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Objective

Radiomics based on magnetic resonance imaging (MRI) shows potential for prediction of therapeutic effect to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC); however, thorough comparison between radiomics and traditional models is deficient. We aimed to construct multiple-time-scale (pretreatment, posttreatment, and combined) radiomic models to predict pathological complete response (pCR) and compare their utility to those of traditional clinical models.





Methods

In this research, 165 LARC patients undergoing nCRT followed by surgery were enrolled retrospectively, which were divided into training and testing sets in the ratio of 7:3. Morphological features on pre- and posttreatment MRI, coupled with clinical data, were evaluated by univariable and multivariable logistic regression analysis for constructing clinical models. Radiomic parameters were derived from pre- and posttreatment T2- and diffusion-weighted images to develop the radiomic signatures. The clinical-radiomics models were then generated. All the models were developed in the training set and then tested in the testing set, the performance of which was assessed using the area under the receiver operating characteristic curve (AUC). Radiomic models were compared with the clinical models with the DeLong test.





Results

One hundred and sixty-five patients (median age, 55 years; age interquartile range, 47–62 years; 116 males) were enrolled in the study. The pretreatment maximum tumor length, posttreatment maximum tumor length, and magnetic resonance tumor regression grade were selected as independent predictors for pCR in the clinical models. In the testing set, the pre- and posttreatment and combined clinical models generated AUCs of 0.625, 0.842, and 0.842 for predicting pCR, respectively. The MRI-based radiomic models performed reasonably well in predicting pCR, but neither the pure radiomic signatures (AUCs, 0.734, 0.817, and 0.801 for the pre- and posttreatment and combined radiomic signatures, respectively) nor the clinical-radiomics models (AUCs, 0.734, 0.860, and 0.801 for the pre- and posttreatment and combined clinical-radiomics models, respectively) showed significant added value compared with the clinical models (all P > 0.05).





Conclusion

The MRI-based radiomic models exhibited no definite added value compared with the clinical models for predicting pCR in LARC. Radiomic models can serve as ancillary tools for tailoring adequate treatment strategies.





Keywords: rectal neoplasms, pathological complete response, magnetic resonance imaging, radiomics, neoadjuvant chemoradiotherapy





Introduction

Neoadjuvant chemoradiotherapy (nCRT) coupled afterward with surgical resection has been standardly applied in locally advanced rectal cancer (LARC). For LARCs treated by nCRT, approximately 15–27% can obtain pathological complete response (pCR) (1). Concerned with the high operation-related morbidity (surgical complications and bowel and urogenital system dysfunction) and profound lifestyle alteration subsequent to surgery (2, 3), investigators have proposed less invasive or alternative procedures, like a “watch-and-wait” regime or local resection (4, 5) for patients with good response to nCRT. To implement these less invasive approaches safely and efficaciously, precise stratification of patients with pCR is a crucial step.

Magnetic resonance imaging (MRI) has been generally recognized as the standard imaging procedure in the primary evaluation and re-staging of rectal cancer (6, 7). Several MRI characteristics, including tumor volume, signal intensity, and magnetic resonance tumor regression grade (mrTRG) (8–10), have been investigated to predict pCR. However, no consensus exists for any reliable and reproducible methods for accurate prediction before operation. The mrTRG, proposed by the MERCURY research team (11), was demonstrated in several studies (10, 12, 13) to have a significant association with pCR, while a recent meta-analysis reported that mrTRG exhibited superior specificity (93.5%) for pCR, but inferior sensitivity (32.3%) (14).

Radiomics, which provides non-visual information in relation to tumor heterogeneity by extracting many quantitative parameters from digital imaging, has recently been applied to predict treatment response in rectal cancer. A few studies have shown potential results for predicting pCR in LARC using MRI-based texture or radiomic parameters, but substantial limitations have emerged, including the use of single-timepoint models (15–17), single-sequence radiomics analysis (16), and a lack of independent validation (18). Thus, multiple-timepoint models based on multiparametric MRI are required to generalize the definite value of MRI-based radiomics for pCR assessment, in order to promote radiomics into a more practical perspective.

Therefore, our study aimed to develop and validate radiomic models based on multiple MRI timepoints (T2- and diffusion-weighted imaging, T2WI and DWI), and to compare the value of radiomic models in predicting pCR in LARC with traditional clinical models.





Materials and methods




Patients

Our research received approval from the institutional ethics committee, accompanied by a waiver for patients’ informed consent due to the retrospective nature of this study. We reviewed consecutive patients who underwent rectal MRI scanning from January 2015 to August 2018 and were diagnosed with rectal cancer by pathology at our institute. The patients were included under the following criteria: (1) rectal adenocarcinoma diagnosed by biopsy; (2) middle or lower rectum located, stage II–III (cT3–4N0M0 or cTxN1–2M0) determined by pretreatment MRI; (3) rectal MRI examinations within two weeks prior to commencing nCRT and at an interval of 4–6 weeks subsequent to nCRT; and (4) completely received nCRT followed by surgical resection. In all, 207 patients were enrolled per the inclusive criteria. The exclusion criteria were as follows: (1) other concomitant tumors (n = 4); (2) mucinous adenocarcinoma (over 50% area of the tumor with high signal on pretreatment T2WI (n = 1); (3) over 8 weeks between the completion of nCRT and the operation (n = 31); and (4) insufficient MRI quality (n = 6). Of those screened, 165 patients were included and allocated to a training and testing cohort in a 7:3 ratio randomly.

Epidemiological parameters and levels of tumor markers were derived from the electronic medical database at our institute, including age, sex, pre- and posttreatment carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA) levels.





Neoadjuvant chemoradiotherapy and surgery

All patients received long- or short-course nCRT before surgery. Long-course nCRT was administered as radiotherapy of 45–50.4 Gy to the whole pelvis (5 times per week for 5 weeks) and synchronous chemotherapy (825 mg/m2 capecitabine orally, twice a day). Short-course nCRT was administered as radiotherapy of 25 Gy in total, with a fraction of 5 Gy and four cycles of chemotherapy after 7–14 days from completion of radiotherapy (130 mg/m2 oxaliplatin intravenously, once a day, on day 1, as well as 1000 mg/m2 oral capecitabine, twice a day, during day 1–14). All nCRT was followed by surgical resection, including abdominal-perineal resection, low anterior resection, and Hartmann’s operation.





Histopathological assessment

Each surgery specimen was evaluated by a pathologist with 21 years’ diagnostic experience in gastrointestinal pathology, abiding by the 8th edition of the American Joint Committee on Cancer’s (AJCC) TNM staging system (19), blinded to imaging data. No residual tumors found in the primary tumor bed and lymph nodes were defined as pCR (ypT0N0).





MRI parameters and imaging acquisition

MRI scanning was conducted using Discovery MR 750 (GE Healthcare, Chicago, IL), a 3.0-T MRI system with a phased-array surface coil. Raceanisodamine hydrochloride (10 mg) was intramuscularly injected in patients before scanning to suppress bowel motility (except for those with contraindications). Additionally, ultrasound transmission gel (50–60 mL) was injected into the enteric cavity through rectal intubation to highlight the tumor boundary and enhance contrast. Axial T1-weighted imaging (T1WI); axial fat-saturated T2WI (T2WI/FS); axial DWI; and oblique axial, coronal, and sagittal T2WI of two timepoints (pre- and posttreatment) were obtained. The detailed parameters regarding the MRI sequences are presented in Supplementary Table S1.





MRI morphological evaluation

MRI morphological evaluation, including the parameters of distance from tumor to anal verge (DTA), maximum tumor length (MTL), maximum tumor thickness (MTT), circumferential percentage (CP), mrT (ymrT), mrN (ymrN), mesorectal fascia (MRF), extramural vascular invasion (EMVI), and mrTRG was conducted on pre- and posttreatment MR images. These were evaluated by a radiologist with 21 years’ diagnostic experience in gastrointestinal imaging, who was only aware of the pathological results proven by biopsy.

DTA was measured on sagittal T2WI from the anal verge to the tumor’s lowest margin. MTL was recorded as the maximum longitudinal extent from the tumor’s upper to lower margins on sagittal T2WI. MTT and CP were assessed on oblique axial T2WI with maximum tumor dimension. MTT was recorded by the perpendicular distance between the tumor extension’s outer margin and the rectal wall and CP, the tumor invasion’s proportion around the rectal wall with four degrees (degree 1, 0–0.25; 2, > 0.25–0.5; 3, > 0.5–0.75, and 4, > 0.75–1).

The mrT (ymrT) and mrN (ymrN) staging originated from the 8th edition of the AJCC staging system (19). Metastatic lymph node in the primary evaluation and re-staging after nCRT was determined according to the consensus recommended by the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) (7). MRF invasion was defined as the distance equal to or smaller than 1 mm from tumor spiculae to MRF (7). EMVI evaluation was conducted based on a five-point scoring system (20). mrTRGs were assigned in accordance with the description by the MERCURY study group (11): mrTRG1, complete regression, the primary tumor bed without residual tumor signal; mrTRG2, dense low signal fibrosis with minimal tumor signal; mrTRG3, substantial tumor signal; mrTRG4, small areas of fibrosis outgrown by residual tumor; and mrTRG5, extensive residual cancer with no regression or tumor growth. The mrTRG1 was considered pCR, whereas mrTRGs2–5 were considered non-pCR.





Imaging segmentation and radiomic feature extraction

The delineation of regions of interest (ROIs) and radiomic feature extraction were performed on the pre- and posttreatment oblique axial T2WI and axial DWI by using Radcloud version 3.1.0, which was based on the “pyradiomics” package within Python version 3.8.1. Reader 1 (a junior radiologist with three years’ diagnostic experience in gastrointestinal imaging) and reader 2 (a senior radiologist with 16 years’ diagnostic experience in gastrointestinal imaging) conducted a review of each imaging set to reach a consensus over the ROIs. Reader 1 first drew manually on each consecutive tumor-containing slice, which showed intermediate T2WI and high DWI signal in contrast with the normal signal of the muscular layer of the adjacent rectal wall. In some patients, tumor signals were not identified on posttreatment images, and these ROIs were positioned at the location of the tumor bed before treatment (21). Figure 1 shows two examples of segmentation of ROIs on the pre- and posttreatment images. Reader 2 then examined these ROIs. The two readers would discuss to reach a consensus if there was a discrepancy. They were unaware of the pathological results and clinical data. Imaging normalization weighting coupled with resampling for voxel size (1×1×1 mm3) was conducted. Radiomic feature extraction was followed by an automatic procedure. The types of features are listed in Supplementary Table S2. There were 1,409 parameters extracted from each modality and 5636 parameters in total were extracted for each patient.




Figure 1 | Two examples of segmentation of ROIs on the pre- and posttreatment images. Panels (A-D) show the segmentation of a 51-year-old patient with low-rectum adenocarcinoma at a stage of cT3N1M0. (A, B) Pretreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); (C, D) Posttreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); this patient was demonstrated pCR by surgical pathology. Panels (E-H) show the segmentation of a 60-year-old patient with low-rectum adenocarcinoma at a stage of cT3N1M0. (E, F) Pretreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); (G, H) Posttreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); this patient was demonstrated non-pCR by surgical pathology. DWI, diffusion-weighted imaging; pCR, pathological complete response; ROI, region of interest; T2WI, T2-weighted imaging.







Radiomic feature selection and signature construction

Z-scores were used to normalize the radiomic features, which aimed at averting the influence of different feature magnitudes. Irrelevant or redundant features were eliminated and 30 parameters with high relevance and low redundancy were reserved using maximum relevance minimum redundancy (mRMR) arithmetic. The performance of 10-fold cross-validation in the training set was calculated and the optimal subset of features was identified using the least absolute shrinkage and selection operator (LASSO) by comparing the results. The values of the tuning parameters (λ) were then determined. Each patient’s pre- and posttreatment radscores were calculated using a weighted linear combination of these selected predictors. The pre- and posttreatment radscores, regarded as two independent radiomic signatures, were compared by Mann–Whitney U test between pCR and non-pCR to explore the significance, respectively. The combined radiomic signature was generated by integrating the pre- and posttreatment radscores using multivariable logistic regression (selection method, Backward: LR).





Statistical analysis

We employed R (version 4.1.1, R Foundation, Vienna, Austria) and IBM SPSS Statistics (version 25.0, Chicago, IL) to conduct the statistical analyses. Clinical characteristics including demographic data, levels of tumor markers, and MRI morphological parameters were analyzed. The Shapiro–Wilk test was performed for normality assessment. The difference in continuous normally distributed variables was analyzed using the independent t-test between pCR and non-pCR groups, whereas continuous non-normally distributed variables were analyzed using the Mann–Whitney U test. Categorical data were evaluated with the χ2 test or Fisher’s exact test. Two-sided P-values < 0.05 were considered statistically significant.

The clinical variables were assessed by univariable logistic regression analysis of pCR and non-pCR to explore the significance. The significant variables were then analyzed by multivariable logistic regression (selection method, Backward: LR) to identify the independent predictors to construct the pretreatment, posttreatment, and combined clinical models. The clinical-radiomics models were established in the same way, except for adding the pre- and posttreatment radscores as independent radiomic signatures. All models were established based on the training group and validated by the testing group. The utility of models was evaluated using the areas under the receiver operating characteristic curves (AUCs). Bootstrapping was used to generate 95% confidence intervals (CIs). The DeLong test was conducted to compare the AUCs between models.

The overall workflow of the comparative study is presented in Figure 2.




Figure 2 | The overall workflow of the comparative study. CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CP, circumferential percentage; DTA, distance from tumor to anal verge; EMVI, extramural vascular invasion; MRF, mesorectal fascia; MRI, magnetic resonance imaging; mrTRG, magnetic resonance tumor regression grade; MTL, maximum tumor length; MTT, maximum tumor thickness; pCR, pathological complete response.








Results




Patients

One hundred and sixty-five patients (median age, 55 years; age interquartile range, 47–62 years; 116 males) were enrolled in the study. An amount of 115 patients (median age, 56 years; age interquartile range, 50–62 years; 82 males) were allocated to the training cohort, whereas 50 patients (median age, 54 years; age interquartile range, 44–61 years; 34 males) were assigned to the testing cohort. There were no significant differences in clinical variables when comparing the testing and training cohorts (Tables 1, 2). No significant difference was found between the pCR prevalence (16.5% [19/115] vs. 14.0% [7/50], P = 0.683) in two cohorts.


Table 1 | Patients’ clinical characteristics in the training and testing sets.




Table 2 | Pre- and posttreatment MRI morphological characteristics of patients in the training and testing sets.







Radiomic feature selection and signature construction

A subset of three pretreatment and eight posttreatment radiomic parameters was confirmed separately as the optimal candidate predictor for the radiomic signatures. Detailed information regarding the contributing weight of the selected radiomic features is shown in Supplementary Figure S1. Both the pre- and posttreatment radscores of pCR patients in the training set were larger than those of non-pCR patients (median: pretreatment radscore, -1.11 vs. -2.22, P = 0.011; posttreatment radscore, 0.42 vs. -1.50, P < 0.001). These were verified by the testing cohort (median: pretreatment radscore, -0.07 vs. -2.39, P = 0.415; posttreatment radscore, 0.32 vs. -1.32, P = 0.014). Figure 3 shows box plots of the pre- and posttreatment radscores in the training and testing sets for the pCR and non-pCR groups. The pre- and posttreatment radscores were enrolled in the combined radiomic signature as independent predictors. The pretreatment, posttreatment, and combined radiomic signatures exhibited AUCs of 0.775–0.887 for the training group and 0.734–0.817 for the testing group.




Figure 3 | Box plots for the pre- and posttreatment radscores of the pCR and non-pCR groups. Panels (A, B) show the pretreatment radscores in the training and testing sets, respectively. Panels (C, D) show the posttreatment radscores in the training and testing sets, respectively. pCR, pathological complete response.







Model development and validation

In the training set, the pretreatment MTL (P = 0.011), posttreatment MTL (P = 0.001), posttreatment MTT (P = 0.025), posttreatment mrT stage (ymrT) (P = 0.046), and mrTRG (P < 0.001) between the pCR and non-pCR groups were significantly different by the univariable logistic regression analysis. The pretreatment MTL, the only predictor identified in the pretreatment clinical model, achieved the lowest AUCs both in the training set (AUC, 0.717; 95% CI, 0.587–0.848) and the testing set (AUC, 0.625; 95% CI, 0.375–0.874). The posttreatment MTL (odds ratio [OR], 0.912; 95% CI, 0.848–0.980) and mrTRG (OR, 6.064; 95% CI, 1.933–19.020) were selected by the multivariable logistic regression analysis as independent predictors both in the posttreatment and combined clinical models, which achieved the same AUCs of 0.804 (95% CI, 0.685–0.922) and 0.842 (95% CI, 0.709–0.975) separately for the training and testing cohorts.

In three clinical-radiomics models, the characteristics enrolled as independent predictors were separate as follows: the pretreatment radscore for the pretreatment clinical-radiomics model; the posttreatment MTL (OR, 0.929; 95% CI, 0.862–1) and posttreatment radscore (OR, 2.236; 95% CI, 1.471–3.400) for the posttreatment clinical-radiomics model; and the pretreatment radscore (OR, 2.370; 95% CI, 1.217–4.615) and posttreatment radscore (OR, 2.153; 95% CI, 1.426–3.251) for the combined clinical-radiomics model. The clinical-radiomics models of three timepoints achieved AUCs of 0.775–0.887 for the training group and 0.734–0.860 for the testing group. Table 3 and Figure 4 show the AUCs of the models.


Table 3 | The areas under the receiver operating characteristic curves of multiple-time-scale models.






Figure 4 | The receiver operating characteristic curves for the clinical, radiomics, and clinical-radiomics models of three timepoints. (A-C) Curves for the pretreatment, posttreatment, and combined models in the training set, respectively; (D-F) Curves for the pretreatment, posttreatment, and combined models in the testing set, respectively. (Curves for the pretreatment and combined clinical-radiomics models coincide with those of the pretreatment and combined radiomic signatures, respectively, which are displayed in red).



The combined radiomic signature, as well as the combined clinical-radiomics model, achieved the highest AUC in the training group (AUC, 0.887; 95% CI, 0.815–0.958), while it was the posttreatment clinical-radiomics model (AUC, 0.860; 95% CI, 0.751–0.970) in the testing group. Furthermore, comparisons of MRI-based radiomic models and clinical models showed that neither the pure radiomic signatures nor the clinical-radiomics models of three timepoints were significantly different from the clinical models (all P > 0.05), both in the training and testing sets. Also, there were no significant differences when comparing the pure radiomic signatures with clinical-radiomics models of three timepoints (all P > 0.05). Table 4 illustrates the comparison between the models.


Table 4 | Comparison of the areas under the receiver operating characteristic curves of models on different timepoints.








Discussion

The precise stratification of LARC patients with pCR after nCRT has become a crucial issue, because they can consider less invasive procedures, like a “watch-and-wait” regime or local resection. MRI-based radiomics shows potential for predicting pCR, but the thorough comparison between radiomics and traditional models is deficient. In this study, we developed and validated multiple time-scale (pretreatment, posttreatment, and combined) radiomic models based on MRI to predict pCR and compared their utility to those of traditional clinical models. Radiomic models performed reasonably well for predicting pCR in LARC. However, neither the pure radiomic signatures nor the clinical-radiomics models of three timepoints showed a definite added value to the traditional clinical models.

The pretreatment radiomic signature generated moderate AUCs of 0.734–0.775 to predict pCR, which were concordant with the results of previous studies (18, 22, 23). Meanwhile, the posttreatment and combined radiomic signatures obtained higher AUCs (0.801–0.887) than the pretreatment one. The superiority of posttreatment imaging corresponded well with the former investigation (24), which is theoretically directly linked to pathological results. To scrutinize the pure radiomic signatures, consistent with prior studies (25), high weights of high-order radiomic features were included in the models, with 3/3 of the pretreatment and 4/8 of the posttreatment features being the wavelet features, which reflect the change rate of the pixel value in the frequency domain (26), representing the complexity and heterogeneity of tumors and can better predict pCR.

Clinical models performed inferiorly to well in our research. The pretreatment clinical model based on the single MTL got the lowest prediction performance (AUC, 0.625) in the testing set, which indicated the predicting insufficiency of pure pretreatment morphological features. But even so, the pretreatment radiomic models (including both the pure radiomic signature and clinical-radiomics model) didn’t perform significantly superior to the clinical model. The posttreatment clinical model generated higher AUCs than the pretreatment one and the combined clinical model only reserved the posttreatment clinical features as the independent predictors after multivariable logistic regression selection with the method of Backward, which implied the superior predicting utility of posttreatment clinical features. Both the posttreatment and combined clinical models were based on the posttreatment MTL and mrTRG. Posttreatment MTL has been recognized as an effective morphological predictor in assessing pCR as former studies reported (24, 27, 28). Another promising predictor was mrTRG, which reflected the tumor signal status after treatment and highly correlated with the tumor response (10, 29). In the comparison of the posttreatment radiomic models (including both the pure radiomic signature and clinical-radiomics model) with the clinical model, there was still no added significant value that emerged, which was the same as the combined models. Our results were consistent with a handful of previous reports. Shi et al. reported that a pretreatment radiomic model could predict pCR but showed no significant difference from the clinical model. However, the conclusion lacked independent validation (18). Bulens et al. illustrated in an external validation cohort that neither the pure radiomic model based on pre- and posttreatment MRI nor the clinical-radiomics model outperformed the clinical model in predicting (near-)pCR. However, the study did not conduct further stratification research by timepoint (30).

The strength of our study resides in our multiple-timepoint and multiple-modality comparative analysis in the field of radiomics, which is few in the current research. Recent studies employing radiomics to predict pCR in LARC have been an exponential growth, while few of them clarified the usefulness of MRI-based radiomic models, especially compared with the traditional clinical ones. Our study promotes radiomics into a more applicable perspective and gets the conclusions with general applicability and realistic instruction. Since the ambiguous superiority over the clinical models and the laborious and intricate process during radiomic analyzing, the application of radiomic modeling is far from routine in the clinical practice. Clinical parameters, including the emerging ones, such as histopathological, immunohistochemical, and genetic, still deserve further investigation.

It is worth noting that radiomics is not devoid of any advantages. Considering the realistic diagnostic procedures in the clinical practice that mrTRG can vary in doctors with different experience and the final diagnosis are always concluded by the senior one in a two-observer review, we took mrTRG results evaluated by a senior radiologist into the analysis. Consistent with the former literature (specificity, 92–98%; sensitivity, 0–59%) (14), mrTRG in our study obtained moderate to high specificity (0.791–0.865) and low sensitivity (0.571–0.579). In contrast, expert input cannot be a requirement in radiomics analysis. It was reported (31) that significant predictive performance can be achieved regardless of whether radiomics ROI segmentation was done by an experienced radiologist or a junior resident. And our radiomic ROI segmentation was conducted by a junior one. In this case, radiomics can serve as a supplementary tool in senior-absent situations to add confidence in treatment response assessment and help tailor the treatment strategies adequately.

There were several limitations in this research. First, it was a retrospective analysis with a limited scale of datasets in a single institute, which might carry inherent selection bias. Prospective and multicenter external validation deserves further investigation in the future. Second, many factors can potentially affect the reproducibility of radiomic features, such as scanning sequence, data acquisition, image preprocessing, segmentation strategy, and feature extraction tools. In this study, we performed several measures (eg ROIs were delineated by two radiologists in consensus and the whole-volume segmentation) to improve feature reproducibility. Therefore, we did not evaluate the interobserver and intraobserver reproducibility of segmentation. Third, other functional sequences such as dynamic contrast-enhanced MRI (DCE-MRI) and apparent diffusion coefficient (ADC) maps were not enrolled in our study. DCE-MRI is not routinely applied in the rectal MRI examination; ADC maps are vulnerable, with geometric distortion and sensitivity to susceptibility artifacts.

In conclusion, our study showed that MRI-based radiomic models performed reasonably well for the prediction of pCR in LARC, but exhibited no definite added value compared to the traditional clinical models. Radiomic models can serve as ancillary tools for selecting candidate pCR patients and tailoring adequate treatment strategies.
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Aim

Cancer treatments with radiation present a challenging physical toll for patients, which can be justified by the potential reduction in cancerous tissue with treatment. However, there remain patients for whom treatments do not yield desired outcomes. Radiomics involves using biomedical images to determine imaging features which, when used in tandem with retrospective treatment outcomes, can train machine learning (ML) classifiers to create predictive models. In this study we investigated whether pre-treatment imaging features from index lymph node (LN) quantitative ultrasound (QUS) scans parametric maps of head & neck (H&N) cancer patients can provide predictive information about treatment outcomes.





Methods

72 H&N cancer patients with bulky metastatic LN involvement were recruited for study. Involved bulky neck nodes were scanned with ultrasound prior to the start of treatment for each patient. QUS parametric maps and related radiomics texture-based features were determined and used to train two ML classifiers (support vector machines (SVM) and k-nearest neighbour (k-NN)) for predictive modeling using retrospectively labelled binary treatment outcomes, as determined clinically 3-months after completion of treatment. Additionally, novel higher-order texture-of-texture (TOT) features were incorporated and evaluated in regards to improved predictive model performance.





Results

It was found that a 7-feature multivariable model of QUS texture features using a support vector machine (SVM) classifier demonstrated 81% sensitivity, 76% specificity, 79% accuracy, 86% precision and an area under the curve (AUC) of 0.82 in separating responding from non-responding patients. All performance metrics improved after implementation of TOT features to 85% sensitivity, 80% specificity, 83% accuracy, 89% precision and AUC of 0.85. Similar trends were found with k-NN classifier.





Conclusion

Binary H&N cancer treatment outcomes can be predicted with QUS texture features acquired from index LNs. Prediction efficacy improved by implementing TOT features following methodology outlined in this work.
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1 Introduction

Cancers of the oral cavity, pharynx, larynx, paranasal sinuses, nasal cavity and salivary glands are broadly categorised as head and neck (H&N) cancers (1). The World Health Organization (WHO) estimated diagnosis of 930,000 new H&N cancer cases in the year 2020 (2) making them the 6th-most common type of cancer (3). Approximately, 90% of H&N cancers are squamous cell carcinomas (SCC) (4). Risk factors include tobacco (5) and alcohol consumption (6), p53 (7) and p16 gene mutations (8, 9) and the presence of human papilloma virus (HPV) genomic DNA (10). Distant metastasis is rare at the time of diagnosis (10%), but the majority of patients present with disease in regional lymph nodes (LNs) in addition to a primary location (3).

Treatment plans for H&N cancer patients typically include a combination of surgery, radiotherapy (XRT), and systemic therapy, and are often individualised depending on disease stage, as well as patients’ health at the time of treatment. Although different fractionation schemes are practiced for up-front radiotherapy, the standard objectives for H&N treatments typically include 70 Gy in 33-35 fractions to a high dose target volume for gross disease, and 63 Gy and 56 Gy in 33-35 fractions to intermediate and low dose (risk) target volumes, respectively (11). Advances in personalised patient care, including more accurate treatment-planning software and innovations like intensity modulated radiation therapy (IMRT) will likely continue to improve outcomes for patients (12). 5-Year mortality rates are dependent on both stage and location of tumours, with survival rates near 90% for lip cancers but below 40% for cancer of the hypopharynx (13). Despite considerable developments, there are a subset of patients who do not exhibit the desired response to treatment.

Tumour composition and microenvironments are widely studied with focus on trying to understand the mechanisms from which tumour masses exhibit heterogeneity (14). There seems to be evidence supporting the notion that increased intratumoural heterogeneity reduces the likelihood of successful response to treatment (15). Tumour heterogeneity lays the foundation for the emergence of resistance and eventually, potential disease relapse, as the cancer tumour is made up of cells with varying characteristics and responses to targeted treatment (15). Quantitative ultrasound spectroscopic (QUS) parameters have been shown to detect disorganisation of tissues (16–18). Exploring cancer treatment response with QUS features can shed light on characterising malignancies based on acoustic properties.

Diseases are associated with physical alterations in tissues that can cause observable changes in acoustic scattering properties (17– 19). With that premise, in 1987 Lizzi et al. published seminal work on the concept of quantitative ultrasound spectroscopy (QUS); this is an analytical approach to determine tissue “acoustic signatures” from the frequency content of the backscattered signal of US radiofrequency (RF) data, that are related to the effective sizes, concentrations, and acoustic impedances of tissue elements (19). From QUS power spectra, various spectral parameters, like mid-band fit (MBF), spectral slope (SS), and 0-MHz spectral intercept (SI) can be determined. In addition, two backscatter coefficient parameters, average scatter diameter (ASD) and average acoustic concentration (AAC) can also be evaluated using a Gaussian scattering model (20) and a fluid-filled sphere model (also referred to as Anderson model) (21). QUS Parameters can be used to effectively characterise various biological conditions, including but not limited to apoptosis (17), evaluating hepatic steatosis for patients with non-alcoholic fatty liver disease (22), differentiating hepatocellular carcinoma from at-risk and normal liver parenchyma (23), and benign and malignant thyroid nodules (24).

Previous works by A. Dietz & S. Delorme found a relationship between sonographically high vascularisation of LNs and a less favourable prognosis by investigating colour Doppler images and the correlation between lower relative colour pixel density (hypovascularisation) and more favourable outcomes (25, 26). Lin et al. (2013) found that when comparing QUS spectral parameters of mouse tumours treated with Adriamycin to control tumours, SS and MBF significantly increased (by 48% and 13%, respectively) in comparison to the control group (p < 0.001 and p = 0.013, respectively) (27). There have also been several investigations into breast cancer classification (28), monitoring (29) and prediction of treatment outcomes (30), using QUS parameters and QUS parametric map features.

QUS Parameters can be computed for small overlapping windows to create QUS parametric maps from which texture features can be determined using radiomics. The field of radiomics was pioneered by Haralick et al. (1973) and has since expanded due to improved imaging and computational techniques and hardware (31). Radiomics involves determining feature data from biomedical images based on the assumption that texture information may be represented by the overall or ‘average’ spatial relationship of pixels within images (31). In order to describe ‘average’ spatial relationships, Haralick et al. introduced the concept of the gray level co-occurrence matrix (GLCM), a newly formed matrix based on relationships between neighbouring pixels in an image (31). Supplementary Figure 1 demonstrates an example GLCM calculation from a sample 5x5 pixel image of five distinct pixel intensities. Textural feature (contrast, homogeneity, entropy, etc.) calculations are defined for the GLCM and other similar matrices (gray level run length matrix (GLRLM) (32), gray level size zone matrix (GLSZM) (33), and the gray level dependence matrix (GLDM) (34). Texture feature values can be calculated for the entirety of an image, or for a region of interest (ROI). Once texture-based features are matched with retrospective treatment outcome labels, machine learning (ML) classifiers can be trained to create predictive models.

Predictive models capable of reliable and effective prediction of treatment outcomes could lead to marked improvements related to personalised cancer care. Patients predicted to respond well to treatment would be given reassurance about treatment efficacy and ease-of-mind to undergo treatment. Such technology would also serve to benefit patients predicted to not achieve desired outcomes by permitting treatment interventions such as changes in radiation dose or fractionation (e.g. dose escalation). Previously, Tran et al. (2019) investigated LN phenotypic signals associated with H&N cancer treatment outcomes in creating predictive models (35). Building on the aforementioned work, improvements were made to address some key limitations; mainly (i) increasing sample size from n = 32 to n = 72, and (ii) using GLCM, GLRLM, GLSZM, and GLDM features as opposed to solely GLCM features. In addition to addressing some of the limitations of the work by Tran et al. (2019), we also incorporated and evaluated the effectiveness novel higher-order texture-of-texture (TOT) features in improving ML model performance for predicting treatment response. This study investigated the utility of quantitative ultrasound (QUS) texture-based features in predicting the treatment response of H&N cancer patients with metastatic LNs. Furthermore, the effect of potentially enhancing predictive models by implementing novel, higher-order texture-of-texture (TOT) features was evaluated.




2 Materials and methods



2.1 Study procedures and treatment

This study was approved by the institutional Research Ethics Board. Subjects (n = 72) were recruited and enrolled with informed written consent obtained prior to participation. Subjects had biopsy-confirmed diagnosis of H&N cancers being treated with radiotherapy for gross disease, and pathologically enlarged and measureable LNs (detailed below). Participants in this study had a median age of 61 years (ranging 36-82 years old). The mean age at the time of diagnosis was 60 years with a majority (n = 67, 93%) being males. Although there is a large discrepancy between male and female subjects, it should be noted that a 25-year analysis of cancer prevalence in Canada revealed that out of nearly 48,000 total H&N cancers, 70% (~35,000) were males (36). Smoking status, drinking status, primary tumour staging, histological analysis, and HPV status were also noted when available. 62 Patients (n = 62, 86%) were treated with chemotherapeutics (cisplatin, carboplatin, cetuximab, and carboplatin + etoposide) and the remaining ten (n = 10) were treated with definitive radiation alone. Table 1 summarises patient, disease, and treatment characteristics for all subjects. Supplementary Table 1 shows a breakdown of tumour and treatment characteristics for each patient involved.


Table 1 | Patient characteristics for 72 patients in this study.



Gross tumour volume (GTV) segmentations were expanded by 5 mm to form the high-dose clinical target volume on the primary and nodal volume. Furthermore, a 1 cm margin was added to the GTV to create the clinical tumour volume (CTV56) volume. XRT Administration was carried out using IMRT or volumetric modulated arc therapy (VMAT) techniques available at Odette Cancer Centre, Sunnybrook Health Sciences Centre, in Toronto, Ontario, Canada. In order to have been considered pathologically enlarged and measurable, a LN must have been ≥ 15 mm in “short axis” when assessed by computed tomography (CT) scan (with CT scan slice thickness recommended no greater than 5 mm). At baseline and in follow-up, only the short axis was evaluated and measured. Nodal size is normally reported as two dimensions in the plane in which the image is obtained (for CT scan this is almost always the axial plane; for magnetic resonance imaging (MRI) the plane of acquisition may be axial, sagittal, or coronal). The smaller of these measures is the “short axis”.

Patients were labeled as complete or partial responders (CR or PR) based on clinical follow-up using contrast enhanced MR imaging (based on Response Evaluation Criteria in Solid Tumours (RECIST) guidelines) conducted in the first three months after completion of treatment (37). Through visual inspection patients were categorised as CR if the index LN was found to be <1 cm, otherwise labeled as PR. Standard treatment protocol includes additional follow-ups every 3-6 months for the first two years, and every 6-12 months thereafter. Some patients may be “late responders” (PR group in the first three months, then CR at some later time point), however in this work the interest was in predicting response within the first three months.




2.2 Ultrasound data acquisition

The largest metastatic LN was identified on a diagnostic CT scan by a radiologist and referred to as the “index” LN. The index LN was scanned at various time points during treatment (baseline, 24 hours, 1 week, 4 weeks, and 7 weeks). In this study features were determined from the baseline scans which were acquired up to 2 weeks before starting treatment. The collected data included both grayscale (B-mode) images and the digitised (RF) signals. Data collection was from participating patients between 2015-2019, using an US device (Ultrasonix Med. Corp., BC, Canada). A linear 2D transducer (L4-5/38 Linear 4D, Ultrasonix) was used for imaging and RF-data collection, which had a centre frequency of approximately 10 MHz and a sampling rate of 40 MHz. Data was acquired across the entire LN volume, along 256 lateral scan lines (in-plane; 3.8 cm lateral field of view) with maximum axial depth of 5 cm. To account for the depth of the LN, the acoustic focus was adjusted for each patient individually (average depth = 1.75 cm).




2.3 QUS parameter determination

For each patient, segmentations were made, outlining the LN from six equally spaced B-mode images with associated RF-data using in-house MATLAB software. Following the procedures outlined by Lizzi et al. (1987), QUS spectra were computed using individual RF lines, by first applying a Hamming window before computing a fast Fourier transform (FFT) to determine the frequency component of the signal (19). An average power spectrum was then computed as the mean of the squared spectral magnitudes before calibrating it by dividing with a power spectrum of a tissue-mimicking phantom with known acoustic properties to remove various frequency dependent transfer functions and beam forming effects associated with the transducer (19).

Linear regression analysis was performed on the normalised power spectrum to find the best-fit line within a -5 dB window (bandwidth of 3 – 8 MHz) centred at the transducer frequency . From the best-fit line, MBF, SS, and SI were computed. Additionally backscatter coefficient parameters ASD and AAC were determined from both a Gaussian model (20) and the fluid-filled model (also referred to as Anderson model) (21) for purposes of comparison. Local attenuation coefficient estimates (38) were used to calculate attenuation correction based on point-compensation method (39). QUS Parametric maps were created for seven QUS spectral parameters, using a sliding window technique with a window block of 2x2 mm and a 94.1% overlap between adjacent windows in both axial and lateral directions. In Figure 1 representative QUS parametric maps (used to determine texture features) are shown for a CR and a PR patient, respectively.




Figure 1 | Comparing parametric maps (used as images to determine textural features from) and US slices of one CR patient (On the left) and one PR patient (On the right). (A) Presents the B-mode ultrasounds and accompanying LN ROIs. (B) Mid-Band Fit parametric maps (range from -10 to 40 dB). (C) Spectral Intercept parametric maps (range from 10 to 50 dB). (D) Spectral Slope parametric maps (range from -5 to 5 dB/MHz). (E) Average Acoustic Concentration calculated using the Gaussian model (range from 20 to 220 dB/cm3). Note that Average Acoustic Concentration was also calculated using Anderson model but omitted from this figure for convenience). (F) Average Scatterer Diameter calculated using the Gaussian model (range from 0 to 150 µm). Note that Average Scatterer Diameter was also calculated using Anderson model but omitted from this figure for convenience). Scale bar is 5 mm.






2.4 Texture features

Texture features were determined from the QUS parametric maps using Pyradiomics, an open-source Python (Python Software Foundation, Delaware, USA) package (40). Features were determined from GLCMs (31) as well as other matrices (since developed to build on to the work of Haralick & colleagues), including GLRLM (32), GLSZM (33), and GLDM (34). For each of the seven QUS parametric maps, 68 features were determined (22 GLCM, 14 GLDM, 16 GLRLM, & 16 GLSZM features) for a total of 476 features per patient. The patient texture feature values were averaged across each tumour and matched with binary treatment outcomes, retrospectively. The dataset was used to train a predictive ML model to distinguish CR from PR patients. Details regarding ML modeling will be described in section 2.6.




2.5 Texture-of-texture

After preliminary model building, in order to enhance the performance of the classifiers, the effect of incorporating higher-order texture features was investigated. Higher-order texture features were calculated by creating texture-based images from which subsequent additional textures were determined. Informative features first determined in 5-feature multivariable models (process described below) were used as a guide to create new parametric maps, as presented in Figure 2. New texture parametric maps were created with a sliding window technique from smaller 3x3 pixel windows spanning the ROI.




Figure 2 | On the left, an US B-mode scan slice with lymph node ROI highlighted in red. In the middle, the QUS spectral slope parametric map (dB/MHz). On the right, a texture-feature parametric map (spectral slope – GLSZM – small area low gray level emphasis) (arbitrary units) from which TOT features are determined. Scale bar is 5 mm.



As earlier, texture features were determined using Pyradiomics from the newly formed texture parametric maps and used along with the original five features to create a new dataset of features for classifier training. In addition to the GLCM, GLRLM, GLDM, and GLSZM features, first order statistics features related distribution of pixel intensities within the QUS texture parametric map. The same ML classifier parameters were used to train the classifiers with the new dataset to investigate whether performance was enhanced, and if texture-of-texture features contributed to the outcomes.




2.6 Machine learning processing

Mean QUS parameter values were calculated from ROIs for each image and subsequently averaged between all six tumour images to represent the entire LN mass. The differences of means between the two groups (CR/PR) were determined by computing the p-value in a one-tail test with results presented in Table 2.


Table 2 | Comparing QUS parameters for entire ROI of CR vs PR group and comparing respective p-value for each of the seven parameters parametric maps were created for.



To account for data imbalances and bias from the majority class (35% CR/65% PR) and to avoid anomaly-type’ classification problems (41), a synthetic minority oversampling technique (SMOTE) was used in the pre-processing phase (41). To split the data, a leave-one-out cross validation method and 5 k-fold training set validation was implemented. Additional pre-processing included z-score scaling to account for varying magnitudes of texture feature values.

Feature selection was carried out by an iterative sequential forward selection (SFS) in a wrapper framework based on F1 score. Model performance was evaluated based on sensitivity (%Sn), specificity (%Sp), accuracy (%Acc), F1 score, precision, balanced accuracy, receiver-operating characteristic (ROC) curve, as well as area under the curve (AUC), for single-variable and multivariable models up to and including seven features as determined by either support vector machines (SVM) or k-nearest neighbour (k-NN) classifiers. Next, features identified in the five-feature multivariable model were used to create five new texture parametric maps using the sliding window technique. The reason for choosing five features to create parametric maps as opposed for example, to seven, was to keep computation time somewhat practical, as the creation of each texture parametric map can take hours (depending on ROI size) and must be computed for a total of 432 ultrasound slices (6 images per patient x 72 patients). Radiomic features of new texture parametric maps were determined using Pyradiomics to create a new set of texture-of-texture (TOT) features. New TOT features and initially selected five QUS texture features were used to create a second data set which was used to train ML classifiers to explore potential improvement of prediction efficacy. Figure 2 presents a ROI labelled selected on a reconstructed US B-mode image, the corresponding QUS spectral slope parametric map, as well as a texture parametric map of a feature from a 5-feature multivariable model (spectral slope – GLSZM – Small Area Low Gray Level Emphasis). Creating QUS parametric maps, as well as ML classification, were carried out with MATLAB (Mathworks, MA, USA).





3 Results



3.1 Mean QUS values

Table 2 presents QUS mean values for whole LN ROIs and compares CR and PR groups. A one-tailed t-test using a confidence level of p < 0.025 demonstrated the MBF parameter to be significantly different between the two groups (p = 0.020). The SI parameter showed a near-significant difference (p = 0.026) between the two groups, just missing the p < 0.025 confidence level. The remaining parameters, SS (p = 0.302), ASD_Gaussian (p = 0.241), AAC_Gaussian (p = 0.304), ASD_Anderson (p = 0.098), and AAC_Anderson (p = 0.049) were statistically insignificant between the CR and PR groups.




3.2 Treatment outcomes prediction from QUS texture features

Both ML algorithms used (SVM & k-NN) demonstrated an ability to predict treatment outcomes as summarised in Table 3. The SVM classifier model out-performed the k-NN classifier model with nearly every metric and combination of features (up to 7-feature multivariable model). The SVM classifier model performed best with a 6-feature model (%Sn = 80%, %Sp = 80%, %Acc = 81%, precision = 88% and AUC = 0.81). The k-NN classifier performed best with a 5-feature multivariable model (%Sn = 72%, %Sp = 72%, %Acc = 72%, precision = 83% and AUC = 0.72).


Table 3 | Results from two SVM classifiers trained on QUS texture features for models with 1-7 features.






3.3 Model enhancement with TOT features

For both algorithms, selected features from the 5-feature multivariable model were used to create QUS-texture parametric maps. For the SVM classifier, these five features were “ASD_Anderson GLSZM Zone Entropy”, “SI GLDM Small Dependence Low Gray Level Emphasis”, “SS GLDM Small Dependence High Gray Level Emphasis”, “AAC_Gaussian GLDM Dependence Variance”, and “AAC_Anderson GLDM Small Dependence Emphasis”.

For the k-NN classifier, the five features used to create new parametric maps were “ASD_Anderson GLSZM Zone Entropy”, “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis”, “ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”, “ASD_Gaussian GLDM Low Gray Level Emphasis”, and “SS GLSZM Small Area Low Gray Level Emphasis”.

Texture features were determined for the newly created parametric maps and subsequently used along with the original 5 best features to create a new dataset with a total of 355 features (5 initially selected QUS texture features, and 350 higher-order TOT features) to be analyzed by ML classifiers. Identical classifier settings were used to evaluate the impact of incorporating higher order texture features in conjunction with top texture features. The results comparing QUS texture features to QUS texture + TOT features for SVM classifier are summarised in Table 4.


Table 4 | Comparing SVM classifier results from texture-features from 5 (first row) and 7 (third row) features vs. 5 (second row) and 7 (fourth row) TOT features to evaluate improvement in prediction performance.



The implementation of TOT features improved the performance in classifying between CR and PR. Comparing the results of initial 5-feature multivariable model (all QUS texture features) to the 5-feature multivariable model (5 QUS texture features + TOT features) from the second data set with inclusion of TOT features for the SVM classifier demonstrated no change in sensitivity, however specificity, accuracy, precision and AUC improved (from 76% to 80%, 78% to 79%, 86% to 88%, and 0.82 to 0.85, respectively). Comparing the two 7-feature multivariable models, sensitivity improved from 81% to 85%, specificity increased from 76% to 80%, accuracy increased from 79% to 83%, precision increased from 86% to 89% and finally AUC increased from 0.82 to 0.85.

Table 5 shows the results from the k-NN classifier. Comparing the sets of data with a 5-feature multivariable model, the introduction of TOT features increased sensitivity (from 72% to 78%), accuracy (from 72% to 74%) and AUC (from 0.72 to 0.75), however specificity, and precision decreased (from 72% to 64% and 83% to 80%, respectively). Similarly, for the 7-feature multivariable model, sensitivity, accuracy, precision, and AUC increased, and specificity remained unchanged.


Table 5 | Comparing K-NN classifier results from texture-features from 5 (first row) and 7 (third row) features vs. 5 (second row) and 7 (fourth row) TOT features to evaluate improvement in prediction performance.



The 7-feature multivariable model trained on QUS texture features + TOT features dataset yielded the best results, for both classifiers. Figure 3 shows the ROC curves corresponding to the results from Tables 4, 5. Interestingly, for the 7-feature multivariable SVM classifier model trained on the second dataset, of the seven selected features, four were among the five initial QUS texture features that were concatenated with the TOT features. These features were “ASD_Anderson GLSZM Zone Entropy”, “SI GLDM Small Dependence Low Gray Level Emphasis”, “AAC_Anderson GLDM Small Dependence Emphasis”, and “SS GLDM Small Dependence High Gray Level Emphasis”. The remaining three features were from the newly created TOT features, namely, “SS GLDM Small Dependence High Gray Level Emphasis GLSZM Size Zone Non-Uniformity Normalized”, “AAC_Anderson GLDM Small Dependence Emphasis GLCM Autocorrelation”, and “SI GLDM Small Dependence Low Gray Level Emphasis GLCM Cluster Prominence”. The distribution of these features between CR and PR patients can be seen in Figure 4.




Figure 3 | ROC curves for two tested classifiers for both 5 and 7-feature models trained on first dataset (black) and the second dataset after TOT features introduced (blue).






Figure 4 | Boxplots of Z-score values for selected features of 7-feature SVM model trained on for QUS + TOT Features dataset. PR Patients shown in pink, CR patients shown in blue. F1 feature was “ASD_Anderson GLSZM Zone Entropy”. F2 feature was “SI GLDM Low Gray Level Emphasis”. F3 feature was AAC_Anderson GLDM Small Dependence Emphasis”. F4 feature was “SS GLDM Small Dependence High Gray Level Emphasis”. F5 feature was a TOT feature named “SS GLDM Small Dependence High Gray Level Emphasis GLSZM Size Zone Non-Uniformity Normalize”. F6 feature was also a TOT feature called “AAC_Anderson GLDM Small Dependence Emphasis GLCM Autocorrelation”. Finally, F7 feature was also TOT feature called “SI GLDM Small Dependence Low Gray Level Emphasis GLCM Cluster Prominence”.



Similar outcomes were observed with the k-NN classifier models, wherein of the seven selected features from model trained with the second dataset, four were from the five preliminary QUS texture features, namely “ASD_Anderson GLSZM Zone Entropy”, “ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”, “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis”, and “SS GLSZM Small Area Low Gray Level Emphasis”. The remaining 3 selected features were newly created TOT features, namely “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis First Order 90 Percentile”, “ASD_Anderson GLSZM Zone Entropy GLSZM Zone Entropy”, and “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis First Order Robust Mean Absolute Deviation”. The distribution of these features between CR and PR patients can be found in Figure 5.




Figure 5 | Boxplots of Z-score values for selected features of 7-feature k-NN model trained on for QUS + TOT Features dataset. PR Patients shown in white, CR patients shown in gray. F1 feature was “ASD_Anderson GLSZM Zone Entropy”. F2 feature was “ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”. F3 feature was AAC_Anderson GLRLM Long Run Low Gray Level Emphasis”. F4 feature was “SS GLSZM Small Area Low Gray Level Emphasis”. F5 feature was a TOT feature named “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis First Order 90 Percentile”. F6 feature was also a TOT feature called “ASD_Anderson GLSZM Zone Entropy GLSZM Zone Entropy”. Finally, F7 feature was also TOT feature called “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis First Order Robust Mean Absolute Deviation”.







4 Discussion

In this study, it was found that pre-treatment QUS scans obtained from index LNs of H&N cancer patients may yield insight about clinical treatment endpoints. Additionally, a methodology was proposed to improve ML prediction model performance by implementing TOT features (results shown in Tables 4, 5).

In the work here ASD and AAC QUS backscatter parameters were determined using both the Gaussian model (20) and fluid-filled, Anderson model (21). The rationale behind this decision was due to the nature of H&N LNs, which are both fluid-filled (favouring Anderson model) and displaying near spherical shape (favouring Gaussian model). Feature selection was used to remove redundant features and reduce dimensionality during classification. The best performance from both ML classifiers explored in this study (SVM and k-NN) was a 7-feature multivariable model based on a combination of four QUS-texture features and three higher-order TOT features. Despite the fact that all five originally identified QUS texture features were available for feature selection in the enhancement step, one was not selected, in favour of three TOT features. This suggests that the introduction of TOT features yielded additional phenotypic information related to treatment outcomes about LNs that are otherwise inaccessible solely through QUS-texture features. Interpretation of TOT features is challenging but should not be overlooked and are posited to be related to repetitive structures in bulky nodal structures and may be sensitive to a heterogeneity of structures.

Both classifiers identified “ASD_Anderson GLSZM Zone Entropy” as the most insightful feature. Zone Entropy is a Pyradiomics texture feature determined from the GLSZM matrix, and measures the uncertainty, or randomness, in the distribution of zone sizes and gray levels with higher values indicating more heterogeneous texture patterns (40). “Zones” in GLSZM refer to consecutive (or connected) pixels (in any direction including diagonal) which share identical pixel intensity values (33). Therefore, the GLSZM defines pixel relationships by considering zones of varying pixel intensities and sizes. Identification of “ASD_Anderson GLSZM Zone Entropy” as a significant feature suggests that pre-treatment heterogeneity in terms of diameter of acoustic scatterers within index LNs of H&N cancer patients may play an important role for response to treatment for H&N cancer patients.

For the model based on k-NN classifier, six of the seven selected features were based on ASD_Anderson parametric maps and one from SS parametric map. One feature, “ASD_Anderson GLSZM Large Area Low Gray Level Emphasis” measures the proportion of the joint distribution of large size zones with lower gray-level values in the image. Keeping in mind that this is a texture feature extracted from ASD parametric maps, it may be that larger areas of small scatterer diameters within the LN play a role in treatment efficacy. Another feature, “ASD_Anderson GLRLM Long Run Low Gray Level Emphasis” measures the joint distribution of long run lengths with low gray-level values. Once again, the feature was extracted from ASD_Anderson parametric maps, suggesting that longer run lengths [see GLRLM documentation for “run length” definition (32)] of low gray levels (smaller scatterer diameters) of index LNs plays a role in predicting treatment response. The final QUS texture feature selected in the 7-feature k-NN model is the GLSZM feature “Small Area Low Gray Level Emphasis” based on the SS parametric map, which is expected to be related to scatterer size (19). The remaining three features are TOT features, two based on ASD_Anderson GLRLM Long Run Low Gray Level Emphasis parametric maps, and one from ASD_Anderson GLSZM Zone Entropy parametric maps. The improved results demonstrate that TOT features provide finer information for the predictive model, which leads to better discrimination between CR and PR patients.

For the model based on SVM classifier, one selected feature was “GLDM Small Dependence Low Gray Level Emphasis” extracted from the SI parametric map. The GLDM considers the relationship between neighbouring pixels in all directions [see GLDM documentation for details (34)]. “Small Dependence Low Gray Level Emphasis” is a GLDM feature which measures the joint distribution of small dependence with lower gray-level values (40). Theoretically, SI is related to acoustic concentration and scatterer diameter and relative acoustic impedances of scattering elements (19). This suggests that within the SI parametric map, regions of sparsely distributed, lower spectral intercept values may play a role dictating treatment response. Another selected feature was the GLDM feature “Small Dependence Emphasis” extracted from AAC_Anderson QUS parametric maps. “Small Dependence Emphasis” is a measure of the distribution of small dependencies, with higher values indicative of smaller dependence and less homogeneous textures (40). This suggests heterogeneity of average acoustic concentrations within the LN may provide insight regarding treatment efficacy. The final QUS texture feature selected in the SVM classifier model was “GLDM Small Dependence High Gray Level Emphasis” extracted from SS parametric maps. “Small Dependence High Gray Level Emphasis” measures the distribution of small dependence with higher gray-level values (40). SS is a QUS parameter related to scatterer size (19), suggesting that small regions of higher slope values with in the LN plays a role in treatment efficacy. The final three features are TOT features extracted from “SS GLDM Small Dependence High Gray Level Emphasis”, “AAC_Anderson GLDM Small Dependence Emphasis”, and “SI GLDM Small Dependence Low Gray Level Emphasis” parametric maps. Once again, the improved results in discriminating between CR and PR patients suggests that TOT features provide finer information otherwise unavailable.

Other studies have looked into the effectiveness of radiomics features from various imaging modalities in predicting biological endpoints related to H&N cancers, for example, Tang et al. reported contrast-enhanced CT radiomics features acquired pre-treatment to be useful in predicting recurrence of locally advanced esophageal squamous cell carcinomas (42). Another investigation by Dang et al. reported MRI texture features to be promising in predicting p53 status in H&N squamous cell carcinomas (43). In the present study, work was built on previous findings from Tran et al. who reported results on prediction of H&N cancer treatment outcomes using just nine QUS GLCM features (35). The work here has improved on the work of Tran et al. by increasing the number of patients (from n = 32 to n = 72), the number of features computed for selection (from 41 to 476) and expanded beyond just GLCM features to GLCM + GLRLM+ GLSZM + GLDM features. Furthermore, in this study the effect of implementing TOT features was considered for improving response prediction by the ML algorithms. Finally, Tran et al. used logistic regression, Naïve Bayes, and k-NN classifiers, whereas in this study SVM and k-NN classifiers were investigated.

Due to the difference in sample size and the curse of dimensionality (44), Tran et al. considered a maximum of three features for their multivariable analysis, whereas in this study models with a maximum of seven features were evaluated. Of the three ML classifiers explored, Tran et al. report a best performance with sensitivity of 85%, specificity of 84%, accuracy of 88%, and AUC of 0.91 from the regression classifier with the 3-feature multivariable model (35). The best result from the study here was from the SVM classifier with sensitivity of 85%, specificity of 80%, accuracy of 83%, precision of 89%, and AUC of 0.85, which was the 7-feature QUS texture features + TOT features dataset multivariable model. The study here demonstrates a more robust and reliable model compared to previous work, mainly because of a larger sample size, and consideration of additional features.

Finally it is worth mentioning that patients enrolled in this study had to undergo ultrasound scans (not required for their treatment), solely for the purpose of advancing scientific research, which can present a challenge when recruiting vulnerable patients. Though results were promising, the relatively small sample size of this study suggests that these models are not generalizable for clinical applications. Furthermore, predictive models can incorporate clinical features, such as HPV status, to bolster features used to train models. However in this study only the feasibility of radiomics features were tested, as clinical features were not consistently available for all patients, because many patients received diagnostic work from outside institutions. Despite the limitations, the results are consistent with previous work, as well as promising, particularly when considering the possibility to improve results with the introduction of TOT features.




5 Conclusion

The study here was designed based on the hypothesis that the index LNs of H&N cancer patients contain acoustic phenotypes that can be correlated to the treatment response of the primary tumour and nodal disease. Insights regarding treatment responses using QUS texture features can potentially improve understanding of cancerous microstructures and provide another (non-invasive) tool at the disposal of clinicians in the aim of delivering the best personalised care to patients. Accurate and reliable predictions about treatment responses work to assist patients that fall into either CR or PR group. For example, patients who are predicted to respond well to treatment (CR) can be encouraged to forego any reservations they might be having of undergoing treatment. Fear of treatment can stem from risk of failure to cure, but also from the physical toll and decrease of quality of life. Patients predicted not to respond well to treatment (PR), can avoid undergoing ineffective treatment and the undesirable side effects associated with it and have altered therapy. Ultimately a better understanding of individual responses to a given treatment will benefit patients and continue to build on the path of personalised medicine.
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Introduction

Thyroglossal duct cyst (TGDC) is the most frequently encountered developmental anomaly in thyroid genesis with a reported incidence of 7% in the adult population. The cyst is known to develop anywhere along the pathway of thyroid descent but is more frequently seen in the infrahyoid neck in the midline. The incidence of malignancy in a TGDC is approximately 1%; a majority of these are papillary carcinomas. This study was conducted at a single tertiary care centre which spanned over a decade which adds practice changing evidence-based knowledge to existing literature on this rare entity. A comprehensive study which conclusively establishes the imaging features predictive of malignancy in TGDC carcinomas (TGDCa), the protocol for optimal management, clinical outcome and long-term survival of these patients is not available. Although TGDC carcinoma is thought to have an excellent prognosis, there is not enough data available on the long-term survival of these patients. The aim of this study was to identify whether neck ultrasound (US) can serve as an accurate imaging tool for the preoperative diagnosis of TGDC carcinomas.





Methods

We accessed the electronic medical records of 86 patients with TGDC between January 2005 to December 2021. Of these, 22 patients were detected with TGDC papillary carcinoma on histopathologic examination. Relevant imaging, treatment and follow up information for all cases of TGDC carcinoma were retrospectively reviewed. We compared US characteristics predictive of malignancy across outcomes groups; malignant vs benign using the Chi-square test. Based on the results, a TGC-TIRADS classification was proposed with calculation of the percentage likelihood of malignancy for each category.





Results

Compared to benign TGDCs, malignant TGDCs were more likely to present with following US characteristics: irregular or lobulated margins (90.40 vs. 38.10%), solid-cystic composition (61.90 vs. 17.07%), internal vascularity (47.62 vs. 4.88 %), internal calcification (76.19 vs. 7.32 %) (each p value < 0.005). Calcifications and internal vascularity were the most specific while irregular/lobulated margins were the most sensitive feature for malignancy. AUC under the ROC curve was 0.88. Allpatients were operated and were disease free at the end of 5 years or till the recent follow up.





Discussion

US is the imaging modality of choice for pre-operative diagnosis of TGDC carcinoma. Thepre-operative diagnosis and risk stratification of thyroglossal lesions will be aided by the application of the proposed TGC-TIRADS classification, for which the percentage likelihood of malignancy correlated well with the results in our study. Sistrunk procedure is adequate for isolated TGDC carcinoma; suspicious neck nodes on imaging also necessitates selective nodal dissection. Papillary carcinomas have an excellent prognosis with low incidence of disease recurrence.





Keywords: Thyroglossal cyst carcinoma, Thyroglossal duct cyst, papillary carcinoma, TGC-TIRADS, thyroglossal cyst imaging, thyroglossal cyst management





Introduction

Thyroglossal duct cyst (TGDC) is the most frequently encountered developmental anomaly in thyroid genesis with a reported incidence of 7% in the adult population (1). The cyst is known to develop anywhere along the pathway of thyroid descent but is more frequently seen in the infra-hyoid neck in the midline. The incidence of malignancy in a TGDC is approximately 1%; a majority of these are papillary carcinomas (1, 2).

This is a rare entity and this study was conducted at a single tertiary care centre which spanned over a decade which adds practice changing evidence based knowledge to existing literature on this rare entity. This is one of the largest series where imaging features have been studied. A comprehensive study which conclusively establishes the imaging features predictive of malignancy in TGDC carcinomas (TGDCa), the protocol for optimal management, clinical outcome and long-term survival of these patients is not available. Consequently, providing patients and clinicians with pertinent information with respect to the role of imaging, further investigations, management and prognosis poses a challenge. Although TGDC carcinoma is thought to have an excellent prognosis (3), there is not enough data available on the long-term survival of these patients.

The aim of this study was to identify whether neck ultrasound (US) can serve as an accurate imaging tool for the pre-operative diagnosis of TGDC carcinomas. We also analyzed the management protocols utilized and their impact on patient outcomes. To the best of our knowledge, this is the largest study of its kind and the first comprehensive study in patients with TGDC carcinomas, which provides evidence-based information regarding the role of imaging, optimal management protocol and clinical outcomes of these cases.





Materials and methods

The study was approved by the Institutional Review Board (IRB). Waiver consent was obtained for the study. We retrospectively reviewed the electronic medical records (EMR) of 86 patients with TGDC who were referred to our institute between January 2005 to December 2021. Of these, 22 patients were detected with TGDC papillary carcinoma on histopathologic examination. Relevant clinical data, histopathologic details, treatment and follow-up information for all cases of TGDC carcinoma, were accessed from the electronic medical records. US images of all patients were reviewed. US and CT evaluations were studied by two senior radiologists with 10-12 years of experience in head-neck onco imaging. Since all studies were performed by skilled radiologists, the errors were significantly reduced. Inter-observer bias, however, remains as in any other study in which observations are done by more than one observer. We have used different ultrasound machines including GE LOGIQ E7, GE LOGIQ E9 and Samsung RS80 EVO, Philips CV350. Computed tomography (CT) images were reviewed as per their availability. Siemens Somatom Sensation 16 slice CT scanner machine was used with iohexol (Omnipaque) contrast agent. US characteristics which were assessed included: location, composition, margins, internal vascularity, presence of calcifications, internal echoes and lymphadenopathy. On US, microcalcifications (diameter less than 1mm) appear as hyperechoic foci and do not have acoustic shadow. Macrocalcifications (diameter larger than 1mm) show hyperechoic area with posterior acoustic shadowing. Peripheral calcifications are seen when large flecks of calcium deposit in the periphery of the wall. On US, central vascularity within the solid component of the lesion was considered positive for vascularity. Lesions with peripheral vascularity were not included in the positives as benign colloid nodules can show peripheral vascularity. Inspissated colloid (which can mimic solid component) within a cystic nodule will show no central vascularity. Imaging features assessed on CT were: lesion location, density, enhancement characteristics, margins and associated lymphadenopathy.

For surgical patients, histopathological diagnosis was considered the gold standard while for the rest, cytopathology results were considered as the gold standard. Solid component of the lesion was targeted under USG guidance. The adequacy of sample was ensured by the onsite cytologist.




Statistical analysis

All statistical analyses were performed using SPSS software, version 25. A 2x2 contingency table which included the sonographic characteristics predictive of malignancy was computed. Comparison of categorical factors (across outcomes groups, i.e., malignant vs benign) was done using Chi-square (Fishers Exact Test). A p-value of less than 0.05 was considered statistically significant. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for each imaging feature suspicious of malignancy were calculated. We plotted a receiver operating characteristic (ROC) curve to evaluate the diagnostic accuracy of the US predictors of malignancy.






Results




Patient demographics

The median age of presentation of TGDC carcinoma was 47 years with a range of 22 to 48 years. There were 13 males and 9 females, with a 1.4:1 male-to-female gender ratio.





Clinical presentation

Of the 22 patients with proven TGDC carcinoma, 2 were asymptomatic while the rest 20 patients presented with a palpable, painless neck swelling. The duration of symptoms was 18 to 48 months, with a mean of 24.5 months. On clinical examination, all lesions were mobile on deglutition. No fixity to the overlying skin was noted.





Ultrasound imaging features

US images were available for 21 patients with TGDC malignancy. On imaging studies, the malignant lesions ranged from 8 – 41 mm in the greatest dimension with an average size of 23.3 mm and a standard deviation of 11.5. The sonographic characteristics of malignant versus benign TGDC are shown in Table 1. Compared to their benign counterparts, malignant TGDCs were more likely to present with the following US characteristics: irregular or lobulated margins (90.4 vs. 38.10%), solid-cystic composition (61.90 vs. 17.07%), internal vascularity (47.62 vs. 4.88%), internal calcification (76.19 vs. 7.32%) (each p-value < 0.005) (Figure 1). However, there were no significant differences between benign and malignant TGDC in terms of the US features of size (p-value 0.08) and location (p-value = 0.55).


Table 1 | US characteristics of malignant versus benign thyroglossal duct cysts.






Figure 1 | US (A–C) and CT (D, E) images of a histopathologically proven TGDC papillary carcinoma showing infrahyoid lesion with solid-cystic composition (thick arrow indicates the solid component) and irregular margins (asterisk). The solid component shows internal vascularity (B) and microcalcifications (thin arrows). CT showed irregular enhancing solid component and a metastatic left level III node (star).



The sensitivity, specificity, PPV and NPV of ultrasound features for prediction of malignancy in TGDC are depicted in Table 2. The presence of calcifications and internal vascularity were the most specific imaging features for malignancy while the presence of irregular/lobulated margins had the highest sensitivity for the detection of malignancy. Purely cystic nodules with or without internal echoes favoured the benign nature of TGDC.


Table 2 | Predictive value of US features of malignant thyroglossal duct cysts.



A receiver operating characteristics (ROC) curve was calculated to validate the relationship between the US features and malignant TGDC. The area under the curve was 0.88, signifying that the accuracy of ultrasound as a diagnostic tool was good.





CT Features

CT images were available for 6 patients with TGDC carcinoma. In most of these, the lesion appeared solid-cystic in composition, with enhancing solid component, irregular wall enhancement and nodularity (Figure 1). One case showed internal calcifications. The lesions showed no evidence of adjacent infiltration (Table 3).


Table 3 | CT features of TGDC lesions.







Thyroid gland imaging

A total of 12 out of the 22 patients (54%) had an associated papillary carcinoma of the thyroid gland; 11 of these were diagnosed on pre-operative US. These nodules appeared hypoechoic, solid-cystic/cystic with irregular margins, and absent/interrupted halo. Micro-calcifications were noted in 8 patients. They were assigned a category of ACR-TIRADS 5 (Thyroid Imaging Reporting and Data System by American College of Radiology) on ultrasound (Figure 2).




Figure 2 | Concurrent histopathologically proven papillary carcinoma of the thyroid in a case of TGDC papillary carcinoma. US images showing a malignant TGDC containing solid component and microcalcifications (A) with synchronous left thyroid lobe papillary carcinoma (B) and multiple metastatic left sided nodes showing microcalcifications (C). Corresponding CT images showing the midline TGDC papillary carcinoma (arrow in D) and metastatic left cervical node (asterisk in E).







Neck nodes

Out of 22 (50%) patients, 11 had positive neck nodes on histopathology of which 9 patients had a concurrent thyroid gland malignancy; while 2 had a papillary carcinoma confined to the TGDC. These were labelled suspicious on pre-operative imaging; 10 on US and 2 on CT examination. On US, suspicious lymph nodes appeared round, with loss of fatty hilum; and irregular margins with a heterogeneous echo texture, with or without micro-calcifications. On CT, the lymph nodes appeared round, revealed loss of reniform appearance, and showed calcifications and heterogeneous enhancement (Figure 1).





Pathology findings

Pre-operative Fine needle aspiration cytology (FNAC) examination reports were available for 14 patients. Out of those 5 FNAC were diagnostic for papillary carcinoma, 3 samples were non-diagnostic and haemorrhagic aspirate, and 6 cases were proven as concurrent thyroid malignancy. In these cases, cytologic evaluation revealed clusters and papillae of thyroid follicular cells showing nuclear enlargement, grooving, overlapping and inclusions. A few clusters of metaplastic cells were also seen in a background of abundant thin colloid-like material. There were no false-negative cases. Histopathology confirmed the diagnosis of papillary carcinoma of TGDC in all cases.





Treatment details

Out of 22 malignant TGDCa, 20 were operated (surgical details as summarized in the supplementary Table 4). Operative details were not available for 2 patients. Neck dissection was performed in 14 patients; out of the 14 neck dissections, neck nodes were positive in 11 cases. 7 patients received adjuvant treatment of radioactive iodine.


Table 4 | Summary of the management details in our study.







Follow up

All of the TGDC carcinoma patients were disease free till recent follow up or at the end of 5 years in applicable cases. In our study the mean time period of follow-up post-surgery of malignant TGDCa lesions was 49.88 months with inter quartal range of 7.84 - 65.33 months. Patients who underwent a total thyroidectomy with Sistrunk procedure were followed up 3-6 monthly in the first 2 years and then 6 monthly till 5 years from the completion of treatment and annually subsequently. They were followed up with ultrasound examination of the neck and thyroglobulin assay; while those who underwent an isolated Sistrunk procedure did not undergo thyroglobulin (Tg) testing. Patients who didn’t have clinical evidence of disease along with low Tg levels and no evidence of disease on US (if done) and a negative RAI scan (if done) were considered disease-free.






Discussion

Thyroglossal duct cysts develop from persistent remnants of the thyroglossal duct at any site along the path of descent (1–3). The typical locations of TGDCs are between the thyroid gland and the hyoid bone (61%), i.e., infra-hyoid, followed by the suprahyoid (24%), suprasternal (13%) and rarely intralingual (2%) regions (1, 3). In our study, the supra-hyoid midline location was the commonest site, in TGDC carcinomas as well as in their benign counterparts. TGDC carcinomas arise from ectopic thyroid tissue (1–3). The vast majority of these belong to the papillary subtype accounting for as many as 85% of cases. Mixed papillary-follicular carcinomas and squamous cell carcinomas are uncommon and constitute the remainder (2, 3).

The average age of presentation of TGDC carcinoma has been reported as 38 years; the median age in our study was found to be 47 years ranging from 24 to 88 years. A higher prevalence has been observed in females, with a ratio of 3:2 in published literature (3); this was not seen in our study.

There is a paucity of radiology literature describing the imaging features for the definitive diagnosis of carcinoma in thyroglossal duct remnants. We encountered four imaging features on US which were found to be highly predictive of malignancy in TGDC; namely irregular/lobulated margins, solid-cystic composition, internal vascularity and presence of calcifications. The most commonly encountered feature was the presence of irregular/lobulated margins which was indicative of the invasive nature of the lesion, followed by solid-cystic composition. Our findings differed slightly from those seen in the case series by Choi et al. (3), which is one of the largest published series on imaging of TGDC malignancies. In their series of ten patients, eight cases presented with a solid-cystic nodule on imaging, which was the predominant imaging feature in their study.

The presence of calcifications within the solid component can be regarded as a highly specific feature of TGDC malignancy on US; this has not been established in prior studies. We did not encounter any case of histopathologically proven TGDC carcinoma without suspicious features on pre-operative imaging. Our findings differed from those in the study by Thompson et al., who encountered features suspicious for malignancy only in 9 out of 22 (41%) cases (4).

CT imaging of TGDC carcinomas revealed a heterogeneously enhancing cystic lesion located in the midline location with a solid component within. These findings concurred with those encountered by other investigators (5). Glastonbury et al. reviewed the imaging features of 6 cases of TGDC carcinoma on CT or MRI. They concluded that malignancy in a TGDC should be suspected in the presence of a solid component or invasive features within a TGDC (6). They also observed that the presence of calcification could be regarded as a specific marker for malignancy; and is best seen on CT imaging. CT imaging will be worthwhile in the following scenarios: a. In difficult cases to assess the entire tract using only US. b. For those patients who are unable to position themselves properly for US examinations. c. Compared to other common modalities, US evaluation requires specialized knowledge and operator skills. d. Accurate assessment of the depth of the lesion, especially the distance from the pharyngeal mucosa is important before TGDC surgery. e. It is also necessary to identify metastatic lesions in malignant cases. In our experience, US evaluation alone showed a good accuracy for the diagnosis of malignant TGDC. The US provided additional information with respect to the status of the thyroid gland and cervical lymphadenopathy.

The concomitant occurrence of papillary carcinoma in a TGDC and thyroid has been documented in the literature; with different occurrence rates across studies (3, 4, 7). According to Widström et al. the criteria for diagnosis of primary carcinoma of the thyroglossal duct includes the following: histological identification of TGDC by demonstration (i.e. epithelial lining of ducts with normal thyroid follicles within walls of the cysts), normal thyroid tissue adjacent to the tumour, and histopathological examination of the thyroid gland showing no sign of primary carcinoma (8). Since a co-existing thyroid carcinoma was seen in nearly 50% of cases in our study, we recommend that a careful sonographic evaluation of the thyroid gland for a suspicious nodule is of utmost importance to avoid missing out on a co-existent malignancy.

We observed that patients with a co-existing thyroid malignancy were more likely to have metastatic neck nodes, as compared to those with a TGDC malignancy alone. ‘‘Skip’’ metastases to the lateral compartment (levels III and IV), with no central compartment (level VI) metastases, were found in as many as 45.4% cases with nodal involvement. This was also seen in the study by Hartl et al. (9) who encountered skip metastatic nodes in 40% patients. This could occur as the lymphatic drainage of TGDCs occurs preferentially to the lateral neck nodes rather than to the central compartment nodes (10). The occurrence of skip neck nodes may not however be a prognostic factor in TGDC carcinomas; it is believed that the number of metastatic nodes and the presence of peri-nodal extension could have an impact on prognosis; as demonstrated in thyroid carcinomas (10). In our study, a 5 year follow-up was available in all patients with metastatic neck nodes; however, no evidence of disease recurrence was seen in any of these patients after surgical management. A larger series of patients with a longer duration of follow up are necessary to evaluate their impact on disease prognosis.

According to published literature, FNAC has a relatively high false-negative rate of 47% in diagnosing papillary carcinoma in TGDC with a modest true positive rate of 53% (11). Inadequate cellularity secondary to dilution by the cystic contents could be responsible for the high false-negativity of FNAC; thus, it is advisable to target the solid component under US guidance after aspiration of the cystic contents (11). In our experience, imaging plays a strong complementary role to FNAC. The accuracy rate of benign or malignancy by FNAC is not high enough, but the positive predictive value is very high, making it a strong basis for deciding treatment strategies in positive cases. FNAC may aid the diagnosis but a negative result cannot exclude the possibility of a malignancy as inconsistent results are frequent due to sampling errors.





TGC-TIRADS classification for thyroglossal cyst lesions

Based on the results of our study, we now propose a modified version of the “TGC-TIRADS” classification for the preoperative diagnosis and risk stratification of thyroglossal cyst lesions. This classification is based on the analysis of USG features, including the composition of the lesion, margins, presence of internal vascularity, internal echoes, and calcifications. The proposed TGC-TIRADS classification is as follows:




TGC-TIRADS 1

Absence of remnant tissue along the thyroglossal tract.





TGC-TIRADS 2

Purely cystic thyroglossal lesion.





TGC-TIRADS 3

Thyroglossal cyst with internal echoes.





TGC-TIRADS 4A

Thyroglossal cyst with any one of the features:

	Solid cystic in composition.

	Presence of calcifications.

	Presence of internal vascularity.

	Presence of irregular margins.







TGC-TIRADS 4B

Thyroglossal cyst with any two of the above-mentioned features.





TGC-TIRADS 4C

Thyroglossal cyst with any three of the above-mentioned features.





TGC-TIRADS 5

Thyroglossal cyst with all of the four above-mentioned features.

Figure 3 shows US features of various of the proposed TGC-TIRDADS categories.




Figure 3 | Lesions corresponding to various TGC-TIRADS categories based on the US features. (A) TGCTIRADS 2: Purely cystic thyroglossal lesion. (B) TGC-TIRADS 3: Thyroglossal cyst with internal echoes. (C) TGC-TIRADS 4A: Well defined solid cystic lesion without internal vascularity or calcification. (D) TGC-TIRADS 4B: Well defined solid cystic lesion with internal calcifications. (E) TGC-TIRADS 4C: Solid cystic lesion with irregular margins and internal calcifications. (F) TGC-TIRADS 5: Solid cystic lesion with irregular margins, internal calcifications and internal vascularity.




 



Table 5 provides statistics for the assigned TGC-TIRADS category and the percentage likelihood of malignancy for each category as seen in our study.


Table 5 | Statistics of the assigned TGC-TIRADS category and their respective percentage likelihood of malignancy as observed in our study.







Management

Surgical management of a benign TGDC involves the Sistrunk procedure, based on the embryonic development of the lesion. This includes the excision of the cyst and the tract of descent, extending from the foramen cecum at the base of the tongue, along with the mid-segment of the hyoid bone (1). It has been observed that the only significant prognostic predictor of overall survival in patients with TGDC carcinoma is the extent of surgery for the TGDC (12). There is a widespread consensus that the Sistrunk procedure is the minimum that is required for the management of localized TGDC carcinomas (13). The need to resect a clinically and radiologically normal thyroid gland in the setting of a TGDC carcinoma is controversial.

Plaza et al. proposed that an isolated Sistrunk surgery would suffice for papillary carcinoma in TGDC, for patients below 45 years of age with tumour size below 15 mm and a normal thyroid gland on US with no suspicious neck nodes. They recommended a total thyroidectomy with neck dissection only if lymph node metastases were found on ultrasound or during surgery; followed by radioiodine therapy (14). Some investigators have recommended that a total thyroidectomy must be performed in all patients with TGDC carcinoma, as it could decrease the risk of disease recurrence in future (15, 16). In our experience, the benefit of performing a total thyroidectomy in addition to the Sistrunk procedure, in the absence of a suspicious thyroid lesion is questionable. Any suspicious nodule in the thyroid gland suggestive of multicentric disease, the presence of suspicious or cytologically metastatic nodes, aggressive variants, or disease involving the thyroid lobe led to the consideration of total thyroidectomy. Such a synchronous thyroid lesion may then represent either two independent primary carcinomas, a metastasis from a primary TGDC carcinoma or a primary thyroid carcinoma with metastasis to the thyroglossal duct (14). Similar recommendations were made by Thompson et al. (4), Doshi et al. (17) and Zhu et al. (18) in their respective studies.

The occurrence of metastatic cervical nodes in cases of papillary carcinoma of the TGDC is reported to be 7 to 15% (7, 12). Dzodic et al. (19) found that the extent of lymph node dissection has an impact on the prognosis of TGDC cancer. We observed that there is no role for elective neck dissection in patients with an isolated TGDC malignancy without suspicious neck nodes. This recommendation concurs with that of Patel et al. who analyzed the prognostic factors for TDGC carcinoma and concluded that neck node dissection did not have a significant impact on prognosis (12). Selective nodal dissection with an intra-operative frozen section may be performed for sonologically suspicious nodes in isolated TGDC carcinomas. Central compartment clearance with modified radical neck dissection is indicated only in patients with a co-existing thyroid malignancy with suspicious neck nodes on imaging.

Luna-Ortiz et al. suggested a risk stratification approach and recommended that I131 therapy was indicated in older patients, those with metastatic disease, high-risk histological features, patients with a prior head and neck irradiation or those with a co-existing thyroid gland malignancy (20). This has also been largely accepted by other authors (21). Based on our experience, we recommend that only the presence of a co-existing thyroid gland papillary carcinoma necessitates the administration of radioiodine therapy. All cancers were considered for RAI except tumours <1 cm with no high-risk features as per ATA guidelines 2009. The dose varied with the risk category. However, with the revised guidelines ATA 2015 only intermediate and high risk of recurrence cases were considered for RAI. The development of risk stratification systems would require further studies with large sample sizes to determine the statistical significance of various prognostic indices. Figure 4 provides an overview of the recommended approach for the diagnosis and management of thyroglossal duct cyst carcinomas based on our study.




Figure 4 | Flowchart showing recommended approach for the diagnosis and management of thyroglossal duct cyst carcinomas based on our study.







Follow-up and prognosis

All 22 patients were followed up at our institute, and all were found disease-free at the end of 5 years. Similarly, in the study by Heshmatl et al., 12 operated cases of TGDC carcinomas were found to be disease-free during a mean follow-up interval of 13 years (7). The prognosis associated with TGDC papillary carcinoma is reported to be excellent, with a very low incidence of recurrence (22); also seen in our study.

Our study had two major limitations. In differentiated carcinomas derived from thyroid tissue, cases with very slow progression were included. Pathological diagnosis by surgical resection was not performed in all cases. Therefore, diagnosis through cytology or follow-up alone may include malignancy within the non-malignant group. Also, the significance of treatment methods and prognosis of this study is particularly limited.






Conclusion

USG of the neck is the imaging of choice for the diagnosis of TGDCa. The presence of irregular/lobulated margins, solid-cystic composition, internal vascularity, and calcifications are reliable US predictors of malignancy. The pre-operative diagnosis and risk stratification of thyroglossal lesions will be aided by the application of the proposed TGC-TIRADS classification, for which the percentage likelihood of malignancy correlated well with the results in our study. Additionally, it is important to evaluate the thyroid gland for a synchronous malignancy and the neck for metastatic lymphadenopathy, in order to formulate a plan of management. The sistrunk procedure is adequate for patients with non-metastatic TGDC in the absence of an associated thyroid malignancy. Patients with suspicious neck nodes on imaging could require selective nodal dissection in addition to the Sistrunk procedure. Total thyroidectomy with neck dissections is necessary in the presence of a co-existing thyroid malignancy. With appropriate surgery, TGDC papillary carcinomas tend to have an excellent prognosis with a low incidence of recurrence.
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Introduction

Complete macroscopic cytoreduction represents the most important prognostic parameter for overall survival in ovarian cancer. This dogma remains tenacious despite significant improvements in adjuvant systemic treatment. Hence, optimization of surgical therapy is an overarching goal to improve patients’ outcomes. In this context, intraoperative tumor-specific imaging might facilitate optimized cytoreduction. In neurosurgery, intraoperative 5-aminolevulinic acid (5-ALA) guided imaging is applied in clinical routine to assess surgical resection margins. Here, we report the case of a patient with ovarian cancer in whom intraoperative 5-ALA tumor visualization led to optimized complete cytoreduction.





Objective

Intraoperative administration of 5-ALA led to improved complete cytoreduction by identification and resection of additional ovarian cancer tumor manifestations.





Case

The 39-year-old patient, Jehovah`s witness, presented to our department with a left sided ovarian mass, suspicious of ovarian cancer, based on clinical examination, sonographic suspicious features and a CA12-5 elevation. The patient’s medical history and family history was unremarkable. Preoperative CT imaging of the thorax and abdomen showed no pathology besides the adnexal mass. Surgery was performed by a midline laparotomy with hysterectomy, bilateral adnexectomy, pelvic peritonectomy, omentectomy, ureterolysis, diaphragm stripping, adhesiolysis and the collection of peritoneal and rectal samples. Intraoperative 5-ALA imaging using a dedicated excitation and detection loupe system (Reveal, DVI) led to tumor detection at the diaphragm, the omentum and the rectum that was not detectable by palpation and visualization using white light. The pathology results revealed that the 5-ALA positive samples (diaphragm, rectum and omentum) obtained by intraoperative 5-ALA were positive for ovarian cancer.





Conclusion

Intraoperative administration of 5-ALA represents a promising approach to improve complete cytoreduction in ovarian cancer surgery thereby improving clinical outcomes. Hence, further research and clinical trials are required to investigate the potential of intraoperative 5-ALA imaging in ovarian cancer debulking surgery and its impact on long-term clinical outcomes.





Keywords: 5-ala, ovarian cancer, real time imaging, optimazation debulking surgery, intraoperative visualization and guidance





Introduction

Ovarian cancer represents the most lethal gynecologic malignancy. Despite recent significant improvement in systemic treatment, complete cytoreduction remains the most important prognostic factor regarding survival. In high volume centers, complete cytoreduction is achieved in about 63 to 75%. However, 5-year overall survival rates are 45% across all disease stages (1–3). Incomplete cytoreduction might significantly contribute to unfavorable outcomes. In this regard, intraoperative tumor-specific imaging represents a promising approach to optimize surgical therapy by identification and resection of additional ovarian cancer tumor manifestations. Intraoperative imaging with pafolacianin (OTL38), a folic acid analog coupled to indocyanine green, which is the substrate of the folic acid receptor, has proven to be suitable. A recently published phase III trial demonstrated that intraoperative tumor imaging with OTL38, resulted in the detection of ovarian cancer tumor manifestations that would not have been identified or scheduled for resection during standard surgical procedures in >30%. However, the extent to which the additional detection and resection leads to improved overall survival has not yet been determined. OTL38 was approved by the Food and Drug Administration (FDA) in November 2021. There is currently no European Medicines Agency (EMA) approval for Europe.

5-aminolevulinic acid (5-ALA) based intraoperative imaging represents an alternative approach. 5-ALA is a natural amino acid that is metabolized to protoporphyrin-IX through various reactions within the hemoglobin metabolism. In cancer cells, exogenous administration of 5-ALA lead to accumulation of fluorescing protoporphyrin-IX that can be visualized by light at a wavelength of 405 nm and dedicated filters. Intraoperative 5-ALA imaging is well-established in neurosurgery and urology and has proven great potential in ovarian cancer surgery (1–3) and ALA is approved by both the FDA (Gleolan) and EMA (Gliolan) for fluorescence-guided resections of brain tumors.

After administration of 5-ALA, both the eyes and the skin from the patient should not be exposed to strong light sources (e.g. surgical lightning, direct sunlight or intense indoor lightning) for 24 hours. Simultaneous administration of other potentially phototoxic substances (tetracyclines, sulfonamides, etc.) should be avoided. Within 24-hour period following administration of 5-ALA, other potentially hepatotoxic drugs should be avoided.

Commonly observed side effects include vomiting, nausea, elevation of serum bilirubin, transaminases, hypotension, photosensitivity reactions or photodermatoses.

Contraindications for the use of 5-ALA encompass hypersensitivity to the active compound of aminolevulinic acid or porphyrins, acute or chronic manifestations of porphyria and pregnancy.

The publication of data on the application of 5-ALA in gynecological setting is notably scarce (3).

Here, we report the case of a 39-year-old woman who was referred to our center for suspected ovarian cancer. The patient had previously presented to her primary care physician with dysuria. Abdominal ultrasound revealed a large adnexal mass. Due to the patient declaring herself as Jehovah´s Witness and refusing blood transfusion, she was referred to our center for further therapy. Her last gynecological visit was 2018, here a 6cm cyst was observed in one of the ovaries. The patient had no significant medical history, was a non-smoker and had a normal body-mass-index (for patient´s characteristics see Table 1).


Table 1 | Medical history and clinical characteristics of the patient.



In gynecological examination, both ovaries were found to be enlarged, with a big mass that met malignancy criteria. The tumor marker CA 12-5 was elevated and computer tomography staging of the abdomen and thorax showed no suspicion of distant metastatic disease or further intraabdominal spread. Subsequently, cytoreductive surgery with intraoperative pathology evaluation was planned. The patient consented to the procedure as well as the administration of 5-ALA for intraoperative imaging as part of an individual healing attempt.

Four hours prior to surgery, 1,5g 5-ALA was administered orally following the procedure applied in routine neurosurgery (20 mg/kg, 1.5gramms dissolved in 50 ml water; photonamic GmbH & Co., EU/1/07/413/001-003). The patient tolerated 5-ALA well and showed no adverse events.

A midline laparotomy with hysterectomy and bilateral adnexectomy was performed. Intraoperative pathological counseling (frozen sections) confirmed presence of high-grade ovarian cancer. The procedure was completed with omentectomy and peritoneal sampling. After achieving macroscopic complete tumor resection, 5-ALA imaging was performed by using a fluorescence light source (reveal FGS system). This system enables switching from conventional white light to violet-blue light (405nm), with an additional diode with 450nm providing background detail. 5-ALA positive lesions were detected in the omentum, adjacent to the rectum and on the right diaphragmatic peritoneum. Accordingly, resection of these manifestations was performed (Figures 1, 2). All resected samples were sent for histopathological analysis. The peritoneal cancer index (PCI) was 8. After surgery, the patient recovered appropriately and remained hospitalized for a total of 7 days. No adverse events were recorded.




Figure 1 | Intraoperative 5-ALA positive detection on the right diaphragmatic peritoneum.






Figure 2 | Intraoperative 5-ALA positive detection on the Omentum majus.



The histopathological workup revealed diagnosis of a poorly differentiated clear cell adenocarcinoma of the ovary. The samples obtained by 5-ALA imaging were positive for ovarian cancer (see Table 2). As a result, the tumor was classified according to TNM as pT3b, pN0, L0, V0, Pn0, R0, G3. According to FIGO-classification it was a Stage IIIb.


Table 2 | Histopathological results postoperative.



According to local standards, a systemic adjuvant chemotherapy with carboplatin AUC5/paclitaxel 175 mg/m², and bevacizumab 15 mg/kg q3w was initiated. Due to a high genetic risk score of 5, an indication for genetic testing was also performed. The patient showed no evidence of a BRCA mutation.

The patient is presently in a satisfactory condition, exhibiting no evidence of disease progression and has not manifested any complications after the administered chemotherapy.





Discussion

Complete cytoreduction in ovarian cancer patients prolongs survival more than any other therapeutic tool and will be achieved in experienced centers in about 63% to 75% (4, 5). But 5-year survival rates are as low as 45%, despite advances in systemic therapies in this lethal gynecologic disease. Therefore, microscopic residual disease, in case of complete cytoreduction, not visible or palpable seems likely. Implementing intraoperative molecular imaging shows rates up to 33% of additional tumor tissue not identified by visual inspection or palpation (6).

Here we present the case of an ovarian cancer patient, in whom intraoperative 5-ALA imaging led to optimized complete cytoreduction. 5-ALA imaging resulted in resection of additional ovarian cancer tumor manifestations that were initially not planned for resection based on evaluation by white light and palpation. In this case report the use of 5-ALA led to a larger macroscopic resection of tumor manifestations which avoided a systematic lymphadenectomy and its possible post-surgical complications and long-term side effects.

Intraoperative tumor visualization holds the potential to improve resection rates and subsequently enhance patient prognosis. The ability of real time tumor visualization during surgery facilitates a more sufficient complete removal of malignant tissue. Several studies have demonstrated a clear association between intraoperative imaging and improved surgical outcomes (7–9). This highlights the potential for ovarian cancer surgery.

Currently, there are five FGS agents approved for intraoperative imaging by the American FDA and/or the EMA (10). These include 5-ALA for intraoperative application in patients with suspected high-grade gliomas (9). In ovarian cancer surgery, application of folate conjugated to fluorescein isothiocyanate (folate-FITC) demonstrated increased tumor tissue resection, not visible without this tracer. However, as folat receptor expression represents the biological prerequisite for signal detection, this tracer is not suitable for all ovarian cancer patients (11). A further tracer, OTL38, Pafolacianine, is injected preoperatively and showed to be safe and effective in identifying additional tumor manifestations, invisible prior to near-infrared imaging (10, 11) with identification of up to 33% additional ovarian cancer tumor manifestations (12, 13). Of note, no false negative samples were reported. In study referred to, false positive results were reported in almost 25%, mainly in lymph nodes, omentum and uterine fibroids. One assumption is, that the folate receptor is expressed by macrophages in inflamed tissue as well as by resident macrophages as seen in fibroids, leading to positive fluorescence signals in benign tissue (14).

5-ALA represents an interesting alternative approach, in particular, as no distinct tumoral receptor expression is required. Exogenous administration of ALA-5 leads to a tumor entity-independent protoporphyrie-IX accumulation in tumor cells due to a missing or downregulated ferrochelatase activity in tumors. This feature renders 5-ALA a universally applicable tracer. However, recent data showed heterogeneous response to 5-ALA response in different tumor cells (15). In contrast to OTL38, the strong red fluorescence is readily visible to the eye and does not rely on special infrared cameras and an external monitor for visualizing fluorescence.

It should be mentioned that studies in the past have shown evidence of positive responses in rat models with endometriosis-associated lesions (16). However, it is important to note that this patient had a clear cell ovarian carcinoma, which was not associated with previous endometriosis.

In summary, intraoperative 5-ALA imaging harbors the potential to facilitate optimized complete cytoreduction in ovarian cancer surgery as demonstrated in the reported case.





Conclusion

Intraoperative real-time tumor imaging holds the potential to optimize the surgical management of ovarian cancer patients which might lead to improved survival rates. However, further systematic studies are needed to explore intraoperative 5-ALA imaging in ovarian cancer surgery.





Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.





Ethics statement

The studies involving humans were approved by Ethics committee of the University Hospital, Bonn. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.





Author contributions

LT: Data curation, Formal analysis, Investigation, Visualization, Writing – original draft. EE: Conceptualization, Methodology, Supervision, Writing – review & editing. DR: Conceptualization, Investigation, Project administration, Resources, Writing – review & editing. LO: Writing – review & editing. Ö-AT: Conceptualization, Software, Writing – review & editing. GK: Visualization, Writing – review & editing. WS: Project administration, Writing – review & editing. AM: Funding acquisition, Project administration, Visualization, Writing – review & editing.





Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





References

1. Stenzl, A, Burger, M, Fradet, Y, Mynderse, LA, Soloway, MS, Witjes, JA, et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol. (2010) 184(5):1907–13. doi: 10.1016/j.juro.2010.06.148

2. Kiesel, B, Millesi, M, Woehrer, A, Furtner, J, Bavand, A, Roetzer, T, et al. 5-ALA-induced fluorescence as a marker for diagnostic tissue in stereotactic biopsies of intracranial lymphomas: experience in 41 patients. Neurosurg Focus. (2018) 44(6):E7. doi: 10.3171/2018.3.FOCUS1859

3. Hillemanns, P, Wimberger, P, Reif, J, Stepp, H, and Klapdor, R. Photodynamic diagnosis with 5-aminolevulinic acid for intraoperative detection of peritoneal metastases of ovarian cancer: A feasibility and dose finding study. Lasers Surg Med (2017) 49(2):169–76. doi: 10.1002/lsm.22613

4. Ibeanu, OA, and Bristow, RE. Predicting the outcome of cytoreductive surgery for advanced ovarian cancer: a review. Int J Gynecol Cancer. (2010) 20 Suppl 1:S1–11. doi: 10.1111/IGC.0b013e3181cff38b

5. Harter, P, Sehouli, J, Lorusso, D, Reuss, A, Vergote, I, Marth, C, et al. A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med (2019) 380(9):822–32. doi: 10.1056/NEJMoa1808424

6. Tanyi, JL, Randall, LM, Chambers, SK, Butler, KA, Winer, IS, Langstraat, CL, et al. A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor-positive ovarian cancer (Study 006). J Clin Oncol (2023) 41(2):276–84. doi: 10.1200/JCO.22.00291

7. Kiesel, B, Freund, J, Reichert, D, Wadiura, L, Erkkilae, MT, Woehrer, A, et al. 5-ALA in suspected low-grade gliomas: current role, limitations, and new approaches. Front Oncol (2021) 11:699301. doi: 10.3389/fonc.2021.699301

8. Inoue, K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. (2017) 24(2):97–101. doi: 10.1111/iju.13291

9. Mahmoudi, K, Garvey, KL, Bouras, A, Cramer, G, Stepp, H, Jesu Raj, JG, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. (2019) 141(3):595–607. doi: 10.1007/s11060-019-03103-4

10. Polom, J, Kalinowski, L, Diana, M, Chand, M, Caballero, C, Sawicki, S, et al. Comprehensive review of fluorescence applications in gynecology. J Clin Med (2021) 10(19):4387. doi: 10.3390/jcm10194387

11. van Dam, GM, Themelis, G, Crane, LMA, Harlaar, NJ, Pleijhuis, RG, Kelder, W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med (2011) 17(10):1315–9.

12. Randall, LM, Wenham, RM, Low, PS, Dowdy, SC, Tanyi, JL, and A phase, II. multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-alpha positive ovarian cancer. Gynecol Oncol (2019) 155(1):63–8. doi: 10.1016/j.ygyno.2019.07.010

13. Mahalingam, SM, Kularatne, SA, Myers, CH, Gagare, P, Norshi, M, Liu, X, et al. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J Med Chem (2018) 61(21):9637–46. doi: 10.1021/acs.jmedchem.8b01115

14. O’Shannessy, DJ, Somers, EB, Wang, LC, Wang, H, and Hsu, R. Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers. J Ovarian Res (2015) 8:29. doi: 10.1186/s13048-015-0156-0

15. Mastrangelopoulou, M, Grigalavicius, M, Raabe, TH, Skarpen, E, Juzenas, P, Peng, Q, et al. Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken). (2022) 5(12):e1278. doi: 10.1002/cnr2.1278

16. Yang, JZ, Van Dijk-Smith, JP, Van Vugt, DA, Kennedy, JC, and Reid, RL. Fluorescence and photosensitization of experimental endometriosis in the rat after systemic 5-aminolevulinic acid administration: a potential new approach to the diagnosis and treatment of endometriosis. Am J Obstet Gynecol. (1996) 174(1 Pt 1):154–60. doi: 10.1016/S0002-9378(96)70388-5




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Tascón Padrón, Egger, Ralser, Otten, Toksöz, Kristiansen, Stummer and Mustea. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 13 December 2023

doi: 10.3389/fonc.2023.1278386

[image: image2]


The guiding value of the cinematic volume rendering technique in the preoperative diagnosis of brachial plexus schwannoma


Rui Chen 1†, Yuncai Ran 1†, Haowen Xu 2, Junxia Niu 1, Mengzhu Wang 3, Yanglei Wu 3, Yong Zhang 1 and Jingliang Cheng 1*


1 Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2 Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 3 MR Collaborations, Siemens Healthineers Ltd., Beijing, China




Edited by: 

Laura Curiel, University of Calgary, Canada

Reviewed by: 

Pawel Szaro, University of Gothenburg, Sweden

Jovan Grujić, University of Belgrade, Serbia

*Correspondence: 

Jingliang Cheng
 fccchengjl@zzu.edu.cn


†These authors have contributed equally to this work and share first authorship



Received: 16 August 2023

Accepted: 29 November 2023

Published: 13 December 2023

Citation:
Chen R, Ran Y, Xu H, Niu J, Wang M, Wu Y, Zhang Y and Cheng J (2023) The guiding value of the cinematic volume rendering technique in the preoperative diagnosis of brachial plexus schwannoma. Front. Oncol. 13:1278386. doi: 10.3389/fonc.2023.1278386



This study aimed to explore and compare the guiding value of Maximum Intensity Projection (MIP) and Cinematic Volume Rendering Technique (cVRT) in the preoperative diagnosis of brachial plexus schwannomas. We retrospectively analyzed the clinical and imaging data of 45 patients diagnosed with brachial plexus schwannomas at the First Affiliated Hospital of Zhengzhou University between January 2020 and December 2022. The enhanced three-dimensional short recovery time inversion-recovery fast spin-echo imaging (3D-STIR-SPACE) sequence served as source data for the reconstruction of MIP and cVRT. Two independent observers scored the image quality and evaluated the location of the tumor and the relationship between the tumor and the brachial plexus. The image quality scores of the two reconstruction methods were compared using the nonparametric Wilcoxon signed-rank test, and the consistency between the image and surgical results was assessed using the weighted kappa. Compared to MIP images, cVRT images had a better performance of overall image quality (p < 0.001), nerve and lump visualization (p < 0.001), spatial positional relationship conspicuity (p < 0.001), and diagnostic confidence (p < 0.001). Additionally, the consistency between the cVRT image results and surgical results (kappa =0.913, P<0.001) was higher than that of the MIP images (kappa =0.829, P<0.001). cVRT provides a high guiding value in the preoperative diagnosis of brachial plexus schwannomas and is an important basis for formulating surgical plans.




Keywords: brachial plexus schwannoma, diagnosis, magnetic resonance imaging, cinematic volume rendering technique, maximum intensity projection, surgical resection, preoperative diagnosis, eccentric embedding




1 Introduction

Brachial plexus schwannomas are benign tumors originating from the sheath membrane of the brachial plexus (1, 2). Brachial plexus schwannomas are mostly single and grow eccentrically, expand, and surround nerve fibers. The tumor usually pushes nerve bundles away. However, in some cases, nerve bundles may penetrate the tumor envelope with the tumor tightly attached to or wrapped around the nerve fibers. Surgical resection is the most effective treatment for brachial plexus schwannomas. Brachial plexus schwannoma surgery requires the surgeon to have a complete understanding of the anatomical structure and common anatomical variants encountered during the operation. In addition, the surgeon also needs to understand the clinical manifestations, pathological changes of the tumor, and related surgical techniques (3, 4). The local anatomical structures of the brachial plexus are complex, making the surgery technically challenging, and improper intraoperative management may result in brachial plexus injury and severe complications (5).The size, growth site, and biological behavior of brachial plexus schwannomas are closely associated with the formulation of clinical treatment methods. Therefore, accurate preoperative localization and qualitative diagnosis of tumors are crucial for clinicians.

Magnetic resonance imaging (MRI) is the best non-invasive examination method for diagnosing the brachial plexus because of its high signal-to-noise ratio and high tissue contrast (6). In recent years, brachial plexus imaging has received increasing attention due to the widespread use of magnetic resonance imaging (7, 8). Brachial plexus imaging can accurately describe the imaging characteristics of brachial plexus schwannomas, including the lesion size, location, source, and surrounding tissue involvement, to guide surgical methods and evaluate resectability (9, 10). The 3D-STIR-SPACE sequence can display the structures of the brachial plexus by inhibiting background fat, which helps to diagnose the location, origin, and extent of the brachial plexus schwannoma (11–13). Additionally, it can be reconstructed in three dimensions through post-processing to clearly show the spatial relationship between the tumor and the brachial plexus. Currently, this is the preferred method for evaluating the brachial plexus. MIP is the most commonly used two-dimensional slice direction reconstruction method (14, 15). MIP images have the advantages of an intuitive, comprehensive, and overall display of the relationship between the brachial plexus schwannoma and brachial plexus in the imaging range. As a new image 3D visualization technology, cVRT can simulate the interaction and propagation characteristics of light rays while passing through 3D data (16). Compared to traditional MIP, it can obtain more realistic 3D images (17).

This study preliminarily attempted to apply cVRT to the preoperative diagnosis of brachial plexus schwannomas, using surgical results as a reference, to explore the guiding value of cVRT compared to traditional MIP reconstruction methods in the diagnosis and evaluation of brachial plexus schwannomas and the spatial relationship between lesions and surrounding structures, and to provide more intuitive and accurate imaging information for clinical practice.




2 Materials and methods



2.1 Study participants

Forty-nine patients with brachial plexus schwannomas at the First Affiliated Hospital of Zhengzhou University between January 2020 and December 2022 were retrospectively collected. Four patients were excluded because of incomplete magnetic resonance imaging, respiratory artifacts, or metal artifacts. A total of 45 patients were included in this study. A flowchart of patient enrollment is shown in Figure 1. All patients underwent MR examinations, including T1-weighted imaging (T1WI), T2WI, 3D-STIR-SPACE, and enhanced T1WI within one week before surgery. This study protocol was reviewed and approved by the Ethics Committee of First Affiliated Hospital of Zhengzhou University, approval number 2019-KY-231,and all patients provided informed permission.




Figure 1 | Participant selection flowchart.






