological mechanisms. The study design is outlined in Figure 1.




Figure 1 | Overview of the study design, including the analysis methods in each phase. GSD, gallstone disease; GWAS, genome-wide association study; IVs, instrumental variables; PH, proportional hazards; T2DM, type 2 diabetes mellitus.







Methods




Data sources

Our observational analyses used data from UK Biobank (UKB). UK Biobank (UKB) is a large prospective cohort study that enrolled over 500,000 participants aged 40-69 years from England, Wales, and Scotland between 2006 and 2010. The study was approved by the National Health Service North West Multi-Centre Research Ethics Committee and all participants provided written informed consent. The diagnoses of T2DM and GSD were based on the International Classification of Diseases, Tenth Revision (ICD-10) and Ninth Revision (ICD-9), as well as UK-Biobank-specific codes, which are available in Supplementary Table S1. We included only 472,050 white participants and excluded those with a history of events at baseline. Participants who self-reported a history of T2DM/GSD at study enrolment (self-reported non-cancer illness, Data-Field 20002), but did not have an ICD-10 or ICD-9 code for T2DM/GSD were also excluded. The participant selection flow chart is presented in Supplementary Figure S1.

We performed genetic analyses using meta-analysis of GWAS summary data. As instrumental variables (IVs), we selected independent genome-wide significant SNPs (P < 5×10-8). In the European ancestry GWAS of T2DM, which included 898,130 participants (Ncase=74,124, Ncontrol=824,006), we identified 344 T2DM-associated index SNPs (21). Additionally, we incorporated 144 index SNPs associated with T2DM adjusted for BMI (T2DMadjBMI) from a GWAS involving 574,306 participants (Ncase=50,409, Ncontrol=523,897). The genotype data were imputed using the Haplotype Reference Consortium (HRC) reference panel. SNPs with a low imputation quality (INFO <0.4) were excluded. Additionally, SNPs with a minor allele frequency (MAF) < 0.05 were further filtered out. For GSD, the GWAS involving 550,437 European participants (Ncase=43,639, Ncontrol=506,798) identified 62 GSD-associated index SNPs (20). Data were imputed by the HRC.r1-1 reference panel for UBKK and the population-specific SISu v3 imputation reference panel for FinnGen. Subsequently, data were filtered by INFO>0.30, MAF>0.001.

We also collected the largest GWAS data available for BMI (23), Waist-to-hip (WHR) (23), WHRadjBMI (23), fasting insulin (FI) (24), FIadjBMI (25), total cholesterol (TC) (26), triglycerides (TG) (26), high density lipoprotein (HDL) (26), low density lipoprotein (LDL) (26), lipoprotein A (LPA) (27), apolipoprotein A (ApoA) (27), apolipoprotein B (ApoB) (27), smoking (28), and alcohol intake (28) to conduct our MVMR. All these GWAS data were imputed using the reference panel (e.g., HRC) and filtered based on INFO>(0.3~0.5) and MAF>0.01 or 0.001. Supplementary Table S2 provide further details on these GWAS summary data.





Statistical analysis




Survival analysis

To investigate the observational association between T2DM and GSD, we first assessed the proportional hazards (PH) assumption using stphtest in Stata. We then employed flexible parametric survival models (FPSMs) and reported the results as hazard ratios (HRs) with 95% confidence intervals (CIs). This approach allows us to account for time-dependent effects (29). We utilized restricted cubic splines (with four degrees of freedom) in implementation of FPSMs using stpm2 in Stata. The determination of the optimal number of knots and model was based on minimizing the Akaike’s information criterion and Bayesian information criterion (29). Covariates were selected based on existing literature and model selection.

The full model was ultimately implemented using potential confounders extracted from baseline questionnaires, including sex, age, assessment centre, the top 40 genetic principal components, BMI, Townsend deprivation index (TDI), education, smoking, alcohol intake, sleep duration, time spent watching television, physical activity (IPAQ), family history of T2DM, diastolic blood pressure (DBP), systolic blood pressure (SBP), TC, LDL and TG.

To ensure the reliability of our findings, we conducted two sensitivity analyses: 1) excluding participants who experienced events within the first two years after being diagnosed with exposure, to minimize potential reverse causation; and 2) using a flexible parametric competing risk regression model (30), with death as the competing event, to rectify overestimation of the probability for the event of interest occurring over time. All P values were two-sided, with statistical significance set at P<0.05. Survival analyses were performed using Stata version 13 (Stata Corp., College Station, TX).





Genome-wide genetic correlation analysis

Genetic correlation represents the average sharing of genetic effect between two traits that is not influenced by environmental confounders. We used linkage-disequilibrium score regression (LDSC) (31) to estimate the global genetic correlation (rg) between T2DM and GSD using GWAS summary data. We utilized pre-calculated HapMap3 LD scores computed from ~1.2 million common SNPs in European ancestry, commonly acknowledged as well-imputed. A Bonferroni-corrected P-value (0.025 = 0.05/2) was used to define statistical significance.





Mendelian randomization analysis

We conducted MR analyses to investigate the causal relationship between T2DM and GSD. Initially, we performed a bidirectional two-sample MR using the TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/). The inverse-variance weighted (IVW) method was utilized as primary analysis (32). To ensure the robustness of our findings, we also performed sensitivity analyses by: 1) using MR-Egger regression (33); 2) using the weighted-median method (34); 3) removing palindromic IVs; and 4) removing pleiotropic IVs. Additionally, we assessed the relevance and exclusion restriction assumption by examining the R2 values and F-statistics (>10) (35) of our IVs and by detecting MR-Egger intercept. A Bonferroni-corrected P-value (0.025 = 0.05/2) was employed.

To further validate the causal relationship identified in the univariable MR analysis, we conducted MVMR and considered potential confounders such as adult BMI, WHR, FI, TC, TG, HDL, LDL, LPA, ApoA, ApoB, smoking, and alcohol intake based on a review of existing literature.





Cross-trait meta-analysis

To identify genetic variants with pleiotropic effects, we performed a cross-trait meta-analysis using the Cross-Phenotype Association (CPASSOC) analysis approach (17) with GWAS summary data. The pairwise SHet was used to combine summary statistics as it can maintain statistical power when heterogeneity exists (17). We then obtained independent shared variants using the software PLINK (https://www.cog-genomics.org/plink/1.9/) with parameters (–clump-p1 5e-8 –clump-p2 1e-5 –clump-r2 0.2 –clump-kb 500). The significant index SNP was determined as the variant with Psingle-trait<1×10-5 (both traits) and PCPASSOC<5×10-8. We mapped the nearest gene of these shared SNPs identified by CPASSOC using Ensemble Variant Effect Predictor (https://grch37.ensembl.org/info/docs/tools/vep/index.html).





Fine-mapping credible set and colocalization analysis

To investigate the causal SNP for these index SNPs identified from CPASSOC, we performed a fine-mapping (FM) analysis using Bayesian FM method (36) to estimate credible sets of SNPs that had a 99% likelihood of containing the causal SNPs. We estimated a posterior inclusion probability (PIP) for each index SNP using the steepest descent approximation.

We further conducted colocalization analysis to determine whether shared SNPs identified by CPASSOC were shared causal variant or distinct causal variants using a Bayesian method, Coloc (37). A locus was considered colocalized if the posterior probability for H4 (PPH4) exceeded 0.7.





Transcriptome-wide association study analysis

We conducted a transcriptome-wide association study (TWAS) analysis using FUSION (38) to investigate specific tissue-gene pairs shared by T2DM and GSD. Firstly, we performed single-trait TWAS using the expression weights from 49 post-mortem Genotype-Tissue Expression project tissues. Subsequently, we combined the single-trait TWAS result and determined the shared gene-tissue pairs across T2DM and GSD. Bonferroni correction was used to identify expression-trait associations.







Results




Phenotypic association

The baseline characteristics of UKB participants included in the observational analysis are presented in Supplementary Tables S3 and S4. In terms of the impact of T2DM on GSD risk, 455,405 participants were followed for 5,306,344 person-years (11.7 ± 2.7 years), during which 1,553 participants with T2DM and 14,425 T2DM-free participants developed GSD. The PH assumption test indicated that T2DM and certain covariates, such as BMI, education, and alcohol intake, exhibited a time-dependent effect on GSD risk. The FPSM analysis revealed that participants with T2DM had a higher risk of GSD (HR=1.71, 95%CI=1.58-1.84, P<0.001), which decreased over time when adjusting for sex, age, assessment center, and the top 40 genetic principal components. Additional adjustment for confounders had minimal impact on the hazard of GSD in the final model (HR=1.39, 95% CI=1.29-1.50, P<0.001). Furthermore, the association between T2DM and GSD remained consistent when considering death as a competing event (HR=1.23, 95% CI=1.14-1.32, P<0.001), or when excluding participants who developed GSD within the first two years after T2DM diagnosis (HR=1.17, 95% CI=1.08-1.28, P<0.001) (Table 1).


Table 1 | Phenotypic association between type 2 diabetes mellitus and gallstone disease.



Regarding the impact of GSD on T2DM risk, 457,608 participants were followed for 5,348,344 person-years (11.7 ± 2.7 years). Among these participants, 1,601 participants with GSD and 22,952 GSD-free participants developed T2DM. The analysis showed participants with GSD had a higher risk of T2DM (HR=1.87, 95%CI=1.78-1.97, P<0.001) in model 1. However, the risk decreased significantly after further adjustment for potential confounders (HR=1.16, 95% CI=1.08-1.24, P<0.001) or when considering death as a competing event. Moreover, the association disappeared when participants who developed T2DM within the first two years after GSD diagnosis were excluded (HR=1.00, 95% CI=0.93-1.08, P=0.91) (Table 1).





Genetic correlation

After Bonferroni correction, a positive overall genetic correlation was observed between T2DM and GSD (rg=0.35, P=7.71×10-23). The positive overall correlation remained significant even after removing the effect of BMI on T2DM (rg=0.22, P=4.48×10-10) (Supplementary Table S5).





Mendelian randomization analysis

The bidirectional two-sample MR analysis revealed a causal association between T2DM and GSD risk (Figure 2). Genetic liability to T2DM increased the risk of GSD (odds ratio (OR)=1.08, 95%CI=1.05-1.11, P=4.6 ×10-8, PMR-Egger intercept=0.29). However, no causal association was observed between genetic liability to GSD and T2DM risk (OR=1.02, 95%CI=0.96-1.08, P=0.48, PMR-Egger intercept= 0.74). Sensitivity analysis using the MR-Egger (T2DM→GSD: OR=1.05, 95%CI=0.99-1.12, P=0.08; GSD→T2DM: OR=1.01, 95%CI=0.92-1.10, P=0.86) and weighted median (T2DM→GSD: OR=1.05, 95%CI=1.02-1.08, P=0.002; GSD→T2DM: OR=1.00, 95%CI=0.97-1.03, P=0.9) estimator methods supported the unidirectional causal association. Removing palindromic (T2DM→GSD: OR =1.06, 95%CI=1.03-1.09, P=2.7×10-4; GSD→T2DM: OR=1.00, 95%CI=0.95-1.06, P=0.98) and pleiotropic (T2DM→GSD: OR=1.09, 95%CI=1.06-1.13, P=3.6×10-8; GSD→T2DM: OR=1.03, 95%CI=0.95-1.11, P=0.52) IVs also demonstrated similar causal effects. After removing the effect of BMI on T2DM, the causal associations remained almost unchanged (T2DMadjBMI→GSD: OR=1.05, 95%CI=1.01-1.09, P=0.014, PMR-Egger intercept=0.49; GSD→T2DMadjBMI: OR=1.03,95%CI=0.97-1.09, P=0.29, PMR-Egger intercept=0.92). Furthermore, even after adjusting for each potential confounder, T2DM still increased GSD risk (Supplementary Table S6). The final model of MVMR, which adjusting for BMI, WHRadjBMI and FIadjBMI, showed a slightly attenuated yet significant effect size compared to the univariable MR (OR=1.02, 95%CI=1.00-1.03, P=0.02) (Figure 2, Supplementary Table S7).




Figure 2 | Univariable and multivariable mendelian randomization analysis between type 2 diabetes mellitus and gallstone disease. CI, confidence intervals; GSD, gallstone disease; MR, mendelian randomization; No. of, the number of; SNPs, single nucleotide polymorphisms; T2DM, type 2 diabetes mellitus; *, removing the effect of body mass index on type 2 diabetes mellitus.







Genetic architectures shared by T2DM and GSD

To identify shared genetic architectures and to elucidate the underlying biological mechanisms, we performed cross-trait meta-analysis, fine-mapping analysis and colocalization analysis (Table 2 and Supplementary Tables S8-S15). Cross-trait meta-analysis identified 23 pleiotropic SNPs for T2DM and GSD. The most significant pleiotropic SNP was rs11075985 (PCPASSOC=3.35×10-83) located near FTO, followed by rs1800961 (PCPASSOC=5.69×10-58) and rs1260326 (PCPASSOC=1.00×10-46), located near HNF4A and GCKR, respectively.


Table 2 | The cross-trait meta-analysis, fine-mapping analysis and colocalization analysis for type 2 diabetes mellitus and gallstone disease‡.



To investigate the causal SNP for these 23 pleiotropic SNPs, we estimated the 99% credible sets of causal SNPs. A total of 368 potential causal SNPs were obtained from the 23 pleiotropic SNPs. Note that the 99% credible set of rs1800961, rs1260326 and five other pleiotropic SNPs only included themselves. To further distinguish the shared causal SNPs from the distinct ones, we assessed statistical colocalization of these 23 pleiotropic SNPs. The results revealed that 56.2% (containing rs1800961, rs1260326 and 11 other pleiotropic SNPs) of shared loci colocalized at the same candidate causal SNPs. In summary, we found a good number of loci shared by T2DM and GSD, and in particular identified rs1800961 and rs1260326 as potential shared causal variant for T2DM and GSD.

After removing the effect of BMI on T2DM, we identified five additional pleiotropic SNPs, in addition to the ten pleiotropic SNPs also shared by T2DM and GSD. Notably, rs1800961 (PCPASSOC=1.44×10-59) and rs1260326 (PCPASSOC=6.81×10-40) were also identified as the most significant pleiotropic SNPs and shared causal SNPs for T2DM and GSD even after adjusting for BMI.





Transcriptome-wide association study

Regarding gene expressions and biological insights, we used TWAS to explore the tissue-gene pairs shared by both diseases (Table 3, Supplementary Table S16). A total of 31 tissue-gene pairs were observed for T2DM and GSD, including 16 genes (DMWD, GPN1, GTF3C2, IFT172, KRTCAP3, LINC01126, LINC01460, NRBP1, OASL, P2RX4, PPM1G, RBKS, SPPL3, SNX17, THADA, UNC119B), mainly expressed in multiple tissues from nervous and motor systems. After removing the effect of BMI on T2DM, 26 out of the 31 (83.9%) tissue-gene pairs and 13 out of 16 (81.3%) genes remained significant.


Table 3 | Shared transcriptome-wide association study significant genes between type 2 diabetes mellitus and gallstone disease.








Discussion

To our knowledge, this study represents the most comprehensive research on the bidirectional relationships between T2DM and GSD, combining observational and genetic analysis. Our study identified a unidirectional causality running from T2DM to the risk of GSD. Furthermore, we identified specific genetic variants, such as rs1800961 (HNF4A) and rs1260326 (GCKR), that contribute to the biological links between T2DM and GSD. These findings advance our understanding of the complicated relationship underlying T2DM and GSD, providing important implications for preventing and treating these common diseases.

Expanding upon prior research, our study takes a comprehensive approach to investigate the association between T2DM and GSD risk through both observational and MR studies. Our findings, obtained through survival and MR analyses, consistently demonstrate a causal relationship between T2DM and GSD risk. These results align with the updated meta-analysis of prospective cohort studies (RR=1.49, 95%CI=1.09-2.03, P=0.012, Supplementary Figure 2), which pooled data from previous meta-analysis (7) and two recent large-scale studies (5, 8). While in line with the findings of three existing MR studies (12–14), our MR expands previous results in two critical aspects. First, we minimize the influence of reverse causality by applying a bidirectional design. Second, we limit the impact of confounders by adjusting for potential confounding factors using the MVMR. Consequently, we assert that a causal relationship exists between T2DM and GSD risk.

Regarding the association between GSD and T2DM risk, previous studies have reported conflicting results. Some prospective cohort studies (6, 9, 10) have shown a positive association, while one MR study fund no association (6). Our study used both survival and MR analyses and found no causal association between GSD and T2DM risk. The discrepancy between our study and previous cohort studies may be attributed to two aspects. Firstly, two of these previous cohort studies (9, 10) relied on self-reported data, which may have led to misclassification or underestimation of cases. Secondly, observational studies are prone to reverse causality, which the previous cohort study did not account for (6). However, after considering a 2-year lag time, our study found no association between GSD and T2DM. This implies that previous significant findings may have been distorted by reverse causality. MR studies are commonly employed to address reverse causality (11). Our MR analysis replicates the null findings of the previous MR study (6), yet with a much larger sample size (43,639 vs. 1,110 T2DM cases) and more IVs (62 vs. 8). Additionally, our study considered the significant contribution of BMI to T2DM development, which was not accounted for in the previous MR study.

Through cross-trait and colocalization analyses, we identified shared biological mechanisms. Specifically, the key SNPs associated with both conditions were rs1800961 mapped HNF4A and rs1260326 mapped GCKR. HNF4A regulates liver-specific gene expression involved in lipid transport, glucose, and bile metabolism (39). It is also essential for insulin secretion in pancreatic beta cells (40). Additionally, HNF4A has been linked to elevated levels of gamma-glutamyl transferase (GGT), a sensitive marker of cholestasis (41). The effects of HNF4A on insulin action and GGT contribute to the development of both T2DM and GSD. On the other hand, GCKR regulates glucose conversion to glucose-6-phosphate in the liver and pancreas (42, 43). It is associated with various metabolites involved in carbohydrate and lipid metabolism (42). The minor allele of GCKR has been associated with hepatospecific glucokinase activation, reduced plasma insulin levels, and protection against T2DM (42). Additionally, GCKR enhances hepatic cholesterol availability, leading to elevated bile cholesterol concentration and GSD development (43).

Our findings deliver important clinical and public health implications. First, our found that T2DM causally contributes to the development of GSD, but GSD does not increase T2DM risk. This suggests that preventing and treating GSD may not significantly reduce T2DM risk. However, our findings highlight the important of focusing on prevention and treatment of T2DM. Second, while new drugs for T2DM have been developed, further research is needed to explore novel treatments (44). It is noteworthy that certain medications commonly prescribed for T2DM have been associated with an increased risk of GSD in large meta-analyses of randomized controlled trials (45). Furthermore, our genetic analyses reveal shared genetic architectures between T2DM and GSD, which can enhance our understanding of biological mechanisms and potentially identify therapeutic targets for T2DM. For example, our findings suggest that HNF4A and GCKR may be promising targets for T2DM therapies (42), but their effects on GSD and other comorbidities should be considered.

Several limitations should be considered when interpreting the results and conclusions of this study. Firstly, fasting insulin may confound the association between T2DM and GSD risk, which we were unable to adjust for in our multivariable survival analysis due to a lack of information from prospective cohort. However, after adjusting for FI in our MVMR, we confirmed the causal relationship between T2DM and GSD risk. Additionally, dietary behaviors such as egg, vegetable, and fruit intake may act as other confounders for the association between T2DM and GSD. Unfortunately, due to a larger proportion (>50%) of missing data in the prospective cohort, we were unable to adjust for these factors in our multivariable survival analysis. Furthermore, it is worth noting that half of the genetic variants associated with dietary behaviors are a consequence of increased BMI (46). Considering the potential collinearity between BMI and dietary behaviors, we chose not to include the latter in the MVMR analysis. Secondly, our findings were restricted to European population to control for population stratification. However, this may limit the generalizability of our results. Additionally, despite over 90% of gallstones in Europe are cholesterol gallstones, there are also pigment gallstones with different etiologies, which were not specifically investigated in our study.





Conclusions

Our study demonstrates an association between T2DM and GSD risk at both the phenotypic and genetic levels using large-scale prospective cohort and GWAS data. This association is independent of BMI, WHR, and FI, suggesting an intrinsic and causal relationship. However, no causal association was found between GSD and T2DM risk. Furthermore, the shared genetic architecture between GSD and T2DM enhance our understanding of the underlying biological mechanisms. These findings might offer valuable insights for the identification of potential therapeutic targets for T2DM and novel perspectives on preventing GSD, ultimately contributing to a decrease in multimorbidity incidence.
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Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.
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1 Introduction

Diabetic peripheral neuropathy (DPN), the most prevalent vascular complication of diabetes, exhibits an escalating incidence that profoundly jeopardizes health and quality of life (1). Despite its prevalence, the pathogenesis of DPN remains elusive. Existing research suggests that the formation of glycosylation end products, hyperglycemia, inflammatory responses, oxidative stress, and nerve growth factor collectively contribute to the mechanisms underlying DPN (2). Current therapeutic strategies for DPN primarily concentrate on stringent blood glucose control, dietary management, and the administration of drugs aimed at enhancing nutrition, promoting repair, combating oxidative stress, and improving microcirculation (3). However, clinical outcomes indicate a lack of treatments capable of effectively reversing DPN.

In recent years, neuro-electrophysiological investigations have drawn attention to the impact of acupuncture on DPN. Electroacupuncture, in particular, offers advantages in terms of stability, continuity, and adjustability compared to traditional acupuncture therapy (4). It has demonstrated notable clinical efficacy in alleviating symptoms and enhancing neurological function, findings substantiated by multiple studies (5). Consequently, there exists a pressing need to delve into the molecular pathogenesis of DPN and explore the potential of this novel therapeutic approach.

Vesicular glutamate transporters (VGLUT) are situated on the vesicular plasma membrane of presynaptic neurons within glutamatergic cells, facilitating the specific transport of glutamate from the cytoplasm into synaptic vesicles (6). The rate and extent of glutamate transport into vesicles are contingent upon factors such as the number of vesicles and extracellular glutamate concentration (7). This process plays a crucial role in the pathogenesis of various diseases, including diabetes. Notably, VGLUT2 predominately manifests in the diencephalon and brainstem of the central nervous system. A prior investigation has validated the participation of VGLUT2 in the transportation of glutamate during the insulin secretion process in pancreatic cells, implicating VGLUT2 in β cell apoptosis and, consequently, the onset of diabetes (8).

Remarkably, VGLUT2-expressing neurons contribute to transmitting peripheral pain signals to the spinal cord. Activation of glutamatergic dorsal horn neurons expressing VGLUT2 leads to a reduction in mechanical and thermal withdrawal thresholds (9). However, the precise role of VGLUT2 in the genesis and progression of DPN remains elusive and warrants further exploration.

Amyloid precursor protein (APP) is a transmembrane protein characterized by a substantial N-terminal extracellular domain and a compact C-terminal cytoplasmic domain. Widely distributed across the central nervous system, liver, adipose tissue, and other organs, APP assumes a crucial role in cellular adhesion and neurodevelopment (10). Its established association with Alzheimer’s disease has been extensively documented in previous research (11). Beyond this, APP is implicated in kinesin-mediated vesicular transport, potentially encompassing neurotransmitter vesicles.

Short-term processing of APP has been identified to correlate with an augmentation in glutamate release, a trend similarly observed in long-term processing. Throughout the progression of Alzheimer’s disease, the synaptic transmission-expressed VGLUT2 protein demonstrates downregulation in the absence of both APP and amyloid precursor-like protein 2 (APLP2) (12). Additionally, APP and APLP2 play indispensable roles in regulating the expression of VGLUT2 during neural differentiation (13). These findings offer a theoretical foundation for exploring a novel APP/VGLUT2 mechanism in the context of DPN therapy.

In this study, our investigation involved comprehensive data mining across multiple omics datasets, revealing differential expression of VGLUT2 at both transcriptional and translational levels in DPN. To substantiate these findings, we employed a DPN mouse model constructed through intraperitoneal injection of Streptozotocin (STZ) and validated the results of the differential expression analysis using qPCR and Western blot. Furthermore, our gene expression analysis, conducted through a combination of microarray and qPCR, identified and verified differential expression of the APP protein family in the context of DPN. We found that the protein and mRNA level of VGLUT2 were up-regulated in spinal dorsal horn of STZ-induced DPN mice, and mRNA levels of APP, APLP1 and APLP2 were also up-regulated. Within the high-throughput dataset generated from neurostimulation therapy for DPN, we conducted analysis of the differential expression of VGLUT2 and APPs, along with correlation analysis, aiming to elucidate molecular mechanisms underlying neurostimulation therapy for DPN. Finally, utilizing protein-protein interaction predictions and functional enrichment analyses, we forecasted the involvement of VGLUT2 and APPs in the biological processes associated with the onset of DPN and during the course of neurostimulation therapy.




2 Materials and methods



2.1 Animals

C57BL/6J male mice aged 5-6 weeks were obtained from the Guangdong Medical Laboratory Animal Centre in Guangzhou, China, with an average weight of 18–22 g (n = 3-6). The experimental protocol was thoroughly reviewed and approved by the Sun Yat-sen University Cancer Centre Animal Care and Use Committee (Sun Yat-sen University No.: L025501202205002). Euthanasia of the animals was carried out using the carbon dioxide (CO2) asphyxiation procedure.




2.2 Study design

To induce DPN in mice, male C57BL/6J mice (5-6 weeks old) were administered STZ (50 mg/kg, i.p.) once a day for four consecutive injections. For the preparation of STZ, 2.1g of citric acid (FW: 210.14) was dissolved in 100mL of double-distilled water to form liquid A and 2.94g of sodium citrate (FW: 294.10) was dissolved in 100mL of double-distilled water to form liquid B. When required, liquids A and B were mixed in a specific ratio (1:1.32 to 1:1), and the pH value was adjusted to 4.2-4.5 using a pH meter, producing the citric acid buffer for STZ preparation.

Control mice received only i.p. injections of the vehicle solution (citric acid buffer, pH 4.5). All STZ-injected mice exhibited elevated blood glucose levels (> 16.7 mmol/L). The successful establishment of DPN was confirmed at 21 days post-injections through Von-Frey testing and the Hot Plate Test.




2.3 Fasting blood glucose (FBG) and random blood glucose (RBG) test

To measure blood glucose levels, blood was taken from 1 mm of clipped tail of mice. FBG and RBG were measured with a glucometer and disposable test strips (One Touch Lifescan, Malvern, PA, USA). The mice were fasted overnight (16 h) before the start of testing FBG. Mice are considered to have hyperglycemia, FBG with a single blood glucose measurement of > 150 mg/dl, and RBG with two consecutive levels measurement value > 250 mg/dl.




2.4 Mechanical hyperalgesia—Von-Frey test

The paw withdrawal threshold (PWT) of mice was assessed using the Von-Frey filament, employing the ‘up and down’ method, with detailed procedures outlined in a prior study (14). Each mouse underwent an adaptive test three days prior to the formal experiment, lasting for one hour. Positive reactions, such as hind paw retraction, movement, or lameness, were recorded along with their corresponding values. The mechanical threshold is expressed as the logarithm (base 10) of the diameter sensitivity (ds) [log10(10 * force in milligrams)].




2.5 Hot plate test

The paw withdrawal latency (PWL) of mice was assessed using a hot plate apparatus set at 55 °C (ZH-6C, ANHUI ZHENHUA BIOLOGIC APPARATUS FACILITIES, China), following established procedures detailed in a prior study (15). Prior to the experiment, mice underwent a three-day habituation period. The test was conducted in triplicate, with a minimum interval of 5 minutes between each trial, and the average PWL values were calculated for each mouse.




2.6 Real-time qPCR

RNA extraction from spinal cord tissues of mice with Paclitaxel-Induced Peripheral Neuropathy was performed using a Tissue RNA Purification Kit Plus (ESscience, China) following the provided instructions. Subsequently, cDNA synthesis was carried out using the EZBioscience Color Reverse Transcription Kit (Roseville, USA). For quantitative real-time polymerase chain reaction (qRT-PCR), the SYBR Green qPCR Super Mix (EZBioscience, Roseville, USA) and the A CFX96 Touch Real-Time PCR System (Bio-Rad, USA) were employed to run the thermal cycling program, and data were analyzed using the comparative threshold cycle (Ct) method. The primer pairs utilized for qRT-PCR are as follows:

APP: Forward - TCCGTGTGATCTACGAGCGCAT, Reverse – GCCAAGACATCGTCGGAGTA GT. APLP1: Forward - AGGAGCGTATGGACCAGTGTGA, Reverse – TACTCCACACCTCGGA ACCGAT. APLP2: Forward - AGAAGCCATGCTGAATGACCGC, Reverse – GGCGATCTTTGT TCTCAGCACG. VGLUT2: Forward - CCTATGCTGGAGCAGTCATTGC, Reverse – GGCTCTC ATAAGACACCAGAAGC. GAPDH: Forward - CATCACTGCCACCCAGAAGACTG, Reverse – ATGCCAGTGAGCTTCCCGTTCAAG.




2.7 Western blot analysis

In accordance with previously established protocols (16), total proteins from the spinal cord were lysed using RIPA buffer, supplemented with protease and phosphatase inhibitors (RIPA: PMSF: phosphatase inhibitor = 100:1:1). The lysates were separated by SDS–PAGE and subsequently transferred to polyvinylidene fluoride (PVDF) membranes (0.22 μm, Pall, USA). Blocking was conducted in TBST containing 5% non-fat dry milk. Detailed information regarding the antibodies used in both the primary and secondary stages of the Western blot assay is provided. Protein visualization was achieved through detection with AMER sham ECL Western blotting detection reagents (GE Healthcare).




2.8 Data collection

The mRNA expression data pertaining to DPN were sourced from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), specifically from datasets GSE95849, GSE34889, GSE147732, and GSE70852. To access gene expression data relevant to treated DPN, we consulted the GEO Series GSE155741 and GSE156184.

GSE95849 using microarray-based genome-wide expression analyses, identified the pathogenesis of DM and DPN based on the samples from the health records and blood samples (2 mL) of the participants. There were 3 groups of control, diabetes and DPN, including 6 samples in each group.

GSE34889 showed the transcription profiling for the sciatic nerve of 4 groups of mice: (8 week old db/db (n = 8) or db/+ (n = 8), and 24 week old db/db (n = 6) or db/+ (n = 7)). 8 weeks and 24 weeks represented the early and advanced stages of DPN. C57BLKS/J background, Cg-m+/+Lepr db/J (BKS-db/db) mice.

Diabetes in GSE147732 was induced with a single intraperitoneal injection of STZ (55mg/kg); control rats were performed with a single intraperitoneal injection of 0.9% saline solution; 6 weeks after diabetes induction, nerve tissue samples harvested from the right sciatic nerve of rats in control (n = 3) and diabetic (n = 3) groups for transcription profiling.

GSE70852 using female black and tan, brachyuric background leptin deficient (BTBR ob/ob) mice display robust DPN, employed microarray technology to identify dysregulated genes and pathways in the SCN and DRG of female BTBR mice. Total RNA were extracted from DRG and SCN of 26 week old ob/+ and ob/ob mice (n = 5 in each group) and hybridized on Affymetrix microarray.

GSE155741 unveiled the effect of microcurrent electrical nerve stimulation (MENS) using omics data of mouse animal model. Mice were separated to 3 groups: control, STZ, STZ+MENS mice. STZ mice were treated with MENS for 6 consecutive weeks. RNA was prepared from liver and analyzed through microarray.

GSE156184 showed in vitro efficacy of alpha-lipoic acid (ALA) in the medication of symptomatic diabetic neuropathy, in the human prostate cell line of PSC27, as well as its efficacy in improvement of inflammatory diseases and diabetes induced by bleomycin.

Yu has generated protein profiling data of spinal dorsal horn using mass spectrometry (17), which was used to identify the differential expression of VGLUT2 in STZ-induced DPN rats (n = 12) and DPN rats with electro-acupuncture (EA) treatment (n = 12). The diabetes was induced by a single intraperitoneal injection of STZ (65 mg/kg, Sigma Chemicals, USA) dissolved in citrate buffer (10 mmol/L, Na citrate, pH = 4.3), and the acupoints “Zu sanli” and “Shen shu” were selected for stimulation. Needles were connected to a G6805-1A multifunctional EA apparatus (Shanghai Medical Electronic Apparatus Company, Shanghai, China), with a stimulation intensity of 1mA, frequency 10 HZ, 30 min/2 days, for four weeks.




2.9 Differential expression analysis

The R programming language was employed to extract expression values for the genes VGLUT2, APP, APLP1, and APLP2 through the online tool of GEO2R. GraphPad software 8 for Windows (GraphPad, La Jolla, CA, USA) was utilized for both statistical analysis and visualization of differential expression patterns. Statistical analysis was conducted following the procedures outlined in a previous study (15). All data are presented as means with the respective standard errors of the mean (SEMs) and were subjected to analysis using GraphPad Software, and Statistical Package for the Social Sciences (SPSS, version 22.0). Student’s t-test was employed to analyze and compare differences between the two groups of data, while one-way ANOVA was applied to analyze data with homogeneity of variance from multiple groups. A p-value < 0.05 was considered statistically significant. Each experiment was replicated at least three times.




2.10 Correlation analysis

Correlation analysis was conducted using data from the GEO database, where datasets from GSE were utilized for peripheral neural tissues associated with DPN and post-treatment DPN data from GSE. Expression values of key genes, including VGLUT2, APP, APLP1, and APLP2, were extracted and organized into a gene expression matrix. Coefficients for each pair of Y datasets were computed, resulting in a correlation matrix. A two-tailed analysis with a 95% confidence interval was performed, employing nonparametric Spearman correlation due to the assumption that the data were not sampled from a Gaussian distribution. Correlation significance was considered for values within the range -0.3 < R < 0.3 with a p-value < 0.05. GraphPad software was employed for the correlation analysis, generating a correlation matrix that was visualized as a heatmap.




2.11 Gene network construction

The Homo sapiens gene network was obtained from Gene MANIA. The input gene set comprised VGLUT2, APP family proteins, and NSC markers, resulting in the identification of 20 associated genes within the network. The connections in the network were characterized by shared protein domains, predicted interactions, physical interactions, pathways, co-localization, co-expression, and genetic interactions.




2.12 Functional enrichment analysis

The functional enrichment analysis of VGLUT2, APP, APLP1, and APLP2 was conducted using the STRING tool to discern Gene Ontology (GO) categories, specifically focusing on Biological Processes (BP). The inclusion of stemness markers such as NCAM1, NES, NGFR, and MSI1 augmented the input data for a comprehensive analysis. Visualization of the results was performed through Hiplot, accessible at https://hiplot.com.cn.





3 Results



3.1 The differential expression of VGLUT2 in DPN

As shown in Figure 1A, VGLUT2 protein was upregulated with the fold change of 1.64 in DPN rats compared with normal ones (fold change = 1.64, p-value = 0.001939). In human blood, we found VGLUT2 significantly downregulated in DM patients, and even more decreased in DPN patients (Figure 1B). In the tissue of sciatic nerve, VGLUT2 expression declined with statistical significance in the advanced stage of DPN mouse models constructed by BKS-db/db, but there was no difference of gene expression in the early stage (Figure 1C). The differential expression in STZ-induced and BTBR ob/ob constructed DPN models was analyzed; the results indicated that APLP1 was elevated in dorsal root ganglia (DRG) only, whereas APLP2 was declined in both sciatic nerve and DRG, but there were no changes in APP expression (Figure 1D). Moreover, differences in APPs expression were observed according to histological disease progression and aging (Figure 1E). The above results suggest differential expression of APP and its related genes APLP1/2 in DPN, and their involvement in the disease progression.




Figure 1 | VGLUT2 and APP family gene differential expression in DPN. (A) The protein expression of DPN in the spinal dorsal horn of DPN rats, analyzed by protein mass spectrometry data. (B, C) The mRNA expression analysis for VGLUT2 in the blood sample of clinical participants (GSE95849) and in sciatic nerve of DPN mouse models constructed by BKS-db/db (GSE34889). (D) The mRNA expression analysis of APP, APLP1 and APLP2 in DPN was performed by microarray data from the sciatic nerve of STZ induced DPN rats (GSE147732) and the DRG of female BTBR ob/ob mice display robust DPN (GSE70852). (E) The expression of APP and related genes in stages of DPN was analyzed by microarray data from the blood sample of clinical participants (GSE95849) and the sciatic nerve of DPN mouse models constructed by BKS-db/db (GSE34889). NC, normal control; DPN, diabetic peripheral neuropathy; STZ, streptozotocin; BTBR-ob/ob, leptin deficient (black and tan, brachyuric background) mice; DM, diabetes mellitus; BKS-db/db, Cg-m+/+Lepr db/J (C57BLKS/J background) mice; MENS, microcurrent electrical nerve stimulation. *p-value < 0.05, **p-value <0.01, ***p-value < 0.001.






3.2 The correlation between VGLUT2 and APPs varies in DPN

We further explored the role of APPs and VGLUT2 in DPN through Spearman correlation analysis. As shown in Figure 2, in normal peripheral nerve tissues (both sciatic nerve and DRG), VGLUT2 expression was negatively correlated with APP (R = -0.503, p-value = 0.034), while positively correlated with APLP1/2 (both R > 0.7, p-value < 0.001). Compared to the control group, the correlation between VGLUT2 and APPs in the DPN group was reduced, but the absolute values indicated no significant correlation between their gene expression levels (-0.3 < R < 0.3).




Figure 2 | The correlation of VGLUT2 and APPs gene expression level varies between normal and diabetic peripheral nerve. Spearman correlation analysis was performed by mRNA expression data obtained from the GEO database, and the coefficients were visualized by heatmaps.






3.3 VGLUT2 and APPs up regulated in STZ-induced DPN mice

The successful construction of the STZ-induced diabetes mellitus (DM) animal model was confirmed by a significant increase in FBG and RBG, as well as a significant decrease in body weight (Figures 3A, B). Subsequently, the successful establishment of the DPN mouse model was confirmed by PWT and PWL (Figure 3C). In the in vivo model of DPN, qPCR and western blot assays demonstrated a significant upregulation of VGLUT2 mRNA and protein expression in spinal dorsal horn (both p-value < 0.01) (Figure 3D). As shown in Figure 3E, the mRNA expression of APP, APLP1, and APLP2 significantly upregulated in DPN (p-value < 0.0001).




Figure 3 | (A) FBG and RBG results from DPN mice induced by i.p. STZ 50mg/kg 4 times. (B) Body weight result from WT and DPN mice at 14 days after injection STZ. (C) STZ induces significant mechanical allodynia and thermal hyperalgesia in DPN mice hind paw. (D) The qPCR results for detecting VGLUT2 from spinal cord of WT and DPN mice at 14 days after STZ injection; and Western blot results from spinal cord of WT and DPN mice at 14 days after STZ injection for detecting VGLUT2 with the specific antibody. (E) The qPCR results for detecting APP, APLP1, and APLP2 from spinal cord of WT and DPN mice at 14 days after STZ injection. ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001, ANOVA. FBG, fasting blood glucose; RBG, random blood glucose; PWT, paw withdrawal threshold; PWL, paw withdrawal latency; WT, wild type.






3.4 Electrical stimulation regulates VGLUT2 and APPs expression

Compared with DPN rats, the protein level of VGLUT2 in DPN rats with EA treatment shows significant downregulation (Figure 4A) (fold change = 0.608, p-value = 9.99E-05). The mRNA expression of VGLUT2 significantly upregulated in liver of STZ-induced DPN mice with MENS treatment (p -value < 0.05). As shown in Figure 4B, the expression of APP significantly downregulated by MENS treatment (p -value < 0.05), but APLP1 and APLP2 in MENS rats did not show significant changes (p -value > 0.05). Compared with the control, APLP2 significantly downregulated in the DPN group, but no significant changes of APP and APLP1 were observed in STZ-induced DPN rats.




Figure 4 | Neuroelectric stimulation therapy methods for DPN regulates the gene expression of VGLUT2 and APPs. (A) The protein level of VGLUT2 was qualified by protein profile for the spinal dorsal horn of DPN rat with EA treatment, and the mRNA level of VGLUT2 in livers of STZ-induced DPN mice and DPN mice with MENS treatment was qualified by GEO microarray (GSE155741). (B) The mRNA expression analysis of APP and related genes in DPN and MENS treatment was generated by GSE155741. * p-value <0.05, ns p-value > 0.05.






3.5 Prediction of DPN treatment mechanism based on VGLUT2 and APPs

Spearman correlation analysis was performed for microarray data from GEO series (Figure 5A). In the DPN tissues treated with electrical stimulation, there was a positive correlation between the expression levels of VGLUT2 and APP and its associated protein genes. VGLUT2 exhibited a higher correlation with APLP1 and APLP2, but a relatively lower correlation with APP. Furthermore, considering the three conditions of control, DPN, and treatment, the correlation between VGLUT2 and APP showed an increasing trend in the disease state and a decreasing trend after treatment. The correlation between VGLUT2 and APLP1 showed a significant increase during DPN and a slight further increase after treatment. On the other hand, the correlation between VGLUT2 and APLP2 showed a decrease during the onset of DPN and a significant increase after disease treatment.




Figure 5 | The gene function prediction analysis for VGLUT2 and APPs. (A) The Spearman correlation analysis was performed by mRNA expression data of VGLUT2, APP, APLP1, and APLP2 obtained from the GEO database. The heatmap showed the coefficients in normal, diabetic, and neuroelectric stimulation therapy tissues. (B) The construction of gene network based on Automatically selected weighting method in the GeneMANIA database. (C) The results of functional enrichment analysis in Biological Process, and terms including VGLUT2 were highlighted in green.



We constructed gene functional networks of these genes and neural stem cell factor (NGFR, NES, MSI1, NCAM1) using the GeneMANIA database. As shown in Figure 5B, these genes form a tightly interconnected network, with VGLUT2 exhibiting genetic interactions with the neurotrophic factor NGFR and co-expression with APLP1. Consistent with protein network analysis, functional enrichment analysis of VGLUT2, APPs, and stemness markers revealed significant associations in BP as well. The enrichment analysis results demonstrated that these genes were enriched in 12 BP terms, with VGLUT2 being associated with Anatomical structure morphogenesis (GO:0009653) along with NGFR, APLP1, APP, NES, NCAM1, and APLP2, and with System development (GO:0048731) along with NGFR, APLP1, MSI1, APP, NES, NCAM1, and APLP2 (Figure 5C).





4 Discussion

In previous studies, the transport of glutamate by VGLUT2 has been demonstrated as the rate-limiting step crucial for the precise regulation of insulin secretion, a process intricately linked to the onset and progression of diabetes. Additionally, in VGLUT2-cre mice generated through spared nerve injury, a notable reduction in the mechanical response threshold is observed (17). The downregulation of VGLUT2 expression in these mice is associated with an inhibition of the release of inflammatory factors, specifically TNF-α and IL-1β, leading to a relief in pain symptoms (18). Despite these findings, the expression and specific role of VGLUT2 in DPN remains poorly understood.

Through high-throughput data mining, we have discerned distinct expression patterns of VGLUT2 in various tissue types of DPN models. Notably, even within the realm of the nervous system, DPN exhibits varying regulatory effects on VGLUT2 in the central nervous system versus the peripheral nervous system. This expression result reflected that the differential expression of VGLUT2 in DPN was species and tissue-specific. Correlation analyses have unveiled a positive relationship between VGLUT2 and the amyloid protein family in gene expression. Given the pivotal role of APP and its associated genes in aging mechanisms, we postulate that the advanced stages of DPN predominantly modulate the gene expression of VGLUT2 in peripheral nerves at the transcriptional level. This mechanism offers a plausible explanation for the substantial upregulation of VGLUT2 in aging mice, as depicted in Figure 1C.

Recent investigations have illuminated the intricate relationship between AD and the onset and progression of diabetes. Shared risk factors for type 2 diabetes and AD encompass aging, obesity, and insulin resistance (19). Pharmacological studies suggest that certain traditional hypoglycemic drugs exert a discernible effect on AD treatment (20). While existing studies partially elucidate the potential link between Alzheimer’s disease and diabetes pathogenesis, the precise interaction mechanisms remain elusive. The role of APP gene mutations in AD is well-established, but this is not as well-explored in the context of Type 2 Diabetes Mellitus (T2DM). Intriguingly, investigations in middle-aged APdE9 mice have identified a diminished pre-synaptic glutamate response, potentially contributing to AD (12). Concurrently, VGLUT2 is closely associated with insulin transport and pain, offering a theoretical foundation for probing into the role of APP-VGLUT2 in DPN.

APLP1, APLP2, and APP are well-established substrates of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) (21), playing crucial molecular roles in Alzheimer’s disease. The coexistence of Alzheimer’s disease and diabetes have garnered significant attention from both neuroscientists and researchers in metabolic disorders. Considering the regulatory roles of APP and APLP2 on VGLUT2 during neural differentiation, we conducted an investigation into APP and its associated genes. This work, we established a DPN animal model and confirmed a significant transcriptional upregulation of APP and its related genes in the spinal dorsal horn of STZ-induced mice through qPCR validation. Based on the results of our animal experiments, both VGLUT2 and APPs exhibited upregulated gene expression in the spinal dorsal horn tissue of DPN. To address this gap, we leveraged gene expression data obtained from GEO to scrutinize the correlation between VGLUT2 and the APP family gene expression within the peripheral neural tissues affected by DPN. In normative tissues, VGLUT2 manifested a negative correlation with APP and a positive correlation with APLP1/2. Although DPN samples exhibited no statistically significant correlation between VGLUT2 and the APP family, modifications in their correlation patterns in the context of DPN offer valuable insights for delving into the role of VGLUT2 in the mechanisms underpinning DPN development.

Data mining revealed differential expression of APP, APLP2, and APP in the DPN animal model, influenced by various factors, including DPN induction conditions, tissue types, disease progression, and aging. These findings suggest that the regulatory mechanisms of APPs in DPN may be intricate, influenced by multiple factors. However, this observed phenomenon lacked validation in peripheral nervous system (PNS) tissues, such as the sciatic nerve and DRG. Additionally, the gene expression regulation of these genes under different conditions awaits further confirmation, necessitating additional research into translational and post-translational levels.

Given the current ineffectiveness of clinical treatments for DPN, it is imperative to explore novel mechanisms and therapeutic approaches. In a meta-analysis of clinical studies investigating electroacupuncture treatment for DPN, four articles involving a total of 366 patients were included (22). The findings revealed that combining drug treatment with other acupuncture techniques or acupoint injections significantly enhanced the effectiveness rate compared to the use of western medicine alone. Consistent with these results, additional research has supported the notion that low-frequency electricity can inhibit the phosphorylation of Cav-1 in DRG, leading to a favorable analgesic effect in DPN. Moreover, electroacupuncture demonstrates the capacity to ameliorate Schwann cell apoptosis through the PI3K-AKT pathway (23), offering a potential therapeutic avenue for treating sciatic nerve injury in the context of DPN.

In our research, we analyzed the databases both EA and MENS as electrical stimulation therapies. Analysis of microarray data obtained from the liver tissues of mice with DPN undergoing microcurrent neurostimulation therapy indicates a selective modulation of specific genes within the APP family. Subsequent correlation analysis suggests that this therapeutic intervention can modify the relationship between VGLUT2 and the APP family, albeit with varying trends. Through protein-protein interaction analysis and functional enrichment analysis, we identify a noteworthy association between VGLUT2, APLP1, and NGFR. Furthermore, VGLUT2, in conjunction with the APP family and neural stem cell-related factors, assumes a significant role in the GO Biological Processes of anatomical structure morphogenesis and system development. We suggest that the differential expression of VGLUT2 after electrical stimulation were related to a variety of factors, among which omics differences, species and tissue specificity may be the main reasons.

Our investigation reveals that neurostimulation therapy, administered for the treatment of DPN, exerts regulatory effects on both the transcription and translation levels of the VGLUT2 gene. However, the trend of gene differential expression is subject to influences from variables such as the method of electrical stimulation, tissue type, and species. Drawing on a comprehensive examination of experimental results, we posit that both DPN and neurostimulation therapy can elicit differential expression in VGLUT2 and the APP family, indicating a certain level of correlation between these two phenomena. Future research will continue to focus on the molecular biological mechanism of APP family regulating VGLUT2, take the level of VGLUT2 gene expression as a biomarker of DPN, and then propose novel therapeutic methods based on VGLUT2 gene expression regulation.




5 Conclusion

This study, employing rigorous analyses in a STZ-induced DPN mouse model, unveiled distinctive expression patterns of VGLUT2 and the APP family, providing profound insights into the pathogenesis of DPN. Additionally, analysis of neurostimulation therapy revealed intricate differential expression patterns of VGLUT2 and APPs, predicting key biological processes involved in DPN development and therapy. This comprehensive study not only advances our understanding of DPN’s molecular intricacies but also lays a robust theoretical foundation for innovative and targeted neurostimulation therapy interventions.
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Assessment of the severity of diabetic polyneuropathy aids in predicting the risk of developing diabetic complications in patients with untreated diabetes
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This study aimed to determine the efficacy of assessing the severity of diabetic polyneuropathy (DPN) in patients with untreated diabetes. Seventy-two patients with untreated type 2 diabetes who were hospitalized for glycemic control were enrolled and divided into the following two groups: patients who had no prior diagnosis and patients who were unattended or had discontinued treatment. Electrophysiological criteria consistent with Baba’s classification were used to diagnose and assess the severity of DPN. The patients were divided into three subgroups: no DPN (stage 0), mild DPN (stage 1), and moderate or more-severe DPN (stages 2–4). Intergroup comparisons were performed for the clinical characteristics and the results of the nerve conduction studies. Twenty-two (30%), 25 (35%), and 25 (35%) patients were categorized into the no DPN, mild DPN, and moderate or more-severe DPN subgroups, respectively. The number of patients who were unattended or had discontinued treatment in the moderate or more-severe DPN subgroup was significantly higher than that in the no DPN subgroup. The patients in the moderate or more-severe DPN subgroup had an increased risk of developing diabetic retinopathy and nephropathy, with odds ratios of 19.5 and 11.0 for advanced stages of retinopathy and nephropathy, respectively. Thus, the assessment of the severity of DPN could aid in the prediction of the risk of developing diabetic complications in patients with untreated diabetes.
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1 Introduction

The prevalence of type 2 diabetes has been increasing in Japan, with a national survey estimating that approximately 10 million individuals in Japan have diabetes (1). Approximately 23% of patients with diabetes (21.3% of men and 25.9% of women) are untreated (1). Patients with type 2 diabetes often experience few subjective symptoms; consequently, diabetes often remains undetected, and diabetic complications tend to progress without being detected (2, 3). A review of the clinical background of patients with advanced diabetic retinopathy at presentation revealed that 107 individuals, including 65 patients with untreated diabetes (22 were unattended, 20 had discontinued treatment, and 23 had no prior diagnosis) (4), had pre-proliferative or proliferative diabetic retinopathy.

Diabetic polyneuropathy (DPN) is the most prevalent chronic complication of diabetes that occurs during the earliest stages of the disease (5, 6). The early stages of DPN are associated with few subjective symptoms, with generally only mild numbness or abnormal sensations below the knee and in both legs; however, as DPN progresses, it becomes a serious complication that causes neuropathic pain, autonomic neuropathy, diabetic foot, and sudden death. Diabetic bladder dysfunction caused by autonomic neuropathy, occurs with relatively frequency. This can present as incomplete bladder emptying, an increased postvoid residual, decreased peak urinary flow rate, bladder overdistention, and urine retention, which can lead to urinary tract infections (7, 8). Severe DPN has a significant impact on the quality of life and prognosis of patients with diabetes. Baba et al. proposed the use of a combination of sural sensory nerve action potential (SNAP) amplitude, tibial compound muscle action potential (CMAP) amplitude, and velocity system indices [such as tibial F-wave latency, tibial motor nerve conduction velocity (MCV), and sural sensory nerve conduction velocity (SCV) in the lower limb] for the diagnosis of the severity of DPN (9). The severity of DPN diagnosed according to this classification was associated with the prognosis of patients with diabetes in a recent 5-year prospective study (10).

The association between diabetic retinopathy and diabetic neuropathy is correlated with the severity of DPN and alterations in retinal thickness (11). Thus, evaluating the severity of DPN at the initial visit may be essential in all diabetic patients. Evaluating the severity of DPN may be especially useful in predicting the prognosis of patients with untreated diabetes at high risk of developing diabetic complications. Therefore, this study aimed to investigate the severity of DPN in patients with untreated diabetes and examine the association between the development of diabetic complications and the severity of DPN.




2 Materials and methods



2.1 Patients

This study was conducted at the Kagoshima City Hospital, Kagoshima, Japan, between June 2015 and May 2021. Among the 3370 patients with type 2 diabetes who visited our department for the first time, 649 patients were untreated. Among these 649 patients, 117 were hospitalized for the management of hyperglycemia during the study period, and 72 (28 women and 44 men) participated in the current study. Forty-five patients, comprising 38 patients who did not undergo nerve conduction studies (NCSs), six patients aged >75 years, and one patient with a neuromuscular disease, were excluded from the study. All patients underwent routine biochemical and hematological tests and screening for diabetic complications. In addition, drug treatment was also analyzed after hospitalization. The untreated patients were divided into two groups: patients with no prior diagnosis and patients who were unattended or had discontinued treatment. Patients classified as having no prior diagnosis comprised those who i) had not previously been diagnosed with diabetes following any physical examination or hospital visit and ii) those who had not undergone a physical examination and were diagnosed with diabetes for the first time on visiting our department. Unattended patients were defined as patients diagnosed with diabetes at a medical checkup who did not initiate treatment. Discontinuation of treatment was defined as a failure to visit the hospital for ≥1 year after commencing treatment.




2.2 Nerve conduction study

All patients underwent conventional sensory and motor NCSs. The median, ulnar, tibial, and sural nerves of the upper and lower extremities were examined. NCSs were performed using a standard electromyographic device with stimulating and recording electrodes (Viking Select; Nicolet Biomedical Japan, Tokyo, Japan). The skin temperature was maintained above 32°C and at 31°C on the forearm and mid-leg, respectively. The American Academy of Electrodiagnostic Medicine defines DPN as a distal symmetric sensorimotor polyneuropathy. Patients with abnormalities in any attribute of nerve conduction in two separate nerves, one of which must be the sural nerve, were diagnosed with DPN (12). The classification proposed by Baba was also used as a diagnostic reference in addition to the authorized diagnostic criterion. DPN was classified into five stages based on the severity classification of DPN in this classification system: stage 0, normal with no NCS abnormalities; stage 1, mild neuropathy with tibial MCV of <42 m/s, sural SCV of <42 m/s, tibial minimal F-wave latency (> [12.8 + 0.22 × height (cm)] ms), or the presence of an A wave; stage 2, moderate neuropathy with a sural SNAP amplitude of <5 µV; stage 3, moderate-to-severe neuropathy with a sural SNAP amplitude of <5 µV and a tibial CMAP amplitude ranging between ≥2 and <5 mV; and stage 4, severe neuropathy with a sural SNAP amplitude of <5 µV and a tibial CMAP amplitude of <2 mV (13). The patients were further divided into the following three subgroups according to these grades: no DPN (stage 0), mild DPN (stage 1), and moderate or more-severe DPN (stages 2–4). Intergroup comparisons were performed for the clinical characteristics of the patients and the NCS results.




2.3 Statistical analysis

Data are presented as the mean and standard deviation. Excel 2021 (Microsoft, Redmond, WA, USA) with the add-in software Statcel 3 (OMS, Tokyo, Japan) and EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan) were used to perform all statistical analyses (14). Significant differences among the three groups were compared using one-way analysis of variance and the Tukey–Kramer or Steel–Dwass post-hoc test. The adjusted odds ratios with the 95% confidence intervals (CIs) were calculated using the logistic regression model to determine the risk of developing diabetic retinopathy and diabetic nephropathy. A P-value of <0.05 was considered statistically significant.





3 Results



3.1 Clinical characteristics of the patients

Table 1 presents the demographic data of the 72 participants. The mean age of the participants was 54.3 ± 11.4 years. The mean duration of diabetes was 7.2 ± 6.6 years. Thirty-one of the 72 participants had no prior diagnosis of diabetes. The remaining 41 were unattended or had discontinued treatment. The mean glycosylated hemoglobin (HbA1c) level was 11.1% ± 2.0%. Retinopathy, nephropathy, and macroangiopathy were detected in 30 (42%), 33 (46%), and eight (11%) patients, respectively. Three (4%) patients had diabetic foot. Twenty-two (30%), 25 (35%), 18 (25%), three (4%), and four (6%) patients were categorized as having no DPN (stage 0), mild DPN (stage 1), moderate DPN (stage 2), moderate to severe DPN (stage 3), and severe DPN (stage 4), respectively. The proportion of males among patients who were unattended or had discontinued treatment was significantly higher. The participants who were unattended or had discontinued had more advanced stages of diabetic retinopathy, diabetic nephropathy, or DPN than the participants with no prior diagnosis (all P < 0.01).


Table 1 | Clinical characteristics of the patients.






3.2 Clinical characteristics of the patients stratified according to the classification proposed by Baba

Table 2 presents the clinical characteristics of the 72 patients stratified according to the classification proposed by Baba (9, 13). The diagnosis was consistent with the authorized diagnostic criteria and the classification proposed by Baba in all cases. No significant differences were observed among the three subgroups in terms of the estimated glomerular filtration rate or the prevalence of macroangiopathy or diabetic foot. The body mass index and lower urinary C-peptide immunoreactivity of the patients with moderate or more-severe DPN were significantly lower than those of the patients without DPN (both P < 0.01). The HbA1c values of the patients with moderate or more-severe DPN were significantly higher than those in the no DPN subgroup (P < 0.05). The proportion of patients who were unattended or had interrupted treatment in the moderate or more-severe-DPN group was significantly higher than that in the no-DPN group (P < 0.05). The use of insulin was similar among all three subgroups. The stages of diabetic retinopathy and diabetic nephropathy in the moderate or more-severe-DPN subgroup were significantly more advanced than those in the no-DPN and mild-DPN subgroups (retinopathy: both P < 0.01, nephropathy: P < 0.01 for no DPN and P < 0.05 for mild DPN). Other than age and HbA1c values, no significant differences were observed between the no DPN and mild-DPN subgroups in terms of clinical presentation.


Table 2 | Clinical characteristics of the patients stratified according to the classification proposed by Baba.






3.3 NCS parameters

Table 3 presents the results of the lower limb NCS for the 72 participants. The tibial MCV and sural SCV of the moderate or more-severe-DPN subgroup were significantly lower than those of the no-DPN and mild-DPN subgroups (P < 0.01). The tibial F-wave latency of the moderate or more-severe-DPN subgroup was significantly longer than those of the no-DPN and mild-DPN subgroups (P < 0.01). The amplitudes of the tibial CMAP and sural SNAP in the moderate or more severe-DPN subgroup were significantly smaller than those in the no-DPN and mild-DPN groups (CMAP: P < 0.01 for no DPN and P < 0.05 for mild DPN, SNAP: both P < 0.01). The tibial MCV was significantly lower, the tibial F-wave latency was significantly longer, and the sural SNAP was smaller in the mild-DPN group than those in the no-DPN group (all P < 0.01).


Table 3 | Comparison of the results of the lower limb nerve conduction studies in patients stratified according to the classification proposed by Baba.






3.4 Risk of developing retinopathy or nephropathy in multivariate logistic regression analysis

The risk of developing diabetic retinopathy and diabetic nephropathy among patients who were unattended or had discontinued treatment was calculated as odds ratios after adjusting for the potential confounder of diabetes duration (Table 4). The risk of developing diabetic retinopathy was higher in the moderate or more-severe-DPN subgroup, with an adjusted odds ratio of 7.56 (95% CI: 1.590–36.0, P = 0.011). The moderate or more-severe DPN subgroup also showed significant associations with the risk of progression of retinopathy and nephropathy, with adjusted odds ratios of 19.5 (95% CI: 3.660–104.0, P < 0.001) and 11.0 (95% CI: 1.150–106.0, P = 0.037) for retinopathy and nephropathy, respectively. The duration of diabetes showed no associations with the risk of developing diabetic retinopathy or diabetic nephropathy.


Table 4 | Risk of developing retinopathy or nephropathy in the multivariate logistic regression analysis.







4 Discussion

To the best of our knowledge, this study is the first to investigate the validity of assessing the severity of DPN for predicting the risk of developing diabetic complications in patients with untreated diabetes. The present study revealed that the risk of developing diabetic complications was related to the DPN severity classification system proposed by Baba. Patients with moderate or more-severe DPN had a higher risk of developing advanced stages of diabetic retinopathy and diabetic nephropathy.

The Michigan Neuropathy Screening Instrument (16) and the Toronto Consensus (17) have been used for the diagnosis of DPN worldwide. The use of the simplified diagnostic criteria of the Japanese Study Group on Diabetic Neuropathy (18) has been recommended in routine practice in Japan. DPN was detected in 35.8% of patients with type 2 diabetes in Japan according to these criteria in a previous study (19). However, these criteria comprise the physical signs and symptoms of peripheral neuropathy and cannot be used to determine the severity of DPN.

NCSs provide the most objective and quantitative method for diagnosing DPN (20). DPN was detected in 70% of patients with poorly controlled untreated diabetes via NCSs in the present study. The prevalence of mild DPN was 35%. The prevalence of moderate or more-severe DPN was also 35%. The number of patients with stage 3 and 4 disease was small; however, the frequency of severe DPN among the participants was comparable with that reported in other Japanese studies (21, 22). This finding indicates the high prevalence of DPN among patients with untreated diabetes and suggests that NCS shows excellent sensitivity for the detection of DPN. However, NCSs require expensive equipment and an advanced examination technique. Moreover, they are only available in limited facilities at present. Consequently, a point-of-care device, DPNCheck™ (NeuroMetrix Inc., Waltham, MA, USA), was developed to test only the sural nerve to overcome the lack of versatility of NCSs (23, 24). The results of DPNCheck™ are highly reproducible and correlate well with a standard electromyographic system (25, 26). Kamiya et al. developed a multiple regression model to predict the severity of DPN based on the classification system proposed by Baba that used sural nerve conduction data in DPNCheck™ (21). The model could effectively diagnose moderate or more-severe DPN (stages 2–4) (21). The use of this model may facilitate the assessment of the severity of DPN in facilities where NCSs cannot be performed.

The prevalence of severe diabetic complications has been increasing among patients who do not visit a physician owing to social and economic reasons. A lack of understanding of treatment priorities, lack of awareness regarding the disease, and financial burdens have been identified as reasons for discontinuing treatment (27). Severe complications from proliferative diabetic retinopathy, such as tractional retinal detachment, tend to develop in patients who discontinue treatment (28). More effective medical care and guidance can be provided by identifying untreated patients at a high risk of diabetic complications at the initial visit. Assessing the severity of DPN aids in predicting the risk of developing diabetic complications and preventing the progression of complications and the development of diabetic foot. However, owing to the difficulty in implementing NCSs, their use for the prediction of retinopathy or nephropathy is not feasible. Thus, objective assessment of the severity of DPN using DPNCheck™ in various medical settings could aid in the detection of high-risk patients and the prevention of severe diabetes in the future.

This study is limited by its single-center design and relatively small sample size. The number of patients with stage 3 and 4 disease was insufficient to facilitate statistical analyses; consequently, differences among stages 0, 1, and 2–4 were analyzed. In addition, the analysis could not distinguish moderate DPN from moderate-to-severe or severe DPN. Participants with moderate-to-severe or severe DPN may be at increased risk of developing diabetic complications, including diabetic foot. Therefore, the generalizability of these findings may be limited, and additional data must be accumulated on participants with advanced DPN. Further studies with large sample sizes are required to determine the relevance of the findings of the present study more accurately.

In conclusion, assessment of the severity of DPN aids in the prediction of the risk of developing diabetic complications in patients with untreated diabetes. These findings could be used as guidelines to identify patients with untreated diabetes at high risk of developing diabetic complications at the initial visit to the hospital.
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Objective

To evaluate the role of foot muscle amide proton transfer weighted (APTw) contrast and tissue rest perfusion in quantifying diabetic foot (DF) infection and its correlation with blood parameters.





Materials and methods

With approval from an ethical review board, this study included 40 diabetes mellitus (DM) patients with DF and 31 DM patients without DF or other lower extremity arterial disease. All subjects underwent MRI, which included foot sagittal APTw and coronal arterial spin labeling (ASL) imaging. The normalized MTRasym (3.5 ppm) and the ratio of blood flow (rBF) in rest status of the affected side lesions to the non-affected contralateral side were determined. The inter-group differences of these variables were evaluated. Furthermore, the association between normalized MTRasym (3.5 ppm), rBF, and blood parameters [fasting blood glucose (FBG), glycosylated hemoglobin content, C-reactive protein, neutrophil percentage, and white blood cell count] was explored. Using an ROC curve, the diagnostic capacity of normalized MTRasym (3.5 ppm), BF, and blood biochemical markers in differentiating with or without DF in DM was assessed.





Results

In the DF group, MTRasym (3.5 ppm) and BF in lesion and normalized MTRasym (3.5 ppm) were higher than those in the control group (p < 0.05). In addition, correlations were identified between normalized MTRasym (3.5 ppm) and blood parameters, such as C-reactive protein, glycosylated hemoglobin content, FBG, neutrophil ratio, and white blood cell (p < 0.001). Meanwhile, association between BF in lesion and blood parameters, such as C-reactive protein, neutrophil percentage, and FBG (p < 0.01). AUC of normalized MTRasym (3.5 ppm) in identifying with/without DF in patients with DM is 0.986 (95% CI, 0.918–1.00) with the sensitivity of 97.22% and the specificity of 100%.





Conclusion

Normalized MTRasym (3.5 ppm) and the BF in lesion may be treated as a safer and more convenient new indicator to evaluate the tissue infection without using a contrast agent, which may be useful in monitoring and preoperatively assessing DF patients with renal insufficiency.





Keywords: diabetic foot, ASL, APTw, infection, diabetes mellitus





Introduction

Diabetic foot (DF), as one of the complications of diabetic mellitus (DM), is of growing concern. Approximately 40 million individuals in China and 30 million people in the United States have DM, and there is a lifetime risk of 25% in China and 20% in the United States for developing DF, which has extended curative cycles, high disability rates, and higher mortality rates (1, 2). Local infection is the main cause of diabetic foot ulcers (DFUs) and eventual amputation. Bacterial growth within DFUs is facilitated by a number of variables, including poor glycemic control, immunosuppression, peripheral vasculopathy, and peripheral neuropathy. Wagner classification is commonly used in evaluating the prognosis of DF and achieving the optimal treatment for the patient, but it is mainly based on subjective assessment. Accurate quantitative assessment of information on infection and blood perfusion in the local tissues are essential for the therapeutic management of DF.

MRI is the effective method to assess soft-tissue infections and osteomyelitis in the foot with the presence of hyperintensity in fat-suppressed T2-weighted imaging or short time of inversion recovery (STIR) imaging (3). Meanwhile, dynamic contrast enhancement (DCE), diffusion-weighted imaging (DWI), and Dixon-based fat suppression have been used for detecting neuropathic arthropathy and osteomyelitis (OM) with more sensitivity and specificity. These MR techniques, however, do not quantify data about tissue molecular changes (1). Although computed tomography perfusion imaging (CTP) (4) and dynamic contrast-enhanced (DCE) magnetic resonance perfusion-weighted imaging (PWI) are used for evaluating the degree of tissue ischemia and the status of micro-vessels, the injection of high-dose contrast agents for CTP and PWI poses a significant risk to the patients, which may terminate in renal failure. Serum biomarkers such as C-reactive protein and leukocyte count could be used to differentiate necrotizing soft-tissue infections from non-necrotizing soft-tissue infections, but their diagnostic performance is still being debated (5). Therefore, a non-invasive risk-free imaging approach to quantify the molecular information and the blood flow in DF lesions and surrounding muscle issue is demanded.

Amide protons transfer weighted (APTw) imaging is a molecular MRI technique that uses an endogenous contrast agent, a saturation pulse at a specific frequency of the amide content of peptides and tissues protein, to achieve a magnetic transfer ratio of amide proton exchanged to free water proton (6). APTw signals were measured using magnetization transfer ratio asymmetry at 3.5 ppm [MTRasym (3.5 ppm)] to reflect the protein-weighted signal changes in glioma and musculoskeletal diseases (7). Zhang Hong et al. reported that hyperintense on the APTw images was observed in brain abscesses, viral encephalitis, and meningitis (8). Debnath et al. also reported that a higher mean APT-weighted contrast was found in brain-infective mass lesions (9). Furthermore, the majority of necrotizing soft-tissue infections are polymicrobial infections. BacCEST MRI makes it possible to identify, classify, and keep track of bacterial infections in rat brain with a bacterial abscess (10). CryptoCEST contrast enabled the detection of cryptococcomas in the brains of mice (11). The necrotic tissue and interstitial exudate from the DF lesions are rich in protein. Therefore, we hypothesis that MTRasym (3.5 ppm) in the DF lesions could be detected to evaluate the degree of inflammation in DF. Normalized MTRasym (3.5 ppm) [nMTRasym (3.5 ppm)] was calculated as the ratio of the APTw signal at the lesion to the surrounding muscular tissue to reducing the impact of multiple factors on APT outcomes, including tissue T1, irradiation strength, B1 inhomogeneity perturbing the magnetization, and magnetization transfer (MT).

Arterial spin labeling (ASL) MRI provides the cerebral blood flow (CBF) to quantify the perfusion of local tissues using magnetically labeled arterial blood as an endogenous contrast agent. The CBF was calculated from the difference between the labeled blood water and the unlabeled blood water with correcting for T1 relaxation time, blood-tissue partition coefficient, and transit time of the blood water to tissue water. The reduced CBF was found in patients with type 2 diabetes mellitus (T2DM) and patients with hypoglycemia (12, 13). Besides the CBF, the BF dynamics in skeletal muscle (14) and foot ulcers (15, 16) were also evaluated in diabetes mellitus patients at rest and with physical activity using ASL imaging. However, the results were inconsistent. Edalati et al. observed that peri-ulcer exercise perfusion was lower than away-ulcer exercise perfusion, while Pantoja et al. found that peri-wound tissue perfusion was increased relative to the rest of the foot. It may be more valuable to explore the differences in local perfusion in diabetic foot patients at rest with a larger sample size in clinical practice. Moreover, the ratio of BF (rBF) in the diseased area of the afflicted foot to the same area of the contralateral foot may decrease the individual variances and increase the strength of the results.

This study aimed to explore the use of foot APTw in combination with ASL imaging to evaluate the infection and blood perfusion in DF and investigate the relationship among rBF, nMTRasym (3.5 ppm), and blood biochemical parameters, such as FBG, glycosylated hemoglobin, neutrophils, and white blood cells. This diagnostic tool may be a reliable non-invasive means of evaluating the diabetic foot, especially for patients with kidney injury.





Materials and methods




Participants

Upon the approval of the study protocol by the ethics committee of our hospital (approval number DXBYYkMEC2021-09), 40 DM patients (30 male and 10 female patients, with an average age of 61.38 ± 13.20 years) diagnosed with DF from December 2020 to September 2021 in our hospital were assigned to the DF group. A total of 31 DM patients (18 male and 13 female patients, with an average age of 59.71 ± 11.76 years) without DF and lower extremity arterial disease were assigned to the control group. The inclusion criteria for the DF group were as follows: 1. patients with clinically confirmed DF; 2. patients with grade 2 according to the commonly used Wagner Grading Criteria (WGC) for DF (2); 3. patients with complete clinical laboratory evaluations; 4. patients who underwent routine MRI and ASL and APT sequence examinations; and 5. patients with confirmed soft tissue abscess by draining after MR examination. The inclusion criteria for the control group were as follows: 1. the course of DM was more than 5 years and 2. FBG >7.0 and glycosylated hemoglobin > 7%. Patients with other foot lesions or with severe venous embolism of the lower extremity were excluded. The flow chart of the study design is shown in Figure 1. Data on age and gender, fasting blood glucose (FBG) level, glycosylated hemoglobin content, white blood cell count, and neutrophil percentage were also collected.




Figure 1 | Flow chart of the study design.







MR examination

All participants underwent foot MR examination using a 3.0-T MR scanner (Philips Ingenia CX, Best, Netherlands). After the patient lay supine with the feet advanced, two dS flex coils were placed in parallel and fixed to both sides of the feet. First, the conventional sagittal and axial T1-weighted, sagittal T2-weighted, coronal PD-weighted imaging with fat suppression, and coronal DWI imaging were performed. Then, axial ASL imaging based on the FFE-EPI sequence was acquired at post-label delay (PLD) times of 1,600 ms. Finally, a sagittal APTw sequence based on a 3D-modified Dixon-TSE sequence was performed with a saturation power of 1 µt and a duration of 1.8 s. B0 mapping was automatically calculated and was used to auto-correct the B0 magnetic field inhomogeneity of APTw images on the MRI console. The detailed sequence parameters are shown in Table 1.


Table 1 | MRI sequence parameters.







Post-processing and measurement

After MR examination, all images were transferred onto a workstation (IntelliSpace Portal, Version 9.0, Philips Healthcare) for data post-processing, and BF mapping and APTw mapping were automatically calculated. The data in the region of interest (ROI) was measured by two radiologists with extensive diagnostic experience (> 5 years) (17).

Fusing T1-weighted images and APTw map, ROIs on the lesions, and the surrounding muscle were manually outlined and avoided the region with extremely high or low MTRasym (at 3.5 ppm) owing to B0 or B1 inhomogeneity (shown in Figure 2). The location and extent of the lesions were determined by a low signal in T1-weighted images and a high signal in T2-weighted and PD-weighted images with fat suppression and DWI images.




Figure 2 | A diabetic foot of DM patient (A–E). Increased T2w signal indicates that there is soft tissue edema in the plantar and dorsum regions, and the plantar sinus tract is formed (A). Elevated proton density weighted signal indicates that there is soft tissue edema (B). Increased DWI signal in the soft tissue suggest that the water diffusion is limited (C). Lower T1w signal of metatarsal bones is considered to be osteomyelitis (D). A fused local APTw image and T1w image. MTRasym (3.5 ppm) is 3.8% (E). Images of the foot from a DM patient without DF (F–H). No abnormalities in the plantar soft tissue from the PDw image (F) and the T1w image (G). A fused local APTw image and T1w image (H). MTRasym (3.5 ppm) is 1.0%.



As for ASL imaging, a circular-shaped ROI with an area of approximately 5 cm2 was drawn manually at the first toe metatarsal joint level of both planters on T1-weighted images fused on ASL images. For the control group, ROIs were also drawn at the plantar of the first toe metatarsophalangeal joint level and the surrounding muscle on the ASL and APTw images (Figure 3).




Figure 3 | The blood flow mapping of a diabetic foot from a DM patient with DF based on the ASL image with PLD of 1,600 ms (A). The blood flow mapping of a DM patient without DF based on the ASL image with PLD of 1,600 ms (B).



The mean of MTRasym (at 3.5 ppm) and BF in ROI was calculated on MRI console based using the formula, MTRasym (3.5 ppm) = Msat (−3.5 ppm)/M0 − Msat (+3.5 ppm)/M0, where Msat and M0 are the image signal intensities with and without radiofrequency saturation, respectively. NMTRasym (3.5 ppm) was calculated as the ratio of MTRasym (3.5 ppm) of the lesion to that of the muscle adjacent to the lesion to reduce the individual variation and B1 inhomogeneity. The rBF was calculated with the ratio of BF in the diseased area of the afflicted foot to the same area of the opposite foot.





Statistical analysis

The software SPSS (version 17.0) was used for the statistical analysis of the data. The normal distribution of the data was detected by Shapiro–Wilk test. Logarithmic transformation was used if the data does not satisfy the normal distribution. If the data satisfied the normal distribution and with variance homogeneity, the mean ± standard deviation was used to describe the data, and the two-sample independent t-test was used to compare the differences between the two groups. Otherwise, the median (25th percentiles and 75th percentiles) was used to describe the data, and the non-parametric Mann–Whitney U test was used to test the difference between groups. Spearman was used to explore the relationship between nMTRasym (3.5 ppm), rBF, and blood parameters. Correlation coefficients are represented by scatter plots and linear regression. Area under the curve (AUC) was used to evaluate the diagnostic capacity of distinguishing diabetic foot (DF) from non-DF in patients with DM (18).






Results




Basic and clinical characteristics

The basic and clinical data of all subjects are shown in Table 2. There were significant differences in DM, FBG, glycosylated hemoglobin content, neutrophil percentage, and white blood cell count between the DF group and the control group (p<0.005). Meanwhile, the inter-group differences of age and gender were not statistically significant (p>0.05).


Table 2 | The basic and clinical characteristics of the subjects in the DF and the control groups.







The BF and nMTRasym (3.5 ppm) in the lesion of DF group

Significantly higher BF in the lesion of the affected foot [30.02 (21.35, 61.34) in DF group vs. 16.10 (12.88, 20.24) mL/min/100 g in the control group, p<0.001] and in the contralateral side [24.35 (17.12, 32.98) in the DF group vs. 15.57 (12.41, 20.13) mL/min/100 g in the control group, p<0.001] was found in the DF group than in the control group. Meanwhile, elevated MTRasym (3.5 ppm) in lesion [3.30 (2.70, 3.80) in the DF group vs. 1.20 (0.8, 1.4) % in the control group, p<0.01] and nMTRasym (3.5 ppm) in lesion [3.16 (2.51, 3.98) in the DF group vs. 1.14(0.94, 1.25) % in the control group, p<0.01] in the DF group compared to that in the control group are shown Figure 4.




Figure 4 | The stem and leaf plot of the foot MTRasym (3.5 ppm) in lesion, MTRasym (3.5 ppm) in adjected muscle, normalized MTRasym (3.5 ppm), BF in lesion, BF of contralateral side, and rBF in the DF group and in the control group.







Correlation among nMTRasym (3.5 ppm), BF, and blood biochemical parameters

The correlations in nMTRasym (3.5 ppm) and biochemical parameters of C-reactive protein (r=0.683, p<0.001), glycosylated hemoglobin (r=0.475, p < 0.001), FBG (r=0.468, p < 0.001), neutrophil percentage (r=0.457, p < 0.001), and white blood cell (r=0.442, p < 0.001) were found. Meanwhile, a correlation between the BF in lesion and biochemical parameters of C-reactive protein (r=0.520, p<0.001), neutrophil percentage (r=0.337, p =0.005), and FBG (r=0.319, p=0.008) was observed (Figure 5).




Figure 5 | The scatter plots and linear regression of normalized MTRasym (3.5 ppm), BF, and blood biochemical parameters.







The diagnostic capacity of nMTRasym (3.5 ppm), BF, and blood biochemical parameters

NMTRasym (3.5 ppm) achieved AUC of 0.986 (95% CI, 0.918–1.00) in identifying with/without DF in patients with DM, which was higher than the other markers, such as MTRasym (3.5 ppm) in lesion (AUC of 0.965; 95% CI, 0.883–0.995), C-reactive protein (AUC of 0.942; 95% CI, 0.851–1.00), BF in lesion (AUC of 0.874; 95% CI, 0.764–0.945), and FBG (AUC of 0.745; 95% CI, 0.617–0.848) (Figure 6). The sensitivity and specificity of nMTRasym (3.5ppm) were 97.22% and 100%.




Figure 6 | ROC curves of normalized MTRasym (3.5 ppm), BF, and blood biochemical parameters in identifying diabetic patients with/without diabetic foot.








Discussion

The application of APTw in DF was demonstrated in this study, and elevated blood flow and increased nMTRasym (3.5 ppm) in the affected foot of the DF patient were observed compared to the control group. The correlations among the nMTRasym (3.5 ppm), BF in lesion, and biochemical indicators, such as C-reactive protein, FBG, glycosylated hemoglobin, neutrophil percentage, and white blood cell, were also found, suggesting that nMTRasym (3.5 ppm) and BF in lesion could be biological markers in detecting soft tissue infection in DF. Furthermore, the AUC of local nMTRasym (3.5 ppm) is 0.986 in identifying with/without DF in patients with DM, which is higher than the C-reactive protein and BF in lesion.

To our knowledge, this is the first study to investigate diabetic foot using APTw imaging. We found elevated MTRasym (3.5 ppm) and nMTRasym (3.5 ppm) in the DF lesions in this study. In previous studies, an increased MTRasym (3.5 ppm) in the brain with intracranial infection (8) and tubercular abscess (9) had been reported, and this study is consistent with the above results. The increasing of MTRasym (3.5 ppm) may be related to the following factors. First is that the protein-rich interstitial fluid increases in the lesion of DF due to inflammation, abscess, etc. The protein content of interstitial fluid and the water with long T1 value and alkaline environment (6, 7) will directly lead to the increased MTRasym (3.5 ppm). Second, there are a large number of bacteria and microbial infections in the lesion. According to the study of bacCEST reported by Liu et al. (10), bacteria lead to the increase in the signal at MTRasym (2.6 ppm). Because of the wide range of CEST effect, it will also affect the signal at MTRasym (3.5 ppm) and lead to its indirect increase. For the same reason, the CryptoCEST contrast at 4 ppm (11) will also lead to an elevated MTRasym (3.5ppm). Third, technical factors such as non-uniform B1 field and motion during scanning (19) could also lead to abnormal increase in signal at MTRasym (3.5 ppm). However, because the MTRasym (3.5 ppm) signal in this study is also related to C-reactive protein, FBG, glycosylated hemoglobin content, and neutrophil percentage, we believe that it is mainly determined by physiological reasons instead of uniform B1 field.

The BF obtained by 3D-ASL was consistent with the BF from positron emission tomography (PET) (20). The elevated BF in the affected foot of DM patients might have been due to the increased local blood supply in the affected foot of the DM patient. In DM patients, hyperglycemia damaged the vascular intima, and the increased blood viscosity destroyed the blood vessels, leading to the insufficient blood supply to the tissues and tissue necrosis, thus aggravating the condition (20). Our results are consistent with other studies (16). Meanwhile, increased local perfusion of the affected foot was noticed after amputation in patients with diabetic foot ulcers (1). Impaired microvascular permeability in tibial anterior muscles and larger T1-weighted signal characteristics of osteomyelitis were observed by DCE-MRI (10, 11).

This study has some limitations. First, radio frequency field (B1) inhomogeneous on the APTw images and the effect of tissue T1 fail to be corrected due that fact that B1 and T1 mapping has not been collected, although the magnetic field (B0) inhomogeneity of MTRasym (3.5 ppm) was corrected. In the future study, B1 mapping and T1 mapping will be acquired to improving the interpretability of the results. Second, manual delineation of ROI is the main technique in this study, and future study will be based on methods such as image segmentation and registration to achieve automatic drawing of lesions or particular muscles to increase the objectivity of the results. Third, as the sample size increases, we will make groupings by the pathological level to further investigate the value of nMTRasym (3.5 ppm) and rBF to evaluate the infection of DF.

In summary, DF infection was assessed using both of APTw and ASL imaging for the first time, and the elevated nMTRasym (3.5 ppm) and BF in lesion may be used as novel indicators in evaluating the DF in DM patients with safer and more convenient treatment for patients with renal insufficiency due to its non-contrast injection.
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Background

Diabetic ketoacidosis (DKA) is a frequent acute complication of diabetes mellitus (DM). It develops quickly, produces severe symptoms, and greatly affects the lives and health of individuals with DM.This article utilizes machine learning methods to examine the baseline characteristics that significantly contribute to the development of DKA. Its goal is to identify and prevent DKA in a targeted and early manner.





Methods

This study selected 2382 eligible diabetic patients from the MIMIC-IV dataset, including 1193 DM patients with ketoacidosis and 1186 DM patients without ketoacidosis. A total of 42 baseline characteristics were included in this research. The research process was as follows: Firstly, important features were selected through Pearson correlation analysis and random forest to identify the relevant physiological indicators associated with DKA. Next, logistic regression was used to individually predict DKA based on the 42 baseline characteristics, analyzing the impact of different physiological indicators on the experimental results. Finally, the prediction of ketoacidosis was performed by combining feature selection with machine learning models include logistic regression, XGBoost, decision tree, random forest, support vector machine, and k-nearest neighbors classifier.





Results

Based on the importance analysis conducted using different feature selection methods, the top five features in terms of importance were identified as mean hematocrit (haematocrit_mean), mean hemoglobin (haemoglobin_mean), mean anion gap (aniongap_mean), age, and Charlson comorbidity index (charlson_comorbidity_index). These features were found to have significant relevance in predicting DKA. In the individual prediction using logistic regression, these five features have been proven to be effective, with F1 scores of 1.000 for hematocrit mean, 0.978 for haemoglobin_mean, 0.747 for age, 0.692 for aniongap_mean and 0.666 for charlson_comorbidity_index. These F1 scores indicate the effectiveness of each feature in predicting DKA, with the highest score achieved by mean hematocrit. In the prediction of DKA using machine learning models, including logistic regression, XGBoost, decision tree, and random forest demonstrated excellent results, achieving an F1 score of 1.000. Additionally, by applying feature selection techniques, noticeable improvements were observed in the experimental performance of the support vector machine and k-nearest neighbors classifier.





Conclusion

The study found that hematocrit, hemoglobin, anion gap, age, and Charlson comorbidity index are closely associated with ketoacidosis. In clinical practice, these five baseline characteristics should be given with the special attention to achieve early detection and treatment, thus reducing the incidence of the disease.
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1 Introduction

Diabetic ketoacidosis (DKA) is a potentially life-threatening metabolic complication associated with diabetes mellitus (DM). DKA is characterized by a severe lack of insulin and increased levels of counter-regulatory hormones, which can cause the accumulation of ketones in the body. If not promptly diagnosed and treated, DKA can lead to serious complications and even death. Therefore, it is critical to closely monitor DM and take appropriate measures to prevent DKA from developing or to swiftly manage it (1). DKA can develop rapidly, often taking place within 24 hours (2). It can even occur earlier in patients treated with short-acting insulin, such as Humalog, with metabolic changes potentially occurring 1.5 to 2 hours sooner (3). Infection is a frequent precipitating factor for DKA worldwide and accounts for approximately 30-50% of DKA cases. Among potential infections, urinary tract infections and pneumonia are among the most commonly associated with DKA. Other factors that can trigger DKA include concurrent health conditions such as surgical procedures, trauma, myocardial ischemia, and pancreatitis. Psychological stress and medication non-compliance, particularly with insulin therapy, can also contribute to the development of DKA (4).

One of the main triggers for DKA is insufficient insulin. In the absence of adequate insulin, blood glucose levels rise, leading to increased breakdown of triglycerides in adipose tissue and release of a large amount of free fatty acids. More free fatty acids enter the kidneys through the liver, causing an increase in gluconeogenesis in the liver and releasing more glucose into the bloodstream. In an environment of high blood glucose and insufficient insulin, the liver begins to excessively produce ketone bodies, including beta-hydroxybutyric acid, acetoacetate, and acetone. The accumulation of ketone bodies in the blood results in increased blood acidity, ultimately leading to ketoacidosis. Ketoacidosis is one of the most significant physiological effects of DKA. Excessive ketone bodies cause an increase in blood acidity, affecting acid-base balance and potentially leading to an acidotic state. Due to increased urine output caused by high blood glucose and ketoacidosis, patients may experience severe dehydration. This can lead to electrolyte imbalances, reduced blood volume, and blood concentration. Dehydration and hyperglycemia may result in disturbances of sodium, potassium, and other electrolytes, potentially triggering arrhythmias and other severe physiological problems. DKA can negatively impact multiple organs, including the heart, kidneys, and nervous system. Recent progress in medical technology has led to significant advances in treatment options for DM. However, despite these developments, the incidence and mortality rates associated with DKA remain high. As the global prevalence of DM continues to rise, the incidence of DKA is also increasing year by year (5). A study involving 28,770 individuals under the age of 20 with DM found that among these participants, 94% did not experience DKA, 5% had a single episode of DKA, and 1% had at least two episodes of DKA (6). The mortality rate for DKA varies between 1% and 5%, with the highest mortality rates typically observed among elderly individuals and those with complications related to their diabetes (7). It is worth noting that cerebral edema, a complication that can occur as a result of DKA, is the leading cause of death among individuals under the age of 24 with DM (8).

Research has shown that there are 100,000 hospitalization cases of DKA in the United States every year, accounting for 4-9% of all discharge records of diabetic patients (4). The treatment of DKA requires a significant amount of healthcare resources. In adult type 1 diabetes patients in the United States, direct medical care costs account for 1/4 of the total expenses (9). Indeed, effective control and prevention of DKA are paramount in reducing healthcare costs. The emergence of computer technology has opened up new avenues for utilizing machine learning techniques to support doctors in disease diagnosis. By leveraging these technologies, healthcare professionals can potentially enhance their diagnostic accuracy and efficiency, leading to improved patient care and cost-effectiveness. Furthermore, given the high risk and poor prognosis associated with DKA, the development of a risk prediction model specifically for this condition is of great importance. Such a model can aid in identifying patients who are at higher risk of experiencing DKA, allowing for targeted interventions and preventive measures. By implementing a risk prediction model, healthcare providers can potentially reduce the incidence of DKA episodes, improve patient outcomes, and mitigate the economic burden on both the healthcare system and patients (10).

This study combines the existing public dataset MIMIC-IV with machine learning techniques for healthcare analysis. By employing feature selection methods (random forest, Spearman correlation analysis), baseline characteristics are optimized to identify five baseline characteristics highly correlated with DKA. Based on the abnormality of these five highly correlated baseline characteristics, early warning can be given in the early stages of the disease, assisting clinicians in clinical diagnosis, providing more effective treatment plans, and reducing the incidence of the disease and patients’ suffering. Meanwhile, this study utilizes six machine learning methods to establish a risk prediction model based on DKA, including logistic regression, XGBoost, decision tree, random forest, support vector machine, and k-nearest neighbors classifier. Experimental results demonstrate the effectiveness of feature selection, as the five optimized baseline characteristics can accurately predict the risk of DKA. The research process of this paper is as depicted in Figure 1.




Figure 1 | Flow chart of this study.






2 Method



2.1 Databaset

The MIMIC dataset was established in 2003 with the support of the National Institutes of Health in the United States. It was jointly created by the MIT Laboratory for Computational Physiology, the Beth Israel Deaconess Medical Center (BIDMC) affiliated with Harvard Medical School, and Philips Healthcare (10). The dataset utilized in this study is known as the ‘Medical Information Mart for Intensive Care IV’ (MIMIC-IV). It encompasses a wide range of data, including demographic information, disease diagnoses, vital signs, laboratory tests, treatment details, survival status, and other comprehensive clinical records. Compared to its predecessor, MIMIC-III, the scope of the MIMIC-IV dataset has been extended to cover the period from 2008 to 2019, providing a broader range of data for analysis and research.




2.2 Participant selection criteria

In this study, a total of 2379 patients were chosen from the MIMIC-IV dataset. Among them, 1193 patients had DKA and 1186 patients had DM without ketosis. The participants in this study were required to meet the following criteria: The participants in this study needed to meet the following criteria: (1) Age over 18 years. (2) First admission and first admission to the ICU. (3) Absence of other serious organic diseases. (4) Exclude late-stage disease. (5) Non-pregnant patients. (6) Minimal missing characteristic information.




2.3 Selection of indicators and data preprocessing

This study excluded baseline characteristics with missing data greater than 30% in MIMIC-IV, such as C-reactive protein, procalcitonin, height, and serum albumin. At the same time, Structured Query Language (SQL) was used to extract data of DKA patients from MIMIC-IV. The baseline characteristics selected in this study included demographic features, vital signs, laboratory indicators, comorbidity indicators, and scoring system indicators. Demographic features included gender, age, weight, and ethnicity. Vital signs included heart rate (heart_rate_mean), respiratory rate (resp_rate_mean), body temperature (temperature_mean), peripheral oxygen saturation (SPO2_mean), systolic blood pressure (SBP_mean), diastolic blood pressure (DBP_mean), and mean blood pressure (mbp_mean). Laboratory indicators included blood urea nitrogen (bun_mean), creatinine (creatinine_mean), urine output, sodium (sodium_mean), potassium (potassium_mean), calcium (calcium_mean), anion gap (anioinga_mean), hematocrit (haematocrit_mean), hemoglobin (haemoglobin_mean), white blood cell count (wbc_mean), absolute neutrophil count (abs_neutrophils_mean), absolute lymphocyte count (abs_lymphocytes_mean), platelets (platelets_mean), mean corpuscular hemoglobin (mch_mean), red blood cells (rbc_mean), red cell distribution width (rdw_mean), glucose (glucose_mean), and chloride (chloride_mean). Comorbidity indicators included hypertension, obesity, myocardial infarction, congestive heart failure, peripheral vascular disease, chronic pulmonary disease, liver disease, and renal disease. Scoring system indicators included lods, charlson, and oasis.

All data were analyzed using IBM SPSS Statistics 25. Two-sided statistical analyses were conducted, and a significance level of p ≤ 0.05 was used for interpretation of statistical significance. Normality was assessed for continuous variables, which were presented as mean ± standard deviation (SD), while categorical data are summarized as counts or percentages. Group comparisons were performed using the chi-square test for categorical variables and analysis of variance, and the Kruskal-Wallis test for continuous variables. The detailed baseline characteristics are shown in Table 1.


Table 1 | Baseline characteristics between DKA and non-DKA group.



The LODS (Logistic Organ Dysfunction System) is a medical scoring system commonly used to assess the degree of organ dysfunction in patients. This scoring system evaluates and quantifies the functional status of multiple organ systems based on clinical indicators such as blood pressure, respiratory rate, and oxygen saturation to determine the presence of organ dysfunction in patients.

In the field of home healthcare, OASIS (Outcome and Assessment Information Set) commonly refers to an assessment tool used to collect and document clinical information and functional status data of patients in a home care setting. OASIS assessment covers multiple domains, including activities of daily living, medical history, pain assessment, medication management, emotional status, and more.

The Charlson Comorbidity Index is a scoring system used to assess the burden of comorbidities or other chronic medical conditions in a patient. It assigns a score to various comorbidities based on their association with one-year mortality. The scores are summed to calculate a total score, which is used as an indicator of the patient’s overall health status and the risk of future complications or mortality.

Before carrying out feature selection and developing a DKA risk prediction model, we used mean imputation to handle missing values in the data set. Mean imputation is a commonly used method where the missing values are replaced with the mean or mode of the available data. The formula (Equation 1) for mean imputation can be represented as:

 

The symbols indicating whether an answer is provided represent the number of samples. In this study, mean imputation was performed for missing values in neutrophil and lymphocyte counts.




2.4 Feature selection

The study employed two feature selection methods to screen important baseline characteristics related to DKA, including Spearman correlation analysis and random forest. Spearman correlation analysis is used to assess the monotonic relationship between two continuous or ordinal variables. It is used to describe the correlation between two variables that have ordinal variables or distribution characteristics that cannot be described by mean and standard deviation. The formula (Equation 2) can be represented as:

 

Where N represents the total number of observations, ρ ranges from -1 to 1. [-1, 0) represents a negative correlation, and (0, 1] represents a positive correlation. A correlation of 0.8-1.0 indicates a very strong correlation, 0.6-0.8 indicates a strong correlation, 0.4-0.6 indicates a moderate correlation, 0.2-0.4 indicates a weak correlation, and 0.0-0.2 indicates a very weak or no correlation. It is worth noting that to better reflect the correlation, we took the absolute value of all correlation coefficients. The top 20 baseline characteristics in terms of correlation strength are shown in Table 2.


Table 2 | Top 20 baseline characteristics based on Spearman correlation analysis.



To enhance the reliability of the experimental results, we also incorporated a feature selection method based on random forests. Random forest is a collection classifier composed of multiple decision trees. The classifier ensemble of the random forest is RF = {h(X, θk),k = 1,2,3,···K}, where K is the number of decision trees, and θk is a random variable that follows an independent distribution. Under the known conditions of the independent variables, all classifiers are weighted to obtain the optimal selection result. We had a total of 10,000 decision trees, with a training set to test set ratio of 8.5:1.5. Random forest performed repeated sampling on the replaced dataset to obtain 10,000 data subsets, and each subset generate a corresponding decision tree, ultimately forming the DKA important baseline characteristics ensemble. The importance of random forest in selecting relevant indicators is shown in Table 3.


Table 3 | Top 20 baseline characteristics based on feature selection method using random forest.



After conducting correlation analysis using two feature selection methods, it was discovered that certain baseline characteristics exhibited high levels of correlation. By combining the importance rankings of baseline characteristics from the two feature selection methods, the top five strongly correlated baseline characteristics were selected based on their smallest sum of importance rankings. These five baseline characteristics include hemoglobin_mean, haematocrit_mean, aniongap_mean, age, and Charlson_comorbidity_index.




2.5 Establishing a risk prediction model for DKA

The study utilized supervised machine learning models for the prediction of DKA risk. The experiments were divided into two parts: the first part focused on risk prediction using logistic regression with a single baseline characteristic, while the second part utilized xgboost, decision trees, random forests, support vector machines, and k-nearest neighbors classifiers with multiple baseline characteristics for risk prediction. The complete dataset for the study was divided into training and testing sets, with a ratio of 0.85:0.15. The experiments were then conducted using five-fold cross-validation. The performance evaluation metrics used for the experiments included the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, and F1-score. These metrics were utilized to assess the predictive performance of the models, overall accuracy, and the balance between precision and recall in predicting DKA risk.



2.5.1 Risk prediction based on logistic regression with a single baseline characteristic

The study aimed to predict DKA risk independently for each baseline characteristic using logistic regression. Based on Table 4, the experimental results were categorized into three levels according to the F1 score: F1 scores higher than 80, F1 scores between 80 and 60, and F1 scores lower than 60. A total of two baseline characteristics, hematocrit mean and hemoglobin_mean, achieved an F1 score greater than 80. There were 20 baseline characteristics (Age, weight, heart_rate_mean, resp_rate_mean, temperature_mean, anioingap,dbp_mean, abs_neutrophils_mean, congestive_heart_failure, platelets_mean, glucose_mean, obesity, myocardial_infarct, peripheral_vascular_disease, chronic_pulmonary_disease, renal_disease, oasis, cad, mechvent, charlson_comorbidity_index) with F1 scores between 60 and 80. The prediction results demonstrated a significant similarity with the feature selection results, highlighting the strong performance of hematocrit mean and hemoglobin_mean compared to other baseline characteristics. This indicated the importance of these two features in predicting DKA risk.


Table 4 | Characteristic at baseline between DKA and non-DKA group.






2.5.2 Risk prediction based on multiple baseline characteristics using xgboost, decision trees, random forests, support vector machines, and k-nearest neighbors classifiers

To predict DKA, we utilized all 42 baseline characteristics and employed various machine learning algorithms, including xgboost, decision trees, random forests, support vector machines, and k-nearest neighbors classifiers. The specific algorithm parameter details for xgboost were as follows: a learning rate of 0.01, 3000 iterations, a tree depth of 4, and a minimum sum of leaf node sample weight of 5. The decision tree classifier used the Gini coefficient as the splitting criterion and was constructed with a maximum depth of 50. The random forest classifier employs 8 decision trees, each with a maximum depth of 50.The support vector machine classifier used the radial basis function (RBF) kernel. The k-nearest neighbors classifier was configured to use 5 nearest neighbors, and the algorithm for selecting the nearest neighbors was the automatic optimization algorithm available in the scikit-learn library.

The experimental resulted in Table 5 indicate that xgboost, decision trees, and random forests achieve an AUC, accuracy, and F1-score of 1, which demonstrates their ability to accurately identify DKA patients. However, the performance of the support vector machine and k-nearest neighbors classifiers was comparatively weaker.


Table 5 | DKA risk prediction based on all baseline characteristics.



We believe that the reason support vector machines and k-nearest neighbors classifiers cannot accurately identify DKA is due to some baseline characteristics interfering with the model’s decision-making. To further predict DKA, we used feature selection to select five baseline characteristics (namely hemoglobin mean, hematocrit mean, aniongap mean, age, and Charlson comorbidity index).

The experimental resulted in Table 6 demonstrated a significant improvement in the performance of support vector machines and k-nearest neighbors classifiers, validating the effectiveness of the feature selection method and the five important features.We also provided accuracy change plots for support vector machines and k-nearest neighbors classifiers based on both the full set of features and the important features. These plots, labeled as Figures 2–5, demonstrate the variation in accuracy for the different feature sets. The learning curve illustrated the impact of the number of training samples on the model’s performance. The results indicated that the machine learning approach adopted by the research institute did not exhibit overfitting or underfitting phenomena. The model had essentially reached a performance bottleneck, and there was no need to supplement the data for further training.


Table 6 | DKA risk prediction based on feature selection.






Figure 2 | Accuracy change plot of support vector machines based on all features.






Figure 3 | Accuracy change plot of k-nearest neighbors classifier based on all features.






Figure 4 | Accuracy change plot of support vector machine based on important features.






Figure 5 | Accuracy change plot of k-nearest neighbors classifier based on important features.








3 Discussion




Discussion on the importance of baseline characteristics

The occurrence of DKA is attributed to the relative or absolute deficiency of insulin, along with the presence of excessive counter-regulatory hormones such as glucagon, cortisol, catecholamines, and growth hormone. These factors lead to hyperglycemia, glucosuria, dehydration, acidosis, and varying degrees of hyperosmolarity (11). When blood glucose levels elevated, especially in individuals with diabetes, the body is unable to effectively utilize glucose as energy and instead begins to break down fats to provide energy. One of the byproducts of this process is acetoacetic acid. Acetoacetic acid is a ketone body, and when it accumulates excessively in the body, it can lead to ketonemia, which triggers DKA (12). DKA can affect the chemical balance of the blood, including the acid-base balance. It also impacts various parameters related to the blood, such as hemoglobin and hematocrit.

Hemoglobin_mean refers to the mean value of hemoglobin (Hb). Hb is a protein presenting in red blood cells, primarily responsible for carrying and delivering oxygen to various tissues in the body (13). In the state of DKA, due to insufficient insulin or resistance to insulin by cells, is blood glucose levels rise. High blood glucose can lead to excessive urine production by the kidneys, causing significant loss of fluids in the body (14). Inadequate insulin prevents cells from properly utilizing glucose as an energy source. As a result, the body resorts to breaking down fats, leading to an excessive production of ketones in the liver (13). These excess ketones are excreted in urine along with a significant amount of urine, resulting in fluid loss. Glucose is an osmotically active substance, and in a state of high blood glucose, the osmotic pressure of the blood increases, leading to further dehydration of cells. These changes in the body can cause blood to become concentrated, resulting in an increase in the concentration of hemoglobin per unit volume of blood (15). In DKA state, there is a significant increase in acidic substances in the blood. The body utilizes the buffering agents in the blood to neutralize the excess acid, thereby maintaining the acid-base balance of the blood (16). Hemoglobin, a basic protein, can serve as a buffer and increase compensatively in response to acidosis. Thus, changes in HB can effectively reflect the condition of DKA.

Hematocrit_mean represents the mean value of hematocrit (Hct). Hct refers to the proportion of red blood cells in the volume of blood. In clinical practice, Hct is an important indicator for assessing blood concentration and determining blood volume status (17). DKA’s hyperglycemia and ketoacidosis characteristic result in osmotic diuresis and significant depletion of fluid and electrolytes in the intracellular and extracellular fluid compartments (18). The elevated blood glucose and increased urine output caused by DKA lead to dehydration within the body (14) (13). Dehydration-induced blood concentration can cause an increase in Hct. In DKA, the elevated blood glucose and increased concentration of glucose in the blood lead to increased blood viscosity, resulting in an elevated Hct. Therefore, there is a close relationship between Hct and the state changes in DKA.

Hemoglobin and hematocrit are both based on whole blood and therefore depend on plasma volume. If a patient is severely dehydrated, the hemoglobin and hematocrit levels will be higher compared to the normal blood volume (18). An increase in hemoglobin and hematocrit may indicate dehydration and blood concentration (19). Hematocrit and hemoglobin can play a supportive role in evaluating DKA. Given the data from these hematological parameters, such as an increase in red blood cell volume and hemoglobin concentration, they may be useful indicators of inadequate extracellular fluid volume in DKA. Meanwhile, it had been mentioned earlier that cerebral edema was a crucial factor contributing to the increased mortality rate in DKA, primarily due to the most severe complication of excessive or rapid fluid administration. Therefore, accurately assessing the degree of dehydration before initiating fluid therapy in DKA patients was of paramount importance. However, this is not a straightforward estimation, as dehydration did not directly correlate with the severity assessment of DKA based on blood gas values. In this context, hematological parameters can be employed, and two examples were hematocrit (Hct) and hemoglobin (Hb) concentration (10). However, they have limitations in predicting the occurrence of DKA (20), but physiologically, it is reasonable to consider them as useful indicators.

The term ‘anion_gap_mean’ refers to the mean value of anion gap, w hich is used to measure the difference between undetermined anions and undetermined cations in the blood. It is calculated by measuring the concentrations of anions (such as chloride ions) and cations (such as sodium ions, potassium ions) in the blood (21). The formula for anion gap is as follows: Anion Gap = [Na+]-([Cl-] + [HCO3-]) (22). In normal conditions, the anion gap typically falls between 8-16 mmol/L. The anion gap is commonly used to evaluate acid-base balance, and it can be easily calculated from routine laboratory data. It has the widest application in the diagnosis of various forms of metabolic acidosis (23). DKA possesses its unique physiological characteristics, including the generation and elimination of ketones, hyperglycemia, and fluid loss. This combination directly influences the biochemical parameters of patients with DKA, particularly the anion gap and total carbon dioxide levels Mifsud and Salem (11). In the state of DKA, metabolic disturbances in the body lead to the production and accumulation of a large number of ketones, such as beta-hydroxybutyrate, acetoacetate, and acetone. Ketones are metabolic byproducts of fatty acid metabolism, and their breakdown metabolism generates anions, especially beta-hydroxybutyrate. These anions are not accounted for in routine electrolyte analysis and are not included in the sum of cations (such as sodium, potassium) or measured anions (such as chloride) (24). D-lactic acid is a product of methylglyoxal (MG) metabolism through the glyoxalase pathway (25). In a state of hyperglycemia, the production of MG can significantly increase (26). Therefore, in hyperglycemic conditions, the blood concentration of D-lactic acid should also increase significantly. Research has shown that in the state of DKA, the increase in D-lactic acid also contributes to the generation of anion gap during acidosis. Therefore, in DKA, the increase in ketones and D-lactic acid leads to the accumulation of unmeasured anions, r esulting in an increase in the anion gap (24). Therefore, measuring changes in the anion gap can be helpful in diagnosing and monitoring the severity of DKA.

A significant correlation exists between an individual’s age and the likelihood of developing DKA. A study analyzing 4,807 cases of DKA revealed the incidence rate was 14% for those above 70 years old, 23% within the age group of 51 to 70 years, 27% within the age group of 30 to 50 years, and 36% for individuals under 30 years old (5). Based on this data, it is evident that younger patients have a higher incidence rate, with DKA commonly being observed in children and adolescents with both type 1 and type 2 diabetes (27). This is believed to be due to several factors commonly found in patients within this age group, including a higher rate of growth and development, increased metabolic rate, and greater insulin requirements. Furthermore, children and adolescents may have less developed self-management skills for diabetes and may be more susceptible to neglecting or inadequately controlling their blood glucose levels, thus increasing the risk of developing DKA. DKA can affect individuals of all age groups, with older individuals who have additional comorbidities often experiencing higher mortality rates. However, DKA is the leading cause of death among diabetes patients younger than 24 years old, with cerebral edema commonly induced by DKA being the most common cause (8). Middle-aged and elderly patients in this age group may have coexisting chronic conditions such as hypertension, coronary heart disease, and renal failure. These conditions may increase the risk of mortality in DKA and can affect treatment options. Furthermore, elderly patients may have decreased physiological reserves and require careful monitoring of fluid balance and insulin therapy (5). Healthcare providers should develop personalized treatment plans for patients of different age groups, taking into account their physiological characteristics, medical history, and risk of complications. As a result, age plays a crucial role in guiding the management and treatment strategies for DKA. Relevant studies indicate that a mixed state of ketoacidosis and hyperosmolarity is observed in 30% of presentations of hyperglycemic emergencies in diabetes. While both age and the degree of hyperosmolarity influence the mortality rate, only age emerges as an independent predictor of mortality Feldman (12). Poor blood glucose control disproportionately affects young patients with a detrimental impact on DKA. Hence, we emphasize the need for a better understanding of the role of age in diabetes intervention, especially in the context of DKA.

The Charlson Comorbidity Index (CCI), also known as the Charlson Index, is a frequently used instrument for evaluating the burden and risk of comorbidities in patients. It assigns scores to various diseases, depending on a patient’s medical history and diagnoses, and these scores are then combined to generate a composite score (28). CCI offers useful insights into a patient’s overall health status and can assist healthcare professionals in assessing and anticipating the effects of comorbidities on patient outcomes. A high CCI score indicates that the patient is significantly affected by multiple diseases, indicating a greater burden of comorbidities and a higher risk of illness (29). It is widely recognized that many adults with diabetes also experience concurrent chronic conditions such as chronic heart failure, chronic obstructive pulmonary disease, renal disease, and depression (30). In a comprehensive study on medical insurance, it was discovered that the presence of multiple comorbidities can complicate a patient’s condition. The study identified congestive heart failure (CHF), pneumonia (CKD), and chronic obstructive pulmonary disease (COPD) as the most frequent conditions leading to readmission within 30 days after discharge (31). As a result, the proportion of DKA patients with comorbidities such as CHF, CKD, and COPD may be higher, indicating that these conditions commonly coexist in individuals with diabetes, potentially leading to a higher readmission rate for DKA patients. Furthermore, research has suggested that a Hospital Admission Index (HAI) with a CCI score of 3 or higher can serve as a predictive factor for DKA readmission. As previously mentioned, the presence of comorbidities complicates the treatment of diabetes patients, thereby increasing the risk of readmission. Thus, active monitoring and treatment of DKA patients with comorbidities can contribute to enhancing DKA management (32).

The diagnosis of DKA itself is prone to misdiagnosis, and the indicators used are often influenced by the underlying diabetes, making early prediction challenging. The five features we have selected exhibit strong stability, contributing to a comprehensive assessment of the patient’s overall physiological status, not just the diabetes-related physiological changes. In the prodromal stage of DKA, when the values of blood glucose and ketone bodies have not reached diagnostic thresholds, we can complementarily analyze the five features to achieve a comprehensive analysis and provide assistance in predicting DKA. Our intention is not to replace the diagnostic indicators for DKA but rather to serve as an auxiliary indicator to help doctors diagnose more quickly and accurately.

For young patients or those with multiple complications, it is crucial to provide enhanced education and guidance on insulin or medication therapy (33). During the diagnostic and treatment process, it is essential to promptly monitor indicators such as hemoglobin, hematocrit, anion gap, age, and Charlson comorbidity index in DM patients who present with relevant symptoms.Early intervention should be implemented to reduce the incidence of the disease. By closely monitoring these indicators and promptly intervening, the occurrence rate of the disease can be reduced.





4 Conclusion

This study was based on the MIMIC-IV dataset and utilized feature selection and machine learning methods to construct a risk prediction model for DKA. Five potential baseline characteristics highly correlated with DKA have been identified, which include hemoglobin_mean, haematocrit_mean, aniongap_mean, age, and Charlson_comorbidity_index. Furthermore, we utilized machine learning methods to accurately predict the incidence of DKA in patients and demonstrated the effectiveness of important baseline characteristics. This study holds the following significant values: (1) Early warning: DKA typically develops gradually rather than occurring suddenly. By continuously monitoring important baseline characteristics and utilizing a machine learning prediction model, it is possible to identify the risk of DM patients progressing to DKA at an early stage, thereby providing early warning signals. This enables doctors to intervene in a timely manner, adjust the patient’s treatment plan, and prevent the occurrence of DKA. (2) Optimization resource allocation: Establishing a DKA risk prediction model can assist hospitals and healthcare institutions in better allocating resources. For instance, for high-risk patients, more attention and resources can be allocated to their monitoring and treatment to reduce the risk of DKA occurrence. This targeted allocation of resources ensures that those at higher risk receive the necessary support and intervention, optimizing the overall healthcare delivery system. (3) Reduction healthcare costs: Treatment for DKA typically requires hospitalization and is associated with high medical expenses. By utilizing important baseline characteristics and predictive models, it is possible to effectively reduce the frequency of DKA episodes, resulting in significant cost savings for patients with recurrent DKA. This cost reduction is achieved through proactive management and prevention strategies based on risk assessment, ultimately improving the overall economic efficiency of healthcare delivery.

There are some limitations associated with this study: (1) Data Quality: The model’s performance heavily relies on the quality of the data used. If there are errors, missing information, or biases in the input data, the model may be influenced by quality variations, impacting its predictive capabilities. (2) Sample Bias: If the samples in the training data are insufficient or do not adequately represent the diversity in the real world, the model may exhibit bias in future practical applications. The representativeness of the samples is crucial for the model’s generalization ability. (3) Concept Drift: If the data distribution changes over time or space, the model may struggle to effectively adapt to the new data distribution. This could result in a decline in the model’s performance in real-world applications. (4) Uncertainty: Machine learning models typically provide probabilities or scores for predictions rather than deterministic outcomes. In the medical field, for certain situations, patients and doctors may prefer to understand the uncertainty of the model rather than just binary predictive results.
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Background

Increasing evidence indicates that immune response underlies the pathology of type 2 diabetes (T2D). Nevertheless, the specific inflammatory regulators involved in this pathogenesis remain unclear.





Methods

We systematically explored circulating inflammatory proteins that are causally associated with T2D via a bidirectional Mendelian randomization (MR) study and further investigated them in prevalent complications of T2D. Genetic instruments for 91 circulating inflammatory proteins were derived from a genome-wide association study (GWAS) that enrolled 14,824 predominantly European participants. Regarding the summary-level GWASs of type 2 diabetes, we adopted the largest meta-analysis of European population (74,124 cases vs. 824,006 controls) and a prospective nested case-cohort study in Europe (9,978 cases vs. 12,348 controls). Summary statistics for five complications of T2D were acquired from the FinnGen R9 repository. The inverse variance-weighted method was applied as the primary method for causal inference. MR-Egger, weighted median and maximum likelihood methods were employed as supplementary analyses. Results from the two T2D studies were combined in a meta-analysis. Sensitivity analyses and phenotype-wide association studies (PheWAS) were performed to detect heterogeneity and potential horizontal pleiotropy in the study.





Results

Genetic evidence indicated that elevated levels of TGF-α (OR = 1.16, 95% CI = 1.15-1.17) and CX3CL1 (OR = 1.30, 95% CI = 1.04-1.63) promoted the occurrence of T2D, and increased concentrations of FGF-21 (OR = 0.87, 95% CI = 0.81-0.93) and hGDNF (OR = 0.96, 95% CI = 0.95-0.98) mitigated the risk of developing T2D, while type 2 diabetes did not exert a significant influence on said proteins. Elevated levels of TGF-α were associated with an increased risk of ketoacidosis, neurological complications, and ocular complications in patients with T2D, and increased concentrations of FGF-21 were potentially correlated with a diminished risk of T2D with neurological complications. Higher levels of hGDNF were associated with an increased risk of T2D with peripheral vascular complications, while CX3CL1 did not demonstrate a significant association with T2D complications. Sensitivity analyses and PheWAS further ensure the robustness of our findings.





Conclusion

This study determined four circulating inflammatory proteins that affected the occurrence of T2D, providing opportunities for the early prevention and innovative therapy of type 2 diabetes and its complications.
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1 Introduction

Type 2 diabetes mellitus (T2D) is a chronic metabolic ailment delineated by the dysregulation of systemic glucose homeostasis, and immunometabolic abnormalities assume a pivotal role in the onset and progression of T2D (1, 2). With the evolving lifestyles of the current generation, diabetes has emerged as a significant public health menace. By 2021, 537 million individuals worldwide will endure the affliction of diabetes, with type 2 diabetes comprising over 90% of these instances (3). Persistent hyperglycemia in the bloodstream may engender multi-systemic complications, presenting a notable risk to the patient’s welfare and longevity. A prospective study encompassing 38 nations has revealed that microvascular complications among individuals with T2D affect approximately 18.8% of cases, while macrovascular complications affect roughly 12.7% (4). Global healthcare expenditures for people with diabetes are estimated to be $966 billion in 2021 and are anticipated to exceed $1,054 billion by 2045 (3, 5). Type 2 diabetes and its complications have become a leading cause of disability and mortality worldwide, imposing a substantial financial burden on society in terms of clinical management and treatment. Therefore, it is imperative to seek out potential risk factors for the disease and promptly intervene for prevention and treatment.

Immune responses and inflammatory regulators are strongly associated with pancreatic β-cell dysfunction and insulin resistance in T2D patients. Pro-inflammatory cytokines such as interleukin 1β (IL-1β) can inhibit insulin secretion and pancreatic β-cell proliferation by increasing the transcription and secretion of chemokines (6). Suppressing inflammatory factors in diabetic mice can effectively safeguard islet cells and delay the progression of hyperglycemia (7). The deficiency in macrophage function amplifies systemic insulin sensitivity and diminishes adiposity and hepatic inflammatory response to metabolic stress (8). A meta-analysis of randomized controlled trials has demonstrated that effective anti-inflammatory therapy can substantially decrease the concentrations fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c), and C-reactive protein (CRP) among patients with T2D, and that individuals with new-onset type 2 diabetes can gain more benefits from this therapeutic approach (9). The pathogenesis of diabetes mellitus involves dysfunction in multiple tissues, and the inflammatory response at the advancement of metabolic disorders exerts its effects in multiple insulin target tissues including fat, liver, and muscle (10, 11). Consequently, exploring circulating inflammatory factors that correspond with the disease phenotype could offer novel targets for preventing and treating type 2 diabetes at the microscopic and molecular levels. Extensive observational evidence suggests a robust correlation between circulating inflammatory cytokines and T2D (12, 13). However, studies with cross-sectional designs are vulnerable to confounding factors and reverse causality, which can impede accurate causal inference. The emergence of proteomics has introduced a new approach to investigating the underlying mechanisms of complex disorders, and the recent influx of large-scale coupling data on genomics and proteomics has enhanced our comprehension on genetic structure of the circulating proteome (14, 15). Genetic determinants of the abundance about inflammation-related circulating proteins may provide valuable insight into type 2 diabetes and its complications (16).

Mendelian randomization (MR) is extensively applied in the etiological studies of diseases as a compelling strategy for exploring causal relationships between exposures and outcomes. It utilizes genetic variation as an instrumental variable, and its structure is founded on the random assignment of alleles during gamete formation and fertilization. Similar to a randomized controlled trial (RCT), this method efficiently eliminates the confounding bias frequently encountered in traditional observational studies (17). Previous research has predominantly concentrated on a few pro-inflammatory cytokines that have an impact on type 2 diabetes and have been restricted to isolated diabetic complications. Nevertheless, the synthesis of systemic inflammation-associated circulating proteins with type 2 diabetes and its common complications has been relatively underexplored. Accordingly, based on a large-scale genome-wide association study (GWAS) of 91 circulating inflammatory proteins, this study employed a bidirectional Mendelian randomization methodology to explore the causal association between inflammatory circulating proteins and type 2 diabetes, and to further examine them in the prevalent complications of type 2 diabetes. This might provide innovative perspectives on future prevention strategies, early interventions, and clinical management of type 2 diabetes.




2 Methods

Mendelian randomization research must fulfill three fundamental assumptions. (I) Instrumental variables (IVs) for genetic variation are tightly related to the exposure. (II) Instrumental variables and confounders are mutually separated. (III) The impact of instrumental variables on the outcome is exclusively mediated through the exposure. The overall structure of this study based on guidelines for conducting Mendelian randomization investigations was displayed in Figure 1 (17, 18). A total of 91 circulating inflammatory proteins serving as exposures were derived from a recent comprehensive study, and rigorous selection was applied to determine instrumental variables for proxying. We conducted a bidirectional Mendelian randomization study utilizing aggregated statistics from two genome-wide association studies of T2D and further explored in five prevalent complications of T2D. The subject population of this study was limited to participants of European ancestry to reduce potential bias due to demographic stratification. No additional approval from the institutional review board was required since all data utilized in this study originated from studies approved by the respective ethical committees and informed consent was received from all subjects.




Figure 1 | The overall study design regarding the association between circulating inflammatory proteins and diabetic phenotypes.





2.1 Data source for inflammatory proteins

The update GWAS summary statistics for 91 inflammatory proteins were acquired from the study by Zhao et al (16), which recruited 14,824 predominantly European participants of 11 cohorts. Inflammatory proteins were generated by measuring genome-wide genetic data and plasma proteomics data with the Olink Target Inflammation immunoassay panel. GWAS analysis within each cohort was performed applying an additive genetic association model based on linear regression, and the impact of inflammatory protein was reported as a change in inverse-rank normalized protein level per dosage of the effect allele. The population substructure was adjusted by genetic principal components, and covariates such as age and sex were included in the model to circumvent the effects of possible confounders. Detailed information about quality control and complete data sources are available in the original literature (16).




2.2 Data sources for diabetic phenotypes

Summary-level GWASs for type 2 diabetes were obtained from the studies by Mahajan et al (19) and Cai et al (20). During the discovery phase, we chose the largest GWAS meta-analysis of European ancestry to date (19). This study involved a total of 74,124 individuals with T2D and 824,006 controls, accessible via DIAbetes Genetics Replication And Meta-analysis consortium (DIAGRAM consortium, https://diagram-consortium.org/). The diagnosis of T2D was in accordance with the clinical criteria of the American Diabetes Association or the World Health Organization, supplemented by healthcare registries, usage of glucose-lowering medications, and validated self-reporting. Patients with suspected type 1 diabetes were excluded on the evidence of GAD antibody and fasting c-peptide levels, premature insulin intervention, and family history. During the replication phase, we adopted summary statistics from a nested case-cohort study of the European Prospective Investigations into Cancer (EPIC) project. The study comprised of 9,978 cases of T2D and 12,348 controls. Detailed study design and data processing could be referred to the original publication (20). FinnGen R9 repository incorporated publicly available GWASs for a variety of diabetic complications, and our study encompassed multiple complications of type 2 diabetes, including nephropathy, ophthalmology, neurology, peripheral circulation, as well as ketoacidosis. Diabetes endpoints were defined implementing World Health Organization recommendations, with the inclusion and exclusion criteria under the International Classification of Diseases (ICD, https://r9.risteys.finngen.fi/) codes, specifically the 10th or 9th revision (21). The diabetic phenotypes and corresponding ICD codes were presented in Table 1.


Table 1 | GWAS sources and data characteristics of type 2 diabetes phenotypes.






2.3 Selection of instrumental variables

In order to acquire credible instrumental variables, we had devised a series of rigorous procedures of quality control for single nucleotide polymorphisms (SNPs). First, we identified SNPs associated with inflammatory proteins that exhibited genome-wide significance at a threshold of P-value < 5×10-8 to ensure that instrumental variables could proxy for exposure (22). Second, employing a reference panel of European (EUR) populations from the 1000 Genomes project offered by OpenGWAS API (https://gwas-api.mrcieu.ac.uk/) (23), we applied linkage disequilibrium-based clumping with an R2<0.001 threshold over a range of 10,000 kb to ensure the isolation of the instrumental variables. Thirdly, we conducted a cross-reference of the selected SNPs with the PhenoScanner database (http://www.phenoscanner.medschl.cam.ac.uk/) to eliminate any SNPs that might conceivably undermine the crucial hypotheses of MR (24). The purpose of this step was to reduce the impact of confounders or the intervention of horizontal pleiotropy. To avoid any potential errors in allele determination and provide accurate causality assessments, we removed palindromic SNPs with uncertain strands and SNPs with non-concordant alleles. Furthermore, we computed the F statistic for each instrumental variable to evaluate their efficacy (R2 = 2×EAF×(1-EAF) × beta2; F = R2 × (N-2)/(1-R2)) (25, 26). SNPs with F-statistics < 10 were excluded to mitigate potential bias arising from weak IVs. We eliminated unsuitable IVs according to the exclusion criteria mentioned above and utilized several procedures to guarantee the precision and dependability of our results.




2.4 Statistical analysis



2.4.1 Mendelian randomization

Several MR approaches were employed to determine the causal association between circulating inflammatory proteins and type 2 diabetes, as well as its complications. The primary assessment was completed applying the Inverse-Variance Weighted (IVW) approach, yielding general estimates through meta-analysis in combination with Wald ratios for each SNP (27). Compared to the fixed effects model, The IVW method with multiplicative random effects model (REM) could guarantee statistical efficacy even in the presence of weaker random effects (18). In particular, the model with random effects would provide accurate causal estimates even under the interference of horizontal pleiotropy and heterogeneity (18). The weighted median approach yielded precise estimates even when up to 50% of the instrumental variables were unreliable, hence mitigating bias in the evaluation of causal effects in contrast with the IVW method (28). When measurement errors interfered with the exposure effect of SNPs, the maximum likelihood method proved to be more reliable in predicting the parameters of the probability distribution (29). MR-Egger method accepted the presence of pleiotropy and remained valid even when most SNPs exhibited pleiotropic effects, however, the model often lacked statistical performance (30). In comparison to the IVW approach, the other methods exhibited relatively inferior statistical efficacy. Consequently, they were solely applied to corroborate the general direction of the primary method.




2.4.2 Sensitivity analysis

Sensitivity analyses were performed to assess whether independent effects among genetic variables would violate the assumption of Mendelian randomization (31). The IVW method and Egger regression were applied to detect heterogeneity. Cochran’s Q test was implemented to quantify heterogeneity, with instrumental variables with P-value < 0.05 being heterogeneous. The intercept of the Egger regression indicated potential bias in the effect estimates when P-value < 0.05, supporting the horizontal pleiotropy of the instrumental variables. The Steiger filtering was applied to determine the direction of causality between inflammatory proteins and complications of type 2 diabetes, with the assumption that valid genetic variants should explain more variance in the exposure than the outcome (32). The I2 and Cochran’s Q tests were employed to examine the heterogeneity of the meta-analysis, with I2 greater than 30% considered heterogeneous (16, 33). Effect estimates across different cohorts were combined in meta-analyses adopting either a random-effects model or a fixed-effects model, depending on the presence or absence of heterogeneity.

We implemented the MR program and sensitivity analysis applying the “TwoSampleMR” package in R software (version 4.2.1). The Bonferroni adjustment was adopted to calculate the significance threshold for multiple testing. Inflammatory proteins with a P-value of 5.5e-04 (0.05/91) were defined as significant in the discovery, replication and meta analyses of type 2 diabetes. In complications of T2D, the significance threshold for an adjusted p-value after multiple testing (4 exposures × 5 outcomes = 20 tests) was 0.05/20 = 2.5e-03. Any P-value ranging between the nominal significance (P-value = 0.05) and the Bonferroni correction threshold was deemed indicative of potential causal association. All statistical analyses were two-sided.





2.5 Phenome-wide association analysis

To further examine the potential pleiotropy of inflammatory proteins, we conducted a phenotype-wide association analysis on the AstraZeneca PheWAS Portal (https://azphewas.com/) (34, 35). The latest UK Biobank 470k (v5) Public release in AstraZeneca utilized exome sequencing data from 419,391 European participants to investigate the association between protein-coding variants and approximately 10,000 binary and 3,500 continuous phenotypes by phenotype-wide association studies (PheWAS). The significant p-value threshold (1e-8) was established according to the study of Wang et al (35), and corresponded to a false positive rate of 0.1%. The suggestive threshold (1e-6) is adjusted by a single phenotypic collapsing model to preserve conservative control for p < (0.05/18500 genes) (35).





3 Results



3.1 Determination of instrumental variables

We selected 371 SNPs related to inflammatory proteins in a reliable (P<5×10-8) and independent (R2 < 0.001 within 1000kb) manner using the pooled GWAS of Zhao et al. PhenoScanner excluded 32 SNPs due to their connection with established confounders (diabetes phenotype, glucose, HbA1c, BMI). Seven palindromic SNPs were eliminated due to ambiguity in coordinating allele orientation of the exposure and the outcome. The range of F-statistics for the remaining instrumental variables was 28.98 ~ 2248.71, indicating relatively weak instrumental bias. The characteristics of the determined SNPs were presented in Supplementary Table S1.




3.2 MR discovery analysis for T2D

Adopting the GWAS of Mahajan et al (19), we identified 10 inflammatory proteins underlying a potential causal association with T2D in a multiplicative random-effects model of the IVW method (Figure 2). Fractalkine (CX3CL1), fibroblast growth factor 21 (FGF-21), glial cell line-derived neurotrophic factor (hGDNF), interleukin-17C (IL-17C), macrophage inflammatory protein 1a (MIP-1-alpha), and transforming growth factor-alpha (TGF-alpha) exhibited significant effect estimates after Bonferroni adjustment (P-value = 5.5e-04). Only nominally significant P-values were observed for C-C motif chemokine 28 (CCL28), C-C motif chemokine 4 (CCL4), monocyte chemoattractant protein-3 (MCP-3), and vascular endothelial growth factor A (VEGFA). These inflammatory proteins were consistent across other methods in the MR analysis. The maximum likelihood and weighted mean methods yielded identical effect estimates when compared to the IVW method, confirming the robustness of our findings. The odds ratio generated by the MR Egger approach maintained the same trend as the other methods, although it lacked interpretability due to statistical efficacy. The sensitivity analysis of these inflammatory proteins revealed no substantial heterogeneity or horizontal pleiotropy (Supplementary Table 2).




Figure 2 | Causal associations between inflammatory proteins and type 2 diabetes in discovery cohorts. The effect of inflammatory proteins on T2D is demonstrated as OR with 95% confidence interval per 1 standard deviation (SD) of concentration change. P-value = 0.0012 (0.05/91) was found significant after multiple-comparison correction.






3.3 MR replication analysis for T2D

Utilizing the GWAS of Cai et al (20), we discovered that CX3CL1 and TGF-alpha remained significant after Bonferroni adjustment (P-value = 5.5e-04) in replication analysis for six significant inflammatory proteins (Figure 3). Sensitivity analysis revealed no clear evidence of heterogeneity and horizontal pleiotropy (Supplementary Table 2). In the meta-analysis of the two cohorts, a random-effects model was employed for CX3CL1 (I2 = 0.72) and MIP-1-alpha (I2 = 0.59) due to the presence of heterogeneity in the two cohorts, and a fixed-effects model was applied for the other inflammatory proteins (Supplementary Table 3). Genetic prediction of FGF-21 (OR = 0.87, 95% CI = 0.81-0.93, P-value = 9.77e-05) and hGDNF (OR = 0.96, 95% CI = 0.95-0.98, P-value = 2.77e-05) per a 1-SD increase correspondingly reduced the risk of type 2 diabetes. The combined causal effect of these genes remained significant even after applying the Bonferroni correction (P-value = 5.5e-04). Each SD increase in TGF-alpha (OR = 1.16, 95% CI = 1.15-1.17, P-value = 3.33e-248) and CX3CL1 (OR = 1.30, 95% CI = 1.04-1.63, P-value = 0.0199) was associated with an increased risk of developing type 2 diabetes. The causal estimates for MIP-1-alpha lacked statistical efficacy, and IL-17C was directionally inconsistent in both cohorts. As a result, they were eliminated from subsequent analysis.




Figure 3 | Meta-analysis of causal associations between inflammatory proteins and type 2 diabetes. The results from the IVW method with the multiplicative random-effects model were displayed for all inflammatory proteins.






3.4 Causal effects of T2D on inflammatory proteins

We investigated the impact of diabetes on identified inflammatory proteins using T2D GWAS as an exposure. According to a similar instrumental variable processing, we selected SNPs that were strongly associated (P-value <5e-8) with type 2 diabetes, and R2<0.001 within a 10,000 kb region. After F-statistic exclusion and the coordination of allele SNPs, we acquired 193 SNPs in the study of Mahajan et al. and 4 SNPs in the study of Cai et al. Type 2 diabetes demonstrated no significant effect on CX3CL1, FGF-21, hGDNF, or TGF-alpha across all MR analysis approaches, implying unidirectional causality for our findings (Figure 4). The intercept of the Egger regression revealed no horizontal pleiotropy between the two cohorts, and the Cochran’s Q test revealed no heterogeneity in the replication cohort (Supplementary Table 4). TGF-alpha exhibited no significant heterogeneity in the discovery cohort, indicating its robustness. CX3CL1, FGF-21, and hGDNF exhibited substantial heterogeneity, which could be attributed to the excessive amount of SNPs in the discovery cohort.




Figure 4 | Mendelian randomization analysis of type 2 diabetes on 4 inflammatory proteins. The results derived from the IVW approach using the multiplicative random-effects model were presented.






3.5 The effect of inflammatory proteins on complications of type 2 diabetes

To further investigate the effects of these 4 inflammatory proteins on the advancement of complications of type 2 diabetes, we performed a Mendelian randomization analysis using the pooled GWAS of the FinnGen R9 repository (Figure 5) and corrected the IVW results of the multiplicative random-effects model according to Bonferroni method (P-value = 2.5e-03). Genetic evidence indicated that TGF-alpha per a 1 SD increase promoted the occurrence of ketoacidosis (OR = 3.65, 95% CI = 2.95-4.52, P-value = 1.57e-32), neurological complications (OR = 1.89, 95% CI = 1.75-2.03, P-value = 5.13e-65), and ocular complications (OR=1.36, 95% CI =1.13-1.64, P-value= 0.0014) in type 2 diabetes, and there was no significant effect on nephrological complications and peripheral vascular complications. Elevated levels of FGF-21 (OR = 0.77, 95% CI = 0.60-0.98, P-value = 0.0311) reduced the incidence of neurological complications in type 2 diabetes, although this association was only nominally significant. Higher levels of hGDNF (OR = 1.24, 95% CI = 1.11-1.39, P-value = 0.0002) were associated with an increased risk of peripheral vascular complications, and there was no evidence of a significant association between CX3CL1 and complications of type 2 diabetes. Sensitivity analysis indicated no evidence of horizontal pleiotropy. Heterogeneity was observed between hGDNF and T2D with renal complications, as well as TGF-alpha and T2D with peripheral circulatory complications. Steiger test demonstrated a unidirectional causal relationship between these inflammatory proteins and complications of type 2 diabetes in this study.




Figure 5 | MR analysis of 4 inflammatory proteins on complications of type 2 diabetes. The results from the IVW method with the multiplicative random-effects model were displayed for all inflammatory proteins.






3.6 Phenotype-wide association analysis

To further investigate additional pleiotropy not detected by the MR-Egger intercept test, we conducted a phenotype-wide association analysis at the genetic level using AstraZeneca PheWAS Portal. Only CX3CL1 had a suggestive support for continuous traits in neurological disorders (Supplementary Figures S1-S8). The absence of significant associations between the 4 inflammatory proteins and any of the binary and continuous phenotypes enhanced the robustness of our findings.





4 Discussion

To the best of our understanding, this research represented the inaugural endeavor in systematically determining the causal association between type 2 diabetes and circulating inflammatory proteins. We conducted a bidirectional Mendelian randomization analysis in two independent populations and subsequently examined the impact of noteworthy inflammatory proteins on prevalent complications of type 2 diabetes. Our findings indicated that TGF-α and CX3CL1 exhibited a positive correlation with the genetically predicted susceptibility to T2D, and elevated concentration of FGF-21 and hGDNF could mitigate the risk of developing T2D, while type 2 diabetes did not exert a significant influence on them. Furthermore, TGF-α was revealed to increase the susceptibility to ketoacidosis, neurological complications, and ocular complications in patients with T2D. Increased levels of FGF-21 were potentially correlated with a decreased likelihood of developing neurological complications in T2D patients, and hGDNF elevated the risk of T2D with peripheral vascular complications.

TGF-α belongs to the epithelial growth factor (EGF) family, and it serves to stimulate the aggregation and activation of inflammatory cells, while also inducing the release of inflammatory regulators (36). In high-glucose environments, the induction of TGF-α is stimulated via the hexosamine biosynthesis pathway, leading to insulin resistance in transgenic mice (37). The sustained hyperglycemic state over a brief duration may contribute to TGF-α promoting the onset of ketoacidosis in T2D, especially in individuals with suboptimal glycemic control (38). Notably, among the myriad complications of T2D, the association between TGF-α and retinal disease was particularly intimate. Findings from a prospective case-control study revealed a substantial elevation in TGF-α levels in the vitreous fluid of patients diagnosed with proliferative vitreoretinopathy (39). Factor Xa and thrombin have been substantiated as facilitators of vitreoretinal inflammation and fibrosis processes by regulating TGF-α, ultimately culminating in the manifestation of proliferative diabetic retinopathy (40). The regulation of TGF-α by circRNA and miRNA has been demonstrated to facilitate apoptosis and inflammatory responses in retinal pigment epithelial cells, consequently influencing the advancement of diabetic retinopathy (41, 42). Collectively, these studies indicate that TGF-α plays a crucial role in the pathogenesis of ocular complications of T2D, and targeted intervention against TGF-α emerges as an appealing therapeutic strategy for diabetic retinopathy. TGF-α can alleviate neuroexcitotoxicity and protect neuronal cells from damage by regulating glutamate transporter-1 (GLT-1), presenting a potential novel pharmacological target for the treatment of neurological disorders (43, 44). However, there is a lack of conclusive evidence indicating a connection between TGF-α and the neurological complications of T2D. Therefore, more thorough research in this domain is required.

FGF-21 is an endocrine protein of the fibroblast growth factor (FGF) family, contributing to glycolipid metabolism and anti-inflammatory processes (45). During a randomized controlled trial conducted over an extended period, a decrease in both total and bioactive plasma FGF-21 levels was observed in patients with T2D (46). Liver-derived FGF-21 has the ability to inhibit the glucagon receptor, which in turn promotes β-cell regeneration and improves insulin resistance, ultimately reducing blood glucose levels (47, 48). FGF-21 exhibits potent anti-inflammatory effects in serum and white adipose tissue of mice with T2D. It is capable of suppressing the expression of inflammatory factors induced by insulin resistance, thus improving glucose metabolism in adipocytes (49). Additionally, FGF-21 has been demonstrated to alleviate diabetic neurodegeneration, primarily by diminishing neuroinflammation and oxidative stress, and enhancing the protection of neuronal mitochondria (50). FGF-21 also exhibits a reparative effect on peripheral nerve injury in animal experiments. FGF-21 can inhibit the excessive activation of oxidative stress and autophagy-induced cell death, which is beneficial to myelin re-formation and nerve regeneration after peripheral nerve injury (51). In summary, FGF-21 exhibits remarkable biological efficacy in reducing blood glucose, alleviating inflammation, and ameliorating peripheral nerve injuries, promising to serve as a biomarker and therapeutic target for diabetes management.

hGDNF is a crucial neurotrophic factor, holding a significant position in the intricate domain of medical science (52). A cross-sectional study has discovered that serum hGDNF concentrations in patients with T2D are lower than the controls, and that hGDNF levels are also considerably decreased in individuals with inadequate blood glucose control (53). The overexpression of GDNF in pancreatic glial cells can improve glucose tolerance and significantly promote the survival and proliferation of β-cells (54). In addition, a GDNF family receptor α-like (GFRAL) antagonist can counteract the weight-reducing effect of metformin in obese mice with high-fat diets (55). It is well known that the complications arising in the ocular and renal organs due to type 2 diabetes are inherently microvascular. A prospective case-control study has demonstrated that hGDNF levels were notably elevated in patients with proliferative diabetic retinopathy (56). The expression of GDNF restricts vascular permeability by regulating the function of capillary endothelial tight junctions, thereby influencing the progression of diabetic retinopathy (57). In addition, studies have also demonstrated that GDNF expression can regulate renal microcirculation and inhibit epithelial-to-mesenchymal transition (EndMT) and renal fibrosis (58). These studies indicate that hGDNF holds potential regulatory effects on vascular complications of T2D, but the precise molecular mechanism underlying these effects requires a more profound exploration.

CX3CL1, renowned as Fractalkine, serves as the sole member of the CX3C chemokine family and acts as a specific ligand for the G protein-coupled receptor CX3CR1 (59). A case-control study has revealed that plasma CX3CL1 levels are notably elevated and positively correlated with inflammatory cytokines in patients with T2D compared to the normoglycemic population (60). Another meta-analysis also supports the association between heightened CX3CL1 concentration and the onset of T2D (61), indicating that CX3CL1 may contribute to the pathogenesis of diabetes through inflammation and immune response. An animal experiment has demonstrated that the CX3CL1/CX3CR1 pathway regulates the function of pancreatic β-cell and improves insulin secretion and glucose uptake (62). CX3CL1-CX3CR1, as an inflammatory adipokine chemokine system, can regulate the adhesion of monocytes to adipocytes (63). This signaling pathway modulates adipose tissue inflammation and insulin resistance in obese mice through the recruitment of adipose tissue macrophages and M1/M2 polarization, and therapeutics targeting the CX3CL1-CX3CR1 system may be beneficial for treating type 2 diabetes (64). Furthermore, in adipose tissue, CX3CL1 has been found to influence the progression of T2D by modulating microRNA expression (65). It has been demonstrated that CX3CL1 concentrations manifest a notable elevation in the serum of individuals with impaired glucose tolerance, exhibiting a marked correlation with fasting blood glucose levels (66). Our research indicates that CX3CL1 contributes to the initial onset of type 2 diabetes but exerts an insubstantial effect on the progressive complications of T2D, providing support for the prevention and early intervention of diabetes.

This study possessed several strengths. Firstly, this was the first MR study employing large-scale pooled data systematically to determine the causal relationship between circulating inflammatory proteins and type 2 diabetes as well as its complications. Conventional observational studies were susceptible to reverse causality effects, and we endeavored to prevent interference from reverse causation and minimize residual confounding in this MR study. Secondly, the scrutinized cohorts for the study predominantly comprised individuals of European descent, this was a purposeful selection aimed at mitigating potential biases arising from population stratification. In addition, the coverage of circulating inflammatory proteins within our investigation has been the updated and exhaustive, surpassing any existing compilation. For the outcome, we not only studied type 2 diabetes in two separate cohorts but also further explored multiple common complications. This served to fortify and broaden the research findings. Finally, the serum can be easily obtained in clinical practice without highly invasive procedures, facilitating the clinical promotion and personalized treatment of our study findings. Nevertheless, our study is subject to several limitations. Firstly, the population in this study was limited to participants of European origin, failing to encompass other ethnic populations. That might have neglected genetic and environmental factors unique to other ethnicities, resulting in findings that may not directly apply to populations of different races and regions, thus necessitating additional validation across diverse racial and regional groups. Secondly, we ensured the effective exclusion of confounders through a series of procedures in MR, but there were potential confounders that could affect the accuracy of the study. Consequently, we performed sensitivity analyses and phenotype-wide association analyses to confirm and solidify the reliability of our findings. Thirdly, regarding the circulating inflammatory proteins that did not exhibit statistical significance in this study, it is not possible to rule out a causal relationship between them and type 2 diabetes, potentially due to the constrained SNPs associated with these circulating inflammatory proteins included in the study. In addition, the limited number of SNPs for TGF-alpha and CX3CL1 restricted the application of pleiotropy testing. However, all SNPs associated with these circulating inflammatory proteins served as robust instruments with F-statistics exceeding 10. We also conducted comprehensive phenotype-wide association studies to detect potential horizontal pleiotropy, aiming to reinforce the robustness of our findings. Finally, MR simulated the lifetime low-dose exposure of alleles and assumed a linear relationship between exposure and outcome. However, this method could not fully summarize the clinical trials in the real world. Therefore, MR results should be interpreted as effects during the course of life and might not fully predict the impact of circulating inflammatory proteins on diseases.




5 Conclusion

In conclusion, our study revealed pivotal contributions of TGF-alpha, FGF-21, hGDNF, and CX3CL1 in the advancement of type 2 diabetes and its complications. These findings offered favorable implications for the treatment and prevention of diabetes, laying the groundwork for novel clinical approaches and management strategies. However, additional experimental and clinical investigations are necessary to elucidate the functions and molecular mechanisms of these circulating inflammatory proteins in future studies.
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Background

The systemic immuno-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are widely used and have been shown to be predictive indicators of various diseases. Diabetic nephropathy (DN), retinopathy (DR), and peripheral neuropathy (DPN) are the most prominent and common microvascular complications, which have seriously negative impacts on patients, families, and society. Exploring the associations with these three indicators and diabetic microvascular complications are the main purpose.





Methods

There were 1058 individuals with type 2 diabetes mellitus (T2DM) in this retrospective cross-sectional study. SII, NLR, and PLR were calculated. The diseases were diagnosed by endocrinologists. Logistic regression and subgroup analysis were applied to evaluate the association between SII, NLP, and PLR and diabetic microvascular complications.





Results

SII, NLR, and PLR were significantly associated with the risk of DN [odds ratios (ORs): 1.52, 1.71, and 1.60, respectively] and DR [ORs: 1.57, 1.79, and 1.55, respectively] by multivariate logistic regression. When NLR ≥2.66, the OR was significantly higher for the risk of DPN (OR: 1.985, 95% confidence interval: 1.29–3.05). Subgroup analysis showed no significant positive associations across different demographics and comorbidities, including sex, age, hypertension, HbA1c (glycated hemoglobin), and dyslipidemia.





Conclusion

This study found a positive relationship between NLR and DN, DR, and DPN. In contrast, SII and PLR were found to be only associated with DN and DR. Therefore, for the diagnosis of diabetic microvascular complications, SII, NLR and PLR are highly valuable.





Keywords: T2DM, diabetic microvascular complications, SII, NLR, PLR





Introduction

Diabetes is a metabolic disease characterized by chronic hyperglycemia, and it currently lacks a complete and definitive cure due to a variety of factors. Currently, about 529 million people worldwide suffer from diabetes, and this number continues to rise annually. Type 2 diabetes mellitus (T2DM) is the main type of diabetes, accounting for about 90% of all diabetes patients (1). In China, about 140 million people have diabetes (2); however, the rate of diabetes treatment, prevention, and control in China is less than 50% (3, 4). The rising incidence of diabetes and decreasing control rates contribute to the growing prevalence of diabetic microvascular complications. Diabetic microvascular complications are a common and specific type of diabetes complication characterized by abnormal growth and leakage of microvessels, leading to local edema and the impairment of tissue function. Diabetic nephropathy (DN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) are the most prominent and common microvascular complications. Approximately one-third of diabetic patients suffer from nephropathy or retinopathy, while two-thirds are diagnosed with peripheral neuropathy (5, 6). DN, DR, and DPN are major risk factors for end-stage renal disease, adult blindness, and non-traumatic amputation, respectively (7–9). These complications are also the primary causes of death and disability, seriously affecting the patients’ health, imposing a heavy burden on individuals and society, and emerging as a public health problem for the entire community. As no effective treatment exists to cure diabetic microvascular complications completely, early screening and detection remain particularly important.

The pathogenesis of diabetic microvascular complications is complex and still poorly defined. However, inflammatory cells and the cytokines have been shown to play an essential role. The systemic immuno-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are currently utilized in the diagnosis of infectious diseases, cardiovascular diseases, tumors and other medical conditions because of their calculation simplicity and easy accessibility (10). SII is an indicator that characterizes systemic inflammation and the immune response, and considers neutrophils, lymphocytes, and platelets in its calculation. In 2014, Hu et al. first argued that SII could effectively predict the prognosis of patients with hepatocellular carcinoma and could be used as an important diagnostic indicator (11). Subsequently, numerous researches have linked SII to various diseases including tumors, infectious diseases, and cardiovascular diseases (12). NLR is a simple ratio of neutrophils to lymphocytes, and it is a potential biomarker reflecting the dysregulation of the immune response. The infectious diseases, autoimmune diseases, tumors, and surgical recovery have been found to be strongly associated with NLR (10, 13). NLR may also be considered a powerful prognostic marker for disease severity and mortality. Separately, PLR is a ratio of platelets to lymphocytes that represents the relationship between platelet and lymphocyte levels. In recent years, PLR has emerged as an inflammatory marker derived to assess many inflammatory conditions and cardiovascular diseases. More and more studies have shown that high PLRs can reflect the degrees of inflammation, platelet activation, and atherosclerosis (14, 15). Diabetic microvascular complications are highly associated with chronic inflammation (16, 17), but their associations with SII, NLR, PLR remain highly controversial (18, 19). Therefore, in order to investigate the association between SII, NLR, PLR and diabetic microvascular complications, we designed this cross-sectional study.





Methods




Data collection

All of the data used in this study were sourced from the Endocrinology Department of Tangdu Hospital in China, with a time restriction of 2020–2023. Initially, a total of 3,186 data were collected during this cross-sectional retrospective study. After applying some exclusion criteria, a total of 1,058 effective data were made available. Inclusion criteria include: 1. a clear diagnosis of T2DM; 2. age range of 20–90 years; 3. the availability of relevant and complete medical data; and 4. an absence of acute complications of diabetes, tumors, acute or chronic infections, and other diseases that affect blood cell counts (Figure 1). The patients’ medical information included their basic personal information, disease history, medication history, and various laboratory tests performed during hospitalization. All blood cells in this study were counted using an automated hematology analysis device (XN9000; Sysmex, Kobe, Japan). NLR, SII, and PLR were calculated according to the neutrophil count/lymphocyte count, platelet count × neutrophil count/lymphocyte count, and platelet count/lymphocyte count, respectively.




Figure 1 | Flow chart for patient enrollment.







Definitions and groups

T2DM, hypertension, and hyperlipidemia were diagnosed by endocrinologists based on the latest guidelines (2, 12, 20), as described in detail in our previous articles (21, 22). The diagnosis of diabetic microvascular complications is firstly caused by diabetes, excluding the other primary causes. DN was defined as the presence of urinary albumin/creatinine ratio (ACR) of >30 mg/g and/or a progressive decrease in glomerular filtration rate (<60 mL/min/1.73 m2) (23–25). DR was diagnosed using grading criteria developed by the International Academy of Ophthalmology in 2002, which included diabetic macular edema in the management of DR (2). The diagnosis of DPN was primarily related to sensations in the limb, including pain, numbness, burning, and loss of protective sensation (26, 27).

According to the type of microvascular complications, all T2DM patients were categorized into the “no microvascular complications” (Non-MC) group or the microvascular complications group (DN group, DR group, or DPN group). In DN group, DR group, or DPN group, the patients may have one or more microvascular complications, and one patient may be in DN group, DR group, or DPN group at the same time. In addition, they were categorized into groups 0, 1, 2, or 3 depending on the number of microvascular complications. Mean values of NLR, SII, and PLR were used as cutoff values to analyze differences between each group.





Statistical analysis

Qualitative and quantitative data are described in the form of numbers (percentages) and mean ± standard deviation values, respectively. Non-normally distributed quantitative data were expressed as the median and quantile spacing [M (P25%, P75%)]. Comparisons between two groups were conducted with the chi-squared test (for qualitative data), independent-samples t-test or Mann-Whitney U test (for quantitative data). A P-value <0.05 was considered to indicate significant difference in all statistical comparisons. All analysis was performed by SPSS Statistics 26 (IBM Corporation, Armonk, NY, USA).

The relationships between SII, NLR, and PLR and microvascular complications were evaluated by applying multiple logistic regression. They were also investigated by subgroup analysis according to sex, age, hypertension, dyslipidemia, and HbA1c (%) level. SII, NLR, and PLR values were divided into quartile groups according to the following values, quartile 1 (Q1): ≤267.41, ≤1.43, and ≤88.84; quartile 2 (Q2): 267.42–382.98, 1.44–1.89, and 88.85–112.28; quartile 3 (Q3): 382.99–552.86, 1.90–2.65, and 112.29–143.10; and quartile 4 (Q4): ≥552.87, ≥2.66, and ≥143.11, respectively. Multiple logistic regression was used to analyze the relationships between different SII, NLR, and PLR levels and microvascular complications.






Results




Baseline individual characteristics

There were 1058 enrollment individuals (337 women and 721 men). The mean HbA1c (%) level was 8.59 ± 2.20, and the duration of T2DM was 9.32 ± 7.10 years. The mean age was 54.67 ± 12.86 years. The numbers of patients with DN, DR, and DPN were 407 (38.47%), 260 (24.57%), and 340 (32.14%), respectively. In addition, 481 (45.46%) patients had hypertension and 842 (79.58%) had dyslipidemia. The mean values of NLR, PLR, and SII were 2.33 ± 2.25, 122.54 ± 53.55, and 489.14 ± 499.97, respectively. All data were presented in Table 1.


Table 1 | Baseline individual characteristics.







The comparisons between different groups

As shown in Table 2, the number of patients in the Non-MC, DN, DR, and DPN groups were 357 (33.74%), 407 (38.47%), 260 (24.57%), and 340 (32.14%), respectively. Age, duration of disease, the number of patients with hypertension or dyslipidemia, urea nitrogen, blood creatinine, eGFR, NLR, and SII showed significant increases in the microvascular complication groups. In particular, NLRs were 2.04 ± 1.23, 2.63 ± 2.80, 2.48 ± 1.61, and 2.45 ± 2.69 in the Non-MC, DN, DR, and DPN groups, respectively. In the Non-MC, DN, DR, and DPN groups, the SII values were 435.53 ± 277.41, 570.80 ± 672.64, 503.94 ± 370.84, and 487.04 ± 582.33, respectively. Furthermore, in the diabetic microvascular complication groups, the proportions of participants with high values of SII, NLR, and PLR were significantly greater.


Table 2 | Characteristics in different groups.



The numbers of participants in groups 0, 1, 2, and 3 were 357 (33.74%), 454 (42.91%), 188 (17.77%), and 59 (5.58%), respectively. The values of SII, NLR, and PLR also increased (SII: 435.53 ± 277.41, 501.09 ± 559.08, 543.30 ± 669.97, and 548.90 ± 345.11; NLR: 2.04 ± 1.23, 2.42 ± 2.71, 2.55 ± 2.65, and 2.79 ± 1.42; PLR: 118.36 ± 49.94, 123.63 ± 55.81, 126.06 ± 56.37, and 128.15 ± 46.74, respectively) with number of complications. In particular, there was a significant difference for NLR and SII. The proportions of participants with high values of SII, NLR, and PLR also increased significantly (Table 3).


Table 3 | Differences between various complication groups.







Association between SII, NLR, and PLR and microvascular complications

To analyze the relationship between SII, NLR, and PLR and diabetic microvascular complications, multivariate logistic regression was applied. SII, NLR, and PLR were significantly associated with the risk of DN (odds ratio [OR]: 1.52, 1.71, 1.60, respectively) and DR (OR: 1.57, 1.79, 1.55, respectively) after adjustment for age, body mass index, sex, diabetic duration, hypertension, dyslipidemia, and HbA1c (Table 4).


Table 4 | Association between SII, NLR, and PLR and microvascular complications.



SII, NLR, and PLR values were divided into quartile groups to further analyze the association with different levels of SII, NLR, and PLR and diabetic microvascular complications. Figure 2 showed that the ORs of DN, DR, and DPN gradually increased with rising levels of SII, NLR, and PLR. In the NLR Q3 and Q4 groups, the ORs were significantly higher for DN (OR: 2.67, 95% CI: 1.76–4.04; OR: 2.94, 95% CI: 1.95–4.45) and DR (OR: 2.47, 95% CI: 1.57–3.89; OR: 3.37, 95% CI: 2.10–5.40). The ORs were significantly higher for DN (OR: 2.05, 95% CI: 1.37–3.08) and DR (OR: 1.61, 95% CI: 1.03–2.52) in the SII Q4 group. Moreover, the OR was significantly higher for DPN (OR: 1.99, 95% CI: 1.29–3.05) in the NLR Q4 group. Finally, in the PLR Q4 group, the ORs were significantly higher for DN (OR: 1.57, 95% CI: 1.05–2.34) and DR (OR: 1.60, 95% CI: 1.02–2.52).




Figure 2 | Association between different SII (A–C), NLR (D–F), and PLR (G–I) levels and microvascular complications.



To analyze the relationship of each combination of diabetic complications with NLR, PLR, and SII, we grouped each patient according to the type of complication, and each patient could only enter one group (Table 5). The regression analysis revealed that the ORs of NLR were significantly higher for DN, DR, DPN, DN+DR, DN+DPN, and DN+DR+DPN (ORs: 1.76, 1.93, 1.77, 2.97, 2.49, and 4.16). The ORs of PLR were significantly higher for DN, DR, DN+DR, and DN+DR+DPN (ORs: 1.45, 1.81, 1.73, and 2.01). Moreover, the ORs of SII were significantly higher for DN, DR, DN+DR, and DN+DR+DPN (ORs: 1.51, 1.47, 2.00, and 1.85).


Table 5 | Association between SII, NLR, and PLR and each combination of microvascular complications.







Subgroup analysis

The subgroup analysis demonstrated differences between various subgroups in the associations of SII, NLR, and PLR with diabetic microvascular complications (Figure 3). Overall, the relationship between SII, NLR, and PLR and diabetic microvascular complications was stronger among patients with hypertension, dyslipidemia, or hyperglycemia. However, there was no significant differences between the sex, age, hypertension, HbA1C, and dyslipidemia subgroups in this relationship as determined through the interaction test.




Figure 3 | Association between SII (A), NLR (B), and PLR (C) and microvascular complications by subgroup analysis.








Discussion

In this study, the SII, NLR and PLR were collected together with DN, DR and DPN to analyze the relationship for the first time. The cross-sectional study included 1058 T2DM patients. Ultimately, the results revealed the positive relationship between SII, NLR, and PLR and diabetic microvascular complications.

The prevalence of diabetes has continued to rise with the aging of the population, changing lifestyles, progression of the urbanization process, and the increased prevalence of various metabolic diseases. Previously, the Global Burden of Disease Study updated the latest research findings on the global burden of diabetes for 1990–2021 and made predictions for 2050. Expectedly, there will be 1.31 billion diabetic patients in 2050 (1). Poor rates of diagnosis, treatment, and control of diabetes have resulted in a gradual rise in the number of patients with diabetic microvascular complications (21). DN, DR, and DPN emerge as the most prominent and common diabetic microvascular complications, affecting approximately more than 25% of diabetic patients (5, 28). Globally, the diabetic microvascular complication prevalence varies significantly. It was approximately 20% in patients with a diabetic duration of <1 year and nearly 50% in patients with a diabetic duration of >10 years from the 3B Study in China (2). The prevalence of microvascular complications in T2DM patients was 18.8% in the world, which was greatest in Europe (23.5%) and lowest in Africa (14.5%), according to the DISCOVER study conducted from 2014–2019 (6, 29).This study showed that the prevalence were 38.47%, 24.57%, and 32.14% for DN, DR, and DPN, respectively. The results are higher than those documented in Europe and Africa. The reason for this might be the ethnicity and the lower diagnosis, treatment, and control rates of T2DM in China. DN, DR, and DPN are important causes of death and disability in diabetic patients. Therefore, early diagnosis and screening are especially important for proper management of diabetic microvascular complications.

It is well known that the hyperglycemia and diabetic duration serve as major risk factors for diabetic microvascular complications. However, the long-term chronic inflammatory response also accelerates the progression of diabetic microvascular complications (9, 30, 31). The diabetic microenvironment activates local and systemic inflammatory responses, contributing to the activation of a large number of inflammatory cells (16, 17). The chronic inflammatory microenvironment in turn leads to microvascular endothelial cell damage and apoptosis, further exacerbating diabetic microvascular complications (32). Neutrophils, lymphocytes, and platelets are parts of the immune system that regulate natural and adaptive immunity and major players in the pathogenesis of diabetic microvascular complications. Recent studies found an increase in neutrophil counts in patients with DN and DR, and the neutrophil counts were also correlated with the development of DN and DR (19, 33). In this study, we found neutrophil counts to have significantly increased in both the DN and DR groups, which aligns with the results of the former research. The finding suggested that high levels of neutrophils are the risk factor for DN and DR.

SII, NLR, and PLR, which consider neutrophils, lymphocytes, and platelets, are currently used in the diagnosis due to their simplicity of calculation and ease of access (10). Since SII was found to be highly associated with the prognostic risk of hepatocellular carcinoma, as argued by Hu et al. in 2014, it has been shown that SII can serve as a risk factor for tumors, cardiovascular diseases, infectious diseases, metabolic diseases and others (11, 12). NLR is a reflection of the dynamic between neutrophils and lymphocytes in disease states, and now it has been widely used in a variety of medical fields. NLR serves as a marker of immune response to a variety of infectious and non-infectious triggers, and it can be used as an early warning sign for diseases such as tumors, atherosclerosis, infections, inflammation, and psychiatric disorders (34). PLR is the ratio of platelet counts to lymphocyte counts, and it is an inflammatory marker derived to assess many inflammatory diseases, tumors, and cardiovascular diseases in recent years (14, 15). However, the relationship between SII, NLR, and PLR and diabetic microvascular complications is controversial. A study with 1192 T2DM patients found that NLR was not associated with DN (19), whereas another study that recruited 4813 T2DM subjects concluded that NLR was associated with DN but not with DR (18). Other authors have concluded that NLR and PLR both relate to DR and DPN (35–37). Our results showed NLR was found to be associated with the risk of DN, DR, and DPN, while only high levels of SII and PLR were associated with the risk of DN and DR. Although the populations in our study and the previous studies were Chinese, the average level of age, eGFR, and lymphocyte were different. Multiple confounding variables and different conditions may have contributed to the differences in results. In addition, Duan et al. and Guo et al. thought high levels of SII and PLR were the risk factors for DN (38, 39). These results were consistent with ours. The positive association between NLR and diabetic microvascular complications is more significant in most of the studies, as evidenced by our results. The reason for this may be that the neutrophilic effect in chronic inflammation plays a more important role in the development of diabetic microvascular complications. Microvascular complications due to high glucose environment is associated with systemic and local inflammation, among which involve inflammatory cells. As indicators of the inflammatory response, neutrophils, lymphocytes, and platelets all play appropriate roles. In most studies, neutrophil counts are significantly elevated in patients with diabetic microvascular complications, whereas platelet and lymphocyte counts are not always significantly altered (19, 33, 40). The predominance of neutrophil counts and their sensitivity could explain this feature. This phenomenon may lead to the instability of the relationship between PLR, SII and diabetic microvascular complications.

Diabetic microvascular complications are mainly related to the duration of the diabetes and the glucose control. With the increasing of age and diabetic during, T2DM patients may have several complications at the same time. Therefore, it is necessary to analyze the relationship of each complication’ combination with NLR, PLR, and SII. In the complication’ combination, NLR was associated with the risk of DN, DR, DPN, DN+DR, DN+DPN, and DN+DR+DPN, while SII and PLR were associated with the risk of DN, DR, DN+DR, and DN+DR+DPN. From another perspective, this result revealed that DN and DR were more closely related to SII and PLR than DPN.

According to the best of our knowledge, the SII, NLR and PLR were taken together with DN, DR and DPN to analyze the relationship for the first time, in this study. The data from this study further revealed the relationship between SII, NLR, and PLR and the risk of DN, DR, and DPN, respectively. NLR, SII, and PLR might be considered in efforts to diagnose diabetic microvascular complications.




The limitations

Notably, our results confirmed a positive association between NLR, SII, and PLR and diabetic microvascular complications. However, the study limitations are also clear. This is a single-center study, and factors such as individual enrollment, physician competence, and examination errors may have some data bias. In addition, only the association was evaluated in this cross-sectional study, as causation data are not available. This is a deficiency from the design. Therefore, the quantity of data was not large enough, and more data are still needed.






Conclusion

This study found a positive relationship between NLR and DN, DR, and DPN, while only SII and PLR were associated with DN and DR. Therefore, for the diagnosis of diabetic microvascular complications, SII, NLR and PLR are highly valuable.
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Objectives

This study aims to investigate the causal relationship between Alzheimer’s Disease (AD) and Diabetic Retinopathy (DR).





Methods

Employing Mendelian Randomization (MR), Generalized Summary-data-based Mendelian Randomization (GSMR), and the MR-Steiger test, this study scrutinizes the genetic underpinnings of the hypothesized causal association between AD and DR, as well as its Proliferative DR (PDR) and Non-Proliferative DR (NPDR) subtypes. Comprehensive data from Genome-Wide Association Studies (GWAS) were analyzed, specifically AD data from the Psychiatric Genomics Consortium (71,880 cases/383,378 controls), and DR, PDR, and NPDR data from both the FinnGen consortium (FinnGen release R8, DR: 5,988 cases/314,042 controls; PDR: 8,383 cases/329,756 controls; NPDR: 3,446 cases/314,042 controls) and the IEU OpenGWAS (DR: 14,584 cases/176,010 controls; PDR: 8,681 cases/204,208 controls; NPDR: 2,026 cases/204,208 controls). The study also incorporated Functional Mapping and Annotation (FUMA) for an in-depth analysis of the GWAS results.





Results

The MR analyses revealed that genetic susceptibility to AD significantly increases the risk of DR, as evidenced by GWAS data from the FinnGen consortium (OR: 2.5090; 95% confidence interval (CI):1.2102-5.2018, false discovery rate P-value (PFDR)=0.0201; GSMR: bxy=0.8936, bxy_se=0.3759, P=0.0174), NPDR (OR: 2.7455; 95% CI: 1.3178-5.7197, PFDR=0.0166; GSMR: bxy=0.9682, bxy_se=0.3802, P=0.0126), and PDR (OR: 2.3098; 95% CI: 1.2411-4.2986, PFDR=0.0164; GSMR: bxy=0.7962, bxy_se=0.3205, P=0.0129) using DR GWAS from FinnGen consortium. These results were corroborated by DR GWAS datasets from IEU OpenGWAS. The MR-Steiger test confirmed a significant association of all identified instrumental variables (IVs) with AD. While a potential causal effect of DR and its subtypes on AD was identified, the robustness of these results was constrained by a low power value. FUMA analysis identified OARD1, NFYA, TREM1 as shared risk genes between DR and AD, suggesting a potential genetic overlap between these complex diseases.





Discussion

This study underscores the contribution of AD to an increased risk of DR, as well as NPDR and PDR subtypes, underscoring the necessity of a holistic approach in the management of patients affected by these conditions.
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1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia, is a progressively worsening neurodegenerative condition. Characterized by neurotic plaques and neurofibrillary tangles, AD results from the accumulation of amyloid-beta peptide (Aβ) in the brain (1). Diabetic Retinopathy (DR), a common microvascular complication of Diabetes Mellitus (DM), is a leading cause of preventable vision loss in the elderly (2). According to the Global Burden of Disease Study, DR is the fifth primary cause of blindness and moderate to severe visual impairment in adults over 50 (3). Early signs of Non-Proliferative Diabetic Retinopathy (NPDR) include vascular endothelial damage, microaneurysm formation, and dot intraretinal hemorrhages. Increasing ischemia can lead to Proliferative DR (PDR), which poses a high risk of vision loss due to complications like vitreous hemorrhage or retinal detachment, as blood vessels grow into the vitreous (4). Previous studies have suggested shared genetic risk factors between AD and DR, with extensive epidemiological research exploring this potential link (5–7). However, the direct causal relationship between AD, DR, and its subtypes NPDR and PDR, remains unclear, partly due to confounding factors.

Mendelian Randomization (MR) is a statistical methodology that aids in exploring cause-effect relationships between variables by leveraging genetic variations that influence the exposure of interest (8). Recently, MR has become a powerful tool for assessing causal relationships in epidemiology and genetics. By using genetic variants as instrumental variables, MR provides evidence of causality that is less prone to bias from confounding factors and reverse causation (9). We further used Generalized Summary-data-based Mendelian Randomization (GSMR), which excludes SNPs that demonstrate pleiotropic effects, enhances the confidence of the MR results (10). Moreover, MR-Steiger filtering was used to ensure that the IVs were strongly correlated with the exposure rather than the outcome (11). Additionally, the Functional Mapping and Annotation (FUMA) method, a widely-used computational tool, integrates genetic association data with functional annotations, gene expression data, and pathway analyses (12). This integration helps identify relevant genetic variants and their possible biological mechanisms. In our study, we apply both MR and FUMA methods to uncover new insights into the potential cause-effect relationship between AD and DR. Our approach also enhances the existing knowledge base about the shared genetic underpinnings of these conditions and sheds light on the biological mechanisms that may underlie this connection.




2 Methods



2.1 Study design and data source

We employed the MR technique in this study, which is an instrumental variable (IVs) analysis leveraging genetic variants like single-nucleotide polymorphisms (SNPs) as exposure proxies. To validate the chosen SNPs as IVs, three core assumptions must be met: (1) the Association assumption, asserting the relevance of SNPs with the exposure; (2) the Independence assumption, which holds that genetic variants affect outcomes solely via their impact on exposure, excluding other causal pathways; (3) the Exclusion assumption, requiring the genetic variants to be conditionally independent of the outcome given the exposure and confounders (13). Figure 1 illustrates the schematic diagram of this MR study. The AD dataset used was derived from a large-scale Genome-Wide Association Study (GWAS) provided by the Psychiatric Genomics Consortium. The datasets for DR, PDR, and NPDR were gathered from two sources: the FinnGen consortium (FinnGen release R8) and the IEU OpenGWAS database, respectively. Table 1 summarizes these datasets.




Figure 1 | An overview of the study design.




Table 1 | Detailed information of the studies and datasets used for Mendelian randomization analysis.






2.2 Selection of IVs

The IVs were selected for AD and each DR subtype. This selection was based on the hypothesis that the IVs must exhibit a robust correlation with the exposure. SNP IVs were initially identified from the Genome-Wide Association Studies (GWAS) summary statistics related to exposure, with the correlation threshold relaxed to P<5×10−6 (14). Subsequently, a clumping algorithm was employed to choose independent SNP IVs, applying an r2 threshold of 0.001 within a 5000 kb linkage disequilibrium (LD) window (15). This approach effectively reduced the risk of overestimating the number of independent tests (16). SNPs that demonstrated an F value exceeding 10 in the GWAS of exposure were chosen as potential IVs, thereby diminishing the risk of weak instrument bias (17). To eliminate potential horizontal pleiotropy, SNPs directly associated with outcomes or confounding factors were excluded (18). SNPs significantly linked to confounders were sourced from the Phennoscanner database (http://www.phenoscanner.medschl.cam.ac.uk/). R2 and F-statistic for each SNP were calculated using the formulas R2 = 2×EAF×(1-EAF)×β2 and F=(β)2/(SE)2 respectively (19). The specific characteristics and F value of selected SNPs were presented in Supplementary Tables S1, S2.




2.3 MR analysis

A bidirectional two-sample MR analysis was conducted using the TwoSampleMR R package (20) and the MR-PRESSO package (21), both powerful tools for inferring the potential causal relationship between exposure and outcome. The forward MR analysis considered AD as the exposure and each DR subtype as the outcome, while the reverse analysis switched these roles. The primary MR analysis employed the inverse-variance weighted (IVW) method within a random effects model to evaluate the causal impact of exposure on the outcome (22). The IVW method combines SNP-specific causal estimates to obtain a weighted average, considering the inverse of the variance of these estimates. To test the robustness of our findings, four supplementary MR methods were used: weighted median, MR-Egger method, weighted mode, and simple mode (23). Each of these methods is designed to address various forms of pleiotropy and potential biases, offering a comprehensive view of the potential causal relationship. In cases where only a single IV SNP is available, the Wald ratio method was used (24). Multiple testing adjustments and false discovery rate (FDR) corrected P-value calculations were performed using the Benjamini-Hochberg method. This approach effectively minimizes the risk of false-positive outcomes arising from multiple comparisons.




2.4 Generalized summary-data-based Mendelian randomization analysis

To estimate credible causal associations using the IVW regression method in MR analysis, we incorporated the GSMR estimates. Implemented via the GSMR R package, this method evaluates causal associations (bxy=bzx/bzy) between a risk factor (bzx) and an outcome (bzy), utilizing summary-level data from GWASs. In this context, z represents the genotype of an SNP (coded as 0, 1, or 2), x denotes the exposure in standard deviation (SD) units, and y signifies the outcome on the logit scale(logarithm of the odds ratio, logOR). The method calculates bzy as the effect of z on y on the logit scale, bzx as the effect of z on x, and bxy as the effect of x on y, free from confounding by non-genetic factors. Additionally, GSMR accounts for LD between multiple correlated SNPs used as IVs and excludes SNPs that demonstrate pleiotropic effects, as evidenced by the heterogeneity in dependent instruments outlier analysis (HEIDI-outlier test <0.01) (10).




2.5 The analysis of MR Steiger and MR Steiger filtering

Furthermore, we employed MR Steiger and MR Steiger filtering, as implemented in the TwoSampleMR R package, to investigate the causal direction between exposure and outcome. This methodology calculates the variance explained in both exposure and outcome by the instrumental SNPs and tests whether the variance in the outcome is less than that in the exposure. The MR Steiger directionality test determines the validity of the chosen SNPs as IVs. A “TRUE” MR Steiger result implies causality in the anticipated direction, whereas a “FALSE” result indicates causality in the opposite direction. SNPs yielding “FALSE” results were excluded, signifying their primary effect on outcomes rather than exposures (11). Finally, the mRnd online power calculator (https://shiny.cnsgenomics.com/mRnd/) was utilized for power calculation (25), a critical step to ensure the study’s design is sufficiently robust to discern the causal estimate.




2.6 Sensitivity analysis

In the sensitivity analysis, the leave-one-out approach was used to determine the impact of individual SNPs on the study outcomes. To confirm the robustness of the second and third core MR assumptions, Cochran’s Q statistic and the MR-Egger regression method were applied. These methods played a key role in identifying heterogeneity and pleiotropy (20). Particularly, the MR-Egger regression was crucial for assessing the potential effects of directional pleiotropy on risk estimates via intercept tests. Recognizing the possible limitations of the MR-Egger method, the MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) test was also implemented. This approach proved essential in pinpointing outlier SNPs and evaluating potential horizontal pleiotropy (26).




2.7 Statistical analyses

Statistical analyses were performed using R software, version 4.2.1. In the MR analysis, associations with P values below 0.05 (including both raw P and PFDR=0.05) were deemed too strongly indicate causal relationships. In contrast, associations exhibiting raw P values under 0.05 but with PFDR exceeding 0.05 were considered to provide only suggestive evidence of associations.




2.8 Analysis of FUMA

The current investigation employed FUMA platform, an integrative, web-based tool that leverages a multitude of biological data sources. This platform was instrumental in the functional annotation of GWAS results, the prioritization of genes, and facilitating interactive visualization (12). Gene and gene-set analyses were performed using the Multi-marker Analysis of GenoMic Annotation (MAGMA) version 1.6, seamlessly integrated within FUMA (27). MAGMA facilitates multi-marker analysis by correlating gene-level statistics with GWAS summary statistics, offering a gene-centric view of genetic associations. We imported a comprehensive analysis of preprocessed GWAS data for AD and each DR subtype into FUMA 1.5.3. SNPs were considered independently significant if they had a P-value below 5×10-8 and an r2 value under 0.6 in the GWAS results. Among these significant independent SNPs, lead SNPs were determined based on a pairwise r2 below 0.1. Our analysis further identified genomic risk loci containing SNPs in strong LD (r2>0.6) with these independently significant SNPs. These lead SNPs are crucial in capturing the genetic association signal specific to each locus. We continued this analysis by pinpointing genomic risk loci that included SNPs in robust LD with the significant independent SNPs. LD blocks were merged into a single genomic locus if they were within a 250 kb range. For these LD analyses, we used reference genetic data from European populations, as outlined in the 1000 Genomes Project phase 3 database. Finally, SNPs with functional annotations were linked to specific genes. Notably, protein-coding genes were pinpointed through positional mapping, expression quantitative trait loci (eQTL) mapping, and chromatin interaction mapping (28). These methods are crucial for linking genetic variants to specific, functionally relevant genes.





3 Results



3.1 Genetically predicted AD with DR, NPDR and PDR

In exploring the causal relationship of AD on DR, AD was utilized as the exposure, while DR and its subtypes, as identified in the FinnGen GWAS database, were considered the outcomes. For AD, a total of 21, 19, and 31 SNPs were selected, respectively. The IVW method revealed that genetically predisposed AD causally led to a 1.509-fold increase in the risk of DR(OR 2.5090; 95% CI: 1.2102-5.2018, P=0.0134, PFDR=0.0201, power=99%), a 1.3098-fold increase in the risk of PDR (OR 2.3098; 95% CI: 1.2411-4.2986, P=0.0082, PFDR=0.0164, power=99%), and a 1.7455-fold increase in the risk of NPDR (OR 2.7455; 95% CI: 1.3178-5.7197, P=0.0069, PFDR=0.0166, power=100%). Moreover, sensitivity analysis employing the GSMR method corroborated these associations (DR: bxy=0.8936, bxy_se=0.3759, P=0.0174; PDR: bxy=0.7962, bxy_se=0.3205, P=0.0129; NPDR: bxy=0.9682, bxy_se=0.3802, P=0.0126) (Table 2, Figure 2).


Table 2 | Main results of the Mendelian randomization analysis.






Figure 2 | Mendelian randomization results of causal effects between AD and DR. (A) MR analysis with AD as exposure. (B) MR analysis with DR, NPDR and PDR as exposure.



Further analysis using the IEU openGWAS database, which included 28 SNPs for AD, 35 for NPDR, and 31 for PDR, supported these observations. Both the IVW and GSMR analyses demonstrated a significant link between AD and an increased risk of DR (OR 1.9263; 95% CI: 1.2418-2.9882, P=0.0034, PFDR=0.0102, power=99%; GSMR: bxy=0.6039, bxy_se=0.2279, P=0.0080), NPDR (OR 2.8233; 95% CI: 1.1916-6.6892, P=0.0184, PFDR=0.0201, power=99%; GSMR: bxy=0.4404, bxy_se=0.3650, P=0.2276), and PDR (OR 1.9535, 95% CI: 1.1622-3.2834, P=0.0115, PFDR=0.0197, power=98%; GSMR: bxy=0.6051, bxy_se=0.2696, P=0.0248) (Table 2, Figure 2). Additional results from four other MR methods - the weighted median, MR-Egger, weighted mode, and simple mode - are provided in the Supplementary Table S3. Lastly, the MR Steiger test validated the SNP selection, affirming the hypothesized causal direction of AD’s impact on DR (Table 3).


Table 3 | Main results of the bi-directional MR-Steiger test.






3.2 No causal association of DR, NPDR and PDR on AD

In the reverse MR analysis, AD was considered the outcome, with 22 and 11 SNPs included for DR, 6 and 1 SNPs for NPDR, as well as 10 and 4 SNPs for PDR, sourced from the FinnGen and IEU openGWAS databases, respectively. Utilizing the FinnGen GWAS database, no conclusive causal effects of DR (OR 1.0144, 95% CI: 1.0028-1.0261, P=0.0150, PFDR=0.02, power=20%; GSMR: bxy=0.0134, bxy_se=0.0055, P=0.0147), NPDR (OR 1.0247, 95% CI: 1.0083-1.0415, P=0.0031, PFDR=0.0124, power=25%; GSMR: bxy=0.0202, bxy_se=0.0094, P=0.0313), or PDR (OR 1.0413, 95% CI: 1.0150-1.0684, P=0.0020, PFDR=0.012, power=41%; GSMR: bxy=0.0193, bxy_se=0.0133, P=0.1472) on AD were established, primarily due to low statistical power. This uncertainty persisted when employing the IEU OpenGWAS dataset. Here, no definitive causal effects were found for DR (OR 1.0240, 95% CI: 1.0041-1.0443, P=0.0176, PFDR=0.0211, power=15%; GSMR: bxy=0.0107, bxy_se=0.0103, P=0.2956), PDR (OR 1.0568, 95% CI: 1.0230-1.0918, P=0.0008, PFDR=0.0096, power=36%), and NPDR (OR 1.0347, 95% CI: 1.0000-1.0706, P=0.0497, PFDR=0.0497, power=17%), attributed to the notably low power values. Furthermore, due to a limited number of SNPs, GSMR analysis was not conducted for causal estimation of PDR or NPDR on AD. The MR-Steiger test further substantiated these results by confirming the absence of horizontal pleiotropy among the SNPs (Table 3). Details of the power calculations are provided in the Supplementary Table S4.




3.3 Sensitivity analysis

The bidirectional MR analysis revealed an absence of pleiotropy, as evidenced by the non-significant MR-Egger intercept. Further, the analysis demonstrated a lack of heterogeneity, corroborated by Cochran’s Q statistic (Table 4). The leave-one-out method indicated that the causal association remained robust with the exclusion of each individual SNP (Supplementary Figure S1), suggesting no influential SNPs. Additionally, the funnel plot, scatter plot, and forest plot showed no significant outliers. The effect estimate of each SNP on AD and DR is visualized in the forest plot, displayed in Supplementary Figures S2-S12.


Table 4 | Heterogeneity and pleiotropy tests for the associations of AD and DR.






3.4 Post-genome-wide association study annotation by FUMA

Given the larger total sample size of the FinnGen consortium compared to the IEU openGWAS, along with a similar control sample size as the AD GWAS data, the FUMA analysis was conducted using the FinnGen consortium database to ensure more accurate results. The Manhattan plot of the input GWAS summary statistics and the gene-based test, as computed by MAGMA based on input GWAS summary statistics, is provided in Figure 3.




Figure 3 | Manhattan plot of the gene-based test as computed by MAGMA based on input GWAS summary statistics of AD (A), DR (B), NPDR (C) and PDR (D). Genome wide significance (red dashed line in the plot) was defined at P = 0.05/N.



Functional annotation of the summary statistics of AD and DR GWAS databases using the FUMA platform identified 252 independent significant SNPs and 94 lead SNPs across 28 genomic risk loci for AD. In addition, for DR, 9 genomic risk loci, 461 independent significant SNPs, and 145 lead SNPs were identified. For NPDR, there were 307 independent significant SNPs and 94 lead SNPs identified, along with 6 genomic risk loci, and for PDR, 79 independent significant SNPs, 29 lead SNPs, and 6 genomic risk loci were detected (Figure 4; Supplementary Tables S5-S8). Furthermore, 666 protein-coding risk genes were identified for AD, 408 for DR, 270 for NPDR, and 210 for PDR (Supplementary Table S9).




Figure 4 | Genetic risk loci identified by FUMA analysis. (A) Genetic risk loci for AD. (B) Genetic risk loci for DR. (C) Genetic risk loci for NPDR. (D) Genetic risk loci for PDR. Genomic risk loci was displayed in the format of “chromosome: start position–end position”. Each genomic locus was represented by a series of histograms, arranged from left to right to display the size of the locus, the number of candidate SNPs, the number of mapped genes, and the number of known genes located within it.



The FUMA platform enabled the conduct of MAGMA tissue-specificity analysis on 54 tissues obtained from GTEx V8 (Figure 5). Our findings suggest a nominally significant association between AD, DR, PDR, and NPDR with gene associations in whole blood, brain regions, and the pituitary (P<0.05). Further analysis on tissue-specific expression highlighted significant enrichment of AD GWAS hits in lung tissue, whole blood, and the spleen, while DR GWAS hits were primarily enriched in the lung. Interestingly, no substantial tissue enrichment was detected for NPDR and PDR. In subsequent investigations, we focused on 13 brain regions and the pituitary, discovering that disease-gene associations related to AD and DR were enriched in brain areas such as the pituitary, brain cortex, hippocampus, and cerebellum. Through this in-depth analysis, we identified four differentially expressed genes common between AD, DR, NPDR, and PDR: OARD1, NFYA, CHI3L2, and CD48. A noteworthy observation was the down-regulation of OARD1, NFYA, and CD48, while CHI3L2 was up-regulated. Importantly, we identified OARD1, NFYA, and TREM1 as shared risk genes between AD and DR. These risk genes were all found to be located on Chromosome 6, providing intriguing insights into the potential genetic intersection of these complex diseases (Supplementary Table S10, Supplementary Figure S13).




Figure 5 | The analysis of tissue enrichment by FUMA using GTEx v8 (n=54 tissues). (A) Tissue enrichment for AD. (B) Tissue enrichment for DR. (C) Tissue enrichment for NPDR. (D) Tissue enrichment for PDR.







4 Discussion

The potential causative link between DR and AD has been a focal point in epidemiological and clinical research fields. In our current study, we utilized a bidirectional MR approach, offering a comprehensive perspective on this causal relationship. Our results strongly indicate that AD may contribute to DR, including both NPDR and PDR. However, the influence of DR on AD, while evident, showed a lesser degree of association, calling for careful interpretation of these findings. Shared risk factors, identified via FUMA analysis, such as OARD1, NFYA, and TREM1, point to potential biological pathways connecting these two disorders.

AD and DR are complex conditions presenting significant global public health concerns. The complex factors underlying the association between DR and AD risks remain to be fully clarified. AD patients with cognitive impairments have exhibited specific retinal changes, including amyloid plaque formation (29, 30), neuronal loss (31), and optic neuropathy (32). Human retinal autopsies have revealed concurrent hyperphosphorylated tau and Aβ accumulation, key indicators of AD in the brain (33, 34). Early retinal neurovascular abnormalities could potentially act as markers for future cognitive decline (35). Given the remarkable similarity between the microvasculature of the retina and brain, changes in retinal blood vessels may indirectly reflect similar alterations in the cerebral microvasculature (36). The accelerated cognitive aging associated with diabetes might partly stem from the combined effects of blood-brain barrier disruption and/or ischemic damage, leading to various brain tissue changes (36). Crucially, our study endorses the view of AD as a causal risk factor for DR, as well as both NPDR and PDR, as deduced from our highly reliable MR methodology.

Previous research has acknowledged DR as a significant risk factor for dementia (36–38). Patients with DM and DR have a 34% increased risk of developing AD compared to those without DR (38), positioning DR as a potential key biomarker for dementia risk, alongside glycemia and renal complications (39). However, this association must be considered with caution due to potential bias from non-random missing data. Another cohort study, involving 29,961 individuals with Type 2 DM, found that sight-threatening DR was associated with an increased risk of incident dementia, even after adjusting for vascular risk factors and diabetes severity (37). This analysis, though, did not account for DR duration or APOE genotype and relied on ICD codes for dementia diagnoses, rather than expert consensus or research criteria (39). In our study, we identified a potential causal link between DR and AD. However, due to the relatively low power value of our findings, they should be interpreted cautiously and warrant further investigation.

The study revealed a stronger association between AD and NPDR compared to AD and PDR in both the FinnGen and IEU datasets. DR, a complication of diabetes, progresses through two stages: NPDR and PDR (40). NPDR, the initial stage, is characterized by mild microvascular changes and often presents minimal symptoms (41). These changes mainly result from inflammatory responses under hyperglycemic conditions and direct glucose-induced damage to retinal microcirculation. Progression to PDR is typically influenced by factors such as poor blood sugar control and increased VEGF expression, leading to pre-retinal neovascularization (42). Interestingly, AD is characterized by enhanced immune responses and microglial activation, which contribute to neurodegeneration (36). There is growing evidence that the neuroinflammatory mechanisms in AD are similar to those in DR (5). Considering these similarities, the study suggests a closer link between AD and NPDR than with PDR. However, further research is necessary to more clearly understand these relationships and mechanisms.

Our study identified three shared genetic risk factors between DR and AD - OARD1, NFYA, and TREM1 - using FUMA analysis. These factors offer intriguing avenues for understanding the biological interactions between these diseases and may shed light on potential shared disease mechanisms. OARD1 (O-acetyl-ADP-ribose deacetylase 1) is a gene involved in the metabolism of O-acetyl-ADP-ribose, a molecule implicated in cellular processes like DNA repair (43) and cell cycle progression (44, 45). Considering that both AD and DR involve disturbances in cellular homeostasis and integrity, OARD1’s association with these diseases could reflect disruptions in DNA repair or cell cycle regulation. NFYA (Nuclear Transcription Factor Y Subunit Alpha) regulates various genes associated with cellular growth and differentiation (46–48). Dysregulation in these processes could lead to the pathological changes seen in both AD and DR, including neuronal degeneration and abnormal angiogenesis, respectively. TREM1 (Triggering receptor expressed on myeloid cells 1) is an immunoglobulin superfamily transmembrane protein (49) related to immune response and inflammation (50). Studies have shown increased TREM1 expression in microglia around amyloid-beta plaques in AD mice, and inhibiting TREM1 could alleviate neuroinflammation and amyloid-beta pathology (51). Moreover, genetic variations in TREM1 are linked to an increased risk of AD (52). Altered immune responses and cell interactions, implicated in both DR and AD, may contribute to chronic inflammation, neuronal loss, and capillary degeneration. While our study identified these shared risk factors, the exact role of each gene in AD and DR pathogenesis remains to be fully understood. Investigating how these genes contribute to the diseases’ development and progression at a molecular level is crucial. Future experimental studies on these genes could provide valuable insights into the shared pathological mechanisms between DR and AD, highlighting the intricate relationship between metabolic, immune, and neurodegenerative processes and the multidimensional nature of these diseases.