2.2 MRI parameters

All patients were examined using a 3T MR scanner (MAGNETOM Lumina, Siemens Healthineers, Erlangen, Germany). A 64-channel head and neck coil and a 16-channel body coil are used, both of which are placed partially overlapping. The participants were placed in the supine position with the head and neck raised appropriately and their arms placed on both sides. The patients avoided deep breathing and swallowing throughout the process to minimize motion artifacts. Conventional scanning sequences included coronal turbo spin echo (TSE) T1WI; transverse, coronal, and sagittal TSE T2WI; coronal 3D SPACE-STIR T2WI; and T1WI-enhanced sequences. The contrast agent used was domestic gadolinium pentanoate meglumine (Gadolinium-DTPA) at a dose of 0.2 mmol/kg and was rapidly injected intravenously through a high-pressure syringe. Coronary 3D SPACE-STIR T2WI starts scanning three minutes after injecting the contrast agent. Coronal scanning covers the anterior and posterior edges of the spinal canal, the upper edge of the second cervical vertebral body, the upper edge of the second thoracic vertebral body, and the bilateral humeral heads. Axial scanning refers to the coronal position, covering the fifth cervical nerve and the first thoracic nerve root distribution on both sides. The detailed acquisition parameters for the MRI sequences are listed in Table 1.


Table 1 | Scanning sequence and main parameters of the brachial plexus.






2.3 Image analysis

The 3D-STIR-SPACE images were transmitted to a post-processing workstation (Syngo.via 4.0; Siemens Healthineers, Erlangen, Germany) for MIP and cVRT reconstruction. After MIP reconstruction of the brachial plexus, soft tissues, such as muscles, were subtracted according to clinical needs to reduce interference with the anatomical positional relationship between the tumor and the brachial plexus. Multiplanar reconstruction (MPR) was used to delineate the tumor range slice-by-slice. cVRT technology was used to render the brachial plexus and tumor in different colors and obtain a three-dimensional model. The positional relationship and tissue structure of the brachial plexus and tumor are displayed in all directions.




2.4 Observation indicators

Two radiologists, Yong Zhang, and Yuncai Ran, with 13 and 8 years of experience in MR neurography, respectively, randomly analyzed the images. They were blinded to the patient’s clinical information, sequence parameters, and final radiological reports of the MR neurography. Radiologists assessed the location, size, shape, and magnetic resonance signal characteristics of brachial plexus schwannomas, as well as the spatial relationship between the tumors and brachial plexus nerves from different angles in all patients. Additionally, they used a 4-point system, as described in Table 2, to evaluate the image quality. The highest qualitative score was defined as the ability to clearly distinguish the spatial positional relationship between the brachial plexus sheath tumor and the brachial plexus nerve. One radiologist, Yuncai Ran, repeated the measurements 2 weeks later to assess the intra-observer agreement.


Table 2 | The four-point qualitative scoring system, utilized for assessing the MIP and cVRT images.






2.5 Surgical records

Surgery was performed under general anesthesia. An incision was made to explore the brachial plexus centered on the tumor. After the tumor was exposed, nerve bundles that flattened and dispersed around the tumor were carefully observed. The area with the lowest number of nerve bundles was selected. Along the direction of the nerve bundle walking, the fibrous tissue that wrapped the tumor was cut layer-by-layer until the real tumor capsule. The nerve bundle and schwannoma were separated, and the tumor was completely removed. All 45 patients were operated on by the same experienced neurosurgeon who judged the relationship between the brachial plexus schwannoma and the brachial plexus during the operation. All tumor tissues were sent for pathological examination after surgery, and all were confirmed as benign schwannomas.




2.6 Statistical analysis

All analyses were performed using the statistical software package (SPSS Inc. (Chicago, IL, USA). The image quality scores of the MIP and cVRT images were compared and statistically analyzed using the nonparametric Wilcoxon signed-rank test. Inter- and intraobserver agreements were assessed using intraclass correlation coefficients (ICC). Considering the judgment results of surgery as the gold standard, the two imaging modalities were compared with the surgical results. ICC was used to determine the consistency of tumor size, and weighted kappa was used to determine the consistency of tumor location and spatial location between the tumors and brachial plexus nerves. The ICC model was based on a two-way random comparison of absolute agreement types, and the coefficients were computed at a significance level of 5%. The K values between 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8–1.0 indicated poor, fair, moderate, substantial, and almost perfect agreements, respectively. P < 0.05 was considered statistically significant.





3 Results



3.1 General data

The 45 patients included 24 male and 21 female participants, aged 18-79 years, with an average of 37.5 years. The shortest course was 15 days, and the longest was 18 years, with an average of 4.5 years. Among them, 26 had a course of> 1 year. Among the 45 patients, 35 had neck and axillary masses as the main clinical symptoms, five had limb numbness or weakness, three had neck or upper limb pain, and two had no obvious symptoms (Table 3). Among the 45 cases, tumors were situated in the supraclavicular portion in 35 cases, and in the infraclavicular portion in 10 cases. The tumor originated from the C5 and 6 nerve roots of the brachial plexus in 7 cases, the C8 nerve root in 3 cases, the superior trunk in 6 cases, the middle trunk in 12 cases, the interior trunk in 7 cases, the lateral cord in 3 cases, posterior cord in 2 cases, medial cord in 4 cases, and terminal branches in 1case. The minimum tumor body was 1.5 cm × 1.0 cm × 0.8 cm, and the maximum tumor body was 10.0 cm × 7.8 cm × 4.0 cm.


Table 3 | Demographic characteristics of study population.






3.2 Imaging characteristics

The maximum diameters of all the masses ranged from 1.5 to 10.0 cm, with an average of 4.1 cm. The tumors of 45 patients showed unilateral growth along the brachial plexus with a fusiform, spherical, or oval shape. In 45 cases of brachial plexus, schwannomas showed isosignal or slightly low signal intensity on T1-weighted images and heterogeneous high signal intensity on T2-weighted images. After enhancement, the signal was evenly or unevenly strengthened, and a low-signal area appeared in the middle of the large mass, such as Figures 2A-C.




Figure 2 | A 17-year-old man presenting with a a circular mass at the beginning of the right axillary horizontal ulnar nerve can be seen in (A-F). The pathological results in (G, H) show that the section is gray and yellow, and is considered a schwannoma (I, J).






3.3 Results of the four-point qualitative scoring system

The image quality scores of the two radiologists revealed better overall image quality (p< 0.001), nerve and lump visualization (p< 0.001), spatial positional relationship conspicuity (p< 0.001), and diagnostic confidence (p< 0.001) when examining cVRT images than when examining MIP images. No significant differences were found in background suppression (Figure 3). The ICC for inter- and intra-rater agreements of the MIP and cVRT images are shown in Table 4.




Figure 3 | Quantitative score distribution of 2 MRI sets. Blue represents MIP, red represents cVRT, * denotes statistically significant differences (p< 0.05), and p-values refer to the results of the nonparametric Wilcoxon signed-rank test.




Table 4 | Intra-observer and inter-observer agreement assessment of interpretations of 2 MRI sets.






3.4 Agreement analysis between imaging results and surgical results

The sizes and locations of the tumors revealed using MIP and CVRT were consistent with those observed intraoperatively. In this study, the spatial positional relationship between the brachial plexus schwannoma and the brachial plexus nerve was mainly characterized by eccentric embedding, pushing, and embedding and pushing. In the surgical results, 35 patients had eccentrically embedded brachial plexuses, 6 patients had tumors pushing against the brachial plexus, and 4 patients had tumors both embedded and pushing against the brachial plexus. The evaluation of cVRT-reconstructed images based on the 3D-STIR-SPACE sequence revealed that 37 patients had eccentrically embedded brachial plexuses, two patients had tumors pushing against the brachial plexus, and six patients had tumors both embedding and pushing against the brachial plexus, the example was shown in Figure 2. The agreement between MIP and surgical results was good (kappa = 0.829, P < 0.001), and cVRT had a higher agreement with the surgical results (Kappa = 0.913, P < 0.001) (Table 5).


Table 5 | Results of interpretations of 2 MRI sets compared with surgery in all 45 patients.







4 Discussion

The brachial plexus is located superficially, with complex anatomy, making it susceptible to various diseases such as trauma and tumors. Therefore, accurate localization and qualitative diagnosis of brachial plexus lesions are crucial for clinical treatment. For patients with brachial plexus schwannoma affecting brachial plexus function, the most effective clinical treatment approach is surgical resection (18).The surgery is difficult because of the complex local anatomy of the brachial plexus (19) and can easily cause high-level damage to the nerve, resulting in serious upper extremity dysfunction. Therefore, preoperative diagnosis of brachial plexus schwannoma through imaging examinations is of utmost importance.

MRI is the preferred imaging modality for evaluating the anatomical structure and pathology of the brachial plexus (6), but there is no consensus on the most appropriate protocol for brachial plexus MRI (20).The brachial plexus is composed of the anterior branches of the 5th to 8th cervical nerves and the anterior branch of the 1st thoracic nerve. Due to the non-collinear and non-coplanar nature of the brachial plexus nerve, in order to achieve complete visualization of the brachial plexus nerve, the scanning range in this study extends from the upper edge of the second cervical vertebra to the upper edge of the second thoracic vertebra. The anterior region includes the anterior edge of the vertebral body, the posterior region includes the posterior edge of the vertebral canal, and both sides include the humeral heads.

In 1993, Fler et al. (21) first reported magnetic resonance neurography (MRN), and its application has gradually gained clinical recognition. The commonly used methods include diffusion-weighted imaging with background body signal suppression (DWIBS) and 3D-STIR-SPACE. DWIBS is a background suppression diffusion sequence that combines fat suppression with diffusion-weighted imaging techniques. By adding background suppression to the diffusion imaging, it can reduce motion artifacts caused by respiration, suppress fat tissue signals, increase tissue image contrast, and improve scanning results. However, it is prone to susceptibility artifacts due to magnetic field inhomogeneity (22). The 3D-STIR-SPACE sequence can selectively suppress the signals of fat and muscles, both around and within the nerves, by using enhanced fat suppression and inversion recovery techniques. This creates a clear contrast between the nerves and surrounding tissues, allowing for a clear imaging of the brachial plexus. It is currently the most mature sequence for clinical brachial plexus examinations (23). Furthermore, some studies have shown that the DIXON method of fat suppression is considered advantageous as it aims to achieve uniform fat suppression with less susceptibility artifacts. It also increases the visibility of the nerves without prolonging the examination time (24). However, it has not been widely applied in clinical practice to date. In this study, the bilateral brachial plexus can be clearly, intuitively and three-dimensionally displayed by using 3D-STIR-SPACE sequence combined with enhanced scanning on a 3.0T high-field magnetic resonance scanner. This allows for accurate localization and diagnosis of tumors and other diseases affecting the brachial plexus, as well as assessment of the site and degree of nerve injury. It helps clinicians choose appropriate treatment plans and surgical techniques (25).

The use of cVRT in brachial plexus nerve imaging has rarely been reported. This study uses cVRT on the basis of enhanced 3D-STIR-SPACE sequence, which brings new inspiration to clinical work.cVRT has higher accuracy than MIP reconstruction technology in judging the positional relationship between the brachial plexus schwannoma and the brachial plexus nerve. It also has high application value in preoperative surgical plan formulation and the prediction of surgical complications.

It is difficult to evaluate brachial plexus injury solely using 3D-SPACE-STIR thin-section images, which are prone to misjudging the relationship between brachial plexus schwannoma and the brachial plexus because of the complexity of the anatomical structure of the brachial plexus. The MIP reconstruction encodes and projects the maximum intensity value of each pixel on each path in the volume scanning data. It is widely used in tissues and structures with relatively high density, such as blood vessels, bones, and strengthened soft tissue lesions. Although the 3D-STIR-SPACE sequence is isotropic and can be viewed in a 360° rotation in MIP, MIP represents a maximum intensity projection, and each angle presents a 2D image, which makes it difficult to discern finer details and accurately determine the spatial relationship between the brachial plexus and the tumor. However, cVRT uses multiple light sources to create a 3D effect, which creates a spatial positional relationship between the brachial plexus and brachial plexus schwannoma.

This study demonstrated that the overall image quality, nerve and lump visualization, spatial positional relationship conspicuity, and diagnostic confidence of cVRT were better than those of MIP. This may be because cVRT is a realistic cinematic rendering technology based on a precise physical simulation of the interaction between light and matter. It uses multiple light sources to create interactions between light and human tissues (reflection, refraction, primary scattering, secondary scattering, etc.), enriching and enhancing depth, forming perceptions, and forming more realistic shadows (26). It has the advantage of displaying soft tissue anatomical slices and blood vessels more clearly and accurately. Contrarily, the three-dimensional anatomical effect tends to be more realistic, providing more detailed and accurate anatomical information for clinical use (27–29). cVRT selects the brachial plexus schwannoma for MRP reconstruction and delineates it layer-by-layer based on the MIP technology. It then rendered the tumor and brachial plexus in different colors to improve the sharpness of the tissue edge without redundant background interference. In addition, some studies have also shown that the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications can be helpful in the future preoperative planning of surgery for pediatric tumors (30, 31).Therefore, cVRT can accurately show the positional relationship between the tumor and the brachial plexus, which is very important for evaluating its risk, preventing complications, and formulating treatment plans.

However, cVRT has certain limitations. First, similar to other 3D reconstruction algorithms, the final reconstructed image quality of cVRT depends on the original image quality. Therefore, a reduction in the original image quality, such as artifacts caused by physical, patient-related, and scanning machines, will reduce the image quality of the 3D reconstruction. Some studies have shown that diffusion tensor imaging (DTI) can be used to characterize peripheral nerves (32, 33). DTI has a higher resolution and has more advantages for the display of damaged nerve bundles.cVRT based on DTI may be more advantageous for showing the spatial positional relationship between brachial plexus schwannoma and brachial plexus, which needs to be verified in future studies. Second, cVRT, a more complex VR reconstruction technology, requires layer-by-layer delineation of the tumor range after tumor MPR reconstruction. Therefore, the reconstruction time is longer than the traditional 3D reconstruction time, and the high requirements for post-processing imageability limit the popularization of this technology to a certain extent. We can effectively reduce the reconstruction time by updating the cVRT post-processing software so that it can intelligently outline the tumor boundaries. Finally, owing to the novelty of this technology, large-scale multicenter clinical studies are needed to verify whether it can significantly improve diagnostic accuracy.




5 Conclusion

cVRT based on 3D-STIR-SPACE has great practical significance for preoperative diagnosis of clinical brachial plexus schwannomas. cVRT is superior to MIP, and it is recommended to be actively carried out in practice to improve the accuracy of the preoperative diagnosis of brachial plexus schwannoma and to better assist in the formulation of surgical plans.
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Background

Positron emission tomography (PET) with 18-fluorodeoxyglucose (18FDG) has proven to be highly sensitive in the early assessment of tumor response in gastrointestinal stromal tumors (GIST), especially in cases where there is doubt or when the early prediction of the response could be clinically useful for patient management. As widely known, kinase mutations have an undoubtful predictive value for sensitivity to imatinib, and the inclusion of KIT and PDGFRa mutational analysis in the diagnostic workup of all GIST is now considered standard practice.





Case presentation

Herein, we described in detail a case of an exon 11 KIT mutated-metastatic GIST patient, who presented an unexpected metabolic progression at the early 18FDG-PET evaluation after 1 month of first-line imatinib, unconfirmed at the liver biopsy performed near after, which has conversely shown a complete pathological response.





Conclusions

This report aims to highlight the existence of this metabolic pseudoprogression in GIST at the beginning of imatinib therapy in order to avoid early treatment discontinuation. Therefore, an early metabolic progression during a molecular targeted therapy always deserves to be evaluated in the context of the disease molecular profiling, and in case of a discordant finding between functional imaging and molecular background, a short-term longitudinal control should be suggested.
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1 Background

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract arising from the interstitial cells of Cajal (ICCs), with an incidence of approximately 10 to 15 cases per million population per year (1).

GISTs have always been considered the milestone of precision oncology, from when KIT mutations were recognized as the main pathogenetic driver, soon becoming the GIST therapeutic target (2–5). Since then, mutational analysis of KIT and PDGFRA has assumed a proven predictive value for sensitivity to molecular targeted therapies, and its inclusion in the diagnostic workup of all GISTs has become standard practice (6).

For sure, the advent of imatinib has drastically changed the GIST natural history, with an overall manageable toxicity profile and only rare serious adverse events (7). This treatment has also questioned the standard criteria of treatment response assessment, only based on uni- or bidimensional changes in tumor size (8, 9). As a matter of fact, imatinib-induced tumor necrosis has led to put greater relevance to tumor density and metabolism in treatment response assessment to all tyrosine kinase inhibitors (TKIs), becoming a new paradigm for imaging in the era of precision oncology (10). In particular, positron emission tomography (PET) with 18-fluorodeoxyglucose (18FDG) has proven to be highly sensitive in the early assessment of tumor response, especially in cases where there is doubt or when the early prediction of the response could be clinically useful for patient management (11–15).

However, even if 18FDG-PET is generally thought to be more sensitive than morphologic imaging modalities for assessing early therapy response, several questions remain unanswered, including the appropriate time to monitor a therapeutic protocol, the PET-CT protocol used, and the therapy response evaluation criteria that should be used (16). Indeed, although the majority of studies report a general decrease in FDG tumor uptake after imatinib therapy, the time interval between baseline and follow-up FDG-PET studies varies significantly, ranging from 1 week after imatinib onset to several months after treatment (17, 18).

Herein, we described in detail a case of an exon 11 KIT mutated-metastatic GIST patient, who presented an unexpected metabolic progression at the early 18FDG-PET evaluation after 1 month of first-line imatinib, unconfirmed at the liver biopsy performed near after, which has conversely shown a complete pathological response. This report aims to understand the existence of this metabolic pseudoprogression in GIST at the beginning of imatinib therapy in order to avoid early treatment discontinuation.




2 Case presentation

In December 2020, a 78-year-old male patient, with a concomitant Philadelphia chromosome-positive chronic myeloproliferative neoplasm (MPN) treated with bosutinib, underwent duodenal resection and cholecystectomy, due to a duodenal GIST, diagnosed after an acute episode of melena and severe anemia.

The histologic examination confirmed the diagnosis of a predominantly epithelioid cell GIST at high risk of relapse according to the Miettinen criteria [site: duodenum; size: 5.5 cm; mitotic index: 6/50 high power field (HPF)]. The microscopic margins were negative and there was no evidence of tumor rupture. The molecular analysis performed with next-generation sequencing (NGS) analysis showed an exon 11 deletion of KIT (Gln556_Val559del) (Figure 1).




Figure 1 | Representative graphical output of the next-generation sequencing analysis, showing an exon 11 deletion of KIT (Gln556_Val559del). The different colors are referred to the single DNA basis.



According to the risk class of tumor, an adjuvant treatment with imatinib 400 mg daily for 3 years should have been considered; however, after a multidisciplinary discussion together with hematologists, it was deemed more proper to continue treatment with bosutinib and reserve the therapy for GIST in case of disease relapse. During the surveillance program, a computer tomography (CT) scan performed in July 2022 showed a wide liver lesion at II–III hepatic segments with metastatic features (Figure 2). The subsequent 18FDG-PET/CT confirmed the presence of a hypermetabolic liver lesion with a maximum standardized uptake value (SUVmax) of 9.4 (Figure 3). According to the molecular profile, in August 2022, a first-line treatment with imatinib 400 mg daily was started. The subsequent 18FDG-PET/CT performed 1 month later for the early treatment response evaluation, given the concomitant chronic MPN already previously treated with imatinib, showed a metabolic progression of the liver lesion, presenting an SUVmax of 20.1 (Figure 3). Given this unexpected result, as compared with the exon 11 KIT-mutant molecular profile, a liver biopsy was performed. The histological examination has displayed liver tissue associated with paucicellular lesion of collagenized neovascularized fibrous–edematous stroma with lymphogranulocytic inflammatory infiltrate, such as granulation tissue (Figure 4). Based on this finding, suggesting a likely complete pathological response, imatinib therapy has been continued. The subsequent abdominal CT scan and 18FDG-PET/CT, performed in October 2022, 2 months after the beginning of therapy, revealed both a morphologic and metabolic partial response of the liver lesion, with an SUVmax of 7.9 (Figures 5A, B).




Figure 2 | Basal axial CT scan evaluation, showing a hypodense and partially colliquated liver lesion at segments II–III (arrow).






Figure 3 | (A) Basal axial PET/CT fused images, showing a hypermetabolic lesion involving II–III liver segments (SUVmax 9.4). (B) Axial PET/CT fused images, restaging scan after a month of imatinib therapy: the hypermetabolic area appears increased in size and shows a greater 18F-FDG uptake: SUVmax 20.1 (vs. 9.4).






Figure 4 | (A, B) H&E ×4: histologic features of the liver biopsy showing a vascular tissue with bland spindle cell fibroblast with collagenous stroma, admixed with a variable number of inflammatory elements (granulation tissue). (C, D) Immunohistochemical stain for DOG-1 (C) and CD117 (D) was all negative.






Figure 5 | (A) Axial CT scan evaluation after 3 months of imatinib treatment (arrow), showing a partial response of liver lesion. (B) Axial PET/CT fused images scan, after 3 months of imatinib treatment, showing a marked decline in both lesion size and 18F-FDG uptake (SUVmax 7.9).



At present, the patient is still under treatment with imatinib at the standard dose, and at the last CT scan performed in July 2023, the liver lesion maintained the response, showing further dimensional reduction.




3 Discussion

The role of 18FDG-PET in the early assessment of tumor response in GIST has soon become a model for functional imaging of all other oncogene-addicted solid tumors treated with TKIs because it allows selecting those patients who can really benefit from molecular targeted therapies and conversely identifying those who are primarily resistant, even if the correlation between 18FDG-PET response and progression-free survival (PFS) is still controversial (12, 17). This is extremely relevant in doubtful cases or especially in those in which molecular profiling is lacking.

As widely known, kinase mutations have an undoubtful predictive value for sensitivity to imatinib, and the inclusion of KIT and PDGFRa mutational analysis in the diagnostic workup of all GISTs is now considered standard practice (6). Primary exon 11 KIT mutations, the most common ones in the KIT gene (67%), especially deletions, are known to confer the highest sensitivity to imatinib, and primary resistance can be considered a rare event (19).

In the presented case, the increase of FDG uptake after 1 month of imatinib was unexpected as compared with the molecular profile of the primary GIST. This has been the reason why tumor sampling of the metastatic lesion has been performed in order to confirm the GIST’s diagnosis of the hepatic lesion and exclude the presence of a resistant secondary mutation. The histological finding has conversely shown the presence of collagenous stroma strongly suggestive of a pathological complete response, and the surrounding abundant inflammatory infiltrate could explain the transient increased FDG uptake we found. Indeed, it is well established that activated inflammatory cells, especially those involved in inflammatory foci, show increased glucose metabolism, leading to a high FDG uptake (20). This evidence represents the pathophysiologic basis for the possible increase in FDG uptake in the case of a complete pathologic response, thus leading to false positivity on PET examination. This phenomenon referred to as the “flare effect” represents the underlying mechanism of pseudoprogression.

To our knowledge, this is the first case describing a metabolic pseudoprogression during the early assessment of tumor response in a metastatic KIT exon 11 mutant-GIST patient after 1 month of first-line imatinib. Even if extremely rare, clinicians should be aware of the possibility of this event, which should be interpreted according to the molecular profile if known, in order to avoid early treatment discontinuation. Therefore, an early metabolic progression during a molecular targeted therapy always deserves to be evaluated in the context of the disease molecular profiling, and in case of a discordant finding between functional imaging and molecular background, a short-term longitudinal control should be suggested.

Once again, GISTs have shown to be a model for functional imaging in the era of precision oncology, highlighting how all metabolic findings should be firstly interpreted together with the molecular data available.
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Background

In this study, we developed a nomogram predictive model based on clinical, CT, and MRI parameters to differentiate soft tissue rhabdomyosarcoma (RMS) from neuroblastoma (NB) in children preoperatively.





Materials and methods

A total of 103 children with RMS (n=37) and NB (n=66) were enrolled in the study from December 2012 to July 2023. The clinical and imaging data (assessed by two experienced radiologists) were analyzed using univariate analysis, and significant factors were further analyzed by multivariable logistic regression using the forward LR method to develop the clinical model, radiological model, and integrated nomogram model, respectively. The diagnostic performances, goodness of fit, and clinical utility of the integrated nomogram model were assessed using the area under the curve (AUC) of the receiver operator characteristics curve (ROC) with a 95% confidence interval (95% CI), calibration curve, and decision curve analysis (DCA) curves, respectively. Diagnostic efficacy between the model and radiologists’ interpretations was examined.





Results

The median age at diagnosis in the RMS group was significantly older than the NB group (36.0 months vs. 14.5 months; P=0.003); the fever rates in RMS patients were significantly lower than in patients with NB (0.0% vs.16.7%; P=0.022), and the incidence of palpable mass was higher in patients with RMS compared with the NB patients (89.2% vs. 34.8%; P<0.001). Compare NB on image features: RMS occurred more frequently in the head and neck and displayed homogeneous density on non-enhanced CT than NB (48.6% vs. 9.1%; 35.3% vs. 13.8%, respectively; all P<0.05), and the occurrence of characteristics such as calcification, encasing vessels, and intraspinal tumor extension was significantly less frequent in RMS children compared to children with NB (18.9% vs. 84.8%; 13.5% vs. 34.8%; 2.7% vs. 50.0%, respectively; all P <0.05). Two, three, and four features were identified as independent parameters by multivariate logistic regression analysis to develop the clinical, radiological, and integrated nomogram models, respectively. The AUC value (0.962), calibration curve, and DCA showed that the integrated nomogram model may provide better diagnostic performance, good agreement, and greater clinical net benefits than the clinical model, radiological model, and radiologists’ subjective diagnosis.





Conclusion

The clinical and imaging features-based nomogram has potential for helping radiologists distinguish between pediatric soft tissue RMS and NB patients preoperatively, and reduce unnecessary interventions.
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Introduction

Rhabdomyosarcoma (RMS) is the most prevalent aggressive malignant soft tissue sarcoma in children, originating from primitive mesenchymal stem cells and arising in various anatomic sites throughout the body (1). Besides, RMS is the third most prevalent pediatric extracranial solid tumor, following neuroblastoma (NB) and Wilms tumor, with an incidence of 0.44 cases per 100,000 individuals per year (2, 3). NB is a malignancy develops from immature nerve cells located in several areas of the body, including the adrenal glands, neck, chest, abdomen, and spine (4). The prevalence of NB is estimated to be 10.2 cases per million children aged 15 and below, constituting almost 15% of all pediatric cancer-related fatalities (5–7). Previous studies indicated that RMS and NB, especially in soft tissue, share comparable anatomical locations, aggressive tumor behavior, immunohistochemical features, and clinical presentation characteristics of childhood solid tumors (8, 9), making preoperative stage differential diagnosis challenging (10).

Despite these similarities, the management strategies and prognoses for RMS and NB differ. Children diagnosed with RMS typically have surgery, while NB treatment varies by risk category and may include chemotherapy, surgery, radiation, stem cell transplant, immunotherapy, and retinoid therapy (3, 11). In addition, the 5-year relative survival rate for low-risk and localized RMS in children exceeds 80% with surgery, radiation therapy, and chemotherapy. However, in high-risk RMS or metastatic cases, the rate drops below 30%. For neuroblastoma (NB), the 5-year relative survival rates are over 95%, 90-95%, and around 50% for low-, intermediate-, and high-risk cases, respectively (12). Currently, post-operative histology is the only reference standard for the differential diagnosis of RMS versus NB. However, this method is invasive, tends to cause patients discomfort, and risk of complications. Thus, it is crucial to develop non-invasive and effective methods for distinguishing the two tumors, as this could potentially eliminate the need for tissue biopsies in risky anatomical sites.

Science defining the clinical characteristics of RMS alone is frequently insufficient to distinguish it from NB; imaging techniques for its identification become necessary (13). Computed tomography (CT) and magnetic resonance imaging (MRI), being widely employed imaging modalities, serve a critical function in providing indispensable information to facilitate precise diagnosis, staging, treatment strategizing, and follow-up in patients affected with RMS and NB. Although several morphological CT and MRI characteristics, including soft tissue density, adjacent bone destruction (approximately 20% of cases), heterogeneous enhancement, and others, have been associated with RMS, there are still numerous cases in which these signs are absent or not apparent. Furthermore, imaging findings that can differentiate between RMS and NB have not yet been established (14–16).

Therefore, the purpose of the present study was to develop an integrated nomogram model incorporating clinical and imaging variables to distinguish preoperatively between RMS and NB for precision therapy. Subjects enrolled in this study mainly concentrated on patients with RMS and NB in the context of pediatric soft tissue tumors, considering their propensity to develop extracranially and RMS’s preference for soft tissue involvement.





Materials and methods




Patients

For this retrospective study, approval from the Ethical Committee of the Children’s Hospital of Shanghai/Shanghai Children’s Hospital, Shanghai Jiao tong University (Approval number: 2023R073-E01) was obtained, and the requirement for informed consent was waived. One hundred and three consecutive patients with histopathologically confirmed RMS (n=37) or NB (n=66) were included between December 2012 and July 2023. The following was a prerequisite for inclusion: (1) histopathological confirmation of RMS or NB; (2) CT or MRI scans were performed prior to treatment; (3) availability of an adequate assessment of clinical features. The factors for exclusion are listed below: (1) initial tumors originate in the visceral organs and the central nervous system; (2) image artifacts and overlaps lead to poor or damaged image quality and cannot be diagnosed; (3) the presence of other tumors. As shown in Figure 1.




Figure 1 | Patient screening flowchart.







Clinical data

The clinical characteristics of all eligible patients, including age, gender, and associated symptoms at diagnosis (Table 1), were retrospectively gathered from the Hospital Information System (HIS) of Shanghai Children’s Hospital. Two radiologists with 10 to 15 years of experience reviewed these data for each patient and recorded them.


Table 1 | Clinical characteristics of RMS and NB patients in the present study.







Protocols of radiological examinations

Preoperative CT examinations (n=99) were conducted using multidetector CT machines (LightSpeed 64, GE Healthcare, USA; Aquilion 64, TOSHIBA, Japan). The scans were mainly performed using the following parameters: 0.984 pitch, 100-120 kV, automatic tube current modulation, interval of 5 mm, and a layer thickness of 5 mm. What’s more, coronal and sagittal reformatted images were obtained based on axial images with 3 mm section thickness. Intravenous administration of nonionic contrast media (1-1.5 mL/kg Iohexol, 350 mg/ml, Schering, Germany) was injected at a rate of 2-3 ml/s using an automatic power injector (OptiVantage DH; Mallinckrodt, St. Louis, Mo) into a 22- or 24-gauge intravenous cannula, without normal saline bolus administration.

Preoperative MRI examinations (n=36) were performed using a 3.0 T scanner (Ingenia, Philips Medical Systems, Best, the Netherlands). To achieve optimal resolution, coils were chosen according to the examined body part. The standardized MRI protocol mainly included T1-weighted images (T1WI; repetition time (TR)/echo time (TE): 615/18 ms; section thickness/gap: 4/0.4 mm; matrix: 300×200 mm; field of view: 24×20 cm), T2-weighted images (T2WI; TR/TE: 2800/85 ms; section thickness/gap: 4/0.4 mm; matrix: 368×210 mm; field of view: 24×20 cm), fat-suppressed T2-weighted images (Fs-T2WI), and contrast-enhanced (CE) T1WI (CE T1WI; TR/TE: 580/15 ms; section thickness/gap: 4/0.4 mm; matrix: 300×200 mm; field of view: 24×20 cm). CE T1WI were obtained after 0.2 ml/kg Gd-DTPA (3 ml/s) was injected intravenously. Diffusion-weighted images (DWI) were obtained by a single-shot echo with b-values of 800 s/mm2 for the following parameters: TR/TE, 2255/65 ms; section thickness/gap, 4/0.4 mm; matrix, 88 x 100 mm; field of view, 22×20 cm. We applied the diffusion gradients in three orthogonal directions (x, y, and z). Apparent diffusion coefficient (ADC) maps were calculated from the DWI data.





Image analysis

Two board-certified radiologists with 10 and 15 years of experience in soft tissue image interpretation independently reviewed preoperative CT and MR images using the picture archiving and communication systems (PACS). Both readers were blinded to the pathological diagnosis as well as any clinical or laboratory information; however, they were aware that those images had been obtained from patients with soft tissue tumors. After their first independent reading, the two radiologists reviewed and discussed any differences in their interpretations of subjective parameters in order to come to a consensus.

The following signs were noted and documented: (1) the predominant location of tumors; (2) the number of lesions (single or multiple); (3) tumor shape (round, lobulated, or irregular); (4) size (maximum tumor diameter); (5) border (well-defined or ill-defined); (6) calcification, cystic degeneration, hemorrhage, encasing vessel, midline crossing (present or absent); (7) density/signal intensity (hypo-, iso-, or hyperdense/intense relative to the same level); (8) diffusion restriction, refers to high signal intensity on high b-value DWI (b = 800 s/mm2) with a low value on the corresponding ADC maps; (9) homogeneity, and enhancement characteristics. Other imaging features, such as adjacent bone destruction, intraspinal tumor extension, and enlarged lymph nodes, were also examined. The maximum tumor diameter was determined in any axial, coronal, or sagittal plane on both CT and MRI. Criteria for vascular encasement were tumor contact of at least 50% of the vessel’s circumference (17).





Integrated nomogram construction and evaluation

In order to further construct a better model for identifying RMS from NB, we developed an integrated nomogram constructed by multiple logistic regression, incorporating statistically significant clinical factors and imaging features. The area under the curve (AUC) of the receiver operator characteristics curve (ROC) with a 95% confidence interval (95% CI) has been developed to measure the predictive performance, and integrated discrimination improvement (IDI) was calculated to evaluate the performance between the three models. The goodness of fit for the final multiple logistic regression model was further assessed using the Hosmer-Lemeshow test, and the calibration plot was drawn. Finally, we plotted decision curve analysis (DCA) curves for the three models to display the overall net benefit performance of the integrated nomogram model.





Radiologist’s diagnosis

Three radiologists, with various amounts of experience in diagnosing children’s cancer (senior: 10 years; middle-aged: 5 years; junior: 1 year), independently interpreted the patients involved in the study without any prior knowledge of the final pathological results. Evaluated and compared the diagnostic efficacy of each radiologist, using the pathological data as the gold standard. The diagnostic efficacy was evaluated using ROC curves, which considered AUC, accuracy, sensitivity, and specificity variables.





Statistical analysis

All statistical analyses in the present study were performed using SPSS version 25.0 (SPSS, Chicago, IL, USA) and R version 4.3.1. Continuous variables were presented as mean and standard deviation (SD) or median with interquartile range (IQR), and were compared using an independent-samples t-test or the Mann-Whitney U test. Categorical variables were shown as numbers and percentages, and were analyzed by the Fisher’s exact test or the chi-square test. Factors with statistical significance by univariate analysis were further analyzed by multivariable logistic regression using the forward LR method, and the clinical model, radiological model, and integrated nomogram model were established, respectively. Inter-reader reliability was measured with Cohen’s kappa statistic. The DeLong test was used to compare the difference of AUCs between three kinds of models or between three radiologists’ subjective diagnosis. A P value of <0.05 was considered statistically significant for all the statistical tests.






Results




Patients and clinical characteristics

The study included a total of 103 eligible patients, consisting of 37 (35.9%) children diagnosed with RMS and 66 (64.1%) children diagnosed with NB. The median age at diagnosis in the RMS group was 36.0 months, which was significantly higher than the 14.5 months of the patients in the NB group (P=0.003). In terms of the early clinical signs, the incidence of fever in patients with RMS was considerably lower compared to patients with NB (0.0% vs. 16.7%; P=0.022). Additionally, the RMS group had significantly greater rates of palpable mass compared to the NB group (89.2% vs. 34.8%; P<0.001). No significant differences were identified in gender or presentation of pain between groups (all P >0.05). As listed in Table 1.





Radiological features

The initial RMS locations were the head and neck (48.6%), and the trunk and extremities (51.4%), which differed significantly from the children in the NB group 9.1%, 90.9%, respectively; P<0.001). On CT images, the RMS tumors appeared homogeneity (35.3%), which was higher than the NB (13.8%), and the difference was statistic (P=0.013) (Figure 2). In contrast, the rates of calcification, encasing vessels, and intraspinal tumor extension were significantly lower in the RMS group compared to the NB group (18.9% vs. 84.8%; 13.5% vs. 34.8%; 2.7% vs. 50.0%, respectively; all P <0.05) (Figure 3). Concerning other characteristics such as the lesional number, shape, size, border, cystic lesions, hemorrhage, midline crossing, and adjacent bony destruction, there were no statistically significant differences observed between the groups (all P>0.05). In terms of MRI observations, in 17 cases of RMS and 19 cases of NB, tumors exhibited hypointense or isointense signals (88.2% vs. 73.7%), homogeneous signals (29.4% vs. 21.1%) on T1WI, hyperintensity signals (94.1% vs. 100.0%), heterogeneous signals (100.0% vs. 94.7%) on T2WI, respectively (all P>0.05). In addition, the incidence of diffusion restriction, homogeneous enhancement, and enlarged lymph node of the lesions in the RMS group was not significantly different compared with the NB group (all P>0.05) (Table 2). Regarding inter-reader reproducibility, the Kappa values for all findings exceeded 0.8, thereby proving its substantial reproducibility and applicability.




Figure 2 | Case 1, a 21-month-old boy with RMS. (A) The unenhanced CT image shows a huge, slightly hypodense mass in the left infratemporal fossa with speckled calcification (arrow). (B) The mass shows heterogeneous enhancement without encasing vessel signs on contrast-enhanced CT. (C) The coronal reconstructed CT image shows extensive erosion of adjacent bones (arrow). (D) Axial T1WI and (E) T2WI show the mass with heterogeneous signals intensity with cystic lesions (arrow). (F) The gadolinium-enhanced T1WI shows a hyperintense solid mass compared with the adjacent muscle layer. WI, weighted image.






Figure 3 | Case 2, a 76-month-old male with NB. (A) The unenhanced CT image shows a hypodense mass in the left posterior mediastinum with punctate calcification (arrow) (B, C) The mass shows heterogeneous enhancement and encases the aorta (arrow) on contrast-enhanced CT images. (D) Sagittal T1WI and (E) T2WI show the soft tissue mass extended into the spinal canal via the intervertebral foramen (arrow). (F) The gadolinium-enhanced T1WI shows the intraspinal extent of the tumor (arrow). WI, weighted image.




Table 2 | Comparison of imaging features between RMS and NB.







Construction of the models

To predict the probability of discrimination between RMS and NB tumors, all factors with a P-value < 0.05 in the univariate analysis were incorporated into the forward stepwise multivariate logistic regression analysis. Based on independent factors identified by logistic regression analysis, the results revealed that age (OR, 1.03; 95% CI,1.01-1.05; P<0.001), and palpable mass (OR, 35.12; 95% CI, 7.08-174.29; P<0.001) were independent variables to differentiate RMS and NB in the clinical model. Location (OR, 0.18; 95% CI, 0.04-0.73; P=0.016), calcification (OR, 0.06; 95% CI, 0.02-0.21; P<0.001), and intraspinal tumor extension (OR, 0.06; 95% CI, 0.01-0.57; P=0.015) were independent factors in the radiological model. Following the construction of a merged model, the factor of location ceased to be regarded as an independent predictor for distinguishing between the two tumors. Therefore, only four variables, including age (OR, 1.04; 95% CI, 1.01-1.08; P = 0.021), palpable mass (OR, 20.92; 95% CI, 3.25-134.47; P=0.001), calcification (OR, 0.05; 95% CI, 0.01-0.24; P<0.001), and intraspinal tumor extension (OR, 0.04; 95% CI, 0.00-0.79; P=0.034), were included in the integrated nomogram model (Table 3).


Table 3 | Multivariable logistic analysis of predictors of RMS with confidence interval.







Comparison between different models

A nomogram was built to visualize and estimate the probability of the RMS based on these predictors in the combined model (Figure 4A). The data indicated that the C index was 0.961, suggesting that the nomogram model possessed good differentiating capability. The ROC curve threshold analysis calculated the AUC value, accuracy, sensitivity, and specificity for each model (Table 4). Figure 4B demonstrates that the integrated nomogram model exhibited the highest AUC value of 0.962 (95% CI, 0.905-0.990), followed by the radiological model [0.915 (95% CI, 0.843-0.961)] and the clinical model [0.878 (0.799-0.934)], and achieved the best diagnostic performance than the clinical model (IDI=0.291, 95% CI, 0.205-0.377; P< 0.001) and the radiological model (IDI=0.162, 95% CI, 0.071-0.253; P< 0.001). Figure 4C reveals a strong concordance between the predicted values and the observed values, as evidenced by a P=0.125 in the Hosmer-Lemeshow test. The DCA curves for the three models are displayed in Figure 4D, indicating that the integrated nomogram model provides greater benefits to patients compared to both the treat-no-patient schemes and the treat-all-patient regimens. Moreover, the DCA curves found that the integrated nomogram model exhibited superior net benefit compared to both the clinical and radiological models in accurately diagnosing individuals with RMS.




Figure 4 | (A) The visual nomogram in the integrated model. (B) The receiver operator characteristics (ROC) curves of the three different models. (C) Calibration curves of the integrated nomogram model. (D) The decision curve analysis (DCA) for the clinical model, radiological model, and integrated nomogram model.




Table 4 | Diagnostic performances of the three models.







Comparative diagnostic efficacy between radiologists and the model

Among the three radiologists, the AUC value of 0.699 (95% CI, 0.605-0.792) of the senior radiologist was the highest, which was significantly higher than the values of the middle-aged [0.649 (95% CI, 0.552-0.746), P=0.029] and junior ones [0.587 (0.491-0.684), P= 0.001]. Refer to Table 5 and Figure 5 for the specific results. Nevertheless, the diagnostic efficacy of the senior radiologist was considerably lower, when compared to the integrated nomogram model [0.962 (95% CI, 0.905-0.990), P<0.001)].


Table 5 | The subjective results of three radiologists.






Figure 5 | The receiver operator characteristics (ROC) curves indicate the subjective diagnosis performance of a junior (blue line), middle-aged (green line), and senior (red line) radiologist. The calculated values for the area under the curve (AUC) were 0.587, 0.649, and 0.699, in that order.








Discussion

There have been many efforts to distinguish between RMS and NB to improve diagnostic accuracy and avoid unnecessary intervention (18–20). In the present study, we developed and validated the clinical model, radiological model, and integrated nomogram model, combining clinical findings and imaging features, as a novel and effective complementary method for preoperative identification of children with RMS and NB originated in soft tissue. Furthermore, the ROC, calibration curve, and decision curve were used to assess the discrimination ability, accuracy, and clinical benefit of the model, respectively. All assessment indicators revealed that the integrated nomogram model was superior to the single model and subjective diagnosis in distinguishing RMS from NB patients, and the nomogram model was a potentially effective tool for the need for anti-tumor therapy.

Clinical findings of both RMS and NB may show a wide range of differences in the initial differentiation. Liu et al. (21) retrospectively analyzed the follow-up data of 20 children with RMS and found that the most common clinical symptoms of the RMS children at the first visit were painless soft tissue masses (13/20), with a median age at diagnosis of 48 months. Additionally, pediatric RMS incidence also varies by gender, as male children have a higher incidence of RMS compared to female children (OR, 1.51; 95% CI, 1.27-1.80) (22). On the contrary, symptoms of NB vary with site of presentation and include fever, emesis, fatigue, and abdominal masses that often manifest with constipation and abdominal distention that may be painful (23). Fever is a common symptom and is present in 26.0% of pediatric patients with NB, and NB is commonly diagnosed as cancer in infancy, with the median age at diagnosis being approximately 19 months (24, 25). Our study has shown similar results: when comparing patients with NB, the median incidence age of children with RMS was higher, and the symptoms of mass were more common (all P<0.05). Meanwhile, 16.7% of the NB children (11/66) presented fever, compared with none of the RMS patients (P=0.022), and no significant correlation was observed between gender and tumor incidence, nor were there any notable changes in other clinical features between the two groups (all P>0.05).

Further, the present study evaluated the performance of these radiographic features in discriminating between the two tumors when applied to CT and MRI. Head and neck sites account for close to 50% of RMS cases (26). In a retrospective study, including 10 head and neck RMS patients, conducted by Zhu et al., it was found that eight of the RMS patients appeared on the CT images to be slightly hypodense (2/8) or iso-dense (6/8) with homogeneous enhancement (4/4), and the soft tissue masses had poorly defined borders (9/10), bony destruction (10/10), and multi-cavity growth (7/10), but calcification and hemorrhaging were not found. On T1WI, nine of the nine tumors exhibited iso-intensity, and on T2WI, six tumors exhibited homogeneous hyperintensity with homogeneous enhancement on contrast-enhanced (CE)-T1WI, and the lesion is typically heterogeneously hyperintense to muscle on T2WI owing to hemorrhage or necrosis (27). The imaging results of the RMS in the present study were similar to those of previous studies. Tian et al. (28) reviewed 37 children’s radiographic data with pelvic RMS and reported that the imaging features indicating lower than normal muscle density, necrosis, non-calcification, and non-hemorrhage exhibited high specificity (95% CI, 0.86-0.97), but the sensitivity (95% CI, 0.32-0.40) was relatively low. According to our study, thirty-one RMS cases had hypodense or iso-dense, ill-defined borders (21/34), cystic degeneration (16/34), calcification (7/34), hemorrhaging (3/34), and bony destruction (10/34). Moreover, most masses are hypointense to iso-intense on T1WI (15/17) and hyperintense on T2WI (16/17) while enhancing heterogeneously with contrast material in all cases. For NB patients reported in previous studies, the images suggested poorly marginated, heterogeneous masses, and one of the key defining features is the presence of calcification seen in 80-90% of the cases. Furthermore, NB tend to demonstrate extension across the midline and into adjacent body cavities, and they tend to encase and displace structures rather than invade them, such as encasing vessels, which may lead to compression (29). MRI should now be the preferred imaging modality for all primary NB tumors, as it is superior to CT in assessing metastatic bone marrow disease, chest wall invasion, and spinal canal involvement and can readily assess the organ of origin as well as disease extent (30). On MRI at diagnosis, NB typically return low signal on T1W sequences and high signal on T2 sequences. In addition to calcification and hemorrhage, areas of variable contrast enhancement and restricted diffusion on DWI can be observed in malignant lesions (14, 15). Consistently, from the results of the current study, NB tumors had poorly marginated (36/66), heterogeneous mass (56/65), calcification (56/66), encasing vessels (23/66), extension across the midline (43/66), and intraspinal tumor extension (33/66), hypointense or isointense signal on T1 sequences (14/19), hyperintense signal on T2 sequences (19/19), and diffusion restriction (17/17). However, there were few hemorrhages (4/66) observed (Figure 3). The outcome of comparing the CT and MRI features of the two tumors revealed that while the original locations of RMS tumors in the head and neck were more common than NB (48.6% vs. 9.1%, P<0.001), the imaging features of RMS lesions in heterogeneous intensity, calcification, encased vessels, and intraspinal tumor extension were less frequent than NB (all P<0.05). Therefore, to differentiate between RMS and NB based on tumor location, density, and calcification, prioritize CT. To further identify the intricate details of soft tissue, like the presence of encased vessels and intraspinal tumor extension, an MRI should be used. Further, it is critical to differentiate other possible soft tissue masses that can be encountered in children with NB and RMS, such as musculoskeletal soft tissue infections (pyomyositis), soft tissue lymphoma (non-Hodgkin lymphoma), and others (lipomas). The imaging diagnosis of pyomyositis differs from RMS and NB due to the presence of focal muscle involvement and well-defined fluid accumulation on MRI (31, 32). These findings may indicate inflammatory changes and abscess formation. In contrast, non-Hodgkin lymphoma is characterized by solid-enhancing tumors in lymph nodes or extranodal locations and liver or spleen involvement (33). Lipomas always have obvious boundaries, no contrast enhancement, and fat saturation sequence signal suppression (34). Thus, they can be recognized from RMS and NB in children.

To obtain an appropriate model able to distinguish between RMS and NB, we developed clinical, radiological, and integrated nomogram models by incorporating significant variables (P<0.05) from the univariate analysis into forward stepwise multivariate logistic regression. Although previous studies did not report the typical clinical symptoms and features differences between the two tumors (35), the clinical model demonstrated good results in discriminating pediatric RMS and NB, with an AUC value of 0.878 (95% CI, 0.799-0.934), accuracy of 0.845 (95% CI, 0.842-0.847), sensitivity of 0.838 (95% CI, 0.680-0.938), and specificity of 0.849 (95% CI, 0.739-0.925). RMS are difficult to distinguish from other soft tissue tumors by imaging findings due to their lack of specificity (36). Additionally, Franco et al. (37) could not discover any relevance in imaging characteristics at presentation, such as attenuation and heterogeneity, for determining the pathologic subtype of pediatric RMS. In contrast, NB lesions have different original locations, internal calcifications, and encasement of the vessels compared with RMS (14), and the present study also found imaging feature differences in homogeneity and intraspinal tumor extension between the two groups. According to stepwise multivariate logistic regression, the radiological model was created by three factors, and the ROC curve showed that the radiologic model performed better than the clinical model (AUC: 0.915 vs. 0.878). Subsequently, we integrated both clinical and imaging parameters to construct a composite model that exhibited superior diagnostic efficacy (the AUC of 0.962) compared to individual clinical or radiological factors. The calibration curves showed good agreement between the predicted values and the actual results, and the decision curves showed that the integrated nomogram model had a higher net benefit than the clinical or radiological model alone.

During the study, three radiologists with varying levels of professional expertise conducted independent diagnoses of the patients. The results indicated that the diagnostic effectiveness of senior radiologists may be superior to that of middle-aged and junior radiologists (all P<0.05). Moreover, through the comparison to the integrated nomogram model, we found that the radiologist’s diagnosis was significantly lower than those of the integrated nomogram model (P<0.001). This demonstrates that the model improves the diagnostic efficiency of between RMS and NB in children, which would have the potential advantage to eliminate the need for invasive biopsies in risky anatomical sites and serve as a tool for making management decisions about treatment.

Some limitations of the present study should be noted. First, it is a retrospective study from a single center with inherited selection bias. Second, the clinical and imaging information of RMS and NB patients was acquired over 10 years (2012 to 2023), which may affect the data extracted. Third, due to the low incidence of the two tumors, the number of patients eligible for enrollment and validating the integrated nomogram model was limited. Future trials are needed to provide more robust evidence and improve the generalizability of the findings.

In conclusion, compared with the clinical model, radiological model, and subjective diagnosis, the integrated nomogram model, with integrated clinical and image features, achieved the best diagnostic value, which could help radiologists differentiate pediatric soft tissue RMS and NB preoperatively, reduce unnecessary interventions, and improve prognosis.
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Background

ALK-positive histiocytosis is an exceptionally rare neoplasm of histiocytes that predominantly involves the nervous system and can also affect the skin and other parts of the body. Previous relevant literature has provided limited information regarding the imaging manifestations of this disease with neurological involvement.





Methods

We reported a case of ALK-positive histiocytosis with multisystem involvement. Together with a comprehensive literature review, the imaging characteristics of this disease in the nervous system were summarized.





Results

A 3-year-old girl with abdominal pain and ambulation difficulty checked in at the Department of Pediatric Neurology. The initial diagnosis was “acute cerebellitis with ataxia” based on the elevated protein level in the cerebrospinal fluid (CSF). However, despite 3 months of treatment, her condition deteriorated. MRI showed an oval-shaped, intradural extramedullary nodule at the T6–T7 level. The patient was ultimately diagnosed as ALK-positive histiocytosis, accompanied by cauda equina and skin involvement. The literature review showed a total of 23 patients who had involvement of the nervous system and provided imaging descriptions. Together with our case, the imaging features were summarized as follows: iso-dense or slightly hyperdense on computed tomography (CT), isointense or iso-hypointense on T2-weighted imaging (T2WI), moderate homogeneous enhancement with mildly/markedly punctate enhancement or/and smooth ring enhancement on contrast-enhanced T1-weighted imaging (T1WI), restricted diffusion on diffuse weighted imaging (DWI), and elevated fluorodeoxyglucose (FDG) uptake on positron-emission tomography/computed tomography (PET/CT).





Conclusion

The multimodal imaging findings of ALK-positive histiocytosis exhibit distinct characteristics, familiarity with which will enhance radiologists’ expertise and facilitate accurate diagnosis of this disease.
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1 Introduction

ALK-positive histiocytosis (APH), a rare non-Langerhans histiocytosis, was initially reported in 2008 and classified as a tumor category of histiocyte/macrophage in the 5th edition of the WHO Classification of Tumors of the Lymphatic and Hematopoietic System in 2022 (1). The age at onset and site of involvement exhibited significant variability. However, more cases were seen in children, particularly female infants (2), with a greater prevalence in the nervous system. It could be categorized into a single-system and multisystemic disease based on the site of involvement. To date, less than 100 cases of APH have been reported. Previous relevant literature primarily focused on genetic characteristics, histopathology, treatment, and prognosis (2–6), with limited descriptions regarding imaging manifestations of this disease (7).




2 Materials and methods



2.1 Case description

A 3-year-old girl with abdominal pain lasting for over 2 weeks and ambulation difficulty for 3 days checked in at the Department of Pediatric Neurology. She had a history of novel coronavirus infection 1 month prior. Laboratory tests revealed a positive result in the qualitative analysis of CSF protein. CSF biochemistry showed total protein >6,000 mg/L ↑ and albumin 7,628 mg/L ↑. Complete set of CSF immunization results: IgG 537.0 mg/L ↑, IgM 58.1 mg/L ↑, IgA 19.4 mg/L ↑. Eight antibodies related to autoimmune cerebellar ataxia were tested negative in both serum and CSF samples. The patient was diagnosed as “acute cerebellitis with ataxia” and showed improvement after human immunoglobulin therapy and hormonal treatment. However, more than 3 months later, the patient presented leg weakness, walking difficulties, active tendon reflexes bilaterally, as well as positive Babinski’s sign. CSF routine examination revealed a qualitative presence of protein along with an increased number of nucleated cell (23 × 106/L↑). CSF biochemistry showed decreased glucose level (2.64 mmol/L ↓) and elevated total protein (1,055 mg/L ↑) and albumin (697 mg/L ↑) level. The EBV antibody (IgG) and nucleic acid (EBV-DNA) tests of peripheral blood yielded positive results. A subsequent MRI examination revealed an oval-shaped nodule (approximately 27 mm × 16 mm × 13 mm) located in the intradural extramedullary space at the T6–T7 level, which was compressing the spinal cord (Figures 1A–F). Additionally, there was segmental enhancement of leptomeninges along the cauda equina and lumbar dorsal skin (Figures 1G–K).




Figure 1 | Images showing multisystem lesions in the 3-year-old girl with APH. (A–C) MR images showing hypointense on sagittal T1WI (A, thick arrow) and isointense with central punctate hypointense areas on sagittal and axial fat-suppressed sequences of T2WI (B, C, thick arrow). (D–F) Contrast-enhanced T1WI revealing moderate enhancement of the intradural extramedullary nodule, with marked enhancement at the upper and lower rims, accompanied by markedly punctate enhancement in the center on axial (D, thick arrow), sagittal (E, thick arrow), and coronal (F, thick arrow) scans. (G–I) Contrast-enhanced T1WI showing segmentally moderate enhancement of the lesions in the leptomeninges (thin arrow) and the dorsal skin at the L1–2 level (arrowhead) on sagittal (G) and coronal (H, I) scans. Axial contrast-enhanced T1WI showing the changes in leptomeninges and skin lesions before (J, K) and after (L, M) treatment, respectively.



The patient subsequently underwent an excision of the intradural extramedullary nodule. Intraoperatively, it was observed that the tumor appeared smooth, white, and soft with moderate blood supply. It adhered tightly to the dura mater and had a clear border from the spinal cord as it grew towards the intervertebral foramen. Finally, based on histopathological and molecular examination (Figure 2), the case was diagnosed as APH. Immunohistochemical staining demonstrated positive results for ALKA4, CD68, and CD163 in histiocytes. Weakly positive results were obtained for S-100 and CD45-LCA. Ki-67 labeling index ranged from 3% to 5%. Negative staining results were observed for CD1α, CD21, CD23, CD35, Langerin, Braf (V600E), SSTR2, and CD30. Considering the high surgical risk associated with cauda equina nerve lesion and the absence of evident functional impairment caused by the skin lesion, both of which were small lesions, no further surgical intervention was performed in this pediatric patient to avoid potential iatrogenic injuries.




Figure 2 | Histological and molecular findings from the biopsy of the intradural extramedullary nodule. (A, ×100) Hematoxylin and eosin staining showing hyperplasia of eosinophilic histiocytes, accompanied by the expression of ALKA4 (B, ×100). (C, ×1000) FISH (fluorescence in situ hybridization) analysis using ALK break-apart probe demonstrating the presence of ALK rearrangement with a positive rate of 28%.



Postoperatively, a marrow biopsy was performed to exclude other hematological diseases that may coexist. The histological examination showed hyperplasia of the erythroid lineage and prominent presence of megakaryocytes. Cytology result revealed active proliferation of the granulopoietic lineage, relative proliferation of the erythroid lineage, and decreased proportion of lymphocytes, with juvenile lymphocytes accounting for 1.6% of the total count. The marrow flow immunophenotyping result did not show any significant abnormalities. CSF flow immunophenotyping result indicated that 14.2% of cells were suspected to be myeloid naïve-biased stage cells. Postoperative PET/CT imaging did not reveal abnormal metabolism elsewhere. After three courses of chemotherapy with vindesine, CSF flow MRD (minimal residual disease) test revealed no obvious abnormal population of myeloid-derived cells. Following four cycles of chemotherapy and a subsequent 20-day treatment with ALK inhibitor (crizotinib), the size of the lesion in the leptomeninges and the skin became smaller on MR images (Figures 1L, M). The patient was ultimately diagnosed with APH, which involved both the nervous system and skin. Subsequently, the patient was instructed to continue oral treatment with crizotinib and other medications outside the hospital. Currently, the patient has shown significant improvement in leg movement.




2.2 Literature review

Relevant literature was extensively searched in the PubMed and WanFang databases from 2008 to 2023, without any restrictions on language or study type. The keywords “ALK-positive histiocytosis,” “ALK-rearranged histiocytosis,” and “ALK and histiocytosis” were used for the search. The most recent literature search was conducted in September 2023. Queries were performed across all fields of the papers, including “Case of the Month” section affiliated with the American Journal of Neuroradiology. Records were manually collected and deduplicated. The obtained records underwent filtering based on title, abstract, and paper availability. Additionally, we examined bibliography within the literature review to include original reports of all cases. Finally, data were extracted and incorporated into a dedicated spreadsheet.




2.3 Data extraction

According to the literature search methods mentioned above, a total of 76 papers covering the period from 2008 to 2023 were obtained. After excluding 2 duplicate records and 44 indirectly related ones, there were 30 papers directly related to APH. Furthermore, after excluding systematic literature reviews, literature unrelated to the nervous system, and literature lacking neurological imaging, a total of 14 literatures that recorded cases of APH involving the nervous system along with corresponding imaging descriptions were obtained. Finally, after excluding one literature with non-standard imaging descriptions, we obtained 3 papers of case series and 10 papers of case report including one in Chinese language, and enrolled a total of 22 patients. In addition to these sources, one case provided by the American Journal of Neuroradiology and another case presented in this manuscript were also included. Overall, a total of 24 patients were included in the analysis. We collected information including gender, age, gene fusion mutation, and distribution, number, and longitudinal diameter of lesions in both the central nervous system (CNS) and peripheral nervous system (PNS). Most importantly, we recorded multimodal imaging findings including CT density and MR signal characteristics on plain scans, degree and pattern of MR enhancement, water molecular diffusion characteristic on DWI, and FDG uptake of the lesions.





3 Results

To date, less than 100 cases of APH have been documented. In this study, amalgamated with our current case, a total of 24 patients were included, who had involvement of the nervous system and provided imaging descriptions. The age range was from 0.4 to 51 years old, with a median age of 10 years (Table 1). Genetically, apart from one case with unknown gene data reported in the American Journal of Neuroradiology and three cases showing ALK-FISH positive (including the current one), the remaining 20 cases exhibited KIF5B-ALK gene fusion mutations. Among these 24 cases of APH, a total number of 38 lesions were identified within the nervous system: 27 lesions located within CNS, 10 within the PNS, and 1 affecting both simultaneously. The CNS lesions primarily occurred in gray matter of the cerebral cortex (11/27 lesions) and the subcortical region of the cerebrum (7/27 lesions), while PNS lesions mostly involved the spinal dura/leptomeningeal or nerve roots.


Table 1 | Imaging findings of neurological involvement in 24 cases of APH.



The majority of the lesions presented as iso-dense or slightly hyperdense nodules/masses with well-defined and smooth margins, or as thickened cerebral/spinal membranes. Rare cystic component and no indications of calcification or hemorrhage were observed. MR images revealed isointense or slightly hypointense signals on T1WI, isointense, or iso-hypointense signals on T2WI (16/16 lesions), and isointense (6/11 lesions) or hyperintense (5/11 lesions) signals on T2 fluid-attenuated inversion recovery (FLAIR). Apart from a few lesions accompanied by perifocal edema (12/16 lesions), the majority exhibited no signs of mass effect (12/16 lesions). Moderate homogeneous enhancement was predominantly observed on contrast-enhanced T1WI, accompanied by mildly/markedly punctate enhancement or/and smooth ring enhancement at the tumor periphery (Figure 3). Most lesions showed varying degrees of diffusion limitation (14/15 lesions), and all exhibited high FDG uptake (11/11 lesions) (Tables 1, 2). Among the 38 lesions, only 3 were located in the intradural extramedullary region and all showed moderate homogeneous enhancement. The two larger lesions were aligned parallel to the spinal canal, and the punctate enhancement in the center was identified within each lesion under magnification (Figure 3G). In our case, there was T2 hypointensity observed at the markedly punctate enhancement area, as well as markedly “cap-like” enhancement on both upper and lower rims of the lesion.




Figure 3 | Contrast-enhanced T1WI showing neurologic involvement (arrow) in APH patients. (A) Axial images of patient 6 showing a nodule in the gray matter of the cerebellar hemisphere with moderately homogeneous enhancement in the center and marked ring enhancement at the rim, as well as a markedly homogeneously ring-enhanced one in the gray matter of temporal lobe. (B) Axial images of patient 8 showing a moderately heterogeneously enhanced lesion in the left basal ganglia, one in the right centrum semiovale with moderately heterogeneous enhancement in the center and marked ring enhancement at the rim, and another one in subcortical region of the left frontal lobe with moderately homogeneous enhancement. (C) Sagittal image of patient 9 showing marked and homogeneous enhancement of leptomeningeal along the descending cauda equina nerve roots. (D) Axial images of patient 17 showing a lesion located in subcortical region of left insula, with moderately homogeneous enhancement in the center and marked ring enhancement at the rim. (E) Axial images of patient 18 showing a tumor located at left oculomotor nerve, with moderately homogeneous enhancement in the center and marked ring enhancement at the rim. (F) Coronal image of patient 19 showing a lesion that followed the course of the trigeminal nerve, with moderately homogeneous and mildly punctate enhancement causing pressure on the pons. (G) Sagittal image of patient 20 showing a tumor located intradural extramedullary at level C1–C2 with moderately homogeneous and mildly punctate enhancement. Reproduced from (2). Copyright 2022, Elsevier Inc.




Table 2 | Summary of imaging characteristics in 38 lesions involving the nervous system in APH.



Additionally, through literature search and statistics, a total of 18 cases (including the present one) of APH patients with skin involvement were identified. The age range varied from neonatal to 71 years old, with a median age of 22.5 months. Infants and young children showed a higher prevalence. Among these cases, 5 were limited to the skin while the remaining 13 cases exhibited concurrent lesions in other organs or systems. These lesions were scattered across the skin of the head, neck, trunk, and limbs without any discernible distribution pattern. The lesions mostly present as maculopapular or nodular with a slightly hard texture and exhibit a dark red or brown color. Genetic analysis revealed that among these cases, 5 showed ALK-FISH positivity; 1 had TFG-ALK fusion; 1 had TPM3-ALK fusion; 1 had COL1A2-ALK fusion; and the remaining 10 all revealed KIF5B-ALK fusion.




4 Discussion

We reported a 3-year-old female patient who belonged to the vulnerable population for APH. Based on our literature review, cutaneous involvement appears to be more prevalent in infants and young children with APH compared to neurological involvement, and it seems to involve a greater variety of gene mutations. The etiology of the disease remains unclear. The clinical presentation of the disease is nonspecific, whereas the ambulation difficulty in this case was attributed to spinal cord compression. The diagnosis relies on histopathology and molecular biological detection techniques. ALK inhibitors have shown significant therapeutic efficacy against this disease, as illustrated in this case. The prognosis for the disease is favorable.

The multimodal imaging findings of APH exhibited distinct characteristics: iso-dense or slightly hyperdense on CT, isointense or slightly hypointense on T1WI, iso-hypointense on T2WI, isointense or hyperintense on T2FLAIR, as well as moderate enhancement accompanied by punctate enhancement and/or ring enhancement on contrast-enhanced T1WI. The features observed in CT and MR images indicated dense arrangement of tumor cell or the presence of fibrous component (7). The majority exhibited no mass effect, which could potentially be associated with slow growth of tumors. Smooth ring enhancement at the tumor periphery probably represented chronic inflammatory reaction or the presence of a tumor capsule. The signal characteristics of the lesion on MR images in the present case were similar to those observed in other areas, and the presence of marked “cap-like” enhancement on both upper and lower rims also resembled the characteristic “ring enhancement” sign observed in literatures. Two of three cases located in the intradural extramedullary region revealed a centrally punctate enhancement within the lesion under magnification, resembling mildly/markedly punctate enhancement as presented in other cases. Nevertheless, unlike the relative T2FLAIR hyperintensity observed at the punctate enhancement areas in literature (9, 16), this case exhibited T2-hypointense at such punctate enhancement area. Therefore, further investigation is needed to explore their relationship. Moreover, additional research is required to determine whether these different imaging manifestations in a few cases indicate atypical APH. Additionally, multimodality imaging is also frequently employed for assessing treatment response and prognosis of this disease (2, 13, 15).

APH with neurological involvement is primarily differentiated with other histiocytic tumors such as juvenile xanthogranuloma, Rosai–Dorfman disease, Erdheim–Chester disease, and Langerhans cell histiocytosis (6). The intracranial lesions of juvenile xanthogranuloma predominantly manifest as nodules or masses with iso-height signal on T1WI, located adjacent to the ventricles or meninges and involving the brain parenchyma (18, 19), while intracranial APH is more likely to be observed within the gray matter of the cerebral cortex and subcortical region of the cerebrum. The intracranial manifestation of Rosai–Dorfman disease on MR is similar to that of APH, but the former may exhibit marginal “burr sign” and “meningeal tail sign” resembling those seen in meningioma (20, 21). Both Erdheim–Chester disease and Langerhans cell histiocytosis belong to Group L histiocytosis, with bone involvement being the most common manifestation (22). Intracranially, ECD typically affects the posterior fossa. The predominant imaging findings include multifocal FLAIR hyperintensities and variable enhancement involving the dentate nuclei and brainstem (20). By contrast, Langerhans cell histiocytosis is characterized by nodule within the hypothalamic–pituitary axis and loss of the hyperintensity in posterior pituitary lobe, which are also occasionally observed in Erdheim–Chester disease (22). Additionally, when encountering solitary focal APH located at the endocranium, differentiation from meningioma should also be considered, whereas in the present case, the lesion was located in the intradural extramedullary region and should be differentiated from neurogenic tumor.




5 Limitation

The existing literature on APH primarily consists of case reports that utilize various imaging equipment with inconsistent parameters to obtain incomplete or inconsistent images, thereby limiting the applicability of the data.




6 Conclusion

APH is an extremely rare neoplasm of histiocytes that predominantly involves the nervous system, particularly the gray matter of the cortex and subcortical region of the cerebrum in CNS. The majority of the lesions typically present as CT iso-dense or slightly hyperdense, T1WI isointense or slightly hypointense, T2WI iso-hypointense, and T2FLAIR isointense or hyperintense. They exhibit moderate enhancement accompanied by punctate enhancement and/or ring enhancement on contrast-enhanced T1WI. Furthermore, high DWI signal and FDG uptake are also characteristic features of this disease. Familiarity with these imaging features will improve preoperative diagnostic accuracy for this disease.
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Objective

The aim of this study was to assess the ability of a multiparametric magnetic resonance imaging (MRI)-based radiomics signature model to predict disease-free survival (DFS) in patients with rectal cancer treated by surgery.





Materials and methods

We evaluated data of 194 patients with rectal cancer who had undergone radical surgery between April 2016 and September 2021. The mean age of all patients was 62.6 ± 9.7 years (range: 37–86 years). The study endpoint was DFS and 1132 radiomic features were extracted from preoperative MRIs, including contrast-enhanced T1- and T2-weighted imaging and apparent diffusion coefficient values. The study patients were randomly allocated to training (n=97) and validation cohorts (n=97) in a ratio of 5:5. A multivariable Cox regression model was used to generate a radiomics signature (rad score). The associations of rad score with DFS were evaluated using Kaplan–Meier analysis. Three models, namely a radiomics nomogram, radiomics signature, and clinical model, were compared using the Akaike information criterion.





Result

The rad score, which was composed of four MRI features, stratified rectal cancer patients into low- and high-risk groups and was associated with DFS in both the training (p = 0.0026) and validation sets (p = 0.036). Moreover, a radiomics nomogram model that combined rad score and independent clinical risk factors performed better (Harrell concordance index [C-index] =0.77) than a purely radiomics signature (C-index=0.73) or clinical model (C-index=0.70).





Conclusion

An MRI radiomics model that incorporates a radiomics signature and clinicopathological factors more accurately predicts DFS than does a clinical model in patients with rectal cancer.
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Introduction

Being one of the major causes of cancer-related death worldwide, rectal cancer is a global health problem (1, 2). About 70% of rectal cancer patients are successfully treated surgically. However, the prognosis is poor, distant metastases or local recurrence being detected in up to 30% of patients, often within a few years of surgery (3, 4). Identifying tumor characteristics that are associated with a high-risk of adverse outcomes is therefore extremely important in enabling devising risk-adapted personalized treatment strategies for rectal cancer patients.

Nowadays, the TNM classification is routinely used in clinical practice for preoperative risk stratification and treatment allocation (5, 6). However, this classification ignores tumoral spatial heterogeneity, which indicates hemorrhage, necrosis, and cell density and thus provides important guidance for decisions concerning administration of radio- and/or chemo-therapy. Radiomics involves extracting a large set of quantitative features from a series of radiological images. In particular, radiomics based on multiparametric MRI (mpMRI) has emerged as a reproducible, non-invasive means of characterizing intratumor features and assessing risk and treatment response (7).

To the best of our knowledge, only one study on using mpMRI, diffusion kurtosis imaging in particular, to predict the response to therapy in patients with rectal cancer has been published (8). Because this is rarely performed in clinical practice, there are no established standard scan parameters; thus, its generalizability and usefulness need to be further verified. Diffusion weighted imaging (DWI), a functional MRI technique, has been widely used in clinical practice.

The apparent diffusion coefficient (ADC), which is derived from DWI sequencing, reflects heterogeneity at the microscopic level, such as cell density of tumors (9). The aim of our study was to establish a model for predicting the disease-free survival (DFS) of rectal cancer treated by surgery by combining contrast-enhanced (CE)-T1WI, T2WI, ADC radiomics features, and clinical factors.





Methods




Patients

This study was approved by our institution’s ethics review board, who waived the need for patient approval and informed consent because this was a retrospective study.

This study cohort comprised 194 patients (121 men and 73 women; mean age: 62.6 ± 9.7 years; age range: 37–86 years) with histologically confirmed rectal cancer who had undergone resection in our institution between April 2016 and September 2021. The inclusion criteria were as follows: (a) preoperative conventional MRI and DWI sequences performed within 3 weeks before resection; (b) pathologically confirmed rectal cancer; and (c) follow-up at our hospital. Exclusion criteria were: (a) administration of preoperative chemoradiotherapy; (b) another cancer in addition to rectal cancer; and (c) failure to attend for follow up.

All patients were randomly allocated to training (n=97) and validation groups (n=97) in a ratio of 5:5.





Follow-up

We set the DFS, defined as the time from CT examination until either the date of disease progression, including distant metastasis, local tumor recurrence, or death from any cause, or until the last date known to be free of relapse (censored) as the main endpoint. All disease progression was diagnosed on the basis of findings on imaging such as abdominal CT and MRI, clinical examination, or biopsy. Our institution’s follow-up protocol is every 3–6 months during the first 2 years after surgery, every 6–9 months for the following 2–3 years, and annually thereafter. The median follow-up period of the whole cohort was 32 months (range, 4–99 months).





Image acquisition

Rectal MRI imaging was obtained on a 3T system (Verio, Siemens, Germany) equipped with a 12-channel body coil. The MRI scanning sequence included high-resolution axial T2-weighted, DWI, and enhanced T1-weighted sequences. Detailed information concerning the acquisition parameters is provided in Supplementary Materials.





Tumor segmentation and feature extraction

Manual segmentation of each tumor was performed using open-source ITK-SNAP software (www.itksnap.org) on data obtained from axial T2WI, ADC, and CE-T1WI slices. Region of interest (ROI) segmentation was performed by two experienced radiologists who examined the whole tumor and avoided necrotic tissue and bleeding (Figure 1).




Figure 1 | MR images of a 53-yearold man with rectal cancer. Examples of tumors with MRI (A, C) and 3D segmentation (B, D).



Radiomics feature extraction was preprocessed by a pyradiomics package (http://www.PyRadiomics.readthedocs.io/en/latest/) that comprises four groups of features. In total, 1132 radiomic features, including ROI shape, intensity, texture, and wavelet features, were then extracted from multiple image sequences from each patient. To obtain a standardized normal distribution of the MRI image intensities, multiple images were normalized by z-score after manual ROI segmentation of the tumor.





Radiomic feature selection and radiomics signature building

We used a four-step process for feature selection and to identify robust DFS-associated radiomic features. Intraclass correlation coefficients of >0.75 were considered to denote high inter-/intra-observer stability and kept for subsequent analyses. Univariate Cox regression analyses were then conducted to identify statistically significant DFS-related radiomic features (p ≤ 0.05). Next, Spearman’s correlation analysis with r≥0.90 was used to eliminate redundancy. Finally, multivariate Cox analysis was performed to develop independent predictors of DFS. Radiomics signatures (defined as rad scores) were computed through a linear combination of each selected feature with non-zero coefficients.





Statistical analysis

All statistical analyses were analyzed with R software, version 3.6.3 (http://www.R-project.org). Continuous and categorical variables were compared between the training and validation sets by using an independent samples t-test, Mann–Whitney U-test, or χ2 test as appropriate. DFS probabilities were assessed by Kaplan–Meier analysis and the differences between high- and low-risk groups were compared with the log-rank test. The optimal cutoff value according to the rad score and X-tile was used to divide patients into low- and high-risk groups. The Harrell concordance index (C-index) was calculated to quantify the model’s ability to discriminate. Decision curve analysis was used to evaluate the clinical usefulness of various models. A two-sided p<0.05 was regarded as denoting statistical significance.






Results




Clinical characteristics and DFS

Selected clinico-radiological characteristics of the 194 study patients are shown in Table 1.


Table 1 | Clinical characteristics of patients with rectal cancer in the training data set and validation data set.



The median follow-up period of the whole cohort was 32 months (range, 4–99 months). The relationships between survival time, age, and rad-score are shown in Figure 2.




Figure 2 | The relationships between survival time, age, and rad-score.







Radiomics score construction and validation of radiomics signature

Four potential predictors including one, one, and two features were selected from the T2WI, ADC and CE-T1WI to build a radiomics signature based on a formula for calculating radiomics score (Supplementary Materials).

According to the rad score optimum cut-off point generated by X-tile plot, we further classified patients into high- (rad score ≥ −0.7) and low-risk groups (rad-score < −0.7), and performed Kaplan–Meier analysis in the training and validation sets to determine the ability of the rad score to predict prognosis. The distributions of the high- and low-risk rad scores of the included four features are shown in Figure 3.




Figure 3 | Plots (A–D) illustrate the distributions of the high- and low-risk rad scores of the included four features.



Lower rad scores were associated with better DFS in both the training (p = 0.0026) and validation sets (p = 0.036) (Figure 4).




Figure 4 | Kaplan–Meier survival analysis based on high risk and low risk rad scores in training set (A) and validation set (B).







Assessment of the radiomics nomogram model on DFS prediction

Three models (radiomics nomogram, clinical, radiomics signature) were assessed in the training and validation sets. The ability of each model to discriminate was then evaluated by the C-index in the validation set. Only three clinical features, namely age, CA199, and pN, were used in the clinical model. The abilities of the radiomics nomogram and clinical models to predict DFS are shown in Figure 5. The clinical and radiomics signature models alone had similar discriminatory capability (C-index: 0.70 vs. 0.73). However, a radiomics nomogram model incorporating the radiomics signature and clinical model was better able to discriminate DFS in the validation cohort (C-index, 0.77) than was either the radiomic signature or clinical model alone (Table 2).




Figure 5 | Plots illustrate radiomics nomogram (A) and clinical model nomogram (B) for the prediction of predicting DFS.




Table 2 | Performance of models.



Decision curve analysis also revealed that the radiomics nomogram model achieved a higher net benefit than did the clinical model or radiomics signature in predicting DFS (Figure 6).




Figure 6 | Decision curve analysis of the radiomics nomogram model and clinical model.



The cumulative 3-year DFS rates were 42.7% versus 63.6%, respectively, (p < 0.05), for high- versus low-risk patients in the training set, and 48.1% versus 60.0%, respectively, (p < 0.05) in the validation set. Subsequently, the cumulative 5-year DFS rates were 10.7% versus 36.4%, respectively, (p < 0.05), for high- versus low-risk patients in the training set and 13.0% versus 45.0%, respectively, (p < 0.05) in the validation set.






Discussion

Radiomics features, which are noninvasively acquired high-dimension features from radiological images, are closely associated with treatment response (10), prognosis (11), and molecular phenotypes (12). Previous studies have found that radiomics can predict individual responses to neoadjuvant therapy for rectal cancer (13–15). Several studies have shown that radiomics models have promising prognostic value in patients with rectal cancer (8, 16). However, because diffusion kurtosis imaging is rarely used in clinical practice, there is a lack of standard scan parameters. This means that the generalizability and clinical relevance of using radiomics models based on features identified by this modality to predict responses to therapy require further verification. Furthermore, the above-cited studies did not examine all stages of rectal cancer treated by surgery.

Giving this background, we constructed a multi-feature-based radiomics signature extracted from mpMRI to evaluate the prognostic value of radiomics in patients with rectal cancer. Our clinical and radiomics signature models had similar discriminatory capability (C-index: 0.70 vs. 0.73). However, a combination of the radiomics nomogram model incorporating the radiomics signature and our clinical model improved the discriminating power for DFS in the validation cohort, as evidenced by a higher C-index (0.77), lower Akaike information criterion (781.5), and improvement in reclassification. This is in line with previous research (13, 17, 18) and demonstrates that the radiomics signature has an incremental value in risk stratification for predicting DFS.

Additionally, rad scores can stratify patients into high- and low-risk groups. Lower rad scores (< −0.7) in patients with rectal cancer were generally associated with better DFS, suggesting that some high-risk patients should receive risk-adapted personalized treatment strategies such as neoadjuvant chemoradiotherapy or adjuvant chemoradiotherapy. Moreover, rad scores were significantly associated with DFS (p<0.05), showing that they can be a useful tool for individualized estimation of survival of patients with rectal cancer.

Intriguingly, the four radiomics features selected for the integrated radiomics model were all wavelet-based, which is consistent with recent studies (19–21). This shows that almost all high-dimensional features are wavelet-based. Wavelet transformation enables quantification of high-dimensional tumor information, which is difficult to explain intuitively (21, 22). In one study (7), the researchers constructed two types of radiomics signatures: with and without wavelet features. However, there was no evidence that the model with wavelet features improved the accuracy of prediction; this may be attributable to redundant radiomics features (23). Most high-dimensional features are not perceptible visually; however, they have been used successfully in radiomics-based prediction of survival (24, 25), recurrence (26), and gene expression (27).

The present study had several limitations. First, the sample size was relatively small. Second, because this was a retrospective, single-center study, our findings need to be further validated by drawing prospectively on a large-scale multicenter database. Finally, stratification of other risk factors derived from staging and pathologic type may provide more accurate estimation of risk of survival and recurrence.

In conclusion, mpMRI radiomics improves prediction of prognosis in patients with rectal cancer. Our comprehensive model including clinical features provides additional prognostic information beyond a clinical model alone. Further prospective studies and clinical validation are required.
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Background

Prostate cancer invades the capsule is a key factor in selecting appropriate treatment methods. Accurate preoperative prediction of extraprostatic extension (EPE) can help achieve precise selection of treatment plans.





Purpose

The aim of this study is to verify the diagnostic efficacy of tumor size, length of capsular contact (LCC), apparent diffusion coefficient (ADC), and Amide proton transfer (APT) value in predicting EPE. Additionally, the study aims to investigate the potential additional value of APT for predicting EPE.





Method

This study include 47 tumor organ confined patients (age, 64.16 ± 9.18) and 50 EPE patients (age, 61.51 ± 8.82). The difference of tumor size, LCC, ADC and APT value between groups were compared. Binary logistic regression was used to screen the EPE predictors. The receiver operator characteristic curve analysis was performed to assess the diagnostic performance of variables for predicting EPE. The diagnostic efficacy of combined models (model I: ADC+LCC+tumor size; model II: APT+LCC+tumor size; and model III: APT +ADC+LCC+tumor size) were also analyzed.





Results

APT, ADC, tumor size and the LCC were independent predictors of EPE. The area under the curve (AUC) of APT, ADC, tumor size and the LCC were 0.752, 0.665, 0.700 and 0.756, respectively. The AUC of model I, model II, and model III were 0.803, 0.845 and 0.869, respectively. The cutoff value of APT, ADC, tumor size and the LCC were 3.65%, 0.97×10−3mm2/s, 17.30mm and 10.78mm, respectively. The sensitivity/specificity of APT, ADC, tumor size and the LCC were 76%/89.4.0%, 80%/59.6%, 54%/78.9%, 72%/66%, respectively. The sensitivity/specificity of model I, Model II and Model III were 74%/72.3%, 82%/72.5% and 84%/80.9%, respectively.





Data conclusion

Amide proton transfer imaging has added value for predicting EPE. The combination model of APT balanced the sensitivity and specificity.





Keywords: prostate cancer, extraprostatic extension, length of capsular contact, diffusion weight imaging, amide proton transfer, tumor size





Introduction

Prostate cancer (PCa) is the most common malignant tumor in men (1). Extraprostatic extension (EPE) is a critical pathological feature of PCa, and it poses a challenge for PCa treatment. The patients with EPE have higher positive margin rates and are prone to biochemical recurrence (2). Therefore, preoperative diagnosis of EPE is a vital factor, which directly affects the treatment and prognosis of patients (2). Extensive removal of positive margins can effectively reduce tumor recurrence if the tumor invades the capsule. However, expanding surgical scope can lead to impaired patient function for early-stage PCa lesions confined within the capsule. Achieving an optimal balance between the optimal surgical resection range and preserving bilateral neurovascular bundles to protect patient sexual function is a persistent challenge (3). Accurate preoperative prediction of EPE can help formulate surgical plans and achieve precise selection of treatment plans.

Multi-parametric magnetic resonance imaging (mp-MRI) is the most favorable imaging technique for local staging of PCa (4). At present, MRI examination is considered as the primary tool for preoperative prediction of EPE. The diagnosis of EPE primarily depends on the morphological indicators detected through the T2WI sequence. This sequence identifies the relationship between the tumor in the peripheral zone and the capsule, however, its sensitivity is weak and false negative rate is high (5). Currently, the potential of quantitative assessments of EPE with mp-MRI for improving accuracy and inter-reader agreement has been extensively studied (6). The Prostate Imaging-Reporting and Data System Version 2.1 (PIRADS V2.1) includes quantitative metrics such as the length of capsular contact (LCC), tumor size, and tumor volume to assist in predicting EPE (7). Previous studies have shown that these metrics improve the predictive value of mp-MRI for detecting EPE (8). However, in a previous study, it was reported that using apparent diffusion coefficient (ADC), LCC, and tumor size to predict EPE improved sensitivity but reduced specificity compared to subjective analysis, with no difference in overall accuracy (5). In a clinical setting, having a balance between sensitivity and specificity is crucial when determining appropriate treatment methods for detecting EPE.

A previous study has shown that the combination of amide proton transfer (APT) and ADC techniques complementarily improve the sensitivity and specificity in identifying PCa differentiation (9). APT imaging provides specific molecular information, which has added value in the diagnosis and risk stratification of PCa (9). APT is a novel magnetic resonance molecular imaging technique that is based on mobile proteins and peptides in cells, specifically used to reflect the increased concentration of proteins and peptides produced by mitotic activity and cell metabolism caused by abnormal protein synthesis in highly differentiated tumor cells (10). While tumor size and LCC reflect the morphological information of PCa, ADC and APT imaging techniques reflect differentiation and cell proliferation information of the PCa tissue. Given that these parameters reflect distinct information related to prostate cancer, creating a combined model using these parameters would be desirable to improve the assessment of EPE. Therefore, the objective of this study is to verify the diagnostic efficiency of tumor size, LCC, ADC, APT, and their combined models for predicting EPE.





Materials and methods




Subjects

This study is part of an ongoing investigation of PCa using multi-parametric MRI (retrospective analysis of prospectively-acquired data). The Institutional Ethics Committee of our hospital approved the study, and all subjects signed an informed consent form. We enrolled consecutively, from January 2020 to April 2023, patients with pathologically confirmed PCa who had undergone multi-parametric MRI of the prostate and radical prostatectomy at our hospital. The data were acquired based on the following criteria: inclusion criteria consisted of i) absence of hormone or radiation treatment history, ii) no contraindications to MRI, and iii) undergoing radical prostatectomy within one month after multi-parametric MRI. Exclusion criteria encompassed i) unavailability of histopathology data for review, and ii) inadequate image quality in at least one MR sequence for diagnostic purposes. Figure 1 shows the flow chart of the enrolled patients.




Figure 1 | Flowchart of study participant selection. MRI, magnetic resonance imaging; PCa, prostate cancer; EPE, Extraprostatic extension.







Multi-parametric MRI

The scans were performed using a 3.0 T MRI system (Ingenia 3.0 CX; Philips Healthcare, Best, The Netherlands) with a 16-channel phased-array body coil. The specific scan sequences used can be found in Table 1. During DWI sequence scanning, b values of 0, 100, 400, 800, and 1400 mm/s2 were used, with automatic calculation of the ADC map. Four Regional Saturation Technique slabs were used when APT scanning (9). A 2-second APT pre-pulse with a saturation power level of B1, rms=2 μT was achieved for APT imaging by transmitting dual radiofrequency channels in an interleaved manner. Nine frequency offsets (4.3 ppm, repeated 3 times at 3.5 ppm, 2.7 ppm, -2.7 ppm, -3.5 ppm, -4.3 ppm, -1560 ppm) relative to the water frequency were acquired for APT Z-spectrum. For the 3.5 ppm acquisition, a Dixon-based method was employed, and the acquisition window was shifted by ±0.4 ms and 0 ms, respectively. A B0 map was calculated from these three images and used for Z-spectrum correction.


Table 1 | Sequences of multi-parametric MRI.



The APT(%) calculation method was as follows:

APT(%) = MTRasym (3.5 ppm)(%) = 100%∗ (S − 3.5 ppm−S + 3.5 ppm)÷ S0.

Note: MTRasym (3.5 ppm) is the abbreviation of magnetization transfer ratio asymmetry at 3.5 ppm. S0 represent the signal intensities without saturation pulse.





Image analysis

The review of each examination was conducted retrospectively on the post-processing workstation of version 8 of “IntelliSpace Portal” (Philips Healthcare, The Netherlands). Two experienced radiologists (Zhu X and Qin X with 21 and 15 years of abdominal radiology experience, respectively) reviewed all MR images in consensus, without knowledge of the final histopathology results. In cases where multiple PCa lesions were present, the dominant lesion was selected for analysis. The dominant lesion was defined as a mass-like region with decreased T2 signal and ADC. For each dominant lesion, a region of interest (ROI) was set in three consecutive layers, maintaining a distance from the lesion’s edge to avoid volume effect (as illustrated in Figure 2). We used the “IntelliSpace Portal” workstation to conduct the image processing. In the IntelliSpace Portal, fusion approach was performed to draw the ROI. The APT and ADC values were calculated as the average values within the lesion ROI in different layers.




Figure 2 | Indications of the definition of the ROIs for parameter analyses. (A) prostate cancer with EPE; A1,2: The lesion appeared hypointense on the T2-weighted image and the ADC map, ADC =0.92×10−3 mm2/s; A3: APT-weighted image with a T2WI overlay (APT =3.76%); (B) prostate cancer confined within the organ: B1,2: The lesion appeared hypointense on the T2-weighted image and the ADC map, ADC =1.26×10−3mm2/s; A3: APT-weighted image with a T2WI overlay (APT =3.32%); ADC, apparent diffusion coefficient; APT, amide proton transfer; TEPE, Extraprostatic extension; ROI, region of interest. T2WI, T2-weighted imaging.







The length of the capsular contact and tumor size

The radiologists evaluated each tumor foci for EPE utilizing a Likert scale that was previously described to increase the probability for EPE (5). T2-weighted imaging (T2WI) was utilized to measure the length of contact of each dominant lesion with the overlying capsule, using the curved measurement tool within our Picture Archiving and Communication System. During the independent review by both radiologists, the maximum transverse dimension of each tumor was measured on axial T2W-MRI.





Pathologic assessment

The prostate specimens obtained from radical prostatectomy of each patient underwent formalin fixation, followed by standard step-sectioning with preparation of hematoxylin and eosin slides. The largest single area of tumor within the radical prostatectomy specimen was identified and mapped onto the gross digital images to enable accurate localization of tumors for quantitative measurements using MRI. This focus is referred to as the “dominant tumor focus” (11). In the current study, EPE was defined as the presence of any type of extracapsular extension. Organ confined disease was defined as the absence of these three conditions. The presence of EPE was recorded as 1, otherwise was recorded as 0. According the presence of EPE, individuals were divided into EPE group and tumor organ confined group.





Statistical analysis

The normal distribution of the data was tested by Kolmogorove Smirnov method. After testing for normality, nominal data are presented as mean with standard deviation (SD). MRI parameters were compared between two groups using the independent sample t-test. Binary Logistic regression was used to screen predictors of EPE. Factors with P<0.05 were used as the input variables for the receiver operator characteristic (ROC) curve analysis. First, the ROC analysis was performed to assess the diagnostic performance of each variable for predicting EPE. Second, 3 combined model were established: model I (ADC + LCC + tumor size), model II (APT + LCC + tumor size), and model III (APT + ADC + LCC + tumor size) were established. Finally, the Youden index was calculated according to the following equation: Youden index = sensitivity + specificity –1. The cutoff value, sensitivity and specificity was selected based on the maximum value of the Youden index. P value<0.05 was considered a statistically significant result. All data were analyzed at the two-sided 5% significance level using SPSS 21.0.0 (IBM Corp., Armonk, NY, USA).






Results




Demographics characteristics and MRI derived parameters

Patient demographic and MRI-derived parameters are detailed in Table 2. The inclusion criteria were met by a total of 111 patients in this study. Of these, 6 patients were excluded due to inadequate image quality in at least one MR sequence for diagnostic purposes, and 8 patients were excluded for the absence of pathological results. Ultimately, 97 PCa patients, consisting of 50 patients in the EPE group and 47 patients in the organ-confined group, were selected for analysis. The age distribution was similar between the two groups, whereas significant differences in LCC, tumor size, APT, and ADC values were observed (p<0.001).


Table 2 | Patient characteristics and comparison of parameters between two groups.







Binary logistic analysis of the association of metrics with EPE

Binary logistic analysis results were showed in Table 3. APT, ADC, tumor size and the LCC were all independent predictors of EPE. Odds ratio (OR) of APT, ADC, tumor size and the LCC were 4.362(1.700-11.194), 0.235(0.065-0.841), 1.264 (1.087-1.470), 1.398 (1.186-1.674), respectively, P value<0.05 for above mentioned parameters.


Table 3 | Association of radiologic parameters with EPE.







ROC analysis

ROC analyses for assessing the diagnostic efficacy of MRI derived parameters were summarized in Figure 3, Table 4.




Figure 3 | ROC analyses for assessing the diagnostic efficacy of MR parameters for predicting EPE. (A) ROC analyses for assessing the diagnostic efficacy of MR parameters for predicting EPE. (B) ROC analyses for assessing the combined models for predicting EPE. APT, amide proton transfer; ADC, apparent diffusion coefficient; LCC, length of capsular contact; EPE, Extraprostatic extension; Combined Model I, LCC + tumor size + ADC; Combined Model II, LCC + tumor size + APT; Combined Model III, LCC + tumor size + ADC + APT. Bold font represents statistical significance.




Table 4 | Diagnostic Performance of variables for predicting EPE.



The area under the characteristic (AUC) curve values for APT, ADC, tumor size, and LCC were 0.752, 0.665, 0.700, and 0.756, respectively. The optimal cutoff values for APT, ADC, tumor size, and LCC were 3.65%, 0.97×10−3mm²/s, 17.30 mm, and 10.78 mm, respectively. The sensitivity and specificity values for APT, ADC, tumor size, and LCC were as follows: APT (76%/89.4%), ADC (80%/59.6%), tumor size (54%/78.9%), and LCC (72%/66%). (Figure 3A).

The AUC values for Model I, Model II, and Model III were 0.803, 0.845, and 0.869, respectively. The sensitivity and specificity values for Model I, Model II, and Model III were as follows: Model I (74%/72.3%), Model II (82%/72.5%), and Model III (84%/80.9%). (Figure 3B).






Discussion

This study demonstrated that mp-MR parameters, including APT, ADC, tumor size, and LCC were significantly associated with EPE. Different parameters had varying levels of sensitivity and specificity. The diagnostic accuracy of the combined models of the aforementioned parameters outperformed that of any parameter alone. More importantly, the combination models balanced the sensitivity and specificity of those variables for predicting EPE.

The LCC has been reported to provide fair to good performances for predicting EPE (5, 12). The PIRADS V2.1 guidelines introduced the MR imaging finding of a tumor-capsule interface greater than 10mm, linking it to EPE (13). The LCC had a moderate diagnostic performance in detection of EPE has become a consensus of researchers. In the present study, we reported a AUC of 0.756 (95% CI:0.661-0.851) for predicting EPE, the sensitivity and specificity were 72% and 66%, retrospectively. Several previous studies were in consistent with our results. Washino et al. reported that the LCC (odds ratio 1.079, p = 0.001) were independently associated with EPE and the AUC for detecting EPE was 0.70 (14). Onay et al. reported that the LCC provides fair diagnostic performance (AUC: 0.73) and reveals moderate sensitivity (69%) and specificity (68%) for detecting EPE in PCa (15). In another study, Onay et al. found that at the most optimal threshold of 13.5 mm, the sensitivity and specificity in predicting EPE were 75% and 52%, respectively (16). A recent meta-analysis reported that summary sensitivity and specificity were 0.79 (95% CI: 0.73–0.83) and 0.67 (95% CI 0.60–0.74), respectively, and the summary ROC was 0.81 (95% CI: 0.77–0.84) (17). Another meta-analysis summarized that the pooled sensitivity and specificity were 0.79 (95% CI 0.75–0.83) and 0.77 (95% CI 0.73–0.80) using LCC for predicting EPE (18).

However, different studies also show the heterogeneity of the results. The first is the heterogeneity of the degree of association between LCC and EPE, the association of every 1 mm increase in the measurement of LCC with the increase in the risk of EPE range from 4% to 13% (19, 20). The second is the heterogeneity of sensitivity and specificity. A recent meta-analysis showed the sensitivity ranging from 59% to 91% and the specificity from 44% to 88% in those included articles (17). Finally, the optimal threshold is associated with the balance between the sensitivity and the specificity (5, 12, 15). The recent studies that evaluated LCC as an indicator for EPE established quite different median values and thresholds, (ranging from 6 mm to 20 mm), and there is currently no consensus on the best cutoff value for predicting EPE. Consequently, determining the optimal threshold has become an essential topic of debate (16). Valentin and colleagues highlighted that specific LCC cutoff values correspond to varying levels of sensitivity and specificity; for instance, increasing the LCC cutoff from 7.55 mm to 20.5 mm reduces sensitivity from 98.3% to 45% and boosts specificity from 42.1% to 88.2% (21).

Previous studies have demonstrated an association between tumor size and EPE, with our study finding a significant relationship between larger tumor size and increased EPE risk (OR: 1.264, 95% CI: 1.087-1.470, p<0.001). Our findings align with those of Lim and colleagues, who concluded that a simple measure of maximal transverse tumor size is a reliable means of diagnosing EPE (22). According to PI-RADS v.2 guidelines, the optimal threshold for predicting EPE is 15 mm; In addition, two other studies have found that a cutoff value between 16 mm and 18 mm provides the best diagnostic performance (23, 24). These studies were consistent with our results. In our study, the optimal cutoff value was 17.30 mm, which aligns with the size threshold proposed by two other studies (5, 22). In the present study, we reported a AUC of 0.756 (95% CI:0.661-0.851) for predicting EPE, the sensitivity and specificity were 54% and 74.9%, retrospectively. Schieda et al. indicated that tumor size of 16 mm resulted in an AUC value of 0.77 (95% CI: 0.58-0.95) for diagnosing EPE using tumor size (24). The optimal cutoff value supported by Li et al. for diagnosing EPE through tumor size was 15 mm, yielding sensitivity and specificity values of 67% and 70%, respectively (18). According to Li et al., based on meta-analysis of five studies, the summary sensitivity and specificity values for diagnosing EPE using tumor size were estimated to be 62% and 75%, respectively (18). Furthermore, some studies reported greater specificity than sensitivity in predicting EPE through tumor size. Lim et al. suggested that tumor size of 15 mm resulted in a sensitivity/specificity of 72.4%/64.9% for diagnosing EPE, and supported that objective evaluation through tumor size improved sensitivity of diagnosis compared to subjective assessment (22). In the study by Schieda et al., the sensitivity and specificity values of tumor size for predicting EPE were estimated as 69.2% and 66.7%, respectively (24).

Currently, the relationship between the LCC, tumor size and the amount of EPE cannot be comprehensively understood yet. Results variability in different articles may be due to factors such as tumor grading, MRI readers’ experience, and differences in the signal acquisition coil (17). Additionally, variability in results may also be caused by differences in data measurement methods and location. For example, using a curvilinear method to measure LCC may result in more accurate results than using linear measurements (17). Quantitative analysis provides several potential benefits, such as improving accuracy, interobserver agreement, and histopathology correlation when compared to subjective assessments that mainly depend on radiologists’ personal pattern and experience (24). Nonetheless, various measurement methods, tools, MRI techniques, and sequences can affect the final results and, consequently, lead to widely varied optimal cutoff values (6, 8). LCC, tumor size, and ADC exhibited moderate diagnostic performance in predicting EPE. Among these measurements, LCC presented greater accuracy. Nevertheless, establishing an optimal cutoff threshold for clinical application is required due to the wide variation in values (18). LCC and tumor size improved sensitivity but reduced specificity compared to subjective analysis, with no difference in overall accuracy (5, 22). Tumor size seems to be the least critical independent variable. However, whether tumor size is an independent predictor of prognosis after considering grade, stage, and margins remains controversial (24).

However, the dominance of grade over pathological stage is evident. A tumor with Gleason Score (GS) 6 and EPE has a relatively favorable prognosis compared to a GS 9-10 tumor confined within the organ. High-grade cancer often involves seminal vesicle invasion and lymph node metastasis (25). Consequently, quantitative parameters that reflect the pathophysiological features of PCa have the potential to improve the accuracy of predicting EPE. Previous studies demonstrated that ADC and APT can reflect tumor tissue atypia, tumor cell increment, and tumor grade (10, 26). Studies have revealed that as tumor grade increases, there is a corresponding trend of increasing cellular density, loss of normal glandular structures, and a decrease in the extracellular space. This limits water diffusivity and results in lower ADC values (26). Kim et al. have found mean ADC to be useful in diagnosing EPE (27). Granja et al. predicted EPE using ADC and obtained a sensitivity of 83% with a specificity of 61% at the cutoff value of 0.87×10−3 mm2/s (28). While Ito et al. reported a sensitivity of 84.2% and a specificity of 59.0% at the cutoff value of 0.63×10–3 mm2/s (29). The reported sensitivity and specificity in above mentioned studies were similar to our results. According to a meta-analysis, the pooled sensitivity was 80.5%, while specificity was 69.1% (30). This sensitivity is similar to our result, but our specificity for predicting EPE with ADC values was lower (59.6%). Krishna et al. argued that the largest cross-sectional diameter and tumor size, ADC values tend to have elevated sensitivity rather than specificity (5, 22). Ito et al. reported that the combination of LCC and ADC cutoff values yielded an area under the curve (AUC) of 0.82. Their specificity (84.6%) and accuracy (81.0%) of the combined values were superior to their individual values (29). In our current study, the combination of ADC with LCC and tumor size (Model I) yielded an AUC of 0.803. This combination balanced the heterogeneity of sensitivity and specificity. In addition, it has been reported that mean ADC values alone are not useful for assessing EPE (11). Lim et al. reported that ADC entropy improved EPE prediction sensitivity, but mean ADC values and ADC ratio of tumor were not associated with EPE (11). This discrepancy may be related to the grading of tumors in the patients included and the sample size. Including a more balanced distribution of sample sizes for different Gleason grades could have improved the results for diagnosing EPE with ADC values (11). In addition, the heterogeneity of PCa differentiation is another possible reason, where lower percentile ADC values reflect poorly differentiated tumor tissue more easily, thus reflecting the biological activity of PCa in different populations (31).

Similar to ADC, APT is also an MR imaging marker that can reflect information about tumor pathophysiology. APT imaging is specific in detecting not only cellular density but also the rate of tumor cells proliferation, which elevates the overall protein levels in the tumor (9). APT values had been approved to be a discriminator of PCa in previous studies (10, 32). There is evidence indicating that APT imaging accurately reflects PCa aggressiveness. APT imaging reflects the elevated protein and peptide concentrations because of abnormal tumor cell proteosynthesis, mitotic activity, and altered cell metabolism, particularly in high-grade tumors (33). According to Yin et al., APT imaging accurately diagnoses PCa and strongly correlates to the GS, which is crucial in assessing the risk associated with PCa (34). Jia et al. suggest that APT imaging is a reliable method of distinguishing between low and high-grade cancers and detecting the difference in cancer aggressiveness in PCa management. In differentiating benign from malignant tissue, ADC MRI might be preferable, while APT MRI could be used to evaluate tumor aggressiveness in patients with PCa (35, 36). As an example, the AUCs were 0.983 for ADC and 0.601 for APT in distinguishing malignant tumors and benign regions. For separating low-grade tumors from high-grade tumors, the AUCs were 0.912 for APT and 0.734 for ADC (32). Qin et al. Reported that the combination model of APT and ADC can improve the diagnostic efficacy in differentiating the grades of PCa (9). Hu et al. showed that the combination of APTw and intravoxel Incoherent Motion Imaging, could enhance diagnostic performance in predicting PCa metastasis (37). Our research proved this, demonstrating an AUC of 0.845 for LCC and tumor size combination, and when combined with APT (Model II), the AUC was 0.869 after further inclusion of ADC (Model III). More importantly, the combination model balanced the sensitivity (84%) and specificity (80.9%). According to Qin et al., APT had higher specificity and lower sensitivity in PCa grading than did ADC. Conversely, ADC had higher sensitivity and lower specificity. Therefore, the combination of APT and ADC can complement each other in PCa grading, achieving higher accuracy (9). Compared to the values of ADC or APT, the combination model achieved a better balance of sensitivity and specificity (9). The balance of sensitivity and specificity of the combined model may be related that ADC and APT reflect different pathophysiological mechanisms of prostate cancer. ADC is mainly influenced by water diffusion at the cellular level. APT imaging reflects increased concentrations of proteins and peptides in mitotic activity and cellular metabolism caused by abnormal protein synthesis in tumor cells, which is commonly altered in high-grade tumors. Theoretically, APT imaging may be more specific to detect not only cell density but also the rate of tumor cell proliferation leading to overall mobility rising protein levels.

On the clinical setting, the results of this study have significant clinical applications, as a high sensitivity or specificity reading might be useful in different clinical settings (17). Accurate preoperative prediction of EPE is important for the choice of clinical treatment options. Patients with prostate cancer can undergo nerve-sparing radical resection, while patients with EPE may require radical resection without nerve-sparing, or neoadjuvant therapy. High sensitivity is required when selecting optimal patients choosing candidates for nerve-sparing radical resection. On the other hand, high specificity could be favored when there is a need to guard against overtreatment (38). Consequently, we believe that based on our study’s findings, APT imaging and its combined model would provide additional value in accurately assessing EPE, particularly in clinical settings where there is a need for the balance of sensitivity and specificity. In this study, EPE was predicted by some imaging features such as tumor size, LCC, ADC, and APT. Measuring these features can improve the robustness of EPE predictions, as they have been shown to be independent predictors of EPE. But more studies are needed to standardize and further refine existing MRI protocols to enhance the detection of EPE and subsequent risk stratification. For example, some nomograms and scoring systems have been developed to predict EPE, but their accuracy varies (8). Using the current PI-RADS v2 MRI staging guidelines has high specificity but lacks sensitivity (8). APT and its combined model demonstrate potential value in predicting EPE, but its clinical utility needs to be further verified in subsequent studies.

There are still several potential limitations of our study. First, the present study used only a dichotomous scheme of presence or absence for EPE, and did not study the predictive efficacy of the parameters of the MRI sources for different grades of EPE. Second, this study did not include other variables such as PCa GS score and clinical stage that might affect the predictive efficacy of EPE. Third, The sample size in our study was relatively small as it was a single-center cross-sectional observational study. Before introducing APT to predict EPE in clinical practice, a longitudinal study with a larger sample size will be necessary in the future.





Conclusion

APT, ADC tumor volume and LCC were identified as independent predictors for predicting EPE. APT imaging and its combined model could provide added value in predicting EPE. More importantly, the combination model balanced the sensitivity and specificity. These findings have important clinical implications in the selection of appropriate management strategies for clinically significant PCa.
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Introduction

A newly developed clinical organ-targeted Positron Emission Tomography (PET) system (also known as Radialis PET) is tested with a set of standardized and custom tests previously used to evaluate the performance of Positron Emission Mammography (PEM) systems.





Methods

Imaging characteristics impacting standardized uptake value (SUV) and detectability of small lesions, namely spatial resolution, linearity, uniformity, and recovery coefficients, are evaluated.





Results

In-plane spatial resolution was measured as 2.3 mm ± 0.1 mm, spatial accuracy was 0.1 mm, and uniformity measured with flood field and NEMA NU-4 phantom was 11.7% and 8.3% respectively. Selected clinical images are provided as reference to the imaging capabilities under different clinical conditions such as reduced activity of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and time-delayed acquisitions. SUV measurements were performed for selected clinical acquisitions to demonstrate a capability for quantitative image assessment of different types of cancer including for invasive lobular carcinoma with comparatively low metabolic activity. Quantitative imaging performance assessment with phantoms demonstrates improved contrast recovery and spill-over ratio for this PET technology when compared to other commercial organ-dedicated PET systems with similar spatial resolution. Recovery coefficients were measured to be 0.21 for the 1 mm hot rod and up to 0.89 for the 5 mm hot rod of NEMA NU-4 Image Quality phantom.





Discussion

Demonstrated ability to accurately reconstruct activity in tumors as small as 5 mm suggests that the Radialis PET technology may be well suited for emerging clinical applications such as image guided assessment of response to neoadjuvant systemic treatment (NST) in lesions smaller than 2 cm. Also, our results suggest that, while spatial resolution greatly influences the partial volume effect which degrades contrast recovery, optimized count rate performance and image reconstruction workflow may improve recovery coefficients for systems with comparable spatial resolution. We emphasize that recovery coefficient should be considered as a primary performance metric when a PET system is used for accurate lesion size or radiotracer uptake assessments.





Keywords: organ-targeted PET, PET, PEM, NST, recovery coefficient




1 Introduction

The diagnostic capabilities of organ-targeted Positron Emission Tomography (PET) systems depend on the ability to reconstruct the true radiotracer activity within a lesion and on the conspicuity of small lesions at different injected activities. The former is of particular importance in evaluating response to neoadjuvant systemic treatment (NST) in breast cancer patients - chemotherapy or hormonal therapy administered prior to surgical treatments (1). Neoadjuvant treatment is increasingly being used to downstage and downsize tumors before resection surgery and thus to facilitate breast conservation. Early and accurate assessment of the tumor’s response to NST (i.e., the metabolic decline and the reduction in size) can help to determine a personalized treatment regimen to achieve optimal response prior to the surgery and to avoid the toxicity associated with ineffective treatments. A decline in tumor metabolism in response to NST can occur earlier than apparent changes in tumor size and anatomy [or may not correlate with anatomical changes at all (2)], thus making anatomical imaging modalities not well suited for the purpose of evaluating early treatment response. In contrast, PET molecular imaging with 18F-fluoro-2-deoxyglucose (18F-FDG) may better reflect early treatment response by its ability to detect a decrease in tumor glucose metabolism preceding a decrease in its anatomical size (3, 4).

Recent trends to use NST for tumors smaller than 2 cm in size (5) have put a stringent requirements on PET/CT (Computed Tomography) performance for quantitative assessment of the metabolic changes in tumors through measurements of standardized uptake value (SUV). In fact, when 18F-FDG uptake in small tumors is measured, the partial-volume effect (PVE), a consequence of finite spatial resolution, can lead to underestimation of activity concentrations in reconstructed PET images due to spill-over of counts between different regions within the image (6). The PVE becomes significant for an imaging system when the dimensions of a tumor are less than two to three times the full width half maximum (FWHM) point spread function (PSF) of the system (7), as this can strongly influence the determined size and uptake of the lesion. Therefore, with 6 mm spatial resolution of most modern PET/CT scanners, PVE can affect SUV measurements and activity reconstruction in shrinking tumors that were around 2 cm prior to treatment. This may produce inaccuracies in assessing response to neoadjuvant treatment: a shrinking tumor will look larger but less aggressive than it really is due to signal spill-over from lesion-to-background and degradation of recovery coefficient. Alternatively, if NST results in partially necrotic centers within tumors, signal spill-in will falsely indicate a greater extent of viable tissue within the inactive parts of the tumor than in reality. The PVE is quantitatively assessed by the ratio between image-derived and true activity measurements, commonly termed the recovery coefficient (RC), and depends on several factors which include the spatial resolution, the count rate efficiency, and the reconstruction algorithm and parameters (8).

The development of a high-sensitivity organ-targeted Positron Emission Tomography (PET) system – the “Radialis PET camera” – has developed from the clinical need to reduce the radiation dose associated with functional (molecular) imaging while preserving the small lesion detection capability inherent to organ-targeted PET (9–12). We have recently demonstrated that the Radialis PET camera has improved sensitivity, capable of significant dose reduction (factor of 10) in comparison to commercial whole-body (WB) PET scanners (12). Standardized measurements were performed with NEMA NU-4 procedures adapted for the planar PET detector geometry, including spatial resolution, sensitivity, and system count rates. Selected clinical breast cancer images shown below illustrate the system performance within a range of conditions including varied radiation doses (37-370 MBq), the presence of chest wall lesions, and lesion detectability in comparison to WB-PET, full field digital mammography (FFDM), and breast MRI. The increased sensitivity shown by the NEMA NU-4 tests and the high-efficiency radiotracer detection demonstrated with the clinical images were achieved by the development of a new type of modular detector architecture with four-side tileable sensor modules based on high-gain Silicon Photomultiplier (SiPMs) photosensors (13).

Standardized measurements within NEMA NU-4 are important to compare the Radialis PET camera to similar devices, however these standards were developed without consideration of the latest hardware and software developments and therefore have faced recent criticism (14). Indeed, the NEMA NU-4 requirement of back-projection image reconstruction does not represent the methods used in current real-world, clinical applications. Therefore, the described tests have potential flaws in accurately representing the system performance metrics during typical use (12, 14). In addition, since NEMA NU-4 standard tests were developed for preclinical imaging, they do not account for unique aspects of clinical organ-targeted PET [e.g., relatively large field-of-view (FOV)] and detector architectures, including planar detectors and modular, adjustable gantry. Finally, the NEMA NU-4 phantom imaging conditions distinctly differ from clinical use and do not provide needed insights into true clinical capabilities and limitations.

A comprehensive assessment of imaging performance in organ-targeted PET requires additional tests that characterize imaging parameters not covered by NEMA NU-4 standard and which are more suitable for the intermediate FOV and modern iterative image reconstruction methods. Therefore, we follow the methodology developed and reported by others (11, 15, 16) to perform characterization of spatial resolution and linearity, flood field uniformity, and RC, with evaluation of NEMA NU-4 image quality phantom also included. The ability to recover the activity of small structures in the presence of background radioactivity is assessed using micro-spheres of different sizes in a hot background which mimic lesions in the body. The tests of RC, flood field uniformity, contrast to noise ratio (CNR) and the Rose Criterion (17) are of importance for assessing the ability of the system to apply SUV analysis to lesions of different size and for assessing uptake of a radiopharmaceutical.

Additionally, the modular design of our system may allow variability in the electronic function between different modules. This variability may cause spatial distortions along the FOV, as well as non-uniformity between different modules. Thus, experiments with line sources (rather than point sources used in NEMA NU-4) and large-area flood phantoms can serve to better identify any discrepancies in spatial resolution, signal to noise ratio, and uniformity within the entire image space.

Finally, we present selected clinical images with quantification of SUV and 3-D visualization of abnormal metabolic tissue. The measurements reported here provide a performance assessment of the Radialis PET camera, highlighting its capabilities for quantitative PET imaging.

For a variety of emerging clinical applications, the assessment of the size and activity uptake in a lesion is not less important than detection of the lesion itself. While spatial resolution is one of the main specifications that is used to characterize PET system performance, high spatial resolution is a required but not a sufficient criterion for accurate contrast recovery. We emphasize that systems with the same or comparable spatial resolution may report different recovery coefficients and different spill-over ratios. Here, we provide PET system performance metrics measured with standardized NEMA protocols, as well as adapted tests used by others (11, 15, 16) and discuss the differences in system performances with special emphasize on recovery coefficient in small lesions.




2 Materials and methods

The organ-targeted PET camera described herein utilizes an adjustable and versatile planar detector configuration for imaging different organs including the breast, prostate, and heart. The device employs two planar detector heads mounted on a movable gantry (Figure 1). Each detector head contains 12 four-side tileable (mosaic) sensor modules that are arranged against each other in a 3x4 array (12) to assemble a seamless, uniform sensing area measuring ~230 mm × ~173 mm (Figure 2). The detector heads are enclosed in a thin housing which permits the active imaging area to be just 4 mm from the housing edge. The adjustable gantry permits positioning of the detectors proximal to the organ of interest. Detailed information on the Radialis PET technology can be found in reference (12).




Figure 1 | Configuration of the organ-targeted PET Camera with two planar detector heads for positioning on either side of an organ.






Figure 2 | Detector schematic showing the overall size of the detector heads with 3x4 array of sensor modules per detector head and the axis convention for measurements.



The timing and energy windows for image acquisitions are set at 4 ns and 350-700 keV respectively. Detector separation was configured according to the clinical case or phantom dimensions and ranged between 60 - 135 mm. An iterative maximum likelihood expectation maximization (MLEM) algorithm with 15 iterations is used for image reconstruction. The number of iterations was selected to optimize visualization of small objects while maintaining acceptable flood field uniformity. Default clinical reconstruction parameters are applied to all images unless otherwise specified, including median root prior (MRP) filter (18), attenuation and scatter correction, and solid angle allowance filter (12). Reconstructed images are saved in DICOM format with 24 axial image slices in the XY plane. The image matrix is defined by a pixel size of 0.4 mm × 0.4 mm. The voxel dimension is determined by the detector separation divided into 24 equal components and may vary among acquisitions.



2.1 Spatial resolution & linearity

The spatial resolution measurement was previously conducted using a Na-22 point source in accordance with pre-clinical NEMA standards (12). Here, the spatial resolution is assessed following whole-body PET (WB PET)standards by analyzing the line-spread function (LSF) of a line source of radioactivity in Figure 3 (19–21). LSF offers a more comprehensive characterization of system performance as it accounts for the entire spatial response profile. This approach provides a more accurate representation of spatial resolution, particularly for organ-targeted PET systems with comparatively large fields of view (FOV).




Figure 3 | Schematic diagram of the fillable capillary phantom (top) and spatial linearity phantom (bottom) with markings for the line source separation and phantom dimensions.



A capillary tube, with a length of 44.4 cm and an inner diameter of 1.2 mm (which is approximately half of the anticipated spatial resolution), was filled with an 18F-FDG solution. The line source was positioned halfway between the detectors axially and centrally in the y-axis, such that the source extends along the entire length of the x-axis FOV. Detected coincidence events are collected until at least 1 million events are recorded. The reconstructed image is analyzed by taking the LSF orthogonal to the line source axis. A gaussian fit is applied and the full width at half maximum (FWHM) for the LSF defines the spatial resolution quoted here (22). LSF’s were taken in 10 positions across the line source spanning the complete FOV. The average value of the FWHM was reported as the spatial resolution for the in-plane and cross-plane FOVs.

Spatial linearity was measured with a linearity phantom shown in Figure 3. Six capillary tubes were filled with 18F-FDG solution and arranged in a plastic jig to ensure parallel positioning with a center-to-center distance of 20 mm.

Image acquisition for the linearity phantom was performed in two different positions:

	In the central XY plane (z = 0 mm), with capillaries parallel to y-axis.

	In the central XY plane (z = 0 mm), with capillaries parallel to x-axis.



Measurements of spatial linearity are derived from pixel values perpendicular to the length of the capillary tubes. The peak pixel value location was determined for each parallel capillary and the separation between each peak was plotted. Variation in reconstructed peak position from known spacing is reported. The spatial accuracy of the reconstructed source is quantified as the difference in average reconstructed position from expected position. The acquisitions were performed at a detector separation of 100 mm with the phantom centered between detectors.




2.2 Flood field uniformity

Measurement of flood field uniformity was performed using a flat phantom which is dimensionally greater than the FOV in order to assess imaging effects at the edge of the FOV (23, 24). The phantom was filled with 100 µCi 18F-FDG activity and was positioned parallel to and equidistant from each detector. Image acquisition of at least 5 million coincidence events was performed with a detector separation of 80 mm. The image of the flood phantom was reconstructed with the default clinical parameters, using images from the first iteration and fifteenth iteration for analysis. A central ROI of 150 mm × 100 mm was chosen within which the statistical measurements were performed.

Measurements are reported for the mean, maximum, and minimum pixel value, and percentage standard deviation (%STD) as a measurement of noise. These values were calculated based on the methods described for determining the uniformity of the NEMA NU-4 small animal phantom (25) and are further explained in section (D) below. The uniformity analysis was performed and used for per pixel efficiency corrections.




2.3 Recovery coefficients

We compared RC with 4:1 and 10:1 lesion to background activity concentrations for, Radialis PET, PEM Flex Solo II (11) and MAMMI PET (16) commercial organ-dedicated PET scanners. Measurements were performed using micro-spheres of radioactivity placed between two 500 mL IV bags filled with background activity. The acquisition layout is presented in Figure 4. The spheres, with inner diameters of 4, 5, 6, and 8 mm, were each filled with the same activity concentration of 18F-FDG. The IV bags were also filled with 18F-FDG activity. Activity concentration of the background was 5 kBq/mL and 0.379 kBq/mL, with sphere activity concentrations of 20 kBq/mL and 3.79 kBq/mL, respectively. Image reconstruction was performed with the default clinical parameters. Detector separation was set to 90 mm to provide slight compression to the IV bags and to mimic clinical imaging conditions, where radioactive tissue is in contact with the detector surface. It should be noted that measurements for the PEM Flex Solo II scanner were performed with a similar experimental configuration as in Figure 4, with hot spheres of radioactivity sized from 8 mm to 30 mm between background activity at a 4:1 ratio with background activity of 5kBq/mL (11). Measurements for the MAMMI PET were performed using a cylindrical phantom with hot cylinders in uniform background activity at a 10:1 ratio with background activity concentration of 6 kBq/mL and hot cylinders filled with 58 kBq/mL activity concentration (16).




Figure 4 | Schematic diagram of the acquisition layout for the recovery coefficient experiment showing hot spheres of radioactivity positioned between two IV bags for background activity and immobilized between detector heads. Note that the schematic is not to scale.



RCs for each micro-sphere were defined as relative and absolute measures. Relative RCs (Equations 1 and 2) give the ratio between measured pixel values for hot-spheres and background IV bag regions, while absolute RCs (Equation 3) relate the measured activity concentration values to the true activity concentrations measured by a dose calibrator. Maximum image intensity values were measured within a circular region of interest (ROI) around each sphere and the mean image intensity values are calculated within a circular ROI proportional to the sphere diameter and in the uniform part of the IV bag for background. These values were recorded for each sphere in the image and plots were created for the recovery coefficients as a function of sphere diameter and activity concentration.







The percent contrast was also calculated for the hot micro-spheres positioned between two radioactive IV bags. The percent contrast in hot lesions (QH) is calculated as follows:



Here, CH and CB represent mean activities in hot and background regions, respectively, while aB and aH represent true activities measured with a dose calibrator (16).

The contrast to noise ratio (CNR) was calculated based on the absolute difference between the mean counts in the hot spheres and the background (for the slice with the maximum hot sphere counts) and was normalized to the standard deviation of the background (SDB, Equation 5). This value was used to determine the sphere detectability based on the Rose Criterion (17), which states that objects with CNR < 5 are considered not detectable. Based on this, “pass” or “fail” values for detectability of each sphere in the three lesion-to-background ratio (LBR) acquisitions were reported.






2.4 Image quality phantom

NEMA NU 4 image quality phantom (Figure 5) contains hot and cold objects of different sizes allowing to complement and verify the measurements of RC as well as to assess image uniformity and the spill-over ratio (SOR) in air and water for the default clinical reconstruction parameters. As shown in Figure 5, the phantom volume can be divided into two regions: a solid part with five fillable rods of different diameters to determine the activity recovery coefficients and to assess spatial resolution and partial volume effects of the scanner; and a fillable chamber with two hollow cylinders to be filled with nonradioactive water and air to determine the spill-over ratio in water and air, respectively. A uniform part of this fillable chamber is used for the uniformity and noise measurement, i.e., to determine the mean, maximum and minimum activity concentration and respective %STD similarly to how this was performed for the flood phantom in Section B.




Figure 5 | Phantom design of the NEMA NU-4 Image quality phantom. Source: https://www.qrm.de/en/products/micro-pet-iq-phantom/.



The total activity within the phantom was 1.87 MBq. Acquisitions were performed with the phantom vertically oriented and at a detector separation of 110 mm to accommodate the mounting fixture. The acquisition was calibrated to acquire at least 10 million total events for accurate image reconstruction and processing. The image of the phantom was reconstructed with the default clinical reconstruction parameters, offering additional insights into the performance of attenuation and scatter correction. In line with the NEMA NU-4 protocol (25), the noise within the uniform phantom region serves as an indicator of the imaging system’s signal-to-noise ratio performance. Additionally, the uniformity observed in this region indicates the system’s effectiveness in terms of attenuation and scatter correction. Moreover, measuring activity in the cold regions provides crucial information regarding scatter correction performance.

The uniformity measurement is performed in the central uniform region of the phantom and is based on a cylindrical volume of interest (VOI) with diameter of 22.5 mm and height of 10 mm. Values for the average activity concentration, maximum and minimum voxel values in VOI, and %STD are measured and reported.

The recovery coefficient measurement is performed on the five hot rods using a circular ROI with diameters twice the physical diameter of the rods. The pixel position with the maximum value in each ROI was identified, through which a transverse line profile was drawn. The mean pixel values measured for each profile are divided by the mean activity concentration measured in the uniformity calculation to determine the recovery coefficient for each hot rod in accord with NEMA protocols (25).

The standard deviation of the recovery coefficients per NEMA NU-4 is calculated as follows:



A cylindrical VOI with diameter of 4 mm and height of 7.5 mm was selected in the central region of the cold (i.e., the air- and water-filled) chambers to assess the accuracy of the applied corrections. Indeed, although both chambers are nonradioactive, scattered annihilation photons and partial volume effect (PVE) due to finite spatial resolution may result in apparent activity in the cold chambers that is characterized by SOR values (26). Explicitly, the SOR was defined as the ratio of the mean in each cold chamber to the mean of the hot uniform area.

The standard deviation of the SOR is calculated as follows:



Both RC and SOR are theoretically limited between 1 and 0.




2.5 Clinical imaging demonstration

The clinical performance of the camera is demonstrated through image acquisition in breast cancer patients at varying injected doses of 18F-FDG within the framework of a clinical study at the Princess Margaret Cancer Centre of the University Health Network (UHN-PMCC) in Toronto, Canada (27). Participants with a newly diagnosed breast cancer were injected with 18F-FDG activities between 37 and 307 MBq (activity was chosen randomly and did not depend on the clinical case). The image acquisition time was fixed for each scan to be 10 minutes. An uptake period of 60 minutes was allocated for each participant prior to image acquisitions. An optional second image set was acquired for patients who opted to return for a subsequent imaging session where the 18F activity has decayed to approximately 1/4 of the initial activity (~4 hours post-injection). Image reconstruction was performed using default clinical parameters. For selected images, image segmentation and 3-D lesion volume analysis was performed using an open-source DICOM viewer (3D-Slicer, PET-IndiC).

All clinical images were reviewed in consensus by two fellowship-trained breast radiologists blinded to cancer location. Findings were correlated with histopathology as ground truth. While the pilot clinical study involved 36 patients, and the results can be found in Ref (28), this work specifically presents images of three selected patients. These cases were chosen to emphasize the advantages of organ-targeted PET in addressing clinical challenges that are pertinent to the imaging performance characteristics assessed in this work.





3 Results



3.1 Spatial resolution & linearity

Reconstructed images of the capillary phantom were used for measurements of spatial resolution. The line cross-sectional profile at 10 different points, evenly distributed along the entire length of the phantom, was approximated by a Gaussian function, and the mean spatial resolution was measured from the average of individual FWHMs. The mean spatial resolution across the in-plane FOV is 2.3 ± 0.1 mm, and the mean Z-axis resolution is 7.9 ± 0.7 mm. The acquisitions were performed at different detector separations between 90 - 135 mm and the results were not dependent on the separation distance.

Spatial linearity measurements were performed on reconstructed images of the linearity phantom shown in Figure 3. The mean spatial accuracy in X and Y axes is found to be +/- 0.1 mm. This performance is consistent across and at the edges of the FOV and the results were not dependent on the detector separation distance.




3.2 Flood field uniformity

Image uniformity has been assessed in response to uniform exposure across the entire FOV with the flood field phantom. Reconstructed images of flood sources were analyzed for the first and 15th MLEM iteration and uniformity values are summarized in Table 1.


Table 1 | Summary of pixel value uniformity results for the 1st and 15th iterations.



For the 15th iteration used as a default reconstruction parameter, the reconstructed image of the flood field phantom has a uniformity across the FOV of 11.7% standard deviation from the mean value.




3.3 Recovery coefficients

Reconstructed images of four micro-spheres placed between two 500 mL IV bags (used as uniform background) are shown in Figure 6 for lesion-to-background activity concentrations of 4:1 and 10:1. Corresponding point-spread functions across the hot spheres are used for calculation of the recovery coefficients from the measured maximum and mean values in each lesion and IV bag background. Recovery coefficients for different sphere sizes across all sphere-to-background ratios are summarized in Table 2 for comparison with PEM Flex Solo II.




Figure 6 | Reconstructed images showing the hot spheres and IV bags at sphere to background activity concentrations of 4:1 (A) and 10:1 (B). Note that visual non-uniformity in central regions of the bags is a result of the plastic hot-sphere fixture and a gap in activity at the physical interface between bags.




Table 2 | Summarized recovery coefficients and percent contrast for Radialis PET and two other commercial organ-dedicated PET scanners from phantom experiments.



Contrast to noise ratio (CNR) for different sphere sizes across all sphere-to-background ratios are summarized in Table 3, along with assessment versus Rose’s Criterion for confidence in assessment of image features (17). These results suggest that sources 6 mm in diameter or larger should receive an accurate contrast assignment for SUV measurement at various lesion-to-background ratios.


Table 3 | Contrast to Noise ratio for each sphere size and sphere to background activity concentrations with corresponding Rose Criterion assessment.






3.4 Image quality phantom

Transverse images acquired of the NEMA NU-4 Image Quality Phantom are shown in Figure 7 with visible hot rods (A), uniform region (B), and water and air reservoirs (C).




Figure 7 | Reconstructed image slices for the NEMA NU-4 image quality phantom displaying the hot rods with diameters 1 - 5 mm for recovery coefficients (A), uniform region (B), and the air and water reservoirs (C).



Uniformity derived as a standard deviation from the mean grey value in the uniform region of NEMA NU-4 image quality phantom is 8.31%. RC and SOR (as well as %STDRC and %STDSOR calculated using Equations 6 and 7 respectively) for the organ-targeted Radialis PET camera and PEM Flex Solo II organ-dedicated scanner are presented in Table 4 and show the expected trend towards full contrast recovery for increasing source sizes. The quoted spatial resolutions, all measured with the same standardized NEMA protocols, are provided to highlight the fact that systems with similar spatial resolution may recover contrast differently in small regions. The results were consistent across the range of detector separations tested (90 - 135 mm).


Table 4 | Summarized recovery coefficients, spill-over ratio and percent standard deviation for NEMA NU-4 phantom hot rods and cold cylinders for Radialis PET and another commercial organ-dedicated PET scanner (12, 15).



The smallest 1 mm rod in the NEMA NU-4 phantom, although difficult to visualize, has CNR of nearly 2 and shows 21% contrast recovery with a standard deviation of 16%. The largest rod, in comparison, has CNR of greater than 5 and a contrast recovery of 89%. When plotted as a function of sphere size, the recovery coefficient follows a classical “S” shaped sigmoid curve (29).

The larger SOR in air versus water was consistent across sets of measurements. Although it is not discussed in detail here, it was observed that the SOR is highly dependent on the LOR angular filtration. As it will be discussed below, reconstruction software optimization for clinical use requires careful consideration when the aim is to find optimal reconstruction parameters that yield accurate SOR and RC.




3.5 Clinical images

Clinical images (Figures 8–10) are presented here to demonstrate cases where organ-targeted PET imaging is of significant clinical benefit in overcoming challenges in diagnosis, treatment planning, and monitoring response to a therapy.




Figure 8 | Images acquired for a 61 year-old female with right breast multifocal invasive and in situ ductal carcinoma. Images show the same breast in: (A) FFDM in the CC plane with extensive distortion; (B) 3-D Radialis PET image in the CC plane 1 hour after 178 MBq 18F-FDG injection; (C) 3-D Radialis PET image in the CC plane where multiple distinct regions of contrast uptake are still evident 4 hours after 18F-FDG injection. Mean lesion SUV corrected for lean body mass (SUVmean, LBM) is 1.8, with SUVmax, LBM equal to 3.4.; (D) image of a 3-D volume of different foci generated from Radialis PET in the CC view based upon tissue metabolism across all image slices (12).






Figure 9 | A 56 year-old female with invasive ductal carcinoma and intermediate-grade DCIS underwent FFDM imaging (A) with red arrow indicating the site of a primary lesion. Radialis PET image (B) acquired 1-hr after injection with 37 MBq 18F-FDG and same craniocaudal (CC) view shows two distinct sites of contrast enhancement. The second site (arrowhead) is not detected in mammography. Both sites were confirmed cancerous by histopathology. 3-D volume (C) generated from the Radialis PET in the CC view based upon tissue metabolism threshold across all image slices. SUVmean, LBM for the primary lesion is 5.3, with SUVmax, LBM equal to 12.2. SUVmean, LBM for the secondary lesion is 5.3, with SUVmax, LBM equal to 10.7 (12).






Figure 10 | Clinical images of a patient with invasive lobular carcinoma who underwent x-ray mammography (A) and Radialis PET imaging 4-hours after radiotracer injection. The 50 year old patient (B) received 188 MBq 18F-FDG injection and the image shows a craniocaudal (CC) view mammography and PET image. SUVmean, LBM for the lesion in (B) is 6.8, with SUVmax, LBM equal to 14.9.



The presented images in this section are exported from Horos DICOM viewer using the default view conditions for contrast and brightness and PET color look-up table.

Figure 8 shows a comparison among multimodality images for a multifocal cancer, specifically a FFDM CC view (Figure 8A), Radialis organ-targeted PET CC view images (Figures 8B, C), and an image of a 3-D reconstruction of multiple foci based on metabolic activity measured with Radialis PET (Figure 8D). For the PET scan, 178 MBq of 18F-FDG was administrated to the patient and two subsequent imaging sessions (Figures 8B, C) were acquired at 1 hour and 4 hours post-injection, with detector separation of 95 mm. The PET images demonstrate 18F-FDG uptake in the extensive area that corresponds to the irregular mass detected on digital mammography, and discrimination of multiple foci is still possible even though significant radiotracer decay has occurred. A reconstructed image of 3-D volume of abnormal tissue metabolism is derived from this data set and displayed in Figure 8D.

In Figure 9, FFDM (Figure 9A) is compared to Radialis organ-targeted PET image (Figure 9B), and an image of a 3-D volume based on tissue metabolism measured with Radialis PET (Figure 9C). A secondary cancerous site is visualized only in the PET image set (arrowhead in Figure 9B). The patient was administered 37 MBq of 18F-FDG for image acquisition at 1-hour post-injection and images were acquired with detector separation of 120 mm. The images in Figures 8 and 9 were segmented for analysis and a lean body-mass correction is applied to standardized uptake values quoted for lesions in both patients (30).

Figure 10 displays a clinical case of an invasive lobular carcinoma (ILC) where distinct sites of enhancement are visible in the organ-targeted PET images and compared against x-ray images. In Figure 10B, 188 MBq of 18F-FDG was administrated to the patient and images were acquired 4 hours post-injection at a detector separation of 60 mm. The PET image demonstrates localized enhanced 18F-FDG uptake at the site of surgical pathology-confirmed ILC. The lean body-mass corrected standardized uptake value is reported for the lesion.

Lesion SUVs for the clinical images presented in Figures 8–10 are quoted in Table 5, with lean body mass (LBM) correction applied to account for potential overestimation of glucose uptake in obese patients (31).


Table 5 | Lean body mass corrected standardized uptake values for breast lesions in Figures 8-10.







4 Discussion

Accurate quantitation of SUV holds potential for multifaceted roles in evaluating neoadjuvant treatment effectiveness with 18F-FDG PET. These include: 1) predicting pCR based on pre-treatment (baseline) FDG PET (32, 33); 2) monitoring the decrease in FDG uptake between baseline and interim PET scans (performed during treatment cycles) as predictive of pCR (34–37); and 3) detecting residual primary tumors after NST or identifying exceptional responders in whom breast cancer surgery can be eliminated following NST (38, 39). Here, we focus on selected performance indicators relevant in this context, with special attention to evaluating the recovery coefficient as a major indicator of a PET system’s capabilities for quantitative image assessment.

Ideally, the recovery coefficient approaches unity for active lesions (most malignant tumors in PET) and zero for inactive lesions. However, the measured activity within an active lesion may appear lower than the actual value due to the PVE caused by non-zero spatial resolution. PVE results in reduced contrast assignment and blurred edges around activity boundaries in images. Consequently, small radiation sources tend to spread across the image, leading to a proportional reduction in observed contrast or activity. On the other side, inactive lesions may exhibit apparent spill-in of activity to the cold region. Furthermore, smaller downsized lesions, as a result of successful NST, are more significantly affected by the partial volume effect (40, 41).

While a simplified model suggests that the PVE becomes significant when the size of a tumor is less than two to three times the spatial resolution of the system, our results demonstrate that the issue is more complex. Organ-targeted PET systems with nearly identical spatial resolution may exhibit vastly different recovery coefficients (RCs) for lesions of the same size and activity (see Table 2). Therefore, the applicability of PET technology to clinical tasks requiring accurate tumor activity assessment necessitates careful measurement of RCs in different tumor sizes and lesion-to-background ratios, along with other non-standard measurements discussed below.



4.1 Spatial resolution & linearity

Spatial resolution performance for the Radialis PET camera is comparable to commercially available organ-dedicated PET scanners (9–11, 16). Measurements presented here confirm our previous point-source results of 2.3 ± 0.1 mm in-plane and Z-axis resolution of 7.9 ± 0.7 mm (12). Since the line source has an inner diameter of 1.2 mm, this is not an intrinsic measurement of resolution, but rather a measurement of finite source size for comparison with whole-body PET.

Reconstructed images of the capillary and linearity phantom demonstrate accurate linear contrast assignment across the entire detector FOV. Intensity peaks from the activity distributions are reconstructed within +/- 0.1 mm of expected locations along both X and Y axes, indicating excellent agreement between expected and measured source locations. Since the linearity phantom extends beyond the FOV, measurements performed to the full extent of the FOV ensures no image distortion at any position within the FOV or at detector edges. Equivalent results are achieved at all four edges of the FOV by reorienting the phantom for measurements, and these findings are consistent with those previously reported for point-source acquisitions (12).




4.2 Image uniformity

The uniformity of both tested phantoms (the flood field phantom and NEMA NU-4 Image Quality phantom) deteriorates with increasing MLEM iterations, as expected with iterative maximum likelihood reconstruction algorithms. MLEM is known to amplify noise and potentially induce distortions near edges as iterations increase. However, based on evaluation of phantom and clinical image data, 15 iterations were found to be required for optimal fine detail detection. Therefore, a default setting of 15 iterations is employed for clinical image reconstruction on the organ-targeted PET scanner. Subsequently, image non-uniformity is mitigated by applying optimized MRP filtration within the reconstruction workflow.




4.3 Recovery coefficients

Table 2 summarizes the recovery coefficient and percent contrast (Equation 4) values for the Radialis PET camera and for two other organ-dedicated PET scanners, namely PEM Flex Solo II and MAMMI PET. Quantitative comparison with PEM Flex Solo II was performed at the reported 4:1 activity concentration (11). Despite comparable spatial resolution and detector geometry, all RC values are more than two times better for Radialis PET versus PEM Flex Solo II. In comparison with another organ-dedicated PET scanner, MAMMI PET, which reports nearly 50% higher spatial resolution than Radialis PET (1.6 mm vs. 2.3 mm), the Radialis PET camera has similar yet slightly improved contrast recovery at 10:1 activity concentration, which was the only reported value by MAMMI PET (16). We believe that the improved contrast recovery is a result of greater count efficiency and optimized image reconstruction workflow (12). This claim is subject to further investigation in order to quantify the extent by which count statistics and image reconstruction affect contrast recovery.

The current approach to evaluate PET system performance in terms of confident detectability of small lesions is based on Rose criterion which requires CNR > 5 (17). For 4:1 activity concentration, the Radialis PET camera passes Rose criterion for spheres sized 6 mm and larger. This agrees with theoretical guidelines commonly used in WB PET where the minimum size of spheres that can be measured without underestimation in size and activity is 2.7 times the FWHM spatial resolution of the system (29). However, for 10:1 activity concentration, the Radialis PET camera passes the Rose criterion for spheres smaller than 2.7 times the FWHM (5 mm or 2.17 times the FWHM of 2.3 mm). This indicates that, although theoretical guidelines are largely applicable in WB PET with comparatively low spatial resolution, the ability to reconstruct true activity in high spatial resolution organ-dedicated PET stem from increased count statistics and an ability to apply more rigorous corrections and filtration. Although we do not want to downplay the importance of high spatial resolution in molecular imaging, our results suggest that a system’s contrast recovery capability should be assessed as a significant performance indicator when quantitative assessment of tumor uptake is needed (42).




4.4 Image quality phantom

While the suitability of the NEMA NU-4 Image Quality phantom for clinical PET systems is contested in the literature (14), we used it to compare the Radialis PET camera to a commercially available organ-targeted scanner with similar spatial resolution and planar detector architecture, the PEM Flex Solo II. Both scanners visualized hot rods similarly in the NEMA NU-4 phantom, but Radialis PET demonstrated improved RC for 1-5 mm hot rods and lower SOR for air and water-filled cylinders. This suggests that underestimation of reconstructed activity compared to actual activity is not solely due to limited spatial resolution. It also calls into question the universality of a commonly used criterion for the accuracy of reconstructed activity, which links partial volume effect to 2.7-3 times the FWHM of spatial resolution (29, 43, 44) without consideration of other scanner parameters.

Further investigation is needed, but it seems plausible that the higher RC and lower SOR achieved with the Radialis organ-targeted PET system can be attributed to an optimized image reconstruction workflow, a larger field of view, and higher count rate performance. These factors improve the statistical accuracy of measurements, reduce noise, and allow for more rigorous filtration of scattered radiation and random coincidences.




4.5 Clinical images

The clinical images presented in this study showcase the potential of organ-targeted PET in breast cancer clinical practice. The results highlight the ability of organ-targeted PET to not only to visualize the spatial distribution of abnormally metabolic tissue but to also quantify its properties in terms of SUV and reconstruct tumor volume based on metabolic activity.

Figure 8 presents a comparison between FFDM and two Radialis PET images acquired at 1-hour and 4-hours post 18F-FDG injection. Despite the changes in image contrast as activity decays post-injection, the radiologist’s visual assessment of multifocal cancers remained unaffected. The multiple regions of enhanced 18F-FDG uptake (indicative of multifocal cancers) remained conspicuous even 3 hours after the initial scan and 4 hours from the time of radiotracer administration. Additionally, the 3-D metabolic volume generated from the latter image provides a unique visualization of abnormally metabolic tissue, allowing quantitative tracking of changes in mass volume of abnormally metabolic tissue above a certain threshold.

The results presented in Figure 8 demonstrate a significant increase in both Mean SUVLBM and Maximum SUVLBM in the course of time after the injection (1.4 vs. 2.2 SUVLBM, mean, and 3.5 vs. 8.0 SUVLBM, max, Table 5) (45). This increase is attributed to differing wash-out mechanisms between cancerous and benign tissues (46). Since SUVmax is a significant predictor of tumor detectability, these findings suggest that the scanning protocol may be optimized by increasing the time interval between injection and scanning. The Radialis PET camera is highly sensitive and has improved true coincidence detection (12). This results in a high signal-to-noise ratio, and if the uptake period is longer, the activity decay may not negatively impact image contrast. This enables larger SUV values which may improve the accuracy of tumor assessments.

Figure 9 shows fundamental advantages of organ-targeted PET in comparison to mammography images for the purpose of both lesion detection and ability for treatment follow-up. The organ-targeted PET image (B) with 37 MBq 18F-FDG injection shows two distinct sites of histopathology-confirmed cancerous contrast enhancement, the second of which (arrowhead, Figure 9B) is not detected in mammography, even in retrospect. This illustrates the high specificity and sensitivity of Radialis PET imaging in detecting lesions in radiologically dense breast tissue, even at low doses of radiotracer. The measurement of SUV in both the primary and secondary lesions is performed under conditions of ten-times reduced dose, compared to the standard dose of 370 MBq used in PET diagnostic procedures (47).

Figure 10 illustrates the detection and quantification of invasive lobular carcinoma (ILC) with Radialis organ-targeted PET. ILC is the second most common type of invasive breast cancer, affecting approximately 1 in 10 patients, and its unique biological characteristics make it challenging to detect compared to invasive ductal carcinoma (IDC), the most common type of breast cancer (48, 49). ILC typically exhibits lower FDG uptake compared to IDC (50). This is further compounded by the fact that ILC often presents as diffuse disease with a lack of a clear border, making it more challenging to visualize on PET images. Despite these challenges, Radialis organ-targeted PET images have shown clear enhancement at the sites of surgical pathology-confirmed ILC. The SUVmax values correlate well with the lesion size, which is an expected result since FDG uptake may be considered predictive of disease aggressiveness and prognosis for patients with ILC.

We believe that detectability of ILC is due to the overall high sensitivity of Radialis PET and an optimized scanning protocol, which includes a 4-hour time period between injection and scanning. Since various NST’s are applied depending on ILC subtype, with a growing trend toward long-course treatments, organ-targeted PET follow-ups may be of particular utility for accurate staging and treatment adjustments (49).





5 Conclusion

The set of measurements performed has revealed a specific peculiarity in high-resolution organ-dedicated PET. We find that the ability to detect and accurately reconstruct true activity in small objects is highly dependent on a broad set of parameters which define PET system performance, and that high spatial resolution alone does not guarantee accurate contrast recovery in small objects. Organ-targeted devices are already understood to exhibit higher spatial resolution than WB PET. Without being tied to other parameters, spatial resolution is not the only metric which defines the clinical utility of a PET system, especially in the context of quantitative measurement of response to therapy.

Our research underscores the significance of the recovery coefficient as a key performance metric for PET systems targeted for small lesion detection, size assessment, and activity uptake quantification. While factors influencing contrast recovery at the lower limits of detection require further evaluation, our findings suggest that focusing solely on improving spatial resolution may not be the most cost-efficient approach. Instead, optimizing the reconstruction algorithm and scanning protocol could be a promising strategy for enhancing PET imaging’s performance, making it a quantitative imaging modality that can accurately measure very low activity values resulting from successful NST.

Although prospective clinical trials are necessary to evaluate the clinical validity of organ-targeted PET for NST, we believe that overall, quantitative organ-targeted PET has the potential to unlock new frontiers in oncology for accurate evaluating early NST response, optimizing its regimen to achieve the maximum pathological effect or identification of non-responders to continuously improve patient outcomes. The emergence of new neoadjuvant therapy options and drugs, coupled with adherence to the principles of precision medical imaging, further highlights the need for quantitative organ-targeted PET.
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Intraductal T2 mapping based on a catheter receiver is proposed as a method of visualizing the extent of intraductal and periductal cholangiocarcinoma (CCA). Compared to external receivers, internal receivers provide locally enhanced signal-to-noise ratios by virtue of their lower field-of-view for body noise, allowing smaller voxels and higher resolution. However, inherent radial sensitivity variation and segmentation for patient safety both distort image brightness. We discuss simulated T2 weighted images and T2 maps, and in vitro images obtained using a thin film catheter receiver of a freshly resected liver specimen containing a polypoid intraductal tumor from a patient with CCA. T2 mapping provides a simple method of compensating non-uniform signal reception patterns of catheter receivers, allowing the visualization of tumor extent without contrast enhancement and potentially quantitative tissue characterization. Potential advantages and disadvantages of in vivo intraductal imaging are considered.
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1 Introduction

Cholangiocarcinoma (CCA) is rare in Europe and North America, where known risk factors include primary sclerosing cholangitis (PSC), viral hepatitis, and occupational exposure to industrial chemicals (1). Presentation is typically late, when disease is advanced. The 5-year survival is consequently low, and surgical resection is the only real curative possibility, although recently approved targeted chemotherapy may offer some hope in a minority of patients (1, 2). The incidence of CCA in South-East Asia is around 100 times higher than Western Europe, due to consumption of raw and partly cooked fish, contaminated with the parasitic liver flukes, Opisthorchis viverrini or Clonorchis sinensis (1). Around 60 million people in the region are at risk of infection, with CCA a possible consequence for 1-2% of fluke-infected individuals (3). Flukes can be eradicated using anthelmintic drugs, but re-infestation is common and food safety education provides only a partial solution (3).

Risk groups are screened in Thailand, using stool analyses and urinary dipsticks to detect fluke infestation and ultrasound to locate periductal fibrosis and mass-forming tumors (4). Similar programs are now being developed in Lao PDR. Magnetic resonance imaging (MRI) and computed tomography (CT) are used for confirmatory diagnosis. CCA is heterogeneous, and can present an extrahepatic and intrahepatic tumor, with mass-forming, periductal infiltrating and intraductal sub-types (5). MRI can delineate obstructed bile ducts owing to the long T2 time constant of bile, and contrast-enhancement can highlight mass-forming tumors due to their enhanced micro-vascularity (6). However, the small duct wall changes in early-stage disease are hard to detect (7), so precise staging and surgical planning are difficult.

Here, we make the case for intraductal MR imaging with T2 mapping to improve tumor visualization for effective patient management. These strategies are not only applicable in Thailand where CCA is a common problem, but potentially to all healthcare systems where a hepatobiliary service is offered.




2 The clinical case for improved imaging

Except in South-East Asia, CCA remains a rare cancer, but its incidence has been rising for the past 30 years, with significant geographical variations (8). North-East Thailand has by far the highest age-standardized incidence rate (ASIR) of 85/100000 (8). By comparison, the United States has an ASIR of 1.6/100000 and the United Kingdom 2.2/100000 (8), which are more in keeping with the world average.

The early detection of CCA remains difficult (9). Guidelines recommend standard contrast-enhanced CT or MRI for the diagnosis and staging of CCA. Both can identify mass-forming tumors, whereas the periductal infiltrating form is difficult to detect. When complicating biliary strictures, these periductal cancers may be very small and thus, beyond the resolution of standard imaging techniques. Whether a bile duct stricture harbors an underlying malignancy or not in the presence of stricturing conditions such as PSC remains a pertinent issue for current technologies (9).

CCA has hitherto been a tumor with an extremely high mortality, unless operable surgically, but new targeted chemotherapy techniques offer promise (10). The need for accurate and early diagnosis has not therefore been greater.




3 The approaches to the problem

Resolution in MRI is determined by signal-to-noise ratio (SNR), with higher SNR allowing smaller voxels and higher resolution. However, SNR is limited by body noise using an external radiofrequency (RF) coil such as a “torso array” configuration (11). One solution may be intraductal MRI, with detection carried out using a catheter receiver inserted into the common bile duct at endoscopic retrograde cholangiopancreatography (ERCP). Internal RF coils offer locally increased SNR by virtue of their non-uniform signal reception, which reduces the field-of-view (FOV) for body noise (12). Higher SNR can then be obtained near the coil, but this reduces as the reciprocal of radial distance squared for rectangular RF coils, so a catheter receiver can outperform an external coil over a cylindrical volume coaxial to a duct. The local SNR advantage of internal coils in endoluminal MRI has been verified by many authors, for example in arterial imaging (13), gastrointestinal imaging (14), and endoscopy (15), and internal RF coils have already been used in biliary drainage tubes (16). Non-uniform reception complicates image interpretation but can be compensated by using relaxometry (17), estimating parameters by nonlinear least-squares fitting (18) and plotting spatial variations of time constants rather than grey scale images.

Parametric mapping of liver disease has already been demonstrated with external coils (19, 20), and we have previously reported methodology for intraductal MRI. Work has focused on duodenoscope modification for MR environments (21), the production of catheter-based receivers (22), the verification of the local SNR advantage of catheter receivers over torso array coils (23) and initial ex vivo imaging studies of surgical specimens (24).

Receivers have been constructed from thin-film circuits formed in copper-clad Kapton and mounted on tubular scaffolds using heat-shrink tubing. Division of the circuit into arrays of magnetically coupled, figure-of-eight-shaped L-C resonators can reduce coupling to B1 magnetic and corresponding electric fields during excitation (25), but this leads to a segmented FOV. The catheters are flexible and compatible with biopsy channels and guidewires. Technical challenges included developing the design concept, simulating electro-magnetic performance, integrating flexible circuits on catheters, connecting receivers to auxiliary coil interfaces, and performing initial assessments of RF heating potential. Imaging has been carried out using a clinically available whole-body 3T Philips Achieva™ (Philips, Best, the Netherlands) MRI system in Khon Kaen in North-East Thailand, the epicenter of liver fluke-associated cholangiocarcinoma (24). Clinical challenges included synchronizing imaging with surgery in a busy hospital, identifying specimens suitable for cannulation, and correlating T2 maps of CCA with histopathology for the first time. We explain below the principle of and make the case for intraductal T2 mapping.




4 The potential solution

The ex vivo intraductal imaging shown in the diagrams was performed on resection specimens from Thai patients with CCA at Khon Kaen University Hospital (KKUH), following the granting of ethics approval by the local Ethics Committee (Ref. HE581409) and the provision of prior written informed consent from patients. The imaging was conducted according to the ethical precepts set out in the Declaration of Helsinki of 1975.

Figure 1 compares simulated T2-weighted images and T2 maps of model tissue. Figure 1A shows the signal reception pattern of a 3mm diameter catheter receiver with 1/r2 radial sensitivity variation and 50 mm-long segments, highlighting the first two sensitive lobes; other lobes are similar. Figure 1B shows the model tissue, assumed roughly coaxial to a central receiver. Two artificially homogeneous ellipsoidal tissue volumes are shown, with T2 values of 63 ms (brown, representing tumor tissue) and 42 ms (green, representing periductal fibrosis). Surrounding tissue (liver parenchyma, not shown) has a T2 of 28 ms. Imaging and T2 mapping are simulated using a single echo time TE1=140/9ms and five echo times TEn=n×140/5ms, respectively. T2 values are estimated using a least-squares non-linear fit to mono-exponential decay without bias correction (18). A peak signal-to-noise ratio (SNR) of 800 is assumed at the catheter. Cropping at a low signal level is used to avoid presenting noise beyond the limit of effective reception.




Figure 1 | Simulated T2-weighted axial images and T2 maps of model tissue obtained using a catheter receiver: (A) Receiver tip reception pattern; (B) model tissue showing periductal fibrosis and tumor; (C) T2-weighted images; (D) T2 maps; (E, F) volumetric data. Blue - liver parenchyma; green - fibrosis; Brown - tumor; red - catheter track.



Figures 1C, D show axial T2-weighted images and T2 maps obtained by simulation. Figures 1E, F show corresponding volumetric data. In the images, the signal variation introduced by non-uniform reception is so large that little can be seen of the important tissue boundaries; the reception pattern of the catheter is dominant. While the sensitivity variation can be compensated, the catheter axis must be accurately known, and the procedure is slow. Tissue differentiation is obtained from the T2 maps directly, which clearly show tumor (brown), fibrosis (green) and parenchyma (blue). The effect of radially decreasing SNR is to increase the scatter and bias of estimated T2 values (18). However, near the catheter, homogeneity is high and tissue boundaries are sharp.

Figure 2 shows data from an ex vivo resection specimen from a Thai patient with polypoid intraductal CCA, adapted and modified from a previous publication (24). Imaging was carried out at 3T using a catheter receiver on a resection specimen immediately post-surgery. Figure 2A shows part of a much longer panel of thin-film receiver circuits and a single circuit before mounting on a catheter. The circuits are devoid of protrusions, and each figure-of-eight loop has a half-length of 50 mm. Figure 2B shows the segmented signal reception pattern, obtained by imaging tank phantoms on either side of the catheter and plotting coronal scans as surface-rendered volumetric data. Multiple sensitive lobes can be seen, each again 50 mm long. Figure 2C shows the specimen with the catheter inserted into a visibly enlarged duct in segment 2. The region of interest (ROI) is highlighted. Figure 2D shows cropped axial T2-weighted volumetric images obtained using a spin-echo sequence with TE=9 ms. As with Figure 1E, this presentation mainly highlights the catheter location and the first one and a half lobes of the segmented receiver reception pattern. Figure 2E shows corresponding T2 maps, obtained from five excitations with TE between 9ms and 95 ms. The tissue is well differentiated, and the assigned T2 values were verified by histopathology (24). Resolution is high, and CCA-induced thickening of the duct wall is apparent; with the exclusion of T2 values below 45ms (Figure 2F), the tumor boundary is clear and correlated well with Figure 2C.




Figure 2 | (A) Panel and single element of thin-film receiver circuits; (B) catheter reception pattern; (C) human tissue specimen with intraductal CCA; (D) volumetric T2-weighted imaging data; (E), volumetric relaxometry data; (F) as (E) but excluding T2 values below 45. Blue - liver parenchyma; green - periductal fibrosis; yellow - original duct; brown - tumor; red - catheter track.



The T2 maps presented here have been compared with axial MR images obtained using external and internal coils (24). In the former case, the FOV encompasses the entire torso, and contrast-enhanced imaging allows rapid location of strictures and trapped bile in vivo. However, early duct wall changes and the full extent of periductal and intraductal tumors are insufficiently conspicuous. In the latter case, the FOV is limited to the immediate vicinity of the catheter, and uncorrected images cannot easily be interpreted. Duct wall enlargement is clarified after correction for non-uniform signal reception, but the procedure for optimization of the correction center is lengthy and may not be practical for oblique or curved catheter tracks.

Intraductal T2 mapping does appear to offer advantages. However, implementation may require clinic layout alterations, including co-location of endoscopy and MRI suites and provision of facilities for cleaning or disposal of catheter receivers. In addition, anesthesia and equipment for respiratory gating and software for motion tracking would be needed for patients deemed incapable of breath-holding.




5 Discussion

Few alternative imaging techniques are emerging for CCA, and all suffer from limitations (26). Established X-ray fluoroscopy visualizes stricture-induced dilation rather than duct wall changes. The FOV of endoscopic camera probes is restricted to the biliary mucosal layer. Contrast-enhanced CT suffers from relatively low resolution and soft-tissue contrast. Trans-abdominal and intraductal ultrasound also suffer from low resolution and contrast, but the former provides an effective mass screening tool (27). While molecular and nuclear imaging techniques hold theoretical promise, to date, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) offer low resolution, unless combined with MRI or CT (9).

Questionable aspects for future adoption of intraductal MRI include the safety, complexity and cost of a procedure involving both ERCP and MRI and the resolution enhancement obtained in vivo. ERCP is routinely used to clarify difficult CCA cases, but MR-compatible endoscopic procedures under sedation would be required for patient safety. Cannulation of the ducts of interest might be difficult if strictures are present. Though additional scans are required for T2 mapping, and off-axis coil orientations will reduce the local SNR advantage, recent technical advances in imaging methodology, including artificial intelligence, can help to leverage the information available and mitigate the challenges in motion and SNR (28, 29). The radial FOV of the catheter receiver is limited, but may be sufficient for early-stage disease, and extension of the axial FOV along the entire catheter length (Figure 2B) allows catheter tracking. Necessary hardware has been demonstrated, but manufacture of disposable receivers would be needed, together with non-magnetic duodenoscopes, unless these are withdrawn before imaging, or the catheter is introduced via percutaneous transhepatic cholangiogram (PTC). Interpretation of T2 maps would require a comparison database but may reveal early-stage tissue changes not visible on contrast-enhanced MRI. Potential benefits include more effective surgical planning and improved determination of R0 margins. Both might increase the survivability of CCA, currently at a very low level.

Potential barriers to adoption include additional equipment, consumable and procedure costs, and the need for training in catheter receivers and T2 mapping. Additional expenses will be mitigated by the reduction in care costs expected from increased surgical success rates. Training for endoscopists will be similar in scope to the requirements for camera probes, while training for radiographers and radiologists may amount to revision of earlier specialized courses. Infrastructure changes have been mentioned above and would be considered on a clinic-by-clinic basis.

Further pilot studies are warranted to assess in vivo feasibility, but the potential for increased and earlier tumor detection seems promising, particularly in populations such as in Thailand where CCA is not uncommon and underlying causes are understood, resulting in a need for screening programs (1). Furthermore, T2 mapping with standard external phase-array RF coils, rather than the intraductal RF coils we describe here, may provide a simpler method of identifying enlarged bile ducts, albeit at lower image resolution. This may be possible because of the strong differentiation between liver parenchyma and ductal tissue. The same principles may also be useful for better and earlier assessment of hepatocellular carcinoma, particularly in the context of a nodular, cirrhotic liver.
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Background

In patients with locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy (NAC), quantitative ultrasound (QUS) radiomics can predict final responses early within 4 of 16-18 weeks of treatment. The current study was planned to study the feasibility of a QUS-radiomics model-guided adaptive chemotherapy.





Methods

The phase 2 open-label randomized controlled trial included patients with LABC planned for NAC. Patients were randomly allocated in 1:1 ratio to a standard arm or experimental arm stratified by hormonal receptor status. All patients were planned for standard anthracycline and taxane-based NAC as decided by their medical oncologist. Patients underwent QUS imaging using a clinical ultrasound device before the initiation of NAC and after the 1st and 4th weeks of treatment. A support vector machine-based radiomics model developed from an earlier cohort of patients was used to predict treatment response at the 4th week of NAC. In the standard arm, patients continued to receive planned chemotherapy with the treating oncologists blinded to results. In the experimental arm, the QUS-based prediction was conveyed to the responsible oncologist, and any changes to the planned chemotherapy for predicted non-responders were made by the responsible oncologist. All patients underwent surgery following NAC, and the final response was evaluated based on histopathological examination.





Results

Between June 2018 and July 2021, 60 patients were accrued in the study arm, with 28 patients in each arm available for final analysis. In patients without a change in chemotherapy regimen (53 of 56 patients total), the QUS-radiomics model at week 4 of NAC that was used demonstrated an accuracy of 97%, respectively, in predicting the final treatment response. Seven patients were predicted to be non-responders (observational arm (n=2), experimental arm (n=5)). Three of 5 non-responders in the experimental arm had chemotherapy regimens adapted with an early initiation of taxane therapy or chemotherapy intensification, or early surgery and ended up as responders on final evaluation.





Conclusion

The study demonstrates the feasibility of QUS-radiomics adapted guided NAC for patients with breast cancer. The ability of a QUS-based model in the early prediction of treatment response was prospectively validated in the current study.





Clinical trial registration

clinicaltrials.gov, ID NCT04050228.
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Introduction

Breast cancer is a common malignancy in women associated with significant morbidity and mortality (1). Clinical outcomes are determined predominantly by the stage of disease during diagnosis, its molecular characteristics, and treatment-related factors (2). Locally advanced breast cancer (LABC) denotes advanced disease of the primary site or regional lymph nodes and is associated with higher chances of recurrence and poorer outcomes than early breast cancer (3, 4). Neoadjuvant chemotherapy (NAC) is the standard of care for patients with LABC, resulting in down-staging disease, increasing operability aiding in breast conservation, and has shown survival benefits in specific molecular subtypes. Chemotherapy regimens for NAC are typically administered in a set manner over a period of months, and final treatment response is determined through histopathological evaluation a few weeks after completion of scheduled chemotherapy and surgery. Neoadjuvant treatment also enables patients to be stratified according to pathological response for adjuvant therapies.

Radiomics involves quantitative analysis of imaging data usually coupled with machine learning classifiers to arrive at a meaningful link to clinical endpoints (5, 6). Radiomic analyses can be undertaken on different morphological and functional imaging modalities like ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) (7). Quantitative ultrasound (QUS) carries out direct analysis of the raw radiofrequency (RF) data from ultrasound imaging devices, as opposed to standard B-mode US, which involves transformed data leading to loss of information (8–10). Quantitative ultrasonography relies on the elastic properties of the tissues, with analysis of different spectral parameters highlighting various microstructural properties like acoustic scatterer size, shape, density, and organization which can be related to cellular morphology and arrangement. With cancer-directed therapy like chemotherapy or radiation, microscopic tissue changes are expected to start immediately after the initiation of treatment. However, typically response is appreciated only after months into treatment resulting from cumulative cell death and tumor size changes, the latter which can then be appreciated through standard imaging modalities, which lack sensitivity to detect microstructural changes during early phases of therapy. Cell death resulting from chemotherapy or RT leads to events like cell fragmentation, pyknosis, and formation of apoptotic bodies and cell death structures leading to changes in scatterer elastic properties which can be effectively determined by QUS imaging as demonstrated from preclinical and clinical studies.

Radiomic analysis of QUS imaging in accurate determination of treatment response to chemotherapy and RT in breast and head-neck malignancies had been demonstrated in prospective observational studies (11–14). The current phase 2 randomized study was undertaken to study the feasibility of using QUS-based response prediction for adaptive chemotherapy in patients with breast cancer receiving NAC. This is the first clinical study using a radiomics-guided approach for individualized treatment in oncology.





Methods




Study design and participants

This prospective randomized phase 2 study was conducted at a single institute, Sunnybrook Health Sciences Centre, Toronto, Canada. The study was approved by the institutional ethics committee and registered with the clinicaltrials.gov registry (NCT04050228). Women older than 18 years with a histologic diagnosis of primary breast malignancy with size of primary tumor ≥ 5 cm longest-dimension without distant metastasis, or smaller tumor (>2 cm diameter) with bulky axillary nodes, and eligible for NAC (normal blood counts, creatinine, liver function tests, and cardiac function) were considered eligible for the study. Contraindications included inflammatory breast cancer, previous history of connective tissue disease, past history of dermatologic disease involving breast, Eastern Cooperative Oncology Group (ECOG) performance status ≥ 3 and known sensitivity to components in ultrasound gel. Written informed consent form was obtained from all the study participants.

Patients enrolled in the study were randomly assigned through 1:1 allocation using the block randomization method to observational arm or experimental arm (adaptive chemotherapy for predicted non-responders), with hormone receptor status as a stratification factor (positive or negative). Study participants and investigators were not blinded to the allocation arm. The funding agencies had no role in the study design, analysis, or interpretation of the results.





Treatment procedures

Patients accrued in the study underwent QUS imaging before starting NAC (within 7 days) and after weeks 1 and 4 of NAC. QUS Data was acquired by experienced sonographers using a Sonix RP clinical system (Analogic Medical Corp.) with an L14-5/60 linear transducer (central frequency 6.5 MHz, bandwidth range 3.0-8.5 MHz) or GE LOGIC E9 system with ML6-15 linear transducer (central frequency 6.9 MHz, bandwidth range 4.5-9.9 MHz). The primary tumor was imaged at 1 cm intervals to encompass the entire span of the disease volumetrically. The region of interest (ROI) delineation corresponding to the tumor was carried out by the sonographers and individually verified by an expert breast radiologist and principal investigator. The raw radiofrequency data was extracted from the ROI. Then a fast Fourier transform (FFT)-based approach was applied, with data normalization carried out using a reference phantom approach, and various spectral parameters and texture features determined as described previously (10, 15). A QUS-radiomics model incorporating texture analysis based on a support vector machine-radial based function algorithm (SVM-RBF) developed from over 100 patient’s data was applied in order to monitor responses to chemotherapy for patients and classify them after 4 weeks of treatment as responders or non-responders (15).

Patients in the observation arm were planned for standard of care NAC with dose-dense AC-T or FEC-D regimens as decided by their treating medical oncologist. Typically, dose-dense AC-T chemotherapy consisted of doxorubicin 60 mg/m2 and cyclophosphamide 600 mg/m2 weekly (AC) for 4 cycles, followed by paclitaxel 175 mg/m2 every two weeks (T) for 4 cycles. FEC-D included 5-FU 500 mg/m2, epirubicin 100 mg/m2, and cyclophosphamide 500 mg/m2 3 weekly (FEC) for 3 cycles followed by docetaxel 100 mg/m2 every 3 weeks for 3 cycles. Use of growth factors and monitoring of hemogram, liver function tests, and renal function tests were done as per standard institutional practice. QUS Imaging was carried out before starting and during NAC at different experimental times, as mentioned earlier, with the treating medical oncologists blinded to results, and no changes in scheduled chemotherapy regimens were made.

The experimental arm involved the start of NAC either with AC-T or FEC-D regimens as planned by oncologists (as for the observational arm). QUS-Radiomics model prediction results at 4 weeks were made available to patients’ medical oncologists and were used in conjunction with clinical findings to potentially adapt treatments. Any treatment alterations were decided by the responsible oncologist. The use of the radiomics model to classify patients as a responder or non-responder was carried out within 48 hours of week 4 QUS data acquisition. Treatment changes decided by treating medical oncologists typically involved an early switch to taxane regimens, using alternative chemotherapy regimens, or planning early surgery.

In both the arms, patients underwent surgery with mastectomy or breast conservation surgery as decided by the breast surgeon. All patients were treated with adjuvant radiation and further maintenance targeted therapy or endocrinal therapy as appropriate, according to standard institutional practice. Patients that had HER2+ status received trastuzumab treatment and patients without pathological complete response received capecitabine adjuvantly.





Study outcomes

Being a phase 2 feasibility study, the primary objectives of the study included recruitment rate, refusal rates, the proportion of patients classified as non-responders, patient/physician acceptability of adaptive changes in response to QUS prediction, and proportion of patients randomized to experimental arm undergoing adaptive change to the chemotherapy arm. The recruitment rate was defined as the number of patients who underwent randomization divided by the study period (date of the last patient randomized – the date of the first patient randomized in months). The refusal rate was defined as 1 – (the number of patients who signed the informed consent for this study divided by the number of patients who were approached to enter this study). The proportion of patients classified as non-responders was defined as the number of patients classified as non-responders to their neoadjuvant chemotherapy by quantitative ultrasound divided by the number of patients randomized to the experimental arm. For response monitoring by QUS a score is determined mathematically which is a combination of calculated tumor QUS metrics for each patient individually. These are combined into a predictive score. Patients are classified as predicted responders if their predictive score is more than ** or as predicted non-responders if their QUS score is less than **. Response assessment was carried out based on histopathological evaluation by dedicated breast pathologists following surgery. For clinical response standard RECIST criteria are used based on tumor size initially using MRI (where available) or clinical assessment, or tumor size at the time of surgery. To be specific a modified RECIST score was used such that if on histopathology there was tumor chemotherapy response noted with remaining cellularity less than 1% patients were recognized to be responders. The few patients in this situation potentially had large radiological structures noted which on pathology were made of scarring from chemotherapy response with little to no viable cancer cells remaining on histopathology. This is consistent with previous work (12, 15, 16). Patient/physician acceptability rate: was defined as the number of patients who switched their chemotherapy regimen on the basis of quantitative ultrasound, divided by the number of patients who were classified as non-responders amongst those randomized to the experimental arm. The proportion of patients whose treatment was adaptively changed based on quantitative ultrasound was defined as the number of patients who had their neoadjuvant chemotherapy altered due to quantitative ultrasound divided by the number of patients randomized to the experimental arm.





Statistical analysis

Since the current study was primarily designed as a phase 2 feasibility study, sample size calculation was based on convenience without formal statistical analysis. A total of 120 patients was decided with 60 patients allocated equally to the observational and experimental arms. After the accrual of half of the patients (60), an unplanned interim analysis was carried out, and reported here, since the rate of accrual was slowed down due to the ongoing COVID-19 pandemic. Descriptive analysis was performed to study the patient, disease, treatment-related factors and response rates. Image preprocessing, feature extraction, and radiomics model development were carried out using MATLAB R2016a (MathWorks). Other statistical tests were performed using IBM SPSS version 22 (IBM Corporation). Standard statistical methods were used to calculate test performance (16, 17) and computed in combined group patients (Observational Arm and Experimental Arm-Non-Adapted).






Results

A total of 77 patients were screened for study eligibility between June 2018 and July 2021, with 60 accrued and randomized 1:1 with 30 patients each in both arms. In each arm, 2 patients were ineligible, resulting in 56 patients available for analysis, as presented in the consort diagram in Figure 1. Baseline features were comparable in both arms, as summarized in Table 1. The median age for patients in the observational arm and experimental arm was 49 years and 50 years, respectively. The median primary tumor size was 3.6 cm and 3.8 cm in the observational and experimental arms, respectively. The majority of patients (71%) received AC-T chemotherapy, while FEC-D was used in the remaining. Trastuzumab was used in 27% of the patients. B-mode Ultrasound images along with representative QUS parametric maps before treatment and after 1st and 4th week of NAC for one patient each from the responder and non-responder group are presented in Figure 2. Patient characteristics are presented in Table 1 and Supplementary Tables 1-3. Specifically, amongst responders 19% were HR (hormonal receptor including ER/PR) +//Her2+, 47% were HR+Her2-, 8% HR-/Her2+ and 26% HR-/HER2-. Specifically, amongst non-responders 67% were HR+Her2-, and 33% HR-/HER2-. In our cohort, complete response rate was seen in 31%, partial response rate in 63%, and patients with stable or progressive disease made up 6% of all patients.




Figure 1 | Consort diagram of the study.




Table 1 | Patient, disease, and treatment characteristics for patients in observational and experimental arm.






Figure 2 | B-mode imaging and corresponding QUS-parametric maps at different time points (pretreatment or week 0, and week 1 and 4 of neoadjuvant chemotherapy) for 1 patient from responder and non-responder group. MBF range was from -9.6 dB to 34.0 dB, SS range was from -5.7 dB/MHz to 1.6 dB/MHz, SI range from -7.3 dB to 49.0 dB, AAC range was from 20.2 db/cm3 to 81.6 db/cm3, ASD range was from 40 μm to 171 μm. The scale bar represents a length of 2 cm. MBF, mid-band fit; SS, spectral slope; SI, spectral intercept; AAC, average acoustic concentration; ASD, average spectral diameter.



With a total of 60 patients accrued over a period of 38 months, the recruitment rate was faster than anticipated (1.5 patients/month) but then affected by the COVID-19, else, the recruitment rate was >2.5 patients/month before the onset of the pandemic. The refusal rate for study participation was 8% mostly due to patients wishing to be allocated to the experimental arm. The proportions of non-responders were 7% and 18% in the observational arm and experimental arm, respectively.

Using a QUS-radiomics prediction model at week 4 of NAC, a total of 7 patients were predicted to be non-responders based on surgical pathology (2 in the observational arm and 5 in the experimental arm). Figures 3 and 4 demonstrate the prediction at 4 weeks on an individual patient basis with the final response across the two treatment arms. Of the 5 non-responders in the experimental arm, 3 patients (60%) were considered for adaptive chemotherapy based on physician decision and patient acceptance, whereas others (2 patients) continued on initial original planned NAC regimen. Changes made to chemotherapy are presented in Figure 5. All 2 predicted non-responders in the observational arm and 1 of 2 in the experimental arm (non-adapted branch) were true non-responders based on final evaluation following surgery. Considering patients who continued on an unchanged neoadjuvant regimen (Observation Arm and Experimental Arm Non-adapted), the sensitivity, specificity, and accuracy of the QUS-radiomics model at 4 weeks were 98%, 80%, and 97%, respectively (Table 2). All the three patients in whom adaptive chemotherapy was considered started with AC regimens, which were switched to taxane chemotherapy. Two of them continued receiving taxane (weekly taxane in one patient and dose-dense treatment in another patient), after which they were taken for surgery. The patient treated with weekly taxane also received trastuzumab. In the other patient, early surgery was considered after one cycle of taxane since the primary disease appeared to progress clinically.




Figure 3 | Sankey diagram for predicted response at week 4 using QUS-radiomics model with the final response on an individual patient basis. Red tiles indicate non-response (predicted or actual) and green tiles indicate response (predicted or actual). In the experimental arm 25/28 patients were not adapted based on information provided to their oncologist whereas 3/28 were adapted. Patient with early surgery is indicated with a yellow tile.






Figure 4 | Individual patient predictions based on predictor class scores at week 4 for patient response. R indicates the zone (negative class score) for predicted response and NR indicates the zone (+ve class score) for non-response.






Figure 5 | (A) Schematic diagram for the administration of standard AC-T chemotherapy. Weeks are shown from left to right. Typical durations are illustrated. (B-D) indicate the three patients in the Experimental Arm that were adapted (IAA-1, IIA-2, and IIA-3) in Figure 3. In (B) AC was shortened to move to T. In (C) the AC and T were shortened to move to surgery and in (C) AC was shortened and T was intensified,.




Table 2 | Classifier performance of QUS-radiomics model at week 4 of neoadjuvant chemotherapy.



In the experimental non-adapted arm (n=25 of 28) there were 2 patients who were predicted non-responders and were actual non-responders at the end of their therapy. In the experimental adapted arm (n=3 of 28) there were 3 patients who were predicted non-responders but due to intervention ended up converting to responders. More specifically, for the three patients two had the first phase of their chemotherapy shortened and went on to the second phase of their chemotherapy (taxane) sooner and responded to that phase of chemotherapy. In one patient treatment was intensified in terms of frequency of taxane administration. An additional (third) patient had the second phase of their chemotherapy shortened due to a continued lack of response and went to surgery promptly removing all tumor - and was therefore considered a responder to salvage surgical treatment.

In the observational arm all patients predicted to be responders (n=26) and non-responders (n=2) ended up responding and not responding to their treatment, respectively (Table 3).


Table 3 | Patient predicted and actual reponses to neoadjuvant chemotherapy.







Discussion

Radiomics involving quantitative imaging analysis has led to promises in serving to generate prognostic and predictive biomarkers in oncology over the past decade (7, 17, 18). Imaging can aid in the non-invasive assessment of treatment response since histopathological or molecular characterization is often precluded during treatment due to the need for associated invasive procedures to obtain tissue and limited tissue sampling volumetrically (19, 20). Traditional morphological imaging can have limitations in determining response early in the course of treatment since the measurable effect of tumor size change is often manifested from cumulative cell death only after several weeks or months of treatment. Driven by encouraging results of QUS-radiomics in determining early responses in patients with breast cancer receiving NAC, the current phase 2 randomized controlled trial here was initiated to study the feasibility of adaptive chemotherapy for non-responders guided by QUS.

The current study prospectively validates the ability of QUS-radiomics to predict tumor response after 4 weeks of treatment during 4-5 months of NAC. Cell death starts immediately at the microscopic level within a few hours of initiating therapies in the form of chemotherapy or radiotherapy (21, 22). Quantitative ultrasound has been promising in predicting final treatment response as early as 24 hours of starting treatment for breast and head-neck malignancies. The cascade of events associated with cell death like nuclear fragmentation, pyknosis, or apoptosis leads to changes in tissue architecture and elastic properties, which can be detected by QUS. The results are better depicted when quantitative image analysis of QUS data is undertaken along with machine learning algorithms. In a multicenter study involving 59 patients with breast cancer, the sensitivity, specificity at week 4 of NAC in the prediction of final response was 80% and 82%, respectively (12). In a different study of 100 patients a better performing classifier was developed with an accuracy of 90% (15) which was used here. Better classification performance results using that classifier were obtained from the current study (98% accuracy). It is well known that the performance matrices of machine learning algorithms improve with an increase in the magnitude of data (patient number). The radiomics model used in the study was developed with QUS and QUS-texture features using an SVM-RBF classifier from 100 patients’ data, explaining the better results using the current model when applied to the patients in this study. These performance indices using QUS-radiomics provide robustness when used in a clinical setting early in the course of neoadjuvant therapy, where the window of possible treatment modifications can be considered based on individual patient responses. In recent work, it has been demonstrated that the inclusion of higher-order imaging features in the form of texture derivatives has further improved the performance of classifier models. Although such features were not included in the current model (study here initiated in 2018), the future inclusion of a larger number of patients (currently data available for >300 patients) and higher-order features will lead to further increased reliability of the model for future applications.

The classifier here was based on a response-monitoring model using a SVM-RBF algorithm to predict treatment responses. That algorithm has previously demonstrated cross-validated accuracies of 90% (sensitivity 90%, specificity 90%). The classifier used is based on 4 texture features from QUS parametric images generated from data at 4-weeks after the start of neoadjuvant chemotherapy from 100 patients (15) separate from those (n=56) in this study. The performance in the totally separate data set here was very good (accuracy 98%).

The response to NAC in patients with breast cancer can be varied, with the majority achieving partial response, approximately 15-40% having pathological complete response, and 20-30% have no significant response to the treatment. Identifying non-responders early in their course of therapy can provide an opportunity to either switch to a different chemotherapy regimen or early consideration of surgery rather than continuing an ineffective treatment for the next few months. The current work is the first study to use a QUS radiomics-guided approach for considering a treatment switch. Biological imaging like PET has been used to predict response early in NAC. In the AVATAXHER phase 2 randomized trial, fluorodeoxyglucose (FDG) PET was done before the second cycle of NAC for patients with HER 2 positive breast cancer (23). Predicted non-responders were randomly allocated to therapy intensification with the addition of bevacizumab or continuing the same regimen of docetaxel and trastuzumab-based treatment. The pathological complete response rates were higher (44% versus 24%) in patients receiving additional treatment with bevacizumab. In another study (PHERGain), chemotherapy de-escalation was considered for patients with HER 2 positive cancers having a positive response on FDG-PET after 2 cycles (24). Pathological complete response rate was seen in 38% of PET predicted responders receiving chemotherapy-free dual HER2 blockade with trastuzumab and pertuzumab, with survival data pending. Another approach using circulating tumor DNA (ctDNA) collected during the course of NAC has demonstrated a lack of ctDNA clearance to be a significant predictor of poor response and metastatic relapse (25). QUS can be used as a simple portable imaging modality in the clinic with excellent prediction accuracies (more than 90%), as demonstrated by the study here with the added advantage of lesser cost and lack of technical challenges associated with PET or liquid biopsy.

The current study was a randomized phase 2 trial primarily designed to assess the feasibility of QUS radiomics-guided adaptive chemotherapy approach and the acceptance of patients and physicians. Given the first step towards NAC modification, the change of chemotherapy was not considered mandatory for all predicted non-responders - QUS-based predictive information was provided to oncologists to incorporate into their practice according to their judgement. With prospective validation of the radiomics model in predicting non-responders, the robustness of the model has been established, which can be made for decision-making in future with a higher degree of confidence. In the current study, all the patients where switching chemotherapy was carried out in non-responders finally ended up being responders or had tumor removed sooner. In contrast, almost all patients in the observational arm or patients who were not adapted in the experimental arm, who were non-responders ended up as non-responders This suggests that the role of treatment escalation or switching therapies with consideration of more intense chemotherapy regimens might help improve response rates. It is important to note that the patient population reported here nevertheless is relatively small, and that treatment modification choices may benefit from identifying partial responders as well. Previous work has demonstrated the capability of QUS radiomics to be used for such a purpose.

It is important to emphasize the fact that it is meaningful to predict non-responders early before they are recognized clinically as non-responders. Relying only on clinical observations may result in loss of the opportunity to modify systemic treatment when ineffective to an effective different chemotherapy regimen. Proceeding to surgical management directly in such a scenario is also not ideal since it truncates systemic therapy which could potentially impact systemic relapse risk as well.

Pathological complete response matters at individual patient level given that it directs care and subsequent therapies, even if found not to be strong surrogate for event free survival or overall survival at trial level (26). For certain phenotypes of breast cancer (ER- PR- HER2-/HER2+), it is still very important to maximize pathological complete response as it not only prognosticates but predicts need for post operative therapies (27, 28). The protocol used here suggests that one can tailor a “personalized” approach to neoadjuvant therapy in order to maximize this individual patient benefit.

At present a QUS model is being developed to demarcate between pathological complete responders versus partial responder, which might have a more significant impact on outcomes, as a complete response has been shown to impact survival positively. Partial responders could also be considered for additional treatment with such a QUS tool when able to differentiate responders from partial responders (29). Future work will involve a phase 3 randomized controlled trial of chemotherapy intensification, where all predicted non-responders will be considered for more intensive chemotherapy.





Conclusion

The current study was the first demonstration of the feasibility of QUS-radiomics guided adaptive neoadjuvant chemotherapy for patients with breast cancer, leading the way toward a phase 3 randomized controlled trial. The ability of QUS-radiomics model to predict non-responders was validated prospectively in this study with sensitivity, specificity, and accuracy of 98%, 80%, and 97%, respectively. Patients who were non-responders had their chemotherapy adapted based on QUS-radiomic monitoring of therapy response leading to improved response rates.
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Objective

Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response to NAC for patients with Locally Advanced Breast Cancer (LABC) before treatment initiation could be beneficial to optimize therapy, ensuring the administration of effective treatments. The objective of the work here was to develop a predictive model to predict tumor response to NAC for LABC using deep learning networks and computed tomography (CT).





Materials and methods

Several deep learning approaches were investigated including ViT transformer and VGG16, VGG19, ResNet-50, Res-Net-101, Res-Net-152, InceptionV3 and Xception transfer learning networks. These deep learning networks were applied on CT images to assess the response to NAC. Performance was evaluated based on balanced_accuracy, accuracy, sensitivity and specificity classification metrics. A ViT transformer was applied to utilize the attention mechanism in order to increase the weight of important part image which leads to better discrimination between classes.





Results

Amongst the 117 LABC patients studied, 82 (70%) had clinical-pathological response and 35 (30%) had no response to NAC. The ViT transformer obtained the best performance range (accuracy = 71 ± 3% to accuracy = 77 ± 4%, specificity = 86 ± 6% to specificity = 76 ± 3%, sensitivity = 56 ± 4% to sensitivity = 52 ± 4%, and balanced_accuracy=69 ± 3% to balanced_accuracy=69 ± 3%) depending on the split ratio of train-data and test-data. Xception network obtained the second best results (accuracy = 72 ± 4% to accuracy = 65 ± 4, specificity = 81 ± 6% to specificity = 73 ± 3%, sensitivity = 55 ± 4% to sensitivity = 52 ± 5%, and balanced_accuracy = 66 ± 5% to balanced_accuracy = 60 ± 4%). The worst results were obtained using VGG-16 transfer learning network.





Conclusion

Deep learning networks in conjunction with CT imaging are able to predict the tumor response to NAC for patients with LABC prior to start. A ViT transformer could obtain the best performance, which demonstrated the importance of attention mechanism.





Keywords: neoadjuvant chemotherapy, LABC, deep learning, ViT transformer, response prediction and CT imaging




1 Introduction

Locally advanced breast cancer (LABC) is a diverse condition that presents in various clinical forms (1, 2). It encompasses tumors that are larger than 5 cm or involve the skin and chest wall (1, 2). Additionally, LABC includes inflammatory breast cancer and cases where patients have fixed axillary lymph nodes or involvement of nodes in the ipsilateral supraclavicular, infraclavicular, or internal mammary regions (1, 2). Managing LABC remains a formidable clinical challenge since the most individuals with this stage of disease tend to have poorer survival rates compared to those with early-stage breast cancer (1, 2).

The standard approach for treating LABC involves a multimodal strategy consisting of systemic therapy, surgery, and radiotherapy (1, 2). In certain cases, the possibility of resecting inoperable tumors becomes viable, particularly with the use of Neoadjuvant chemotherapy (NAC), which helps shrink the tumors. This is followed by surgical intervention and subsequent adjuvant radiotherapy, and targeted therapy or hormonal therapy when indicated (3).

Treatment with Neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) often yields variable responses, with only 15-40% of cases eventually achieving a complete pathological response to this treatment (4). It’s crucial to note that the pathological response of tumors to NAC serves as a critical prognostic indicator for long-term disease-free survival (DFS) and overall survival (OS) in specific patient groups (5, 6). However, several months after the therapy has started the conventional assessment of treatment response in LABC tumors to NAC occurs at the end of the treatment course. This evaluation typically relies on pathological assessments, often using the Miller-Payne (MP) grading system to compare tumor cellularity between pre-treatment core needle biopsies and post-treatment surgical specimens (6, 7). Given the invasive nature of these methods, there is a growing interest in non-invasive imaging techniques to evaluate therapy responses in LABC tumors. The goal is to identify imaging biomarkers that can predict tumor responses early in the course of NAC, facilitating personalized treatment strategies.

Both histopathology analysis and quantitative imaging techniques have provided insights into different characteristics that can help identify how LABC tumors respond to NAC. Responsive LABC tumors, for instance, tend to exhibit lower levels of cell proliferation compared to non-responsive tumors, often due to an increase in apoptosis (8, 9). Additionally, studies have shown a correlation between the expression of the human epidermal growth factor receptor 2 (HER2) and the response to NAC (10). HER2-positive tumors have significantly higher rates of achieving a complete pathological response compared to HER2-normal tumors (10). Prior investigations using diffuse optical spectroscopic techniques have reported significant differences in hemoglobin content changes after just one week of therapy between cases with complete pathological responses and those with incomplete responses (11–13). Furthermore, studies employing magnetic resonance imaging (MRI) (14) and measurements of circulating DNA and RNA integrity (15) have assessed response prediction shortly after the initiation of chemotherapy.

In cancer imaging, textural radiomics features are widely being used in the context of quantitative imaging (16–18). Previous studies have applied textural radiomics features for LABC therapy response prediction using different modalities (19, 20). Likewise, different imaging modalities have been utilized to extract informative information to build a predictive model to analyze the cancer treatment performance prior to start. In this regard, dynamic contract-enhanced magnetic resonance imaging (DCE-MRI) (14), positron emission tomography (PET) (21, 22), Diffuse optical imaging (DOI) (23), Ultrasound (US) imaging (24–26) and quantitative ultrasound (27–29) employed to assess the treatment response to breast cancer. Additionally, fusion of two different of modalities can be employed to obtain more discriminative features. To this end, Quantitative ultrasound Spectroscopic and CT information were fused in feature level to predict the response of head and neck cancer to radiation therapy treatment (30).

Although textural radiomics features are widely applied to evaluate the treatment of cancer, “detail” features, which are the most informative, can be extracted by deep learning-based techniques. Radiomics-based techniques are limited to extracting features at a superficial level, whereas deep learning techniques can delve deeper to extract features. To this end, a hierarchical self-attention-guided deep learning algorithm was trained to predict the chemotherapy treatment response using digital histopathological images (23). Likewise, in another study, outcome of radiotherapy for brain metastasis was predicted using the combination of deep learning features and clinical features. In this study, a deep convolutional neural network (CNN) was trained on MRI images to extract MRI features and thus deep textural MR-features are combined with clinical features to predict the outcome of treatment (31). Fujima et al. (32) conducted a study to predict treatment outcome for patients with oral cavity squamous cell carcinoma using deep learning and FDG-PET imaging.

Two types of deep learning networks have been widely employed to predict treatment outcomes using medical imaging. CNN-based techniques, which is called transfer learning, are applied to extract textural features from medical images (33). CNNs extract features using convolutional filters and reduce the dimension using pooling layer. The extracted features are more detailed in last layers. It means initial layers extract general features and the last layers extract details. The last layer of CNNs is flattened and then flatten layer is considered as an input of a fully connected layer (multi-layer perceptron).

Although these networks such as ResNet-50, ResNet-101, ResNet-152, Inception-V3 and Xception showed good performance to predict treatment outcomes, these CNN-based methods suffer the lack of attention mechanism. Nevertheless, vision transformer (ViT) is developed based on attention mechanism (self-attention) and it can increase the importance of image that carries the essential information (34).

The objective of this study is to evaluate deep learning networks to predict treatment outcomes for patient with LABC using CT imaging. We hypothesize that extracted features from CT images using deep learning techniques can provide vital information to predict response to NAC prior to start for patients with LABC.

Deep convolutional neural networks (CNNs) can be applied to classify medical images. These networks extract features using convolution filters by applying a convolutional operation on images. CNNs are translation invariance, which means if a filter learn information of object in one position of image, it does not need to learn same object in other position (33). In this study, five networks including VGG16, VGG19, ResNet-50, Res-Net-101, Res-Net-152, InceptionV3 and Xception were used to classify tumor response to NAC.

Convolutional neural networks (CNNs) work well for classification, segmentation, object detection and registration tasks (33). However, the lack of an attention mechanism to increase the weight of important parts of image (data) plays a limiting role in CNNs. Attention mechanisms were found in natural language processes (NLP) at first (35). The vision transformer (ViT) emerged to compensate for the lack of an attention mechanism in traditional CNNs (36). The attention mechanism is the backbone of ViT methodology and it improves the understanding of a global representation of data, which leads to an improvement of the learning during training phase by increasing attention of network on important information. ViT splits the images into patches and then patches are flattened to have linear sequences. Since the spatial dependency among patches is significantly important, positional encoding is performed in ViT to assign the position of each patch in embedding space.




2 Materials and methods



2.1 Study protocol and data acquisition

This research was carried out in compliance with the ethical guidelines set by Sunnybrook Health Sciences Center (SHSC) and Sunnybrook research Institute (SRI). The study included a total of 117 patients, comprised of 82 responders and 35 non-responders, who were diagnosed with locally advanced breast cancer (LABC) and undergoing neoadjuvant chemotherapy (NAC). All patients provided written informed consent. Tumor sizes were determined through MRI scans performed as part of standard care. Pre-treatment core needle biopsy specimens were subjected to histopathological analysis, confirming a cancer diagnosis for all patients. Post-operative pathology specimens provided crucial information about initial cellularity, tumor subtype, and the expression of hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and HER2 status as part of stand of care. All patients completed a full course of NAC, typically lasting 4-6 months. Following surgery, patients received adjuvant therapies in accordance with standard institutional practices, which included radiation, maintenance Trastuzumab for HER2-positive tumors, or endocrine therapy for hormonal-receptor positive tumors.




2.2 Pathological evaluation of tumor response

After finishing a full NAC regimen, patients underwent either lumpectomy or mastectomy. As part of their clinical care, standard clinical data and histopathological assessments of treatment outcomes were used to evaluate the pathological response of tumors to NAC. Specifically, patients were categorized into two groups: non-responders (referred to as “NR”) consisting of patients with stable disease or progressive disease and responders (referred to as “R”) consisting of patients with partial or complete response. This classification was determined using a modified response (MR) grading system, which drew from the Response Evaluation Criteria in Solid Tumor (RECIST) (37) and residual tumor cellularity (6). RECIST assesses the percentage change in tumor size (measured in its longest dimension) before and after treatment. A MR score of 1 indicates that there was no decrease in tumor size. MR score of 2 corresponds to a reduction in tumor size of up to 30%. An MR score of 3 is linked to a reduction in tumor size ranging from 30% to 90%. An MR score of 4 is indicative of a reduction in tumor size exceeding 90%. An MR score of 5 signifies the absence of any remaining evidence of a tumor.

In addition, to these criteria based on RECIST measurements, we also took into account the residual tumor cellularity to evaluate the treatment response. Specifically, we established a threshold of 5% for tumor cellularity. Patients are categorized as responders if tumors have cellularity equal to or less than 5% (≤ 5%), otherwise they are categorized as non-responders. There was no case with cellularity equal to or less than 5% prior to start.

Overall response assessment integrated both the RECIST-based criteria concerning tumor size reduction and the assessment of residual tumor cellularity. According to the RECIST criterion, a patient was classified as a responder (‘R’) if either there was a reduction in tumor size exceeding 30% (MR score 3-5) or if the residual tumor cellularity was low (<=5%). Conversely, a patient was categorized as a non-responder (‘NR’) if the reduction in tumor size was less than 30% (MR score 1-2) or if there was an increase in tumor size residual tumor cellularity was high (>5%).

The RECIST-based criteria and the evaluation of residual tumor cellularity were used to determine the target response for binary classification.




2.3 Data pre-processing and deep learning

Oncologists characterized the regions of interest (ROI) for all CT image slices throughout the whole tumor. Transformer and transfer-learning techniques as deep learning approaches were considered to discriminate responder from non-responder patients.

Figure 1 shows a schematic of the methods used in the study to predict responder and non-responder patients.




Figure 1 | The diagram illustrates a deep learning methodology for forecasting the response to NAC in LABC patients. The lower segment illustrates the application of transfer learning utilizing pre-trained CNNs, while the upper segment illustrates training from the ground up using the Vision Transformer (ViT) approach. In the ViT architecture, images are segmented into patches and converted into a sequential format, akin to the sequence of words in Natural Language Processing (NLP). The positional encoding ensures that each patch’s location retains crucial information. The core component is the transformer encoder, which includes patch embedding transformation, multi-head attention, and MLP.






2.4 Implementation of deep learning methods

The Python-3 language programing was employed to implement deep-learning methods. Keras 2.11 version was utilized to implement the transformer network and transfer learning networks. Data was split into 60% training set, 10% validation set and 20% test set (70:30 ratio). To see the effect of partitioning percentage on classification accuracy, we tried different train-test ratios including a 75:25 (65% training set, 10% validation set and 25% test set) and a 80:20 (70% training set, 10% validation set and 20% test set) and a 85:15 (75% training set, 10% validation set and 15% test set) and a 90:10 (80% training set, 10% validation set and 10% test set).

Experiments were repeated 10 times (The training and test sets were randomly split ten times to prevent bias towards any particular segment of the dataset.) and the average values of classification performance were reported. For transfer learning, networks were pre-trained on the ImageNet 1k dataset, and ViT was trained from scratch on the available training data.

Data augmentation was implemented using transformations including rotation, translation, zoom and flip. 150 epochs with early stop for training were considered. Learning rate was set to 0.001 and weight decay was set to 0.0001. Dropout rate was set to 0.5, optimizer was “AdamW” and “gelu” was the activation function.





3 Evaluation metrics

Accuracy, sensitivity, specificity, and balanced_accuracy of classifications were used to evaluate the performance of classifiers on test data expressed as follows;

	

Where TP, TN, FP and FN indicate true positive (true response), true negative (true Non-response), false positive and false negative, respectively.




4 Results

In this study, there were 117 women with a mean age of 52 ± 11 (mean ± standard deviation) years. Eighty-two (n=82) participants had a clinical-pathological treatment response (partial or complete response) based on RECIST criteria (37). Thirty-five (n=35) women had no treatment response (stable disease or progressive disease). Invasive ductal carcinoma (IDC) was the major histopathology for patients, and a minority of the patients were diagnosed with invasive lobular carcinoma (ILC) and invasive metaplastic carcinoma (IMC). A majority of patients (42%) had positive estrogen (ER+) and progesterone (PR+) receptors in tumors (major molecular features), and positive Her2/Neu (HER2+) receptor and triple negative tumor (ER-, PR-, HER2) were found in a minority of patients (15% and 22%, respectively). The tumor size changed from 5.2 ± 1.1 cm (mean ± standard deviation) to 1.4 ± 0.4 cm for responders and from 5.6 ± 1.3 cm to 6 ± 1.5 cm in non-responders. Chemotherapy regimens used were doxorubicin (Adriamycin), cyclophosphamide followed by paclitaxel (Taxol) (AC-T), or 5-fluorouracil, epirubicin, cyclophosphamide followed by docetaxel (FEC-D), doxorubicin, cyclophosphamide followed by docetaxel (Taxotere) (AC-D), paclitaxel and cyclophosphamide (TC). Additionally, the monoclonal antibody trastuzumab (Herceptin) (TRA) was utilized for LABC patients with HER2+ tumors. No changes were made to therapy based on imaging in the course of this observational study. Table 1 provides a summary of the pathological and clinical characteristics of the patients. Supplementary Table 1 characterizes each patient in terms of their characteristics individually.


Table 1 | Clinical characteristics of patient cohort.



Figure 2 presents individual representative CT images from responding and non-responding patients. No apparent differences were visually present.




Figure 2 | CT images of tumors of patients with LABC who did not respond to treatment (left) and tumors of patients with LABC who did respond to treatment (right).



In terms of response prediction, ViT (Accuracy=77 ± 3, Balanced_Accuracy=69 ± 4) obtained the best performance. Xception with Accuracy=72 ± 4 and Balanced_Accuracy=66 ± 5 placed in second rank, and ResNet-50 obtained third place with Accuracy=72 ± 5 and Balanced_Accuracy=64 ± 4. Results for ViT ranged from accuracy = 71 ± 3% to 77 ± 4%, specificity = 86 ± 6% to 76 ± 3%, sensitivity = 56 ± 4% to 52 ± 4%, and balanced_accuracy=69 ± 3% to =69 ± 3 with different train-test splitting ratios. Tables 2–6 show the performance of networks for different train-test split ratios 90:10, 85:15, 80:20, 75:25 and 70:30, respectively.


Table 2 | The performance of deep learning networks on the prediction of treatment response for 90:10 ratio (80% train data, 10% validation and 10% test data).




Table 3 | The performance of deep learning networks on the prediction of treatment response for 85:15 ratio (75% train data, 10% validation and 15% test data).




Table 4 | The performance of deep learning networks on the prediction of treatment response for 80:20 ratio (70% train data, 10% validation and 20% test data).




Table 5 | The performance of deep learning networks on the prediction of treatment response for 75:25 ratio (65% train data, 10% validation and 25% test data).




Table 6 | The performance of deep learning networks on the prediction of treatment response for 70:30 ratio (60% train data, 10% validation and 30% test data).



We applied a t-test to the resulted balanced _accuracy of different networks and this statistical test demonstrated that results are statistically significant.




5 Discussion

In this study, two different approaches of deep learning were applied to predict treatment response to NAC for patients with LABC. CT images of 117 patients with LABC were collected prior to the start of NAC treatment for gross disease. Response to NAC treatment was evaluated using standard clinical methodology for ground truth labelling. Specifically, the assessment of the chemotherapy treatment response was determined following the conclusion of the NAC regimen, using standard clinical RECIST criteria as well as histopathological methods.

The ViT technique obtained the best result in comparison with the other transfer learning techniques. This demonstrates that the attention mechanism improved the performance of the algorithm by applying different weights for different parts of an image. The important parts of the image received more attention during the training phase leading to better learning. Additionally, the effect of unimportant parts of the image is considerably decreased, which leads to less redundant information. ViT excels at efficiently capturing global contextual information due to its mechanism. In contrast to CNNs, which depend on local receptive fields and pooling layers, ViT simultaneously analyzes the entire image, enabling it to effectively model extensive dependencies over long ranges (36).

In terms of transfer learning networks, Xception, which is inception with depth-wise separable convolutions, obtained the best performance among all CNN-based networks. Likewise, ResNet50 obtained the second best among all CNN networks. The performance of VGG16 was not promising and it ranked as the last network in terms of classification accuracy. Although VGG16 effectively captures a diverse range of features, it does not explicitly acquire spatial hierarchies. In contrast, contemporary architectures like ResNets have incorporated skip connections and feature reuse mechanisms, enhancing their ability to capture both low-level and high-level features more efficiently.

CT Imaging is not able to visualize the details of cellular structures because of its resolution limitations. However, there might be variations in cellular structure and density, and arrangement which carry significant important information about treatment response. To this end, several studies have demonstrated the correlation between cellular micro-structure characteristics and tumor response (38–40). Additionally, voxel intensity in CT imaging, which shows the attenuation coefficient of tissue, can be used as a good feature to evaluate the variations in tissue micro-structure (41). In order to tackle the challenge of tumor tissue micro-structure characterization using CT, textural features quantification techniques have been frequently employed. To this end, Sadeghi et al. (42) extracted textural features from optical spectroscopic (DOS) images using the grey level co-occurrence matrix (GLCM) technique to predict NAC response in an LABC study. Tran et al. (19) utilized DOS-GLCM textural features to predict NAC response to LABC by training different machine learning classifiers. Tadayyon et al. (20) extracted features from quantitative ultrasound (QUS) to assess the tumor response to NAC for patients with LABC. Dastjerdi et al. (43) combined first-order and second-order GLCM features, which are extracted from CT, to predict the tumor response to NAC.

In other work, Teruel et al. (39) used GLCM features which are extracted from dynamic contrast-enhanced MRI (DCE-MRI) to predict the response of NAC for LABC patients. Cheng et al. (40) applied textural features extracted from 18F-FDG PET/CT images in order to predict pathological complete response (pCR) to NAC. Imaging parameters were maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis, while textural features included entropy, coarseness, and skewness. They found that variations in textural features after two cycles of treatment could be found in both HER2- and HER2+ patients.

Nevertheless, feature engineering is an essential step for using radiomics features; however, deep learning techniques do not need feature selection. Additionally, in deep learning, detailed features can be extracted by adding more layers. Although adding more layers increases the computational time, as well as the probability of overfitting and gradient vanishing, these challenges can be ameliorated using dropout techniques and regularization constraints. Furthermore, the use of an attention mechanism can increase the weight of important parts of an image, whereas machine learning-based techniques do not have this option. CNN-based deep learning and transformers can be used for end-to-end tasks such as tumor segmentation, feature extraction, and classification using a deep learning network (44). Additionally, the reproducibility of radiomics features is significantly affected by the protocol of feature extraction, which is not a limitation of deep-learning methods.

Jalalifar et al. (23) employed the InceptionResNetV2 network and transformer to extract features from MRI to predict the response of radiotherapy for brain metastasis patients. The transformer was used to preserve spatial dependencies among MRI slices. In another study, Jalalifar et al. (34) proposed a method based on data-efficient image transformer (DEiT) to use ViT for chest X-ray abnormality detection. They considered a teacher-student strategy to train the network such that DensNet is the teacher and ViT is the student. Saednia et al. (31) trained a hierarchical self-attention deep learning network to predict the response of NAC to LABC using digital histopathological images.

The study here demonstrated the potential of employing deep learning networks to predict the response of LABC patients to NAC. The outcomes underscored the efficacy of these networks in terms of both sensitivity and specificity. Furthermore, the study sheds light on the pivotal role of the attention mechanism within the transformer model in enhancing prediction performance. Identifying non-responders to NAC treatment among LABC patients is a formidable challenge, as any deviations from the standard treatment protocol may introduce complications for those patients who do respond. To address this, the study assigned equal importance weights to both non-responders and responders, striking a balance between sensitivity and specificity.

The primary objective of this research was to develop an expert recommender system aimed at optimizing NAC treatment. Physicians could leverage this artificial intelligence-based system to customize treatments and enhance their effectiveness. This system harnessed the power of routine diagnostic CT images and deep learning algorithms to forecast whether a patient would respond to NAC or if an alternative regimen should be considered. A notable limitation of the study was the size of the dataset, which could restrict its generalizability. Since the dataset was small, a considerable difference could not be found in changing the ratio of the training set and test set. Moreover, the validation of results using an external cohort dataset could be instrumental in assessing the technique’s robustness and gauging the algorithm’s applicability beyond the initial dataset. Furthermore, it is worth noting that all patients in the study originated from a single medical center. Although this homogeneity aids in training the algorithm for consistency, incorporating data from multiple centers would enhance the algorithm’s generalizability by accounting for variations associated with diverse practices across different sites. For future work, we can train ViT on large medical image datasets and subsequently fine-tune it on our LABC dataset. Additionally, using generative models such as generative adversarial networks (GAN) or diffusion probabilistic models can improve performance. Particularly, using GAN to augment data in the training phase may improve training.