Despite these findings, our study has certain limitations. First, the MR analysis demonstrated a low power value in establishing the causal relationship between DR and AD. This issue might stem from an insufficient cohort sample size and the limited availability of suitable datasets enriched with comprehensive genetic and phenotypic information. These factors could affect the statistical robustness and reliability of our results. Second, the selection of instrumental variables (IVs) for MR analysis might not have been optimal, potentially due to confounding factors. Third, the role of genetic predisposition in disease outcomes could be limited, as genetic factors only contribute a small portion to the total variance in complex diseases like AD and DR. Fourth, environmental and behavioral factors play a significant role in the development and progression of DR, along with genetic factors (53). Major risk factors include the duration of diabetes, levels of glycated hemoglobin (HbA1c), and blood pressure. High HbA1c levels, indicative of poor blood glucose control, can damage retinal microvessels and lead to DR (44). Effective blood glucose management is essential to reduce DR risks and its progression. Hypertension also contributes to DR by exacerbating microvascular damage (54). Additionally, harmful lifestyle choices such as smoking and alcohol consumption increase DR risks (55, 56). While these factors are crucial, the genetic aspect of DR development shouldn’t be overlooked (57). Lastly, although our study identified OARD1, NFYA, and TREM1 as shared risk factors, the exact role of these genes in the development and progression of AD and DR at the molecular level is still unclear. Future research focusing on these genes could offer valuable insights into the shared pathological mechanisms between DR and AD.




5 Conclusions

In conclusion, the extensive MR study’s results robustly support the theory that AD significantly contributes to the development of DR. Furthermore, the study discovered common risk genes, suggesting a potential link between these two intricate diseases. These findings emphasize the possibility that targeting AD could be an effective therapeutic strategy to slow down DR’s pathological progression. Consequently, this warrants further exploration within a clinical setting.
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Background

ASCVD is the primary cause of mortality in individuals with T2DM. A potential link between ASCVD and T2DM has been suggested, prompting further investigation.





Methods

We utilized linear and multivariate logistic regression, Wilcoxon test, and Spearman’s correlation toanalyzethe interrelation between ASCVD and T2DM in NHANES data from 2001-2018.The Gene Expression Omnibus (GEO) database and Weighted Gene Co-expression Network Analysis (WGCNA) wereconducted to identify co-expression networks between ASCVD and T2DM. Hub genes were identified using LASSO regression analysis and further validated in two additional cohorts. Bioinformatics methods were employed for gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, along with the prediction of candidate small molecules.





Results

Our analysis of the NHANES dataset indicated a significant impact of blood glucose on lipid levels within diabetic cohort, suggesting that abnormal lipid metabolism is a critical factor in ASCVD development. Cross-phenotyping analysis revealed two pivotal genes, ABCC5 and WDR7, associated with both T2DM and ASCVD. Enrichment analyses demonstrated the intertwining of lipid metabolism in both conditions, encompassing adipocytokine signaling pathway, fatty acid degradation and metabolism, and the regulation of adipocyte lipolysis. Immune infiltration analysis underscored the involvement of immune processes in both diseases. Notably, RITA, ON-01910, doxercalciferol, and topiramate emerged as potential therapeutic agents for both T2DM and ASCVD, indicating their possible clinical significance.





Conclusion

Our findings pinpoint ABCC5 and WDR7 as new target genes between T2DM and ASCVD, with RITA, ON-01910, doxercalciferol, and topiramate highlighted as promising therapeutic agents.





Keywords: type 2 diabetes mellitus, atherosclerosis, NHANES database, GEO database, WGCNA





Introduction

Type 2 Diabetes Mellitus (T2DM) constitutes a profound global health dilemma, significantly amplifying the risk of morbidity and mortality related to atherosclerosis cardiovascular disease (ASCVD) (1). This ailment drastically diminishes life expectancy, evidenced by findings that, compared to individuals without diabetes, men and women afflicted by diabetes mellitus experience a reduction in lifespan of approximately 7.5 and 8.2 years, respectively. The anticipated growth of the global diabetic population to approximately 439 million adults by 2030 underscores a 69% increase in developing countries and a 20% increase in developed countries (2).Addressing this imminent crisis necessitates a large-scale, population-based follow-up study vital for prevention, early detection, and the identification of associated risk factors.

T2DM patients represent distinctive cardiovascular profiles marked by elevated atherosclerotic plaque burdens, larger atheromatous plaque volumes, and lipid metabolism dysfunction (3–5). Decades ago, the groundbreaking Framingham Heart Study highlighted the prospective link between diabetes mellitus and an increased prevalence of cardiovascular disease, particularly impactful in women across various age groups (6). Despite the historical recognition of heightened risks, significant progress in improving cardiovascular outcomes through glucose reduction has remained elusive. Hafner and colleagues (7) delved into the mortality landscape within cardiovascular diseases among T2DM patients, revealing a concerning outlook. The mortality rate for T2DM patients without a history of myocardial infarction (MI) is 15.4%. This rate increases dramatically to 42.0% for T2DM patients with a history of MI. In stark contrast, individuals without T2DM face significantly lower risks, with mortality rates from cardiovascular causes at 2.1% and 15.9% for those without and with a history of MI, respectively.

In recent years, the explosion of genomic data availability has elevated bioinformatics analysis methods to indispensable tools in scientific research (8, 9). Bioinformatics analysis plays a pivotal role in deciphering this wealth of information, enabling the identification of Differentially Expressed Genes (DEGs), conducting intricate Gene Ontology (GO) analyses, and performing insightful pathway analyses (10). In our study, we have seamlessly integrated cutting-edge bioinformatics techniques with data sourced from two pivotal databases: the National Health and Nutrition Examination Survey (NHANES) and the Gene Expression Omnibus (GEO) hosted by the National Center for Biotechnology Information (NCBI). The combination of these two databases allows the complex relationship between T2DM and ASCVD to be elucidated at the metabolic and molecular levels. We aim to employ a multifaceted bioinformatics approach to unravel the genetic mechanisms underpinning the comorbidity of T2DM and ASCVD.





Materials and Methods




Data Collection

Our study samples and data were sourced from the NHANES (https://wwwn.cdc.gov/nchs/nhanes/) from 2001 to 2018. NHANES is a nationally representative survey of the non-institutionalized civilian population in the US, and the survey involved interviews conducted at participants’ homes and standardized physical examinations, including laboratory tests, performed at mobile screening centers (MEC).

To identify pertinent datasets for our investigation, we conducted a comprehensive search of the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/) using specific medical keywords such as “Type 2 diabetes mellitus”, “Atherosclerosis”, “Homo sapiens”, “Expression profiling by array”, and “expression profiling analysis”. The objective was to pinpoint datasets that met stringent criteria: they had to contain archived information on both case and control groups, offer raw data for further analysis, and enable expression analysis using array methods. Additionally, our search was limited to datasets exclusively featuring data from Homo sapiens (Figure 1).




Figure 1 | Flowchart illustrating the methodology employed in this study.



Microarray analysis was performed using two different platforms: the GSE40231 dataset employed the GPL570 (Affymetrix Human Genome U133 Plus2 microarrays), whereas the GSE9006 dataset utilized the GPL96 (Illumina HumanHT-12 V4.0 Expression Bead Chip). The T2DM dataset (GSE9006) comprised gene expression data from peripheral blood mononuclear cells (PBMC) collected from 24 healthy people and 12 newly diagnosed with T2DM. We utilized 40 samples of Atherosclerotic Arterial Wall (AAW) and 40 samples of Non-Atherosclerotic Arterial Wall (NAW) from GSE40231 to identify DEGs, including Differentially Expressed mRNAs (DEmRNAs) and Long Non-Coding RNAs (DElncRNAs). Additionally, we validated the diagnostic efficacy of essential genes using datasets from two different platforms: the T2DM (GSE71416) from the GPL570 platform, which included 14 morbidly obese diabetic patients (cases) and six morbidly obese non-diabetic patients, and the AS dataset (GSE43292) utilizing 32 AAW samples and 32 NAW samples.





Study population

In this cohort study, we selected adult participants from the NHANES spanning from 2001 to 2018, totaling 91,351 individuals. The inclusion criteria mandated participants to be at least 20 years old and not pregnant, narrowing down the cohort to 48,943 participants. Following the exclusion of individuals with missing data on fasting blood glucose (FBG), hemoglobin A1c (HbA1c), triglyceride (TG), total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the final participant was 9,357.

To identity individuals withT2DM, we adhered to the American Diabetes Association’s diagnostic criteria, which include:(1)a self-reported physician diagnosis of diabetes; (2) the use of oral hypoglycemic agents or insulin for treatment; (3) a fasting plasma glucose level of at least 126 mg/dL; (4) an HbA1c level of at least 6.5%. Following these criteria, 1,829 participants were classified into the diabetes group, whereas 7,528 were allocated to the control group. Our study rigorously followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines to ensure the highest level of clarity, transparency, and rigor in reporting the observational study findings.





Differential analysis

We used R software version 4.2.2 and processed raw matrices downloaded from the datasets. Data normalization was performed using the RMA algorithm after preprocessing and converting probe IDs to gene symbols using annotated platform files. Empty probes were removed, and values for genes with multiple probes were averaged to enhance result reliability.

Separate analyses were conducted for AS and T2DM datasets. The limma package was employed with stringent criteria (|logFC| >1 and Padj< 0.05) to identify DEGs. This approach identified genes with significant expression changes between case and control groups. An overlap analysis of DEGs from T2DM and AS datasets was also performed. We identified common DEGs to uncover potential molecular links between T2DM and AS. Venn Analytics was used for this analysis, allowing for a comprehensive evaluation of shared genes (11). These overlapping DEGs form the basis for further exploration into the molecular mechanisms connecting T2DM and AS.





Functional Enrichment Analysis

We conducted an integrated analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore biological functions and pathways associated with the identified genes (12–14). Visual representations were generated using the ggplot2 package in R4.2.2, facilitating a clear understanding of enriched pathways and their significance. Pathways with a P-value < 0.05 were considered statistically significant, indicating robust associations between T2DM and AS.





Construction of WGCNA co-expression modules for datasets

We applied weighted gene co-expression network analysis (WGCNA) to assess gene expression patterns in extensive T2DM and AS datasets (15). Genes with significant Padj values (P <0.05) and absolute logarithmic changes greater than 1 were chosen. Combining the soft thresholding-derived neighbor-joining matrix with a gene-gene correlation matrix,we explored gene connectivity, describing the network’s interconnectedness. Co-expression modules were identified through transformation of the neighbor-joining matrix into a topological overlap matrix, followed by gene hierarchical clustering dendrogram analysis, grouping genes with similar expression patterns and implying potential functional links. To pinpoint clinically relevant modules, we calculated module eigengene sand examined their correlation with clinical features, focusing on modules with positive correlations in both T2DM and AS datasets. Positive correlations between modules and diseases indicated strong associations between module genes and the respective disease.





Identification of critical genes

LASSO (Least Absolute Shrinkage and Selection Operator) is a regression-based methodology that accommodates many covariates in the model. Notably, LASSO possesses a distinct feature of penalizing the absolute value of regression coefficients. Our study employed the ‘glmnet’ package in the R software to conduct LASSO analysis on the candidate hub genes and DEGs. This analysis aided in identifying the final hub genes that exhibited strong associations with the studied conditions.





Diagnostic potency assessment of Hub genes and their expression correlation

To assess the potential diagnostic utility of the hub genes, we evaluated performance using the T2DM dataset (GSE9006 and GSE71416) and the AS dataset (GSE40231 and GSE43292). The ROC curves provide a graphical representation of the sensitivity and specificity of the hub genes as diagnostic markers. By analyzing area under curve (AUC), we can measure the accuracy with which central genes classify disease and control groups. The closer the AUC value is to 1, the higher the diagnostic accuracy.

Additionally, to investigate significant differences in gene expression levels between the groups, we employed t-tests. These tests allowed us to compare the expression levels of the hub genes in individuals with T2DM, AS, and controls.





Immune Cell Composition

The CIBERSORT algorithm was employed to calculate the proportions of various immune cells in the peripheral blood of patients with T2DM and non-T2DM participants and the arterial wall of patients with AS and non-AS participants. Using the R package “CIBERSORT” and the expression matrices, we determined the proportions of 22 immune cell types in the T2DM and AS disease groups and their respective control groups. To visually represent the proportions of the 22 immune cells in the disease and control groups for T2DM and AS, we generated heatmaps using the “corrplot” package. These heat maps provided a comprehensive view of the quantitative correlations between each disease condition’s different immune cell types. Additionally, we employed the “ggplot2” Rpackage to explore potential associations between immune cell proportions and the expression levels of specific diagnostic markers in the context of T2DM and AS.





Target prediction of bioactive small molecules

The Connectivity Map (cMAP) database provided by the Broad Institute (https://clue.io)consist of drug-like compounds tested for gene expression (16). We uploaded all common DEGs in the GSE9006 and GSE40231 datasets to the cMAP database to screen small molecule candidates. We screened with a score greater than 90, suggesting they potentially have therapeutic effects on T2DM and AS.





Statistical analysis

All statistical analyses were done using R software (R version 4.2.2). Means and confidence intervals for quartile HbA1c and quartile FBG versus lipid indices were calculated by linear regression. Wilcoxon test was used for statistical analysis between diabetic and non-diabetic groups. We used Spearman’s correlation analysis to investigate the relationship between glycemia and lipid indices by calculating the means and confidence intervals of quartile HbA1c and quartile FBG versus lipid indices in the T2DM using multivariate logistic regression modeling. Statistical significance was determined based on P-values less than 0.05, 0.01, or 0.001. These thresholds helped identify genes with statistically significant differences in expression levels between the disease and control groups. By combining ROC curve analysis and t-tests, we can assess the diagnostic performance of the pivotal genes and determine which genes may be promising biomarkers for differentiating between T2DM, AS, and controls. P-values less than 0.05 (P < 0.05) indicate statistical significance. Significance levels are expressed as follows: *P < 0.05, **P < 0.01, ***P < 0.001. ***P < 0.001.






Results




Participant Characteristics

Table 1 shows the demographic characteristics of the 9,357 participants included in the study, segregated into two groups: 1,829 individuals diagnosed with T2DM and 7,528 controls. The prevalence of T2DM was significantly higher in males (P=0.026), and the group of former smokers, hypertensive, alcohol drinkers, and less educated had a higher risk of developing the disease (P < 0.001). Patients with T2DM had a lower BMI than the healthy population (P < 0.001).


Table 1 | Baseline characteristics of study population, NHANES 2001–2018.







Association between Baseline glycemic and lipid markers

Significant differences in HDL, LDL, TG, total cholesterol, FPG, and HbA1c levels between the two groups of patients were analyzed by comprehensive generalized linear regression (Figures 2A-F). FBG, HbA1c, and TG levels were significantly higher in diabetic patients than in non-diabetic patients (P < 0.001) (Figures 2A, B, D). In addition, total cholesterol, LDL, and HDL levels were significantly lower in diabetic patients than non-diabetic patients(Figures 2C, E, F). In Figure 3, our analysis showed a significant positive correlation (P < 0.01) between FBG, HbA1c, and TG (Figures 3B, F). In contrast, there was a significant negative correlation (P < 0.01) between FBG, HbA1c, and HDL levels (Figures 3D, H). There was also a low positive correlation (P < 0.01) between HbA1c and total cholesterol, LDL (Figures 3E, G). Meanwhile, FBG also showed a lower positive correlation with total cholesterol and LDL as well (Figures 3A, C). These findings highlight the unique lipid profile of diabetic patients and emphasize the intricate relationship between glycemic control and lipid metabolism.




Figure 2 | Glycemic and lipid profiles in different diabetic states. (A) Fasting glucose profile in different diabetic states; (B) Glycosylated hemoglobin profile in different diabetic states; (C) Total cholesterol profile in different diabetic states; (D) Triglyceride profile in different diabetic states; (E) LDL profile in different diabetic states; (F) HDL profile in different diabetic states. Comparison of means between groups performed by wilcox test (****P <0.0001).






Figure 3 | Correlation analysis between blood glucose and lipid profile components. (A) Correlation of fasting glucose and total cholesterol; (B) Correlation of fasting glucose and triglycerides; (C) Correlation of fasting glucose and low-density lipoproteins; (D) Correlation of fasting glucose and high-density lipoproteins; (E) Correlation of glycosylated hemoglobin and total cholesterol; (F) Correlation of glycosylated hemoglobin and triglycerides; (G) Correlation of glycosylated hemoglobin and low-density lipoproteins; (H) Correlation between glycosylated hemoglobin and high-density lipoprotein. Intergroup correlations were determined using spearman.







Glycemic and Lipid Indices Correlation in a Diabetic Cohort

Table 2 stratifies FBG into quartiles, revealing a progressive increase in TG with higher FBG levels, indicating a heightened risk (OR 1.4, 95% CI [1.3-1.5]). Concurrently, HDL levels inversely correlate with FBG (P < 0.001). Similarly, Table 3 categorizes HbA1c into intervals, demonstrating significant TG elevation with increased HbA1c (OR 1.3, 95% CI [1.2-1.4]), alongside a decline in HDL with rising HbA1c levels (P < 0.001). Elevated FBG and HbA1c are associated with higher total cholesterol and LDL levels.


Table 2 | Lipid profile in people with different levels of FBG.




Table 3 | Lipid profile in people with different levels of HbA1c.







Identification of DEGs and Functional Enrichment Analysis

Among the 76 common DEGs, 21 were upregulated, an increased expression level, while 21 were down-regulated, indicating a decreased expression level (Supplementary Figures 1A-C). GO and KEGG enrichment analyses showed that lipid metabolism-related pathways significantly enriched the differential genes in both diseases. The results of GO analysis showed that the differential genes in both diseases were increased dramatically in response to fatty acid, long-chain fatty acid transport, lipid storage, triglyceride metabolic process, positive regulation of LDL receptor activity, fatty acid transmembrane transport, regulation of LDL particle clearance, LDL particle clearance, negative regulation of LDL particle receptor catabolic process and positive regulation of receptor-mediated endocytosis involved in cholesterol transport. KEGG analysis of differential genes was mainly enriched in the Adipocytokine signaling pathway, Glucagon signaling pathway, Insulin resistance, Insulin signaling pathway, Phospholipase D signaling pathway, Fatty acid degradation, Carbohydrate digestion and absorption, Fatty acid metabolism, regulation of lipolysis in adipocytes and VEGF signaling pathway (Figure 4D).




Figure 4 | Functional enrichment analysis and WGCNA. (A) Correlation between modules and T2DM traits heatmap; (B) Correlation between modules and AS traits heatmap; (C) Enriched Gene Ontology (GO) terms; (D) Kyoto Gene and Genome Encyclopedia (KEGG) pathway.







Co-expression modules of T2DM and AS analyzed by WGCNA

To construct a scale-free topological model, we chose a soft threshold β of 14 for the GSE40231 dataset and a soft threshold β of 9 for the GSE9006 dataset (Supplementary Figures 2A-D). These thresholds were instrumental in identifying gene modules that displayed positive associations with AS and T2DM. By applying hierarchical clustering and Spearman correlation analysis, we successfully identified three gene modules exhibiting positive associations with T2DM, encompassing 439 T2DM-related genes (Figure 4A). Likewise, we identified three gene modules that demonstrated positive associations with AS, encompassing 3084 AS-related genes (Figure 4B). Importantly, we observed 32 overlapping genes within the modules detected by the GSE40231 and GSE9006 datasets(Supplementary Figure 1D). These shared genes are fascinating as they may be crucial in developing AS and T2DM.





Screening for Hub Genes

By LASSO regression analysis, 15 genes were selected as candidate genes for each of the two diseases (Figures 5A-D). Among them, there were six overlapping genes in both diseases. To further explore the association between these two diseases, we first tested the diagnostic effect of critical genes and whether they were differentially expressed. After removing the mismatched genes, the results showed that two genes (ABCC5 and WDR7) were significantly upregulated in T2DM and AS samples compared with standard samples (Figures 6A, B), and the AUC values of these two genes were more outstanding than 0.6, which provided better diagnostic effects (Figures 6C, D). In addition, we validated the diagnostic efficiency and expression levels of these two critical genes in validation datasets (GSE71416 and GSE43292) (Figures 6E-H). The results suggest that upregulation of these essential genes may lead to T2DM and induce AS.




Figure 5 | Establishment of diagnostic biomarkers by LASSO regression analysis. (A) LASSO coefficient profiles in T2DM; (B) Log (lambda) sequence used to construct a coefficient profile diagram in T2DM; (C) LASSO coefficient profiles in AS; (D) Log (lambda) sequence used to construct a coefficient profile diagram in AS.






Figure 6 | Diagnosis of genetic value. (A) Expression levels of the two key genes in GSE9006 in normal and T2DM patients; (B) Expression levels of two key genes in GSE40231 in normal and AS patients; (C) ROC curves of two key genes in T2DM dataset GSE9006; (D) ROC curves of two key genes in AS dataset GSE40231; (E) Expression levels of two key genes in GSE71416 in normal and T2DM patients; (F) Expression levels of two key genes in GSE43292 in normal subjects and AS. (G) ROC curves of two key genes in T2DM dataset GSE71416; (H) ROC curves of two key genes in AS dataset GSE43292; Box plots: X-axis represents genes, Y-axis represents expression levels. Comparison of means between groups performed by t-test (** P <0.01, *** P <0.001).







Changes in the proportions of immune cells in T2DM and AS

We performed an in-depth analysis of the proportions of 22 immune cell types using the CIBERSORT algorithm. We included 12 patients with T2DM and 24 control samples, which showed a high percentage of infiltration of CD4 native T cells, resting NK cells, CD8 T cells, and monocytes. Notably, patients with T2DM demonstrated increased proportions of CD4 native T cells, gamma delta T cells, and neutrophils compared to the control group. Conversely, the proportions of CD8 T cells, resting NK cells, monocytes were decreased (Figures 7A, C).




Figure 7 | Immune infiltration analysis. (A) Heatmap of samples in GSE9006 dataset with immune cells; (B) Heatmap of samples in GSE40231 dataset with immune cells; (C) Infiltration in immune cells in normal and T2DM groups in GSE9006 dataset; (D) Infiltration in immune cells in normal and AS groups in GSE40231 dataset; (E) Expression of two hub genes in immune cells of GSE9006 dataset; (F) Expression of two hub genes in immune cells of GSE40231 dataset. (** P <0.01,**** P <0.0001).



Subsequently, we extended our analysis to 40 patients with AS and 40 control samples. The results demonstrated higher infiltration percentages of naive T cells,gamma delta T cells, plasma cells, and M2 macrophages among the 22 immune cell types in patients with AS. Compared to the control group, patients with AS exhibited elevated proportions of naive B cells, plasma cells, follicular helper T cells, Tregs, activated NK cells, M2 macrophages, and resting mast cells and neutrophils. In contrast, the proportions of memory B cells, resting CD4 memory T cells, and gamma delta T cells were decreased (Figures 7B, D). In addition, we found that two hub genes, ABCC5 and WDR7, were positively correlated with Neutrophil native cells CD4 naive, and negatively correlated with Macrophages M1 in AS and T2DM (Figures 7E, F).





Identification of Therapeutic Small Molecular Agents Based on the DEGs

Based on the results obtained from the cMap database, we have identified potential small molecular agents with therapeutic implications based on the upregulated genes. Among them, the top small molecules with the highest absolute enrichment values are presented in Table 4, including RITA, ON-01910, doxercalciferol, topiramate. These findings provide valuable insights into the potential therapeutic options for AS and T2DM.


Table 4 | Small molecules predicted with the common shared DEGs.








Discussion

Despite available interventions, ASCVD remains a significant cause of morbidity and mortality in individuals with T2DM (17, 18). In this study, we employed an interdisciplinary approach integrating bioinformatics, molecular biology, and clinical epidemiology to comprehensively explore the relationship between T2DM and ASCVD. In the NHANES database, we found that increases in FBG and HbA1c significantly increased the risk of elevated TG, and Ye et al. found that in patients with T2DM, elevated triglyceride levels tended to be associated with an increased risk of CVD, which may suggest that blood glucose levels play a significant role in the development of ASCVD (19) (Tables 2, 3). However, the role of TG in ASCVD was not widely accepted initially, but they are now recognized as necessary (20–22).

Our identification of 76 common DEGs in both T2DM and AS patients revealed genes with abnormal expression patterns(Supplementary Figure 1A). Functional enrichment analysis revealed that the DEGsare significantly engaged in crucial signaling pathways governing lipid metabolism. These pathways encompass fatty acid response, long-chain fatty acid transport, lipid storage, and triglyceride metabolism, alongside the modulation of LDL receptor activity, including its positive regulation and transmembrane transport of fatty acids (Figures 4A, B). Moreover, our findings highlight the intricate regulation of LDL particle clearance, encompassing both its enhancement and the suppression of the receptor’s catabolic processes, as well as the facilitation of cholesterol transport via receptor-mediated endocytosis. This aligns with and substantiates the findings reported in existing literature (23, 24). This suggests that lipid metabolism plays a crucial role in the process of elevated cardiovascular disease risk in people with T2DM.

WGCNA analysis revealed ABCC5 and WDR7 as potential target genes that may play pivotal roles in the pathogenesis of both T2DM and ASCVD. Recent investigations have illuminated the pivotal role of WDR7, identified within the V-type ATPase interactome, as a crucial co-factor influencing the assembly and functional integrity of the V-type ATPase complex, essential for cellular proton (H+) regulation (25). Li et al (26). demonstrated that WDR7 is instrumental in modulating the assembly of the V-type ATPase. A deficiency in WDR7 triggers a compensatory expansion and subsequent over-acidification of endo-lysosomal compartments. Aberrant endo-lysosomal function could exacerbate the cellular stress response, influencing insulin signaling pathways and glucose metabolism during diabetes. Similarly, the altered intracellular trafficking and acidification may contribute to the accumulation of lipid-laden macrophages, a hallmark of atherosclerotic plaque development.

ABCC5, also known as Multidrug Resistance Protein 5 (MRP5), has been molecularly identified as the first ATP-dependent cyclic nucleotide export pump (27–29). Notably, ABCC5 mRNA is more abundant in the human heart than in other organs (30). Studies have confirmed the expression of ABCC5 at the protein level in human atrial and ventricular samples, primarily localized in vascular endothelial cells and smooth muscle cells (31). Furthermore, due to ischemic conditions, ABCC5 protein levels were upregulated in ventricular samples from patients with end-stage heart failure.ABCC5 polymorphisms have been associated with T2DM, insulin resistance, and visceral fat accumulation, indicating its potential role in damaging endothelial cells through lipid metabolic pathways (27).

Recent advancements underscore the therapeutic potential of targeted molecular interventions in addressing the complex interplay between diabetes, atherosclerosis, and their underlying mechanisms. Therefore, we screened the cMAP database for predicted small-molecule compounds (Table 4). RITA activates p53, thereby modulating key molecules such as HIF-1α and vascular endothelial growth factor, unveiling a new pathway that could impact metabolic diseases with pathological characteristics similar to diabetes (32). Concurrently, ON-01910inhibits Polo-like kinase 1 (Plk1), engaging in the shared molecular mechanisms of cell proliferation and inflammation, thus paving a new route for the treatment of diabetes and atherosclerosis (33). Doxercalciferol, a vitamin D receptor agonist, highlights the close association between vitamin D deficiency and conditions such as diabetes, arterial hypertension, and chronic kidney disease (34, 35). The detection of nuclear vitamin D receptors (VDRs) in vascular endothelial cells and cardiomyocytes indicates that vitamin D is directly involved in the development and progression of cardiovascular diseases (36, 37). Topiramate, promotes insulin secretion and enhances insulin sensitivity, offering an effective solution for the critical challenges of β-cell dysfunction and insulin resistance in T2DM (38).

Most of the current intractable human diseases are associated with immune system disorders, which significantly impact metabolic diseases by altering metabolism, making metabolic immunology a critical emerging discipline today. We found that the proportion of T-cell CD4 native infiltration was significantly elevated in both T2DM and AS compared to controls (P<0.001) (Figures 7C, D). In addition, we found that two central genes, ABCC5 and WDR7, were positively correlated with neutrophils, T cell CD4 naive, and negatively correlated with macrophage M1 (Figures 7E, F).




Limitation

Firstly, the sample size and coverage of our study, although substantial, might not adequately represent the broader population affected by T2DM and ASCVD. Therefore, our sample may not capture the full spectrum of demographic and clinical variability, including age, gender, ethnicity, and comorbid conditions, which could significantly influence the disease mechanisms and outcomes. Therefore, future studies should prioritize expanding the sample size and ensuring a more diverse and representative population to enhance the external validity of the findings. the observational nature of our study inherently limits our ability to establish causal relationships between the observed variables. While we have identified correlations that suggest potential mechanisms linking T2DM and ASCVD, these associations do not imply causality. The reliance on observational data, without the ability to control for all potential confounding variables, underscores the need for cautious interpretation of the results. Experimental studies, particularly randomized controlled trials, are essential to confirm the causal links between T2DM and ASCVD and to understand the underlying biological processes.

Lastly, our research did not encompass functional experimental validation of the specific genes implicated in our findings. This limitation highlights a gap in our study, as experimental validation is crucial for verifying the biological relevance and mechanistic role of these genes in the context of T2DM and ASCVD.

Future studies should leverage more comprehensive datasets, employ methodologies that enhance data quality and representation, and incorporate experimental validations. Such endeavors will undoubtedly enrich our understanding and contribute to developing more effective strategies for the prevention, management, and treatment of T2DM and ASCVD.






Conclusion

We identified new target genes ABCC5 and WDR7, which provide valuable avenues and directions for precision medicine and molecular mechanisms of T2DM and AS. We also proposed the potential of RITA, ON-01910, doxercalciferol, and topiramate as targeted small-molecule drugs, which marks our significant progress in precision medicine for T2DM and ASCVD.
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Obesity has become a global epidemic in the modern world, significantly impacting the global healthcare economy. Lifestyle interventions remain the primary approach to managing obesity, with medical therapy considered a secondary option, often used in conjunction with lifestyle modifications. In recent years, there has been a proliferation of newer therapeutic agents, revolutionizing the treatment landscape for obesity. Notably, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, liraglutide, and the recently approved dual GLP-1/GIP RAs agonist tirzepatide, have emerged as effective medications for managing obesity, resulting in significant weight loss. These agents not only promote weight reduction but also improve metabolic parameters, including lipid profiles, glucose levels, and central adiposity. On the other hand, bariatric surgery has demonstrated superior efficacy in achieving weight reduction and addressing overall metabolic imbalances. However, with ongoing technological advancements, there is an ongoing debate regarding whether personalized medicine, targeting specific components, will shape the future of developing novel therapeutic agents for obesity management.
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Introduction

Obesity is defined as excessive or abnormal accumulation of body fat both centrally and subcutaneously and presents risks to health. Over the past decades, the prevalence of obesity has significantly increased at an alarming rate putting a strain on the world’s economy (1). Traditionally, obesity was defined as an increase in body weight by at least 20% of the ideal body weight. In today’s world, obesity is classified merely based on measuring the body mass index (BMI), calculated as body weight in kilograms (kgs) divided by the squared meter (m2) of the height. Thus, normal body weight is when the BMI ranges between 18.5-24.9 kg/m2, whereas a BMI ranging from 25-29.9 kg/m2 is considered overweight while ≥ 30 kg/m2 is obese (2). Therefore, based on the aforementioned parameters, the World Health Organization (WHO) reported that in 2017 nearly two billion adults aged ≥ 18 years were overweight of whom over 600 million were obese and it was declared as a health crisis of the 20th century (3). The rate is high among adults at around 27.5% and 47.1% in children (4). Geographically, America and Europe have the highest rates of obesity as the rates increased from 6.8% in 1980 to 22.4% in 2019 in America. In addition, the prevalence of obesity in Europe increased from 8.4% in 1980 to 20% in 2019 (5).

Obesity is a multi-factorial disease caused by a complex of genetic, environmental, and behavioral factors (Figure 1). Interaction between these factors contributes to the complexity of obesity and makes its treatment more challenging as the result of the complex interaction among different genes and other risk factors such as environmental and lifestyle factors (6). Although an individual’s genetic background is one of the essential factors determined as a cause of obesity, the basis of obesity is not genetic (7). The evidence suggests that genes often need to be closely linked with environmental and lifestyle risk factors to affect weight (8). Therefore, further understanding the common causes of obesity and weight gain is crucial. Recently, several genetic factors contribute to the predisposition of obesity, and several genes that regulate body weight and metabolism have been identified. For example, the fat mass and obesity (FTO) associated gene and the melanocortin 4 receptor (MC4R) gene have been associated with increased body weight and cause obesity; however, it is important to note that genetics alone cannot determine obesity (9, 10). On the other hand, at the global scale, obesity is caused by media devices (smartphones, video games, computer monitors, and television sets) and a sedentary lifestyle which in turn aided by certain unhealthy dietary patterns such as increased portion size, sugar beverages, junk food, and low activity level (11). Children and young adults with constant exposure to media devices are typically inactive and may use less energy which will disrupt their appetite signaling and cause them to eat even more than is needed (12). Moreover, obesity increases the risk of chronic diseases, such as diabetes mellitus and cardiovascular disease. It also reduces the overall quality of life and increases the risk of cancer with a detrimental impact on individuals and societies. According to data from the global burden of disease, in 2017 there were around four million deaths globally all attributed to diabetes and cardiovascular disorders (13). Therefore, it is important to find an effective treatment for people who are overweight or obese and it is also essential to implement preventive measures and policies for those who are having normal BMI (Table 1). Furthermore, to reduce the prevalence of obesity and to lessen the burden of obesity-related chronic diseases, effective preventative interventions are required to make the fight against obesity a top priority which can improve population health, lower healthcare costs, and improve quality of life.




Figure 1 | Risk factors and health consequences associated with obesity.




Table 1 | Weight loss effect of the various pharmacological interventions.



The need for a thorough comprehension of efficient interventions, the long-term effects of various treatment philosophies, and the ideal combination of tailored therapy are just a few of the knowledge gaps and conflicts that exist in obesity research. Currently, lifestyle interventions including physical activity and diet are the first-line management for those who are overweight or obese (14). Additionally, some patients might require behavioral therapy as an adjunct to lifestyle modification. However, their effectiveness is usually modest, and most patients will regain weight shortly after withdrawing from the intervention. For those who failed to achieve significant weight loss, pharmacotherapy can be used alone or as an add-on to lifestyle modifications as an effective combo but, the effect of bariatric surgery is surpassed their effectiveness (15). Thus, this review was aimed to provide a narrative overview of the current obesity treatment.





Method

A systematic search for evidence in the literature was conducted. The search terms were initially developed and then searched combining the title and Medical Subject Headings (MeSH) for better evidence retrieval. The search was conducted using the following electronic databases: PubMed, EMBASE, MEDLINE, Scopus, Cochrane Library (CENTRAL) and Web of Science. Furthermore, we also searched for evidence of grey or unpublished evidence using the Open Grey Repository and Open Thesis Repository databases.





Results




Current therapeutic agents




Orlistat

Orlistat is a class of medication that inhibits gastric and pancreatic lipase and reduces the prandial absorption of fat by blocking triglyceride hydrolysis (16). By inhibiting pancreatic lipase, orlistat prevents the hydrolysis of dietary fats, leading to a reduction in the absorption of fat molecules. Consequently, undigested fats are excreted in the feces, resulting in decreased caloric intake and aiding in weight loss (16). Orlistat is a well-known drug used in obesity management with proven but low efficacy. A randomized open-label trial evaluated the orlistat effect on insulin resistance (IR) and compared with metformin and pioglitazone in obese women, treatment with orlistat has significantly reduced the IR compared to metformin and pioglitazone (17). Another study compared orlistat to metformin and lifestyle intervention in women with PCOS, treatment with orlistat showed significant improvement in lipid profiles and anthropometric measures (18). Furthermore, there was a significant reduction in androgen levels, parameters of insulin resistance (HOMA-IR) and IR (19, 20). In addition to its weight loss effect, orlistat can also modestly reduce blood pressure and plays a significant role in T2D prevention, this effect is possibly due to its weight reduction effect (21). The currently recommended orlistat dose is 120 mg up to 3 times a day and should be taken with food. However, even though its tolerability is high, it has significant side effects. The most common side effects associated with orlistat are pale stool, diarrhea, and flatulence (22). Even further, there is significant evidence that orlistat causes fat-soluble vitamin deficiencies (23). While orlistat might have desirable effects in the management of obesity, its effectiveness is relatively modest. Thus, it might be worth considering the other available options.





Liraglutide

Liraglutide is a medication used for the treatment of type 2 diabetes mellitus and obesity. Its mechanism of action involves mimicking the effects of a natural hormone called glucagon-like peptide-1 (GLP-1), which is released by the intestine in response to food intake. GLP-1 acts on GLP-1 receptors in various tissues, including the pancreas, liver, muscle, and brain. It enhances glucose-dependent insulin secretion and inhibits glucagon secretion through modulating pancreatic beta cells and alpha cells respectively. Additionally, it increases satiety and slows gastric emptying (Figure 2) (24). The SCALE trial involved the use of liraglutide, a GLP1 analogue, administered in a 3 mg subcutaneous weekly dose for 56 weeks. This trial encompassed a total of 3731 non-diabetic, obese patients who were randomly assigned to receive either a placebo (n=1244) or liraglutide (n=2487) in conjunction with lifestyle intervention. The trial’s results demonstrated that 63.2% of patients who received liraglutide experienced a weight loss of approximately 5% of their body weight, compared to 27.1% in the placebo group. Furthermore, 33.1% of patients on liraglutide achieved a weight loss of about 10% of their initial body weight, while only 10.6% of those on placebo achieved the same (24).




Figure 2 | Mechanism of action of GLP-1 RAs and the dual GLP-1/GIP RAs .







Trizepatide (dual GLP-1 & GIP RAs)

Tirzepatide is a novel dual GLP-1 receptor agonist (RA) and glucose-dependent insulinotropic polypeptide (GIP) with 39 amino acids, which acts on GLP-1 and GIP receptors. By simultaneously targeting both GIP and GLP-1 receptors, tirzepatide offers enhanced glycemic control and greater potential for weight loss compared to traditional GLP-1 receptor agonists alone (Figure 2). This dual mechanism of action makes tirzepatide an effective and promising treatment option for individuals with type 2 diabetes mellitus and obesity (25). Its half-life is approximately 5 days, allowing for once-a-week subcutaneous injection. In the SURPASS 1-5 trials, different dosages of Tirzepatide (5 mg, 10 mg, and 15 mg) demonstrated significant weight reduction in obese patients with type 2 diabetes mellitus (T2DM), especially when compared to placebo (SURPASS 1) (25), semaglutide 1 mg (SURPASS 2) (26), insulin degludec (SURPASS 3) (27), insulin glargine (SURPASS 4) (28), and placebo+ insulin glargine (SURPASS 5) (29). The overall weight loss ranged from 7.6 kg, 10.7 kg, to 12.9 kg with Tirzepatide 5 mg, 10 mg, and 15 mg, respectively.

The SURMOUNT 1-4 trials were designed to evaluate the effectiveness and safety of Tirzepatide as an adjunct to lifestyle interventions compared to a placebo in obese patients with or without T2DM. In all trials (SURMOUNT 1-4) (30, 31), treatment with Tirzepatide at various dosages was associated with significant body weight reduction, ranging between 12-20%, compared to placebo (3%) (30–32). SURMOUNT 5, which is expected to conclude in January 2025, is designed to compare Tirzepatide with Semaglutide 2.4 mg in overweight and obese adults with weight-related comorbidities. Tirzepatide is currently FDA-approved for obesity management.





Semaglutide

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that stimulates insulin secretion from the pancreas and inhibits glucagon secretion in a glucose-dependent manner (33, 34). GLP-1 is primarily secreted by the L-cells in the small bowel (35). Its effects include reducing energy intake, suppressing hunger, and promoting satiety (36, 37). Studies involving obese and overweight patients, with or without diabetes, have shown that glucagon-like peptide-1 receptor agonists (GLP-1RAs) can reduce body weight and improve glucose control (24, 38).

Semaglutide is a GLP-1RA currently used in the treatment of obesity and diabetes. It is a GLP-1 analogue that has undergone three modifications to extend its half-life, allowing for once-weekly administration (39). The first modification involved substituting an amino acid at position 8 to reduce its susceptibility to degradation by the enzyme dipeptidyl peptidase-4 (DPP-4) (33). The second modification involved substituting the amino acid at position 34, resulting in derivatization at Lysine 26 (39).

Studies conducted as part of the Semaglutide Treatment Effect in People with Obesity (STEP) clinical trial development program evaluated the effects of a 2.4mg weekly dose of Semaglutide in overweight and obese individuals. Data from these STEP trials supported the approval of 2.4mg weekly Semaglutide for use in adults who are obese or overweight with weight-related comorbidities (40). This approval applies to Europe, the USA, Canada, and the UK (41–43). STEP trials 1, 3, 4, and 8 reported a mean weight loss of 14.9% to 17.4% from baseline to week 68 in obese and overweight patients without diabetes, associated with the use of weekly Semaglutide 2.4mg (44–47). Additionally, 69% to 79% of participants in these four trials achieved a weight loss of 10% or more (40). Furthermore, the STEP trials demonstrated improvements in waist circumference, lipid profiles, blood pressure, and C-reactive protein, all of which are cardiometabolic risk factors (44–48).

In the UK, the National Institute for Health, and Care Excellence (NICE) released guidelines for the use of Semaglutide in the management of obesity and overweight (49). These guidelines, issued in March 2023, recommend the use of Semaglutide for a maximum of 2 years in individuals with obesity/overweight who have one weight-related comorbidity and a body mass index (BMI) of at least 35 kg/m2. Patients with a BMI between 30 and 34.9 kg/m2 should meet the criteria for referral to a specialist weight management service, and it is expected that Semaglutide will be administered as part of a multidisciplinary team weight management program (49).






Historical therapeutic agents




Phentermine/topiramate

In the year 2012, the Food Administration Authority (FDA) approved the combination of phentermine/topiramate as an adjunctive therapy to lifestyle modifications as a treatment for weight management in overweight and obese adult patients. It consists of two active ingredients: phentermine, a sympathomimetic amine, and topiramate, an antiepileptic drug. Phentermine acts as a sympathomimetic amine, primarily by increasing the release of norepinephrine in the brain which lead to appetite suppression and reduced food intake, contributing to weight loss. It also stimulates the release of dopamine and serotonin, neurotransmitters involved in regulating mood and appetite. Topiramate on the other hand, is thought to act on various neurotransmitter systems in the brain, including gamma-aminobutyric acid (GABA) and glutamate. By modulating these neurotransmitters, topiramate may reduce the rewarding properties of food, leading to decreased food intake and weight loss (50, 51). In a clinical study when the combination of phentermine/topiramate at the highest dose of 15/92 mg was used, it reduced the body weight by around 9.8-11% within 1 year compared to only around 7.5% of weight loss with its lower dose (7.5/46 mg) (50). However, in the effects of low-dose, controlled-release, phentermine/topiramate therapy on overweight and obese adults (CONQUER) trial, in which low dose (7.5 mg/46 mg) phentermine/topiramate was used in 2487 obese adults (994 in placebo arm vs 498 in phentermine/topiramate combination arm) for a total 56-weeks. Therefore, the results of the study showed significant weight reduction with the combination therapy compared with placebo (51). On the other hand, similar results were also seen with the phentermine/topiramate in severely obese adults (EQUIP) study, in which obese adults were randomized in three groups to receive either placebo (n=514), phentermine/topiramate 3.75 mg/23 mg (n=241) or phentermine/topiramate 15 mg/92 mg (n= 512) in conjunction with the standard lifestyle modifications as standard of care. After 56 weeks of treatment, the weight loss was achieved in 1.6% versus 5.1% and 10.9% in the placebo, phentermine/topiramate (3.75/23 mg) and phentermine/topiramate (15/92 mg), respectively (52). However, phentermine/topiramate combination therapy was associated with increased heart rate, mood changes, sleep disorders and gastrointestinal (53). Therefore, combination therapy has been denied marketing authorization by many countries due to its adverse effects.





Naltrexone/bupropion

Naltrexone is an opioid receptor antagonist which has a great affinity to bind to the µ opiate receptor, which influences eating behaviors. In observational studies, naltrexone alone has been shown to have the ability to antagonize dopamine secretion and reduce food intake and binge eating behavior. On the other hand, in human studies, naltrexone as a monotherapy has failed to show any consistent results. In the past few years, Naltrexone has been approved by the FDA as a treatment for alcohol and drug addiction (54). Conversely, Bupropion originally is an anti-depressant drug that was approved for the treatment of depression and is also often used in helping with smoking cessation. Bupropion acts by blocking the dopamine reuptake at the presynaptic cleft. Surprisingly, the main side effect of Bupropion was weight loss, hence its use as weight loss medication (55). Even though this agent was not principally approved for the management of obesity, several clinical trials suggested that the combination of these agents induces significant weight loss. Thus, the combination of Naltrexone/Bupropion has recently been approved for obesity treatment. In a recent double-blind placebo-controlled clinical trial CONTRAVE Obesity Research (COR-I and COR-II) in overweight and obese patients, a combination of N/B demonstrated more or less similar weight loss effect (-8.1% and -8.2%, respectively) compared to placebo (56, 57). Moreover, in the COR-Behavioral Modification (COR-BMOD) trial, where patients were treated with the combination of N/B in adjunct with intensive behavioral modification program or placebo, treatment with the N/B+BMOD showed significant weight loss compared to placebo + BMOD (-11.5% vs -7.3%; p <0.01, respectively) (58).





Setmelanotide

Setmelanotide is an anorexigenic medication and acts as a melanocortin-4 receptor (MC4R) agonist, it was approved by the FDA in the year 2020 for the management of genetic obesity. The drug showed it is the ability to help restore appetite control, however; it did not correct the hereditary problems that caused obesity (53). Therefore, setmelanotide is indicated in patients with genetic obesity due to either the defect in the pro-opiomelanocortin (POMC) gene, Leptin receptors (LEPR)gene, and the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene. In principle, appetite is usually controlled by the satiety center in the hypothalamus which is itself regulated by the regulatory hormone such as leptin under several regulatory pathways. Therefore, setmelanotide was shown to restore the defect in these pathways and thus, reduce appetite and induce energy expenditure (59).





Metreleptin

Leptin is a hormone primarily produced by the adipose tissues, it plays a role in regulating energy balance by affecting appetite, inducing satiety, and managing behavioral feeding. When fat stores are adequate, leptin levels rise, signaling to the brain to reduce appetite, increase energy expenditure, and maintain metabolic homeostasis. Metreleptin is marketed as a leptin analogue, it was approved by the FDA in the year 2014 as a substitute to deficient leptin in patients with lipodystrophy. In individuals with generalized lipodystrophy, leptin levels are typically very low or absent due to the lack of adipose tissue. This deficiency disrupts normal energy balance regulation, leading to severe metabolic abnormalities such as hyperphagia (excessive hunger), insulin resistance, hypertriglyceridemia, and hepatic steatosis (53). Its route of administration is subcutaneously daily (53). In a recent non-randomized crossover study of 25 patients with lipodystrophy who were leptin-deficient, metreleptin was associated with increasing the resting metabolic rate and, improved the metabolic parameters (60). Moreover, metreleptin showed beneficial effects in improving insulin resistance, liver steatosis and hypogonadism (61). However, recently metreleptin treatment has been associated with the development of leptin antibodies which has a nullified effect on its action.





Sibutramine

Sibutramine is an appetite suppressant and is often used as an adjunct alongside lifestyle intervention in obesity management. Its mechanism of action is to block the reuptake of neurotransmitters such as serotonin, dopamine and norepinephrine (62). This inhibition leads to a reduction in appetite and subsequently, a reduction in food consumption (63). Despite its effectiveness, it has been reported that sibutramine might be associated with significant cardiovascular risk and potential strokes. These potential adverse events have led Sibutramine to withdraw from the market due to safety concerns (64).





Rimonabant

Rimonabant is a selective blocker of the cannabinoid receptor 1 (CB1) and is used as a treatment for obesity management which reduces appetite (65). The mechanism of rimonabant involves blocking the activity of cannabinoid receptors, specifically CB1 receptors, which are abundant in the central nervous system and peripheral tissues. CB1 receptors are part of the endocannabinoid system, which plays a crucial role in regulating appetite, energy balance, and metabolism. Activation of CB1 receptors by endocannabinoids, such as anandamide and 2-arachidonoylglycerol, increases appetite, promotes food intake, and enhances the storage of energy as fat. By acting as a CB1 antagonist/inverse agonist, rimonabant blocks the binding of endocannabinoids to CB1 receptors, thereby inhibiting their activity. Overall, the mechanism of rimonabant involves modulating the endocannabinoid system to suppress appetite, promote weight loss, and potentially improve metabolic health (65). A recent trial found that rimonabant could significantly reduce alanine aminotransferase (ALT) and enhance weight loss in obese women with polycystic ovary syndrome (PCOS) who did not have non-alcoholic fatty liver disease (NAFLD) (66). Another study in which rimonabant was compared to metformin for treating obese women with PCOS, found a significant increase in the glucose-dependent insulinotropic polypeptide (GIP) with rimonabant compared to metformin (67). However, it is important to note that rimonabant has been associated with severe psychiatric problems, such as depressive disorders, mood changes, and suicidal ideation (68). Due to these side effects, rimonabant has been withdrawn from the markets for obesity management.





Lorcaserin

Lorcaserin is a weight loss medication that was approved by the FDA for obesity management in patients with BMI > 30 kg/m2 or in those with BMI < 27 kg/m2 and diabetes, dyslipidaemia, or hypertension. Its mechanism of action is to activate the serotonin receptor (5-HT2c) in the hypothalamus which will subsequently suppress appetite and thus associated with significant weight loss ranging from 3-5% particularly when used alone or added to lifestyle interventions (69, 70). However, due to serious concerns about its possible association with cancer, it was withdrawn from the market in 2020 (71).






On the horizon therapeutic agents

There are a few promising therapeutic agents currently under investigation some of them act centrally by reducing appetite and enhancing satiety while others act peripherally. Those agents work within the central nervous system to reduce appetite and enhance feelings of fullness, which can help control calorie intake. They may also affect other metabolic processes. Some of these agents fall into the category of GLP-1 receptor agonists, which have shown promise in improving metabolic parameters. The effects of these agents on weight, lipid profiles, blood pressure, and glucose metabolism can contribute to overall metabolic health. These agents can also target gastric motility or the movement of food through the digestive system. By slowing down gastric motility, they can prolong the feeling of fullness and reduce the rate at which calories are absorbed. This can lead to reduced calorie intake and potentially contribute to weight loss.

An example of these medications is Survodutide, a selective synthetic dual agonist of the glucagon receptor (GCGR) and the glucagon-like peptide-1 (GLP-1) receptor. As a dual agonist, it may provide benefits by targeting multiple pathways involved in glucose metabolism and appetite regulation. Survodutide is currently in a phase III clinical trial for non-alcoholic steatohepatitis (NASH), a liver condition often associated with metabolic issues like obesity and type 2 diabetes. This agent’s potential to address NASH is of significant clinical interest (72). Retatrutide is described as a triple agonist, acting on the glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon receptors. Phase II clinical trials for retatrutide are underway, and it’s mentioned to have substantial weight reduction effects. GIP and GLP-1 are both hormones involved in regulating insulin and appetite, and the addition of glucagon receptor activation may provide a comprehensive approach to metabolic health (73). Orforglipron is an oral non-peptide GLP-1 receptor agonist designed for weight reduction. The fact that it’s orally administered can be an advantage over injectable GLP-1 RAs like liraglutide and semaglutide. Phase II clinical trials are ongoing, and promising weight reduction effects are noted (74). Recently, Pemvidutide has been a dual agonist of GLP-1 and glucagon. This agent is being investigated in phase II clinical trials for the treatment of NASH, and obesity with and without type 2 diabetes. The dual mechanism of action may offer unique benefits for weight loss and metabolic improvement. These agents represent exciting developments in the field of metabolic and obesity-related therapies. The ability to simultaneously address multiple aspects of metabolic health, including weight reduction, lipid profile improvement, and glucose metabolism, is a promising approach in the management of conditions such as obesity, type 2 diabetes, and NASH.





Surgical interventions




Bariatric surgery

The fundamental basis for bariatric surgery is to achieve weight loss in patients who have not been able to lose weight through non-surgical means (75). Specific criteria established by consensus indicate that bariatric surgery is appropriate for patients with a BMI > 40 kg/m2 and for patients with a BMI > 35 kg/m2 who have associated comorbidities (76). The most common bariatric surgery procedure is Roux-en-Y Gastric Bypass (RYGB), in which the stomach is transected to create a gastric pouch of approximately one-ounce capacity (77). Sleeve gastrectomy (SG) involves resecting around 80% of the stomach to create a tubular stomach. Additionally, biliopancreatic diversion with duodenal switch, along with implantable devices, are a few other examples of bariatric procedures (75). Over the past few years, several studies have shown superior weight loss effects for bariatric surgery. A systematic review and meta-analysis that evaluated the percentage of weight loss (EWL%) and diabetes remission demonstrated superior effects one year after surgery compared to the standard of care. Surprisingly, these effects were still evident three years after the surgery. Moreover, there is significant evidence supporting the use of bariatric surgery to achieve diabetes remission in patients with T2DM (78). However, there are complications associated with bariatric surgery, including surgery-related issues and nutritional deficiencies (79).







Limitations of the review

Findings from studies comparing GLP-1 agonists and bariatric surgery may not be generalizable to all populations, as they often involve specific patient groups or settings. Furthermore, the long-term effects of GLP-1 agonists and bariatric surgery on weight loss and other outcomes are not yet fully understood, and more research is needed to assess their sustainability. On the other hand, both GLP-1 agonists and bariatric surgery can have adverse effects, such as gastrointestinal symptoms with GLP-1 agonists and surgical complications with bariatric surgery. These risks should be carefully considered when offering either option to patients. Bariatric surgery can be costly and may not be accessible to all patients, while GLP-1 agonists may also be expensive and require ongoing treatment, which can impact their feasibility for some individuals. Although combining GLP-1 agonists and bariatric surgery shows promise, there are challenges in determining the optimal timing, dosing, and patient selection for this approach.




Future directions

Developing personalized treatment approaches based on genetic factors and other patient characteristics could enhance the effectiveness of GLP-1 agonists and other treatments for obesity and diabetes. Continued research into the development of new GLP-1 agonists with improved efficacy and fewer side effects holds promise for better patient outcomes. Further exploration of combination therapies involving GLP-1 agonists, bariatric surgery, and other treatments could lead to synergistic effects and improved weight loss outcomes. Conducting long-term studies to evaluate the sustained effects of GLP-1 agonists and bariatric surgery on weight loss, glycemic control, and other outcomes is crucial for understanding their long-term benefits and risks. Addressing healthcare policy and access issues to ensure that effective treatments for obesity and diabetes, including GLP-1 agonists and bariatric surgery, are accessible to all patients who could benefit from them, is also important.






Conclusion

Treatments based on incretin hormone GLP-1 agonists are rapidly evolving. While weight loss was initially discovered as a secondary outcome of using GLP-1 agonists in the treatment of T2DM, it has since been compared to surgical intervention, specifically bariatric surgery, as a means of weight reduction. Based on studies, both interventions have demonstrated improvements in glycemic control, lipid profiles, and weight loss. However, bariatric surgery generally yields superior outcomes compared to GLP-1 agonists. Nevertheless, it’s essential to note that bariatric surgery is an invasive procedure only suitable for a specific group of patients. Therefore, a promising approach involves combining both interventions to achieve enhanced weight loss results, particularly in patients who have gained weight post-surgery. Looking forward, developing new agonists that target specific genes based on genetics may hold the key to further advancements in this field.





Author contributions

AM: Writing – original draft. KH: Writing – original draft. HB: Writing – original draft. JA-F: Software, Visualization, Writing – original draft. AA: Writing – original draft. RA-H: Writing – original draft. MA: Writing – review & editing. FA-M: Writing – review & editing. MA-F: Conceptualization, Writing – review & editing. JA: Conceptualization, Writing – review & editing.





Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.





References

1. Purnell, JQ, Feingold, K, Anawalt, B, Blackman, M, Boyce, A, Chrousos, G, et al. Definitions, classification, and epidemiology of obesity. In:  KR Feingold, B Anawalt, MR Blackman, A Boyce, G Chrousos, et al, editors. Definitions, classification, and epidemiology of obesity. Endotext. South Dartmouth MA (2000).

2. Weir, CB, and Jan, A. BMI classification percentile and cut off points. In: StatPearls. Treasure Island FL: StatPearls Publishing. (2023). ineligible companies. Disclosure: Arif Jan declares no relevant financial relationships with ineligible companies.

3. Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. (2004) 363:157–63. doi: 10.1016/S0140-6736(03)15268-3

4. Saha, J, Chouhan, P, Ahmed, F, Ghosh, T, Mondal, S, Shahid, M, et al. Overweight/obesity prevalence among under-five children and risk factors in India: A cross-sectional study using the national family health survey (2015-2016). Nutrients. (2022) 14:3621. doi: 10.3390/nu14173621

5. Boutari, C, and Mantzoros, CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. (2022) 133:155217. doi: 10.1016/j.metabol.2022.155217

6. Grundy, SM. Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr. (1998) 67:563S–72S. doi: 10.1093/ajcn/67.3.563S

7. Loos, RJF, and Yeo, GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. (2022) 23:120–33. doi: 10.1038/s41576-021-00414-z

8. Verde, L, Frias-Toral, E, and Cardenas, D. Editorial: Environmental factors implicated in obesity. Front Nutr. (2023) 10:1171507. doi: 10.3389/fnut.2023.1171507

9. Khan, S, Verma, AK, Khan, V, Bhatt, D, Rafat, S, and Alsahli, MA. Role of FTO and MC4R polymorphisms in escalating obesity and their indirect association with risk of T2D in Indian population. Diabetes Ther. (2020) 11:2145–57. doi: 10.1007/s13300-020-00896-w

10. Marcadenti, A, Fuchs, FD, Matte, U, Sperb, F, Moreira, LB, and Fuchs, SC. Effects of FTO RS9939906 and MC4R RS17782313 on obesity, type 2 diabetes mellitus and blood pressure in patients with hypertension. Cardiovasc Diabetol. (2013) 12:103. doi: 10.1186/1475-2840-12-103

11. Robinson, TN, Banda, JA, Hale, L, Lu, AS, Fleming-Milici, F, and Calvert, SL. Screen media exposure and obesity in children and adolescents. Pediatrics. (2017) 140:S97–S101. doi: 10.1542/peds.2016-1758K

12. Khokhar, B, Jones, J, Ronksley, PE, Armstrong, MJ, Caird, J, and Rabi, D. Effectiveness of mobile electronic devices in weight loss among overweight and obese populations: a systematic review and meta-analysis. BMC Obes. (2014) 1:22. doi: 10.1186/s40608-014-0022-4

13. Dai, H, Alsalhe, TA, Chalghaf, N, Ricco, M, Bragazzi, NL, and Wu, J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: An analysis of the Global Burden of Disease Study. PloS Med. (2020) 17:e1003198. doi: 10.1371/journal.pmed.1003198

14. Webb, VL, and Wadden, TA. Intensive lifestyle intervention for obesity: principles, practices, and results. Gastroenterology. (2017) 152:1752–64. doi: 10.1053/j.gastro.2017.01.045

15. Courcoulas, AP, Gallagher, JW, Neiberg, RH, Eagleton, EB, DeLany, JP, and Lang, W. Bariatric surgery vs lifestyle intervention for diabetes treatment: 5-year outcomes from a randomized trial. J Clin Endocrinol Metab. (2020) 105:866–76. doi: 10.1210/clinem/dgaa006

16. Johnson, S, and Schwartz, SM. Pharmacologic and pharmacodynamic equivalence of 2 formulations of orlistat. Clin Pharmacol Drug Dev. (2018) 7:773–80. doi: 10.1002/cpdd.457

17. Cho, LW, Kilpatrick, ES, Keevil, BG, Coady, AM, and Atkin, SL. Effect of metformin, orlistat and pioglitazone treatment on mean insulin resistance and its biological variability in polycystic ovary syndrome. Clin Endocrinol (Oxf). (2009) 70:233–7. doi: 10.1111/j.1365-2265.2008.03309.x

18. Kumar, P, and Arora, S. Orlistat in polycystic ovarian syndrome reduces weight with improvement in lipid profile and pregnancy rates. J Hum Reprod Sci. (2014) 7:255–61. doi: 10.4103/0974-1208.147492

19. Panda, SR, Jain, M, Jain, S, Saxena, R, and Hota, S. Effect of orlistat versus metformin in various aspects of polycystic ovarian syndrome: A systematic review of randomized control trials. J Obstet Gynaecol India. (2018) 68:336–43. doi: 10.1007/s13224-018-1140-6

20. Salehpour, S, Hosseini, S, Nazari, L, Saharkhiz, N, and Zademodarres, S. Effects of orlistat on serum androgen levels among Iranian obese women with polycystic ovarian syndrome. JBRA Assist Reprod. (2018) 22:180–4. doi: 10.5935/1518-0557.20180033

21. Gillies, CL, Abrams, KR, Lambert, PC, Cooper, NJ, Sutton, AJ, and Hsu, RT. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. (2007) 334:299. doi: 10.1136/bmj.39063.689375.55

22. Kujawska-Luczak, M, Szulinska, M, Skrypnik, D, Musialik, K, and Swora-Cwynar, E. The influence of orlistat, metformin and diet on serum levels of insulin-like growth factor-1 in obeses women with and without insulin resistance. J Physiol Pharmacol. (2018) 69:69. doi: 10.26402/jpp.2018.5.08

23. McDuffie, JR, Calis, KA, Booth, SL, Uwaifo, GI, and Yanovski, JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy. (2002) 22:814–22. doi: 10.1592/phco.22.11.814.33627

24. Pi-Sunyer, X, Astrup, A, Fujioka, K, Greenway, F, Halpern, A, and Krempf, M. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. (2015) 373:11–22. doi: 10.1056/NEJMoa1411892

25. Rosenstock, J, Wysham, C, Frias, JP, Kaneko, S, Lee, CJ, and Fernández Landó, L. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomized, phase 3 trial. Lancet. (2021) 398:143–55. doi: 10.1016/S0140-6736(21)01324-6

26. Frías, JP, Davies, MJ, Rosenstock, J, Pérez Manghi, FC, Fernández Landó, L, and Bergman, BK. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. (2021) 385:503–15. doi: 10.1056/NEJMoa2107519

27. Ludvik, B, Giorgino, F, Jódar, E, Frias, JP, Fernández Landó, L, Brown, K, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomized, open-label, parallel-group, phase 3 trial. Lancet. (2021) 398:583–98. doi: 10.1016/S0140-6736(21)01443-4

28. Del Prato, S, Kahn, SE, Pavo, I, Weerakkody, GJ, Yang, Z, Doupis, J, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomized, open-label, parallel-group, multicentre, phase 3 trial. Lancet. (2021) 398:1811–24. doi: 10.1016/S0140-6736(21)02188-7

29. Dahl, D, Onishi, Y, Norwood, P, Huh, R, Bray, R, Patel, H, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. (2022) 327:534–45. doi: 10.1001/jama.2022.0078

30. Jastreboff, AM, Aronne, LJ, Ahmad, NN, Wharton, S, Connery, L, Alves, B, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. (2022) 387:205–16. doi: 10.1056/NEJMoa2206038

31. Garvey, WT, Frias, JP, Jastreboff, AM, le Roux, CW, Sattar, N, Aizenberg, D, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomized, multicentre, placebo-controlled, phase 3 trial. Lancet. (2023) 402(10402):613–26. doi: 10.1016/S0140-6736(23)01200-X

32. le Roux, CW, Zhang, S, Aronne, LJ, Kushner, RF, Chao, AM, Machineni, S, et al. Tirzepatide for the treatment of obesity: Rationale and design of the SURMOUNT clinical development program. Obes (Silver Spring). (2023) 31:96–110. doi: 10.1002/oby.23612

33. Blundell, J, Finlayson, G, Axelsen, M, Flint, A, Gibbons, C, Kvist, T, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. (2017) 19:1242–51. doi: 10.1111/dom.12932

34. Donath, MY, and Burcelin, R. GLP-1 effects on islets: hormonal, neuronal, or paracrine? Diabetes Care. (2013) 36 Suppl 2:S145–148. doi: 10.2337/dcS13-2015

35. Hjerpsted, JB, Flint, A, Brooks, A, Axelsen, MB, Kvist, T, and Blundell, J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab. (2018) 20:610–9. doi: 10.1111/dom.13120

36. Flint, A, Raben, A, Astrup, A, and Holst, JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. (1998) 101:515–20. doi: 10.1172/JCI990

37. Gutzwiller, JP, Drewe, J, Göke, B, Schmidt, H, Rohrer, B, Lareida, J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. (1999) 276:R1541–1544. doi: 10.1152/ajpregu.1999.276.5.R1541

38. Nauck, M, Frid, A, Hermansen, K, Shah, NS, Tankova, T, Mitha, IH, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. (2009) 32:84–90. doi: 10.2337/dc08-1355

39. Lau, J, Bloch, P, Schaffer, L, Pettersson, I, Spetzler, J, Kofoed, J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. (2015) 58:7370–80. doi: 10.1021/acs.jmedchem.5b00726

40. Bergmann, NC, Davies, MJ, Lingvay, I, and Knop, FK. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes Metab. (2023) 25:18–35. doi: 10.1111/dom.14863

41. European Medicines Agency. Wegovy – summary of product characteristics (2023). Available online at: https://www.ema.europa.eu/en/medicines/human/EPAR/wegovy (Accessed 20 April 2023).

42. Health Canada. Wegovy – product monograph (2023). Available online at: https://health-products.Canada.ca/dpd-bdpp/info?lang=eng&code=101167 (Accessed 20 April 2023).

43. Medicines & Healthcare Products Regulatory Agency. Wegovy 2.4 mg, solution for injection in pre-filled pen – summary of product characteristics (2023). Available online at: https://mhraproducts4853.blob.core.windows.net/docs/04bd114b87aac3b439436d9317d836ef2b400ea9 (Accessed 20 April 2023).

44. Wilding, JPH, Batterham, RL, Calanna, S, Davies, M, Van Gaal, LF, Lingvay, I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. (2021) 384:989–1002. doi: 10.1056/NEJMoa2032183

45. Wadden, TA, Bailey, TS, Billings, LK, Davies, M, Frias, JP, Koroleva, A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. (2021) 325:1403–13. doi: 10.1001/jama.2021.1831

46. Rubino, D, Abrahamsson, N, Davies, M, Hesse, D, Greenway, FL, Jensen, C, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA. (2021) 325:1414–25. doi: 10.1001/jama.2021.23619

47. Rubino, DM, Greenway, FL, Khalid, U, O'Neil, PM, Rosenstock, J, Sørrig, R, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA. (2022) 327:138–50. doi: 10.1001/jama.2021.23619

48. Davies, M, Færch, L, Jeppesen, OK, Pakseresht, A, Pedersen, SD, Perreault, L, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomized, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. (2021) 397:971–84. doi: 10.1016/S0140-6736(21)00213-0

49. National Institute for Health and Care Excellence. Semaglutide for managing overweight and obesity (2023). Available online at: https://www.nice.org.uk/guidance/ta875/resources/semaglutide-for-managing-overweight-and-obesity-pdf-82613674831813 (Accessed 28 April 2023).

50. Kelly, AS, Bensignor, MO, Hsia, DS, Shoemaker, AH, Shih, W, Peterson, C, et al. Phentermine/topiramate for the treatment of adolescent obesity. NEJM Evid. (2022) 1:6. doi: 10.1056/EVIDoa2200014

51. Gadde, KM, Allison, DB, Ryan, DH, Peterson, CA, Troupin, B, Schwiers, ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomized, placebo-controlled, phase 3 trial. Lancet. (2011) 377:1341–52. doi: 10.1016/S0140-6736(11)60205-5

52. Allison, DB, Gadde, KM, Garvey, WT, Peterson, CA, Schwiers, ML, Najarian, T, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obes (Silver Spring). (2012) 20:330–42. doi: 10.1038/oby.2011.330

53. Chakhtoura, M, Haber, R, Ghezzawi, M, Rhayem, C, Tcheroyan, R, and Mantzoros, CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. (2023) 58:101882. doi: 10.1016/j.eclinm.2023.101882

54. Tek, C. Naltrexone HCI/bupropion HCI for chronic weight management in obese adults: patient selection and perspectives. Patient Prefer Adherence. (2016) 10:751–9. doi: 10.2147/PPA

55. Patel, K, Allen, S, Haque, MN, Angelescu, I, Baumeister, D, and Tracy, DK. Bupropion: a systematic review and meta-analysis of effectiveness as an antidepressant. Ther Adv Psychopharmacol. (2016) 6:99–144. doi: 10.1177/2045125316629071

56. Greenway, FL, Fujioka, K, Plodkowski, RA, Mudaliar, S, Guttadauria, M, Erickson, J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Lancet. (2010) 376:595–605. doi: 10.1016/S0140-6736(10)60888-4

57. Apovian, CM, Aronne, L, Rubino, D, Still, C, Wyatt, H, Burns, C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obes (Silver Spring). (2013) 21:935–43. doi: 10.1002/oby.20309

58. Wadden, TA, Foreyt, JP, Foster, GD, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obes (Silver Spring). (2011) 19:110–20. doi: 10.1038/oby.2010.147

59. Jeong, D, and Priefer, R. Anti-obesity weight loss medications: Short-term and long-term use. Life Sci. (2022) 306:120825. doi: 10.1016/j.lfs.2022.120825

60. Grover, A, Quaye, E, Brychta, RJ, Christensen, J, Startzell, MS, Meehan, CA, et al. Leptin decreases energy expenditure despite increased thyroid hormone in patients with lipodystrophy. J Clin Endocrinol Metab. (2021) 106:e4163–78. doi: 10.1210/clinem/dgab269

61. Hinney, A, Korner, A, and Fischer-Posovszky, P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol. (2022) 18:623–37. doi: 10.1038/s41574-022-00716-0

62. Elfhag, K, Rossner, S, Carlsson, AM, and Barkeling, B. Sibutramine treatment in obesity: predictors of weight loss including rorschach personality data. Obes Res. (2003) 11:1391–9. doi: 10.1038/oby.2003.188

63. Rolls, BJ, Shide, DJ, Thorwart, ML, and Ulbrecht, JS. Sibutramine reduces food intake in non-dieting women with obesity. Obes Res. (1998) 6:1–11. doi: 10.1002/j.1550-8528.1998.tb00308.x

64. James, WP, Caterson, ID, Coutinho, W, Finer, N, Van Gaal, LF, Maggioni, AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. (2010) 363:905–17. doi: 10.1056/NEJMoa1003114

65. Robson, PJ. Therapeutic potential of cannabinoid medicines. Drug Test Anal. (2014) 6:24–30. doi: 10.1002/dta.1529

66. Dawson, AJ, Kilpatrick, ES, Coady, AM, Elshewehy, AMM, Dakroury, Y, Ahmed, L, et al. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss. BMC endocrine Disord. (2017) 17:41. doi: 10.1186/s12902-017-0194-2

67. Sathyapalan, T, Cho, L, Kilpatrick, ES, Le Roux, CW, Coady, AM, and Atkin, SL. Effect of rimonabant and metformin on glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 in obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf). (2010) 72:423–5. doi: 10.1111/j.1365-2265.2009.03643.x

68. Moreira, FA, and Crippa, JA. The psychiatric side-effects of rimonabant. Braz J Psychiatry. (2009) 31:145–53. doi: 10.1590/S1516-44462009000200012

69. Shukla, AP, Kumar, RB, and Aronne, LJ. Lorcaserin Hcl for the treatment of obesity. Expert Opin Pharmacother. (2015) 16:2531–8. doi: 10.1517/14656566.2015.1096345

70. Bray, GA, Fruhbeck, G, Ryan, DH, and Wilding, JP. Management of obesity. Lancet. (2016) 387:1947–56. doi: 10.1016/S0140-6736(16)00271-3

71. Higgins, GA, Fletcher, PJ, and Shanahan, WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther. (2020) 205:107417. doi: 10.1016/j.pharmthera.2019.107417

72. Zimmermann, T, Thomas, L, Baader-Pagler, T, Haebel, P, Simon, E, Reindl, W, et al. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol Metab. (2022) 66:101633. doi: 10.1016/j.molmet.2022.101633

73. Jastreboff, AM, Kaplan, LM, Frias, JP, Wu, Q, Du, Y, Gurbuz, S, et al. Triple-hormone-receptor agonist retatrutide for obesity - A phase 2 trial. N Engl J Med. (2023) 389:514–26. doi: 10.1056/NEJMoa2301972

74. Wharton, S, Blevins, T, Connery, L, Rosenstock, J, Raha, S, Liu, R, et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N Engl J Med. (2023) 389:877–88. doi: 10.1056/NEJMoa2302392

75. Gloy, VL, Briel, M, Bhatt, DL, Kashyap, SR, Schauer, PR, Mingrone, G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomized controlled trials. BMJ. (2013) 347:f5934. doi: 10.1136/bmj.f5934

76. Picot, J, Jones, J, Colquitt, JL, Gospodarevskaya, E, Loveman, E, Baxter, L, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. (2009) 13:1–190. doi: 10.3310/hta13410

77. Pham, S, Gancel, A, Scotte, M, Houivet, E, Huet, E, Lefebvre, H, et al. Comparison of the effectiveness of four bariatric surgery procedures in obese patients with type 2 diabetes: a retrospective study. J Obes. (2014) 2014:638203. doi: 10.1155/2014/638203

78. Ding, L, Fan, Y, Li, H, Zhang, Y, Qi, D, Tang, S, et al. Comparative effectiveness of bariatric surgeries in patients with obesity and type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. Obes Rev. (2020) 21:e13030. doi: 10.1111/obr.13030

79. Lim, R, Beekley, A, Johnson, DC, and Davis, KA. Early and late complications of bariatric operation. Trauma Surg Acute Care Open. (2018) 3:e000219. doi: 10.1136/tsaco-2018-000219




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Roomy, Hussain, Behbehani, Abu-Farha, Al-Harris, Ambi, Abdalla, Al-Mulla, Abu-Farha and Abubaker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




SYSTEMATIC REVIEW

published: 29 April 2024

doi: 10.3389/fendo.2024.1385872

[image: image2]


Effects of dietary intervention on diabetic nephropathy: an umbrella review of systematic reviews and meta-analyses of randomized controlled trials


Linli Cai 1, Yin Huang 2, Xingyuan Li 1, Dehong Cao 2,3* and Fang Liu 1*


1 Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China, 2 Department of Urology, West China Hospital, Sichuan University, Chengdu, China, 3 Department of Urology, Karamay People’s Hospital of Xinjiang Uygur Autonomous Region, Karamay, China




Edited by: 

Jian Ma, Harbin Medical University, China

Reviewed by: 

Natalia Lucia Rukavina Mikusic, CONICET Institute of Biological Chemistry and Physicochemistry (IQUIFIB), Argentina

Cosmin Mihai Vesa, University of Oradea, Romania

*Correspondence: 

Dehong Cao
 caodehong@scu.edu.cn

Fang Liu
 liufangfh@163.com


Received: 13 February 2024

Accepted: 16 April 2024

Published: 29 April 2024

Citation:
Cai L, Huang Y, Li X, Cao D and Liu F (2024) Effects of dietary intervention on diabetic nephropathy: an umbrella review of systematic reviews and meta-analyses of randomized controlled trials. Front. Endocrinol. 15:1385872. doi: 10.3389/fendo.2024.1385872






Objective

To evaluate the quality of evidence, potential biases, and validity of all available studies on dietary intervention and diabetic nephropathy (DN).





Methods

We conducted an umbrella review of existing meta-analyses of randomized controlled trials (RCTs) that focused on the effects of dietary intervention on DN incidence. The literature was searched via PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews. According to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE), evidence of each outcome was evaluated and graded as “high”, “moderate”, “low” or “very low” quality to draw conclusions. Additionally, we classified evidence of outcomes into 4 categories.





Results

We identified 36 meta-analyses of RCTs and 55 clinical outcomes of DN from 395 unique articles. Moderate-quality evidence suggested that probiotic supplementation could significantly improve blood urea nitrogen (BUN), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in DN patients. Low-quality evidence indicated that probiotic supplementation significantly improved the serum creatinine concentration, urinary albumin–creatinine ratio (UACR), fasting blood glucose (FBG), HbA1c and high-density lipoprotein cholesterol (HDL-C) in DN patients. In addition, low-quality evidence suggested that a salt restriction diet could significantly improve the creatinine clearance rate (CrCl) in patients with DN. Low-quality evidence suggested that vitamin D supplementation could significantly improve the UACR in patients with DN. In addition, low-quality evidence has indicated that soy isoflavone supplementation could significantly improve BUN, FBG, total cholesterol (TC), triglyceride (TG) and LDL-C levels in patients with DN. Furthermore, low-quality evidence suggested that coenzyme Q10 supplementation could significantly improve HbA1c, TC and HDL-C in patients with DN, and dietary polyphenols also significantly improved HbA1c in patients with DN. Finally, low-quality evidence suggested that supplementation with antioxidant vitamins could significantly improve the serum creatinine concentration, systolic blood pressure, and HbA1c level in patients with DN. Given the small sample size, all significantly associated outcomes were evaluated as class IV evidence.





Conclusion

Moderate to low amounts of evidence suggest that supplementation with probiotics, vitamin D, soy isoflavones, coenzyme Q10, dietary polyphenols, antioxidant vitamins, or salt-restricted diets may significantly improve clinical outcomes in patients with DN.





Systematic Review Registration

https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024512670.
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Introduction

Diabetic nephropathy (DN), a common microvascular complication of diabetes, is an important cause of chronic kidney disease (CKD) and end-stage renal disease. Patients with DN often need dialysis to maintain life, and this condition has a high fatality rate (1). There are many risk factors affecting the occurrence and development of DN, among which the most important risk factors include family history, hypertension, dyslipidemia, obesity and insulin resistance; other risk factors include elevated HbA1c levels, elevated systolic blood pressure, proteinuria and smoking (2). Dietary intervention is an important means to control the progression of DN by reducing the risk factors for DN. The main goal of DN treatment is to prevent microalbuminuria from progressing to macroalbuminuria and ultimately to protect renal function. By controlling a healthy and balanced diet, DN patients can delay the progression of kidney damage and related secondary diseases, such as hypertension, hyperlipidemia, and uremia; in contrast, an unhealthy diet will burden kidney function. Therefore, maintaining a delicate balance between nutrient intake and physiological load is essential for maintaining patients’ quality of life (3).

Effective diet management can not only help control DN but also improve the quality of life of patients (2, 3). According to the current literature, dietary interventions such as probiotic supplementation, a low-salt diet, soy isoflavone supplementation, vitamin supplementation and coenzyme Q10 supplementation can effectively improve the clinical outcome of DN patients, delay the progression of DN, and improve their quality of life (4–11).

Although numerous meta-analyses of randomized controlled trials (RCTs) have evaluated a range of effects of dietary intervention on DN incidence in recent years, drawbacks in terms of the research design, differences in assessments of exposure factors, and inconsistent outcomes have made it difficult to draw definitive conclusions (4–39). Before developing effective dietary management strategies for DN, it is necessary to systematically evaluate the quality of the methodology, potential biases, and validity of all studies available for the effects of dietary intervention on DN. Therefore, we conducted an umbrella review of the meta-analyses to provide an overview of the evidence on the effects of dietary intervention on DN.





Methods and analysis




Design and registration

We systematically searched, extracted, and analyzed the data from reported systematic reviews and meta-analyses that focused on the effects of dietary intervention on DN according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (40). The present umbrella review adhered to the methodological guidance outlined in the Joanna Briggs Institute Manual for Evidence Synthesis of Umbrella Reviews (41) and followed the procedures delineated in the Cochrane Handbook for Conducting Systematic Reviews (42). Furthermore, we proactively enrolled our umbrella review in the International Prospective Register of Systematic Reviews (PROSPERO), with the registration number CRD42024512670. (https://www.crd.york.ac.uk/PROSPERO/).





Eligibility criteria

Systematic reviews and meta-analyses of RCTs evaluating the effects of dietary intervention on DN incidence in individuals of any ethnicity or sex in all countries and settings were eligible for inclusion. Data on individual dietary interventions were extracted separately if two or more dietary interventions were reported in a single meta-analysis. If two or more meta-analyses (those published more than 24 months apart) were performed on the same dietary intervention and clinical outcome of DN, we included the latest meta-analysis for data analysis. In the event that multiple meta-analyses were conducted within a 24-month timeframe, preference was given to the meta-analysis encompassing the highest number of RCTs. If an equal number of RCTs existed, priority was assigned to the meta-analysis with a superior AMSTAR score. In addition, if the latest meta-analysis did not perform dose-response analysis, while another meta-analysis did, both studies were included for data extraction. Non-English studies and animal and cell culture studies were also excluded.





Population

This umbrella review is centered on systematically reviewing meta-analyses that assess the effects of dietary intervention on DN. The primary focus of the original articles incorporated within these systematic reviews and meta-analyses should be directed toward identifying dietary interventions that have the potential to either improve or exacerbate the clinical outcomes of DN. Studies evaluating the efficacy of a certain dietary intervention for the risk of DN were excluded.





Exposure

We included a meta-analysis that reported at least 1 type of dietary intervention for DN, including probiotics, a salt restriction diet, vitamin D, soy isoflavone, and low-protein diets. The efficacy of dietary intervention on the clinical outcomes of DN was evaluated by the risk ratio (RR), mean difference (MD) or standard mean difference (SMD) with 95% confidence intervals (CIs).





Outcomes

The outcomes of this umbrella review included endocrine metabolic outcomes, including the urinary albumin excretion rate (UAER), serum creatinine (Scr), blood urea nitrogen (BUN), the urinary albumin–creatinine ratio (UACR), fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), coenzyme Q10 (CoQ10), the glomerular filtration rate (GFR), and the creatinine clearance rate (CrCl).





Study designs

Only systematic reviews and meta-analyses of RCTs evaluating the effects of dietary intervention on DN incidence in individuals of any ethnicity or sex in all countries and settings were eligible for inclusion. All the included systematic reviews and meta-analyses needed to focus on dietary intervention in DN patients and describe the meta-analysis methods in detail, including the complete search strategy, inclusion and exclusion criteria, literature quality evaluation criteria, result evaluation methods, analysis methods and procedures, and interpretation criteria.





Information sources

In our study, we systematically searched PubMed, Embase, the Web of Science, and the Cochrane Database of Systematic Reviews until July 2023 for relevant systematic reviews and meta-analyses of RCTs. We also reviewed the reference lists of the included meta-analyses to find additional relevant articles.





Search strategy

The databases were accessed using Medical Subject Headings (MeSH), keywords, and text terms related to dietary intervention and DN, following the Scottish Intercollegiate Guidelines Network (SIGN) recommendations for literature search methodology (43). The detailed search strategy for PubMed was as follows: (((“Diabetic Nephropathies”[Mesh]) OR (((((((((((((((((Nephropathies, Diabetic) OR (Nephropathy, Diabetic)) OR (Diabetic nephropathy)) OR (Diabetic Kidney Disease)) OR (Diabetic Kidney Diseases)) OR (Kidney Disease, Diabetic)) OR (Kidney Diseases, Diabetic)) OR (Diabetic Glomerulosclerosis)) OR (Glomerulosclerosis, Diabetic)) OR (Intracapillary Glomerulosclerosis)) OR (Nodular Glomerulosclerosis)) OR (Glomerulosclerosis, Nodular)) OR (Kimmelstiel-Wilson Syndrome)) OR (Kimmelstiel Wilson Syndrome)) OR (Syndrome, Kimmelstiel-Wilson)) OR (Kimmelstiel-Wilson Disease)) OR (Kimmelstiel Wilson Disease))) AND (((“Diet”[Mesh]) OR (diets)) OR ((“Food”[Mesh]) OR (foods)))) AND (meta-analysis OR systematic review).





Study selection

All the retrieved literature was screened using Endnote X9. After excluding duplicates, two authors screened the titles and abstracts and identified meta-analyses that met the inclusion criteria through full-text reading independently. All disagreements between the two authors were resolved by a third author. In addition, we hand-searched studies from the reference lists to identify meta-analyses that might have been excluded (Figure 1).




Figure 1 | Flowchart of the systematic search and selection process.







Assessment of methodological quality

The methodological quality of each meta-analysis was assessed by two authors using AMSTAR, a validated, stringent, and reliable tool for evaluating systematic reviews and meta-analyses (44, 45). In addition, according to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE), evidence of each health outcome was evaluated and graded as “high”, “moderate”, “low” or “very low” quality to draw conclusions (46). Additionally, we classified the evidence of outcomes into 4 categories following the evidence classification criteria: class I (convincing evidence), class II (highly suggestive evidence), class III (suggestive evidence), class IV (weak evidence) and NS (nonsignificant) (47–50). The detailed criteria for evidence classification are shown in Table 1.


Table 1 | Evidence categories criteria.







Data extraction

Two investigators autonomously retrieved the pertinent data from each qualifying study: 1) name of the author, 2) publication date, 3) dietary intervention, 4) control, 5) outcomes, 6) number of included studies, 7) sample size, 8) length of follow-up, and 9) MD or SMD estimates with 95% CIs. In addition, we extracted the meta-analytic model used (random or fixed), estimate of heterogeneity (I2 and Cochran’s Q test) and small-study assessment (Egger’s test, Begg’s test and funnel plot). When dose response analysis and subgroup analysis were performed, we extracted the P value for nonlinearity and any reported estimate for subgroup analysis. Any disagreements were resolved by a third author.





Data summary

We recalculated the RR, MD or SMD with 95% CIs through random or fixed effects models and evaluated the heterogeneity (I2 and Cochran’s Q test) and small-study effects (Egger or Begg test for each systematic review and meta-analysis with more than 10 studies) in each meta-analysis when sufficient data were provided (51–53). For dietary interventions identified as class I-II evidence, high-quality evidence or moderate-quality evidence, we conducted sensitivity analysis when sufficient data were available to determine the effect of some individual studies on the total significance of the evidence. Dose-response analysis of DN incidence associated with any dietary intervention was also performed. Furthermore, if the most recent meta-analysis did not involve clinical studies that involved other meta-analyses, we combined the data of these studies and performed a reanalysis. A P < 0.10 was considered to indicate heterogeneity, and for other tests, P < 0.05 was considered to indicate statistical significance. Review Manager v5.4.1 (Cochrane Collaboration, Oxford, UK) was used for evidence synthesis. Egger and Begg tests, along with sensitivity analysis, were performed using Stata v15.1.






Major outcomes




Characteristics of the meta-analyses

A flowchart of the literature search and selection process is presented in Figure 1. After a systematic literature search, 501 unique articles were identified. A total of 36 meta-analyses were yielded based on our inclusion criteria. We extracted 9 unique dietary interventions (including probiotics, a salt restriction diet, vitamin D, soy isoflavone, CoQ10, ketoanalog, dietary polyphenols, antioxidant vitamins, and low-protein diets) and 55 corresponding outcomes in meta-analyses, including 34 significantly associated outcomes and 21 nonsignificantly associated outcomes (Table 2). After a careful evaluation of evidence quality using established criteria, all outcomes were classified as IV or NS (nonsignificant) evidence. In addition, according to the GRADE rating criteria, only five dietary interventions were rated as moderate-quality evidence, 33 were rated as low-quality evidence, and 17 were rated as very low-quality evidence (Table 2). Moderate-quality evidence and low-quality evidence for dietary interventions that could significantly improve clinical outcomes in patients with DN are presented in Figure 2.


Table 2 | Effects of dietary intervention on diabetic nephropathy.






Figure 2 | Forest plots of moderate-quality evidence and low-quality evidence for dietary interventions that could significantly improve clinical outcomes in patients with DN. Scr, serum creatinine; BUN, blood urea nitrogen; UACR, urinary albumin creatinine ratio; FBG, fasting blood-glucose; TC, total cholesterol; TG, triglycerides; LDC-L, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; SBP, systolic blood pressure; CoQ10, coenzyme Q10; CrCl, Creatinine clearance rate; RCT, randomized controlled trial; MD, mean difference; AMSTAR, a measurement tool to assess systematic reviews; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; NA, not available.







Probiotics

A total of 5 meta-analyses (11, 16, 17, 19, 21) studied the efficacy of probiotic intervention for DN. The meta-analysis published by Dai et al. in 2022 (16) included 6 RCTs describing 446 patients with DN, in which Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus lactis, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium infants, Lactobacillus plantarum A7, Lactobacillus fermentum strain ZT-L3, Bacillus coagulans T11, and Streptococcus thermophilus were included for pooled analysis. An umbrella review found that probiotic intervention could significantly improve LDL-C (MD -7.14, 95% CI -11.03 to -3.24) (moderate-quality evidence), TC (MD -6.93, 95% CI -11.67 to -2.19) (moderate-quality evidence), BUN (MD -1.36, 95% CI -2.20 to -0.52) (moderate-quality evidence), Scr (MD -0.17, 95% CI -0.29 to -0.05) (low-quality evidence), UACR (MD -16.05, 95% CI -27.12 to -4.99) (low-quality evidence), FBG (MD -13.53, 95% CI -19.85 to -7.21) (low-quality evidence), HbA1c (MD -0.12, 95% CI -0.20 to -0.04) (low-quality evidence), and HDL-C (MD 2.72, 95% CI 0.47 to 4.97) (low-quality evidence) in DN patients compared with conventional care without probiotics. However, an umbrella review revealed that probiotic intervention had no significant improvement on the glomerular filtration rate (GFR) (MD 4.51, 95% CI -0.03 to 9.06) (low-quality evidence) in DN patients (Figure 2) (Table 2).





Salt restriction diet

A total of 3 meta-analyses (10, 13, 30) studied the effect of a salt restriction diet on DN incidence. The meta-analysis of Hodson et al. published in 2023 (13) included 12 RCTs describing 400 patients with DN. An umbrella review revealed that, compared with a usual or high-salt diet, a salt restriction diet significantly improved SBP (MD -7.36, 95% CI -10.75 to -3.98) (very low-quality evidence), DBP (MD -3.17, 95% CI -4.58 to -1.76) (very low-quality evidence), CrCl (MD -6.05, 95% CI -10.00 to -2.10) (low-quality evidence), and body weight (MD -1.21, 95% CI -1.73 to -0.68) (very low-quality evidence) in DN patients. However, an umbrella review revealed that a salt restriction diet had no significant improvement on the glomerular filtration rate (GFR) (MD -1.87, 95% CI -5.05 to 1.31) (low-quality evidence) or HbA1c (SMD -0.62, 95% CI -1.49 to 0.26) (very low-quality evidence) in DN patients (Figure 2) (Table 2).





Soy isoflavone

A total of 1 meta-analysis studied the effect of soy isoflavone supplementation on DN incidence. The meta-analysis of Wang et al. published in 2021 (5) included eight RCTs involving 261 patients with DN. An umbrella review revealed that, compared with no supplementation with soy isoflavones, supplementation with soy isoflavones significantly improved BUN (SMD -0.67, 95% CI -0.94 to -0.41) (low-quality evidence), FBG (SMD -0.39, 95% CI -0.68 to -0.10) (low-quality evidence), total cholesterol (TC) (SMD -0.58, 95% CI -0.83 to -0.33) (low-quality evidence), total glucose (TG) (SMD -0.41, 95% CI -0.66 to -0.16) (low-quality evidence), LDL-C (SMD -0.68, 95% CI -0.94 to -0.42) (low-quality evidence) and 24-hour urine protein (SMD -2.58, 95% CI -3.94 to -1.22) (very low-quality evidence) in DN patients. However, an umbrella review revealed that supplementation with soy isoflavones had no significant improvement on body weight (SMD -0.05, 95% CI -0.32 to 0.21; low-quality evidence), Scr (SMD -0.24, 95% CI -0.49 to 0.01; low-quality evidence), CrCl (SMD -0.36, 95% CI -0.83 to 0.10; low-quality evidence), GFR (SMD -0.07, 95% CI -0.35 to 0.20; low-quality evidence) or HDL-C (SMD 0.16, 95% CI -0.09 to 0.41; low-quality evidence) in DN patients (Figure 2) (Table 2).





Vitamin

A total of 4 meta-analyses (4, 22, 24, 28) studied the effect of vitamin D supplementation on DN incidence. The meta-analysis of He et al. published in 2022 (4) included 6 RCTs involving 874 patients with DN. A review of Umbrella medicine showed that, compared with placebo, vitamin D supplementation significantly improved the UACR (SMD -0.24, 95% CI -0.39 to -0.09) (low-quality evidence), UAER (SMD -0.42, 95% CI -0.53 to -0.32) (very low-quality evidence), and 24-hour urine protein (MD -0.26, 95% CI -0.34 to -0.17) (very low-quality evidence) in DN patients. However, an umbrella review of the meta-analysis of Wang et al. published in 2019 (22) revealed that vitamin D supplementation had no significant improvement on Scr (MD -0.83, 95% CI -3.67 to 2.02) (low-quality evidence), GFR (MD 2.13, 95% CI -2.06 to 6.32) (low-quality evidence), HbA1c (MD 0.01, 95% CI -0.09 to 0.11) (moderate-quality evidence), or FBG (MD -0.05, 95% CI -0.29 to 0.20) (low-quality evidence) in DN patients (Figure 2) (Table 2).

In addition, a total of 1 meta-analysis studied the effect of antioxidant vitamin supplementation on DN. The meta-analysis of Chen et al. published in 2020 (9) included 6 RCTs involving 315 patients with DN. An umbrella review revealed that, compared with placebo, supplementation with antioxidant vitamins significantly improved Scr (MD -0.11, 95% CI -0.19 to -0.03) (low-quality evidence), SBP (MD -6.02, 95% CI -9.65 to -2.40) (low-quality evidence), and HbA1c (MD -0.22, 95% CI -0.43 to -0.001) (low-quality evidence) in DN patients. However, an umbrella review revealed that supplementation with antioxidant vitamins did not significantly improve DBP (MD -1.19, 95% CI -3.91 to 1.52) (low-quality evidence) or FBG (MD -1.12, 95% CI -13.24 to 10.99) (low-quality evidence) in DN patients (Figure 2) (Table 2).





CoQ10

A total of 1 meta-analysis studied the effect of CoQ10 supplementation on DN incidence. The meta-analysis of Zhang et al. published in 2019 (7) included 3 RCTs involving 135 patients with DN. An umbrella review revealed that, compared with placebo, supplementation with CoQ10 significantly improved FBG (SMD -2.04, 95% CI -3.90 to -0.18) (very low-quality evidence), HbA1c (MD -1.83, 95% CI -3.39 to -0.27) (low-quality evidence), total cholesterol (TC) (SMD -1.73, 95% CI -3.41 to -0.05) (low-quality evidence), and high-density lipoprotein cholesterol (HDL-C) (MD 0.09, 95% CI 0.01 to 0.18) (low-quality evidence) in DN patients. However, an umbrella review revealed that supplementation with CoQ10 did not significantly improve LDL-C levels (SMD -0.27, 95% CI -0.62 to 0.07) (moderate-quality evidence) in DN patients (Figure 2) (Table 2).





Low-protein diets

A total of 19 meta-analyses (6, 12, 15, 18, 20, 23, 25–27, 29, 31–39) studied the effect of low-protein diets on DN incidence. The meta-analysis of Jiang et al. published in 2023 (12) included 7 RCTs and included 367 patients with DN. An umbrella review revealed that low-protein diets significantly improved the UAER (standardized mean difference (SMD) of 0.68, 95% CI of 0.08 to 1.29) (very low-quality evidence) in DN patients compared with the usual diet. However, the umbrella review revealed that low-protein diets had no significant improvement on all-cause mortality (RR 0.38, 95% CI 0.10 to 1.44) (low-quality evidence), renal failure (RR 1.16, 95% CI 0.38 to 3.59) (low-quality evidence), GFR (MD -0.73, 95% CI -2.30 to 0.83) (very low-quality evidence), CrCl (MD -2.39, 95% CI -5.87 to 1.08) (very low-quality evidence), or 24-hour urinary albumin excretion (MD 0.00, 95% CI -0.07 to 0.07) (very low-quality evidence) in DN patients (Figure 2) (Table 2).





Dietary polyphenols

A total of 1 meta-analysis studied the effect of dietary polyphenol supplementation on DN incidence. The meta-analysis of Macena et al. published in 2022 (14) included 7 RCTs describing 333 patients with DN. An umbrella review revealed that dietary polyphenol supplementation significantly improved HbA1c levels (MD -0.28, 95% CI -0.51 to -0.04) (low-quality evidence), glomerular filtration rate (GFR) (MD 3.66, 95% CI 0.16 to 7.15) (very low-quality evidence) and 24-hour urine protein levels (MD -109.10, 95% CI -216.57 to -1.63) (very low-quality evidence) in DN patients compared with those in patients receiving no polyphenols or placebo (Figure 2) (Table 2).





Ketoanalog

A total of 1 meta-analysis studied the effect of ketoanalogue supplementation on DN incidence. The meta-analysis of Bellizzi et al. published in 2022 (8) included 7 RCTs of 310 patients with DN. An umbrella review revealed that, compared with the usual diet, ketoanalog supplementation significantly improved 24-hour urine protein (MD -1.41, 95% CI -2.74 to -0.08) (very low-quality evidence) and fasting blood glucose (FBG) (MD -27.57, 95% CI -39.20 to -15.94) (very low-quality evidence) in DN patients. However, an umbrella review revealed that ketoanalogue supplementation had no significant improvement on the glomerular filtration rate (GFR) (MD 4.06, 95% CI -1.84 to 9.97) (very low-quality evidence) in DN patients (Figure 2) (Table 2).





Heterogeneity

In our study, 74.5% of the outcomes were reanalyzed using a random or fixed effects model. The reanalysis revealed that approximately 36.6% of the examined outcomes exhibited significant heterogeneity (I2 > 50% or Cochran’s Q test P < 0.1). The heterogeneity of most of the outcomes could be attributed to various potential factors, such as study setting, geographical region, ethnicity, sex, age, study quality, sample size, follow-up duration, and adjustment for confounding variables. For the remaining 25.5% of the unanalyzed outcomes, approximately 50% exhibited significant heterogeneity.





Assessment of risk of bias

In our reanalysis, Egger’s test assessed publication bias for 19.5% of the total outcomes, revealing publication bias in 1 of them. For nonreanalyzed outcomes, publication bias was detected in 35.7% of the outcomes via statistical tests or funnel plots. Importantly, other outcomes either showed no significant publication bias or lacked reported bias assessments.





AMSTAR score, GRADE and evidence classification

The median AMSTAR score for all outcomes was 8 (8-11), and further detailed AMSTAR scores specific to each outcome can be found in Supplementary Table S1. For the GRADE, five outcomes (change in BUN (probiotics), change in TC (probiotics), change in LDL-C (probiotics), change in HbA1c (vitamin D), change in LDL-C (CoQ10)) were downgraded to “moderate” quality given the imprecision, and the remaining outcomes were downgraded to “low” or “very low” due to the risk of bias, inconsistency, indirectness, or imprecision. Supplementary Table S2 shows the detailed GRADE classification for each outcome. In terms of evidence, all outcomes were classified as IV or NS (nonsignificant) because of the small sample size.






Discussion




Principal findings and possible explanations

Relevant studies have shown that the incidence of DN is increasing rapidly, and patients with DN accounted for 20% to 40% of type 2 diabetes patients in the community from 2009 to 2012 (54). It is not only the main cause of death in type 1 diabetes patients but also an important factor threatening the health of type 2 diabetes patients (55). At present, it is believed that the disease progression of DN is difficult to reverse, the risk factors involved in the progression of DN cannot be identified, and effective measures cannot be taken to delay the progression of disease to end-stage nephropathy (56). With the increase in the number of DN patients, the disease burden on society and families will also increase (57). In recent years, due to the deepening of basic research, the treatment of DN has taken a new direction. Several scholars have proposed that probiotics may improve and prevent metabolic diseases such as DN through changes in the human intestinal flora (58). In addition, some animal model studies have shown that soy foods can prevent kidney disease and delay the deterioration of kidney function (59, 60). Giving soy foods instead of meat to DN patients can improve kidney function (61, 62). Furthermore, a large number of animal and cellular experiments and clinical studies have shown that active vitamin D has a renoprotective effect and may play a role in inhibiting the inflammatory response, antioxidative stress, and renal fibrosis; inhibiting the renin-angiotensin system; and improving insulin resistance (4, 22, 24, 28).

To date, a large number of researchers worldwide have carried out clinical research and evidence-based medical research on the effects of dietary intervention on DN. This umbrella evaluation evaluated the advantages and disadvantages of existing evidence-based medical methods from systematic reviews and meta-analyses on the effects of dietary intervention on DN, helped us to understand the potential effective dietary management strategies for the prevention and treatment of DN in a more comprehensive way from multiple dimensions, provided a theoretical basis for the development of more clinically effective prevention and control measures for DN, and provided directions for further clinical research.

The present umbrella review extracted 9 unique dietary interventions (including probiotics, a salt restriction diet, vitamin D, soy isoflavone, CoQ10, ketoanalog, dietary polyphenols, antioxidant vitamins, and low-protein diets) and 55 corresponding outcomes in meta-analyses, including 34 significantly associated outcomes and 21 nonsignificantly associated outcomes. All outcomes were classified as IV or NS (nonsignificant), and only five dietary interventions were rated as moderate-quality evidence.

First, compared with conventional care without probiotics, probiotic intervention significantly improved LDL-C (moderate-quality evidence), TC (moderate-quality evidence), BUN (moderate-quality evidence), Scr (low-quality evidence), UACR (low-quality evidence), FBG (low-quality evidence), HbA1c (low-quality evidence), and HDL-C (low-quality evidence) in DN patients. He et al. (63) reported that probiotic supplementation can reduce the abundance of conditioned pathogenic bacteria, increase the abundance of beneficial intestinal bacteria, and reduce the release of enterogenic endotoxin, thus effectively improving blood sugar and blood lipid levels and kidney function. In recent years, an increasing number of studies have shown that inflammatory factors play a certain role in the pathogenesis of DN. Inflammation in DN patients is characterized by increased expression of inflammatory factors, inflammatory chemokines and adhesion factors; inflammatory cell infiltration; and increased CRP levels. Compared with that of classical inflammation, the severity of DN is mild, and DN is associated with a state of microinflammation (64). Firouzi et al. (65) showed that probiotic supplementation could reduce the content of enteric-borne urotoxins (such as para-cresol and indoxyl sulfate) in the blood of DN patients, inhibit the microinflammatory state of the whole body, and delay the deterioration of renal function. Proteinuria and changes in glomerular filtration membrane permeability in DN patients are closely related to vascular endothelial injury caused by oxidative stress, and DN patients often exhibit damage to the antioxidant defense system and an increase in free radical products. Probiotics can exert antioxidant effects through their own antioxidant system, such as regulating signaling pathways to produce various metabolites with antioxidant activity, such as glutathione (66).

Second, we found that compared with the usual or high-salt diet, the salt restriction diet significantly improved SBP (very low-quality evidence), DBP (very low-quality evidence), CrCl (low-quality evidence), and body weight (very low-quality evidence) in DN patients. High salt intake leads to elevated blood pressure caused by high sodium intake, which increases the risk of cardiovascular events in patients with DN. People with DN can lower their blood pressure by restricting salt, and in both type 1 and type 2 diabetes, salt restriction lasting 1 week leads to lower blood pressure (7.11/3.13 mmHg in type 1 diabetes patients and 6.90/2.87 mmHg in type 2 diabetes patients) (67). Current nutritional guidelines for patients with DN consistently recommend limiting dietary sodium intake to < 1.5 to 2.3 g/d (5 g NaCl). However, too low of a sodium intake may reduce insulin sensitivity and is not conducive to glucose homeostasis (68).

Third, the present umbrella review showed that supplementation with soy isoflavones significantly improved BUN (low-quality evidence), FBG (low-quality evidence), total cholesterol (TC) (low-quality evidence), LDL-C (low-quality evidence) and 24-hour urine protein (very low-quality evidence) in DN patients compared with no supplementation with soy isoflavones. Studies have shown that soy foods can regulate blood lipid metabolism in the body to reduce low-density lipoprotein levels and increase high-density lipoprotein levels. Moreover, plant sterols contained in soybeans can competitively inhibit the body’s cholesterol synthesis and reduce serum cholesterol levels (69). To improve kidney function, soy foods can reduce 24-h urinary protein levels. Replacing animal protein with a portion of soy protein in the diet does not adversely affect kidney function but also improves kidney hemodynamic function and reduces the elimination of urinary protein (5). Soybean protein itself is a high-quality protein and has a relatively high raw price. After the digestibility of soybean food is significantly improved, soybean protein and animal protein play the same nutritional role. Moreover, soy protein is lower in fat than animal protein is, which helps people with diabetes control the total calories in their diet and reduce the intake of too much fat, especially saturated fat, due to the consumption of human animal protein (69). More importantly, the unique nutrients of soy protein contribute to the stability of blood sugar and blood lipids in diabetic patients and can also remove excess free radicals in diabetic patients, reduce oxidative stress in the body, reduce the attack of glycoylation end products on the body’s target organs, and prevent complications (70).

However, the effect of a low-protein diet on DN has been controversial. The basic principle of low-protein diet therapy is to reverse glomerular filtration and reduce uremic symptoms. Studies on patients with chronic kidney disease and advanced DN have shown that a low-protein diet can lead to malnutrition, which is a risk factor for mortality from this disease (71). Therefore, the beneficial effect of a low-protein diet on renal prognosis may be offset by the malnutrition of the treatment itself, and more importantly, a low-protein diet may increase the mortality of DN patients (72). The results of this study showed that a low-protein diet was not significantly associated with improved kidney function in patients with DN. Although these results do not completely negate other potential benefits of a low-protein diet for DN patients, the benefits of a low-protein diet on renal function are not significant (71). Urinary tract infection is also one of the common complications in patients with DN (73, 74). However, the existing studies have not reported a significantly effective dietary intervention that can reduce the risk of urinary tract infection in patients with DN. The study by Chen et al. (73) found that vegetarianism was a protective factor for urinary tract infections, but the protective effect was not significant in the subgroup of patients with diabetes. In addition, Zaragoza-Marti et al. (75) believe that the Mediterranean diet can significantly reduce the risk of gestational diabetes and urinary tract infections, but there are no data on the effect of the Mediterranean diet on the development of urinary tract infections in diabetic patients. In addition, this study revealed that nutritional supplements such as CoQ10, dietary polyphenols and ketoanalog can effectively improve the clinical outcomes of DN patients, but the quality of evidence is low.






Limitations and strengths

This study has several limitations. First, we searched only English language databases, and studies in other languages were excluded, which may lead to potential bias. Second, only published data were extracted, and unpublished or forthcoming evidence-based evidence was ignored. Third, this study directly extracted and analyzed existing data from systematic reviews and meta-analyses, and data from those original studies not included in systematic reviews and meta-analyses were not included. Despite these acknowledged limitations, this umbrella review provides the first comprehensive documentation of the existing evidence from prior meta-analyses on the effects of dietary intervention on DN. This umbrella review evaluated the advantages and disadvantages of existing evidence-based medicine through a systematic review and meta-analyses of the effects of dietary intervention on DN. This review helps to elucidate potential dietary management strategies for the prevention and treatment of DN in a more comprehensive way from multiple dimensions, provides a theoretical basis for the development of more clinically effective prevention and control measures for DN, and provides directions for further clinical research. This study employed rigorous systematic methodologies. Two independent authors conducted the literature searches, selected the studies, and extracted the data. When sufficient data were available, we reanalyzed the RR, WMD, or SMD using 95% CIs with random or fixed effects models. We thoroughly assessed heterogeneity and publication bias for the inclusion of each meta-analysis. Additionally, we utilized three established approaches, namely, the AMSTAR, GRADE and evidence classification criteria, to appraise the methodological quality and evidence classification of each risk factor. This comprehensive evaluation enabled us to assess our confidence in the provided estimates.





Conclusion

The present umbrella review extracted 9 unique dietary interventions and 55 corresponding outcomes in meta-analyses, including 34 significantly associated outcomes and 21 nonsignificantly associated outcomes. All outcomes were classified as IV or NS (nonsignificant), and only five dietary interventions were rated as moderate-quality evidence. The results of this umbrella review showed that dietary interventions such as probiotics, a salt restriction diet, vitamin D, soy isoflavone, CoQ10, ketoanalog, dietary polyphenols, antioxidant vitamins, and low-protein diets could effectively delay the development of DN to some extent. The findings in this paper can aid in the development of better prevention and treatment measures to reduce the incidence of DN, delay its progression, and reduce the burden of DN-related disease worldwide.
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Background

Increasing evidence emphasizes the potential relationship between diabetes and OAB (overactive bladder). However, large population epidemiology is still lacking.





Methods

This cross-sectional study included six cycle NHANES surveys, with a total of 23863 participants. Logistic regression models were constructed to analyze the association between diabetes mellitus, diabetes-related markers, and inflammatory biomarkers with OAB. Restricted cubic splines were used to analyze the non-linear associations. Mediating analysis was performed to test the effect of inflammatory biomarkers on the relationship between diabetes-related markers and OAB. Finally, machine learning models were applied to predict the relative importance and construct the best-fit model.





Results

Diabetes mellitus participants’ OAB prevalence increased by 77% compared with non-diabetes. As the quartiles of diabetes-related markers increased, the odds of OAB monotonically increased in three models (all p for trend < 0.001). Glycohemoglobin exhibited a linear association with OAB (p for nonlinearity > 0.05). White blood cells significantly mediated the associations between diabetes-related markers (glycohemoglobin, fasting glucose, and insulin) with OAB, and the proportions were 7.23%, 8.08%, and 17.74%, respectively (all p < 0.0001). Neutrophils partly mediated the correlation between (glycohemoglobin, fasting glucose, and insulin) and OAB at 6.58%, 9.64%, and 17.93%, respectively (all p < 0.0001). Machine learning of the XGBoost model constructs the best fit model, and XGBoost predicts glycohemoglobin is the most important indicator on OAB.





Conclusion

Our research revealed diabetes mellitus and diabetes-related markers were remarkably associated with OAB, and systemic inflammation was an important mediator of this association.
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1 Introduction

Overactive bladder (OAB) is a syndrome characterized by urinary urgency, often accompanied by frequency and nocturia, and may or may not be accompanied by urgent urinary incontinence, which negatively affects the quality of life of patients and their interactions with society (1, 2). There are several theories regarding the pathophysiology of OAB, including the myogenic hypothesis, the urotheliogenic hypothesis, the supraspinal hypothesis, metabolic syndrome, and urinary microbiota involvement, but a full explanation is still missing (3).

As one of the main components of the metabolic syndrome, diabetes mellitus (DM) has profound effects on multiple organ systems, including the kidney and bladder (4, 5). Diabetic cystopathy, also known as diabetic bladder dysfunction (DBD), is a common urological complication whose modern definition encompasses overactive bladder, voiding dysfunction, and urinary retention (6). Some studies estimated that the prevalence rate of diabetic cystopathy was highly varied, ranging from 25% to 90% (7, 8). Several epidemiological studies have shown that OAB is more common in patients with type 2 DM than in the general population, including women with DM treated with insulin and diabetic children aged 11–17 (9–11). Chiu A.F. et al. reported that higher glycosylated hemoglobin levels were independent predictors of OAB symptoms in DM patients, and a study of 36,560 OAB patients in the US found that patients with DM are more persistent and adherent to OAB medications (12, 13). Although it is known that overactive bladder is more common in patients with diabetes, the mechanism by which type 2 diabetes may lead to its development is still unclear (14).

Recent studies have shown that the vicious cycle of chronic inflammation and related stresses is associated with several diabetic complications, including atherosclerosis, nephropathy, and cystopathy, which have been demonstrated in both human and animal experiments (15–17). The pathophysiology of OAB is not well understood; however, chronic systemic inflammation and bladder urothelial inflammation, including some inflammatory proteins and cytokines, may contribute to the onset of OAB (15, 18). An increasing number of studies suggest that DBD and OAB are slow-onset and slow-progressing complications, and among them, inflammatory factors such as IL-1β and NLRP3 play an important role (19, 20). Collectively, based on the importance of systemic inflammation for diabetes mellitus and OAB, respectively, we hypothesized that diabetes mellitus may increase OAB risk by promoting systemic inflammation.

Hence, we conducted a cross-sectional study to investigate the associations of diabetes mellitus with OAB risk based on the National Health and Nutrition Examination Survey (NHANES) 2007–2018. Further, we measured systemic inflammation status from multiple perspectives and explored the mediated effects of systemic inflammation.




2 Methods



2.1 Study population and design

In order to evaluate the health and nutritional status of adults and children in the United States, the National Center for Health Statistics (NCHS) and the Centers for Disease Control and Prevention (CDC) conduct the NHANES research program. Data from the NHANES survey was accessible to the general public via the official website (https://www.cdc.gov/nchs/nhanes/about_nhanes.htm). The NHANES methods were approved by the Centers for Disease Control and Prevention’s National Center for Health Statistics, and informed permission was given by each participant. Cross-sectional data from six consecutive NHANES iterations, conducted between 2007 and 2018, were included into our study. Five iterations in a row with 59842 participants. Initially, 29814 people were removed from the sample as a whole because their OAB assessments were lacking. Next, we removed the individuals (n = 241) who were pregnant from the NHANES questionnaire data. Finally, we eliminated the individuals who lacked information on their poverty income ratio (n = 2252), sedentary time (n = 31), and education level (n = 3651). A total of 23863 individuals were kept for further analysis after these patients were eliminated (Figure 1).




Figure 1 | Flowchart of participants selection.






2.2 Diabetes mellitus and diabetes related markers

(1) Fasting plasma glucose levels between 6.1 and 6.9 mmol/L (2); glycohemoglobin (HbA1c) levels between 6.0% and 6.4%; and (3) self-reported physician diagnosis of prediabetes are the diagnostic criteria for borderline diabetes (prediabetes). Diabetes mellitus is defined as follows (1): plasma glucose level of 7.0 mmol/L while fasting (2); blood glucose level of 11.11 mmol/L after a 2-hour oral glucose tolerance test (3); glycohemoglobin (HbA1c) of 6.5%; and (4) self-reported medical diagnosis of diabetes (21). Serum insulin, fasting glucose, and glycohemoglobin were among the diabetes-related indicators that were derived from NHANES laboratory data.




2.3 Overactive bladder symptoms assessment

We assessed overactive bladder symptoms in the NHANES population using the NHANES Kidney Conditions-Urology questionnaire, which covered urge urine incontinence and nocturia, based on the Overactive Bladder Symptom Score [OABSS], which was presented in Supplementary Table S2 (22). The person who had a total score of ≥3 was determined to have overactive bladder disorder.




2.4 Covariates

Covariates were gathered via questionnaire, laboratory, and demographic data. Using a standardized questionnaire, we have incorporated variables such as age, sex, educational attainment, race, poverty income ratio (PIR), alcohol intake, smoking status, sedentary time, hypertension, congestive heart failure, coronary heart disease, angina, heart attack, and stroke history. The NHANES website provides descriptions of each of these variables. Three categories were used to categorize educational levels: below high school, high school, and above high school. A person was considered a smoker if they had smoked 100 cigarettes or more in their lifetime. Anyone who drank alcohol in excess of 12 times in a single year was considered an alcohol user. Weight in kilograms (kg) divided by height in meters squared (m2) yielded the BMI. Through participant interviews, the amount of time spent in sedentary activity on a normal day was determined. Through laboratory examination, the number of white blood cells, neutrophils, lymphocytes, and platelets in blood samples were determined. We also identified the diabetes controlling status from “DIQ280 - What was your last A1C level and DIQ290 What does Dr say A1C should be”. If DIQ280 higher than DIQ290, we identified diabetes controlling status was not good.




2.5 Statistical analysis

The complex sampling methodology of the NHANES meant that sample weights, clustering, and stratification were all taken into consideration in the data analysis. Using multivariable logistic regression models, we assessed the associations between diabetes, diabetes-related indicators, inflammatory markers, and overactive bladder. Model 1 was not adjusted. Model 2 was adjusted for age, sex, race, education level, poverty income ratio. Model 3 was adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina, heart attack, stroke. Restricted cubic splines were used to analyze the non-linear associations. Linear regression models were performed to analyze the relationship of diabetes related markers and inflammatory biomarkers. The association between inflammatory biomarkers and diabetes-related indicators was examined using linear regression models. For causal mediation studies, we estimated the direct effect (DE), indirect effect (IE), and total effect (TE) using the R package called “mediation” (23). There should be a connection between the mediator and the result and the exposure (24). The OAB prediction model was constructed using Python software (version 3.7). The xgboost package, adaboost package, lightgbm package, decision tree package, and MLP package execute different machine learning algorithms while modeling different machine learning methods. Subgroup analysis was conducted to analyze the prevalence differ socioeconomics including age, gender, races, education and poverty income ratio (PIR). Last, we conducted the sensitivity analysis using multiple interpolation to supplement the socioeconomic status. We have multiple interpolated the socioeconomic status including poverty income ratio (n = 2252), sedentary time (n = 31), and education level (n = 3651) and to validate the research results. All statistical analyses were performed using R software (version 4.0.1). Significance was set at p < 0.05 (two-sided).





3 Results



3.1 Population characteristics

Table 1 summarizes the detailed baseline characteristics of participants by OAB, and Supplementary Table S1 illustrates the participants with survey-weighted descriptive statistics. A total of 23,863 participants were included in our research, with a median age of 49.7 ± 17.6 years. Among them, 4894 participants were OAB participants, and 18969 were non-OAB participants. We found inflammatory markers, including white blood cells, neutrophil count, and platelet count, had different distributions between OAB participants and non-OAB participants. OAB participants had a higher white blood cell count and neutrophil count. Moreover, OAB participants had higher levels of diabetes-related markers, including glycohemoglobin, fasting glucose, and insulin.


Table 1 | Characteristics of participants by OAB: NHANES 2007–2018.






3.2 Association between diabetes mellitus and overactive bladder

Figure 2 reveals the association between diabetes mellitus and OAB. We identified diabetes mellitus as no-diabetes, borderline, and diabetes. Compared with non-diabetes participants, borderline diabetes participants’ OAB prevalence increased by 26% after adjusting for all covariates (Model 3: OR = 1.26; 95% CI: 1.03, 1.53). Diabetes mellitus participants’ OAB prevalence increased 77% compared with non-diabetes participants in the full adjusted model (Model 3: OR = 1.77; 95% CI: 1.62, 1.94).




Figure 2 | Forest plots illustrating the correlation between diabetes mellitus and overactive bladder. Model 1 was not adjusted. Model 2 was adjusted for age, sex, race, education level, poverty income ratio. Model 3 was adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina, heart attack, stroke.






3.3 Association between diabetes related markers and overactive bladder

Table 2 shows the associations of diabetes-related markers with OAB in adults using multiple logistic regression analysis. We found the log10-transformed exposures, including glycohemoglobin, fasting glucose, and insulin, had a significant positive association with OAB. As the quartiles of diabetes-related markers increased, the odds of OAB monotonically increased in three models (all p for trend <0.01). In addition, the cubic spline curves revealed non-linear associations between diabetes-related markers and overactive bladder (Figure 3). Glycohemoglobin exhibited a linear association with OAB (p for nonlinearity >0.05), while associations between fasting glucose, insulin, and OAB were nonlinearity curves (p for nonlinearity < 0.05).


Table 2 | Multiple logistic regression associations of diabetes related markers with overactive bladder in adults.






Figure 3 | The non-linear associations between diabetes related markers and overactive bladder by restricted cubic splines. (A) The association between glycohemoglobin and overactive bladder; (B) The association fasting glucose and overactive bladder; (C) The association insulin and overactive bladder;  Model was adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina, heart attack, stroke.






3.4 Association between inflammatory markers and overactive bladder

As shown in Table 3, we found significant correlations between inflammatory markers (white blood cell count, neutrophil count, lymphocyte count, and platelet count) and OAB. In the multiple linear regression analysis, we found log10-transformed white blood cell count and neutrophil count were significantly associated with OAB (all p < 0.001). As the quartiles of white blood cell count and neutrophil count increased, the odds of OAB monotonically increased in three models (p for trend <0.001). Restricted cubic splines reveal the non-linear associations between inflammatory markers and OAB. Four inflammatory markers exhibited a non-linear association with OAB with a statistical difference (Supplementary Figure S1).


Table 3 | Multiple linear regression associations of inflammatory markers with overactive bladder in adults.






3.5 Association between diabetes related markers and inflammatory markers

From the multiple linear regression analysis, we found a significant correlation between the diabetes-related markers (glycohemoglobin, fasting glucose, and insulin) and inflammatory markers (white blood cells, neutrophils, lymphocytes, and platelets), which is shown in Table 4. Diabetes-related markers all showed a positive association with inflammatory markers, with statistical differences. Among them, we found glycohemoglobin to be the most significantly correlated with inflammatory markers. Glycohemoglobin was linked to higher WBC (β = 4.67; 95% CI: 3.76, 5.58), neutrophil (β = 2.56; 95% CI: 2.11, 3.01), lymphocyte (β = 1.80; 95% CI: 1.11, 2.49), and platelet counts (β = 105.68; 95% CI: 89.89, 121.47).


Table 4 | Multiple linear regression associations of inflammatory markers with diabetes related markers in adults.






3.6 Systemic inflammation mediated the association between diabetes and overactive bladder

Mediation analysis was used to evaluate the mediation effect between the diabetes-related markers and OAB by systemic inflammation (Supplementary Table S3). We found the white blood cells significantly mediated the associations between diabetes-related markers (glycohemoglobin, fasting glucose, and insulin) and OAB, and the proportions were 7.23%, 8.08%, and 17.74%, respectively. (all p < 0.0001). Similarly, neutrophils partly mediated the correlation between glycohemoglobin, fasting glucose, and insulin with OAB at 6.58%, 9.64%, and 17.93%, respectively (all p < 0.0001) (Figure 4). There were no significant mediation effects observed in the associations of diabetes-related markers with overactive bladder by lymphocyte or platelet (all p > 0.05).




Figure 4 | Estimated proportion of the association between diabetes related markers and overactive bladder mediated by inflammatory markers. (A) Glycohemoglobin mediated by White blood cell; (B) Glycohemoglobin mediated by Neutrophils; (C) Fasting glucose mediated by White blood cell; (D) Fasting glucose mediated by Neutrophils; (E) Insulin mediated by White blood cell; (F) Insulin mediated by Neutrophils. Models were adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina, heart attack, stroke. IE, indirect effect; DE, direct effect; Proportion of mediation = IE / (DE + IE); ***P < 0.001.






3.7 Using machine learning predicted diabetes related markers and inflammatory markers with overactive bladder

As shown in Figure 5, we used machine learning in the XGBoost model to determine the relative significance of the diabetes-related markers and inflammatory markers in OAB. We observed that glycohemoglobin was the most important indicator in determining OAB. The forest chart below shows the ROC results of OAB prediction by each machine learning model, including XGBboost, LightGBM, Decision Tree, MLP, and AdaBoost. The error lines in the chart are the ROC mean value and SD. Among all the current models, XGBboost is the best-performing training set; meanwhile, the best validation set is XGBboost as well (sorted by AUC).




Figure 5 | (A) Using XGBoost model predict the relative importance; (B) Forest map shows the ROC results of OAB prediction by each model; (C) Predicted ROC curve of adverse events in the training sets of the five models; (D) Predicted ROC curve of adverse events in the validation sets of the five models.






3.8 Subgroup analysis and sensitivity analysis

As shown in Supplementary Table S7, we conducted subgroup analysis by socioeconomics including age, gender, race, education, ratio of family income to assessed the associations between diabetes and OAB. In the age <60 group, compared with non-diabetes participants, borderline diabetes participants’ OAB prevalence increased by 146%% after adjusting for all covariates and diabetes mellitus participants’ OAB prevalence increased 67%. However, this association was not statistically different in the older population. In addition, it is likely that male, education level more than high school, non-Hispanic Black and middle income (PIR 1.0-3.0) participants had significant significance of diabetes and OAB association. We have multiple interpolated the socioeconomic status including poverty income ratio (n = 2252), sedentary time (n = 31), and education level (n = 3651) and to validate the research results. We found that multiple interpolation results had almost correlated result with delete missing values results. (Supplementary Tables S4–S6). In the sensitivity analysis of model 3, we further adjusted the covariates of diabetes controlling status and they had almost same result with previous result.





4 Discussion

The presence of OAB exerts a substantial impact on the overall well-being and health status of patients, significantly burdening their physical and mental health as well as their overall quality of life. However, the pathophysiology of OAB is complicated, and the underlying processes remain unknown. This research examines the link between OAB, diabetes, and systemic inflammation, as well as the associated variables that influence bladder overactivity.

First, we investigated the association between diabetes and OAB. The prevalence of OAB in the diabetes group increased by 77% compared to those without diabetes, and multiple logistic regression analysis showed positive correlations between diabetes-related markers and overactive bladder in adults. We also identified inflammatory markers that were significantly correlated with OAB and diabetes-related markers by multiple linear regression. Mediation analysis showed that white blood cells strongly influenced the correlations between diabetes-related indicators (glycohemoglobin, fasting glucose, and insulin) and OAB. Through the application of machine learning, we have finally identified glycoproteins as the most significant markers for bladder overactivity.

Previously, several studies have found that diabetes is an independent risk factor for OAB (12, 25). A number of clinical trials have also shown the connection between OAB and diabetes (26–28), which is consistent with the research results in this paper. On the one hand, urotheliogenic has been identified as the main cause of OAB (29, 30), and the changes in the urothelium may lead to increased spontaneous activity of the detrusor muscle, causing symptoms of OAB to worsen (31). On the other hand, Wang et al. reported that diabetic OAB patients noted lower expression of urothelial adhesion and higher urothelial inflammation (17). Moreover, diabetes is associated with increased levels of systemic inflammatory markers, which have major effects (32, 33). However, the above research is mostly single-center and with a small sample. The evidence of large-population epidemiology is still lacking. Through our research, we found white blood cells and neutrophils mediated the correlation between glucose, fasting glucose, and insulin and an overactive bladder. Therefore, our hypothesis based on the analysis results of the association between OAB, diabetes, and systemic inflammation is that diabetes mellitus may increase OAB risk by promoting systemic inflammation.

The primary advantages of this research are as follows: Firstly, we conducted a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES) 2007–2018, which includes an unprecedented amount of data. Second, we suggest for the first time that inflammation mediates the relationship between diabetes and OAB. Finally, glycohemoglobin has been regarded as the most significant marker of diabetes-related indicators and inflammatory markers for bladder overactivity, which contains some clinical value. However, our study still has some limitations. First, the data in this paper is cross-sectional; therefore, we are unable to speculate on cause-and-effect relationships. Second, to a certain extent, they had some overlapping diagnosis between OAB and diabetic cystopathy. And, we could not identify the diabetic cystopathy with OAB. According to AUA guide (34), OAB is not a disease, but a complex syndrome. Our research was mainly focused on the syndrome of OAB diagnosis which based on clinical signs and symptoms. Last, NHANES was a descriptive study and could not prove related risk between diabetes and urinary infections or overactive bladder. We could only provide the association cross-sectional relevance between the OAB and diabetes. Our research illustrated that diabetes associated with OAB was partly attributed by systemic inflammation in terms of public epidemiology. Systemic inflammation is different from urinary system inflammation or urinary system infection. It is true that infection or neurogenic lesions may partly lead to OAB as well which need further study.




5 Conclusion

Our research is the first large-population epidemiology that revealed that diabetes mellitus and diabetes-related markers were remarkably associated with OAB in the American general adult population. We also observed systemic inflammation as an important mediator between diabetes-related markers and OAB, which will guide the direction for further study on OAB function and mechanism.
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Objective

The baseline urinary albumin/creatinine ratio (uACR) has been proven to be significantly associated with the risk of major adverse cardiac events (MACE). However, data on the association between the longitudinal trajectory patterns of uACR, changes in glycated hemoglobin A1c (HbA1c), and the subsequent risk of MACE in patients with diabetes are sparse.





Methods

This is a retrospective cohort study including 601 patients with type 2 diabetes mellitus (T2DM; uACR < 300 mg/g) admitted to The First Hospital of Shanxi Medical University and The Second Hospital of Shanxi Medical University from January 2015 to December 2018. The uACR index was calculated as urinary albumin (in milligrams)/creatinine (in grams), and latent mixed modeling was used to identify the longitudinal trajectory of uACR during the exposure period (2016–2020). The deadline for follow-up was December 31, 2021. The primary outcome was the MACE [a composite outcome of cardiogenic death, hospitalization related to heart failure (HHF), non-fatal acute myocardial infarction, non-fatal stroke, and acute renal injury/dialysis indications]. The Kaplan–Meier survival analysis curve was used to compare the risk of MACE among four groups, while univariate and multivariate Cox proportional hazards models were employed to calculate the hazard ratio (HR) and 95% confidence interval (CI) for MACE risk among different uACR or HbA1c trajectory groups. The predictive performance of the model, both before and after the inclusion of changes in the uACR and HbA1c, was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC).





Results

Four distinct uACR trajectories were identified, namely, the low-stable group (uACR = 5.2–38.3 mg/g, n = 112), the moderate-stable group (uACR = 40.4–78.6 mg/g, n = 229), the high-stable group (uACR = 86.1–153.7 mg/g, n = 178), and the elevated-increasing group (uACR = 54.8–289.4 mg/g, n = 82). In addition, five distinct HbA1c trajectories were also identified: the low-stable group (HbA1c = 5.5%–6.8%, n = 113), the moderate-stable group (HbA1c = 6.0%–7.9%, n = 169), the moderate-decreasing group (HbA1c = 7.4%–6.1%, n = 67), the high-stable group (HbA1c = 7.7%–8.9%, n = 158), and the elevated-increasing group (HbA1c = 8.4%–10.3%, n = 94). Compared with the low-stable uACR group, patients in the high-stable and elevated-increasing uACR groups were more likely to be older, current smokers, and have a longer DM course, higher levels of 2-h plasma glucose (PG), HbA1c, N-terminal pro-B-type natriuretic peptide (NT-proBNP), uACR, and left ventricular mass index (LVMI), while featuring a higher prevalence of hypertension and a lower proportion of β-receptor blocker treatment (p < 0.05). During a median follow-up of 45 months (range, 24–57 months), 118 cases (19.6%) of MACE were identified, including 10 cases (1.7%) of cardiogenic death, 31 cases (5.2%) of HHF, 35 cases (5.8%) of non-fatal acute myocardial infarction (AMI), 18 cases (3.0%) of non-fatal stroke, and 24 cases (4.0%) of acute renal failure/dialysis. The Kaplan–Meier survival curve showed that, compared with that in the low-stable uACR group, the incidence of MACE in the high-stable (HR = 1.337, 95% CI = 1.083–1.652, p = 0.007) and elevated-increasing (HR = 1.648, 95% CI = 1.139–2.387, p = 0.009) uACR groups significantly increased. Similar results were observed for HHF, non-fatal AMI, and acute renal injury/dialysis indications (p < 0.05). The multivariate Cox proportional hazards models indicated that, after adjusting for potential confounders, the HRs for the risk of MACE were 1.145 (p = 0.132), 1.337 (p = 0.007), and 1.648 (p = 0.009) in the moderate-stable, high-stable, and elevated-increasing uACR groups, respectively. In addition, the HRs for the risk of MACE were 1.203 (p = 0.028), 0.872 (p = 0.024), 1.562 (p = 0.033), and 2.218 (p = 0.002) in the moderate-stable, moderate-decreasing, high-stable, and elevated-increasing groups, respectively. The ROC curve showed that, after adding uACR, HbA1c, or both, the AUCs were 0.773, 0.792, and 0.826, which all signified statistically significant improvements (p = 0.021, 0.035, and 0.019, respectively).





Conclusion

A long-term elevated uACR is associated with a significantly increased risk of MACE in patients with diabetes. This study implies that regular monitoring of uACR could be helpful in identifying diabetic patients with a higher risk of MACE.
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1 Introduction

Type 2 diabetes mellitus (T2DM) increases the risk of adverse cardiac events (1). Many studies have demonstrated that the level of proteinuria measured by the urinary albumin/creatinine ratio (uACR) is an important prognostic indicator for major adverse cardiorenovascular events (MACE) and death in patients with T2DM (2). Studies have demonstrated that a uACR reduction of 30% per year is associated with a hazard ratio (HR) of −0.7 for the clinical outcome of chronic kidney disease (CKD) progression (3), and an increased level of the baseline uACR has been proven to be significantly associated with a higher risk of MACE (4). On the other hand, changes in albuminuria are individually used as surrogate endpoints in clinical trials of CKD progression and are strongly associated with treatment effects on clinical endpoints (5, 6). Although the relationship between a change in uACR and the progression of kidney disease is strong and consistent, data on the impact of the longitudinal patterns of uACR on the MACE risk in patients with diabetes are sparse (7). Therefore, we aimed to explore the association between longitudinal uACR trajectories, changes in glycated hemoglobin A1c (HbA1c), and the MACE risk in patients with T2DM.




2 Participants



2.1 Study design

This is a retrospective cohort study including 601 patients with T2DM (uACR < 300 mg/g) admitted to The First Hospital of Shanxi Medical University and The Second Hospital of Shanxi Medical University from January 2015 to December 2018. The uACR index was calculated as the urinary albumin (in milligrams)/creatinine (in grams), and latent mixed modeling was used to identify the trajectory of uACR during the exposure period (2016–2020). This study meets the ethical requirements of medical research and has been approved of The Medical Ethics Committee of First Hospital of Shanxi Medical University and Second Hospital of Shanxi Medical University. As this study is retrospective, informed consent from patients is exempt.




2.2 Inclusion and exclusion criteria

The inclusion criteria were 1) aged 18–85 years, with no restriction on gender; 2) T2DM was diagnosed based on the Chinese Diabetes Diagnosis and Treatment Guidelines (8), including typical symptoms of diabetes (i.e., polydipsia, polyuria, polydipsia, and unexplained weight loss), as well as random blood glucose ≥11.1 mmol/L, fasting blood glucose (FBG) ≥7.0 mmol/L, or 2-h oral glucose tolerance test plasma glucose (PG) ≥11.1 mmol/L, or HbA1c ≥6.5%; 3) with baseline uACR <300 mg/g; 4) with complete uACR data examined during the exposure period (2016–2020); and 5) important baseline clinical characteristics and follow-up data were not missing.

The exclusion criteria were as follows: 1) complicated with acute heart failure at 6 months before admission; 2) complicated with acute myocardial infarction, severe heart failure [New York Heart Association (NYHA) class IV], or stroke at 6 months before admission; 3) complicated with valvular heart disease or congenital heart disease; and 4) complicated with tumors, with the expected survival period being less than 1 year.




2.3 Methods

By searching the electronic case database of our hospital, we recorded the demographic data (age and sex); risk factors and/or comorbidities (current smoker, diabetes history, hypertension, and hyperlipidemia); laboratory test results [FBG, 2-h postprandial PG, HbA1c (examined in 2016–2020), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and low-density lipoprotein cholesterol (LDL-C)]; uACR levels (examined in 2016–2020), cardiac ultrasound results [left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic diameters, and left ventricular mass index (LVMI)]; hypoglycemic drugs [insulin, metformin, and sodium–glucose co-transporter 2 inhibitor (SGLT-2i)]; glucagon-like peptide-1 receptor agonist (GLP-1 RA); and cardiovascular drugs [β-receptor blockers, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs), spironolactone, statins, anti-platelets, and anticoagulants].




2.4 Follow-up and end point events

Based on the patients’ follow-up data, the deadline for follow-up was set for December 31, 2021. The primary outcome was MACE [a composite outcome of cardiogenic death, hospitalization related to heart failure (HHF), non-fatal acute myocardial infarction, non-fatal stroke, and acute renal injury/dialysis indication].

The definition of heart failure was based on the following: 1) symptoms or signs of heart failure (e.g., dyspnea, palpitations, fatigue, and edema, among others); 2) LVEF < 50%; and 3) NT-proBNP > 450 ng/L (<50 years), >900 ng/L (50–75 years), and >1,800 ng/L (>75 years) (9).

The definition of acute myocardial infarction was based on the patients’ clinical symptoms, including chest pain, changes in the electrocardiogram (ECG), and elevated myocardial injury markers (e.g., cardiac troponin I, cTNI) (10).

Stroke includes both hemorrhagic and ischemic strokes, most of which are ischemic. The diagnostic criteria were 1) acute onset; 2) focal neurological deficits manifested as weakness, numbness, or language impairment on one side of the face or limbs, with a few presenting as comprehensive neurological deficits; 3) responsible lesions detected by MRI; and 4) excluding non-vascular causes (11).

The diagnosis of acute kidney injury was based on the 2021 Global Guidelines for Improving the Prognosis of Kidney Disease, and met one of the following three criteria (12): 1) an increase in serum creatinine >26.5 μmol/L (0.3 mg/dL) within 48 h; 2) an increase in serum creatinine to more than 1.5 times the upper limit of the reference range (men, 53–106 μmol/L; women, 44–97 μmol/L), and is known or suspected to occur within 7 days; and 3) urine volume <0.5 mL kg−1 h−1, course >6 hours. Indications for dialysis included 1) hyperkalemia beyond drug control (blood potassium >6.5 mmol/L); 2) water sodium retention, oliguria, anuria, and high edema complicated by heart failure, pulmonary edema, or hypertension; 3) severe metabolic acidosis (pH < 7.2); and 4) complicated by uremic pericarditis, pleurisy, central nervous system symptoms such as trance, drowsiness, coma, and convulsions, and psychiatric symptoms (13).




2.5 Statistical methods

STATA 12.0 was used for data analysis. The mean ± standard deviation was used to represent quantitative data with normal distribution, and one-way ANOVA was applied for inter-group comparisons. The median (Q1–Q3) was used to describe the quantitative data with a non-normal distribution, and Wilcoxon’s rank-sum test was applied for inter-group comparison. Case numbers and percentages represented qualitative data, and the chi-square test was applied for inter-group comparisons. In addition, the Kaplan–Meier survival curve was applied to compare the long-term follow-up MACE risk among the four uACR trajectory groups. The Cox regression model was used to evaluate the association between the uACR trajectory groups and MACE risk and to calculate the HR and 95% CI. The predictive performance of the model, both before and after the inclusion of changes in the uACR and the HbA1c trajectory groups, was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). A bilateral test was performed, with p < 0.05 indicating a statistically significant difference.





3 Results



3.1 uACR and HbA1c trajectories

Four distinct uACR trajectories were identified during 2016–2020: the low-stable group (uACR = 5.2–38.3 mg/g, n = 112), the moderate-stable group (uACR = 40.4–78.6 mg/g, n = 229), the high-stable group (uACR = 86.1–153.7 mg/g, n = 178), and the elevated-increasing group (uACR = 74.8–289.4 mg/g, n = 82) (Figure 1).




Figure 1 | Four distinct urinary albumin/creatinine ratio (uACR) trajectories in patients with diabetes.



In addition, five distinct HbA1c trajectories were also identified: the low-stable group (HbA1c = 5.5%–6.8%, n = 113), the moderate-stable group (HbA1c = 6.0%–7.9%, n = 169), the moderate-decreasing group (HbA1c = 7.4%–6.1%, n = 67), the high-stable group (HbA1c = 7.7%–8.9%, n = 158), and the elevated-increasing group (HbA1c = 8.4%–10.3%, n = 94).




3.2 Baseline characteristics of the four uACR trajectories

Compared with to the low-stable group, patients in the high-stable and elevated-increasing groups were more likely to be older, current smokers, and have had a longer DM course and have higher levels of 2-h PG, HbA1c, NT-proBNP, uACR, and LVMI, while featuring a higher prevalence of hypertension and a lower proportion of β-receptor blocker treatment (p < 0.05) (Table 1).


Table 1 | Baseline characteristics of the four urinary albumin/creatinine ratio (uACR) trajectories.






3.3 MACE risk in the four uACR trajectories

During a median follow-up of 45 months (range, 24–57 months), 118 cases (19.6%) of MACE were identified, including 10 cases (1.7%) of cardiogenic death, 31 cases (5.2%) of HHF, 35 cases (5.8%) of non-fatal AMI, 18 cases (3.0%) of non-fatal stroke, and 24 cases (4.0%) of acute renal failure/dialysis. The Kaplan–Meier survival curve showed that, compared with that in the low-stable group, the incidence of MACE in the high-stable group (HR = 1.337, 95% CI = 1.083–1.652, p = 0.007) and in the elevated-increasing group (HR = 1.648, 95% CI = 1.139–2.387, p = 0.009) significantly increased. Similar results were observed for HHF, non-fatal AMI, and acute renal injury/dialysis indications (p < 0.05), but significant associations were not found between uACR trajectory and risk of cardiogenic death or non-fatal stroke (p > 0.05) (Table 2).


Table 2 | Risk of major adverse cardiac events (MACE) in the four urinary albumin/creatinine ratio (uACR) trajectories.






3.4 Cox proportional hazards models

The multivariate Cox proportional hazards models indicated that age (HR = 1.545, p = 0.019), course of diabetes (HR = 1.436, p = 0.003), HbA1c (HR = 1.548, p = 0.008), NT-proBNP (HR = 1.764, p = 0.006), LVMI (HR = 1.461, p = 0.005), SGLT-2i (HR = 0.832, p = 0.013), the 2019 uACR (HR = 1.239, p = 0.034), and the 2020 uACR (HR = 1.444, p = 0.014) were independently associated with for MACE risk. In addition, after adjusting for potential confounders, the HRs for MACE risk were 1.145 (p = 0.132), 1.337 (p = 0.007), and 1.648 (p = 0.009) in the moderate-stable, high-stable, and elevated-increasing groups, respectively. The HRs for MACE risk were 1.203 (p = 0.028), 0.872 (p = 0.024), 1.562 (p = 0.033), and 2.218 (p = 0.002) in the moderate-stable, moderate-decreasing, high-stable, and elevated-increasing groups, respectively (Table 3).


Table 3 | Multivariate Cox proportional hazards model.






3.5 Predictive value of the uACR and HbA1c trajectories for MACE

A predictive model for MACE was formulated based on the outcomes of the multivariate Cox regression analysis. ROC curve analysis demonstrated a notable enhancement in the accuracy of the model after the addition of uACR, HbA1c, or both trajectories. Specifically, before adding uACR or HbA1c, the AUC was 0.741; however, after adding uACR, HbA1c, or both, the AUCs were 0.773, 0.792, and 0.826, all of which signified statistically significant improvements (p = 0.021, 0.035, and 0.019, respectively) (Figure 2).




Figure 2 | Receiver operating characteristic (ROC) curve of major adverse cardiac event (MACE) risk prediction using the model before and after adding urinary albumin/creatinine ratio (uACR), hemoglobin A1c (HbA1c), or both trajectories.







4 Discussion

After including 601 patients with T2DM admitted at our hospital, we found an important impact of the longitudinal patterns of uACR on the risk of MACE in diabetic patients. Compared with that in the low-stable group, the incidence of MACE in the high-stable group (HR = 1.337, 95% CI = 1.083–1.652, p = 0.007) and in the elevated-increasing group (HR = 1.648, 95% CI = 1.139–2.387, p = 0.009) significantly increased. Similar results were observed for HHF, non-fatal AMI, and acute renal injury/dialysis indications (p < 0.05). Therefore, our study demonstrated that a long-term elevated-increasing uACR is associated with a significantly increased risk of MACE in patients with diabetes, and regular monitoring of uACR could help identify diabetic patients with a higher risk of MACE.

There is a strong relationship between uACR and the prognosis of patients with T2DM. An increase in the uACR level is a strong predictor of cardiovascular events or death. Previous studies have shown that the uACR is an independent marker of systemic vascular endothelial dysfunction (14). In another retrospective study with a total of 66,311 patients with T2DM who had no prior history of cardiovascular disease, a linear positive correlation between uACR and the risk of cardiovascular disease or death was found during follow-up (p < 0.05). Furthermore, compared with the normal proteinuria group, the risks of cardiovascular disease (HR = 1.58) and death (HR = 2.08) in the microalbuminuria group were significantly increased (15). In addition, Wang et al. explored the relationship between uACR and acute ischemic stroke and found that uACR is an independent risk factor for ischemic stroke in participants without diabetes, hypertension, or cardiovascular disease (p < 0.05) (16). In this study, the 2019 uACR and the 2020 uACR were also shown to be important risk factors for MACE risk in patients with T2DM (p < 0.05).

However, only a few studies have evaluated the impact of the uACR trajectory on the prognosis of patients with diabetes. In patients with CKD, Cohen et al. found that the longitudinal trajectory of renal function was associated with cardiovascular events (17). The authors analyzed 2,438 patients with CKD in the CRIC study and found that, for every 8 mL min−1 1.73 m−2 per year increase in the estimated glomerular filtration rate (eGFR), the risk of heart failure increased by 1.28 times and that of MACE increased by 1.11 times. For every 240 mg g−1 year−1 increase in uACR, the risk of heart failure increased by 1.20 times and that of MACE increased by 1.12 times (17). Another recent study explored the patterns of renal function changes in non-CKD populations and their association with cardiovascular outcomes (18), which included a total of 23,760 participants (average age, 58.63 years). During a follow-up period of 20.56 years, 8,328 patients (35.05%) had MACE. The researchers identified four eGFR trajectories and three patterns of CKD progression. Compared with the subjects in class I (high to mild eGFR decline group), those in class II (normal to mild eGFR decline group), class III (normal to moderate eGFR decline group), and class IV (mild to severe eGFR decline group) had adjusted odds ratios (ORs) for MACE risk of 1.11 (95% CI = 1.01–1.23), 1.27 (95% CI = 1.14–1.40), and 1.56 (95% CI = 1.38–1.77), respectively. Similarly, compared to those in the stable group, the HRs of the MACEs in the renal function slow progression group and the rapid progression group were significantly increased [1.75 (95% CI = 1.39–2.21) and 2.19 (95% CI = 1.68–2.86), respectively]. In the CARDIA study, which included 2,647 participants aged 18–30 years, the authors used latent class modeling to determine the trajectories of uACR from the year 10 examination to the year 30 examination. They identified five trajectory groups of uACR, namely, the low-stable group (64.9%), the moderate-stable group (25.8%), the high-stable group (4.4%), the moderate-increasing group (3.3%), and the high-increasing group (1.6%). They found that dynamic changes in the uACR were independently associated with adverse alterations in the cardiac structure and the LV systolic and diastolic functions (19). In another study that enrolled 329 patients with biopsy-proven diabetic kidney disease, the authors used joint latent class mixed models and identified three trajectory groups of uACR: the high-increasing group (77.2%), the high-decreasing group (7.3%), and the low-stable group (15.5%) (7). During the first 2 years of follow-up, it was confirmed that dynamic changes in the uACR were associated with subsequent end-stage kidney disease and all-cause mortality (p < 0.05). Comparable to previous results, our findings also confirmed that, compared with that in the low-stable group, the incidence of MACE in the high-stable group (HR = 1.337, 95% CI = 1.083–1.652, p = 0.007) and the elevated-increasing group (HR = 1.648, 95% CI = 1.139–2.387, p = 0.009) significantly increased. Therefore, the uACR trajectory is also an independent risk factor for MACE and long-term elevated-increasing uACR is associated with a significantly increased risk of MACE in the T2DM population.

Combining uACR with other markers could increase the accuracy of prognostic prediction. eGFR has been proven to be an important indicator of renal function grading; hence, the combination of uACR and eGFR can further increase the predictive accuracy for early renal function impairment. Fung et al. found that in male patients with T2DM, a concomitant uACR of 1–1.4 mg/mmol and an eGFR ≥90 mL min−1 1.73 m−2 were associated with a significantly increased risk of MACE (HR = 1.25). In female patients, a concomitant uACR of 2.5–3.4 mg/mmol and an eGFR ≥90 mL min−1 1.73 m−2 were associated with a markedly increased MACE risk (HR = 1.45) (15). Gerstein et al. reanalyzed the REWIND study that enrolled 9,901 patients with T2DM. During a median follow-up of 5.4 years, renal outcomes developed in 848 (17.1%) patients. The authors developed a novel prognostic indicator that combined uACR and eGFR, called the kidney disease index (KDI). The primary outcome was to evaluate the baseline levels of 1/eGFR and natural log-transformed uACR (calculated as ln[uACR × 100]) and their interactions for MACE, kidney outcomes, and death (20). The study found a nonlinear association between 1/eGFR and all three prognoses and between ln[uACR × 100] and kidney outcomes, but a negative relationship between 1/eGFR and uACR and MACE. Furthermore, there was a linear relationship between the KDI and all three outcomes. The C statistics for the KDI were comparable to those for uACR and eGFR (20).

In addition, adding uACR to the risk model can increase the predictive accuracy of the prognosis. In a recently published retrospective cohort study that enrolled 632 aged diabetic patients, Liu et al. found that, as uACR increased, the risk of new-onset heart failure (NOHF) gradually increased, as shown in the restricted cubic spline curve (ptrend < 0.05). After adding uACR, the ROC curve showed significant improvement in the accuracy of predicting NOHF (AUC = 0.692 and 0.785, respectively, p < 0.001). Furthermore, the addition of uACR was also associated with a significant improvement in the classification of NOHF, with a net weight classification improvement (net reclassification improvement, NRI) of 0.343 (p = 0.006) and an integrated discrimination improvement (IDI) of 0.032 (p = 0.001) (21). Tao et al. added uACR to a heart failure risk model (WATCH-DM) and found that the new model (WATCH-DM + uACR) was associated with a significantly increased predictive ability for MACE risk (AUC = 0.744 vs. 0.802), as well as the NRI (p < 0.05) and IDI (p < 0.05) (22). Therefore, the addition of uACR can improve MACE risk prediction in patients with T2DM and can significantly improve a patient’s prognosis classification.




5 Limitations

The present study has several limitations.

	1) This is a single-center retrospective study with a small sample size. The research results may differ from those of other research centers.

	2) Only patients with uACR ≤ 300 mg/g were included in this study. Those with a higher uACR (>300 mg/g) have been proven to be associated with a significantly increased risk of MACE; therefore, these participants were excluded.

	3) We used latent mixed modeling to identify four distinct trajectories of uACR: the low-stable group, moderate-stable group, high-stable group, and elevated-increasing group. However, in the clinic, some patients (<10%) have shown a reduction in uACR and a decreased risk of MACE. In this study, we did not find this subgroup owing to the small volume (23).

	4) The limited number of uACRs monitored during the exposure period in this study could have led to misjudging the change in trajectories and could have affected the final results. A high-quality prospective study with a large sample size is needed to confirm the findings of this study.

	5) The baseline data for the uACR trajectories were not comparable. In particular, several important variables that have a significant impact on the occurrence of MACE, such as age, DM course, the levels of HbA1c, NT-proBNP, and LVMI, and the patients treated with proportion of β-receptor blockers, did not match among the four groups. We are currently continuing this study, and, as more patients are included, we will use propensity score matching methods to match the baseline data between groups and minimize the impact of baseline data on prognosis.

	6) The median follow-up was only 45 months. A longer follow-up is needed as the occurrence of MACE is expected to accrue over time.






6 Conclusions

A long-term elevated-increasing uACR is associated with a significantly increased risk of MACE in patients with diabetes. The results of this study imply that regular monitoring of uACR could be helpful in identifying diabetic patients with a higher risk of MACE. However, this finding must be interpreted with caution as the evidence supporting the use of a longitudinal uACR trajectory to predict the risk of MACE is limited by the small sample size and the short follow-up course of previous studies. Large, high-quality studies are warranted to confirm the predictive value of the longitudinal uACR trajectories for MACE risk in patients with T2DM, especially in those at high risk for cardiovascular diseases.
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Background

Diabetic retinopathy (DR) is a microvascular complication of diabetes, severely affecting patients’ vision and even leading to blindness. The development of DR is influenced by metabolic disturbance and genetic factors, including gene polymorphisms. The research aimed to uncover the causal relationships between blood metabolites and DR.





Methods

The two-sample mendelian randomization (MR) analysis was employed to estimate the causality of blood metabolites on DR. The genetic variables for exposure were obtained from the genome-wide association study (GWAS) dataset of 486 blood metabolites, while the genetic predictors for outcomes including all-stage DR (All DR), non-proliferative DR (NPDR) and proliferative DR (PDR) were derived from the FinnGen database. The primary analysis employed inverse variance weighted (IVW) method, and supplementary analyses were performed using MR-Egger, weighted median (WM), simple mode and weighted mode methods. Additionally, MR-Egger intercept test, Cochran’s Q test, and leave-one-out analysis were also conducted to guarantee the accuracy and robustness of the results. Subsequently, we replicated the MR analysis using three additional datasets from the FinnGen database and conducted a meta-analysis to determine blood metabolites associated with DR. Finally, reverse MR analysis and metabolic pathway analysis were performed.





Results

The study identified 13 blood metabolites associated with All DR, 9 blood metabolites associated with NPDR and 12 blood metabolites associated with PDR. In summary, a total of 21 blood metabolites were identified as having potential causal relationships with DR. Additionally, we identified 4 metabolic pathways that are related to DR.





Conclusion

The research revealed a number of blood metabolites and metabolic pathways that are causally associated with DR, which holds significant importance for screening and prevention of DR. However, it is noteworthy that these causal relationships should be validated in larger cohorts and experiments.





Keywords: diabetic retinopathy, blood metabolites, Mendelian randomization, metabolic pathway analysis, meta-analysis





Introduction

Diabetic retinopathy (DR) stands as the predominant and severe ocular complication arising from diabetes mellitus. It ranks as the foremost contributor to irreversible yet preventable vision impairment among the working-age adult population (1). With the rapid increase in the incidence of diabetes worldwide, the number of people with DR is expected to rise to about 161 million by 2045 (2). According to the classification of Airlie House, DR is classified into non-proliferative DR (NPDR) and proliferative DR (PDR) (3). NPDR is the early manifestation of DR, characterized primarily by retinal microaneurysms, hemorrhages, hard exudates, and cotton lint spots (3). PDR is the advanced stage of DR, characterized by retinal neovascularization (3). The pathogenesis of DR is complex and includes multiple contributing factors such as oxidative stress, inflammation, angiogenesis, intestinal flora dysregulation, and neurodegeneration (4). Common risk factors for DR include diabetes course (5), elevated blood glucose levels (6), high lipid levels (7), and hypertension (8). Despite the extensive research conducted on DR, the mechanisms and risk factors for DR are still not fully understood.

Presently, an expanding body of research suggests a close correlation between metabolic disturbance and DR (9, 10). Furthermore, metabolomics is a powerful tool that greatly aids in identifying differential metabolites in DR (10, 11). These metabolites are often potential biomarkers and targets for the disease and can be utilized for screening, prediction, and treatment of DR (12, 13). However, exploring causal relationships between metabolites and DR is challenging due to limited sample sizes and confounding factors. Randomized controlled trials (RCTs) are generally recognized as the best evidence for epidemiological studies, but they require substantial resources and time, and ethical concerns may sometimes make them impractical. As an alternative, Mendelian randomization (MR) study explores the causality of exposure on outcome by employing single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) (14). Recently, genome-wide association study (GWAS) has updated metabolic phenotypes that created a genetically determined metabolites (GDMs) atlas (15). There is no MR study investigating the causal relationships between circulating metabolites and DR. Our research aims to identify blood metabolites associated with DR and provide new perspectives on its biological processes.





Materials and methods




Study design

A two-sample MR analysis was utilized to assess the causality of human circulating metabolites on the risk of DR. Summary data for the exposures (486 blood metabolites) and outcomes (DR) were both sourced from GWAS. Ensuring the effectiveness of MR analysis requires satisfying three assumptions: (1) There should be a close connection between genetic variations and exposure; (2) the genetic variations ought to be independent of confounders related to exposure and outcome; (3) the genetic variations ought to be unrelated to outcome and only affect outcome through exposure. To prevent sample duplication, the hereditary information of metabolites and DR was derived from distinct datasets (Figure 1). The report followed the STROBE-MR statement (16).




Figure 1 | Study design, datasets, assumptions of the Mendelian randomization (MR) study of the associations between 486 blood metabolites and diabetic retinopathy. nSNPs, number of single nucleotide polymorphisms; LD, linkage-disequilibrium.







Data sources for blood metabolites

Genetic variations of 486 blood metabolites were obtained through comprehensive genetic scanning and metabolic analyses performed by Shin et al. (15). These publicly available data were derived from the GWAS Catalog (http://metabolomics.helmholtz-muenchen.de/gwas/). The dataset identifies about 2.1 million SNPs from 7,824 adults across two European cohorts (TwinsUK and KORA cohorts). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (17), 309 known metabolites are categorized into 8 pathways: amino acids, lipids, cofactors and vitamins, carbohydrates, nucleotides, energy, peptides and xenobiotics. The chemical properties of another 177 unknown metabolites have yet to been determined (Supplementary Table 1).





Data sources for DR

Based on different stages of DR, outcomes are categorized into all-stage DR (All DR), NPDR, and PDR. The summary dataset of genetic variants related to DR was sourced from FinnGen (https://r5.finngen.fi/). The GWAS IDs for the outcomes are as follows: All DR (finn-b-DM_RETINOPATHY); NPDR (finn-b-DM_BCKGRND_RETINA); PDR (finn-b-DM_RETINA_PROLIF). The characteristics of these summary datasets are presented in Table 1.


Table 1 | Characteristics of the summary datasets for diabetic retinopathy in preliminary MR Analysis.







IVs selection

We established several criteria for screening IVs associated with blood metabolites. Firstly, considering the relatively small number of SNPs associated with metabolites, we lowered the significance threshold to p <1×10–5 to ensure a comprehensive conclusion (18). Secondly, r2 < 0.01 within 500-kilobase (kb) distance was set as linkage-disequilibrium (LD) threshold (19, 20) and the SNP of the moderate frequency palindrome structure was excluded. Thirdly, we employed F-statistic to evaluate the power of IVs. In general, IVs with F-statistic > 10 were used for subsequent MR analysis (19). The above criteria have been applied in previous literatures (18, 20). In addition, we examined these SNPs on the Phenoscanner V2 website (http://www.phenoscanner.medschl.cam.ac.uk/) to evaluate whether they are related to common confounders for DR, such as Type 1 Diabetes (5), Type 2 Diabetes (T2D) (21), Diabetic nephropathy (DN) (22), HbA1c (6), blood pressure (8), fasting glucose (6), fasting insulin (23), Total Cholesterol (7), Body Mass Index (24) and smoking (25). SNPs related to the above confounders (p < 1×10–5) were excluded to satisfy the MR assumptions.





MR analysis and sensitivity analysis

We primarily evaluated the causality of 486 metabolites on DR through random‐effects inverse variance weighted (IVW) method, which yields the most reliable estimation results when all chosen SNPs serve as valid IVs (14). If IVs challenge the MR assumptions, the results could be inaccurate. Consequently, we conducted the subsequent sensitivity analyses to ensure the reliability of our results: (1) Cochran’s Q test was employed to assess heterogeneity among SNPs; (2) MR-Egger intercept was calculated to detect horizontal pleiotropy; (3) Supplementary analyses including MR-Egger, weighted median (WM), weighted mode and simple mode were used to guarantee the stability and dependability of the conclusion; (4) Leave‐one‐out (LOO) method was employed to assess whether the results were greatly influenced by individual SNP. The analyses were carried out utilizing the TwoSampleMR and MRPRESSO packages in the R software (version 4.3.2). The threshold of significance was set as P < 0.05.





Replicated MR analysis and meta‐analysis

To ensure the reliability and stability of the preliminary MR analysis results, we replicated the MR analysis using three additional DR datasets following the above steps. The summary data for DR in the repetitive analysis were also obtained from the FinnGen database, and the GWAS IDs for these datasets are as follows: All DR (finn-b-H7_RETINOPATHYDIAB), NPDR (finn-b-DM_BCKGRND_RETINA_NONPROLIF) and PDR (finn-b-H7_RETINOPATHYDIAB_PROLIF). The characteristics of these summary datasets are presented in Table 2. Through a meta-analysis of two datasets, we conclusively identified blood metabolites causally linked to DR. The Review Manager (version 5.4) was used for the meta-analysis with random-effects IVW model.


Table 2 | Characteristics of the summary datasets for diabetic retinopathy in replicated MR Analysis.







Reverse MR analysis

To further explore the causality of DR on circulating metabolites, we performed a reverse MR analysis using DR as the exposure and the identified metabolites as the outcomes. p < 5×10–8 and r2 < 0.001 within 10,000-kilobase (kb) distance were set as clumping threshold to extract DR-related IVs.





Metabolic pathway analysis

To clarify the roles of circulating metabolites in the pathogenesis of DR, we conducted Metaboanalyst 6.0 (https://www.Metaboanalyst.ca/) for metabolic pathway analysis. Metabolite names were standardized to HMDB IDs based on the HMDB database (https://hmdb.ca/) for metabolic pathway analysis. P < 0.05 was selected as the significance threshold.






Results




IVs selection

The filtered IVs comprised SNPs ranging from 2 to 481 (Glutamate had the fewest IVs, with 2 SNPs, while 2-methoxyacetaminophen sulfate had the most IVs, with 481 SNPs). These SNPs associated with metabolites exhibited F statistics greater than 10 (Supplementary Tables 2, 3, 4), and they were not related to above confounding factors after examination by the Phenoscanner V2 website.





Causal effect of metabolites on DR

To provide a better understanding of metabolic changes, 177 unknown metabolites were excluded, while 309 metabolites with known structure and function were included. We estimated the causality of 309 blood metabolites on DR and found 39 significant associations, corresponding to 26 different metabolites, which included eight metabolites in the amino acid pathways, five in the lipid metabolism pathways, six in the xenobiotic pathways, two in the nucleotide pathways, two in the cofactors and vitamins pathways, one in the energy pathways, two in the peptide pathways (Figure 2). The complete results were provided in Supplementary Table 5. The causality of 486 metabolites on All DR, NPDR and PDR were shown in Supplementary Tables 6, 7, 8 respectively.




Figure 2 | Heat map of causal associations between blood metabolites and diabetic retinopathy (derived from IVW analysis, p < 0.05). IVW, inverse-variance weighted.







Causal effects of metabolites on All DR

Firstly, we identified 14 blood metabolites associated with All DR, as shown in Figure 3A. They are as follows: 1-oleoylglycerophosphoethanolamine [OR = 0.41, 95%CI = (0.26, 0.66), p = 0.0002]; kynurenine [OR = 1.77, 95%CI = (1.09, 2.85), p = 0.0200]; erythritol [OR = 0.69, 95%CI = (0.50, 0.94), p = 0.0206]; 1-stearoylglycerophosphoethanolamine [OR = 0.64, 95%CI = (0.43, 0.94), p = 0.0222]; 10-undecenoate (11:1n1) [OR = 0.80, 95%CI = (0.66, 0.97), p = 0.0235]; inosine [OR = 1.10, 95%CI = (1.01, 1.21), p = 0.0287]; piperine [OR = 1.30, 95%CI = (1.03, 1.64), p = 0.0293]; phenyllactate (PLA) [OR = 0.65, 95%CI = (0.43, 0.97), p = 0.0353]; 1-arachidonoylglycerophosphoinositol [OR = 0.70, 95%CI = (0.50, 0.99), p = 0.0408]; 2-hydroxyhippurate (salicylurate) [OR = 0.95, 95%CI = (0.90, 1.00), p = 0.0462]; pantothenate [OR = 0.72, 95%CI = (0.52, 1.00), p = 0.0484]; pyroglutamine [OR = 0.71, 95%CI = (0.57, 0.89), p = 0.0030]; metoprolol acid metabolite [OR = 0.98, 95%CI = (0.96, 1.00), p = 0.0140]; 4-androsten-3beta,17beta-diol disulfate 2 [OR = 0.65, 95%CI = (0.44, 0.97), p = 0.0364].




Figure 3 | Forest plot of Mendelian randomization (MR) associations of blood metabolites on the risk of diabetic retinopathy (derived from IVW analysis, p < 0.05). (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR). IVW, inverse-variance weighted; 95%CI, 95% confidence interval; OR, odds ratio; nSNPs, number of single nucleotide polymorphisms.







Causal effects of metabolites on NPDR

Secondly, we identified 11 blood metabolites associated with NPDR, as shown in Figure 3B. They are as follows: 4-androsten-3beta,17beta-diol disulfate 2 [OR = 0.23, 95%CI = (0.12, 0.46), p < 0.0001]; 1-arachidonoylglycerophosphoinositol [OR = 0.27, 95%CI = (0.11, 0.64), p = 0.0032]; lysine [OR = 22.07, 95%CI = (2.78, 175.29), p = 0.0034]; acetylphosphate [OR = 19.61, 95%CI = (2.55, 150.97), p = 0.0043]; threonate [OR = 2.09, 95%CI = (1.25, 3.51), p = 0.0052]; kynurenine [OR = 4.11, 95%CI = (1.34, 12.68), p = 0.0138]; tryptophan [OR = 3.24, 95%CI = (1.20, 8.70), p = 0.0198]; 2-methylbutyroylcarnitine [OR = 3.67, 95%CI = (1.20, 11.22), p = 0.0228]; theophylline [OR = 1.77, 95%CI = (1.05, 3.00), p = 0.0321]; salicylate [OR = 1.10, 95%CI = (1.01, 1.20), p = 0.0330]; 3-indoxyl sulfate [OR = 2.88, 95%CI = (1.06, 7.83), p = 0.0382].





Causal effects of metabolites on PDR

Thirdly, we identified 14 blood metabolites associated with PDR, as shown in Figure 3C. They are as follows: pipecolate [OR = 0.55, 95%CI = (0.36, 0.82), p = 0.0037]; 1-oleoylglycerophosphoethanolamine [OR = 0.42, 95%CI = (0.23, 0.77), p = 0.0047]; X-14450–phenylalanylleucine [OR = 1.79, 95%CI = (1.19, 2.68), p = 0.0051]; 2-methylbutyroylcarnitine [OR = 2.77, 95%CI = (1.36, 5.67), p = 0.0052]; 4-androsten-3beta,17beta-diol disulfate 2 [OR = 0.50, 95%CI = (0.31, 0.82), p = 0.0056]; pyroglutamine [OR = 0.68, 95%CI = (0.51, 0.91), p = 0.0091]; acetylphosphate [OR = 5.01, 95%CI = (1.42, 17.65), p = 0.0121]; inosine [OR = 1.15, 95%CI = (1.03, 1.28), p = 0.0122]; 10-undecenoate (11:1n1) [OR = 0.69, 95%CI = (0.51, 0.93), p = 0.0152]; erythritol [OR = 0.60, 95%CI = (0.40, 0.91), p = 0.0158]; 1-arachidonoylglycerophosphoinositol [OR = 0.60, 95%CI = (0.38, 0.93), p = 0.0225]; lysine [OR = 2.94, 95%CI = (1.12, 7.70), p = 0.0282]; guanosine [OR = 0.76, 95%CI = (0.60, 0.97), p = 0.0295]; pro-hydroxy-pro [OR = 1.83, 95%CI = (1.01, 3.31), p = 0.0447].





Sensitive analysis

In sensitivity analysis, the results of complementary analyses including MR-Egger, weighted median (WM), simple mode and weighted mode are shown in Supplementary Table 5. We did not observe horizontal pleiotropy in 39 significant associations by MR-Egger intercepts (Supplementary Table 5). However, we found significant heterogeneity for some metabolites by Cochrane’s Q-test (Supplementary Table 5). They are as follows: All DR: kynurenine (IVW: Q = 72.71, p = 0.0023; MR-Egger: Q = 71.76, p = 0.0021) and 4-androsten-3beta,17beta-diol disulfate 2 (IVW: Q = 39.20, p = 0.0027; MR-Egger: Q = 36.59, p = 0.0038); NPDR: kynurenine (IVW: Q = 61.55, p = 0.0261; MR-Egger: Q = 60.21, p = 0.0268); PDR: 2-methylbutyroylcarnitine (IVW: Q = 40.90 p = 0.0171; MR-Egger: Q = 40.61, p = 0.0131); 4-androsten-3beta,17beta-diol disulfate 2 (IVW: Q = 35.71, p = 0.0077; MR-Egger: Q = 30.03, p = 0.0261); 10-undecenoate (11:1n1) (IVW: Q = 45.60, p = 0.0192; MR-Egger: Q = 41.72, p = 0.0351). To reduce the impact of heterogeneity on the results, we used the random-effects IVW method to calculate causal effects of metabolites mentioned above on DR. Finally, the LOO analysis showed that the overall effect of the metabolites was not strongly influenced by any single SNP (Figure 4). In addition, the scatter plots and funnel plots of MR analyses for the identified blood metabolites are shown in Figures 5, 6.




Figure 4 | Leave-one-out analysis of Mendelian randomization (MR) analyses between blood metabolites and diabetic retinopathy. (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR).






Figure 5 | Scatter plots of Mendelian randomization (MR) analyses between blood metabolites and diabetic retinopathy. (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR).






Figure 6 | Funnel plots of Mendelian randomization (MR) analyses between blood metabolites and diabetic retinopathy. (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR).







Replicated MR analysis and meta‐analysis

To improve the credibility of the results, we performed a replicated MR analysis using three additional GWAS datasets for DR. As anticipated, we discovered the candidate metabolites with trends analogous to those in the preliminary MR analysis, and without horizontal pleiotropy (Supplementary Table 9). In addition, the replicated MR results for 486 metabolites are presented in Supplementary Tables 10, 11, 12 respectively. Through a meta-analysis of the results from two MR analyses, we ultimately identified 34 significant correlations involving 21 blood metabolites, among which 13 were associated with All DR, 9 with NPDR, and 12 with PDR (Figure 7). Pipecolate, 2-hydroxyhippurate (salicylurate), salicylate, threonate and pro-hydroxy-pro were excluded due to non-significant results in the meta-analysis.




Figure 7 | Meta-analysis of the causal associations between blood metabolites and diabetic retinopathy. (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR). 95% CI, 95% confidence interval; OR, odds ratio.







Reverse MR analysis

Among the 21 ultimately identified metabolites, we found a reverse causal relationship between pantothenate and All DR [OR = 1.011, 95%CI = (1.000, 1.023), p = 0.0466], while 1-arachidonoylglycerophosphoinositol exhibited reverse causal effects with both NPDR [OR = 0.992, 95%CI = (0.987, 0.998), p = 0.0109] and PDR [OR = 0.988, 95%CI = (0.979, 0.998), p = 0.0143]. The results of reverse MR analysis and sensitivity analysis are shown in Supplementary Table 13. In addition, the scatter plots, funnel plots and LOO analysis of reverse MR analyses for the identified blood metabolites are shown in Figure 8.




Figure 8 | Scatter plots, funnel plots and leave-one-out (LOO) analysis of reverse Mendelian randomization (MR) analyses between blood metabolites and diabetic retinopathy. (A) all-stage diabetic retinopathy (All DR); (B) non-proliferative diabetic retinopathy (NPDR); (C) proliferative diabetic retinopathy (PDR).







Metabolic pathway analysis

A total of 5 significant associations corresponding to 4 metabolic pathways were identified through metabolic pathway analysis (Figure 9). “Pantothenate and CoA biosynthesis” (p = 0.038) may be involved in the biological process of All DR. “Tryptophan metabolism” (p = 0.004) and “Biotin metabolism” (p = 0.025) may be involved in the biological process of NPDR. “Purine metabolism” (p = 0.011) and “Biotin metabolism” (p = 0.025) may be involved in the biological process of PDR (Supplementary Table 14).




Figure 9 | Metabolic pathways with significant enrichment of blood metabolites.








Discussion

Among the 486 blood metabolites, we ultimately identified 13 metabolites associated with All DR, 9 with NPDR, and 12 with PDR, totaling 21 metabolites associated with DR. These findings have significant implications for future research in identifying novel biomarkers and targets for DR, and may inspire new preventive and therapeutic strategies.

Diabetes is widely recognized as a significant global public health issue, leading to microvascular complications such as DN and DR (21, 26). Approximately one-third of diabetes patients develop DR (21). Recent studies revealed that the pathological processes of DR were associated with long-term metabolic disturbances (9, 27, 28). With the advancement of metabolomics, metabolites and metabolic pathways associated with DR are continuously being discovered (10, 27, 29). These crucial metabolites are often considered potential biomarkers for disease prediction. In human studies, various biofluids such as circulating blood (serum and plasma), aqueous humor, vitreous body are used for the detection of metabolites. Due to its ease of acquisition and low invasiveness, circulating blood is the most commonly used sample. It offers a comprehensive profile of metabolic characteristics that can help identify potential biomarkers of DR.

We found causal relationships between seven metabolites in the amino acid metabolic pathway and DR. Amino acids participate in energy metabolism and regulate various metabolic pathways through gluconeogenesis (30). Previous studies have highlighted the significant role of amino acids in DR (30–32). Our findings specifically focused on the roles of tryptophan (TRP) and kynurenines (KYN) in DR. TRP serves as a primary origin for a range of bioactive molecules, including KYN, 5-hydroxytryptamine, melatonin, niacin and indoles (33). The TRP–KYN pathway constitutes the principal route for TRP conversion in central and peripheral tissues (33). The rate-limiting enzymes responsible for the initial step of the TRP-KYN pathway is indoleamine 2,3-dioxygenases (IDO), which is associated with immune response and inflammation (34). Previous research suggested that patients with DR exhibited higher level of retinal IDO compared to non-diabetic patients, and the loss of IDO has been shown to inhibit capillary degeneration in diabetic mice (35). Praveen et al. (36) observed a significant elevation in KYN levels and IDO mRNA levels in the serum of DR patients compared to healthy individuals, with a more pronounced increase in PDR patients. Meanwhile, multiple metabolomics analyses of plasma/serum from DR patients have also identified TRP and KYN as potential biomarkers of DR (10, 37). Indoxyl sulfate, a uremic toxin produced by bacterial decomposition of intestinal amino acids, especially TRP, has been reported to be involved in the metabolic disorder of DN (38). Our research suggested that 3-indoxyl sulfate may serve as a potential risk factor for DR, although further confirmation is required through experiments. Pyroglutamine, a cyclic derivative of glutamine, has been reported to be associated with kidney function and T2D (39). Our study identified pyroglutamine as a potential protective factor for DR.

Lysine primarily undergoes metabolic processes via the saccharopine pathway, with a smaller fraction proceeding through the pipecolic acid pathway (40). Our research identified lysine as a potential risk factor for DR, while pipecolate (pipecolic acid) is considered a potential protective factor against DR in the preliminary MR analysis. A metabolomic analysis observed increased levels of lysine in the vitreous bodies of DR patients compared to the normal population (41). Vidhya et al. (42) also reported a significant elevation of lysine in the vitreous bodies of PDR patients. In vivo experiment, lysine was found to promote the differentiation of retinal pericytes into adipocytes, exerting a protective effect on PDR (42), which contradicts with our research finding. As for pipecolic acid, Luo et al. (12) found that the serum levels of pipecolic acid were lower compared to those in healthy population, and it exhibited a negative correlation with blood glucose and glycated hemoglobin. Wang et al. (43) also observed reduced pipecolic acid in plasma and vitreous body of PDR patients through metabolomic analysis. In vivo experiment, pipecolic acid was found to alleviate ferroptosis in DR by inhibiting the GPX4-YAP signaling pathway, thereby preventing the progression of DR (12). Although the meta-analysis result for pipecolate was not significant, it may have a certain potential effect in the development of DR.

The disruption of lipid metabolism is generally recognized to is connected with the onset and development of DR (44). The study revealed that the lipid metabolites causally associated with DR are predominantly lyso-phospholipids, including 1-stearylglycerolphosphatethanolamine and 1-arachidonicglycerolphosphateinositol, which are both protective factors for DR. Meanwhile, the reverse MR analysis found that both NPDR and PDR can to some extent impact 1-arachidonicglycerolphosphateinositol. The role of sex hormones in diabetic retinopathy is currently uncertain (45). Gangwar et al. (46) found that diabetic patients with hypogonadism exhibited an longer course of diabetes, higher levels of HbA1c and an increased risk of DR. Our study revealed that 4-androsten-3beta,17beta-diol disulfate, an androgenic steroid, can exert a protective effect against any stage of DR.

Additionally, our research has demonstrated the causal relationships between xenobiotics and DR at the genetic level. Erythritol is recommended as a diabetic-safe sweetener due to its metabolic inertness and antioxidant properties and can displayed an endothelium-protective effect in diabetic rats (47). Metabonomic studies have also identified erythritol as a biomarker of diabetes and impaired fasting glucose (11, 48, 49). Piperine is a natural alkaloid from black pepper, and it has been found to protect the retina of diabetic mice by enhancing PEDF expression and suppressing HIF-1/VEGFA pathway (50).

Limited research has been conducted on the role of cofactors and vitamins in DR. Threonate is a metabolic product of vitamin C. A metabolomic analysis showed that the plasma levels of threonate were lower in NPDR patients compared to healthy people (51). The preliminary MR analysis considered threonine as a protective factor, but its meta-analysis result was not significant. Pantothenate, also known as Vitamin B5 or anti-stress vitamin, serves as the precursor of coenzyme A. Wang et al. (52) conducted a comparison of the serum from 15 PDR patients and 15 NPDR patients by untargeted metabolomics and found significant differences in pantothenate levels. Our study further established the bidirectional genetic association between pantothenate and DR.

Our study also identified several potential correlations between DR and nucleotide compounds, such as inosine and guanine. In the purine metabolic cycle, adenosine is initially phosphorylated to adenine, then rapidly deaminated to inosine, and ultimately undergoes a series of reactions to produce nitric oxide (NO) (53). For diabetic patients, NO plays a crucial role in microvascular dysfunction, directly causing lipid and protein peroxidation, tissue damage, ultimately leading to vascular leakage (54). Xia et al. (55) observed the plasma levels of inosine in DR patients were higher than those in the healthy population and diabetic patients without retinopathy. A metabolomics analysis of retina in diabetic mice indicated that, compared to other purine metabolites, adenosine, guanine, and inosine served as excellent biomarkers for predicting DR with higher sensitivity, specificity, and accuracy (56).

Acetylphosphate, as a marker of mitochondrial activity, is considered a metabolic intermediate in the generation of citric acid cycle precursors and often mediates nonenzymatic acetylation (57). Previous studies revealed that acetylation of proteins such as mitofusin 2 (58), histones (59), and P65 (60) contributes to the development of DR. Our study suggested that acetylphosphate may be a risk factor for DR and the acetylation it mediates holds promise as a potential focus for further investigation.

The study identified several metabolic pathways related to DR, some of which have been demonstrated in previous studies (43, 55, 61). As mentioned above, pantothenate and CoA biosynthesis, tryptophan metabolism and purine metabolism may be involved in the biological mechanism for DR (10, 52, 56, 62). In our study, lysine has been identified as a metabolite associated with DR. Given that lysine is involved in the activation of biotin (63), biotin metabolism may play a role in diabetic retinopathy.

The causal correlations between circulating metabolites and DR were assessed for the first time in this MR study. However, there are several restrictions that should be taken into consideration. Firstly, due to the limitations of MR analysis, complete elimination of residual pleiotropy is not achievable, potentially leading to bias. Secondly, the presence of ethnic bias should be noted as the subjects included in both exposure and outcome were of European descent. Hence, caution is warranted when generalizing the findings to other ethnicities. Thirdly, to explore additional blood metabolites associated with DR, we did not correct for P-value by false discovery rate correction, which can result in false positives in multiple tests. Fourthly, the direct pathological site of DR is the retina, and the blood-retinal barrier exhibits strict selectivity in the filtration of metabolites (64), indicating the need for further research to analyze changes in metabolites in vitreous and aqueous humor. Finally, it is worth noting that some metabolites in the metabolic profile of this study have unclear structures and functions, which limits our ability to interpret the results of the MR study.





Conclusion

In conclusion, our study identified 21 circulating metabolites and 4 metabolic pathways associated with DR. These metabolites have the potential to serve as blood biomarkers for DR screening and prevention, as well as potential candidates for further investigation into underlying mechanisms and drug target selection. Both clinical and basic research are required to confirm the roles of these metabolites in DR.
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Background

Previous observational studies have demonstrated a link between diabetes mellitus(DM) and primary biliary cholangitis (PBC). Nevertheless, since these relationships might be confused, whether there is any causal connection or in which direction it exists is unclear. Our investigation aimed to identify the causal associations between DM and PBC.





Methods

We acquired genome-wide association study (GWAS) datasets for PBC, Type 1 diabetes(T1DM), and Type 2 diabetes(T2DM) from published GWASs. Inverse variance-weighted (IVW), MR-Egger, weighted median (WM), Simple mode, and weighted mode methods were used to determine the causal relationships between DM(T1DM or T2DM) and PBC. Sensitivity analyses were also carried out to ensure the results were robust. To determine the causal relationship between PBC and DM(T1DM or T2DM), we also used reverse MR analysis.





Results

T1DM was associated with a higher risk of PBC (OR 1.1525; 95% CI 1.0612-1.2517; p = 0.0007) in the IVW method, but no evidence of a causal effect T2DM on PBC was found (OR 0.9905; 95% CI 0.8446-1.1616; p = 0.9071) in IVW. Results of the reverse MR analysis suggested genetic susceptibility that PBC was associated with an increased risk of T1DM (IVW: OR 1.1991; 95% CI 1.12-1.2838; p = 1.81E-07), but no evidence of a causal effect PBC on T2DM was found (IVW: OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420).





Conclusion

The current study indicated that T1DM increased the risk of developing PBC and vice versa. There was no proof of a causal connection between PBC probability and T2DM. Our results require confirmation through additional replication in larger populations.





Keywords: primary biliary cholangitis, diabetes mellitus, type 1 diabetes, type 2 diabetes, Mendelian randomization, causality




1 Introduction

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by positive serum antimitochondrial antibodies (AMA), elevated alkaline phosphatase (ALP), and histological manifestations of non-suppurative destructive cholangitis, which ultimately leads to hepatic fibrosis as well as cirrhosis and hepatocellular carcinoma, and the pathogenesis of which is yet to be fully defined (1). Statistically, the prevalence of PBC per 100,000 people in Europe, North America, and the Asia-Pacific region ranges from 1.91 to 40.2 (2). Ursodeoxycholic acid (UDCA) is globally recognized as the most effective therapy for PBC because of its ability to improve patients’ biochemical indexes, alleviate pathological changes, and decrease disease development; however, up to 40% of patients do not respond to UDCA treatment (3). PBC has been linked to several extrahepatic immune-mediated disorders in the past few years, including DM, celiac disease, inflammatory bowel disease, and rheumatoid arthritis (4–7).

The incidence of DM is increasing globally, with the projected global incidence of DM among individuals aged 20-79 years estimated to reach 12.2% (783.2 million individuals) by 2045. This surge poses a significant menace to individuals’ health and well-being (8). Diabetes has a long history of causing liver damage. In a retrospective cohort study in China, T2DM was found to be one of the major metabolic risk factors for PBC, with 11.9% of patients with T2DM having lower albumin, platelet counts and a higher rate of cirrhosis than non-T2DM patients; however, 54.3% of these patients also had hyperlipidemia, hypertension and NAFLD (9), which caused some interference in the study. In the most recent years, several epidemiologic studies have demonstrated a strong correlation between DM and autoimmune liver disease. A case-control study including 36,467 patients with AIH, 39,924 patients with PBC, and 4,877 patients with PSC showed an incidence of T1 DM of 1.7% and T2 DM of 18.1% in patients with PBC (10), suggesting that raising awareness of the risk of diabetes in patients with autoimmune liver disease is necessary. In another study, DM was strongly associated with the progression of PBC. Six non-invasive scores (FIB-4, APRI, RPR, MRS, the Newcastle model, and ALBI scores) were used to predict the severity of hepatic fibrosis, and it was found that non-invasive scores of PBC-DM were significantly higher than those of PBC patients. Effective management of DM could slow down the progression of PBC to cirrhosis, as it was observed that the occurrence of cirrhosis was notably higher in patients (62.2%) when compared to those with PBC alone (42%) (7). It can be seen that improving the treatment and monitoring of DM in patients with PBC is one of the most essential tools to prevent disease progression (11). These findings suggest a robust clinical association between PBC and DM. However, there are limited studies on the potential causal relationship and pathologic mechanisms between DM and PBC, and further studies are needed to confirm this.

The ability of traditional observational studies to infer causality is vulnerable to potential confounding and reverse causation. An epidemiological methodology called MR analysis can support causal inference by employing genetic variations as instrumental variables (IVs) for exposure (12).MR analysis is unique compared to observational studies. It reduces confounding bias and prevents reverse causation because genetic alleles are randomized at conception, and disease cannot change germline genotype (13). As a result, MR has been applied more frequently to evaluate likely causal links between exposures and results (14). MR analysis uses genetic variation as IVs to detect and quantify causal relationships (15). The MR research method, which uses single nucleotide polymorphisms (SNPs) as IVs, is unaffected by environmental factors and can effectively control the interference of confounding factors, similar to randomized trials. The present study implemented a two-sample bidirectional MR study to investigate the potential causality between two main subtypes of DM(T1DM and T2DM) and PBC outcomes using large-scale GWAS data.




2 Materials and methods



2.1 Study design

We performed a two-sample bidirectional MR study using openly published GWAS summarized data. The MR analysis proceeded on the basis of three key assumptions: (1) IV must be strictly related to DM (T1DM and T2DM); (2) IV must be independent of confounders between DM (T1DM and T2DM) and PBC; and (3) IV will not affect PBC due to factors besides DM (T1DM and T2DM). The first analysis investigated causality between DM (T1DM and T2DM) as an exposure and PBC as the outcome, and the second analysis investigated reverse causality, with PBC as the exposure factor and DM (T1DM and T2DM) as the outcome. The flow for this MR study is shown in Figure 1.




Figure 1 | The flow diagram of the MR analysis. (A) DM SNPs were employed as the genetic instruments to examine the causal effect of DM on PBC. (B) PBC SNPs were employed as the genetic instruments to examine the causal effect of PBC upon DM. DM, diabetes mellitus; T1DM, Type 1 diabetes; T2DM, Type 2 diabetes; PBC, primary biliary cholangitis; MR, Mendelian randomization; IVW, inverse variance weighted; WM, weighted median.






2.2 Data sources

All summary statistics were obtained from the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/). The T1DM GWAS included 2,649 cases and 183,674 controls(https://gwas.mrcieu.ac.uk/datasets/finn-b-E4_DM1_STRICT/), while the T2DM GWAS included 29,166 cases and 183,185 controls (https://gwas.mrcieu.ac.uk/datasets/finn-b-E4_DM2_STRICT/). The T1DM and T2DM cohort populations were of European descent. Meanwhile, the PBC GWAS dataset included 2764 cases and 10475 controls of European descent. (https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST003129/ The PBC cases within the cohort fulfilled the criteria the American Association for the Study of Liver Diseases set forth for PBC (16). To mitigate population stratification bias, we exclusively utilized data from studies that specifically focused on populations of European origin. No additional ethical approval was necessary as all the data were publicly available.




2.3 Selection of IVs

In this study, we selected single nucleotide polymorphisms (SNPs) closely associated with T1DM (p < 5 × 10 - 6) and also identified SNPs closely related to T2DM and PBC (p < 5 × 10 - 8). In order to guarantee the independence of SNPs, we eliminated those with linkage disequilibrium (r2 = 0.001, genetic distance = 10,000 kb). To mitigate the influence of IVs on the causal analysis, we incorporated the F statistic, which indicated a value higher than 10. The computation of the F statistic followed the formula: F = (R2/(1 - R2)) * ((n - k - 1)/k) (17); here, n represents the sample size, and R2 denotes the variance explained by the IVs. The calculation of R2 involved the minor allele frequency (MAF) and the value of β, as follows: R2 = 2 * MAF * (1 - MAF) * β2. We then extracted the remaining SNPs from the ending summary statistics. SNPs significantly associated with the outcomes directly were dropped to meet the third assumption. After harmonizing SNPs-exposure and SNPs-outcome, we excluded SNPs in palindromes based on allele frequencies, while to avoid potential pleiotropy, we used PhenoScanner V2 (https://www.phenoscanner.medschl.cam.ac.uk/) to exclude association with outcome confounders or risk factors of IVs (18). To ensure the reliability of MR estimates (19), we conducted MR-pleiotropy residual sum and outlier (MR-PRESSO) analysis before the MR analysis. This analysis helped identify and remove any outliers with potential pleiotropy. The SNPs that remained after these analyses were then used as genetic instruments, following the abovementioned steps.




2.4 Estimation of causal effect

After compiling the list of SNPs based on the selection above criteria, we performed a forward MR analysis to assess the total impact of these selected SNPs for DM on PBC. IVW, simple mode, weighted mode, MR-Egger regression, and WM were all used in this investigation. The validity of the results was verified by comparing the effect estimates obtained from the five different MR methods since the horizontal pleiotropy of the IVs could skew the results. The identical MR methods were then applied to the reverse-direction MR analysis. The odds ratios (OR) for effect estimates were given with 95% confidence intervals (CI).




2.5 Sensitivity analysis

We employed the MR-Egger intercept test to determine whether horizontal pleiotropy was present. The results should be regarded cautiously if the intercept is significant (p < 0.05). The MR-Egger intercept test findings were displayed using scatter plots. Additionally, we looked at heterogeneity using Cochran’s Q statistics, where substantial heterogeneity (p < 0.05) denotes the existence of heterogeneity among the included studies. Funnel plots were used to show the results. We apply the MR-PRESSO outlier test to exclude aberrant SNPs (outliers) and estimate the adjusted values to eliminate horizontal pleiotropy. In the leave-one-out study, forest plots were created to visually assess the robustness of the results after SNPs were removed one at a time.




2.6 Statistical analysis

The MR-PRESSO (version 1.0) and TwoSampleMR (version 0.5.7) packages in R Version 4.3.1 were used for these MR analyses. Moreover, the ggplot2 package produced graphs. The sensitivity and MR analysis results about the exposures and outcomes were deemed statistically significant at p < 0.05 after both sides ran their statistical tests.