In summary, this research demonstrated the capacity of deep learning networks, including transformers and transfer learning, to predict the response to NAC treatment in LABC patients before the commencement of treatment. The methodology involved applying various transfer learning networks, such as ViT transformer, VGG16, VGG19, ResNet-50, ResNet-101, ResNet-152, InceptionV3, and Xception, to extract features from CT images for predicting treatment response prior to start. Notably, the ViT transformer exhibited the highest performance, underscoring the effectiveness of the attention mechanism. The results from this preliminary study, particularly the accuracy of predictions, hold promise, indicating that this algorithm can serve as a valuable recommender system for forecasting NAC response before treatment commencement.
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Purpose

To compare the diagnostic value of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) and bone marrow biopsy and aspiration (BMBA) for evaluating bone marrow metastases (BMM) in newly diagnosed pediatric Ewing sarcoma (ES).





Material and methods

To assess the diagnostic accuracy of 18F-FDG PET/CT against BMBA for marrow infiltration in ES patients, a retrospective analysis encompassed 103 ES patients from the Children’s Hospital of Chongqing Medical University, spanning nine years, who underwent both 18F-FDG PET/CT and BMBA at the point of diagnosis.





Results

The median age of this study was 9.3(15 days to 17.1 years), 52(50.5%) patients were male. Among the cohort, 8 subjects received a BMM diagnosis via marrow cytology or histopathology, concomitant with positive 18F-FDG PET/CT findings. An additional 4 patients were identified with BMM solely through 18F-FDG PET/CT. No cytologically or histologically positive BMM were found in PET/CT-negative patients. Therefore, within this selected sample group, the 18F-FDG PET/CT imaging technique exhibited sensitivity of 100% and specificity of 95.8%. The five-year overall survival rate decreased from 57.5% among the entire cohort of patients to a mere 30% for individuals suffering from BMM.





Conclusion

Given these findings, the prevailing reliance on BMBA warrants reevaluation when 18F-FDG PET/CT is available, potentially heralding a shift towards less invasive diagnostic modalities in the management of ES.
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Introduction

Ewing sarcoma (ES) is a widespread form of cancer and is the second most frequent type of bone tumour among children. It constitutes around 2% of all cancer cases in children and teenagers. Adolescents and young adults are at highest risk for developing ES, which is an aggressive tumor originating from both soft tissues and bone (1). This malignancy often manifests with aggressive behavior and unfavorable survival outcomes, with nearly 30% of newly diagnosed ES patients presenting with distant metastases (2). The most frequent sites of metastasis are the lungs and bone marrow (3). The incidence of bone marrow metastases (BMM) in pediatric ES patients at the time of diagnosis has been reported to range from 5% to 17% (1, 4). Numerous prognostic factors have been identified, including the size of the primary tumor, metastatic status at presentation, and the tumor’s response to chemotherapy (5, 6). Among these factors, metastatic status holds the utmost significance as a prognostic indicator. Patients without metastasis can anticipate a 5-year overall survival (OS) rate of 70-80%. However, in patients with metastatic disease, the OS drops to less than 30%. For patients specifically with bone metastasis and BMM, the OS is less than 10% (1, 7). Moreover, several studies have suggested that BMM itself serves as an independent unfavorable prognostic factor (8, 9). The current risk stratification system, widely used for accurate staging and tailored treatment approaches, emphasizes the critical role of metastatic status.

In the diagnostic workup of ES, several guidelines advocate for a comprehensive suite of evaluations, which typically includes chest computed tomography, magnetic resonance imaging, whole-body bone scans, 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT), and bone marrow biopsy (BMB). However, these recommendations stem from expert opinion and are with their limitations (10, 11), and optimal combination of imaging modalities was not fully determined (12). At present, BMB is upheld as the definitive standard for the detection and assessment of BMM (13). Despite its status, BMB is an invasive technique and carries an inherent risk of complications, which, although infrequent, include hemorrhage and infection (14). In addition, the accuracy of BMB in detecting ES metastases may be affected by sampling variability, potentially making it less dependable than imaging methods (15).

Currently, 18F-FDG PET/CT is extensively utilized for staging, restaging, and gauging treatment responses in both adult and pediatric oncology. The role of 18F-FDG PET/CT in the assessment of Hodgkin lymphoma is increasingly supported by a growing body of evidence, indicating its potential to replace BMB in this context. However, the efficacy of 18F-FDG PET/CT in detecting BMM and its potential to replace BMB in the initial evaluation of pediatric ES remains an area of ongoing research. The results are varied across different studies, and consensus has yet to be reached regarding the ability of 18F-FDG PET/CT to supplant the bone marrow examination in the initial assessment of ES. The ESMO-PaedCan-EURACAN Clinical Practice Guidelines for bone sarcomas suggest that bone marrow aspiration (BMA) may be omitted if the 18F-FDG PET/CT scan does not indicate metastatic disease (12). Conversely, the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines continue to endorse the concurrent use of BMA and 18F-FDG PET/CT scan as part of the standard diagnostic protocol following an ES diagnosis. Meanwhile, the imaging guidelines for children with ES, as proposed by the Children’s Oncology Group Bone Tumor Committee, recommend the 18F-FDG PET/CT scan but do not provide specific directives regarding BMA (11).

The aim of this retrospective study was to evaluate and compare the diagnostic value of 18F-FDG PET/CT to bone marrow biopsy and aspiration (BMBA) of the anterior superior spine(ASIS) in bone marrow infiltration in newly diagnosed ES.





Materials and methods

After approved by the Review committee of the Children’s Hospital of Chongqing Medical University(CHCMU), we conducted a retrospective analysis of ES cases newly diagnosed from January 2012 to January 2021. CHCMU serves as the premier pediatric medical center for the southwestern region of China, offering healthcare to a population of 200 million in the area, with annual outpatient visits exceeding 3.5 million and inpatient admissions over 100,000. The inclusion criteria as follow: newly histologically confirmed ES patients, and both 18F-FDG PET/CT and BMBA were performed within two weeks. Suspected cases of ES underwent hematological and imaging examinations along with BMBA within two days of being admitted. BMBA, either unilateral or bilateral and blind, was carried out exclusively at the ASIS by a pediatric oncologist, without samples being taken from alternative sites. In cases where the primary tumor originated from the ilium, the side opposite to the primary tumor was preferred for BMBA to investigate bone marrow involvement. The biopsy specimens were assessed by pathologist who was blinded to the PET/CT results. Immunohistochemistry for NKX2.2, as well as CD99, fli1 were conducted to detect morphologically occult tumor cells. In this study, the definitive criteria for BMM diagnosis were marrow cytology and histology. 18F-FDG PET/CT scans were conducted within a week subsequent to the substantiation of the diagnosis. The exclusion criteria were defined as follows: individuals who had previously undergone systemic therapy and those with a time interval exceeding two weeks between the administration of PET/CT and BMBA, as well as cases where either BMBA or 18F-FDG PET/CT was not performed.

18F-FDG PET/CT scans were performed according to a standard whole-body oncological protocol following the guidelines of the European Association of Nuclear Medicine in the affiliated hospital of medical university (16). Radiolabeled FDG was injected intravenously 1 h prior to imaging, and whole body imaging (from the skull to toes) was performed in every patient. The PET/CT images underwent evaluation by two nuclear medicine experts, who were blinded to the results of BMBA. The 18F-FDG PET/CT findings were deemed affirmative when the bone marrow exhibited FDG avidity equivalent to or surpassing that observed in the primary tumor, and also exceeding the avidity detected in surrounding tissues.

18F-FDG PET/CT scans that did not exhibit FDG avidity at any skeletal site were interpreted as negative. Truly negative was defined as both negative of 18F-FDG PET/CT scan and BMBA. The diagnostic precision of BMBA and 18F-FDG PET/CT was evaluated by determining the sensitivity, specificity, as well as the positive predictive value (PPV) and negative predictive value (NPV). The formula to determine these parameters were as following: sensitivity=(True Positives)/(True Positives + False Negatives), specificity=(True Negatives)/(True Negatives + False Positives), PPV=(True Positives)/(True Positives + False Positives), NPV=(True Negatives)/(True Negatives + False Negatives). The data were processed using SPSS software version 26.0 (SPSS Inc., Chicago, IL) and GraphPad Prism version 9.0 (GraphPad Software Inc., La Jolla, CA).Differences between groups were compared using the chi-square tests and Fisher’s exact test for the categorical variables. To assess the concordance between the findings of BMBA and PET/CT, the kappa statistic was employed. Survival analyses were performed using the Kaplan-Meier method with Log-rank test. The level of statistical significance was established for p-values < 0.05.





Results

Over the course of nine years, 115 pediatric patients received an ES diagnosis at our institution. As part of the study’s refinement process, seven patients were excluded due to the absence of BMBA. Additionally, two patients were omitted from consideration for lacking 18F-FDG PET/CT scans. Furthermore, an additional three patients were disregarded as they had initiated chemotherapy during the interval between the two aforementioned procedures. Consequently, 103 patients were deemed eligible for inclusion in the study (Figure 1).




Figure 1 | Selection flowchart for this study.



The demographic and clinical characteristics of our study cohort are showed in Table 1. The median age at the time of diagnosis was established at 9.3 years, with a spectrum ranging from 15 days to 17.1 years. 52(50.5%) patients were male. The extremities emerged as the predominant initial site for ES, constituting 33% of the cases within this cohort. Pursuant to the staging criteria delineated by the American Joint Committee on Cancer (AJCC), 50 patients(48.5%) were diagnosed with metastatic disease. The lungs were identified as the most frequent site of metastatic spread, implicated in over half of the metastatic instances in our cohort, affecting 27 patients. A significant majority of the cohort presented with multiple metastatic sites(29/50, 58%).


Table 1 | Clinical characteristics of the population.



In discerning bone marrow involvement, BMBA was performed on 70 patients(65.4%), while 33 patients(34.6%) were evaluated with BMA exclusively. The incidence of BMM was corroborated in 8 patients(7.8%) through cytological and/or histological findings. All 8 BMM patients underwent bilateral BMBA, yielding a total of 16 bone marrow results. The details of all the bone marrow results were showed in Table 2. It was noted that none of the patients with negative BMB exhibited positive BMA results. BMA and BMB results were in agreement in 13/16 cases(81.3%) (Table 3).


Table 2 | Details about all positive bone marrow results.




Table 3 | Cross-tabulation of BMB versus BMA results for BMM.



The 18F-FDG PET/CT demonstrated bone marrow involvement in 12 cases (11.7%) within our study cohort. Table 4 provides the correlations between 18F-FDG PET/CT and BMBA findings, stratified by disease subtype. Notably, the 18F-FDG PET/CT scans successfully detected marrow involvement in all 8 patients diagnosed with BMM through cytological or histological assessments. Our study noted an absence of false negative 18F-FDG PET/CT findings; thus, the sensitivity and NPV for 18F-FDG PET/CT stood at 100%. The PPV for 18F-FDG PET/CT in our research was determined to be 66.7%.The kappa statistic measuring the concordance between BMBA and PET/CT was 0.779 (P<0.001), affirming substantial agreement between these two diagnostic tools.


Table 4 | Cross-tabulation of 18F-FDG PET/CT versus BMBA results for BMM.



In our study, five patients were discovered to have bone marrow lesions beyond the ASIS using PET/CT. It is intriguing to note that the four patients who exhibited positive PET/CT scans but yielded negative results in BMBA, the BMM were observed beyond ASIS region. In contrast, among the 8 patients with both PET/CT and BMBA positive, PET/CT identified additional BMM regions in certain patients beyond for the iliac region.

The median follow-up period spanned 32 months. The study period witnessed 32 deaths, translating to a mortality rate of 31.1% across the cohort. The five-year overall survival rate was 57.5%. Figures 2, 3 depict the survival curves of the entire cohort and the demographic stratified by metastatic status, respectively. Additional survival rate was calculated for patients with BMBA confirmed BMM compared to those identified via PET/CT (Figures 4, 5). Among the BMBA-confirmed BMM patients, 5 individuals died, culminating in a low overall survival rate of a mere 30% within this particular subgroup. In contrast, among 12 patients with PET/CT-positive BMM, the count of mortalities surged to 7, yielding an overall survival rate of merely 19.2% for this cohort.




Figure 2 | Overall survival of patients.






Figure 3 | Overall survival of demographic stratified by metastatic status.






Figure 4 | Overall survival of demographic stratified by BMBA-confirmed bone marrow metastatic status.






Figure 5 | Overall survival of demographic stratified by PET/CT-confirmed bone marrow metastatic status.







Discussion

Bone marrow involvement is a common phenomenon in metastatic ES, often heralded as an independent prognostic marker that portends a less favorable outcome among those afflicted with metastases (8, 9, 17, 18). Thus, its detection is of paramount importance for the initial staging of ES/PNET. BMBA are widely regarded as the diagnostic standard procedures for detecting bone marrow involvement. However, their significance in the initial staging process has yet to be unequivocally elucidated. The likelihood of detecting bone marrow involvement is significantly diminished in the absence of metastases discernable through imaging techniques (19, 20). Contemporary therapeutic protocols stipulate bone marrow examination through biopsy, typically procured from the iliac crest. The underlying assumption of this approach, nonetheless, rests upon the premise that metastasis arising from malignant neoplasms invariably leads to a pervasive infiltration throughout the marrow. Consequently, in instances where BMM is present, a positive biopsy result is anticipated. However, this carries the inherent risk of underestimating cases characterized by a localized bone marrow infiltration pattern (13), potentially leading to an underappreciation of disease severity. Hence, in adult populations, alternative diagnostic means, especially 18F-FDG PET/CT, are frequently utilized to assess BMM. In pediatric population, 18F-FDG PET/CT has been utilized to investigate bone marrow involvement in lymphoma. In spite of this, there is little research evaluating 18F-FDG PET/CT as a means of assessing the bone marrow of pediatric patients suffering from solid tumors.

Contemporary scholarship exhibits a spectrum of views concerning the diagnostic accuracy of 18F-FDG PET/CT in the context of BMM. Tezol et a (21). have raised concerns that 18F-FDG PET/CT may not exhibit the desired levels of sensitivity and precision in pinpointing bone marrow involvement in pediatric neoplasms, inclusive of ES. The above statement is contradicted by findings from other investigations, which propose that 18F-FDG PET/CT’s heightened sensitivity and specificity establish it as a robust tool for evaluating BMM, potentially rendering BMB redundant in the staging of ES. A retrospective analysis conducted by Newman revealed that the incidence rate of BMM detected by BMB was consistent with the results obtained through 18F-FDG PET/CT and bone scan (19). Additionally, Zapata (22) validated the absence of false-negative BMM findings when utilizing 18F-FDG PET/CT in the assessment of pediatric solid tumors. Supporting these findings, Kasalak (20) reported a substantial concordance rate of 95% between 18F-FDG PET/CT and BMB in diagnosing BMM.

In this retrospective investigation, we assessed and compared the diagnostic efficacy of 18F-FDG PET/CT with BMBA in BMM among newly diagnosed ES children and adolescent. To the best of our knowledge, this study is the largest cohort assessing the efficacy of 18F-FDG PET/CT in BMM in pediatric ES, involving a total of 103 participants. A high sensitivity (100%) and specificity (95.8%) of 18F-FDG PET/CT for the detection of marrow disease in pediatric ES were observed, which is consistent with the results obtained in previous studies (20, 23). A systematic review conducted by Campbell (24) to assess the role of BMB for staging in ES inferred that BMB might no longer be necessary for the staging of ES. In a substantial retrospective cohort study comprised of 180 patients with ES, conducted by the French Sarcoma Group (25), the precision of 18F-FDG PET/CT in the detection of BMM at the point of diagnosis was critically evaluated. The findings revealed a sensitivity of 92.3% and an impressive specificity of 99.4%, thereby attesting to the superior efficacy of 18F-FDG PET/CT over BMBA for the appraisal of bone marrow infiltration. Complementary to this, an additional study has shed light on the relatively minimal diagnostic benefit of routine BMBA usage in the staging process of extraskeletal ES. It was elucidated that BMBA was not consistently effective in diagnosing metastatic engagement, even in cases where bone metastases were already known (26).

In this study, we also analyzed 8 patients diagnosed with BMM through histology and cytology. Each of the 8 patients underwent bilateral BMBA, resulting in a total of 16 BMA and BMB samples. Among these 16 samples, the concordance between BMA and BMB was 81.3% (including 11 concordant positive results and 2 concordant negative results). On a patient level, regardless of which side (left or right) was positive, it was considered as BMM, resulting in a concordance of 87.5%(7/8). In a study compared the results of BMA and BMB, 61.25% of the cases showed a positive correlation between BMA and BMB (27). In another reports, there was only 22% positive correlation in the findings on aspirates and biopsies (28). Our results were significantly higher. However, inconsistencies still existed between the left and right side results as well as between BMA and BMB results. Therefore, bilateral bone marrow examination remains the standard procedure for assessing bone marrow status in patients with proven or suspected malignancies.

Beyond the matter of discerning positivity rates for BMM, there are other considerations that sway the selection of diagnostic modalities by healthcare providers and their patients. It is widely acknowledged that 18F-FDG PET/CT is a financially demanding procedure, incurring a cost upwards of $800 in China, whereas BMBA imposes a considerably milder economic impact, priced below $150 – a factor which significantly lightens the financial load on patients. Contrastingly, in the United States, the fiscal implications of BMBA and 18F-FDG PET/CT are more pronounced, with associated expenses ranging from $500 to $1,500 for BMBA (22), and about $1600 for 18F-FDG PET/CT (29, 30), placing healthcare costs at the forefront of decision-making for both physicians and patients when deliberating the use of PET scans versus BMBA. Moreover, the invasive nature of BMBA bears the risk of bleeding and often necessitates sedation or general anesthesia, particularly in pediatric cohorts, to mitigate the pain and distress it might induce. In contradistinction, 18F-FDG PET/CT is a non-invasive investigative tool which, besides negating the potential for BMM, yields a broader spectrum of clinical data, thereby enhancing its overall clinical utility.

In consideration of the vast expanse of literature available to us and the understandings we have gleaned from our investigations, we propose a re-evaluation of the traditional invasive BMBA as a means of staging ES at the time of diagnosis. Our recommendation is that BMBA should no longer be a mandatory systematic procedure in this particular clinical scenario, instead, we advocate for the adoption of non-invasive 18F-FDG PET/CT, which has evidenced remarkable diagnostic efficacy. Embracing this paradigm shift holds the potential to streamline the staging process and alleviate the burden placed upon patients.

This study is subject to several limitations that warrant acknowledgment. Firstly, it is important to note that this is a retrospective study conducted at a single center, which may limit the generalizability of the findings. Secondly, the evaluation of results from alternative imaging modalities was not included in our analysis, which could potentially provide valuable insights. And we did not perform BMBA under PET/CT guidance, so we cannot verify whether the FDG uptake on PET/CT was due to true BMM. Additionally, it is worth mentioning that bone marrow cytology tests, which we relied on, have inherent limitations and may have a certain rate of missed diagnoses. Furthermore, the detection of tumor DNA in bone marrow using PCR or NGS methods was not employed in our study, and incorporating these advanced techniques could enhance the accuracy of our findings. Finally, it should be acknowledged that we solely focused on the ASIS region for BMBA and did not perform image-guided BMBA at noniliac lesions exhibiting enhanced FDG uptake, which may have implications for the comprehensiveness of our results.





Conclusion

In conclusion, the utilization of 18F-FDG-PET/CT represents a highly valuable approach in the evaluation of bone marrow involvement in newly diagnosed ES. The conventional practice of indiscriminately conducting BMBA of the iliac crest should be reevaluated in light of the availability and effectiveness of 18F-FDG-PET/CT imaging.
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Case report: Ultrasound misdiagnoses atypical parathyroid adenoma as malignant thyroid tumor
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Atypical Parathyroid Adenoma (APA) is a type of tumor that lies somewhere between parathyroid adenoma and parathyroid carcinoma. It often affects adults over the age of 60, and the clinical symptoms are consistent with those of hyperparathyroidism. This condition has a low occurrence, and its ultrasonographic signs are strikingly similar to thyroid malignant tumors, making it easily misdiagnosed. As a result, a case of APA ultrasonography misdiagnosis admitted to our hospital was recorded in order to serve as a reference point for APA diagnosis.
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Introduction

APA is a kind of parathyroid adenoma that has a malignant potential between parathyroid adenoma and parathyroid carcinoma (1). It is readily misinterpreted as a malignant tumor because it lacks evident invasion of arteries and capsules, distant metastases, and other symptoms similar to parathyroid carcinoma (2). A instance of APA ultrasonography misdiagnosis of a thyroid malignant tumor in our institution is described here.

The patient, a 46-year-old female, reported to the First Affiliated Hospital of China Medical University with the major complaint of “thyroid mass discovered during physical examination for two years.”. Physical examinations: The neck is symmetrical, with the trachea in the center, and a tough lump around 2cm in diameter on the left front of the neck. The nodule’s surface is smooth, no tenderness, and it moves up and down when swallowed. There were no evident swollen lymph nodes on the neck, and no clear vascular murmurs were heard during neck auscultation. Ultrasound results show a 1.79×1.15×1.61cm nodule behind the upper pole of the left lobe of the thyroid gland. The nodule is solid hypoechoic with uneven internal echoes, visible punctate strong echoes with unclear meanings, nodules in a vertical position, irregular edges, lobulated, and clear boundaries. The relationship between the inner side and the trachea is close, and the boundary is unclear (Figure 1). A small color blood flow signal can be seen at the margin of the CDFI nodule (Figure 2). Lymph nodes on both sides of the neck showed no structural abnormalities on ultrasonography. The ultrasound revealed a left lobe thyroid nodule (ACR-TIRADS 5type) (3).Cervical enhanced CT revealed a left medial paratracheal thyroid space occupying lesion (Figure 3). ECT diagnosis: Increased distribution of imaging agents in the upper left lobe of the thyroid, the possibility of hyperparathyroidism is high (Figure 4). Preoperative laboratory results showed iPTH: 46.49 pmol/L (reference range: 0.66–12.00), serum calcium: 2.74 mmol/L (reference range: 2.17–2.57), phosphorus: 0.77 mmol/L (reference range: 0.81–1.52), magnesium: 0.88 mmol/L (reference range: 0.78–1.28), creatinine: 47 umol/L (reference range: 45–84), serum albumin: 40. 9 g/L (reference range: 40–55). Biochemical findings indicated that the patient had raised iPTH, elevated blood calcium, and decreased blood phosphorus, which, together with imaging and laboratory tests, consider the possibility that the tumor was from the parathyroid gland and high malignancy probability. Because the patient was nervous and concerned about the risk of tumor cell spillage, she refused to do FNA and wanted to accomplish the treatment through surgery as soon as possible. As a result, the patient was admitted and had surgery under general anesthesia. During the operation, the mass was found in the upper pole of the left lobe of the thyroid gland, with a diameter of about 1.8cm, soft, invading the gland, and being tightly attached to the trachea and recurrent laryngeal nerves. The intraoperative pathology included a parathyroid adenoma with capsule invasion and localized capsule penetration. The thyroid surgeon considered the intraoperative pathological suggestion of capsule invasion, which was inconsistent with the typical parathyroid adenoma and had malignant potential, so the left upper parathyroid mass and the invaded left thyroid lobe were resected, and the anterior laryngeal lymph node dissection. A postoperative pathological examination using light microscopy revealed a tightly packed cluster of tumor cells with deep stained nuclei and copious cytoplasm, as well as an increase in the number and size of localized thyroid follicles and fibrous tissue growth.Paraffin and immunohistochemistry can be used to further detect or exclude thyroid follicular cancer. Immunohistochemical results: CK19 (weak+), Synaptophysin (-), Galectin-3 (+), Tg (-), TTF-1 (-), PTH (++), Ki-67 (5%), Calcitonin (-), ChromograninA (+), CD56 (-). The final pathological diagnosis was an atypical parathyroid adenoma (Figure 5). After surgery, the patient was examined again, and the findings showed: iPTH:3.44pmol/L, calcium: 2.05 mmol/L, phosphorus: 0.94 mmol/L, and magnesium: 0.79 mmol/L. The patient received regular follow-ups and no recurrence has been observed so far.




Figure 1 | Ultrasound image of atypical parathyroid adenoma misdiagnosed as “thyroid malignant tumor”.






Figure 2 | Color Doppler of atypical parathyroid adenoma misdiagnosed as “thyroid malignant tumor”.






Figure 3 | Enhanced CT image of atypical parathyroid adenoma in the neck.






Figure 4 | The image of parathyroid ECT scan.






Figure 5 | The pathologic images of the surgical specimen.







Discussion

APA is an intermediate condition between adenoma and adenocarcinoma with unknown malignant potential. APA is characterized as parathyroid tumors with capsule and vascular invasion but no capsule penetration, lymph nodes involvement, or distant metastasis (4). The start age of APA is around 60 years old (5, 6), with a male to female ratio of about 1:1 (7). Its clinical symptoms are consistent with those of hyperparathyroidism, such as varied degrees of bone pain, osteoporosis, and even fractures, polyuria, urinary system stones, abdominal pain, bloating, and so on (4). Abnormal laboratory tests include high blood calcium, low blood phosphorus, elevated serum PTH, and elevated AKP levels. The preoperative laboratory evaluation in this patient revealed increased blood calcium, decreased blood phosphorus, and raised iPTH concentrations, which are consistent with the biochemical details of typical APA.

Histopathological features of APA include a broad band of collagen fibers that can bind to and thicken the capsule. Tumors may have a capsule and have a distinct trabecular growth pattern, with projecting nuclei, mitotic activity, and nuclear polymorphism (8), but no metastasis or infiltration of surrounding tissues. According to the pathological findings in this case, the cancer cells are tightly clustered, with strong staining of nuclei and copious cytoplasm. They are accompanied by an increase in the number and size of localized thyroid follicles, as well as fibrous tissue hyperplasia, which is consistent with APA’s histopathological characteristics.

Parathyroid lesions are readily misdiagnosed by ultrasonography because normal parathyroid glands are tiny and cannot make a good reflecting contact with surrounding tissues, making ultrasound difficult to display; Second, the number and location of parathyroid glands vary significantly, and the anatomical relationship of the neck is complex; The third reason is that the echo of the parathyroid gland is close to the thyroid gland and difficult to identify, making it easy to misdiagnosed as thyroid disease or missed diagnosis. Based on this example, the following are the grounds for misdiagnosis: 1. Most parathyroid lesions have a membrane boundary with normal thyroid glands and show as arc-shaped hyperechogenicity. In this case, there is no clear boundary between the nodule and the thyroid gland, and the lesion seems to be within the thyroid gland on ultrasound pictures, leading to a misdiagnosed as a thyroid origin lesion. 2. The nodule is solid, hypoechoic, vertical, lobulated, and has unclear punctate strong echoes (microcalcification cannot be identified), all of which suggest thyroid cancer. According to the ACR-TI-RADS classification standard, it has reached 5 categories, whereas the Chinese TIRADS classification standard (C-TIRADS) has reached 4c categories, so it is misdiagnosed as a malignant tumor; 3. In this case, due to highly suspicious malignant nodules on imaging, Neither preoperative gene analysis was performed, nor adequately considering factors other than imaging, which is another important reason for misdiagnosis.

APA and thyroid tumor intersect in the two-dimensional audiogram, making it difficult to diagnose them solely on the two-dimensional audiogram, which can lead to misdiagnosis and missed diagnoses. Some studies have demonstrated that combining CEUS, elastography, and 99mTc MIBISPECT/CT multimodal imaging diagnostic approaches can greatly increase the accuracy of parathyroid lesions (9). Parathyroid lesions can be seen on contrast-enhanced ultrasound with quick in and out of the contrast agent, as well as significantly uniform or uneven boosting of nodules (10). Combined with this patient’s enhanced cervical CT, a semicircular soft tissue density shadow was noticed beside the left medial thyroid trachea, and the enhanced scan revealed uneven enhancement (Figure 3). On elastography, APA is frequently seen as a “stiff edges” and a “colored lesion”. The term “stiff edges” refer to the increased rigidity of the peritumoral tissue when compared to the surrounding soft tissue, and “colored lesion” alludes to the diseased tissue’s uneven and colorful appearance (11). This is closely related to APA’s pathological traits, which include increased connective tissue, adherence to neighboring structures, and band fibrosis. 99mTc-MIBI SPECT/CT fusion imaging can detect both the functional status of the lesion and the interaction between the lesion and neighboring tissues, and a localized radioactive focused focus can be observed in the lesion site (12). Image of the parathyroid glands in this patient: early imaging was seen 15 minutes after medication injection, the imaging agent in the upper left lobe of the thyroid gland was dispersed in the thickening area, while the other billet imaging agent was spread normally. Delayed imaging 2 hours after medication injection resulted in no significant decrease in upper left thyroid lobe thickness, and reduced dispersion of the remaining imaging agent (Figure 4). The absence of a multimodal imaging evaluation in this case is also one of the causes of disease misdiagnosis.

High-impact germline CDC73 mutations have been demonstrated to enhance the incidence of parathyroid cancer via altering the C-terminal domain(CTD) of parafibromin (13). As a result, CDC73 mutation screening in patient blood samples is critical when the lesion’s origin is suspected to be parathyroidal. Furthermore, the parathyroid gland is the primary organ involved in multiple endocrine tumor syndrome (MEN) including two main forms, MEN type 1 (MEN1) and type 2 (MEN2). MEN1 is characterized by the combined occurrence of parathyroid, pituitary and pancreatic neuroendocrine tumors, whereas MEN2 features medullary thyroid cancer in association with phaeochromocytoma and parathyroid tumors. Although both MEN1 and MEN2 are autosomal dominant disorders, they have contrasting molecular etiologies: MEN1 results from inactivating germline mutations of the MEN1 tumor suppressor gene on chromosome 11 (14), whereas MEN2 results from activating mutations in the RET proto-oncogene. Fully understanding if patients have hyperparathyroidism or MEN family history aids in the early diagnosis or treatment of APA.

In summary, APA can be difficult to identify from thyroid malignant tumors in ultrasound presentations, and a thorough analysis should be performed using a combination of multimodal imaging diagnostic approaches and laboratory assays. The majority of APAs have a good prognosis and seldom have tumor recurrence or metastasis (15). As a result, early and accurate diagnosis and treatment of APA are critical to patient outcomes.
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Objectives

The presence of occult nodal metastases in patients with oral tongue squamous cell carcinomas (OTSCCs) has implications for treatment. More than 30% of patients will have occult nodal metastases, yet a considerable number of patients undergo unnecessary invasive neck dissection to confirm nodal status. In this work, we propose a probabilistic model for lymphatic metastatic spread that can quantify the risk of microscopic involvement at the lymph node level (LNL) given the location of macroscopic metastases and the tumor stage using the MRI method.





Materials and methods

A total of 108 patients of OTSCCs were included in the study. A hidden Markov model (HMM) was used to compute the probabilities of transitions between states over time based on MRI. Learning of the transition probabilities was performed via Markov chain Monte Carlo sampling and was based on a dataset of OTSCC patients for whom involvement of individual LNLs was reported.





Results

Our model found that the most common involvement was that of level I and level II, corresponding to a high probability of 𝑝b1 = 0.39 ± 0.05, 𝑝b2 = 0.53 ± 0.09; lymph node level I had metastasis, and the probability of metastasis in lymph node II was high (93.79%); lymph node level II had metastasis, and the probability of metastasis in lymph node III was small (7.88%). Lymph nodes progress faster in the early stage and slower in the late stage.





Conclusion

An HMM can produce an algorithm that is able to predict nodal metastasis evolution in patients with OTSCCs by analyzing the macroscopic metastases observed in the upstream levels, and tumor category.





Keywords: oral cavity squamous cell carcinoma, lymph node metastases, artificial intelligence, hidden Markov model, level of metastatic lymph nodes





Highlights

	Currently, lymphatic metastatic spread prediction for oral tongue SCCs (OTSCCs) is mostly based on the prevalence of nodal involvement.

	The risk of microscopic involvement in level III when level II was observed to harbor metastases increased. Similarly, the risk of microscopic involvement in level IV when patients with observed metastases in LNL II and III increased. Lymph node grade I–IV involvement occurred in early more than late stage in our data.

	This research illustrates the potential of the HMM-based model to personalize microscopic involvement risk based on the individual patient’s state of disease progression.







Introduction

Currently, the combination of radiotherapy, chemotherapy, and intensity-modulated radiation therapy (IMRT) has substantially improved the locoregional control rates for patients with head and neck squamous cell carcinoma (HNSCC). An important aspect of these therapies is delineating the target tumor volume to ensure minimal effects in adjacent tissues. In HNSCC, target volumes are defined by three steps. First, the primary gross tumor volume (GTV-T) is delineated using CT, 18F-FDG-PET, or MRI (1). Secondly, tumor expansion was assessed under the microscope and GTV-T was extended to the primary clinical target tumor volume (CTV-T) (2). Third, an evaluation of lymph node metastases is assessed. Anatomically defined lymph node regions termed lymph node levels (LNL) divide the neck lymphatic system into groups. The definition of the selective clinical target nodal volume (CTV-N) is based on the included LNL. In recent years, there has been an international consensus on delineating LNLs (3–5). For example, Grégoire et al. (5) published an 88-page atlas detailing the anatomy of neck LNLs.

Clinical target volume 1 (CTV1) defines macroscopic disease, CTV2 defines microscopic high-risk disease, and CTV3 defines microscopic low-risk disease (6). Estimating the probability of microscopic involvement is challenging because it depends on several factors. Some of them include (1) the sensitivity and specificity of currently available imaging techniques, which affect the likelihood of an LNL metastasis despite negative imaging results (2), the location and staging of the primary tumor, influencing the likelihood of tumor spread to a given LNL, and (3) the local lymphatic spread of the primary tumor. To address these difficulties, oncologists have observed the patterns of lymphatic spread through clinical studies (7, 8), mostly reporting the proportions of specific LNL involvement based on the location and tumor staging of the primary tumor. Additionally, the sensitivity and specificity of imaging techniques have been studied by comparing the imaging performance and histopathology in surgical patients (5).

In head and neck cancers, most of them are SCCs; approximately 25% occur in the oral cavity, with the tongue being the most affected subsite (2). In this study, we propose to use a hidden Markov model (HMM) probability model to assess the spread of lymph node metastases and quantify the risk of microscopic infiltration at different LNLs given the macroscopic location and T-stage based on MRI. This research may allow for further personalized definitions of CTV-N based on the individual patient’s disease status using a time-series model suitable for MRI.





Materials and methods




Patient selection

A total of 131 patients with oral tongue squamous cell carcinomas (OTSCCs) who were admitted to our hospital between 10/10/2016 and 26/06/2023. Overall, 108 patients with OTSCCs who were treated with excision according to the criteria established by the National Comprehensive Cancer Network (NCCN) at Southern Medical University Nanfang Hospital were evaluated. The institutional review boards approved this retrospective study, and the requirement for informed consent was waived. Clinical characteristics, such as sex, age, areca nut history, and tumor, node, metastasis (TNM) stage, were recorded from the Hospital Information System (HIS) for all eligible patients. Patients’ serial MRI data were obtained from Picture Archiving and Communication Systems (PACS). The analysis of the lymphatic spread including levels I, II, III, and IV was performed for the diagnostic MRI imaging modalities including T1-weighted images, T2-weighted images, and contrast-enhanced T1-weighted images available for each patient. This was performed by two experienced radiologists by reviewing radiology reports together with the diagnostic images.

The inclusion criteria were as follows:

	(1) OTSCCs were verified by pathology, i.e., before definitive radiotherapy with or without chemotherapy;

	(2) patient with clinical tumor stage (T-stage) (T1–T4);

	(3) lymph nodes that were clinically palpable or detectable on imaging at presentation;

	(4) no previous/synchronous tumors;

	(5) no previous neck surgery or “neck violation,” such as excisional nodal biopsy, fine-needle aspiration, or incisional biopsy with macroscopic/palpable tumor residual, allowed;

	(6) dissection of at least three contiguous neck nodal levels

	(7) lymph node surgery performed at Nanfang hospital, and

	(8) neck specimen processed by surgical levels in the standard manner.



All eligible patients underwent baseline head and neck MRI scans before surgical treatment within 1 week. Diagnostic criteria for cervical lymph node metastasis were as follows: a smallest transverse diameter of more than 10 mm (5 mm–8 mm for retropharyngeal lymph nodes [level VIIA] and 12 mm–15 mm for upper jugular lymph nodes [level II]), central necrosis irrespective of the size, rounded rather than oval shape, loss of fatty hilum, visible peripheral extensions showing evidence of extracapsular spread, and the presence of more than three lymph nodes of size between 6 mm and 8 mm grouped (9). Two radiologists, each with over 8 years of experience and over 10 years of experience, independently evaluated the images, and in cases of disagreement for lymph node metastasis, assessments were resolved through consultation.





Model training and validation

We modeled the patient’s state of metastatic lymphatic progression as a collection of hidden binary random variables that indicated the involvement of LNLs. In addition, each LNL was associated with observed binary random variables that indicated whether macroscopic metastases were detected. An HMM was used to compute the probabilities of transitions between states over time. Learning of the transition probabilities was performed via Markov chain Monte Carlo sampling and was based on the dataset of tongue cancer patients in whom involvement of individual LNLs was reported. We modeled the state of each LNL as a hidden or unobserved binary random variable, which was indicated via values 0 or 1 if an LNL was healthy or involved, respectively. This state indicates whether there is truly a tumor present in an LNL, including the presence of occult metastases for the involved state—motivating the term hidden or unobserved state. Every LNL can be diagnosed using MRI. The diagnosis was also modeled as a binary random variable—this time an observed one—taking on 0 for negative and 1 for positive.

The spread of the tumor through the lymphatic network is represented in this model by arcs directed to and between LNLs, as illustrated in Figure 1. Directed arcs from the primary tumor to an LNL represented the direct spread of tumor cells from the primary tumor (N0 status) to the LNL(N+ status). These arcs were associated with parameters bν, which we called base probabilities, and which indicated the probability that the tumor could spread directly to LNL ν. When LNL s receives efferent lymphatics from LNL r, this was also represented by a directed arc from LNL r to s and r=pa (s), which is called a parent node of s. These arcs were associated with a transition probability trs from r to s.




Figure 1 | Annotated arcs depict the direction of lymphatic flow where the parameter next to it (b and t) represents the probability of metastatic spread.



We used the parameters inferred from the early T-stage dataset and times prior regarding expectation of a patient being diagnosed later to estimate how risks of microscopic metastasis might increase over time. The parameters inferred from the late T-stage dataset were also analyzed.

In this work, we apply sensitivity and specificity parameters based on published literature and recent meta-analyses, i.e., these parameters were not learned from data. Specificity and sensitivity values for MRI diagnostic procedures in head and neck cancer were set as 0.63 and 0.81 (10). The data were split randomly into three equally large parts. Then, the model was trained on all three combinations of two of these thirds and compared with the remaining third to see if the results were still plausible. Bayesian network (BN) were used previously to model lymphatic spread (11), which is the foundation for further development. In this research, we compared risk estimation for the HMM-based model to the previously published BN model.





Statistical analysis

Baseline demographic and clinical characteristics were expressed as the means ± standard deviations and frequencies (percentages) based on normality and the continuous nature of the variable. All statistical analyses were conducted using R software (version 3.6.0, http://www.Rproject.org).






Results




Patient characteristics

There were 108 eligible patients enrolled in this study according to our criteria. Level I–IV lymph nodes were evaluated based on MRI. One representative analysis of LNLs is presented in Figure 2. A total of 79 patients were men, and 29 patients were women. The average age of the tongue cancer patients at diagnosis was 49.66 ± 12.77. There were 20 of 108 (19.44%) patients who had a history of chewing areca nuts. There were 66 of 108 (55.56%) patients who were in the early stage, and 48 (44.44%) patients were in the late stage. Details on the patient characteristics as well as the data available are provided in Table 1.




Figure 2 | MRI images of the lower neck of a patient with a T4 stage OTSCC. (A) Coronal contrast enhanced T1 weighted images shows Levels III and IV lymph nodes have macroscopic metastasis (arrow). (B) Axial contrast enhanced T1 weighted images show Levels IV lymph nodes have macroscopic metastasis (arrow). (C) Axial contrast enhanced T1 weighted images show Levels I (trangle) and III lymph nodes (arrow) have macroscopic metastasis. MRI images of the upper neck of the same patient. Axial T1 weighted images (D) and T2 weighted images (E) and contrast enhanced T1 weighted images (F) show Levels II lymph nodes have macroscopic metastasis (arrow). MRI images of the neck of OTSCC patients with stage T3 occult lymph node metastasis. Axial T1-weighted images (G), T2-weighted images (H), and T1-enhanced images (I) show grade I and grade II occult lymph node metastases (empty triangle and arrow), that is, normal lymph nodes were diagnosed on MRI, but lymph node metastases were found on pathology. In another patient, axial T1 enhanced images (J), T1-weighted images (K), and T2-weighted images (L) show grade III and IV occult lymph node metastases (empty triangle and arrow).




Table 1 | Selected patient, tumor, demographic, and clinical characteristics of patients with tongue squamous cell carcinoma seen at Nanfang Hospital from 2016 to 2023.







Estimated subclinical rates

In our case, the starting state corresponds to a primary tumor being present, but all LNLs are still in the healthy state. The observation matrix (Figure 3) reflected the direct spread of tumor cells from the primary tumor to the LNL. Our results reflected that the most common involvement was that of level I and level II, corresponding to a high probability pb1=0.39±0.05,   for the tumor to spread to level I and level II. Involvement of levels III and IV was gradually less common, corresponding to lower values of   and pb4=0.00±0.00.




Figure 3 | Corner plot of the sampled parameters for the HMM model parameters. The histograms on the diagonal show the 1D marginals, whereas the lower triangle shows all possible combinations of 2D marginals; the black lines are the isolines enclosing 20%, 50%, and 80% of the sampled points; correlations between the parameters can at most be seen between t12 and b2.



The transition matrix reflected that the probability of a state transformation was correlated between the present state of metastases in lymph nodes and its timing (Figure 4). Our model estimated the risk of microscopic involvement for levels I and II simultaneously as 70.8% (Figure 4B) for the early stage patients (T1–T2) and 78.5% (Figure 4A) for the late-stage patients (T3–T4). If only level I was macroscopically involved, the risk of microscopic involvement for levels I, II, and IV simultaneously was 71.1% for the early-stage patients. If only levels I and IV were macroscopically involved, the risk was 79.6% for the late-stage patients. The risk of microscopic involvement for levels I, II, and III simultaneously was 63.2% for the early-stage patients and 61.5% for the late-stage patients. If levels I and III were macroscopically involved, the risk of microscopic involvement for levels I, II, III, and IV simultaneously was 73.3% for the early-stage patients. For late-stage patients, if only levels I, III, and IV were macroscopically involved, the risk was 83%. We chose a time prior for parametric learning. The binomial distribution had an intuitive shape and simple structure. Then, we could model how the state of an LNL involvement evolved over the time steps that support the chosen prior. In Figure 5, we depict the probability of each hidden state for each time step (calculated for the mean over all parameter samples). At time-step 0, the patient is healthy, and the system is in the initial state with probability 1. One time step later, the individual lymph nodes are involved with the base probability rates (Figure 5). The strongest correlations between the parameters can be seen between t12 and b2, which is consistent with the result presented in Figure 3.




Figure 4 | Transition matrix in the early stage (A) and in the late stage (B). All gray pixels in this image correspond to entries in the matrix being zero; the colored pixels take on values ∈ [0,1], which are overlaid here in %; the exact values represent transition probabilities.






Figure 5 | Probability of being in each hidden state as a function of time (left), early stage (A), and late stage (B); the color indicates low (green) and high (red) probabilities, which are also written on the respective pixel in percent if larger than 1%; we used the mean of the inferred parameter samples to compute the probabilities; on the right, the used time-prior is plotted with which each column on the left will be weighted.



Figure 6 shows the estimated risk of involvement for four possible observational states. LNL II and III account for the majority of level II involvement (≈95%). Involvement in level II further increases the risk for metastases in level III to almost 1% since the main cause of LNL III’s involvement is the spread from an already involved level II. Finally, the risk of involvement in level IV is increased from 0.78% to 2.28% and 2.75% when observing metastases in level III or in both level II and III, respectively (Table 2). Figure 6 and Table 2 also compares risk estimation for the HMM-based model to the BN model. The parameters of the BN model have been sampled from the likelihood function. The histograms of estimated risk are nearly identical, which verifies that the HMM-based model and the BN-based model yield the same risk predictions.




Figure 6 | Risk assessment for the involvement of different LNLs (rows), given positive observational findings in specified LNLs (columns or labels next to histograms). For example, row 3 depicts the risk of involvement in LNL III, given different observed involvements (from left to right: no involvement, LNL II only, LNL III only, and LNL II and III but no others); the orange line depicts the maximum likelihood result from Pouymayou et al. (11), the violet outline histogram represents the BN sampling solutions, and the solid-colored histograms are the results from the HMM; the color goes from green (low risk) to red (high risk).




Table 2 | Comparison among the estimated risks by the HMM (first line), the risk by the BN model (second line), and max likelihood model reported by Sanguineti et al. (third line) (11).



A comparison of the involvement risk for LNLs I–IV for early and late T stages given different observed prior diagnoses is shown in Figure 7. When only level II is observed to harbor metastases, the risk of microscopic involvement in level III increased approximately 2% in the early stage. If, in addition, the patient has a late T-stage tumor, the risk decreased by approximately 4%. Similarly, the risk of microscopic involvement in level IV for early and late T-stage patients increased by approximately 0.1% when levels II and III are observed to harbor metastases. If, in addition, the patient has a late T-stage tumor, the risk decreased approximately 0.5%. According to our data, the probability of developing level I and II lymph node metastases directly from a tumor is high (20% and 40%). When one macroscopic level is involved, microscopic involvement of levels I and II for early and late T-stage patients increased by approximately 20% and in the late stage, the risk decreased by approximately 40%.




Figure 7 | Distributions over risk of involvement for LNL I (A), LNL II (B), LNL III (C), and LNL IV (D), each for early and late T-staging as well as depending on the given observed involvement. The sampled parameters displayed here are a randomly selected subset from learning.



Predicted risk of certain states compared with the beta distribution over the same risk, resulting from the prevalence of the respective state in the dataset, showed that our model had good performance with a likelihood of −486.81 of the whole data set (Figure 8).




Figure 8 | Histograms over predicted risk of certain states (violet) compared with the beta distribution over the same risk, resulting from the prevalence of the respective state in the dataset (orange). This is plotted for the three subsets of the threefold cross-validation as well as the whole dataset.








Discussion

Oral cancer is a prevalent malignant tumor, with over 400,000 new cases detected globally each year. SCCs are the most common form, accounting for approximately 90% of malignant tumors in the oral region. Among the anatomical subsites of the oral cavity, the highest incidence of SCCs occurs in the oral tongue (35.3%) (12–14). The prognosis of oral SCCs patients depends on tumor and host-related characteristics as well as variations in treatment. The N stage is considered a crucial predictive factor, as the presence of a single metastatic lymph node in the regional lymph basin at referral can result in a 50% decrease in the 5-year survival rate (15). SCCs have a high potential for spreading to cervical lymph nodes. Regional lymphatic drainage pathways are well identified in the head and neck region, forming the basis for some revisions in neck dissection. For SCCs of the oral tongue, the submental, submandibular, and upper jugular lymph nodes are in the first echelon draining lymph nodes.

Level of metastatic lymph nodes (LLN) are recognized as an unstable lymph node group, necessitating surgical treatment expansion for LLN metastasis, especially in tongue cancer patients. The anatomically acquired incidence of LLN ranges from 8.6% to 30.2% (16). This requires various preoperative imaging examination modalities followed by meticulous data analysis. Both CT and MRI have been shown to be effective in imaging LLN metastasis in N+-stage patients (17).

CT and MRI are increasingly commonly utilized for preoperative assessment of primary tumors because of their better anatomical resolution. Enhanced CT and MRI may also be utilized to evaluate the condition of the lymph nodes if the primary tumor is determined to be the cause (18–20). Among the main variables used in traditional imaging procedures in determining probable lymph node metastases are lymph node size, contrast enhancement, and the existence of central necrosis or extranodal extension. Sadly, diverse or insufficiently stated successful tests prohibit accurate meta-analysis between studies. Depending on whether sensitivity as well as specificity was favored, additional criteria might be applied. Although the use of imaging techniques in a clinical suspicion context has proven valuable, a study by Chen et al. (21) suggests that routine monitoring imaging examinations for asymptomatic patients should not be encouraged. We proposed to use an HMM model for lymphatic metastatic spread that, given the location of macroscopic metastases and T-stage, can quantify the risk of microscopic, infiltrated LNLs and their changes continuously over time. Here, we demonstrated an HMM can predict the probability of individual lymph node metastasis and its changes over time.

Based on our series of 108 patients with histologically proved OTSCCs, we found that for N0 patients, neck levels I and II were at the greatest risk of nodal metastases from primary squamous cell carcinoma of the oral cavity (0.39, 0.53). Additionally, our data showed that lymph node levels I and II were the most common patterns and had strong correlations with other lymph node levels (levels III and IV) involvement. For an example, when lymph nodes I and II have metastasis, other lymph node metastases are highly likely to occur in the near future. In NCCN guidelines, selective neck dissections are based on common pathways of the spread of head and neck cancer to regional nodes and are often recommended for N0 disease (22).

According to our results, neck level I and II dissections would benefit N0 disease patients. Our findings also indicated that when lymph node level I had metastasis, the probability of metastasis in lymph node II was high (93.79%); when lymph node level II had metastasis, the probability of metastasis in lymph node III was small (7.88%), as well as the probability of involvement in lymph node IV. Based on this finding, prophylactic level I and level II excision should be considered for those with level I metastasis in N1–2 individuals. Furthermore, in patients with level II metastases, preventive level I and level II resection is favored over unnecessary level III excision. Our results also suggest that, when other lymph node levels were metastasized, lymph node level II had the highest likelihood of invasion. Therefore, based on these findings, we suggest the removal of lymph node level II when other levels of lymph nodes metastasize. The involvement of lymph nodes I and II was the most common form and showed a binomial distribution over time.

Moreover, we found that lymph nodes progress faster in the early stage and slower in the late stage, which needs to be confirmed in a larger clinical trial in the future. It could be that the disease advances faster in the early stages while progressing more slowly in the later phases, or that it is more likely to spread to higher-grade lymph nodes, which would explain the observed behaviors. Lymph node metastases, for instance, have generally occurred at levels 5–level 8 rather than levels 1–4. A notable innovation in our work was the introduction of additional time points, and instead of waiting for signs of lymph node involvement, we can remove the suspect lymph node beforehand or administer radiation therapy.

This treatment method, selective neck resection, may occur when latent metastasis progresses to clinically severe disease, when patients are diagnosed with incurable neck disease, or when undiagnosed metastatic lymph nodes advance toward a detectable size.

Of note, head and neck cancer could be linked to an increased risk of lymph node metastasis when left ignored. Although there may be an increase risk in head and neck cancers when cervical lymph node disease is untreated, some reasons support withholding cervical lymph node treatment. A significant portion of patients experience a decrease in quality of life (shoulder dysfunction, for example) and needless medical expenses (22–24). Additionally, the cancer growth could be effected by this additional treatment. Nevertheless, there might be fewer surgical problems, as well as good functional and superficial results with selective neck dissection. If cN0 is not treated electively, close follow-up with the obligatory use of diagnostic techniques is done. Diagnostic methods like ultrasound-guided FNA cytology have to be utilized during surgical follow-up in order to identify latent metastases early on. Most patients can avoid unnecessary selective neck resection with this approach, all without sacrificing regional control or neck survival. Nonetheless, neck treatment will be more involved and particularly frequent for those who finally require a (salvaging) lymph node dissection as a result of delayed metastases. The validity of clinical N0 classification depends on the diagnostic method used. Studies that apply negative palpation to define N0 neck may have a higher sensitivity than those that apply a more sophisticated assessment with prospective staging techniques. The method of MRI examination was adopted in this study (23, 25).

The risk of microscopic lymph node involvement not only changes over time in relation to the location of macroscopic metastases found with imaging but is also associated with the T stage. This is one advantage of HMM. Pouymayou et al. (11) presented a comprehensive model of microscopic lymph node involvement in HNSCC based on a Bayesian network. The model provides a statistical framework that combines the probabilities of direct infiltration from the primary tumor site, the spread through the lymphatic network, and the specificity and sensitivity of current diagnostic methods. However, our study further confirmed that a multi-time-point model outperformed the single-time-point BN model in predicting lymph node involvement. Esce et al. (26) reported that a CNN can produce an algorithm capable of predicting nodal metastases in patients with squamous cell carcinoma of the oral tongue by analyzing the imagological examination of the primary tumor alone. However, it may be insufficient to evaluate and predict individual progression status based on a single time point.

Due to the retrospective nature of our study, there are some limitations. Learning the model parameters must be based on a larger training dataset of lymph node progression patterns, including additional LNLs, such as levels V–VII. Due to the rarity of these levels, a larger training dataset is needed. It is also necessary to consider ipsilateral spread, as well as considering patient-specific observations such as midline extension of the primary tumor. Here, one might also expect the transfer probabilities between ipsilateral and contralateral lymph node metastases to remain similar since clinically managed lymph node metastases are bilateral. However, this study did not separately establish a model for ipsilateral lymph node metastasis. Furthermore, we would like to include other risk factors, such as HPV status, age, alcohol, and nicotine abuse, in the model at some point in the future. MRI sensitivity and specificity can vary depending on the device utilized, the radiologist’s experience, and the unique features of the patient. The sensitivity and specificity of the MRI images utilized in this research were determined based upon a 2007 meta-analysis. There were 1.16% and 59.30% overall false positives as well as false negatives at our institution’s MRI examinations. Following studies will employ a spectrum of values to account for this fluctuation and offer a more sophisticated evaluation, offering additional insight into the factors influencing the model’s prediction.

Lymph node metastasis in the neck directly impacts treatment and outcomes. Single lymph node metastasis from HNSCC reduces survival by 50%, whereas additional contralateral lymph node metastasis reduces survival to 33% (27). Expected drainage sites and oral tongue malignancies drain to levels I and II (28, 29). However, skip metastasis also occurs with rates ranging from 6% to 10% (30). The odds for primary location metastases for levels III and IV of the research we conducted were 6.17% and 0.78, respectively. Contralateral lymph node metastasis is also observed in tongue malignancies due to disease crossing the midline. Imaging studies aid in detecting occult metastases not apparent in clinical examinations. The proposed method can be used to guide guidelines for selective lymph node CTV matching or surgical excision range. By incorporating the T category as an additional risk factor, this method extends the previous estimation of microscopic involvement risk at the lymph node level. When provided with a larger, more diverse dataset, this model may support clinicians in making CTV-N defense more objective and personalized.





Conclusion

We applied an HMM probability model to predict the progression of lymphatic tumors over time, extending previous work to estimate the risk of microscopic metastasis at the lymph node level by including T-stage as an additional risk factor. The BN model and max likelihood model reported previously were compared with our results. This model can predict lymph nodes that are likely to be involved in the future ahead of clinical and imaging findings and can support clinicians in prophylactic excision or radiation therapy.
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Radionuclide probes-targeted prostate-specific membrane antigen (PSMA) is used in diagnosis and treatment of prostate cancer (PCa). Recent studies have shown that PSMA is expressed in the tumor neovascular endothelium, such as in malignant liver tumors. We report a case of PCa with incidental intrahepatic cholangiocarcinoma (ICC) detection using 18F-PSMA-1007 and 18F-fluorodeoxyglucose (FDG) positron emission topography (PET)/MRI.18F-PSMA-1007 PET/MRI of our patient with PCa showed that one liver lesion had high PSMA uptake. 18F-FDG PET/MRI revealed minimal FDG uptake in the liver lesion. Histopathological examination revealed that the liver lesion was moderately to poorly differentiated cholangiocarcinoma. Our studies, along with others, demonstrated that malignant liver tumors, such as ICC, hepatocellular carcinoma (HCC), and combined hepatocellular-cholangiocarcinoma (CHC), and benign lesions, such as benign liver hemangioma, focal nodular hyperplasia, focal inflammation and steatosis, vascular malformation, and fatty sparing, exhibited elevated PSMA uptake. Moreover, PSMA-PET was superior to FDG-PET in detecting ICC and HCC, indicating that PSMA-PET may be used as alternative staging and to identify patients for PSMA-targeted therapy.
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1 Introduction

Prostate-specific membrane antigen (PSMA) is a 100kDa type II-transmembrane glycoprotein which is overexpressed in nearly all prostate cancer cells (1). PSMA has been validated as a diagnostic and therapeutic target in prostate cancer (PCa), and radionuclide probes-targeted PSMA like 18F-PSMA, 68Ga-PSMA and 177Lu-PSMA was used in diagnosis and treatment of PCa (2). While PSMA is predominantly recognized in PCa, it is also expressed in various other solid tumors, such as thyroid, breast, liver, lung cancer, and glioblastoma (3–6). Primary liver cancer has shown the most rapid rise in mortality in decades. Hepatocellular carcinoma (HCC) is the most common primary liver cancer, followed by intrahepatic cholangiocarcinoma (ICC). Chen et al. (7) analyzed PSMA expression in 446 formalin-fixed paraffin-embedded (FFPE) liver tumors (213 HCC, 203 ICC, and 30 liver cirrhosis) and found that PSMA was expressed in 86.8% of HCC, 79.3% of ICC, and only 6.6% of liver cirrhosis. Few PSMA-targeted PET imaging studies of HCC, ICC, and combined hepatocellular-cholangiocarcinoma (CHC) have been reported. To date, only two cases have reported PSMA-PET imaging of the ICC. Herein, we report a case of PCa with incidental ICC detection using 18F-PSMA and 18F-fluorodeoxyglucose (FDG) PET/MRI.




2 Case presentation

A 71-year-old man presented with more than 4 years history of urinary urgency and frequency, nocturia, and dysuria. The serum prostate-specific antigen (PSA) level was 5.54 ng/ml. Other tumor markers, including carbohydrate antigen (CA) 72–4 (75 U/ml), CA125 (37.3 U/ml), were elevated. Alpha-fetoprotein (AFP, 3.35 ng/ml), carcinoembryonic antigen (CEA, 2.98 ng/ml and CA19–9 (< 2.0 U/ml) levels were within normal ranges. Prostate biopsy was performed. Histopathological examination revealed prostatic adenocarcinoma with a Gleason score of 6 (3 + 3) (Figure 1A). Immunostaining revealed that the tumor cells were positive for P504S (Figure 1B). For preoperative staging, 18F-PSMA-1007 PET/MR imaging was performed.




Figure 1 | Histologic examination of the prostate and liver lesion. Hematoxylin and eosin (H&E) staining (A) revealed prostatic adenocarcinoma, with prostate tumor cells positive for P504S (B). H&E staining (C) shows liver cholangiocarcinoma, with liver tumor cells positive for CK7 (D) and negative for PSA (E) and P504S (F).



Whole-body PSMA-PET revealed diffuse increased uptake in the prostate (maximum standard uptake value [SUVmax]=5.53) (Figures 2A, C, D). T2-weighted MR revealed an area of low signal intensity in the bilateral peripheral zone and heterogeneous signal intensity in the transitional and central zones (Figure 2B). In addition to the prostate lesions, PSMA-PET imaging showed abnormally increased radiotracer uptake in the liver mass (SUVmax=18.76) (Figures 3B, C). MR imaging showed that the mass was located at the left-right lobe junction with a low signal on T1-weighted images (Figure 3G) and a slightly high signal on T2-weighted images (Figure 3A). To further determine the nature of liver lesions, 18F-FDG PET/MRI was performed. The prostate showed no FDG uptake (Figures 2E–H). The liver lesion had a low FDG uptake with an SUVmax of 3.23 (Figures 3D–F). Contrast-enhanced MRI of the abdomen was conducted revealing significant enhancement of the margin of the mass in the arterial phase, with further enhancement in the portal phase. The center of the mass was a necrotic area with no enhancement or radiotracer uptake (Figures 3B, G–I).




Figure 2 | Prostate biopsy conducted in a 71-year-old man owing to high PSA level (5.54 ng/ml) and difficult, frequent, and urgent urination. The pathological result showed acinar adenocarcinoma, and the Gleason score was 6. 18F-PSMA-1007 PET/MRI imaging was performed for initial staging. The scan [(A) MIP image; (B) axial T2WI-MRI; (C) axial PET and (D) fused axial PET/MRI] shows high PSMA uptake in the bilateral peripheral zone of the prostate (SUVmax was 5.53). The 18F-FDG PET/MRI scan [(E) axial T2WI-MRI; (F) axial PET; (G) fused axial PET/MRI and (H) MIP image] shows no abnormal radiotracer concentration in prostate. The red arrow indicates the prostate.






Figure 3 | 18F-PSMA-1007 PET/MRI [(A) axial T2WI-MRI; (B) axial PET and (C) fused axial PET/MRI] shows a high PSMA uptake mass in the liver (SUVmax=18.76). In 18F-FDG PET/MRI imaging [(D) axial T2WI-MRI; (E) axial PET and (F) fused axial PET/MRI], mild uptake is seen. Contrast-enhanced MRI of the abdomen [(G) T1WI-MRI; (H) arterial phase T1WI-MRI and (I) portal phase T1WI-MRI] reveals a significantly enhanced margin of mass in arterial phase, with further enhancement in the portal phase. The center of the mass is a necrotic area with no enhancement or radiotracer uptake. Postoperative pathology indicates a moderate to poor differential cholangiocarcinoma. The red arrow shows the liver lesion.



Subsequently, the liver lesion was surgically removed. Histopathological examination of the lesion revealed a moderately to poorly differentiated cholangiocarcinoma (Figure 1C); further, the tumor cells were positive for CK7 (Figure 1D) and negative for PSA (Figure 1E) and P504S (Figure 1F).




3 Discussion

PCa ranks first for estimated new cancer cases and second for estimated deaths for all cancer in men (8). Cancer metastasis is a major cause of mortality. Direct spread, hematogenous metastasis, and lymph node metastasis are metastatic pathways. PCa most frequently metastasizes to bones (84%), distant lymph nodes (10.6%), liver (10.2%), and thorax (9.1%). In patients with bone metastases, only 19.4% have multiple sites involved, and the most common sites of secondary metastases are the liver (39.1%), thorax (35.2%), distant lymph nodes (24.6%), and brain (12.4%) (9). In our patient, PSMA-PET showed multiple bones with PSMA uptake (data not shown) and the liver lesion with high PSMA and low FDG uptake. Therefore, we falsely concluded that the patient had bone and liver metastases. The misdiagnosis of this case led us to further search and summarize positive PSMA-PET images of liver lesions in PubMed. From 2015 to 2022, a total of 17 cases underwent PSMA-PET imaging (15 of 68Ga-PSMA and 2 of 18F-PSMA-1007), comprising eight cases of HCC (10–17), two of ICC (18, 19), one of combined hepatocellular-cholangiocarcinoma (CHC) (20), one liver metastasis of cholangiocarcinoma (CCA) (21), and five benign liver lesions (22–26), as detailed in Table 1. The mean age was 74.0 ± 6.4. The main purposes (76%, 13/17) of PSMA imaging were related to PCa, including elevated PSA levels and PCa staging or follow-up. The liver lesions in these cases were accidentally detected. Other reasons include research, staging, and therapy for malignant liver tumors. Most cases (n = 12) were concurrent with PCa. Two patients developed a third primary malignancy. Liver lesions were benign in five patients, including benign liver hemangioma (23), focal nodular hyperplasia (24), focal inflammation and steatosis (22), vascular malformation (25), and fatty sparing (26). All these 17 liver lesions had high PSMA uptake, and the mean SUVmax was 17.05 ± 6.31 (9.9–29.4). The median SUVmax of malignant tumor and benign lesion was 17.62 ± 7.62 and 16.1 ± 4.60, separately (P=0.76). Research had reported there was difference in SUVmax in 68Ga-PSMA and 18F-PSMA-1007 (27), so we just analyzed the SUVmax in 68Ga-PSMA. Five patients with malignant liver tumors underwent FDG examinations. The uptake in FDG-PET was lower than that in PSMA-PET in four patients. Three of them had HCC and one had ICC. Same as our case, Kang et al. reported incidental ICC in a 69-year-old man with PCa and the SUVmax of the liver lesion was 12.8 and 6.7 in 68Ga-PSMA and 18F-PSMA-1007 respectively (19). Another case also reported high PSMA uptake in ICC (18). Therefore, PSMA-PET imaging may be better than FDG-PET imaging for diagnosing and alternative staging of ICC. Until now, there was just three cases reported ICC in PSMA-PET, so that large sample should be further studied in the future.


Table 1 | Reported cases of 68Ga/18F-PSMA scan in liver lesions.



Three large-sample studies analyzed two different radiotracer PET imaging methods for detecting HCC. Kusymptcu et al. (28) found that FDG was positive in 15 patients and PSMA was positive in 16 patients. The mean SUVmax and tumor-to-background ratio of liver lesions on PSMA-PET were higher than those on FDG-PET. In nine patients, PSMA uptake was higher on visual and quantitative evaluations, whereas FDG uptake was observed in only four patients. A prospective pilot study analyzed 37 suspected malignant lesions in 7 patients with HCC and found that 36 of them showed increased PSMA uptake and only 10 were FDG-avid. A study with 14 HCC patients demonstrated that 36% of them had low FDG uptake, and 21% and 43% had moderate and high FDG uptake, respectively. On PSMA-PET, only 7% and 14% showed low and moderate uptake respectively, and 79% showed high uptake. The mean SUVmax and tumor-to-abdominal aorta or tumor-to-gluteal muscle ratios on PSMA-PET were higher than those observed on FDG-PET. These three studies showed that PSMA-PET imaging was superior to FDG-PET for detecting HCC. Its sensitivity, specificity, positive predictive value, negative predictive value, and accuracy are 97%, 100%, 100%, 80%, and 97%, respectively (10). Therefore, PSMA-PET may be used for the initial staging of HCC and as a potential 177Lu-PSMA therapy. Other than ICC and HCC, the CHC and liver metastasis of CCA also had high PSMA uptake (20, 21). Chen et al. (7) found that PSMA is primarily expressed in the neovascular endothelium associated with tumors. In benign liver lesions, this expression is probably due to increased local blood flow, local vascular permeability, and PSMA-expressing folate receptors in macrophages (29–31). Our study, along with others, revealed PSMA uptake in non-prostatic tissues and lesions, such as physiological uptake, benign pathological uptake, and non-prostatic uptake. Accordingly, when PET shows abnormal PSMA uptake in non-prostatic lesions in patients with prostate cancer, benign or malignant lesions other than metastases should be considered. A biopsy or surgery can be performed. If the non-prostatic lesion is located in the liver, it may be HCC, ICC, CHC, or other benign lesions. Although PSMA-PET has no advantage in the differential diagnosis of metastases of PCa and other lesions, it may be used as alternative staging and to identify patients with liver primary malignant for PSMA-targeted therapy.




4 Conclusion

Liver lesions with PSMA-avid in PCa cancer may not be metastasis of PCa but benign or malignant liver tumors, which should be further identified through pathology of biopsy or surgical specimens. PSMA-PET is superior to FDG-PET in detecting ICC and HCC and may be used as an alternative staging method.
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Purpose

This study aimed to analyze articles on the diagnosis and treatment of bone and soft tissue sarcoma using positron emission tomography (PET)/computed tomography (CT) published in the last 13 years. The objective was to conduct a bibliometric analysis and identify the research hotspots and emerging trends.





Methods

Web of Science was used to search for articles on PET/CT diagnosis and treatment of bone and soft tissue sarcoma published from January 2010 to June 2023. CiteSpace was utilized to import data for bibliometric analysis.





Results

In total, 425 relevant publications were identified. Publications have maintained a relatively stable growth rate for the past 13 years. The USA has the highest number of published articles (139) and the highest centrality (0.35). The UDICE-French Research Universities group is the most influential institution. BYUN BH is a prominent contributor to this field. The Journal of Clinical Oncology has the highest impact factor in the field.





Conclusion

The clinical application of PET/CT is currently a research hotspot. Upcoming areas of study concentrate on the merging of PET/CT with advanced machine learning and/or alternative imaging methods, novel imaging substances, and the fusion of diagnosis and therapy. The use of PET/CT has progressively become a crucial element in the identification and management of sarcomas. To confirm its efficacy, there is a need for extensive, multicenter, prospective studies.





Keywords: PET/CT, bone and soft tissue sarcoma, 18F-FDG, bibliometrics, hotspots, development trends




1 Introduction

Bone and soft tissue sarcomas (STS) are a group of heterogeneous malignancies originating from mesenchymal tissues (1, 2). STS is rare, comprising approximately 1% of adult solid tumors. Nevertheless, osteosarcoma (OS) remains the predominant initial malignant bone neoplasm in children and teenagers, constituting around half of all pediatric tumors, with Ewing’s sarcoma (ES) following closely (3–5). Sarcoma, as a malignant tumor, typically presents with a 5-year survival rate of around 65% and is commonly detected in later stages (6–9). Therefore, early detection and accurate assessment of the scope of the disease to take targeted treatment measures for patients at different stages are important for patient prognosis (10, 11).

Managing and treating sarcoma requires a multidisciplinary approach and the utilization of different imaging techniques. In response to new personalized treatment protocols, imaging methods are quickly advancing and are crucial in diagnosing, staging, monitoring treatment response, and monitoring relapse (3). Positron emission tomography (PET), a functional imaging method, utilizes positron emission isotopes labeled on specific molecules to visualize tissues or processes of interest. The combination of PET and computed tomography (CT) enables the identification of the exact location of radioactive tracer buildup and the simultaneous detection of anatomical and structural abnormalities (12).

To assess sarcomas, 18F-FDG, also known as 2-deoxy-2-(18F) fluoro-D-glucose, is extensively utilized as a metabolic tracer. Nevertheless, PET/CT imaging is not restricted to 18F-FDG alone, as there have been investigations into alternative tracers such as 18F-fluoronidazole (FMISO).This may provide additional diagnostic and prognostic indicators for hypoxia and the proliferation of sarcomas (9, 13, 14). As a result, PET/CT is being increasingly used in various clinical conditions and has a significant impact on the assessment of sarcomas, including guiding biopsies, staging diseases, and evaluating responses (9). Furthermore, the integration of PET and magnetic resonance imaging (PET/MRI) has been extensively researched and holds significant potential owing to its minimal radiation exposure and exceptional differentiation of soft tissues (15, 16). Considering these benefits, it is important to summarize the functional and research hotspots of PET imaging applied to sarcoma in the existing scientific literature. This consolidation aims to enhance the efficacy of sarcoma treatment and other clinical conditions, while fostering the advancement of imaging techniques.

In the age of big data, bibliometrics represents a comprehensive knowledge system capable of analyzing knowledge carriers in specific domains (17) in an objective and quantitative manner. It aids in summarizing the research hotspots and development trends in the areas of bone sarcoma and STS. CiteSpace, a Java program, utilizes bibliometrics to visually display the arrangement and dissemination of knowledge within a particular domain through a graphical representation (18). At present, there is no visual analysis research on PET/CT application in the bone sarcoma and STS fields at home or abroad. Hence, utilizing the pertinent publications available in the primary repository of the Web of Science (WOS), this investigation employs the CiteSpace application to illustrate and analyze the focal points of research in this domain through visual diagrams from diverse perspectives, aiming to anticipate future research directions. The findings of this research offer a valuable guide for enhancing the management of sarcomas, broadening the utilization of PET/CT, and fostering the advancement of novel imaging techniques.




2 Materials and methods



2.1 Data collection

The WOS core database offers a carefully curated selection of academic journals and publications, enabling access to comprehensive details and references for every article. To ensure data integrity and accuracy, we used the MeSH Browser (https://meshb.nlm.nih.gov/) to determine the search keywords. We downloaded all the data for analysis from the core database of WOS. The retrieval strategy included (TS=(OS) OR TS=(Osteogenic Sarcoma) OR TS=(Osteosarcoma Tumor) OR TS=(soft tissue sarcoma)) AND (TS=(PET/CT) OR TS=(Positron Emission Tomography/Computed Tomography)), with the retrieval period set from January 1, 2010 to June 9, 2023.Only English literature was retrieved. A total of 558 search results were saved in plain-text format and imported to CiteSpace for visualization. All data were extracted on 2023–06-09.




2.2 Bibliometric analysis

All the literature data retrieved were imported into CiteSpace; only two types of literature, “Article” and “Review,” were retained, and literature such as letters, editorial materials, conference abstracts, and online publications were deleted. In total, 425 valid studies were obtained, including 342 articles and 83 reviews (Figure 1). Subsequently, this information was utilized to create visual knowledge diagrams encompassing nations, publications, keyword co-occurrence, and clustering. In the graph, different nodes represent different research objects, and the range of nodes represents the number of publications or the frequency of citations. Cooperation or co-citation relationships are represented by wiring, with different years indicated by various colors within the nodes. A node with a high degree of centrality is denoted by a purple outer edge.




Figure 1 | Stages of bibliometric analysis of PET/CT utility in bone and soft tissue sarcoma.







3 Results



3.1 Annual publication volume analysis

The annual number of published documents and trend of published documents can objectively and quantitatively reflect the developmental status of specific fields at different stages (19). Although there have been variations in the last 13 years, the rate of expansion in publications has maintained a relatively consistent level. The rapid advancement of PET/CT is closely interconnected with this. PET/CT now has a broader scope in the detection and management of tumors, extending beyond the identification of benign and malignant tumors. This advanced technology is crucial in diagnosing, classifying, predicting outcomes, and assessing treatment effectiveness for sarcomas (20). Furthermore, with the popularity of PET/CT, more patients benefit from it, which has become a driving force in promoting the continuous improvement of PET/CT functions and the development of new imaging technologies. The number of articles published in 2023 has decreased, with only 15 articles; however, it should be noted that the current study only included literature published in the first half of 2023.Further investigation is warranted to explore the potential of PET/CT as a promising imaging technique for the diagnosis and treatment of sarcoma. Additional large-scale prospective experiments are needed. It is believed that it will still be a research hotspot, and more research results will be produced in the future (Figure 2).




Figure 2 | The annual output of PET/CT utility in bone and soft tissue sarcoma.






3.2 Contribution analysis of countries and institutions

We mapped the co-occurrence of national publications in the field of PET/CT application to sarcoma. A country is symbolized by a node, and the more extensive the node range, the higher the quantity of published articles. Over the past 13 years, 159 countries have contributed to this field. The United States (139 articles, 32.71%) emerged as the primary contributor, closely followed by China (73 articles, 17.18%) and Germany (37 articles, 8.71%). The USA holds the highest number of citations (2596), making it a significant indicator of the country’s influence in a particular scientific domain. Germany (33.92) had the highest average citation rate (AC), indicating that it publishes many high-quality studies. Furthermore, the violet perimeter of the nodes in the diagram signifies that the nation possesses a greater level of centrality; the greater the centrality, the stronger the linkage with other nations. The United States (0.35) maintains its position as the most central country. In general, despite having a higher number of articles, Asian nations like China and Japan exhibit slightly lower influence in terms of articles and collaboration with other countries (Figure 3A; Supplementary Table 1).




Figure 3 | (A) Country map of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023. (B) Network map of institutional cooperation of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023.



The top three institutions, based on the number of publications, were the University of Texas System (30 articles), UTMD Anderson Cancer Center (28 articles), and Harvard University (18 articles). The UDICE-French Research Universities (0.13) consortium holds the utmost centrality, investigating the significance of 18F-FDG PET/CT in the identification, classification, and prediction of rhabdomyosarcoma, and has gained extensive acknowledgement (21–23). It should be noted that, apart from this establishment, the remaining top 10 highly productive establishments originate from the United States. The United States has played a crucial role in promoting the utilization of PET/CT in the sarcoma field and has served as a conduit for fostering extensive collaboration with institutions in different nations (Figure 3B; Supplementary Table 2).




3.3 Contribution analysis of authors and co-cited authors

In this area of study, more than 407 authors have published relevant articles in the past 13 years, of which 34 have published at least three articles. The top two—Kong, Chang-Bae (seven articles) and Lim, Ilhan (seven articles)—collaborated multiple times with Byun, Byung Hyun (six articles), who ranked fourth, focusing on using 18F-FDG PET/CT or combining other imaging techniques, to monitor the therapeutic response of OS neoadjuvant chemotherapy. It has been proposed that the histological response of OS neoadjuvant chemotherapy can be precisely anticipated by FDG PET following a single treatment session, with metabolic tumor volume (MTV) and total lesion glycolysis (TLG) serving as autonomous indicators of histological response (24, 25). Anderson, Peter M et al. (26) used PET/CT was utilized to assess the effectiveness of Robatumumab in treating OS and ES, demonstrating that insulin-like growth factor receptor-1 remains a compelling target for therapy. Notably, Jiang Huiyan, the sole writer affiliated with Northeastern University in China, contributed to the release of multiple papers in 2023 that focused on the integration of PET/CT and deep learning. These articles aimed to enhance the precision of tumor segmentation objectives and advance the progress of PET/CT imaging (27–29) (Table 1; Supplementary Figure 1A).


Table 1 | Top 10 most productive authors.



Co-cited authors are those who are cited together in one or more papers simultaneously. Experiments conducted by BENZ MR (frequency: 77, 0.13) demonstrated that FDG PET/CT scans have the ability to anticipate the histopathological response to neoadjuvant chemotherapy in high-level STS and can offer guidance for treatment choices in individuals with sarcoma. Therefore, the author’s research has the highest centrality and this is also the author with the second-highest citation frequency (30). TATEISHI U (frequency: 84), the author with the highest number of citations, employed PET/CT to observe the structural and metabolic alterations of bone metastases in individuals diagnosed with metastatic breast cancer following systemic therapy. The author discovered that the decrease in standardized uptake value (SUV) served as a standalone indicator for treatment response, establishing the groundwork for subsequent investigations (31). In pediatric oncology, the 18F-FDG PET/CT imaging guide was authored by the fourth author, FRANZIUS C (frequency: 69). This guide includes details about indications, acquisition, processing, and interpretation, and offers a structure for nuclear medicine teams to follow in their daily practice (32) (Table 2; Supplementary Figure 1B).


Table 2 | Top 10 cited authors and their highly-cited articles.






3.4 Analysis of cited journals

To comprehend the dissemination of the knowledge repository regarding PET/CT applications for sarcoma, we conducted a visual analysis of the co-occurrence network in highly referenced journals (Figure 4A). Evaluating the quality and influence of a journal is crucial, and two significant criteria for this are the journal’s impact factor (IF) and journal citation reports (JCR) zoning. The journal with the highest frequency of citations is the《JOURNAL OF NUCLEAR MEDICINE》(frequency: 257), and numerous articles published in this journal demonstrate the varied application value of PET/CT in the sarcoma field from various perspectives. This serves as evidence that PET/CT is a highly promising imaging technology (33–35). The《JOURNAL OF CLINICAL ONCOLOGY》(frequency: 254, 45.3) holds the highest impact factor (IF) and has published numerous high-quality and recent protocols and findings regarding bone sarcoma and STS treatment (36, 37). According to the《EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING》(frequency: 245), 68Ga-DOTA-FAPI-04 PET/CT outperforms 18F-FDG in detecting recurrent STS lesions, including liposarcoma. This innovative imaging technique holds promise for monitoring STS recurrence. In general, in the field of bone sarcoma and STS, PET/CT imaging has more application value than ordinary imaging methods. Further, the imaging technology is still improving, and there are more possibilities for us to explore (Supplementary Table 3).




Figure 4 | (A) Co-citation network of cited journals of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023. (B) Co-citation network of cited references of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023.






3.5 Analysis of cited references

Through the examination of the crucial points in the depicted network of referenced literature, we can uncover the shift in research focus within this particular field and identify the pivotal literature that contributes significantly to this transformation. The top 10 cited studies have promoted the development of PET/CT application in the sarcoma field and influenced the change of research direction. A comprehensive retrospective study demonstrated that PET/CT can provide substantial advantages in the standard CT/MRI evaluation and re-evaluation of advanced bone sarcoma and STS (38). However, Harrison et al. (39) note that there are conflicting clinical trial results for its use in predicting outcomes in pediatric sarcoma staging. Additional extensive research is required to fully ascertain the optimal way to integrate it into forthcoming therapeutic protocols for pediatric sarcomas. The effectiveness of predicting the histological response to neoadjuvant chemotherapy may be improved by combining PET/CT with diffusion-weighted imaging (DWI), as suggested (40). Moreover, FDG PET/CT has the capability to detect individuals who are prone to developing resistance to chemotherapy based on the highest SUV (SUVmax) (41). To summarize, additional future and multicenter assessments of PET/CT are necessary to establish the true prognostic significance and cost-efficiency of PET/CT in guiding the medical treatment of clinically intricate and diverse high-grade sarcomas (Figure 4B; Supplementary Table 4).




3.6 Analysis of keywords

By conducting a visual analysis of keywords (Figure 5A), it is possible to gain initial insights into the research focal points and emerging trends in this particular area. The red ring in the node represents the keyword had a citation burst (Figure 5B). The more powerful the burst, the more significant the impact of the keyword, which is the current focus of research. The keywords that have more burst strength in recent years reflect the development trend of this field.




Figure 5 | (A) Keywords co-occurrence graph of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023. (B) Top 20 keywords with the strongest citation bursts.



It can be seen that “18F-FDG” (frequency: 198) is the keyword with the second highest frequency after PET/CT (frequency: 203). Sarcoma is commonly evaluated using FDG, a radioactive substance similar to glucose and widely used as a metabolic tracer (42). The utilization of 18F-FDG PET/CT is applicable for the purposes of staging, identifying recurrence, tracking response to chemotherapy, and forecasting prognosis (43). The terms “soft tissue sarcoma” (frequency: 179), “bone tumor” (frequency: 141), “osteosarcoma” (frequency: 117), and “Ewing sarcoma” (frequency: 37) demonstrate extensive evidence of the broad indications of 18F-FDG PET/CT in both bone sarcoma and STS (3, 44, 45). Further, “neoadjuvant chemotherapy” (NCT, centrality: 0.19) has the second highest centrality, demonstrating the importance of NCT for the treatment of sarcoma, and the tumor response to NCT provides us with further information relevant to each patient’s biological behavior and helps to predict the ultimate oncology outcome (46, 47). Furthermore, the OS exhibits a strong inclination to metastasize and disseminate, with the lungs accounting for 80% of metastatic occurrences. Hence, it is crucial to precisely evaluate the extent of the illness, particularly metastatic conditions, and identify any signs of relapse at an early stage. The research focus has shifted toward non-small cell lung cancer (centrality: 0.13) and metastases (centrality: 0.11) in recent years (48–50).

It is important to mention that the term “case report” (strength: 2.47) has the highest burst strength among keywords in recent years, with a total of 77 case reports included in our analysis of literature. These case reports prove the application value of radioactive tracer and radionuclide therapy in the treatment of common diseases to rare diseases; while these are interesting and could lead to some new hypotheses, they do not contribute much to exploring the value of PET/CT imaging for truly specific, standard clinical applications (51, 52). This reminds us of the need for a shift in research types. “Management” (strength: 2.35) is the keyword with the second highest burst strength. Treatment for sarcomas is usually multimodal, including systemic chemotherapy and aggressive surgical resection (39). In recent times, as the idea of combined diagnosis and treatment became deeply rooted in the public consciousness, 18F-FDG PET/CT has emerged as a vital component in the management of sarcoma. It offers valuable anatomical and functional data, leading to alterations in treatment approaches and enhancing survival rates by enabling more precise staging and evaluation of response (53). Therefore, how to better use PET/CT to improve the survival rate of sarcoma has become a recent hotspot, and also a likely future development trend. “Survival” (strength: 2.34) obtained the third highest burst strength (Figure 5; Table 3).


Table 3 | Top 15 keywords in terms of frequency and centrality.






3.7 Analysis of hotspots based on keyword clustering

To further explore the research hotspot and development trend of PET/CT application in the sarcoma field, we conducted cluster analysis on the keywords collected in this field. CiteSpace adopted the classical LLR algorithm to cluster the keywords closely related to each other, and finally obtained 10 clusters. Currently, the primary areas of research can be grouped into the following categories: #0 soft tissue tumors, #1 rhabdomyosarcoma, #5 Ewing sarcoma, and #6 OS are considered as indications for PET/CT in sarcoma, aiding in the diagnosis, localization, and grading of these diseases; #2 neoadjuvant chemotherapy and #7 high intensity focused ultrasound are categorized as PET/CT for monitoring the treatment response of sarcomas; #9 survival analysis using PET/CT can be utilized for prognostic prediction; #8 biomedical segmentation is classified as PET/CT combined with deep learning to enhance the diagnosis of sarcoma; #4 PET/MRI is classified as the integration of PET with other conventional imaging techniques in the management of sarcomas; and #3 case report represents a shift in the research approach employed by PET/CT in sarcomas (Figure 6; Supplementary Table 5).




Figure 6 | Cluster analysis of keywords of the PET/CT utility in bone and soft tissue sarcoma from 2010 to 2023.



The current application value of PET/CT in the field of sarcoma can be essentially summarized by these 10 clusters, which also indicate the future development direction. PET/CT is becoming increasingly essential in the management of sarcoma, progressing from initial histological grading to broader utilization in bone sarcoma and STS. It plays a crucial role in various aspects such as localization, staging, NCT guidance, efficacy assessment, and prognosis monitoring (54). Simultaneously, enhancing the precision of PET/CT will be the primary area of investigation in forthcoming studies. Can the utilization of PET and other imaging methods lead to improved imaging outcomes? 18F-FDG is not the only imaging agent, and tracers that can be used in integrated diagnosis and treatment are constantly being developed. These needs and issues are leading us to a shift in the direction and type of research. We discuss this in detail below.





4 Discussion



4.1 PET/CT for the initial diagnosis of sarcoma

Early and accurate diagnosis of the disease, along with assessment of its extent, are important for proper stratification of treatment and affect patient prognosis (10, 11). While histopathological examination is considered the benchmark for diagnosing sarcoma, the presence of sarcoma heterogeneity and the limited sampling materials can lead to false negatives. Moreover, there is a potential risk of contaminating surrounding tissue and causing sarcoma metastasis (55–58). Hence, it is imperative to employ more precise non-intrusive techniques to aid in the diagnosis and classification process.

The 18F-FDG PET/CT scan offers a non-invasive way to gather both functional and anatomical data, aiding in the detection of hidden illnesses that may have been missed by CT scans, assessing uncertain observations, and verifying metabolic activity in potential cases of metastatic diseases (13, 59, 60). Research has indicated that PET/CT has a high level of sensitivity in the initial detection of sarcoma (96.4% for soft tissue sarcoma and 96.0% for OS) (61). In a retrospective analysis by Muheremu et al., 18F-FDG PET/CT application based on SUVmax was found to be a valuable complementary method for histopathological detection of sarcoma diagnosis and staging (60). Since most malignant cells exhibit increased aerobic glycolysis (i.e., Warburg effect), FDG is preferentially located in these tumor cells compared to many normal tissues, showing a fanatical uptake of FDG. This important feature is the basis for determining tumor grade, quantifying therapeutic response changes, and determining prognosis. Moreover, functional changes in FDG uptake and metabolism usually precede anatomical changes, contributing to early diagnosis of the disease (62).

However, high FDG uptake does not necessarily indicate malignancy (62). Certain non-malignant bone and soft tissue abnormalities, like schwannomas, fibrodysplasia, osteomyelitis, and rheumatoid arthritis, can also cause elevated FDG absorption (9, 12, 63). Hence, the precise function of 18F-FDG PET/CT in the primary diagnostic assessment of OS and STS remains uncertain, and it is not advised as the initial imaging technique for STS and bone sarcomas (64).




4.2 PET/CT as an indicator of histologic grade

Histopathological analysis plays a crucial role in determining the grade of sarcoma, which in turn serves as a significant indicator of both sarcoma recurrence and prognosis. Additionally, it plays a pivotal role in guiding the treatment process. The use of FDG PET/CT can assist in biopsy procedures by identifying the areas of highest metabolic activity in the lesion. This helps prevent the underestimation of histological grade and overcomes the limitations of standard biopsy in lesions with high heterogeneity. As a result, it reduces the occurrence of false negative results and complications from repeated biopsy (38, 42). Furthermore, the inclusion of metabolic information obtained through FDG PET/CT, such as SUVmax, MTV, and TLG, could potentially enhance the precision of sarcoma classification and prognosis assessment. High-grade or malignant tumors have a higher TLG compared to low-grade or benign tumors (65). Furthermore, prior research has indicated that the SUVmax exhibits a positive correlation with the histological grade of bone sarcoma and STS, reaching a correlation coefficient of up to 0.94. High-grade tumors usually show an SUVmax of 10 or higher, which is higher than benign or low-grade tumors (38, 66, 67).

However, this is similar to the diagnostic mechanism mentioned earlier. The uptake of FDG also involves mitotic rate, cytosexuality, and other indicators (66). Low grade chondrosarcomas also tend to exhibit low FDG uptake rates due to low mitotic activity (6). Hence, additional extensive future studies conducted across multiple centers are required to investigate approaches for enhancing the effectiveness of PET/CT in the initial detection and classification of sarcomas. Adding randomized controlled trials of sarcoma treatment strategies on this basis will help stratify patient treatment and determine the best treatment regimen based on the stage of an individual patient.




4.3 PET/CT for the staging and restaging of sarcoma

Numerous studies have indicated that PET/CT surpasses CT by itself when it comes to the classification of initial tumor (stage T), related lymph node ailment (stage N), and distant spread of cancer (stage M) (68–70), thereby enhancing the classification and reclassification of sarcoma. The lung is the primary location where OS and STS commonly spread, and patients with metastases have a low 5-year survival rate of just 20%. Hence, identifying lung metastasis is crucial in the staging and restaging of sarcoma (9). Prior research has indicated that PET/CT might fail to detect tiny lung nodules because of the limited spatial precision of the CT component (thicker 5mm reconstruction segments) and the absence of breath holding during data collection. Therefore, chest specific breath-holding CT scan (BH-CT) is often the standard staging procedure for detecting distant lung metastases, and chest CT combined with FDG PET/CT is suitable for follow-up in patients with sarcomatous lung metastases (13, 71, 72). However, Flavell et al.’s research has shown that incorporating thin-core lung section (2mm) reconstruction during low-dose CT with PET examination can enhance the identification of pulmonary nodules to a similar extent as conventional BH-CT, without any extra scan time or radiation. Furthermore, this technique can be seamlessly integrated into regular clinical practice (73).

Moreover, PET/CT (sensitivity: 98%, specificity: 97%) is superior to scintigraphy and conventional imaging in detecting bone and lymph node metastases (20, 74). Nevertheless, around 80% of patients (particularly those with high-grade sarcoma or clinically suspected cases) may experience recurring illness within the initial 3 years following treatment (75). It was observed that PET/CT exhibits greater sensitivity and specificity in identifying recurrent OS or STS when compared to CT alone, with percentages of 94% and 78%, respectively (76). However, it should be noted that postoperative and post-radiotherapy states and post-traumatic inflammation may lead to false positive results that require further confirmation by CT or MRI or follow-up imaging (20, 77). Therefore, the period 6–8 weeks after treatment may be more suitable for obtaining FDG PET/CT images (13).




4.4 PET/CT and response to therapy

In the last decade, the treatment of malignant sarcomas has emphasized the need for preoperative NCT for high-grade tumors (78). Therefore, preoperative chemotherapy response assessment is of great significance for individualized treatment strategies (41). This information could assist in deciding whether to modify chemotherapy treatment during NCT, discontinue preoperative chemotherapy, as well as evaluate the likelihood of local recurrence following surgery (79).

In numerous cancer types, 18F-FDG PET/CT has become a hopeful imaging technique for predicting NCT responses at an early stage without invasive procedures (80). FDG PET/CT imaging changes may precede anatomical changes and help determine whether treatment of a particular lesion is complete, partial, or unresponsive before morphological changes are observed (81). Studies have demonstrated that a decrease of 35% in tumor 18F-FDG absorption following treatment, in comparison to the pre-treatment level, serves as a reliable indicator of histopathological response (PR). Furthermore, there is a notable association between higher SUVmax and postoperative histologic sarcoma progression (82, 83). Bajpai et al. utilized multivariate analysis and discovered that following three rounds of NCT, the ratio of SUVmax between post-treatment and pre-treatment was 0.48, which served as a separate indicator for histological tumor necrosis of ≥90% (84).

Moreover, 18F-FDG PET serves as a diagnostic tool to assess the effectiveness of cancer cell treatment through fibroblast growth factor receptors (FGFR)-targeted therapy, which is activated by FGFR and mTOR/HK2 axis. To provide a visual basis for the selection of the initial treatment plan for tumor patients and the adjustment of the treatment plan in the process of drug resistance evolution (85). Recent research has demonstrated that high intensity focused ultrasound (HIFU) can accurately and precisely deliver energy to the treatment area while minimizing harm to nearby structures (86, 87). This provides a new option for the treatment of sarcomas. The evaluation of the therapeutic effect of HIFU based on SUVmax is frequently conducted using 18F-FDG PET/CT. Nevertheless, there is an abundance of conflicting findings, and neoadjuvant therapy has also shown a significant decrease in FDG uptake among non-responsive individuals, necessitating careful evaluation before considering additional surgery (64).

In addition, Lin et al. (88) confirmed the clinical practicability of the imaging omics model through decision curve analysis. The delta-imaging omics histogram combined with imaging characteristics and clinical factors can be used to evaluate individual pathological reactions after preoperative chemotherapy, which is helpful to formulate appropriate chemotherapy and further treatment plans (89). In addition, Anna et al. (90) proposed a biomarker for predicting NCT PR. The researchers discovered a negative correlation between PR and the expression of HIF-1α, suggesting a suboptimal treatment response. Conversely, a positive correlation was observed between PR and the high expression of γH2AFX prior to treatment.




4.5 Prognostic factors of sarcoma with PET/CT

Given the typically unfavorable outlook for sarcomas, it is crucial to ascertain numerous prognostic elements to determine the optimal course of treatment and effectively plan subsequent examinations (91). Numerous studies have investigated the prognostic significance of 18F-FDG PET/CT in predicting survival outcomes, demonstrating its immense potential in the management and follow-up of sarcomas. A meta-analysis was performed by Li (91) and Chen et al. (92), which revealed that the prognostic value of progression-free survival and overall survival was effectively determined by SUV prior to chemotherapy, SUV post chemotherapy, SUV ratio, SUVmax, MTV, and TLG. In general, a high SUVmax indicates a poor prognosis, whereas a lower value indicates a better prognosis in most patients. Other researchers have suggested that a SUVmax (≥10.3) can independently predict both progression-free survival and overall survival. Additionally, a high SUVmax is strongly linked to a 2.9 times higher chance of sarcoma progression and a 3.2 times higher chance of mortality (9, 93). Higher TLG following treatment is linked to poorer overall survival, and individuals with extensive and irregular MTV may be considered for more intensive initial chemotherapy (24, 94).

Nevertheless, the predictive factors for localized STS are still a topic of debate, with the majority of prior investigations being retrospective and encompassing diverse populations with varying histological classifications and anatomical sites. In the absence of larger multicenter trials, the clinical value of predicting individual outcomes outside of predefined clinical situations is not feasible. There is insufficient evidence to support the clinical application of FDG PET/CT in patient outcomes and prognosis and this needs to be further explored. Therefore, large, multicenter, prospective studies in homogeneous patient populations are required to provide evidence to demonstrate and summarize specific clinical criteria for PET/CT in different sarcoma types, in different radiopharmaceuticals.




4.6 PET/CT combined with deep learning to improve the diagnosis of sarcoma

Current imaging techniques face difficulties in accurately assessing the extent of tumors at an early stage. Traditional medical image segmentation methods include superpixel segmentation, watershed segmentation, and active contour (28, 29, 95). Segmentation is often performed manually by different imaging experts and can be subject to errors. PET/CT enhances the precision of tumor segmentation by merging the exceptional PET tumor detection sensitivity with the anatomical details provided by CT. Nonetheless, previous automated segmentation techniques primarily concentrated on merging extracted data that is separated from PET and CT models, assuming that each model possesses supplementary information, and did not fully exploit the superior PET tumor sensitivity that can assist in segmentation (96). In recent years, with the advancement of deep learning technology, the utilization of deep learning for medical image segmentation has increasingly become a conventional method (29).

Fu et al. (96) attempted to use PET images to guide CT segmentation, introducing a deep learning-based multimodal PET/CT segmentation framework and a multimodal spatial attention module (MSAM). MSAM automatically learns to emphasize areas associated with tumors (spatial regions) and suppresses normal areas with a physiologically high uptake of PET inputs. The resulting spatial attention maps are then used to target the convolutional neural network backbone to segment areas of high tumor likelihood from CT images. Validated on PET/CT datasets for non-small cell lung cancer and STS, the method surpassed state-of-the-art lung tumor segmentation techniques by 7.6% in the Dice similarity coefficient, demonstrating superior performance.

Furthermore, owing to the high expenses associated with PET imaging, in numerous instances, only CT images can be acquired. The Siamese semi-disentanglement network was suggested by Diao et al. (29), aiming to separate medical images into anatomical and modal information. This network can achieve comparable results to full-modal segmentation even when PET images are not available. In addition, they suggested an attention network that combines PET/CT volume-based spatial compression and multi-modal feature fusion for accurately segmenting multiple tumors throughout the body. This approach effectively utilizes the fusion of contextual information from the entire body and information from multiple modalities to accurately identify tumor regions based on anatomical information of the entire body (28). In summary, especially in 2023, there are many outstanding achievements in the subdivision of tumor biology and PET/CT, which is a development trend with high potential in the future. We are confident that there will be further outstanding outcomes in the future, which will contribute to the enhanced utilization of PET/CT in clinical settings.




4.7 New mix: PET with other imaging techniques for sarcoma

Currently, the combination of PET and CT is considered one of the most precise techniques for tumor staging (83). However, the main limitation of PET/CT is the low soft-tissue contrast in the CT portion. By utilizing a completely integrated PET/MRI system, this limitation can be effectively addressed. PET/MRI is a hybrid imaging technology that is relatively new when compared to PET/CT (13, 83). MRI is ideal for local tumor identification and the initial assessment of relationships with neighboring organs and peripheral neurovascular structures. The comprehensive metabolic information of PET can complement MRI, especially when the tumor coexists with scar tissue, to help distinguish between surviving tumors and scars (13). Combining PET with MRI, with higher soft tissue contrast and lower radiation dose, reduces the time required for imaging alone and is a key factor for patients with tumors undergoing long-term follow-up.

MRI provides better differentiation between soft tissue and bone marrow in bone sarcoma and STS compared to CT, leading to improved evaluation of local tumor and treatment response (9). Furthermore, a prospective study showed that PET/MRI has a high potential for evaluating bone metastases by providing higher lesion significance and diagnostic confidence. However, PET/CT remains a reference modality for highly sclerotic and benign bone lesions (97). Felipe et al. also indicated that PET/MRI has higher sensitivity and specificity. Based on PET/MRI, SUV, and apparent diffusion coefficient collected using volume histograms, these are dependent biomarkers of FDG affinity sarcoma. Overall, PET/MRI has the capacity to emerge as a customary examination for the classification and assessment of numerous initial malignancies (98, 99).

In addition to MRI, DWI has also been found to more accurately forecast NCT PR when utilized alongside PET (40). Similarly, the previously mentioned HIFU is gaining prominence in sarcoma treatment. If used in combination with PET, can sarcoma be diagnosed and treated simultaneously with low radiation doses? These interesting ideas encourage us to further explore different combinations of PET and various imaging methods in the future to obtain the best imaging methods and realize the integration of diagnosis and treatment.




4.8 Beyond FDG: emerging PET agents

Hypoxia is an important characteristic of malignant sarcomas. In bone sarcoma and STS, hypoxia-induced gene expression patterns can be used to diagnose and predict outcomes. Additionally, STS with hypoxia has an increased likelihood of distant metastasis and reduced overall survival (9). PET and 18F-labeled nitroimidazoles provide specific measurements of intracellular hypoxia. Among drugs in this category, 18F-FMISO was the first to be extensively tested. Shorter disease-free survival and disease-specific death (9, 100) are linked to elevated uptake of 18F-FMISO at baseline. In addition, the same type of 18F-flunidazole (18F-HX4) is associated with tumor hypoxia (101).

Sarcoma cells utilize hypoxia and the DNA damage response as mechanisms to react to multidisciplinary treatment (90). The uptake of 3’-deoxy-3’-FLT (18F-FLT), which is similar to the nucleotide thymidine and serves as a marker for DNA replication, has been investigated as an indicator of tumor cell growth (94). A feverish 18F-FLT phenotype has been reported in various STS tissue types. 18F-FLT uptake is associated with tumor grade (94, 102). In addition to these aspects, 18F-sodium fluoride (18F-NaF) is also an excellent bone tracer, indicating osteoblast activity through uptake to identify reactivity changes in potentially affected bone, and is often used for imaging metastatic bone lesions (103).

Cancer-associated fibroblasts in the stroma of different types of tumors show significant expression of fibroblast activating protein (FAP), making it a potential target for diagnosis and treatment. A novel FAP inhibitor with 68Ga radiolabeling, 68Ga-FAPI-46, has shown high uptake rates in PET/CT imaging of sarcoma patients, showing great potential (94). With the popularity of the concept of integrated diagnosis and treatment, the Arg-Gly-Asp (RGD) tripeptide sequence has also been showing potential. With high specificity, it strongly attaches to integrin αvβ3 found on neovascular endothelial cells and various tumor cells, indicating its potential as a molecular agent for angiogenic imaging. Additionally, the RGD peptide has the ability to decrease the density of functional blood vessels, hinder adhesion, and trigger apoptosis in cancer cells, emerging as a novel focus for therapeutic intervention (104). In addition, Zang et al. (105) developed a double-targeted PET probe 68Ga-FAPI-RGD. It showed higher developer uptake and better image target/local ratio in most tumor lesions and showed more lesions, suggesting broad clinical application potential in the future.

Tumor uptake is thought to reflect increased amino acid metabolism in cancer cells, such as increased active transport and protein synthesis (106). L-[3-18F]-a-methyltyrosine (FMT, an amino acid analogue) accumulates in tumor cells only through the amino acid transport system (107). Watanabe et al.’s findings show that FMT PET not only shows all malignancies and a similar proportion of benign lesions detected with FDG PET, but also that FMT may be superior to FDG in the differentiation of benign and malignant musculoskeletal lesions owing to its higher sensitivity and specificity, which are important for preoperative planning (108). Choline is a vital component of cell membranes. In malignant cells, the up-regulation of choline kinase catalyzed choline phosphorylation can reflect the proliferation of cell membranes (109). In a retrospective study, researchers found that 11C-choline PET/CT plays an important role in staging patients with bone and soft tissue sarcomas, improving the accuracy of overall TNM staging compared to conventional imaging, and in particular providing important additional information on the staging and restaging of bone metastases in prostate cancer patients and soft tissue sarcomas (106, 110). Recently, overcoming the limitation of the short half-life of 11C, the gradual adoption of labeling choline compounds with 18F provides greater flexibility for imaging protocols and availability (111). 18F-choline PET/CT also has advantages in the early detection of metastatic bone disease owing to better identification of the results of bone marrow infiltration (112).