3 Results



3.1 The causal effect of T1DM and T2DM on PBC



3.1.1 Effect of T1DM on PBC

This study obtained 11 SNPs associated with T1DM, which met the universally accepted genome-wide significance threshold (p < 5 × 10−6, r2 = 0.001, distance = 10,000 kb) for exposure. One SNP (rs8029659) in T1DM was removed to eliminate smoking-related confounding factors. Another SNP (rs11203203) related to PBC-relevant trait was ruled out. Additionally, our MR analysis demonstrated no instances where we utilized a feeble instrument (all F-statistics>10). Finally, the remaining 9 SNPs were selected as IVs for T1DM (Supplementary Table 1).

A strong association was discovered between T1DM and PBC (IVW: OR 1.1525; 95% CI 1.0612-1.2517; p = 0.0007). WM (WM: OR1.1513; 95% CI 1.0895-1.2166; p = 5.61E-07), Simple mode (Simple mode: OR 1.29; 95% CI 1.1178-1.4888;p = 0.0082)and weighted mode (weighted mode: OR 1.1520; 95% CI 1.0917-1.2157;p = 0.0008) confirmed the T1DM - PBC association. MR-Egger regression showed a consistent direction but insignificant result (OR 1.1554,95%CI 1.0191-1.3099, p = 0.0587) (Supplementary Table 4).

The analysis of T1DM on PBC showed significant heterogeneity according to Cochran’s Q test (Q = 22.292; p = 0.0044). However, the observed heterogeneity in some outcomes did not undermine the MR estimates since the random-effect IVW adopted in this study was able to mitigate the pooled heterogeneity. Furthermore, the p-value was greater than 0.05 in the MR-PRESSO global tests, indicating the absence of horizontal pleiotropy across the analyses. (Supplementary Table 6).




3.1.2 Effect of T2DM on PBC

Based on the abovementioned procedures and criteria, 24 SNPs (p < 5 × 10 - 8)were tentatively chosen as IVs for T2DM. Removing the following SNPs for being palindromic with intermediate allele frequencies: rs11712037, rs6780171, and rs745805, finally, 21 SNPs were screened as genetic instruments for T2DM (Supplementary Table 2). After analysis, we found no evidence of a causal effect T2DM on PBC (IVW: OR 0.9905; 95% CI 0.8446-1.1616; p = 0.9071), WM (WM: OR 0.8710; 95% CI 0.7139-1.0627; p = 0.1736), and MR Egger (MR Egger: OR 0.8415; 95% CI 0.6148-1.1518; p= 0.2948) confirmed these findings (Supplementary Table 4). No considerable or suggestive correlation was found between the genetic predisposition for T2DM and the likelihood of PBC (p> 0.05). Therefore, additional examination of heterogeneity and pleiotropy was unnecessary. However, it is important to note that our statistical power might have been insufficient to identify these tenuous connections.





3.2 The causal effect of PBC on T1DM and T2DM



3.2.1 Effect of PBC on T1DM

Furthermore, we performed an MR analysis in the opposite direction, exploring the relationship between PBC and DM subtypes. Throughout this reverse-direction MR analysis, 24 SNPs were provisionally identified as IVs for PBC, exhibiting significance at the genome-wide threshold (p < 5 × 10-8) and demonstrating independent inheritance (r2 = 0.001 and distance = 10,000 kb) from the pool of 1,124,241 SNPs. Two SNPs(rs12924729 and rs2304256)associated with T1DM-relevant traits were found by inquiring about the PhenoScanner V2 database. Six SNPs (rs10488631 rs485499 rs4938573 rs6679356 rs7774434 rs9591325) were excluded from the analysis because of being outliers identified by MR-PRESSO. In the end, MR analysis accepted 16 SNPs to evaluate the causal impact of PBC on T1DM (Supplementary Table 3). Assessing the appropriateness of genetic instruments for MR analysis, they proved suitable based on F statistics and the proportion of variance explained (R2).

A strong association was discovered between PBC and T1DM (IVW: OR 1.1991; 95% CI 1.12-1.2838; p = 1.8E-07). WM (WM: OR 1.1947; 95% CI 1.0932-1.3056; p = 0.0001) and weighted mode (weighted mode: OR 1.2095; 95% CI 1.0669-1.3711; p= 0.0087) confirmed the PBC and T1DM association (Supplementary Table 5).

Cochran’s Q test revealed no significant heterogeneity in the analysis of total PBC on T1DM(Q = 16.3371; p = 0.3600). No directional pleiotropy bias was found in the MR-Egger test (Intercept = 0.0061; p = 0.8640). No SNP outliers were found in the MR-PRESSO global test (RSSobs = 18.0021; p = 0.4364) and leave-one-out MR analysis (Supplementary Table 6).




3.2.2 Effect of PBC on T2DM

In the same way, we also performed a reverse magnetic resonance investigation between T2DM and PBC. However, the IVW approach did not uncover any reverse causal associations (IVW: OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420). Consistent results were obtained using WM, Simple mode, and Weighted mode. The findings from the reverse MR analysis can be found in Supplementary Table 5. Consequently, there was no need for additional examination of heterogeneity and pleiotropy.

The scatter plots of causal relationships of MR analyses are shown in Figure 2. The causal relationships are shown in Figures 3 and 4. The funnel, leave-one-out and forest plots of MR analyses are shown in Supplementary Figures 1–3.




Figure 2 | Scatter plots of primary MR analysis. (A) T1DM on PBC; (B) T2DM on PBC; (C) PBC on T1DM; (D) PBC on T2DM. T1DM, Type 1 diabetes; T2DM, Type 2 diabetes; PBC, primary biliary cholangitis; MR, Mendelian randomization; IVW, inverse variance weighted; WM, weighted median.






Figure 3 | Causal effects for DM (T1DM OR T2DM) on PBC.






Figure 4 | Causal effects for PBC on DM (T1DM OR T2DM).








4 Discussion

PBC is an autoimmune liver disease of which pathogenesis is still unclear, and the clinical treatment effect is unsatisfactory. PBC’s biochemical insensitivity to UDCA and the development of liver cirrhosis or fibrosis put it at a markedly higher risk of progressing to hepatocellular carcinoma (20). According to the results of a long-term follow-up study on 1,615 patients with early-stage PBC, it was found that 50% of the patients progressed to a more severe stage within five years. This information can help healthcare professionals identify those at higher risk and provide early intervention to prevent or delay disease progression (21). Investigating diseases that may increase the risk of developing PBC cannot be overlooked. This critical step ensures early detection and effective prevention strategies. Megyesi et al. proposed the concept of Hepatic Diabetes (HD) in 1967, pointing out that patients with chronic liver disease are more likely to have impaired glucose tolerance and complicated diabetes (22). Although some researchers have studied the relationship between DM and liver disease, the majority of studies have solely focused on non-alcoholic fatty liver disease (23, 24), and little information is available on the potential relationship between DM and PBC risk. Meanwhile, previous findings in the literature were limited to observing correlations, and reverse causality may not be avoided. By leveraging the power of MR, we delved into the correlation between DM and PBC risk, employing a vast array of genomic data. Our findings present a compelling method for investigating this crucial link. We selected two main DM subtypes (T1DM and T2DM) with sufficient sample size. Investigating the relationship between PBC and T1DM or T2DM susceptibility utilized multiple MR methods and reverse MR. This approach allowed for a comprehensive and in-depth analysis, providing valuable insights into the underlying mechanisms. It is intriguing that genetically determined T1DM has a suggestive correlation with an increased risk of PBC. The pattern of association between genetically determined T2DM and PBC risk was unclear. Reverse MR Analysis found that patients with PBC were causally associated with increased risks of T1DM, but no causal relationship between PBC and T2DM. This groundbreaking MR study has provided the first-ever estimation of the causal relationship between DM and PBC, with sensitivity tests verifying that outliers, horizontal pleiotropy, and reverse causality were not contributing factors.

However, the mechanisms underlying this association are unidentified. As one of the chronic autoimmune diseases, T1DM is characterized by pancreatic beta cell destruction or damage leading to insulin deficiency and hyperglycemia (25). Over the years, the incidence and prevalence of T1DM have been on the rise, bringing a severe economic burden to patients’ families and lives (26–28). T1DM and PBC are both autoimmune diseases involving interactions between genetic and immune factors, raising the possibility that they are somehow related. Observations of diverse autoimmune diseases have been frequently reported (29, 30). Although there is insufficient biochemical or genetic evidence, the idea or hypothesis of shared autoimmunity has been established to recognize these concurrencies. Through analysis, it was predicted that T1DM could be predicted from the high expression of 7 pivot genes: DNA Damage Inducible Transcript 4 (DDIT4), Establishment Of Sister Chromatid Cohesion N-Acetyltransferase 2 (ESCO2), SH3 Domain Binding Protein 4 (SH3BP4), Prickle Planar Cell Polarity Protein 1 (PRICKLE1), EPM2A Interacting Protein 1 (EPM2AIP1), Potassium Inwardly Rectifying Channel Subfamily J Member 15 (KCNJ15) and Glutamate Metabotropic Receptor 8 (GRM8). According to genome enrichment analysis (GSEA), most of these central genes may be primarily in alterations such as inflammation, infection, immunity, cancer, and apoptosis. At the same time, the exposure levels of these central genes have also changed in several other autoimmune diseases, including PBC, suggesting that they may be common targets in these autoimmune diseases (31). T1DM arises from a somatic mutation occurring in the epitope-binding groove of an HLA gene that is predisposed to risk. This mutation directly impacts the binding affinity between the HLA-insulin-peptide-TCR complex, thereby triggering an autoimmune pathway. The specific autoimmune disease that manifests is contingent upon the peptide that binds to the mutated epitope-binding groove of the HLA gene. This connection also gives rise to the potential occurrence of multiple autoimmune diseases stemming from a single at-risk HLA locus. Consequently, T1DM and common autoimmune diseases exhibit a comparable etiology centred around somatic mutations (32). In animal experiments, researchers utilized a traditional method of recombining breeding to exhibit that the NOD background’s existence of the altered Pkhd1del36-67 prompts the emergence of autoimmune biliary disease, showcasing resemblances to human PBC (33). It is interesting to note that reports of T1DM and PBC development in humans have also been made (34). The occurrence rate of primary biliary cholangitis (PBC) is considerably higher in women compared to men; nonetheless, a case report highlights an atypical occurrence of PBC in a male individual diagnosed with T1DM (35). These echo the results of our study - T1DM and PBC may be causally related.

Although some studies have shown that T2DM and PBC often co-exist (10, 36, 37), our investigation utilizing MR analysis did not reveal any substantiating proof for a causal influence of T2DM on PBC, and vice versa. PBC causes minor bile duct epithelial cell injury, cholestasis, and immune regulation disorders but also causes severe metabolic abnormalities, especially glucose metabolism (38). In a retrospective examination of the medical documents on individuals diagnosed with PBC, the study gathered follow-up information by conducting periodic, standardized telephone interviews. The results unveiled a higher prevalence of type 2 diabetes and greater liver ailment severity at the baseline among patients afflicted with gallstone disease (39). A case report demonstrated that hepatic inflammation plays a vital role in the pathogenesis of T2DM by systemic insulin resistance in chronic liver disease, including PBC (40). Abnormal bile acid metabolism is one of the essential mechanisms of PBC. At the same time, bile acids also play an important role in glucose metabolism (41). The reduced expression of farnesoid X receptor (FXR) in PBC patients limits the role of bile acids, leading to insulin resistance and thus affecting glucose metabolism (42). Previous studies have demonstrated that FXR agonists improve hyperglycemia and hyperlipidemia in diabetic mice by inhibiting liver gluconeogenesis and enhancing insulin sensitivity by increasing liver glycogen synthesis and glycogen content (42, 43). Nonetheless, another study showed that FXR antagonists inhibit hepatic gluconeogenesis through the FXR/miR-22-3p/PI3K/AKT/FoxO1 pathway and promote glycogen synthesis via the FXR/miR-22-3p/PI3K/AKT/GSK3β pathway, thereby improving glucose homeostasis in T2DM mice (44).In addition, it is currently believed that defects in Anion exchanger-2 (AE2), a Cl-/HCO3- exchanger located in the apical membrane of the BEC that pumps HCO3- out of the cell, is one of the main contributors to changes in bile acid metabolism. Biliary HCO3 secretion will prevent bile acids from invading bile duct cells and inducing cytotoxicity. Studies have shown that reduced levels of AE2 mRNA and AE2-associated dysfunction in liver and peripheral blood mononuclear cell specimens from patients with PBC may play a role in the pathogenesis of PBC (45, 46). Paradoxically, another study showed that AE2 may be a glucose-sensitive transmembrane transporter and a new potential therapeutic target for diabetic vasculopathy. High glucose can upregulate the expression and activity of AE2, increase [Cl(-)]i in a time- and concentration-dependent manner, induce cell apoptosis, and produce diabetic vasculopathy (47). In addition, it is now widely accepted that the development of oxidative stress, lipotoxicity, and endoplasmic reticulum stress (ERS) that accompanies episodes of T2DM leads to hepatocellular inflammation, injury, hepatic tissue necrosis and severe liver disease, suggesting that T2DM exacerbates the progression of liver disease (48). Nonetheless, our study suggested no causal relationship between T2DM and PBC, but further elucidation of the mechanisms behind the association between these two diseases could contribute to clinical prevention as research progresses.

The primary contribution of our work is that we investigated the bidirectional link between DM and PBC using a 2-sample MR technique for the first time, to the best of our knowledge. This approach is less vulnerable to reverse causality, confounding variables, and exposures that are the same for all groups than observational research. Moreover, the DM subtypes are narrowly defined to remove the impact of coexisting diseases on results. However, the current study has many areas for improvement as well. Firstly, for this Mendelian analysis, we chose the DM subtypes T1DM and T2DM since they had a sample size that was comparatively large enough. Due to the small sample size, gestational diabetes mellitus and diabetes mellitus of specific forms were excluded; these conditions will be further improved after more extensive GWAS data are available. Secondly, despite utilizing the largest GWAS on T1DM, only a limited number of SNPs adhere to genome-wide significance, producing feeble genetic instruments. To address this issue, we relaxed the statistical threshold (p < 5 ×10−6) to incorporate supplementary SNPs. More research will be required to support our conclusions when more significant GWAS numbers become available. Thirdly, our findings cannot be generalized to other racial groups because the GWAS we used comes from individuals with European ancestry. These constraints require Future research to establish causality and look into probable processes. It is necessary to provide relevant clinical recommendations.




5 Conclusions

Our MR analysis indicated a potential causal connection between DM and PBC. However, this association was specific to T1DM and PBC, and no causal link existed between T2DM and PBC. Nevertheless, the available clinical research on the correlation between DM and PBC is currently limited, and comprehensive long-term prospective studies are imperative to enhance our comprehension of the causal relationship between DM and PBC.
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Objective

This meta-analysis includes the systematic literature review and meta-analysis involving clinical trials to assess the efficacy and safety of mesenchymal stem cell (MSC) transplantation for treating T1DM and T2DM.





Methods

We searched PubMed, ScienceDirect, Web of Science, clinicaltrials.gov, and Cochrane Library for “published” research from their inception until November 2023. Two researchers independently reviewed the studies’ inclusion and exclusion criteria. Our meta-analysis included 13 studies on MSC treatment for diabetes.





Results

The MSC-treated group had a significantly lower HbA1c at the last follow-up compared to the baseline (MD: 0.95, 95% CI: 0.33 to 1.57, P-value: 0.003< 0.05), their insulin requirement was significantly lower (MD: 0.19, 95% CI: 0.07 to 0.31, P-value: 0.002< 0.05), the level of FBG with MSC transplantation significantly dropped compared to baseline (MD: 1.78, 95% CI: -1.02 to 4.58, P-value: 0.212), the FPG level of the MSC-treated group was significantly lower (MD: -0.77, 95% CI: -2.36 to 0.81, P-value: 0.339 > 0.05), and the fasting C-peptide level of the MSC-treated group was slightly high (MD: -0.02, 95% CI: -0.07 to 0.02, P-value: 0.231 > 0.05).





Conclusion

The transplantation of MSCs has been found to positively impact both types of diabetes mellitus without signs of apparent adverse effects.
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Introduction

Diabetes is a serious and growing health problem worldwide. This is a persistent health condition that arises when the body is incapable of adequately controlling the levels of glucose in the bloodstream. Each year, the prevalence of diabetes mellitus (DM) rises. According to the International Diabetes Federation, approximately 4.51 million adults across the globe were diagnosed with diabetes in 2017. Furthermore, it is expected that this figure will escalate to 6.93 million by the year 2045 (1). Diabetes holds two types which vary in their mode of action on the human body. Type 1 diabetes mellitus (T1DM) is an immune system infection, and insusceptible assaults result in the obliteration of islet cells, causing islet aggravation related to outright insulin lack. Eventually, several related complications arise, compromising the patient’s quality of life and reducing their durability (2). Around 90% of adults with diabetes are diagnosed with the most common form of diabetes, known as type 2 diabetes mellitus (T2DM) (3). The leading causes of diabetes are the malfunctioning of islet cells and the body’s reduced sensitivity to insulin (4).

High blood glucose levels in individuals with diabetes are managed through a combination of insulin injections, daily oral hypoglycemic agents, exercise, and diet. However, while these conventional therapeutic approaches aim to regulate insulin levels, they may not always be effective in doing so, which can result in severe hypoglycemia and poor adherence to treatment plans. In fact, only 14% of patients with diabetes in the United States meet the glucose, lipid, and blood pressure control and quitting smoking targets. Despite significant research efforts devoted to understanding the disease process and the experimental therapeutics of diabetes, there is still an urgent need for more effective treatments to prevent or manage this severe metabolic illness (5).

Stem cell-based transplantation has emerged as a promising strategy for treating diabetes in recent years, which offers numerous benefits. Mesenchymal stem cells (MSCs), unlike embryonic stem cells, are not associated with tumorigenic risks or ethical concerns when treating diabetes (6–8). Due to its ease of access and wide availability, MSC transplantation is an appealing option (9); it has low immunogenicity, the ability to self-renew, the potential for multi-differentiation, the secretion of various cytokines, and other biological characteristics. It does not raise any ethical issues (10–12).

In the past decade, MSCs have demonstrated their therapeutic potential in both clinical and preclinical studies for the treatment of diabetes. In vitro studies have proposed that MSCs are capable to self-renew and differentiate into multiple mesenchymal lineages such as adipogenic, chondrogenic, and osteogenic lineages. Furthermore, they have low immunogenicity due to the interstitial expression of major histocompatibility complex (MHC) class I and the lack of MHC class II. MSCs release cytokines, growth factors, and exosomes, which modulate insulin sensitivity and β-cell dysfunction. Earlier studies have recommended that MSCs have the capability to exert antidiabetic effects because several dose administrations of MSCs may help improve hyperglycemia in DM patients.

Recent experimental explorations shed light on the complex mechanisms that highlight the therapeutic effects of MSCs in diabetes management. In STZ diabetic animal models, β-cell dysfunction can be caused by pancreatic microenvironment inflammation. The MSC treatment has been validated to facilitate the proliferation of regulatory T cells (Tregs) and incorporate long-term immunomodulatory effects. The secretion of cytokines such as Th2 secreted by Tregs and interleukins (IL-10 and IL-3) pose an anti-inflammatory profile which supports pancreatic β-cell regeneration and function (13).

In addition, MSCs exhibit a response toward inflammatory stimuli by shifting macrophages from pro-inflammatory (M1) to anti-inflammatory (M2) phenotypes. This is promoted by an overexpression of IL-6 and monocyte chemoattractant protein (MCP-1). MSCs may alleviate the systemic inflammation by downregulating the inflammatory cytokines, reducing insulin receptor action, and secreting IL-1Ra in response to IL-1β and tumor necrosis factor (TNF-α) signals from diabetic islets. This reaction reduces the synthesis of NLRP3 production in adipose tissue and liver. These findings highlight MSCs’ complex immunomodulatory characteristics and potential as a therapeutic method for controlling type 2 diabetes and its consequences. Conclusively, MSC infusion has been utilized to treat diabetes by reconstructing β cells, enhancing and regulating glucose homeostasis, alleviation of insulin resistance, and lowering/regulating systemic inflammation (14).

The therapeutic potential of bone marrow-obtained mesenchymal stem cell (BM-MSC) transplantation in treating T2DM was demonstrated for the first time in a 2009 study conducted by Bhansali et al. (15). The study involved 10 T2DM patients and showed that BM-MSC transplantation developed a significant decline in insulin requirement and improvement in stimulated C-peptide levels. Several subsequent studies have been carried out to validate the safety and effectiveness of using BM-MSCs and placenta-derived mesenchymal stem cells (PD-MSCs) in treating T2DM. These investigations have confirmed the initial results reported in (15) and have provided further evidence of the therapeutic potential of BM-MSCs and PD-MSCs for treating T2DM (16).

A recent investigation demonstrated that patients with T2DM experienced a decrease in HbA1c levels and insulin dose at the 6-month mark following treatment and after receiving a combination of intravenous and intrapancreatic endovascular injection of umbilical cord-derived mesenchymal stem cells (UC-MSCs) with a 5-day interval. The study also discovered that 41% of the patients became insulin independent, and 29% had 50% or greater reduction in insulin requirement. Nonetheless, these positive outcomes were not sustained over the next 3–6 months as the HbA1c levels and insulin dose reverted to their pre-treatment levels (17).

Multipotent stem cells have been utilized in the treatment of different autoimmune-related disorders, with some commercial products resulting from these treatments (18–21). However, the assessment of the safety and effectiveness of stem cell transplantation for DM is still in its preliminary stages. Clinical trials involving MSCs and hematopoietic stem cells (HSCs) in patients with T1DM have been carried out since 2000 (22–25), yet there is still no strong consensus on their efficacy. To date, no research has been carried out to compare the effectiveness of mesenchymal stem cells (MSCs) in treating type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) despite earlier studies demonstrating the efficacy of MSCs in both forms of diabetes. Furthermore, a number of studies have been published in the context of systematic reviews and meta-analyses. They examined the impact of stem cell therapy (SCT) on diabetes mellitus, but the absence of several critical components in each of these investigations has led to differences in their findings and has resulted in them being inadequate in providing a complete understanding of previous interventional studies.

Recently, Madani et al. (26) compared the efficacy of MSCs and HSCs in a meta-analysis of SCT research in T1DM. The search period for this paper was limited to September 2019, and it does not include both types of DM to compare the effectiveness of MSCs and HSCs simultaneously. Similarly, a meta-analysis (27) was carried out in 2021 to predict the safety and efficacy profile of transplanting mesenchymal stem cells for treating T1DM and T2DM. However, this meta-analysis did not include four papers (28–31) as their search window was limited to November 2011 to November 2020. The reason of not including these studies is not mentioned. Our meta-analysis includes the recent clinical trial conducted by Zang et al. (32), which involved testing UC-MSCs on Chinese adults with T2DM. The primary objective of this study was to evaluate the distinct therapeutic effects of MSCs on diabetes mellitus and its subtypes as well as their safety to lay a speculative foundation for medical assessment and diabetes therapeutic interventions based on trials conducted until November 2023. The outcomes of this research could have the potential to guide in the design of future clinical trials investigating the effectiveness and safety of MSC therapy for DM as well as provide evidence to support the development of clinical guidelines for the use of this therapy.





Materials and methods




Selection criteria

The studies were included on the following criteria: (1) research studies published in Chinese and English, (2) clinical studies/trials involving MSCs as a treatment regimen for DM, (3) MSCs were used to treat diabetes in all patients, regardless of age, race, sex, extent of disease, or geographical location, and (4) all findings evaluated the treatment of diabetes with MSCs. There were no restrictions on the time, duration, or dosing frequency of MSCs used in the treatments. The treatment’s control group is either placebo or absolutely nothing. The treatment duration and dosage for the placebo was the same as for the MSC group. Finally, these are (5) studies with multiple follow-up timeframes, ranging from 3-, 6-, 9-, and 12 months, which was consistent with the majority of the studies analyzed.

The exclusion criteria were (1) research studies/trials in languages apart from Chinese and English, (2) studies with lacking reports or data (such as conference abstracts with missing sections), and (3) repeat publications. The meta-analysis incorporated the most up-to-date and comprehensive studies available, including clinical trials.





Outcomes

The study looked at two types of outcomes:

	1. Primary outcomes: These were variations in insulin requirements, HbA1c, fasting blood glucose (FBG), fasting plasma glucose (FPG), and C-peptide between baseline and after therapy (3-, 6-, 9-, and 12-month follow-up).

	2. Secondary outcomes: These included hypoglycemia episodes, self-limiting upper respiratory tract infections, mild fever, nausea, and vomiting.







Search strategy

We started searching numerous directories for eligible studies, including the Cochrane Library, PubMed, ScienceDirect, Web of Science, and clinicaltrials.gov while following the PRISMA 2020 guidelines. We used a combination of keywords, including (“mesenchymal stem/stromal cell, Wharton’s jelly cells, progenitor cells, bone marrow” or “MSCs”) AND (“diabetic, diabetes mellitus or hyperglycemia”) AND (“type 1 diabetes” or “type 2 diabetes”) AND “clinical trial” AND (“English language” OR “Chinese language”). In addition to database searches, we also performed manual searches of reference lists and descriptive reviews from applicable trials. The exploration was strictly limited to human subjects, published studies, case studies, and English and Chinese papers, with unpublished studies being excluded. The search period covered all publications up to February 2023. A detailed description of the search strategies is provided in Appendix 1.





Data extraction and basic characteristics

Two researchers (DLG and SS) worked independently on the comprehensive literature screening and data retrieval. In cases where discrepancies arose during the study selection process, a third reviewer was consulted. We collected pertinent information for all selected studies, such as the first author’s name, year of publication, sample size, study type, mean patient age in years, mean dose of injected cells, treatment route, number of patients who achieved insulin-free status, and timeframe of follow-up duration in months (Table 1).


Table 1 | Baseline characteristics of 13 eligible papers included in this meta-analysis.







Statistical data analysis

This analysis utilized mean difference (MD) to compare continuous variables between baseline and follow-ups. MD was selected to compare continuous variables because of its simplicity, interpretability, and compatibility with meta-analysis techniques, representing the absolute difference in means between treatment groups, quantifying the magnitude of difference, and providing a straightforward measure of treatment effect. It is suitable for synthesizing data from diverse studies, focusing on comparing means rather than specific statistical assumptions, and allows to estimate the overall effect. We considered P-value less than 0.05 with a 95% confidence interval (CI) as statistically significant. We calculated the heterogeneity of the included studies using the I2 statistic, where values of 25%, 50%, and 75%–100% indicated low, medium, and high heterogeneity, respectively. In instances where significant heterogeneity was detected (I2 > 50% and P< 0.10), we used a random-effects model for the meta-analysis (39). Otherwise, the data were evaluated using a fixed-effects model.

These models offer the flexibility to incorporate prior information and estimate heterogeneity more comprehensively. The decision to utilize fixed-effects or random-effects models in our meta-analysis was indeed based on the observed level of heterogeneity among the included studies. While fixed-effects models assume a common treatment effect across all studies, random-effects models account for both within-study and between-study variability, acknowledging potential differences in treatment effects. Moreover, in case of higher heterogeneity, the Knapp and Hartung adjustment was also applied. This adjustment accounts for potential variability in effect sizes across studies and provides more conservative estimates of the overall effect. We also performed sensitivity analysis to evaluate the robustness of results by testing the impact of different assumptions, models, or inclusion criteria, thus ensuring the reliability and validity of conclusions amidst varying methodological choices and potential biases. The externally standardized residuals, DFFITS values, Cook’s distances, covariances ratios, leave-one-out Tau estimates, Hat values, and weights were plotted. This allows for a comprehensive assessment of the data and helps identify influential data points or outliers. This approach enhances the transparency and reliability of the analysis. In this meta-analysis, we compared the treatment group, i.e., MSCs and the control group (if any) from the selected studies using Jamovi version 2.3 (40), and the results were depicted by forest plots (Tables 2–6). We assessed the heterogeneity and publication bias using several methods, including the Q Cochrane test and I2 statistic, the Cochrane ROB tool, meta-regression analysis, and examination of publication bias using funnel plots, and Begg’s and Egger’s regression tests.


Table 2 | Forest plots with the corresponding 95% CIs for the mean difference (MD) of HbA1c.




Table 3 | Forest plots with the corresponding 95% CIs for the mean difference (MD) of insulin requirement.




Table 4 | Forest plots with the corresponding 95% CIs for the mean difference (MD) of fasting blood glucose.




Table 5 | Forest plots with the corresponding 95% CIs for the mean difference (MD) of fasting plasma glucose.




Table 6 | Forest plots with the corresponding 95% CIs for the mean difference (MD) of C-peptide.








Results




Search results

The search strategy identified a total of 2,280 articles from selected databases and prior bibliographies. Following a review of the titles and abstracts, 2,231 studies were eliminated due to their lack of relevance in terms of purpose, goal, intervention, and/or measures. After a thorough evaluation of the remaining 49 papers, 34 were excluded. In total, 15 clinical studies met the inclusion criteria and were embraced in the quantitative data analysis for selected outcome measures. However, two of the studies (41, 42) were unable to be retrieved. We searched them on different resources, but they were inaccessible. Finally, 13 clinical studies (15–17, 28–38), consisting of 302 subjects, were embraced in the meta-analysis. The selection process of studies is often presented in a flow diagram, which may be visualized in Figure 1. This diagram provides an overview of the steps taken to identify, screen, and include studies in a systematic review or meta-analysis.




Figure 1 | Flow diagram illustrating the identification, screening, and selection of the eligible clinical trials/studies for meta-analysis.







Attributes of the included studies

Table 1 presents clinical data from studies that were included in the analysis. The studies were published between 2000 and November 2023 and included sample sizes ranging from 1 to 73. The subjects’ mean age varied from 17.6 to 57.6 years, with a predominance of male participants. Some trials, however, were unable to collect enough clinical data, such as body mass, blood pressure, liver and renal function tests, and fasting plasma insulin. The eligible studies involved four types of MSCs: including BM-MSCs, Wharton’s jelly-derived (WJ-MSCs), and UC-MSCs, with various cell doses used. The intervention regimen involved administering MSCs via intravenous or intra-arterial delivery, with doses ranging from (0.88 ± 0.05) × 106 to (1.2 ± 0.3) × 109. The follow-up period varied from =3 to 12 months. Of the eligible studies, six reported data on MSCs and T1DM (28–31, 33–35), and seven reported data on MSCs and T2DM (15–17, 32, 36–38).





Effects of stem cell transplantation on HbA1c (%)

In Table 2, the results of the meta-analysis for the parameter HbA1c with 3-, 6-, 9-, and 12-month follow-up demonstrated that the MSC transplantation is associated with a reduction of HbA1c. It was also found that the MSCs had a significant effect on both T1DM and T2DM with 3-, 6-, 9-, and 12-month follow-up. According to the forest plots, the overall effect size measured with mean difference (MD) revealed comparing the administration of the MSCs and baseline which had shown the significant reduction in HbA1c at 5% level of significance in 3-, 6-, 9-, and 12-month follow-up as (MD: 0.68, 95% CI: 0.29 to 1.07, P-value:< 0.001, I2: 58.33%), (MD: 0.18, 95% CI: 0.07 to 0.29, P-value:< 0.001, I2:84.84%), (MD: 1.89, 95% CI: -0.18 to 3.97, P-value: 0.074 > 0.05, I2: 96.73%), and (MD: 0.95, 95% CI: 0.33 to 1.57, P-value: 0.003< 0.05, I2: 87.33%), respectively.

In RCT, we observed that the HbA1c level was lower in the MSC-treated group than in the control group after 3, 6, and 12 months. Furthermore, the difference was statistically significant with 3-, 6-, and 12-month follow-up as (MD = 0.32, 95% CI 0.03 to 0.61, P-value = 0.028), (MD = 0.17, 95% CI 0.01 to 0.34, P-value = 0.043), and (MD = 0.95, 95% CI 0.12 to 1.77, P-value = 0.025), respectively, while in n-RCT, the HbA1c in the MSC-treated group showed a significant decrease from its baseline level to those at the 3- and 6-month follow-up period (MD = 0.96, 95% CI 0.70 to 1.22, P-value< 0.001), and (MD = 0.19, 95% CI 0.04 to 0.34, P-value = 0.012), respectively. The observed MDs in all included studies (100%) along with 3-, 6-, 9-, and 12-month follow-up were being positive (100%), which had indicated a decrease in HbA1c due to MSC transplantation (Table 7). Moreover, from graph/Figure 2, the pooled mean of HbA1c computed from all studies with 3-, 6-, 9-, and 12-month follow-up showed a reduction in the levels of HbA1c due to stem cell transplantation when compared with the control group.


Table 7 | Summarized results about HbA1c, insulin requirement, fasting blood glucose, fasting plasma glucose, and C-peptide for n-RCT and RCT.






Figure 2 | Pooled mean HbA1c (%) with respective follow-up periods.







Effects of stem cell transplantation on insulin (IU/kg/day) requirement

According to the forest plots presented in Table 3, the overall effect size evaluated using difference (MD) demonstrated a substantial decrease in insulin requirement between the administration of MSCs and the control group at 5% level of significance in 3-, 6-, 9-, and 12-month follow-up as (MD: 0.18, 95% CI: 0.07 to 0.29, P-value:< 0.001, I2: 84.84%), (MD: 0.17, 95% CI: -0.04 to 0.38, P-value: 0.112 > 0.05, I2: 88.49%), (MD: 0.24, 95% CI: 0.18 to 0.30, P-value:< 0.001, I2: 39.81%), and (MD: 0.19, 95% CI: 0.07 to 0.31, P-value: 0.002< 0.05, I2: 86.85%), respectively.

In RCT, it was shown that the insulin requirement level was lower in the MSC-treated group than in the control group after 3, 6, 9, and 12 months of follow-up. Moreover, the difference was statistically significant with 3-, 6-, 9-, and 12-month follow-ups as (MD = 0.17, 95% CI 0.01 to 0.34, P-value = 0.043), (MD = 0.22, 95% CI 0.10 to 0.35, P-value< 0.001), (MD = 0.24, 95% CI 0.18 to 0.30, P-value< 0.001), and (MD = 0.19, 95% CI 0.02 to 0.35, P-value = 0.021), respectively, while in n-RCT the insulin requirement in the MSC-treated group showed a significant decrease from its baseline level to those at the 3-, 6-, and 12-month follow-up period (MD = 0.19, 95% CI 0.04 to 0.34, P-value = 0.012) and (MD = 0.21, 95% CI 0.12 to 0.30, P-value< 0.001), respectively. However, the difference was not statistically significant at 6 months (MD = 0.08, 95% CI -0.46 to 0.61, P-value = 0.282) (Table 7). The observed MDs in all included studies (100%) along with 3-, 6-, 9-, and 12-month follow-up were being positive (100%), which had indicated a reduction in insulin due to MSCs therapy. Furthermore, from graph/Figure 3, the pooled mean of insulin requirement computed from all studies with 3-, 6-, 9-, and 12-month follow-up showed a reduction in the levels of insulin requirement due to stem cell transplantation.




Figure 3 | Pooled mean insulin requirement (IU/kg/day) with respective follow-up periods.







Effects of stem cell transplantation on FBG (mmol/L)

From Table 4, according to the forest plots, the overall effect size measured with difference (MD) showed that when the MSCs were given to the control group, the fasting blood glucose level dropped by a fair number at 5% level of significance in 6-month follow-up as (MD: 1.78, 95% CI: -1.02 to 4.58, P-value: 0.212, I2: 62.25%). The observed MDs in all included studies (100%) along with 6-month follow-up were being positive (100%), which indicated a decline in fasting blood glucose due to MSC transplantation. In addition, from graph/Figure 4, the pooled mean of FBG was computed from all studies with 3-month follow-up.




Figure 4 | Pooled mean fasting blood glucose (mmol/L) with respective follow-up periods.







Effects of stem cell transplantation on FPG (mmol/L)

In Table 5, the total effect size evaluated by mean difference (MD) revealed by comparing the MSC administration and the baseline group showed a considerably lower fasting plasma glucose, as represented by the forest plots at 5% level of significance in 3-, 6-, 9-, and 12-month follow-up as (MD: 0.08, 95% CI: -0.46 to 0.62, P-value: 0.764 > 0.05, I2: 0%), (MD: 0.47, 95% CI: -0.25 to 1.20, P-value: 0.198 > 0.05, I2: 0%), (MD: 0.02, 95% CI: -0.52 to 0.57, P-value: 0.061 > 0.05, I2: 0%), and (MD: 0.30, 95% CI: -0.42 to 1.02, P-value: 0.417 > 0.05, I2: 0%).

In RCT, we observed that the FPG level was lower in the MSC-treated group than in the control group after 3, 6, and 9 months, but the FPG level was higher in the MSC-treated group than in the control group after a 12-month follow-up period. Moreover, the difference was not statistically significant with 3-, 6-, 9-, and 12-month follow-up as (MD = 0.74, 95% CI -0.54 to 2.02, P-value = 0.258), (MD = 0.20, 95% CI -0.34 to 0.73, P-value = 0.471), (MD = 0.02, 95% CI -0.52 to 0.57, P-value< = 0.932), and (MD = -1.11, 95% CI -3.10 to 0.88, P-value = 0.273), respectively, while in n-RCT the FPG in the MSC-treated group showed a significant decrease from its baseline level to that at the 6-month follow-up period (MD = 0.93, 95% CI 0.14 to 1.72, P-value = 0.021) (Table 7).

The observed mean differences (MDs) in all included studies along with 3-, 6-, and 12-month follow-up were positive, which had indicated a decrease in fasting plasma glucose due to stem cell therapy, while the observed mean differences (MDs) in one study with 9-month follow-up were negative, which had indicated an increase in fasting plasma glucose due to stem cell therapy. The overall effect size for 3, 6, and 12 months was non-significant at P-value > 0.05. The results are shown in Table 5. The pooled mean of fasting plasma glucose computed from all studies with 3-, 6-, and 9-month follow-up showed a decrease in the levels of FPG due to stem cell transplantation, but at 12-month follow-up the levels of fasting plasma glucose showed an increase (see the graph/Figure 5).




Figure 5 | Pooled mean fasting plasma glucose (mmol/L) with respective follow-up periods.







Effects of stem cell transplantation on C-peptide (ng/mL)

According to the forest plots shown in Table 6, the overall effect size evaluated with difference (MD) was disclosed when comparing the administration of the MSCs and the control group, which had shown a considerably reduced level of C-peptide at 5% level of significance in 3-, 6-, and 12-month follow-up as (MD: -0.12, 95% CI: -0.34 to 0.11, P-value: 0.0.300 > 0.05, I2: 48.39%), (MD: -0.03, 95% CI: -0.52 to 0.45, P-value: 0.895 > 0.05, I2: 90.66%), and (MD: -0.02, 95% CI: -0.07 to 0.02, P-value: 0.231 > 0.05, I2: 34.51%), respectively.

In RCT, we found that the level of C-peptide was increased in the MSC-treated group than in the control group after 3 and 12 months, but the C-peptide level was lower in the MSC-treated group than in the control group after a 6-month follow-up period. The difference was statistically non-significant with 3-, 6-, 9-, and 12-month follow-up as (MD = -1.11, 95% CI -3.10 to 0.88, P-value = 0.273), (MD = -0.05, 95% CI -0.33 to 0.22, P-value = 0.712), (MD = 0.06, 95% CI -0.22 to 0.33, P-value = 0.690), and (MD = -0.02, 95% CI -0.06 to 0.02, P-value = 0.250), respectively, while in n-RCT the C-peptide in the MSC-treated group showed an increase from its baseline level and at 3- and 6-month follow-up period (MD = -0.27, 95% CI -0.40 to -0.14, P-value< 0.001 and (MD = -0.01, 95% CI: -1.12 to 1.11, P-value = 0.991) (Table 7).

The observed mean differences (MDs) in all included studies along with 3-, 6-, and 12-month follow-up were negative (52.63%), which had indicated a minor increase in C-peptide due to MSC transplantation, while 47.37% showed a positive response. From the graph/Figure 6, the pattern of the levels of C-peptide was random as observed at 3-, 6-, and 12-month follow-up. As all results of the comparison between stem cell therapy and control group for C-peptide were non-significant, there is a need, therefore, to conduct more studies with a long follow-up.




Figure 6 | Pooled mean C-peptide (ng/mL) with respective follow-up periods.







Heterogeneity

Cochran’s Q-test and I2 statistic were applied to measure the heterogeneity of the true outcome of the following parameters: HbA1c, insulin requirement, fasting blood glucose, fasting plasma glucose, and C-peptide with 3-, 6-, 9-, and 12-month follow-ups. According to the Q-test, the true outcomes had appeared to be heterogeneous significantly for HbA1c with 6-, 9-, and 12-month follow-up as (Q-test: 12.547, P-value: 0.049< 0.05, tau-square: 0.1184, I2: 58.33%), (Q-test: 58.590, P-value< 0.001, tau-square: 0.0233, I2: 84.84%), (Q-test: 41.073, P-value< 0.001, tau-square: 3.2342, I2: 96.73%), and (Q-test: 25.908, P-value< 0.001, tau-square: 0.3551, I2: 87.33%), respectively (shown in Table 2). Similar results for other parameters can be found in Tables 2–6. The random-effect model was implemented for significance of heterogeneous true outcomes.





Publication bias assessment

The publication bias is estimated through funnel plots and Begg’s and Egger’s regression tests for each forest plot of the following parameters: HbA1c, insulin, fasting blood glucose, fasting plasma glucose, and C-peptide with 3-, 6-, 9-, and 12-month follow-up. The empirical estimation of publication bias was indicated as non-significant bias at 5% level of significance for HbA1c in all 3-, 6-, 9-, and 12-month follow-up as (Begg and Mazumdar test, P-value: 0.733 > 0.05 and Egger’s regression P-value: 0.568 > 0.05), (Begg and Mazumdar test, P-value: 0.156 > 0.05 and Egger’s regression P-value: 0.091 > 0.05), (Begg and Mazumdar test, P-value: 0.333 > 0.05 and Egger’s regression P-value: 0.007< 0.05), and (Begg and Mazumdar test, P-value: 0.233 > 0.05 and Egger’s regression P-value: 0.001< 0.05), respectively. Similar results for publication bias about the parameters insulin requirement, FPG, FBG, and C-peptide can be found in Tables 3–6.





Sensitivity analysis

In the present meta-analysis, sensitivity analysis was conducted to evaluate the impact of key methodological decisions on the synthesized effect estimates and associated uncertainty measures. Specifically, we explored the effects of alternative statistical models (e.g., fixed-effects vs. random-effects models), inclusion/exclusion of studies based on specific criteria (e.g., sample size, study quality), and variations in data synthesis techniques. Through this rigorous examination, we aimed to ascertain the robustness of our findings against potential sources of bias and heterogeneity inherent in meta-analytic research. By identifying influential studies, assessing the sensitivity of results to methodological assumptions, and exploring the consistency of conclusions across different analytical approaches, the sensitivity analysis provides valuable insights into the reliability and generalizability of our study findings.

Multiple methods including the externally standardized residuals, DFFITS values, Cook’s distances, covariances ratios, leave-one-out tau estimates, Hat values, and weights were applied and examined in instances that their residuals of fasting plasma glucose fall out of the control limits (Figure 7) due to a previously conducted study (37). After excluding this study, a similar approach was iteratively repeated and excluded (15) to minimize the potential risk of bias. The revised results for FPG are shown in Table 5. The plots of these sensitivity analyses for HbA1c, insulin requirement, FPG, FBG, and C-peptide are presented in Figures 7–11.




Figure 7 | Plots of Sensitivity Analysis for HbA1c (%).






Figure 8 | Plots of Sensitivity Analysis Tests for Insulin requirement (IU/kg/day).






Figure 9 | Plots of Sensitivity Analysis Tests for FPG (mmol/L).






Figure 10 | Plots of Sensitivity Analysis Tests for FBG (mmol/L).






Figure 11 | Plots of Sensitivity Analysis Tests for C-peptide (ng/mL).







MSC transplantation safety and adverse events

To clearly differentiate between potential complications caused by the intervention, the fundamental complications of T1DM and insulin therapy must be identified. Compliance to Good Clinical Practice (GCP) guidelines, including randomization and the inclusion of a control group, is recommended to facilitate this. However, the majority of clinical trials investigating stem cell transplantation for the treatment of T1DM have been of poor quality, with many lacking a control group or randomization to allow for comparisons of outcomes and adverse events. Consequently, there have been conflicting judgments regarding the side effects of stem cell therapy in these trials. Hypoglycemia was excluded from consideration as an adverse event, as it can happen due to insulin therapy and autoimmune disorders of the thyroid in individuals with T1DM without any intervention.

Minor hypoglycemic episodes were mentioned in three studies (15, 37, 38), but these episodes were not classified as severe. Nausea and vomiting were mentioned in three studies, with (38) not specifying the number of patients affected, while (15) and (30) reported one patient each. Bhansali et al. (15) also reported hemorrhage at the injection puncture site in one patient, a drop in hemoglobin level in two patients, and a self-limiting upper respiratory tract infection in one patient. Mild fever was reported in three out of 22 T2DM patients by Liu et al. (17). There were no serious or persistent adverse reactions or legacy effects observed during the follow-up timespan, indicating that MSCs are reasonably safe in the treatment of DM.






Discussion

This meta-analysis provides quick insights about MSC transplantation along with their statistical significance (P-value< 0.05) and was associated with improvements in both T1DM and T2DM. The absence of observed adverse effects in the patients suggests that MSC transplantation may be a safe and promising approach to improve glucose metabolism in individuals with T1DM and T2DM. The data confirms the use of MSC transplantation as an effectual diabetes treatment. The significant reduction in fasting blood glucose, plasma blood glucose, and HbA1c levels at baseline suggests that MSC therapy can improve blood glucose regulation in diabetic patients. The use of FBG and PBG as diabetes diagnostic criteria, as well as HbA1c levels as a measure of diabetes control, supports the conclusion that MSC transplantation has a therapeutic effect on blood glucose regulation in DM patients.

The meta-analysis results indicate a slight but non-significant rise in fasting C-peptide levels in the group that received MSC transplantation (P-value > 0.05). The escalation in F-CP level decreased as the duration of follow-up increased. This increase in F-CP indicates an improvement in insulin secretion by the pancreatic islet cells, implying that MSC transplantation has a beneficial effect on insulin secretion. The elevated insulin secretion could be due to either a rise in the number of insulin-secreting cells or an improved performance in the function of the remaining β cells. These findings suggest that MSC transplantation has potential as a treatment for diabetes, but further research with longer follow-up periods is necessary to fully comprehend the underlying mechanisms and ensure its long-term safety and effectiveness.

Our findings revealed a substantial reduction in insulin demands following MSC therapy in patients with diabetes, which was consistent across all included studies with follow-up periods of 3, 6, 9, and 12 months. This decrease in insulin requirements was found to be statistically significant (P-value< 0.05). The observed efficacy of MSC therapy in reducing insulin requirements was retained at the end of most follow-up intervals. However, further studies with prolonged follow-up time points and complete data must confirm these findings. The cessation of insulin treatment is a crucial component in enhancing the overall quality of life of individuals with diabetes. In some studies, it was regarded as the primary outcome. A total of three patients in (34), three in (36), two in (28), six in (37), and five in (32) experienced an insulin-free period.

The findings of the meta-analysis indicate a potential improvement in the efficacy of stem cell transplantation for diabetes treatment from 3 to 12 months after transplantation. However, some of the trends were not statistically significant. The results suggest that the MSC transplantation group experienced improvement from 3-, 6-, 9-, and 12-month follow-up periods. However, to ensure the safety and efficacy profiles of SCT for diabetes treatment, long-term follow-up studies are necessary. Thus, there is a need to conduct more studies with extended follow-up periods to obtain a better understanding of the effects of SCT on diabetes. Moreover, further studies that will emphasize on clarifying the different follow-up phases or describing the primary outcomes related to the impact of SCT on diabetes morbidity and mortality are recommended.





Conclusion

According to the analysis, MSCs have been demonstrated as a secure option for stem cell transplantation in diabetes mellitus. The short-term findings indicated that MSCs could help enhance blood glucose regulation; however, additional research is necessary to assess their long-term impacts. Across the 13 studies, no significant adverse reactions or occurrences of hypoglycemic events were detected in subjects who received MSCs treatment. This suggests that MSC transplantation can be regarded as a safe treatment option for DM.




Strengths and limitations

The performance of MSC transplantation in the treatment of diabetes mellitus was analyzed in this systematic review and meta-analysis. The study searched numerous databases and trial registries from their establishment until February 2023. The study utilized a consensus approach to settle disputes, neutral supervision for data extraction, inclusion and exclusion criteria, top-notch impact illustration of original research studies findings on meta-analysis results, and confidence intervals for cumulative facts. Regardless of these advantages, the study had flaws, such as insufficient well-designed clinical trials with control groups, randomization, and blinding. Most of the SCT clinical trials in DM were single arm, leading to inconclusive results. Therefore, standardization and uniformity in the production, culture, and administration of MSCs in clinical trials are needed. In addition, the long-term safety and efficacy of MSC-based therapies have yet to be established, and larger sample sizes, more extended follow-up periods, and well-designed randomized controlled trials are needed to provide a comprehensive assessment of the benefits and risks of these treatments. It is also suggested that expressing daily insulin levels in units/kg/day instead of just customary units can provide a more standardized and comparable measure of the treatment’s effect. Furthermore, presenting findings in numeric form, rather than just figures, can increase the clarity and comprehensiveness of the results. In conclusion, while MSC transplantation shows promise in treating T1DM and T2DM, further research is necessary to fully understand its safety and efficacy and establish best practices for its use in clinical trials. Furthermore, limitations exist due to the lack of individual-level data required for subgroup analysis, such as age, gender, sickness status, and duration of disease history. The decision of selecting confounding factors was contingent upon data availability. The selection of confounding factors for inclusion in the study was determined subjectively, acknowledging inherent limitations. Complete elimination of potential interference from other factors was not feasible. Therefore, future research endeavors should encompass a broader scope, incorporating additional articles to further elucidate the collective impact of multiple factors on diabetes mellitus. Additionally, constraints in implementing alternative statistical methods such as t-tests, ANOVA, or regression analysis due to the lack of original research data and distribution details of variables pose challenges. However, the inability to conduct detailed subgroup analyses and the reliance on summarized data may limit the depth of insights and generalizability of findings.
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Purpose

The optimal resuscitative fluid for patients with diabetic ketoacidosis (DKA) remains controversial. Therefore, our objective was to assess the effect of balanced crystalloids in contrast to normal saline on clinical outcomes among patients with DKA.





Methods

We searched electronic databases for randomized controlled trials comparing balanced crystalloids versus normal saline in patients with DKA, the search period was from inception through October 20th, 2023. The outcomes were the time to resolution of DKA, major adverse kidney events, post-resuscitation chloride, and incidence of hypokalemia.





Results

Our meta-analysis encompassed 11 trials, incorporating a total of 753 patients with DKA. There was no significant difference between balanced crystalloids and normal saline group for the time to resolution of DKA (MD -1.49, 95%CI -4.29 to 1.31, P=0.30, I2 = 65%), major adverse kidney events (RR 0.88, 95%CI 0.58 to 1.34, P=0.56, I2 = 0%), and incidence of hypokalemia (RR 0.80, 95%CI 0.43 to 1.46, P=0.46, I2 = 56%). However, there was a significant reduction in the post-resuscitation chloride (MD -3.16, 95%CI -5.82 to -0.49, P=0.02, I2 = 73%) among patients received balanced crystalloids.





Conclusion

Among patients with DKA, the use of balanced crystalloids as compared to normal saline has no effect on the time to resolution of DKA, major adverse kidney events, and incidence of hypokalemia. However, the use of balanced crystalloids could reduce the post-resuscitation chloride.





Systematic review registration

https://osf.io, identifier c8f3d. 
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Introduction

Diabetic ketoacidosis (DKA) is a life-threatening complication of diabetes mellitus described in patients with both type 1 and type 2 diabetes (1). The pivotal facets of acute DKA management involve the administration of intravenous fluids and insulin therapy (2, 3). Despite a consensus on the appropriate insulin dosage and administration route, the selection of fluid therapy remains a subject of contention, particularly in the context of both DKA and critical illness (4, 5).

For decades, the normal saline (0.9% sodium chloride solution) has been the most commonly administered crystalloid solution worldwide (5, 6). The current international guidelines also recommend normal saline as the replacement fluid of choice for DKA (7, 8). However, recent findings raise concerns regarding the potential consequences of normal saline administration, including heightened acidemia, diminished renal blood flow, and reduced urine output (9). Such alterations may culminate in acute kidney injury (AKI) (10–12) and mortality (13, 14). Since the high chloride content of normal saline may lead to possible adverse effects, balanced crystalloids, in which chloride anions are replaced by lactate or acetate, are increasingly used alternatives (15). These alternatives, wherein chloride anions are substituted with lactate or acetate, present a chemical composition more akin to human plasma than normal saline. This compositional alignment involves reduced chloride levels and an augmented in vivo strong ion difference (16).

Currently, the preferred choice between normal saline and balanced crystalloids in patients with DKA remains a subject of debate. In view of the widespread use of intravenous fluids therapy worldwide, even minor distinctions in fluid selection and their implications for clinical outcomes carry substantial clinical significance. Consequently, the aim of this meta-analysis was to scrutinize the repercussions of utilizing balanced solutions in contrast to 0.9% saline solutions on clinical outcomes in patients with DKA.





Methods

We performed our meta-analysis following the guidelines of updated PRISMA statement (17) (Supplementary Material 1). The protocol of this meta-analysis has been registered in the Open Science Framework (https://osf.io/c8f3d). A systematic exploration for eligible randomized controlled trials (RCTs) in the English language was conducted through an extensive literature search across four electronic databases (PubMed, Embase, Scopus, and Cochrane Library), spanning from their inception through October 20th, 2023. The literature search was conducted through the utilization of keywords comprising “balanced crystalloids”, “normal saline”, “DKA”, and “randomized”. The comprehensive search methodologies are detailed in Supplementary Material 2.




Eligibility criteria

The inclusion criteria were shown as follows: 1. Design: randomized trials; 2. Population: patients with DKA, the definition of DKA was according to the current international guidelines (7, 8); 3. Intervention: balanced crystalloids characterized by a chloride concentration closely approximating physiological levels (e.g., Lactated Ringer’s, Plasma-Lyte); 4. Comparison: normal saline, specified as 0.9% saline with a chloride content of 154 mmol/L; 5. Outcomes: primary outcome were the time to resolution of DKA, defined by the original authors, major adverse kidney events (defined as KDIGO stage II or higher (18), or receipt of renal-replacement therapy, or defined by the original authors), post-resuscitation chloride, and incidence of hypokalemia (potassium < 3.0 mmol/L).





Data extraction and quality assessment

Two authors (Yuting Liu, Jianfeng Zhang) conducted the retrieval of relevant studies. Reports considered potential for inclusion were screened in full text. Differences in this process were resolved by consensus. When no consensus was reached, a third co-author (Xiaoya Xu) would resolve the issue. Standardized form from the Cochrane Data Collection template was adapted and used to create a study-specific data abstraction form, data including the first author, publication years, study design, sample size, population characteristics, and details pertaining to the intervention and control agents were independently extracted by two authors (Yuting Liu, Jianfeng Zhang). Predefined outcomes from the included studies were also extracted. If data were not available in the trial report or data collection, we contacted the corresponding authors to provide important missing data. In instances where studies reported continuous outcomes in the form of median and interquartile range, we used the median, interquartile range, and sample size to estimate the approximate mean value and standard deviation. The calculating formula were proposed by Wan et al. (19), they also developed a software to estimate the mean value and standard deviation.

The Cochrane risk of bias tool (20) was used for assessing the methodological quality by two authors (Yuting Liu, Jianfeng Zhang). Discrepancies in assessments were resolved through consultation with a third co-author (Xiaoya Xu).





Statistical synthesis and analysis

The risk ratios (RRs) with corresponding 95% confidence intervals (CI) were calculated by using a Mantel and Haenszel model for dichotomous outcomes. The mean difference (MD) with 95% CI were calculated by using an inverse variance model for continuous outcomes. Pooled estimates are displayed in forest plots. The evaluation of heterogeneity among studies relied on Higgins inconsistency (I2) statistics (21), with substantial heterogeneity identified when the I2 value exceeded 50%. In the absence of significant heterogeneity, a fixed-effects model was employed for analysis; otherwise, a random-effects model was applied. Furthermore, an assessment of publication bias was conducted using the funnel plot. Additionally, a sensitivity analysis was executed to investigate the impact of individual studies through the successive exclusion of each study.

In order to control the type-I and II errors, we performed post hoc trial sequential analyses (TSA) by using the TSA software (0.9.5.10 Beta, The Copenhagen Trial Unit, Denmark). The parameters used in TSA were detailed in Supplementary Material 2.






Results




Study identification and characteristics

In the initial phase of the search process, 217 articles were identified. First, all records were imported into a document management software, and 89 duplicated literatures were electronically removed. After reading the titles and abstracts, 96 studies were further excluded. During the evaluation of the full text, 21 studies were excluded for specific reasons (Supplementary Material 2 recorded the list of excluded studies with reasons). Finally, our study included a total of 11 RCTs (22–32), (flow chart presented in Figure 1).




Figure 1 | PRISMA 2020 flow diagram for the meta analysis.



Table 1 delineates the attributes of the studies incorporated in our analysis. The analysis encompassed a total of 753 patients, with 392 patients subjected to balanced crystalloids and 361 patients administered normal saline throughout the study duration. The patient count across individual studies exhibited variability, ranging from a minimum of 30 to a maximum of 172. Notably, the studies included in our analysis exhibited diversity in terms of study populations: nine trials (22–25, 27, 28, 30–32) included adult patients with DKA, and two trial (26, 29) included patients in medical ICU. Different intervention drugs were also identified: Plasma-Lyte in six trials (22, 27–30, 32), Lactated Ringer’s solution in four trials (23–25, 32), and Hartmann’s solution in one trial (26). Apart from trial fluid administered, there were no other changes to the standard DKA treatments including insulin, electrolyte replacement, and/or supportive management.


Table 1 | Characteristics of included studies.







Quality assessment

Figure 2 presents the quality assessment by the Cochrane risk of bias tool. Notably, five trials (24, 25, 27, 30, 31) were single-blind or open-label trials, they had high risk of bias. Additionally, four studies (22, 24, 27, 32) did not report the details of random sequence generation or allocation concealment. Regarding the blinding method for outcome assessment, two trials (24, 27) exhibited an unclear risk of bias, introducing potential variability in the size of the observed effect. The detailed description of quality assessment was reported in Supplementary Material 2. The evaluation of publication bias, as illustrated by the funnel plot (Supplementary Material 2), did not indicate a significant risk of publication bias.




Figure 2 | Assesment of quality by the Cochrane risk of bias tool. Red denotes high risk, yellow unclear risk and green low rsik.







Outcomes

Six trials reported the time to resolution of DKA and no significant difference was identified between patients receiving balanced crystalloids and normal saline (MD -1.49, 95%CI -4.29 to 1.31, P=0.30, I2 = 65%, Figure 3). Six trials reported the major adverse kidney events, four reported the incidence of hypokalemia, there was no significant difference between balanced crystalloids and normal saline groups for the major adverse kidney events (RR 0.88, 95%CI 0.58 to 1.34, P=0.56, I2 = 0%, Figure 4A) and incidence of hypokalemia (RR 0.80, 95%CI 0.43 to 1.46, P=0.46, I2 = 56%, Figure 4B). Four trials reported the post-resuscitation chloride and the use of balanced crystalloids could reduce the post-resuscitation chloride (MD -3.16, 95%CI -5.82 to -0.49, P=0.02, I2 = 73%, Figure 5).




Figure 3 | Forest plot showing the effect of balanced crystalloids versus normal saline on the time of resolution to DKA.






Figure 4 | Forest plot showing the effect of balanced crystalloids versus normal saline on the (A) major adverse kidney events, (B) incidence of hypokalemia.






Figure 5 | Forest plot showing the effect of balanced crystalloids versus normal saline on the post-resuscitation chloride.



Furthermore, we analyzed the effect of every single trial on the pooled result by omitting each study. The use of balanced crystalloids was relevant to the obvious decreasing in incidence of hypokalemia (RR 0.59, 95%CI 0.37 to 0.93, P=0.02, I2 = 0%) after omitting the study by Yan et al. (32) (Supplementary Material 3). Moreover, sensitivity analysis by excluding each study showed no significant difference for other outcomes, indicating the good robustness (Supplementary Material 3).

Results of TSA are presented in Figure 6, showing that the current systematic review did not achieve the required information sizes to detect the pre-specified effect sizes for time to resolution of DKA, major adverse kidney events, and incidence of hypokalemia, indicating that more trials are required for a definitive conclusion for these outcomes. Furthermore, the TSA confirmed the use of balanced crystalloids was associated a significant reduction in the post-resuscitation chloride with high certainty.




Figure 6 | Trial Sequential Analysis of Clinical Outcomes. (A) time to resolution of DKA (6 studies, n=463); (B) major adverse kidney events (6 studies, n=451); (C) post-resuscitation chloride (4 studies, n=285); (D) incidence of hypokalemia (4 studies, n=380). The Z curve in blue measures the treatment effect (pooled relative risk). The parallel lines in green are the boundaries of conventional meta-analysis (alpha 5%), and the boundaries of benefit and harm are boundaries of conventional meta-analysis adjusted for between-trial heterogeneity and multiple statistical testing (TSA boundaries). A treatment effect outside the TSA boundaries of benefit/harm indicates reliable evidence for a treatment effect, and a treatment effect within the futility zone (the triangle between the parallel lines) indicates reliable evidence of no treatment effect.








Discussion

Although there have been growing meta-analyses compares the effect of balanced crystalloids with normal saline among emergency and critical patients (9, 33–40). There is relatively limited evidence for patients with DKA. Therefore, in this meta-analysis, we comprehensively reviewed 11 RCTs to directly compare the balanced crystalloids versus normal saline in patients with DKA. Overall, compared with normal saline, the use of balanced crystalloids has no effect on the time to resolution of DKA, major adverse kidney events, and incidence of hypokalemia. However, we found that the treatment of DKA with balanced crystalloids compared to normal saline may reduce the post-resuscitation chloride. Furthermore, TSA indicated that more trials are needed to further confirm these findings.

To the best of our knowledge, this study is the most comprehensive meta-analysis of RCTs to compare the effect of balanced crystalloids with normal saline as fluid therapy in patients with DKA. Some of the findings of our meta-analysis are consist with the most recent meta-analysis by Tamzil et al. (41) that there was no significant difference in the duration of DKA resolution and acute renal failure. Conversely, Catahay et al. (42) analyzed 3 RCTs and indicated that the use of balanced crystalloids was associated with faster rates of DKA resolution compared to normal saline. However, Catahay et al. (42) only focused on the adult population and one single outcome, thus excluding other eligible trials and affecting the results.

Furthermore, our investigation revealed that the utilization of balanced crystalloids could reduce post-resuscitation chloride levels in patients with DKA. This suggests that opting for balanced crystalloids as resuscitation fluids may decrease the incidence of hyperchloremia in DKA patients. The diminished serum chloride levels observed in the balanced crystalloids group align with their lower chloride content, as these solutions emulate the plasma concentration of electrolytes. In contrast, the elevated serum chloride levels associated with normal saline could pose a risk of exacerbating hyperchloremia, thereby worsening metabolic acidosis and increasing the likelihood of acute kidney injury. Such complications may contribute to prolonged hospital stays, attributed to the deterioration of acidosis in DKA (43).

Although our meta−analysis did not reveal any noteworthy difference in the time to resolution of DKA or the major adverse kidney events between balanced crystalloids and normal saline groups, it is imperative to acknowledge potential contributing factors. These may include limitations associated with the relatively small sample size, variations in criteria for DKA resolution and adverse kidney events, or the absence of measurements related to ketone or anion gap resolution.

Our discoveries stem from an exhaustive and methodical exploration of the literature, wherein studies were rigorously identified via an exhaustive search methodology. Our inclusion criteria encompassed patients of diverse ages exhibiting varying comorbidities or etiologies of DKA at baseline. Two studies (26, 29) included the children with DKA, four studies (22, 25, 26, 30) included adult patients with moderate to severe DKA, while others included mild to severe DKA patients. Our findings should be taken with caution, even though the inclusion of all these studies allowed us to cover a wide range of patients. Criteria for the resolution of DKA varied substantially between studies: three studies (27, 28, 32) adhered to the criteria outlined in the American Diabetes Association (ADA) Consensus Statement on hyperglycemic crises 2009 criteria (44), one (23) adhered to the ADA Consensus Statement 2006 criteria (45), and another study (29) adopted criteria in accordance with the International Society of Pediatric and Adolescent Diabetes Guidelines 2014 (46). Hence, the variability in criteria employed is poised to exert an impact on the observed outcomes. Regrettably, the limited quantity of studies at our disposal precluded the execution of subgroup analyses. Such analyses would have been instrumental in elucidating the translational potential of our findings across a broader spectrum of patients. In addition, when we analyzed the effect of every single trial on the pooled results, we found that after omitting the study by Yan et al. (32), the use of balanced crystalloids was relevant to the obvious decreasing in incidence of hypokalemia. Since the patients in balanced crystalloids group had higher rate of comorbidities and co-diagnoses to DKA, the difference in the baseline disease severity between groups might led to this result.




Strength and limitations

The strength of our work lies in the comprehensive search and analysis and the predefined analysis plan for meta-analysis, all of which increase the transparency of information. Furthermore, the use of TSA enabled us to detect the risk of type-I or type-II errors in our findings. The DARIS estimated from TSA will also inform the sample size needed for adequately powered future trials.

The current study had certain limitations as well. Primarily, it is noteworthy that all incorporated trials are inherently characterized as small-sample studies (each with fewer than 100 patients per arm), thereby introducing the potential for bias associated with the small study effect (47). There should ideally be more large-scale RCTs as the majority of included studies had limited sample sizes, which might affect the power of these analyses. Secondly, various elements contribute to the heterogeneity inherent in our analysis, encompassing divergent population characteristics, diverse etiologies of DKA, and variations in the criteria employed for DKA resolution across the studies. Additionally, a broad spectrum of major adverse kidney events exhibited considerable variability, underscoring challenges in the uniformity of definitions and the inherent difficulties in the detection and reporting of adverse events. Thirdly, some important clinical outcomes such as length of hospital stay, time-to-discontinuation of insulin, and total insulin infusion were rarely recorded and analyzed in included trials, future studies should focus on these indicators of recovery. Last but not the least, the need for additional investigation persists regarding whether various facets of fluid composition and administration, such as osmolarity, temperature, and infusion speed, exert a modifying influence on the impact of crystalloid composition on clinical outcomes (48, 49). Further clinical trials on whether there is a difference in outcome between the types of balanced crystalloids used on DKA patients would also be a good addition in future studies to show whether the difference in composition between balanced crystalloids types would exhibit superiority or non-inferiority in patient outcomes when compared.






Conclusion

In this meta-analysis, the use of balanced crystalloids among patients with DKA has no significant different effect on the time to resolution of DKA, major adverse kidney events, and incidence of hypokalemia. However, its administration might decrease the post-resuscitation chloride. More large-scale RCTs with relatively large fluid exposure among patients with DKA are needed to guide the choice of the type of fluid resuscitation.
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Background

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood.





Objective

Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism.





Methods

Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings.





Results

The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys.





Conclusion

Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.





Keywords: diabetes, diabetic kidney disease, nicotinamide adenine dinucleotide, kynurenine 3-monooxygenase, pathophysiology




1 Introduction

Diabetic kidney disease (DKD) is a primary cause of end stage of renal disease with great global health burden. By 2045, the diabetic population is projected to reach 700 million worldwide (1), with nearly 40% of these individuals expected to develop DKD (2–4). Despite significant achievements of pharmacotherapy such as sodium-glucose cotransporter 2 inhibitors and nonsteroidal mineralocorticoid antagonists, which have demonstrated improved renal outcome in large-scale clinical trials (5–8), in conjunction with the established use of angiotensin-converting enzyme inhibitor and angiotensin II receptor blockers, the therapeutic options for DKD remain limited. Understanding the pathogenic mechanisms of DKD is of critical to guide clinical interventions.

Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme serves in redox reaction across all living cells, and also as a substrate or cofactor for enzymes such as the sirtuins family, poly (ADP-ribose) polymerases (PARPs), and the CD38, intricately participating in cellular metabolism (9, 10). These three classes of NAD+-dependent enzymes, known as NAD+ consuming enzymes, degrade NAD+ to generate a by-product nicotinamide (NAM), which is a biosynthetic precursor of NAD+ and also an inhibitor of their activities. Preclinical studies showed that impaired NAD+ was closely related to kidney diseases (11, 12), boosting NAD+ with precursors has been shown of renal benefits (12–16), suggesting the potential applicability of NAD+-replacement therapy from rodent models to renal patients. To maintain cellular levels, NAD+ can be synthesized in de novo and salvage pathway from several distinct dietary precursors (17). In salvage pathway, NAD+ production from all three forms of vitamin B3 including NAM, nicotinic acid and nicotinamide riboside via two-step process. The precursors are converted into an intermediate called nicotinamide mononucleotide (NMN) through nicotinamide phosphoribosyl transferase (NAMPT). Then NMN is converted into NAD+ via nicotinamide mononucleotide adenylyl transferase (NMNAT). De novo pathway, also known as the kynurenine pathway, consists of eight steps, and generate NAD+ from dietary tryptophan (TRP) (Figure 1A). Although salvage pathway is responsible for most NAD+ production (18, 19), supplementation with TRP has long been recognized as a treatment for vitamin B3 deficiency, suggesting an important role for the de novo pathway in NAD+ homeostasis (20). Besides, manipulation of the de novo pathway has been shown to change NAD+ levels and resistance to acute kidney injury (AKI) (13, 21–24). Loss-of-function of enzymes in the de novo pathway have been reported to result in NAD+ deficiency during embryogenesis and led to congenital renal defects (25), suggesting NAD+ de novo biosynthesis pathway as an important factor in renal health. However, the dynamics of NAD+ fluxes in DKD remains unestablished.




Figure 1 | An overview of NAD+ biosynthesis pathways and reduced NAD+ expression in mice kidneys under diabetic conditions. (A) Three biosynthetic pathways of NAD+. (B) Schematic illustration of the study design for diabetic mouse model establishment. (C) FPG levels of C57BL/6J mice following STZ or buffer (n=4–7). (D) NAD+ was reduced in diabetic mouse kidneys (n=4 in Ctrl, 6 in STZ). (E) Left UACR of spot urine before and every 4 weeks after STZ or buffer administration (n=3–7); Right area under curve of UACR of spot urine after 7 months of STZ or buffer administration (n=4–6). (F) Systolic blood pressure before and every 4 weeks after STZ or buffer administration (n=4–7). (G) Renal function estimated by BUN before and after STZ or buffer administration (n=4–7). (H) Representative images of periodic acid–schiff (PAS)-stained kidney sections (original magnification x400) and semiquantitative analysis of glomerular deposition of PAS positive extracellular matrix after 28 weeks of STZ or buffer administration. The data are shown as means ± SEM. NAD+, nicotinamide adenine dinucleotide; IDO, indoleamine 2, 3-dioxygenase; TDO, tryptophan 2, 3-dioxygenase; KMO, kynurenine 3-monooxygenase; 3-HK, 3-hydroxykynurenine; 3-HAA, 3-hydroxyanthranilic acid; KYNU, kynureninase; HAAO, 3-hydroxyanthranilic acid oxygenase; ACMS, α-amino-β-carboxymuconate-ϵ-semialdehyde; QA, quinolinc acid; QPRT, quinolinate phosphoribosyl transferase; NA, nicotinic acid; NAPRT, nicotinic acid phosphoribosyl transferase; NAMN, nicotinic acid mononucleotide; NMNAT1–3, nicotinamide mononucleotide adenylyltransferase 1–3; NAAD, nicotinic acid adenine dinucleotide; NADS, NAD synthetase; NAM, nicotinamide; NMN, nicotinamide mononucleotide; PARPs, poly (ADP-ribose) polymerases; NAMPT, nicotinamide phosphoribosyl transferase; Ctrl, control; STZ, streptozotocin; FPG, fasting plasma glucose; UACR, urinary albumin-to-creatinine ratio; BUN, blood urea nitrogen; SBP, systolic blood pressure; *P<0.05; **P <0.01; ***P<0.005; *****P< 0.0005; ******P<0.0001.



In this study, we investigated the alterations in NAD+ levels and the expression of its synthetic and consuming enzymes in diabetic mouse and human kidneys. Additionally, we identified kynurenine 3-monooxygenase (KMO), an enzyme that converts kynurenine (KYN) to 3-hydroxykynurenine (3-HK), as a candidate enzyme in the de novo NAD+ synthesis pathway responsible for NAD+ deficiency under diabetic condition. This study aims to enhance our understanding of the intricate molecular mechanisms associated with NAD+ regulation in the context of DKD.




2 Materials and methods



2.1 Animal studies

Male C57BL/6J mice were purchased from Shanghai Model Organisms Center, Inc. (Shanghai, China) and housed at Fudan University Medical Animal Center with a 12-hour light/dark cycle and provided with standard chow. All animal studies were approved by the Institutional Animal Care and Use Committee of Fudan University. 8-week-old male mice with a C57BL/6J background were intraperitoneally injected with streptozotocin (STZ) (Sigma-Aldrich, 50mg/kg, diluted in citrate buffer, pH = 4.5) for five consecutive days to establish STZ induced diabetic model until 28 weeks after STZ administration when they were sacrificed. Littermates were conducted with the same volume of buffer as control. Fasting plasma glucose (FPG) levels were measured via tail-vein blood using an ACCU-CHEK PERFORMA II glucometer after a 7-hour fast. Mice exhibiting FPG ≥ 200 mg/dL 1week post-STZ injection were considered diabetic. Spot urine samples were used to quantify albumin and creatinine with a commercial ELISA kit (Exocell, Inc. USA), following the manufacturer’s protocol. The urinary albumin to creatinine ratio (UACR) was determined by albumin level and creatinine level from the same samples. Blood urea nitrogen (BUN) was measured using the UREA KIT (liquid; UV-GLDH method; Shanghai Kehua Bioengineering Co., Ltd.). Kidney samples were collected when mice were sacrificed. Blood pressure was measured with the tail-cuff method using a noninvasive automatic blood pressure analyzer (BP-2000 Blood Pressure Analysis System, Visitech Systems, USA) according to the manufacturer’s instructions.




2.2 NAD+ measurement

Kidney tissue was extracted and then measured using an NADH/NAD quantification kit (Biovision, USA) according to the manufacturer’s instructions. In brief, ~ 20 mg kidney was washed with PBS, pelleted, and extracted with 400 μL NADH/NAD extraction buffer. 50 μL of extracted samples were used for total NADt detection. Samples were decomposed at 60°C for 30 minutes, cooled, and finally 50 μL transferred to a 96-well plate to measure NADH. A standard curve was prepared with 0, 20, 40, 60, 80, and 100 pmol/well of standard NADH, with the final volume adjusted to 50 μL with NADH/NAD extraction buffer. NAD Cycling Mix composed of NAD cycling buffer and NAD cycling enzyme mix was added to each well at room temperature for 5 minutes to convert NAD to NADH. NADH developer was then added, and the plate was cycled at room temperature for 1–4 hours. OD 450 nm readings were taken, and reactions were stopped with a stop solution. The NADt amount in a sample well was calculated with the equation:

	




2.3 Histological analysis of the kidney

Kidneys were fixed in a 4% paraformaldehyde solution, embedded in paraffin, cut into sections with a thickness of 3 μm and then subjected to periodic acid–schiff (PAS) staining. In brief, kidney sections were dewaxed in water, oxidized in 1% periodic acid solution (BaSO, China) for 10 minutes, placed in Schiff’s reagent (BaSO, China) for 20 minutes and then counterstained in Mayer’s hematoxylin for 10 seconds (BaSO, China). The area of mesangium and glomeruli was calculated by pixel counts on a minimum of 10 randomly selected glomeruli per kidney section by ImagePro Plus software in a single-blind fashion.




2.4 Western blot

Total protein was extracted from the frozen quartered kidney tissue using RIPA lysis buffer (Beyotime, China) with PMSF (Sigma-Aldrich, USA), protease inhibitor cocktail (Roche, USA) and phosphatase inhibitor cocktail (Roche, USA). Protein concentrations were determined using BCA protein assay kit (Beyotime, China). Equal amount of protein (~20 μg per lane) was loaded in a 7.5% or 10% SDS-PAGE mini-gel and transferred to a PVDF membrane (Millipore, USA). The membrane was blocked with 5% BSA in TBST buffer (100 mM TBS, pH 7.5, 0.1% Tween-20) or 5% nonfat dry milk dissolved in TBST buffer and then incubated in primary antibody overnight at 4°C. The primary antibodies included: anti-SIRT1 antibody (Abcam, 1:1000), anti-CD38 antibody (Proteintech, 1:1000), anti-PARP1 antibody (Proteintech, 1:1000), anti-KMO antibody (Proteintech, 1:1000), anti-QPRT antibody (Proteintech, 1:1000), anti-NAMPT antibody (Millipore, 1:5000), anti-GAPDH antibody (Proteintech, 1:8000). Membranes were then incubated with appropriate secondary antibodies for one hour at room temperature and subjected to chemiluminescence detection using ECL Reagent (Millipore,USA).




2.5 RNA isolation and quantitative real-time PCR

The isolation of RNA and real-time PCR were performed as previously described (26). In brief, frozen quartered kidney tissue were processed with TRIzol (Thermo Fisher, USA), chloroform, isopropanol, 70% ethanol, and finally RNA suspension in RNase-free water. PrimeScript™ RT reagent Kit (Takara, Japan) was used to perform cDNA synthesis according to the manufacturer’s protocol. Levels of mRNA were determined by real time qPCR using SYBR Premix Ex Taq Kit (Takara, Japan). The expression levels of the target genes were normalized to GAPDH using the 2−ΔΔCt method.

The primer sets used are shown in Table 1.


Table 1 | Primer sets used in the study.






2.6 Immunofluorescence and immunohistochemistry analyses

Kidneys were fixed in 4% paraformaldehyde solution, embedded in paraffin, and cut into sections with a thickness of 3 μm. Sections were dewaxed in water and placed in an EDTA antigen retrieval buffer (pH 8.0) for thermal repair. They were then incubated in a 3% H2O2 solution for 30 minutes. For blocking, 3% bovine serum albumin in PBS was used, followed by overnight incubation with primary antibodies at 4°C. Next, a secondary antibody (HRP) was added, and the sections were incubated at room temperature for 30 minutes before diaminobenzidine (DAB) staining controlled under a microscope. The positive staining appeared brownish-yellow in the first round. The second round of immunohistochemistry staining followed the same procedure: antigen retrieval, endogenous peroxidase blocking, and BSA blocking. Target primary antibodies were incubated at 4°C overnight followed by secondary antibody incubation at room temperature for 30 minutes. Finally, a red staining solution working solution (Shanghai RecordbioTechnology Co. Ltd, PB: CU: Red dye: AC= 860:40:1:100) was added and controlled under the microscope. Positive staining in the second round appeared red. Immunofluorescence was conducted on paraffin-embedded kidney sections as previously described (27). The primary antibodies used in immunohistochemistry are as follows: anti-KMO antibody (Proteintech, 1:200), anti-QPRT antibody (Proteintech, 1:200), anti-NCC antibody (Abcam, 1:1000), anti-THP antibody (Santa Cruz, 1:200), anti-AQP2 antibody (Santa Cruz, 1:200). Primary antibody used in immunofluorescence are as follows: anti-KMO antibody (Proteintech, 1:200), anti-QPRT antibody (Proteintech, 1:200), anti-LTL antibody (Vector Laboratories, 1:200).




2.7 NAD+ metabolites measurements

Human urinary KYN was quantified using LC-MS. The procedure and specifics of LC-MS conditions were detailed as described in reference (24).




2.8 NephroSeq data analysis

The NephroSeq database (www.nephroseq.org) was used to examine the mRNA level of KMO gene. The Lindenmeyer Normal Tissue Panel dataset was employed to discern its distribution in renal compartments among healthy kidney transplant donors. Three datasets were available for the analysis of KMO expression levels between healthy kidney transplant donors and DKD patients. These datasets include Woroniecka Diabetes Glom Dataset, Woroniecka Diabetes TubInt Dataset, and Schmid Diabetes TubInt Dataset.




2.9 Statistical analysis

All data were presented as the mean ± SEM. Statistical comparisons were performed using unpaired Student’s t test or ANOVA. GraphPad Prism 8.0 software was used for statistical analysis. A value of P< 0.05 indicated a statistically significant difference.





3 Results



3.1 NAD+ levels were decreased in diabetic mouse kidneys

To delineate alterations in NAD+ levels within diabetic kidneys, we successfully established a diabetic model of type 1 diabetes induced by STZ (Figures 1B, C). Compared to control littermates, NAD+ levels were significantly reduced in diabetic mice kidneys 29 weeks post-STZ administration (Figure 1D). Renal impairment was evaluated by ACR of spot urine, BUN and histological examination. As depicted in Figures 1E, F, diabetic mice showed increased urine ACR, a sensitive and early indicator of DKD, independent of changes in blood pressure. Although the kidney function biomarker, BUN, showed an increasing trend in the diabetic mice (Figure 1G), no statistically significant difference was noted. Histological lesions examined by PAS staining showed more mesangial matrix expansion in diabetic group (Figure 1H). Our data suggested mild and early renal impairment was induced by STZ in C57 mice, and NAD+ levels was reduced in these diabetic kidneys.




3.2 De novo NAD+ synthesis was impaired in diabetic kidneys

The level of NAD+ is contingent upon a delicate balance between synthesis and consumption (28). In order to explore the underlying causes of the NAD+ decline in diabetic kidneys, we initially examined the levels of NAD+-consuming enzymes. In our study, although a decreasing trend of SIRT1 and PARP1 protein levels was observed in western blot analysis, no significance was calculated. Similarly, there was no change of CD38 levels in diabetic conditions (Figure 2). NAD+-dependent deacetylase SIRT1 was reported to be reduced in high energy environment as diabetic kidneys, leading to transcription factor acetylation and kidney lesion (29). SIRT1 has a high Km value for NAD+ compared to other NAD+ consuming enzymes, meaning SIRT1’s activity is highly dependent on NAD+ availability but contributes little to NAD+ consumption (30). Since indifferent expression of NAD+-consuming enzymes could not lead to NAD+ deficiency, then, we assessed the changes of key enzymes in different NAD+ synthesis pathways in diabetic kidneys by mRNA quantification. Compared to the control, the mRNA levels of KMO, a rate-limiting enzyme that transfer KYN into 3-HK, and quinolinate phosphoribosyl transferase (QPRT), an enzyme that catalyze quinolinic acid (QA) into NMN in the de novo synthesis pathway, were decreased after STZ administration (Figure 3A). In the salvage pathway, no significant decrease of NAMPT nor NMNAT1 were observed in diabetic kidneys, with the exception of upregulation of NMNAT3. These findings suggested a contributory role of de novo pathway in NAD+ dynamics when exposed to diabetes. WB analysis further confirmed the reduction of KMO protein in the kidneys of the diabetic group (Figure 3B). Taken together, our data implied that the downregulation of KMO in de novo pathway might lead to a decrease in NAD+ levels.




Figure 2 | The level of NAD+ consuming enzymes remain unchanged in mice kidneys subjected to diabetic condition (n=6 each group). The data are shown as means ± SEM.






Figure 3 | Changes of major enzymes responsible for NAD+ synthesis in mouse kidneys under diabetic condition. (A) Real-time quantitative PCR analysis of key enzymes involved in NAD+ synthesis pathways in the kidneys (n=4–6). GAPDH was used as an internal control. (B) Representative western blot images and densitometry analysis of KMO, NAMPT, and QPRT protein in mouse kidneys (n=6 each group). The data are shown as means ± SEM. *P<0.05; **P<0.01.






3.3 KMO was expressed in the proximal tubules

Considering the potential value of KMO in DKD, we further investigated the localization of KMO within the mouse kidney. Immunohistochemical co-staining results revealed that KMO did not colocalize with aquaporin 2 (AQP2), a recognized marker of the collecting duct, nor with sodium-chloride cotransporter (NCC), a marker for the distal convoluted tubule, or with Tamm-Horsfall protein (THP), a marker of thick ascending limb of the renal medulla (Figure 4A). KMO was predominantly expressed in the cytoplasm of the proximal tubule, as evidenced by immunofluorescence analysis with Lotus tetragonolobus lectin (LTL) (Figure 4B). Moreover, QPRT and 3-hydroxyanthranilic acid oxygenase (HAAO), two other pivotal enzymes with predictive value of AKI in the de novo pathway (21, 22, 24), were also present in the same pattern. These observations indicated that the proximal tubule may serve as the primary site for the de novo synthesis pathway of NAD+ in the mouse kidneys.




Figure 4 | Characterization of KMO, HAAO, and QPRT in mouse kidneys. (A) Representative immunohistochemical co-staining of KMO, HAAO, and QPRT (brown) with renal tubular markers (pink) in mouse renal (magnification as 400×). (B) Immunofluorescence co-staining (red) of KMO, HAAO, and QPRT with renal tubular markers (green) (magnification as 400×). AQP2, aquaporin 2; NCC, sodium-chloride cotransporter; THP, Tamm-Horsfall protein; LTL, lotus tetragonolobus lectin.






3.4 KMO expression in DKD patients

Our study suggested that the diminished NAD+ levels in diabetic mouse kidneys may be due to a reduction of KMO in the de novo synthesis pathway. To explore the distribution of KMO in human kidneys along with its alteration in DKD patients, we utilized the NephroSeq dataset to analyze the transcriptional level of KMO. A total of four datasets, the patient characteristics of which are detailed in Tables 2–5, were available for analysis. As illustrated in Figure 5A, microarray data form the Lindenmeyer Normal Tissue Panel dataset revealed the expression of KMO in both glomeruli and tubulointerstitium, with a more pronounced expression observed in the tubulointerstitium, suggesting the tubulointerstitium as a pivotal site for NAD+ de novo synthesis in human kidney align with the mouse data. A significant decrease in KMO was found in DKD patients when compared to healthy living donors in isolated glomeruli (Figure 5B). However, in the tubulointerstitium region, although a downward trend in KMO expression was observed across two datasets, the changes were not statistically significant, likely attributed to the limited sample size (Figures 5C, D). Analysis of KMO according to eGFR level from Schmid Diabetes TubInt dataset showed a KMO decreased as eGFR fell (Figure 5E). Furthermore, an accumulation of urinary KYN, a metabolite upstream of KMO, was observed in diabetic population by LC-MS (Figure 5F). These data altogether indicated that renal KMO was decreased in diabetic kidney and played a potential role in pathogenesis of DKD.


Table 2 | Basic information of Lindenmeyer Normal Tissue Panel.




Table 3 | Basic information of Woroniecka Diabetes Glom dataset.




Table 4 | Basic information of Woroniecka Diabetes TubInt dataset.




Table 5 | Basic information of Schmid Diabetes TubInt dataset.






Figure 5 | Characterization of KMO in human kidneys. Comparative analysis of KMO and mRNA expression in human kidneys evaluated by microarray method. (A) in renal glomeruli (Glom) and tubulointerstitium (TubuInt) from lindenmeyer Nomal Tissue Panel dataset (n=6); (B) in renal glomeruli from Woroniecka Diabetes Glom dataset (n=9–13); (C) in renal tubulointerstitium from Woroniecka Diabetes TubInt dataset (n=10–12); (D) in renal tubulointerstitium from Schmid Diabetes TubInt dataset (n=3–11); (E) KMO expression in diabetic nephropathy with eGFR from Schmid Diabetes TubInt dataset (n=1–4). (F) Urinary KYN in healthy controls and diabetic patients (n=55 in Ctrl, 16 in DM). DKD, diabetic kidney disease; DM, diabetes mellitus; KYN, kynurenine. The data are shown as means ± SEM. *P<0.05; ****P<0.001.







4 Discussion

The current study identified a decrease of renal NAD+ level in diabetic mice of early DKD injury phenotype manifested with increased UACR level and mesangial matrix expansion. The downregulation of NAD+ in diabetic kidneys seems primarily attributed to the insufficient biosynthesis through the de novo synthesis pathway shown by reduced KMO expression in diabetic kidneys and decreased urinary metabolites of KMO in diabetic patients.

NAD+ functions not only as a universal electron acceptor in glycolysis and the Krebs cycle but also as a substrate for non-redox enzymes that consume NAD+ such as PARPs, sirtuins and CD38 (31, 32). Dysregulated NAD+ levels contribute to the pathogenesis of metabolic disorders, neurodegenerative conditions, and tumorigenesis (9, 33). Our previous study demonstrated that decreased NAD+ levels in aged kidneys contribute to susceptibility to renal injury and replenishing NAD+ by MNN rescued the renal injury in a SIRT1-dependent manner (15). The declined NAD+ levels in DKD, as shown by ours and other (12) in STZ-induced diabetic C57 mice, might lead to disturbed maintenance of mitochondrial function and acetylation of transcriptional factors like PGC-1α by suppressed SIRT activity (34), resulting in renal impairment. Furthermore, NAD+ augmentation has also been reported to attenuate diabetic albuminuria (14, 35), despite renal NAD+ remained unchanged in db/db mice. Short-term NMN supplementation was demonstrated to lead to exerted long-term renal protective effects, and this effect was associated with the increase in NAD+ levels after NMN administration (14). The discrepancy in NAD+ levels might be due to different diabetic animal models and distinct mouse strains. In the kidney, the salvage pathway dominates NAD+ biosynthesis (18, 19). Overexpression of NAMPT, an enzyme of NAD+ salvage pathway, was reported to protect diabetic kidney injury via regulating renal NAD+ level and NAD+-dependent deacetylase SIRT6 (12). In addition to traditional perspectives, recent studies also emphasize the regulatory role of de novo synthesis in NAD+ dynamics. Faivre A et al. (36) showed that enzymes involved in the de novo NAD+ synthesis pathway were downregulated in kidney allograft patients after transplantation and in ischemia-reperfusion or unilateral ureteral obstruction mice. QPRT deficiency (21, 22) or α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase increase (23) induce AKI injury. Additionally, urinary/and plasma metabolites such as QA/3-hydroxyanthranilic acid ratio (24) and QA/TRP (21, 22) are proposed as potential predictive biomarkers for AKI/and AKI progression to CKD. However, these studies predominantly focus on AKI, leaving the dynamics of NAD+ level alterations in CKD, particularly DKD, and the intricate mechanisms underlying its complex downregulation unclear. Our data firstly showed the expression of NAD+ biosynthetic enzymes expression in diabetic murine kidneys. Our study revealed that the de novo pathway was impaired in DKD while the enzymes of the salvage pathway remained. Specially, QPRT and KMO were found reduced in transcription level, and the latter was further confirmed decreased in protein level by immunoblot analysis.

Given that KMO deficiency was reported to cause proteinuria in zebrafish and mice (37), we speculated that KMO is involved in the pathogenic mechanisms of DKD and explored the distribution of KMO in murine kidneys. In our study, KMO was predominantly expressed in proximal tubules, with the other two key enzymes of de novo NAD+ synthesis pathway, QPRT and HAAO, implying proximal tubules as active sites for de novo NAD+ synthesis to fulfill its high demand for energy consumption, consistent to present human data and our previous human study (24). KMO has also been reported in mice glomeruli, particular in podocyte (37, 38). However, we did not observe podocyte KMO expression in our study, possibly due to the overwhelmingly strong expression of tubular KMO in complete cortex sections.

A meaningful study conducted by Hasegawa et al. demonstrated SIRT1 and NAD+ metabolism alterations in proximal tubules (PTs) occur at a very early stage in diabetes and crosstalk between PTs and podocytes mediated by NAD+/SIRT1 initiated diabetic kidney lesions (35). Our data supplemented their study with evidence that decreased tubular KMO might be responsible for disruption of glomerular renal NAD+ homeostasis in early phase of DKD. This was further supported by the work of Yougang Zhai et al., wherein the overexpression of KMO in primary cultured human proximal tubular cells exhibited otherwise undetectable downstream intermediate metabolites such as 3-HK, QA and consequently restored the NAD+ levels originating form de novo pathway (19).

The limitations of this study include the absence of gain and loss of KMO function studies to validate KMO’s role in diabetic condition. And, a more comprehensive metabolic profiling of substrate and enzyme activity investigations of the de novo pathway need to be addressed in subsequent experiments to refine our understanding.

In conclusion, our study demonstrated that NAD+ was decreased in DKD. Reduced KMO in NAD+ de novo synthesis pathway under diabetic condition contributed to the NAD+ deficiency, suggesting KMO as a potential therapeutic target for DKD. These findings contribute to our evolving understanding of DKD pathophysiology and suggest potential avenues for targeted interventions to mitigate renal injury and improve patient outcomes.
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Background and Objective

Previous research suggested a relationship between the Systemic Immune-Inflammation Index (SII) and multiple adverse health conditions. However, the role of SII in prediabetes and insulin resistance (IR) remains poorly understood. Therefore, this study aims to explore the potential relationship between SII and prediabetes and IR, providing data support for effective diabetes prevention by reducing systemic inflammation.





Methods

Linear regression models were used to assess the correlation between continuous SII and risk markers for type 2 diabetes (T2D). Subsequently, multivariate logistic regression models and subgroup analyses were employed to evaluate the association between SII tertiles and prediabetes and IR, controlling for various confounding factors. Finally, restricted cubic spline graphs were used to analyze the nonlinear relationship between SII and IR and prediabetes.





Results

After controlling for multiple potential confounders, SII was positively correlated with fasting blood glucose (FBG) (β: 0.100; 95% CI: 0.040 to 0.160), fasting serum insulin (FSI) (β: 1.042; 95% CI: 0.200 to 1.885), and homeostasis model assessment of insulin resistance (HOMA-IR) (β: 0.273; 95% CI: 0.022 to 0.523). Compared to participants with lower SII, those in the highest tertile had increased odds of prediabetes (OR: 1.17; 95% CI: 1.02-1.34; p for trend < 0.05) and IR (OR: 1.35; 95% CI: 1.18 to 1.51; p for trend<0.001).





Conclusions

Our study results demonstrate an elevated association between SII levels and both IR and prediabetes, indicating SII as a straightforward and cost-effective method identifying individuals with IR and prediabetes.





Keywords: systemic immune-inflammation index, insulin resistance, prediabetes, cross-sectional study, NHANES





Introduction

Type 2 diabetes (T2D) poses a significant global public health challenge, profoundly affecting human health and quality of life (1). Prediabetes and insulin resistance (IR) stand out as primary contributors to T2D development, characterized by aberrant glucose metabolism (2). IR is a pivotal factor in various metabolic disorders, signifying a state where insulin-responsive tissues exhibit reduced responsiveness to physiological insulin levels. This state results in hyperinsulinemia and elevated fasting blood glucose (FBG), diagnostic indicators of IR (3). Despite being the gold standard for assessing IR, the hyperinsulinemic-euglycemic clamp is a costly, intrusive, and time-consuming procedure that needs to be performed by skilled staff. Therefore, the homeostasis model assessment of insulin resistance (HOMA-IR) offers a more straightforward and useful option by measuring insulin and fasting blood glucose (4).

IR is not only a key pathogenic factor in T2D but is also associated with various pathological conditions such as cardiovascular diseases, certain types of cancer, infertility, polycystic ovary syndrome, non-alcoholic fatty liver disease, and metabolic syndrome (5). Given the substantial harm that IR and prediabetes inflicts on human health, the early detection and intervention of them are hot topics among scholars in the relevant field. Previous research indicates that systemic chronic inflammation plays a pivotal role in IR and prediabetes, with obesity frequently triggering this inflammatory state (6). Obesity can induce a chronic inflammatory state in various insulin-target tissues, including adipose tissue, liver, muscles, and the pancreas. This is often attributed to potential interactions between immune processes and metabolic defects (7). Metabolic tissues induce the occurrence of this chronic low-grade inflammation by recruiting, accumulating, and activating pro-inflammatory macrophages. Although macrophages play a central role, other immune cell types are involved in these inflammatory processes (8). Satoshi discovered that CD8+ T cells can activate macrophages within adipose tissue. This alteration of the immune microenvironment leads to the shift of adipose tissue from an anti-inflammatory state to a pro-inflammatory state (9). Hence, controlling inflammation seems to be a pivotal intervention for mitigating IR and prediabetes. Nevertheless, studies on the population-level association between inflammation and IR and prediabetes are still limited. A comprehensive exploration of this potential connection necessitates an urgently required objective assessment indicator that precisely mirrors the immune and inflammatory status of populations with IR and prediabetes.

The systemic immune-inflammation index (SII), developed by Hu et al., is a novel, comprehensive biomarker for immune inflammation based on blood cells (10). It integrates three types of inflammatory cells-platelets, neutrophils, and lymphocytes. It accurately reflects the local immune response and systemic inflammatory status of body (11). Multiple studies have substantiated the prognostic value of SII in assessing outcomes for various cancer patients, encompassing bladder cancer (12), cervical cancer (11), non-small cell lung cancer (13), colorectal cancer (14), and gastric cancer (15). In recent years, SII has emerged as an indicator for detecting chronic inflammatory disease beyond tumors. Yang et al. reported that in patients with coronary artery disease after coronary intervention, SII demonstrates superior predictive value for major cardiovascular events compared to traditional risk factors (16). Wang et al. suggested using SII as an indicator for detecting diabetes depression (17). Additionally, several studies utilizing the NHANES database reveal a robust association between SII and various metabolic diseases, such as diabetic nephropathy (18), hepatic steatosis (19), and osteoporosis (20). Moreover, numerous studies indicate that, compared to traditional immune-inflammatory indicators [including lymphocyte/monocyte ratio (LMR), platelet/lymphocyte ratio (NLR)], SII is a more accurate predictor of malignant tumors (21, 22).

In summary, SII is a non-invasive quantitative indicator with higher research value compared to traditional inflammatory markers. Given the relationship between inflammation and IR as well as prediabetes, we hypothesize that a high SII level may be positively associated with the risk of developing IR and prediabetes. However, research in this field is currently limited. Therefore, this study plans to employ the NHANES database for a more rigorous statistical analysis methods, controlling confounding variables to validate this hypothesis. Our goal is to identify individuals at high risk of IR through SII and explore the association between SII and markers of T2D risk. This will help investigate its potential to identify prediabetic patients.





Materials and methods




Data source and study sample

The National Health and Nutrition Examination Survey (NHANES), conducted by the National Center for Health Statistics (NCHS), is a nationwide survey assessing the health and nutritional status of adults and children in the United States. It employs a cross-sectional, multi-stage, stratified, and sub-group probability sampling design, with a two-year cycle (23). The survey covers various aspects, including in-home face-to-face interviews (demographics, socioeconomic status, diet, and health-related questions), as well as health examinations conducted at Mobile Examination Centers (MEC) collecting medical data, anthropometry, and laboratory tests (24). The NHANES protocol is revised and approved by the NCHS Ethics Review Committee, and all participants provide written informed consent (25).

The population data used in this cross-sectional study are from the NHANES database, covering seven consecutive periods (2005-2006, 2007-2008, 2009-2010, 2011-2012, 2013-2014, 2015-2016, and 2017-2018). It involves 60,936 participants, consistent with the results of Liu, et al. (26). We excluded pregnant participants, those under 18, potential type 1 diabetes patients (defined as those <20 years receiving only insulin treatment), and T2D patients (self-reported diabetes, insulin or oral hypoglycemic medication use, HbA1c (≥6.5%), fasting blood glucose (≥126 mg/dL), or impaired glucose tolerance (≥200 mg/dL) (27), along with patients using various medications that may affect insulin sensitivity or with missing data (independent, dependent, and covariate data) (28). Finally, the study included 9,250 participants with complete data (Figure 1).




Figure 1 | Flow chart of participants selection from the NHANES 2005-2018.







Exposure variable and outcome variables

The exposure variable is SII, calculated as platelet count × neutrophil count/lymphocyte count (29). Subsequently, participants were divided into three groups based on the tertiles of SII, namely Tertile 1 (1.53≤SII<356.6), Tertile 2 (356.67≤SII<552.75), and Tertile 3 (SII≥552.75). Outcome variables include risk markers for IR, prediabetes, and T2D, such as fasting blood glucose (FBG), glycated hemoglobin (HbA1c), fasting serum insulin (FSI), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). The formula for calculating HOMA-IR is [FBG × FSI/22.5] (30). In this study, HOMA-IR>2.6 is considered the diagnostic criterion for IR (31). Prediabetes is defined based on questionnaire and laboratory tests, with HbA1c levels between 5.7% and 6.4% or impaired fasting glucose levels (100-125 mg/dL) and/or impaired glucose tolerance (140-199 mg/dL) (32).





Covariates

Provided participants with standardized questionnaires to collect sociodemographic and lifestyle information. Based on previous research, we included covariates related to metabolic health risk factors, including low socioeconomic status, smoking status, alcohol consumption, physical activity, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), total cholesterol (TC), serum triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (γ-GGT), alkaline phosphatase (ALP), serum creatinine (Cr), and lactate dehydrogenase (LDH). This study also included gender (male or female), age as a continuous variable or categorical variable (18-39 years, 40-59 years, or ≥60 years), race/ethnicity (non-Hispanic Black, other Hispanic, non-Hispanic White, or other race), education level (less than high school, high school, and beyond high school), PIR (categorized as 1, 1-2, 2-4, and >4), smoking status categorized as never smoked (before the survey<100 cigarettes), former smoker (smoked >100 cigarettes before the survey but quit before the survey), and current smoker (smoked >100 cigarettes before the survey and smoked during the survey) (33). Participants who consumed at least 12 drinks of any type of alcoholic beverage (12 ounces of beer, 5 ounces of wine, or 1.5 ounces of distilled spirits) within the past year were classified as drinkers (34). MVPA was defined as completing at least 10 minutes of vigorous/moderate-intensity physical activity in a typical week (2007-2018 cycle), resulting in substantial sweating, or a significant increase in breathing or heart rate (35).





Statistical analysis

In the description of the study population, continuous variables, if normally distributed, are presented as the mean with standard deviation; if skewed, they are presented as the median (25th-75th percentile). Both the normally and skewed distributed variables are analyzed using weight linear regression. Categorical variables are expressed as percentages and analyzed using the weighted chi-square test. We first established three weighted multivariable linear regression models to analyze the correlation between SII and T2D risk markers (FBG, HbA1c, FSI, and HOMA-IR). Model 1 was unadjusted for any covariates, Model 2 adjusted for covariates including age, gender, race, smoking and drinking status, PIR, education level, and physical activity status, and Model 3 adjusted for age, gender, race, smoking and drinking status, PIR, education level, physical activity status, BMI, TC, TG, ALT, AST, γ-GGT, ALP, Cr, and LDH. Subsequently, to evaluate the association between continuous LgSII and participants stratified into three tertiles and IR and prediabetes, we conducted a multifactorial logistic regression. Afterward, subgroup analyses were performed to test for interaction and control of confounding categorical variables, including age (18-39 years, 40-59 years, or ≥60 years), gender, race, education level, PIR, smoking status, alcohol consumption, and MVPA. Subgroup analyses used weighted multifactorial logistic regression. These stratification variables were also considered predefined effect-modifying factors. To examine the heterogeneity of associations between subgroups, interaction terms were introduced. Finally, we used Restricted Cubic Spline (RCS) regression to examine the non-linear relationship between SII and IR and prediabetes. Likelihood ratio tests were employed to confirm this relationship. It is noteworthy that, during regression analysis, SII was log-transformed as it exhibited a right-skewed distribution. All analyses were conducted using R software (version 4.1.2).






Results




Baseline characteristics of the study population

Table 1 presents the baseline characteristics of participants categorized by SII status. The study comprised 9250 participants, including 4827 males and 4423 females, with a median age of 45 years. Among them, 43.11% were diagnosed with IR, and 19.7% were considered to have prediabetes. Participants were divided into groups based on SII tertiles: Tertile 1 represented the relatively lower SII group (1.53≤SII<356.67); Tertile 2 represented the relatively higher SII group (356.67≤SII<552.75); Tertile 3 represented the highest SII group (SII≥552.75). Compared to those in the lower SII group, subjects in SII Tertile 3 included more females, fewer non-Hispanic Blacks, more current or former smokers, individuals with lower educational attainment, and those engaged in less physical activity. Across the three SII groups, significant differences were observed in BMI, FBG, HbA1c, FSI, HOMA-IR, TC, TG, ALT, AST, chloride, SBP, alkaline phosphatase, and creatinine levels (all P values <0.05). Importantly, individuals with higher SII levels had a higher proportion of prediabetes and IR patients (P<0.05 in both cases).


Table 1 | Basic characteristics of the study population (n=9250) in the NHANES.







Association between SII and T2D risk markers

The correlation between SII and the risk markers of T2D was showed in Table 2. After adjusting for potential confounders, a significant correlation was observed between continuous SII and FBG, FSI, and HOMA-IR, while the relationship between SII and HbA1c was significant only when no covariates were adjusted. Following comprehensive adjustment for covariates in Model 3, participants in the second or third tertiles of SII had higher levels of FBG, FSI, and HOMA-IR compared to those in the first tertile. And the corresponding β coefficients (95% CI) for the highest tertile of SII were 0.048 (95% CI: 0.014 to 0.082), 0.658 (95% CI: 0.175 to 1.141), and 0.165 (95% CI: 0.021 to 0.309) for FBG, FSI, and HOMA-IR, respectively.


Table 2 | Coefficients (95% CI) for the relationship between the SII and the markers of T2D risk.







Relationship between SII and IR

As shown in Table 3, a significant positive correlation between SII and IR was demonstrated in the unadjusted original model (Model 1) (odds ratio=1.73; 95% confidence interval (CI), 1.45-2.06; P<0.001) and in the minimally adjusted model (Model 2) (OR=1.89; 95% CI: 1.57-2.28; P<0.001). Even after adjusting for all covariates (Model 3), this positive correlation persisted (OR=1.64; 95% CI: 1.32-2.04; P<0.001). This implies that for every one-unit increase in LgSII, the risk of IR increases by 64%. We further transformed SII from a continuous variable to a categorical variable (tertiles) for sensitivity analysis. Compared to participants in the lowest Tertile 1 group of SII, those in the highest Tertile 3 group had a 34% increased risk of IR, with statistical significance (OR=1.34; 95% CI: 1.18-1.51; P<0.001). Although participants in the Tertile 2 group also exhibited a higher risk of IR compared to the Tertile 1 group, with a 4% increased risk, but this difference was not statistically significant.


Table 3 | The associations between SII and IR.







Relationship between SII and prediabetes

Table 4 presents the association between SII evaluated based on its tertiles and prediabetes. In Model 1, without adjusting for any factors, the relationship between continuous LgSII and prediabetes was significant (OR=1.60; 95% CI: 1.29-2.00; P<0.001). After adjusting for all potential covariates, an increase of 1 unit in SII score was associated with a 43% increased odds of having prediabetes (OR: 1.43; 95% CI: 1.13 to 1.82). Additionally, we assessed the relationship between tertiles of SII scores and prediabetes. Individuals with the highest SII tertile had a 17% increased odds of prediabetes compared to those in the lowest tertile (OR: 1.17; 95% CI: 1.02 to 1.34; P=0.029), whereas the association between the second SII tertile and prediabetes was not significant.


Table 4 | The associations between SII and prediabetes.







The multivariable logistic regression model

In the fully adjusted multivariable logistic regression model, age, race, smoking, alcohol consumption, physical activity, ALT, AST, alkaline phosphatase, BMI, triglycerides, and blood chloride levels still show significant associations with the odds of IR (Table 5). Factors significantly associated with the risk of prediabetes include age, gender, race, ALT, AST, BMI, TG, blood chloride levels, and LDH (Table 6). Compared to participants aged 18-39, those aged 40-59 have 2.45 times higher odds of prediabetes, while participants over 60 have 7.04 times higher odds of prediabetes (P<0.001), and a 35.5% higher risk of IR (P<0.001). Compared to Mexican-American individuals, non-Hispanic white individuals have a 27.8% lower likelihood of IR and a 28.2% lower likelihood of prediabetes (P<0.001), while non-Hispanic black individuals have a 24.3% higher risk of IR (P=0.02). Compared to smokers, non-smokers and former smokers have a 50.9% and 56.5% increased odds of IR, respectively (P<0.001).With each unit increase in TG and ALT, the odds of IR increase by 292.2% (P<0.001) and 26% (P<0.001), respectively, while the odds of prediabetes increase by 53.6% and 1% (both P<0.001). Compared to non-obese participants with a BMI less than 30, obese participants have 448% higher odds of IR and 99.8% higher odds of prediabetes (P<0.001).


Table 5 | Multivariate logistic regression models of IR.




Table 6 | Multivariate logistic regression models of prediabetes.







Subgroup analysis

Our subgroup analysis reveals inconsistent associations between SII levels and IR as well as prediabetes (Figures 2, 3). In subgroups based on gender, race, and alcohol consumption, significant associations between SII and IR are detected in each subgroup (all P<0.05).However, among participants with prediabetes, only females, those aged 18-39, non-Hispanic white individuals, those with high school education or less, PIR<1 and 2<PIR<4, former or current smokers, drinkers, and physically active participants show statistically significant associations in subgroups stratified by gender, age, race, education, PIR, smoking status, alcohol consumption, and physical activity. Additionally, interaction tests show that age is the most prominent interacting factor influencing the relationship between SII and IR as well as prediabetes. For younger participants (18-39 years old), with increasing SII levels, the risk of both IR (OR=4.29, 95% CI: 3.11-5.92) and prediabetes (OR=5.78, 95% CI: 3.31-10.08) is significantly higher than in middle-aged participants (P<0.001).Among other factors, physical activity and gender are prominent factors influencing the relationship between SII and IR (P<0.05), and education level may influence the positive correlation between SII and prediabetes (P=0.045).




Figure 2 | Subgroup analysis for the association between SII and IR.






Figure 3 | Subgroup analysis for the association between SII and Prediabetes.







Analysis of restricted cubic spline regression

We further assessed the dose-response relationship between SII and prediabetes as well as IR using restricted cubic splines. In a model without adjusting for any covariates, we found a significant non-linear relationship between SII and prediabetes (P=0.017, Figure 4A), and the dose-response curve exhibits an inverted U shape. However, after adjusting for several covariates, the relationship between SII and prediabetes became linear (P>0.05) (Figures 4B, C). Additionally, irrespective of covariate adjustments, there is a linear dose-response relationship between SII scores and IR (Figures 4D–F).




Figure 4 | The dose-response relationships of SII with prediabetes (A–C) and IR (D–F) in Model 1 (unadjusted for any covariates), Model 2 (adjusted for covariates including age, gender, race, smoking and drinking status, PIR, education level, and physical activity status) and Model 3 (adjusted for age, gender, race, smoking and drinking status, PIR, education level, physical activity status, BMI, TC, TG, ALT, AST, γ-GGT, ALP, Cr, and LDH). Results were from restricted cubic spline models.








Discussion

To our knowledge, this is the initial investigation assessing the association between SII and prediabetes in the adults of the United States. A recent study have reported a positive linear associations between higher SII and increased risk of IR, which is consistent with our findings. However, their study did not adequately exclude patients with existing diabetes or those taking medications that could affect IR, and our research included a higher number of study populations (23). Therefore, our research results are more reliable and more complete.

In this cross-sectional study involving American adults, we observed a significant correlation between elevated SII levels and risk markers for T2D (FBG, FSI, and HOMA-IR). Furthermore, after further adjusting for potential confounding factors, the association between SII and increased risk of IR and prediabetes persisted. However, the positive correlation between SII and IR or prediabetes is more significant in females than in males. Additionally, the restricted cubic spline model indicates a linear dose-response relationship between SII and the odds of IR and prediabetes. These findings suggest that SII may serve as a monitoring indicator for IR and prediabetes.

Zhao et al. illustrated that continuous SII exhibit a skewed distribution, aligning with the structure of our original data. To approximate it to a normal distribution, they recommended logarithmic transformation of SII (24). From Table 1, it can be seen that some traditional diabetes risk factors, such as older age, smoking, and higher BMI, are more likely to have higher SII values, while protective factors like MVPA are more likely to have lower SII values. Additionally, our study revealed a positive correlation between continuous SII and glycated hemoglobin. However, this correlation vanished after adjusting for confounding factors and categorizing SII into tertiles.

SII is a recognized indicator for predicting cancer treatment outcomes and prognosis. Apart from cancer, the predictive value of SII for other metabolic-related diseases, such as diabetes and cardiovascular diseases, is also gaining attention (25, 26). The study by Nie et al. revealed an association between increased SII and increased prevalence of diabetes (27). Bian et al. found that CAD patients undergoing PCI with worse prognostic outcomes tended to have higher SII values (28). In a cross-sectional study conducted in the United States with 12,402 participants, a significant correlation between SII and metabolic syndrome was found after inclusion (24). Metabolic syndrome is a condition characterized by an aggregation of various metabolic risk factors related to IR and impaired glucose regulation (29). Inspired by this discovery, we focus on whether SII holds equal value in identifying and predicting IR and prediabetes. There are few studies that have independently evaluated the association between SII and IR as well as prediabetes. Numerous studies have indicated a significant association between SII and complications of diabetes.

In the work by Elbeyli, the SII was identified as a potential diagnostic biomarker for diabetic macular edema, with positive implications for improving diabetic retinopathy (30). Özata et al. further explored the correlation between SII and diabetic macular edema, revealing that an elevated SII level might lead to an increased incidence of serous retinal detachment (31). The research of Safak et al. unveiled the potential of SII as a predictive indicator for diabetic foot osteomyelitis (32). Moreover, in a survey of Indonesian diabetic patients, Yohanes and Andy found a significant association between low SII levels and the regulation of psychological well-being in diabetic patients (33).

In clinical studies, both IR and prediabetes have been found to be associated with several traditional inflammatory markers. Jia et al. used the rate nephelometry method to measure serum IMA and hs-CRP concentrations in patients with diabetic retinopathy, finding a positive correlation between hs-CRP concentration and the incidence of diabetic retinopathy (34). Liu et al. suggested that serum hs-CRP concentration can predict the incidence of diabetes (35). However, some studies have found no difference in the presence or absence of hs-CRP with IR. Systemic levels of TNF-a, IL-1b, IL-6, and CRP are elevated in both type 1 and type 2 diabetes patients (36, 37), which is a result of the chronic activation of pro-inflammatory pathways within insulin-target cells (38). Consequently, these cytokines and inflammatory mediators, especially TNF-α, monocyte chemoattractant protein-1 (MCP-1), CRP, and interleukins, are considered potential contributors to IR or impaired B-cell function (39). Additionally, in the study by Shu et al., it was found that the dietary inflammatory index is positively correlated with FBG, FSI, and HOMA-IR, and a more pro-inflammatory diet is associated with increased odds of IR and prediabetes (40).

In recent years, an increasing number of studies have focused on the significance of common inflammatory markers in blood routine examinations in the diagnosis and treatment of metabolic diseases. Additionally, Christine Lee and colleagues investigated the relationship between various white blood cell subtypes and IR in high-risk individuals, finding a positive correlation with all white blood cell subtypes, including granulocytes, lymphocytes, and monocytes (41). Karakaya studied 96 obese patients and 40 healthy controls, discovering a positive correlation between IR and white blood cell count, with NLR higher in obese IR patients than non-IR obese patients (42). Rodríguez-Rodríguez et al. also found a similar phenomenon in children (43). Some studies suggest that participants resistant to insulin have significantly higher platelet counts than insulin-sensitive participants (44). Hwang et al. found that with an increase in platelet count, the incidence of diabetes also increased, indicating that platelets are a potential risk marker (11). However, in the study by Rodríguez-Rodríguez, it was found that high platelet values do not constitute a risk factor for the occurrence of IR in children, and no relationship was observed between IR and PLR (43). In related reports, it seems that NLR is better at predicting inflammation than PLR, as neutrophils play a dominant role in inflammation by releasing vasoactive and cytotoxic substances (such as reactive oxygen species and digestive enzymes) during inflammation, leading to increased endothelial permeability (45). Therefore, it is necessary to introduce a more accurate SII index that includes platelet count for further research.

In various studies on inflammatory markers, SII, with its advantage of integrating three key immune cells, provides a more comprehensive description of the body’s inflammatory state compared to traditional single inflammatory biomarkers. For instance, Berbudi et al. revealed that SII, in predicting the impact of T2D on the immune system, demonstrates more precise and effective predictive capability than NLR, PLR, and MLR, as significantly confirmed by ROC curve analysis (46). Furthermore, the study by Nicoară’s team confirms that, in differentiating whether obese children have metabolic syndrome, SII exhibits higher diagnostic efficacy compared to NLR, PLR, and SIRI. It also shows a positive correlation with the HOMA-IR (47). These findings offer a new perspective for clinically assessing inflammatory and metabolic abnormal states.

The primary strength of this study is the inclusion of a large number of samples. Based on NHANES database, we analyzed a total of 9250 samples from 2005 to 2018, including self-reports, laboratory tests, and physical examinations. These data were collected by professionals through a standardized procedure, significantly reducing errors caused by different methods. The enormous sample size and standardized data contribute to obtaining meaningful and highly reliable results even after multiple condition screenings. And this study not only screened diabetic patients based on fasting blood glucose level >7.0 mmol/L but also excluded potential diabetic patients based on medication use and HbA1c levels. Additionally, to explore the impact of confounding factors on the association between SII and IR and prediabetes, we conducted stratified analyses. The results revealed that factors such as age, gender, race, education level, and family income-poverty ratio had some impact on the incidence of IR and prediabetes. For example, older patients have higher SII values and are at higher risk for IR and prediabetes. And our results show that women are more likely to have higher SII values than men, suggesting that they are more likely to have IR as well as pre-diabetes. Furthermore, lifestyle factors such as smoking, more alcohol consumption, and lower physical activity level were also positively associated with the risk of developing IR and prediabetes. Finally, we used non-restrictive cubic spline plots to analyze the nonlinear relationship between SII and IR and prediabetes, providing a more comprehensive understanding of their development and risk factors.

However, this study has certain limitations. Firstly, the nature of observational research restricts our analysis of causal relationships, leaving room for multiple interpretations, including both causation and reverse causation. Therefore, prospective studies are urgently needed to clarify the precise connections among these factors. Additionally, despite adjusting for various covariates, potential confounding factors such as dietary patterns and a family history of T2D might still be overlooked. It’s worth noting that, although diet has a significant impact on circulating TG levels, fasting blood samples collected in this study may not fully capture this aspect. Future research should delve into exploring the specific influence of dietary factors on study results.

Despite some limitations and drawbacks, our study still holds significant clinical relevance. As a novel inflammatory biomarker, SII not only offers the advantage of non-invasiveness but also provides a more comprehensive approach to assessing immune and inflammatory responses. The results of this study confirm our previous hypothesis that SII can serve as crucial indicators for diagnosing IR and prediabetes. In an era where IR is prevalent, often elusive, and troubling to primary care communities, the SII scoring system, comprising three simple and efficient hematological indicators, provides a practical diagnostic tool for primary healthcare practitioners. In the future, we plan to initiate a multicenter prospective cohort study to explore the effectiveness of SII as an independent predictor of IR and prediabetes. The goal is to offer prospective guidance and intervention for high-risk individuals through routine blood cell count monitoring, aiming for prevention and protection.





Conclusion

In conclusion, this study indicates a positive correlation between SII and FBG, FSI, and HOMA-IR, so higher SII levels may increase the odds of IR and prediabetes. Therefore, SII is poised to be a direct and cost-effective method for identifying patients with IR and prediabetes.
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Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic β-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic β-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, β-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal β-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic β-cells ER stress and subsequently to β-cell dysfunction. In mammalian cells, such as β-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in β-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on β-cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic β-cells to faithfully phenocopy all features of bona fide human β-cells for diabetes therapy or drug screening.
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1 Introduction

Diabetes mellitus (DM) is a chronic and complex metabolic disorder that results from a defect in insulin secretion, action, or both (1). The recent report of the international diabetes federation (IDF) estimated that 537 million adults (20–79 years) worldwide are living with diabetes (www.idf.org). The two main forms of DM are Type 1 and Type 2 diabetes (American Diabetes Association 1997 Report). Type 1 diabetes (T1DM) accounting ~10% of diabetic patients, is characterized by a selective autoimmune destruction of pancreatic β-cells leading to nearly complete loss of insulin production that typically develops over several years. Type 2 diabetes (T2DM), the most common affecting > 90% of people diagnosed with DM, results from an inability of pancreatic β-cells to produce sufficient insulin to stimulate glucose utilization by peripheral metabolically active organs to maintain glucose homoeostasis (2). Now, it is well acknowledged that both T1DM and T2DM converge on impaired insulin secretion and uncontrolled hyperglycemia secondary to pancreatic β-cell dysfunctionality, ultimately necessitating insulin therapy. While exogenous insulin administration option is considered as a life-saving treatment, it is unfortunately associated with acute episodes of hypoglycemia and weight gain in significant number of patients (3). Transplantation of islets isolated from deceased donors or surrogate insulin-producing β-cells from human pluripotent stem cells are an effective alternative approach to restore normoglycemia when endogenous β-cells have already been practically depleted (3–5). Human pluripotent stem cells (hPSC), including induced pluripotent stem cells (iPSC) and embryonic stem cells (ESC) can be differentiated virtually to any cell type in the body. Also due to their infinite self-renewal competency, they are a good alternative source to cadaveric islets. More strikingly, stem cell-derived pancreatic pseudoislets generated in vitro could potentially become an infinite source of insulin-secreting β-cells for a potential diabetes therapy. Over the last two and half decades, many efforts have been made on developing and implanting in vitro protocols to successfully differentiate hPSCs into insulin-producing β-cells with key features of bona fide mature β-like cells using multi-stages directed differentiation protocols that recapitulate and phenocopy all specific stages of pancreas embryogenesis (4, 6–8).

However, many protocols developed to differentiate stem cells into insulin-expressing β-cells in vitro have faced a roadblock: the resulting β-cells often exhibit an immature phenotype with impaired glucose-stimulated insulin secretion (GSIS) compared to cadaveric islets. This limitation highlights the need for further optimization of differentiation protocols to achieve the generation of fully mature and functional hPSC-derived β-cells. Multiple mechanisms underlie defective insulin secretion associated with β-cell dysfunction (9). Notably, accumulating evidence implicates endoplasmic reticulum (ER) stress and dysregulated ER stress signaling in β-cell failure, potentially contributing to insulin secretion defects and diabetes development (10–12). ER is an organelle that executes vital biological roles in the organism. It serves as a cellular hub for protein biogenesis, orchestrating posttranslational modifications, protein folding and assembly, and acting as a critical reservoir for calcium (Ca2+) storage (13, 14). It has been reported in both human studies and animal models that under condition of chronic metabolic disorders, ER stress is activated in several key metabolically actives tissues, including the liver, muscle, adipose, and pancreas (15). β-cell loss is a pathological component of both T1DM and T2DM, with recent reports indicating that ER stress plays a role in this process (16). Indeed, several reports have suggested that ER dysfunction exacerbates DM (17–19). The specialized function of β-cells, involving the constant synthesis and release of insulin in response to nutrient and hormone stimulation, makes them particularly susceptible to ER stress (11, 20, 21). Furthermore, in normal and healthy condition, over 50% of the total mRNA present in β-cell is allocated to insulin synthesis. Moreover, unfolded protein response (UPR), which is activated in response to ER stress aimed at restoring ER homeostasis, plays a vital for the maintenance of the integrity and function of β-cells. Therefore, maintaining proper ER proteostasis is critical for a normal function of β-cells. In this review, we will document and discuss the current understanding of the role of ER stress and its associated signaling mechanism on β-cell function and diabetes and how ER stress could be targeted in vivo for therapeutic opportunities and in vitro during direct differentiation protocols to generate totally functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.




2 Endoplasmic reticulum stress or ER stress

The endoplasmic reticulum (ER) was first discovered by Emilio Veratti in the late 19th century as Sarcoplasmic Reticulum in muscle fibers. The use of electron microscopy allowed Keith Porter in the 1940s to first visualize the morphology of this new organelle and named it as “endoplasmic reticulum” (22). The ER is the largest single structure present in most eukaryotic cell types (23) and consists of a range of interconnected shapes, including sheets, tubules, and lumen. While the ER lumen’s physical separation from the cytoplasm ensures distinct functional domains, its continuous connectivity with the nuclear membrane facilitates nuclear-cytoplasmic communication (24). Based on morphological structures, the ER can be divided into two distinct forms: the rough endoplasmic reticulum (RER) and the smooth endoplasmic reticulum (SER). This morphological difference is associated with distinct functional roles: SER is primarily responsible for the synthesis of phospholipids and cholesterol, while the central role of RER is the synthesis and export of proteins and glycoproteins. Overall, the ER is essential organelle and acts as a central player in the synthesis, modification, quality control, protein trafficking, and sterol/lipid synthesis (25). It also serves as a key site for mobilization and regulation of the Ca2+ release (26). Acting as a major synthetic organelle, the ER’s critical role in protein synthesis renders it extremely and highly sensitive to perturbations in homeostasis. Following synthesis and before leaving the ER, all newly synthesized proteins undergo meticulous quality control, involving protein folding, assembly, and post-translational modifications and only properly folded proteins are transported to the Golgi. Therefore, when misfolded or unfolded proteins accumulate within the ER, a cellular stress response named the UPR is triggered. UPR is a well conserved, intracellular signaling pathway in eukaryotic organisms. In yeast, more than 300 genes involved in all aspects of ER function, including protein folding are activated by the UPR. ER stress manifests when the functional demand of the organelle exceeds its protein folding capacity which subsequently leads to the accumulation of unfolded or misfolded proteins in the ER lumen. To restore ER homeostasis, cells activate the ER stress response that helps to limit the amount of newly synthesized proteins and increase the production of chaperones, specialized molecules that assist to fold unfolded proteins. In mammalian cells, such as β-cells, it is well documented that the UPR is classically controlled by three canonical ER-resident transmembrane proteins to respond to stress: ATF6 (activating transcription factor 6); IRE1 (inositol requiring 1); and PERK/PEK (PKR-like endoplasmic reticulum kinase/pancreatic eIF2a kinase), which each produce a transcription factor (ATF4, XBP1s, ATF6, respectively), resulting in activation of transcription of ER stress-inducible genes (Figure 1). Each of these proteins employ distinct mechanisms and signaling pathways to regulate the production of proteins crucial for ER function. This allows cells to dynamically adjust the protein folding capacity of the ER to match the demand. Mammalian cells have three canonical ER-resident transmembrane sensor pathways working in parallel, while only IRE1 pathway exists in yeast. To face this challenge, cells, particularly secretory cells, meticulously monitor the state of the ER protein folding. This control relies heavily on diverse chaperones like the immunoglobulin heavy chain binding protein, BiP (also called GRP78) belonging to the heat shock protein (HSP) families (27–30). Under normal and unstressed conditions, the concentration of BiP in the ER lumen exceeds the concentration of unfolded proteins (e.g. proinsulin), so free BiP constitutively binds to the three ER transmembrane sensors (ATF6, IRE1 and PERK), preventing their activation (Figure 1). However, when misfolded proteins (e.g.proinsulin) accumulate in the ER, BiP detaches from the UPR transmembrane sensors and binds to the exposed hydrophobic domains of the unfolded proteins (in this particular context, proinsulin) thus freeing PERK, ATF6, and IRE1. This results in the activation of specific downstream signaling pathways associated with the three UPR effector proteins—ATF6, IRE1, and PERK (see Figure 1) (31). These pathways manage global protein synthesis and chaperone expression, thereby promoting ER homeostasis.




Figure 1 | Unfolded protein response (UPR) dysfunction in β-cell ER. Increased proinsulin synthesis in response to nutrient demand directly contributes to physiological ER stress in pancreatic β-cells. In the absence of stress, the three UPR sensors IRE1, ATF6, and PERK stay inactive monomers bound to the ER chaperone BiP. Under normal healthy ER stress conditions when misfolded proinsulin accumulation exceeds the ER’ clearance capacity, BiP detaches from the UPR transmembrane sensors and binds to the exposed hydrophobic domains of the misfolded proinsulin, thus freeing PERK, ATF6, and IRE1. This triggers the activation of downstream signaling of these three UPR sensors and subsequently UPR target genes that help to maintain ER homeostasis by increasing molecular chaperones, reducing misfolded proinsulin retention. However, excessive or prolonged increased influx of newly synthesized proinsulin into the ER can exceed the ER capacity (folding requirement outstrips folding capacity), triggering the production of misfolded proinsulin aggregates. This activates and upregulates UPR target genes to induce inflammation, and β-cell failure. Illustration created with Biorender.com.






3 Adaptive UPR to preserve β-cell function

The ER is a very important intracellular organelle where newly synthesized proteins, including proinsulin undergo folding into their unique three-dimensional (3D) conformations that are required for release into the extracellular space. Therefore, maintaining ER homeostasis is crucial for ensuring proper protein folding, assembly, and secretion (32). Notably, a balanced cellular environment within the ER is vital for various secretory cells such as pancreatic β-cells that are more susceptible to ER stress than other cells due to the high rate of proinsulin synthesis turnover. Pancreatic β-cells play an essential role in maintaining glucose homeostasis. They ‘sense’ changes in plasma glucose levels and other secretagogues such as neurotransmitters and circulating hormones by synthesizing and releasing insulin accordingly. In human, the high insulin synthesis turnover in response to increased secretory demand—inherent to the amounts of ingested food/meal—poses a great challenge on the protein folding machinery within the β-cell ER. To face this challenge, β-cells activate the UPR accordingly for a proper proinsulin folding inside the ER. This constitutes a regulated process vital for β-cell function and survival. Gain-and loss-of-function studies in both animal and human with specific mutations have established an essential role of the adaptive UPR transducers in pancreatic β-cell function. For example, studies investigating the effects of Perk deletion in mice, revealed that both young adult and mature adult mice resulted in hyperglycemia associated with loss of islet and β-cell architecture (33), and its mutation in humans causes β-cell failure associated with neonatal diabetes mellitus (34), highlighting its role in maintaining islet function. ATF6, a second UPR sensor, is also important for β-cell function as ATF6alpha-null mice on high-fat diet exhibit glucose intolerance due to pancreatic β-cell failure (35). Furthermore, genetic variations in ATF6 are associated with prediabetes in individuals of Chinese Han descent (36) and with Type 2 diabetes in Pima Indians (37). Additionally, IRE1 pathway, the third UPR transducer is also reported to be essential for glucose-stimulated insulin secretion and protection of β-cells. Mice lacking IRE1 develop DM due to proinsulin synthesis defect (38). Collectively, these findings indicated that adaptive UPR is required for normal β-cell function.




4 ER stress in β-cell dysfunction and diabetes

Pancreatic β-cells are highly sensitive to excessive ER stress and any defect in β-cells’ ability to maintain ER homeostasis can lead to their failure and apoptosis and the consequent development of DM (39, 40). It is now well-established that the UPR is important for β-cell function (41) and substantial evidence has demonstrated that both type 1 and type 2 polygenic diabetes, although caused by different mechanisms, share a common features: the presence of ER stress in β-cells (42).

T1DM and T2DM are the two major types of polygenic DM characterized by distinct underlying mechanisms. Relevant studies have now well demonstrated that these two forms of diabetes commonly share an enhanced ER stress in pancreatic β-cells that negatively impacts insulin secretion (21, 43, 44). The induction of β-cell ER stress by proinflammatory cytokines such as IL-1β and IFN-γ (45) implies that ER stress might contribute to pancreatic β-cell loss in T1DM. These cytokines activate the ER transmembrane sensor pathway and hamper β-cell defenses by inhibiting ER chaperones (43, 45). Thus, islet sections from T1DM patients showed increased levels of activating transcription factor 3 (ATF3), C/EBP homologous protein (CHOP) and BiP (46, 47).

T2DM is the more common type of polygenic DM, characterized by insulin resistance together with metabolic stress in metabolically relevant organs including pancreas. Increased β-cell workload due to sustained insulin resistance can trigger persistent ER stress and ultimately leads to pancreatic β-cell failure. The decline in β-cell mass secondary to increased apoptosis is of the important pathogenic features of T2DM (48, 49) and ER stress is a key factor contributing to β-cell apoptosis (43). Consistent with that, islets from T2DM patients showed increased levels of CHOP. Specifically, pancreata from obese diabetic showed six times higher expression of perinuclear CHOP as compared to those from obese nondiabetic controls (50). Similarly, db/db mice, an animal model of T2DM, showed existence of ER stress in their islets. In those animals a variety of ER stress marker genes (XBP1, DNAJC3, ATF4, CHOP, BiP) were upregulated in pancreatic islets. In parallel, increased islet expression of DNAJC3, CHOP, BiP proteins in human pancreas sections of T2DM subjects was reported (51). Recent reports have demonstrated that defects in proinsulin/insulin and ER stress markers progressively increase during the transition from normal glucose tolerance to impaired glucose tolerance to eventually T2DM (50). These changes are directly associated with the initial loss of β-cell identity (52). These in vivo studies indicate that the progression toward T2DM is characterized by increased expression of ER stress-related genes and increased in β-cell workload (high insulin demand and insulin resistance) that consequently leads to loss of β-cell identity and its dysfunction. Collectively, these findings provide strong evidence that ER stress within pancreatic β-cells may be a crucial contributing factor to β-cell apoptosis in the pathogenesis of polygenic diabetes. Thus, therapeutic intervention aiming at reducing ER stress may alleviate β-cell workload, and consequently delay β-cell failure in T2DM. Accordingly, increasing the UPR capacity of the ER may represent a promising potential therapeutic strategy for preventing the development of polygenic diabetes. One approach that has been reported consists of the use of pharmaceutical compounds with chaperone-like properties such as taurine-conjugated ursodeoxycholic acid derivative (TUDCA) and 4-phenylbutyric acid (PBA) that have the ability the improve the ER folding capacity (53, 54). In humans, administration of PBA has been reported to partially alleviate lipid-induced insulin resistance and β-cell dysfunction. Similarly, in mouse model of T2DM (ob/ob mice), both PBA and TUDCA exhibit ER stress-reducing properties, potentially contributing to restoration of plasma glucose homeostasis and systemic insulin sensitivity (55); indicating that chemical chaperones have potent antidiabetic property through enhancing the adaptive capacity of the ER.

Besides, pancreatic β-cell ER stress is reported to be directly involved in the pathogeny of some forms of monogenic diabetes (11). Monogenic diabetes, which accounts for 1–5% of all diabetes cases, is a spectrum group of inherited disorders caused by mutations in a single gene. Based on the age of appearance, it is clinically divided into (i) maturity-onset diabetes of the young (MODY) and (ii) neonatal or early-onset diabetes mellitus. Currently, more than 40 subtypes of monogenic diabetes have been identified, with the most prevalent being MODY (56). In contrast to the polygenic DM in which environmental factors play a crucial role, the monogenic forms of DM result from mutations or changes in a single gene providing undoubted evidence for the crucial role of genetics in the pathogeny of DM. Interestingly, studies have shown that defects in some MODY genes can cause ER stress in β-cell and subsequently its dysfunction.

MODY-1 is caused by a point mutation of the hepatocyte nuclear factor 4α (HNF4α) gene. HNF4α is known to target and activate Ankyrin Repeat And Sterile Alpha Motif Domain Containing 4B (ANKS4b) in pancreatic β-cells (57). ANKS4B binds to the ER chaperon protein BiP, leading to its overexpression and consequently, enhanced ER stress response. Conversely, suppression of ANKS4B reduced β-cell susceptibility to ER stress-induced apoptosis; indicating that ANKS4b represents a molecular target by which HNF4α regulates ER stress in β-cells (57) and therefore explaining the possible mechanism underlying the loss of HNF4α mediating β-cell dysfunction in MODY-1.

MODY-2 is an autosomal dominant form of monogenic diabetes due to point mutations of the glucokinase (GCK) gene (58). In mammalian, GCK (or hexokinase IV) represents the initiating enzyme of the glycolytic pathway and functions as “glucose sensor” expressed mainly in hepatocytes and pancreatic β-cells. GCK is a key enzyme essential for glucose metabolism that catalyzes the conversion of glucose to glucose-6-phosphate and thus controls GSIS. Thus, reduced GCK activity in β-cell has been reported as the primarily contributor to hyperglycemia in MODY2. Furthermore, mice with a missense mutation in the GCK gene showed defects in β-cell function associated with increased abundance of CHOP expression in their islets, a pro-apoptotic transcription factor involved in the ER stress response (59). By contrast, in Akita mice, a model of ER stress–mediated diabetes, glucokinase activator administration has been shown to improve ER stress–induced apoptosis in pancreatic β-cells by suppressing the expressions of CHOP and Bcl2-associated X protein (Bax) (60); highlighting the role of ER stress in the pathogeny of MODY-2.

MODY-3 is caused by loss-of-function mutations in the gene that encodes hepatocyte nuclear factor 1α (HNF1 α). Interestingly, dysfunction of HNF1A down-regulates XBP1 and BiP expression (61). Moreover, expression of a dominant-negative of HNF1A specifically in pancreatic β-cells induces a MODY-3-like phenotype in mice characterized by increased sensitization of β-cells to ER stress (62).

Neonatal diabetes, as like MODY, is generally caused by single gene mutations and consequently impair β-cell function. YIPF5 gene involved in protein trafficking between the ER and the Golgi organelles is recently reported to play an important role in pancreatic β-cell function. Gain- and loss-of-function studies revealed that patients with homozygous mutations in the YIPF5 gene develop neonatal/early-onset diabetes (63). More importantly, the loss of YIPF5 function-mediated β-cell dysfunction resulted in uncontrolled accumulation of proinsulin in the ER and increased β-cell vulnerability to ER stress-induced apoptosis (63). Additionally, it has been demonstrated that loss-of-function mutations in DNAJC3 (an Hsp40 family member that interacts with PERK) cause early-onset diabetes by increasing sensitization of β-cells to ER stress (64). These findings further highlight the important role of ER stress in the physiopathology of monogenic diabetes.




5 Role of ER stress in the functionality of hPSC-derived pancreatic β-cells

Human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), collectively termed human pluripotent stem cells (hPSC) are unique cells that have the ability to be differentiated virtually into any cell types in the body including pancreatic β-cells due to their infinite self-renewal competency. Generation of transplantable human β-cells from hPSC hold great promise for diabetes therapy (65). Moreover, hPSC-derived β-cells from patients with DM are also critical for a better understanding of the disease and its progression, particularly in diabetes related mutations such as the inherited monogenic diabetes (66). To reach that goal, massive efforts have been undertaken over the last two decades to efficiently differentiate hPSCs into insulin-expressing β-cells using multi-stage directed differentiation protocols imitating all stages of pancreas embryogenesis from definitive endoderm (DE) to maturing β-cells. These directed differentiation protocols occur by first inducing DE, followed by generation of primitive gut tube (PGT), posterior foregut (PF), pancreatic progenitor (PP), endocrine precursors (EP) and finally β-cells (Figure 2). Specific transcription factors and/or cell-surface markers are used to identify each stage of the differentiation. However, the limited functional maturation (impaired GSIS) of hPSC-derived insulin-expressing β-cells emanating from those protocols hampers the current strategies of cell replacement therapy for diabetes. Multiple mechanisms are involved in the impaired GSIS. ER and mitochondria are two pivotal organelles involved in the function and survival of β-cells (11, 67). In vivo and in vitro studies have highlighted distinct or combined role of ER stress and mitochondria dysfunction in β-cell functionality (11, 68).




Figure 2 | Schematic of the stepwise differentiation protocol for generation of hPSC-derived β-cell. Relevant stage-specific transcription factors and/or cell-surface markers to characterize each stage of the differentiation are also indicated, and they are evaluated at each stage to track the efficiency of differentiation using flow cytometry, immunofluorescence, RT-PCR or Western Blot. Illustration created with Biorender.com.



As highlighted in previous sections, transcriptome studies on both human and mouse islets and β-cells, as well as polygenic and monogenic forms of DM have provided compelling evidence on the importance of ER stress and UPR in β-cell dysfunction and diabetes. However, the exact role of ER stress on the functionality of hPSC-derived β-cells is not well characterized. Current hPSC-derived β-cell differentiation methods involves multi-step stages lasting several weeks, during which the cells are exposed to a complex cocktail of small molecules/growth factors/cytokines along with alternance of low and high glucose concentration in basal media (e.g. Melton 3D protocol (6) S5 media contains 20mM of glucose as compared to 2.5mM in S1 and S3 media) to either activate or repress key stage-specific transcription factors for lineage specification signals to guide β-cell differentiation and promote maturity. However, considering the high vulnerability of hPSC to ER stress (69), the daily exposure to this complex cocktail along with chronic high glucose (glucotoxicity) may induce metabolic stress that subsequently lead to a perturbation of the ER homeostasis and may negatively affect the fate and function of the cells. To our knowledge, no study has investigated the potential influence of the small molecules and media used across all stages of the differentiation on ER stress. Considering the importance of UPR for normal β-cell function, it is possible that increased ER stress or defects in ER signaling pathways could represent the main contributing factor to the immature phenotypes observed in hPSC-derived pancreatic β-cells in vitro (Figure 2). More recently, imeglimin, an antidiabetic agent, was reported to improve hPSC-derived pseudo-islet’s functional maturation by modulating the ER homeostasis pathway (70). Specifically, it increased the expression of ER-related molecules such as CHOP, ATF3, and restored the global protein synthesis in β-cells under ER stress. Consistent with that, loss-of-function of Solute Carrier Family 30 (Zinc Transporter), Member 8 (SLC30A8 or ZnT8), a zinc transporter reported to be mainly expressed in pancreatic β-cells and negatively associated with β-cell function, has been demonstrated to accelerate functional maturation in CRISPR)/Cas9-mediated SLC30A8 knock out stem cell-derived β-cells (71). Mechanistically, it improves GSIS by alleviating ER stress evidenced by down-regulation of IRE1α, XBP1, and sXBP1, thus providing a proof of concept that the functionality of hPSC-derived β-cells can be enhanced by targeting ER stress via either gene editing (e.g. CRISPR)/Cas9 technology) or pharmacological agents (e.g. imeglimin). These findings demonstrate convincingly that targeting ER stress could emerge as a promising strategy to further enhance the differentiation protocols for generation of mature-like and functional hPSC-derived β-cells to faithfully phenocopy the response of bona fide human β-cells, potentially for diabetes therapy or drug screening. However, due to the off-target cutting effects at other sites in the genome of current available gene editing tools such as CRISPR/Cas9 and Zinc Finger Nuclease (ZFN) and Transcription Activator-Like Effector Nuclease (TALEN) (72), there are caveats to their use that must be taken into consideration when studying the role of ER stress in hPSC- derived β-cells.




6 Conclusion

Multiple known and unknown mechanisms are involved in β-cell dysfunction associated with impaired insulin secretion and diabetes mellitus. Mounting evidence implicate ER stress as a contributing factor to insulin secretory defects in diabetic patients. To restore ER homeostasis, similarly to many cells in the body, β-cells activate the ER stress response (namely UPR) in their protein-folding machinery, underscoring the importance of this process for normal β-cell function. As β-cells are intrinsically susceptible and constantly exposed to ER stress owing to an intense trafficking of proinsulin to the ER due to high demand for insulin production and secretion in response to dietary nutrient stimulation, chronic supra-physiological ER stress in β-cells alters the UPR signaling that eventually leads to β-cell demise and diabetes. In this article we explore and summarize recent advances in elucidating the role of ER stress and its associated signaling mechanisms on pancreatic β-cell function and diabetes and how ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of functional hPSC-derived pancreatic β-cells for cell replacement therapy for diabetes. More importantly, due to limited access to human pancreas samples, patient-specific hPSC-derived β-cells, also known as autologous hPSC-derived β-cells, can be a useful tool in vitro to gain a better understanding of the relationship between ER stress and diabetes. Additionally, modulation of ER stress with chemical chaperones (e.g. glycerol, trehalose, TUDCA, 4-PBA) during direct differentiation protocol may improve the functionality of hPSC-derived β-cells that recapitulate all phenotypic characteristics of the human pancreatic β-cell.
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Background

Metabolic syndrome(MetS) and depression are independently associated with type 2 diabetes (T2DM) risk. However, little is known about the combined effect of MetS and depression on the risk of T2DM. The present study aims to prospectively explore the impact of MetS and depression on T2DM susceptibility among the Chinese general population.





Methods

6489 general population without T2DM adults in Southwest China were recruited from 2010 to 2012. Depression and MetS were prospectively assessed using a 9-item Patient Health Questionnaire(PHQ-9) and Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (CDS2020) during 2016–2020, respectively. Modified Poisson regression models were conducted to estimate relative risk(RR) and 95% confidence intervals (95%CI) for independent and combined associations of MetS and depression with an incidence of T2DM.





Results

During a median follow-up of 6.6 years, 678 cases of T2DM were documented. Individuals with MetS were 1.33 times more likely to develop T2DM than those without MetS. The corresponding RR(95%CI) for depression with no depression was 1.45(1.22–1.72). Notably, compared with no MetS or depression, the multivariate-adjusted RR for a combined effect of MetS and depression on the risk of T2DM was 2.11(1.39–3.22). Moreover, an increased risk of T2DM was more apparent in those ≥ 60 years, males, and overweight.





Conclusions

Individuals with multimorbidity of MetS and depression are at a higher risk of T2DM compared with those with no MetS or depression.





Keywords: type 2 diabetes, metabolic syndrome, depression, complication, multimorbidity, cohort study





Introduction

Diabetes mellitus (DM) is one of the worldwide well-recognized and uncontrollable common metabolic diseases, with 9.3% (463 million) of the global prevalence, 90% of which is type 2 diabetes mellitus (T2DM) (1, 2). The highest number of T2DM exists in China, affecting 116 million humans (3, 4). Hence, T2DM poses a severe threat and heavy economic burden to the health of the Chinese population (5). Regretfully, identified physical inactivity, genetic susceptibility, and diet habits fail to effectively and fully explain the etiology of T2DM. Notably, the complex interaction regarding different pathogenic factors also plays a significant role in the etiology of T2DM, which may present another perspective for uncovering the initiation of T2DM (6). Given that mental illness and metabolic disorder are both closely associated with the risk of T2DM (7–10). Therefore, a combined disorder of psychological disorders and metabolic disorders is likely to have a potential effect on the occurrence of T2DM.

Individuals often suffer from multiple chronic diseases at the same time, which is called multimorbidity (11). The prevalence of multimorbidity is continuously increasing, generating adverse threats to human health. Therefore, it is meaningful to dissect the complex etiology of chronic non-communicable diseases from the perspective of multimorbidity. MetS is a pathological condition including insulin resistance, abdominal obesity, hyperlipidemia, and hypertension, affecting 20–25% of adults worldwide (12, 13). MetS is consistently and independently associated with an increased risk of DM, especially for T2DM, among general population settings. Emerging evidence indicated that depression, another crucial healthcare burden, contributes to increased mortality and a panel of severe metabolic complications (14, 15). Interestingly, the population suffering from depression and using antidepressants by altering the uptake and regulation of glucose were all more prone to T2DM (16, 17).

Evidence indicates that there is an inner link between depression and MetS (18). Significantly, the above notion was strengthened by the evidence that depression is a pathogenic factor for MetS (19). Moreover, insulin resistance commonly occurs along with the occurrence of depression and implicates the progression of depression (20). The two diseases often cluster in pairs and closely interact with each other. However, the combined effect of these risk markers on the risk of T2DM remains unknown. Ample evidence has indicated that many diseases or pathological statuses could synergistically promote the incidence of T2DM. A study found that the cumulative effect of obesity and MetS significantly links to a raised incidence of T2DM (21). Furthermore, patients with depressive symptoms and poor sleep quality had lower T2DM-related quality of life compared with those who had depression or poor sleep quality (22). In addition, insulin resistance is a common important characteristic of both depression and MetS and also functions as one critical pathogenesis of T2DM (23). Thus, it is seemed to be a synergistic interaction between depression and MetS and other T2DM-related risk factor to boost increased T2DM risk.

Given the closed association of both MetS and depression with the pathogenesis of T2DM, we hypothesized that Mets and depression could be synergistically associated with T2DM in the general population. Therefore, we evaluated the combined association of MetS and depression with the risk of T2DM based on the Guizhou natural population cohort study. Our results could provide scientific evidence for preventing T2DM incidence in the population with multimorbidity of metabolic disease and mental disorders.





Methods




Study population

The Guizhou natural population cohort study comprised a representative sample of 9280 participants aged ≥18 years. The participants were recruited using multistage proportional stratified cluster sampling from 48 townships in 12 districts of Guizhou province between October 2010 and August 2012. A total of 8,165 study participants completed at least one follow-up visit in this 10-year follow-up study. We excluded participants who were diagnosed with T2DM at baseline (n = 530), missing outcome of T2DM at the follow-up (n = 88), and missing or wrong data at baseline (n = 1058) (Figure 1). After the above careful screening, 6489 remaining participants were eligible for our study. We obtained the approval of the institutional Review Committee of the Guizhou Center for Disease Control and Prevention (No.S2017–02) to implement this study. All participants also signed written informed consent forms.




Figure 1 | Flowchart of the study sample.







Measurement of blood biochemistry markers and lifestyle

Participants were instructed to fast overnight at least 8-12 hours before blood specimen collection. In a qualified central laboratory, trained professionals measured triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C). Additionally, participants were given 75 g of glucose to perform a 2-h oral glucose tolerance test (OGTT) to test fasting blood glucose (FPG) and 2-hour postprandial blood glucose (2h PG). The assessment of sociodemographic factors (age, sex, region, education level, and marital status), anthropometric measures (weight and height), medication history and family history of diseases (T2DM, Hypertension), behavioral risk factors (smoking and alcohol consumption), dietary intakes (The daily intake of oil and salt was calculated by asking ‘how many kilos of oil/salt do you usually consume in a month’ through inquiry), level of physical activity, mental health and death information were obtained via face-to-face interviews. Blood pressure was documented with the average value of three repeated measurements using the same model electronic sphygmomanometer. Hypertension was defined by the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) as follows: (1) self-reported hypertension or use of hypertension medications; and (2) systolic blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg (24).





Ascertainment of outcomes

T2DM was the endpoint of the study. The T2DM patients were determined as T2DM according to self-reported physician-diagnosed diabetes or use of hypoglycemic agents or blood glucose examinations. The diagnostic criteria of the American Diabetes Association (ADA, 2019), T2DM is defined as: 1) a self-reported previous diagnosis by health professionals, or 2) fasting blood glucose ≥7.0 mmol/L (126 mg/dL), or 3) 2-hour postprandial blood glucose ≥11.1 mmol/L (200 mg/dL), or 4) Hemoglobin A1c (HbA1c) concentration ≥6.5% (25).





Assessment of depression and MetS

9-item Patient Health Questionnaire (PHQ-9), a brief self-assessment of depressive symptoms with high accuracy, reliability, and validity, has been verified by structured diagnostic interviews conducted by mental health professionals, widely used to define depression (26–28). Participants rate nine depressive symptoms and their frequency/duration over the previous two weeks. PHQ-9 is computed by summing the scores of 9 symptom items (range, 0–27). In our study, the subjects who were diagnosed with depression according to PHQ ≥5 points.

MetS was assessed according to the Guideline for the prevention and treatment of type 2 diabetes mellitus in China (CDS2020) (29). The diagnostic criteria of MetS are as follows: ① Abdominal obesity: male waist circumference ≥90 cm, female waist circumference ≥85 cm; ② Hyperglycemia: fasting blood glucose ≥6.1 mmol/L or 2-hour postprandial blood glucose ≥7.8 mmol/L and diabetes has been diagnosed and treated; ③ Hypertension: blood pressure ≥130/85 mmHg and hypertension has been confirmed and treated; ④ Fasting triglyceride ≥1.70 mmol/L; ⑤ Fasting HDL-C < l.04 mmol/L. Adult Treatment Panel III (ATP III 2005) for MetS in sensitivity analysis: (1) Asian male waist ≥90 cm, Asian female waist ≥80 cm; (2) TG ≥ 1.7 mmol/L, or have received corresponding treatment; (3) Male HDL-C < 1.03 mmol/L, female HDL-C < 1.29 mmol/L, or have received corresponding treatment; (4) Blood pressure ≥130/85 mmHg and have been diagnosed hypertension and receive corresponding treatment; (5) FPG ≥5.6 mmol/L, or those who have been diagnosed T2DM and treated (30). Those who meet three items or more can be diagnosed MetS based on CDS2020 and ATP III, respectively.





Covariates

The covariates adjusted in regression models were based on previous studies regarding the relationship of MetS or depression with T2DM and the potential biological mechanisms. Covariates listed in our study include age, sex (male, female), region (urban or rural), ethnicity (the Han nationality or other), marital status (married or other), and education level (no formal school, primary, middle school, high school, college/university or more), smoking status (every day, sometime or never), excessive drinking status (yes or no), physical activity (never, 1–2 days per week, ≥3 days per week), oil intake (>25g/d or ≤25g/d), salt intake (>6g/d or ≤6g/d), family history of diabetes (yes or no), and body mass index (BMI). BMI was measured by weight/height (kg/m2). According to the 2016 Dietary Guidelines for Chinese Residents, excessive alcohol consumption was defined as men: > 25 g/day and women: > 15 g/day (31).





Statistical analysis

We investigated the joint associations of MetS and depression with an incidence of T2DM. Participants were classified into four categories: no depression or MetS, depression only, MetS only, MetS together with depression, and those with no MetS or depression were used as a reference group. The mean standard deviation describes continuous numerical variables (  ± sd), and classified variables are expressed as n (%). The statistical differences among the four groups at baseline were analyzed using one-way ANOVA, Kruskal Wallis, or chi-square test as appropriate. A modified Poisson regression model was used to examine the independent and synergistic association of MetS and depression with T2DM by calculating relative risk (RR) and 95% confidence interval (CI). Stratified analysis was conducted according to age, sex, and BMI to explore whether specific factors change correlation. The sets of covariates were adjusted: Model 1 consisted of age and sex; Model 2 consisted of Model 1 plus region, ethnicity, marital status, and education level; Model 3 consisted of Model 2 together with smoke now status, physical activity, excessive drinking status, oil intake, salt intake and family history of diabetes, BMI. Sensitivity analysis was performed after redefining MetS according to the criteria of ATPIII. All analyses were performed using SPSS 25.0 and R3.6.3, and statistical significance was based on a 2-sided test at the 0.05 significance level.






Results




Baseline characteristics of participants

The baseline characteristics in different groups are presented in Table 1. Participants have the highest BMI of 26.2 ± 3.68kg/m2 in the MetS and depression group. Individuals are more often women, the Han nationality across the four groups. No MetS or depression, and MetS only were more likely to live in rural. Participants in the groups of MetS only and MetS comorbidity with depression were older than those in the group of no MetS or depression. Overall, 6489 individuals were tracked during the 10-year follow-up, and 678 new cases of incident T2DM were documented.


Table 1 | The baseline characteristics of the participants.







Independent and synergistic effect of MetS and depression on T2DM

As shown in Table 2, the incidence rate of T2DM was 13.32 and 16.79 in the depression and MetS groups. We explored the independent effect of depression or MetS on the occurrence of T2DM. Statistically significant results were observed between depression and no depression after adjustment for covariates 1.31(1.01–1.68). Similarly, compared to participants with no MetS, the incidence was approximately two times stronger predictor of T2DM (RR, 1.65, 95% CI, 1.40–1.94) for MetS patients. After further adjustment for region, ethnicity, marital status, education level, smoke-now status, excessive drinking status, physical activity, oil intake, salt intake, family history of diabetes, and BMI, the relative risk remained statistically significant (RR, 1.45, 95% CI, 1.22–1.72).


Table 2 | Independent association of MetS or depression with risk of incident type 2 diabetes.



It is noteworthy that MetS combined with depression, as a multimorbidity status, was synergistically linked to the argued incidence of T2DM, as showed by RR 2.49(1.64,3.79), and the risk was higher than that of MetS only 1.61(1.36,1.91) or depression only 1.18(0.87,1.61). After adjustment for model 1 + current smoking status, physical activity, excessive drinking status, oil intake, salt intake, family history of diabetes, and BMI, the RR is 2.11(1.39,3.22). The P value remains significant, as shown in Table 3.


Table 3 | Combined effect of MetS and depression status and risk of incident type 2 diabetes.







Subgroup analysis and effect modification

The baseline population was stratified by age (< 60 years old, ≥60 years old), sex (male, female), and BMI (≥ 24kg/m2, < 24kg/m2) to explore the modifying effect of the above significant characteristics on the association between depression combined with MetS and the  incidence of T2DM. Compared with the population with no MetS or depression, individuals with MetS combined with depression had a significantly higher incidence of T2DM in the subgroups of age ≥60 years [RR (95%CI) 3.08(1.59,5.99)], male [RR (95%CI) 2.22 (1.02,4.84)], BMI ≥ 24kg/m2 [RR (95%CI) 2.46 (1.54,3.94)] after fully adjusting potential confounding factors. The association for MetS combined with depression with the risk of T2DM is more evident in those aged 60 years or older, males, and the overweight population. The subgroup analysis is shown in Figure 2.




Figure 2 | The incident risk of T2DM associated with MetS and depression by age, sex, and BMI. All analyses were adjusted for model 3 covariates. RR, relative risk; CI, confidence interval; BMI, body mass index.







Sensitivity analysis

The relationship between MetS combined with depression and T2DM after redefined criteria of MetS was also analyzed according to the diagnostic criteria of ATP III. Compared with individuals with no MetS or depression, the RR (95%CI) value of people with MetS and depression were [2.17 (1.44–3.28) and 1.84 (1.22–2.78)] after adjusting Model 1 and Model 3. Table 4 depicts the sensitivity analysis.


Table 4 | Sensitivity analysis using different definitions of MetS.








Discussion

T2DM is a multi-factorial disease, and various common chronic diseases or pathological status are closely related to initiation of T2DM. Therefore, more attention should be paid to exploring whether multimorbidity of diseases or pathological status could synergistically promote the occurrence of T2DM. To our knowledge, this is the first prospective study to demonstrate the combined effect of MetS and depression on the susceptibility of T2DM from a position of multimorbidity. In this general population-based prospective study of Chinese adults, we uncovered that MetS and depression are independently associated with an increased risk of T2DM. More importantly, the combined exposure of MetS and depression was more strongly related to the risk of T2DM when compared with exposure to a single disease. It is noteworthy that a growing risk of T2DM with MetS combined with depression was more apparent in the population of age ≥60 years, male, and overweight.

Several cohort studies have shown that MetS was associated with an increased risk of T2DM, further verified among the southwest China general population presented in our study. Moreover, a study showed that the MetS is associated with a 5-fold increased risk for incident T2DM (32). The risk of DM with MetS at baseline was twice that of non-MetS, as evidenced by a 10-year follow-up study (33). Based on the Guizhou general population study, we determined that MetS increased 45% the risk of T2DM. However, the detailed underlying mechanisms responsible for the positive correlation between MetS and T2DM are mainly unknown. However, several potential biological mechanisms may partially explain these founds. First, obesity and insulin resistance are commonly co-occurrences in MetS patients (32). Obesity leads to fat accumulation associated with insulin resistance and T2DM (34). Insulin resistance, a key component of MetS, is present in many metabolic disorders, such as T2DM, and is responsible for many metabolic perturbations. Second, MetS activates intracellular pro-inflammatory pathways, promoting systemic inflammatory response to T2DM in impaired metabolic status (35, 36). Furthermore, MetS and T2DM share many common risk factors, including age, obesity, nutrition, and lifestyle modification (32, 37–39).

Similarly, previous studies have shown that depression also increased the risk of T2DM. Luo et al. found that depressive symptoms present as a risk factor for DM among older people (8). Moreover, a prospective study evaluated the correlation between severe depressive episodes and T2DM in China, which is in line with our research. Pathophysiological mechanisms by which depression increased the risk of T2DM also have been explained (40). First, depression was related to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (40). This contributed to the increased release of counterregulatory hormones, resulting in abdominal adiposity and insulin resistance (40, 41). Second, the dysregulated immune system functions as a mediator mechanism between depression and increased risk of T2DM. Furthermore, increased C reactive protein, TNF-α, and pro-inflammatory cytokines are associated with depression and T2DM (42, 43). Collectively, the above biological mechanisms may be responsible for the depression-related increased risk of T2DM.

Due to the improvement in lifestyle and increasing social stress, the probability of people simultaneously suffering from metabolic disorders and mental illness has dramatically increased. Our results revealed that MetS combined with depression could be synergistically associated with an increased risk of T2DM, which is higher than that of MetS only or depression only, suggesting that MetS and depression may have a superimposed effect on the occurrence of T2DM. However, the underlying mechanisms for the combined impact of T2DM need to be further determined. It is well-established that multiple organ damage is more likely to increase the risk of various complications than single organ damage. Another plausible reason is that both MetS and depression could induce systemic pro-inflammatory responses, which was a key feature of T2DM, as the action mode of mechanistic pathways underlying the relationships of depression or MetS with the risk of T2DM are similar (44). Therefore, people who suffer from both depression and MetS could generate more severe inflammatory reactions. The multiplicative effect of both depression and MetS might contribute to the substantially more substantial pro-pathogenic effect of the multimorbidity of depression and MetS on T2DM risk. Preventive measures for MetS and depression include a healthy diet, regular exercise, maintaining a healthy weight, and avoiding smoking and excessive alcohol; early detection and treatment are essential (45–47). Our findings imply that individuals with MetS combined with depression should be more severely targeted for preventing and screening T2DM.

In the stratified analysis, we found that patients with depression and Mets are more likely to suffer from T2DM among the population age ≥ 60 years, male, and overweight, and the above results were consistent with previous studies (32, 37, 48, 49). Our results suggested that people with a BMI ≥24 kg/m2 and abnormal metabolic rate should be taken seriously in China to prevent and delay the occurrence of T2DM. Hence, adopting a healthy lifestyle pattern and weight loss are a significant determinant of maximizing effectiveness in decreasing the risk of T2DM.

The strengths of our study were its long follow-up duration and prospective cohort study design, which was a prospective study of the impact of depression combined with MetS on the incidence of T2DM. However, our study has several potential limitations. First of all, although we excluded patients with T2DM at baseline, we cannot conclude whether T2DM does cause people with depression at baseline because of a bidirectional relationship between T2DM and depression, which may cause some deviation. Second, some participants were lost to follow-up, and some information regarding confounders was missing. However, sufficient events and a high follow-up rate provided adequate statistical power. Finally, the enrolled participants were only restricted to Guizhou Province, China. So, the extrapolation of the results should be cautious. Therefore, prospective large-scale studies are needed to verify these results in other regional populations.





Conclusions

In conclusion, this study indicated depression and MetS are associated with increased T2DM. People who simultaneously have depression and MetS have an apparent higher risk of T2DM than those with depression or metabolic syndrome alone. Our results highlight that the multimorbidity of metabolic disorder and psychological disorder is more suffering from T2DM. Therefore, it is meaningful to prevent and effectively treat metabolic disorders and mental problems, especially for MetS and depression, to improve current health and reduce the risk of future T2DM. Our study provides additive value for preventing the development of T2DM from the position of prevention and control multimorbidity. Additional studies or randomized control trials are needed to confirm our conclusions and to examine further underlying mechanisms for the multimorbidity of depression and MetS with enhanced risk of T2DM.
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Background

Diabetes mellitus (DM) is a global public health problem characterized by an elevated blood glucose level. Monitoring blood sugar levels is vital for effective diabetes management and preventing complications. However, the association between longitudinal biomarkers and the incidence of diabetic complications is often overlooked. Therefore, this study aimed to assess the incidence of diabetic retinopathy, predictors, and association with longitudinal fasting blood sugar level changes among diabetes mellitus patients in Ethiopia.





Methods

A multicenter retrospective follow-up study was carried out in referral hospitals in Amhara region, Ethiopia. A random sample of 462 newly diagnosed DM patients was selected. The proportional hazard assumption was checked for the survival sub-model, and for the longitudinal sub-model, the normality assumption was checked. Then the joint modeling with time-dependent lagged parameterizations was fitted. Model assumptions and comparisons were checked. Finally, the hazard ratio with a 95% confidence interval (CI) with a corresponding P-value<0.05 was used to identify predictors.





Results

In this study, Overall, 54 patients developed DR, and the incidence rate was 2.33 per 1000 person-months over the follow-up period, with a 95% CI of [1.78, 3.05]. Rural residence (AHR = 2.21, 95% CI: [1.21, 4.05]), hypertension co-morbidity (AHR = 3.01, 95% CI: [1.85, 6.53]), and longer duration of DM (>5 years) (AHR = 2.28, 95% CI: [1.91, 5.15]) were important predictors for the incidence of DR. In addition, the incidence of DR was substantially correlated with the time-dependent lagged value of FBS change (AHR = 4.20, 95% CI [1.62, 10.85]).





Conclusions

In this study, the incidence of diabetic retinopathy was somewhat high when compared to prior similar studies in Ethiopia. A joint model of longitudinal fasting blood sugar level changes was significantly associated with an increased risk of DR. Besides, being rural residence, hypertension co-morbidity, and a longer duration of DM were significant predictors for the incidence of DR. Therefore, public awareness, an integrated care approach, and prioritizing glycemic control are highly recommended.
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Introduction

Diabetes mellitus is a prevalent global public health issue, affecting millions of people worldwide (1). In 2021, approximately 537 million individuals had diabetes worldwide (2). Diabetes disproportionately affects the global south country (3). The African region is particularly affected, with an estimated 23.6 million adults living with diabetes. However, the prevalence of diabetes varies between countries in the region (4). Ethiopia, a global south country, ranks among the leading five African nations with a substantial number of diabetic patients, with around 1.92 million in 2021 (5).

Uncontrolled diabetes mellitus, characterized by elevated blood glucose levels, can severely affect overall health (6). If left unmanaged, it can lead to macro- or microvascular complications affecting multiple systems in the body, such as diabetic retinopathy and others (2, 7). Diabetic retinopathy, which is characterized by damage to the blood vessels in the retina (8), is one of the most prevalent micro-vascular complications and the leading cause of vision loss among diabetes patients (9, 10). Additionally, uncontrolled diabetes can have detrimental effects on other organs and systems, increasing the risk of heart disease, stroke, kidney failure, neuropathy, and lower limb amputations, thereby impacting individuals’ quality of life and resulting in increased healthcare costs and socioeconomic burdens (7, 11).

Approximately one-third of all individuals with diabetes worldwide have some degree of diabetic retinopathy (12). In Africa, the prevalence of diabetic retinopathy ranges from 7.0 to 62.4% (13). In Ethiopia, the prevalence of DR is increasing, with reports indicating that 34.1% of diabetes patients in the country have some form of DR (8).

The development of diabetic retinopathy among diabetes patients is closely associated with uncontrolled blood glucose levels (14). Over time, persistently elevated blood sugar levels can damage the small blood vessels in the retina, leading to the onset and progression of diabetic retinopathy (15). Proper management of blood glucose levels is crucial to reducing the risk of developing diabetic retinopathy (16, 17). Numerous factors, including duration of diabetes, type of diabetes, body mass index, and comorbidity, impact the incidence of diabetic retinopathy (18–21).

Fasting blood sugar tests are essential predictors for diabetes diagnosis and management, as they can help prevent complications (22). However, in resource-limited settings like Ethiopia, the longitudinal association between clinical biomarkers and the incidence of diabetic retinopathy among diabetes patients is rarely considered.

Therefore, this study aims to assess the incidence and predictors of diabetic retinopathy and their association with longitudinal changes in FBS levels among diabetic mellitus patients. Estimating the incidence of diabetic retinopathy provides insights for implementing effective strategies to reduce diabetic-related complications. Joint modeling analysis enables a comprehensive understanding of the relationship between blood glucose levels and the incidence of diabetic retinopathy, helping identify high-risk individuals for targeted prevention and improved management of diabetes mellitus.





Methods




Study design, period, and settings

A multi-centered and institutionally based retrospective follow-up study was carried out between January 1, 2011, and December 30, 2021. The University of Gondar, Felege Hiwot, and Debre Tabor Compressive Referral Hospitals in the Amhara region of Ethiopia were the three referral hospitals where the study was carried out.





Sample and population

The study included newly diagnosed diabetes patients aged 15 or older who received follow-up care at selected referral hospitals between January 1, 2011, and December 30, 2021. A total of 462 study subjects were estimated. For the survival parts, the sample size was determined using factors significantly associated with the incidence of DR from previous studies, and the sample size was calculated using the Schoenfeld formula (23).

	

Where E= number of required events, n= sample size, HR is the hazard ratio of selected covariates, p1 proportion of subjects under the exposure group, p2 = 1 – p1, and P(E) is the probability of an event.

Therefore, based on the results we found from previous retrospective follow-up studies done in Ethiopia, being male associated with diabetes retinopathy (AHR =1.94) (20), and assuming the following assumptions: power = 80%, ᾳ = 0.05, ß = 0.2, the sample size becomes 280 under this approach.

For the longitudinal part, the sample size was determined using the Diggle formula taken for repeated measurements for longitudinal parts (24).

	

N: is the total sample size, d is the effect size, m is the number of time points repeated measurement, ρ is a correlation between repeated measurements and σ2 is the variance of outcome variables. Assuming a significance level of 0.05, power of 0.8, ρ = 0.5, and effect size of 0.8, m = 8 times points based on a previous study, From a study conducted in Jimma on longitudinal FBS change we have, σ^2  (random intercept model) (25). Using zα/2 = 1.96, Zβ = 0.842, and inserting all quantities in the formula.

	

Therefore, the final sample size for this study was 280, then after adding 10% incompleteness and considering design effect 1.5. The final sample size was 462 DM patients.

A computer-generated simple random sampling technique was employed to select records from the newly diagnosed diabetes patients. DM Patients with uncertain dates of enrollment, as well as those who had diabetic retinopathy at the time the research started, were excluded.





Study variables, data collection tools, and procedures

Based on previously published research and the medical records of patients with diabetes mellitus (DM), a structured data collection checklist has been developed for this study. The checklist consisted of four parts, each covering different aspects of the patient’s characteristics.

The first part of the checklist focused on socio-demographic characteristics, including variables such as the age of study participants, sex, and residence. This information provided insights into the demographic profile of the study participants. The second part of the checklist captured clinical characteristics, encompassing factors such as body mass index (BMI), type of treatment, family history of DM, duration of DM, type of DM, presence of diabetic nephropathy, hypertension, diabetic neuropathy, peripheral arterial disease, and history of stroke. The third part of the checklist encompassed physiological characteristics, including measurements of high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, triglyceride levels, cholesterol levels, protein urea, systolic blood pressure (mmHg), and diastolic blood pressure (mmHg). Lastly, the fourth part of the checklist focused on capturing fasting blood sugar levels (FBS), which were measured repeatedly throughout the study. FBS levels were an important indicator for assessing the patient’s glycemic control.

In this study, the dependent variable was diabetic retinopathy, defined as the presence of at least one micro-aneurysm in any field, the presence of hemorrhages, or the occurrence of maculopathy in individuals with diabetes mellitus (26). The determination of whether a patient had diabetic retinopathy or not was made by reviewing their medical documents.





Data processing, and analysis

For this study, version 4.4 of EpiData was used to enter the data, while R version 4.3 was used for analysis. To prepare the data for analysis, the data was combined and coded as required. Descriptive statistics were computed for both categorical and continuous variables to summarize the data. Individual and average profile plots were created for the longitudinal analysis to visualize the trends over time. Model comparison was conducted using AIC (Akaike Information Criterion) values to select the best-fitting longitudinal sub-model.

Additionally, the normality assumption of the linear mixed effect model was assessed for fasting blood sugar (FBS) values. In the survival analysis, the incidence of diabetic retinopathy was estimated using Kaplan-Meier (KM) curves, and the log-rank test was employed to compare survival times between different variables. Before fitting the survival sub-models, proportional hazard assumptions (PHA) were investigated.

The relationship between changes in longitudinal FBS and diabetic retinopathy was evaluated using the alpha value obtained from the employed joint model. A variable was taken to be significant in the multivariable joint model if its p-value was less than 0.05 and it was within the 95% confidence interval.






Ethical approval and consent to participate

This study received ethical approval from the University of Gondar, College of Medicine and Health Science, Institute of Public Health, Institutional Review Board (IRB) with reference number Ref No/IPH/1397/2020. Official permission was also obtained from the clinical directors of the selected referral hospitals. The study adhered to relevant guidelines and regulations. Informed consent was waived by the Institutional Review Board due to the retrospective nature of the study, and the data were anonymized and kept confidential.





Results




Sociodemographic and clinical related characteristics

A total of 462 patients with newly diagnosed DM were included in this study. The study participants had a mean age of 45.78 (SD ±15.92) years. Most of the study participants, 257 (55.6%) and 238 (51.5%), were male and urban residents. Almost two-thirds of the study’s participants, 290 (62.7%), had type two diabetes mellitus (T2DM), and one-third of them, 134 (29.0%), had hypertension. Most of the 220 (47.6%) patients enrolled in this study were on oral hypoglycemic agent (OHA) treatment (Table 1).


Table 1 | Sociodemographic and clinical characteristics of DM patients on treatment in the Amhara region of Ethiopia.







Physiological characteristics, and diabetic related complication

Among the patients, 10.9% had elevated triglyceride levels, while 13.7% had borderline total cholesterol levels. A majority of the patients (58.5%) had high-density lipoprotein cholesterol (HDL-C) levels above 40mg/dl, and 6.9% DM patients had diabetic nephropathy, as shown in (Table 2).


Table 2 | Physiologic characteristics, and diabetic-related complications among diabetic patients at treatment in Amhara region, Ethiopia.







Incidence of diabetic retinopathy

The study followed a cohort of diabetes patients ranging from 6 to 120 months, with a median follow-up time of 46 months (interquartile range: 29 to 71 months). Among the 462 study participants, a total of 54 individuals (11.69%, 95% CI [8.74, 14.62]) developed diabetic retinopathy throughout 23,111.0 person-months (PM) of observation. The calculated incidence density was 2.33 per 1000 PM (95% CI: [1.78, 3.05]), or 2.97 per 100 person-years (95% CI: [2.26, 3.91]), as depicted in (Figure 1).




Figure 1 | Overall Kaplan-Meier (KM) of survival curves for DM patients on treatment in Ethiopia.







Exploring fasting blood sugar change over time




Individual FBS profile of DM patients

During the study period, diabetes patients on treatment underwent a maximum of twenty-eight and a minimum of three fasting blood sugar (FBS) measurements. The individual profile plots provided a comprehensive visualization of the FBS trends for each patient, revealing significant variability both within and between patients (Figure 2). Furthermore, the analysis of this study revealed that the subject variability among diabetes mellitus (DM) patients with events was higher compared to the censored parts. This observation provides evidence for the suitability of applying joint modeling techniques to this dataset (Figure 3).




Figure 2 | Individual profile plots Fasting Blood Sugar (FBS) over time for DM patients on treatment in Ethiopia.






Figure 3 | Individual profile plots by status of diabetic retinopathy for DM patients on treatment in Ethiopia.







Mean FBS profile of DM patients

The mean of FBS among DM patients shows that individuals who developed diabetic retinopathy had higher FBS levels compared to those who did not develop diabetic retinopathy (Figure 4).




Figure 4 | Mean profile of Fasting Blood Sugar (FBS) by status of diabetic retinopathy for DM patients on treatment in Ethiopia.








Predictors of incidence of diabetic retinopathy

Joint modeling indicates the associated factors for both changes in FBS and the incidence of diabetic retinopathy. The results indicated a significant association between the 3-month lagged value of FBS and the risk of DR. The results from (Table 3), shows that there is a significant association (α = 1.43, p-value 0.003) between the longitudinal change in fasting blood sugar levels (log of FBS) and the risk of DR. This finding suggests that a unit increase in the past 3-month value of the log of FBS corresponds to a 4.2-fold increase in the current risk of developing DR. In addition, being a rural resident, having hypertension (comorbidity), and having a duration of diabetes greater than five years were significant predictors for the incidence of diabetic retinopathy.


Table 3 | Joint modeling of the survival and longitudinal sub-models for diabetic mellitus patients on treatment in Amhara region referral hospitals, Ethiopia.



After controlling for other variables in the model, rural patients had a hazard of developing diabetic retinopathy (DR) that was 2.21 times higher compared to urban patients (adjusted hazard ratio [AHR] = 2.21, 95% CI: [1.21, 4.05]). DM patients with hypertension (co-morbidity) had a hazard of developing DR that was 3.01 times higher than those without hypertension (co-morbidity) when accounting for other variables (AHR = 3.01, 95% CI: [1.85, 6.53]). Furthermore, after controlling other factors in the model, DM patients with a diabetes duration greater than five years had a hazard of experiencing DR that was 2.28 times higher compared to those with a duration of less than five years (AHR = 2.28, 95% CI: [1.91, 5.15]). These findings are presented in (Table 3).






Discussion

Diabetic retinopathy (DR) is a significant global public health concern and a leading cause of blindness. Understanding the incidence of DR and identifying its predictors are vital for effective prevention and management strategies. Furthermore, investigating the impact of fasting blood sugar (FBS) changes on the risk of DR can provide valuable insights into the disease progression. This study aimed to determine the incidence of DR, identify its predictors, and examine the association between longitudinal FBS trajectory and the incidence of DR among newly diagnosed diabetes patients on treatment in referral hospitals in the Amhara region, Ethiopia. By utilizing a joint modeling approach, the researchers could simultaneously analyze the longitudinal FBS data and the occurrence of DR to assess their association.

In this study, the incidence of diabetic retinopathy was observed in 11.69% of the participants, with an incidence density of 2.9 per 100 person-years (PY) of observation. This finding aligns with a previous study in central Ethiopia (20). However, it is noteworthy that the incidence reported in this study is higher compared to studies conducted in northwest Ethiopia (26), China (27), and Bangladesh (28), where the incidence of diabetic retinopathy was 2.0, 1.81 and 1.75 per 100 PY of observation, respectively. This discrepancy in incidence rates could be attributed to several factors. Firstly, variations in the study population, such as differences in lifestyle factors and comorbidities, may contribute to differences in diabetic retinopathy incidence. Additionally, variations in healthcare facilities and the quality of care provided in different settings could impact the detection and management of diabetic retinopathy, thereby influencing the reported incidence rates.

According to this finding, the risk of developing diabetic retinopathy (DR) was higher for rural patients than for urban patients. This is consistent with previous research conducted in Bangladesh (29), which demonstrated that semi-urban subjects faced a higher risk of diabetic retinopathy when compared to their urban counterparts. Additionally, a study in Beijing, China, revealed a significant association between diabetic retinopathy and patients residing in rural regions (30). This could be because rural diabetes mellitus (DM) patients may have poorer self-care practices and limited access to healthcare services, leading to suboptimal management of their diabetes and higher susceptibility to DR (31). Poor health care-seeking behaviors among rural populations, coupled with limited resources and infrastructure, can contribute to delays in diagnosis and treatment of DM-related complications, including DR. Furthermore, individuals residing in rural areas may face additional challenges, such as limited availability of specialized eye care services and reduced awareness about the importance of regular eye examinations for DM patients.

Our study found that DM patients who also have hypertension co-morbidity had an increased risk of developing Diabetic retinopathy compared with their counterparts without hypertension. This finding is supported by studies conducted in Debre Markos (32), which showed that hypertensive patients are three times more likely to develop Diabetic retinopathy compared to non-hypertensive patients. This correlation is consistent with similar studies conducted in Arbaminch General Hospital in Ethiopia (33) and Khartoum in Sudan (34). Furthermore, existing research indicates that hypertension serves as a risk factor for both the onset and progression of retinopathy (35). The heightened blood flow associated with hypertension can potentially damage the retinal capillary endothelial cells in individuals with diabetes, leading to the manifestation of retinopathy.

Diabetes patients with a duration exceeding five years were at a 2.2 times higher risk of developing Diabetic retinopathy (DR) compared to patients with a duration of DM lower than five years. This finding is in line with similar studies conducted in Debre Markos (32), Beijing (30), and Denmark (36), which all reported a significant association between longer durations of DM and the development of DR. However, a study conducted at the University of Gondar Comprehensive Specialized Hospital in Ethiopia (26) showed conflicting results, indicating a negative association between the duration of diabetes and the likelihood of developing DR. This discrepancy may be due to the reason that the study conducted in University of Gondar specialized hospital exclusively focused on type-2 diabetes patients, who may have better metabolic control and lower levels of fasting blood sugar. This disparity in findings suggests that the improved metabolic control and lower FBS levels observed in type-2 DM patients could explain the contradictory results.

In this research, we employed a time-dependent lagged value parameterization of joint modeling to investigate the association between fasting blood sugar levels and the risk of diabetic retinopathy (DR). Our finding showed a significant correlation between the fasting blood sugar levels from the past three months and the current risk of DR. Specifically, an increase of one unit in the log-transformed fasting blood sugar level over the past three months corresponded to a 4.2-fold increase in the risk of developing DR. These results are consistent with previous studies done at the Arbaminch General Hospital and in France, which demonstrated a strong relationship between elevated levels of hemoglobin A1c and fasting plasma glucose for the presence of diabetic retinopathy (33, 37). These findings suggest that higher fasting blood glucose levels, indicative of inadequate blood glucose control, may contribute to the development of diabetic retinopathy.

The findings of this study have significant clinical and public health implications. It is crucial to increase awareness and education about the risk factors associated with diabetic retinopathy (DR). Health education programs should emphasize regular screening, glycemic control, and blood pressure management to reduce the risk of DR. Implementing regular screening programs for early detection and intervention is essential. Prioritizing glycemic control through medication adherence, lifestyle changes, and regular monitoring of blood sugar levels is crucial in reducing the risk of DR.

Effective management of hypertension is also important since it is a significant predictor of DR incidence. Controlling blood pressure levels can decrease the risk of developing DR. Further research is needed to explore additional risk factors and preventive strategies for DR, including lifestyle factors. By implementing these recommendations, healthcare providers, policymakers, and patients can collaboratively reduce the burden of diabetic retinopathy and improve outcomes for individuals with diabetes.

This study has its strengths and limitations; the study may overcome previously unexplored associations between longitudinal clinical biomarkers of FBS and the incidence of DR. It has significant clinical and public health importance by providing stronger evidence for established risk factors and helps to guide clinical practice. However, the data were collected retrospectively using secondary sources, thereby being incomplete.





Conclusions

In this study, the incidence of diabetic retinopathy was somewhat high when compared to prior similar studies in Ethiopia. A joint model of longitudinal fasting blood sugar level changes was significantly associated with an increased risk of DR. Besides, being rural residence, hypertension co-morbidity, and a longer duration of DM were significant predictors for the incidence of DR. Therefore, public awareness, an integrated care approach, and prioritizing glycemic control are highly recommended.

Based on the findings of this study, the following recommendations are made for the concerned bodies: Health professionals should give greater attention to DM patients with the identified risk factors for DR. Patients with diabetes mellitus who also have hypertension and a duration of DM greater than five years should closely monitor and control their blood glucose levels. Further studies on this topic, including behavioral factors and prospective studies, are recommended.
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Background

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that accounts for > 90% of all diabetes cases. Acute pancreatitis (AP) can be triggered by various factors and is a potentially life-threatening condition. Although T2DM has been shown to have a close relationship with AP, the common mechanisms underlying the two conditions remain unclear.





Methods

We identified common differentially expressed genes (DEGs) in T2DM and AP and used functional enrichment analysis and Mendelian randomization to understand the underlying mechanisms. Subsequently, we used several machine learning algorithms to identify candidate biomarkers and construct a diagnostic nomogram for T2DM and AP. The diagnostic performance of the model was evaluated using ROC, calibration, and DCA curves. Furthermore, we investigated the potential roles of core genes in T2DM and AP using GSEA, xCell, and single-cell atlas and by constructing a ceRNA network. Finally, we identified potential small-molecule compounds with therapeutic effects on T2DM and AP using the CMap database and molecular docking.





Results

A total of 26 DEGs, with 14 upregulated and 12 downregulated genes, were common between T2DM and AP. According to functional and DisGeNET enrichment analysis, these DEGs were mainly enriched in immune effector processes, blood vessel development, dyslipidemia, and hyperlipidemia. Mendelian randomization analyses further suggested that lipids may be a potential link between AP and T2DM. Machine learning algorithms revealed ARHGEF9 and SLPI as common genes associated with the two diseases. ROC, calibration, and DCA curves showed that the two-gene model had good diagnostic efficacy. Additionally, the two genes were found to be closely associated with immune cell infiltration. Finally, imatinib was identified as a potential compound for the treatment of T2DM and AP.





Conclusion

This study suggests that abnormal lipid metabolism is a potential crosstalk mechanism between T2DM and AP. In addition, we established a two-gene model for the clinical diagnosis of T2DM and AP and identified imatinib as a potential therapeutic agent for both diseases.
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1 Introduction

The incidence of acute pancreatitis (AP), an inflammatory disease, varies based on the geographic location, with the annual incidence being approximately 34 cases per 100,000 individuals in the general population worldwide (1). Patients with moderately severe or severe AP have pancreatic necrosis or pancreas failure and an extended hospital stay (2). Exocrine pancreatic insufficiency, walled-off pancreatic necrosis, and recurring AP are long-term sequelae in approximately 20% of the patients (3, 4). Although the overall morbidity and mortality rates of AP have decreased as a result of advances in aggressive fluid resuscitation, supportive treatment, and early risk stratification, the mechanisms and risk factors that underlie these improvements and affect intermediate and long-term outcomes remain unknown (5). Therefore, a deeper understanding of the pathological mechanisms underlying AP is necessary to identify novel biomarkers for early diagnosis and treatment.

Diabetes mellitus (DM) is a common metabolic condition worldwide. According to the World Health Organization (WHO), an estimated 422 million people have DM worldwide, with type 2 diabetes mellitus (T2DM) being the most prevalent (6). Studies have shown that pancreatic fat deposition can lead to long-term exposure of pancreatic beta cells to high levels of fatty acids and triglycerides, resulting in abnormal insulin secretion signaling and an increased risk of T2DM (7). A meta-analysis of seven observational studies showed that individuals with T2DM had an 84% higher risk of developing AP than those without DM (8). In addition, two recent meta-analyses have shown that approximately 23% of patients with AP may develop DM within 3 years of discharge, highlighting the high incidence rate and chronic nature of AP-related DM (9, 10). These findings indicate the presence of a common pathological mechanism between AP and T2DM.

Although earlier studies have provided valuable insights into the relationship between T2DM and AP, more comprehensive studies are required to address existing knowledge gaps. In recent years, integrated bioinformatic analysis has been used to identify disease-associated novel genes that may be used as diagnostic and prognostic biomarkers. Unknown exists regarding the shared diagnosis and related genes between T2DM and AP. Therefore, this study aimed to identify biomarkers for AP and T2DM through bioinformatic analysis. The findings may provide a theoretical foundation for developing novel diagnostic and therapeutic strategies for the two conditions.




2 Methods



2.1 Data collection from GEO databases

The datasets analyzed in this study were obtained from the GEO database, which included T2DM datasets GSE20966 (11), GSE25724 (12), and one AP dataset, GSE194331 (13). The T2DM datasets GSE20966 and GSE25724 were merged for analysis by the “sva” package (14). The |log2 Fold change (FC)| > 0.585 and adjust p <0.05 were set as the criteria for identifying differentially expressed genes (DEGs) of AP and T2DM using the “limma” package (15). Finally, the Venn map was applied to select their common genes.




2.2 Analysis of functional enrichment

The STRING database (https://cn.string-db.org/) was used to investigate protein interactions, with the validity of such interactions being determined by a composite score greater than 0.15 (16). Meanwhile, GeneMANIA database (https://genemania.org/) prioritized genes for functional tests (17). Functional enrichment studies were performed by Metascape database (https://metascape.org/), which was designed to provide an extensive resource for annotating and analyzing gene lists to investigate the biological roles and routes implicated in certain genes (18).




2.3 Mendelian randomization analysis

Mendelian randomization analysis was conducted using the R package “TwoSampleMR (v.0.5.6)” and strictly adhered to the three fundamental assumptions of Mendelian randomization (MR): (I) There exists a strong association between the instrumental variables (IVs) and the exposure; (II) The IVs are not associated with potential confounding factors; (III) The IVs influence the outcome solely through the exposure. The inverse-variance weighted (IVW) method was employed as the primary analytical approach (19), complemented by four additional methods. The datasets utilized in this study were sourced from the IEU OPEN GWAS (https://gwas.mrcieu.ac.uk/). Specifically, the GWAS for HDL-C included 94,595 participants and a total of 2,418,527 single nucleotide polymorphisms (SNPs); the GWAS for LDL-C comprised 173,082 participants and 2,437,752 SNPs; the GWAS for triglycerides (TG) involved 177,861 participants and 2,439,433 SNPs; and the GWAS for apolipoprotein A-I (APOA-I) encompassed 393,193 participants and 12,321,875 SNPs. The threshold for instrumental variable selection was set at p<5E-08, r2<0.001, with a clumping distance of 10,000 kb. Heterogeneity testing was performed using the “mr_heterogeneity” function, and horizontal pleiotropy testing was conducted via the “mr_pleiotropy_test” function and “MR-PRESSO” R package (19), and sensitivity analysis was executed using the “leave-one-out” method.