However, unfortunately, most of the current radiotracers are broad-spectrum tumor imaging agents, and there is no effective and specific radiotracer for a certain sarcoma. Moreover, the use of different therapeutic nuclide labeling tracers, such as 177Lu and 225Ac, may achieve unexpected therapeutic effects. Further investigation should prioritize the exploration of distinct radiopharmaceuticals suitable for integrated diagnosis and treatment, aiming to enhance diagnostic and therapeutic precision while minimizing harm to healthy tissues. Regarding the diagnosis and treatment of sarcoma, Table 4 provides an overview of frequently used PET agents.


Table 4 | Examples of PET reagents for diagnosis and treatment of sarcoma.






4.9 Limitations

This study offers a valuable point of reference for the academic research focal points and advancement patterns in this particular field, utilizing bibliometrics and visual analysis. However, the study has some limitations. First, only English articles and reviews from the WOS core database extended index journals were searched; thus, some high-quality literature may have been overlooked. Furthermore, owing to the varying publication dates of the articles included, the earlier findings have garnered greater focus, potentially resulting in a lack of citation data for the more recent publications. Additionally, because of the inability of CiteSpace to automatically combine keywords that have identical meanings, certain keywords with comparable meanings were merged manually, potentially resulting in variations in the size of the nodes. Finally, we did not show all the clusters but selected the most representative ones for discussion.





5 Conclusions

PET/CT holds significant clinical importance in the domain of sarcoma and serves a crucial function in the identification, assessment of tissue quality, determination of stage, reevaluation, tracking treatment progress, and forecasting prognosis. This aspect is also the primary area of current investigation. Furthermore, the field is developing rapidly, and the combination of deep learning breaks the traditional tumor segmentation methods of PET/CT; the application value of PET combined with other traditional imaging techniques is also worth exploring. Indeed, IBA, RGD, and other new types of radioactive tracers for sarcoma diagnosis and treatment provide new choices, promoting the development of integrated diagnosis and treatment. However, despite the satisfactory outcomes, there are limitations in the study population, high costs associated with PET/CT, and ongoing debates surrounding its use in clinical practice. Future studies should be conducted with a multicenter, prospective approach, involving a substantial number of homogenous patients, to enhance the utilization of PET/CT in the sarcoma field.
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Primary thyroid squamous cell carcinoma is extremely rare. We report a case of primary thyroid squamous cell carcinoma diagnosed using 18F-FDG PET/CT. The patient presented with left axillary lymphadenopathy as the initial symptom. Fine-needle aspiration of the axillary lymph nodes indicated metastatic squamous cell carcinoma. To identify the primary tumor, the patient underwent an 18F-FDG PET/CT scan, which revealed a mass in the thyroid and multiple enlarged lymph nodes with abnormal FDG uptake. Pathological examination of the axillary lymph nodes and thyroid biopsy confirmed the diagnosis of primary thyroid squamous cell carcinoma with lymph node metastasis.
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Introduction

Primary thyroid squamous cell carcinoma is extremely rare, with an incidence rate of less than 1% (1), and it is a subtype of anaplastic thyroid carcinoma (2). It mostly occurs in elderly males (3), progresses rapidly, and has a very poor prognosis, with a survival period mostly shorter than one year (4, 5). In this case, we describe a rare instance of primary thyroid squamous cell carcinoma with multiple systemic lymph node metastases.





Case presentation

Nine months ago, the 74-year-old male patient discovered a lump in the left axilla and did not pay much attention to it. Recently, the lump has gradually enlarged and become painful.One week ago, the patient visited our hospital. Ultrasound and CT scans revealed multiple enlarged lymph nodes in the neck and left axilla. Physical examination confirmed multiple enlarged lymph nodes in the neck, which were hard, poorly mobile, and mildly tender (Figures 1A–D). Fine-needle aspiration of the left axillary lymph nodes indicated metastatic squamous cell carcinoma, Immunohistochemistry results indicate: PCK (+), P40 (+), P63 (+), CD56 (+), PAX-8 (-), TTF-1 (-), CgA (-), S100 (-), NUT (-), P53 (+), Ki67 (+, 60%), EBER1/2-ISH (-). The tumor marker test results for this patient are as follows: SCC 5.13 ng/mL (reference range: 0-1.8 ng/mL), CYFRA 21-1 8.42 ng/mL (reference range: 0-3.30 ng/mL), NSE 28.70 ng/mL (reference range: 0-16.5 ng/mL), CA125 82.10 U/mL (reference range: 0-30.2 U/mL). The levels of CA199, CA724, AFP, and CEA are within normal limits. The patient has a history of appendectomy and a 10-year history of coronary artery disease.




Figure 1 | Images (A–D) show the pathological pictures of the left axillary lymph node biopsy. Images (E, F) show the pathological pictures of the thyroid biopsy.



To identify the primary tumor, the patient underwent 18F-FDG PET/CT at our hospital. The PET/CT images showed a heterogeneous mass in the thyroid with significantly increased FDG uptake (Figures 2A–G, arrow), with an SUVmax of 10.0. Multiple enlarged lymph nodes in the neck, right supraclavicular fossa, left axilla, and abdomen,with an abnormally high FDG uptake, with an SUVmax of 15.3. No abnormal morphology or FDG metabolism was observed in other organs. Subsequently, the patient underwent fine-needle aspiration biopsy of the thyroid (Figures 1E, F), which revealed cancer cells with immunohistochemistry positive for P40. Based on the 18F-FDG PET/CT and pathological findings, the patient was diagnosed with primary thyroid squamous cell carcinoma with multiple systemic lymph node metastases. The patient is currently undergoing the first cycle of chemotherapy with paclitaxel and carboplatin.




Figure 2 | Whole-body imaging (A) revealed multiple areas of increased FDG metabolism in the thyroid region (arrow), neck, and abdomen. The axial and coronal images (B, C), axial and coronal view of PET; (D, E), axial and coronal view of CT; (F, G), axial and coronal view of fusion images) showed a mass in the thyroid with increased FDG metabolism [(B–G), arrow].







Discussion

Primary thyroid squamous cell carcinoma is a malignant tumor originating from thyroid tissue. In the latest World Health Organization classification of endocrine and neuroendocrine tumors, primary thyroid squamous cell carcinoma is included in anaplastic thyroid carcinoma,because squamous cell carcinoma of the thyroid often displays BRAF p.V600E mutations (87%) and exhibits positive immunohistochemical staining for the follicular cell markers PAX8 (91%) and TTF1 (38%) (6). Its incidence is extremely low, accounting for less than 1% of thyroid malignancies. Patients are mostly elderly males. However, it exhibits a high degree of malignancy, progresses rapidly, and carries a poor prognosis, with most patients surviving less than one year. 18F-FDG PET/CT can simultaneously display the glucose metabolism level and morphological information of lesions (7), which is valuable in the diagnosis and staging of thyroid cancer (8). There are few reports on 18F-FDG PET/CT imaging of primary thyroid squamous cell carcinoma (9, 10).

In this case, 18F-FDG PET/CT was crucial in distinguishing primary thyroid squamous cell carcinoma from secondary squamous cell carcinoma. Secondary squamous cell carcinoma could originate from other squamous cell carcinomas outside the thyroid, such as those in the lungs, esophagus, or head and neck region. By showing increased FDG uptake in the thyroid gland and the absence of abnormal FDG uptake in other common sites of squamous cell carcinoma, 18F-FDG PET/CT helped exclude the possibility of a metastatic origin. Additionally, the morphological information provided by PET/CT supported the localization of the tumor to the thyroid. Combined with pathological results showing squamous differentiation in the thyroid tissue, the diagnosis of primary thyroid squamous cell carcinoma was confirmed.





Conclusion

Primary thyroid squamous cell carcinoma is extremely rare,this case emphasizes the value of 18F-FDG PET/CT in identifying primary tumor lesions and is also of great value in distinguishing between primary and secondary thyroid squamous cell carcinoma,which is of great significance for the diagnosis and staging of primary thyroid squamous cell carcinoma.





Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.





Ethics statement

The studies involving humans were approved by Ethics Committee of The Third Hospital of Mianyang. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.





Author contributions

LT: Writing – original draft, Writing – review & editing. LY: Writing – review & editing. LXL: Writing – review & editing. QQ: Writing – review & editing. LL: Writing – review & editing. FG: Writing – review & editing.





Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





References

1. Sharma, PSA, Ranjith, J, Murali Mohan, BV, and Kannan, S. Paraneoplastic manifestation of primary squamous cell cancer of the thyroid gland. Cureus. (2023) 15:e39415. doi: 10.7759/cureus.39415

2. Baloch, ZW, Asa, SL, Barletta, JA, Ghossein, RA, Juhlin, CC, Jung, CK, et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol. (2022) 33:27–63. doi: 10.1007/s12022-022-09707-3

3. Ou, D, Ni, C, Yao, J, Lai, M, Chen, C, Zhang, Y, et al. Clinical analysis of 13 cases of primary squamous-cell thyroid carcinoma. Front Oncol. (2022) 12:956289. doi: 10.3389/fonc.2022.956289

4. Ding, W, Gao, X, and Ran, X. Progress in diagnosing and treating thyroid squamous cell carcinoma under the 5th edition of WHO classification. Front Endocrinol (Lausanne). (2024) 14:1273472. doi: 10.3389/fendo.2023.1273472

5. Syed, MI, Stewart, M, Syed, S, Dahill, S, Adams, C, McLellan, DR, et al. Squamous cell carcinoma of the thyroid gland: primary or secondary disease? J Laryngol Otol. (2011) 125:3–9. doi: 10.1017/S0022215110002070

6. Chiba, T. Molecular pathology of thyroid tumors: Essential points to comprehend regarding the latest WHO classification. Biomedicines. (2024) 12:712. doi: 10.3390/biomedicines12040712

7. Krause, BJ, Schwarzenböck, S, and Souvatzoglou, M. FDG PET and PET/CT. Recent Results Cancer Res. (2013) 187:351–69. doi: 10.1007/978-3-642-10853-2_12

8. Chandekar, KR, Satapathy, S, and Bal, C. Positron emission tomography/computed tomography in thyroid cancer: An updated review. PET Clin. (2024) 19:131–45. doi: 10.1016/j.cpet.2023.12.001

9. Caballero Gullón, L, Carmona González, E, Martínez Estévez, A, Gómez Camarero, MP, Corral, JJ, and Borrego Dorado, I. Primary squamous cell carcinoma of the thyroid. Initial assessment and follow-up using 18F-FDG PET/CT. Carcinoma epidermoide primario de tiroides. Valoración inicial y control evolutivo mediante 18F-FDG PET/TC. Rev Esp Med Nucl Imagen Mol. (2017) 36:257–9. doi: 10.1016/j.remn.2017.01.001

10. Cai, L, Chen, Y, Huang, Z, and Wu, J. Primary squamous cell carcinoma of the thyroid on FDG PET/CT. Clin Nucl Med. (2014) 39:1014–6. doi: 10.1097/RLU.0000000000000511




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Liao, Long, Li, Qi, Li and Fu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 09 July 2024

doi: 10.3389/fonc.2024.1390342

[image: image2]


Radiomics analysis combining gray-scale ultrasound and mammography for differentiating breast adenosis from invasive ductal carcinoma


Wen Li 1,2†, Ying Song 3†, Xusheng Qian 4,5†, Le Zhou 1, Huihui Zhu 2, Long Shen 6, Yakang Dai 4*, Fenglin Dong 3* and Yonggang Li 1,7,8*


1Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China, 2 Department of Ultrasound, Huadong Sanatorium, Wuxi, Jiangsu, China, 3 Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China, 4 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China, 5 School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China, 6 Department of Radiology, Suzhou Xiangcheng District Second People’s Hospital, Suzhou, Jiangsu, China, 7 Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, China, 8 National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China




Edited by: 

Alla Reznik, Lakehead University, Canada

Reviewed by: 

Zhenyu Shu, Zhejiang Provincial People’s Hospital, China

Dafa Shi, Second Affiliated Hospital of Shantou University Medical College, China

Ning Mao, Yantai Yuhuangding Hospital, China

*Correspondence: 

Yonggang Li
 liyonggang224@163.com 

Fenglin Dong
 fldong@suda.edu.cn 

Yakang Dai
 daiyk@sibet.ac.cn









†These authors have contributed equally to this work



Received: 23 February 2024

Accepted: 21 June 2024

Published: 09 July 2024

Citation:
Li W, Song Y, Qian X, Zhou L, Zhu H, Shen L, Dai Y, Dong F and Li Y (2024) Radiomics analysis combining gray-scale ultrasound and mammography for differentiating breast adenosis from invasive ductal carcinoma. Front. Oncol. 14:1390342. doi: 10.3389/fonc.2024.1390342






Objectives

To explore the utility of gray-scale ultrasound (GSUS) and mammography (MG) for radiomic analysis in distinguishing between breast adenosis and invasive ductal carcinoma (IDC).





Methods

Data from 147 female patients with pathologically confirmed breast lesions (breast adenosis: 61 patients; IDC: 86 patients) between January 2018 and December 2022 were retrospectively collected. A training cohort of 113 patients (breast adenosis: 50 patients; IDC: 63 patients) diagnosed from January 2018 to December 2021 and a time-independent test cohort of 34 patients (breast adenosis: 11 patients; IDC: 23 patients) diagnosed from January 2022 to December 2022 were included. Radiomic features of lesions were extracted from MG and GSUS images. The least absolute shrinkage and selection operator (LASSO) regression was applied to select the most discriminant features, followed by logistic regression (LR) to construct clinical and radiomic models, as well as a combined model merging radiomic and clinical features. Model performance was assessed using receiver operating characteristic (ROC) analysis.





Results

In the training cohort, the area under the curve (AUC) for radiomic models based on MG features, GSUS features, and their combination were 0.974, 0.936, and 0.991, respectively. In the test cohort, the AUCs were 0.885, 0.876, and 0.949, respectively. The combined model, incorporating clinical and all radiomic features, and the MG plus GSUS radiomics model were found to exhibit significantly higher AUCs than the clinical model in both the training cohort and test cohort (p<0.05). No significant differences were observed between the combined model and the MG plus GSUS radiomics model in the training cohort and test cohort (p>0.05).





Conclusion

The effectiveness of radiomic features derived from GSUS and MG in distinguishing between breast adenosis and IDC is demonstrated. Superior discriminatory efficacy is shown by the combined model, integrating both modalities.





Keywords: invasive ductal carcinoma, breast adenosis, radiomics, gray-scale ultrasound, mammography





Introduction

Breast adenosis, a prevalent proliferative breast condition lacking atypia (1), has an uncertain etiology. However, Endocrine alterations and disorders, such as increased levels of estrogen, a shortage in progesterone, hyperprolactinemia, imbalances in thyroid hormones, stress, and deficiencies in unsaturated fatty acids, may contribute to its development (2). Pathologically, breast adenosis manifests as an enlargement of the lobule and terminal ductal lobular unit, characterized by an increased number of ductules and acini within the lobule (3). Radiologically, some instances of breast adenosis may be erroneously interpreted as invasive ductal carcinoma (IDC). While breast adenosis typically only requires observation and monitoring, IDC necessitates a comprehensive treatment plan involving surgery, radiation, and chemotherapy (4, 5). Therefore, accurate preoperative differentiation between breast adenosis and IDC is imperative for precise diagnosis and optimal patient management.

Gray-scale ultrasound (GSUS) and mammography (MG) are widespread screening tools for breast cancer globally, providing crucial diagnostic guidance (6, 7). However, Ozturk et al. (8). demonstrated the inherent difficulty in distinguishing breast adenosis from IDC using MG and ultrasound (US) due to the absence of characteristic features. Additionally, MRI is expensive and time-consuming for routine examination in breast adenosis diagnosis, while CT carries a higher radiation dose risk and offers lower resolution in differentiating the fine structures of breast tissue (9–11).

Radiomics is a data mining approach aimed at extracting high-dimensional data from clinical images to build diagnostic and predictive models for addressing relevant clinical questions (12, 13). Radiomics has long been widely employed in MG and US images to enhance the efficiency and accuracy of breast cancer screening (14, 15). Nevertheless, the effectiveness of radiomics based on single-modality medical images is limited, as these images capture only a fraction of tumor information due to their imaging principles (16). There is growing interest in using multimodal radiomics to acquire a more complete and nuanced understanding of tumor properties, such as shape, size, and texture (16, 17). However, limited studies have investigated the use of radiomics to differentiate between breast adenosis and IDC, particularly using the combination of GSUS and MG. Therefore, this study aims to develop models using radiomic features extracted from GSUS and MG images, along with clinical data, to differentiate between breast adenosis and IDC.





Materials and methods




Subjects

This retrospective study received approval from our institution’s independent ethics committee, and the need for informed consent was waived. Patients with histologically confirmed breast adenosis or invasive ductal carcinoma (IDC) enrolled between January 2018 and December 2022. Inclusion criteria were: (i) patients with pathologically confirmed breast adenosis or IDC post-surgical operation or core needle biopsy; (ii) patients who had undergone both mammography (MG) and ultrasound (US) within a month prior to any surgical operation. Exclusion criteria were: (i) patients with a history of undergoing therapies such as breast surgery, radiotherapy, or chemotherapy; (ii) poor image quality, including significant motion artifact. A total of 147 patients, 61 with breast adenosis (mean age, 45 ± 12 years; range, 26-69 years) and 86 with IDC (mean age, 52 ± 12 years; range, 31-74 years), were included. All patients had a single and unilateral lesion. Based on the time sequence of patients receiving treatment, they were divided into training and test cohorts. The training cohort comprised 113 patients treated between January 2018 and December 2021, while the test cohort comprised 34 patients treated between January 2022 and December 2022. Clinical data, including age, family history of breast cancer, and menopausal status, were collected from medical records. Figure 1 illustrates the patient selection process.




Figure 1 | The flowchart illustrates the inclusion and exclusion criteria for study subjects. MG, mammography; US, ultrasound; IDC, invasive ductal carcinoma.







Imaging acquisition and interpretation

All patients underwent a pre-surgical US examination, positioned supine with hands raised above their heads for full breast exposure. Color Doppler ultrasound instruments used included GE LOGIQ E9 (General Electric Company, Boston, USA), MyLab™ ClassC (Esaote, Genoa, Italy), TOSHIBA APLIO 500 (Toshiba, Tokyo, Japan), or HITACHI ARIEETTA 70 (HITACHI Ltd, Tokyo, Japan) with a linear array probe and a frequency of 9-12 MHz. The examinations were conducted by ultrasound practitioners with 10 years of experience in breast ultrasonography, trained in standardized chart storage. The field of view was adjusted to encompass the pectoralis muscle at its most profound point within the photograph. The focus was situated slightly beneath the lesion. The standard stored image of a breast lesion comprised of a minimum of two vertical slices, with one of them displaying the lesion’s maximum diameter. The image exhibiting the clearest and most comprehensive presentation of the lesion was chosen. A digital mammography machine (Hologic Selenia, Hologic Medical Systems, Boston, USA) was employed to capture images in mediolateral oblique (MLO) and cranial-caudal (CC) positions.





Image analysis

Two radiologists with 10 and 15 years of MG diagnostic experience, respectively, and another two radiologists with 9 and 12 years of breast US diagnostic experience, respectively, independently assessed the images without access to clinical and pathological information. They recorded imaging features of lesions on MG and US, including glandular type, architectural distortion, microcalcification morphology, mass, asymmetric focal density, shape, orientation, posterior feature, margin, calcification, vascularity grade, and echo pattern. In case of disagreement, a final consensus was achieved through discussion. Lesions were categorized based on the 5th edition of the Breast Imaging Reporting and Data System (BI-RADS) (18).





Tumor segmentation and radiomics feature extraction

Breast lesions in the MLO and CC positions of MG images were manually segmented by radiologist 1 (with 5 years of MG diagnostic experience), confirmed by radiologist 2 (with 10 years of experience), and adjusted if necessary. For GSUS images, breast lesions were manually segmented by radiologist 3 (with 7 years of experience in breast GSUS diagnosis), confirmed by radiologist 4 (with 15 years of experience), and adjusted if necessary. Radiologists were aware of the lesion locations but remained blinded to the clinical and pathological information of the patients.

Manual segmentation utilized the open-source ITK-SNAP software (version 3.8.0, http://www.itksnap.org). In cases of uncertain lesion boundaries, a final consensus was achieved through discussion, as illustrated in Figure 2.




Figure 2 | Lesion segmentation in MG and GSUS images. (A-F) Displaying the original MG, GSUS images, and segmentation of a 32-year-old female patient with confirmed breast adenosis. (G-L) Presenting the original MG, GSUS images, and segmentation of a 57-year-old female patient with confirmed IDC. MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.



The radiomics features of the GSUS and MG images were extracted using an artificial intelligence-assisted diagnosis modeling software based on Pyradiomics (version 2.2.0) (19). The extracted features were categorized into seven groups: shape features, first-order statistical features, gray-level co-occurrence matrix (GLCM) features, gray-level run length matrix (GLRLM) features, gray-level size zone matrix (GLSZM) features, neighboring gray-tone difference matrix (NGTDM), and gray-level dependence matrix (GLDM) features. Radiomic features were generated on both the original and pre-processed images using seven filters, including Laplacian of Gaussian (LoG) (σ= 0.5, 1.0, 1.5), Logarithm, Square, Square root, Exponential, Wavelet, and Gradient.

The segmentation process was repeated in 30 randomly selected patients by radiologist 1 and radiologist 3 after 2 months. Intraclass correlation coefficients (ICCs) were calculated to assess the intra-observer reproducibility of radiomic features. An ICC ≥ 0.8 indicates high agreement, 0.5 to 0.79 indicates moderate agreement, and < 0.5 indicates low agreement (20, 21).





Feature selection, model construction and validation

All radiomic features were normalized to a zero mean and unit variance using Z-score. A comprehensive feature selection process was conducted as follows. Firstly, features with low variance (<0.1) were eliminated. Secondly, Welch’s t-test compared the remaining features between breast adenosis and IDC groups, with a p-value < 0.05 considered statistically significant, and insignificant features were removed. Thirdly, We retained a relatively large number of the top 50 features in the minimum redundancy maximum relevance (mRMR) method, in order to reduce the redundancy between features and retain relevant features, while reducing the possibility of mRMR method deleting features helpful for the identification of breast adenosis and IDC. Finally, the least absolute shrinkage and selection operator (LASSO) regression determined the most discriminant feature subset (Figures 3A, C, E, G). The optimal penalization parameter λ value, minimizing the mean square error (MSE), was automatically chosen for LASSO using an estimator with built-in cross-validation capability. Subsequently, the L2-regularized logistic regression (LR) model (22, 23) was trained based on the selected clinical, GSUS, and MG image features, along with radiomic features. The GridSearchCV was employed from sklearn package to carry out a grid search to find the optimal value of the L2 regularization parameter by using fivefold cross-validation, repeated five times on the training cohort (24). Separate models were established for the clinical model, MG-based radiomics model (Rad-MG model), GSUS-based radiomics model (Rad-GSUS model), MG plus GSUS radiomics model (Rad-MG-GSUS model), and combined model integrating clinical features, MG, and GSUS radiomics features. The discriminatory ability of each model was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). The area under the ROC curve (AUC), sensitivity, specificity, and accuracy were calculated. Model comparisons within the training and test cohorts were based on Delong test results.




Figure 3 | Feature extraction and filtering. (A, C, E, G) Depicting LASSO coefficient profiles (y-axis) for radiomics features from MG images, GSUS images, combined radiomics features of MG and GSUS images, and clinical features combined with MG and GSUS radiomics features. (B, D, F, H) Illustrating selected features and coefficients in the models. MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.







Statistical analysis

Statistical analyses were conducted using SPSS 25.0 (IBM Corp., Armonk, NY, USA) and Python 3.6 (Python Software Foundation, Beaverton, OR, USA) software. The Kolmogorov-Smirnov test assessed the normality of quantitative data. Quantitative data conforming to a normal distribution were presented as mean ± standard deviation; otherwise, data were expressed as the median (interquartile range). Qualitative data were reported as numbers. The comparison of quantitative data utilized the independent sample t-test or Mann-Whitney U-test, while the x2 test was employed for qualitative data comparison. LASSO logistic regression, ROC curves, and LR were implemented using the sklearn package. Model performance was evaluated through the Delong test and decision curve analysis (DCA). A two-tailed p-value < 0.05 was considered indicative of statistical significance.






Results




Patient profiles

A total of 147 patients were included in the study, comprising 61 with breast adenosis and 86 with IDC. The training cohort comprised 113 patients (breast adenosis: 50; IDC: 63), while the test cohort included 34 patients (breast adenosis: 11; IDC: 23). Histopathological examination results showed 8 cases of pure adenosis and 53 cases of adenosis mixed with fibrocystic changes among the adenosis lesions. Table 1 presents the clinical, US, and MG imaging features. Significant differences in age, menopausal status, family history, microcalcification morphology, and vascularity grade were observed between the breast adenosis and IDC groups in the training cohort (p<0.05). No significant difference was found between the two groups in glandular type, architectural distortion, mass, asymmetric focal density, shape, orientation, posterior feature, margin, calcification, and echo pattern (p>0.05). The GSUS features, MG features and histopathological characteristics of breast lesions or IDC are summarized in Figures 4 and 5.


Table 1 | Demographic characteristics and imaging features of GSUS and MG.






Figure 4 | GSUS, MG and histopathologic findings of a 37-year-old woman with breast adenosis. (A, B) The MG presents an oval shape, ill-circumscribed isodense mass (white arrow); (C) The GSUS presents a irregular shape, ill-circumscribed homogeneity mass (white arrow); (D) The sample (hematoxylin and eosin) with breast adenosis (100x). MG, mammography; GSUS, gray-scale ultrasound.






Figure 5 | GSUS, MG and histopathologic findings of a 48-year-old woman with IDC. (A, B) The MG presents an irregular shape, ill-circumscribed isodense mass (white arrow) with a microlobulated margin; (C) The GSUS presents an irregular shape, ill-circumscribed heterogeneity mass (white arrow); (D) The sample (hematoxylin and eosin) with IDC (100x). MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.







Feature extraction and selection

A total of 4491 radiomics features were extracted from GSUS (1497 features) and MG (2994 features) images for each patient. The intraobserver ICC ranged from 0.76 to 0.97, indicating a good reproducibility of radiomics feature extraction. 109 features with an ICCs value less than 0.80 were excluded. Univariate analysis of five features (age, family history of breast cancer, and menopausal status, microcalcification morphology, vascularity grade) with statistical differences in the training cohort was used to construct the clinical model. Radiomics features of four radiomics signatures were shown in Table 2, Figures 3B, D, F, H.


Table 2 | Radiomics features of four models.







Comparison of performance between models

No significant differences were noted between the Rad-GSUS model and the Rad-MG model in the training cohort (AUCs 0.936 vs. 0.974; p=0.166) and the test cohort (AUCs 0.876 vs. 0.885; p=0.926). The Rad-MG-GSUS model performed better than the Rad-GSUS model in the training cohort (AUCs 0.991 vs. 0.936; p=0.021). Although the Rad-MG-GSUS model showed improved efficacy over the Rad-MG model in both the training cohort (AUCs 0.991 vs. 0.974; p=0.174) and the test cohort (AUCs 0.949 vs. 0.885; p=0.322), as well as over the Rad-GSUS model in the test cohort (AUCs 0.949 vs. 0.876; p=0.093), the differences were not statistically significant.

The combined model and the Rad-MG-GSUS model showed significantly higher AUCs than the clinical model in both the training cohort (AUCs 0.993 vs. 0.826, p<0.001; AUCs 0.991 vs. 0.826, p<0.001, respectively) and the test cohort (AUCs 0.941 vs. 0.664, p=0.014; AUCs 0.949 vs. 0.664, p=0.011, respectively). No significant differences were noted between the combined model and the Rad-MG-GSUS model in the training cohort (AUCs 0.993 vs. 0.991; p=0.212) and the test cohort (AUCs 0.941 vs. 0.949; p=0.299). The performance of the five models is summarized in Table 3. The comparison of predictive models is summarized in Table 4, and the ROC curves of the models are depicted in Figure 6A-D. DCA shows comparable clinical benefits for the Rad-MG-GSUS model and the combined models over a large range of threshold probabilities in Figure 7.


Table 3 | Diagnostic performance of the five models.




Table 4 | Performance comparison of predictive models in the training cohort and the test cohort.






Figure 6 | Receiver Operating Characteristic (ROC) Curves. (A) ROC curves for three radiomics models in the training cohort; (B) ROC curves for three radiomics models in the test cohort; (C) ROC curves for the clinical model, Rad-MG-GSUS model, and combined model in the training cohort; (D) ROC curves for the clinical model, Rad-MG-GSUS model, and combined model in the test cohort. MG, mammography; GSUS, gray-scale ultrasound. Rad-MG-GSUS model: the model based on radiomics features from MG and GSUS images; Rad-MG model: the model based on radiomics features from MG images; Rad-GSUS model: the model based on radiomics features from GSUS images; combined model: the model based on clinical features, MG and GSUS radiomics features.






Figure 7 | Decision Curve Analysis (DCA) of Three Models. (A) DCA curves for three models in the training cohort; (B) DCA curves for three models in the test cohort. The y-axis measures the net benefit, calculated as the difference between expected benefit and harm associated with each proposed model. If the threshold probability exceeds 2%, using the models to predict breast adenosis provides a higher net benefit than scenarios without a prediction model.








Discussion

Accurate qualitative diagnosis of breast adenosis using GSUS or MG remains challenging for radiologists (25). This study utilized GSUS-based and MG-based radiomics features to differentiate breast adenosis from IDC. The interpretability of the model was an important factor in our consideration. LR model provides easy-to-interpret coefficients that can reflect the importance of each feature to decision making, and LR is the most commonly used classification algorithm in clinical research. The results demonstrated that LR models incorporating GSUS-based and MG-based radiomics features could effectively distinguish breast adenosis from IDC. Notably, the Rad-MG-GSUS model outperformed the Rad-GSUS and Rad-MG models. Additionally, a combined model integrating clinical parameters and radiomics features from MG and GSUS images was developed and validated. Compared to the clinical model, both the combined model and the Rad-MG-GSUS model exhibited superior performance. The predictive performance differences between the Rad-MG-GSUS model and the combined model in both the training and test cohorts were not significant. DCA further indicated increased net clinical benefits for these models compared to no prediction models, offering potential assistance in devising improved treatment plans for patients.

Univariate analysis revealed that breast adenosis was more prevalent in younger women without menopausal symptoms, less common with II~III vascularity grade on ultrasound, and associated with the absence of a family history and fine linear/fine-linear branching on mammography. These findings align with previous studies (8, 9, 26–28). Notably, family history and vascularity grade features were retained during feature selection in the combined model, suggesting a significant correlation with breast adenosis. A family history of breast cancer is a significant risk factor, accounting for approximately 5-10% of breast cancer cases (26). Tumor angiogenesis, an increase in blood flow and the presence of irregular or penetrating blood vessels are responsible for the development and progression of cancer (29). However, in the test cohort, the clinical model demonstrated an AUC of only 0.664, potentially influenced by the small number of included patients. Further investigation with larger and more relevant studies may be necessary to validate these findings.

Recently, due to the standardization of radiomics methodologies and the development of tools, as well as the widespread acceptance of the idea, radiomics has become extensively utilized in all parts of tumor diagnostics (30, 31). Previously, radiomics research often utilized single-modality or single-sequence images. However, the effectiveness of radiomics that based on single-modality medical images, which only captures a portion of tumor information due to its imaging principles, has been unavoidably degraded (14–16). Radiomics based on multimodal images extracts various aspects of information from each modal image and then combine them for model development, gaining increasing interest (16, 17). Tan et al. (32) evaluated the individual and combined efficacy of artificial intelligence (AI) detection systems for digital mammography and automated 3D breast ultrasound in the identification of breast cancer in women with dense breasts. The study revealed that the AI systems performed significantly better when operating in a multi-modal setting compared to when each system operated individually in a single-modal setting (AUC-AI -Multimodal =0.865; AUC-AI-DM=0.832, p=0.026; AUC -AI- ABUS=0.841, p=0.041). Zheng et al. (7) conducted a study to assess the clinical usefulness of a radiomics model that utilizes GSUS and contrast-enhanced ultrasound (CEUS) images for distinguishing between inflammatory mass stage periductal mastitis/duct ectasia (IMSPDM/DE) and IDC. The study discovered that the GSUS combined with CEUS radiomics signature outperformed the other two radiomics signatures. Similar to our findings, the combination of the two modalities demonstrates exceptional discriminatory ability (AUC of 0.941 in the test cohort).

Our finding suggest that both MG-based and GSUS-based radiomics features effectively distinguish breast diseases and IDC, yielding AUCs of 0.885 and 0.876 in the respective test cohorts. Additionally, a radiomics model utilizing ultrasound, as devised by Huang et al. (33), exhibits robust diagnostic performance for sclerosing adenosis and invasive ductal carcinoma, with AUCs of 0.886 and 0.779 in the validation and independent validation cohorts. A prior investigation demonstrates that employing radiomics data from both CC and MLO positions outperforms using CC or MLO positions alone in classification (34). Consequently, we utilized radiomics data from both CC and MLO positions to differentiate breast adenosis and IDC. The results indicate that the Rad-MG model achieves commendable classification performance. The radiomics models included shape radiomics features from both MG and GSUS, as two-dimensional images from these modalities provide limited tumor morphological information. By including shape radiomics features from MG and GSUS with statistically significant differences, we aim to offer a more comprehensive view of tumor morphology from different angles. To reduce feature redundancy, we applied the mRMR method, ensuring a more effective feature selection process.

Our research shows that the clinical model exhibited moderate efficacy in distinguishing between breast adenosis and IDC. A significant enhancement in efficacy was observed when combining clinical data with radiomics features to form a composite model. This suggests that radiomics have the capacity to enhance the objectivity of image representation by emphasizing graphical features that are not visible to the human eye. In the test cohort, the AUC value of the combined model was estimated to be 0.941, somewhat lower than that of the Rad-MG-GSUS model (AUC value: 0.949), however, the difference between the two values was not statistically significant. We believe this might be due to the excellent diagnostic efficiency of the Rad-MG-GSUS model, resulting in the addition of clinical information not enhancing the diagnostic efficiency of the combined model, or due to the sample size or the characteristics of patients within the cohort.

Our study has several limitations. Firstly, being a retrospective single-center study introduces the possibility of selection bias. Future validation with larger sample sizes and external test cohorts is essential. Secondly, the study exclusively considered GSUS and MG features, while MRI is another crucial method for detecting breast disease. Exploring the potential comprehensive information offered by the combination of all three modalities warrants investigation in subsequent studies. Thirdly, different ultrasound equipment and scanning parameters may impact the generality of the results. Finally, to ensure precise correspondence between the lesions analyzed in the images and those obtained from surgical or biopsy specimens, we did not include cases with multifocal lesions in our study. Therefore, if multifocal lesions are of the same pathological type, would there be significant differences in the radiomic features between the lesions? A dedicated study is required to verify this.





Conclusions

In conclusion, GSUS and MG radiomic features demonstrate outstanding performance in distinguishing between breast adenosis and IDC. The amalgamation of radiomic features from both modalities, along with clinical features, enhances identification efficacy. This could serve as a valuable reference in the clinical decision-making process.





Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding authors.





Ethics statement

The studies involving humans were approved by the institutional ethics committee of the First Affiliated Hospital of Soochow University. The studies were conducted in accordance with the local legislation and institutional requirements. The ethics committee/institutional review board waived the requirement of written informed consent for participation from the participants or the participants’ legal guardians/next of kin because This retrospective study received approval from our institution’s independent ethics committee, and the need for informed consent was waived.





Author contributions

WL: Writing – original draft, Data curation, Conceptualization. YS: Writing – original draft, Data curation. XQ: Writing – review & editing, Validation, Formal Analysis, Conceptualization. HZ: Writing – original draft, Investigation, Formal Analysis. LS: Writing – review & editing, Data curation. YD: Writing – original draft, Visualization, Software. FD: Writing – review & editing, Methodology, Data curation. YL: Writing – original draft, Supervision, Methodology, Funding acquisition, Conceptualization. LZ: Writing – original draft, Data curation, Investigation.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the key program of Jiangsu Commission of Health(K2023027), the medicine plus X project from Suzhou medical school of Soochow university(grant number ML12203423).




Acknowledgments

The authors are grateful for the support and help of Department of Radiology, The First Affiliated Hospital of Soochow University, Department of Ultrasound, The Huadong Sanatorium and the Suzhou Institute of Biomedical Engineering and Technology.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





References

1. Guinebretière, JM, Menet, E, Tardivon, A, Cherel, P, and Vanel, D. Normal and pathological breast, the histological basis. Eur J Radiol. (2005) 54:6–14. doi: 10.1016/j.ejrad.2004.11.020

2. Shoker, BS, Jarvis, C, Clarke, RB, Anderson, E, Munro, C, Davies, MP, et al. Abnormal regulation of the oestrogen receptor in benign breast lesions. J Clin Pathol. (2000) 53:778–83. doi: 10.1136/jcp.53.10.778

3. Taşkin, F, Köseoğlu, K, Unsal, A, Erkuş, M, Ozbaş, S, and Karaman, C. Sclerosing adenosis of the breast: radiologic appearance and efficiency of coreneedle biopsy. Diagn Interv Radiol. (2011) 17:311–6. doi: 10.4261/1305-3825.DIR.3785-10.2

4. Sharma, T, Chaurasia, JK, Kumar, V, Mukhopadhyay, S, and Joshi, D. Cytological diagnosis of sclerosing adenosis of breast: Diagnostic challenges and literature review. Cytopathology. (2021) 32:827–30. doi: 10.1111/cyt.13041

5. Jung, HK, Kim, SJ, Kim, W, Lim, YJ, Lee, Y, Hahn, S, et al. Ultrasound features and rate of upgrade to Malignancy in atypical apocrine lesions of the breast. J Ultrasound Med. (2020) 39:1517–24. doi: 10.1002/jum.15240

6. Xu, ML, Zeng, SE, Li, F, Cui, XW, and Liu, GF. Preoperative prediction of lymphovascular invasion in patients with T1 breast invasive ductal carcinoma based on radiomics nomogram using grayscale ultrasound. Front Oncol. (2022) 12:1071677. doi: 10.3389/fonc.2022.1071677

7. Zheng, Y, Bai, L, Sun, J, Zhu, L, Huang, RJ, Duan, SF, et al. Diagnostic value of radiomics model based on gray-scale and contrast -enhanced ultrasound for inflammatory mass stage periductal mastitis/duct ectasia. Front Oncol. (2022) 20:981106. doi: 10.3389/fonc.2022.981106

8. Ozturk, E, Yucesoy, C, Onal, B, Han, U, Seker, G, and Hekimoglu, B. Mammographic and ultrasonographic findings of different breast adenosis lesions. J Belg Soc Radiol. (2015) 99:21–7. doi: 10.5334/jbr-btr.850

9. Liang, T, Cong, SZ, Yi, ZJ, Liu, JJ, Huang, CW, Shen, JH, et al. Ultrasound-based nomogram for distinguishing Malignant tumors from nodular sclerosing adenoses in solid breast lesions. J Ultrasound Med. (2021) 40:2189–200. doi: 10.1002/jum.15612

10. Sun, Q, Lin, X, Zhao, Y, Li, L, Yan, K, Liang, D, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region. Front Oncol. (2020) 10:53. doi: 10.3389/fonc.2020.00053

11. Ruan, M, Ding, ZX, Shan, YN, Pan, SS, Shao, C, Xu, W, et al. Radiomics based on DCE-MRI improved diagnostic performance compared to BI-RADS analysis in identifying sclerosing adenosis of the breast. Front Oncol. (2022) 12:888141. doi: 10.3389/fonc.2022.888141

12. Lee, SH, Park, H, and Ko, ES. Radiomics in breast imaging from techniques to clinical applications: a review. Korean J Radiol. (2020) 21:779–92. doi: 10.3348/kjr.2019.0855

13. Van Ooijen, PMA, Nagaraj, Y, and Olthof, A. Medical imaging informatics, more than 'just' deep learning. Eur Radiol. (2020) 30:5507–9. doi: 10.1007/s00330-020-06939-x

14. Romeo, V, Cuocolo, R, Apolito, R, Stanzione, A, Ventimiglia, A, Vitale, A, et al. Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and Malignant lesions. Eur Radiol. (2021) 31:9511–9. doi: 10.1007/s00330-021-08009-2

15. Li, H, Mendel, RK, Lan, L, Sheth, D, and Giger, LM. Digital mammography in breast cancer: additive value of radiomics of breast parenchyma. Radiology. (2019) 291:15–20. doi: 10.1148/radiol.2019181113

16. Zhang, LY, Wang, YM, Peng, ZY, Weng, YX, Fang, ZB, Xiao, F, et al. The progress of multimodal imaging combination and subregion based radiomics research of cancers. Int J Biol Sci. (2022) 18:3458–69. doi: 10.7150/ijbs.71046

17. Wang, Q, Li, Q, Mi, R, Ye, H, Zhang, H, Chen, B, et al. Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: a cohort study. J Magn Reson Imaging. (2019) 49:825–33. doi: 10.1002/jmri.26265

18. Franklin, NT, William, DM, Edward, GG, Jenny, KH, Lincoln, LB, Sharlene, AT, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol. (2017) 14:587–95. doi: 10.1016/j.jacr.2017.12.035

19. Zhou, Z, Qian, X, Hu, J, Chen, G, Zhang, C, Zhu, J, et al. An artificial intelligence-assisted diagnosis modeling software (AIMS) platform based on medical images and machine learning: a development and validation study. Quantitative Imaging Med Surg. (2033) 13:7504–22. doi: 10.21037/qims-23-20

20. Yu, Y, Fan, Y, Wang, X, Zhu, M, Hu, M, Shi, C, et al. Gd-EOB -DTPA enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol. (2022) 32:959–70. doi: 10.1007/s00330-021-08250-9

21. Aristokli, N, Polycarpou, I, Themistocleous, SC, Sophocleous, D, and Mamais, I. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient's history: A review. Radiogr (Lond). (2022) 28:848–56. doi: 10.1016/j.radi.2022.01.006

22. Huang, S, Qian, X, Cheng, Y, Guo, W-L, Zhou, Z-Y, and Dai, Y-K. Machine learning-based quantitative analysis of barium enema and clinical features for early diagnosis of short-segment Hirschsprung disease in neonate. J Pediatr Surg. (2021) 56:1711–7. doi: 10.1016/j.jpedsurg.2021.05.006

23. Conroy, B, and Sajda, P. Fast, exact model selection and permutation testing for l2-regularized logistic regression[C]//Artificial Intelligence and Statistics. PMLR. (2012) 22:246–54.

24. Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, et al. Scikit-learn: machine learning in python. J Machine Learning Res.. (2018) 12:2825–30.

25. Liu, W, Li, W, Li, ZY, Shi, L, Zhao, P, Guo, ZH, et al. Ultrasound characteristics of sclerosing adenosis mimicking breast carcinoma. Breast Cancer Res Treat. (2020) 181:127–34. doi: 10.1007/s10549-020-05609-2

26. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492

27. Liu, L, Hao, X, Song, Z, Zhi, X, Zhang, S, and Zhang, J. Correlation between family history and characteristics of breast cancer. Sci Rep. (2021) 11:6360. doi: 10.1038/s41598-021-85899-8

28. Liu, HH, Chen, YH, Zhang, YZ, Wang, LJ, Luo, R, Wu, HT, et al. A deep learning model integrating mammography and clinical factors facilitates the Malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Eur Radiol. (2021) 31:5902–12. doi: 10.1007/s00330-020-07659-y

29. Park, AY, Seo, BK, and Han, MR. Breast ultrasound microvascular Imaging and radiogenomics. Korean J Radiol. (2021) 22:677–87. doi: 10.3348/kjr.2020.1166

30. Jardim-Perassi, BV, Huang, S, Dominguez-Viqueira, W, Poleszczuk, J, Budzevich, MM, Abdalah, MA, et al. Multiparametric MRI and coregistered histology identify tumor habitats in breast cancer mouse models. Cancer Res. (2019) 79:3952–64. doi: 10.1158/0008-5472

31. Wang, S, Shi, J, Ye, Z, Dong, D, Yu, D, Zhou, M, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. (2019) 53:1800986. doi: 10.1183/13993003.00986-2018

32. Tan, T, Rodriguez-Ruiz, A, Zhang, T, Xu, L, Beets -Tan, RGH, Shen, ZY, et al. Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts. Insights Imaging. (2023) 14:10. doi: 10.1186/s13244-022-01352-y

33. Huang, Q, Nong, WX, Tang, XZ, and Gao, Y. An ultrasound-based radiomics model to distinguish between sclerosing adenosis and invasive ductal carcinoma. Front Oncol. (2023) 13:1090617. doi: 10.3389/fonc.2023.1090617

34. Wang, HJ, Cao, PW, Nan, SM, and Deng, XY. Mammography-based radiomics analysis and imaging features for predicting the Malignant risk of phyllodes tumours of the breast. Clin Radiol. (2023) 78:e386–92. doi: 10.1016/j.crad.2023.01.017




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Li, Song, Qian, Zhou, Zhu, Shen, Dai, Dong and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




CASE REPORT

published: 18 July 2024

doi: 10.3389/fonc.2024.1405404

[image: image2]


Case report: Possible role of low-dose PEM for avoiding unneeded procedures associated with false-positive or equivocal breast MRI results
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Contrast-enhanced breast magnetic resonance imaging (MRI) is currently recommended as a screening tool for high-risk women and has been advocated for women with radiologically dense breast tissue. While breast MRI is acknowledged for its high sensitivity (with an exception for lower-grade ductal carcinoma in situ (DCIS) where emerging techniques like diffusion-weighted imaging offer improvement), its limitations include sensitivity to hormonal changes and a relatively high false-positive rate, potentially leading to overdiagnosis, increased imaging uncertainty, and unnecessary biopsies. These factors can exacerbate patient anxiety and impose additional costs. Molecular imaging with breast-targeted Positron Emission Tomography (PET) has shown the capability to detect malignancy independent of breast density and hormonal changes. Furthermore, breast-targeted PET has shown higher specificity when compared with MRI. However, traditional PET technology is associated with high radiation dose, which can limit its widespread use particularly in repeated studies or for undiagnosed patients. In this case report, we present a clinical application of low-dose breast imaging utilizing a breast-targeted PET camera (Radialis PET imager, Radialis Inc). The case involves a 33-year-old female patient who had multiple enhanced lesions detected on breast MRI after surgical removal of a malignant phyllodes tumor from the right breast. A benign core biopsy was obtained from the largest lesion seen in the left breast. One month after the MRI, 18F-fluorodeoxyglucose (18F-FDG) PET imaging session was performed using the Radialis PET Imager. Although the Radialis PET Imager has proven high count sensitivity and the capability to detect breast lesions with low metabolic activity (at a dose similar to mammography), no areas of increased 18F-FDG uptake were visualized in this particular case. The patient underwent a right-sided nipple-sparing mastectomy and left-sided lumpectomy, with bilateral reconstruction. The excised left breast tissue was completely benign, as suggested by both core biopsy and the PET results. The case presented highlights a promising clinical application of low-dose breast-targeted PET imaging to mitigate the uncertainty associated with MRI while keeping radiation doses within the safe range typically used in X-ray mammography.
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Introduction

X-ray mammography is the mainstay of breast cancer screening. However, for high-risk women who require screening at a significantly younger age than those at average risk, and for women with radiologically extremely dense breast tissue, the sensitivity of X-ray mammography may be compromised due to the ‘masking effect’ of dense breast tissue. In such cases, breast MRI (1) has been recommended as a supplementary imaging modality (2–5).

Although very sensitive for detecting breast abnormalities before the occurrence of late-stage progression and increasing metastasis-free survival rates (4, 6), contrast-enhanced breast MRI has a number of significant drawbacks (7). These include a high false-positive rate and high sensitivity to hormonal changes, which can result in imaging uncertainty (8–10). These issues contribute to increasing the number of non-cancerous biopsies and may cause overdiagnosis.

Breast-targeted Positron Emission Tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) as a radiotracer (also known as Positron Emission Mammography (PEM)) is a dedicated molecular (or functional) breast imaging modality (11–14), which detects small cancerous lesions based on their increased glucose metabolism. Moreover, breast-targeted PET is able to detect malignancy independent of breast density (15) and hormonal changes (16), addressing an important limitation of mammography (17, 18).

However, one of the main challenges related to PET imaging is the significant dosage of the injected 18F-FDG radiotracer, resulting in higher systemic radiation exposure. As a consequence, the widespread use of PET imaging for breast cancer diagnosis has been limited (16). Here, we present the case of a 33-year-old woman who presented with an increasing solid mass in her right breast. A 3.2 cm lump was excised and found to be a malignant phyllodes tumor with positive margins. Contrast-enhanced breast MRI and low-dose PEM were performed to screen for residual disease. Breast MRI results were positive, showing several bilaterally enhancing masses. The largest lesion in the left breast was biopsied and found to be a benign fibroadenoma. PEM images showed no areas of 18F-FDG uptake above the background value in either breast. Based on the MRI results, the patient underwent left-sided lumpectomy despite the negative core biopsy result; according to final pathology report, the large lesion observed in the MRI images was a benign fibroepithelial lesion.

This case demonstrates the possibility of discriminating MRI false-positive lesions through the use of the low-dose breast-targeted Radialis PET Imager, while keeping radiation exposure within the limits used in X-ray mammography. It highlights a promising clinical application of a low-dose PEM device.





Case description

A 33-year-old woman presented with a progressively growing solid mass in her right breast. In September 2020, she underwent a right-sided lumpectomy. The excised lump, identified as a fibroepithelial lesion, along with the fibroepithelial cavity, was sent for pathological analysis. The pathology report revealed a 3.2 cm malignant phyllodes tumor with positive margins (Figures 1A, B). A differential diagnosis of a borderline phyllodes tumor was considered due to the lack of marked stromal cytologic atypia, but the presence of several malignant features lead to the diagnosis of malignancy for further management. Phyllodes comprised the entirety of the excised lesion, including multiple of the inked margins. The fibroepithelial lesion contained both uninvolved normal tissue and phyllodes.




Figure 1 | (A) Low power view of right breast phyllodes tumor showing cellular leafy fronds composed of benign glands in cellular stroma. (B) High power view of right breast phyllodes tumor showing crowding of atypical stromal cells with frequent mitoses (up to 35 mitoses per 10 high power fields) including atypical forms. Grading is challenging in this case given that all features of malignancy are not identified; however, the overall features favored malignant phyllodes tumor in this case. (C) Core biopsy of left breast showing a fibroepithelial lesion with mild stromal cellularity. (D) Higher power view of left breast core biopsy showing benign glands with small amounts of intervening stroma. The features are compatible with fibroadenoma with some features raising the possibility of tubular adenoma. (E) Excision specimen of left breast lesion showing a well-circumscribed fibroepithelial lesion with clip site changes located on the left of the lesion. (F) Higher power view of left breast excision specimen demonstrates small round glands with variable amounts of mildly cellular stroma, in keeping with fibroadenoma.



52 days after the lumpectomy, the patient underwent an MRI using a dedicated bilateral breast coil. The MRI sequences encompassed pre-contrast axial T1- and T2-weighted images with fat suppression, as well as dynamic contrast-enhanced (DCE) T1-weighted imaging sequences. The DCE sequence included a pre-contrast scan and four post-contrast scans. To minimize the enhancement of benign breast parenchyma, the MRI examination was scheduled during the second week of the menstrual cycle. The images displayed multiple enhanced masses bilaterally, classified as bi-rads 4 (Figure 2). A core biopsy was taken from the largest lesion in the left breast visible on MRI (Figures 1C, D). The biopsy revealed benign features consistent with a diagnosis of fibroadenoma.




Figure 2 | 3D-MIP breast MRI showing bilateral enhancing lesions.



After obtaining informed consent, the patient agreed to participate in a pilot single-center prospective clinical trial titled “Evaluating Positron Emission Mammography Imaging of Suspicious Breast Abnormalities” (19, 20) (research ethics board no. #18–5029). 79 days after the right-sided surgical excision, the patient was assigned to low-dose (37 MBq) FDG-PET breast imaging. 1 hour after injection, images in the craniocaudal (CC) and mediolateral oblique (MLO) views were acquired using the Radialis PET Imager (Figure 3). PET images showed no regions of increased 18F-FDG uptake, suggesting no malignancy in either breast.




Figure 3 | MLO views of left (A) and right (B) breast acquired with Radialis PET Imager showing no regions of focal 18F-FDG uptake.



Despite the core biopsy and PET results, a left-sided lumpectomy was performed due to the suspicious washout pattern observed in the MRI kinetics. This surgery left the patient with breast asymmetry, requiring reconstructive plastic surgery to achieve a satisfactory cosmetic result. Final pathology agreed that the excised lesion was a benign fibroadenoma (Figures 1E, F), indicating a false-positive MRI finding and consequent overtreatment. Low-dose imaging with Radialis PET Imager provided accurate results demonstrating its potential clinical applicability to characterize false positive MRI results. With a lower required dose compared to whole body PET, Radialis PET technology may be introduced as a safe and useful tool in this setting. The additional diagnostic information provided by Radialis PET imaging could provide the necessary guidance for conclusive diagnosis and prevent future patients from undergoing needless surgery.

This case report follows the CARE (CAse REports) Guidelines. The timeline of the presented case is shown in Figure 4.




Figure 4 | Timeline of the presented case.







Discussion

The Radialis PET Imager has demonstrated the ability to detect breast cancers that were not visible on X-ray mammography, using injected doses that were 90% less than are typically used in whole-body PET (12, 13). At such low injected doses, the radiation exposure to the patient is similar to that for X-ray mammography (21).

In a clinical trial involving 25 patients recently diagnosed with breast cancer (19), the Radialis PET Imager showed a 96% sensitivity, similar to that of MRI, identifying 24 out of 25 invasive cancers. Its false-positive rate was only 16%, significantly lower than the 62% observed for MRI. The dose of the injected 18F-FDG varied from 185 MBq (10 participants), to 74 MBq (10 participants), and 37 MBq (5 participants).

The high count sensitivity and signal-to-noise ratio of the Radialis PET Imager allowed a low 18F-FDG dose to be administered (37 MBq) (22) addressing concerns related to radiation exposure. The standard dose administered for whole-body PET typically ranges between 370 to 400 MBq, resulting in an effective dose of 6.2–8 mSv (18, 23, 24). To better understand the applicability of radiation medical imaging modalities for screening purposes, it is useful to compare the radiation doses from these examinations with those received from mammography [approximately 0.7 mSv (25), depending on tissue thickness and density, x-ray beam quality and output, and exposure time (26)]. Therefore, not only does 37 MBq of 18F-FDG represent a 10-fold reduction compared to the standard whole-body PET dose, but it also remains within the range of the effective dose received during a routine mammographic examination. This opens up the possibility of using low-dose breast-targeted PET for breast cancer screening without exceeding the radiation exposure associated with mammography (22, 27). Given the known issue of high false-positive rates associated with breast MRI, as exemplified by this case, the Radialis PET Imager may be considered as an intermediate step between positive breast MRI and surgery, or possibly as an alternative to MRI as an adjunctive imaging modality to X-ray mammography.

The surgical management of fibroepithelial lesions usually involves a distinct workflow. In the case of phyllodes tumors, surgical excision with a wide margin of at least 1cm is the standard of care (28). Re-excision or mastectomy are recommended for borderline and malignant phyllodes when positive margins are present, as these tumors have a high rate of local recurrence (29, 30). Management of slow growing benign fibroadenomas is typically conservative. MRI is known to have limited capability to distinguish phyllodes tumors from other types of fibroepithelial lesions (28), which in this case lead to surgical excision and subsequent breast reconstruction. By employing a modality with a comparable sensitivity and higher specificity such as low-dose breast-targeted PET, it may be possible to confirm whether surgery is necessary or if a more conservative approach can be taken.

Overall, the presented case underscores the significance of false positive findings that might influence the treatment course, resulting in avoidable surgical interventions. Although the clinical utility of low-dose breast-targeted PET in breast cancer screening and diagnosis should be clarified with prospective clinical trials, the presented case suggests that its inclusion in clinical workflow may be useful when traditional mammography proves insufficient, when there is a high risk of false-positive MRI findings, and when biopsy is challenging or impossible. This will further advance personalized practice in breast cancer diagnosis, potentially providing the additional information required to help prevent life changing overtreatment.





Conclusion

The importance of early detection in breast cancer cannot be overstated. Mammography has long been recognized as a life-saving tool, and the introduction of breast MRI has further improved our ability to detect tumors in their early stages, particularly in high-risk settings. While the clinical perspective often focuses on the risks of underdiagnosis, patients not only value their lives but also prioritize the preservation of their breasts and the avoidance of unnecessary mastectomies. Striking a balance between effective screening and the potential harm of overdiagnosis is crucial.

By incorporating low-dose breast-targeted PET as a breast cancer diagnostic tool, we can enhance the specificity of tumor detection while reducing the likelihood of unnecessary interventions. This approach aligns with the growing trend of personalized or precision medical imaging, underscoring the significance of saving lives and prioritizing women’s well-being in the pursuit of optimal outcomes in breast cancer screening and diagnosis.

Our case report presents preliminary evidence suggesting that low-dose breast imaging using the Radialis breast-targeted PET camera or similar technology may offer a valuable imaging solution in situations where there is a potential risk of overdiagnosis. Additionally, it could serve as an imaging tool for active surveillance in high-risk patients.
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Introduction

Pathologists rely on whole slide images (WSIs) to diagnose cancer by identifying tumor cells and subtypes. Deep learning models, particularly weakly supervised ones, classify WSIs using image tiles but may overlook false positives and negatives due to the heterogeneous nature of tumors. Both cancerous and healthy cells can proliferate in patterns that extend beyond individual tiles, leading to errors at the tile level that result in inaccurate tumor-level classifications.





Methods

To address this limitation, we introduce NATMIL (Neighborhood Attention Transformer Multiple Instance Learning), which utilizes the Neighborhood Attention Transformer to incorporate contextual dependencies among WSI tiles. NATMIL enhances multiple instance learning by integrating a broader tissue context into the model. Our approach enhances the accuracy of tumor classification by considering the broader tissue context, thus reducing errors associated with isolated tile analysis.





Results

We conducted a quantitative analysis to evaluate NATMIL’s performance against other weakly supervised algorithms. When applied to subtyping non-small cell lung cancer (NSCLC) and lymph node (LN) tumors, NATMIL demonstrated superior accuracy. Specifically, NATMIL achieved accuracy values of 89.6% on the Camelyon dataset and 88.1% on the TCGA-LUSC dataset, outperforming existing methods. These results underscore NATMIL’s potential as a robust tool for improving the precision of cancer diagnosis using WSIs.





Discussion

Our findings demonstrate that NATMIL significantly improves tumor classification accuracy by reducing errors associated with isolated tile analysis. The integration of contextual dependencies enhances the precision of cancer diagnosis using WSIs, highlighting NATMILs´ potential as a robust tool in pathology.





Keywords: attention transformer, whole slide images, multiple instance learning, lung cancer, weakly supervised learning




1 Introduction

The examination of tissue biopsy sections, specifically whole slide images (WSIs), yields a substantial amount of phenotypic data and serves as the fundamental basis for the field of cancer pathology (1). Recently, there has been significant advancement in the field of deep learning (DL) techniques (2). These methods have revolutionized the construction of diagnostic machines that exhibit a high level of accuracy. In fact, their performance in tasks related to cancer classification and diagnosis has been seen to be on par with, or even surpass, that of specialists who have undergone extensive training (3). However, to create effective deep neural network (DNN) models for cancer pathology, it has often been necessary to annotate every WSI on a pixel level using thorough ground-truth descriptions based on expert opinions (4). The utilization of slide-level labels in a weakly supervised scenario for training DNN classification models has exhibited remarkable accuracy in classifying test data. This achievement has significant implications for the implementation of adaptable mathematical systems for decision-making in clinical practice, as evidenced by previous studies (5–7).

In the context of cancer histology, DNN models do not process WSIs as single images at a time like regular images. Instead, WSIs are commonly broken into smaller units known as “tiles” that serve as input elements. Using tile-level DL characteristics, the entire WSI and tumor are classified. The Multiple Instance Learning (MIL) framework is used in most weakly supervised WSI classification algorithms to learn the slide-level label from each WSI as a “bag” of tiles. MIL models are permutation invariant, meaning WSI tiles have no specific ordering, which hinders their deployment and the weakly supervised learning paradigm (8).

The motivation behind this work is to address the limitations of current weakly supervised methods, which often overlook the spatial dependencies among WSI tiles. This oversight can lead to false positives and negatives, particularly given the heterogeneous nature of tumors. To overcome this challenge, we propose a novel and efficient hierarchical transformer model called Neighborhood Attention Transformer Multiple Instance Learning (NATMIL).

The novelty of our approach lies in the Neighborhood Attention mechanism, which localizes the Self-Attention operation to the nearest neighbors of each pixel, without relying on a predetermined window adjacent to the pixel. This updated definition permits all pixels to possess a uniform rate of attention, which would otherwise be diminished for edge pixels in zero-padded options. As the size of the neighborhood increases, neighborhood attention exhibits similarities to self-attention and can be considered equivalent to self-attention when the neighborhood reaches its maximum size. Moreover, the utilization of local attention offers the additional benefit of preserving translational equivariance, which sets it apart from blocked and window self-attention mechanisms.

We have devised a method called the Neighborhood Attention Transformer (NAT) that performs competitively. In conclusion, our most significant contributions are as follows:

	Proposing a simple and adaptable sliding window attention mechanism that preserves translational equivariance, approximates self-attention as its span increases, and localizes each pixel’s attention span to its closest neighborhood. We contrast Neighborhood Attention with window self-attention, convolutions, and self-attention in terms of accuracy.

	Introducing a new hierarchical transformer that leverages Neighborhood Attention (NA)’s efficiency, accuracy, and scalability: the Neighborhood Attention Transformer (NAT). We demonstrate its effectiveness on downstream tasks upon classification.



By addressing the spatial dependencies among WSI tiles and introducing a novel attention mechanism, this work aims to significantly improve the accuracy and reliability of cancer pathology models.




2 Related work

In the conventional approach, a WSI is commonly partitioned into non-overlapping tiles of a predetermined size. These tiles are subsequently assigned a weak label, determined based on the diagnosis at the slide level, to be utilized as input for a Deep Neural Network (DNN) (9). The MIL formulation allows for the prediction of a WSI label (cancer yes/no, cancer type) to originate either from the tile predictions (5, 10–12) or from a higher-level bag representation arising from the aggregation of the tile features (8, 13–15). The former method is referred to as instance based. The latter method, which makes use of bag embeddings (8, 14), has been shown to perform better in experiments. Recent bag-embedding-based methods (16) use attention mechanisms, which give each tile a score reflecting its importance in the overall WSI-level representation. Most contemporary bag-embedding-based methods include attention mechanisms (16), which award a score to each tile indicating its relative contribution to the overall representation of the WSI. Attention scores facilitate the automated identification of sub-regions that possess significant diagnostic value and provide information for the label at the WSI level (15, 17, 18).

Different attention-based MIL models investigate WSI tissue structure in various ways. Many of them assume that the tiles are unrelated and randomly distributed, which is why they are permutation invariant. Based on this premise, a recent study (13) suggested an attention-based MIL pooling operator that can be taught to automatically compute the bag embedding as the weighted average of all tile features in the WSI. The adoption and modification of this operator have been extensive, with the inclusion of a clustering layer (15, 19, 20) to enhance the acquisition of semantically rich and distinct class-specific features. Nevertheless, operators that are permutation invariant lack the intrinsic ability to capture the structural dependencies that exist between various tiles in the input. For example, the DSMIL method [DSMIL (21)] employs a non-local operator to calculate an attention score for each tile. This value is determined by comparing the feature representation of the tile with that of a crucial tile. Recently, transformer-based designs have been introduced to examine the correlations among the various tiles of a whole-slide image (WSI). These architectures typically employ a learnable position-dependent signal to effectively integrate the spatial information of the picture (22, 23). To optimize for the classification challenge and generate attention scores while concurrently learning the positional embeddings, TransMIL (24) uses a transformer-like architecture. However, transformer-based methodologies might overlook the fundamental biological processes that regulate the spatial organization of the slide.

The Stand-Alone Self-Attention (SASA) (25) technique is considered one of the initial sliding window self-attention patterns. Its primary objective is to substitute convolutions in current convolutional neural networks (CNNs) (26). Striding the feature map extracts key-value pairs like a convolution with zero padding. While accuracy improved, the implementation had high latency despite lower theoretical cost. Sliding window attention, first used in Longformer (27) for language processing, was later used in Vision Longformer (ViL) (28). Although Longformer and ViL’s implementations differed from SASA, they were unable to grow to larger windows and models due to computational overhead. Liu et al. presented Window and Shifted Window (Swin) Attention (29), non-sliding window-based self-attention mechanisms (30) that split feature maps and apply self-attention to each partition individually. Swin Transformer is a pioneering hierarchical vision transformer. The feature maps are pyramid shaped, reducing spatial dimensionality and boosting depth. Swin’s structure is widely employed in CNNs, making it compatible with other networks for downstream tasks like detection and segmentation. At ImageNet-1K classification, Swin outscored DeiT, which utilizes a convolutional teacher. Swin Transformer is the leading approach for object detection on MS-COCO and semantic segmentation on ADE20K. To address the slowness of SASA, Vaswani et al. (31) introduced HaloNet, which employs a new blocked attention pattern. While this modification does violate translational equivariance, the benefits in terms of both performance and memory are acknowledged. Three phases make up HaloNet’s attention mechanism: blocking, haloing, and attention. Blocking input feature maps into non-overlapping subsets creates queries. Next, “haloed” nearby blocks are extracted as keys and values. Attention is then given to extracted queries and key-value pairs. A novel CNN architecture, ConvNeXt, was proposed by Liu et al. (32), inspired by models like Swin. The aforementioned models do not incorporate attention mechanisms; nevertheless, they demonstrate superior performance compared to Swin in several visual tasks.

Our Neighborhood Attention approach localizes the field of response to a window surrounding each query, eliminating the need for additional strategies like Swin’s cyclic shift. We present Neighborhood Attention Transformer, a hierarchy-based transformer-like model using this attention mechanism, and compare its performance to Swin on image classification, object detection, and semantic segmentation.




3 Methodology

The NATMIL approach is founded on the premise that the surrounding neighborhood of a tile contains important information on the level of attention allocated to that specific tile by the model. By establishing a parallel between our framework and the process of analyzing a biopsy slide by a pathologist, one might conceptualize the act of zooming in and out of a particular sub-region as a means to comprehensively explore its broader surroundings, so enhancing our understanding of the adjacent micro-environment and tissue.

In NATMIL, the attention score of each tile is recalibrated by combining the attention scores of its surrounding tiles. Figure 1 provides an overview of the model. It may be broken down into four parts:




Figure 1 | An overview of NATMIL model architecture. At first, preprocessing WSIs separates tissue from background. After splitting the WSIs into 256 × 256 tiles, a pre-trained feature extractor generates 1,024 feature representations for each tile. Tile feature representations function as input for our Neighborhood Attention Transformer module. This module analyzes each patch and its neighbors, creating neighborhood descriptors and calculating attention coefficients. The output layer combines tile-level attention scores from the previous layer to get a slide categorization score.



1. Each WSI undergoes a preprocessing step in which the tissue area is automatically segmented and divided into several smaller patches.

2. The patch and feature extraction module is composed of a series of convolutional, max pooling, and linear layers. Its purpose is to convert the initial tile input into low-dimensional feature representations. Let  , where each  . Here,   represents the embedding dimensions of a tile, n represents the number of tiles inside a WSI, and N represents the total number of WSIs.

3. An attention vector of dimension N × 1 is produced by a Neighborhood Attention mechanism with a contrastive learning block that incorporates the localizing self-attention to the nearest neighboring pixels.

4. A feature aggregator and classification layer that combines the slide-level prediction and tile-level attention scores produced by the one prior to it.



3.1 Feature extractor

To estimate attention weights across instances that exhibit identical feature representations, we present the use of self-supervised contrastive learning. In this study, we focus on SimCLR (33), a widely recognized self-supervised learning system. In Figure 2 SimCLR facilitates the acquisition of semantically meaningful feature representations by decreasing the dissimilarity between many augmented iterations of identical picture data.




Figure 2 | SimCLR training and inference. Two augmentations are done on a tile during training. Two augmentations of the same tile are supplied to a pre-trained ResNet-50 on ImageNet with an additional projection head. ResNet-50’s final convolutional block and projection head involves minimizing the contrastive across tiles. Features are retrieved from the refined ResNet-50 during inference. In the neighbor attention transformer module, patch distances are determined.



After partitioning the segmented tissue region into tiles, we employ two distinctively enhanced variations of the identical tile as an input to an instance-level feature encoder denoted as F(x), which is built using a ResNet-50 architecture.

In the NATMIL framework, the last step involves the utilization of a projection head. This projection head is implemented as a multi-layer perceptron (MLP) containing two hidden layers. Its purpose is to transform the feature representations into a distinct space where a contrastive loss function is subsequently applied. During the training process, the feature representations zi and zj, which correspond to both viewpoints of the same tile that are differently augmented and correlated, are utilized in order to decrease adjusted temperature-scaled cross entropy as specified by Equation 1.



The function   represents cosine similarity, τ represents the variable temperature, and   is the value of a function that evaluates to 1 only if k = i.

  of each WSI is generated using the ResNet-50 network as the base encoder, whereas n is the quantity of tiles and d is the embedding dimension.




3.2 Neighborhood Attention Transformer module

To encode the feature embeddings of the individual tiles, we utilize a transformer, T, layer to aggregate the feature embeddings  ,  , where d is the embedding dimensions of a tile, n is the number of tiles inside a WSI, and N is the number of WSIs.

In this study, we propose the incorporation of a novel mechanism known as Neighborhood Attention (NA). We define attention weights for the i-th input with neighborhood size  ,  , in Equation 2 as the dot product of the i-th input’s query projection and its   nearest neighboring key projections. Given an input  , which is a matrix whose rows are d-dimensional token vectors, and X’s linear projections,   and  , and relative positional biases  .

 

Next, in Equation 3 we define  , the adjacent values, as a matrix whose rows are the   nearest neighboring value projections of the i-th input:

 

Next, we define attention for the i-th token with neighborhood size   as follows:

 

with the scaling parameter denoted by   as shown in Equation 4. For each pixel in the feature map, this process is repeated.

With two consecutive 3 × 3 convolutions and 2 × 2 strides, NAT embeds inputs into a spatial size that is one-fourth that of the input as shown in Figure 3. This approach bears resemblance to employing a patch and embedding layer that consists of 4 × 4 patches. However, it diverges by employing overlapping convolutions instead of non-overlapping ones, thereby introducing valuable inductive biases. However, the utilization of overlapping convolutions would result in an escalation of expenses and an increase in the number of parameters due to the implementation of two convolutions. Nevertheless, we address this issue by reconfiguring the model, achieving an improved trade-off. With the exception of the last level, all four NAT levels are followed by a downsampler. Downsamplers double the number of channels while halving the spatial size. Instead of the 2 × 2 non-overlapping convolutions that Swin employs (patch merging), we employ 3 × 3 convolutions with 2 × 2 strides. As a result of the tokenizer’s fourfold downsampling, our model generates feature maps with sizes of  , The motivation for this shift stems from the success of previous CNN structures, which has since led to the development of various hierarchical attention-based approaches, like PVT (34), ViL (28), and Swin Transformer (29). Furthermore, Layer-Scale [29] is employed to provide stability in larger variations. Figure 1 presents a visual representation of the entire network structure.




Figure 3 | An overview of NAT, with its hierarchical design. The model begins with a convolutional downsampler and progresses through four successive stages containing numerous NAT Blocks, which are transformer-like encoder layers. The layers consist of a multi-headed neighborhood attention (NA), multi-layered perceptron (MLP), Layer Norm (LN) before each module, and skip connections. Between stages, feature maps are downsampled to half their spatial size and twice in depth.






3.3 Feature aggregation

Aggregate WSI representation   is adaptively calculated as a weighted average of individual value vectors, each weighted by Equation 5 its attention score in Equation 6.

 

such that

 

The learnable parameters in this context are denoted as   and  . The symbol   represents element-wise multiplication. The function   refers to the sigmoid non-linearity, whereas   represents the hyperbolic tangent function.

At last, the classifier layer assigns each slide a score 

 

where c is the total number of classes mentioned in Equation 7. Finally, a classification score is generated by using the representation learned from the well-attended patches to minimize a cross-entropy loss.





4 Experiments



4.1 Datasets

We conducted several tests using the Camelyon and TCGA-NSCLC datasets, both of which are widely utilized and publicly available. The Camelyon dataset stands out as a particularly significant open resource for studying breast cancer.

Among the largest public breast cancer datasets is Camelyon16 (35). It comprises a training set of 270 annotated biopsy slides and an official test set of 129 slides from Radboud University Medical Center and University Medical Center Utrecht in the Netherlands.

The TCGA-NSCLC dataset encompasses two distinct subtypes of non-small-cell lung cancer: lung squamous cell carcinoma (TGCA-LUSC) and lung adenocarcinoma (TCGA-LUAD). For LUAD, a total of 541 slides from 478 patients were obtained, while for LUSC, 512 slides from the same 478 cases were collected.




4.2 Baseline model

We evaluated the performance of our neighborhood pooling technique through a comparative analysis with classic pooling operators like Mean-pooling and Max-pooling, and various state-of-the-art Multiple Instance Learning (MIL) (36) methods. These methods include AB-MIL (37), CLAM-SB, CLAM-MB (15), MI Net, MIL-RNN (11), TransMIL (24), and DTFT-MIL (38).

The AB-MIL model incorporates attention mechanisms based on the specific attributes of each individual tile. In contrast, the CLAM-SB and CLAM-MB models also utilizeattention pooling operators similar to AB-MIL but are further enhanced by an auxiliary clustering layer. MI Net employs both max pooling and mean pooling techniques to generate the WSI-level embedding. On the other hand, the MIL-RNN model is an aggregation model that utilizes a recurrent neural network. TRANS-MIL utilizes a transformer-based aggregator, while DTFT-MIL employs the class activation map to calculate the positive probability of an instance within the AB-MIL framework.




4.3 Implementation

The tissue area was extracted from each slide using the publicly accessible WSI-preprocessing toolkit developed by (15). Subsequently, this region was divided into non-overlapping patches of size 256 × 256 at a magnification of ×20. It is important to note that variations in parameters during the feature extraction process may result in different training and test sets, potentially leading to varied model performance outcomes. Disseminating the extracted features allows other researchers to utilize the same dataset for training and evaluating their models, facilitating the comparison of different methodologies.

In our pipeline, the Neighborhood Attention Transformer component incorporated Swin’s (29) training configuration module, enabling the implementation of learning rate, iteration-wise cosine schedule, and other hyperparameters. The results are presented below.





5 Results

The outcomes of employing the NATMIL methodology for the classification of WSIs in the Camelyon16 and TCGA-NSCLC datasets are displayed in Tables 1, 2. All tests in this study evaluate the performance using three metrics: the area under the receiver operating characteristic curve (AUC), the slide-level accuracy (ACC) with a threshold of 0.5, and the macro-averaged F1 score. These processes facilitated an acceptable evaluation across multiple techniques and datasets of varying sizes (39).


Table 1 | Performance comparison of NATMIL against various baselines on the Camelyon16 datasets.




Table 2 | Performance comparison of NATMIL against various baselines on the TCGA-NSCLC datasets.



The results presented in the tables are further elucidated in Figure 4, which illustrates the relationship between the hyperparameter “ ” and the corresponding area under the receiver operating characteristic curve (AUC) values for the Camelyon16 and TCGA-NSCLC histopathology datasets.




Figure 4 | The link between the hyperparameter “k” and the corresponding area under the receiver operating characteristic curve (AUC) values for the Camelyon16 and TCGA-NSCLC histopathology datasets.



The figure demonstrates the impact of varying the neighborhood size “ ” on the performance of the NATMIL model. For lower values of “ ” (i.e.,  ), the model exhibits similar behavior across both datasets, performing consistently well under identical experimental conditions. This consistency is expected, as nearby tiles convey significant information regarding the risk of a tile being malignant. However, as the value of “k” increases, there is a progressive decline in the model’s performance, except for a notable improvement when “ ” equals 8.

This observed phenomenon can be attributed to recurring patterns within tumors, occurring at intervals of approximately eight tiles. Thus, the significance of employing models capable of capturing both local adjacent information and overall trends in the biopsy is underscored. It is also noteworthy that selecting either “ ” or “ ” consistently yields satisfactory outcomes due to the spatial configuration of tiles and their neighboring elements, reminiscent of a grid-like topology.

NATMIL surpasses all previous MIL models in terms of accuracy and AUC on the Camelyon16 cancer dataset. Notably, within the Camelyon16 dataset, tumor cells might constitute a mere 5% of the WSI. The occurrence of tumor cells in tissue samples is frequently observed at a low frequency, especially in metastatic locations, where tumor cells are distributed among extensive areas of normal cells (40). Therefore, the NATMIL model, which utilizes a local neighborhood analysis to readjust attention coefficients, demonstrated superior efficacy in detecting medically significant, sparsely distributed malignant spots compared to alternative models. The performance of NATMIL on the Camelyon16 dataset exhibited substantial superiority over the other baselines. The NATMIL model demonstrates a statistically significant improvement of at least 1.5% in terms of AUC compared to other currently available models.

We present the experimental results of the proposed methods on CAMELYON-16 and TCGA lung cancer dataset in comparison to the following baselines methods: i) classic AB-MIL; ii) RNN-based RNN-MIL; iii) attention-based CLAM-SB, CLAM-MB; and iv) transformer-based MIL, Trans-MIL.

For CAMELYON-16, most slides contain only small portions of tumor over the whole tissue region. The proposed NATMIL methods with different features have outperformed other existing MIL methods except Trans-MIL, which used a transformer-based aggregator, while Trans-MIL is significantly larger in model size and computational complexity. The NATMIL achieves significant performance at AUC of 0.7% better than DTFT-MIL, as the model used different feature distillations.

For TCGA lung cancer, the proposed methods also achieve leading performances, with NATMIL obtaining the best AUC value of 94.2%. Due to the significantly larger tumor regions in positive slides, even RNN and DTFT-based MIL methods perform well on the TCGA lung cancer dataset resulting in less obvious superiority of the proposed methods over other existing methods. In comparison, for the much more challenging dataset CAMELYON-16, the proposed method present robustness to the situation of small portions of tumor regions in positive slides.

In the TCGA-NSCLC dataset, it was observed that NATMIL had superior performance compared to the other baselines that were taken into consideration. The max-pooling approach, which employs the max operator as an aggregation function, demonstrated superior performance compared to other methods. The remarkable efficacy of max pooling on this dataset can be attributed to the observation that tumor cells constitute approximately 80% of the WSI in the TCGA-NSCLC dataset. The probability of accurately labeling distinct malignant cells is significantly elevated.



5.1 Ablation study

Our ablation investigation examined the efficacy of the Neighborhood Attention (NA) design block and the surrounding attention module. We tested how changing the neighborhood size k affected the efficiency of our NATMIL model. As shown in Figure 4, we observed that for low values of k (i.e., k ∈ 2,3,4), the model behaved similarly after being trained under identical experimental conditions. This consistency makes sense, given that nearby tiles convey the most significant information regarding the risk of a tile being malignant. The desirability of robustness in the selection of k stems from the time-consuming nature of hyperparameter adjustment. However, as the value of k increased, there was a progressive decline in the model’s performance, except for a notable improvement when k equaled 8.

The observed phenomenon can be attributed to the emergence of recurring patterns within tumors, occurring at intervals of approximately eight tiles. This underscores the significance of employing models capable of capturing both local adjacent information and overall trends in the biopsy. It was also noted that the selection of either k = 4 or k = 8 consistently yielded appropriate outcomes due to the spatial configuration of tiles and their neighboring elements, which exhibit characteristics reminiscent of a grid-like topology.

We examined the impact of our NAT design, which includes convolutional downsampling and a deeper-thinner architecture. To evaluate its effectiveness, we conducted an ablation study comparing models utilizing self-attention and shifted window self-attention. The model was gradually transformed into NAT, and the outcomes are displayed in Table 3. The initial step


Table 3 | Accuracy performance of different attention and convolutions on the TCGA-NSCLC datasets.



involved substituting the patched embedding and patched merge techniques with the overlapping convolution design employed in the Neighborhood Attention Transformer (NAT) model. This led to an increase in accuracy of approximately 0.5%. Upon implementing the second phase of reducing the model size and computational load by increasing its depth and reducing its width, an approximate improvement in accuracy of 0.9% compared to the initial step was observed. As a result, a minor decrease in accuracy was observed. Nevertheless, by substituting Window-Shifted Attention and Self-Window-Shifted Attention with our Neighborhood Attention, a notable enhancement of 0.5% in accuracy was observed.

Additionally, we conducted a kernel size investigation as shown in Table 4. The experiment involved varying kernel sizes from 3×3 to 9×9 in order to examine the impact on the performance of our model.


Table 4 | Performance comparison of NATMIL with different kernel size on TCGA-LUSC datasets.







6 Conclusion

In this paper, we present the first effective and scalable sliding window attention technique for vision, called Neighborhood Attention. The first aggregation method employs the independence assumption to provide an attention score for each tile in the picture, whereas the second uses vision transformers to produce an attention score that accounts for the correlation between tiles.

To re-adjust the estimated attention ratings based on the similarities they share, we have introduced NATMIL, a unique MIL vision transformer-based method that considers the interdependence of nearby tiles in a histopathological image. By leveraging the pathologists’ existing slide-level labeling, NATMIL improves performance, reduces their burden, and makes more data available.
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Background and objective

Extrathyroidal extension (ETE) is the term used to describe the growth of the primary thyroid tumor beyond the thyroid capsule. ETE is a critical prognostic marker for thyroid tumors, necessitating accurate preoperative assessment. This study aims to evaluate the diagnostic performance of computed tomography (CT)-based grading for ETE and tracheal invasion (TI) for preoperative prediction in patients with differentiated papillary thyroid carcinoma (PTC) and compare the diagnostic accuracy with ultrasound (US).





Materials and methods

This retrospective study was approved by our institutional review board. Preoperative US and CT were performed for 83 patients who underwent surgery for PTC between 1 January 2010 and 31 December 2020. The US and CT features of ETE and TI of each case were retrospectively and independently investigated by two radiologists. The diagnostic performances of US and CT, including their specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) for ETE, and their accuracy in predicting ETE and TI were analyzed. As per the grading for ETE on USG and CT, lesions were graded into three grades and Mahajan grading was also devised on CT to predict the TI and graded into four grades.





Results

The accuracy and specificity of CT are relatively good for identifying tumor infiltration into the adjacent structures and range from 82% to 87% and 95% to 98%, respectively. It, however, has a low sensitivity, between 14.3% and 77.78%, when compared to US, which suggests that in case of any doubt regarding CT evidence of tumor infiltration into surrounding structures, additional clinical examination must be performed. CT showed better sensitivity (78%) and specificity (75%) in detecting TI compared to previous studies. The diagnostic accuracy of CT Mahajan grading was 91.5% with p <0.005 in the prediction of TI.





Conclusion

Preoperative US should be regarded as a first-line imaging modality for predicting minimal ETE, and CT should be additionally performed for the evaluation of maximal ETE. The specificity and PPV of CT are higher than those of US in detecting overall ETE and TI of PTC. The US- and CT-based grading systems have the potential to optimize preoperative surgical planning.
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Introduction

Thyroid cancer is the most common endocrine malignancy, comprising ~2.1% of all cancer diagnoses worldwide. Differentiated thyroid cancers (DTCs) make up 90% of thyroid cancers, with papillary thyroid carcinoma (PTC) being the most common type, followed by follicular thyroid carcinoma (FTC) (1). Risk factors for advanced PTC include male sex, advanced age, larger tumors, and extrathyroidal extension (ETE) (2). Cross-sectional imaging plays a crucial role in presurgical staging, as ETE is a significantly unfavorable prognostic factor (3–6). ETE is the expansion of the primary thyroid tumor outside the thyroid capsule and may involve the trachea, larynx, jugular vein, carotid artery, esophagus, strap muscles, and recurrent laryngeal nerve. ETE can be classified as mild (histologically detected) or gross (preoperative or intraoperative evidence) (7–9). Previous descriptions of gross ETE characterized it as gross tumor invasion identified after surgery and verified by histopathologic analysis. Tumor invasion detected during pathologic examination that extended beyond the thyroid capsule was referred to as minor ETE. The absence of ETE indicates that neither intraoperative inspection nor histopathologic assessment detected any ETE. In cases where a large tumor invasion was suspected after surgery, but the tumor’s histopathologic evaluation revealed that it was limited to the thyroid and had not spread to the surrounding capsule, the condition was classified as simple adhesion. The updated eighth edition of the AJCC staging system has designated the T3b category for gross ETE involving the strap muscles alone, whereas gross ETE into the major neck structures is assigned the T4 category.

The most common techniques for locoregional assessment are ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) (10). When ETE is suspected on the basis of symptoms or physical examination, cross-sectional imaging using CT or MRI is crucial as ETE is linked to a higher incidence of distant metastases (11, 12). CT with contrast provides a detailed evaluation of the thyroid tumor’s relationship to neck tissues and is ideal for surgical planning and assessing lymph node involvement (13).

Tracheal invasion (TI) is common among individuals with tumor invasion into major neck structures, occurring in 35%–60% of cases, followed by esophageal and laryngeal invasion. Approximately 7%–10% of thyroid carcinoma cases involve laryngotracheal invasion. TI stages from papillary carcinoma are stage 1 (limited to glandular parenchyma), stage 2 (invades the tracheal cartilage or intercartilaginous tissue), stage 3 (invades the tracheal mucosa’s lamina propria without penetrating), and stage 4 (fully invades the trachea with visible ulcerations or neoplastic vegetations).

ETE is a strong marker influencing surgical margins and the need for adjuvant therapy. In well-differentiated thyroid cancer, the incidence of ETE varies from 5% to 34% (14). In the case of minor ETE, near-total tumor excision with adjuvant treatment offers survival rates comparable to extensive resection. However, extensive local resection increases the survival rate and decreases local recurrence when ETE is present (15).

Although CT is the preferred imaging modality for evaluating thyroid tumors with TI, there is a dearth of research on CT-based grading of TI. This retrospective study aims to evaluate the diagnostic performance of CT-based grading for ETE and TI for preoperative prediction in patients with differentiated PTC and to evaluate the diagnostic performance of CT-based grading systems.





Materials and methods




Materials

This retrospective study was conducted with the approval of the institutional review board and a waiver of patient informed consent. We retrospectively reviewed cases of 103 patients with differentiated PTC. Twenty of these patients were excluded on the basis of the following: the extent of disease was not fully explored on the basis of surgical and histopathologic findings due to unavailability of surgical details or detailed histopathological report (15 patients) and preoperative CT examinations were not performed at our center (5 patients). Thus, our study sample consisted of 83 differentiated papillary thyroid tumors of the thyroid [one tumor in 59 patients and two tumors (one in each lobe) in 12 patients]. All patients underwent complete or near-complete resection of the primary tumor; 62 of these patients had ETE according to the histopathological findings (Figure 1).




Figure 1 | Flowchart showing the distribution of cases.







Image analysis

All patients underwent preoperative imaging by USG and CT. All the USG and CT images were retrospectively interpreted and individually reviewed. All images were presented in an anonymous random manner on a picture archiving and communication system (PACS) workstation. The US images available on PACS were interpreted for ETE, which was categorized based on contact with the tumor and disruption of the thyroid capsule. When a patient had several thyroid masses, radiologists were informed about the location of the thyroid cancer but were otherwise blinded to the initial CT reports and surgical and pathologic findings. This action was primarily done to shorten the review period for the evaluation of thyroid cancer’s extrathyroidal invasion. The mean values of the two reviewers were used for the continuous data, and the final interpretation for the invasion grade was based on the radiologists’ consensus. Whenever there was a discrepancy in data interpretation in a particular category between the two radiologists, a third radiologist reviewed the cases, and the opinion of the majority was considered as the final decision. Interobserver agreement was moderate to good with a mean kappa value of 0.76 (range, 0.65–0.88).

The CT findings were independently evaluated with regard to the characteristics of the tumor, i.e., size, enhancement, cystic change, calcification, and mediastinal extension. The other parameters evaluated were as follows:

	Grading for extrathyroid extension: grade 0 ETE, a tumor which was completely enveloped by thyroid parenchyma; grade I ETE, a tumor in which the percentage of the tumor perimeter in contact with the thyroid capsule was 1%–25%; grade II, a tumor in which the contact with the capsule was 25%–50%; and grade III, a tumor in which the contact with the capsule was >50% (Figure 2).

	Grading was devised based on CT to predict the TI: grade 0, >5 mm distance between the tumor and the trachea; grade I, disease abuts external perichondrium; grade II, disease invades into the cartilage +/− destruction; grade III, disease extends into the tracheal mucosa with no elevation/penetration of the mucosa; and grade IV, disease shows full-thickness invasion with expansion of the tracheal mucosa with a bulge (Figure 3).

	Tracheal deformity shapes were classified as follows: grade 0, horseshoe; grade 1, elliptical or circular configuration; grade 2, trachea with a locally straightened wall; and grade 3, trachea with an inward concave deformity. When the trachea was slightly longer in the anterior–posterior dimension than in the transverse dimension, it was referred to as having a horseshoe shape. When the trachea’s transverse and anteroposterior diameters were almost identical, the elliptical or circular shape was determined. When the trachea was locally flattened along the anterior curve, it was defined to have a “locally straightened shape” (Figure 4).

	The degree of encirclement of the tumor circumference with that of the trachea with loss of intervening fat plane was classified into four consecutive grades: grade I, 0°–89°; grade II, 90°–179°; grade III, 180°–269°; and grade IV, 270°–360° (Figure 5).






Figure 2 | Grading system for ultrasound (US) and computed tomography (CT) for extrathyroidal extension (ETE) (12). (A) US and an illustration showing ETE grade 0—tumor which was completely enveloped by thyroid parenchyma. (B) ETE grade 1—tumor in which the percentage of the tumor perimeter in contact with the thyroid capsule was 1%–25%. (C) ETE grade 2—tumor in which contact with the capsule was 25%–50%. (D) ETE grade 3—tumor in which contact with the capsule was >50%.






Figure 3 | Mahajan grading for tracheal invasion (12). (A) CECT and an illustration showing grade 0→5 mm distance between the tumor and the trachea. (B) Grade 1—disease abuts the external perichondrium. (C) Grade 2—disease invades into the cartilage +/− destruction. (D) Grade 3—disease extends into the tracheal mucosa with no elevation/penetration of the mucosa. (E) Grade 4—disease is full-thickness invasion with expansion of the tracheal mucosa with a bulge.






Figure 4 | Tracheal deformity shapes. (A) Grade 0—horseshoe. (B) Grade 1—elliptical or circular configuration. (C) Grade 2—trachea with a locally straightened wall. (D) Grade 3—trachea with an inward concave deformity.






Figure 5 | Degree of encirclement of the tumor circumference with that of the trachea. (A) Grade I, 0°–89°. (B) Grade II, 90°–179°. (C) Grade III, 180°–269°. (D) Grade IV, 270°–360°.



These above parameters were correlated with their gold standard histopathological reports. Imaging analysis characterized the structures involved as either present or absent. The ETE on histopathology was classified as minimal (or minor) if the tumor extended beyond the thyroid capsule and maximal (or gross) if it involved the surrounding structures.

A new risk scoring system using Mahajan grading was devised based on CT findings for prediction of TI (Tables 1, 2). A minimum score of 0 and a maximum score of 8 were given. The CT parameters used were Mahajan grading for TI, tracheal deformity, degree of encirclement, and tracheo-esophageal groove involvement. The US parameters used were the size of the thyroid lesion, angle of contact between the tumor and the trachea, grade of ETE, contour bulge, capsular disruption, and replacement of strap muscle by the tumor.


Table 1 | Computed tomography (CT)-based grading system.




Table 2 | Ultrasound (US)-based grading system.







Statistical analysis

All statistical analyses were performed using Statistical Package for Social Sciences (SPSS) software, version 21.0. The statistical significance of the relationship between USG and CT findings—such as contact and disruption of the capsule with ETE—was assessed using chi-square testing. The statistical significance of variations in the mean values of continuous variables was assessed using the Student’s t-test. An examination of the receiver-operating characteristic (ROC) curve was conducted to assess the accuracy with which US and CT findings predicted ETE. Statistical significance was defined as a value <0.05. To perform statistical analysis, 2 × 2 tables were created for CT diagnoses of extrathyroidal invasion to surrounding structures that were true positive, false positive, true negative, and false negative. Following surgery, the pathological results were compared with the findings from US and CT scans, and it was determined that the pathological findings and the ETE found by US and CT scans corresponded. Based on the findings, the diagnostic accuracy rates of the modalities were computed, including the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The independent t-test and the χ2 test were used to compare continuous and categorical variables in terms of clinical features. p-values less than 0.05 were deemed statistically significant. A review and correlation between CT imaging results and surgical and pathologic findings were conducted on 83 patients diagnosed with thyroid cancer. The most relevant CT imaging markers for predicting TI were identified using a logistic regression model. In order to predict ETE, a grading system was developed based on CT and USG findings. For categorical variables, frequency and percentage were used in a descriptive analysis of the data. Utilizing the chi-square test, the relationship between the two variables was examined. ROC curves and area under the curve (AUC) were utilized to display the accuracy of several representative models. The Youden index approach was used to generate the ROC cutoffs. A value of p <0.05 was deemed statistically significant for all two-sided statistics.






Results




Patient characteristics

The demographic characteristics of the patients in our study are summarized in Table 3. The average age of presentation of papillary thyroid cancer was 49 years with a range of 19 to 88 years. Majority of the patients in our study were between 30 and 39 years old. Among the 83 patients, a total of 48 women and 35 men had p-values of 0.342, suggesting that there is no positive correlation between the presence of ETE and gender.


Table 3 | Demographic and clinicoradiopathologic characteristics of patients with differentiated papillary thyroid cancer.







Imaging characteristics




USG-based findings

The frequency of USG-based imaging findings in relation to ETE on histopathology is summarized in Table 4. Odds ratios of several US findings were calculated. The diagnostic characteristics, including sensitivity, specificity, accuracy, PPV, and NPV, were calculated according to the sonographic criteria for predicting ETE as shown in Table 5. Values of 95% and 92% for specificity and PPV, respectively, were the highest in the US finding of grade 2, where there is more than 25% contact with the adjacent capsule. The diagnostic accuracy value was the highest with grade 3, where there is more than 50% contact with the adjacent capsule. The p-value of the contour bulge and capsular disruption on US with ETE on pathological investigations was <0.05, showing a significant correlation between them. The PPV values were the highest with ETE and US feature of strap muscle replacement. ETE on HPR was present in 37 out of 42 patients in whom the thyroid cancers had formed an obtuse angle with the trachea (sensitivity, 59.68%; specificity, 76.19%; PPV, 88.1%; NPV, 39.02%; diagnostic accuracy, 64%). Thus, there was a significant correlation between the angle of contact and ETE with p <0.05.


Table 4 | Frequency of ultrasound (US)-based imaging findings in relation to extrathyroid extension on histopathology.




Table 5 | Diagnostic accuracy of ultrasound (US)-based imaging findings in relation to extrathyroid extension on histopathology.







CT-based findings

The CT findings of 83 patients were interpreted and data were collected in a synoptic format which included characteristics of the thyroid lesion like enhancement, cystic changes, calcification, mediastinal extension, grades of ETE, TE groove involvement, and Mahajan grading. The frequency of CT-based imaging findings in relation to ETE on histopathology is summarized in Table 6.


Table 6 | Frequency of computed tomography (CT)-based imaging findings in relation to extrathyroid extension on histopathology.



The diagnostic performance of the CT findings including sensitivity, specificity, accuracy, PPV, NPV, and diagnostic accuracy for predicting absent, minimal, and maximal ETE based on the pathosurgical ETE is summarized in Table 7. There was a positive correlation between patients with involvement of the TE groove and maximal ETE. In almost all the patients where maximal ETE was present on the surgical pathology report, the TE groove was involved in CT. Patients graded into grades II, III, and IV were found to have maximal ETE as shown in Table 6.


Table 7 | Diagnostic performance of computed tomography (CT) in assessing the extrathyroidal extension (ETE) of papillary thyroid carcinoma (PTC) based on pathosurgical classification.



Overall, the involvement of the TE groove and grades of ETE on CT showed a significant correlation with the TI with p-values <0.05. Grading was proposed to correlate with the diagnostic performance of CT-based invasion of the trachea by the thyroid cancers. Grade IV had the highest specificity, sensitivity, PPV, NPV, and accuracy values of 50%, 100%, 100%, 90.1%, and 91.5%, respectively. Patients having TI showed a significantly higher incidence of grade IV (p < 0.001) in comparison to those with the other grades. There was a gradual increase in diagnostic accuracy from grade 0 to grade IV. The sensitivity and specificity of grade III tracheal deformity (100%; 100%), grade III degree of encirclement (90.5%; 91.6%), and grade III invasion (90.5%; 94%) were significant with p <0.05, when correlated with the ETE on HPR, as shown in Table 8.


Table 8 | Diagnostic performance of computed tomography (CT) findings in assessing the tracheal invasion in papillary thyroid carcinoma (PTC).



A logistic regression model revealed that involvement of the trachea (p < 0.001) and involvement of the esophagus in histopathological studies (p < 0.05) were significant factors for predicting the involvement of TE groove on CT. The involvement of the recurrent laryngeal nerve was not significant in predicting the involvement of the TE groove. Of the three factors, the involvement of the trachea and recurrent laryngeal nerve was more accurate than the involvement of the esophagus. The pathological involvement of the esophagus had a high NPV of 98% when involvement was given on CT. Using the three predictors, the combined criteria of the involvement of the trachea, esophagus, and recurrent laryngeal nerve on histopathology produced 71% accuracy and 82% specificity as shown in Table 9.


Table 9 | Diagnostic performance of computed tomography (CT) in assessing the tracheo-esophageal groove involvement in papillary thyroid carcinoma (PTC).



A logistic regression model showed that the only significant features predicting TI were soft tissue in the cartilage (p < 0.001), intraluminal mass (p < 0.001), and the circumference of 180° or more (p = 0.001) of the tumor surrounding the trachea. Out of these three factors, accuracy was the highest (90% accuracy) for soft tissue in the cartilage with a sensitivity of 77% and a specificity of 100%. The sensitivity of CT for diagnosing intraluminal mass was low but without any false-positive diagnoses (100% specificity). The addition of Mahajan grade III and grade IV with a circumference of 180° or more of the tumor surrounding the trachea yielded the highest accuracy (74%) with a sensitivity and specificity of 100% and 70%, respectively.

Strap muscle involvement on HPR was present in 32 out of 34 patients in whom thyroid cancers had infiltrated the strap muscles or there was loss of fat planes with the strap muscles (sensitivity, 94.12%; specificity, 93.88%; PPV, 91.43%; NPV, 95.83%; diagnostic accuracy, 93.98%). Thus, there was a significant correlation between the strap muscle involvement on histopathology and its involvement on CT with a p-value <0.05. There was a significant correlation between the presence and absence of ETE and the surgical approach (hemithyroidectomy versus total thyroidectomy) with a p-value of 0.019.







Discussion

The overall prognosis and survival of well-differentiated PTC is excellent. The incidence of invasion of the esophagus and laryngotracheal structures by well-differentiated thyroid carcinoma ranges between 1% and 16% even though the thyroid is in close vicinity of these upper aerodigestive tract (ADT) structures (16, 17). The risk of morbidity and mortality can rise with infiltration of the ADT. Well-encapsulated tumors have a 10-year overall survival rate of 91%, which drops to 45% in those having ETE, which is known to be a poor prognostic indicator (18). Thyroid aberrations are commonly initially detected on other cross-sectional modalities such as CT or MRI even though US is the first-line imaging modality for a palpable thyroid nodule or in those with a known thyroid malignancy (19). In our study, most of the patients were women with a mean age at diagnosis of 48.9 years, presenting with complaints of neck swelling. In our study, the specificity, PPV, and NPV for the prediction of ETE were higher in grades 0, I, and II when compared to a study by Kwak et al. The specificity of grade III in our study was 53%, whereas it was 92.4% in the latter. The sensitivity of grade III ETE was higher than that in the study by Kwak et al. (20).

According to the study by Hu et al., the clinicopathological features of patients with minimal and maximal ETE were based on the pathosurgical classification of ETE (21). A significant correlation was found between the mean age, size of the primary tumor, and surgical approach of the patients with minimal and maximal ETE with a p-value of less than 0.05. However, no statistical difference was seen in the clinicopathological characteristics like sex, lymph nodal metastasis, and tumor location of PTCs with minimal and maximal ETE.

In our series, statistically significant features predicting TI on CT were soft tissue in the cartilage, intraluminal mass, and the degree of encirclement of tracheal circumference by the tumor. Our study, in concordance with other documented studies in the literature, showed a high specificity (100% specificity) of TI in the presence of intraluminal mass, and this finding always indicated pathological deep tumor infiltration, either in the submucosal areas or in the mucous membrane. Similarly, the study by Wang et al. showed comparable results with a high specificity (100% specificity) of TI in the presence of intraluminal mass and a high accuracy of 87% for TI in the presence of soft tissue signal in the cartilage (22).

CT showed a sensitivity of 78% and a specificity of 75% for detecting TI, which was better compared to the previous studies by Seo et al. and H. Kim et al. (23, 24). Detection of the early stage of TI is difficult on cross-section as tracheal adventitia is thin and there is degradation of image quality due to motion artifact, particularly when the PTC is small. Our study showed higher sensitivity (80%) of CT for evaluation of esophageal invasion. Our study had lower sensitivity and specificity in the evaluation of involvement of the recurrent laryngeal nerve. Figure 6 shows an illustration of the case showing the application of grading.




Figure 6 | A 50-year male patient presented with anterior neck swelling since 4 months. (A, B) US reveals diffusely enlarged thyroid gland replaced completely by ill-defined solid hypoechoic mass with microcalcifications and macrocalcifications, both central and peripheral vascularity and TIRADS 5. (C) CT axial image shows heterogeneously enhancing mass replacing both the lobes of the thyroid gland with calcifications and cystic areas grade III, tracheal invasion grade I, and degree of encirclement grade IV with TE groove involvement. (D) CT coronal image shows mediastinal extension of the mass and metastatic cervical adenopathy.



Discussion of CT-based TI grading is lacking in the current literature. We tried to cumulate the factors which can predict TI which would guide surgical management. We propose a new Mahajan grading system with the inclusion of the parameters of the old grading system for risk stratification of patients with TI. The limitations of our study include 1) selection bias due to the retrospective nature of the study as the included patients underwent preoperative CT on clinical suspicion of ETE. 2) The sample size of the tumors infiltrating the trachea, esophagus, major vessels, and RLN was small, and this low prevalence could have limited the calculated descriptive statistics for the involvement of each of the structures by ETE. 3) Reliance on a retrospective design did not allow for the direct comparison of individual grades on imaging with the pathological Shin grades. A prospective study with increased axial slicing of the tumor would be required to achieve this comparison. 4) Lastly, long-term survival, recurrence rate, and its implication on adjuvant therapy were not evaluated.