2.4 Using machine learning to screen characteristic genes

LASSO, RF, and SVM-RFE were performed to filter genes in both AP and T2DM, respectively. To mitigate overfitting among genes, LASSO regression analysis was applied, followed by cross-validation by the package “glmnet” (20, 21). The “Random Forest” R software was used to conduct RF (22). Genes with importance > 2 in AP samples and importance > 1 in T2DM samples were selected as feature genes. In addition, SVM-RFE was performed using the R package “e1071”, aiming to optimize the learning performance by minimizing the empirical error (23). The hub genes for the following studies were then selected from the intersection of the three subsets. The intersection of the core genes of AP and T2DM was used as the biomarkers for the two diseases. The expression levels of the core genes in the disease and control groups are shown in boxplots (wilcox test).




2.5 Construction of the nomogram

The ROC curves were computed using the “pROC” program in order to assess the predictability of the model (24). Using the “rms” package, a nomogram incorporating model genes was created (25). In addition, the model’s predicted accuracy was assessed using the DCA and calibration curves (26).




2.6 Validation of core genes

We downloaded the human T2DM dataset GSE95849 (27) to further validate the expression levels of core genes in T2DM. The wilcox test was used to compare the difference in expression of core genes between disease and control groups, with p < 0.05 considered statistically significant. However, due to the lack of another human AP dataset in the public database, we chose mouse dataset GSE77983 (28) for validation. We used the GEO2R (based on the R package “limma”) online tool of the GEO database to analyze GSE77983 to verify the differential expression of core genes between the AP and control groups.




2.7 Cell culture and quantitative real-time PCR analysis

The mouse pancreatic acinar cell line 266-6 (ATCC; VA, USA), were cultured in DMEM with 10% fetal bovine serum, 100 IU/ml penicillin and 100 μg/ml streptomycin. To induce pancreatitis in vitro, the 266-6 cells were stimulated with 250μM Sodium taurocholate (STC) (29). Twenty-four hours later, cells were collected for the following qPCR analysis.

Total RNA from cells was extracted using Trizol reagent (Accurate Biology, Hunan), and the circRNAs were reversely transcribed using the Evo M-MLV for qPCR (Accurate Biology, Hunan). Then, cDNAs were synthesized and quantified via SYBR Green Pro Taq HS (Accurate Biology, Hunan) under the following cycle scheme: 95°C for 30s, then 95°C for 5 s and 60°C for 30 s for 40 cycles. The RNA expression levels were analyzed and quantified using the ΔΔCt method, and the expression levels of the target genes were compared between the two groups using the t-test. The following primers were employed: IL-6 primer (forward: 5’-GAGAGGAGACTTCACAGAGGATACC-3’; reverse: 5’-TCATTTCCACGATTTCCCAGAGAAC-3’), IL-1β primer (forward: 5’-AGGTCGGTGTGAACGGATTTG-3’; reverse: 5’-TGAGAAGAGGCTGAGACATAGGC-3’), SLPI primer (forward: 5’-GAAGCCACAATGCCGTACTGAC-3’; reverse: 5’-GGAACAGGATTCACGCACTTGG-3’), ARHGEF9 primer (forward: 5’-GAAGCAGTGCCGAAAGAGAAGG-3’; reverse: 5’-ACGAAGCCCATCTGAAATCTGTATATG-3’), and Actin primer (forward: 5’-ACTGCCGCATCCTCTTCCTC-3’; reverse: 5’-AACCGCTCGTTGCCAATAGTG-3’).




2.8 Potential functions of model genes in AP and T2DM

Gene set enrichment analysis (GSEA) is utilized to elucidate the molecular mechanisms between high- and low-core gene expression samples, and results with a p value < 0.05 were considered significant (30). Meanwhile, the xCell method was also used to assess the correlation between significantly different enriched immune cell types and characteristic genes, which was considered to be correlated at p < 0.05.




2.9 Construction of ceRNA network

The TargetScan, miRDB, and miRanda databases were used to anticipate miRNA-mRNA pairs in order to identify the ceRNA network that might be influenced by model genes. Genes that were simultaneously listed in three databases were the only ones that were thought to be possible mRNA targets for further research. To predict miRNA-lncRNA pairs, the spongeScan database was used. At last, the ceRNA network could be seen using Cytoscape (31). Meanwhile, the Human Protein Atlas (HPA: https://www.proteinatlas.org/) was utilized to examine the model genes’ immunofluorescence and single-cell type atlases.




2.10 Identifying potential small molecule compounds for the treatment of AP and T2DM

The CMap database (https://clue.io/) can link diseases, genes and drugs based on similar or opposite gene expression profiles (32). Commonly upregulated DEGs in AP and T2DM were entered into the CMap database to identify potential small molecule compounds for the treatment of AP and T2DM. Then, the protein structures of the feature genes were obtained from the PDB database, and the AutoDock tool was applied to calculate the protein hydrogenation and charge. PubChemdatabase to download the chemical structure of the drug’s active ingredient. The AutoDock tool is used to check the charge balance and rotatable bonds of tiny molecules. To generate docking energy, AutoDock Vina runs docking simulations. Finally, PyMol software was used to check the docking complex.





3 Results



3.1 Identification and analysis of DEGs in AP and T2DM

A flowchart demonstrating the study protocol is presented in Figure 1. Initially, we merged two T2DM datasets and corrected batch effects using the “sva” software package. As shown in Figures 2A, B, the differences between batches were effectively eliminated after data normalization, indicating that the two datasets could be merged. The volcano map presented in Figures 2C, D shows DEGs in T2DM and AP (|log2 FC| > 0.585 and adjusted p < 0.05). Venn diagram, the up-regulated and down-regulated genes of the two datasets were crossed, respectively, and 14 up-regulated DEGs and 12 down-regulated DEGs were obtained (Figures 2E, F). Figure 2G shows the locations of these common DEGs on chromosomes.




Figure 1 | The process of data analyzing in this study.






Figure 2 | Identification of DEGs. (A, B) PCA analysis before and after merging of T2DM datasets; (C) The volcano plot for T2DM (|log2 FC| > 0.585 and adjust p <0.05); (D) The volcano plot for AP (|log2 FC| > 0.585 and adjust p <0.05); (E) The intersection of AP up-regulated DEGs and T2DM up-regulated DEGs; (F) The intersection of AP down-regulated DEGs and T2DM down-regulated DEGs; (G) The location of DEGs on chromosomes.






3.2 PPI network and functional enrichment analyses of DEGs

The 26 common DEGs were imported into the STRING database to construct a PPI network (Figure 3A). Subsequently, GeneMANIA was then used to further analyze DEGs for co-localization, co-expression, and shared protein domains (Figure 3B). The genes in the PPI network were mainly enriched in glycosyl compound metabolism, insulin-like growth factor binding, and complement activation. Furthermore, we used Metascape to determine biological processes and pathways related to the DEGs. According to the results, the DEGs were involved in immune effector processes and blood vessel development (Figure 3C) and were closely related to conditions such as hypertriglyceridemia and dyslipidemia (Figure 3D).




Figure 3 | Functional enrichment analysis of DEGs. (A) PPI of the DEGs; (B) The GeneMANIA analysis for DEGs; (C, D) Functional and DisGeNET enrichment analyses by the Metascape database.






3.3 Mendelian randomization analysis

MR analysis was performed to assess the potential relationship between dyslipidemia and T2DM or AP (Supplementary Figures S1A, B). IVW analysis showed that HDL-C and Apoa-I exhibited significant protective effects against both T2DM (P = 1.57E-09 and 0.0007, respectively) and AP (P = 0.0269 and 0.0232, respectively). Notably, TG (P = 0.0001) were identified as a significant risk factor for T2DM. These results remained consistent in most models, demonstrating their robustness. However, some degree of heterogeneity was observed (Supplementary Table S1). To address this issue, we used a random-effect model to minimize potential biases and errors. In addition, we used the MR-PRESSO method to identify and eliminate potential outliers, ensuring non-pleiotropy and the accuracy of the results. Finally, we validated the sensitivity of the results using the leave-one-out test (Supplementary Figures S1C–G). Altogether, the results suggested that dyslipidemia may be a common underlying mechanism of T2DM and AP.




3.4 Selection of characteristic genes using machine learning algorithms

To identify key genes associated with the development of both AP and T2DM, we constructed three machine-learning models based on the 26 DEGs. In AP samples, ten key genes were identified using the LASSO regression (Figures 4A, B). Seventeen genes extracted from these genes by the SVM-RFE were identified as the best genes for AP patients (Figures 4C, D). According to the RF, six genes with importance greater than 2 were included in the subsequent analysis (Figures 4E, F). Then, five AP characteristic genes were screened out by the Venn diagram (Figure 4G).




Figure 4 | The characteristic genes of AP were screened by machine learning method. (A) LASSO regression analysis and (B) cross-validation for identifying key genes and assessing partial likelihood deviance; (C, D) Seventeen characteristic genes found by SVM-RFE; (E, F) RF ranked the importance of all genes to get 6 genes with scores for importance greater than 2; (G) The Venn diagram exhibiting the intersection of three machine learning models.



Similarly, the LASSO regression has shown eleven genes as potential indicators for diagnosis (Figures 5A, B). Using the SVM-RFE, seven genes were identified from these genes as potential biomarkers (Figures 5C, D). Eight genes with importance higher than 1 were included in the subsequent analysis based on the RF (Figures 5E, F). A Venn diagram was constructed to intersect these three gene sets, resulting in the identification of 4 key genes associated with T2DM (Figure 5G). Among the key genes identified in AP and T2DM, we found two common genes, SLPI and ARHGEF9, at the intersection of the Venn diagrams (Supplementary Figure S2). These two genes may serve as a link between AP and T2DM, playing a key role in the development of both conditions.




Figure 5 | The characteristic genes of T2DM were screened by machine learning method. (A) LASSO regression analysis and (B) cross-validation for identifying key genes and assessing partial likelihood deviance; (C, D) Seven characteristic genes found by SVM-RFE; (E, F) RF ranked the importance of all genes to get 8 genes with scores for importance greater than 1; (G) The Venn diagram exhibiting the intersection of three machine learning models.






3.5 Development of a diagnostic model and assessment of its predictive efficacy

A box plot was constructed to demonstrate the expression levels of the two key genes in the disease and control groups (Figures 6A, B). Specifically, the expression of ARHGEF9 was significantly lower in the AP group than in the control group, whereas the expression of SLPI showed the opposite trend (p < 0.001). As shown in the ROC curve in Figure 6C, both SLPI and ARHGEF9 had high diagnostic value in AP. The AUC value of the 2-gene prediction model was 0.928, which demonstrated the high diagnostic value of both genes (Figure 6D). In addition, the DCA curve of the two genes showed a better overall clinical benefit than if none or all of the tests were used for diagnosing AP (Figure 6E). Furthermore, we developed a nomogram to assess the possible risks associated with AP (Figure 6F). Figure 6G shows that there was a minimal difference between the actual and anticipated risk for AP as indicated by the calibration curve.




Figure 6 | Diagnostic effect of the two-gene model on AP. Box plots showed the expression difference in (A) ARHGEF9 and (B) SLPI between AP and normal samples, ***P < 0.001; (C) ROC curve of diagnostic performance of ARHGEF9 and SLPI for AP; (D) ROC curve of the two-gene model for AP; (E) DCA curve of the model; (F) Nomogram for forecasting AP risk; (G) The calibration curve of nomogram model prediction in AP.



The expression levels of ARHGEF9 and SLPI in the T2DM group were consistent with those in the AP group (Figures 7A, B). The ROC curve showed that both SLPI and ARHGEF9 had high diagnostic value in T2DM (Figure 7C). The AUC value of the 2-gene model was 0.985, which emphasized the diagnostic value of the two genes (Figure 7D). Furthermore, the DCA curve of the two genes (Figure 7E) showed a better overall clinical benefit than if all or none of the tests were used for diagnosing T2DM. Subsequently, a nomogram to gauge the possible harm that T2DM individuals could cause (Figure 7F). The calibration curve indicates that our nomogram also has a good predictive value for T2DM (Figure 7G).




Figure 7 | Diagnostic effect of the two-gene model on T2DM. Box plots showed the expression difference in (A) ARHGEF9 and (B) SLPI between T2DM and normal samples, ***P < 0.001; (C) ROC curve of diagnostic performance of ARHGEF9 and SLPI for T2DM; (D) ROC curve of the two-gene model for T2DM; (E) DCA curve of the model; (F) Nomogram for forecasting T2DM risk; (G) The calibration curve of nomogram model prediction in T2DM.






3.6 Validation of the two key genes associated with T2DM and AP

The GSE95849 dataset was used to validate the expression levels of SLPI and ARHGEF9 in T2DM. The expression of SLPI was higher in the T2DM group than in the control group, whereas that of ARHGEF9 was significantly lower in the T2DM group than in the control group (Supplementary Figures S3A, B). These results were consistent with those observed in the training set. Owing to the lack of another suitable human AP dataset, we analyzed the mouse AP dataset GSE77983 using the GEO2R tool to validate the expression levels of the two key genes in AP. As shown in Supplementary Figures S3C, D, the expression of ARHGEF9 was lower in the AP group than in the control group, whereas that of SLPI showed the opposite trend (p < 0.05). These results were consistent with those observed in the training set.

To additionally verify the expression levels of the two genes in AP, we developed a cell model of pancreatitis by stimulating the mouse pancreatic acinar cell line 266-6 with STC. As shown in Supplementary Figure S3E, the expression levels of IL-6 and IL-1β were significantly higher in the model group than in the control group, indicating that the AP model was successfully established. Subsequently, we evaluated the expression levels of SLPI and ARHGEF9 in the cells. The results showed that SLPI was upregulated in the AP group (p < 0.05), which is consistent with the results observed in the training set. However, no significant difference in ARHGEF9 expression was observed between the two groups (Supplementary Figure S3F).




3.7 Enrichment analysis of the two key genes

GSEA was used to determine the biological functions of the two key genes in AP and T2DM. According to the results of GSEA in the AP group, ARHGEF9 was significantly downregulated in pathways related to DNA regulation and metabolism (Figures 8A, B), whereas SLPI was significantly upregulated in pathways related to the regulation of protein response and localization (Figures 8C, D). Subsequently, we investigated the relationship between the two key genes and the immune environment of AP. The results showed that ARHGEF9 expression was significantly negatively correlated with the proportions of resting NK T cells, endothelial cells, and aDCs, whereas SLPI expression was significantly positively correlated with the proportions of epithelial cells, M1 and M2 macrophages, endothelial cells, and basophils (Figure 8E).




Figure 8 | Functional enrichment and immune cell correlation analysis of characteristic genes in AP. (A-D) Enrichment biological functions and pathways of two hub genes identified by GSEA; (E) Immune cell correlation analysis of ARHGEF9 and SLPI. *P < 0.05; **P < 0.01; ***P < 0.001.



According to the results of GSEA in the T2DM group, ARHGEF9 was significantly downregulated in pathways related to amino acid metabolism and regulation (Figures 9A, B), whereas SLPI was significantly upregulated in pathways related to hormone regulation and cell interactions (Figures 9C, D). With regard to the relationship between the two genes and the immune environment of T2DM, ARHGEF9 expression was negatively correlated with the proportions of resting NK T cells, endothelial cells, aDCs, and mesangial cells, whereas SLPI expression was positively correlated with the proportions of epithelial cells, M1 macrophages, mast cells, and basophils (Figure 9E).




Figure 9 | Functional enrichment and immune cell correlation analysis of characteristic genes in T2DM. (A-D) Enrichment biological functions and pathways of two hub genes identified by GSEA; (E) Immune cell correlation analysis of ARHGEF9 and SLPI. *P < 0.05; **P < 0.01; ***P < 0.001.






3.8 ceRNA networks, single-cell maps, and immunofluorescence analysis

SLPI- and ARHGEF9-based ceRNA networks were separately constructed using various public databases. Eventually, 14 objective miRNAs and 47 objective lncRNAs interacting with ARHGEF9 (Figure 10A) and 1 objective miRNA and 5 objective lncRNAs interacting with SLPI (Figure 10B) were identified. The ceRNA networks constructed based on these miRNAs and lncRNAs revealed transcriptional regulatory mechanisms for the two genes. Furthermore, SLPI was found to be distributed primarily in exocrine gland cells and endothelial cells, whereas ARHGEF9 was found to be distributed primarily in duct cells (Figures 10C, D). With regard to their locations in cells, SLPI was detected in mitochondria, whereas ARHGEF9 was detected in mitochondria and endoplasmic reticulum (Figures 10E, F).




Figure 10 | The ceRNA networks, single-cell maps, and immunofluorescence of ARHGEF9 and SLPI. (A) The ceRNA network of ARHGEF9; (B) The ceRNA network of SLPI; (C) The single-cell type atlases of ARHGEF9 in the pancreatic tissues; (D) The single-cell type atlases of SLPI in the pancreatic tissues; (E) The immunofluorescence of ARHGEF9 in cell line A-431, target protein (green), nucleus (blue), microtubules (red); (F) The immunofluorescence of SLPI in cell line SiHa, target protein (green), nucleus (blue), microtubules (red).






3.9 Identification of potential small-molecule compounds for the treatment of AP and T2DM

To identify potential drugs for the treatment of AP and T2DM, we imported the 14 upregulated DEGs common between AP and T2DM into the CMAP database for analysis. The top 10 small-molecule compounds are shown in Table 1. Notably, the tyrosine kinase inhibitor imatinib had the highest negative connectivity score. Subsequently, we performed molecular docking of these 10 small-molecule compounds with SLPI and ARHGEF9 (Supplementary Figures S4, S5). The minimum binding energies of all docked complexes are shown in Table 1. The minimum binding energies of complexes were typically less than -6.0 kcal/mol, which indicated that both proteins had a good binding affinity for the 10 small-molecule compounds. In particular, the SLPI–imatinib (-9.1 kcal/mol) and ARHGEF9–imatinib (-10.4 kcal/mol) complexes had the lowest free binding energies. These results suggest that imatinib is a promising therapeutic agent for both AP and T2DM.


Table 1 | Potential treatment options for AP and T2DM analyzed by CMap and molecular docking.







4 Discussion

AP is an acute inflammatory condition of the pancreas that can lead to various severe symptoms (33). This condition often presents with serious comorbidities and is associated with a high mortality rate (34, 35). Fu et al. (36) showed that the mortality rate of AP was 3.8%, whereas that of severe AP was 16.3%. Currently, gallstones, alcoholism, and dyslipidemia are considered to be the major predisposing factors for AP (37). The pathological mechanisms underlying pancreatitis are complex owing to the wide range of potential etiological factors, including genetic, behavioral, and environmental factors, and the interactions between them (38). Therefore, an in-depth understanding of the pathogenesis of AP and early diagnosis and treatment are keys to reducing the morbidity and mortality rates of AP.

According to a survey conducted by the International Diabetes Federation (39), the number of individuals with DM is projected to increase from 536.6 million in 2021 to 783.2 million by 2045 worldwide, making it one of the most prevalent endocrine illnesses. T2DM is a chronic metabolic disease characterized by insulin resistance and elevated blood glucose levels (40). T2DM involves a number of complex pathophysiological mechanisms, and it has been found that high sugar intake and dysregulation of glucose and lipid metabolism may be a major contributing factor in the development of diabetes (41, 42). Notably, T2DM has similar pathogenic risk factors to AP such as hypertriglyceridemia and alcohol. T2DM has been shown to have a positive correlation with the risk of AP (43). A recent prospective study showed that 3%, 7%, 9%, and 11% of participants developed DM at 6, 12, 18, and 24 months after an AP episode, respectively (44). Despite these findings, information regarding the exact time during which endocrine dysfunction occurs after AP is lacking. Some studies have shown complete resolution or notable improvements over time, whereas others have shown persistent endocrine dysfunction (45–47). These findings suggest that dysregulation of glucose metabolism is common in patients with AP; however, it may be reversible. Moreover, according to an extensive cohort study, individuals with T2DM are more likely to develop AP than those without DM (48). An Asian population-based cohort study supported this finding, showing that individuals with DM had a 2-fold higher incidence of AP than those without DM (49). However, the mechanisms underlying the complex interplay between AP and T2DM remain unclear. In this study, we identified key genes associated with both AP and T2DM through bioinformatic analysis. The findings may improve early identification, treatment, and prevention of the two diseases.

Initially, we identified 26 common DEGs, including 14 upregulated and 12 downregulated genes, between AP and T2DM. To determine the potential mechanisms underlying the interaction between AP and T2DM, we used the Metascape database to perform functional and DisGeNET enrichment analyses of 26 DEGs. The results showed that the DEGs were involved in immune effector processes and blood vessel development and were closely related to hypertriglyceridemia and dyslipidemia, suggesting a relationship between lipid metabolism and the two diseases. In addition, subsequent MR analysis showed that dyslipidemia might serve as a link between AP and T2DM. AP is independently associated with hyperlipidemia, and hypertriglyceridemia-induced pancreatitis frequently presents with a severe course of illness (50–52). A large prospective cohort study found that cumulative exposure to hypertriglyceridemia was significantly associated with an increased risk of T2DM (53). Overproduction of large triglyceride-rich lipoproteins and impairment of catabolism are associated with insulin resistance, which contributes to hypertriglyceridemia frequently seen in patients with DM (54). DM is the most common secondary factor contributing to hypertriglyceridemia-induced pancreatitis. Patients with untreated or poorly managed DM have higher triglyceride levels, which increase the risk of pancreatitis (55). In a cohort study on patients with severe hypertriglyceridemia associated AP, 62% had T2DM, rising to 79% in patients with severe hypertriglyceridemia (56). In addition, severe hypertriglyceridemia was specifically associated with DM treated with insulin, which suggested that advanced or uncontrolled DM was the primary metabolic cause of hypertriglyceridemia-induced pancreatitis. Moreover, lower triglyceride levels are thought to be associated with a lower incidence of pancreatitis (50). On the contrary, hypertriglyceridemia and obesity increase the risk of developing T2DM and AP. Their existence before the onset of AP increases the likelihood of developing T2DM after AP and may accelerate the onset of overt T2DM (57). The findings of this study suggest that hypertriglyceridemia and dyslipidemia are key factors contributing to the development of AP and T2DM. Therefore, strategies aimed at preventing and treating dyslipidemia may help control or delay the development of AP and T2DM.

AP is diagnosed if at least two of the following three criteria are met: (1) typical abdominal pain; (2) serum lipase activity at least three times greater than the upper limit of normal; and (3) characteristic morphological findings on imaging (58). The diagnostic criteria for DM are as follows: typical diabetic symptoms and random blood glucose levels of ≥11.1 mmol/L or fasting blood glucose levels of ≥7.0 mmol/L or 2-h blood glucose levels of ≥11.1 mmol/L on OGTT or HbA1c levels of ≥6.5% (59). In the early stage of AP, abdominal pain is not evident and serum lipase levels often begin to increase after 24 hours of onset. Consequently, the diagnosis is delayed and the prognosis is affected. Early diagnosis and assessment of patients with AP may play a role in improving the prognosis and facilitate the development of novel clinical treatments for AP. The diagnosis of DM often relies on already elevated blood glucose levels; therefore, recognizing the onset of the disease early, before the blood glucose level increases, is particularly important for controlling disease development. In this study, we identified two key genes associated with both AP and T2DM (SLPI and ARHGEF9) using several machine learning algorithms and developed a 2-gene diagnostic model. Subsequently, we used multiple analytical methods to evaluate the predictive performance of the diagnostic model in AP and T2DM. Specific expression patterns of ARHGEF9 and SLPI were observed in AP and T2DM, and both genes were found to have high diagnostic value in the two diseases. These findings highlight the genetic similarity between AP and T2DM. These results suggest that ARHGEF9 and SLPI are promising diagnostic biomarkers for AP and T2DM, which may facilitate early diagnosis and prompt treatment in clinical settings.

The SLPI gene is an important regulator of innate and acquired immunity and controls the growth of the gut microbiota (60). The ARHGEF9 gene is involved in the growth and development of cranial nerves (61) and has been shown to play a role in inhibiting the growth of both hepatocellular carcinoma (62) and gastric cancer (63) cells. However, the functions of ARHGEF9 and SLPI in AP and T2DM and the common mechanisms and pathways involved in the development of the two diseases remain unclear. In this study, we performed an in-depth analysis to investigate the potential roles and mechanisms of SLPI and ARHGEF9 in AP and T2DM. The results showed that in both AP and T2DM, ARHGEF9 was significantly downregulated in pathways related to DNA regulation, fatty acid metabolism, cytokine–cytokine receptor interactions, and chemokine signaling, whereas SLPI was significantly enriched in pathways related to the regulation of protein response and localization, glyoxylate and dicarboxylate metabolism, and cytokine–cytokine receptor interactions. Regarding the relationship between the two genes and the immune environment of the two diseases, ARHGEF9 expression was significantly negatively correlated with the proportions of resting NK T cells, endothelial cells, and aDCs, whereas SLPI expression was significantly positively correlated with the proportions of epithelial cells, M1 macrophages, and basophils.

Finally, we found that SLPI and ARHGEF9 serve as potential therapeutic targets for AP and T2DM and that imatinib may inhibit disease progression by targeting these genes. Imatinib has been shown to delay the development of diabetes and induce remission of diabetes in non-obese diabetic mice (64). The safety and efficacy of imatinib in the treatment of type 1 diabetes mellitus have been assessed in a clinical study. The findings indicated that participants in the imatinib group required less insulin and had lower HBA1c levels during treatment than those in the placebo group; however, these effects subsided after the treatment ended. Imatinib may improve peripheral insulin sensitivity and beta-cell activity, which may account for its metabolic effects (65). Furthermore, inhibition of discoidin domain receptors by imatinib has been shown to prevent pancreatic fibrosis in a mouse model of chronic pancreatitis (66). Therefore, imatinib is a promising drug for the treatment of AP and T2DM as well as to inhibit the correlation between the two diseases.

To the best of our knowledge, this study is the first to elucidate the relationship between T2DM and AP and identify common genes involved in the development of both diseases through comprehensive bioinformatic analysis. However, this study has some limitations that should be acknowledged. First, the limited dataset, small sample size, and lack of clinical information might not have adequately represented the characteristics of the target population. Therefore, large-sample multi-center prospective randomized controlled trials should be conducted to validate the predictive efficacy of the 2-gene diagnostic model developed in this study. Second, owing to the limitations of the datasets used in this study, we could not differentiate between patients with T2DM with or without AP and patients with AP with or without T2DM. Consequently, we could not assess the significance of the diagnostic model in predicting that patients with AP may have concurrent T2DM or patients with T2DM may have concurrent AP. Third, additional experiments are warranted to validate dyslipidemia as the link between AP and T2DM and to investigate the mechanisms of SLPI and ARHGEF9 in AP and T2DM and their relationship with dyslipidemia.




5 Conclusion

Our study identified dyslipidemia as a possible common mechanism of T2DM and AP and constructed a two-gene diagnostic model for early recognition of T2DM and AP through a series of machine learning approaches. Most importantly, we found that imatinib may be a potential treatment for T2DM and AP.
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Age (years)
Gender (male/female)

DM (years)

DF (weeks)

C-reactive protein (mg/L)
FBG (mmol/L)

Glycosylated hemoglobin (%)
Neutrophils ratio (%)

White blood cells (x10°/L)

6138 = 1337
30/10

1631+ 7.17

430 (2.00, 12.90)
8144 = 7851

9.28 +2.75

9.80 + 245

76.15 (61.23, 82.48)

8.73 (6.90, 12.04)

Control group
(n=31)

59.71 + 11.76
18/13

10.93+ 8.16

8.86+ 45.88
526 + 0.41
545+ 0.44
60.80 (51.05, 71.85)

623 (452, 12.11)

Statistical values (t/U/y

t=0.548
%’ 70288

t=2933

t=4.69
t=792
t=9.57
U = 166.50

U = 270.50

2)

0.585

0.592

0.005

<0.001

<0.001

<0.001

<0.001

<0.001

If the data satisfied the normal distribution, mean + standard deviation is used. Otherwise, median (25th percentiles and 75th percentiles) was used.
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FOV (mm?) Matrix Thickness Slice Gap (mm) TSE factor

(mm)
TIWI 180270 256360 35 0.35 1 2 15
PDWI 180270 328340 25 035 1 10 3.0
T2WI 160130 210126 35 035 2 12 20
ASL 380320 180160 6.0 1.0 1 1 2.0
DWI 255180 128100 35 0.35 2 1 15

APT 175120 6443 6.0 0.0 1 170 1
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Adipokines

Biological functions

Correlation

with periodontitis

Correlation with
diabetes mellitus

Adiponectin

Resistin

Visfatin

- Exerts anti-inflammatory effects
- Regulates glycemia
- Acts as endogenous insulin sensitizer

- Induces insulin resistance in animals

- Aggravates inflammation in humans

- Stimulates the secretion of proinflammatory
cytokines (e.g. TNF-0,, IL-6 and IL-12)

- Reduces glucose release

- Stimulates glucose utilization in adipocytes
and monocytes

- Stimulates the production of
proinflammatory cytokines (e.g. TNF-ot, IL-6
and IL-1B)

- Periodontal treatment increases its
serum level

- Positively correlated
with periodontitis

- Positively correlated with
periodontitis

- Non-surgical periodontal treatment
reduces its serum and GCF levels

*Red color: body fluids or tissues/cells where these biomatkers could be collected for potential diagnostic purpose.

- Inversely correlated with obesity and
insulin resistance

- Positively correlated to proinflammatory
cytokine levels during diabetes mellitus

- Increased GCF level of resistin in diabetic
patients with chronic periodontitis

- Positively correlated to proinflammatory
cytokine levels during diabetes mellitus

- Positively correlated with diabetes-
related periodontitis

(17-20)

(21-26)

(27-31)
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Correlation

with periodontitis

Correlation with
diabetes mellitus

- Mediates the pathogenesis of multiple inflammation-

+ Increased in gingival tissues
during periodontitis
+ Inversely correlated to

- Decreased in peripheral blood
mononuclear cells and serum during
type 2 diabetes mellitus

- Inversely correlated to

miR-146a associated disorders (e..g. periodontitis, diabetes mellitus  proinflammatory cytokine sroinflamimatsry ey e (g 1L (69-73)
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- Non-surgical periodontal
lon-surgical pen- ontal - Increased in GCF during diabetes-
treatment reduces its GCF level : s
related periodontitis
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miR-147 . o B L . . proinflammatory cytokine expression in (78, 79)
+ Mediates macrophage activation activation in periodontal tissues
macrophages (e.g. TNF-0 and IL-6)
- Suppresses inflammation in
gingival fibroblasts .
B 1 lated with
miR-126 . Regulates inflammatory cytokine secretion - Positively correlated to anti- YGRS Fonealen (80)

inflammatory cytokine levels
(e.g. IL-10)

*Red color: body fluids or tissues/cells where these biomatkers could be collected for potential diagnostic purpose.

diabetes mellitus
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attachment of commensal and pathogenic bacteria - Increased subgingival levels in patients
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Variable Variable Meaning Assignment
name Explanation
Gender Gender 1=Male
2=Female
Duration Duration of diabetes 1=<5y
2 =5~10y
3= 10~15y
4= >15y
Smoking Smoking 0=No
1=Yes
Alcohol Alcohol consumption 0=No
1=Yes
Resident Location of residence 1=Rural
2=Urban
3=Both urban and
rural
VTDR Vision-Threatening Diabetic 0=No/Unknow

Retinopathy

1=Yes
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Data set

\EUEL Classification t-value/Z-value/X*-value
Training set (n=1605) Testing set (n=689)
Age 63.37 £ 10.13 63.58 + 9.69 -0.463 0643
Gender 1(Male) 718(70.9%) 294(29.1%) 0834 0361
2(Female) 887(69.2%) | 395(30.8%)
BMI 24.37 + 343 2421 330 0823 ‘ 0411
SBP 136.92 + 18.52 13756 = 1892 0755 0450
DBP 81.94 = 11.06 82.53 + 11.09 -1.168 0243
Duration 1(<5y) 837(69.6%) 365((30.4%) 5.060 0.167
2(5~10y) 424(67.7%) 202(32.3%)
3(10~15y) 200(73.0%) 74(27.0%)
4(>15y) 144(75.0%) 48(25.0%)
Smoking 0(No) 1317(70.0%) 565(30.0%) 0.001 0976
1(Yes) 288(69.9%) 124(30.1%)
Alcohol 0(No) 1392(69.4%) 613(30.6%) 2.198 0.138
1(Yes) 213(73.7%) 76(26.3%)
Resident 1(Rural) 918(70.1%) 392(29.9%) 0.063 0969
2(Urban) 679(69.8%) 294(30.2%)
3(Both urban and rural) 8(72.7%) 3(27.3%)
ALT 19.00(14.60, 26.05) 18.60(14.10, 25.50) -1.465 0.143
AST 23.00(19.20, 27.40) 22.20(19.00, 27.40) -1.370 0.171
BUN 5.72(4.70, 693) 5.72(4.76, 7.02) 0.961 0337
e 90.70(78.80, 105.10) 88.30(78.40, 102.60) -1.353 0.176
UA 353.78 + 108.66 34821 + 107.38 1129 0259
TC 527 % 110 536 + 1.14 -1.810 0070
TG 1.89(1.24, 3.06) 1.88(1.17, 2.89) 0.978 0328
HDL 1.20 + 0.30 122 +0.29 -1.491 0.136
LDLC 292077 297+ 078 -1.257 ‘ 0209
GLU 11.38 + 549 1142 + 593 -0.148 0.882
HbAIC 7.46 + 1.56 751 + 1.60 -0.662 0508
VTDR 0(No) 1342(69.8%) 582(30.2%) 0.261 0.609
1(Yes) 263(71.1%) 107(28.9%)

(t-test or non-parametric test for numerical variables; chi-square test for categorical variables;The t-value/Z-value/X*-value represent the statistics of t-test,non-parametric test and chi-square
test respectively.)
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Variable = Classification

Whether concurrent VIDR

Non-occurrence group
(n=1342)

Occurrence group (n=263)

t-value/Z-value/X>-
value

Age 63.74+10.19 61.48 + 9.65 3325 0.001*
Gender 1(Male) 597(83.1%) 121(16.9%) 0.206 0.650

2(Female) 745(84.0%) 142(16.0%)
BMI 2443 £ 3.40 23.87 + 3.55 2420 0.016*
SBP 13640 = 18.31 13957 + 19.38 2542 | oo
DBP 81.63 + 10.99 83.50 + 11.28 2512 0.012*
Dasation | 1(<5y) 743(88.8%) 94((11.2%) 58.584 0.000°*

2(5~10y) 356(84.0%) 68(16.0%)

3(10~15y) 142(71.0%) 58(29.0%)

4(>15y) 101(70.1%) 43(29.9%)
Smoking v 0(No) 1099(83.4%) 218(16.6%) |04 0.700

» 1(Yes) 243(84.4%) | 45(15.6%)

Alcohol 0(No) 1166(83.8%) 226(16.2%) 0.174 0677

1(Yes) 176(82.6%) 37(17.4%)
Resident 1(Rural) 766(83.4%) 152(16.6%) 0.125 0939

2(Urban) 569(83.8%) 110(16.2%)

3(Both urban and 7(87.5%) 1(12.5%)

rural)
ALT 19.30(14.90, 26.23) 18.50(13.40, 25.30) 2068 0.039*
AST 23.00(19.40, 27.50) 21.60(18.20, 27.00) 2769 0.006*
BUN 5.70(4.66, 6.83) 5.90(4.88, 7.34) 2794 0005
e 90.30(78.58, 103.20) 93.10(79.90, 113.10) -3.049 0002+
UA 355.06 + 109.01 347.24 + 106.81 1.068 0.286
TC 528 + 111 524+ 1.08 0479 0.632
TG 1.90(1.25, 3.14) 1.83(1.18, 2.73) 1544 0123
HDL 1.20 +0.30 1.20 % 0.29 0.074 0941
LDLC 293 £0.78 289+ 0.73 0731 0.465
GLU 11.00 + 533 13.33 + 5.87 6380 0.000°*
HbALC 732+ 149 819+ 1.70 -8.482 0.000"*

test respectively.)
*p<0.01,*p<0.01,**p<0.001.

(t-test or non-parametric test for numerical variables; chi-square test for categorical variables;The t-value/Z-value/X>-value represent the statistics of t-test,non-parametric test and chi-square
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BMI (kg/m’) <0.001
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range 16 - 297 129 - 224 125 - 292 150 - 190
mean + SD 54.38 + 30.13 62.65 % 17.9 58.45 £ 9.29 49.93 +7.67
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range 53 - 1800 34-139 41-328 58 - 156

*NDMLI, patients with newly diagnosed diabetes; DM 1w, patients with long-term diabetes who are metabolically well-controlled; DM1n, patients with long-term diabetes; metabolically poorly
controlled; BMI, body mass index; HbA1c, glycated hemoglobin Al; TG, cholesterol; TG, triglycerides. Data are expressed as mean + SD.
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Control group (n=40)

Gender
20/20 21/22 21/26 13/17 0.267
(female/male) / / < I
Age (year) 59.63 + 6.21 60.23 + 9.83 57.43 £ 12.11 61.5 +9.45 0.292
Duration (year) = 995 +7.72 12.38 + 7.60 17.57 + 782" <0.001
BMI (kg/m®) 25.62 +2.58 25.75 £ 3.89 27.57 + 3.82** 27.68 + 4.56*° 0.017
WHR 0.90 + 0.05 091 +0.07 0.94 + 0.07* 0.94 + 0.07* 0.008
FPG (mmol/L) 493 £ 0.69 8.32 + 2.79% 9.61 + 3.54% 7.60 + 2.79% <0.001
Hb (g/L) 148.12 + 17.04 144,65 + 17.46 142.87 + 19.95 127.27 £ 20.14*%% <0.001
Alb (g/L) 45.16 £ 4.17 4329 + 374 4431+ 4.15 38.107 + 4.79*%% <0.001
Urea
499 £ 1.07 556 + 1.37 6.12 + 2.00% 899 + 435%#& <0.001
(mmol/L)
Cr (umol/L) 81.32 £ 13.15 64.02 + 16.14* 74.38 + 24.98 12346 + 79.93*#& <0.001
eGFR 80.74 + 14.33 95.54 + 15.18* 9538 + 32.17* 6531 + 33.95%% <0.001
UA (umol/L) 331.73 £ 61.59 344553 +102.71 360.38 + 81.55 37101 + 65.87 0.176
TG (mmol/L) 1.57 + 0.69 201 + 1.05 232 + 161 237 +2.06* 0.057
TC
525+ 091 4.98 + 1.30 492 +1.26 528 + 1.66 0.452
(mmol/L)
HDL-C 1.37 + 0.30 1.17 £ 0.28* 1.06 + 0.19% 120 +0.29 <0.001
(mmol/L)
LDL & 330074 338 +0.99 341+ 1.07 353+ 113 0.822
(mmol/L)
UACR 6.46 7.78 67.91%% 963.56*" 0001
(mg/g) (4.89,10.48) (5.60,11.90) (43.25,116.76) (611.51,6375.06) :
24-h UMA 9.35 13.60 103.50* 1160.14*%% 2006
(mg) (8.08,12.66) (10.58,19.24) (55.30,148.78) (690.24, 1887.34) :
24-h TP 0.04 0.08* 0.14** 226**% 20001
(g (0.03,0.06) (0.05,0.10) (0.22,0.3) (1.35,3.74) :

BMI, body mass index; WHR, waist to hip ratio; HbA ¢, glycated hemoglobin; FPG, fasting plasma glucose; FINS, fasting insulin; Hb, hemoglobin; Alb, albumin; Cr, Creatinine; eGER, estimated
glomerular filtration rate; UA, uric acid; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; NAG, N-acetyl-beta-
amino glucosidase; UACR, urinary albumin to creatinine ratio; 24-h UMA, 24h urine microalbumin; 24-h TP, 24h urinary total protein.

*means compared with the control group, p < 0.05;

# means compared with the normal proteinuria group, p<0.05;

“means compared with microalbuminuria group, p < 0.05.

e bold values denote statistical significance at P < 0.05 level.
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Trend

Compound name rt° (min) Mode KEGG ID 4w vs NG 12w vs 4w 24w vs 12w

Xanthine 151.0258883 1.497016667 POS C00385 down up down

Uric acid 167.0210255 0.977166667 NEG C00366 up down down
O-Acetyl-L-carnitine 204.1221238 ‘ 0.963716667 POS C02571 up down up
Propoxycarbazone 443.0774954 0.759583333 NEG - up down up
D-Lactic acid 89.0240203 1.316475 NEG C00256 up down up
Tsoleucylproline 229.1532649 0.972533333 POS - up down up
Cytidine 266.0732398 0.95165 POS €00475 down down up

“mass to charge ratio of the features; "retention time of the features.
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Variable B t p-value

Age 0.103 0.398 0.692
Gender -0.212 -0.044 0.965
Duration -0.106 -0.382 0.704
HbAIC 1.068 1.148 0.253
V Alb 1.088 2.928 | 0.004
eGFR 0.054 0.660 0.511
TRF V -0.180 -2.461 0.015
24-h UMA -7.296 -2.139 0.035
24-h UCr 1.681 2.426 0.017

B represents the regression coefficient; t represents the results of a t-test on the regression
coefficients; p<0.05 is considered statistically different.
The bold values denote statistical significance at P < 0.05 level.
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Variable B t p-value

Age 1.014 0.743 0.459
Duration 2.594 1779 0.078
HbAIC 6.930 1433 0.155
Hb 0.384 ‘ 0.574 0.567
V Alb 4.088 2.003 | 0.048
eGFR 0.399 0.881 0.380
TRF -1.350 -3.449 0.001
24-h UMA -73.861 -4.011 <0.001
24-h UCr 7.954 2438 0.016

B represents the regression coefficient; t represents the results of a t-test on the regression
coefficients; p<0.05 is considered statistically different.
The bold values denote statistical significance at P < 0.05 level.
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Without vitamin B12 deficiency

(n = 118)

With vitamin B12 deficiency

(n = 113)

P value

Age (years)
Sex (Male, n(%))

Diabetes duration (years)

Duration of metformin (years)

Proton pump inhibitor (PPI) use, n(%)
Dose of Metformin (2250, n(%))

Use of Metformin > 10 years (n(%))

59.9 + 10.4
58 (49.2%)
84+55
696 + 5.4
39 (33%)
65 (56%)

28 (24.8%)

585 + 10
66 (58.4%)
7.93 + 49
7.08 + 4.6
46 (40.7%)
73 (65.8%)

27 (22.9%)

0.313

0.159

0.540

0.856

0275

0.133

0.753
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Serum B12

Characteristics

(pmol/L)
PPI blocker use 0224
with 2342 +118.8
without 215.35 £ 104.8
Age 0743
‘ < 50 years 2202 £ 103.6
> 50 years 2264 +107.7
Dose of Metformin 0.580
1700 mg 231.6 + 102.6
2550 mg 223.1 +118.1
Type 2 diabetes mellitus duration 0.627
< Syears 2392 £113.8
5-10 years 2224 117
> 10 years 224.1 +106.7
Metformin duration 0393
MET < 5years 234.7 £109.9
METS5-10 years 2294 + 1239
MET > 10 years 204.1 + 85.2

PP, proton pump inhibitors; MET, Metformin.
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Variable B-value alue OR(95%Cl)
Age 0047 0.000%+* 0.954(0.940-0.969)
BMI -0.060 0.007** 0.942(0.902-0.984)
SBP 0014 0.000%+ 1.014(1.007-1.022)
Duration 1(<5y) = 0.000%+ =

2(5~10y) 0336 0.065 I 1.399(0.980-1.997)

3(10~15y) 1.140 0.000%+ » 3.126(2.087-4.682)

4(>15y) 1322 0.000%+ 3.750(2.362-5.954)
HbAIC 0282 0.000%+ 1.325(1.221-1438)

(** p<0.01, *** p<0.001).
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Type 2 diabetes mellitus - Metformin (n = 231)

Age (years)

Sex (Male, n (%))

Proton pump inhibitor use, n (%)
Serum vitamin B12 (pmol/L)

Vitamin B12 deficiency, n (%)

27398 ‘ 592 + 10.2
64 (29.6%) ‘ 124 (53.7%)
7 (7.9%) ‘ 85 (36.8%)
228.06 + 89 ‘ 2273+ 113.8
92 (42.4%) 113 (48.9%)

P < 0.0001*

P < 0.0001**

P < 0.0001**

0.937*

0.108**

Data are represented as mean + standard deviation for continuous variables and as a count (with proportions) for categorical variables. *An independent t-test was done for continuous variables;
** Pearson Chi-Square was done for categorical variables.
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Type of Pathway Reference
disease/

intervention

Sestrin2 in diabetes associated conditions

Obesity Mice Sesten activates AMPK, suppreses Maintains metabolic homcostasis. am
RTORCI-S6K.
Insulinsignaling  Primary hepatic  Insulin upregultesSetrin? through PIIK/  Negatve feodback flect on insuli sgnaling. an)
clls PKB/mTOR.
Execise Mice Sestrng ineracts with AMPK and actvates  Medisesthe efcts o excresc 1o incess insulin a
autophagy. senstiiy
Insulin resistance | C2CI2 myomubes Sstin2 induces autophagy va actation of | Maitans nsulinsensiity and glcose sensiy. ©)
AMPK.
Pathologil Puncreatc redls Setrin? promotes sutophagy by stenuating  Mintain Bl fonction. a
s rlevant TORCI activaiton through AMPK.
o dishetes dependent and -independent mehanisms.
Regulror Itersapular bronn Sstin? suppresses UCP expression Regulaes thermogenesis and mitchormesis. il s
obesiy adipose tisue n overexpresion o defiiency of Sestrin? s detrmental
mice for the nergy homeosass i brown adipos tsic
BiARsgonist  Inguinal Sesrnd reglstes BIAR. Reduces lipid droplet iz in inguinal white dipose o
adipose tissc and s and incresses soleus muscle mass.
soleus musce in
Highgluoseand | Monote Sestrng reglates AMPK/mTOR signaling  Regulates monocyte activation )
dyslpdemic and sls0 AMPK regulates Sesin? ina
conditions foedback mechanim.
Highfdia Mice Sesrnd sctivtes AKT through GATOR2:  Promates metaboli homcostasis @
induced obesty TORC2 axs.
Obesitywih  Obesty childeen Serum Sesrnd i deressed. am
DM with T2DM
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drugeaive T2DM
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Sestrin2 in diabetic complications.

Diabetic kidney disease (DKD)
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Statistics
3-month follow-up
Heterogeneity
Taw’ ( 7) 0.1184
r 58.33%
d.f 6.000
Q-test ( 1) 12.547
P - value 0.0
Test for overall effect
Z ~ test 3.42
P - value <0.001

Publication bias assessment

Begg and Mazumdar ( P - value) 0.773
Egger’s regression ( P — value) 0.568
6-month follow-up

Heterogeneity

Tau® (7) 0.0233
P 84.84%
d.f 9.000
Q-test ( x%) 58590
P - value <.001
Test for overall effect

Z — test 3.35
P - value <0.001
Publication bias assessment

Begg and Mazumdar ( P - value) 0.156
Egger’s regression ( P — value) 0.091
9-month follow-up

Heterogeneity

Tau® ( 7°) 3.2342
B 96.73%
d.f 2.000
Q-test ( x%) 41.073
P - value < 0.001
Test for overall effect

Z — test 179
P - value 0.074
Publication bias assessment

Begg and Mazumdar ( P - value) 0333
Egger’s regression ( P - value) 0.007
12-month follow-up

Heterogeneity

Tau® ( 7°) 03551
r 87.33%
d.f 4.000
Q-test ( 1) 25.908
P - value < 0.001
Test for overall effect

Z — test 3.01
P - value 0.003
Publication bias assessment

Begg and Mazumdar 0233
( P-value)

Egger’s regression ( P — value) 0.001

Forest plot
Studies MD [95% CI] Weight (%) MD [95% Cl]

Bhansali 2009 [ ] 28.37% 0.90[ 0.62, 1.18]
Liu 2014 I 13.78% 1.31[ 051, 2.11]
Carlsson 2015 - 2551% 0.40[ 0.03, 0.77]
Esfahani 2015 Pi 5.09% 1.52[-0.06, 3.10]
Bhansali 2017 l 2291% 0.20[-0.25, 0.65]
Ulyanova 2019 W 432% 037[-1.37, 211]
Zang 2022 >———< 0.02% 1.82[-27.83, 31.47]

RE Model § 100.00% 0.68[ 0.29, 1.07)
V_l_;_l_|
40 20 0 20 40

Bhansali 2009 : —s—— 840% 0.49[0.28, 0.70]
Hu 2013 >—I—4 10.29% 0.03[-0.11,0.17]
Liu 2014 —— 10.26% 0.22[0.08, 0.36]
Guan 2015 —_— 11.02% 0.18[0.07,0.29]
Carlsson 2015 hl—< 11.42% -0.04[-0.13,0.05]
Esfahani 2015 >—I—< 11.29% 0.00[-0.10, 0.10]
Hu 2016 H —— 10.75% 0.39[0.27,0.51]
Bhansali 2017 r—-—t 6.22% 0.32[0.02,0.62]
Ulyanova 2019 9.16% 0.13[-0.05,0.31]
Zang 2022 11.19% 0.22[0.12,0.32]
RE Model 100.00% 0.18[0.07, 0.29]
—r 1 T 1 1
02 0 02 06
Yu 2011 —— 32.13% 3.96[2.96,4.96]

Bhansali 2017 I-'l-i 3394% 0.30[-0.24,084]

Zang 2022 I 3393% 153[0.99,207]
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T
4012345
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Carlsson 2015 &

27.28% 0.30[0.12, 0.48]

Bhansali 2017 'li 25.50% 0.50[0.14, 0.86]

Zang 2022 - 23.08% 1.50[0.96,2.04]
RE Model ‘ 100.00% 0.95[0.33,157]
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Sample Study type Treatment Mean age Mean Route of injection Number Mean

References = size of dose of of follow-up
diabetes patients injected insulin period
(years) cells free (months)
Bhansali 10 n-RCT T2DM BM-MSCs 57.5+59 35+14 Transfemoral route into 0 6
etal. (15) x 10* gastroduodenal artery beyond
the origin of cystic artery

Jiang 10 Pilot study T2DM PD-MSCs 66 135 x 10° v 0 =3
et al. (16)
Yu 12 RCT TIDM hUC-MSCs 19.67 +2.58 1% 107 v 0 9
etal. (33) 14.83 + 8.18
Hu 29 RCT TIDM WJ-MSCs 17.6 2.6x 107 Peripheral vein 3 24
et al. (34)
Mesples 3 Case study TIDM BM-MSCs 7 181x10° Intra-hepatic parenchyma 0 12
et al. (30)
Liu 22 Prospective, = T2DM WJ-MSCs 529 +10.5 1x10° Spleen artery 0 12
etal. (17) non-placebo
Carlsson 18 RCT TIDM BM- 246 2.75x% 10° Peripheral vein 0 12
et al. (35) MSC; 27+6

Control
Guan 6 n-RCT T2DM hUC-MSCs 405 £ 3.76 (0.88 + Elbow vein 3 332+2.82
et al. (36) 0.05) x 10°
Esfahani 23 n-RCT TIDM BM-MSCs 12.56 2% 10° Peripheral vein 2 12
et al. (28)
Hu 61 RCT T2DM WJ-MSCs 5243 + 4.88 1x10° v 6 36
et al. (37) 5321 + 822
Bhansali 30 RCT T2DM ABM-MSCs; 479 + 189 (1.2£03) SPD artery; 0 12
et al. (38) ABM- 446 £ 89 x 107 splenic artery;

MNCs; 517 £ 133 transfemoral route into the

control femoral artery
Ulyanova 5 Case study TIDM AMSCT 30 96 x 10° Peripheral vein 0 3
etal. (31)
Zang 73 RCT T2DM UC-MSCs | 50.00 + 938 1x10° Elbow joint (IV) 5 12
etal. (32) 50.45 + 8.03

RCT, randomized controlled trial; n-RCT, non-randomized controlled trial; BM-MSCs, bone marrow-derived mesenchymal stem cells; PD-MSCs, placenta-derived mesenchymal stem cells;
hUC-MSCs, human umbilical cord-derived mesenchymal stem cells; ASC, amniotic stem cell transplantation; WJ-MSCs, Wharton’s jelly-derived mesenchymal stem cells; ABM-MSCs,
autologous bone marrow-derived mesenchymal stem cells; ABM-MNCs, autologous bone marrow-derived mononuclear cells; SPD, superior pancreatico-duodenal; IV, intravenous; AMSCT
autologous mesenchymal stem cell transplantation.
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Baseline Character Total (n = 2379) 1186) Statistic P Value
Age 58.92 +18.80 47.93 £17.26 69.97 +£12.86 t=-35.332 <0.001
Weight 82.36 £24.14 76.49 £20.79 88.26 +25.78 t=-12.255 <0.001
Heart Rate Mean 87.83 £15.37 91.85 £14.15 83.79 1548 t=13.250 <0.001
Sbp Mean 122.07 £17.05 12337 £17.73 120.76 £16.24 t=3.747 <0.001
Dbp Mean 64.59 +11.58 67.48 £11.93 61.68 +10.44 t=12.632 <0.001
Mbp Mean 79.45 £11.47 81.34 £12.03 77.55 £10.55 t=8.174 <0.001
Resp Rate Mean 19.05 +3.65 19.10 +3.64 19.01 £3.65 t=0.592 0.554
Temperature Mean 36.84 +£0.51 36.87 £0.45 36.81 +£0.56 t=2.900 0.004
Spo2 Mean 97.22 £1.90 97.61 £1.70 96.83 £2.01 t=10.195 <0.001
Bun Mean 28.45 +21.56 28.38 £22.16 28.51 £20.94 t=-0.145 0.885
Creatinine Mean 1.56 £1.69 173 £2.11 1.38 £1.11 t=5.092 <0.001
Urineoutput X 2044.34 £1469.52 2287.17 £1669.55 1800.09 £1187.70 t=8.203 <0.001
Hematocrit Mean 54.92 +£26.50 76.57 £20.71 33.16 £5.71 t=69.760 <0.001
Hemoglobin Mean 43.87 £35.93 76.57 £20.71 11.02 £1.96 t=108.807 <0.001
Aniongap Mean 17.15 +4.92 19.86 +4.78 14.43 £3.27 t=32.382 <0.001
Calcium Mean 8.41 £0.79 8.39 +0.76 8.43 +0.81 t=-1.079 0.280
Sodium Mean 137.46 +£5.03 136.77 £5.42 138.16 +4.51 t=-6.806 <0.001
Potassium Mean 4.38 £0.67 4.47 £0.71 4.29 £0.61 1=6.822 <0.001
Wbc Mean 12.11 £6.23 12.59 +6.18 11.63 +6.26 t=3.781 <0.001
Abs Lymphocytes Mean 11251 +185.07 87.42 £82.36 137.75 £246.25 t=-6.694 <0.001
Abs Neutrophils Mean 823.62 £591.64 694.22 +643.94 953.80 £501.50 t=-10.973 <0.001
Platelets Mean 239.49 +108.61 261.78 £107.41 217.06 £105.18 t=10.260 <0.001
Mch Mean 29.79 £2.56 29.63 £2.56 29.95 £2.55 t=-3.018 0.003
Rbc Mean 377 £0.72 3.85 +0.75 3.70 £0.67 t=5.118 <0.001
Rdw Mean 14.64 +2.00 14.24 £1.97 15.05 £1.95 t=-10.028 <0.001
Glucose Mean 271.95 +2783.01 272.15 +1536.30 271.75 +3628.83 t=0.003 0.997
Chloride Mean 103.29 £6.22 102.67 £6.75 103.90 +5.58 t=-4.850 <0.001
Lods 4.28 £2.98 3.83 +2.87 4.73 £3.01 t=-7.454 <.001
Charlson Comorbidity Index X 5.70 £3.05 4.54 £3.07 6.87 £2.53 t=-20.233 <0.001
Oasis 29.81 £9.20 27.35 £8.80 32.29 £8.93 t=-13.605 <0.001
Gender, n (%) 11:17_337 <0.001
female 1147 (48.21) 626 (52.47) 521 (43.93)
male 1232 (51.79) 567 (47.53) 665 (56.07)
Ethnicity, n (%) - <.001
AMERICAN INDIAN/ALASKA NATIVE 7(0.29) 2(0.17) 5 (0.42)
ASIAN 61 (2.56) 25 (2.10) 36 (3.04)
BLACK/AFRICAN AMERICAN 466 (19.59) 323 (27.07) 143 (12.06)
ethnicity 1(0.04) 0 (0.00) 1(0.08)
HISPANIC/LATINO 105 (4.41) 63 (5.28) 42 (3.54)
OTHER 103 (4.33) 50 (4.19) 53 (4.47)
UNABLE TO OBTAIN 29 (1.22) 5(0.42) 24 (2.02)
UNKNOWN 169 (7.1) 50 (4.19) 119 (10.03)
‘WHITE 1438 (60.45) 675 (56.58) 763 (64.33)
Mechvent, n (%) Xz:134-582 <0.001
No 1861 (78.23) 1050 (88.01) 811 (68.38)
Yes 518 (21.77) 143 (11.99) 375 (31.62)
Hypertension, n (%) 11=109_433 <0.001
No 1290 (54.22) 774 (64.88) 516 (43.51)
Yes 1089 (45.78) 419 (35.12) 670 (56.49)
Obesity, n (%) 2=46.636 <0.001
No 2096 (88.1) 1105 (92.62) 991 (83.56)
Yes 283 (11.9) 88 (7.38) 195 (16.44)
Cad, n (%) 11=142.136 <0.001
No 1714 (72.05) 990 (82.98) 724 (61.05)
Yes 665 (27.95) 203 (17.02) 462 (38.95)
Myocardial Infarct, n (%) 21=13.257 <0.001
No 1933 (81.25) 1004 (84.16) 929 (78.33)
Yes 446 (18.75) 189 (15.84) 257 (21.67)
Congestive Heart Failure, n (%) 2°=98.902 <0.001
No 1778 (74.74) 997 (83.57) 781 (65.85)
Yes 601 (25.26) 196 (16.43) 405 (34.15)
Peripheral Vascular Disease, n (%) 27=14.902 <0.001
No 2139 (89.91) 1101 (92.29) 1038 (87.52)
Yes 240 (10.09) 92 (7.71) 148 (12.48)
Chronic Pulmonary Disease, n (%) f:gsgso <0.001
No 1818 (76.42) 1009 (84.58) 809 (68.21)
Yes 561 (23.58) 184 (15.42) 377 (31.79)
Liver Disease, n (%) 2=115.167 <0.001
No 2001 (84.11) 1078 (90.36) 923 (77.82)
Yes 378 (15.89) 115 (9.64) 263 (22.18)
Renal Disease, n (%) 12=217.075 <0.001
No 1893 (79.57) 868 (72.76) 1025 (86.42)
Yes 486 (20.43) 325 (27.24) 161 (13.58)
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Healthy Living Donor (n=6)

Male, n (%) 3 (50)

Age, years 48.56 + 4.67
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KMO Forward ATGGCATCG
TCTGATACTCAGG
Reverse CCCTAGCTTCGT
ACACATCAACT
QPRT Forward CCGGGCCTCAA
TTTTGCATC
Reverse GGTGTTAAGAG
CCACCCGTT
HAAO Forward GAACGCCGTG
TGAGAGTGAA
Reverse CCAACGAACAT
GATTTTGAGCTG
Forward GTCAAGCCTGC
GTTAGTGG
KYNU
Reverse GGAGGGTTTGAA
ATTCGGAATCC
NAMPT Forward AATGTCTCCT
TCGGTTCTGGT
Reverse GCAACTGGGTC
CTTAAACACA
Forward TGGCTCTTTTA
NMNATI ACCCCATCAC
Reverse TCTTCTTGTAC
GCATCACCGA
NMNAT3 Forward ATTGACGGGTG
AGATGATGCC
Reverse ACTGGATGGG
GTGGGAAT
GAPDH Forward ACGGCCGCATCT
TCTTGTGCA
Reverse TGCCACTGCAA
ATGGCAGCCC

KMO, kynurenine 3-monooxygenase; QPRT, quinolinate phosphoribosyl transferase; HAAO,
3-hydroxyanthranilic acid oxygenase; KYNU, kynureninase; NAMPT, nicotinamide
phosphoribosyl transferase; NMNAT1, nicotinamide mononucleotide adenylyltransferase 1;
NMNATS3, nicotinamide mononucleotide adenylyltransferase 3; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase.
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Baseline Relevance Baseline Relevance

Characteristics Characteristics
haemoglobin_mean 03573 bun_mean 0.0028
haematocrit_mean 0.2903 I lods 1 0.0026
aniongap_mean 0.0659 temperature_mean 0.0026
age 0.601 chloride_mean 0.0025
glucose_mean 0.0371 mbp_mean 0.0023
abs_lymphocytes_mean 0.0349 rbc_mean 0.0023
abs_neutrophils_mean 0.0335 sbp_mean 0.0020
charlson_comorbidity_index 0.0223 resp_rate_mean 0.0020
weight 0.0089 urineoutput 0.0020
heart_rate_mean 0.0079 mch_mean 0.0018
oasis 0.0068 potassium_mean 0.0016
rdw_mean 0.0060 hypertension 0.0015
platelets_mean 0.0056 renal_disease 0.0015
dbp_mean 0.0055 calcium_mean 0.0015
liver_disease 0.0045 congestive_heart_failure 0.0011
sodium_mean 0.0040 ethnicity 0.0009
mechvent 0.0037 chronic_pulmonary_disease 0.0008
spo2_mean 0.0035 obesity 0.0006
cad 0.0032 gender 0.0003
wbc_mean 0.0029 myocardial_infarct 0.0003

creatinine_mean 0.0029 peripheral_vascular_disease 0.0001
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abs_neutrophils_mean 0.219 wbe_mean 0.077
hypertension 0.214 sbp_mean 0.076
platelets_mean 0.206 myocardial_infarct 0.076
spo2_mean 0.205 ethnicity 0.063
congestive_heart_failure 0.204 mch_mean 0.062
rdw_mean 0.201 temperature_mean 0.059
chronic_pulmonary_disease 0.193 calcium_mean 0.021
urineoutput 0.166 resp_rate_mean 0.012
mbp_mean 0.165 bun_mean 0.002

lods 0.151 glucose_mean 0.002
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Healthy Living Diabetic
Donor (n=13) Nephrology
(n=9)
Male, n (%) 8 (61.54) 4 (44.44)
Age, years 51.38 + 3.31 64 + 4.52
eGFR, ml/ 80.91 * 6.50 31.08 + 4.46

min/1.73m?
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Mean Difference
IV, Random, 95% CI

Mean Difference
IV. Random, 95% CI

25.4%
28.9%
26.5%
19.2%

Balanced crystalloids Normal saline
Study or Subgroup Mean [mmol/L] SD [mmol/L] Total Mean [mmol/L] SD [mmol/L] Total Weight
Attokaran 2023 105.33 7.65 46 106 5.39 38
Mahler 2011 105 4.5109 22 111 2.3125 23
Ramanan 2021 106.5 5.35 48 108.33 6.91 42
Williams 2020 114.5 9.49 34 118.5 7.42 32
Total (95% CI) 150 135

Heterogeneity: Tau? = 5.24; Chi? = 11.00, df = 3 (P = 0.01); 12 =73%
Test for overall effect: Z = 2.32 (P = 0.02)

100.0%

-0.67 [-3.47,2.13]
-6.00 [-8.11, -3.89]
-1.83[-4.41,0.75]
-4.00 [-8.10, 0.10]

-3.16 [-5.82, -0.49]

RS

-

_—

———

-10 -5

Favours [Balanced crystalloids]

+
0 5

Favours [Normal saline]

10
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Balanced crystalloids  Normal saline Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Fixed,95% Cl M-H, Fixed, 95% C|
Aditianingsih 2017 5 15 4 15 11.7% 1.25[0.41,3.77] -
Ramanan 2021 1 48 3 42 9.4% 0.29[0.03, 2.70] ¢ =
Self 2020 5 94 5 78 16.0% 0.83[0.25, 2.76] »
Semler 2017 3 21 4 20 12.0% 0.71[0.18, 2.80] =
Williams 2020 13 34 15 32 453% 0.82[0.46, 1.43] L)
Yan 2023 4 25 2 27 56% 2.16[0.43, 10.78] - 4
Total (95% CI) 237 214 100.0%  0.88 [0.58, 1.34] i
Total events 31 33
Heterogeneity: Chi? = 2.70, df = 5 (P = 0.75); I? = 0% ! + t + t i
e = 0.1 0.2 0.5 1 2 5 10
Test for overall effect: Z = 0.58 (P = 0.56) Favours [Balanced crystalloids] ~Favours [Normal saline]
Balanced crystalloids  Normal saline Risk Ratio Risk Ratio
__Study or Subgroup Events Total Events Total Weight M-H. Random.95% Cl M-H. Random. 95% CI

Ramanan 2021 5 48 7 42 18.8% 0.631[0.21, 1.82] -
Self 2020 9 94 15 78 26.2% 0.50[0.23, 1.08] = B
Williams 2020 9 34 13 32 28.3% 0.65[0.32, 1.31] L) T
Yan 2023 12 25 7 27 26.6% 1.85[0.87, 3.95] T = -
Total (95% CI) 201 179 100.0% 0.80 [0.43, 1.46] ——
Total events 35 42

it 2= . Chiz = = = - |2 = 569 t + + + J
Heterogeneity: Tau? = 0.21; Chi? = 6.75, df = 3 (P = 0.08); I* = 56% o1 02 05 1 2 10

Test for overall effect: Z = 0.74 (P = 0.46)

Favours [Balanced crystalloids]

Favours [Normal saline]

5
]
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Balanced crystalloids

Normal saline

Mean Difference

Mean Difference

Study or Subgroup Mean [Hours] SD [Hours; Total Mean [Hours] SD [Hours] Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Self 2020 13.77 7 94 211 171 78 18.9% -7.33[-11.38,-3.28] o
Tsui 2019 18 18.0434 22 31 32.0503 20 2.8% -13.00 [-28.94, 2.94] ¢ z
Van Zyl 2011 16.34 16.03 27 15.49 10.66 27 10.1% 0.85[-6.41, 8.11]
Williams 2020 15.5 5.98 34 14.67 9.31 32 19.9% 0.83 [-2.97, 4.63] -
Yan 2023 14.97 6.6 25 13.27 8.84 27 18.3% 1.70 [-2.52, 5.92] — ™
Yung 2017 75 1.8 38 8.5 28 39 30.0%  -1.00[-2.05,0.05] |
Total (95% CI) 240 223 100.0%  -1.49 [-4.29, 1.31] . o
iy Tau? = 6.51- Chi2 = - = .12 = 659 f . . |
Heterogeneity: Tau? = 6.51; Chi? = 14.22, df = 5 (P = 0.01); I = 65% 20 10 0 10 20

Test for overall effect: Z = 1.04 (P = 0.30)

Favours [Balanced crystalloids]

Favours [Normal saline]
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Identification

Records identified from
Databases:
PubMed (n = 67)
Embase (n = 36)
Scopus (n =76)
Cochrane Library (n = 38)

Records screened
(n=128)

Reports sought for retrieval
(n=32)

Reports assessed for eligibility

(n=32)

Studies included in review
(n=11)

Records removed before
screening:
Duplicate records removed
(n=289)

Records excluded after
screening titles and abstracts
(n=96)

Reports not retrieved
(n=0)

Reports excluded:
1. Participants were not
diabetic ketoacidosis patients
(n=28),
2. No concerned outcomes
(n=2),
3. Review, meta-analysis, or
protocol (n = 5);
4. Improper intervention or
control methods (n= 2);
5. Non-randomized controlled
trial (n=4)
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Parameters

HbAlc

Insulin
requirement

FPG

C-peptide

12

12

12

12

n-RCT

(MD = 0.96, 95% CI 0.70 to 1.22, P-
value< 0.001)

(MD = 0.19, 95% CI 0.04 to 0.34, P-value
=0.012)

(MD = 0.19, 95% CI 0.04 to 0.34, P-value
=0.012)

(MD = 0.08, 95% CI -0.46 to 0.61, P-value
=0282)

(MD = 0.21, 95% CI 0.12 to 0.30, P-
value< 0.001)

(MD = 0.93, 95% CI 0.14 to 1.72, P-value
=0.021)

(MD = -0.27, 95% CI -0.40 to -0.14, P-
value< 0.001)

(MD = -0.01, 95% CI -1.12 to 1.11, P-value
=0.991)

RCT

(MD = 032, 95% CI 0.03 to 0.61, P-value
=0.028)

(MD = 0.17, 95% CI 0.01 to 0.34, P-value
=0.043)

(MD =095, 95% CI 0.12 to 1.77, P-value
=0.025)

(MD = 0.17, 95% CI 0.01 to 0.34, P-value
=0.043)

(MD = 0.22, 95% CI 0.10 to 0.35, P-
value< 0.001)

(MD = 0.24, 95% CI 0.18 to 0.30, P-
value< 0.001)

(MD = 0.19, 95% CI 0.02 to 0.35, P-value
=0.021)

(MD = 0.74, 95% CI -0.54 to 2.02, P-value
=0258)

(MD = 0.20, 95% CI -0.34 to 0.73, P-value
=0471)

(MD = 0.02, 95% CI -0.52 to 0.57, P-value<
=0932)

(MD = -1.11, 95% CI -3.10 to 0.88, P-value
=0.273)

(MD = -0.05, 95% CI -0.33 to 0.22, P-value
=0.712)

(MD = 0.06, 95% CI -0.22 to 0.33, P-value
=0.690)

(MD = -0.02, 95% CI -0.06 to 0.02, P-value
=0.250)
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3-month follow-up
Heterogeneity

Tau® ( 7°)

P

d.f

Q-test (%)

P~ value

Test for overall effect

Z — test

P - value

Publication bias assessment
Begg and Mazumdar ( P - value) )
Egger’s regression ( P - value)

6-month follow-up
Heterogeneity

Tau*( )

P

d.f

Q-test ( 1)

P - value

Test for overall effect

Z — test

P - value

Publication bias assessment
Begg and Mazumdar ( P — value)
Egger’s regression ( P — value)

12-month follow-up
Heterogeneity

Taw® (1)

2

d.f

Q-test ( 1)

P - value

Test for overall effect
Z — test

P - value

Publication bias assessment

Begg and Mazumdar ( P — value )

Egger's regression ( P - value)

Statistics

0.0295
48.39%
4.000
7.570

0.109

-1.04

0.300

0.483

0.020

0.3398
90.66%

6.000
62.159

< 0.001

-0.132

0.895

0.562

0.517

0.000
34.51%

6.000

9.162

0.165

-1.20

0.231

1.000

0.460

Forest plot

Studies MD [95% Cl] Weight (%) MD [95% Cl]

Bhansali 2009

Liu2014

—_—

HH

38.18% -0.30[-0.44,-0.16]

13.05% -0.20[-0.72, 0.32]

Esfahani 2015 >——°—¢ 1220% 0.21[-0.34, 0.76]

Bhansali 2017 1 1335% 030022, 082]
Zang —— 23.22% -0.19[-0.51, 0.13]
RE HModel 100.00% -0.12[-0.34, 0.11]

rr 1 T 1

4 05 0 05 1
Bhansali 2009 [ B 17.92% -0.50 [-0.64,-0.36]
Jiang2011  —————F 1 472% -0.90[2:83, 1.03]
Mesples 2013 b 15.35% -0.25[-0.74, 0.24]
Liu 2014 —— 13.79% -0.66[-1.30,-0.02]
Esfahani 2015 B 1568% 1.12[0.66, 158]
Bhansali 2017 . 1536% 0.10[-0.39, 0.59]
Zang 2022 - 17.19% 0.22[-0.06, 0.50]
RE Model 100.00% -0.03[-0.52, 0.45]

LI N R B |

321012
Mesples 2013 —_— 047% -0.11[-0.70, 048]
Hu 2013 »—H 167% 004[-027, 0.35]
Liu 2014 —_— 0.56% -0.57[-1.11,-0.03]
Guan 2015 e 054% 038[0.17, 0.93]
Carelesson 2015 L] 9402% -0.03[-0.07, 0.01]
Hu 2016 e 173% 008[-0.23, 039]
Bhansali 2017 M 101% 030[0.10, 0.70]
FE Model I 100.00% -0.02[-0.07, 0.02]

l_|_l_é_|_|

45 1 05 0 05 1

Standard Error

Standard Error

Standard Error

Funnel plot






OPS/images/fendo.2024.1367916/table1.jpg
patients

Intervention

Outcomes

Mahler Double- 22/23 Patients aged 18 to 65 Plasma-Lyte A versus 0.9% NS, each Post-resuscitation chloride
2011 (22) blind, years with moderate to patient received a 20 mL/kg bolus of
single- severe DKA in the ED study fluid. The remaining volume deficit
center was replaced over 24 hours
Van Zyl Double- 27/27 Patients aged more than Lactated Ringer’s solution versus 0.9% Time to DKA resolution (pH > 7.3, serum
2011 (23) blind, 18 years with DKA NS, until the blood glucose was < 14 bicarbonate > 18 mmol/L, blood glucose < 11.1
multicenter mmol/L mmol/L)
Semler Open- 21/20 All adults with severe Lactated Ringer’s solution or Plasma- Major adverse kidney event
2017 (25) label, DKA admitted to Lyte versus 0.9% NS, until discharge
multicenter the ICU from the ICU
Yung Double- 38/39 Children with moderate Hartmann’s solution versus 0.9% NS in Time to DKA resolution (pH > 7.3, serum
2017 (26) blind, to severe DKA admitted bolus of 10 to 30 mL/kg for at least bicarbonate = 15 mmol/L)
multicenter to the PICU or high- 12 hours
dependency unit
Aditianingsih  Single- 15/15 Patients aged 18 to 65 Lactated Ringer’s solution versus 0.9% Major adverse kidney event
2017 (24) blind, years with DKA in NS, until the resolution of DKA
single- the ED
center
Tsui Open- 22/20 Patients aged more than | Plasma-Lyte A versus 0.9% NS, until the Time to DKA resolution (pH > 7.3, serum
2019 (27) label, 18 years with DKA in resolution of DKA bicarbonate > 15 mEq/L, blood glucose < 200
single- the ED mg/dL, anion gap < 12)
center
Self 2020 (28)  Double- 94/78 Patients aged 18 years or = Ringer lactate solution or Plasma-Lyte A Time to DKA resolution (pH > 7.3, serum
blind, older with DKA in the versus 0.9% NS, until discharge from the bicarbonate > 15 mEq/L, blood glucose < 200
multicenter ED and ICU ED or ICU mg/dL), major adverse kidney
event, hypokalemia
Williams Double- 34/32 Children aged from 1 Plasma-Lyte A versus 0.9% NS, until the Time to DKA resolution (pH > 7.3, serum
2020 (29) blind, month to 12 years with resolution of DKA bicarbonate > 15 mEq/L, blood glucose < 200
single- DKA in the pediatric mg/dL), major adverse kidney event, post-
center emergency room resuscitation chloride, hypokalemia
Ramanan Open- 48/42 Adult patients aged Plasmalyte-148 versus 0.9% NS for Post-resuscitation chloride, major adverse
2021 (30) label, more than 16 years with = 48 hours kidney event, hypokalemia
multicenter severe DKA in the ED
or ICU
Yan Triple- 25/27 Adult patients aged Ringer lactate solution versus 0.9% NS, Time to DKA resolution (pH > 7.3, serum
2023 (32) blind, more than 18 years with until the resolution of DKA bicarbonate > 15 mEq/L, blood glucose < 200
single- DKA in the ED mg/dL, anion gap < 12), major adverse kidney
center event, hypokalemia
Attokaran Open- 46/38 Adult patients with DKA  Plasmalyte-148 versus 0.9% NS, until Post-resuscitation chloride
2023 (31) label, in the ED discharge from the ED
multicenter

DKA, diabetic ketoacidosis; ED, emergency department; NS, normal saline; ICU, intensive care unit; PICU, pediatric intensive care unit.
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NLR PLR Sli

Event, n
OR (95% CI) OR (95% ClI) OR (95% CI)
176 145 151
DN 211 0.003 0.034 0.048
(1.21-2.54) (1.15-1.91) (1.00-2.28)
193 181 147
DR 62 0.022 0.038 0.014
(1.10-3.40) (1.06-2.77) (1.14-2.03)
174 0.97 134
DPN 181 0016 0.860 0.112
(1.16-2.70) (0.67-1.41) (0.94-1.91)
297 173 2.00
DN+DR 88 0.001 0.022 0.004
" (1.72-4.52) < (1.08-2.77) (1.24-3.21)
249 148 151
DN+DPN 49 0.003 0.206 0.188
* (1.35-4.59) (0.81-2.70) (0.82-2.78)
1.40 127 131
DR+DPN 51 0304 0.407 0261
* (0.74-2.65) (0.70-2.31) (0.83-1.88)
DN+DR+DPN 59 116 <0.001 201 0.014 185 0.032

(2.35-7.35) (1.15-3.49) (1.06-3.23)
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Variables OR

OR OR
(95% Cl) (95% ClI) (95% CI)
SI 1.52 157 081
0021 .02 29
>489.14 (1.07-2.16) (1.06-2.34) 0022 (0.54-1.21) oz
NLR 171 179 1.05
0.004 0.008 0.827
2233 (1.19-2.48) (1.17-2.74) (0.67-1.57)
PLR 1.60 155 1.02
0.008 0038 0938
212254 (1.13-2.28) (1.03-2.34) (0.69-1.49)

OR, odds ratio; Cl, confidence interval.
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Character

Age(years)
<60

260

Sex
Men

Women

BMI(kg/m’)
<24

Subgroup

No MetS or depression
Depression only

MetS only

MetS and depression

No MetS or depression
Depression only

MetS only

MetS and depression

No MetS or depression
Depression only

MetS only

MetS and depression

No MetS or depression
Depression only

MetS only

MetS and depression

No MetS or depression
Depression only

MetS only

MetS and depression

No MetS or depression
Depression only

MetS only

MetS and depression

RR (95% Cl)

45

Events/Total

384/4431
30/290
111/740
12/56

80/666
8/54
48/239
5/13

221/2437
14/139
91/481
5/23

243/2660
24/205
68/498
12/46

331/3847
32/274
46/334
3/20

133/1250
6/70
113/645
14/49

Adjusted RR (95% Cl)

reference

1.23(0.87,1.74)
1.33(1.08,1.65)
2101(1.21,3.35)

reference

1.27(0.65,2.45)
1.49(1.05,2.11)
3.08(1.59,5.99)

reference

1.18(0.72,1.95)
1. 73(1:36.:2:27)
2.22(1.02,4.84)

reference

1.22(0.83,1.81)
0.98(0.74,1.29)
1.91(1.16,3.16)

reference

1.38(0.99,1.92)
1.26(0.95,1.68)
1.68(0.60,4.68)

reference

0.80(0.37,1.72)
1.56(1.23,1.98)
2.46(1.54,3.94)

P for interaction

0.86

0.07

0.58
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Number of complications

Variables
1 2

N (%) 357 (33.74%) 454 (42.91%) 188 (17.77%) 59 (5.58%)

SII 43553 + 27741 501.09 + 559.08* 54330 + 669.97* 548.90 + 345.11%

2489.14 112 (31.37%) 141 (31.06%) ‘ 78 (41.49%)* 27 (45.76%)*

NLR 204123 242 +2.71% 255+ 2.65 279 + 1.42*

2233 88 (24.65%) 150 (33.04%)** 80 (42.55%)"* 34 (57.63%)*

PLR 118.36 + 49.94 123.63 + 5581 126.06 + 5637 128.15 + 46.74*
72122.54 127 (35.57%) 179 (39.43%)* I 86 (45.74%)* 31 (52.54%)*

Group 1, Group 2, or Group 3 vs. Group 0, *P < 0.05, **P < 0.01, ***P < 0.001.
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Total participants in the cohort of Guizhou province

N=9280

| 132 participants died
983 participants lost to follow up
Subjects who underwent a 2nd health examination
N=8165

176 participants were excluded with
wrong data to diagnose depression

882 participants were excluded with
missing or wrong data to diagnose
T2DM and MetS

530 participants were excluded:having

T2DM before the index year 2010

88 participants were excluded with
missing the outcome of T2DM of
follow u

Total participants in the cohort of Guizhou province
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Variables

Non-MC group

N=357

DPN group
N=340

Gender (Female/Male)
Age (years)

255
HbAlc (%)

27
Diabetic duration (years)

210
BMI (kg/m?)

224
Hypertension
Dyslipidemia
Lymphocytes (10°/L)
Neutrophils (10°/L)
Platelets (10°/L)
Monocytes (10°/L)
Creatinine (umol/L)
BUN (mmol/L)
Uric acid (umol/L)
€GFR (mL/min/1.73m’)
SIT

2489.14
NLR

22.33
PLR

2122.54

118/239
49.00 (37.00, 58.00)
129 (36.13%)
870 (7.00, 10.60)
266 74.51%)
4.0 (1.00, 8.00)
73 (20.45%)
26.08 + 4.07
98 (27.45%)
90 (25.21%)
220 (61.62%)
2.45 £ 8.60
362 % 1.42
21547 + 61.86
047 +0.42
57.11 + 1420
531+ 158
321,09 + 86.67
113.42 (102.16, 124.06)
435.53 + 27741
112 (31.37%)
2.04+123
88 (24.65%)
118.36 + 49.94

127 (35.57%)

104/303
58.00 (49.00, 65.00) **
250 (61.43%)"*
820 (6.90, 10.10)
305 (74.94%)
10.00 (5.00, 17.00) ***
227 (55.77%)*
26.45 + 3.67
107 (26.29%)

258 (63.39%)
361 (88.70%)"*
1.81 + 0.60
427 £ 434
212,54 + 70.01
049 + 0.30
84.44 + 74.90%*
6.84 +3.30"*
342,90 + 97.03***
99.28 (80.11, 112.09) ***
570.80 + 672.64**
169 (41.52%)*
263 +2.80"*
175 (43.00%)**
127.51 £ 56.07

186 (45.70%)**

DN group including the patients of DN (211), DN+DR (88), DN+DPN (49), DN+DR+DPN (59).
DR group including the patients of DR (62), DN+DR (88), DR+DPN (51), DN+DR+DPN (59).

DPN group including the patients of DPN (181), DN+DPN (49), DPN+DR (51), DN+DR+DPN (59).
DN group, DR group, or DPN group vs. Non-MC group, *P < 0.05, **P < 0.01, **P < 0.001.

88/172
60.00 (55.00, 69.00) **
191 (73.46%)**
7.70 (6.80, 9.50)
191(73.46%)
12,00 (550, 19.50) ***
180 (69.23%)***
25.64 + 3.39
87 (33.46%)

167 (64.23%)***
232 (89.23%)**
173 +0.57
398 +3.24*
202,07 + 66.11
046 + 0.14
86.80 + 8639
7.14 £ 347
33422 +91.35
10240 (91.74, 108.47) ***
503.94 + 370.84*
104 (40.00%)*
248 + 1.61*

116 (44.62%)**
126.03 + 52.61

121 (46.54%)**

119/221
59.00 (53.00, 67.00) ***
259 (76.18%)**
7.90 (6.70, 9.80)
240 (70.59%)
10.00 (6.00, 16.00) ***
233(68.53%)***
25.79 + 3.60
117 (34.41%)

174 (51.18%)***
306 (90.00%)***
174 £0.57
387 £4.55
19645 = 64.79
048 + 0.38
71.73 £ 74.25%%
6.93 + 15.64*
31332 + 8242
10443 (9536, 113.42) *
487.04 + 582.33*
105 (30.88%)
245 + 2.69*

121 (35.59%)**
122.20 + 53.87

137 (40.29%)





OPS/images/fendo.2024.1399859/crossmark.jpg
©

2

i

|





OPS/images/fendo.2023.1308373/im39.jpg
BW





OPS/images/fendo.2024.1367376/table1.jpg
Variables Patients (1058)

Gender (Female/Male) 337/721
Age (years) 54.67 + 12.86
255 598 (56.52%)
HbAlc (%) 859 = 2.20
>7 778 (73.53%)
Diabetic duration (years) 9.32 £ 7.10
>10 475 (44.90%)
BMI (kg/m?) 26.04 + 3.74
>24 307 (29.02%)
DN 407 (38.47%)
DR 260 (24.57%)
DPN 340 (32.14%)
Hypertension 481 (45.46%)
Dyslipidemia 842 (79.58%)
Lymphocytes (10°/L) 2.01 £ 5.02
Neutrophils (10°/L) 3.89 +3.61
Platelets (10°/L) 208.62 + 65.61
Monocytes (10°/L) 0.47 + 033
BUN (mmol/L) 6.21 £9.07
Creatinine (umol/L) 68.25 + 52.00
Uric acid (umol/L) 324.57 +90.10
eGFR (mL/min/1.73m?) 102.01 + 23.84
NLR 233 £:2,25
PLR 122.54 + 53.55
SII 489.14 £ 499.97

BMI, body mass index; BUN, blood urea nitrogen; DN, diabetic nephropathy; DR, diabetic
retinopathy; DPN, diabetic peripheral neuropathy; eGFR, estimated glomerular filtration rate;
HbA1lc, glycated hemoglobin; T2DM, type 2 diabetes mellitus; NLR, neutrophil-to-
lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immuno-
inflammation index.





OPS/images/fendo.2024.1386471/fendo-15-1386471-g002.jpg
Blastocyst

Patient/Donor

1 5
S
3
Pluripotent stem Definitive Pancreatic Pancreatic ] 2
cells (PSC) endoderm progenitors Endocrine Beta-like cells =
= 1) Time
High glucose
No GSIS
—_—) —> —>
PDX1 PDX1 NKX6.1 S
ggm) . §8)’8\; NKX6.1 NKX6.1 MAFA 5
SOX9 NGN3 MAFB 3
NKX2.2 C-peptide =
CHGA Insulin @
£
- 4 Time
High glucose

Static GSIS





OPS/images/fendo.2023.1308373/im38.jpg





OPS/images/fendo.2024.1367376/fendo-15-1367376-g003.jpg
A SII-DN STI-DR SIT-DPN

OR (95% CI) P for interaction OR (95% CI) P for interaction OR (95% CI) P for interaction
Gender : 0.40 : 0.31 : 0.19
Female —e—i 1.55 (0.90-2.67) e 1.77 (1.00-3.12) o 0.81(0.47-1.41)
male ; 131 (0.87-199 ;
Age (ears) L58(110225) : Gk ! LOSO73-160) ) 0
<55 e 114 (0.67-1.94) Rt 110 (0.69-1.76) e 0.91(0.58-1.42)
>55 : y e 220(127382) o 0.79 (0.44-1.41
Hypertension 155091263 0.46 : ¢ 0.11 : ¢ ) 0.16
Yes 1.98 (1.17-3.36) ——— 2.14(123:371) He—  1.40(0.80-2.46)
No 141 0.93-2.13) e 104 0.63-1.71) ot 0.78 (0.51-1.19)
Dyslipidemia 0.27 : 0.38 : 0.41
Yes 1.65 (0.83-3.29) ot 1.43 (0.97-2.10) o=t 1.02 (0.70-1.48)
No 1.49 (1.11-2.12) He——  1.52(0.65-352) ——r 0.40 (0.15-1.12)
HbAlc (%) 0.17 : 0.47 : 0.35
>7 1.76 (1.24-2.49) i 1.78 (1.21-2.63) o 1.08 (0.74-1.57)
<7 1.09 (0.61-1.95) re—i 0.88 (0.46-1.70) - 0.75 (0.41-1.38)
—r—r—r —— —
QN U D & QN Y D ™ Q N v L]
B NLR-DN NLR-DR NLR-DPN
OR (95% CI) P for interaction OR (95% CI) P for interaction OR (95% CI) P for interaction
Gender 0.19 : 056 : 0.38
11(1.18-3.7 ; g P 14 (0.63-2.
Female 2.11(1.18-3.78) En—o—u 2.81 (1.54-5.12) ..,_. 1.14 (0.63-2.06)
male e 235 (1.62-3.39) et 231 (1.52-3.55) ire— 204(1.38-3.03)
Age (ycars) 0.20 : 0.43 : 0.18
<55  ke= 1.37 (0.80-2.33) ot 1.69 (1.06-2.69) a 1.39 (0.89-2.18)
>55  ke—t 149 (0.83-2.67) | —e— 333(1.88-5.90) o 118 (0.64-2.16)
Hypertension : 0.37 s 0.06 : 0.42
Yes i —e—1 2.90(1.68-501) i —e—i 3.60 (2.03-6.38) § —e——1 2,58 (1.46-4.58)
No rH 1.70 (1.10-2.62) lH 1.45 (0.87-2.41) nH 1.08 (0.69-1.68)
Dyslipidemia : 0.68 3 0.55 2 0.20
Yes D re— 2.36 (1.63-3.41) s 2.60 (1.74-3.86) e 1.81 (1.24-2.65)
No ro—i 1.44 (0.68-3.02) —i 1.09 (0.43-2.81) 0.44 (0.14-1.34)
HbAlc (%) 0.34 : 0.29 : 0.65
>7 s et 2.40 (1.66-3.48) . Fe 2.81(1.87-4.22) ol 1.75 (1.18-2.60)
<7 H—' 2.14(1.19-3.85) r-o—c 1.74 (0.91-3.33) n-o—c 1.49 (0.82-2.69)
NENT R NR Y ONUD B D oA [NENE AR
(o] PLR-DN PLR-DR PLR-DPN
OR (95% CI) P for interaction OR (95% CI) P for interaction OR (95% CI) P for interaction
Gender : 0.50 : 0.56 : 0.18
Female Fe— 172(101-292) i —e—t 281(1.54-5.12) ot 1.13 (0.68-1.89)
male b 3
ot 5 ot 1.48 (0.98-2.22 ;.
Age (vears) 154(108219) ) ! « ) 041 I-H 127 (0.86-1.86) 37
<55 1.22 (0.72-2.05) i 1.38(0.88-2.17) ot 0.93 (0.54-1.59)
> 55 ——i . ot 170 (0.98-2.93 ; :
Hypesidisicn, 212(1263.56) (g : ( ) 038 o L19080233) (o,
Yes —e—  1.66(1.01-2.73) o— 1.69 (1.00-2.85) ——1  1.64(0.97-2.78)
No [ 1.42 (0.94-2.13) Yot 1.31 (0.81-2.11) :
Dyslipidemia 0.45 : 0.42 : CALO10 g
Yes 1.80 (1.27-2.56) e 1.87 (1.27-2.74) 1.54 (1.07-2.22)
No 1.18 (0.60-2.31) o 1.05 (0.46-2.40) 0.51 (0.22-1.16)
HbAlc (%) 0.36 : 0.37 041
>7 1.59 (1.13-2.24) fagl 1.80 (1.22-2.63) 1.26 (0.87-1.81)
<7 138 (0.78-2.43) ot 104 (0.55-1.95) o—i 109 0.61-1.92)
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3186 subjects from the hospital medical system
1889 T2DM individuals

124 individuals with age (year) <20
or > 90

147 individuals with duplicate records

356 individuals without assiociated
records

204 individuals with acute complications
of diabetes, tumors, acute or chronic
infections and other diseases

1058 individuals were included in this study
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Variables OR (95% ClI) P value
SII 1.442 (1.136, 1.830) 0.003
Age (versus 18-39 years old)

40-59 3.451 (2.974, 4.006) <0.001
>60 7.041 (5.894, 8.411) | <0.001
Female (versus male) 0.625 (0.548, 0.711) <0.001
Race (versus Mexican Américan)

Other Hispanic 0.880 (0.702, 1.104) 0.269
Non-Hispanic White 0.718 (0.603, 0.886) <0.001
Non-Hispanic Black 1.233 (1.007, 1.509) 0.042
Other Races 0.907 (0.706, 1.165) 0.444

Education level (versus less than high school)

High school diploma 0.992 (0.845, 1.164) 0.918
More than high school 0.847 (0.726, 0.988) 0.035
Smoke (versus current smoker)

Non-smoker 0.890 (0.762, 1.038) 0.138
Former smoker 0.935 (0.790, 1.106) 0.431
MVPA (versus less

e 1.024 (0.901, 1.164)  0.714
Alcohol const{mption (versus 1,108 (0.967, 1.268) —
less than 12drinks/year)

PIR (versus less than 1)

12 0934 (0.793, 1.101)  0.419
2-4 0.937 (0.790, 1.113) 0.460
>4 0.900 (0.749, 1.083) 0.266
Alkaline phosphotase (U/L) 1.001 (0.999, 1.004) 0.360
ALT (U/L) 1.010 (1.005, 1.075) | <0.001
AST (U/L) 0.986 (0.980, 0.993) <0.001
BMI (kg/m?)

230 1.988 (1.766, 2.237) <0.001
TC (mmol/L) 0.974 (0.921, 1.031) 0.368
TG (mmol/L) 1.536 (1.375, 1.715)  <0.001
Chloride (mmol/L) 0.963 (0.944, 0.982) <0.001
Creatinine (umol/L) 0.998 (0.996, 1.000) 0.061
(GS/IS“ glutamyl transferase 1001 (0.999,1.002)  0.278
Lactate dehydrogenase (U/L) 1.004 (1.002, 1.006) <0.001
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Variables OR (95% CI) P value
SII 1.645 (1.324, 2.042) <0.001
Age (versus 18-39 years 6ld)

40-59 1.074 (0.954, 1.208) 0.237
>60 1355 (1.162, 1.580) = <0.001
Female (versus male) 0.904 (0.805, 1.015) 0.087
Race (versus Mexican American)

Other Hispanic 0.957 (0.782, 1.170) 0.668
Non-Hispanic White 0.722 (0.618, 0.845) <0.001
Non-Hispanic Black 1.239 (1.033, 1.487) 0.021
Other Races 0.901 (0.730, 1.112) 0.332

Education level (versus less than high school)

High school diploma 0.965 (0.832, 1.118) 0.635
More than high school 0.963 (0.837, 1.107) 0.593
Smoke (versus current smoker)

Non-smoker 1.509 (1.316, 1.732) <0.001
Former smoker 1.565 (1.340, 1.828) <0.001
ﬁ‘;ﬁfﬂ(‘a’:fxyl;“ 1269 (1.127, 1428) | <0.001
Alcohol consur.nption (versus 1,202 (1,066, 1.356) 01003
less than 12 drinks/year)

PIR (versus less than 1)

1-2 0.945 (0.816, 1.094) 0.447
2-4 0.960 (0.826, 1.116) 0.597
>4 0.892 (0.759, 1.049)  0.167
Alkaline phosphotase (U/L) 1.004 (1.002, 1.006) <0.001
ALT (U/L) 1.026 (1.021, 1.031) | <0.001
AST (U/L) 0.986 (0.979, 0.992) <0.001
BMI (kg/ m?)

>30 5.482 (4.922, 6.107) <0.001
TC (mmol/L) 0.797 (0.756, 0.840) | <0.001
TG (mmol/L) 3.922 (3.519, 4.370) <0.001
Chloride (mmol/L) 1.024 (1.004, 1.043) 0.012
Creatinine (mol/L) 0.998 (0.996, 1.000) 0.049
(GUa;Sn @ glutamy! transferase 1.000 (0.999, 1.002) | 0.664
Lactate dehydrogenase (U/L) 0.998 (0.996, 1.000) 0.067
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Continuous LgSIT
Tertile 1
Tertile 2

Tertile 3

Model 1

OR (95% ClI)

‘ 1.60 (1.29, 2.00)

‘ Reference
‘ 1.01 (0.89, 1.15)

‘ 1.26 (112, 1.43)

<0.001

0.846

<0.001

Model 2
OR (95% Cl)

1.61(1.28,2.03)
Reference
1.08 (0.95,1.24)

126 (1.10,1.44)

<0.001

0.252

<0.001

Model 3
OR (95% Cl)

1.43 (1.13,1.82)
Reference
1.01 (0.88, 1.16)

117 (1.02, 1.34)

0.003

0.865

0.029

P for trend

‘ <0001

0.001

0.019
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Exposure
TGF-alpha

FGF-21

hGDNF

CX3CLA1

Outcome

T2D with ketoacidosis

T2D with renal complications ——
T2D with ophthalmic complications -
T2D with neurological complications i <

—.—

T2D with peripheral circulatory complications ————

T2D with ketoacidosis ——
T2D with renal complications -IQ—

T2D with ophthalmic complications -OE—

T2D with neurological complications S g

T2D with peripheral circulatory complications 0%

T2D with ketoacidosis #

T2D with renal complications —:0—
T2D with ophthalmic complications -+

T2D with neurological complications -0:-

T2D with peripheral circulatory complications 50

T2D with ketoacidosis e

T2D with renal complications 5~

T2D with ophthalmic complications -0-;-

T2D with neurological complications ———

T2D with peripheral circulatory complications —&——

r—rr— 1T 1

0051

2.5

5

OR (95% Cl)

3.65 (2.95-4.52)
1.06 (0.45-2.52)
1.36 (1.13-1.64)
1.89 (1.75-2.03)
1.11 (0.31-4.00)

1.25 (0.67-2.32)
1.01 (0.73-1.39)
0.88 (0.64-1.21)
0.77 (0.60-0.98)
0.82 (0.65-1.02)

1.01 (0.94-1.09)
1.08 (0.56-2.09)
1.00 (0.80-1.25)
0.91 (0.72-1.15)
1.24 (1.11-1.39)

0.52 (0.20-1.36)
1.03 (0.86-1.24)
0.77 (0.53-1.12)
1.56 (0.95-2.57)
0.56 (0.21-1.48)

P value

<0.0001
0.8864
0.0014
<0.0001
0.8785

0.4863
0.9574
0.4399
0.0311
0.0802

0.8016
0.8099
0.9806
0.4254
0.0002

0.1838
0.7445
0.1666
0.0821
0.2459
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Continuous LgSIT
[ Tertile 1

Tertile 2

Tertile 3

P for trend

Model 1

OR (95% CI)

1.73 (1.45, 2.06)

Reference
1.14 (1.03, 1.26)
140 (1.27, 1.55)

<0.001

<0.001

0.011

<0.001

Model 2
OR (95% ClI)

1.89 (1.57, 2.28)
Reference

1.18 (1.06, 1.31)
147 (1.32, 1.63)

<0.001

<0.001

0.002

<0.001

Model 3
OR (95% Cl)

1.65 (1.32, 2.04)
Reference

1.04 (0.92, 1.18)
134 (1.18, 1.51)

<0.001

<0.001

0.510

<0.001
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Outcome
CX3CL1

FGF-21

hGDNF

TGF-alpha

Method

Maximum likelihood

MR Egger
Weighted median
IVW(REM)

Maximum likelihood

MR Egger

Weighted median
IVW(REM)

Maximum likelihood

MR Egger
Weighted median
IVW(REM)

Maximum likelihood

MR Egger
Weighted median
IVW(REM)

Mahajan et al.

nSNPs

193
193
193
193

193
193
193
193

193
193
193
193

193
193
193
193

OR (95% Cl)

1.03 (1.00-1.06)
1.01 (0.94-1.09)
1.01 (0.95-1.07)
1.03 (0.99-1.06)

1.00 (0.97-1.03)
0.96 (0.88-1.05)
0.97 (0.92-1.03)
1.00 (0.96-1.04)

0.98 (0.95-1.01)
1.00 (0.93-1.08)
1.01 (0.96-1.06)
0.98 (0.95-1.01)

0.98 (0.95-1.01)
1.00 (0.94-1.07)
0.96 (0.91-1.00)
0.98 (0.95-1.01)

P value

0.06
0.72
0.75
0.10

0.91
0.37
0.36
0.93

0.21
0.90
0.65
0.28

0.13
1.00
0.07
0.13

Cai et al.

I -

| —_—

I ——

: =

I ——

l ' ® '

I —G—

I >

I ——

: 1

I —e—

I ——

: ——

: +

: .—’:—1

r— 11T 71
0.5 0.75 1 1.25

nSNPs

L A~ b A D A~ b BB

A~ b b DM

OR (95% Cl)

0.99 (0.93-1.06)
0.97 (0.77-1.23)
1.00 (0.93-1.08)
0.99 (0.93-1.06)

1.00 (0.94-1.07)
1.00 (0.82-1.23)
1.00 (0.92-1.08)
1.00 (0.98-1.02)

0.98 (0.92-1.05)
0.90 (0.69-1.17)
0.98 (0.90-1.06)
0.98 (0.90-1.06)

0.98 (0.91-1.05)
0.76 (0.62-0.93)
1.00 (0.92-1.09)
0.98 (0.88-1.09)

P value

0.80
0.83
0.97
0.80

0.96
0.97
0.95
0.86

0.56
0.52
0.62
0.64

0.54
0.12
1.00
0.70
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B (95% CI)

Outcomes PErcDlincrense Tertile 1 Tertile 2 Tertile 3 P for trend
FBG

Model 1 0.185 (0.120,0.251) Reference 0.045 (0.008,0.083) 0.099 (0.061,0.137) <0.001
Model 2 0.149 (0.087,0.211) Reference 0.047 (0.012,0.083) 0.077 (0.041,0.113) <0.001
Model 3 0.100 (0.040,0.160) Reference -0.025 (-0.008,0.059) 0.048 (0.014,0.082) 0.007
HOMAIR

Model 1 0.580 (0.303,0.858) Reference 0.120 (-0.039,0.279) 0.358 (0.198,0.518) <0.001
Model 2 0.553 (0.274,0.831) Reference 0.119 (-0.039,0.277) 0.342 (0.182,0.502) <0.001
Model 3 0.273 (0.022,0.523) Reference -0.024 (-0.165,0.117) 0.165 (0.021,0.309) 0.014
FSI

Model 1 [ 2.047 (1.107,2.988) Reference 0.382 (-0.156,0.920) [ 1.290 (0.750,1.831) <0.001
Model 2 2.035 (1.093,2.977) Reference 0.378 (-0.157,0.912) 1.288 (0.747,1.829) <0.001
Model 3 1.042 (0.200,1.885) Reference -0.124 (-0.598,0.350) 0.658 (0.175,1.141) 0.003
HAblc

Model 1 0.043 (0.003,0.084) Reference -0.015 (-0.039,0.008) 0.031 (0.008,0.055) 0.003
Model 2 -0.0002 (-0.038,0.037) Reference -0.014 (-0.035,0.007) 0.002 (-0.019,0.024) 0662

Model 3 -0.043 (-0.079,-0.006) Reference -0.028 (-0.049,-0.008) -0.019 (-0.041,0.002) 0.132
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OR (95% Cl)

CX3CL1

FGF-21

hGDNF

IL-17C

MIP-1-alpha

TGF-alpha

Mahajan et al.
Caietal.

Combined effect

Mahajan et al.
Caietal.
Combined effect

Mahajan et al.

Cai et al.

Combined effect

Mahajan et al.
Caietal.
Combined effect

Mahajan et al.

Cai et al.

Combined effect

Mahajan et al.
Caietal.
Combined effect

1.19 (1.10-1.29)
1.50 (1.19-1.90)

1.30 (1.04-1.63)

0.88 (0.81-0.94)
0.82 (0.66-1.01)
0.87 (0.81-0.93)

0.97 (0.95-0.98)
0.91 (0.82-1.01)

0.96 (0.95-0.98)

0.97 (0.97-0.98)
1.01 (0.84-1.22)
0.97 (0.97-0.98)

1.02 (1.01-1.02)
0.99 (0.96-1.02)
1.01 (0.99-1.03)

1.16 (1.09-1.24)
1.16 (1.15-1.17)
1.16 (1.15-1.17)

<0.0001
0.0005

0.0199

0.0005
0.0627
<0.0001

<0.0001
0.0903

<0.0001

<0.0001
0.8923
<0.0001

<0.0001
0.5327
0.503

<0.0001
<0.0001
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Variables Overall el P value
Categorical variables 1% (No.)
Gender <0.001

Male 52.18 (4827) 56.24 (1874) 50.94 (1686) 45.79 (1521)

Female 47.82 (4423) 43.76 (1450) 49.06 (1624) 54.21 (1801)
Race/Ethnicity <0.001

Mexican American 15.32 (1417) 14.77 (492) 16.71 (553) 14.09 (468)

Other Hispanic 9.33 (863) 8.34 (278) 9.85 (326) 9.30 (309)

Non-Hispanic White 47.48 (4392) 39.41 (1313) 48.79 (1615) 55.75 (1852)

Non-Hispanic Black 18.36 (1698) 26.05 (868) 15.29 (506) 13.46 (447)

Other Races 9.51 (880) 11.43 (381) 9.37 (310) 7.41 (246)
Education levels 0.003

Less than high school 22.96 (2124) 22.69 (756) 23.26 (770) 24.02 (798)

High school diploma 23.29 (2154) 23.50 (783) 21.33 (706) 25.05 (832)

More than high school 53.75 (4972) 53.81 (1973) 5541 (1834) 50.93 (1692)
PIR 0.032

<1 20.56 (1902) 21.01 (700) 19.58 (648) 21.70 (721)

12 25.22 (2333) 25.39 (846) 24.92 (825) 26.31 (874)

24 27.26 (2522) 26.98 (899) 26.92 (891) 27.36 (909)

>4 26.95 (2493) 26.62 (887) 28.58 (946) 24.62 (818)
MVPA 76.94 (7117) 78.69 (2622) 78.43 (2596) 71.88 (2388) <0.001
Alcohol consumption 73.99 (6844) 72.42 (2413) 73.93 (2447) 73.90 (2455) 0.279
Smoking status <0.001

Current smoker 21.69 (2006) 19.00 (633) 19.61 (649) 26.34 (875)

Non-smoker 55.10 (5097) 57.86 (1928) 56.62 (1874) 49.16 (1633)

Former smoker 23.21 (2147) 23.14 (771) 23.78 (787) 24.50 (814)
Insulin resistance <0.001

Yes 43.11 (3988) 40.15 (1335) 43.22 (1427) 48.07 (1595)

No 56.89 (5262) 59.85 (1990) 56.78 (1875) 51.93 (1723)
Continuous [Mean + SD, Median (IQR)]
Age (years) 45.00 (32.00-61.00) 44.00 (30.00-60.00) 44,00 (32.00-60.00) 47.00 (34.00-63.00) <0.001
BMI (kg/m?) 28.38 ( + 6.56) 2758 (+591) 2845 ( +6.26) 29.14 ( + 7.35) <0.001
ALT (U/L) 21.00 (16.00-28.00) 21.00 (17.00-29.00) 21.00 (16.00-29.00) 20.00 (16.00-27.00) <0.001
AST (U/L) 20.00 (23.00-28.00) 24.00 (20.00-28.00) 23.00 (20.00-28.00) 22.00 (19.00-27.00) <0.001
Glycohemoglobin (%) 5.45 (£ 0.47) 545 (+0.47) 543 ( +0.45) 5.48 (+ 0.48) 0.009
TC (mmol/L) 5.03 (+ 1.05) 4.96 (+1.05) 5.08 (+ 1.05) 5.05 (+ 1.04) <0.001
TG (mmol/L) 1.12 (0.77-1.66) 1.03 (0.72-1.59) 1.14 (0.79-1.69) 1.16 (0.81-1.69) <0.001
SBP (mmHg) 122,57 (+ 17.84) 122.14 (£ 17.83) 121.97 ( + 17.50) 123.63 ( £ 18.13) 0.001
DBP (mmHg) 69.39 (+12.77) 69.35 (£ 12.19) 69.54 (+12.51) 69.27 ( + 13.59) 0.810
Gamma glutamyl transferase
wm 19.00 (14.00-29.00) 19.00 (14.00-29.00) 19.00 (14.00-29.00) 19.00 (14.00-30.00) 0.152
Alkaline phosphotase (U/L) 68.02 ( +22.57) 65.70 ( + 22.95) 67.36 (+21.12) 71.04 ( + 2327) <0.001
Lactate dehydrogenase (U/L) 128.62 ( + 32.05) 128.83 (+ 37.81) 127.59 ( + 26.45) 129.45 ( + 30.70) 0462
Chloride (mmol/L) 104.13 ( +2.73) 104.20 (+ 2.61) 104.19 ( +2.71) 103.99 ( + 2.87) 0.003
Creatinine (Wmol/L) 75.14 (63.65-88.40) 76.91 (65.20-88.40) 73.37 (62.76-87.52) 73.37 (61.88-88.40) 0.005
Fasting Glucose (mmol/L) 5.57 (£ 0.76) 552 (£0.73) 557 (£0.76) 5.62 (+0.78) <0.001
Insulin (WU/mL) 9.31 (5.98-14.96) 8.77 (5.64-14.15) 9.27 (6.00-14.92) 10.02 (6.34-16.05) <0.001
HOMA-IR 2.13 (1.34-3.55) 227 (141-3.85) 249 (1.49-4.12) 2.51 (1.49-4.19) <0.001

Mean + SD for continuous variables. The percentage (95% CI) for categorical variables.
SI1, Systemic Immune-Inflammation Index; PIR, poverty income ratio; BMI, body mass index; MVPA, moderate/vigorous physical activity; SBP, systolic blood pressure; DBP, diastolic blood
G, triglycerides.

pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TC, total cholesterol;
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Subgroups OR (95% CI) P value P for interaction
MVPA 0.011
yes 2.25(1.80,2.80) <0.001 -
no 21(0.86,1.72)  0.273 i
Smoke 0.067
current smoker .28(0.87,1.89) 0.215 i
non-smoker 2.34(1.81,3.04) <0.001 -
former smoker .84 (1.26,2.70)  0.002 —a—
PIR 0.114
>4 2.31(1.58,3.39) <0.001 —a—
2-4 2.42(1.67,3.50) <0.001 —a—
1-2 .24 (0.88,1.76)  0.220 i
<1 .92 (1.28,2.88) 0.002 —a—
Alcohol consumption 0.180
yes .78 (1.43,2.22) <0.001 HH
no 2.32(1.62,3.33) <0.001 ——
Age <0.001
old age .07 (0.75,1.54) 0.703 HiH
middle age .38 (1.03,1.87) 0.033 HiH
young age 4.29 (3.11,5.92)  <0.001 —a—
Education Level 0.115
More than high school 2.01(1.54,2.61) <0.001 =
High school diploma 2.29(1.57,3.32) <0.001 —a—
Less than high school 1.45(0.92,2.13) 0.062 ——
Races 0.883
Other Races 2.31(1.23,4.41) 0.011 P
Non-Hispanic Black 1.89(1.28,2.79) 0.001 ——
Non-Hispanic White 1.75(1.33,2.31) <0.001 HiH
Other Hispanic 2.65(1.36,5.15) 0.004 P
Mexican American 1.66 (1.01,2.74) 0.045 — —
Gender 0.047
Female 2.56 (1.94,3.37) <0.001 i
Male 1.47 (1.14, 1.90)  0.003 HH
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Model Acc F1
xgboost 1 1
Decision trees 1 1
Random forests 1 1
Support vector machines | 1
k-nearest neighbors classifiers 1 1
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Model Acc
xgboost 1 1 1
Decision trees 1 1 1
Random forests 1 1 1
Support vector machines 0.800 0.806 0.773
k-nearest neighbors classifiers 0.820 0.815 0.808
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Baseline Characteristics AUC Acc Spe Sen F1
gender 0.588 0.593 0.544 0.534 0.539

age 0.771 0.773 0.740 0.754 0.747

weight 0.631 0.621 0.558 0.723 0.630
ethnicity 0.541 0.571 0.538 0.264 0.354
heart_rate_mean 0.637 0.619 0.549 0.805 0.653
sbp_mean 0.504 0.484 0.448 0.685 0.542
dbp_mean 0.632 0.633 0.582 0.622 0.601
mbp_mean 0.579 0.579 0.526 0.572 0.548
resp_rate_mean 0.503 0.453 0.447 0.962 0.610
temperature_mean 0.622 0.607 0.543 0.754 0.631
$po2_mean 0.561 0.560 0.505 0.572 0.536
bun_mean 0.579 0.582 0.530 0.547 0.538
creatinine_mean 0.501 0518 0.448 0352 0.394
urineoutput 0.547 0.557 0.503 0.452 0.476
haematocrit_mean 0.980 0.980 0975 0.981 0978
hemoglobin_mean 1.000 1.000 1.000 1.000 1.000
aniongap_mean 0.724 0.728 0.698 0.685 0.692
calcium_mean 0.493 0.487 0.440 0.553 0.490
potassium_mean 0.537 0.549 0.492 0.427 0.457
sodium_mean 0.643 0.649 0.611 0.584 0598
wbc_mean 0.527 0.529 0473 0.509 0.490
abs_lymphocytes_mean 0.591 0.605 0.568 0471 0515
abs_neutrophils_mean 0.697 0.686 0.613 0.798 0.694
platelets_mean 0.611 0.602 0.541 0.698 0.609
mch_mean 0.545 0.526 0.479 0.717 0.574
rbc_mean 0.525 0.529 0472 0.490 0.481
rdw_mean 0.593 0.596 0.546 0.559 0.552
glucose_mean 0.698 0.700 0.656 0.685 0.670
chloride_mean 0.564 0.574 0.524 0471 0.496
mechvent 0.631 0.602 0.531 0.899 0.668
hypertension 0.608 0.605 0.548 0.641 0.591
obesity 0.523 0.481 0.458 0.905 0.608

cad 0.604 0.577 0515 0.855 0.643
myocardial_infarct 0.530 0493 0.463 0.874 0.605
congestive_heart_failure 0.596 0.568 0.509 0.849 0.636
peripheral_vascular_disease 0.531 0.487 0.462 0.937 0.619
chronic_pulmonary_disease 0.588 0.560 0.503 0.849 0.632
renal_disease 0.551 0515 0.476 0.880 0.618
liver_disease 0.563 0.602 0.673 0.207 0317

lods 0.565 0.551 0.497 0.685 0.576
charlson_comorbidity_index 0.714 0.725 0.725 0.616 0.666
oasis 0.666 0.663 0.608 0.685 0.645
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Healthy Living

Diabetic

Donor (n=3) Nephrology
(n=11)
Male, n (%) 3 (100) 8 (72.73)
Age, years 39 58.36
eGFR, ml/min/1.73m* 87 +10.54 48.64 £ 7.97
Hb (%) No data 7.11 £ 037
Proteinuria, g/24h <02 2.95 + 0.80
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Healthy Living Diabetic
Donor (n=12) Nephrology
(n=10)
Male, n (%) 6 (50) 2(20)
Age, years 54.08 + 3.99 63.5 +4.95
eGFR, ml/ 73 +6.09 21.86 + 3.65

min/1.73m?
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ICD- Total Total
Phenocode = Ancest Cases Controls
9 1y samples SNPs
Mahajan et al. Type 2 diabetes Ell 250.02 - European 74,124 824,006 898,130 21,602,766
Cai et al. Type 2 diabetes Ell 250.02 - European 9,978 12,348 22,326 8,914,240
T2D with ketoacidosis ElL1 2501A E4_DM2KETO Finnish 657 308,280 308,937 20,168,576
20 wf‘h . E112 | 2503A E4_DM2REN Finnish 2,684 308,280 310,964 20,168,475
renal complications
T2D with .
. . L El1L3 2504A E4_DM20PTH Finnish 4,172 308,280 312452 20,168,538
FinnGen ophthalmic complications
R9 repository
T2D with S
4 5 gz Ell.4 2505A E4_DM2NEU Finnish 1,894 308,280 310,174 20,168,431
neurological complications
T2D with peripheral
circulatory E1L5 2506A | E4_DM2PERIPH Finnish 2,179 308,280 310,459 20,168,464

complications

Phenocode corresponds to GWAS identifier in the FinnGen R9 repository.
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HbA1lc (%)

o Odds ratio
Characteristics a1l Q2 Q3 Q4 (95% CI)
(3.9-5.9.0mg/dl) (5.9-6.5mg/dl) (6.5- (7.6-17.0mg/d\)

Tm(“:ﬂ;‘;‘;mml 1905 (185 - 196 ) 188.5 (1826 - 194.4) 1827 (177.7-187.7) | 1916 (183.9-1993) | 12(L1-14)  <0.001
(m;;) 1315 (1242 - 1388 ) 146.7 (137.8 - 1555) | 150.8 (1446 - 157) 1639 (1521-1757) | 13(12-14) <0001
(m;]?i; 1105 ( 1065 - 1145 ) 1097 (1045 - 115) 1046 (999 - 109.3) 1097 (1033 -1161) | 12(L1-13) <0001

HIDL 537 (50.9 - 565) 495 (48 -51) 48 (466 - 49.4) 49.1 (47-51.3) 09(08-1) <0001
(mg/dl)

Using linear regression, we derived mean values and confidence intervals for fasting glucose, and lipid indices at different intervals. Multivariate logistic regression models were then used to look
at the differences and risk intervals between fasting blood glucose, and lipid indices at different intervals, which included sex (male/female), ethnicity (black/Mexican/other/other Hispanic/white),
blood pressure (yes/no), cigarette smoking (yes/no), alcohol (yes/no), antilipemic drugs (yes/no), antidiabetic drugs (yes/no), poverty-to-income ratio (<=1.0,1.1-3.0,>3.0), education (College/
high school/Less than high school), age (continuum), BMI (continuum), HbA 1c(continuum), Total cholesterol (continuum), TG (continuum), LDL (continuum), and HDL (continuum).
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FBG (mg/dl)

racteristics Ql Q2 Q3 Q4 O(ggf/ r(a:tll)o
(21.0- (114.0- (132.0- (167.0- =
114.0mg/dl) 132.0mg/dl) Omg/dl) 582.0mg/dl)
Total cholesterol
(mgid) 188.2 (181.9- 194.4) | 1857 (179.1-1923) 1879 (181.2-1947) 192 (1852 - 1988) 12(11-13) <0.001
(mgg) 1286 (1203 - 1368) | 1427 (1334-1521) | 1492(1395-1589)  167.5(157.6-1773) | 14(13-15) <0.001
LDL
(mgd) 109.6 (1046 - 1146) | 1073 (1017-1128) | 107.6 (1023 - 1128)  110.6 (1047 - 1164) | L1(L1-12) <0.001
HDL
528 (51.3 - 54.4) 499 (48.3 - 515) 50.5 (47.2-539) 48 (462 -49.7) 0.9(08-1.0) <0.001
(mg/dl)

Using linear regression, we derived mean values and confidence intervals for fasting glucose, and lipid indices at different intervals. Multivariate logistic regression models were then used to look
at the differences and risk intervals between fasting blood glucose, and lipid indices at different intervals, which included sex (male/female), ethnicity (black/Mexican/other/other Hispanic/white),
blood pressure (yes/no), cigarette smoking (yes/no), alcohol (yes/no), antilipemic drugs (yes/no), antidiabetic drugs (yes/no), poverty-to-income ratio (<=1.0,1.1-3.0,>3.0), education (College/
high school/Less than high school), age (continuum), BMI (continuum), FBG (continuum), Total cholesterol (continuum), TG (continuum), LDL (continuum), and HDL (continuum).
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Non-Diabetes Diabetes

Characteristics ALL (N=9,357) (N=7,528) (N=1,829)
Age 50 [35,65] 46 [33,62] 63 [53,72] 1.05 [1.04,1.05 <0.001
Sex 0.026
Female 4657 (49.8%) 3790 (50.3%) 867 (47.4%) Ref.
Male 4700 (50.2%) 3738 (49.7%) 962 (52.6%) 1.12 [1.02,1.25
Ethnicity <0.001
Non-Hispanic black 1911 (20.4%) 1489 (19.8%) 422 (23.1%) Ref.
Mexican American 1665 (17.8%) 1288 (17.1%) 377 (20.6%) 1.03 [0.88,1.21
other 892 (9.53%) 701 (9.31%) 191 (10.4%) 0.96 [0.79,1.17
other Hispanic 612 (6.54%) 458 (6.08%) 154 (8.42%) 1.19 [0.96,1.47]
Non-Hispanic white 4277 (45.7%) 3592 (47.7%) 685 (37.5%) 0.67 [0.59,0.77]
Smoke <0.001
never 4920 (52.6%) 4033 (53.6%) 887 (48.5%) Ref.
now 1963 (21.0%) 1652 (21.9%) 311 (17.0%) 0.86 [0.74,0.99]
once 2474 (26.4%) 1843 (24.5%) 631 (34.5%) 1.56 [1.39,1.75
Bp <0.001
no 6059 (64.8%) 5399 (71.7%) 660 (36.1%) Ref.
yes 3298 (35.2%) 2129 (28.3%) 1169 (63.9%) 4.49 [4.03,5.00]
Alcohol <0.001
heavy 4948 (52.9%) 4210 (55.9%) 738 (40.3%) Ref.
moderate 3253 (34.8%) 2438 (32.4%) 815 (44.6%) 191 [1.71,2.13
no 1156 (12.4%) 880 (11.7%) 276 (15.1%) 1.79 [1.53,2.09]
Education <0.001
College 4824 (51.6%) 4025 (53.5%) . 799 (43.7%) Ref.
High school 2204 (23.6%) 1763 (23.4%) 441 (24.1%) 1.26 [1.11,1.43
Less than high school 2329 (24.9%) 1740 (23.1%) 589 (32.2%) 1.71 [1.51,1.92
Poverty income ratio <0.001
<=1.0 1685 (18.0%) 1310 (17.4%) 375 (20.5%) Ref.
1.1-3.0 4027 (43.0%) 3171 (42.1%) 856 (46.8%) 0.94 [0.82,1.08
>3.0 3645 (39.0%) 3047 (40.5%) 598 (32.7%) ‘ 0.69 [0.59,0.79]
Antilipemic drugs <0.001
no 5762 (61.6%) 5268 (70.0%) 494 (27.0%) Ref.
yes 3595 (38.4%) 2260 (30.0%) 1335 (73.0%) 6.30 [5.62,7.07
Antidiabetic drugs <0.001
no 8328 (89.0%) 7528 (100%) 800 (43.7%) Ref.
yes 1029 (11.0%) 0 (0.00%) 1029 (56.3%)
BMI (kg/m2) 29.0 (6.9) 283 (6.5) 319 (7.6) 1.07 [1.06,1.08] <0.001

Data are numeric (percentages), or median [interquartile spacing]. All estimates take into account the complex survey design. B, blood pressure; BMI, body mass index.
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Variables Categories Diabetic Retinopathy AHR [95% Cl]

Censored Event

Sex Male 222 35 1

Female 186 19 0.77 [0.43,1.39] 0.403
Residence Urban 220 18 ' 1

Rural 188 36 2.21 [1.21, 4.05] 0.009**
Family history of DM No 321 42 1

Yes 87 12 0.57 [0.28, 1.15] 0.117
Protein urea Negative 319 34 1

Positive 47 19 1.19 [0.64, 2.20] 0.578
Duration DM <5 year 350 28 1

25 year 58 26 2.28 [1.91, 5.15] 0.002**
Neuropathy No 386 38 1

Yes 22 16 1.73 (0.83, 3.59] 0.138
Nephropathy No 297 31 1

Yes 111 23 0.71 [0.38, 1.32] 0.279
Hypertension No 389 42 1
(co-morbidity)

Yes 19 12 3.01 [1.85, 6.53] 0.005**
Association parameter (lag =3 months) 4.20 [1.62, 10.85] 0.003**

DM, Diabetic mellitus, **p-value<0.01, *p-value< 0.05.
Bold values indicate variables that have a significant associated with the incidence of diabetic retinopathy.
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Variables Categories Frequency Percent (%)

Triglyceride(md/dl) <150 139 72.77
150 -199 31 16.24
=200 21 10.99
Total cholesterol ' <200 163 83.16
(mg/dl)
200 -239 27 13.78
7 >240 6 3.06
LDL-C(md/dl) <100 159 80.71
=100 38 19.29
HDL-C(md/dl) <40 v 79 41.15
240 113 58.85
SBP(mmHG) » <140 331 71.65
>140 131 28.35
DBP (mmHG) ‘ <90 400 86.58
=90 62 13.42
Neuropathy ' Yes 38 8.23
No 424 91.77
Nephropathy Yes 32 6.93
No 430 93.07
Peripheral Yes 23 4.98
arterial disease
No 439 95.02

md/dl, Milligram per deciliter; HDL-C, High-density lipoprotein creatinine; LDL -C, Low-
density lipoprotein creatinine; SBP, Systolic blood pressure; DBP, Diastolic blood pressure;
mmHG, Millimetre of mercury.
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Variables Categories = Freque Percent (%)
Sex Female 205 4437
Male 257 55.63
Residence Urban 238 51.52
Rural 224 48.48
DM Yes 99 21.43
Family History
No 284 61.47
Unknown 79 17.10
DM’s duration <5 year 378 ‘ 81.81
=5 year 84 18.19
Type of treatment OHA 220 47.62
Insulin 198 42.86
Both 44 9.52,
Type of DM T1DM 172 3723
T2DM 290 62.77
Hypertension Yes 31 6.71
No 431 93.29
Patients last status | Alive 382 82.7
Lost follow-up 20 4.32
Died 6 129
Event 54 V 11.69
Referral hospital UoGCSH 213 46.1
FHCSH 173 3745
DTCRH 76 16.45

OHA, Oral hypoglycemic agent; TIDM, Type one diabetic mellitus; T2DM, Type two diabetic
mellitus; UoGCSH, University of Gondar Compressive Specialized Referral Hospital; FHCSH,
Felege Hiwot Compressive Specialized Hospital; DTCRH, Debre Tabor compressive
referral hospital.
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Cochrane’s Q test MR-Egger intercept test MRPRESSO global test
Exposure outcome

Q-value PQ Intercept P intercept P value

DR and its subtypes database from FinnGen consortium

DR 6.9966 0.9967 0.0014 0.9272 0.998
AD PDR 7.4207 0.9861 0.0110 0.5313 0.989
NPDR 23.2106 0.8065 0.0124 0.4839 0.828

DR and its subtypes database from IEU OpenGWAS

DR 20.2689 0.8193 0.0078 0.4266 0.824
AD PDR 28.3745 0.5506 0.0104 0.3673 0.536
NPDR 26.4170 0.8202 0.0162 0.4531 0.812

DR and its subtypes database from FinnGen consortium

DR 25.0194 0.2463 -0.0026 0.1807 0.279
PDR AD 5.4445 0.7940 0.0020 0.7765 0.781
NPDR 29638 0.7056 0.0016 0.7113 0.759

DR and its subtypes database from IEU OpenGWAS

DR 32225 09757 0.0019 05241 0975
PDR AD 42235 0.2383 0.0041 0.6538 0.378
NPDR = - = - -

DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
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MR analysis (all SNPs) MR analysis (valid SNPs)

Exposure
OR IVW (95% CI) P value OR IVW (95% CI) P value

DR and its subtypes database from FinnGen consortium

DR 21 0 2.5090 (1.2102, 5.2018) 0.0134 2.5090 (1.2102, 5.2018) 0.0134
AD PDR 19 0 2.3098 (1.2411, 4.2986) 0.0082 23098 (1.2411, 4.2986) 0.0082
NPDR 31 0 2.7455 (1.3178, 5.7197) 0.0069 27455 (1.3178, 5.7197) 0.0069

DR and its subtypes database from IEU OpenGWAS

DR 28 0 1.9263 (1.2418, 2.9882) 0.0034 1.9263 (1.2418, 2.9882) 0.0034
AD PDR 31 0 1.9535 (1.1622, 3.2834) 0.0115 1.9535 (1.1622, 3.2834) 0.0115
NPDR 35 0 2.8233 (1.1916, 6.6892) 0.0184 2.8233 (1.1916, 6.6892) 0.0184

DR and its subtypes database from FinnGen consortium

DR 22 0 1.0144 (1.0028, 1.0261) 0.0150 1.0144 (1.0028, 1.0261) 0.0150
PDR AD 10 0 1.0413 (1.0150, 1.0684) 0.0020 1.0413 (1.0150, 1.0684) 0.0020
NPDR 6 0 1.0247 (1.0083, 1.0415) 0.0031 1.0247 (1.0083, 1.0415) 0.0031

DR and its subtypes database from IEU OpenGWAS
DR 11 0 1.0240 (1.0041, 1.0443) 0.0176 1.0240 (1.0041, 1.0443) 0.0176
PDR AD 1 0 1.0568 (1.0230, 1.0918) 0.0008 1.0568 (1.0230, 1.0918) 0.0008

NPDR 1 0 1.0347 (1.0000, 1.0706) 0.0497 1.0347 (1.0000, 1.0706) 0.0497
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Exposure

AD

AD

DR

PDR

NPDR

DR

PDR

NPDR

Outcome

DR

PDR

NPDR

DR

PDR

NPDR

AD

AD

21

19

31

28

31

35

22

10

11

VW GSMR

OR B OR

Method ©95% Cl)  value Prpr | Power bxy bxy_se bxy_pval (95% Cl)

DR and its subtypes database from FinnGen consortium

25090

vw (1.2102, 00134 0.0201 99% 0.8936 03759 0.0174 i
5.2018) (117, 5.11)
23098 45
vw (L2411, 00082 0.0164 99% 07962 03205 0.0129 .
42956) (1.18, 0.16)
27455 558
wvw (13178, 0.0069  0.0166 100% 09682 0.3802 0.0126 g
57197) (1.23, 5.44)
DR and its subtypes database from IEU OpenGWAS
1.9263 53
vw (L2418, 00034 0.0102 99% 0.6039 02279 0.0080 y
29882) (1.17, 2.86)
1.9535 153
vw (11622, 00115 0.0197 98% 0.6051 | 0.2696 0.0248 '
3.2834) (1.08, 3.11)
28233 58
vw (11916, 00184 0.0201 99% 04404 | 0.3650 0.2276 Ny
66892) (0.76, 3.18)
DR and its subtypes database from FinnGen consortium
1.0144 5
vw (1.0028, 00150 0.02 20% 00134 | 0.0055 0.0147 .
L0261) (1.00, 1.02)
1.0413 i3
vw (1.0150, 00020 0012 41% 00193 0.0133 0.1472 .
1.0684) (0.99, 1.05)
1.0247 T
vw (1.0083, 00031 0.0124 25% 00202 0.0094 0.0313 '
10415) (1.00, 1.04)
DR and its subtypes database from IEU OpenGWAS
1.0240 Lol
vw (1.0041, 00176 0.0211 15% 0.0107 = 0.0103 0.2956 .
10443) (0.99, 1.03)
1.0568
vw (1.0230, 0.0008  0.0096 36% - - - -
1.0918)
1.0347
Wald ratio (1.0000, 0.0497  0.0497 17% - - - -
1.0706)

nSNPs, number of single-nucleotide polymorphisms; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; GSMR, Generalized Summary-data-based Mendelian
Randomization; FDR, false discovery rate; DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
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Sample size

Phenotype (Caces/controls) Population Consortium Year Journal
AD 71,880/383,378 Mixed Psychiatric Genomics Consortium 2019 Nat Genet
DR 5988/314,042 Mixed FinnGen 2022 -
PDR 8383/329,756 Mixed FinnGen 2022 -
NPDR 3446/314,042 Mixed FinnGen 2022 -
DR 14,584/176,010 European IEU OpenGWAS 2021 -
PDR 8,681/204,208 European IEU OpenGWAS 2021 -
NPDR 2,026/204,208 European IEU OpenGWAS 2021 -

DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
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Subgroup Case/Total Incidence rate Model 1 Model 2 Model 3
No MetS or depression 418/4771 8.76 1.00 (ref.) 1.00 (ref)) 1.00 (ref)
Depression only 36/318 1132 1.26 (0.92-1.73) 1.28 (0.92-1.76) 131 (0.95-1.79)
Met$ only 205/1305 1571 1.67 (1.42-1.95) 1.61 (1.37-1.89) 1.38 (1.16-1.64)
MetS and depression 19/95 20.00 217 (144-3.28) 2.15 (1.42-3.23) 1.84 (1.22-2.78)

RR, relative risk; CI, confidence interval.

Model 1: adjusted for age and sex.

Model 2: model 1 plus region, ethnicity, marital status, and education level.

Model 3: model 2 plus smoke now status, excessive drinking status, physical activity, oil intake, salt intake, family history of diabetes, BML
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MetS or depression status Case/Total ence rate (%) Model 1 Model 2 Model 3
No MetS or depression 164/5097 9.10 1.00 (ref) 1.00 (ref) 1.00 (ref))
Depression only 38/344 1105 1.18 (0.87,1.61) 1.20 (0.88,1.63) 1.23 (090,1.67)
MetS only 159/979 16.24 1.61 (1.36,1.91) 157 (1.32,1.86) 1.33 (1.11,1.59)
MetS and depression 17/69 24.64 2.49 (1.64,3.79) 2.51 (1.65,3.81) 2.11 (1.39,3.22)

RR, relative risk; CI, confidence interval.

Model 1 adjusted for age and sex.

Model 2: model 1 plus region, ethnicity, marital status, and education level.

Model 3: model 2 plus smoke now status, excessive drinking status, physical activity, oil intake, salt intake, family history of diabetes, and BMI.
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Data source: FinnGen

Sample size: DR:5988 cases /314,042controls
NPDR:3446 cases /314,042 controls
PDR:8383 cases /329,756 controls

Data source: IEU OpenGWAS

Sample size: DR:14,584 cases /176,010 controls
NPDR:2,026 cases /204,208 controls

PDR:8,681 cases /204,208 controls
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ubgroup Case/Total Incidence rate (%) Model 1 Model 2 Model 3
Depression
No 623/6076 1025 100 (ref)) [ 1.00 (ref) 1.00 (ref))
Yes 55/413 13.32 127 (0.99-1.64) 1.31 (1.01-1.68) 133 (1.03-1.71)
Mets
No 502/5441 9.23 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)
Yes 176/1048 1679 165 (1.40-1.94) 161 (1.37-1.90) 145 (122-1.72)

RR, relative risk; CI, confidence interval.

Model 1: adjusted for age and sex.

Model 2: model 1 plus region, ethnicity, marital status, and education level.

Model 3: model 2 plus smoke now status, excessive drinking status, physical activity, oil intake, salt intake, family history of diabetes, and BML
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No MetS or MetS Only MetS and

Depression

Character Total (n=6489) d&zrse(s);i%n only (n=344) (n=979) de(zf;sgi)on
T2DM <0.001
Yes 678 (10.5) 464 (9.1) 38 (11.0) 159 (16.2) 17 (24.6)
No 5811 (89.5) 4633 (90.9) 306 (89.0) 820 (83.8) 52 (75.4)
Age (years) 434 + 1496 422 + 1485 444+ 1434 49.2 £ 1445 49.1 + 1237 <0.001
BMI (kg/m?) 228 +331 22.3 +2.89 220 +2.48 255 + 4.02 26.2 + 3.68 <0.001
Sex n (%) 0.003
Male 3080 (47.5) 2437 (47.8) 139 (40.4) 481 (49.1) 23 (33.3)
Female 3409 (52.5) 2660 (52.2) 205 (59.6) 498 (50.9) 46 (66.7)
Region n (%) <0.001
Urban 2368 (36.5) 1904 (37.4) 172 (50.0) 254 (25.9) 38 (55.1)
Rural 4121 (63.5) 3193 (62.6) 172 (50.0) 725 (74.1) 31 (44.9)
Ethnicity n (%) 0.001
The Han nationality 3844 (59.2) 2964 (58.2) 224 (65.1) 604 (61.7) 52 (75.4)
Other 2645 (40.8) 2133 (41.8) 120 (34.9) 375 (38.3) 17 (24.6)
Education level ‘ <0.001
n (%)
No formal school 2268 (35.0) 1767 (34.7) 162 (47.1) 306 (31.3) 33 (47.8)
Primary 1349 (20.8) 1082 (21.2) 57 (16.6) 197 (20.1) 13 (18.8)
Middle school 1974 (30.4) 1552 (30.5) 86 (25.0) 318 (32.5) 18 (26.1)
High school 587 (9.0) 456 (8.9) 21 (6.1) 106 (10.8) 4(538)
College/university 311 (48) 240 (47) 18 (5.2) 52 (5.3) 1(14)
or more
Marital status n (%) ‘ ‘ 0.728
Married 5208 (80.3) 4094 (80.3) ‘ 281 (81.7) 776 (79.3) 57 (82.6)
Other 1281 (19.7) 1003 (19.7) 63 (18.3) 203 (20.7) 12 (17.4)
Smoke now n (%) ‘ ‘ 0.044
Everyday 1645 (25.4) 1272 (25.0) 76 (22.1) 285 (29.1) ‘ 12 (17.4)
Sometime 195 (3.0) 152 (3.0) 9 (2.6) 32(33) 2(29)
Never 4649 (71.6) 3673 (72.0) 259 (75.3) 662 (67.6) 55 (79.7)
Excessive drinking ‘ ‘  0.004
n (%)
No 5837 (90.0) 4606 (90.4) 311 (90.4) 853 (87.1) ‘ 67 (97.1)
Yes 652 (10.0) 491 (9.6) 33 (9.6) 126 (12.9) 2(29)
Physical activity ‘ ‘ 0.005
n (%)
Never 5922 (91.3) 4683 (91.9) 313 (91.0) 864 (88.3) 62 (89.9)
1-2 days per week 162 (2.5) 116 (2.3) 14 (4.1) 30 (3.1) 2(29)
>3 days per week 1405 (6.2) 298 (5.8) 17 (49) 85 (87) 5(72)
Family history [ 0.006
of diabetes n (%)
No 6399 (98.6) 5039 (98.9) 334 (97.1) 959 (98.0) 67 (97.1)
Yes 90 (1.4) 58 (11.1) 10 (2.9) 20 (2.0) 2(29)
Salt intake 0.348
>6g/day
n (%)
No 1924 (29.7) 1515 (29.7) 111 (32.3) 282 (28.8) 16 (23.2)
Yes 4565 (70.3) 3582 (70.3) 233 (67.7) 697 (712) 53 (76.8)
Oil intake 0.023
>25g/day
n (%)
No 1916 (29.5) 1549 (30.4) 97 (28.2) 250 (25.5) 20 (29.0)

Yes 4573 (70.5) 3548 (69.6) 247 (71.8) 729 (74.5) 49 (71.0)
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Glycohemoglobin Fasting Glucose

B (95%Cl) B (95%Cl)
WBC count 4.67 (3.76, 5.58) <0.001 2.18 (1.62, 2.73)
Neutrophil count 256 (2.11, 3.01) <0.001 1.65 (1.27, 2.03)
Lymphocyte count 1.80 (111, 2.49) <0.001 048 (0.16, 0.79)
Platelet count 105.68 (89.89, 121.47) <0.001 3268 (1858, 46.78)

<0.001

<0.001

0.003

<0.001

Insulin

B (95%Cl)

1.05 (0.90, 1.20) <0.001
0.69 (0.59, 0.79) <0.001
0.28 (0.20, 0.37) <0.001
11.29 (7.54, 15.05) <0.001

Model was adjusted for age, sex, race, educational level, poverty income ratio, smoking, BMI, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina,

heart attack, stroke. WBC, white blood cell; CI, confidence interval.
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Continuous logl0-  Quartile 1 Quartile 2 Quartile 3 Quartile 4

transformed
Exposure Exposures (0]34 OR (95%Cl) OR (95%Cl) OR (95%Cl) p fortrend
1.10 (1.00, 1.20 (110,
WBC count (n= 23055) Model 1 | 1.96 (1.52, 2.52) *** 1.00 (Ref.) 102 (093, 1.12)  1.20) * 1.32) P < 0,001
1.25 (113, 1.46 (1.32,
Model 2 | 3.34 (2.54, 4.41) *** 1.00 (Ref.) 1.09 (099, 1.21) | 1.38) *** 1.61) *** P < 0.001
115 (1.04, 1.26 (1.14,
Model 3 | 2.19 (1.65, 2.90) *** 1.00 (Ref.) 1.05 (095, 1.16)  127)** 1.40) P < 0.001
Neutrophil count 1.12 (1.02, 1.26 (1.15,
(n= 23020) Model 1 | 1.76 (1.45, 2.12) *** 1.00 (Ref.) 101 (092, 1.11)  1.22)* 1.38) P < 0,001
111 (1.00, 124 (112, 1.50 (1.35,
Model2 | 2.60 (2.10, 3.21) *** 1.00 (Ref.) 123)* 1.37) ¥ 1.66) *** P < 0.001
1.14 (103, 1.30 (1.17,
Model 3 | 1.88 (1.52, 2.34) *** 1.00 (Ref.) 1.06 (0.96, 1.18)  1.26) * 1.44) ¥ P < 0.001
Lymphocyte count 0.78 (071, 0.68 (0.62, 0.84 (0.77,
(n=23020) Model 1 0.63 (0.51,0.78) *** 1.00 (Ref.) 0.86) *** 0.74) 0.92) *** P < 0.001
087 (0.79,
Model 2 1.16 (0.93, 1.45) 1.00 (Ref.) 0.94 (0.84,1.04)  0.95) ** 1.08 (0.98, 1.18) P < 0.001
085 (0.7,
Model 3 | 1.02 (0.81, 1.28) 1.00 (Ref.) 094 (0.84,1.04)  0.94) ** 1.01 (091, 1.11) P <0.001
Platelet count 0.78 (0.71, 0.72 (0.66, 0.89 (0.82,
(n= 23055) Model 1 | 0.61 (0.47, 0.80) *** 1.00 (Ref.) 0.86) ** 0.79) *** 0.97) * P < 0.001
111 (1.00,
Model 2 | 1.26 (0.94, 1.70) 1.00 (Ref.) 093 (0.85,1.03) 092 (0.83,1.02)  1.22)* P < 0.001
Model 3 1.28 (0.95, 1.73) 1.00 (Ref.) 0.95 (0.86,1.05) 094 (0.85,1.04)  1.10(1.00,1.22) P <0.001

Model 1 was not adjusted.
Model 2 was adjusted for age, sex, race, education level, poverty income ratio.

Model 3 was adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina,
heart attack, stroke and diabetes.

OR, odds ratio; CI, confidence interval;

ef., reference; *p < 0.05, **p < 0.01 and ***p < 0.001.
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Continuous logl0- Quartilel  Quartile 2 Quartile 3 Quartile 4

transformed
Exposure Exposures OR OR (95%Cl) OR (95%Cl) OR (95%Cl) p for trend
Glycohemoglobin 129 (114, 211 (188, 406 (3.64,
(n=23047) Model 1 | 424.10 (27373, 657.08) *** | 1.00 (Ref) 1.46) *** 2.36) 4.54) <0.001
115 (1.02, 160 (141,
Model 2 | 2133 (13.14, 34.63) *** 100 (Ref.) 101 (0.88, 1.15) | 1.30) * 1.81) <0.001
1.14 (1.00, 146 (129,
Model 3 1337 (8.16, 21.91) *** 1.00 (Ref)) 101 (0.88, 1.15) | 1.29) * 1.66) *** <0.001
Fasting Glucose 1.42 (1.24, 2.60 (2.28,
(n=11119) Model 1 | 2532 (16.93, 37.87) *** 100 (Ref) 110 (0.95,1.27)  1.64) *** 2.97) ** <0.001
1.49 (1.28,
Model 2 | 598 (3.83,9.33) *** 100 (Ref)) 1.00 (0.86, 117)  1.08 (0.93,1.26) = 1.72) *** <0.001
133 (114,
Model 3 | 4.36 (2.77, 6.86) *** 100 (Ref)) 100 (0.85, 1.17)  1.03 (0.88,1.21)  1.55) *** <0.001
Insulin 1.30 (1.14, 1.51 (1.32,
(n=10877) Model 1 | 1.6 (1.44, 1.92) *** 100 (Ref)) 108 (0.94,1.24)  1.49) *** 1.72) *** <0.001
1.17 (101, 141 (1.23,
Model 2 | 1.56 (1.34, 1.83) *** 100 (Ref) 101 (0.87,117) | 1.36) * 1.63) ** <0.001
127 (1.09,
Model 3 | 1.37 (.16, 1.60) *** 100 (Ref) 1.00 (0.86, 116) | 1.13 (097, 131)  1.47) ** <0.001

Model 1 was not adjusted.

Model 2 was adjusted for age, sex, race, education level, poverty income ratio.

Model 3 was adjusted for age, sex, race, educational level, poverty income ratio, BMI, smoking, alcohol use, sedentary time, hypertension, congestive heart failure, coronary heart failure, angina,
heart attack, stroke.

OR, odds ratio; C, confidence interval; Ref., reference; *p < 0.05, **p < 0.01 and ***p < 0.001.
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Variables OAB participants Non-OAB

(n = 4894) participants
(n =18969)

Age, years 197 £17.6 60.0 £ 155 470172 <0.001
Gender, % ‘ ‘ <0.001
Male 11880 (49.7%) 2027 (41.4%) 9840 (51.9%)
Female 12009 (50.3%) 2867 (58.6%) 9129 (48.1%)
Education, % ‘ ‘ <0.001
Below high school [ 5663 (23.7%) 1730 (35.3%) 3920 (20.7%)
High school 5467 (22.9%) 1164 (23.8%) 4303 (22.7%)
Above high school 12759 (53.4%) 2000 (40.9%) 10746 (56.6%)
Race/ethnicity, % <0.001
Non-Hispanic White 10518 (44.0%) 2009 (41.1%) 8509 (44.8%)
Non-Hispanic Black 4974 (20.8%) 1378 (28.2%) 3583 (18.9%)
Other Hispanic 2417 (10.1%) 513 (10.5%) 1904 (10.0%)
Mexican American 3474 (14.5%) 683 (14.0%) 2791 (14.7%)
Others race 2506 (10.5%) 311 (6.4%) 2182 (11.6%)
Body mass index, kg/m” 293+70 312+79 288+ 6.7 <0.001
Poverty income ratio (PIR) 25+ 16 21315 26+ 1.6 <0.001
Smoking, % 10835 (45.4%) 2528 (51.7%) 8307 (43.7%) <0.001
Alcohol use, % 17507 (73.3%) 3302 (67.5%) 14205 (74.8%) <0.001
Sedentary time, hrs | 0.048
<3h 6417 (26.9%) 1254 (25.6%) 5150 (27.2%)
3-6h 8415 (35.2%) 1783 (36.4%) 6629 (34.9%)
>6 h 9057 (37.9%) 1857 (37.9%) 7200 (37.9%)
Hypertension, % 8791 (36.8%) 2849 (58.2%) 5942 (31.3%) <0.001
Congestive heart failure, % 719 (3.0%) 328 (6.7%) 391 (2.1%) <0.001
Coronary heart disease, % 917 (3.8%) 342 (7.0%) 575 (3.0%) <0.001
Angina, % 569 (2.4%) 251 (5.1%) 318 (1.7%) <0.001
Heart attack, % 941 (3.9%) 372 (7.6%) 569 (3.0%) <0.001
Stroke, % 831 (3.5%) 358 (7.3%) 473 (2.5%) <0.001
Diabetes, % 3119 (13.1%) 1282 (26.2%) 1837 (9.7%) <0.001

| Inflammatory markers

White blood cell count, 1000 72+36 74+35 72+37 <0.001
cells/ul

Neutrophils count, 1000 cell/u 43+18 4421 42+ 17 <0.001
Lymphocyte count, 1000 cell/uL 22+27 22+23 22+28 0.654
Platelet count, 1000 cells/uL 2434 + 64.7 242.8 + 74.0 243.6 + 62.1 0.002

Diabetes related markers

Glycohemoglobin, % 58+ 1.1 62+ 14 57+10 <0.001
Fasting Glucose, mmol/L 6.1+20 67 +26 6.0+ 1.8 <0.001
Insulin, uU/mL 139 +17.8 156 £ 19.0 134+ 175 <0.001

Data are presented as median (IQR) or N (%). If it is a continuous variable, the Kruskal-Wallis rank sum test was used to determine it. The p-value for continuous variables with a theoretical
value of <10 was determined using Fisher’s exact probability test. With regard to categorical data, the p-value was calculated using weighted chi-square. Values are presented as means + SD or %.
SD, standards deviation.
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Dietary Control Outcomes Total eli- Sample size  MA Estimates P Qtest Eggertest AMSTAR Evidence

intervention gible MA intervention/  metric | [95% CI] Pvalue  Pvalue class
control
Significant associations
Low Usual diet Change in UAER 19 Jiang 2023 | 22/23 SMD 068008 2 Random  0%:081  NA - dassIV verylow
protein diets t01.29]
Probiotics Usual care Change in Scr 5 Dai2022 | 223223 MD 017(029 |6 Random  77.4%; 0372 s cassIV | low
t0-0.05) <0001
Probiotics Usual care Change in BUN 5 Dai2022 | 2037203 MD 36220 |5 Random  14.8%; 0403 & cassIV moderate
10-052) 032
Probiotics Usual care Change in UACR 5 Dai2022 | 6254 MD -1605 [27.12 | 2 Random  63.6% NA N dasIV | low
t0-499] 0,098
Probiotics Usual care Change in FBG 5 Dai2022 | 1777169 MD 13531985 | 5 Random  47.8%; 0.004 " sV low
t0-7.21] 0105
Probiotics Usual care Change in HbALc 5 Dai2022 | 1470139 MD 012[020 4 Random  283%; 0.004 5 sV low
t0-004] 0202
Probiotics Usual care Change in TC 5 Dai2022 | 130130 MD 6931167 5 Random  0.0%: 0938 § cassIV moderate
t0-219] 0.660
Probiotics Usual care Change in LDL-C 5 Dai2022 | 155/155 MD 11035 Random  0.0%: 0790 - sV modeate
t0-324] 0811
Probiotics Usual care Change in HDL-C 5 Dai2022 | 155155 MD | 272(047 5 Random  80.8%; 0321 i cassIV | low
t04.97] <0001
Salt Usual or high Change in SBP 3 Hodson | 400 (total) MD 7361075 | 12 Random  74%; NA sV very low
restriction salt diet 2023 t0-3.98] <0.0001 n
diet
Salt Usual or high Change in DBP 3 Hodson | 400 (total) MD 317 [458 12 Random  54%;001 | NA dassIV verylow
restriction salt diet 2023 to-176) n
diet
Salt Usual or high Change in CrCl 3 Hodson | NA MD 6051000 | 7 Random 0% 044  NA sV low
restriction salt diet 2023 to-2.10] 1
diet
Salt Usual or high Change in body weight 3 Hodson | NA MD -121 [173 12 Random  76%; NA cassIV very low
| restriction salt diet 2023 to -0.68] < 000001 u
‘ diet
Viamin D Placebo Change in UACR 1 He2022 | 338335 SMD  -024[-039 6 Fixed 10%035 | NA R sV low
10-009]
Vitamin D Placebo Change in UAER 1 He2022 | 4777397 SMD 042053 | 4 Fixed 559%;002 | NA i sV verylow
t0-032)
| Vitamin D Without vitamin | Change in 24-hour 4 Wang 4091407 MD 026 [-034 1 Random  95%; NA N cass IV very low
D or placebo urine protein 2019 t0-017) < 000001
Soy Without Change in 24-hour 1 Wang 147111 SMD  258(394 6 Random  93%; NA i chss IV very low
isoflavone soy isoflavone urine protein 2021 to-122] < 000001
Soy Without Change in BUN 1 Wang 147119 SMD 067094 | 7 Fixed 38%:004 | NA s cassIV | low
soflavone soy isoflavone 2021 t0-041]
Soy Without Change in FBG 1 Wang 92197 SMD 039 [-068 5 Fixed 0%098 | NA i cass IV low
isoflavone soy isoflavone 2021 t0-0.10]
Soy Without Change in TC 1 Wang 1280133 SMD  -058[-083 |8 Fixed 0%078 | NA N chssIV | low
isoflavone soy isoflavone 2021 t0-033]
Soy Without Change in TG 1 Wang 128133 SMD  -041[-066 | 8 Fixed A1%011 | NA i chssIV | low
isoflavone soy isoflavone 2021 to-0.16]
Soy Without Change in LDL-C 1 Wang 120125 SMD 068094 7 Fixed 19%:028 | NA - chssIV | low
isoflavone so isoflavone 2021 t0-042]
CoQ10 Placebo Change in FBG 1 Zhang 68167 SMD  204[39%0 3 Random  93%; >005 W cassIV | very low
2019 to-0.18] < 0.00001
CoQ10 Placebo Change in HbAle 1 Zhang 68/67 MD 83[339 3 Random | 94%; >005 5 cass IV low
2019 t0-027) < 000001
CoQ10 Placebo Change in TC 1 Zhang 6867 SMD 173 [-341 3 Random  93%; >005 . chssIV | low
2019 t0.-0.05] < 000001
CoQ10 Placebo Change in HDL-C 1 Zhang 6867 MD 0.09 [0.01 3 Random  57%;010 | >005 i chssIV | low
2019 t00.18]
Ketoanalogue  Without Change in 24-hour 1 Bellizzi 246 (total) MD 412745 Random  99.42%; NA N cass IV very low
Ketoanalogue urine protein 2022 0 -0.08] <0001
Ketoanalogue  Without Change in FBG 1 Bellizzi 310 (total) MD 2757 (3920 | 7 Random  96.7%; NA . cassIV - verylow
ketoanalogue 2022 to-1594] <0001
Dietary Without Change in HbAlc 1 Macena | 121/118 MD -028 [-051 7 Random  18.4%; NA chssIV | low
polyphencls  polyphenols 2022 t0-004] 0289 10
or placebo
Dietary Without Change in GER 1 Macena | 170163 MD 366 (0.16 7 Random | 59.7%; NA sV verylow
polyphencls  polyphenols 2022 t07.15] 0021 10
or placebo
| Dietary Without Change in 24-hour 1 Macena | 96/93 MD -109.10 5 Random  86.8%; NA sV verylow
polyphenols | polyphenols urine protein 2022 [-21657 <0001 10
or placebo to-163]
Antioxidant  Placebo Change in Scr 1 Chen 213 (total) MD N0 3 Random 0% 064 | NA i cass IV low
vitamins 2020 t0-0.03]
Antioxidant  Placebo Change in SBP 1 Chen 261 (total) MD 602(965 5 Fixed 0%052 | NA & chssIV | low
vitamins 2020 to -2.40]
Antioxidant  Placebo Change in HbAlc 1 Chen 315 (total) MD 022(043 6 Fixed 46%010 | NA 3 chssIV | low
vitamins 2020 t0-0001]
Non-significant associations
Low Usual diet All-cause mortality 19 Jiang 2023 | 180/178 RR 038 (010 5 Random 0% 043 NA i Ns low
protein diets to 1.44]
Low Usual diet Renal failure 19 Jiang 2023 | 141/146 RR 116 (0.38 4 Random | 0% 079 | NA " NS low
protein diets 103.59]
Low Usual diet Change in GFR 19 Jiang 2023 | 189/178 MD 073230 |7 Random  53%005  NA i NS very low
protein diets 100831
Low Usual diet Change in CrCl 19 Jiang 2023 | 107/96 MD 239(587 | 3 Random  53%;012 | NA - Ns very low
protein diets to 1.08]
Low Usual diet Change in 24-hour 19 Jiang 2023 | 60/59 MD  000[-007 2 Random  0%075  NA - NS very low
protein diets urinary albumin excretion 100.07)
Probiotics Placebo Change in GFR 5 Dai2022 | 190/182 MD  451[-003 5 Random  87.0% 0155 5 NS low
10.9.06] <0001
Salt Usual or high Change in GFR 3 Hodson | NA MD 187 [-5.05 12 Random  329%;0.13 | NA NS low
restriction salt diet 2023 to131] n
diet
Salt Usual or high Change in HbAlc 3 Hodson | NA MD 0620149 6 Random  95%; NA NS very low
restriction salt diet 2023 10.0.26] <0.00001 n
diet
Viamin D Without vitamin | Change in Scr 4 Wang 283277 MD 083367 9 Fixed 0%:095 | NA § NS low
D or placebo 2019 102.02)
Vimin D Without vitamin | Change in GFR 4 Wang 1471143 MD | 213[206 4 Fixed 0%082 | NA N NS low
D or placebo 2019 10632)
Vitamin D Without vitamin | Change in HbALc 4 Wang 3487344 MD 001 [-009 10 Random  0%072  NA § NS moderate
D or placebo 2019 t00.11]
Vitamin D Without vitamin | Change in FBG 4 Wang 1s/115 MD 005029 3 Fixed 0%078 | NA . NS low
D or placebo 2019 100.20]
Soy Without Change in body weight 1 Wang 106/111 SMD 005032 6 Fixed 0%:100 | NA i NS low
soflavone soy isoflavone 2021 ©0021]
Soy Without Change in Scr 1 Wang 120125 SMD  -024[-049 | 7 Fixed 0%093 | NA 5 NS low
isoflavone soy isoflavone 2021 t0.0.01]
Soy Without Change in CrCl 1 Wang 36036 SMD 036083 | 3 Fixed 0%046 | NA i NS Tow
isoflavone soy isoflavone 2021 t0.0.10]
Soy Without Change in GFR 1 Wang 1007105 SMD 007035 6 Fixed 0%079 | NA . NS low
soflavone soy isoflavone 2021 10020]
Soy Without Change in HDL-C 1 Wang 120125 SMD 016 [-009 7 Fixed 0%064 | NA i NS low
isoflavone soy isoflavone 2021 t0.0.41]
CoQ10 Placebo Change in LDL-C 1 Zhang 68/67 SMD 027 (062 3 Fixed 0%050 | >005 ¥ Ns moderate
2019 10.0.07)
Ketoanalogue  Without Change in GFR 1 Bellizzi 221 (total) MD 406 [-184 4 Random  99.42%; NA N NS very low
ketoanalogue 2022 109.97] <0001
Antioxidant  Placebo Change in DBP 1 Chen 261 (total) MD 119 [-391 5 Fixed 0%085 | NA . NS low
vitamins 2020 t0152]
Antioxidant  Placebo Change in FBG 1 Chen 222 (total) MD REFISEETIN] Fixed 0%058 | NA N NS low
vitamins 2020 1010.99]

MA, meta-analysis; Cl, confidence interval; UAER, Urinary albumin excretion rate; Scr, serum creatinine; BUN, blood urea nitrogen; UACR, urinary albumin creatinine ratios FBG, fasting blood-glucoses TC, total cholesterol; TG, triglycerides; LDL-C, low-density.
lipoprotein cholesterol; HDL-C., high-density ipoprotein cholesterol; SBP, systolic blood pressure; DB, diastolic blood pressure; CoQ10, coenzyme Q10; GER, glomerular filtration rate; CrCl, creatinine clearance rate; RCT, randomized controlled trial; RR, risk ratio; MD,
mean difference; SMD, standard mean difference; NA, not available.
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Evidence
class

Description

Class I: >1000 cases (or >20,000 participants for continuous outcomes),

convincing statistical significance at P < 107 (random-effects), no evidence

evidence of small-study effects and excess significance bias; 95%
prediction interval excluded the null, no large heterogeneity (I2
< 50%)

Class II: >1000 cases (or >20,000 participants for continuous outcomes),

highly statistical significance at P < 107 (random-effects) and largest

suggestive study with 95% CI excluding the null value

evidence

Class III: >1000 cases (or >20,000 participants for continuous outcomes)

suggestive and statistical significance at P < 0.001

evidence

Class IV: The remaining significant associations with P < 0.05

weak

evidence

NS: P> 0.05

non-

significant
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Free binding energy (kcal/mol)

FDR
SLPI ARHGEF9
1 imatinib PDGER inhibitor|Bcr-Abl inhibitor|KIT inhibitor -2.1003 15.6536 -9.1 -104
2 ' procainamide Sodium channel inhibitor -2.0882 15.6536 -5.3 -6.2
3 simvastatin HMGCR inhibitor -2.0699 15.6536 -6.5 -9.1
4 BIBX-1382 EGEFR inhibitor| Tyrosine kinase inhibitor -2.0666 15.6536 -6.9 -89
5 » physostigmine Cholinesterase inhibitor| Acetylcholinesterase inhibitor -2.051 15.6536 -6.2 -7.8
6 carbamazepine Carboxamide antiepileptic -2.0306 15.6536 -6.8 -9.5
7 | phentermine Z?;::;;Eg:’ antagonist[Serotonin 20163 153525 47 60
8 TCPOBOP CAR agonist -2.0096 153525 -6.3 -84

9 rigosertib Cell cycle inhibitor|PLK inhibitor -2.0082 15.3525 -5.8 =75
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Class of

the drug

Example of the drug

Mechanism
of action

Orlistat Xenical | cholesterol
synthesis
Leptin analogue Metreleptin | appetite
1 satiety
Lorcaserin Belviq 1 5-HTC2,
| appetite
Rimonabant Acomplia | CB1 receptor,
| appetite
Phentermine/ Qsymia | appetite
topiramate
Naltrexone/Bupropion Contrave | Neurotransmitters
reuptake, | appetite
Setmelanotide Imcivree 1t MC4, | appetite
Sibutramine Meridia | 5-HTC2 &
norepinephrine

uptake, |appetite

GLP-RA1, GIP/GLP-1
RA, GIP/GLP-1/
Glucagon RA

Semaglutide, Liraglutide,
Survodutide, Pemvidutide,
Retatrutide, Orforglipron

| appetite
1 satiety
| gastric motility

The up arrow (1) means increased and the down arrow (|) means decreased.
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Rank Score Name Description

1 98.45 RITA MDM inhibitor

2 95.42 ON-01910 PLK inhibitor

3 9224 doxercalciferol Vitamin D receptor agonist
4 9151 topiramate Carbonic anhydrase inhibitor
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Physical exer-

cise intervention

Duration

Target
population

Age
(years
old)

Research objectives

Results

References

Physical exercise / T2DM patients 76.6 + 6.27 The prevalence of sarcopenia Negatively (116)
associated

Short-term acute moderate- 24h Older T2DM patients / Blood glucose Blood (150)

intensity resistance exercise glucose

decreased

Progressive Sandbag 12 weeks T2DM and possible >50 Muscle strength Significantly (151)
Exercise Training sarcopenia patients improved

Circuit resistance training 10 weeks T2DM patients 565 Physical and metabolic function Effective (152)

Muscle power training 12 weeks T2DM patients 70.5+ 7.8 Functional capacity, body balance Significantly (153)
and lower limb muscle strength improved

Resistance training 12 weeks T2DM patients 69.7 £ 6.9 Lower limb strength and Significantly (154)
muscle mass improved

Resistance training 12 weeks T2DM patients >65 Muscle function Significantly (155)
improved

Low-volume walking high- 12 weeks Older women / Physical capacity Significantly (156)
intensity interval training (HIIT) with T2DM improved
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Nutrition Target Age Research Results References

intervention population (years  objectives
old)
Protein intake Cross-sectional T2DM patients 65.0 Physical Positively associated (110)
+77 function
outcomes
Protein intake Cross-sectional T2DM patients >31 Muscle loss Negatively affected (111
Nutrition counseling | Cross-sectional T2DM patients 45-90 Sarcopenia Negatively associated (108)
Mediterranean Diet  Cross-sectional = Overweight or Obese 712 Gait speed Positively associated (112)
T2DM patients +82
Energy intake Cross-sectional T2DM patients >65 The presence Negatively associated (113)
of sarcopenia
Vitamin D intake Prospective T2DM patients 265 Muscle loss Negatively associated (114)

cohort study

Omega-3 fatty Cross-sectional T2DM patients 742 Sarcopenia Negatively associated (115)
acids intake 57
Malnutrition Cross-sectional T2DM patients 76.6 The prevalence Negatively associated (116)
£6.27 of sarcopenia
Resistance training Prospective Frail T2DM patients = 79 +56 | SPPB, maximal Positively improved 117)
and cohort study. strength and
nutritional power output
interventions
Nutrition Randomized Obese and 30-70 Body No significant correlation (102)
intervention controlled trial overweight patients composition
with diabetic
foot ulcers
Vitamin D intake Randomized Obese 30-60 Body No significant correlation (103)
controlled trial T2DM patients composition
Branched chain Longitudinal T2DM patients 56.6 Skeletal Negatively associated (118)
amino acids study £10.6 muscle loss
Serum vitamin Prospective Men 59.1 Diabetes No significant correlation (109)
D level observational +10.5
cohort study
Calorie-restricted prospective T2DM patients 60.0 Expression of Downregulates the expression of atrophy- (119)
diet and recreational study +6.0 skeletal associated myokines and increases the

sports training muscle gene expression of anti-inflammatory gene IL-15
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DR stage Population Sample size

All DR European 206,664 3,646 203,018 16,380,430
NPDR European 204,663 455 204,208 16,380,421
PDR European 204,400 1,382 203,018 16,380,401

nSNPs, number of single nucleotide polymorphisms.
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R stage pulation ample Case Control nSNPs
All DR European 216,666 14,584 202,082 16,380,459
NPDR European 206,234 2,026 204,208 16,380,446

PDR [ European 212,889 ) 8,681 204,208 16,380,460

nSNPs, number of single nucleotide polymorphisms.
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Studies  Number of participants Relative Risk (957% Cl) Isquare Eggerstest GRADE Study types

Placebo

Lixisenatide vs Placebo* 1 14733 n 0.90 (0.75-1.09) NA NA Moderate RCTs
Liraglutide vs Placebo 12 13151 L | 0.93 (0.62-1.39) 0% 0.82 Moderate RCTs
Semaglutide vs Placebo 1 11878 ] 1.23 (1.01-1.49) 0% 0.89 High RCTs
Exenatide vs Placebo* 1 484 | | 1.50 (0.06-36.62) NA NA Low RCTs
All classes of antidiabetic medications

Liraglutide vs All classes of antidiabetic medincines 16 9022 | 0.89 (0.63-1.25) 0% 0.33 Low RCTs
Dulaglutide vs All classes of antidiabetic medications* 3 1934 | | 0.95 (0.23-3.96) 0% NA Moderate RCTs
Semaglutide vs All classes of antidiabetic medications 14 12919 | | 1.05 (0.79-1.40) 20% 0.46 Moderate RCTs
Exenatide vs All classes of antidiabetic medications* 2 994 6.32 (0.30-131, 26) 0% NA Very low RCTs
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1 25
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Studies  Number of participants Relative Risk (95% Cl) Isquare Egger'stest GRADE Study types

Placebo

GLP-1 RA vs Placebo 37 88818 | 0.98 (0.89-1.08) 0% 0.3 Low RCTs
SGLT-2i vs Placebo 10 32965 | 1.00 (0.79-1.27) 0% 0.71 Low RCTs
DPP-4i vs Placebo 12 50430 ] 1.17 (0.99-1.39) 0% 0.51 Low RCTs
All other classes of antidiabetic medications

Meglitinides vs All other classes of antidiabetic medications 2 2740 0.34 (0.01-8.25) 0% NA Moderate RCTs
SGLT-2i vs All other classes of antidiabetic medications* 2 2995 | 0.73 (0.10-5.16) 69.10% NA Low RCTs
Thiazolidinediones vs All other classes of antidiabetic medications 3 4995 ] 0.92 (0.67-1.26) 30% NA Moderate RCTs
GLP-1 RA vs All other classes of antidiabetic medications 39 26385 | 0.93 (0.79-1.10) 0% 0.6 Low RCTs
DPP-4i vs All other classes of antidiabetic medications 17 17303 | 0.93 (0.74-1.18) 0% 0.73 Low RCTs
Metformin vs All other classes of antidiabetic medications 2 2888 | 1.15 (0.81-1.63) 0% NA Low RCTs
Sulphonylureas vs All other classes of antidiabetic medications 11 17865 | 1.24 (0.93-1.65) 0% 0.81 Moderate RCTs
Acarbose vs All other classes of antidiabetic medications 2 2746 4.21 (0.44-40.43) 0% NA Low RCTs

1
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title and abstract (not a systematic review
or meta-analysis, population,
interventions, or outcomes not of
interests)
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articles (n=1), not the systematic review
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Variable B SE HR 95% ClI
Age (years) 0435 0.186 2347 1.545 1.073-2.386 0.019
DM course 0.363 0.124 2928 1.436 1.127-2.385 0.003
I HbAlc 0439 0.167 2631 1.548 1.119-2.385 0.008
HbAlc trajectory
Low-stable Reference
Moderate-stable 0.186 0.083 2276 1.203 1.026-1.411 0.028
Moderate-decreasing 0.137 0.061 2252 0.872 0.774-0.983 0.024
High-stable 0.446 0.213 2.110 1.562 1.030-2.369 0.033
Elevated-increasing 0.801 0.255 3.126 2218 1.346-3.659 0.002
NT-proBNP 0.568 0.041 2755 1.764 1.178-2.386 0.006
LVMI 0377 0.017 2923 1.461 1.133-2.385 0.005
SGLT-2i 0.184 0.074 2516 0.832 0.721-2.385 0.013
uACR (2019) 0.215 0.103 2.168 1.239 1.016-1.512 0.034
uACR (2020) 0.368 0.145 2473 1.444 1.079-1.936 0.014
UACR trajectory
Low-stable Reference
Moderate-stable 0.136 0.078 1.506 1.145 0.960-1.367 0.132
High-stable 0.291 0.108 2.704 1.337 1.083-1.652 0.007
Elevated-increasing 0.504 0.189 2.673 1.648 1.139-2.387 0.009

HR, hazard ratio; DM, diabetes mellitus; HbA1c, hemoglobin Alc; NT-proBNP, N-terminal pro-B-type natriuretic peptide; LVMI, left ventricular mass index; SGLT-2i, sodium-glucose co-
transporter 2 inhibitor; uACR, urinary albumin/creatinine ratio.
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Moderate- Elevated-

Low-stable stable group (n High-stable increasing
group (n = 112) = 229) group (n = 178)  group (n = 82)

Cardiogenic death, n (%) 10 (17) 2(1.8) 3(13) 3(17) 2(24) 0.157
HHE, n (%) 31(52) 4(3.6) 10 (4.4) 11 (6.2) 6(73) 0.026
Non-fatal AML 7 (%) 35(5.8) 5(45) 12 (52) | 11(62) 7 (85) 0.038
Non-fatal stroke, 7 (%) 18 (3.0) 3(27) 7 (3.1) | 5(2.8) 3(37) 0.195
fAC‘fte Tenal injury/dialysis 24 (4.0) 3(27) 7(3.1) 9 (5.1) 5(6.1) 0.021
indications, n (%)

All MACE, n (%) 118 (19.6) 17 (15.2) 39 (17.0) 39 (21.9) 23 (28.0) 0.024

HHEF, hospitalization for heart failure; AMI, acute myocardial infarction.
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Variable Moderate- Elevated-

Low-stable stable group High-stable increasing
group (n = 112) (n = 229) group (n = 178) group (n = 82)  p-value
Age (years) 562 + 18.5 539+ 17.4 546+ 14.2 57.1+ 143 583+ 16.5 0.084
Men, n (%) 358 (59.6) 64 (57.1) 138 (60.3) 103 (57.9) 53 (64.6) 0.704
Current smoker, (%) 219 (36.4) 37 (33.0) 91 (39.7) 57 (32.0) 34 (41.5) 0.258
DM course (years) 832 +2.54 741133 825+ 1.78 9.42 £220 1051 +2.83 <0.001
Hypertension, n (%) 246 (40.9) 42 (37.5) 81 (354) 80 (44.9) 43 (52.4) 0.027
Hyperlipidemia, n (%) 270 (44.9) 46 (41.1) 100 (43.7) 83 (46.6) 41 (50.0) 0597
FBG (mmol/L) 7.84 +2.05 7.54 +2.02 761+ 1.71 7.65 +2.13 7.73 +2.46 0.927
2-h PG (mmol/L) | 7i2s 119+ 17 121£21 126 £2.6 134 £33 <0.001
HbALc 2016 (%) 772+ 1.63 754 + 1.09 7.68 + 0.82 7.85 + 1.12 805 + 131 0.003
HbAlc 2017 (%) ‘ 7.81 +2.07 762+ 113 7.77 + 0.69 7.93 + 091 824+ 1.05 0.025
HbAlc 2018 (%) 7.89 + 1.83 7.63 + 1.02 7.83 + 0.80 7.98 + 1.06 832+ 140 0.016
HbAlc 2019 (%) 7.94 +2.14 7.70 + 123 7.91 + 0.87 813 £ 127 838 + 1.04 0.007
HbAlc 2020 (%) 812 +243 7.75 + 118 7.98 + 0.74 822+122 845+ 1.21 0.011
NT-proBNP (ng/L) 2753 +652 2621 £51.6 2716 + 404 283.0 + 70.7 2924 765 0.001
LDL-C (mmol/L) 334 +0.56 325 + 049 331+ 034 340 + 057 333 +0.62 0.071
UACR in 2016 (mg/g) 537 £216 200+53 519+ 132 97.8 203 74.1 £11.7 <0.001
UACR in 2017 (mg/g) 63.1 (382-102.7) 205 +58 542+ 146 107.2+ 152 1035 + 184 <0.001
UACR in 2018 (mg/g) 763 (46.8-126.3) 238 +54 63.5 + 141 112.1 £ 186 1542 + 295 <0.001
UACR in 2019 (mg/g) 13822 (67.4-169.5) 290+76 738 + 167 1205 +29.2 2256 + 437 <0.001
UACR in 2020 (mg/g) 144.1 (60.2-184.0) 284 +8.1 70.6 + 152 1237235 2383 + 50.1 <0.001
LVEE (%) 547 63 553 +54 548 + 4.8 54.2 %65 53.6+77 0.175
LVESD (mm) 362+ 4.6 357 4.1 360 +37 36.4+53 37062 0.221
LVEDD (mm) 471468 466 +5.3 469 £ 5.0 474+75 479+83 0.462
LVMI (g/m?) 1384 +17.5 1342 + 134 136.1 + 102 1387 + 17.3 1384 +22.1 0.057
Insulin, 7 (%) 219 (36.4) 43 (38.4) 76 (33.2) 67 (37.6) 33 (40.2) 0.603
Metformin, n (%) 163 (27.1) 25 (22.3) 63 (27.5) 52 (29.2) 23 (28.0) 0.625
SGLT-2i, n (%) 136 (22.6) 31(27.7) 52 (227) 38 (21.3) 15 (18.3) 0372
GLP-1 RA, 1 (%) 98 (16.3) 22 (19.6) 43 (18.8) 32 (18.0) 12 (14.6) 0.822
B-receptor blocker, (%) 103 (17.1) 25(22.3) 40 (17.5) 30 (169) 8(9.8) 0.152
ACEI/ARB, n (%) 134 (22.3) 23 (20.5) 50 (21.8) 40 (22.5) 21 (25.6) 0.861
Spironolactone, 7 (%) 31(5.2) 5(4.5) 11 (4.8) 10 (5.6) 5(6.1) 0.941
Statins, 7 (%) 207 (34.4) 39 (34.8) 75 (32.8) 63 (35.4) 30 (36.6) 0911
Anti-platelets, n (%) s (25.8) 25 (22.3) 58 (25.3) ‘ 50 (28.1) 22(26.8) 0.737
Anticoagulants, 1 (%) 83 (13.8) 13 (11.6) 31 (135) 28 (15.7) 11 (13.4) 0.793

DM, diabetes mellitus; FBG, fasting blood glucose; PG, plasma glucose; HbAlc, hemoglobin Alc; NT-proBNP, N-terminal pro-B-type natriurctic peptide; LDL-C, low-density lipoprotein
cholesterol; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; LVEDD, left ventricular end-diastolic diameter; LVMI, left ventricular mass index; SGLT-2i,

sodium-glucose co-transporter 2 inhibitor; GLP-1 RA, glucagon-like peptide-1 receptor agonist; ACEI angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers.
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Factor Multivariate analysis

Odds ratio  95% ClI B
Retinopathy
Diabetes duration 1.040 0.926-1.170 0.493
Moderate or more-severe DPN 7.560 1.590-36.000 0.011
Stages 2-4
Retinopathy; PPDR or PDR
Diabetes duration 1.060 0.941-1.200 0.326
Moderate or more-severe DPN 19.500 3.660-104.000 <0.001
Stages 2-4
Nephropathy
Diabetes duration 1.090 0.953-1.240 0.210
Moderate or more-severe DPN 1.130 0.281-4.540 0.863
Stages 2-4
Nephropathy; stage 3 or 4
Diabetes duration 1.020 0.887-1.160 0.819
Moderate or more-severe DPN 11.000 1.150-106.000 0.037

Stages 2-4

CI, confidence interval; DPN, diabetic polyneuropathy; PPDR, preproliferative diabetic

retinopathy; PDR, proliferative diabetic retinopathy.
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NEVE Y

of DPN
Mild Moderate or more-
No DPN
DPN severe DPN
(stage 0) (stage 1) (stages 2-4)
n 22 25 25
Tibial nerve
CMAP (mV) | 14.9 47 116 7.8 £ 54%a
o +44 o
123 -
MCV (m/s) 462+ 30 7.4 54 372 +42%b
F-wave 50.7
46.2+22 56.1 + 6.6b
latency (ms) -
Sural nerve
11.0
SNAP (uV) 16.4 £ 6.8 27 £ 1.7%b
+4.6%
SCV (m/s) 498 +39 1 349 +162%b
m/s, . 5 +45 9 T ..

Data are expressed as the mean + standard deviation or n.

DPN, diabetic polyneuropathy; CMAP, compound muscle action potential; MCV, motor
nerve conduction velocity; SNAP, sensory nerve action potential; SCV, sensory nerve
conduction velocity.

P < 0.05, P < 0.01 versus the no-DPN group; *P < 0.05, °P < 0.01 versus the mild-
DPN group.
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Severity

of DPN

Mild Moderate or

No DPN more-
DI severe DPN
(stage 0) (stage 1) | (stages 2-4)
n 22 25 25
Male sex (%) 68.2 40.0 76.0"
Age (years) 49.6 + 12.7 281 54.6 + 10.6
+9.8*
BMI (kg/mz) 298 £54 1621 23.9+ 53"

No prior diagnosis/
unattended or interrupted 13/9 13/12 5/20*
treatment (n)

9 % 6.6 +
Diabetes duration (years) (n 37+34(n 81 (n 92461 (n=19)
=40) =9)
=12)
Untreated duration (; ) 22+ 15 49:¢
( njiﬂo)e uration (years, 7. 9; o n 8.0 (n 6.5+ 49 (n _ 19)
o - -12)
HbAlc (%) 10.1 £ 1.8 117 11.5 £ 1.6*
e +22* U
Urine CPR (pg/day) 82.8 £49.7 717 45.6 £ 32.1**
! He/cay SEBT 02 0% 3%
) o 936
eGFR (mL/min/1.73 m*) 99.2 £ 283 90.0 + 39.5
+239
Non-insulin/insulin (n) 18/4 17/8 15/10
Diabetic retinopathy; NDR/ -
SDR/PPDR/PDR (n) 20/1/0/1 16/6/1/2 | 6/1/8/10**b
Diabetic nephropathy; stage i
12/3/4" (n) 16/5/1/0 15/9/0/1 8/8/8/1**a
Macroangiopathy (%) 4.5 240 4.0
Diabetic foot (%) 0 0 12.0

Data are expressed as the mean + standard deviation, n, or %.

DPN, diabetic polyneuropathy; BMI, body mass index; HbAlc, glycosylated hemoglobin;
CPR, C-peptide immunoreactivity; eGFR, estimated glomerular filtration rate; NDR, non-
diabetic retinopathy; SDR, simple diabetic retinopathy; PPDR, preproliferative diabetic
retinopathy; PDR, proliferative diabetic retinopathy.

"Diagnosed and categorized using the Classification of Diabetic Nephropathy 2014 established
by the Joint Committee on Diabetic Nephropathy (15).

*P < 0.05, **P < 0.01 versus the no-DPN group; *P < 0.05, P < 0.01 versus the mild-
DPN group.





OPS/images/fendo.2024.1380970/table1.jpg
No Unattended or

Total . X
N prior interrupted

P diagnosis = treatment
n 72 31 41
Male sex (%) 61.1 452 73.2%
Age (years) 543+ 114 | 548+ 119 538+ 11.1
BMI (kg/m?) 264+60 | 274+70 257 +52
Diabetes duration 72+6.6

(years) (= 40) (o= 40) = 7.2+ 66 (n = 40)

Untreated duration 51%57
= 5.1+ 57 (n = 40)
(years) (n = 40) (n = 40)
HbAlc (%) 11.1 £2.0 106 £2.3 115+ 16

Urine CPR (ug/day) 66.5 +43.4 77.1 £40.9 58.4 + 44.1

eGFR (mL/min/

2 94.1 £31.2 93.6 +32.3 94.4 + 30.7
1.73 m*)
Non-insulin/ 50/22 25/6 25/16
insulin (n)
Diabetic retinopathy;
NDR/SDR/PPDR/ 42/8/9/13 26/2/1/2 16/6/8/11**
PDR (n)
Diabetic
nephropathy; 1/2/3/ 39/22/9/2/0 | 22/7/2/0 17/15/7/2%*
4/5" (n)
Diabetic
22/25/18
polyneuropathy; 0/1/ /; M8 nsaon | onznae
2/3/4* (n)
Macroangiopathy
111 9.7 12.2
(%)
Diabetic foot (%) 42 0 7.3

BMI, body mass index; HbAlc glycosylated hemoglobin, CPR, C-peptide immunoreactivity;
eGFR, estimated glomerular filtration rate; NDR, non-diabetic retinopathy; SDR, simple
diabetic retinopathy; PPDR, preproliferative diabetic retinopathy; PDR, proliferative
diabetic retinopathy.

"Diagnosed and categorized using the Classification of Diabetic Nephropathy 2014 established
by the Joint Committee on Diabetic Nephropathy (15).

*Diagnosed and categorized using the classification proposed by Baba for the severity of DPN.
P < 001 versus the no prior diagnosis group.
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Inclusion criteria:

. Patients with clinically confirmed
DF
. Patients with Wagner level 2

Patients with complete clinical
laboratory indicators
4. Patients undergoing bipedal MR
routine sequence and ASL and APT
sequence examination;
5. Patients whose empyema site is

confirmed by clinical drainage

method after a nuclear magnetic

examination.

Exclusion criteria:

1. Patients with other foot lesions

DF
patients

Case
group
n=40

Collect clinical
data

Statistical
analysis

DM
patients

Contro

group
n=31

Inclusion criteria:

1. The course of DM was more
than five years; FBG>7.0
mmol/L; Glycosylated
hemoglobin>7.0%

EXxclusion criteria:

1. Patients with other foot lesions

2. Severe venous embolism of the
lower extremity
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GSD DM

Gene stable IDs

= : CHR
ihiyersien BEST.GWAS.ID BESTGWASID ™
NRBP1 Artery_Tibial ENSG00000115216.13 2 151260326 1'332“0 151260326 Lﬂsxl(y
LINC01126  Artery_Tibial ENSG00000279873.2 2 1513029250 9'93:107 rs17334919 3'30;107
IFT172 Adipose_Subcutaneous ENSG00000235267.1 2 151260326 2‘15: L 151260326 9‘47,X 10°
GTF3C2 Adrenal_Gland ENSG00000234072.1 2 11260326 2'15; 10 151260326 9-47;(10
UNC119B Brain_Anterior_cingulate_cortex_BA24 ENSG00000175970.10 12 152393791 1.1()]:10‘ rs1169302 3'56;( o
SNX17 Brain_Caudate_basal_ganglia ENSG00000115234.10 2 151260326 2’15; B 7 151260326 9’477X o
THADA Brain_Frontal_Cortex_BA9 ENSG00000115970.18 2 154299376 4‘56; 107 1517334919 8‘40,?107
KRTCAP3 Brain_Nucleus_accumbens_basal_ganglia ENSG00000157992.12 2 11260326 2'445 10 151260326 2'68:( 10
LINC01460 | Brain_Spinal_cord_cervical_c-1 ENSG00000205334.2 2 151260326 3'82: i 151260326 1'81: w
NRBPI Cells_Cultured_fibroblasts ENSG00000115216.13 2 151260326 1’73; 10 151260326 3’567X 1o
SNX17 Cells_Cultured_fibroblasts ENSG00000115234.10 2 151260326 1'17; 107 151260326 3-86;107
GTF3C2 Cells_Cultured_fibroblasts ENSG00000234072.1 2 11260326 2'15; b rs1260326 9'47;( 1
NRBPI Cells_EBV-transformed_lymphocytes ENSG00000115216.13 2 151260326 4’77; 10° 151260326 8’20: 10
GIF3C2 | Colon_Sigmoid ENSG00000234072.1 2 151260326 Rt 151260326 gl
NRBP1 Esophagus_Gastroesophageal_Junction ENSG00000115216.13 2 11260326 9'93; 107 151260326 6'65:(107
NRBP1 Heart_Atrial_Appendage ENSG00000115216.13 2 151260326 4’33:(10- rs1260326 2'96;10-
P2RX4 Liver ENSG00000135124.14 12 152393791 4’62; 1 151169302 5'82:107
P2RX4 Minor_Salivary_Gland ENSG00000135124.14 12 152393791 4-74;107 151169302 7-99;(107
PPMIG Muscle_Skeletal ENSG00000115241.10 2 151260326 4'13;10‘ 151260326 1'46: 10°
KRTCAP3 Muscle_Skeletal ENSG00000157992.12 2 151260326 3'66;107 151260326 1'02;107
GPNI Muscle_Skeletal ENSG00000198522.13 2 151260326 s 151260326 R0
DMWD Nerve_Tibial ENSG00000185800.11 19 1834255979 6'03: i rs10406431 1-85; 10
THADA Nerve_Tibial ENSG00000234936.1 2 1513029250 1.14:(10' rs17334919 1'24|>2(10.
IFT172 Nerve_Tibial ENSG00000235267.1 2 151260326 1’75: B 151260326 V 356;107
THADA Pituitary ENSG00000234936.1 2 1513029250 1‘13;107 rs17334919 1-51:107
NRBP1 Skin_Not_Sun_Exposed_Suprapubic ENSG00000115216.13 2 151260326 gl 151260326 oA
RBKS Skin_Not_Sun_Exposed_Suprapubic ENSG00000171174.13 2 151260326 1'61: 10° rs1260326 1'87j< 10°
NRBPI Skin_Sun_Exposed_Lower_leg ENSG00000115216.13 2 151260326 1’75; 10 151260326 3‘567X 10
OASL Testis ENSG00000135114.12 12 152393791 1-77;107 151169302 6-83:(107
P2RX4 Testis ENSG00000135124.14 12 152393791 6-11510. 151169302 6-334X o
SPPL3 ‘Whole_Blood ENSG00000157837.15 12 152393791 8'38:10 151169302 I'SS;IOA

CHR, chromosome; GSD, gallstone disease; T2DM, type 2 diabetes mellitus; *, Pgonferroni-
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mellitus; #, PCPASSOC < 5x10-8, single trait P-value < 1x10-5, clumping 12 = 0.2;*, a novel SNP (A significant index SNP met the following criteria was identified as novel index SNP: 1) did not reach genome-wide significance (5x10° < Ppge s < 1x10°") in single-trait
GWAS; 2) was not in LD (¥ < 0.5) with any previously reported genome-wide significant SNPs in single-trait GWAS, and none of their neighboring SNPs (& 500 kb) reached P < 5x10° in single-trait GWAS,).






OPS/images/fendo.2024.1380443/fendo-15-1380443-g005.jpg
70

o
o

Pooled Mean (mmoliL)

o
o

55

Pooled Mean Fasting Plasma Glucose (mmol/L) with respective follow-up

6.87

588 ._,_,’fs-‘gl‘\
™~

03-Months Follow-up

06-Months Follow-up

09-Months Follow-up

712

Groups
& AfterStemCells

/ 4 Before Stem Cells

/

6.04

12-Months Follow-up





OPS/images/fendo.2023.1337071/table1.jpg
Exposures

and events

T2DM — GSD

No

Yes

P value

P interaction

GSD — T2DM

No

Yes

Pvalue

Primary analysis
No. of cases HR (95%Cl)

Model 1 Model 2 Model 3

14,425 5,093,394.66 Reference Reference Reference

1,553 212,949.57 L7 145 139
” T (1.58, 1.84) (1.36, 1.56) (1.29, 1.50)

- - <0.001 <0.001 <0.001

— — <0.001 <0.001 <0.001
22,952 5,146,631.69 Reference Reference Reference

1.87 124 116

1,601 201,712.70

0 z (1.78, 1.97) (117, 1.32) (1.08, 1.24)

- - <0.001 <0.001 <0.001

Sensitivity analysis
HR (95%Cl)

Model 4 Model 5

Reference Reference
1.23 117
(1.14, 1.32) (1.08, 1.28)
<0.001 <0.001
<0.001 <0.001
Reference Reference
121 1.00
(1.14, 1.28) (0.93, 1.08)
<0.001 0.912

CI, confidence interval; GSD, gallstone disease; HR, hazard ratio; T2DM, type 2 diabetes mellitus; Time interaction, time-varying effect of type 2 diabetes mellitus interacting with survival time;
No. of, the number of; P ipteraction» the P value of interaction of T2DM and time; Model 1 was adjusted for sex, age, assessment center, and the top 40 genetic principal components; Model 2 was
further adjusted for body mass index, Townsend deprivation index, education, smoking, alcohol intake, sleep duration, time spent watching TV, and physical activity; Model 3 was further
adjusted for family history of Type 2 diabetes mellitus, cholesterol, low density lipoprotein and triglycerides; Model 4 was flexible parametric competing risk regression model, and death as the
competing event; Model 5 was excluded the participant whose event occurring in the first two years after diagnosis of exposure.
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