Conclusion

CT is a valuable imaging modality for the assessment of ETE although its effectiveness is limited by reduced sensitivity. Preoperative US should be regarded as a first-line imaging modality for predicting minimal ETE, and CT should be additionally performed for the evaluation of maximal ETE in cases with large tumors which are incompletely imaged on US, sonographic suspicion for ETE, or tumors showing direct contact with the capsule. The specificity and PPV of CT are higher than US in detecting overall ETE for PTC. Application of the Mahajan grading and scoring systems for prognostic high-risk groups results in a better selection of initial treatment and postoperative follow-up and, hence, is of high value.
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Primary hepatoid adenocarcinoma of the lung (HAL) is an exceptionally rare subtype of lung cancer that mimics the morphology and biological behavior of hepatocellular carcinoma. Although reports in the literature are limited, HAL is known for its high malignancy and poor prognosis, thus drawing increasing attention. We present the case of a patient with a mass-like consolidation with central necrosis initially misdiagnosed as inflammation at another medical institution despite a percutaneous lung biopsy. After ineffective anti-inflammatory treatment, she was referred to our hospital. We performed another lung biopsy, obtaining five samples from different angles, and eventually diagnosed her with HAL. Surprisingly, her serum alpha-fetoprotein (AFP) levels were extraordinarily high, leading to the successful diagnosis of HAL. Here, we present a case report and a related literature review.
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Introduction

Primary hepatoid adenocarcinoma of the lung (HAL) is a very rare subtype of lung cancer. As a rare disease, its diagnosis and treatment pose significant challenges. We report on a HAL patient who was initially treated at another hospital for a mass-like consolidation with central necrosis, with a computed tomography (CT)-guided lung biopsy suggesting inflammation. Fortunately, we diagnosed her with HAL; however, due to her advanced age and financial constraints, she only received one round of chemotherapy and passed away 4 weeks later.





Case report

A 75-year-old female patient was admitted to our hospital with recurrent fever, cough, and sputum production for over 8 months. The patient had a 30-pack-year smoking history and had quit smoking 6 months prior. She denied a history of hypertension, coronary artery disease, diabetes, or other chronic illnesses, as well as any abnormal personal, familial, or other psychosocial medical history. She underwent a CT-guided percutaneous lung biopsy at another hospital 1 month ago, with pathology suggesting inflammation (Supplementary Material S1). She underwent 1 week of anti-inflammatory treatment, but the effects were not significant; her symptoms of cough, expectoration, and fever persisted. When we admitted her, a physical examination revealed no signs of jaundice, bleeding, or rash on either the skin or mucous membranes. The superficial lymph nodes were not palpable or enlarged. Chest wall symmetry was maintained, with normal respiratory excursions and rhythmic breathing patterns. Auscultation revealed moist rales in the right upper lung field and slightly coarse breath sounds in the right lower and left lung fields, with no pleural friction rubs detected. No evidence of digital clubbing was found, and no peripheral edema was observed. An enhanced chest CT scan showed a large consolidation shadow in the right upper lobe, with a central ring of low density (Figure 1). Subsequently, the patient’s sputum was subjected to microbiological culture, which yielded negative results.




Figure 1 | (A) Chest CT reveals a large area of consolidation in the upper lobe of the right lung. (B) Consolidation in the upper lobe of the right lung accompanied by multiple enlarged mediastinal lymph nodes. (C) Postcontrast chest CT demonstrates moderate enhancement in the consolidated area of the upper lobe of the right lung, with quasi-round, slightly hypodense lesions within the focus; the boundaries are still clear. (D) Following 3D reconstruction of the chest CT, bronchial narrowing and obstruction in the upper lobe of the right lung are evident.



Surprisingly, laboratory tests revealed an AFP level of > 2,000 ng/ml (Supplementary Material S2), beyond our machine’s detection limit. Reassessment with another machine revealed an AFP level of 15,290.36 ng/ml (Supplementary Material S3) and a Carcinoembryonic Antigen (CEA) level of 28.1 ng/ml. In the differential diagnosis for such cases, in addition to a lung abscess, common pulmonary tumors such as lung adenocarcinoma, squamous cell carcinoma, and small cell lung cancer should be considered. This also includes other, less common types of lung cancer, such as sarcomatoid carcinoma. Moreover, teratomas should be included in the differential diagnosis list because some rare mature cystic teratomas can present on chest CT as lesions showing simple fat- or fluid-like densities (1). Importantly, studies have found that about 50% of patients with immature teratomas have abnormal serum AFP levels, with extremely high levels being observed in some cases (2). It should be noted that the imaging characteristics of HAL are not highly specific, and it is often challenging to differentiate based on imaging features alone; therefore, a comprehensive analysis combining other indicators is typically required. Based on the imaging findings and AFP results, we also considered teratoma in our differential diagnosis. However, the patient’s human chorionic gonadotropin (hCG) and estradiol results were normal, thereby ruling out a diagnosis of teratoma. Subsequent abdominal, pelvic, and cranial CT scans showed no significant abnormalities, ruling out tumors of hepatic, ovarian, or other origins. Thus, a disease of lung origin related to AFP was left as the diagnosis. Additionally, the patient’s slightly elevated white blood cell count, normal procalcitonin levels, and negative sputum microbiological culture did not support the diagnosis of a lung abscess.

Finally, we decided to perform another lung biopsy (Figure 2), obtaining five samples from different angles, with four samples appearing necrotic. Lesion specimens were sent for pathological examination (Figure 3).




Figure 2 | (A) After confirming the puncture site, a biopsy was performed on the lesion under CT guidance from central, anterior, posterior, left, and right angles. (B) A total of five biopsy samples were obtained. Samples 1 to 4 appeared as “fish-flesh-like” tissue, suggestive of necrosis. The fifth sample appeared greyish-white and was considered to be solid tissue from the lesion.






Figure 3 | The tumor area exhibits hepatocyte morphology, with cells that are oval or polygonal in shape. The cytoplasm appears eosinophilic, and the nuclei are large and irregular, with an uneven distribution of chromatin. Mitotic figures are uncommon, but multinucleated cells and pleomorphic cells can sometimes be observed. Immunohistochemical analysis reveals features consistent with those of hepatocellular adenoma (HAL): (A) HE, × 10; (B) HE, × 40.



The immunohistochemical findings were as follows: Thyroid transcription factor-1 (TTF-1) (−), Napsin A (−), P40 (−), Syn (−), AFP (+), GPC-3 (+), Arg-1 (+), Hep-1 (+), CK (+), and CK7 (−). Based on these results and other examinations, a final diagnosis of primary HAL (stage IIIC, T4N3M0) was made.

Based on the current lack of comprehensive treatment guidelines and our literature review, we considered the patient to have missed the optimal timing for surgery. Therefore, we recommended genetic testing of the lesion to evaluate the possibility of targeted drug therapy. We also offered radiation therapy and immunotherapy options. However, the patient could not afford genetic testing and immunotherapy and rejected the offered radiation therapy plan. Finally, according to the literature review (3, 4), we prescribed a chemotherapy regimen of cisplatin at 40 mg (D1–D3) and albumin-bound paclitaxel at 200 mg (D1), informing the patient that chemotherapy alone may lead to less favorable treatment outcomes. Nevertheless, due to the patient’s poor compliance, she did not undergo the standard serological and radiological examinations after treatment. Upon follow-up, we discovered that she passed away 4 weeks after diagnosis. A comprehensive timeline of the patient’s diagnostic and treatment process is presented in Figure 4.




Figure 4 | Timeline of the patient’s diagnostic and treatment process.







Discussion

Hepatoid adenocarcinoma (HAC) is a type of malignant adenocarcinoma resembling hepatocellular carcinoma that occurs in extrahepatic organs or tissues. Metzgeroth et al. reviewed 261 cases of HAC and found that the predominant locations were the stomach (63%), ovaries (10%), lungs (5%), gallbladder (4%), pancreas (4%), and uterus (4%). The median age of the studied patients was 65 years, with a range from 21 to 88 years. Common clinical manifestations included fatigue, weight loss, abdominal masses, and pain (5).

Ishikura et al. first proposed the occurrence of HAC in the lungs (termed HAL) in 1990 (6). The etiology of HAL remains unclear; it potentially arises from differentiation abnormalities during embryonic development, causing certain adenocarcinomas in organs like the lung to differentiate toward hepatocytes (7). HAL is highly malignant; Lei et al. analyzed HAL cases from 1975 to 2016, finding a median survival of 5 months (8). A history of smoking is a risk factor, correlating with a worse prognosis in HAL patients (9). Our patient had a long history of smoking and advanced disease at diagnosis and received only chemotherapy, resulting in a short survival.

The imaging features of HAL are nonspecific and lack typical characteristics. Most lesions are large (3.5–11 cm) and present primarily in the upper lobes, near the pleura or mediastinal pleura, often adjacent to the chest wall or major blood vessels (10). Enhanced CT typically shows necrotic changes (11), which is easily confused with pulmonary tuberculosis (12). Our patient underwent a CT-guided percutaneous lung biopsy at another hospital, which was suggestive of inflammation, although subsequent special stains for inflammation were negative. We noted a low-density area within the lesion center, possibly indicative of necrosis, which could lead to noninfective inflammation consistent with the characteristics of HAL. We speculate that the tissue obtained during her first biopsy might have originated from this necrotic zone, resulting in a false-negative outcome. However, serum marker testing or immunohistochemistry of lesion tissue can aid differentiation. Our patient’s CT showed a large lesion (10.7 cm) in the right upper lobe with central necrosis, typical of HAL. In the initial biopsy, necrotic tissue was likely obtained, causing a misdiagnosis, while solid tumor tissue was successfully obtained in the second biopsy.

The diagnosis of HAL relies on pathology and immunohistochemistry. Histologically, HAL resembles hepatocellular carcinoma, with large polygonal cells, abundant eosinophilic cytoplasm, and prominent nucleoli. Typical immunohistochemistry shows positivity for AFP, HepPar-1, and Glypican-3 (13). Our patient’s lesion tissue was positive for AFP, HepPar-1, and Glypican-3, which are crucial for diagnosis.

Additionally, the patient’s serum AFP level was significantly elevated. According to the literature, it is rare for HAL patients to present with such high levels of AFP. The present finding might be due to the overexpression of AFP in the hepatic-like differentiation areas of HAL (14). AFP can also test negative, with AFP-negative patients having longer overall survival (OS) (15). TTF-1 is often positive, indicating hepatoid differentiation and lung adenocarcinoma characteristics, although it is not essential for diagnosis. TTF-1 negativity is associated with poor prognosis in lung cancer patients (16).

Currently, there are no standard treatment guidelines or expert consensus for HAL, causing reliance mainly on case reports and case series. Research indicates that the treatment and management of HAL often follow guidelines recommended for non-small cell lung cancer (NSCLC) (19). Our literature review suggests that early-stage HAL treatment typically involves surgical resection, with an OS of up to 7 years, but this finding is based on treatments for stages I–II disease (8). Surgical resection is not the preferred modality for stages III–IV HAL patients, and no reports of a good prognosis following surgery at these stages have been published. The available treatments for advanced HAL include radiotherapy, chemotherapy, targeted therapy, and immunotherapy. For stage IIIA patients, concurrent chemoradiotherapy can achieve a better OS. Che et al. diagnosed a 48-year-old man who presented with an AFP level of 6,283 ng/ml with stage IIIA HAL. He was treated with radiochemotherapy, receiving 60 Gy in 2 Gy fractions over 30 sessions through intensity-modulated radiation therapy using 6-MV X-rays. This was concomitant with five cycles of paclitaxel and cisplatin. Following disease progression, the treatment regimen was switched to docetaxel and nedaplatin, resulting in an OS of 19 months (17). Cases of stage IIIC HAL patients undergoing only radiotherapy (50 Gy/25 fractions and 60 Gy/30 fractions) and achieving an OS of 12 months have also been reported (18). Chemotherapy often follows NSCLC protocols, with many reports of first-line chemotherapy with paclitaxel combined with platinum-based drugs, although the prognosis remains poor (3, 4). For stages III–IV patients, genetic testing of the lesion can be performed; if viable treatment targets and/or positive immunological expression are identified, targeted and/or immunotherapy may be considered. Targeted therapy and immunotherapy play important roles in HAL treatment and have gained clinical recognition. A bioinformatics analysis by Chen et al. revealed the EGFR, KRAS, and ALK pathways as potential targeted drug intervention routes for HAL (19). However, clinical HAL cases rarely show gene mutations, suggesting limited opportunities for targeted therapy or immunotherapy (20). However, Basse et al. reported on a patient who achieved a partial response with durvalumab, indicating immunotherapy as a potential new option for HAL (21). Moreover, studies have attempted to add sorafenib to the treatment regimen based on AFP positivity, referring to hepatocellular carcinoma treatment protocols (22). In the present case, based on this patient’s age, overall health status, and stage of disease, we did not consider surgery to be a viable first option. The patient was eligible for concurrent chemoradiotherapy. Additionally, if genetic testing had revealed favorable targets and positive immune expression, she could have chosen a combination of chemoradiotherapy and targeted therapy or chemotherapy combined with both targeted therapy and immunotherapy.

HAL is highly invasive and prone to multiple metastases (23, 24), leading to a poorer prognosis than that of NSCLC patients. Our patient’s advanced disease stage, age, and inability to afford relevant tests and treatments, along with her high AFP levels, suggested that sorafenib might be beneficial; however, she only received one round of platinum-based chemotherapy. Unfortunately, due to the patient’s poor compliance, she did not undergo the standardized serological and radiological follow-up after treatment. We were only able to learn from her son that her symptoms of cough, expectoration, and fever did not significantly improve after treatment. Moreover, she developed a loss of appetite and passed away shortly after treatment. Since no autopsy was conducted, we could not determine whether the patient’s death was due to the progression of the disease or the occurrence of adverse and unanticipated events.

Above all, we found that the patient had symptoms for an extended period without medical intervention at the onset of the disease. AFP testing was not performed during the initial diagnosis, and only issues related to inflammation were discovered through the lung biopsy. By the time the final diagnosis was established, the optimal timing for surgery had been missed, and during the subsequent treatment, the patient did not undergo genetic testing and refused radiation due to financial constraints. A literature analysis suggests that the patient might have had better outcomes given access to immunotherapy or targeted drug therapy. Given the severity of her illness, the patient appeared to have anticipated her demise and held little hope of treatment efficacy. Consequently, she opted for a chemotherapy regimen that would alleviate her financial burden while minimizing treatment-related discomfort. Although we presented her with multiple diagnostic and treatment options, we respected her choices and provided enhanced palliative care to ensure her comfort and dignity. Additionally, due to the patient’s poor compliance and the lack of standardized follow-up, it remained unclear if her death was caused by the progression of the disease or the occurrence of adverse and unanticipated events.





Conclusion

HAL is a rare and challenging lung cancer subtype. This case and review highlight the need to consider HAL in cases of lung consolidations with necrosis and elevated AFP, relying on pathology and immunohistochemistry for diagnosis. Early treatment involves surgical resection, while advanced cases reference other lung and hepatocellular carcinoma treatments, which lack standardization and often have poor outcomes. Future research should explore molecular mechanisms and optimize treatment strategies to improve the survival and quality of life of HAL patients.
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With the increasingly central role of imaging in medical diagnosis, understanding and monitoring radiological errors has become essential. In the field of oncology, the severity of the disease makes radiological error more visible, with both individual consequences and public health issues. The quantitative trend radiology allows to consider the diagnostic task as a problem of classification supported by the latest neurocognitive theories in explaining decision making errors, this purposeful model provides an actionable framework to support root cause analysis of diagnostic errors in radiology and envision corresponding risk-management strategies. The D for Data, A for Analysis and C for Communication are the three drivers of errors and we propose a practical toolbox for our colleagues to prevent individual and systemic sources of error.
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1 Introduction

According to an annual complaints report for radiologists in France, “medical error” affected 1 in 20 radiologists. A similar US analysis of complaints analysis filed over one decade showed that oncology errors accounted for the largest proportion accounting from 40% up to 80% of complaints when focusing on complaints with high harm (1, 2).

In this context, it is interesting to explore the mechanisms of “radiological error” by looking more specifically at this most represented field, i.e., cancer diagnostic radiology Mammography and computed tomography were the most concerned modalities probably due to the breast cancer screenings over the world and widespread use of CT scans for generic whole-body analysis (3). Ultrasound, even though it is frequently indicated as a first line examination was not predominantly concerned maybe due to the impossible retrospective analysis unlike other acquired modalities that can be objectively reassessed by a second opinion.

Previous frameworks for root-causing radiological errors have been proposed and the most used classification was published in 2014 by Kim and Mansfield (4). However, its applicability in terms of risk management is not straightforward. Radiological errors being primarily human errors, we propose to update a classification in accordance with the latest neurocognitive knowledge to regroup by underlying concepts and mechanics.

In this paper, firstly, we explore the terminologies of error in experimental medicine together with the current critical place of quantitative imaging in oncology. Then, we detail cognitive mechanisms of decision-making in radiology as applied to oncology to propose an updated error classification supported by signal detection theory. Finally, we detail strategies for managing the risk of error at both the individual and systemic level.




2 The” experimental” medicine and the concept of biomarkers



2.1 The “error” terminology

The terminology related to “error” is deeply embedded in the history of experimental and quantitative medicine. This terminology is critical for understanding scientific literature and for comparing results across different studies (Figure 1).




Figure 1 | Relationship between the different terminologies of medical error. In the absence of intangible ground truth, the variability of analysis is reflected in discrepancy, where the benchmark can be a third expert opinion or a consensus. A fault is a type of error with a legitimate basis referring to non-compliance with the commonly accepted guidelines. More than an error, bias is a cause of error that is often systematic and unidentified.



However, depending on the field -whether in statistics or forensic medicine- the same terms can carry different meanings, often leading to confusion. A frequent source of this confusion is the distinction between “error” and “variability (5, 6). This issue dates back to the early days of quantitative experimentation, which were influenced by Mendel’s mechanistic approach to biology and his application of mathematical principles.

In the context of image analysis, variability refers to differences in interpretation between multiple observers. This is typically measured through indices that reflect the level of agreement or discordance among radiologists. These indices are essential for evaluating the reliability of diagnostic decisions (7).

Since error implies that what is correct is known, the notion of “truth” is inseparable from the notion to which error refers. In the era of quantitative medicine, we have inherited the term “ground truth” or “gold standard”, which is defined by empirical evidence, i.e., information given by direct sensory or experimental observation that is known to be true. This idea of truth aligns with the philosophical notion of “a posteriori knowledge,” knowledge that is based on experience, as opposed to “a priori knowledge,” which is derived from reasoning alone (8).

The relationship between error and experience is fundamental to evidence-based medicine, where decisions are grounded in both experimental results and practical experience (9).

In legal contexts, the term “fault” is used as a type of error, but with a critical distinction: an error is considered a fault only when the reference of the correctness is indisputably known in advance. In radiology, this typically means adherence to established best practices (10, 11).

In statistical and cognitive science, we encounter the term “bias”, which is a systematic cause of error that is mostly unconscious or invisible and a priori. A cognitive bias specifically refers to errors in thinking caused by a distortion in how information is processed.

While these terms -error, variability, fault, and bias- are distinct, they are also interrelated. Figure 1 visually represents the relationships between these concepts and their importance across medical, statistical, and cognitive domains.




2.2 Quantitative imaging as a decision-making tool in cancerology

Medical imaging is a decision-making tool for the cancer patient that not only has to be performant but must also be used properly and at the right time to be efficient.



2.2.1 Imaging biomarkers

The term “imaging biomarker” defines discriminating information contained in a medical image (12, 13). This information is measured by imaging modality and must satisfy characteristics that allow it to be used for decision-making, i.e., accuracy, precision, reliability, and relevance (14). The first three characteristics are also quantifiable. In addition, when studying “error” in radiology, it is essential to continually evaluate the source of information for its relevance and biological plausibility within the clinical context.




2.2.2 Oncology and surrogate endpoints

The oncologic context provides a good example of “a priori discriminating” use of biomarkers (Figure 2). Their use differs depending on cancer stage. It is either a diagnostic question in a symptomatic or asymptomatic patient (i.e., during screening), or a question of the cancer treatment’s efficacy (i.e., during follow-up).




Figure 2 | Problem statement in oncology and surrogate imaging biomarkers. Radiological diagnosis is over-simplified as a classification problem. In oncology, the statement of this problem evolves over time and requires discriminating between different populations at entry and exit. At the initial diagnostic stage, the aim is to discriminate between diseased (in which the cancer) and non-diseased patients. The imaging is compared with the gold standard, usually, invasive procedure to obtain the histology of the cancer. Following diagnosis, the discriminative test must recognize patients not responding to the treatment to offer them a better alternative. At this stage, the gold standard for judging the outcome is the death rate and one assumes that imaging biomarker can be a surrogate predictor of the overall survival rate.



In both cases, the ground truth can only be known a posteriori since it corresponds to histology or surgery (for disease diagnosis), or death (for treatment efficacy).

Oncology imaging biomarkers are “surrogates” endpoints when they can be used instead of clinical outcomes. Indeed, invasive diagnosis is morbid, and death is fatal, therefore imaging biomarker-assisted decision-making attempts to predict disease or treatment ineffectiveness as early as possible with minimal error. The validity of such surrogates is regulatory and based on previously acquired evidence (15).






3 Cognitive decision model in cancer imaging

The decision step turns a virtual error into a real, and potentially harmful entity. Therefore, there is a notion of risk in making a decision and since the impact is substantial when considering oncology imaging, the stakes of this risk are higher.

To understand errors, it is essential to understand how both the tools (i.e., quantitative imaging biomarkers) and context of the decision-making (surrogates) described above are integrated by the individual operator to take his decision.

Modern cognitive science theories allow us to better understand the brain mechanism underlying decision making in these situations of uncertainty.

“Signal theory” and the Bayesian model represent the state-of-the-art of understanding of the decision mechanism, from the sensorial information to the decisional action (16, 17).

To best illustrate schematically the mental stages during the radiological diagnosis process, we consider the mammographic screening use case (Figure 3).




Figure 3 | Cognitive modeling of decision-making during mammography screening (inspired by the theoretical model of decision in complex situations). The first sensory step is based on the Bayesian law of probabilities and produces plausible diagnostic hypotheses. The second step of the process is decisional and integrates the risk of error by choosing a decision criterion to separate the different hypotheses. Ultimately, there is an experimental feedback loop of success/error which influences the “a priori” knowledge for future diagnoses.



To address this task, the mental activity asks two sub questions which, for the sake of understanding, are represented sequentially but are in fact intertwined i.e.:



3.1 “Given what I see on the mammogram, how plausible is the hypothesis that my patient has cancer?”

In a probabilistic Bayesian model, this “plausibility” is denoted by p(H|D) and corresponds to the probability of having cancer (H) knowing the mammographic information (D). Conversely, the “a posteriori probability of having this mammographic data knowing the hypothesis”, is noted p(D|H) and corresponds to the “likelihood” of the data.

The law of probabilities shows that the plausibility of a given hypothesis is a function of the likelihood but also the “a priori probability” of the hypothesis noted p(H). This so-called “prior” contextualizes the decision making and greatly modifies the outcome. The law is written as:

	

It can be well understood by general radiologists that have experienced lung parenchymal findings on a coughing patient with a known evolutive cancer. They know that this may correspond to either a metastasis or an inflammation suggesting that the likelihood of the image alone is not discriminating enough. It is the a priori knowledge that allows us to conclude about plausibility (18).

In our practice, this “prior” corresponds to theoretical and experiential knowledge, to the context of the analysis and to the instructions for performing the task (i.e., reading the images) that is related to it. In oncology, for example, the latter read rules correspond to the BIRADS analysis for the mammography or RECIST criteria for an oncologic follow-up. Those rules are framing the context of the task (19).

Also, in processing this first sub question, there are two irreducible variability factors to consider, one concerning the data i.e., imaging biomarker and its signal/noise ratio (external noise), the second concerning the performance of the radiologist observer (internal sensory noise) which is equivalent to a “detector” intrinsic performance (20). The latest participates both in inter-observer variability and intra-observer variability as it varies for a same individual according to mentally perturbating stimuli (e.g., tiredness, stress, external stimuli).




3.2 Given the purpose of the mammography exam, what criterion maximizes its gain?

Signal theory suggests that the observer applies a gain maximization function to set the criterion according to the desired goal. Indeed, in radiology and medicine in general, unfortunately there is often overlap between positive images corresponding to the ill state and so-called negative images corresponding to the non-ill state with a normal distribution of patients. This phenomenon is expressed simply by contingency tables commonly used in medicine to evaluate diagnostic test effectiveness (Figure 4).




Figure 4 | Cognitive modeling of decisional step: contingency table and criterion. Due to the overlapped distribution of probability in healthy patients and those with cancer, the radiologist must make an inevitable compromise between missing diagnoses (False Negative, FN) and false alarms (False Positive, FP). Whenever the FP is having a greater impact, the radiologist will try to maximize the precision and whenever the FN is important, the radiologist will try to maximize the recall.



In oncology, the physician is torn between a conservative objective (i.e., avoidance of biopsies and death at the cost of missed cancers), and a non-conservative objective (i.e., not missing any cancer, even if invasive diagnostic procedures are required). The first case minimizes false positives (statistical type I error) and the second case minimizes false negatives (statistical type II error).

The decision criterion is determined to maximize the gains according to the objective that the radiologist has set. It is therefore variable according to the individual and the context.





4 The DAC classification of radiological errors

The Kim and Mansfield classification is the most widely accepted classification for error types in radiology (4). Based on a retrospective evaluation, this classification determined 12 error types according to their cause. We feel that this classification is imperfect because it does not fully cover the chronological nature of the causality principle.

We therefore propose a simpler error classification with a simpler approach that can be illustrated with the information flow (Figure 5 and Table 1).




Figure 5 | Root cause analysis of radiological errors. The virtuous circle of information during imaging diagnostic from input data (D) to data analysis (A) to communication of output data (C).




Table 1 | The “DAC” classification of errors in diagnostic imaging.



This higher-level classification advantageously integrates the previously detailed processes of “information to decision” through the acquisition of information (D for data), its analysis using cognition (A for analysis) and the communication of this analysis (C for communication). We separate errors according to this DAC approach:

	Error type D: Data or meta-data related errors

	Error type A: Analysis through cognition related errors

	Error type C: Communication of diagnostic results related errors





4.1 Error related to the data (Type D)

The first step of a radiological examination in oncology is to collect the information necessary to understand and frame the problem. It is important not to corrupt this information processing. Unfortunately, as every radiologist knows, in our practice several differential diagnoses share the same image findings (18).

Clinical information is useful to contextualize visual analysis and this meta-information improves the knowledge of what was previously named as the “prior”. This type of information is furthermore necessary as it can indirectly influence the image information when used to adapt the acquisition protocol and field of view. We also mentioned above that it influences the maximization criteria. This step of information processing is therefore critical. Unfortunately, appropriateness of imaging referral is sometimes not justified with impact on unnecessary or wrong examination (21).

In practice, meta-information is often available if the radiology team makes the necessary effort to retrieve it from patients, doctors, and family (Figure 6). Indeed, for our field of interest, it is crucial to make comparisons with historical examinations, to know the surgical interventions already performed and to question the patient if an image is confusing (Figure 7).




Figure 6 | Data collection: from fragmented information to diagnostic orientation. A 50 year’s old patient is referred to a radiology office for an MRI of the parotid gland with a prescription from an ENT surgeon which mentions an incidental finding on a PET-CT. It is only after interviewing the patient, his family and querying the PACS that an evolutive metastatic cancer background status is revealed.






Figure 7 | Type D error: misinterpretation linked to lacking prior information. A 53 year’s old patient is referred for a melanoma cancer follow-up with PET-CT. At the first follow-up visit, the radiologist was not aware of the metastatic vertebral stabilization with anterior sternotomy. This censored information misled the radiologist into finding a sternal lytic lesion that he thought was a metastasis.



In everyday practice, it should be remembered that this type of error would be considered as a fault error since the radiologist does not have an obligation of result but rather an obligation of means. All necessary means must therefore be put in place to recover all the required information for interpretation, even if this is never easy.

The centralized clinical trial illustrates the importance of “prior” information to contextualize image analysis. Indeed, the censorship of some of the site information during blinded independent review often led to mistakes in the selection of targets for RECIST assessment with well-known benign lesion in the liver suspected to be a metastasis (22, 23).

Ultimately, the pixel-information once the examination is performed might also be corrupted if the technic of the examination was not performed correctly. It is important to provide the best technic of acquisition to avoid confusing artefacts for the analysis. If one is not satisfied with the technic of an examination, it should be reperformed with the scope to help a better-informed decision.




4.2 Error related to the analysis (Type A)

This type of error is also named “cognitive error” as it is linked to the cognition framework described previously (Figures 3, 4).

Radiological interpretation corresponds schematically to a visual search task for significant abnormalities in one or several medical images. For didactic purposes, the task can again be broken down chronologically into two steps: detection then characterization (24).

Under-performance can either be a result of under-detection or a properly detected, but misinterpreted finding (25).



4.2.1 Under-detection (Type A1)

During detection, the two determining factors are the visibility of the lesions and the radiologist’s detector performance:

	Concerning the visual stimulus associated with the lesion, its visibility can be estimated by the signal-to-noise ratio. In addition, its cognitive integration can be conducted through two processes:	Bottom-up processes depend almost entirely on the information perceived, and therefore little on the assumptions or expectations of the perceiving radiologist.

	Top-down processes based on integration of the previously learned information on this perceptual information. They are high-level cognitive processes and control the sensory information from knowledge and experience.




	Regarding the performance of the human detector, this depends on the analysis method and the level of attention.	The visual analysis strategy varies between radiologists (Figure 8) depending on their knowledge and experience. It has been described that there are significant differences in the exploration of a CT volume or mammograms between radiologists and that these differences correlate with different detection efficiencies (26, 27).

	Attention to the task is also a factor contributing to variability. It has been documented that radiologists may miss abnormalities that are visible retrospectively, either because of a drop in attention level, or because of a shift in attention. Cognitive biases can interfere with the radiologist’s attention and lead to non-detection errors.	▪ “Satisfaction bias” is well-documented in radiology (28). It refers to a drop in attention after the discovery of an abnormality. Hence, it is responsible for the non-detection of additional abnormalities. In oncology, this is exemplified by detection of one pathological finding but miss detection of multifocal lesions.

	▪ “Inattentional blindness” bias is also documented in radiology. It refers to attention locked in a top-down process that prevents the detection of unexpected anomalies (Figure 9). This phenomenon is illustrated by the popular article entitled “The invisible gorilla strikes again[ … ]” and others have reproduced the phenomenon (29, 30).












Figure 8 | Mammography eye-gaze scan path assessments strategies. This figure illustrates two different exploration strategies driven by top-down processes learned during their training. The radiologist 1 adopted a comparative “quadrant analysis” from outer to inner quadrant to retrieve information from the comparative analysis with a “Z” shaped scan path. Radiologist 2 adopted a “side analysis” exploring first the entire right breast then the left breast.






Figure 9 | Type A1 error: inattentional blindness bias and missed lesions. During RECIST 1.1 assessments, radiologists are vulnerable to attention bias. In this example, the radiologist measured 4 targets in total including 2 in the liver using tumor tracking software. During the measurement phase, the radiologist activates his macular vision which offers the best spatial resolution in a restricted area of the image and contributes to the off-field detection error. Those targets were stable, so progression was not expected, leading the reader to miss the large new lesion (bounding box) despite it being visible on the same slice level.






4.2.2 Misinterpretation (Type A2)

The characterization process involves the radiologist’s judgment. Once a finding is detected, the question of diagnosis arises. Misinterpretation is rarely due to the responsible radiologists’ lack of knowledge. In documented series, this represents around 10% of errors (4, 24, 25). Frequently, it is to do with the functioning of the brain, that uses a heuristic strategy for information processing. These heuristics reduce the brain’s workload at the cost of systematic errors. These cognitive biases are widely documented in radiology and oncology, with anchoring, confirmation and availability biases most frequently encountered (31).

Oncological follow-up is vulnerable to anchoring bias when the analysis is conducted in a sequential manner. In such a setting, we observe that the radiologists tend to confirm the previous measurement result while this measurement operation is reputed to be non-subjective (Figure 10).




Figure 10 | Type A2 error: anchoring bias and measurement distortion. During oncologic RECIST 1.1 assessments, radiologists are vulnerable to anchoring bias. In this example, the radiologist chronologically assessed 9 examinations and measured 2 targets in the liver to conclude stable disease. However, the same measured lesion when reviewed from visit 2 with the visit 8 clearly demonstrated a progression.







4.3 Error related to the communication of report (Type C)

In oncology, radiological evaluation is central for diagnosis and treatment decisions. Tumor follow-up criteria are now used as a decision-making tool not only for clinical trials, but also for routine use.

Communication of results is often delicate because it is aimed at both the patient and the physician, sometimes with a slightly different objective.

The communication medium is the written report. In routine, this error is difficult to trace and the Kim and Mansfield analysis probably underestimates its frequency (4). However, in clinical trials, non-conformity of reports is documented as a frequent deviation with 55% (32).

These type C errors are no less impactful and lead to bad decisions because of incomplete, false, or misunderstood information (Figure 11) (11).




Figure 11 | Type C error: delayed management of a brain metastasis linked to miscommunication. At the first follow-up visit the data collection allowed the office-based working radiologist to detect and suspect a brain metastasis of an evolutive breast cancer while the hospital-based ENT surgeon prescription was not mentioning any specific history of cancer (Figure 6). However, one year later the patient came to the same office to perform the same examination and the brain lesion had increased. After investigation, the initial report has been received by the ENT surgeon who assumed that the oncologist team was already aware of the brain metastasis. This miscommunication led to a complaint from the patient about delayed management of the brain lesion.







5 Discussion

Radiology errors are addressed to prevent occurrence of adverse events. Since error is statistically embedded in the above predictive decision-making model, the objective is to minimize the individual related sources of error previously outlined.

However, it is necessary to consider radiological interpretation in its global environment to differentiate the control strategy for the individual’s error from a systemic approach focusing on conditions and factors acting on this individual (Figure 12) (33).




Figure 12 | Swiss cheese model and risk management. In addition to the individual level, the risk management model needs to include the environment by considering the factors contributing to errors and the fail-safes that were not efficient (tertiary prevention).



According to the pareto principle, in relation to the 3 classes of errors described above, we can propose a toolbox trying to address the most frequent contributors (Table 2). Cognitive type A errors dominate and represent up to 80% in reported series (4, 25).


Table 2 | Individual risk management.



Preventing cognitive errors typically requires the use of debiasing strategies, which aim to either prevent or correct the initial judgment, often formed through heuristics However, corrective strategies face practical limitations, as they require either revisiting and re-evaluating one’s initial decision or relying on a concurrent external opinion to provide a counterbalance. Both approaches are time-intensive and frequently infeasible in high-pressure environments like clinical practice, where time constraints may not allow for thorough reconsideration. Moreover, merely being “aware” of cognitive biases does not necessarily reduce their impact after they have already occurred. Research has shown that awareness alone often fails to mitigate cognitive errors because biases are deeply ingrained in our cognitive processes and operate subconsciously. Additionally, measuring individual susceptibility to cognitive biases is still an area of ongoing research (34, 35).

Then, even if type D errors are less frequent, the preventive action might be more effective in making all necessary efforts to collect the best clinical information and pixel information.

Also, regular training helps to reduce the type A errors linked to lack of knowledge errors and might also improve the quality of communication (6, 36). Large literature insists from several years on the necessity to improves the quality of reporting by improving communication skills of radiologists and using several tools such as structured reports and multidisciplinary standardized disease lexicon and classifications (37, 38).

Sources of error are multifactorial and dependent on the radiologist’s environment (39). We can consider primary prevention to reduce systemic risk factors and secondary or tertiary prevention for early correction of potential radiologist errors (5) (Table 3).


Table 3 | Systemic risk management.



We initially illustrated the cognitive feedback loop of the mistakes to create knowledge for future diagnostics. To make it possible, the working conditions should promote positive communication regarding errors, which are in fact an opportunity for improvement. Sharing errors during a regular staff meeting or peer review is a good way to dramatize the error in radiology (40, 41). However, these facilities are resource intensive, jeopardizing their feasibility (42).

Poor working conditions have been established as a risk factor for interpretation errors by several authors (43).

The number of images per minute read by radiologists has increased by 7 in this age of hyper-efficiency, driven by the digitalization that occurred in the 2000’s (43, 44). In the event of overwork, the risk of error for the radiologist increases. It has been estimated that a 2-fold increase in examination rate increases the risk of omission errors by 25% (45). We conducted a survey of 35 radiologists in the south of France, and found that 80% of radiologists interpreted >20 CT scans per 4-hour shift; some authors have shown that there is a significant increase in errors when performing more than 20 CAP-CT scans per day (46).

More than 2/3 of errors are caused by cognitive attention bias. It is reported that interconnectivity leads to multiple interruptions in the workflow that affect the radiologist’s attention (47). This multitasking distracts the radiologist, increasing the risk of error. Some authors have shown that radiologists can be interrupted every 4 to 12 minutes.

Workflow in oncology is essential because radiological analysis consists of comparing and measuring lesions repeatedly. Previous measurements must be easily available at the time of analysis by optimized equipment. Moreover, the measurement step is time consuming, and some authors propose a hybrid workflow after the baseline measurement to decrease the examination time for the radiologist without loss of quality (32). The same automatic computation for image post-processing analysis (mainly measurements) in any radiological field could greatly help to reduce workload therefore indirectly reduce attention bias linked to these mentally consuming tasks.

Furthermore, the negative predictive value of artificial intelligence could potentially read the content of images and propose a prioritization of patients with significant radiological abnormalities, allowing more time and attention to be spent on these at-risk patients compared to others, but this means to qualify and build trust into AI-triage systems (48, 49).

It is generally accepted that “two brains are better than one”. An important fact to keep in mind is the importance of the communication of one’s confidence level with second readers as this seems to be a determinant in the application of this adage (50). The second radiological opinion has been shown to be effective in several studies and this paradigm is used in centralized independent imaging readings for clinical trials (23, 51).

The second opinion can also come from a machine. The developments of artificial intelligence in detection and characterization should allow it to compete with a radiologist’s readings in the future.

Also, specifically in oncology, “tumor tracking” software can integrate the analysis rules for follow-up criteria and enable prevention of non-compliance errors during the analysis time i.e., number of targets, minimum size.

More generally, awareness about the risk control necessity to prevent errors is promoted through good practices of quality management. Imaging departments should start to implement quality assurance standards helping them to detect and correct the risks of errors (7).

Audit of their working condition and performance should also benefit to reduce individual errors by unmasking such correctable environmental risk factors (52).




6 Conclusion

The errors detected are only the tip of the iceberg as many of them will not have a significant enough impact to trigger a complaint. Oncology, which deals with a serious disease and regular examinations, is the indication that provides the best insight into the ins and outs of medical imaging errors.

For the sake of understanding, we proposed a threefold classification of mechanisms of error related to the information (D), the cognition (A), and the reporting (C).

However, it is important to understand that even if we tried to systematize it, the error in radiology partially escapes this systematization because it occurs in a complex and non-deterministic world. The DAC classification describes an over-simplified model, still it offers a practical means for risk management to identify and operate on drivers of errors.

The individual factors of errors are dominated by cognitive bias, but debiasing strategies seems more feasible through environmental drivers. The toolbox that we provide are generalist and non-exhaustive. At the individual level, raising awareness of preventable errors and adopting a non-blaming behavior will help to move towards quality driven practices in radiology with benefit from a sort of collective intelligence thanks to more sharing of errors and experiences. AI-machines are a hot topic of discussion regarding error with high promises addressing the quality of care more than the reduction of the radiologist’s workload (53). Humans will still be in the loop for a while and error management will not disappear soon.
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Background

Extraskeletal mesenchymal chondrosarcoma (ESMC), an uncommon and highly aggressive form of chondrosarcoma, is characterized by its mesenchymal origin and absence of skeletal involvement. Only a few cases of primary ESMC with metastasis to the pancreas have been reported so far. In this study, we present a case of ESMC in the left thigh with a solitary pancreatic metastasis in a 45-year-old woman. Additionally, we provide a thorough overview of ESMC, encompassing its entire clinical progression and radiographic observations. Furthermore, we reviewed all thirteen cases of pancreatic metastasis, including this present case, analyzing patient attributes, clinical management, and prognosis.





Case presentation

A 45-year-old woman has had a painless mass in her left thigh for one year. X-ray, computed tomography (CT), and magnetic resonance imaging of the left thigh were performed. Positron emission tomography-CT imaging showed a high accumulation in the left thigh tumor and the pancreatic neck lesion. A diagnosis of extraskeletal chondrosarcoma with pancreatic metastasis was determined based on the radiological examinations. A final diagnosis of ESMC was confirmed by histopathological and immunohistochemical examinations after surgical resection. The patient presented metastasis in the lung, right groin, and tail of the pancreas successively, and mostly received complete surgical excision during a 39-month follow-up with postoperative chemotherapy.





Conclusion

We present a highly uncommon case of ESMC spreading to the pancreas and highlight the importance of recognizing the distinctive imaging features of ESMC for diagnosis and prognosis assessment.
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Introduction

Chondrosarcomas, which generate a cartilaginous matrix, are a diverse set of cancerous growths, with extraskeletal origins being much rarer than their intraosseous counterparts (1). The mesenchymal subtype, comprising 2% to 9% of initial chondrosarcomas, is highly uncommon (2, 3). Unlike typical chondrosarcoma, mesenchymal chondrosarcoma (MC) primarily affects young adults in their twenties and thirties (4), with no significant gender preference (5). Extraskeletal mesenchymal chondrosarcoma (ESMC) can originate from either the bone or soft tissues, with reported proportions ranging from 10% to 60% (1, 8, 9). Most of them are located in the lower limbs (especially the thigh), meninges, soft tissues of the chest and abdominal wall, mediastinum, and the orbit (5). Owing to its heightened aggressiveness, MC has been linked to a worse prognosis and a strong tendency to metastasize, exhibiting 5-year and 10-year survival rates of only 51% and 43%, respectively. There was no distinction observed between extraskeletal and skeletal locations. Nevertheless, there was significant variation depending on the anatomical sites, as evidenced by the 5-year survival rates of 74% for cranial tumors, 50% for appendicular tumors, and 37% for axial tumors (3).

The metastasis of ESMC to the pancreas is an exceptionally uncommon occurrence. We report a case of left thigh ESMC with pancreatic metastasis and review all the published literature on twelve cases of pancreatic metastasis from ESMC (1, 2, 8–17). This information is primarily found in case reports or case series. Our aim is to gather the data published so far to highlight the number of reported pancreatic metastases, imaging characteristics, status of genetic diagnosis, treatment, and prognosis.





Case presentation




History and examination

Our institution received a 45-year-old female patient who was referred due to a painless lump in her left thigh that had been present for 1 year. The physical examination showed a mass of approximately 10 cm×8 cm in size located at the back of the left thigh. She had unremarkable surgical and family histories.





Radiological examinations

Figures 1A, B shows radiographs of the left thigh, revealing a oval soft tissue lump with scattered calcifications. A computed tomography (CT) scan of the left thigh revealed a regularly lobulated well-circumscribed mass measuring 9 cm×6 cm in the muscular portion of the left posterior thigh. The tumor exhibited slightly lower and heterogeneous density with internal irregular calcifications, displaying a chondroid pattern resembling rings and arcs. An enhanced CT scan demonstrated septal and peripheral enhancement around the calcified area, accompanied by more heterogeneous or diffuse enhancement regions in the non-calcific area of the lesion (Figures 1C, D). Moreover, magnetic resonance imaging (MRI) of the left thigh revealed a tumor mass with heterogeneous hypointensity on the non-contrast T1-weighted image and heterogeneous hyperintensity on the T2-weighted fat-suppression image, both showing varying levels of irregular low signal. The T1 enhanced image demonstrated enhancement features comparable with those observed on CT (Figures 1E–G). Based on these imaging findings, a provisional diagnosis of extraskeletal chondrosarcoma was considered. Differential diagnosis included Ewing’s sarcoma, osteosarcoma, and synovial sarcoma.




Figure 1 | Plain X-ray, CT, MRI, and PET-CT images of the lesion in the left distal thigh (the lesion is indicated by the hollow arrow). Anteroposterior (A) and lateral (B) plain x-ray showed an oval soft tissue mass with spotty calcifications. Axial CT of soft tissue window images in the unenhanced (C) and enhanced (D) phases. Axial MRI images of the tumor mass on non-contrast T1-weighted (E), T2-weighted fat-suppression (F), and T1 enhanced (G) images. Axial PET-CT images of the lesions in the left distal thigh (H, I).



The abdominal CT scan identified a calcified mass in the neck of the pancreas, measuring approximately 2.4 cm in diameter. The mass appeared well-defined, with low attenuation and heterogeneous enhancement. There was no evidence of distal pancreatic duct dilatation or surrounding tissue invasion (Figures 2A–C). The lesion exhibited peripheral ring-like high signal intensity on the diffusion-weighted imaging (DWI) and low signal intensity on the apparent diffusion coefficient (ADC) map. On T1-weighted images, the mass appeared hypointense with punctate areas of hyperintensity, whereas on the T2-weighted fat-suppression image, it showed slight hyperintensity. The tumor exhibited irregular enhancement, with the most pronounced enhancement at its periphery (Figures 2D–I). Given the patient’s history of a tumor in the left thigh, metastasis to the pancreatic neck was strongly suspected.




Figure 2 | CT, MRI, and PET-CT images of the lesion in the neck of the pancreas (the lesion is indicated by the hollow arrow). Plain CT axial image (A), arterial phase of contrast-enhanced CT axial (B) and coronal (C) images of the abdomen. The axial multi-sequence MRI images of the pancreas on DWI (D), a ADC* image (E), a T1-weighted image (F), a T2-weighted fat-suppression image (G), and a T1 enhanced image (H). Coronal T1 enhanced image (I) of the lesion in the neck of the pancreas. Axial PET-CT images of the lesions in the neck of the pancreas (J, K).



Positron emission tomography-CT (PET-CT) imaging showed elevated maximum standardized uptake values (SUVs) of fluorodeoxyglucose in the tumor of the left thigh (maximum SUV, 39.58) (Figures 1H, I) and the lesion in the neck of the pancreas (maximum SUV, 5.92) (Figures 2J, K).





Results from the surgical exploration and pathological analysis

The tumor in her thigh was completely removed, and histopathologic examination revealed a malignant mesenchymal neoplasm composed of two distinct cell types. One type consisted of undifferentiated primitive mesenchymal cells, characterized by a short spindle or oval shape and minimal cytoplasm. The other type presented as well-developed islands of hyaline cartilage (Figure 3). Based on the microscopic appearance, a histopathologic diagnosis of primary ESMC was made. One month later, she underwent pancreatic surgery, and intraoperative examination confirmed the tumor’s location in the neck of the pancreas, without infiltration into surrounding tissues or peritoneal dissemination. The pancreatic tumor was successfully resected. Pathological analysis revealed tumor tissue with osteochondroid differentiation. Immunohistochemistry results showed NKX3.1 positivity and focal CD99 positivity (weak +), whereas S-100, NSE, P53, Desmin, SMA, STAT6, and SOX10 were negative. Ki67 was positive in 20% of cells, and CD34 showed positivity in the vascular component. Considering the clinical history, the diagnosis of metastasis of the ESMC to the pancreatic neck was made.




Figure 3 | Histomorphological staining results of the tumors in the thigh and the pancreas with hemotoxylin and eosin, and partial immunohistochemical staining results of the pancreatic metastasis. (A) Combination of cartilaginous islands and undifferentiated small cells with an abrupt transition between them. The hollow star indicates the cartilaginous islands (0riginal magnification, ×100). (B) The component of the primitive undifferentiated mesenchymal cell shows a small round to oval cellular appearance with scant cytoplasm bearing a considerable resemblance to myopericytoma with numerous vascular clefts. The hollow arrow indicates small round cells (original magnification, ×200). (C) The metastatic tumor in the pancreas morphologically resembles that in the thigh (A, B). The hollow arrow indicates the normal pancreas tissues, and the hollow star indicates the chondroid matrix. (original magnification, ×100). (D) Immunohistochemical staining with CD99 in a cartilaginous island. The hollow arrow indicates positive staining (original magnification, ×200). (E, F) Immunohistochemical staining with S-100. The hollow arrow indicates positive staining (original magnification, ×100 and ×200). (G, H) Immunohistochemical staining with NKX 3.1. The hollow arrow indicates positive staining (original magnification, ×100 and ×200).







Post-operative course and follow-up

Post-surgery, the patient received VAC/IE chemotherapy, consisting of vincristine, adriamycin, cyclophosphamide, ifosfamide, and etoposide in alternating cycles. Despite this treatment, she developed metastases in the right lower lung and right groin, which were surgically excised 20 months and 30 months after the initial tumor resection, respectively. At the latest follow-up on 20 September 2023, a suspected metastatic lesion was detected in the pancreatic tail. Currently, the patient is alive. Figure 4 illustrates the timeline of diagnosis and treatment.




Figure 4 | The timeline of diagnosis and treatment.








Discussion

Chondrosarcoma, a malignancy with cartilaginous differentiation, is an uncommon tumor that primarily arises in skeletal or cartilaginous structures. Additionally, it can manifest in locations outside of the skeletal system where cartilage is typically absent. Extraskeletal chondrosarcoma can be categorized into myxoid, mesenchymal, and well-differentiated histological subtypes. Typically, the myxoid subtype is prevalent, whereas the mesenchymal subtype is exceedingly uncommon (18).

Traditionally, the identification of MC relied on its distinctive histological characteristics. The classic histologic appearance of MCs shows a biphasic tumor made up of sheets and nests of primitive-appearing small round blue cells surrounding irregular islands of hyaline cartilage. Although MCs demonstrate immunohistochemical staining with CD99 and S100, these markers are relatively nonspecific and can show positive staining in several tumors that may be included in the differential diagnosis (19, 20). The primary lesion and pancreatic metastasis in our reported case are consistent with previously reported findings. Nevertheless, this can be challenging when the biphasic morphology is not apparent, such as when one component of the tumor is more dominant or due to sampling bias or limited tissue availability during biopsy. In 2012, the HEY1:NCOA2 fusion transcript was discovered as a potentially useful diagnostic tool for MC. This novel fusion can help differentiate MC from other (chondro-)sarcomas in difficult or uncertain cases (21). Cohen et al. identified two cases with pancreatic metastasis of eight MC patients of bone (25%), and both pancreatic tumors harbored the HEY1:NCOA2 gene fusion (20). Ghafoor et al. revealed that out of the twelve cases, three (25%) had metastasis to the pancreas, and among the six patients, four were found to be positive for the HEY1:NCOA2 rearrangement (7). We reviewed all 13 reported cases of ESMC with pancreatic metastasis (including our case), two of which were primary pancreatic tumors. Of the six cases reported after the discovery of the HEY1:NCOA2 gene fusion, only one tested positive for the HEY1:NCOA2 fusion gene (8, 28) (Supplementary Table S1). Therefore, additional research is needed to validate the presence of the HEY1:NCOA2 gene fusion in all pancreatic ESMCs.

The use of imaging is crucial in the management and precise diagnosis of MC. In our case, the main ESMC in the left thigh showed an internal irregular pattern of calcifications resembling rings and arcs of chondroid type, whereas the pancreatic metastasis exhibited central calcifications surrounded by a non-calcified tumor periphery. A study by Ghafoor et al., which included 23 MC patients (13 skeletal and 10 extraskeletal), analyzed the features of calcification in MC. The study suggested a unique biphasic structure, in which a mass is divided into a calcified and non-calcified component by a well-defined transition zone (7). In their cohort, this characteristic form was found in 30% of cases. In the study by Hashimoto et al., it was observed in 40% of patients (22), and it can also be observed in previous studies (18, 20, 22–24). The calcification characteristics of the primary and metastatic masses in our case exhibit the distinct biphasic morphology. Therefore, the dual-phase structure could serve as a valuable diagnostic indication, and it is important to note for guiding biopsy preparation and subsequent management strategies.

Non-specific MR signal characteristics of MC have been summarized in several studies. In our case, both the primary ESMC in the left thigh and the pancreatic metastasis exhibited a low signal on T1-weighted images and a heterogeneously hyperintense signal on T2-weighted images. The degree of heterogeneity varies based on the quantity and distribution of calcifications, which caused low T2 signals. Interestingly, the calcifications in a rings-and-arcs pattern within the main tumor did not correspond directly to a distinctive chondroid appearance on T2-weighted MRI. These MR signal characteristics align with previously published studies (7, 22, 25).

The enhancement patterns of MC were diverse, with chondroid-type enhancement being the most common, characterized by septal and peripheral enhancement (7). Our case, along with most patients in previous studies, demonstrated this pattern (7, 22, 25). Notably, this enhancement pattern was observed even if it appeared only in certain regions of the tumor. Typically, there was a mix of non-chondroid and more varied or widespread enhancement areas. Additionally, the mass displayed variations in enhancement due to its biphasic morphology: the non-calcified sections exhibited more uniform and noticeable enhancement, whereas the calcified areas corresponded to a lack of enhancement.

Compared with typical chondrosarcomas, MC tends to occur in younger individuals and frequently metastasizes. Research by Ghafoor et al. found that the lungs were the most likely site for metastases, occurring in 75% of cases. Uncommon sites, including the pancreas (25%) and kidneys (17%), were observed in 42% of cases. Metastatic disease developed in approximately 52% of cases, resulting in a 30% mortality rate. There was no significant difference in the metastasis occurrence and mortality rate between ESMC (50% and 33.3%, respectively) and skeletal MC (53.8% and 31%, respectively) (7). These findings align closely with previously published data (6, 20, 22, 26). We conducted a retrospective review of all the literature on ESMC and its metastases (excluding pancreatic metastases) (Supplementary Table S1). Our findings show a metastasis rate of approximately 46.3% (148 of 320 cases) for MC and 52.7% (19 of 36 cases) for ESMC, consistent with previous reports (Supplementary Tables S1, S2) (29–36). A study of 5,110 individuals diagnosed with chondrosarcoma in the SEER database revealed that MC represented 4% of cases, with 5- and 10-year survival rates of 51% and 43%, respectively. There was no significant difference in overall survival between extraskeletal and skeletal MC (3). However, survival rates varied by anatomical site: cranial tumors had a 5-year overall survival rate of 74%, appendicular tumors 50%, and axial tumors 37%. Poor survival outcomes were primarily associated with the presence of metastatic disease and an enlarged tumor size (3). In general, the prognosis for MC is less favorable than for classical chondrosarcoma, but is not as grim as some previous studies have suggested (26, 27).

Owing to the uncommon and unpredictable characteristics of MC, its management has not been thoroughly researched. However, the existing consensus on management highlights the significance of controlling the disease both locally and systemically (26). Wide surgical resection is the primary approach for local treatment, backed by evidence indicating increased survival rates in patients who undergo surgery (27). When the disease is inoperable, the simultaneous application of radiotherapy and chemotherapy might be beneficial, even though there is still a lack of compelling evidence (6, 7, 27).

To our knowledge, only 12 such cases have been documented in the medical literature (Supplementary Table S1). Therefore, our case should be considered the 13th reported case of pancreatic ESMC. The age range at onset is 24–45 years, with no significant gender difference, comprising six males and seven females. The largest sizes of pancreatic metastases ranges from 2 cm to 18 cm, with 10 out of 13 tumors primarily located in the body and tail of the pancreas. Calcification within the pancreatic tumor was found in seven of the reported cases. The average latency period for pancreatic metastasis after the primary tumor diagnosis is approximately 5.5 years. There are currently no specific treatment guidelines for this type of tumor. In the reported cases, most treatment strategies involved surgery and further systemic chemotherapy. Additionally, radiation therapy has been recorded as a treatment strategy (2). In our case, the patient underwent resection of the primary tumor and the pancreatic metastasis followed by chemotherapy, yet still developed multiple recurrences. This underscores the importance of long-term follow-up after successful treatment.





Conclusion

In summary, ESMC with metastasis to the pancreas is rare. The radiological features are non-specific but the biphasic shape and chondroid-like enhancement can serve as useful diagnostic indicators, particularly for tumors that develop in the pancreas. Additional research is needed to validate the presence of the HEY1:NCOA2 gene fusion in all pancreatic ESMCs. Owing to its rarity, MC management lacks extensive research but wide surgical resection is the primary treatment, and combined radiotherapy and chemotherapy may offer benefits. The prognosis for ESMC is more unfavorable than for classical chondrosarcoma, although it does not appear to be as bleak as indicated by certain previous studies.
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Supplementary Table 1 | Literature review of the published cases of primary/metastatic ESMC of the pancreas. (highlighted) added in this report. * Outcome: months or years of survival after surgery. ** Years of survival after the diagnosis of MC. △ HEY1:NCOA2 gene fusion was first identified in MC in 2012 (21). ★ Cases of the primary ESMC of the pancreas. CT, chemotherapy; RT, radiotherapy; NR, not recorded; NA, not applicable.

Supplementary Table 2 | Literature review of the number of published skeletal and extraskeletal MC and the duration of follow-up for ESMC metastasis (Pancreatic metastasis not included). △ The numbers in parentheses on the right indicate the total number of MC cases followed up, while the numbers on the left represent the cases in which metastasis occurred, including both skeletal and extraskeletal origins. ★ The number of cases in which metastasis occurred among all cases of MC, including both skeletal and extraskeletal origins. NR, not recorded. NA, not applicable.
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Objective

There is a paucity of research using different machine learning algorithms for distinguishing between adrenal metastases and benign tumors in lung cancer patients with adrenal indeterminate nodules based on plain and biphasic-enhanced CT radiomics.





Materials and Methods

This study retrospectively enrolled 292 lung cancer patients with adrenal indeterminate nodules (training dataset, 205 (benign, 96; metastases, 109); testing dataset, 87 (benign, 42; metastases, 45)). Radiomics features were extracted from the plain, arterial, and portal CT images, respectively. The independent risk radiomics features selected by least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression (LR) were used to construct the single-phase and combined-phase radiomics models, respectively, by support vector machine (SVM), decision tree (DT), random forest (RF), and LR. The independent clinical-pathological and radiological risk factors for predicting adrenal metastases selected by using univariate and multivariate LR were used to develop the traditional model. The optimal model was selected by ROC curve, and the models’ clinical values were estimated by decision curve analysis (DCA).





Results

In the testing dataset, all SVM radiomics models showed the best robustness and efficiency, and then RF, LR, and DT models. The combined radiomics model had the best ability in predicting adrenal metastases (AUC=0.938), and then the plain (AUC=0.935), arterial (AUC=0.870), and portal radiomics model (AUC=0.851). Besides, compared to clinical-pathological-radiological model (AUC=0.870), the discriminatory capability of the plain and combined radiomics model were further improved. All radiomics models had good calibration curves and DCA showed the plain and combined radiomics models had more optimal clinical efficacy compared to other models, with the combined radiomics model having the largest net benefit.





Conclusions

The combined SVM radiomics model can non-invasively and efficiently predict adrenal metastatic nodules in lung cancer patients. In addition, the plain radiomics model with high predictive performance provides a convenient and accurate new method for patients with contraindications in enhanced CT.





Keywords: adrenal indeterminate nodules, radiomics, different machine learning algorithms, adrenal metastases, lung cancer




1 Introduction

Lung cancer is one of the leading causes of cancer-related deaths worldwide, and early diagnosis, precise staging, and personalized treatment have consistently been the focus of medical research (1–3). The high mortality rate may be associated with the development of metastasis, and the adrenal glands is a frequent site of metastatic spread (4). Adrenal metastasis is the second most common tumor after adrenal adenoma and also the most common malignancy of the adrenal gland (5). The most common primary malignant tumors of adrenal metastasis are lung cancer (39%), and then breast cancer (35%), malignant melanoma and so on (6, 7). With the widespread application of CT, MRI, and 18F-FDG PET/CT in the diagnosis, staging, and follow-up of malignant tumors, adrenal metastases are increasingly discovered incidentally (8). While approximately 50% of incidentalomas were metastases in lung cancer patients (9). The presence of adrenal metastasis influences the treatment of lung cancer, and further evaluation is usually required, especially in lung cancer patients with no other sites of metastases except for the adrenal gland. Thus, precise qualitative diagnosis of adrenal incidentalomas in lung cancer patients during staging or follow-up is crucial for guiding treatment and predicting prognosis.

Based on clinical symptoms, endocrine function tests, and typical imaging features, many patients can obtain a specific diagnosis of adrenal lesions. However, when adrenal incidentalomas are solitary, nonfunctioning, hyperattenuating (plain CT values>10HU) nodules (long diameter(LD) ≤ 3cm) (10, 11), immediately making an accurate diagnosis of metastatic nodules based on initial abdominal or chest biphasic-enhanced CT without additional diagnostic steps remains a challenge and focus for clinicians and radiologists, especially in lung cancer patients. Although the absolute washout rate ≥ 60% and the relative washout rate ≥ 40% used for characterizing of adrenal lesions have high specificity, sensitivity, and accuracy (12, 13). However, it is sometimes not possible to accurately differentiate adrenal benign nodules from metastases due to the overlap of absolute/relative washout rates, especially for hyperattenuating nodules (14, 15). Moreover, adrenal washout CT has certain drawbacks, such as the 15 min delayed scan is difficult to implement in daily work due to the large number of patients, the additional radiation dose and medical cost. As the most sensitive examination, the sensitivity of chemical-shift MR for hyperattenuating adenoma was only 67%. Especially for lesions with plain CT values greater than 30 HU, it is difficult to distinguish them from malignant tumors such as metastases (16–18). In addition, MRI examination is time-consuming, and some patients have contraindications for MRI examination. For PET/CT, there is a certain overlap in (18F) - fluorodeoxyglucose uptake between benign lesions and metastatic tumors (19). Additionally, PET/CT will result in greater financial and time costs for the patient. In order to achieve differential diagnosis of adrenal indeterminate nodules in lung cancer patients, invasive diagnostic methods such as biopsy would be chosen by most doctors. However, it may be necessary to take multiple samples from the tumor to determine its nature due to the heterogeneity (such as necrosis, bleeding, and calcification), especially larger tumors (20). In addition, it is sometimes difficult to obtain sufficient samples through puncture due to the hidden location of the adrenal gland (21). Lastly, biopsy may lead to unnecessary anxiety, overtreatment, and some complications in patients (22).

Therefore, radiologists and clinicians encounter a real dilemma that needs to be addressed. In clinical practice, adrenal indeterminate nodules are often identified when lung cancer patients undergo routine chest or abdominal CT scans. Unfortunately, most patients are subjected to additional examinations due to the challenges associated with diagnosing adrenal metastatic nodules using traditional imaging techniques. Consequently, there is an urgent need for an efficient, straightforward, and non-invasive method to predict adrenal metastases in lung cancer patients with adrenal indeterminate nodules based on initial biphasic-enhanced CT.

Although Cao et al. (23) suggested the diagnostic model based on traditional biphasic-enhanced CT imaging features could effectively predict adrenal metastases in lung cancer patients with adrenal indeterminate tumors. However, these traditional imaging features are assessed by radiologists with the naked eye, and the subjective influence of personal clinical experience is the main limitation of this study. As an advanced image analysis technology, Radiomics can non-invasively and objectively evaluate the heterogeneity and biological characteristics of tumors, thereby partially addressing the limitations of traditional medical imaging (24–26). Recent researches have demonstrated that CT radiomics has good differential diagnostic ability for adrenal lesions, particularly in distinguishing between benign and malignant tumors (27, 28). Furthermore, Moawad et al. (29) have indicated that a radiomics model established by random forest (RF) based on plain CT images showed good diagnostic performance for adrenal indeterminate tumors. However, a previous study found that certain texture features had limited utility, with a maximum AUC of 0.69, in differentiating adrenal metastases from benign tumors when using portal CT images in lung cancer patients (30). Moreover, most of these studies have primarily focused on the differential diagnostic value of a limited set of radiomics features derived from single-phase CT scans with relatively small sample sizes. Additionally, research specifically addressing “adrenal indeterminate nodules in lung cancer patients” remains scarce. Most importantly, the reliability, efficacy, and high accuracy of predictive models are critical factors in facilitating the success of radiomics (31). Therefore, a robust radiomics study should evaluate the differential diagnostic efficacy of models based on various machine learning algorithms to identify the optimal model (32). To our knowledge, there is a paucity of research exploring the optimal individualized model for accurately predicting adrenal metastatic nodules in lung cancer patients with indeterminate nodules based on a large sample size, multi-phase CT radiomic features, various machine learning algorithms, and comparison of diagnostic performance between radiologists and radiomics models. Such a comparison is crucial for validating the effectiveness of the radiomic models; only when the diagnostic performance of these models surpasses that of the radiologists can the advantages of radiomics be conclusively demonstrated.

Therefore, we chose different machine learning algorithms to develop and explore the simplest and most optimal personalized radiomics model for predicting adrenal metastases in lung cancer patients with adrenal indeterminate nodules based on initial biphasic-enhanced CT, promoting the implementation of precision medicine. The study design and pipeline are shown as Figure 1.




Figure 1 | The overall workflow of the development and validation of the models.






2 Materials and methods



2.1 Patients

Tangshan People’s Hospital Institutional Ethics Committee approved this retrospective study and the written informed consent was obtained from each patient. The patient enrollment pathway is shown in Figure 2. From February 2015 to August 2023, patients histologically confirmed lung cancer, underwent abdominal or chest biphasic-enhanced CT, and with complete clinical-pathological and imaging information and adrenal indeterminate tumors: unilateral hyperattenuating (plain CT values > 10 HU) nodules (1 cm ≤ LD ≤ 3 cm) were included. The primary reasons for using biphasic-enhanced CT were: (a) lung cancer patients often accidentally discovered adrenal tumors during chest biphasic-enhanced CT. If the initial chest biphasic-enhanced CT can effectively distinguish between adrenal metastases and benign tumors, it can avoid the economic burden and radiation exposure associated with additional adrenal or abdominal enhanced CT examinations. Consequently, to standardize the inclusion criteria, we also included abdominal biphasic-enhanced CT images, excluding the delay phase. (b) previous studies have demonstrated that biphasic-enhanced CT is adequate for effective differential diagnosis of adrenal tumors (23). The main reasons for using 1cm LD as the cut-off value were: (a) allowing sufficient nodule volume for reliable quantitative measurement and (b) increasing confidence in the presence of a truly focal adrenal nodule. Additionally, patients without good image quality and imaging follow-up, or those diagnosed pathologically with cortical cancer or pheochromocytoma were excluded. Finally, 154 patients were included in the metastases group and the inclusion criteria were: (1) histologically confirmed (n =46), (2) during lung cancer treatment, the volume of adrenal nodules in the same patient increased or decreased by 20% within 6 months (33) (n = 70), and (3) newly developed adrenal lesions during follow-up (n = 38). 138 patients conformed to the inclusion criteria for benign tumors: (1) histologically confirmed (n = 89) and (2) during lung cancer treatment, the size of adrenal nodules did not change at least 1year interval (34) (n = 49). To test the performance of the diagnostic model, we randomly assigned patients to the training dataset (n = 205; 96 benign nodules, 109 metastases) and testing dataset (n = 87; 42 benign nodules, 45 metastases) at a 7:3 ratio.




Figure 2 | The process of dataset establishment, short time: within 6 months.






2.2 Image protocol

This research employed two CT scanners (GE Discovery CT 750 HD and Philips Ingenuity core 64) owing to retrospective analysis. All patients first undergone abdominal or chest plain CT scan, followed by intravenous injection of 80-100 ml of nonionic iodinated contrast agent (350 mg I/ml) at a rate of 3.5 ml/s using a power injector. Then arterial (approximately 25-30 s) and portal (approximately 60-70 s) biphasic-enhanced CT scans were performed. The scanning parameters of the Philips Ingenuity core 64 were as follows: automatic tube current modulation,120 kV, matrix of 512 × 512, standard soft tissue window, 2 mm slice thickness and 2 mm slice interval, no reconstruction. The scanning parameters of the GE Discovery CT 750 HD were as follows: automatic tube current modulation,120 kV, matrix of 512 × 512, standard soft tissue window, 5 mm slice thickness and 5 mm slice interval, and reconstruction 1.25 mm slice thickness and 1.25 mm slice interval.




2.3 Traditional clinical-pathological-radiological model

Two radiologists with 4 and 8 years of abdominal CT experience evaluated the baseline clinical-pathological and radiological features, respectively. When there was a disagreement, a consensus was reached through discussion. The clinical-pathological and radiological features included gender, age, clinical stage and histological type of lung cancer, and the size, shape, location, CT values, cystic degeneration/necrosis, peak enhancement phase and enhanced ratio of adrenal nodules. The traditional clinical-pathological-radiological model was constructed based on the independent risk factors for predicting adrenal metastases screened by univariate logistic regression (LR) and multivariate LR.




2.4 Radiomics feature extraction and selection

The volume of interests (VOIs) of adrenal nodules were delineated by two radiologists with 4 and 7 years of experience in using 3D Slicer (version 4.13.0, https://www.slicer.org) based on CT images from each phase (including unenhanced, arterial and portal), respectively. VOIs should encompass as much lesion as possible, while being careful to avoid extratumoral structures (Figure 3A). An open-source software (PyRadiomics, version 2.2.0) was used to process and extract radiomics features, which could provide standardized algorithms to improve data reproducibility. The calculations of radiomics features can be performed on the original or pre-processed images using wavelet and Laplacian of Gaussian filter. Radiomics features were extracted from the VOIs of adrenal indeterminate nodules (Figure 3B), including shape features, first-order features, second-order features (texture features), and higher-order features. Based on randomly selected 40 patients in each phase images, intra-class correlation coefficients (ICCs) were used to evaluate the interobserver reproducibility of feature extraction, respectively. ICC<0.5 meaned low consistency, 0.5-0.79 middle, and ≥ 0.8 high. Finally, the radiomics characteristics with good stability (ICC≥ 0.8) were used for subsequent analysis (Figure 3C). The dimensionality and redundancy of radiomics features was reduced by using the least absolute shrinkage and selection operator(LASSO) in the training dataset. The value of the penalty parameter lambda (λ) was selected through fivefold cross-validation to maintain the model’s loss within one standard error of the minimum (Figures 3D, E). Lastly, useful radiomics features with non-zero coefficients were selected from the plain, arterial, and portal CT images, respectively.




Figure 3 | Delineation of VOI and selection of radiomics features: (A) Delineation of intratumoral region in the plain CT images. (B) Three dimensional VOI of adrenal tumors. (C) ICC distribution of the plain CT phase. (D) Binomial error graph of LASSO. (E) Coefficients path diagram of LASSO. VOI, volume of interest; ICC, intra-class correlation coefficient; LASSO, least absolute shrinkage and selection operator.






2.5 Radiomics models construction and validation

The useful features with high collinearity in the plain, arterial, and portal phases were deleted, respectively, and then the independent risk features were screened by using multivariate LR. In order to select the classifier model with the highest recognition of adrenal metastasis data, single-phase and combined-phase radiomics models were constructed and validated by using four machine learning algorithms, including decision tree(DT), logistic regression (LR), random forest (RF), and support vector machine (SVM). In addition, a clinical-pathological-radiomics model was developed by incorporating combined radiomics and the independent risk factors of clinical-pathology. Area under the receiver operating characteristic(ROC) curve(AUC), sensitivity, and specificity were used to evaluate the performance of the models in both the training and testing datasets. The comparison of AUCs between models was achieved through DeLong analysis, and the clinical value of each model was evaluated through decision curve analysis (DCA). Then, the best optimal personalized radiomics model was selected.




2.6 Statistical analysis

Statistical analysis and model construction were implemented by R software (version 4.2.1, http://www.rproject.org). The differences of categorical variables between two groups were compared using Fisher’s exact test or chi square. The differences of level variables such as clinical staging of lung cancer between two groups were compared using rank sum test. The differences of continuous variables between two groups were compared using Mann Whitney U-test. ICC and Kappa coefficients were used to evaluate the inter-observer reproducibility of the clinical-pathological and imaging features. Highly collinear variables (correlation coefficient>0.7) were automatically found using the “caret” package and then were deleted. LASSO was implemented using the “glmnet” package. The independent risk factors were screened using LR (“rms” package). The “rms” package “, “e1071” package “, “randomForest” package “, and “rpart” package “ were used to implement LR, SVM, RF, and DT algorithms, respectively. The “repoertROC” package was used to extract parameters for each ROC, including AUC (95% confidence interval (CI)), specificity, and sensitivity. The “caret” package was used to create a confusion matrix and extract parameters including precision, recall and F1 score. The “pROC” package was used to implement Delong test. The “ggplot2” package was used to draw calibration and decision curves. P value < 0.05 was statistically significant.





3 Results



3.1 Clinical-pathological-radiological model

Two diagnostic physicians showed good consistency in the analysis of each traditional clinical-pathological and radiological characteristics of biphasic-enhanced CT (Supplementary Table S1). There was no significant difference in parameters between the testing and training datasets (P>0.05), indicating the random grouping of total data was reasonable (Table 1). Age, gender, clinical stage and histological type of lung cancer, plain CT value, arterial enhancement rate, portal enhancement rate, and peak enhancement phase were all statistically significant between the two groups both in the training and testing datasets (P<0.05) (Table 1). Only arterial enhancement rate was remained for subsequent analysis due to high collinearity between arterial enhancement rate and portal enhancement rate (Supplementary Figure S1). And then gender, age, clinical stage of lung cancer, plain CT value, and peak enhancement phase were independent risk factors for predicting adrenal metastases screened by multivariate LR (Supplementary Table S2). The clinical-pathological-radiological model constructed by above five risk factors showed an AUC of 0.918 [95% CI: 0.879-0.958], a sensitivity of 0.864, a specificity of 0.844, and an accuracy of 0.854 in the training dataset, respectively; While the AUC, sensitivity, specificity, and accuracy were 0.883 [95% CI: 0.804-0.962], 0.822, 0.905, and 0.862 in the testing dataset, respectively (Figure 4).


Table 1 | Clinical-pathological and radiological features of all the patients.






Figure 4 | ROCs of clinical-pathological-radiological model in the training dataset (A) and testing dataset (B). ROC, receiver operating characteristic.






3.2 Single-phase radiomics models using different machine learning algorithms

A total of 1316 radiomics features were extracted from the plain, arterial, and portal CT images, respectively. 1088 plain features, 1012 arterial features, and 983 portal features with ICC ≥ 0.8, respectively, were used for subsequent analysis. And the average ICCs of the plain features, arterial features, and portal features were 0.909, 0.889, and 0.881, respectively. A total of 22 plain features, 10 arterial features, and 13 portal features were selected using LASSO, respectively, and then features with high collinearity were all deleted. Finally, 5 plain radiomics predictors, 4 arterial radiomics predictors, and 4 portal radiomics predictors were selected by multivariate LR, respectively (Table 2). The correlation coefficients between the independent risk radiomics features of each phase were all relatively low (Supplementary Figures S2A–C). Table 3 showed the ROCs of different machine learning radiomics models (including SVM, RF, LR, and DT) both in the testing and training datasets. The SVM models of each phase all showed the best performance in predicting adrenal metastases of lung cancer in the testing dataset, with AUC values ranging from 0.851 to 0.938, and then the RF models, LR models, and DT models (Table 3; Figures 5A–C). In the testing dataset, the four machine learning models of each phase all showed good calibration curves (Figures 6A–C), and DCA showed they all had high clinical net benefits (Figures 7A–C).


Table 2 | Selected radiomics features in the plain, artial, portal, and combined radiomics models.




Table 3 | Comparison of diagnostic efficacy for the four classification models based on different CT phase.






Figure 5 | ROCs of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase; (D), combined phase. ROC, receiver operating characteristic.






Figure 6 | Calibration curves of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase; (D), combined phase.






Figure 7 | DCAs of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase; (D), combined phase. DCA, decision curve analysis.






3.3 Combined-phase radiomics models using different machine learning algorithms

The independent risk factors of the combined radiomics model were identified by multivariate LR based on the radiomics predictors of each phase in the training dataset. Finally, 5 plain radiomics features and 2 arterial radiomics features were incorporated into the combined radiomics model and correlation coefficients between the independent risk features were relatively low (Table 2; Supplementary Figure S2D). Table 3 showed the ROCs of four radiomics models both in the testing and training datasets. The SVM model showed the best performance in predicting adrenal metastases of lung cancer in the testing dataset, achieving an AUC of 0.938, along with specificity, sensitivity, precision, recall, and F1 score values of 0.911, 0.857, 0.872, 0.911, and 0.891, respectively, and then the RF model, LR model, and DT model (Table 3; Figure 5D). Additionally, the Delong test indicated that the AUC of the SVM model was significantly greater than that of the DT model; however, no significant differences were observed between the SVM model and the RF or LR models (Supplementary Table S3). In the testing dataset, the four machine learning models all showed good calibration curves (Figure 6D), and DCA showed they all had high clinical net benefits (Figure 7D).




3.4 Clinical-pathological-radiomics model

The independent risk factors of the clinical-pathological-radiomics model were identified by multivariate LR based on the radiomics predictors of each phase and the clinical-pathological predictors (gender, age, and clinical stage of lung cancer) in the training dataset. Finally, the clinical-pathological features were excluded and only the combined radiomics features were included in the clinical-pathological-radiomics model. Therefore, the clinical-pathological-radiomics model was ultimately equivalent to the combined radiomics model.




3.5 Comparison of the radiomics models

In order to ensure the sustainability and stability of radiomic models, we chose SVM models to uniformly assess the predictive performance of different radiomics models (Figure 8A). The predictive performance of the combined radiomics model (AUC=0.938) was highest, and then the plain radiomics model (AUC=0.935), arterial radiomics model (AUC=0.870), and portal radiomics model (AUC=0.851) in the testing dataset (Table 4). In addition, compared with the clinical-pathological-radiological model (AUC=0.870), the diagnostic ability of the combined radiomics model was further improved, but there was no significant difference between the two models. All the radiomics models had good calibration curves in the testing dataset (Figure 8B). DCA showed that the area under the curves of the plain and combined radiomics models were relatively larger than other models, and the combined radiomics model had the greatest net benefit in the probability of low risk threshold (about 0-0.8) for the testing dataset (Figure 8C).




Figure 8 | Comparison of AUCs for different radiomics models using four machine learning algorithms (A); Calibration curves (B) and DCA (C) of different SVM radiomics models in the testing dataset. AUC, area under the receiver operating characteristic curve; DCA, decision curve analysis; SVM, support vector machine.




Table 4 | Comparison of AUCs between different models in the testing dataset.







4 Discussion

Our study developed four radiomics models and a traditional clinical-pathological-imaging model for predicting adrenal metastatic nodules in lung cancer patients using four different machine learning algorithms based on biphasic-enhanced CT. Our results suggested SVM was the most optimal algorithm for the qualitative diagnosis of adrenal indeterminate nodules in lung cancer patients. Among all single-phase radiomics models, the plain radiomics model had the highest discriminative diagnostic performance, while the performance of combined radiomics model (including 5 plain and 2 arterial radiomics features) was further improved compared to all single-phase radiomics models and clinical-pathological-imaging model. Radiomics may provide a reliable and non-invasive method for evaluating adrenal indeterminate nodules in lung cancer patients.

In recent years, radiomics and machine learning have been already widely used for diagnosis, staging, and prognosis of tumors (35–37). Moreover, the application of radiomic analysis has been expanding within the field of adrenal lesions research. Our study has filled a gap in the literature on lung cancer patients with adrenal indeterminate nodules in the setting of CT radiomics. Ho et al. (27) found that 18 enhanced CT texture features and 9 plain CT texture features showed significant differences in distinguishing adrenal malignant and benign lesions, with an average AUC value of 0.80. However, this study analyzed only 21 second-order features and had a small sample size of just 20 patients. Winkelmann et al. (28) suggested that radiomics features derived from portal dual-energy CT could effectively distinguish between adrenal adenomas and metastases, reporting AUC values ranging from 0.89 to 0.93. Nonetheless, this study included only 32 adenomas and 17 metastases, and did not exclude lipid-rich adenomas. In contrast to these studies, our research focused specifically on adrenal indeterminate nodules in lung cancer patients to effectively predict metastases. The previous studies examined all adrenal tumors without considering tumor size and plain CT value and were not restricted to lung cancer patients. Additionally, our study had the advantage of a larger sample size encompassing all radiomics features, while the aforementioned studies had relatively small cohorts and assessed only partial radiomics features. Although Andersen et al. (30) concentrated on lung cancer patients, their study was not restricted to adrenal indeterminate nodules. And they found that the diagnostic model developed using LR based on portal CT images had limited value (the maximum AUC of 0.69) in distinguishing adrenal metastases from benign tumors. In contrast, Moawad et al. (29) focused exclusively on adrenal indeterminate tumors (LD <4cm, plain CT value >10HU, and absolute washout rate <60%), but their study was not limited to lung cancer patients. And they reported that the radiomics model established using RF based on plain CT texture features demonstrated good diagnostic performance (AUC = 0.85), with a specificity of 71.4% and a sensitivity of 84.2%. In addition, our study had the advantage of analyzing multi-phase CT radiomic features using various machine learning algorithms, while the previous studies employed single-phase CT radiomics with only one machine learning algorithm.

SVM, LR, RF, and DT are currently the most commonly used machine learning algorithms in radiomics (32, 38, 39). No one can be applicable to every medical problem among numerous algorithms. Therefore, for specific medical problem, it is necessary to compare the performance of models constructed by different machine learning algorithms in order to explore the best machine learning algorithm (32, 40). This study constructed different radiomics models using four algorithms (including SVM, LR, RF, and DT) based on enhanced CT. Our results showed SVM radiomics models of each single and combined phase had the best predictive performance in the testing dataset (AUC: 0.870-0.938), which was higher than LR model, RF model, and DT model. This indicated that SVM was the optimal algorithm for qualitative diagnosis of adrenal indeterminate tumors in lung cancer patients in our study, and SVM could be the preferred algorithm for future radiomics research on adrenal metastatic nodules. SVM is a nonlinear machine learning algorithm with the strongest generalization ability for the unknown data, which can solve high-dimensional, nonlinear, and small sample problems. It is a relatively mature machine learning algorithm (41). SVM has satisfactory stability and effectiveness, and the performance of models trained with small samples is almost the same as that of models trained with large samples (42, 43). The diagnostic ability of LR models were lower than that of SVM models, suggesting that the data of adrenal indeterminate tumors may be nonlinear or linearly indivisible. Therefore, LR models based on linear algorithms were not as effective as nonlinear SVM models (32). In addition, our study found that the radiomics model constructed by RF and DT algorithms had significantly higher AUC values in the training dataset (AUCRF range: 0.967-0.995; AUCDT range: 0.867-0.911) than in the testing dataset (AUCRF range: 0.818-0.930; AUCDT range: 0.781-0813), indicating the poor generalization ability of this models. This results suggested that models constructed by RF and DT algorithms for predicting adrenal metastatic nodules in lung cancer may exist a certain degree of overfitting, which had adverse effects on the diagnostic ability of radiomics models. This issue may be attributed to the small sample size of this study (32, 44).

The differential diagnostic efficacy of the single-phase and combined radiomics models based on the optimal algorithm SVM were further comparative analysis. This research found that the combined radiomics model included 5 plain radiomics features and 2 arterial radiomics features had the highest predictive performance for adrenal metastatic nodules of lung cancer in the testing dataset, with an AUC value of 0.938. This performance surpassed previous research results, which reported AUC values ranging from 0.69 to 0.93 (27–30). This results indicated that only the plain and arterial CT images from the initial chest or abdomen enhanced CT could reliably distinguish adrenal metastatic nodules and benign nodules in lung cancer patients by utilizing radiomics, effectively avoiding the psychological and economic pressure, and additional radiation hazards caused by unnecessary further examinations, and promoting the effective formulation of individual treatment programs. Besides, compared to 15-min delayed scan of adrenal washout CT, arterial single phase enhanced CT scan has a shorter scanning time and is easier to be widely applied. As a result, we boldly assume that 15-min delayed scan has the potential to be replaced by the arterial phase. However, this conclusion still needs further validation. A further point for concern was that the plain SVM radiomics model had the highest predictive performance in the testing dataset (AUC=0.935) among all the single phase radiomics models, slightly lower than the combined radiomics model (△ AUC=0.003). And the plain radiomics features had the greatest contribution to the combined radiomics model. This results suggested that the plain CT images may have the potential to better reflect the heterogeneity of adrenal metastatic nodules. We speculated that intra-tumoral heterogeneity may be masked by contrast agents because the blood supply of benign and metastatic adrenal nodules is relatively abundant. Feliciani (45) and Zhang (46) showed that the radiomics model based on plain CT could efficiently distinguish adrenal lipid-poor adenoma from other tumors (average AUCFeliciani=0.93, AUCZhang=0.93), indicating that plain CT radiomics features were important markers of heterogeneity in adrenal tumors, which was consistent with our study. Therefore, for the high-risk population with potential risks associated with contrast agents (such as diabetes, renal insufficiency, elderly and children), the plain radiomics model is undoubtedly the best method for safe, economical, and effective prediction of adrenal metastatic nodules in lung cancer patients.

To sum up, our findings may hold significant value for clinical practice. The primary objective of imaging in lung cancer patients with an adrenal indeterminate nodule is to differentiate between a metastatic lesion and a benign tumor. Our study has yielded very encouraging results, suggesting that further examinations may not be necessary. A plain CT scan or biphasic-enhanced CT is more readily available, offers reliable image quality, and is less expensive and time-consuming compared to adrenal contrast-enhanced CT or other imaging modalities such as MRI and PET/CT. More importantly, the initial CT images already acquired for clinical purposes may suffice for radiologists and clinicians to make accurate diagnoses based on this study. Consequently, our results could be swiftly integrated into clinical practice.

The radiomics characteristics have tight relation with the biological behavior and microstructure of lesions (47). The combined radiomics model constructed in this study included a total of 1 first-order statistical feature, 2 shape features, 1 gray level size zone matrix feature, and 3 gray level co-occurrence matrix features. The first-order statistical features mainly reflect the symmetry, uniformity, and local intensity distribution within the tumor. Shape features, in simple terms, are used to describe geometric features (48). The gray level size zone matrix features and the gray level co-occurrence matrix features can both reflect the heterogeneity and complexity of tumors from a microscopic perspective. The former mainly focuses on the texture, complexity, and clarity of lesion images, while the latter mainly focuses on the non-uniformity of grayscale levels and the variability of size regions (49–52). On the other hand, the combined radiomics model incorporated 5 wavelet transform features and 2 original features, showing that the preprocessed image features are more stable than the original image features (40).

There is another issue that requires our attention. As is well known, traditional radiological features are evaluated by radiologists using the naked eye, which can be subjectively influenced by their personal clinical experience. Additionally, radiologists tend to diagnose malignancy uncertain, relying on the likelihood of malignancy in real-world scenarios. These factors contribute to a certain degree of variability in radiological features, ultimately affecting the accuracy of the results. Although radiomics transforms traditional medical images into mineable data for a deeper and more objective analysis of the potential information within the images, inconsistencies may arise due to variations in CT scanners, imaging protocols, and the delineation of VOIs by different radiologists. Furthermore, the single-center and retrospective nature of the study may introduce selection bias and limit the generalizability of the results. To mitigate these issues, we selected radiomic features with good stability and employed various machine learning algorithms along with cross-validation. Our developed model could assist less experienced physicians when expert radiologists are absent or unavailable in resource-limited hospitals. Additionally, this model could serve as a primary reader for CT images of adrenal indeterminate nodules in lung cancer patients, thereby reducing the workload for radiologists. When significant differences are observed, it is essential to actively monitor or perform biopsies to confirm the diagnosis, thus aiding clinical practice in achieving precise staging of lung cancer and promoting individualized treatment.

In addition, although clinical staging of lung cancer was an independent risk factor of clinical-pathological features for distinguishing between adrenal metastatic nodules and benign nodules, the clinical-pathological-radiomics model did not include any clinical-pathological features. It was speculated that this may be related to a small sample size, a smaller contribution of clinical-pathological features to the comprehensive model, and a lower impact weight than radiomics features, which further confirmed the advantages of radiomics. Previous studies also found that the predictive performance of the comprehensive model may not be improved by combining radiomics features with clinical-pathological features or traditional imaging features (41, 53). However, this area warrants further investigation. Integrating these significant clinical-pathological features could potentially enhance the model’s diagnostic capability and should be explored in future research.

There were several limitations in this study: Firstly, our study was a single-center and retrospective analysis, which may lead to selection bias and limit the generalizability of the results. A future multi-center prospective study would provide a more diverse patient population and help to validate the findings across different clinical settings, thus enhancing the robustness and external validity of the developed models. Secondly, this study diagnosed some adrenal nodules according to imaging follow-up, which reflects and is also in line with the current clinical reality. Thirdly, the use of two different CT scanners and imaging protocols in this study may lead to variability in the radiomics features extracted, potentially impacting the performance of the model. Standardizing imaging protocols would reduce this variability and ensure consistent and reproducible radiomics feature extraction; However, it can be considered a strength of this study as it is more in line with the actual situation of Chinese healthcare and has a certain potential universality. Fourthly, our study only applied 3D VOI. Although previous studies reported that 3D VOI had a better ability to reflect tumor heterogeneity than 2D Region of interest (ROI) (54), 2D ROI had the advantage of being more convenient to operate, so it may be more feasible to use and easier to promote. Fifthly, the radiomics models constructed in this study had no external validation, and multi-center cooperation is needed to further improve the predictive performance and generalization ability of the models.

The combined radiomics model based on independent risk radiomics features of the plain and arterial CT images can non-invasively and efficiently predict adrenal metastatic nodules in lung cancer patients, and the predictive performance of which was significantly higher than the clinical-pathological-imaging model. In addition, the plain radiomics model, which also had high predictive ability, provided a convenient and accurate new method for predicting adrenal metastatic nodules in patients with contraindications for enhanced CT examination, effectively avoiding unnecessary further examinations.
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Purpose

To optimize and assess an abbreviated dual time-point 18-Fluor-Deoxyglucose (FDG)-Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) protocol for predicting patient outcomes in pancreatic cancer.





Methods

70 patients (47 pancreatic cancer, 23 chronic pancreatitis) underwent hybrid PET/MRI with dual time-point PET/CT at 60 and 84 minutes post-injection. Metabolic indices (MI) were calculated from Standardized Uptake Value (SUV) changes (SUVmin, SUVmean and SUVmax). Multivariate analysis was performed on PET, MRI, laboratory, and histologic data. Top predictors were used for survival analysis.





Results

MI SUVmax, thresholded at 11%, was the best outcome predictor, distinguishing high-risk (2year (2y)-Overall Survival (OAS) 32%, 5y-OAS 14%, 10y-OAS 8%) and low-risk groups (2y-OAS 76%, 5y-OAS 32%, 10y-OAS 23%). Tumor size, CBD obstruction, and infiltrative disease had lower predictive value.





Conclusions

Metabolic indices from abbreviated dual time-point FDG-PET/MRI can differentiate pancreatic malignancy from pancreatitis and predict outcomes, outperforming other indices. This protocol offers a valuable diagnostic tool for characterizing pancreatic lesions and predicting outcomes based on imaging criteria.
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Introduction

Despite increased research efforts and promising therapy trials over the past decade, the prognosis for pancreatic cancer has not significantly improved compared to other gastrointestinal malignancies. Additionally, the incidence of pancreatic cancer has markedly risen over the last two decades. In 1990, pancreatic cancer was responsible for 200,000 deaths worldwide and was the 11th most frequent cancer in women and the 12th in men (1). By 2016, the global death toll had doubled to 405,000 (2). In 2022, pancreatic cancer was estimated to be the second most frequent gastrointestinal cancer in the United States (U.S)., surpassed only by colonic cancer, and accounting for 8% of total cancer deaths, ranking as the fourth leading cause of cancer-related mortality in both men and women (3).

Unfortunately, the symptoms of pancreatic malignancies are nonspecific and often appear late in the disease progression. Consequently, up to 80% of patients are diagnosed at stage II-III, by which time the cancer has either spread or progressed locally to a degree that makes surgical intervention unfeasible. In such cases, treatment options are limited and primarily palliative, typically involving aggressive chemotherapy regimens, sometimes in combination with radiation therapy. These treatments generally result in survival gains of approximately one year, as indicated by retrospective studies (4, 5). Even for stage I disease cases that are suitable for surgical intervention, the overall five-year survival rate remains between 12% and 15% (6–8). The primary curative treatment for stage I pancreatic cancer is surgical resection, which has evolved from traditional open surgery to minimally invasive techniques. These minimally invasive approaches have the potential to reduce postoperative recovery time and associated complications. However, both open and minimally invasive or robot-assisted pancreatic surgeries carry significant risks of severe complications (9–11). Therefore, a risk-adjusted treatment strategy should be employed whenever feasible, incorporating a comprehensive preoperative evaluation with Computed Tomography (CT) or MRI scans to guide treatment planning.




Preoperative diagnostic challenges and role of imaging

Ideally, preoperative planning mandates confirming a histologic diagnosis through biopsy. However, technical hurdles impeding biopsy procedures and the presence of heterogeneous lesions, which can lead to sampling errors, may result in scenarios where the definitive diagnosis is only established during surgery. Any advancements in imaging techniques capable of predicting the final diagnosis will ultimately aid in tailoring the surgical approach, potentially reducing postoperative complications and morbidity (12).

Nevertheless, differentiating between benign and malignant pancreatic lesions solely through imaging modalities remains a diagnostic challenge. Despite employing sophisticated clinical imaging protocols such as multi-phase contrast-enhanced CT, multi-parametric MRI, endoscopic ultrasound, PET/CT, and the more recent PET/MRI, these imaging procedures consistently demonstrate low specificity in distinguishing pancreatic malignancies from acute or chronic inflammatory pancreatic conditions (13–17). Clinical research protocols incorporating kinetic metabolic analyses from dynamic PET studies, established over a decade ago, have demonstrated superior performance in distinguishing between malignant and inflammatory pancreatic lesions (13, 15, 18–20) and predicting outcomes when compared to traditional PET, CT, and even multiparametric MRI (21, 22). Despite these advantages, the dynamic PET imaging protocols utilized in these studies have not been widely adopted in clinical practice. This is primarily due to the need for mathematical kinetic modeling and continuous image acquisition of a restricted field of view, in addition to whole-body imaging. This resulted in imaging protocols extending up to 120 minutes, thereby occupying scanner time that could otherwise accommodate six to ten consecutive patients. The recent introduction of total-body scanners with large axial fields of views and significantly enhanced scanner sensitivity characteristics, when combined with MR imaging, holds the potential to substantially improve pancreatic tissue characterization through the use of kinetic descriptors (23). However, this advanced and costly technology is still in its early stages of introduction and remains limited in availability.

The objective of this study was to assess an abbreviated and simplified, semiquantitative hybrid imaging protocol for prediction the outcomes of pancreatic lesions utilizing standard clinical scanner technology within a busy, clinical setting.






Materials and methods




Patients

Patient consent and Institutional Review Board (IRB) requirements according to good clinical practice (GCP) and the Declaration of Helsinki of 2000 were met prior to any patient study. Over a span of 9 years, a total of 70 consecutive patients (40 male, 30 female) undergoing diagnostic evaluation for localized pancreatic lesions were prospectively enrolled in the study and subsequently followed for a minimum of 10 years. Exclusion criteria encompassed laboratory results indicative of acute pancreatitis, a history of prior malignancy, previous surgical intervention, as well as prior chemotherapy or radiotherapy treatments. Median age at the time of diagnostic procedure was 71.2 years (range 42-82 years). The medical and demographic records of patients encompassed age, gender, serum Carcinogenic Antigen 19-9 (CA-19-9) and bilirubin levels, lesion size and location, histological diagnosis, presence or absence of jaundice, TNM stage for malignant cases, including tumor grading based on World Health Organization (WHO) criteria for digestive system tumors classification [cf. reference (15)], along with treatment information.





PET/MR imaging

Every patient underwent hybrid PET/MR imaging, which involved whole-body PET/CT using a dedicated clinical scanner (Siemens Biograph 40 HIREZ TRUE-D, Siemens Healthineers, Erlangen, Germany) with a non contrast-enhanced low-dose CT scan (90mAs, 110kV, CAREDOSE). This was followed by a contrast-enhanced diagnostic CT scan if a previous contrast-enhanced CT was not available, and then an abdominal MR. All patients fasted for a minimum of 6 hours before the PET scan and underwent blood glucose testing right before the injection of 5 Megabequerel/Kilogram (MBq/Kg) FDG. Patients with established non-insulin-dependent diabetes were instructed to take their oral diabetes medication at least one hour before the examination. In cases where blood glucose levels at the scheduled PET appointment exceeded 10.1 mmol/l, the examination was either postponed or blood glucose was normalized by administering a suitable dose of fast-acting human insulin intravenously. In these cases, the injection of FDG was halted until subsequent blood glucose testing indicated the beginning of a rise in glucose levels following the initial decrease. The PET protocol included a whole body scan 60 minutes post injection (4 minutes emission time per bed, 4-5 beds per examination), immediately followed by a single bed acquisition of the abdomen (4 minutes emission time). Within one week of PET/CT imaging, a whole-body MRI was conducted, followed by a dedicated contrast-enhanced MRI of the abdomen. (Siemens 1.5T Verio, Siemens Healthineers, Erlangen, Germany). Each patient underwent either fine needle biopsy, exploratory surgery, or definitive resection, resulting in cytological or histological diagnoses. PET/CT and MRI scans were analyzed using a dedicated oncology workstation (Siemens Multimodality Workplace) with manufacturer-provided proprietary software (TRUE-D, Siemens Healthineers, Erlangen, Germany). The evaluation process involved the following steps: inter- and intramodality co-registration of whole-body PET/CT and MRI scans, contrast-enhanced CT scans, second time-point PET/CT scans, and post-contrast abdominal MRI scans; fusion of the co-registered images; and regional analysis of pancreatic lesion characteristics. To conduct regional analysis, areas of contrast enhancement or solid appearance in lesions (or solid-appearing areas in the absence of contrast enhancement) were delineated as irregular three-dimensional (3-D) regions-of-interest (ROIs) on the patient’s MRI by three experienced investigators (FDJ, IV, and AC). These delineated regions were then transferred onto the two co-registered PET/CT datasets to align suspected tumorous regions with their corresponding regional metabolic activity. For regional analysis, contrast enhancing or (in case of missing contrast enhancement) solid appearing lesion areas were independently delineated by three experienced investigators (FDJ, IV and AC) as irregular 3-D ROIs on the patient’s MRI and copied onto the two co-registered PET/CT data sets to match suspected tumorous areas and their respective regional metabolism. For each region of interest and time-point SUV were quantified as the maximum SUV (SUVmax), mean SUV (SUVmean), and minimum SUV (SUVmin) to account for potential metabolic heterogeneity within the tumor. Metabolic indices (MI) were derived by calculating the percent change in SUV (SUV%) using the formula: 100*((SUV at Timepoint 2 / SUV at Timepoint 1) − 1)%. Inter-observer variations in the SUV measurements were also assessed. To mitigate potential observer-induced bias, the mean values of the three investigators’ respective SUV measures were utilized for further analysis.





Statistical analysis

As the primary endpoint, overall survival (OAS) was defined as the duration in months from the date of diagnosis to the date of death from any cause. Multivariate analysis was conducted to identify independent predictors of survival. For SUV measures proving to be a predictor of survival, hazard ratios and p-values were calculated for incremental values by performing a Cox proportional hazards regression analysis, and the significance and effect size of each threshold was compared using the Akaike Information Criterion (AIC) to compare models. Receiver Operating Characteristics (ROC) analyses were then performed to determine the accuracy of cutoff/grouping values for variables predictive of OAS, followed by univariate analysis of OAS for the best-performing cutoff values. Additionally, Chi-square and Fisher exact tests were used to compare frequencies between groups. Survival time was estimated using the Kaplan-Meier method, and differences in survival between groups were compared using a log-rank test. Multivariate Cox’s proportional hazards regression was applied to assess whether metabolic indices provided additional predictive information on survival, with a p-value <0.05 indicating statistical significance. A heatmap indicating hazard ratios and p-values for the 20 top performing variables was calculated. Statistical analysis was performed using MEDCALC software version 14.8.1 (www.medcalc.org).





Patient enrollment and diagnosis

Seventy consecutive patients underwent hybrid early dual time-point FDG-PET/MRI. Pancreatic adenocarcinoma was confirmed in 47 patients, while 23 were diagnosed with chronic pancreatitis. Among those with adenocarcinoma, 35 (74%) had surgical resections, and 12 (26%) received biopsies only due to advanced disease identified by PET/MRI.





Follow-up and survival analysis

At analysis time, 41 patients had died, with a median follow-up of 157.5 months (range 140-204 months), a mean OAS of 40.1 months and a median OAS of 26.5 months (range: 3.4-185 months). Patient demographics and clinical characteristics are summarized in Table 1.


Table 1 | Demographical and baseline characteristics: patients with diagnosis of pancreatic cancer.







Results

Inter-observer variance for SUV measurements was minimal: 2.2% for SUVmin, 2.8% for SUVavg, and 2.1% for SUVmax. The mean Metabolic Index for SUVmax (MI SUVmax) was significantly different between pancreatic cancer (14.7) and chronic pancreatitis (-11.6), p<0.0001 (Figure 1). Demographical and baseline characteristics for patients with diagnosis of chronic pancreatitis are given in Table 2. SUVmax did not differentiate between tumor grades 1-3 (Figure 2).




Figure 1 | Data comparison graph for MI SUVmax in pancreatic cancer vs. pancreatitis.




Table 2 | Demographical and baseline characteristics: patients with diagnosis of chronic pancreatitis.






Figure 2 | Data comparison graph for SUVmax vs. tumor grade in pancreatic cancer.







Multivariate analysis

A multivariate proportional-hazards Cox regression model included clinical and imaging parameters such as SUVmax, metabolic tumor volume, age, TNM classification, and CA-19-9 levels. Key predictors of poor outcomes were M-stage, tumor location, CA-19-9 levels, and MI SUVmax. The optimal MI SUVmax cutoff (>11) was determined for incremental value increases w-using the Akaike Information Criterion and confirmed by ROC curve analysis.





Hazard ratios and P-values

Figure 3 displays hazard ratios and p-values for incremental MI SUVmax values. A heatmap of the top variables is presented in Table 3.


Table 3 | Heatmap of hazard ratios and p-values (sorted by hazard ratios).






Figure 3 | Hazard ratios and p-values for incremental MI SUVmax thresholds.







Group comparisons

Patients were divided based on MI SUVmax >11. No significant differences in baseline characteristics were found between groups.





Univariate analysis

Univariate analysis showed that T-stage >T2M0, tumors in the pancreatic body or tail, and MI SUVmax >11 were associated with shorter overall survival (OAS). Other factors like sex, age, tumor grade, CA19-9 levels >200 U/mL, and CHD obstruction were not significantly associated with OAS (Table 4).


Table 4 | Univariate analysis of overall survival (OS).







Prognostic factors

Cox regression identified M-Stage >1 and MI SUVmax >11 as independent prognostic factors (p<0.001 and p=0.001, respectively). A MI SUVmax ≤11 predicted better survival rates at 2 years (76%), 5 years (32%), and 10 years (23%), compared to a MI SUVmax >11.





Survival analysis

Kaplan-Meier survival analyses were conducted to assess the prognostic significance of various previously identified variables (Figure 4). Among these, only M-Stage, anatomical tumor location, and Metabolic Index (MI) SUVmax demonstrated statistically significant differences in survival between groups using the log-rank test. MI SUVmax, in particular, was a strong predictor, distinguishing between a high-risk group with an overall survival (OS) rate of 32% at 2 years, 14% at 5 years, and 8% at 10 years, and a low-risk group with an OS of 76% at 2 years, 32% at 5 years, and 23% at 10 years.




Figure 4 | (A–J) Kaplan-Meier survival curves for different variables; p-value <0.05 is only fulfilled for (A–C).







ROC analysis

The ROC analysis showed that MI SUVmax had better predictive capability for survival outcomes than SUVmax, with AUC values of 0.69 and 0.58, respectively (Figure 5). Although neither parameter demonstrated exceptional predictive power, MI SUVmax proved to be the more effective predictor in this analysis.




Figure 5 | Receiver Operating Characteristic (ROC) curve for SUVmax and MI SUVmax.








Discussion

The present study aimed to evaluate semiquantitative dual time-point hybrid FDG-PET/MR measurements as indicators of potential malignancy in pancreatic lesions and predictors of outcomes in patients with pancreatic carcinoma. While it is well established that elevated glucose consumption plays a crucial role in cancer progression, and FDG can serve as an indicator of glycolysis in malignant tissue, the visual intensity of FDG uptake does not always accurately reflect the in-vivo metabolic activity of the cells generating the FDG PET signal. This discrepancy arises because the locally measured radioactivity over time represents a composite signal that integrates the activities from phosphorylated intratumoral, non-phosphorylated intravascular, and interstitial radiotracer sources (24).

Time course analysis in quantitative FDG-PET investigations of pancreatic lesions, utilizing dynamic image acquisition over at least 90 minutes, has demonstrated the ability to differentiate between malignant and inflammatory diseases, as well as normal pancreatic metabolism (13, 15, 18–20). However, to our knowledge, no systematic data have been available to date to determine its prognostic value in predicting overall survival.

In an effort to establish an optimal, streamlined protocol for clinical imaging, the time-activity curves from the original dynamic data in (18) were meticulously re-analyzed. The goal was to identify the minimal time lag between two single measurements of tumor activity that could effectively differentiate between benign and malignant diseases while simplifying the data acquisition process. Based on the slopes of the time-activity curves at different time points, an initial time point of 64 minutes post-injection (corresponding to when the pancreas would typically be imaged during a standard whole-body PET scan) and a second time point at 84 minutes post-injection were identified. These two time points were selected because they were expected to have large enough differences in the slopes of the time-activity curves to potentially differentiate between benign and malignant pancreatic diseases. To test this hypothesis and determine the prognostic value of dual time-point hybrid PET/MR in pancreatic cancer, this histologically controlled study was initiated to investigate abbreviated time-point imaging in a large, prospective cohort of patients with pancreatic lesions.

Corroborating data from a prior report (25), metabolic indices differed significantly between pancreatic malignant and inflammatory disease (Figure 1). The hypothesis that an increase in regional metabolism over a short 20-minute interval (increase in metabolic index) could differentiate between malignant and inflammatory diseases, was confirmed in all patients, with a positive predictive value (PPV) of 100%, negative predictive value (NPV) of 47%, accuracy of 95%, sensitivity of 63%, and specificity of 100%. In contrast, single time-point imaging at the initial time point had a PPV of 81%, NPV of 55%, accuracy of 73%, sensitivity of 19.6%, and specificity of 95% when a cutoff of 7 was chosen for SUVmax, as suggested as best predictive parameter by ROC analysis of thresholds. Interestingly, there were 3 cases of adenocarcinoma with non-mucinous pathology, where the MI was negative. Histopathological findings in these patients revealed predominantly inflammatory disease with smaller areas of malignancy within. Conversely, in five malignant lesions that initially showed no visually increased FDG uptake above background at the initial time point (the typical time point for routine clinical imaging), a subsequent increase in SUVmax of more than 11% (MI >11) was observed at the second time point. The MI in the segmented tumor volume significantly exceeded the MI in the surrounding normal pancreatic tissue (data not shown).

It is well known that the plateau of intracellular FDG metabolic trapping, due to FDG not being a substrate for glucose metabolism downstream of hexokinase, is typically reached approximately 90 minutes post-injection (26–28). Additionally, it has been shown that imaging later than 90 minutes post-injection may further improve tumor-to-background contrast and identify more lesions (29). However, for the sake of simplicity and patient workflow, clinical practice generally adopts a post-injection uptake period of only 60 minutes prior to imaging, as a compromise between the total duration of the procedure and diagnostic efficacy. The potential loss of sensitivity and efficacy due to this less-than-optimal clinical practice can be partially compensated by incorporating regionally defined second time-point measures at time points closer to the plateau phase of intracellular FDG trapping.

Another notable finding was, that in 11 cases comprising small lesions and lesions with complex or partially cystic anatomy, regional metabolic changes were only accurately determined when ROIs were specifically delineated based on lesion contours on hybrid PET/MRI. The traditional method of defining spherical ROIs centered on visually perceived hypermetabolic lesions seen on PET/CT images alone, which included the entire lesion and surrounding tissue, failed to show significantly increased MIs in these cases. In complex and very small lesions, this may be attributed to increased bias due to local metabolic inhomogeneity, with partial volume effects masking regional metabolic changes and initial peak values not necessarily located in the tissue of interest (e.g., in adjacent vascular structures). This may also have contributed to the finding, that SUVmax, in our cohort, did not differentiate between tumor grade 1-3 (Figure 2).

Regional analysis based on lesion delineation on hybrid PET/MRI proved to be both feasible and reproducible in a clinical setting, resulting in excellent inter-observer variance of less than 3%.

In the multivariate Cox regression model, MI SUVmax >11 was a key predictor of poor outcomes, with a hazard ratio indicating a substantial increase in risk. The statistical significance of this threshold was confirmed by ROC curve analyses, underscoring its robustness as a prognostic tool.

Compared to other potential thresholds, MI SUVmax >11 demonstrated superior predictive accuracy for overall survival. While previously referenced thresholds for SUVmax, such as 3.5 and 5.1 (30, 31) did not show significant prognostic value in our patient cohort, the MI SUVmax threshold at 11 consistently differentiated between outcomes effectively (compare Table 3).

In our patient cohort, the previously cited thresholds for SUVmax of 3.5 and 5.1 did not demonstrate significant prognostic value, as reported in earlier studies (30, 31), compare Table 3.

In our analysis, M-stage was confirmed as well-known predictor of poor outcomes, with a hazard ratio of 6.4730. However, the interpretation of this finding may be limited due to the relatively small number of patients presenting with metastases at diagnosis. Additionally, tumors located in the pancreatic tail were associated with a worse prognosis, although this association did not reach statistical significance.

Clinically, the identification of MI SUVmax >11 as an optimal cutoff may provide valuable guidance for treatment planning and risk stratification. Patients exceeding this threshold are associated with significantly shorter overall survival, highlighting the need for more aggressive management strategies.

The use of hybrid PET/MRI in this study provided several key advantages over traditional PET/CT for accurately assessing regional metabolic changes in pancreatic lesions and predicting prognosis:




Improved delineation of complex and small lesions:

In 11 cases with small or partially cystic lesions, metabolic changes could only be accurately determined when regions of interest (ROIs) were specifically delineated based on the lesion contours seen on the MRI component of the hybrid PET/MRI. The superior soft tissue contrast of MRI allowed for more precise ROI placement compared to the traditional method of drawing spherical ROIs on the non-contrast low-dose CT images typically acquired in PET/CT alone. This is especially important for complex lesions where metabolic inhomogeneity and partial volume effects can mask regional changes if the ROI includes surrounding normal tissue, which would specifically affect SUVmean values.





Exclusion of non-tumorous hypermetabolic foci:

Another advantage of MRI is the ability to better characterize incidental hypermetabolic foci in the vicinity of the pancreas as non-tumorous based on their MRI appearance. With PET/CT alone, such foci could potentially be mistaken for further tumor extension and be included wrongly into the tumor ROI. The improved soft-tissue contrast of MRI helps avoid this pitfall.





Detection of subtle tumor infiltration:

MRI is also superior for detecting tumor infiltration into surrounding tissues compared to CT. This again allows for more accurate tumors delineation.

In summary, although MI SUVmax was identified as the best prognostic predictor, the incorporation of MRI in this study played a vital role in accurately quantifying this metric in complex cases. The superior soft tissue contrast of MRI enabled precise tumor delineation, exclusion of confounding non-tumorous hypermetabolic foci, as well as exclusion of diluting the metabolic index through partial volume effects, which is particularly important when considering the potential advantages of using SUVmean values instead of SUVmax. SUVmax, being a single-pixel value, is more susceptible to noise and may not accurately represent the overall tumor metabolism, especially in heterogeneous lesions. In contrast, SUVmean, which averages the metabolic activity over the entire tumor volume, may provide a more robust assessment of tumor metabolism. However, accurate calculation of SUVmean heavily relies on precise tumor segmentation, which is greatly facilitated by the superior soft tissue contrast of MRI. By improving the interpretation of metabolic information from PET, the hybrid PET/MRI approach laid the foundation for exploring the potential benefits of using SUVmean as an alternative or complementary prognostic marker to SUVmax.

It can be expected that the clinical use of integrated PET/MRI scanners will further enhance regional analysis by minimizing partial volume effects caused by potential motion-related subtle misregistration between the two exams and possible changes due to disease progression or declining inflammatory changes within the inter-modality time interval.





Optimized protocol

The additional time and effort required for dual time-point imaging and analysis using the presented abbreviated protocol are minimal and can be easily integrated into the existing clinical workflows of many oncologic imaging centers. In a systematic workflow, reporting already includes co-registration and matching of all existing imaging modalities for image reading, and reporting of SUV is a recommended part of the regular report in oncologic PET imaging (32). Therefore, the additional time needed for an extra SUV measurement is negligible. Consequently, for patients with suspicious pancreatic lesions, the proposed abbreviated dual time-point hybrid FDG-PET/CT/MRI protocol offers an excellent diagnostic option. It aids in characterizing pancreatic lesions, predicting individual patient outcomes, and can be seamlessly incorporated into or adapted to existing local clinical imaging protocols using standard imaging equipment.

With the increasing availability of integrated PET/MRI scanners, processing time can be further minimized, and issues related to image misregistration and inter-modality abdominal motion can likely be overcome, potentially enhancing the ability to accurately define prognostic criteria in small and heterogeneous pancreatic lesions. Additionally, new total-body scanner technology, with its dramatically increased signal-to-noise ratio in dynamic data, may contribute to even better diagnostic performance.





Conclusion

In conclusion, the utilization of hybrid PET/MRI for analyzing regional metabolic changes over time has proven to be a valuable tool in enhancing the diagnostic evaluation of pancreatic lesions by providing additional predictors of patient outcomes and reliably differentiating between chronic pancreatitis and pancreatic carcinoma. A key finding of this analysis is the identification of the MI SUVmax threshold at 11 as a reliable and clinically relevant imaging marker for predicting survival in pancreatic cancer patients. This imaging marker effectively distinguishes between low-risk and high-risk patient groups, offering crucial prognostic information. The low-risk group demonstrates a 2-year overall survival (OAS) of 76%, a 5-year OAS of 32%, and a 10-year OAS of 23%, while the high-risk group shows a 2-year OAS of 32%, a 5-year OAS of 14%, and a 10-year OAS of 8%.

The integration of this marker into clinical practice has the potential to significantly enhance decision-making processes and ultimately improve patient outcomes, which can be obtained through the implementation of the proposed abbreviated protocol of hybrid early dual time-point PET/MRI, offering an efficient and effective approach to pancreatic cancer assessment and prognosis.





Strengths and limitations

Strength of this study is the prospective design of systematic data acquisition and analysis including a follow-up time interval sufficient to define 10-year OAS. A further strength of the concept presented is that it is directly transferrable to the workflow of currently available, integrated PET/MRI systems (proposed workflow given in Appendix I). Limiting is the relatively small number of total patients, not allowing for meaningful subgrouping of histopathologically differing cases (e.g. mucinous vs. non-mucinous vs. mixed appearance, Intraductal Pancreatic Mucinous Neoplasia (IPMN), where bias to small size effects in histopathologic heterogeneous disease can not fully be accounted for.
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Purpose

To develop and validate a radiomics nomogram model for predicting the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2 cm in size.





Methods

In this study, 300 LUAD patients from our institution were randomly divided into the training cohort (n = 210) and an internal validation cohort (n = 90) at a ratio of 7:3, besides, we selected 65 patients from another hospital as the external validation cohort. The region of interest of the tumor was delineated on the computed tomography (CT) images, and radiomics features were extracted. A nomogram model was established using radiomics features, clinical features and conventional radiographic features. The nomogram model was compared with the radiomics model and the clinical model alone to test its diagnostic validity. Receiver operating characteristic (ROC) curves, areas under the ROC curves and decision curve analysis (DCA) results were plotted to evaluate the model performance and clinical application.





Results

The nomogram model exhibited superior performance, with an AUC of 0.905 (95% confidence interval [CI]: 0.857-0.951) in the training cohort, which decreased to 0.817 (95% CI: 0.698-0.936) in the external validation cohort. The clinical model had AUCs of 0.820 (95% CI: 0.753-0.886) and 0.730 (95% CI: 0.572-0.888) in the training and external validation cohorts, respectively. The radiomics model had AUCs of 0.895 (95% CI: 0.840-0.949) and 0.800 (95% CI: 0.675-0.924) for training and external validation, respectively. DCA confirmed that the nomogram model had the better clinical benefit.





Conclusions

The nomogram model achieved promising prediction efficiency for identifying the presence of the MPP in LUAD tumors ≤2 cm, allowing clinicians to develop more rational and efficacious personalized treatment strategies.
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Introduction

Lung cancer is the primary cause of cancer-related mortality worldwide (1). Among the various pathological types of non-small cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) has emerged as the most prevalent (2). In 2015, the World Health Organization (WHO) categorized LUAD into five primary histologic subtypes delineated by prognosis (3). Prior studies have indicated that the micropapillary pattern (MPP) is classified as the high-risk subtype owing to its significant correlation with factors indicating adverse prognosis, including tumor spread through air spaces (4), lymph node metastasis (5), and vascular invasion (6). Wang et al. demonstrated that among LUAD patients with pathological stage pT1N0M0, those with the MPP and solid pattern subtypes exhibited poorer recurrence-free survival (RFS) and overall survival (OS) than patients with the other subtypes (7). Notably, the MPP represents less than 5% of the tumor volume but still negatively affects OS (8).

The advancement of imaging technology and the widespread adoption of low-dose computed tomography (CT) have led to a significant increase in the detection of early-stage lung cancers. In patients with resectable NSCLC, lobectomy is widely acknowledged as the standard surgical procedure (9). With the ongoing advancements in thoracic surgical, sublobar resection, including segmentectomy and wedge resection, have become increasingly prevalent in the treatment of NSCLC with a diameter of 2 cm or less. In two Phase III trials involving patients with tumor sizes of 2 cm or smaller, sublobar resection demonstrated superiority or non-inferiority to lobectomy regarding disease-free and overall survival (10, 11). However, Xu et al. recommended that LUAD patients with a tumor size ≤2 cm and the MPP constituting more than 5% of tumor volume should undergo lobectomy and systematic lymph node dissection (12). Given the unfavorable prognosis linked to MPP, sublobar resections may be inappropriate for this patient population. Therefore, the preoperative diagnosis of MPP in LUAD with a tumor size ≤2 cm has significant implications for the choice of surgical procedure.

Rapid advancements in artificial intelligence are transforming imaging medicine from a basic diagnostic tool into an essential element of personalized precision medicine. Radiomics is a technique that enables the noninvasive and quantitative description of the biological characteristics and heterogeneity of a tumor (13). Previous studies have demonstrated the utility of radiomics in predicting the MPP and solid subtypes of LUAD (14–17). Previous studies included patients with tumor diameters greater than 2 cm, radiomics models developed without accounting for tumor diameter may not be suitable for identifying MPP in LUAD patients with tumor size ≤2 cm. In addition, the significance of radiographic features in the construction of predictive models has been neglected, and radiographic features may enhance the diagnostic efficacy of the model. Furthermore, several studies failed to perform external validation.

Therefore, in this study, we aimed to develop and validate a machine learning model by CT radiomics signature with clinical features and conventional radiographic features to predict the MPP in LUAD tumors ≤2 cm in size.





Materials and methods

The study followed the Radiomics Quality Score (RQS) system. The RQS scoring criteria, the scores for this study, and the rationale underlying for the scores for prediction model development are detailed in the Supplementary Material.




Patients and data acquisition

This retrospective study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of Guangxi Medical University and the Institutional Ethics Committee of the Second Affiliated Hospital of Guangxi Medical University, and the requirement for patient informed consent was waived(2024-E246-01, 2024-KY (0780). We selected patients who were treated at the First Affiliated Hospital of Guangxi Medical University (hospital A) from January 2018 to September 2023 as the training and internal validation cohorts. In addition, the patients for the external validation cohort were obtained from the Second Affiliated Hospital of Guangxi Medical University (hospital B). The study flowchart is shown in Figure 1A. The inclusion criteria were as follows: 1. All enrolled patients underwent chest CT scans within two weeks before surgery, and the maximum diameter of the tumor on CT images was ≤2 cm. 2. Pathology confirmed primary LUAD. 3. Patients did not receive radiotherapy, chemotherapy, or immunotherapy before surgery. 4. There was no history of other malignant tumors. The exclusion criteria were as follows: 1. Lack of complete clinical and pathological data and preoperative CT images. 2. Presence of other concurrent malignant tumors. 3. Receipt of anti-tumor treatment before surgery. 4. Presence of multiple pulmonary tumor lesions. 5. patients with lung fibrosis, COPD, or prior lung resections.




Figure 1 | Flowchart of the study subjects. Study workflow (A). Radiomics workflow (B). MMP, Micropapillary Patter; CT, computed tomography.



In total, our study included patients with a total of 365 lesions that were diagnosed as LUAD. Among them, 300 patients from the First Affiliated Hospital of Guangxi Medical University were randomly divided into a training cohort (n=210) and an internal validation cohort (n=90) at a ratio of 7:3. Additionally, 65 cases from the Second Affiliated Hospital of Guangxi Medical University were recruited as the external validation cohort. Clinical data and conventional radiographic features, including age, sex, smoking history, preoperative carcinoembryonic antigen (CEA) level, maximum tumor diameter, vascular convergence sign, nodule type(part solid nodule and solid nodule), lobulation sign, spiculation sign, vacuole sign, air bronchogram sign, pleural indentation sign, and CTR, were collected. The maximum tumor diameter was defined as the maximum diameter on the axial plane in the lung window, and the solid tumor size was defined as the maximum diameter of the solid component. The CTR was calculated as the ratio of the solid tumor size over the tumor size (Figure 2). We have added figures to explain signs like lobulation sign, spiculation sign, air bronchogram sign, vascular convergence sign, pleural indentation, vacuole sign. The figures were detailed in the Figure 3.




Figure 2 | The HRCT imaging information measurement contains the following: (1) the diameter of the tumor (T) was defined as the largest axial diameter of the lesion on the lung window setting (Blue dotted line); (2) the diameter of consolidation (C) on the axial image on the lung window setting was measured, and consolidation was defined as an area of increased opacification that completely obscured the underlying bronchial structures and vascular markings (Pink dotted line); (3) the ratio of the maximum diameter of consolidation relative to the maximum tumor diameter from the lung window (CTR).






Figure 3 | Lobulation sign (A): The contour of the tumor appear as an arched protrusion, with alternating arcs creating a lobulated appearance, referred to as the lobulation sign (pink arrows). Spiculation sign (B): The edges of the tumor display varying degrees of spiculated projections, commonly referred to as the Spiculation sign (blue arrows). Air bronchogram sign (C): The tumor contains bronchial structures that are filled with air (green arrows). Vascular convergence sign (D): The vascular convergence sign refers to the phenomenon in which blood vessels converge towards a particular lesion in certain diseases or pathological conditions as observed in imaging (yellow arrows). Pleural indentation (E): Pleural indentation refers to the presence of indentations or impressions on the pleura (purple arrow). Vacuole sign (F): The vacuole sign refers to the presence of low-density areas within a tumor, typically measuring between 1 mm and 3 mm in diameter(orange arrows).







CT imaging

For CT imaging, the following scanners were used: GE256 row Revolution CT, Siemens Definition Flash CT, Siemens Dual-source CT, Siemens Force CT, and Philips iCT 128. The scanning parameters were as follows: tube voltage, 120 kV; tube current, 250-300 mA; matrix, 512×512; and reconstructed slice thicknesses, 0.6 mm~1.5 mm. The window settings were adjusted to a lung window width of 1500 HU and a window level of -500 HU.





Histologic evaluation

Two experienced pathologists independently assessed the histological subtypes according to the 2015 WHO classification of LUAD (3), resolving any disagreements through discussion to reach a consensus. In our study, all patients were divided into two groups based on the proportion of MPP in the tumor, the positive group included patients with ≥5% MPP, while the negative group included patients with <5% MPP and patients without MPP (18).





Lesion segmentation and radiomics feature extraction

The radiomics analysis workflow involved lesion segmentation, feature extraction, feature selection, and model construction (Figure 1B). All lesions were detected on the CT images. Regions of interest (ROIs) were manually segmented slice by slice along the lesions using open software (ITK-SNAP 3.8.0 available at www.itksnap.org) by 2 radiologists from hospital A who were blinded to the patients’ histologic information. The segmentations of X.P with 7 years of diagnostic experience and L.F with 9 years of diagnostic experience were compared for interobserver differences. Repeated measurements were performed at an interval of 2 weeks, and the segmentations were compared for intraobserver differences. The intraobserver and interobserver differences were assessed by calculating the intraclass correlation coefficient (ICC) and features with consistency values<0.7 were removed. Finally, radiomics features were extracted using the ROI of the first segmentation of the radiologist with 9 years of diagnostic experience. Prior to segmentation, we standardized the CT images and resampled them to voxel sizes of 1 mm × 1 mm × 1 mm. The extracted features were divided into the following categories: first-order, grey-level co-occurrence matrix (GLCM), grey-level dependence matrix (GLDM), grey-level size-zone matrix (GLSZM), grey-level run length matrix (GLRLM), and neighboring grey tone difference matrix (NGTDM). In total, 1835 radiomics features were extracted using pyradiomics (version 2.2.0) from each ROI.





Feature selection and radiomics model construction

We performed the Mann−Whitney U test for statistical analysis and feature screening on all radiomics features, retaining only those with p values<0.01. Features demonstrating high repeatability were subjected to Spearman’s rank correlation coefficient analysis to assess correlations between features. Features with a correlation coefficient >0.9 between any two features were retained. To preserve the comprehensive depiction of features, a greedy recursive deletion strategy was employed for feature filtering, wherein the most redundant feature in the current set was iteratively removed. Then, the least absolute shrinkage and selection operator (LASSO) regression model was subsequently applied to the discovery dataset to construct the signature. Depending on the regularization weight λ, LASSO shrinks all regression coefficients towards zero and assigns coefficients of irrelevant features to zero. To determine the optimal λ, 10-fold cross-validation with minimum criteria was utilized, where the final λ value was chosen based on the minimum cross-validation error. The features with nonzero coefficients were retained for regression model fitting and amalgamated into a radiomics signature. Subsequently, a radiomics score was computed for each patient through a linear combination of retained features weighted by their model coefficients. The Python scikit-learn package was used for LASSO regression modelling. After feature screening, 22 features were input into the logistic regression (LR) model for risk model construction. Here, we adopted 10-fold cross-validation to obtain the final radiomics signature.





Construction of the clinical model and nomogram

The process used to construct the clinical model was almost the same as that used for the radiomics model. First, univariable analysis was performed on clinical indicators and CT morphological features to identify factors with a p-value < 0.05. Subsequently, multivariable logistic regression was used to determine the independent factors associated with MPP. We also used the same machine learning model in the radiomics model-building process. The nomogram model was developed by integrating the radiomics signature with the clinical independent factors. In every cohort, Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of models to identify the presence of MPP in LUAD. The AUCs of the models were evaluated with the Delong test. The calibration curves were used to assess the concordance between the predictions of the nomogram and the actual observations. Decision curve analysis (DCA) was utilized to map and evaluate the clinical utility of the predictive models.





Statistical analysis

Statistical analyses were performed using SPSS (version 26.0; IBM Corp.) and the “One-key AI” platform (https://www.medai.icu), which is based on PyTorch 1.8.0. Normally distributed data were analyzed using independent t tests, and nonnormally distributed data are expressed as medians (interquartile ranges) and analyzed using Mann−Whitney U tests. Categorical variables were analyzed using chi-square tests. The independent predictors of MPP in LUAD patients were determined by univariable and multivariable logistic regression analyses. Bilateral p values < 0.05 were considered to indicate statistical significance. ROC curves were drawn, and the area under the curve (AUC) was calculated to assess the diagnostic performance of each model. The AUCs of the models were evaluated with the Delong test. DCA was utilized to map and evaluate the clinical utility of the predictive models.






Results




Clinical characteristics

The clinical factors and conventional radiographic characteristics of the patients are listed in Table 1. In the training cohort, there was a statistically significant difference (P < 0.05) in maximum tumor diameter, sex, nodule type, vascular convergence sign, and CTR between the MPP-positive and MPP-negative groups. The maximum tumor diameter was greater in the MPP-positive group (1.72 ± 0.23 cm vs. 1.50 ± 0.24 cm, p<0.001). The solid type was the predominant type in the MPP-positive group (69.1% vs. 30.1%, p<0.001). In the training cohort, internal validation cohort and external validation cohort, the variables age, smoking history, CEA level, lobulation sign, spiculation sign, vacuole sign, air bronchus sign and plural indentation did not significantly differ between the MPP-positive and MPP-negative groups (P>0.05). Nodule type and maximum tumor diameter were identified as the independent predictors of the MPP in LUAD patients through multivariable logistic regression analysis (Table 2).


Table 1 | Clinical and conventional radiographic features of patients in the training and two validation cohorts.




Table 2 | Univariable and multivariable logistic regression analysis of Characteristic in the training cohorts.







Feature selection and Rad score establishment

After selection, a total of 22 features with a nonzero coefficient value remained. The radiomics signature was constructed based on the coefficient values of the selected features. The details of the features are shown in Figure 4. The radiomics model was constructed by using all selected features. In the training cohort, the model had an AUC of 0.895 (95% CI 0.840-0.949) with balanced sensitivity and specificity of 0.836 and 0.819, respectively. In the internal validation cohort, the AUC was 0.834 (95% CI 0.741-0.925), with a sensitivity and specificity of 0.750 and 0.774, respectively (Table 3, Figures 5A, B). In the external validation cohort, the AUC was 0.800 (95% CI 0.675-0.924), and the sensitivity and specificity were 0.647 and 0.812, respectively (Table 3, Figure 6B).




Figure 4 | All the features and the corresponding p-value results (A). Radiomics feature selection based on LASSO algorithm and Rad score establishment (B); Ten-fold cross-validated coefficients and 10-fold cross-validated MSE (C);The histogram of the Rad score based on the selected features (D).




Table 3 | The performance of three models in training and two validation cohorts.






Figure 5 | AUC Comparison of clinical, Radiomics, and nomogram models in the training cohort (A) and internal validation cohort (B);Decision curves of the clinical, radiomic, and nomogram models in the training and internal validation cohort (C, D), The combined nomogram performed optimally in both the training and internal validation cohort. The calibration curves in three cohorts: training cohort (E), internal validation cohort (F) and external validation cohort (G), calibration curves are presented based on three models for predicting the micropapillary components of LUAD. The x-axis represents the predicted micropapillary components probabilities based on the clinic signature, radiomics signature, and nomogram. At the same time, displays the actual probabilities of these components. The 45° diagonal line symbolizes the ideal prediction, with the blue, yellow, and green lines representing the predictive performance of the clinical, radiomics, and nomogram, respectively.






Figure 6 | The nomogram to distinguishing MPP in LUAD with size ≤ 2cm, Clinic Sig, Clinical Signature; Rad Sig, Radiomics Signature (A); AUC Comparison of clinical, Radiomics, and nomogram models in the external validation cohort (B); Decision curves of the clinical, radiomics, and nomogram models in the external validation cohort (C).







Establishment and performance of the clinical model and nomogram model

Multivariate logistic regression analysis revealed that nodule type and maximum tumor diameter were independent predictors of the presence of MPP in LUAD patients, and these features were used to establish the clinical model. In the training cohort, this model had an AUC of 0.820 (95% CI 0.753-0.886) with a sensitivity and specificity of 0.673 and 0.819, respectively. In the internal validation cohort, the AUC was 0.778 (95% CI 0.678-0.877), with a sensitivity and specificity of 0.643 and 0.726, respectively (Table 3, Figures 5A, B). A nomogram was constructed based on the radiomics-clinical model (Figure 5A). In the training cohort, the nomogram model had an AUC of 0.905 (95% CI 0.857–0.951), with a sensitivity and specificity of 0.800 and 0.858, respectively. In the internal validation cohort, the AUC was 0.850 (95% CI 0.770–0.928), and the sensitivity and specificity were 0.893 and 0.661, respectively (Table 3, Figures 5A, B). In the external validation cohort, the AUC of the clinical model was 0.730 (95% CI 0.675-0.924); the sensitivity and specificity were 0.529 and 0.854, respectively; the AUC of the nomogram model was 0.817 (95% CI 0.698-0.936); and the sensitivity and specificity were 0.706 and 0.771, respectively (Table 3, Figure 6B). DCA was employed to assess the clinical application of the three developed models. The DCA results indicated that the nomogram model demonstrated the better clinical benefit in distinguishing patients with MPP from those without MPP (Figures 5C, D, 6C). The nomogram to distinguishing MPP in LUAD with size ≤ 2cm (Figure 6A). In order to compare the clinical model, radiomics model and nomogram, the AUCs of the models were evaluated with the Delong test (Supplementary Figure 1, Supplementary Table 1). The AUCs of the nomogram, radiomics in the training cohorts were significantly different from the clinical model (p<0.05). The calibration curves in three cohorts, training cohort (Figure 5E), internal validation cohort (Figure 5F) and external validation cohort (Figure 5G) indicated good agreement between predicted probability and actual occurrence.






Discussion

The incidence and mortality of lung cancer, which were already high, have increased globally. In 2015, China ranked first globally in terms of both incidence (11.4%) and mortality (18%) of lung cancer (19). An estimated 609,820 people in the United States died from cancer in 2023, and the greatest number of deaths were from lung cancer (1).Surgical resection is currently the main treatment for NSCLC, although some scholars suggest that segmentectomy should be the standard surgical procedure for treating NSCLC lesions that are ≤2 cm in size (20). Notably, the presence of MPP accounting for more than 5% of the total tumor volume is an independent risk factor for recurrence and poor outcomes in lung LUAD with a size of ≤ 2 cm. This suggests that wedge resection or segmentectomy may not represent the optimal surgical procedure for these patients. Therefore, this study was aimed to develop predictive models, including a clinical model, a radiomics model, and a nomogram, to estimate MPP in patients with LUAD. The results of this research demonstrated the ability of the three developed predictive models to accurately identify MPP in LUAD patients with a tumor size ≤2 cm.

We developed a clinical model to identify MPP in LUAD patients, utilizing the clinical features and conventional radiographic features of 365 patients recruited from two hospitals. The reported incidence of MPP positivity in LUAD with a diameter of ≤2 cm varies across different studies (21, 22). The incidence of MPP is correlated with the solid component of the tumor. The two studies have incorporated pure ground glass opacity (pGGO), while our study did not include it. This distinction may account for the higher incidence rate observed in our findings compared to those reported in other studies. By employing multivariable logistic regression analysis, we identified nodule type and maximum tumor diameter as independent predictors. Therefore, we used two indicators, nodule type and maximum tumor diameter, to construct a clinical model. The performance of the clinical model demonstrated promising discriminatory power, with an AUC of 0.820 in the training cohort, 0.778 in the internal validation cohort, and 0.730 in the external validation cohort. In the training and internal validation cohort, significant differences in nodule type, maximum tumor diameter and CTR were found between the MPP-positive group and the MPP-negative group, with the MPP-positive patients having larger diameters, a greater number of solid nodules and more solid components than did the patients in the negative group. Previous studies have recognized the CTR as a significant predictor of aggressiveness in LUAD (23). The CTR is also instrumental in differentiating various subtypes of adenocarcinoma. Xu observed that lung adenocarcinomas with a CTR exceeding 0.5 were more likely to exhibit MPP (24).Chen et al. (25) employed the CTR as the main morphological predictor to develop a predictive model for micropapillary/solid components in LUAD, achieving an AUC of 0.85 and demonstrating comparable predictive power to that of radiomics models. A study by Wang et al. (26)found that the maximum tumor diameter serves as a valuable indicator for differentiating between MPP groups, with those MPP positive group displaying a significantly larger maximum tumor diameter. This observation aligns with the findings presented in our study. The larger the diameter of the solid nodule is, the greater the aggressiveness of the tumor cells, and the greater the probability of the presence of high-grade components. In summary, Our study have demonstrated that the maximum tumor diameter, nodule type, and CTR all contribute to distinguishing MPP in LUAD patients with a tumor size ≤2 cm, further research and model development are necessary to improve its diagnostic accuracy. Our study also revealed that conventional radiographic features, including lobulation signs, spiculation signs, pleural indentation, vascular convergence signs, vacuole signs, and air bronchograms, did not significantly differ between the MPP-positive group and the MPP-negative group. This finding deviates from those of earlier studies (26–28), suggesting potential inconsistencies or limitations in the current understanding of the diagnostic utility of these features. The observed correlation between conventional radiographic features and the MPP status in this study could be influenced by the smaller tumor sizes, warranting additional research with a larger and more diverse sample to account for potential size-related variations. Subjectivity and the inherent difficulty in quantifying conventional radiographic features contribute to their potential limitations as diagnostic tools, as they might not consistently capture the heterogeneity of tumor cells. As a result, predictive models that solely rely on clinical parameters and conventional radiographic features may fail to fully meet the diagnostic needs for MPP in patients with LUAD.

Radiomics, a multidisciplinary approach that extracts high-dimensional data from medical images, has gained substantial recognition for its utility in diagnosing and evaluating the prognosis of lung diseases (29, 30). Previous research has established the usefulness of radiomics in predicting MPP in patients with LUAD. However, inconsistencies and substantial disparities exist among the findings of prior studies. In a previous study, researchers (31) employed a primary cohort of 286 patients and an external validation cohort of 193 patients to develop the radiomics model, achieving internal validation and external validation AUCs of 0.75 and 0.70, respectively. However, this multicentre studies demonstrated limited diagnostic performance, warranting further refinement, and their models lacked the integration of clinical data and conventional radiographic features for enhanced accuracy. Xu et al. (16)studied 170 participants and utilized arterial phase CT radiomics to develop a predictive model, with an AUC of 0.889 in the training cohort, however, the AUC decreased to 0.722 in the validation cohort, indicating a significant decrease in performance, which suggests limitations in model reliability and clinical applicability. Wang et al. (32)integrated clinical features, conventional radiographic features and radiomics features to construct a combined model, achieving AUCs of 0.872 and 0.853 for the training and validation cohorts, respectively. Although their model displayed promising predictive power, it lacked an independent external validation cohort to evaluate its generalizability. In our study, we extracted radiomics features from plain CT images to develop a predictive model for MPP. The model demonstrated promising performance, with AUCs of 0.895 in the training cohort and 0.834 in the internal validation cohort. We also adopted an external validation cohort to validate the performance of the developed models. The performance of the developed models in the external validation cohort remained stable. During the construction of the radiomics model, we found that radiomic features extracted on 3D images played a crucial role. As a representative example of radiomics, voxelbased histogram analysis (VHA) based on 3D images, have been used in identifying early-stage LUAD suitable for sublobar resection (21). In contrast to 2D features, 3D features can identify texture variations and irregular shapes in different regions of the tumor, thereby enhancing the understanding of its biological characteristics. Conventional radiographic features, such as the lobulation sign, spiculation sign, maximum tumor diameter, and the CTR, are all 2D features. This limitation may account for the observation that clinical models utilizing 2D features often exhibit lower predictive performance compared to radiomics models. Additionally, we constructed the nomogram model integrating nodule type, maximum tumor diameter, and the radiomics signature to enhance the predictive accuracy for MPP in patients with LUAD. Notably, the AUCs of the nomogram in the training, internal validation and external validation cohorts were 0.905, 0.850, and 0.817, respectively. Compared with both the clinical and radiomics models, the nomogram exhibited improved predictive performance across all cohorts. The nomogram combines the benefits of both the clinical model and the radiomics model. In clinical practice, the nomogram can be used to evaluate the precise risk of MPP in each LUAD patient on basis of specific clinical indicators, conventional radiographic features and Radscore. This nomogram will aid in the individualized assessment of patient survival risk, providing a reference for clinicians to devise rational and effective treatment strategies.

Our study has several limitations. First, this investigation was retrospective and therefore limited by biases such as incomplete data acquisition and patient selection. Second, the sample size was relatively modest, which may have influenced the generalizability of the findings. Future endeavors will be aimed to increase the sample size and extend the research to multiple centers for enhanced statistical robustness. Third, our study did not utilize more advanced technologies, such as deep learning methods. Consequently, we intend to incorporate deep learning methods in our study as a next step.





Conclusions

In conclusion, we established a nomogram model based on radiomics and clinical features to distinguish MPP in LUAD patients with a tumor size of ≤2 cm that exhibited good performance. Compared with the clinical model and radiomics model, the nomogram model exhibited a greater level of predictive accuracy, providing a promising method to aid clinicians in developing more rational and efficacious personalized treatment strategies.
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Objectives

Intensity variation in multi-parametric magnetic resonance imaging (MP-MRI) is a confounding factor in MRI analyses. Previous studies have employed several normalization methods, but there is a lack of consensus on which method results in the most comparable images across vendors and acquisitions. This study used MP-MRI collected from patients with confirmed prostate, brain, or breast cancer to examine common intensity normalization methods to identify which best harmonizes intensity values across cofounds.





Materials and methods

Multiple normalization methods were deployed for intensity comparison between three unique sites, MR vendors, and magnetic field strength. Additionally, we calculated radiomic features before and after intensity normalization to determine how downstream analyses may be affected. Specifically, in the prostate cancer cohort, we tested these methods on T2-weighted imaging (T2WI) and additionally looked at a subset of patients who were scanned with and without the use of an endorectal coil (ERC). In a cohort of glioblastoma (GBM) patients, we tested these methods in T1 pre- and post-contrast enhancement (T1, T1C), fluid attenuated inversion recovery (FLAIR), and apparent diffusion coefficient (ADC) maps. Finally, in the breast cancer cohort, we tested methods on T1-weighted nonfat-suppressed images. All methods were compared using a two one-sided test (TOST) to test for equivalence of mean and standard deviation of intensity distributions.





Results

While each organ had unique results, across every tested comparison, using the Z-score of intensity within a mask of the organ consistently provided an equivalent distribution (all p < 0.001).





Conclusions

Our results suggest that intensity normalization using the Z-score of intensity within prostate, breast, and brain MR images produces the most comparable intensities between sites, MR vendors, magnetic field strength, and prostate endorectal coil usage. Likewise, Z-score normalization provided the highest percentage of radiomic features that were statistically equal across the three organs.





Keywords: MRI, prostate cancer, brain cancer, breast cancer, normalization, radiomics




1 Introduction

Multi-parametric magnetic resonance imaging (MP-MRI) is used to assess cancer and response to therapy. Specific to prostate cancer, a typical MP-MRI protocol contains T2-weighted (T2W), diffusion-weighted (DWI), and dynamic contrast enhanced (DCE) imaging. The Prostate and Breast Imaging Reporting and Data Systems, PI-RADS and BI-RADS, respectively, assign a score to MR images and have standardized acquisition, interpretation, and reporting of prostate and breast MRI, as well as aid in the accurate detection of cancerous lesions (1). Moreover, MP-MRI including T1-weighted imaging pre- and post-gadolinium contrast agent (T1 and T1C, respectively) is used to maximize the efficiency of surgical resection and radiation treatment, as well as monitoring progression, for glioblastoma.

While MP-MRI acquisitions are well established techniques for imaging several organs, voxel intensities in “weighted” scans are nonquantitative and can vary within and across patients, tissues, and MRI vendors. Clinically, the most used MRI acquisitions include pre- and post-contrast T1-weighted, T2-weighted, and diffusion weighted imaging (DWI). These scans are assessed qualitatively to determine cancer presence, although apparent diffusion coefficient maps (ADC) can be created from DWI for quantitative assessment. Acquisitions including MR fingerprinting (MRF), advanced diffusion, and a variety of quantitative MRI (QMRI) have been an area of interest for both response assessments in clinical trials and multi-institutional studies. These acquisitions however are not used clinically due to long scan times and variability in acquisition parameters and post-processing techniques (2–4).

To make inter- and intra-patient quantitative comparisons, such as with radiomic analyses, images need to be intensity normalized as a pre-processing step. Furthermore, normalization is necessary for the development of MRI-based machine learning techniques for diagnosis of cancer. There is no current gold standard method for signal intensity normalization, however, a previously published paper by Shinohara et al. (5) discussed seven statistical principles of imaging normalization including: (1) common interpretation across locations within the same tissue type, (2) replicability, (3) preservation of rank intensities, (4) similar distributions within and across patients, (5) uninfluenced by biological abnormality or population heterogeneity, (6) minimal sensitivity to noise and artifacts, and (7) do not result in a loss of information associated with pathology. Prior studies have normalized by average voxel values within fat and muscle tissue regions (6–8), used N4 bias field correction and intensity Z-score (9–11), and histogram matching and mapping techniques to normalize images. Tissue-based normalization has shown to improve inter-patient intensity differences better than unnormalized data and histogram-based normalization methods (12). While Z-score mapping is common among MRI analyses for several disease states (13–16), it can be confounded by factors such as tumor volume and aggressiveness (i.e., increased hypointensity). Additionally, histogram matching and mapping techniques have been shown to be beneficial in normalizing brain MRI (17); however, histogram matching was performed after fat, bone, and background removal, indicating that global normalization of other abdominal organs may be less successful.

Diffusion weighted imaging measures the diffusion of water molecules to generate contrast in MR images. DWI has been shown to detect cancerous tumors and evaluate tumor aggressiveness (4, 18, 19), but much like T1 and T2WI, DWI is also assessed qualitatively by radiologists. Calculation of ADC from multiple b-values allows a quantitative assessment of water diffusion. Previous studies have shown that ADC has an inverse relationship with higher risk prostate, brain, and breast cancers (20–23). While ADC is considered quantitative, factors such as perfusion can affect lower b-values. Previous studies have assessed normalizing ADC maps prior to analysis. One such study found that a signal-to-noise (SNR)-weighted regularization of ADC produced homogenous maps at varying levels of SNR compared to non-regularized maps which could only estimate ADC accurately at high SNR levels (24). Conversely, a study comparing normalizing ADC by the ratio of non-enhancing tumor to normal white matter in high-grade glioma patients showed that normalization did not improve ADC correlations with overall survival (25).

Though the need for intensity normalization is well understood, the lack of normalization standards makes it difficult to compare MRI-based analyses. This study analyzed a variety of imaging acquisitions across multiple organs to determine if a universal normalization method could be applied. Specifically, we assessed T2WI collected from prostate cancer patients; T1, T1C, fluid-attenuated inversion recovery (FLAIR), and ADC images collected from GBM patients; and T1-weighted nonfat-suppressed images (T1nFS) from breast cancer patients across three unique sites, multiple clinical MR vendors, and 1.5T and 3T magnetic field strength to examine commonly used post-acquisition intensity normalization methods to identify which method produces images most comparable across vendors for each tissue. Additionally, we examined T2WI collected from prostate cancer patients with an endorectal coil in place and following ERC removal to determine which normalization method best compares these images. Furthermore, we calculated 218 radiomic features across all images to determine how radiomic features are affected by each normalization method. Overall, we tested the hypothesis that normalizing images using signal intensities within a defined region would produce intensity distributions that are most comparable across sites, MRI vendors, and magnetic field strength than unnormalized data.




2 Materials and methods

Data from three unique sites per organ (prostate, glioblastoma, and breast) were assessed for this study. Details from each site are further detailed in the subsequent sections; however, a simplified table of these data sites and organs is provided in Table 1.


Table 1 | Breakdown of prostate, glioblastoma, and breast cancer data by data site, MR manufacturer, and magnetic field strength.





2.1 Prostate cancer cohort



2.1.1 Site 1 – local

Data from 385 prospectively recruited patients treated locally at our institution (Table 1; Figure 1A, top) with pathologically confirmed prostate cancer undergoing radical prostatectomy between 2014 and 2023 were analyzed for this institutional review board (IRB) approved study. Written informed consent was obtained from all patients. Inclusion criteria for this cohort included clinical imaging including T2-weighted imaging prior to surgery.




Figure 1 | Prostate cancer imaging. Prostate T2WI across (A) three data sites, (B) three MR vendors (i.e., GE, Siemens, and Philips) and (C) with and without an endorectal coil in the subset of Site 1’s patients.



Patients underwent multi-parametric magnetic resonance imaging (MP-MRI) prior to prostatectomy on 1.5 T (n1.5T = 3) or 3T (n3T = 382) GE (nGE = 256), Siemens (nS = 125) or Philips (nP = 4) MRI scanner (General Electric, Waukesha, WI, USA; Siemens Healthineers, Erlangen, Germany; Philips, Amsterdam, Netherlands) (Figure 1B). A subset of patients (n = 88) had additional imaging after removal of the endorectal coil on either the GE or Siemens scanner (nGE = 69, nS = 19) (Figure 1C). Each protocol included T2-weighted imaging with acquisition parameters as follows: repetition time (TR) = 3370 milliseconds, FOV = 120 mm, voxel dimensions = 0.23 × 0.23 × 3 mm, acquisition matrix = 512, and slices = 26. All image contrasts used in this study were acquired axially.





2.1.2 Site 2 – PROSTATE-DIAGNOSIS

A publicly available dataset including prostate T2WI scanned on a 1.5 T Philips Achieva using a combined surface and endorectal coil was used for our second site (26, 27). From a total of 92 patients, images from 86 patients were ultimately used in this analysis due to image quality (Table 1; Figure 1A, middle).



2.1.3 Site 3 – PROSTATEx

The final dataset used in this analysis was a collection of retrospective prostate MR studies including T2WI acquired on two different 3T Siemens MR scanners (MAGNETOM Trio and Skyra) (27, 28). T2W imaging acquisition parameters include a turbo spin echo sequence with a resolution of ~0.5 mm in plane and a slice thickness of 3.6 mm. All images were acquired without an endorectal coil. After exclusion of images with poor quality, a total of 170 patients’ images were used (Table 1; Figure 1A, bottom).





2.2 Glioblastoma cohort



2.2.1 Site 1 – local

Written, informed consent was obtained from 52 patients for this cohort, each diagnosed with a glioblastoma in concordance with the 2021 WHO classification standards for brain tumors. Inclusion criteria for this cohort included autopsy confirmed GBM and axial clinical imaging including pre- and post-contrast T1-weighted images (T1, T1C), FLAIR, and DWI 1.5 T (n1.5T = 39, n3T = 13, nGE = 34, nS = 16, nP = 2). Due to the use of clinical imaging, acquisition parameters were not standardized across patients. Axial T1, T1C, FLAIR, and ADC images were selected as the primary acquisitions for this study. ADC maps were calculated using the patient’s clinical DWI. T1, T1C, and ADC images were rigidly aligned to patient’s FLAIR image using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) (Table 1; Figures 2A–D top rows). Examples of images scanned on the GE and Siemens scanners in Figure 2 are from this dataset.




Figure 2 | Glioblastoma imaging. T1 (A), T1C (B), FLAIR (C), and ADC (D) images for four patients across the three data sites. Additionally, examples of images scanned on the GE and Siemens scanners are shown (a, b, c, d, with respect to acquisition).






2.2.2 Site 2 – UPENN-GBM

Data from this online repository includes MP-MRI for de novo GBM patients from the University of Pennsylvania Health System (27, 29). All axial images in this dataset, including T1, T1C, FLAIR, and ADC, were skull-stripped co-registered by an automated computational method (11). A total of 530 patients from this dataset were used after excluding images without all four pre-surgery acquisitions or poor quality (Table 1; Figures 2A–D middle rows).




2.2.3 Site 3 – UCSF-PDGM

Site 3 data come from the publicly available University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) dataset (27, 30). This dataset includes 501 subjects with histopathologically-proven diffuse gliomas who were imaged with a preoperative MRI using a 3T GE Discovery 750. Each image contrast was registered to the FLAIR image (1 mm isotropic resolution) using automated non-linear registration (Advanced Normalization Tools). Resampled co-registered data were then skull stripped using a publicly available deep-learning algorithm (31, 32) Table 1; Figures 2A–D bottom rows). Though a total of 501 adult patients with pathologically confirmed grade II-IV diffuse gliomas were collected for this database, only the 374 patients with confirmed GBM were used.





2.3 Breast cancer cohort

All datasets used for our breast imaging analyses were available online (https://cancerimagingarchive.net) (27) and analysis was performed on non-fat suppressed T1 images (T1nFS) (Figure 3).




Figure 3 | Breast cancer imaging. Example Axial T1 non-fat suppressed images from the three online datasets used in this analysis (A). Vendor-level demonstrations of images (B) scanned on the GE (top) and Siemens scanner (bottom) are from Site 2.





2.3.1 Site 1 – ACRIN 6698

The ACRIN trial 6698, organized by the American College of Radiology Imaging Network, was a multi-institutional research project (33, 34). Its purpose was to determine the efficacy of quantitative DWI in measuring the response of breast cancer to neoadjuvant chemotherapy (NAC). A total 406 women with invasive breast cancer were prospectively enrolled to ACRIN 6698 at ten institutions between August 2012 to January 2015. However, after applying our exclusion criteria described previously in 2.3. Breast Cancer Cohort, only 68 patients’ images were assessed. All patients underwent breast MRI at 4 timepoints over the course of NAC, though only the pre-treatment images are analyzed in this study. MR imaging was performed on a 1.5T GE scanner using a dedicated breast radiofrequency coil. Detailed MRI protocol parameter specifications can be found on https://cancerimagingarchive.net/ (35).




2.3.2 Site 2 – Duke-Breast-Cancer-MRI

This breast cancer cohort was downloaded from the publicly available MRI dataset (36). The Duke-Breast-Cancer-MRI dataset contains 922 female patients recruited between 2000 and 2014, however, only 351 patients were included in our analyses due to availability of T1nFS images and image quality. Because of annotation constraints described below, a random selection of 100 patients were chosen from the eligible patients for this analysis. As with our local GBM cohort, clinical imaging was provided in the dataset, thus acquisition parameters were not standardized across patients (n1.5T = 49, n3T = 51, nGE = 54, nS= 46) (Figures 3A, middle; Figure 3B).




2.3.3 Site 3 – ISPY2

I-SPY 2 (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular analysis 2) is an ongoing, multi-center study. Its objective is to swiftly assess the effectiveness of novel treatments for breast cancer within the context of NAC (37). Adult women diagnosed with locally advanced breast cancer (tumor size ≥2.5 cm) without distant metastasis recruited between 2010 and 2016 were analyzed for this study. Breast MRI data was acquired prospectively at over 22 clinical centers using a standardized image acquisition protocol. Patients underwent 4 MRI exams before and during NAC, though only the first scan was assessed in the current study. This is a comprehensive, highly curated imaging data set with histopathologic outcome that can be used to develop, test, and compare imaging metrics and prediction models for breast cancer response to treatment. A total of 719 patients were included in this dataset, however, only 68 were assessed after applying the exclusion criteria. MR imaging was performed on a 1.5T GE scanner. All required imaging was performed axially with full bilateral coverage (38).





2.4 MRI normalization

Multiple normalization methods were used for each of the three tissue types. Tissue and regions of interest (ROIs) were defined for each tissue type using AFNI (Analysis of Functional NeuroImages, http://afni.nimh.nih.gov/) (39). Prostate masks were manually drawn created on each slice of the patient’s T2-weighted image (T2WI). Brain imaging masks were segmented using SPM12, defined as the combination of the white and gray matter masks. Breast masks were manually drawn on MR images using ITK-Snap. Due to the size of each patient’s imaging, only the center 15 slices were annotated. These tissue masks were used to create the following normalized images for each patient: (1) unnormalized, the (2) standard deviation and (3) z-score of intensity within an individual patient’s tissue mask, (4) min-max, and (5) scaled. All proposed normalization methods were performed at the individual patient level to account for individual variability, preserve biological differences, avoid group-level artifacts and ensure comparability across cohorts whilst maintaining statistical independence. Min-max normalization was defined as the voxelwise subtraction of the minimum intensity value divided by the maximum intensity minus the minimum (Equation 1).

	(1)

Similarly, the “scaled” normalization was defined as the voxelwise intensity divided by the maximum intensity, scaling all images between 0-1.

Two additional ROI-based normalization methods were additionally tested. For prostate images, 10-voxel radius circular ROIs were defined on one slice of the patient’s T2WI within the bladder and levator ani muscle. Corresponding masks were created on the T2WI for patients who had an additional scan done post-endorectal coil removal. For brain images, cerebral spinal fluid (CSF) masks were created by thresholding the ADC for the high diffusion areas, as this is an indicator of fluid. Additionally, a tumor mask was created manually (for Site 1) or using a brain tumor segmentation (BraTs) model, as included in the online data repositories (Sites 2 and 3). These tumor ROIs were defined as the entire tumor region encompassing FLAIR hyperintensity, contrast enhancement, and the necrotic core. Finally, for the breast images, a mask of the sternum was drawn on the axial images, verifying location using the sagittal and coronal images, and the thorax, avoiding any additional tissue. The mean intensity within these ROIs was used for voxelwise normalization. Demonstrations of these masks can be found in Figure 4.




Figure 4 | Normalization Masks. Demonstrations of the masks used for normalization of the prostate (top), brain (middle), and breast (bottom).






2.5 Radiomic feature calculation

Radiomic features were calculated across each image using Matlab’s radiomics function which calculates a total of 197 features. These include 136 texture features (i.e., 50 gray level co-occurrence matrix (GLCM), 16 gray level dependence zone matrix (GLDZM), 32 gray level run length matrix (GLRLM), 16 gray level size zone matrix (GLSZM), 17 neighboring gray level dependence matrix (NGLDM), and 5 neighboring gray tone difference matrix (NGTDM)), and 61 intensity features (i.e., 18 Intensity Based Statistics, 23 Intensity Histogram, 18 Intensity Volume Histogram, and 2 Local Intensity). All available radiomic features were extracted for analysis to determine if intensity, and/or texture features are affected by normalization techniques.




2.6 Statistical analysis

Following normalization, four moments of distribution across MR image intensity (i.e., mean, variance, skewness, and kurtosis), as well as radiomic features, were calculated across patients. Intensity distributions were compared across sites, MR vendors, magnetic field strength (i.e., 1.5T v 3T), and prostate ERC usage using a two one-sided (TOST) test, a test of equivalence that is based on the classical t-test (40). While the TOST test requires both one-sided tests to be statistically significant (i.e., < 0.05), all results described below use the highest p-value for each test.





3 Results

All intensity normalization methods found differing results across the three tissue types, as detailed in the following subsections; however, no kurtosis distribution across any normalization method or comparison were equivalent. Tables 2–7 and Figures 5–9 below present mean intensity values only. The other three moments of distribution results are shown in Supplementary Tables S1-6, though they are described below.


Table 2 | Mean MRI intensity for the seven prostate normalization methods across each intensity comparison.




Table 3 | Mean intensity of T1 brain imaging across each of the seven normalization methods.




Table 4 | Mean intensity of T1C brain imaging across each of the seven normalization methods.




Table 5 | Mean intensity of FLAIR brain imaging across each of the seven normalization methods.




Table 6 | Mean intensity of ADC brain imaging across each of the seven normalization methods.




Table 7 | Mean MRI intensity of each of the seven normalization methods applied to breast imaging.






Figure 5 | Prostate normalization results. Mean intensity distributions calculated across all normalization comparisons. In each section, mean intensity distribution violin plots are on the top and examples of one patient per comparison are on the bottom. The scales used for the intensity distribution plots as well as the color scale in the visual representations are unique to each tested method. This highlights the differences not only across vendors and ERC usage, but also how different results from each normalization method can be. Pairs of images (i.e., sites, vendors, ERC usage, and magnetic field strength) are displayed on the same scale to compare intensity distributions within each normalization method. (A) Site-level normalizations between Site 1 (red, top), Site 2 (green, middle), and Site 3 (blue, bottom). (B) Vendor-level normalizations between GE (red, top), Siemens (green, middle), and Philips (blue, bottom). (C) Magnetic field strength between 1.5 T (red, top) and 3 T (blue, bottom). (D) ERC usage between ERC (red, top) and nERC (blue, bottom).






Figure 6 | Brain site-level normalization results. Mean intensity distributions calculated across all site-level normalization comparisons in (A) T1, (B) T1C, (C) FLAIR, and (D) ADC. In each section, mean intensity distribution plots are on the top and examples of one patient per comparison are on the bottom (Site 1: red, top; Site 2: green, middle; Site 3: blue, bottom). The unnormalized brains especially highlight the differences in intensities between sites, with Site 2 having higher intensities than Site 1.






Figure 7 | Brain vendor normalization results. Mean intensity distributions calculated across vendor normalization comparisons in (A) T1, (B) T1C, (C) FLAIR, and (D) ADC with GE (red, top), and Siemens (blue, middle).






Figure 8 | Brain magnetic field normalization results. Mean intensity distributions calculated across magnetic field strength normalization comparisons in (A) T1, (B) T1C, (C) FLAIR, and (D) ADC with 1.5 T (red, top), and 3 T (blue, middle).






Figure 9 | Breast normalization results. Mean intensity distributions calculated across all normalization comparisons. In each section, mean intensity distribution plots are on the top and examples of one patient per comparison are on the bottom. (A) Site-level normalizations between Site 1 (red, top), Site 2 (green, middle), and Site 3 (blue, bottom). (B) Vendor-level normalizations between GE (red, top), Siemens (blue, bottom). (C) Magnetic field strength between 1.5 T (red, top) and 3 T (blue, bottom)





3.1 Prostate cancer cohort

From our TOST results, we found that across sites and MRI vendors, using the Z-score of masked intensity, Min-Max, and Scaled normalization methods resulted in similar mean and variance intensity distributions (all p < 0.001). Standard deviation normalization likewise found equivalent mean distributions between Site 1-3 and between the GE and Philips vendors, as well as using the bladder ROI between Site 2-3 and the Siemens and Philips vendors (all p < 0.001). Variance distributions were likewise statistically similar using the standard deviation and bladder ROIs across all sites and vendors (both p < 0.001); muscle ROI normalization variance distributions were similar between Site 2-3 and Siemens and Philips vendors (both p < 0.001). Mean and variance distribution comparisons between ERC usage using the standard deviation, Z-Score, Min-Max, Scaled, and bladder ROIs normalization methods resulted in equivalent distributions (all p < 0.001). These results were also observed in magnetic field comparisons, except for the mean intensity after bladder ROI normalization (p = 0.35). All skewness distributions were found to be statistically similar except across any normalization method across Site 2-3 or Siemens and Philips vendors (all others p < 0.001). Mean intensity distribution results for prostate imaging can be found in Table 2 and Figure 5.




3.2 Glioblastoma cohort

Two patients were excluded from vendor-level analyses due to being scanned on a Philips scanner and would thus not produce a representative result; these patients were included in the site- and magnetic field-level analyses. In T1 images (Table 3, Figures 6, 7, 8A), we found that at the site-level and across magnetic fields, Z-Score, Min-Max, CSF mask, and tumor mask normalizations produced equivalent mean intensity distributions (all p < 0.001), as well as scaled normalization between Site 1-2 and 2-3 (p = 0.02 and < 0.001, respectively. Skewness across all images between Site 2-3 were found to be significantly similar (al p < 0.001). Across MRI vendors, only Z-score or tumor mask normalized images had similar mean intensity distributions (both p < 0.001). Variance across the normalized images (i.e., all except unnormalized images) for all site, vendor, and magnetic field comparisons were statistically similar (all p < 0.001).

In T1C images (Table 4, Figures 6, 7, 8B), we found that at the site-level and across magnetic fields, mean and variance distributions were statistically similar across all normalized images except for unnormalized (all p < 0.001). Across MRI vendors, all normalization methods besides unnormalized and standard deviation produced equivalent mean intensity distributions (Z-Score, Min-Max, tumor mask p < 0.001; Scaled, CSF mask p < 0.05); however, all but the unnormalized images had equivalent variance distributions (all p < 0.001). No skewness and kurtosis distribution across any image or comparisons was significant.

Across FLAIR images (Table 5, Figures 6, 7, 8C), mean intensity distributions across sites were statistically similar using the Z-score, Min-Max, Scaled, and tumor mask normalizations (all p < 0.001), as well as using the CSF mask between Site 2-3 (p < 0.001). Across MR vendors, only mean intensities using the Z-score and tumor mask normalization were comparable (both p < 0.001). Across magnetic field strengths, all methods besides unnormalized and CSF mask normalization produced equivalent mean distributions (all others p < 0.001). Variance distributions were statistically similar across all sites, vendor, and magnetic field comparison except within unnormalized images (all p < 0.001). As with T1C images, no skewness or kurtosis similarities were found.

Finally, in ADC images (Table 6, Figures 6, 7, 8D), mean intensity across all sites, vendors, and magnetic field strengths were statistically similar using the Z-Score and Min-Max normalizations (all p < 0.001). Standard deviation normalization produced comparable mean intensities across Site 2-3 and magnetic field strength (both p < 0.001). CSF mask normalization additionally had similar mean distributions between Sites 2-3 (both p < 0.001). All mean site- and vendor-level comparisons were statistically similar after Scaled intensity normalization (all p < 0.001), and site- and magnetic field-level comparisons after tumor mask normalization (all p < 0.001). Variance distributions were equivalent for all site- and magnetic field comparisons using all normalization except unnormalized images (all p < 0.001); vendor-level variance distributions were additionally comparable for standard deviation, Z-Score, Min-Max, and Scaled normalizations (all p < 0.001). All skewness distribution comparisons between Site 1-2 and magnetic field strength were statistically similar (Site p < 0.001; Magnetic field p < 0.05).




3.3 Breast cancer cohort

In breast imaging, all site, vendor, and magnetic field strength comparisons were significantly equivalent between mean intensity distributions following Z-score, Min-Max, and Scaled normalization, and variance distributions using all normalization methods besides unnormalized images (all p < 0.001) (Table 7, Figure 9). No skewness or kurtosis similarities were observed.




3.4 Radiomic feature analysis

Similarly to the general intensity analysis, each organ and acquisition had unique results; however, there were general trends across all analyses (Figure 10). Standard deviation and Z-score normalization had the highest number and percentage of features that were statistically equal across all acquisitions. Local Intensity had the lowest number of statistically equal features with only 13% being statistically equivalent across acquisitions. GLCM had the highest percent of statistically equal features across all comparisons at 62% statistically comparable. TOST results for each organ can be found in Supplementary Data Sheets 1-6. As may be visualized in Figure 6, the Site 3 ADC images were not initially scaled consistently with values ranging from millions to 10^-6. Radiomic features were calculated on images scaled to match units. ADC also had the fewest stable radiomic features across every comparison. Prostate radiomic features had the most stability with an average of about 43% intensity, 52% texture, and 50% of all radiomic features. A full breakdown of feature stability across normalized images and by feature class can be found in Supplementary Table S7.




Figure 10 | Radiomic feature analysis results across the (A) prostate, (B) breast, and (C) four brain imaging acquisitions. Features are shown as a ratio of number of statistically equivalent results to the number of possible tests per that category.







4 Conclusions

In this study, MP-MRI intensity distributions were assessed to determine the best MR image intensity normalization method for use with quantitative analyses in prostate, glioblastoma, and breast cancer imaging. Two one-sided (TOST) test was used to compare MRI intensities across sites, vendors, and magnetic field strengths used in the three organs, as well using an endorectal coil in prostate imaging. Endorectal coil usage has begun transitioning out of the clinical standard (41–43), thus datasets containing both images with and without an ERC may be impacted by signal intensity differences. Our results suggest that the best normalization for each image acquisition varies; however, in each tested organ and acquisition, the Z-score, Min-Max, and Scaled normalization methods produced comparable images across site, vendors, magnetic field strength, and ERC usage. This can be observed visually using the distributions plots and corresponding maps. Our radiomic feature analyses showed the highest stability of features following standard deviation and Z-scored normalization. These results may indicate that a Z-scored normalization could be applied universally across tissue types with low effect on image intensity and subsequent radiomic analyses.

The standard deviation or Z-score of intensity within each organ was expected to have been skewed due to tumor heterogeneity, including tumor volume and aggressiveness, across patients unrelated to MR vendor differences; however, our results found that normalization using these methods, particularly Z-score, produced the most consistent intensities across vendors and endorectal coil usage. Conversely, ROI-based normalization should have addressed the issue of tumor heterogeneity by using intensities external to the organ; however, we found that ROI-based normalization methods performed poorly in comparison to whole-tissue-based normalization. We also expected the thorax masked breast normalization to perform best among the breast normalization methods, however, it is worthwhile to note that signal heterogeneity exists across breast MR images and few options to test masks external to the breast itself are available. Interestingly, skewness and kurtosis measurements had the least comparisons that were significantly similar following normalization. We had expected those features to capture dataset difference more so than mean and variance, therefore, further research may be warranted to investigate these features with respect to normalization methods.

Intensity normalization is imperative to reduce MRI heterogeneity for quantitative analyses across patients and institutions. While many MRI intensity normalization methods have been established, there is no gold standard method to use, further challenging inter-institutional comparisons. One previous study compared the impact of four normalization methods across T2WI before and after radical external beam radiotherapy (RT) on downstream radiomic feature computations (44). Their methods included (1) unnormalized images, (2) a centered Z-score using mean and standard deviation of image intensity (i.e., Z-score + 3 times the standard deviation), (3) the centered Z-score using the mean and standard deviation of intensity within the bladder, and (4) a histogram-matching approach as proposed by (45). They found that both normalization using the centered Z-score of the image intensity and histogram matching provided the most reproducible radiomic features, whereas ROI-based normalization performed poorly.

In this study, we tested commonly used normalization methods on T2WI across sites, vendors, magnetic field strength, and T2WI across patients scanned with and without an endorectal coil in prostate cancer imaging; T1 non-fat saturated imaging by vendor for breast cancer MRI; and T1, T1C, FLAIR, and ADC in glioblastoma patient imaging to determine the method that produces intensity distributions most similar. Of the methods tested across each tissue type, we found that using Z-scored normalization produces similar intensity distributions across all comparisons, vendors, magnetic field strength, and images with and without an ERC. We additionally calculated 218 radiomic features across images from all normalization methods and found that Z-scored normalization had the highest number of stable features across each comparison. These findings suggest normalization methodology plays a critical role in making inter- and intra-patient MP-MRI-based comparisons.



4.1 Limitations

One limitation of this study is the relatively small patient cohort compared to previous MP-MRI analyses for both the prostate and glioblastoma cohorts. Additionally, only two MR vendors were compared across images for glioblastoma and breast, and significantly fewer prostate patients imaged on the Philips scanner. This limited representation could lead to less reliable intensity distributions compared to a larger, more diverse cohort. Furthermore, using clinical imaging acquisitions introduced variability due to non-standardized acquisition parameters which may have differing results when controlling for factors such as field strength. Similarly, image quality was not assessed in this study and should therefore be a topic of future research. Imaging phantoms or repeated scans across multiple vendors may provide more precise intensity distribution estimates, as tissue variability between patients remains a confounding factor. A diverse dataset with repeated patients scans under controlled conditions would allow for accurate similarity measurements within groups using methods such as agreement tests (e.g., intraclass correlation coefficients (ICC) or Cohen’s kappa), correlation tests (e.g., Pearson or Spearman’s correlation coefficient), or distributional similarity tests (e.g., Kolmogorov-Smirnov or Chi-Square).

Lastly, only a selection of normalization methods was tested in this study. It is important to note that several additional normalization methods exist, as previously discussed, such as histogram matching. Histogram matching is a popular technique used in MRI normalization; however, it was untested in this study as it violates several of Shinohara’s principles and was determined in their study to be “inappropriate for any study of images from multiple subjects.” (5) Though most of our normalization methods comply to Shinohara’s principles, we must acknowledge that our tumor-based normalization method does inherently use the patient’s abnormal pathology as an ROI. Our goal was to use a feature of the MRI that exists across all brain MRIs, as was completed for prostate and breast cancer, however, brain Sites 2 and 3 were previously skull-stripped, removing the skull, ears, and eyes which could have been used as a ROI. Additionally, tumor-based normalization would only be possible on cancer-detecting MRI and would thus be rendered useless for brain MRIs with other pathologies. Future studies should compare additional evaluation metrics and techniques to make precise estimates on the most comprehensive image normalization.




4.2 Conclusion

We demonstrate in a cohort of 641 prostate cancer patients, 68 of which had scans with and without the use an endorectal coil, 956 glioblastoma patients, and 236 female breast cancer patients, that a Z-scored intensity normalization provides distributions that are most comparable across sites, MR vendors, magnetic field strength, prostate ERC usage, and radiomic feature stability. Using a normalization method that best distributes intensity across tissues could help improve quantitative assessments of cancer MRI. Future studies should investigate larger populations as well as additional MR vendors to determine how normalization methods affect downstream analyses of multi-parametric MR images.
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Background

After hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.





Method

We proposed a dual-branch deep neural network (SiameseNet) based on multiple-instance learning and cross-attention mechanisms to address tumor heterogeneity in ICC histological grade prediction. The study included 424 ICC patients (381 in training, 43 in testing). The model integrated imaging data from two modalities through cross-attention, optimizing feature representation for grade classification.





Results

In the testing cohort, the model achieved an accuracy of 86.0%, AUC of 86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust predictive performance.





Conclusion

The proposed framework effectively mitigates performance degradation caused by tumor heterogeneity. Its high accuracy and generalizability suggest potential clinical utility in assisting histopathological assessment and personalized treatment planning for ICC patients.





Keywords: intrahepatic cholangiocarcinoma, histological grade, multiple instance learning, cross-attention mechanism, CT-based diagnostics




1 Introduction

Primary liver cancer is a malignant tumor that begins in the liver. It was the fourth-commonest cancer in men and the eleventh commonest cancer in women (1). Among the several types of primary liver cancer, hepatocellular carcinoma (HCC) is the most common form of liver cancer in adults, and intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy in the liver. Despite being less common than HCC, the incidence of ICC is on the rise in many countries (2). ICC makes up approximately 10% of all cholangiocarcinomas, and the median survival period for patients is less than 3 years (3).

The histological grade of tumor is closely related to prognosis, tumors with low histological grade often have a better prognosis compared to tumors with high histological grade (4, 5). Therefore, promptly detecting the histological grade of ICC tumors is crucial for patient treatment and prognosis.

Traditionally, the assessment of the histological grade of ICC is based mainly on immunohistochemistry, and the tumor tissue is typically obtained by needle biopsy (6). However, invasive biopsies have several limitations, including sample bias caused by tumor heterogeneity and high costs (7). By contrast, computed tomography (CT) is a real-time and noninvasive method for liver disease diagnosis. With CT, continuous and/or overlapping high-resolution thin-slice (0.75–1.5 mm) images of the entire abdomen can be acquired. Previous studies have suggested that the imaging characteristics of a tumor might be used to help the disease diagnosis (8–11); therefore, using CT images to determine the degree of ICC histological grade appears feasible. However, effectively using CT images to identify the histological grade of ICC remains a challenge.

Deep learning (DL) is a common and efficient method of obtaining knowledge from images because convolutional neural networks (CNNs) have a strong ability to recognize patterns in images (12–15). DL models typically require labels for individual images during training. However, a common challenge arises when working with medical imaging data, specifically CT scans, in which labels are often assigned to entire patients rather than individual slice images. Because CT scans consist of a multitude of slices capturing different anatomical details, the lack of specific labels for each slice complicates the task of imparting granular information to the model. Assigning labels to each CT image slice for training introduces several noisy labels, because different CT slices of the same patient may contain varying lesion areas, and their histological grade may also differ (16). To address this problem, multiple-instance learning (MIL) was introduced, which requires labels only for each patient (17). MIL represents a type of weakly-supervised classification that depends solely on patient-level labels, where each slice is treated as an individual instance, and a single case or patient data comprising multiple slices is treated as a “bag” (18, 19).

Furthermore, CT images typically contain information about the lesion and its surroundings. Environmental information in the background can help identify the histological grade of ICC to a certain extent; however, it also introduces considerable noise. To allow the model focus on to both the lesion and surrounding environment, the original CT images are segmented into images containing the lesion and background environment (hard images) and images containing only the lesion area (easy images) based on a lesion mask provided by the doctor.

DL has been widely used in the field of medical imaging (20–23). The objective of this study was to develop a deep-learning model to predict the histological grade of ICC using CT images. We designed a multiple-instance CNN, called SiameseNet, containing two branches to process the input information of the two modalities. Because determining the correspondence between the two types of images is challenging, we leveraged a cross-attention module to dynamically learn the correlation between hard and easy images (24, 25).

Intrahepatic cholangiocarcinoma (ICC) poses significant diagnostic challenges due to its reliance on invasive biopsies and the heterogeneity of tumor histological grades. This study introduces a novel dual-branch SiameseNet, incorporating Multi-Instance Learning and cross-attention mechanisms, to predict ICC histological grades non-invasively from CT images. By addressing the limitations of current methods, such as sample bias in biopsies and the inability to fully utilize imaging data, this approach has the potential to revolutionize diagnostic workflows and enable more accurate, safer, and faster grading of ICC tumors.

To the best of our knowledge, no research has been reported for predicting the histological grade of ICC by combining MIL and a double-branch CNN. The main contributions of our work are: 1) We propose an MIL method to predict the histological grade of ICC based on CT images. 2) We incorporated two different data modalities in the model training and designed a multiple-instance model with dual branches for this task. 3) To efficiently integrate the information from the two modalities, we implemented a cross-attention mechanism within the model.




2 Materials and methods



2.1 Patient cohort

Intrahepatic cholangiocarcinoma (ICC) is a relatively rare form of primary liver cancer, accounting for only about 10% of all cholangiocarcinomas. This rarity makes it challenging to collect large datasets, even in specialized medical centers. Among the collected cases, only a subset includes detailed histological grading, further restricting the pool of eligible cases for our study. This study was approved by the local ethics review committee(20211343), which waived the requirement for informed consent. The data of a total of 424 patients with ICC were included in the study and met the following criteria: (1) age over 18 years, (2) pathologically confirmed diagnosis of ICC, and (3) complete baseline characteristics, laboratory tests, and tumor pathology records. Details are shown in Figure 1.




Figure 1 | Patient recruitment process.






2.2 Histopathological examinations

The surgically resected hepatic specimens were used for the pathological evaluation. Identification of the pathological characteristics were performed by a team of experienced pathologists (each individual with more than 10 years of experience in reading histopathological slices), who were blinded to the CT and clinical results. Tumor differentiation were evaluated and identified as well-differentiated, well-to-moderated differentiated, moderate-differentiated, moderate-to-poor differentiated, poor-differentiated. In this study, well-differentiated, well-to-moderated differentiated, moderate-differentiated were divided into low-histological grade, moderate-to-poor differentiated, poor-differentiated were divided into high-histological grade.




2.3 CT images

It is important to preprocess original abdominal CT images to enhance the accuracy of liver lesion detection models. These images typically contain various organs and tissues that can introduce noise and interfere with the model training process. We therefore adopted a two-step preprocessing approach. First, we obtained manual masks from professional doctors to identify the lesion area in each CT slice. These masks served as ground-truth labels for model training. Using this mask information, we extracted two different modalities of image data. The first modality consisted of the lesion area identified by the mask alone. By isolating only the lesion area, we eliminate interference from other irrelevant organs and tissues, allowing the model to focus more accurately on the target region. The second modality involved extending the image outward from the center of the mask to a certain size. In this study, the image size was extended to 128 × 128 pixels. If the lesion area extended beyond this size, the boundaries of the lesion area were preserved. Using this approach, we retained a small area around the lesion outside the intrahepatic lesion. This area helped the model to better distinguish the differences and connections between the lesion and the normal area, thereby improving overall performance. In addition to these preprocessing steps, we performed data augmentation techniques on the images during the training process. This process included techniques such as color jitter (26) to adjust image brightness and contrast, as well as random resizing, cropping, and flipping of the images (RandomResizedCrop and RandomHorizontalFlip) (27) to introduce variety and increase the diversity of the training data. By utilizing these preprocessing techniques and data augmentation methods, we aimed to enhance the performance and accuracy of the liver lesion detection model.




2.4 Siamese network

Figure 2A illustrates the detailed workflow of the proposed model. The first step is data processing, in which two types of modal information are extracted from the original abdominal CT slices. This extraction is based on the mask information of the lesion area provided by the doctor. The first type of modal information, called hard images, contains environmental information about the lesion area and its surroundings. This type of information is more complex and contains a larger amount of data, making it more challenging for the model to process. The second type, called easy images, includes only the lesion area. As the name suggests, this type of information makes it easier for the model to identify and process. Figure 3 are some easy and hard images of patients. To enhance the model’s generalization performance, we utilized data augmentation techniques to enrich the patterns of the training samples. This approach ensures that the model can learn effectively from various input variations.




Figure 2 | (A) Workflow overview including data processing and feature extraction networks: SiameseNet and nonlinear classifier. In the data processing stage, the processed images are the patient’s abdominal CT plain scan slices. From the mask information drawn by the doctor, we extracted the original image into two-modal information. Those containing the lesion area and surrounding environment information are hard images. Easy images include only the lesion area. (B) The SiameseNet network structure consists of two independent CNN branches—a cross-attention module and an attention-pooling module. The red color corresponds to attention scores for each instance.






Figure 3 | Easy and hard images of patients.



Our network model is a two-branch multi-instance network model, as shown in Figure 2B. The input to the model includes all the CT image slices of each patient. These images are first fed into a CNN for feature extraction. Because the two modalities (hard and easy images) contain different amounts of information and complexities, the CNN parameters of the two branches are updated independently. They do not affect each other during the training process. To further improve the model’s ability to identify the lesion area, we introduced a cross-attention mechanism. This mechanism calculates the cross-attention between the images of the two modalities. This approach enables the model to focus on the confidence of the lesion area while learning the relationship between the lesion area and the surrounding environment. This cross-attention mechanism enhances the model’s performance. After passing through the cross-attention module, the feature vectors of the two modalities are fused into several instance features. These instance features are then merged into a package feature using the attention aggregation module in MIL, and at the end of our network, the package features are passed through a nonlinear classification head to obtain the final classification result, which represents the model’s ability to predict the presence or absence of the targeted condition on abdominal CT scans. Besides, we implemented early stopping during training to prevent overfitting to the training set.




2.5 Cross-attention module

We introduced a cross-attention mechanism to improve recognition of the lesion area in our network. This mechanism utilizes information from both the lesion area and the surrounding environment to enhance the model’s understanding. The model takes two modal inputs, each containing information about the lesion area but with different levels of complexity and amounts of information. The model was made to focus more on the lesion area by leveraging environmental information using a CNN to extract feature vectors from both easy and hard images. The feature vector extracted from the easy images was treated as the query vector, and the feature vector from the hard images was used as the key-value vector.

To calculate the similarity score, we measured the similarity between the query vector and each key vector. This similarity score helps determine the importance of each key-value vector. A higher similarity score implies that the key-value vector contains more relevant information about the lesion area. From the similarity scores, we subsequently calculated a weighted sum of the corresponding value vectors. The weighted sum represents an enhanced representation of the lesion area. By incorporating this cross-attention mechanism, we ensure that the model focuses more on the lesion area by taking advantage of environmental information. This approach can improve recognition accuracy and provide a better understanding of the lesion area using the model, mathematically expressed as:



where   is the scaled dot product similarity calculation. By dividing the dot product result by the square root of the dimensionality, we scale down the similarity score, which can be written as:



where   is the dimension of the feature vector in the matrices Q and K. This scaling prevents the dot product result from becoming too large, which in turn helps avoid overly small gradients during the softmax operation. We ensure that the similarity scores are well-scaled and facilitate smooth and effective backpropagation in the training process of the model using the scaled dot product similarity calculation. This approach allows for better adjustment of the model parameters and ultimately improves its performance in recognizing and understanding the lesion area.




2.6 Multi-instance learning

MIL is a machine learning paradigm designed to handle scenarios where labels are assigned to groups of instances (called “bags”) rather than to individual instances. This framework is particularly useful when instance-level labels are unavailable, noisy, or difficult to obtain. For our task, each patient has several CT slices. We only have the histological grade label of each patient. It is very difficult to obtain the histological grade label of each CT slice, so we decided to use MIL to train our data.

The training data for this study comprised CT slice images of patients, in which each patient had multiple CT slices. These slices mostly contained lesion areas; however, the histological grade of these lesion areas may vary owing to tumor heterogeneity. To avoid introducing noise during model training, we utilized the MIL technique. MIL is a weakly supervised method that differs from traditional learning methods in the composition of training instances. In traditional supervised learning, each instance is represented by  , where   is the instance and   is the corresponding label. However, in MIL, training samples are no longer a single instance, but “bags” of instances. Each package is in the form of  , where the number of instances in each package can vary and the label of each instance is unknown. The goal of MIL is to train a classifier using these packages to predict the labels of the unknown packages. Generally, a pooling module exists to fuse the instance features into the bag feature. Max pooling and average pooling are two commonly used pooling methods. Max pooling can be expressed as:



and average pooling as:



Where   is the kth instance feature.

In our case, we considered the set of slices from all the CT images of each patient as a package and used the histological grade of ICC as the label for the package. To fuse the instance features extracted by the cross-attention module into the final bag features, we use a pooling method based on the attention mechanism. Compared to max pooling and average pooling, this pooling method improves the effectiveness and interpretability of multi-instance learning. Another benefit is that it is differentiable and can be trained through neural networks. The attention weights from the attention pooling module allow us to understand which instances contribute more to the label. Let  represent a package with K instances, where   is the embedding obtained from the ith instance through the feature extraction network. The attention-based MIL pooling is expressed as follows:



After fusing the bag features, they are input into a nonlinear fully connected network to obtain the final prediction result. The cross-entropy loss function is used, which measures the difference between the predicted probabilities and actual labels. It can be expressed as follows:



where y represents the real label and   represents the predicted probability value. This loss function quantifies the dissimilarity between the predicted and actual labels.




2.7 Hyperparameter optimization

We utilized a grid search approach to systematically evaluate a range of hyperparameters, including learning rate, batch size, number of epochs. For certain hyperparameters (e.g., optimizer type), manual tuning was conducted based on prior studies and preliminary experiments. Hyperparameters were optimized using the validation accuracy as the primary metric, while ensuring a balance between training and validation performance to minimize overfitting. Here are our final hyperparameter values:Learning rate:5e-4 (with decay factor of 0.1 every 10 epochs). Batch size: 128 (For MIL, batch size is 1). Optimizer: Adam with  =0.9,  =0.999. Number of epochs: 200 (early stopping was applied if validation accuracy plateaued for 10 consecutive epochs).




2.8 Computational requirements and cost-benefit analysis

The model was trained and tested on a workstation equipped with an NVIDIA RTX 3090 GPU (24 GB RAM). Training the model on the full dataset (381 training samples) required approximately 6 hours, including data augmentation and optimization steps. For a single patient (bag of CT slices), the inference process, including feature extraction, cross-attention computation, and classification, takes approximately 10 seconds on the same GPU hardware.

The proposed SiameseNet model offers significant advantages over traditional biopsy-based methods for ICC histological grade assessment. It is non-invasive, time-efficient, and cost-effective, providing results in seconds without the risks associated with invasive procedures. While initial deployment costs, such as computational infrastructure, are required, these are offset by the reduction in biopsy and pathology expenses.





3 Results



3.1 Patient characteristics

Table 1 shows the demographic and clinical characteristics of the patients used to train and test the SiameseNet model. According to the size of the ICC patient dataset, we randomly divided it into mutually exclusive training and testing sets, using a classic holdout strategy (28) with an allocation ratio of 9:1. We used a random stratified sampling method to split the dataset. This approach ensures that the distribution of key attributes, particularly the histological grade (low-grade vs. high-grade), is consistent between the training and testing sets. Specifically, we stratify the dataset based on histological grade, then randomly allocate 90% of cases from each grade category to the training set and the remaining 10% was assigned to the testing set.


Table 1 | The statistics of ICC patients in the training and testing cohorts.



The method we used to calculate the P-value is the Mann-Whitney U test, also known as the Mann-Whitney-Wilcoxon test or the rank-sum test, is a non-parametric statistical method used to compare two independent samples. Unlike the t-test, the Mann-Whitney U test does not require the data to follow a normal distribution, making it suitable for situations where the sample distribution is unknown or cannot be assumed to be normal. The test compares the ranks of the two samples to determine if they come from the same distribution. In this study, the data is separated into two groups based on histological grade, and the ranks of the combined samples from both groups are calculated, followed by the sum of the ranks for each group. Then the statistics U for each of the two groups are computed, and the smaller value is selected as the test statistic U.



where N is the number of samples and R is the rank sum of the samples.

Given that the sample size exceeds the upper limit of 20 for the exact distribution table statistics of the Mann-Whitney U test, the normal distribution is employed to approximate the conversion of the statistic U into the standard statistic Z.



where   is the expected value of   and   is the standard deviation of U:



The corresponding p-value is obtained using the calculation formula for a two-sided test.



where   is the cumulative probability of the standard normal distribution.

The proportions of patients with a low histological grade in the training and testing cohorts were 29.9% and 30.2%, respectively. There was no significant difference for gender (train: p = 0.975; test: p = 0.084), CEA (train: p = 0.509; test: p = 0.218), or INR (train: p = 0.511; test: p = 0.516) between the two cohorts, but the prevalence of age appearance was significantly higher (p = 0.027) in the training cohort. However, in the training cohort, there was indeed a significant age difference between patients with low histological grade and those with high histological grade. Specifically, 69.3% (185) of high histological grade cases and 80.7% (92) of low histological grade cases involved patients over the age of 50 years.

This disparity can be explained by the fact that the incidence of ICC is generally higher among individuals aged over 50 years. As a result, a larger proportion of the cases collected in our study naturally fell into this age group. Additionally, it is important to note that low histological grade cases are relatively rare. Consequently, a higher prevalence of low histological grade ICC cases was observed among individuals over 50 years of age as well. Apart from this factor, baseline characteristics and laboratory features were not significant between Low-HD and High-HD patients (ALL p >0.05).




3.2 Performance

Table 2 presents a performance comparison between our SiameseNet model and several other well-established models, including ResNet (29), VisionTransformer (30), SwinTransformer (31), and ConvNext (32). These models encompass a combination of traditional CNNs as well as more recent transformer architecture networks. We conducted a thorough analysis of their variations in accuracy (ACC), area under the curve (AUC), sensitivity (SE), and specificity (SP). The findings indicate that our model demonstrates a notable enhancement of 6.9% and 24.9% in the ACC and AUC, respectively, compared with the baseline model ResNet34. This improvement confirms the efficacy of our model in enhancing predictive accuracy while maintaining superior overall performance without excessive bias towards any particular prediction type.


Table 2 | Performance comparison of our model with several classic models, including the CNNs ResNet and ConvNext, and the transformer networks VisionTransformer and SwinTransformer.



During the training process, we monitored the performance of the model on the validation set. Training was halted as soon as the validation accuracy began to decline, indicating potential overfitting. This approach prioritizes the model’s generalization ability over achieving the highest possible accuracy on the training set. If training had continued beyond the early stopping point, the model’s accuracy on the training set could have reached significantly higher levels. However, this would likely have come at the cost of overfitting, which would reduce the model’s performance on unseen data. By stopping training at an optimal point, the model avoids overfitting while maintaining robust performance on the testing set. The slightly lower accuracy on the training set compared to the testing set reflects this deliberate strategy.

We also compared our cross-attention-based MIL method with other classical MIL methods. The results show that our method significantly outperforms other MIL methods. The compared MIL methods include Mean-MIL, based on average pooling; Max-MIL, based on max pooling (33, 34); attention-based MIL (AB-MIL), based on the attention mechanism (35); and TransMIL, based on the transformer architecture (36). Table 3 shows the performance of these methods. Compared with the AB-MIL method, our method achieved a 16.2% improvement in ACC and a 21.1% improvement in AUC, indicating that combining data from two different modalities using a cross-attention mechanism can effectively enhance the predictive performance of the model.


Table 3 | Performance comparison of different MIL methods.



Our model also demonstrated notable enhancements in the receiver operating characteristic (ROC) curve performance in the test cohort compared to other prevalent deep-learning models, as shown in Figure 4. And Figure 5 is the confusion matrix obtained by our model in the test cohort.




Figure 4 | Comparison of ROC curves generated by different networks within the testing cohort. ResNet34, SwinTransformer and ConvNext are popular deep learning models, and Our (AUC=0.862) is the performance of the proposed SiameseNet network.






Figure 5 | Confusion matrix obtained in the testing cohort.0: High histological grade;1: Low histological grade.






3.3 Deep learning feature analysis

Deep-learning models can automatically extract features for inference by learning the mapping between CT images and the histological grade of ICC. However, because deep-learning models are “black boxes,” we do not know how the model’s inference process is performed. Therefore, it is necessary to use certain methods to increase the interpretability of deep-learning models. In this study, we selected Class Feature Map and Activation Map (CAM) (37, 38) to visualize the feature maps (39) of the model during the inference process and the regions related to lesions to verify the reliability of the model. Figure 6 shows the attention regions of the model. For CT images, this class activation map represents the importance of various regions learned by the deep-learning model, where the red activation area is more important than the other areas because it is the region signifying more focus by the deep-learning model. From the original image, we can clearly see that the area that the model focuses on is exactly where the tumor is located, which shows that the model uses the information contained in the CT image of the tumor for identification and it can be found that the area that the model focuses on is highly overlapped with the area demarcated by the doctor. Figure 7 shows the feature maps generated by the feature-extraction part of the model. The shallower convolutional layers learn simple and obvious features (e.g., Conv_1), and the MaxPool layer further amplifies these features, whereas the deeper convolutional layers learn more abstract features (e.g., Conv_11). With the increase in the network depth, the features learned by the model become more abstract and have an increased relationship to the histological grade of ICC. This process is very similar to the process of doctors recognizing images, and it also helps us understand how the model learns.




Figure 6 | Visualization of the CAM generated by the last convolution layer. Red color denotes high attention values, and blue color denotes low attention values. Subfigure (A) shows the CAM of ICC High-HG patient, and subfigure (B) shows the CAM of ICC Low-HG patient. HG, Histological grade.






Figure 7 | Visualization of the feature maps learned from the convolution of the feature extractor. Each layer of the model includes hundreds of filters, and only four of them are depicted in the figure.



At the same time, we also observed some failure cases. Figure 8 is a comparison of the lesions annotated by the doctor and the model’s attention area for patients whose model predictions were wrong. We can see that the model mistakenly focused on these areas instead of the actual lesion area. This is an important reason for the model’s recognition errors. How to enhance the model’s recognition ability for this type of atypical images is a focus of our future work.




Figure 8 | Comparison of the lesions annotated by doctors and the model’s focus areas for patients with prediction failure.






3.4 Ablation study

In this study, we used two modalities of image information for fusion training: images containing only the lesion area (easy images) and images containing both the lesion area and environmental information (hard images). To validate the effectiveness of this method, we compared the training performance using only a single modality of images, either easy or hard images. When using the single-modality image data, we trained the baseline AB-MIL model. Table 4 presents the model performance using image inputs from different modalities. The results indicate that our multimodal input can effectively improve the recognition accuracy of the model; compared to the model using only easy images, our AUC score also increased by 29.4%.


Table 4 | Comparison of performance with different modal inputs, with Multi-Modal training method used herein combines easy and hard images.



The effective and noise information contained in the two modal images differed. To focus the model on the lesion area and reduce the interference of noise information, a cross-attention mechanism was used to fuse the information extracted from the two modal images for training. Figure 9 shows a performance comparison of our method with commonly used pooling methods in other MIL models, including gated attention (40), self-attention, and multi-head self-attention (41). The experimental results demonstrate that our method can better integrate information from two modal images, effectively improving the model’s performance.




Figure 9 | Performance of different multiple-instance fusion methods; cross-attention is used in this study.







4 Discussion

In this study, we constructed SiameseNet, a model based on dual-branch multimodal inputs and MIL. We also utilized a cross-attention mechanism to integrate input information from multiple modalities, enabling the network to predict the histological grade in ICC patients using CT images. Additionally, we found that there were no significant differences in clinical indicators between the ICC high histological grade patient group and the ICC low histological grade patient group, both in the training and testing cohorts. The experimental results indicate that our model is an advanced model that can effectively predict the histological grade of tumor in ICC patients. This method has the potential to assist doctors in assessing the histological grade of tumor in patients with ICC in clinical practice.

The SiameseNet model developed in this study achieved good performance in predicting the histological grade of ICC, with all indicators showing improvements compared to the other methods (ACC = 86.0%, AUC = 86.2%, SEN = 84.6%, SPEC = 86.7%). The performance improvement of the model results mainly from the following aspects: (1) Adopting an MIL training method using all CT slices of a patient as package input to the network for training, effectively alleviating the performance degradation caused by the heterogeneity of tumors. (2) Adopting a dual-branch network structure, with the training data input consisting of two types of CT images containing different amounts of information. This approach ensures that the model does not ignore the effective information in the surrounding environment of the tumor area, which may help with the model’s predictions while allowing the model to focus more on the tumor area without being disturbed by noise in the environmental information. (3) Using a cross-attention mechanism to integrate multimodal information. The traditional pooling method in MIL is not effective for multimodal inputs in this study, whereas the cross-attention mechanism can calculate the similarity between different modal image slices, enabling the model to focus on instances that are most helpful for predictions, thus improving the model’s performance.

MIL is a common deep-learning method for processing medical images. Typically, the original medical images are divided into individual slice images for model training. However, because these slices are obtained from the original 3D images, the sizes of the tumor areas they contain and the histological grade may vary. Multi-instance learning treats all slices as inputs to the model, allowing the model to automatically learn which slices are more important and the relationships between slices. This approach effectively alleviates the decrease in training accuracy caused by tumor heterogeneity. In this study, we adopted an MIL method. We input the information of two modal images into the two branches of the model. Compared with other popular multi-instance methods, such as AB-MIL and TransMIL, our model showed a significant performance improvement (ACC increased by 16.2%, AUC increased by 21.1%). This result indicates that our model has a higher classification accuracy and better predictive results.

The pooling function is a crucial part of multi-instance learning; an effective pooling function enables the model to learn better features and improve its performance. Conventional MIL pooling functions include mean pooling, max pooling, and a series of pooling functions based on an attention mechanism. Mean pooling and max pooling, two of the most intuitive ideas, apply the mean or max operation to the extracted instance features to obtain the final bag feature. This method is mostly effective, but not as effective for medical images, where certain critical slices play a greater role in predicting the image. For this reason, we adopted an attention-mechanism-based pooling approach in this study. Attention-based pooling allows the model to automatically recognize more important instances in the bag. However, previous methods were designed only for a single input and did not effectively learn the relationship between the features extracted by the two branches of the model. Therefore, we adopted a cross-attention mechanism that calculates the similarity between instances from different branches using the features extracted from one branch as the query vector (in this study, images containing only the lesion area) and the features of the other branch as key-value pair vectors. Consequently, the model can fully learn the associative relationships between instances from both branches, ultimately improving its predictive accuracy. The experimental results also show that our pooling method significantly improves the model’s performance, with an increase of 13.9% in ACC and 24.9% in AUC compared with the other methods.

The model could be incorporated into existing clinical workflows, such as assisting radiologists in assessing ICC histological grades based on CT scans or serving as a decision-support tool to provide supplementary insights during diagnosis. The model also have the potential for deploying in real-time clinical scenarios, such as automated processing of CT scans to provide immediate grade predictions alongside radiologists’ assessments. But there are still many challenges, it is important to standardize imaging protocols across institutions to ensure consistent model performance and we should improve the model’s interpretability to build clinician trust in its predictions.

The proposed model has the potential to significantly impact patient management by providing a non-invasive, accurate, and rapid method for predicting ICC histological grades. This can improve diagnostic precision, guide personalized treatment planning, and reduce the need for invasive biopsies. For instance, patients with high-grade tumors identified by the model can be prioritized for systemic therapies, while those with low-grade tumors can benefit from less aggressive approaches. Additionally, the model’s rapid inference enables timely decision-making, critical for managing aggressive cancers. Future studies will focus on validating these impacts in prospective clinical settings.

Our study has some limitations. First, our data were obtained solely from a single medical center, which resulted in a smaller and more localized patient sample. This may introduce biases due to the homogeneity of the patient population, medical practices, or imaging protocols. As such, the findings may not fully reflect the diversity of ICC cases encountered in different clinical settings. Therefore, in future research, we plan to collect data from multiple centers to enhance the generalization performance of the model. Second, the learning and inference processes of the model were not visible and lacked strong interpretability. Despite our efforts to provide explanations through visualization, a gap still exists that must be addressed before the model can be integrated into actual clinical practice. While the proposed model demonstrates promising performance, several limitations must be considered for clinical implementation. These include the single-center nature of the study, variability in imaging protocols, and the need for computational infrastructure in healthcare facilities. Additionally, interpretability challenges and regulatory requirements could impact adoption. Future efforts will focus on multi-center validation, enhancing model explainability, and optimizing deployment in resource-limited settings to address these barriers.




5 Conclusions

In this study, we developed SiameseNet, a dual-branch deep neural network incorporating Multi-Instance Learning and cross-attention mechanisms, to predict the histological grade of ICC using CT images. Our method demonstrated superior performance compared to traditional and transformer-based models, achieving an accuracy of 86.0% and AUC of 86.2% on the testing set. These results highlight the potential of our approach to mitigate the impact of tumor heterogeneity and improve diagnostic precision. This method could serve as a valuable tool in clinical practice, aiding timely and personalized treatment planning for ICC patients. Future work will focus on validating the model across multiple centers and enhancing its interpretability to facilitate clinical adoption.
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Background

Atypical cartilaginous tumors (ACTs) usually occur in long bones rather than in the hands or feet. To date, detailed imaging features of ACTs in the hands or feet were reported in only a few case reports.





Case presentation

We report a case of an Asian woman in her early 80s who presented to our hospital with a painless mass in the distal phalanx of the left thumb. Radiography and computed tomography (CT) showed osteolytic destruction and cortex thickening in the distal phalanx with extension into soft tissue. Magnetic resonance imaging (MRI) demonstrated a local soft tissue signal mass with isosignal intensity in T1 and heterogeneous high-signal intensity in T2. Color Doppler ultrasound suggested that the tumor was hypovascularized. The patient underwent amputation, and histological analysis revealed an ACT. The patient’s symptoms improved postoperatively, with no recurrence as of the 3-year follow-up.





Conclusion

Meanwhile, this study also reviewed the comparable diagnostic methods of ACT and chondrosarcoma. The analysis of previous similar cases showed that preoperative imaging diagnosis of ACT can be challenging and multimodal imaging appears to be beneficial in diagnosing ACTs and malignant chondrosarcoma grade II/III in the hands and feet.





Keywords: atypical cartilaginous tumor, chondrosarcoma, hands and feet, imaging, diagnosis





Introduction

In the 5th Edition of the World Health Organization (WHO) tumor classification of bone and soft tissue tumors, published in 2020, atypical cartilaginous tumor/chondrosarcoma grade I (intermediate-locally aggressive) (ACT/CS1) in the 2013 version was divided into two diseases: ACT and CS1. The former was retained in the classification of intermediate-locally aggressive, and the latter was upgraded to malignancy. The new version of the guideline differentiates between ACT and CS1 based on the location of the tumor: tumors located within the appendicular bone both in long and short tubular bones are called ACT, while those occurring in the axial skeleton (pelvis, scapula, and skull base flat bones) are called CS1 to reflect the poorer clinical outcome of these tumors at these sites. The most common sites affected by ACT are the femur, humerus, and tibia. ACTs of the hands and feet are not common. Because of the rarity of ACT in the hands and feet, the imaging literature on ACT is scarce and mainly comprises older or small case series, as well as case reports describing conventional radiographic features (1, 2). Preoperative imaging diagnosis of ACT can be challenging. We report a case of ACT in the distal phalanx of the left hand thumb and made a detailed report on its imaging performance. The imaging features of CS and ACT in hands and feet were summarized and reviewed.





Case report

The authors have read the case report (CARE) Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016). An Asian woman in her early 80s presented with a palpable and painless mass in the distal phalanx of the left thumb. The patient noticed that mass 2 years ago, and the mass swelled progressively in the 2 years and its growth accelerated in the past 6 months, which prompted the woman to go to the hospital for medical assessment. Upon physical examination, the patient had a swollen left hand thumb, giving it a drumstick appearance (Figure 1). The patient claimed a history of type 2 diabetes and hypothyroidism with no known trauma or any masses elsewhere. Our patient did not have Ollier’s disease, Maffucci syndrome, or hereditary exostosis and had no evidence of prior enchondroma. The results of routine blood tests and biochemical tests were normal. To further clarify the diagnosis, the patient received medical imaging examinations. The radiograph showed a mass in the distal phalanx of the left thumb with osteolytic bone destruction (Figures 2A, B). In computed tomography (CT) images, osteolytic destruction of the distal phalanx of the thumb with a local soft tissue density mass was observed (Figures 2C, D). Magnetic resonance imaging (MRI) also showed cortical destruction of the distal phalanx of the thumb and a local soft tissue signal mass of approximately 20 mm × 19 mm × 26 mm with isosignal intensity in the T1-weighted image (T1WI) and heterogeneously high signal intensity in the T2-weighted image (T2WI) (Figures 2E, F). The mass invaded the interphalangeal joint. In addition, the patient underwent ultrasound examination. Ultrasound imaging demonstrated a hypoechoic mass (25 mm × 18 mm × 22 mm) with patchy calcification in the distal phalanx of the left thumb (Figures 2G–I). The mass had a clear margin and irregular shape. The bone cortex around the mass is discontinuous and not smooth. Color Doppler showed a dot blood flow signal within the mass. Subsequent chest radiography and bone scans did not reveal any metastatic lesions.




Figure 1 | Preoperative photographs of the patient.






Figure 2 | Preoperative appearance of the patient’s hand shows a destructive cortex and osteolytic change with soft tissue masses. (A) Lateral radiograph; (B) radiograph. Computed tomography imaging (C) and 3D view (D) of atypical cartilaginous tumor of the hand shows osteolytic destruction of the distal phalanx of the thumb. Magnetic resonance imaging. (E) T1-weighted imaging shows a low-signal shadow of the mass; (F) T2-weighted imaging shows a heterogeneously high signal intensity. Ultrasound demonstrated a hypoechoic mass with calcification (G) and a dotted blood flow signal (H). (I) Spectrum Doppler shows the arterial spectrum.



With the above imaging findings, the patient received amputation of the left thumb distal phalanx to achieve radical excision of the mass. The lesion tissues were stained with hematoxylin-eosin (HE). Microscopically, blue-stained cartilaginous matrix was found, and chondrocytes showed obvious heteromorphism. The caryocinesia was observed, with invasive growth accompanied by a few bone trabeculae. Pathologic findings are consistent with a chondrogenic tumor, showing intermediate-locally aggressive behavior. Combined with tumor location (appendicular skeleton, not the axial skeleton), imaging findings (a mass with osteolytic bone destruction), and an aggressive clinical behavior (rapid growth in the last 6 months), the tumor was diagnosed as an ACT (Figures 3A–C). The postoperative x-ray examination showed a good surgical outcome (Figures 3D, E). After the surgery, the patient experienced an improvement in her symptoms and reported a better quality of life. During the 3-year follow-up, there was no evidence of recurrence detected by MRI or CT scans. Informed consent was obtained from the subject described in this report.




Figure 3 | Hematoxylin and eosin-stained section of the tumor (×10 magnification). (A) Microscopically, there are many slightly heterotopic chondrocytes with obvious heteromorphism and a caryocinesia phase. (B, C) Most of the tumor cells show invasive growth, accompanied by a few bone trabeculae. Postoperative image of the patient. (D) Lateral radiograph; (E) radiograph.







Discussion

Although the 2013 version proposed the concept of ACT, it did not provide specific diagnostic criteria, and it was difficult to apply to clinicopathological diagnosis. The 2020 version clarified the diagnostic criteria for ACT: tumors occurring in the appendicular bones (long and short tubular bones) are called ACT, while those occurring in the axial bones (flat bones including the pelvis, scapula, and skull base) are called CS1. ACT and CS1 have the same histological characteristics, but the prognosis of appendicular bone tumors is significantly better in axial bone (3). The new version of the guidelines divides ACT/CS1 into ACT and CS1 based on the anatomical location of the tumor, with the former retained as intermediate and the latter upgraded to malignant disease. ACT involving bones of the hands and feet is uncommon. Early diagnosis is helpful for the treatment and prognosis of the disease. Radiography, CT, and MRI are helpful for tumor biopsy and treatment.

In order to differentiate ACT and CS imaging characteristics of the hands or feet, we searched the following three databases: PubMed, Embase, and Cochrane Library, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (4). We also manually searched additional relevant studies using the references of the systematic reviews that were published previously. All of the searches were performed from inception to 22 August 2022, and imposed restrictions on the English language. The inclusion criteria specified studies and case reports describing patients with primary CS or ACT confirmed by pathologically involving the hand or the feet who received image examination.

The following search strategy was used for PubMed and was modified to suit Embase and Cochrane Library databases.

#1 (chondrosarcoma [Title/Abstract]) OR (atypical cartilaginous tumor[Title/Abstract])

#2 (small bone [Title/Abstract] OR hand [Title/Abstract] OR foot [Title/Abstract])

#1 AND #2

Next, we screened the titles and abstracts of these articles, excluding articles in which the lesion did not involve the hands or feet, those not describing the imaging examination features, and those in which the tumors were secondary. Periosteal chondrosarcoma, clear cell chondrosarcoma, mesenchymal chondrosarcoma, and dedifferentiated chondrosarcoma were excluded because they have different biological behaviors (5). Supplementary Figure 1 illustrates the study selection process.

As a result, 32 articles (6–37) discussing 92 cases were selected. The characteristics of the selected cases, including the present case, are listed in Supplementary Table 1. All included cases were primary chondrosarcoma confirmed by pathology. There were 49 male and 43 female patients. All patients were adults, except for a 12-year-old male patient reported by Gupta et al. (28). Among all patients, 90 patients underwent radiographic examination, 8 patients underwent CT, 17 patients underwent MRI, 6 patients underwent CE-MRI, and 16 patients underwent bone scans. In Supplementary Table 1, the radiography and CT imaging manifestations of chondrosarcoma and ACT in hands and feet were mainly seen as cortical destruction, soft tissue mass, and osteolytic change, which characteristically contained calcification. Additional features that may be present included endosteal scalloping and periosteal reaction. On MRI, a total of 9 cases provided detailed information on T1WI and T2WI. These lesions appeared as hyposignal or isosignal on T1WI images. On T2WI images, the above lesions were hypersignal compared with skeletal muscle. CE-MRI showed an enhanced area among all patients who underwent CE-MRI examination. In addition, Tos et al. (23) reported a case showing a rounded high-intensity image on coronal STIR and a low-intensity heterogeneous lesion on sagittal SET1. The bone scanning results of 16 patients all showed abnormal radioactive accumulation, one of which indicated that the tumor was hypervascular. Only the lesion in this case report was examined by ultrasound. Ultrasound imaging demonstrated cortical destruction and a hypoechoic mass with patchy calcification. Color Doppler showed that the tumor was hypovascularized. Resection, amputation, and ray resection were commonly used in treatment.

Considering that in the previous classification versions, ACT and CS1 were classified into the same category (ACT/CS1), but in the new classification version published in 2020, the intermediate-locally aggressive chondrosarcoma grade I (CS1) occurring in the hand or foot is uniformly classified into ACT, in the following analysis of imaging findings, we excluded the data without clear pathological classification in Supplementary Table 1. The data in Supplementary Table 1 were reclassified as two categories: intermediate-locally aggressive ACT and high-malignant chondrosarcoma grade II/III (CS2/3), for comparison of imaging findings. After the reclassification, 10 cases of ACT and 35 cases of CS2/3 were retained for further analysis. Of the 10 cases of ACT, it is more common in male than in female patients (female:male = 3:7). The age range was 29–87 years, with an average age of 52 years. In 35 cases of CS2/3, it is more common in female than in male patients (female:male = 20:15). The age range was 30–85 years, with a mean age of 63 years old. In terms of symptoms, the two categories may show pain, swelling, or both. In ACT, 20% of patients presented with pain (2/10), 20% also presented with swelling (2/10), and 30% had both (3/10). In CS2/3, 43% patients presented with pain (15/35), 17% presented with swelling (6/35), and 40% had both (14/35). Imaging findings showed that in ACT, 80% (8/10) of patients showed cortical destruction, 40% (4/10) displayed calcification, 70% (7/10) showed soft tissue mass, 40% (4/10) showed osteolytic destruction, and only 1 case (10%) showed periosteal reaction. In CS2/3, 83% (29/35) of patients showed cortical destruction, 80% (28/35) showed calcification, 74% (26/35) showed soft tissue mass, osteolytic destruction was observed in 11% (4/35), and periosteal reaction was observed in 2 cases (6%). In summary, both ACT and CS2/3 are common in middle-aged and elderly patients. ACT is more common in men, while CS2/3 is more common in women. In imaging findings, both of the two categories showed cortical destruction and soft tissue mass. Calcification was more likely to occur in malignant CS2/3. Therefore, there are certain difficulties in the imaging of the two categories, and pathological examination is still needed to distinguish them.

In clinical practice, radiography and CT remain the mainstay for the initial detection of chondrosarcoma or ACT of small bones and are helpful for characterization of the lesion (38). The main application of MRI is the preoperative assessment for staging the extent of disease (1, 2). However, there is a paucity of data on the use of PET/MRI in ACT or CS of small bones. However, some scholars (39) have noted that PET/MRI can provide additional functional information to supplement the morphologic mapping and histopathology of these tumors. It is expected that future research will highlight a potential role for PET/MRI in the management of CS or ACT of small bones. Ultrasound examination is noninvasive, painless, and economical. It can not only show small lesions of the bone cortex and observe the structural relationship between the tumor and surrounding blood vessels but also show different degrees of bone destruction, periosteal reaction, and soft tissue invasion (40). Color Doppler flow imaging can also provide hemodynamic information. These results also suggest that multimodal imaging is helpful to improve the diagnostic efficiency of CS or ACT.

This study also has some limitations. First, since only hands and feet with imaging findings were collected, the epidemiological data collected in this study are not comprehensive. Second, because the collected literature in Supplementary Table 1 were published before the release of the new version in 2020, we failed to classify ACT and CS of the imaging information in some articles. In addition, for the analysis of imaging findings, fewer cases were included in this study, and no statistical analysis was made on the differences. The differential diagnosis of imaging features between ACT and malignant CS2/3 needs further study.

In conclusion, although ACT is very rare in hands and feet, the possibility of ACT should also be considered for soft tissue tumor occurring in middle-aged and elderly men whose clinical manifestations are mainly pain and swelling, and the imaging findings are cortical destruction, soft tissue mass, and osteolytic change. Multimodal imaging may be helpful to improve the diagnostic efficiency of ACT.
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Supplementary Figure 1 | A flowchart showing the literature search and analysis process.

Supplementary Table 1 | List of primary atypical cartilaginous tumor or chondrosarcoma cases receiving imaging examination. LF, left foot; RH, right hand; PP, proximal phalanx; PIP, proximal interphalangeal point; LH, left hand; MP, metacarpophalangeal; Gd, gadolinium-enhanced; MC, metacarpal.
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Patient

no.

1(8)

2(9)

3 (10)
4 (11)

5(12)

6(2)

7(2)

8(2)

9(2)

10 (13)

11(7)

18 (2)
19 (2)

20 (2)

21 (14)

22 (15)
23 (16)
24 (17)

Patient
No.

11

20
21
22
23

24

Age
(years)
M 49
08
E 17
B 51
M 0.4
F 10
B 19
F 2
F 28
M 1.5
M 3
F 3!
M 15
F 7
H 10
F 11
F 13
F 3
11
12
M 3
F 0.6
M 30
M 17
Intensity
of enhancement
Moderate
Marked
Moderate
Moderate

/

One moderate,
one marked

/

Moderate

Marked

Marked

Moderate

Moderate

Moderate
Moderate
Moderate
Mild
Moderate
Moderate
Moderate
Moderate
Moderate
/
Moderate

Marked

Lesion  Involved area in Maximum  Density Perifocal

count nervous system diameter edema
(mm)

2 Gray matter of the cerebral cortex / / /

2 Gray matter of the cerebral cortex 53 / Yes

and subcortical region

1 Gray matter of the cerebral cortex / / /

1 Gray matter of the cerebral cortex 17 / Yes

1 Gray matter of the cerebral cortex / Slightly No
high

2 Gray matter of the cerebral cortex / / /

and cerebellar cortex (Figure 3)
1 Spinal nerve root / / /

3 Deep gray matter nucleus, deep white  / / /
matter and subcortical
region (Figure 3)

1 Leptomeningeal (Figure 3) / / /

3 2 at gray matter of the cerebral cortex = 51 / No
and 1 at suprasellar

5 2 at gray matter of the cerebral / Slightly No
cortex, 2 at subcortical region, and 1 high
at deep gray matter nucleus

2 Intradural extramedullary region and 27 / No
leptomeningeal (Figure 1)

1 Endocranium 24 / !
1 Gray matter of the cerebellar cortex 30 / !
1 Subcortical region of the cerebrum 14 / /
1 Subcortical region of the cerebrum 15 / Yes
1 Subcortical region of the / / /

cerebrum (Figure 3)

1 Cranial nerve (Figure 3) / / /
1 Cranial nerve (Figure 3) 34 / /
1 Intradural extramedullary 45 / /

region (Figure 3)

3 Intradural extramedullary region, / / /
spinal dura and leptomeningeal

1 Thalamus and third ventricle 47 / No
1 Endocranium / Iso- No
1 Leptomeningeal / / /

Pattern of enhancement

The large lesion showing homogeneous enhancement with mildly punctate enhancement and the small
one homogeneous enhancement with marked ring enhancement

The large lesion showing inhomogeneous enhancement with marked ring enhancement and the small
one inhomogeneous enhancement with a small cystic component

Homogeneous enhancement
Homogeneous enhancement with markedly punctate enhancement
/

Homogeneous enhancement with marked ring enhancement

/

The largest lesion showing inhomogeneous enhancement, the larger one showing inhomogeneous
enhancement with marked ring enhancement, and the smallest one showing
homogeneous enhancement

Homogeneous enhancement

The largest lesion showing homogeneous enhancement with markedly/mildly punctate enhancement,
one ring enhancement and another one showing homogeneous enhancement

The largest lesion showing inhomogeneous enhancement with marked ring enhancement, and the other
four showing homogeneous enhancement

The one showing homogeneous enhancement with markedly punctate enhancement and marked
enhancement at the upper and lower rims, the other showing homogeneous enhancement

Homogeneous enhancement

Inhomogeneous enhancement with marked edge enhancement

Homogeneous enhancement with mildly punctate enhancement

Homogeneous enhancement with markedly punctate enhancement and ring enhancement
Homogeneous enhancement with marked ring enhancement

Homogeneous enhancement with marked ring enhancement

Homogeneous enhancement with mildly punctate enhancement

Homogeneous enhancement with mildly punctate enhancement

Homogencous enhancement

/

Homogeneous enhancement with markedly punctate enhancement and ring enhancement

Homogeneous enhancement

“The case reported here; Patients 1-12 with multisystem involvement, while patients 13-24 only with nervous system involvement.
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Tso-

Tso-

Tso-

!
Iso-hypo-
Iso-hypo-

Restricted
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/

Yes

Yes
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Characteristics

Clinical model

OR (95%Cl)

P Value

Radiological model

OR (95%Cl) P Value

Integrated nomogram model

OR (95%Cl)

P Value

Age (months)

Fever

Palpable mass
Location
Homogeneous density
Calcification

Encase vessels

Intraspinal tumor extension

1.03 (1.01-1.05)
NS

35.12 (7.08-174.29)

OR, odds ratio; CI, confidence interval; NS, not significant.

<0.001

<0.001

0.18 (0.04-0.73) 0.016
NS -

0.06 (0.02-0.21) <0.001
NS -

0.06 (0.01-0.57) 0.015

1.04 (1.01-1.08)
NS
20.92 (3.25-134.47)
NS
NS
005 (0.01-0.24)
NS

0.04 (0.00-0.79)

0.021

0.001

<0.001

0.034
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Models C (95% CI) Accuracy (95% CI) Sensitivity (95% Cl) Spec y (95% CI)
Clinical model 0.878 (0.799-0.934) 0.845 (0.842-0.847) 0.838 (0.680-0.938) 0.849 (0.739-0.925)
Radiological model 0.915 (0.843-0.961) 0.864 (0.862-0.866) 0.919 (0.781-0.983) 0.833 (0.721-0.914)
Integrated nomogram model 0.962 (0.905-0.990) 0.932 (0.931-0.933) 0.946 (0.818-0.993) 0.924 (0.832-0.975)

AUC, area under the curve; CI, confidence interval.
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Pathological result = Tota|

Accuracy
(95% Cl)

Sensitivity
(95% CI)

Specificity
(95% ClI)

. . . AUC
Experien Diagnosi
perience  Diagnosis RMS NB 103 (95%C)
(n=37) (n =66)
RMS 16 ‘ 17 33 0.587
Junior o= 5 ‘ e 70 (0.491-0.684)
RMS 20 ‘ 16 36
0649
Middle-age
g = i ‘ o & (0.552-0.746)
RMS 2 ‘ 13 35 0.699
Senior i 5
. s ‘ 5 PN (0.605-0.792)

RMS, rhabdomyosarcoma; NB, neuroblastoma; AUC, area under the curve; Cl, confidence interval.

0631 (0.627-0.635)

0.680 (0.675-0.684)

0.728 (0.724-0.731)

0.432 (0.273-0.592)

0.541 (0.380-0.701)

0595 (0.436-0.753)

0742 (0.637-0.848)

0.758 (0.654-0.861)

0.803 (0.707-0.899)
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From January 2020 to April 2023, PCa patients who had

undergone MRI of the prostate and radical prostatectomy.

1. absence of hormone or radiation
treatment history inclusion criteria exclusion criteria 1. unavailability of histopathology data fo
ii. no contraindications to MRI Teview, ) o

i11. undergoing radical prostatectomy 1i. inadequate Hpape: quah.ty in at least ong
within one month after multi-parametric MR sequence for diagnostic purposes

MRI
8 patients were excluded for the absence of
pathological results

6 patients were excluded due to inadequate
image quality in at least one MR sequence

50 patients in the EPE group 47 patients in the toumor organ-confined group
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Characteristic ~ Training Validation

set(n=97) set(n=97)

Age (years) 63.4:8.8 62.0£10.5 0.468

(meanxSD)

Sex

male 61 60 0.882

female 36 37

CEA (ng/ml) 7

=55 38 | 43 | 0.467

<5.5 59 54

CA199 (ng/ml)

230 76 75 0.863
V <30 21 | 22

Ki67 V 40(30,50) V 70(45,70) 0.126

Tumor 0.198

differentiation

Well 10 8

Mediate 67 58

Poor 20 ‘ 31

Adjuvant

chemotherapy

Yes 12 I 16 0.414

No 85 81

tumor size(mm) 64.3+20.6 43.4+16.1 0.525

MRF

Positivity | 59 I 47 | 0.351

Negativity 38 40

EVI

Positivity 13 10 0.505

Negativity 84 87

pT ' 7

T1 7 V 7 0.925

T2 21 23

T3 47 47

T4 22 18

pN

NO 63 70 0.362

N1 20 19

N2 14 ‘ 8

fl‘:lle‘”(vm‘g; 36.3+22.4 38.1423.3 0.591

MREF, mesorectal fascia; EVI, extramural venous invasion.
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Training set Validation set

C-index 95%Cl C-index 95%Cl
Radiomics nomogram 0.76 0.71-0.79 0.77 0.71-0.82 781.5
Radiomics signature 0.72 0.69-0.75 0.73 0.70-0.78 793.4
Clinical model 0.71 0.68-0.75 0.70 0.69-0.79 788.6

AIC, Akaike information criterion.
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QUS Parameter (units)

ROl Mean Value (CR)

| Mean Value (PR)

p-Value (1-ta

MBEF (dB) 3474 0.622 0.02
SS (dB/MHz) -2.172 -2.050 0.30
SI (dB) 1544 11.92 0.03
ASD_Gaussian ({m) 82.82 77.98 0.24
AAC_Gaussian (dB/cm®) 63.96 61.25 0.30
| ASD_Anderson (itm) 1429 136.7 0.10
AAC_Anderson (dB/cm®) 1129 106.7 0.05
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Features Used %Accuracy %Precision

SVM
1 65.9 80.0 70.8 86.1 0.71
2 723 76.0 736 85.0 0.74
3 74.5 76.0 750 854 0.75
4 76.6 720 75.0 847 0.75
5 78.7 76.0 77.8 86.1 0.82
6 80.1 80.0 80.6 884 0.81
F 80.9 76.0 792 86.4 0.82

k-NN
1 63.8 64.0 639 76.9 071
2 59.6 720 63.9 80.0 0.73
3 70.2 720 70.1 825 071
4 59.6 720 639 80.0 0.72
5 723 72.0 72.2 829 0.72
6 723 64.0 694 79.1 0.68
¥ 61.7 68.0 63.9 784 0.66

Features selected for models in bolded rows were used as guideline to create

I features.
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SVM Classifier

%Accuracy

%Precision

Features Used %Sn
5 Features QUS 78.7
5 Features QUS + TOT 78.7
7 Features QUS 80.9
7 Features QUS + TOT 85.1

In bold is the model that performed best with SVM classifier.
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atient Characteristics n (%)
Patient and Clinical Characteristics n = 72 (all subjects)

Age (years)

- Median - 61

- Mean -60.5 + 10.14
Gender

- Male - 67 (93.1)

- Female -5(6.9)

Smoking Status:

- Smoker - 48 (66.7)
- Non-smoker -23(31.9)
- Unknown -1(1.4)

Drinking Status:

- Drinker - 51 (70.8)
- Non-drinker - 15 (20.8)
- Unknown -6(83)

Tumour status

Primary Tumour(T):

=T, -4 (5.6)

T2 -23(32)

+'T3 -79.7)

T4 - 15 (20.8)

- Unknown -23(32)
Histological Type:

- Squamous cell carcinoma - 67 (93)

- Small cell carcinoma -1(14)

- Nasopharyngeal carcinoma -4 (5.5)
HPV status:

- pl6(+) - 41 (56.9)

- pl6(-) -2(28)

- Unknown - 29 (40.3)

Treatment Characteristics

Chemotherapy - 62 (86.1)
- Cisplatin - 55 (76.4)
o Low dose -2(28)
0 Medium dose - 45 (62.5)
o High Dose -8 (11.1)
- Carboplatin -5(6.9)
- Carboplatin + etoposide -1(14)
- Cetuximab -1(14)
No Chemotherapy -10 (13.9)

Post Treatment (3-month assessment from MRI)
Complete Responder - locoregional control (CR) -25(34.7)

Partial Responder - locoregional failure (PR) - 47 (65.3)
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Radiomics vs. Clinical-radiomics
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Testing set
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Training set ( Testing set 2
Age (years) 56 (50-62) 54 (44-61) 0.341°
Sex 0.669"
Male 82 (71%) 34 (68%)
Female 33 (29%) 16 (32%)
Pretreatment CEA (ng/mL) 0.409"
<5 61 (53%) ‘ 30 (60%)
>5 54 (47%) 20 (40%)
Posttreatment CEA (ng/mL) 0.052"
<5 95 (83%) 47 (94%)
>5 [ 20 (17%) 3 (6%)
Pretreatment CA19-9 (U/mL) 0.457°
<30 96 (83%) 44 (88%)
=30 19 (17%) 6 (12%)
Posttreatment CA19-9 (U/mL) ‘ 0.107°
<30 107 (93%) ‘ 50 (100%)
>30 8 (7%) 0 (0%)
Neoadjuvant chemoradiotherapy 0.511°
Long-course chemoradiotherapy 57 (50%) 22 (44%)
B St s 6o
Surgery 1
Low anterior resection 53 (46%) 23 (46%)
Abdominal-perineal resection 59 (51%) 26 (52%)
Hartmann’s operation 3 (3%) 1(2%)

Age is expressed as median with interquartile range in parentheses; other measurements are expressed as numbers of patients with percentages in parentheses. CA19-9, carbohydrate antigen 19-
; CEA, carcinoembryonic antigen.

Mann-Whitney U test.

o test.

©: Fisher’s exact test.
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Pretreatment DTA, mm 534 (35.9-73.6) 44.6 (33.8-67.1) 0.169*
Posttreatment DTA, mm 58.4 (41.0-77.3) 49.6 (41.4-69.7) 0.227*
Pretreatment MTL, mm 454 (37.8-53.3) 43.6 (34.4-58.3) 0.712*
Posttreatment MTL, mm 23.5 (16.3-30.6) 24.5 (15.7-30.3) 0.994°
Pretreatment MTT, mm 18.2 (15.9-22.2) 19.4 (15.2-24.7) 0.606°
Posttreatment MTT, mm 104 (7.8-13.2) 10.5 (6.9-12.7) 0.492°
Pretreatment CP 0,978°
0-0.25 2 (2%) 1(2%)
>0.25-0.5 23 (20%) 11 (22%)
>0.5-0.75 48 (42%) 20 (40%)
>0.75-1 42 (37%) 18 (36%)
Posttreatment CP 0,639°
0-0.25 31 (27%) 15 (30%)
>0.25-0.5 58 (50%) 20 (40%)
>0.5-0.75 17 (15%) 10 (20%)
>0.75-1 9 (8%) 5 (10%)
Pretreatment mrT stage 0.094¢
1 0 (0%) 0 (0%)
2 1(1%) 0(0%)
3a 15 (13%) 6 (12%)
3b 70 (61%) 38 (76%)
3c 22 (19%) 2 (4%)
3d 4 (3%) 3 (6%)
4 3 (3%) 1(2%)
Posttreatment mrT (ymrT) stage 0.121¢
0 12 (10%) 6 (12%)
1 1(1%) 2 (4%)
2 16 (14%) 7 (14%)
3 71 (62%) 34 (68%)
4 15 (13%) 1 (2%)
Pretreatment mrN stage 0.684"
0 28 (24%) 15 (30%)
1 51 (44%) 22 (44%)
2 36 (31%) 13 (26%)
Posttreatment mrN (ymrN) stage 0.648°
0 78 (68%) 38 (76%)
1 34 (30%) 11 (22%)
& 3 (3%) 1(2%) ‘
Pretreatment MRF 0571° ‘
Positive 34 (30%) 17 (34%) \
Posttreatment MRF 1°
Positive 7 (6%) I 3 (6%)
Pretreatment EMVI 0.835"
Positive 67 (58%) 30 (60%)
Posttreatment EMVT 0.786"
Positive 18 (16%) 7 (14%)
mrTRG 0.861°
1 24 (21%) 13 (26%)
2 72 (63%) 28 (56%)
3 16 (14%) 8 (16%)
4 3 (3%) 1(2%)
5 0 (0%) 0 (0%)

Pre- and posttreatment DTA, MTL, and MTT are expressed as median with interquartile range in parentheses; other measurements are expressed as numbers of patients with percentages in
parentheses. CP, circumferential percentage; DTA, distance from tumor to anal verge; EMVI, extramural vascular invasion; MRF, mesorectal fascia; MRI, magnetic resonance imaging; mrTRG,
magnetic resonance tumor regression grade; MTL, maximum tumor length; MTT, maximum tumor thickness.

% Mann-Whitney U test.

b test.

©: Fisher’s exact test.
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categories 1 2 3

4

Overall image quality Poor quality Moderate quality Good quality perfect quality
Background suppression Poor suppression Moderate suppression Good suppression Perfect suppression
Nerve and lump Visualization No visualization Many partial visualizations Few partial visualizations Full visualization
Spatial positional relationship Conspicuity No conspicuity Poor conspicuity Moderate conspicuity Excellent conspicuity
Diagnostic Confidence No confidence Low confidence Intermediate confidence High confidence

MIP, Maximum Intensity Projection; cVRT, Cinematic Volume Rendering Technique.
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Characteristic
Age, years
Sex
Female
Male
Main clinical symptoms

Lumps in the neck or underarm on the
affected side

Numbness in the hands

Swelling and weakness of the neck and
upper limbs

No obvious symptoms

All Participants (n

37.5 (18-79)

24(53.33%)

21(46.66%)

35(77.77%)

5(11.11%)

3(6.66%)

2(4.44%)
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cVRT

Inter-observer Agreement

MIP

cVRT

0921 (0.859-0.956)

0.898 (0.823-0.943)

0.920 (0.859-0.955)

0.967 (0.941-0.982)

0.886 (0.802-0.936)
0.851 (0.740-0.916)
0.803 (0.669-0.887)

0.739 (0.573-0.847)

0.915 (0.849-0.952)
0.892 (0.813-0.939)
0.910 (0.842-0.950)

0.935 (0.884-0.964)

Metric Intra-observer Agreement
MIP

Overall image quality 0.905 (0.834-0.947)

Background suppression ‘ 0.860 (0.758-0.920)

Nerve and lump visualization ‘ 0.852 (0.746-0.915)

Spatial positional relationship conspicuity ‘ 0765 (0.610-0.864)

Diagnostic confidence ‘ 0.888 (0.806-0.937)

MIP, Maximum Intensity Projection; cVRT, Cinematic Volume Rendering Technique.

0.933 (0.881-0.963)

0.868 (0.772-0.925)

0.932 (0.879-0.962)
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Observation indicators MIP Surgery MIP vs Surgery vs Surgery
Size (cm) 4.13 + 1.62 3.98 + 1.64 405+1.70 | 0985 0.990"
Location 1.000° 1.000°

C5 and C6 nerve roots 7 7 74

C8 nerve root 3 3 3

Superior trunk 6 6 6

Middle trunk 12 12 12

Interior trunk 7 7 7

Lateral cord 3 3 5}

Posterior cord 2 2 2

Medial cord 4 5 5

Terminal branches 1 [ 1 1
Spatial relationship 0.829" 0913°

Eccentric embedding 37 36 35

Pushing 2 4 6

Embedding and pushing 6 5 4

MIP, Maximum Intensity Projection; cVRT, Cinematic Volume Rendering Technique.
“represents intraclass correlation coefficients (ICC), and “represents the weighted kappa test.





OPS/images/fonc.2023.1278386/fonc-13-1278386-g003.jpg
score

[}

MIP
B cVRT

Overall image Background Nerve and Spatial Diagnostic
quality suppression lump positional confidence
visualization  relationship
conspicuity





OPS/images/fonc.2023.1278386/table1.jpg
Scanning sequence FOV (mm? atrix Slice thickness (mm, TR/TE (ms)

TIWI 400x400 307 x 307 4.0 650/12
T2WI 220x220 314 x 314 4.0 3000/101
3D-STIR-SPACE 420x420 466 x 466 3.0 3000/160

TIWI+C 400x400 307 x 307 4.0 650/12

FOV, Field of view; TR, Time of repetition; TE, Time of echo.
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Characteristics

Age (months), 36.0 (17.0-68.0) 14.50 0.003

median (IQR) (6.0-40.0)

Gender, n (%)
Male 26 (70.3) 38 (57.6) 0.203
Female 11(29.7) 28 (42.4)

Symptoms, n (%)
Fever 0(0.0) 11 (16.7) 0.022
Pain 11 (29.7) 11 (16.7) 0.121
Palpable mass 33(89.2) 23 (34.8) <0.001

IQR, interquartile range; RMS, thabdomyosarcoma; NB, neuroblastoma.
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Characteristics NB B

(n =66) Value

Location, n (%) <0.001
Head and neck 18 (48.6) 6(9.1)
Trunk and extremities 19 (51.4) 60 (90.9)
Number of lesions, n (%) 0.082
Single 34 (91.9) 66 (100.0%)
Multiple 3(8.1) 0 (0.0)
Shape of the tumor, n (%) 0.964
Round 13 (35.1) 24 (36.4)
Lobulated 4(10.8) 8 (12.1)
Trregular 20 (54.1) 34 (51.5)
Size (mm), mean + SD 7.54 £ 598 6.87 +3.35 0.326
Tumor border, n (%) 0.829
Tll-defined 21 (56.8) 36 (54.5)
Well-defined 16 (43.2) 30 (45.5)

CT attenuation, n (%)*

Hypodense or iso-dense 31/34 (91.2) 61/65 (93.8) 0.937

Homogeneous 12/34 (35.3) 9/65 (13.8) 0.013
Calcification, n (%) 7 (18.9) 56 (84.8) <0.001
Cystic degeneration, n (%) 16 (43.2) 17 (25.8) 0.068
Encasing vessels, n (%) 5(13.5) 23 (34.8) 0.020
Hemorrhage, n (%) 3(8.1) 4 (6.1) 1.000
Midline crossing, n (%) 17 (45.9) 43 (65.2) 0.058
Intraspinal tumor extension, 1(2.7) 33 (50.0) <0.001
n (%)
Bony destruction, n (%) 10 (27.0) 11 (16.7) 0.211

TIWI, n (%)
Hypointense or isointense 15/17 (88.2) 14/19 (73.7) 0.408
Homogeneous 5/17 (29.4) 4/19 (21.1) 0. 706

T2WI, n (%)'

Hyperintense 16/17 (94.1) 19/19 (100.0) 0472
Heterogeneous 17/17 (100.0) 18/19 (94.7) 1.000
Diffusion restriction, n (%))" 12/13 (92.3) 17/17 (100.0) 0.433
Heterogeneous enhancement, 37/37 (100.0) 60/64 (93.8) 0.307
n (%)*
Swollen lymph nodes, n (%) 14 (37.8) 22(333) 0.646

CT, computed tomography; TIWI, T1-weighted image; T2WI, T2-weighted image; SD,
standard deviation; RMS, rhabdomyosarcoma; NB, neuroblastoma.

* 99 patients underwent CT scans.

130 patients underwent DWI, while 36 patients underwent TIWI and T2WI.

*101 patients underwent contrast-enhanced CT or MRI scans.
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Patients diagnosed with RMS or NB through histopathological

sections between December 2012 and July 2023 (n=266)

___________________________________________

nervous system and visceral organs (n=117) :

.

(1) Without pretreatment CT or MR images (n=31)

NB (n=108)

(2) Suboptimal image quality (n=15)
Patients enrolled for analysis
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Diagnosis Total

CT Features

Benign Malignant Percentage In valid P values
15 3 18 0.656
hypodense
83.3% 16.7% 100.0%
Density
1 0 1
hyperdense
100.0% 0.0% 100.0%
6 3 9 0.047
Enhancement
66.7% 33.3% 100.0%
Enhancement
10 0 10
No Enhancement
100.0% 0.0% 100.0%
3 1 4 0.57
Present
75.0% 25.0% 100.0%
Calcifications
13 2 15
Absent
86.7% 13.3% 100.0%
4 2 6 0.154
Suspicious T
66.7% 33.3% 100.0%
Lymph node
12 1 13
Benign
92.3% 7.7% 100.0%
16 6 22

Total
100.0%
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ype of Surgery Malignant Benign
Excision 0 1
Sistrunk procedure S, 2
Total thyroidectomy with Sistrunk 7 0
Hemithyroidectomy with Sistrunk 2 0
Total thyroidectomy 6 2
Conservative management 0 59
Operative details not available 2 0
Total 22 64
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Suspected TGDC on clinical examination

!

Ultrasonography of the neck for assessment of the lesion, thyroid gland and cervical lymph nodes

|

Suspicious features on imaging ( calcifications, solid-cystic with internal
vascularity, irregular walls).

l

FNAC (clinician preference)

|

Positive/ negative/ non-diagnostic

|

Surgery ( if clinical & radiological suspicion)

= N

Isolated TGDC malignancy? Suspicious thyroid nodule on imaging/clinical examination?
Sistrunk’s Sistrunk’s procedure + Total thyroidectomy
Procedure

Suspicious cervical nodes on imaging/clinical examination

|

Pre-operative FNAC for confirmation &/or
Intra-operative frozen section of the most suspicious node

Modified radical neck
dissection with central
compartment clearance.

Positive negative
Selective nodal dissection Neck dissection can be avoided.

Radio iodine therapy for
papillary carcinoma
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Feature

Number Percentage Number Percentage

Size < 15 mm 30 88.23% 4 11.76% 0.083
> 15 mm 29 69.04% 13 30.95%

Location Suprahyoid 20 54.05% 17 45.94% 0.015
Infrahyoid 21 84.00% 4 16.00%

Margins Irregular 8 29.62% 19 70.37% 0.0001
Regular 33 94.28% 2 5.71%

Composition Solid-cystic 74 35.00% 13 65.00% 0.0001
Cystic 34 80.95% 8 19.05%

Internal echoes Present 10 83.33% 2 16.66% 0.161
Absent 31 62.00% 19 38.00%

Internal vascularity Present 2 16.66% 10 83.33% 0.0001
Absent 39 78.00% 11 22.00%

Calcifications Present 3 15.78% 16 84.21% 0.0001
Absent 38 88.37% 5 11.62%
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Sensitivity
Specificity
PPV

NPV

Irregular marg

90.48%

61.90%

70.37%

86.67%

47.62%

95.12%

83.33%

78.00%

76.19%

92.68%

84.21%

88.37%
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k-NN Classifier

Features Used %Sn
5 Features QUS 713
5 Features QUS + TOT 78.7
7 Features QUS 61.7
7 Features QUS + TOT 74.4

%Accuracy

722

73.6

63.9

72.2

%Precision

0.72

0.75

0.66

0.75

In bold is the model that performed best with k-NN classifier.
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History of primary diagnosis and medical history

Gender, age Female, 38 years
Staging of Bilateral large pelvic mass arising from the ovaries, left
primary status ovary 14x10cm, right ovary 7x9cm,

perisplenic free fluid, no evidence for distant metastasis

Tumormarker 505 U/ml
CA 12-5

Performance ECOG 0
Status

Medical history None, no history for endometriosis
Family history None

Gynaecological None, nullipara
history






OPS/images/fonc.2023.1288775/table2.jpg
1. (Left ovary) Adnexectomy specimen on the left showing infiltrates of a poorly
differentiated clear cell adenocarcinoma of the ovary.

2. (Right ovary) Adnexectomy specimen on the right, similar to 1, showing
infiltrates of a poorly differentiated clear cell adenocarcinoma of the ovary.

3. (Tumor) Tumor-free adipose/connective tissue.

4. (Rectal deposits) Soft tissue excision with 8 mm infiltrates of the
aforementioned clear cell adenocarcinoma.

5. (Diaphragm) Soft tissue excision with 2 mm infiltrates of the aforementioned
clear cell adenocarcinoma, with older residual bleeding. Tumor-free
resection margins.

6. (Falciform ligament) Peritoneal carcinosis of a clear cell ovarian carcinoma.
7. (Rectal deposit) Peritoneal carcinosis of a clear cell ovarian carcinoma.

8. (Uterus + Cervix) Uterus with a maximum 7 mm leiomyoma and regular
endometrial mucosa. Serosa with peritoneal carcinosis of a clear cell

ovarian carcinoma.
9. (Bladder peritoneum) Peritoneal carcinosis of a clear cell ovarian carcinoma.

10. (Omentum) Peritoneal carcinosis of a clear cell ovarian carcinoma. Tumor-
free resection margins. One tumor-free lymph node (0/1).

11. (Right colonic gutter) Peritoneal carcinosis of a clear cell ovarian carcinoma.

12. (Diaphragmatic and Gerota’s peritoneum) Peritoneal carcinosis of a clear
cell ovarian carcinoma.

13. (Appendix vermiformis) Mild acute appendicitis with peritoneal carcinosis
of a clear cell ovarian carcinoma.

14. (Ascites) Positive tumor cells.
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Patients with brachial plexus

schwannoma undertook MRI

screening(n=49)
(from Jan.2020 to Dec.2022)

patients excluded(n=4)
incomplete images (n=2)
respiratory artifacts(n=1)
metal artifacts(n=1)

patients included(n=45)
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Category Implicati Recommendation
TGCTIRADS I Normal No follow-up needed
TGCTIRADS 2 Benign No ENA required
TGCTIRADS 3 Probably benign No FNA required
TGCTIRADS 44 Undetermined ENA recommended

TGC-TIRADS 4B Moderate suspici FNA recommended*

TGC-TIRADS4C  Highly suspicious FNA recommended®
TGC-TIRADS 5 Consistent with malignancy  FNA recommended®
*As sampling errors frequently produce conflicting results, imaging featares plays a sirong

complementary role o eytologic examination. Although ENAC may help with the diagnosis,a
‘negative test does not rule out the possibility of cancer.
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Category Total cases Benign Malignant

Number Percentage Number Percentage Number Percentage
TGC-TIRADS 2 17 27% 17 100% 0 0%
TGC-TIRADS 3 9 15% 9 100% 0 0%
TGC-TIRADS 4A 15 24% 11 73% 4 27%
TGC-TIRADS 4B 6 10% 3 50% 3 50%

TGC-TIRADS 4C 8 13% 1 12% 7 88%

TGC-TIRADS 5 7 11% 0 0% 7 100%
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Models AUC Z statistic P
Combined radiomics model vs 0.938vs0.935 | 0.143 0.886
Plain radiomics model

Combined radiomics model vs 0.938vs0.870 | 1.692 0.091
Arterial radiomics model

Combined radiomics model vs 0.938vs0.851 | 2.424 0.015
Portal radiomics model

Combined radiomics model vs 0.938vs0.870 | 1.456 0.148

Clinical-pathological-
radiological model

AUCG, area under the receiver operating characteristic curve.
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Number of

patients (n=23)

Age [years], median (range) 63.8 (43-86)

Sex

Male 14 60.9
Female 9 39.1
Lesion size [cm], median, (range) 3.0 (0.8-7.3)

SUVmax, median, (range) 2.49 (0.8-7.3)

MI SUVmax, median, (range) -10.4 (-36.6-2.7)

MI SUVmean, median, (range) -9.6 (-30.4-4.69)

MI SUVmin, median, (range) -11.7 (-40-3.75)

Location

Pancreatic head 36 765
Pancreatic body 9 19.1
Pancreatic tail 2 4.3
Jaundice

Yes 21 44.6
No 26 55.3
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Age, years, median (range)

Number of

patients (n=47)

69.00 (46-88)

Chemoradiotherapy

Sex

Male 20 425

Female 27 575

Tumor size [cm], median (range) 3.0 (0.5-9.0)

Histologic differentiation

Well (G1) 7 149
V Moderate (G2) 23 489

Poor (G3) 17 36.2

T classification

T1-2 10 212

T3 23 49.0

T4 14 29.8

N classification

NO 22 46.8

N1 25 532

TNM stage

Ta/b 6 12.8

Ila 5 10.6

b 16 34.0

11 10 212

v 10 212

i‘:;?: :::Iggﬂmu’ 73 (0.0-71854.0)

<200 (U/mL) 29 62

>200 (U/mL) 18 38

SUVmax, Median (range) 3.55 (1.81-12.10)

MI SUVmax, median (range) 13.7 (-23.6-49.3)

MI SUVmean, median (range) 12.9 (-18.1-41.0)

MI SUVmin, median (range) 15.6 (-17.8-82.2)

CHD obstruction

Yes 22 46.8

No 25 5322

Location

Pancreatic head 36 76.5

Pancreatic body 9 19.1

Pancreatic tail 2 4.3

Jaundice

Yes 21 44.6

No 26 553

Resection margin

Negative 35 74.5

Positive 12 255

Adjuvant treatment

Surgery 11 234

Surgery + Chemotherapy 6 12.8

Surgery + Chemoradiotherapy 16 34.0

Surgery + Radiotherapy 2 4.3

Chemotherapy 4 85

8 17.0
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Model Cohort AUC(95% CI) Accuracy Sen

Radiomics Training cohort 0.895(0.840-0.949) 0.824 0.836 0819
Internal validation cohort 0.834(0.741-0.925) 0.767 0.750 0.774
External validation cohort 0.800(0.675-0.924) 0.769 0.647 0.812
Clinical Training cohort 0.820(0.753-0.886) 0.781 0.673 0.819
Internal validation cohort 0.778(0.678-0.877) 0.700 0.643 0.726
External validation cohort 0.730(0.572-0.888) 0.769 0.529 0.854
Nomogram Training cohort 0.905(0.857-0.951) 0.843 0.800 0.858
Internal validation cohort 0.850(0.770-0.928) 0.733 0.893 0.661
External validation cohort 0.817(0.698-0.936) 0.754 0.706 0771

AUC, area under curve; CI, confidence interval.
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B: Spiculation sign
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Variables Number Mean OS Median OS 95% CI p value

(total=47) (months) (months)

Age <60 4 733 83 4-8
T r 0229

260 43 41.6 214 17-38

Sex Male 20 299 16.6 9-27
0.068

Female 27 473 31.0 19-46

Tumor size <3 23 50.1 267 30-73
0.310

23 24 383 20.0 14-27

T classification T1-2 10 792 67.6 32-71
0.002*

T3-4 37 29.7 19.1 15-26

N classification No 22 416 214 19-34
0.540

N1 25 40.1 21.0 10-32

M stage Mo 37 56.6 270 20-43

<0,0001*

M1 10 11.7 94 8-16

Location Pancreatic head 36 55.0 262 17-34
Pancreatic body 9 230 202 16-27 0.019*

Pancreatic tail 2 9.6 94 9-10

Grading ‘Well/Moderate (G1+G2) 29 526 27.0 21-43
0.076

Poor (G3) 18 30.5 138 9-20

CA19-9 <200 30 56.5 270 19-32
I 0.126

>200 17 28.8 17.1 8-34

SUVmax <35 10 63.6 315 26-43
0172

>3.5 37 36.8 20.0 16-31

MI SUVmax <11 16 66.6 427 27-67
0.001*

211 31 33.0 19.1 15-22
CHD obstruction no 25 433 223 16-28 0.842

yes 22 478 202 14-34

Statistically significant findings are marked with *.
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Characteristic Univariable logistic regression Multivariable logistic regression

OR (95% CI) p value OR (95% CI) p value

Gender 0.869(0.784-0.964) 0.026 0.92(0.841-1.006) 0.125
Vacuole sign 0.956(0.863-1.059) 0.466

Age 1.006(1.001-1.011) 0.066

Air bronchogram 1.003(0.893-1.126) 0.066

Spiculation sign 1.136(1.028-1.255) 0.036 0.918(0.834-1.01) 0.142
Plural indentation 1.089(0.985-1.204) 0.159

Smoking history 1.127(1.00-1.27) 0.099

Lobulation sign 1.131(0.855-1.496) 0.469

CEA 1.191(1.018-1.394) 0.067

Vascular convergence sign 1.361(1.202-1.542) <0.001 1.133(1.004-1.278) 0.089
CTR 1.362(1.229-1.511) <0.001 1.135(1.014-1.27) 0.064
Nodule type 1.392(1.265-1.533) <0.001 1.288(1.157-1.432) <0.001
Maximum tumor diameter 1.914(1.598-2.291) <0.001 1.819(1.539-2.149) <0.001

OR, odds ratio; Cl, confidence interval.
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Characteristic Training cohort Internal validation cohort External validation cohort

(n=210) (GEE)] (n=65)
MPP-positive  MPP-negative MPP-positive  MPP-negative MPP-positive  MPP-negative
(n=55) (n=155) (n=28) (n=62) (n=17) (n=48)
Gender 0.039 1 1
Male 27(49.10%) 50(32.3%) 12(42.9%) 26(41.9%) 7(41.2%) 19(39.6%)
Female 28(50.9%) 105(67.7%) 16(57.1%) 36(58.1%) 10(58.8%) 29(60.4%)
Age, years 6022+ 1139 5752£843 0065 6232+ 1094 59242911 0167 5624+ 1011 57.96 £ 1007 0547
Smoking history 0.142 0.742 0086
Yes 17(30.9%) 3120%) 7(25.0%) 12(19.4%) 6(35.3%) 6(125%)
No 38(69.1%) 124(80%) 21(75.0%) 50(80.6%) 11(64.7%) 42(87.5%)
CEA 0076 0418 0594
Yes 10(18.2%) 14(9.0%) 4(14.3%) 4(6.5%) 2(4.2%) 2(11.8%)
No 45(81.8%) 141(91.0%) 24(85.7%) 58(93.5%) 16(95.8%) 15(38.2%)
Ma::e\xrt':‘ulncr 1721023 150 +0.24 <0.001 161 +£0.25 149+ 025 0.027 1.65 + 031 1.57 £027 929
Nodule type <0.001 <0.001 0.003
SN 38(69.1%) 44(28.4%) 23(82.1%) 22(35.5%) 13(76.5%) 15(31.3%)
PSN 17(30.9%) 111(71.6%) 5(17.9%) 40(64.5%) 4(23.5%) 33(68.7%)
Vascular convergence sign <0001 1 0321
Yes 20(36.4%) 19(12.3%) 9(32.1%) 21(33.9%) 5(29.4%) 7(14.6%)
No 35(63.6%) 136(87.7%) 19(67.9%) 41(66.1%) 12(70.6%) 41(85.4%)
Spiculation sign 0.052 0.588 0711
Yes 36(65.5%) 76(49.0%) 16(57.1%) 30(48.4%) 9(52.9%) 21(43.8%)
No 19(34.5%) 79(51.0%) 12(42.9%) 32(51.6%) 8(47.1%) 27(56.2%)
Lobulation sign 0770 0955 0297
Yes 54(98.2%) 149(96.1%) 27(96.4%) 58(93.5%) 17(100.0%) 42(87.5%)
No 1(1.8%) 6(3.9%) 1(3.6%) 4(6.5%) 0(0%) 6(12.5%)
Vacuole sign 0565 0.816 0.438
Yes 68(43.9%) 21(38.2%) 10(35.7%) 19(30.7%) 5(29.4%) 8(16.7%)
No 87(56.1%) 34(61.8%) 18(64.3%) 43(69.3%) 12(70.6%) 40(83.3%)
Air bronchogram 1 1 0.499
Yes 14(25.5%) 39(25.2%) 5(17.9%) 11(17.7%) 6(35.3%) 11(22.9%)
No 41(74.5%) 116(74.8%) 23(82.1%) 51(82.3%) 1(647%) 37(77.1%)
Plural indentation 0209 0.082 0502
Yes 32(58.2%) 73(47.1%) 18(64.3%) 26(41.9%) 9(52.9%) 19(39.6%)
No 23(41.8%) 82(52.9%) 10(35.7%) 36(58.1%) 8(47.1%) 29(60.4%)
CTR <0.001 0.001 0.095
<50% 3(5.5%) 61(39.4%) 0(0%) 21(33.9%) 2(11.8%) 18(37.5%)
250% 52(94.5%) 94(60.7%) 28(100.00) 41(66.1%) 15(88.2%) 30(62.5%)

Unless otherwise specified, categorical variables are presented as number (%).
MPP, Micropapillary Patter; SN,Solid Nodule;PSN, Part Solid Nodule.
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Patient Maximum  Elapsed
SUVLBM Time Post-
(g/mL) Injection
(hours)
Figure 8 Primary 14 35 1
lesion
Primary 2.2 8.0 4
lesion
Figure 9 Primary 53 12.2 1
lesion
Secondary 53 10.7 1
lesion
Figure 10 | Patient 6.8 14.9 4

with ILC
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Measured RC (%STD) SOR (%STD) In-plane

Quantity Spatial
Resolution
[mm]

Region 1 mm ‘ 2 mm 3 mm 4 mm 5 mm Air Cylinder ‘Water Cylinder

Radials 0.21 (16) ‘ 031 (9) 0.53 (10) 073 (9) 0.89 (9) 0.30 (19) 0.20 (29) 23%0.1

PEM Flex Solo 11 0.1 (27) ‘ 0.12 (26) 022 (14) 038 (9) 045 (9) 0.64 (11) 052 (16) 24+02
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Sphere Rose Rose
Diameters Criterion Criterion
8 mm 227 PASS 12.8 PASS

6 mm 112 PASS 5.7 PASS

5 mm 5.1 | PASS 2.8 FAIL

4 mm 22 FAIL 0.42 FAIL
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Sphere Size 8.0 mm Radialis
8.0 mm PEM Flex Solo Il
8.4 mm MAMMI PET

Activity 4:1
Concentration

Measured RC RC
Quantity Relative Relative
Mean Max

Radialis ‘ 245

PEM Flex Solo I ‘ L2

MAMMI PET

Quoted spatial resolution values are provided for comparison (11, 1

Absolute
RC Max

10:1

RC
REENYE
Mean

Percent
Contrast
(%)

4.0 mm Radialis
4.5 mm MAMMI PET

10:1

RC Percent
REENYE Contrast
Mean (VA

N EXE]
Resolution
(mm)






OPS/images/fonc.2024.1389396/im33.jpg





OPS/images/fonc.2025.1450379/fonc-15-1450379-g007.jpg
Conv_1

Conv_11






OPS/images/fonc.2024.1268991/table1.jpg
Iterations Mean % STD Min

1 1515 4.1 1228 1717

15 1014 11.7 580 1769
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478 collected patients with pathologically
proven ICC

Excluded patients(n=54)

1.Lack of histological information(n=13)
2.Incomplete clinical information (n=12)
3.0ver 4 weeks from CT scan (n=15)
4.Patients are under 18 years old (n=6)

5.ROI less than 32 pixels(n=8)

424 patients were finally
enrolled

low high

Histological grade

Low histological grade

High histological grade
cohorts

(n=127)

cohorts
(n=297)
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Nethod | Comparison g NS, pevalue
Site 1 v Site 2 500.89 1
Unnormalized Site 1 v Site 3 290.65 0.67
Site 2 v Site 3 V‘ 547.86 |
Site 1 v Site 2 0.74 1
Standard Deviation Site 1 v Site 3 ‘ 0.58 0.77
Site 2 v Site 3 0.75 ‘ 1
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.08 <0.001
Min-Max Site 1 v Site 3 0.09 <0.001
Site 2 v Site 3 0.09 <0.001
Site 1 v Site 2 0.07 <0.001
Scaled V Site 1 v Site 3 0.08 <0.001
Site 2 v Site 3 0.09 <0.001
Site 1 v Site 2 2.8 1
Sternum Mask Site 1 v Site 3 4.04 0.86
Site 2 v Site 3 2.62 1
Site 1 v Site 2 17.06 1
Thorax Mask Site 1 v Site 3 V‘ 223 1
Site 2 v Site 3 13.03 1
Unnormalized ‘ GE v Siemens 480.05 1
Standard Deviation GE v Siemens 0.87 0.53
Z-Score GE v Siemens 0 <0.001
Min-Max GE v Siemens 0.1 <0.001
Scaled GE v Siemens 0.09 <0.001
Sternum Mask GE v Siemens 3.42 0.99
Thorax Mask GE v Siemens 22.04 1
Unnormalized 3Tv15T 468.82 1
Standard Deviation 3Tv15T 0.87 0.74
Z-Score V 3Tv15T 0 V <0.001
Min-Max | 3Tv15T 0.1 <0.001
Scaled 3Tv15T 0.09 <0.001
Sternum Mask 3Tv15T 3.41 0.99
Thorax Mask 3Tv15T 21.79 1
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Normalization
Method

Comparison

Pooled
St. Deviation

p-value

Site 1 v Site 2 232.75 1
Unnormalized Site 1 v Site 3 312.75 1
Site 2 v Site 3 161.89 |
Site 1 v Site 2 0.23 0.98
Standard Deviation Site 1 v Site 3 0.25 0.28
Site 2 v Site 3 0.24 <0.001
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.04 <0.001
Min-Max Site 1 v Site 3 0.06 <0.001
Site 2 v Site 3 0.05 <0.001
Site 1 v Site 2 0.04 <0.001
Scaled Site 1 v Site 3 0.06 <0.001
Site 2 v Site 3 0.05 <0.001
Site 1 v Site 2 0.09 1
CSF Mask Site 1 v Site 3 0.12 1
Site 2 v Site 3 0.1 <0.001
Site 1 v Site 2 0.17 <0.001
Tumor Mask Site 1 v Site 3 0.21 <0.001
Site 2 v Site 3 0.17 <0.001
Unnormalized GE v Siemens 314.83 1
Standard Deviation GE v Siemens 0.27 0.45
Z-Score GE v Siemens 0 <0.001
Min-Max GE v Siemens 0.07 <0.001
Scaled GE v Siemens 0.06 <0.001
CSF Mask GE v Siemens 0.21 0.93
Tumor Mask GE v Siemens 0.21 0.15
Unnormalized 3Tv15T 226.71 0.73
Standard Deviation 3Tv1S5T 0.25 <0.001
Z-Score 3Tv15T 0 <0.001
Min-Max 3Tv15T 0.07 <0.001
Scaled 3Tv1S5T 0.05 <0.001
CSF Mask 3Tv15T 0.16 1
Tumor Mask 3Tv15T 0.18 <0.001

CSF, cerebral spinal fluid.
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Normalization
Method

Comparison

Pooled
St. Deviation

p-value

Site 1 v Site 2 577.93 1
Unnormalized Site 1 v Site 3 480.21 1
Site 2 v Site 3 435.81 1
Site 1 v Site 2 0.48 0.12
Standard Deviation Site 1 v Site 3 0.34 0.1
Site 2 v Site 3 0.42 1
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.05 <0.001
Min-Max Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.05 <0.001
Site 1 v Site 2 0.05 <0.001
Scaled Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.04 <0.001
Site 1 v Site 2 0.16 1
CSF Mask Site 1 v Site 3 0.18 1
Site 2 v Site 3 0.09 <0.001
Site 1 v Site 2 0.09 <0.001
Tumor Mask Site 1 v Site 3 0.1 <0.001
Site 2 v Site 3 0.07 <0.001
Unnormalized GE v Siemens 700.74 0.68
Standard Deviation GE v Siemens 0.33 0.7
Z-Score GE v Siemens 0 <0.001
Min-Max GE v Siemens 0.05 0.48
Scaled GE v Siemens 0.07 0.53
CSF Mask GE v Siemens 0.16 1
Tumor Mask GE v Siemens 0.1 0
Unnormalized 3Tv15T 592.66 1
Standard Deviation 3Tv15T 047 <0.001
Z-Score 3Tv15T 0 <0.001
Min-Max 3Tv15T 0.08 <0.001
Scaled 3Tv15T 0.09 <0.001
CSF Mask 3Tv15T 0.17 1
Tumor Mask 3Tv15T 0.12 <0.001

CSF, cerebral spinal fluid.
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Normalization
Method

Comparison

Pooled
St. Deviation

p-value

Site 1 v Site 2 286.9 1
Unnormalized Site 1 v Site 3 587.52 1
Site 2 v Site 3 33539 1
Site 1 v Site 2 0.49 <0.001
Standard Deviation Site 1 v Site 3 0.56 <0.001
Site 2 v Site 3 0.48 <0.001
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.04 <0.001
Min-Max Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.04 <0.001
Site 1 v Site 2 0.03 <0.001
Scaled Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.04 <0.001
Site 1 v Site 2 0.08 <0.001
CSF Mask Site 1 v Site 3 0.09 <0.001
Site 2 v Site 3 0.07 <0.001
Site 1 v Site 2 0.14 <0.001
Tumor Mask Site 1 v Site 3 0.09 <0.001
Site 2 v Site 3 0.12 <0.001
Unnormalized GE v Siemens 807.01 1
Standard Deviation GE v Siemens 0.53 0.82
Z-Score GE v Siemens 0 <0.001
Min-Max GE v Siemens 0.05 <0.001
Scaled GE v Siemens 0.05 0.02
CSF Mask GE v Siemens 0.08 0.03
Tumor Mask GE v Siemens 0.09 0
Unnormalized 3Tv15T 1477.97 1
Standard Deviation 3Tv1S5T 0.5 <0.001
Z-Score 3Tv15T 0 <0.001
Min-Max 3Tv15T 0.05 <0.001
Scaled 3Tv1S5T 0.05 <0.001
CSF Mask 3Tv15T 0.08 <0.001
Tumor Mask 3Tv15T 0.12 <0.001

CSF, cerebral spinal fluid.
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Normalization
Method

Comparison

Pooled
St. Deviation

p-value

Site 1 v Site 2 140.65 1
Unnormalized Site 1 v Site 3 1102.74 1
Site 2 v Site 3 750.66 1
Site 1 v Site 2 0.43 0.18
Standard Deviation Site 1 v Site 3 1312 1
Site 2 v Site 3 0.81 1
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.08 <0.001
Min-Max Site 1 v Site 3 0.09 <0.001
Site 2 v Site 3 0.08 <0.001
Site 1 v Site 2 0.08 0.02
Scaled Site 1 v Site 3 0.08 0.95
Site 2 v Site 3 0.09 <0.001
Site 1 v Site 2 0.1 <0.001
CSF Mask Site 1 v Site 3 0.11 0
Site 2 v Site 3 0.08 <0.001
Site 1 v Site 2 0.11 <0.001
Tumor Mask Site 1 v Site 3 0.08 <0.001
Site 2 v Site 3 0.09 <0.001
Unnormalized GE v Siemens 1517.93 1
Standard Deviation GE v Siemens 1.16 0.67
Z-Score GE v Siemens 0 <0.001
Min-Max GE v Siemens 0.1 0.28
Scaled GE v Siemens 0.12 0.88
CSF Mask GE v Siemens 0.1 0.24
Tumor Mask GE v Siemens 0.08 <0.001
Unnormalized 3Tv15T 2166.08 1
Standard Deviation 3Tv15T 0.87 1
Z-Score 3Tv15T 0 <0.001
Min-Max 3Tv15T 0.1 <0.001
Scaled 3Tv15T 0.1 <0.001
CSF Mask 3Tv15T 0.1 <0.001
Tumor Mask 3Tv15T 0.11 <0.001

CSF, cerebral spinal fluid.
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N Mthod | Comparison ¢ [FOSE | p-value
Site 1 v Site 2 1170.15 1
Unnormalized Site 1 v Site 3 1076.48 1
Site 2 v Site 3 95.78 1
Site 1 v Site 2 0.51 1
Standard Deviation Site 1 v Site 3 0.48 <0.001
Site 2 v Site 3 0.38 1
Site 1 v Site 2 0 <0.001
Z-Score Site 1 v Site 3 0 <0.001
Site 2 v Site 3 0 <0.001
Site 1 v Site 2 0.06 <0.001
Min-Max Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.04 <0.001
Site 1 v Site 2 0.05 <0.001
Scaled Site 1 v Site 3 0.05 <0.001
Site 2 v Site 3 0.04 <0.001
Site 1 v Site 2 0.46 0.88
Bladder ROI Site 1 v Site 3 0.49 0.32
Site 2 v Site 3 0.38 <0.001
Site 1 v Site 2 4.34 1
Muscle ROI Site 1 v Site 3 4.01 1
Site 2 v Site 3 0.35 0.58
GE v Siemens 1105.9 1
Unnormalized GE v Philips 893.33 1
Siemens v Philips 239.93 1
GE v Siemens 0.53 1
Standard Deviation GE v Philips 0.48 <0.001
Siemens v Philips 0.44 1
GE v Siemens 0 <0.001
Z-Score GE v Philips 0 <0.001
Siemens v Philips 0 <0.001
GE v Siemens 0.05 <0.001
Min-Max GE v Philips 0.05 <0.001
Siemens v Philips 0.05 <0.001
GE v Siemens 0.05 <0.001
Scaled GE v Philips 0.05 <0.001
Siemens v Philips 0.05 <0.001
GE v Siemens 0.49 1
Bladder ROI
GE v Philips 0.47 0.98
Siemens v Philips 0.35 <0.001
GE v Siemens 4.84 i
Muscle ROI GE v Philips 3.86 1
Siemens v Philips 0.53 0.95
Unnormalized 3Tv15T 1144.14 1
Standard Deviation 3Tv15T 0.48 1
Z-Score 3Tv15T 0 <0.001
Min-Max 3Tv15T 0.05 <0.001
Scaled 3Tv1S5T 0.05 <0.001
Bladder ROI 3Tv15T 0.48 0.35
Muscle ROI 3Tv15T 3.84 1
Unnormalized ERC v nERC 1106.34 0.66
Standard Deviation ERC v nERC 0.49 <0.001
Z-Score ERC v nERC 0 <0.001
Min-Max ERC v nERC 0.04 <0.001
Scaled ERC v nERC 0.04 <0.001
Bladder ROI ERC v nERC 0.52 <0.001
Muscle ROI ERC v nERC 6.24 0.85

ERC, endorectal coil; nERC, post-endorectal coil removal.
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Demographics MR Vendor Magnetic Field Strength

Patients Sex Siemens Philips 1.5T 3T
Total 641 M: 641 256 295 90 89 552
2 Site 1 385 M: 385 256 125 4 3 382
2
£ Site 2 86 M: 86 0 0 0 86 0
Site 3 170 M: 170 0 170 86 0 170
M: 615
Total 956 408 549 2 53 903
F: 401
M:35
2 Site 1 52 34 16 2 39 13
] F:17
3
3 M: 320
<] Site 2 530 0 530 = 14 516
F:210
M: 222
Site 3 374 374 0 = 0 374
F: 152
Total 236 F: 236 190 46 0 185 51
o Site 1 68 F: 68 68 0 = 68 0
g
& Site 2 100 F: 100 54 16 = 9 51

Site 3 68 F: 68 68 0 = 68 0
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Network \ Metric Accuracy Balanced_ Sensitivity Specificity

Mean (SD) Accuracy Mean (SD) Mean (SD)
% Mean (SD) % %
%
VGG-16 67 (4) 61 (4) 50 (4) 75 (5)
VGG-19 72 (5) 61 (5) 50 (4) 78 (5)
Resnet-50 70 (4) 63 (5) 52 (5) 80 (5)
ResNet-101 65 (4) 64 (5) 50 (4) 79 (4)
Resnet-152 65 (6) 62 (4) 51(4) 80 (6)
InceptionV3 68 (5) 62(5) 50 (5) 81 (6)
Xception 70 (5) 64.(6) 53 (5) 80 (5)
Transformer ViT 75 (4) 67 (3) 54 (4) 84 (5)

SD, Standard Deviation
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Network \ Metric Accuracy Balanced_ Sensitivity Specificity

Mean (SD) Accuracy Mean (SD) Mean (SD)
% Mean (SD) % %
%
VGG-16 63 (4) 58 (4) 50 (4) 67 (4)
VGG-19 66 (4) 60 (4) 50 (3) 70 (4)
Resnet-50 65 (4) 61 (5) 51 (4) 72 (3)
ResNet-101 60 (4) 61 (4) 51 (3) 69 (4)
Resnet-152 61 (4) 58 (4) 51 (4) 71 (4)
InceptionV3 63(3) 59 (3) 52 (4) 70 (3)
Xception 65 (4) 60 (4) 51(3) 73 (3)
Transformer ViT 71 (4) 63 (4) 53 (3) 76 (3)

SD, Standard Deviation
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Network \ Metric Accuracy Balanced_ Sensitivity Specificity

Mean (SD) Accuracy Mean (SD) Mean (SD)
% Mean (SD) % %
%
VGG-16 69 (4) 63 (3) 51(3) 77 (6)
VGG-19 73 (5) 62 (4) 51 (3) 80 (5)
Resnet-50 72 (5) 64 (4) 53 (4) 82 (6)
ResNet-101 | 68 (5) 65 (4) 52 (4) 81 (5)
Resnet-152 67 (5) 64 (4) 52 (5) 82 (6)
InceptionV3 69 (6) 63 (5) 51(3) 82 (5)
Xeeption 72 (4) 66 (5) 55 (4) 81 (6)
Transformer ViT 77 (3) 69 (4) 56 (4) 86 (6)

SD, Standard Deviation
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Network \ Metric Accuracy Balanced_ Sensitivity Specificity

Mean (SD) Accuracy Mean (SD) Mean (SD)
% Mean (SD) % %
%
VGG-16 64 (3) 61 (4) 52 (3) 69 (4)
VGG-19 68 (3) 61(3) 51(3) 71 (5)
Resnet-50 67 (4) 62(3) 52 (4) 74 (4)
ResNet-101 61 (5) 63 (4) 52 (3) 70 (4)
Resnet-152 62 (3) 60 (3) 53 (4) 72 (5)
InceptionV3 65 (4) 60 (4) 54 (4) 71 (4)
Xception 67 (4) 62 (5) 53 (3) 75 (4)
Transformer ViT [ 73 (3) 65 (4) 54 (3) 78 (4)

SD, Standard Deviation
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Characteristics Responders Non-responders
Mean (std) Mean (std)
Age 52 (11) 54 (10)
Initial Tumour Size 5.2 (2.5) cm 5.6 (2.7) cm
Histology Percentage (Count)
IDC 58 (70) 23 (65)
e 1(1) ‘ 4 (11)
IMC 3(3) 2(5)
Molecular Features Percentage (Count)
ER+ 42 (51) 29 (82)
PR+ 37 (45) 24 (68)
HER2+ 28 (34) 9 (26)
ER-/PR-/HER2- 22 (27) 4(11)
ER+/PR+/HER2+ 15 (18) 6(17)
ER+/PR+/HER2- 22 (27) 20 (57)
ER-/PR-/HER2+ 15 (18) 4(11)
Residual Tumour Size 14 (2.4) cm 6 (5.5) cm
Response Percentage (Count)
Responding Patients 70 (82) -
Non-responding Patients - 30 (35)

std, Standard Deviation; IDC, Invasive Ductal Carcinoma; ILC,Invasive Lobular Carcinoma;

IMC,Invasive Metaplastic Carcinoma; ER, estrogen; PR, progesterone.
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Method ACC F1 AUC
ABMIL-GATED 0.859 +0.013 0.852 £ 0.017 0.880 + 0.057
MIL-RNN 0.864 + 0.023 0.862 + 0.031 0.890 + 0.038
CLAM-SB 0.839 + 0.011 0.862 + 0.023 0.897 + 0.026
CLAM-MB 0.847 + 0.009 0.866 + 0.061 0.9320 + 0.027
TRANSMIL 0.865 + 0.020 0.872 + 0.061 0.940 + 0.027
DTFT-MIL 0.879 + 0.022 0.862 + 0.054 0.920 + 0.027
NATMIL 0.881 + 0.0303 0.882 +0.017 0.940 + 0.027
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Response Study Arm

Predicted Actual Observational Experimental - Non-Adapted Experimental - Adapted
Non-Responder Non-Responder 2 1 0
Non-Responder Responder 0 1 3
Responder Responder 26 23 0

Responder Non-Responder 0 0 0
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Method ACC F1 AUC
ABMIL-GATED 0.871 + 0.025 0.842 £ 0.017 0.910 + 0.027
MIL-RNN 0.872 £ 0.014 0.852 + 0.016 0.921 + 0.027
CLAM-SB 0.879 + 0.023 0.862 + 0.020 0.926 + 0.021
CLAM-MB 0.882 + 0.026 0.868 + 0.031 0.927 £ 0.011
TRANSMIL 0.884 + 0.013 0.869 + 0.021 0.930 £ 0.013
DTFT-MIL 0.885 + 0.013 0.871 £ 0.031 0.933 + 0.021
NATMIL 0.896 + 0.013 0.872 £ 0.015 0.940 + 0.027
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Parame Value (95% confidence interval)
Sensitivity 98% (88-100%)
Specificity 80% (28-100%)
Positive predictive value 98% (89-99%)
Negative predictive value 80% (36-97%)
Accuracy 97% (88-99%)

Confidence intervals for sensitivity, specificity, and accuracy are "exact" Clopper-Pearson
confidence intervals. Confidence intervals for predictive values are standard logit
confidence intervals.
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Observational Experimental

Characteristic Arm (n=28) Arm (n=28)

Age (years)

Median (Range) 49 (29-73) 50 (27-80)

Initial tumor size (cm)

Median (Range) 3.6 (2.0-12.0) 3.8 (2.1-10.7)

Molecular Markers

ER+ 19 18
PR+ 13 13
HER2+ 7 8
TNBC 6 8

Histological Type

IDC 26 25
IMC/Other 2 3
Chemotherapy

AC-T 19 21
FEC-D 9 7
Trastuzumab 7 8

Treatment Response

Responder 26 23 (27)

Non-Responder 2 5(1)

Response Rate 93% 82% (96%)
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Assessment for eligibility (n=77)

Excluded (n=17)

Metastasis (n=5)

Small tumour size (n=7)
Declined to participate (n=5)

Randomization (n=60)

Str: ation
ER/PR status

Observational arm (n=30)
Excluded (n=2)
Image data not available at week 4

Predicted responder
Same NAC continued

Experimental arm (n=30)

Excluded (n=2)
Image data not available at week 4

Predicted non-responder

Same NAC continued (n=2)
Chemotherapy switch (n=3)

Available for analysis (n=28) Available for analysis (n=28)
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Her chest CT scan suggests pulmonary
lesions and she underwent a CT-guided
percutaneous lung biopsy, which indicated
inflammation.

At our hospital, she underwent a series of We were informed during a
comprehensive examinations, and a repeat telephone follow-up that she

CT-guided lung biopsy was performed, had passed away 4 weeks
which confirmed the diagnosis of HAL. after the diagnosis.

8 months 1 week

She received anti-infection treatment, but we prescribed a chemotherapy
subsequent anti-inflammation treatment regimen of cisplatin 40 mg (D1-

she suffered with recurrent fever,
cough and sputum production.

was ineffective (she was unable to D3) and albumin-bound paclitaxel
provide the anti-inflammatory treatment 200 mg (D1)
regimen).
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Characteristic Total (%) n=103

Age at diagnosis (years)

1-3 13(12.6%)

3-6 18(17.5%)

6-12 44(42.7%)

>12 28(27.2%)
Gender

Male 52(50.5%)

Female 51(49.5%)

Primary tumor site

Extremities 34(33.0%)
Trunk 23(22.3%)
Thoracic and abdominal cavity 19(18.4%)
Spine 9(8.7%)

Others 18(17.6%)

Metastatic status

No metastasis 53(51.5%)

Metastasis 50(48.5%)

Metastatic site

Bone 17(16.5%)
Lung 27(26.2%)
Lymph node 16(15.5%)
Bone marrow 8(7.8%)

Number of metastatic sites

1 21(20.4%)

2 14(13.6%)

>2 15(14.6%)
Stage

I 2(1.9%)

11 12(11.7%)

1T 38(36.9%)

v 51(49.5%)
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Training Cohort Testing Cohort

AUC SEN AUC SEN
Hard Image 88.5% 94.8% 91.5% 85.0% 69.8% 65.1% 38.5% 83.3%
Easy Image 60.4% 60.4% 57.6% 632% 721% 52.8% 23.1% ‘ 93.3%
Multi-Modal 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% ‘ 86.7%

ACC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
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Training Cohort Testing Cohort

AUC SEN AUC SEN
Mean-MIL 96.1% 99.1% 94.6% 97.4% 81.4% 76.8% 61.5% 90.0%
Max-MIL 95.8% 98.7% 94.4% ' 97.6% 76.7% 57.7% 23.1% 100.0%
AB-MIL 88.5% 94.8% 91.5% 85.0% 69.8% 65.1% 38.5% 83.3%
TransMIL 68.0% 72.6% 75.3% » 61.0% 76.7% 53.3% 30.8% 96.7%
CAB-MIL (Ours) 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% 86.7%

ACGC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Mean-MIL and Max-MIL are two straightforward MIL methods. AB-MIL and TransMIL are currently widely used classical multiple-instance learning models. Cross-attention-based MIL is the
method proposed in this paper.

Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
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Training Cohort Testing Cohort

AUC SEN AUC SEN
ResNet34 67.7% 75.6% 79.8% 62.5% 79.1% 61.3% 53.8% 90.0%
vIT 58.5% 55.1% 482% 62.9% 76.7% 74.1% 84.6% 733%
SwinTransformer-Tiny 69.6% 54.1% 22.8% 89.5% 76.7% 54.1% 46.2% 90.0%
ConvNext 63.5% 48.8% 26.3% 79.4% 79.1% 70.0% 53.8% 90.0%
SiameseNet (Ours) 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% 86.7%

ACC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
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Attribute

Training Cohort

Testing Cohort

Low-HG Low-HG
Age 0.027 0781
Mean (SD) 56.39 (10.64) 59.06 (9.81) 59.57 (10.43) 58.85 (11.24)
Gender 0.975 0.084
Male (%) 142 (0.53%) 60 (0.53%) 18 (0.6%) 4(0.31%)
Female (%) 126 (0.47%) 54 (0.47%) 12 (0.40%) 9 (0.69%)
CEA 0.509 0218
>5 (%) 75 (0.28%) 32 (0.28%) 6 (0.2%) 1 (0.08%)
INR 0511 0516
Mean (SD) 1.04 (0.27) 1.01 (0.10) 1.00 (0.09) 0.98 (0.09)
CA199 0286 0.720
>37 (%) 157 (0.59%) 78 (0.68%) 23 (0.77%) 9 (0.54%)
FIB 0256 0.290
>4 (%) 67 (0.25%) 22 (0.19%) 9 (0.3%) 3(0.23%)
AFP 0.160 0.435
Mean (SD) 22.06 (104.28) 1537 (79.22) 317 (2.04) 326 (2.49)
ALT 0.760 0.072
>55 (%) 43 (0.16%) 19 (0.17%) 7 (0.23%) 1 (0.08%)
ALP 0717 0.059
>129 (%) 79 (0.3%) 42 (0.37%) 13 (0.43%) 2 (0.15%)
TBIL 0472 0.947
>22.24 (%) 25 (0.09%) 18 (0.16%) 3 (0.1%) 2 (0.15%)
GGT 0611 0.076
Mean (SD) 116.32 (160.88) 144.88 (213.84) 162.70 (193.61) 142.23 (311.59)
HBsAg 0.708 0437
Positive (%) 74 (0.28%) 34 (0.3%) 8 (0.27%) 2 (0.15%)
Negative (%) 191 (0.72%) 80 (0.7%) 22 (0.73%) 11 (0.85%)
HBeAg 0.605 0.365
Positive (%) 7 (0.03%) 2(0.02%) 2 (0.07%) 0(0)
Negative (%) 258 (0.97%) 112 (0.98%) 28 (0.93%) 13 (100%)

‘The interpretation of data includes CEA, carcinoembryonic antigen (ng/mL); INR, international normalized ratio; CA199, carbohydrate antigen 19-9 (U/ml); FIB, fibrinogen (g/L); AP, alpha-
fetoprotein (ng/mL); ALT, alanine aminotransferase (IU/L); ALP, alkaline phosphatase (U); TBIL, total bilirubin (umol/L); GGT, y-glutamyl transpeptidase (g/L); HBsAg, hepatitis B surface

antigen; HBeAg, hepatitis B e antigen; SD, standard deviation; HG, Histological grade.
Bold text indicates metric names (e.g, age, gender, CEA, INF) for patients statistics.
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Network \ Metric Accuracy Balanced_ Sensitivity Specificity

Mean (SD) Accuracy Mean (SD) Mean (SD)
% Mean (SD) % %
%
VGG-16 65 (4) 60 (4) 51 (4) 71 (5)
VGG-19 69 (4) 60 (5) 50 (4) 75 (5)
Resnet-50 68 (4) 61(5) » 51(5) 78 (5)
ResNet-101 63 (4) 62(5) 51(4) 74 (4)
Resnet-152 64 (5) 61 (4) 52 (4) 75 (6)
InceptionV3 67 (5) 61 (5) 52 (5) 74 (6)
Xception 69 (5) 63 (6) 52 (5) 78 (5)
I Transformer ViT [ 74 (5) 66 (3) 52 (4) 81 (5)

SD, Standard Deviation
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PET Liver lesions
Radioactive Primary PCa AFP

Investigation Years  Age Initial symptoms scan

purposes probe tumor PSMA FDG SUVmax

Histopathology  g\;ymay  suVmax

anorexia significant weight loss, |

Arun etal. 2015 7 hepatomegaly and obstrutive (U1 T “Ga-PSMA HCC HCC high NA. NA. NA.
urinary symptoms
Sangeeta et al. 2016 7 NA. ddaisd PSA Ga-PSMA PCa and HCC HCC 157 NA. 96 NA.
(10ng/mL)
follow-up . well-
ian et a 201 NA. a-PSMA | PCaand H b NA. NA. NA
Hian et at. 3 L of PCa GBS CaandHOC | jigerentiated HCC h
Paola et al. 2019 &7 NA. Tesearct) “Ga-PSMA iy HCe 294 49 NA. NA.
purposes and HCC
PCa, HCC and
. Friedrich etal. | 2020 6 NA. PCa staging “Ga-PSMA esophageal HCC high slight NA. NA
Hec adenocarcinoma
alternative
Seval et al. 2020 7 Hghtidde pils elghtloss staging “Ga-PSMA HCe HCC 203 76 NA. 520,000
and pruritus
and therapy
suspicion of
PCa with bone
Zhao et at. 2020 77 bone pain ‘metastasis, '®F-PSMA-1007 | PCa and HCC HCC 275 17 1082
clevated PSA
(53.32ng/mL)
HCC restaging,
Sharjecl et al. 2021 82 NA. clevated AFP | “Ga-PSMA HCe HCC high NA. NA. 5752
(57521U/mL)
llowup of PCa, ICC and
Rita etal. 2020 79 NA. PCa, “Ga-PSMA T icc high NA. NA. NA.
By Hodgkin
rising PSA R,
icc HpPhOmA.
PCa staging,
Kang etal 2022 6 NA. cevated PSA | Ga-PSMA. PCa and ICC icc 128 67 NA. NA.
(32ng/mL)
PCa staging,
CHC Ramin t al. 2017 70 NA. cevated PSA | “Ga-PSMA | PCaand CHC CHC 99 NA. NA. NA.
(8.Ing/mL)
":r‘::‘g;‘\" Fahad et al. 2019 75 NA. therapy ©Ga-PSMA cca metastasis high high NA. NA.
Hemant et al. 2016 7 NA. PCa staging Ga-PSMA PCa bealgn 206 NA. NA. NA.
liver hemangioma
PCa restaging, Bl
Seckin et al 2020 66 NA. devated PSA | “Ga-PSMA PCa —_a high NA. NA. NA.
(8.0ng/mL) YeerP
o hepatic focal
Benign David et al. 2020 68 i CSP '*E-PSMA-1007 PCa inflammation, 166 NA. NA. NA.
and steatosis
follow-up of o
Sebastian etal. | 2020 80 NA. b sici‘}r::'ﬁ “Ga-PSMA PCa vascular 163 NA. NA. NA.
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Ramesh et al. 2022 6 NA. PCa staging “Ga-PSMA PCa fatty sparing n4 NA. 13 NA.

PSMA, prostate-specific membrane antigen; PCa, prostate cancer; HCC, hepatocellular carcinoma; 1CC, intrahepatic cholangiocarcinom;
fetoprotein; SUVmax, maximun standardized uptake value; N.A., not available.

HC, combined hepatocellular-cholangiocarcinoma; CCA, cholangiocarcinoma; PSA, prostate-specific antigen; AFP, alpha-
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SYSTEMIC RISK FACTORS PREVENTION

OF ERROR

Work Conditions « Adapt amount of work and time to deliver
« Prevent multitasking and interruptions
« Adopt a quality approach in medical practice (risk criticality and mapping with monitoring strategies, external audit)
« Promote peer-review and follow-up of cases

Workflow « Optimize dataflow with available previous examination and measures
« Patient triage to prioritize cases needing more attention
« Human assist or computer assist image post processing automations for repetitive tasks such as measurements

Fail-safe + Tumor tracking software with criteria-read rules and compliance check
« Second opinion
© Second radiologist
© Computer-aided diagnosis

Strategies to reduce risks factors of individual errors or to correct early detected errors.
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PREVENTION

« Diversify the sources of collection of clinical information (patient, accompanying person, secretary, technician)
« Adapt the protocol to the region of interest
D « Retrieve the imaging history
« Postpone the analysis if there is lack of information
« Contact the referring physician (obligation of means)

« Systematic analysis of what is not related to the specific question
Al « Checklist (we only find what we are looking for)
« Avoid the satisfaction bias with systematic search for additional findings if an anomaly is detected

« Keep theoretical knowledge up to date (Continuing Medical Education)
A2 « Postpone the decision with a reconsideration of the first interpretation to confirm the first judgment.
« Awareness of the most common cognitive biases

« Know and apply of consensus-based criteria for oncologic follow-up
« Consider structured reports and templates

« Be comparative

« Be able to communicate a notion of uncertainty

Corresponding radiologist’s toolbox to prevent errors type DAC.
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ERROR TYPE INFORMATION DEFINITION KIM & MANSFIELD
PROCESSING TYPE
Data Collection of and Failure to collect pixel and non-pixel Technique 2
Meta-information information in respect with the
b good practices Prior examination 5
History 2
Location 7
Analysis (A1): Failure to see a retrospectively visible Underreading 42
Detection finding (Under-Detection)
Satisfaction of search 22
Satisfaction of report 6
A
Analysis (A2): Characterization Failure to recognize the clinical Overreading (complacency) 1
significance of an identified
finding (Misclassification) Faulty reasoning 9
Lack of knowledge 3
Communication of the Analysis Result Failure to communicate diagnostic Poor communication 0
c imaging results appropriately (to the

physician or the patient).

The incidence of error types is reported according to the original source of the Kim & Mansfield article (4).
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2909 patients with a history of histopathologically confirmed lung cancer and adrenal
mass between February 2015 and August 2023 underwent preoperatively chest or

abdominal biphasic enhanced CT scans

Exclusion patients
(1) Multiple lesions(n=482)

(2) The average long diameter of the lesion greater than 3
cm or smaller than 1em(n=789)

(3) Plain CT value <10Hu (n=821)

(4) Incomplete clinical or imaging information(n=53)
(6) Poor imaging quality(n=9)

755 lung patients with adrenal indeterminate tumors

Exclusion patients

(1) No imaging follow-up data available(n=356)

(2) Pathologically diagnosed as pheochromocytoma (n=58)
(3) Pathologically diagnosed as cortical cancer(n=49)

292 patients remaining evaluated for adrenal metastases and benign nodules

Inclusion criteria:
(1) Histological confirmation (n=46)
(2) New occurrence(n=38)

(3)Short term growth(n=70)

154 adrenal metastases

Testing
dataset(n=45)

Inclusion criteria:

(1) Histological confirmation (n=89, 81 lipid-poor
adenomas, 7 Hyperplastic nodules, and 1 adrenal
oncocytic adenoma)

(2) Stability in size(n=49)

138 adrenal benign nodules
Testing
dataset(n=42)

Training
dataset(n=96)

Training
dataset(n=109)





OPS/images/fonc.2024.1360253/table2.jpg
Macroscopically involved LN levels:

Probability (%) NO llonly IllandIll [l only

of microscopic

involvement

at level

1 48.04 57.34 60.81 52.79
52.85 57.40 57.63 538
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Variable Stratification

Age (y) 49.66 + 12.77
V Sex Men 79 73.15%
‘Women 29 26.85%
Areca nut history 21 19.44%
T stage I 20 18.52%
I 40 37.04%
111 30 27.78%
v 18 16.67%






OPS/images/fonc.2024.1402838/M1.jpg
p(H|D) =< p(D|H) x p(H)





OPS/images/fonc.2024.1360253/im2.jpg
pb3=0.0315





OPS/images/fonc.2024.1402838/fonc-14-1402838-g012.jpg
Factors
contributing to
the occurrence

of errors

Loopholes in tertiary error
prevention

Radiologist error






OPS/images/fonc.2024.1360253/im1.jpg
).53 000





OPS/images/fonc.2024.1402838/fonc-14-1402838-g011.jpg
DATA ANALYSIS COMMUNICATION

Right intraparotid and Cavum

ENTSURGEON | |} 5t5pot finding on a PET-CT = S
PRESCRIPTION | | p.rotid MR o MR OF THE

PAROTID GLAND

PATIENT Remaining Right Mandibular i _
INTERVIEW 0ain | ? Left intracerebellar
g ¢ - ) contrast uptake

increased from last

year previous
examination.

The report is
communicated to

the patient’s referral
oncologist [..]






OPS/images/fonc.2024.1360253/fonc-14-1360253-g008.jpg
subset 1 subset 2 subset 3 whole dataset

BEdR

U U
W
L
Saassais=s

00 02 04 06 08 10





OPS/images/fonc.2024.1402838/fonc-14-1402838-g010.jpg
SELECTION VISIT 2 VISIT 8

106 mm 104 mm 106 mm 108 mm 94 mm 99 mm
i Present nt Present Present Present Present Present
Segment IVa Segment IVa Segment IVa Segment IVa Segment IVa Segment IVa Segment IVa

20-Aug-2019 14-Nov-2019 -Jan-2( 10-Mar-2020 20-Apr-2020 22-Jun-2020 13-Oct-2020 10-Dec-2020
anonymous, TAP C+ anonymous, VENOSA TAP A CAP,CAP C+ anonymous, TAP C+ anonymous,Neck TAP C+ TAP,TAP C+ CAP.TAP C+

TL1 - Liver

RADIOLOGIST
RECIST
ASSESSMENT

by s o :
Rl 0% 1010 ‘

86 mm 83 mm 93 mm 113 mm
Initial evaluation Present Present Present Present Present

Segment Il Segment Il Segment Il Segment Il Segment Il Segment Il Segment |l : e STA B L E

20-Aug-2019 14-Nov-2012 13-Jan-2020 10-Mar-2020 29-Apr-2020 22-Jun-2020 -Aug-; 13-Oct-2020
anonymous, TAP C+ anonymous VENOSA TAP CAP.CAP C+ CAP.CAP C+ anonymous, TAP C+ anonymous,Neck TAP C+ 3 TAPTAP C+

TL2 - Liver






OPS/images/fonc.2024.1360253/fonc-14-1360253-g007.jpg
PR)

o) ate | oy LNL W observed

a0 shrered volvemert
Sy | only LNL 1t observed imvoived,
e’ noobserved volvement

008

007

006

005

004

003

002

oo

PR)

w E
risk R [%]

000,

o ©
risk R [%]

o3|

04

03

02

01

iy  no observed involvement
iy | ol LNL 1t observed mvalved |

g 1o

s
risk R [%]

15
risk R [%]






OPS/images/fonc.2024.1402838/fonc-14-1402838-g009.jpg
VISIT 1 VISIT 2

RADIOLOGIST
RECIST
ASSESSMENT

STABLE
DISEASE

3
L\

No Filter v

Hidden Findings
Candidate 0 0

i
Confirmed 0 0 Name: TL4
70/204 ALD: 18 mm






OPS/images/fonc.2024.1360253/fonc-14-1360253-g006.jpg
9] Il I &Il Il

o

02

I &1l
50 70 80 %
03
> o2
0.1
00026 a0 & 8 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
risk [%] risk [%] risk [%] risk [%]





OPS/images/fonc.2024.1402838/fonc-14-1402838-g008.jpg
RADIOLOGIST 1 1 RADIOLOGIST 2






OPS/images/fonc.2024.1360253/fonc-14-1360253-g005.jpg
es [%] of states at different time steps Time prior Probabilities [%] of states at different time steps Time prior

time step t

time step t

000 005 010 015 020 025

000 005 010 015 020 025






OPS/images/fonc.2024.1402838/fonc-14-1402838-g007.jpg
“Conclusion: morphological and metabolic
progression of a sternal bone manubrium lesion
complicated by a pathological fracture.”






OPS/images/fonc.2024.1360253/fonc-14-1360253-g004.jpg
A
B

[QBE 61 03 08 00 312
(v ['NO']
[ v+
v 4 rnr-
A v
[,V rn-
I, v ]
v [,
[ v ]
LIV rr
LI A rLv4
[V A e ]
[ARE CLILIV']
ILILIV'] A rL
[{RIRIRE CLILIVY
[LILILIV'] A L
CLILILIV'] A

[.ON.J






OPS/images/fonc.2024.1402838/fonc-14-1402838-g006.jpg
DATA ANALYSIS COMMUNICATION
@

MR OF THE
PAROTID GLAND

Incidental right intraparotid
ENT SURGEON hotspot finding on a PET-CT
PRESCRIPTION = Parotid MR

Mandibular pain +

PATIENT History of resected breast
INTERVIEW cancer 5 years ago with active

follow-up

PATIENT FAMILY Recent evolutive disease with
INTERVIEW bone metastatic status

6-months earlier CT
examination demonstrating
lung metastasis

left intracerebellar
contrast uptake
suspected of

metastatic
localization

requiring a targeted

neuroradiological
examination [..]

RADIOLOGY

éd = 169 mim
; »

OFFICE
HISTORICAL DATA

-






OPS/images/fonc.2024.1360253/fonc-14-1360253-g003.jpg
B, = 0.53*319

B = 0.03+0.03

—0.02

[l

l2 = 041333

m,,,L =0.0885:

o

s
2,0
0.2

c
~+1
&

=10:1219'%9

o
O,

ts
0,00

= 0245032

%

2, 9,0, 0
Yo Te o %

L
" O O b > L0 O
N4 Q- 0’50b06 0 Q’» 0’5 Dh

34 P






OPS/images/fonc.2024.1402838/fonc-14-1402838-g005.jpg





OPS/images/fonc.2024.1402838/fonc-14-1402838-g004.jpg
2) Considering the goal,
what is the criterion maximizing the gain?

Precision
Response

Criterion

[72]
-
c
Q
)
©
o
c

RADIOLOGY PREDICTED

Image - Image+

FALSE oh]) ‘,7“ VE
TRUE NEGATIVE

REVEALED

GROUND TRUTH

low

TRUE POSITIVE






OPS/images/fonc.2024.1390342/table3.jpg
Training cohort test cohort

Different o o

A AUC (95%Cl) Accuracy AUC(95%Cl) Accuracy
Sensitivity Specificity Sensitivity Specificity

Rad-MG model | 0974(-0.949, -0999) 0920 0921 0920 0.885(-0.746, -1.00) 0.909 0565 0676

ot 0.936(-0.888, -0.983) 0820 0921 0876 0876(-0761, -0.993) 1.000 0652 0765

GSUS model A ” : 2 .876(-0.761, -0. Y

Rad-MG-

CSUS model | 09910976, -100) 0940 0952 0947 0.949(-0879, -1.00) 1.000 0869 0912

clinical model | 0826(-0.747, -0903) 0820 0730 0770 0.664(-0.459, -0.868) 0545 0652 0618

So’::‘“d 0.993(-0980, -1.00) 0960 0.968 0965 0.941(-0.866, 1) 1000 0826 0882

MG: mammography; GSUS: gray-scale ultrasound; Rad-MG-GSUS model: the model based on radiomics features from MG and GSUS images; Rad-MG model: the model based on radiomics features from MG images; Rad-GSUS model: the model based on radiomics
features from GSUS images; combined model: the model based on clinical features, MG and GSUS radiomics features.
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OPS/images/fonc.2024.1390342/table1.jpg
Training cohort (n=113) Validation cohort (n=34)

breast breast IDC

adenosis (n=50) adenosis (n=11) (n=23)
Age 45+ 12 52+12 0.002* 48 £ 12 55+ 11 0.138
Menopausal status 0.021* 0.434
postmenopausal 20 39 6 17
premenopausal 30 24 5 6
Family history 0042 0.324
no 49 55 10 23
yes 1 8 » 1 0

Mammography features

Glandular type 0.155 1.000
entirely fatty 1 1 0 0

scattered fibroglandular 1 ‘ 8 2, 4

heterogeneously dense 42 49 9 19

extremely dense 6 5 . 0 0

Architectural distortion ‘ 0.066 1.000
no 47 52 11 22

yes 3 11 0 1

Microcalcification morphology 0.013* 0.615
no 30 23 5 10

punctate 12 24 <0.001* 4 10 0.442
amorphous 1 3 0 0

coarse heterogeneous 4 1 | 1 0

fine pleomorphic 1 1 0 1

fine linear/fine-

linear branching 2 " ! 2

Mass 0.574 0.064
no 16 21 6 6

circumscribed 6 4 0.328 1 0 0.227
ill-circumscribed 28 38 4 17

Asymmetric focal density ‘ 0.292 1.000
no 40 ‘ 55 » 9 20

yes 10 8 2 3

Ultrasound features

Shape 0.699 0.300
regular 11 12 3 2

irregular 39 51 8 21

Orientation 0.181 0.535
orientation 45 51 11 20

not parallel 5 12 0 3

Posterior feature 0.469 1.000
no posterior feature 44 58 11 22

shadowing 6 ‘ 5 0 1

Margin 0.279 0.070
circumscribed 12 10 4 2

not circumscribed 38 53 7 21

Calcification 0.653 0.053
no 33 39 10 12

In a mass 17 24 1 11

Vascularity grade <0.001* 0.152
grade 0~ 38 26 8 10

grade II~11T 12 a7 3 13

Echo pattern ' 0.568 1.000
homogeneity 10 10 1 1

heterogeneity 40 | 53 10 22

Data are shown as mean + standard deviation, or n. *P value < 0.05, with statistical difference.
IDC, invasive ductal carcinoma; MG, mammography; GSUS, gray-scale ultrasound.
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training cohort test cohort

AUC Z statistic AUC Z statistic
Rad-MG vs Rad-GSUS 0.974 vs 0.936  1.386 0.166 Rad-MG vs Rad-GSUS 0.885 vs 0.876 = 0.093 0.926
Rad-MG vs Rad-MG-GSUS 0.974 vs 0.991 | 1.36 0.174 Rad-MG vs Rad-MG-GSUS 0.885 vs 0.949 | 0.99 0.322
Rad-GSUS vs Rad-MG-GSUS 0.936 vs 0.991 = 2.317 0.021* Rad-GSUS vs Rad-MG-GSUS 1 0.876 vs 0.949 | 1.68 0.093
Clinical vs Combined 0.826 vs 0.993 = 4.138 <0.001* Clinical vs Combined ' 0.664 vs 0.941 | 2461 0.014*
Rad-MG-GSUS vs Combined 0.991 vs 0.993 = 1.248 0.212 Rad-MG-GSUS vs Combined » 0.949 vs 0.941 = 1.038 0.299
Rad-MG-GSUS vs Clinical 0.991 vs 0.826 = 4.057 <0.001* Rad-MG-GSUS vs Clinical 0.949 vs 0.664 | 2.551 0.011*

*P value < 0.05, with statistical difference.

MG, mammography; GSUS, gray-scale ultrasound; Rad-MG-GSUS model, the model based on radiomics features from MG and GSUS images; Rad-MG model, the model based on radiomics
features from MG images; Rad-GSUS model, the model based on radiomics features from GSUS images; combined model, the model based on clinical features, MG and GSUS radiomics features;
AUC, areas under the receiver operator characteristics curve.
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CT phase  algorithm Training dataset Testing dataset

AUC(95%Cl) sensitivity ~ specificity AUC(95%Cl) sensitivity = specificity ~ precision
Plain phase = LR 0.978(0.963-0.993) 0.963 0.896 0.923(0.870-0.975) 0911 0.833 0.854 0911 0.882
SVM 0.977(0.961-0.992)  0.908 0.938 0.935(0.888-0.983)  0.867 0.881 0.886 0.867  0.876
RF 0.989(0.975-1.000) 0.982 0.958 0.929(0.875-0.983) 0911 0.905 0911 0911 0911
DT 0.905(0.864-0.946) 0.868 0.899 0.808(0.715-0.900) 0.767 0.864 0.846 » 0.767 0.805
Arterial LR 0.909(0.870-0.948) 0.899 0.760 0.841(0.748-0.934) 0911 0.786 0.820 0911 0.863
e SVM 0.928(0.896-0.961)  0.862 0.865 0.870(0.788-0.952)  0.822 0.857 0.861 0.822  0.841
RF 0.978(0.961-0.995) 0.853 0.990 0.867(0.795-0.939) 0.791 0.7864 0.850 0.791 0819
DT 0.911(0.871-0.952) 0.901 0.883 i 0.813(0.726-0.900) 0.930 0.727 | 0.769 0.930 0.842
Portal LR 0.903(0.864-0.943) 0.752 0.896 0.849(0.768-0.930) 0.867 0.738 0.780 0.867 0.821
PSS SVM 0.909(0.871-0.947)  0.908 0.750 0.851(0.769-0.933)  0.800 0.810 0.818 0.80 0.809
RF 0.967(0.946-0.987) 0.817 0.979 0.818(0.732-0.905) 0.686 0.889 0.897 0.686 0.778
DT 0.867(0.818-0.916) 0.891 0.832 0.781(0.688-0.873) 0.809 0.750 0.792 0.809 0.800
Combined LR 0.993(0.986-1.000) 0.972 0.969 0.924(0.870-0.979) 0.867 0.881 0.886 0.867 0.876
. SVM 0.992(0.983-1.000) ~ 0.972 0.958 0.938(0.890-0.958) = 0.911 0.857 0.872 0.911 0.891
RF 0.995(0.991-1.000) 0.954 1.000 0.930(0.887-0.974) 0.745 1.000 1.000 0.745 0.854
DT 0.906(0.867-0.945) 0.963 0.833 0.808(0.716-0.899) 0.841 0.841 0.822 0.841 0.832

AUG, area under the receiver operating characteristic curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine; RF, random forest; DT, decision tree.
‘The bold values indicated the SVM models of single-phase and combined-phase all showed the best performance in the testing dataset.
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Parameters Training dataset (n=205) Testing dataset (n=87)

P value Pvalue P value

Benign Metastases Benign Metastases
(n=96) (n=109) (n=42) (n=45)
Age(year) 58.0(48.0;64.0) 61.0(55.066.0] 0.002 53.5(44.2:64.5) 62.0(55.0:67.0] 0.013 0.653
Gender <0.001 <0.001 0.826
Female 57(59.4%) 30(27.5%) 26(61.9%) 9(20.0%)
Male 39(40.6%) 79(72.5%) 16(38.1%) 36(80.0%)
Long diameter (cm) 1.90[1.30;2.40] 1.90[1.50;2.30] 0.885 1.80[1.30:2.40] 2.20(1.50;2.70] 0.119 0.626
Short diameter (cm) 1.50[1.20;1.90] 1.40[1.20;1.90] 0.498 1.40(1.10;1.80] 1.60(1.20;2.00] 0.185 0.988
Location 0293 0.072 0.834
Left 65(67.7%) 65(59.6%) 32(76.2%) 25(55.6%)
Right 31(32.3%) 44(40.4%) 10(23.8%) 20(44.4%)
Shape 0176 0.120 0.421
Regular 90(93.7%) 1 95(87.2%) 39(92.9%) 36(80.0%)
Irregular 6(6.3%) 14(12.8%) 3(7.1%) 9(20.0%)
Calcification 0.624 1.000 1.000
No 95(98.9%) 106(97.3%) 41(97.6%) 44(97.8%)
Yes 1(1.1%) 3(2.7%) 1(2.4%) 1(2.2%)
Cystic ‘degeneralion/ 0.148 0.143 0.736
necrosis
No 84(87.5%) 86(78.9%) 37(88.1%) 33(73.3%)
Yes 12(12.5%) 23(21.1%) 5(11.9%) 12(26.7%)
Plain CT value (HU) 25.00(20.00;31.20] | 37.00[32.00;42.00] <0.001 26.00(19.00;36.80] | 38.00(32.00;42.00] <0.001 0549
Arterial CT value (HU) 66.00(52.00;80.20]  64.00(53.00;77.00] 0925 61.00[51.20;87.80] | 63.00(50.00;74.00] 0437 0.428
Portal CT value (HU) 73.50(60.00;86.20]  74.00(61.00;87.00] 0611 77.50[63.5095.80] | 70.00[60.00;82.00] 0.103 0.959
Arterial enhancement rate  1.49(0.92;2.15] 0.69 [0.43;1.12] <0.001 1.44[1.02;2.00] 0.57(0.43;0.81] <0.001 0431
Portal enhancement rate 1.87(1.16;2.58] 0.89[(0.71;1.39] <0.001 1.82[1.27;2.86] 0.79[0.65;1.03] <0.001 0.468
I Peak enhancement phase [ <0.001 <0.001 0.639
Arterial phase 23(23.9%) 3(2.7%) 9(21.4%) 1(2:2%)
Portal phase 54(56.3%) 66(60.6%) 29(69.1%) 27(60.0%)
Equally enhanced 19(19.8%) 40(36.7%) 4(9.5%) 17(37.8%)
lcnl::zlns;si“g of <0.001 <0.001 0.463
1 15(15.6%) 2(1.8%) 10(23.8%) 1(2:2%)
it 24(25.0%) 6(5.5%) 6(14.3%) 2(4.4%)
it 33(34.4%) 42(38.5%) 16(38.1 %) 16(35.6%)
v 24(25.0%) 59(54.2%) 10(23.8 %) 26(57.8%)
;[I;s:’:if: R el <0.001 0.006 0335
Small cell 7(7.3%) 35(32.1%) 5(11.9%) 18(40.0%)
Non small-cell 89(92.7%) 74(67.9%) 37(88.1%) 27(60.0%)

‘The bold values indicate the statistically significant parameters.
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Nuclide Tracer agent Target or Application Main Indications Reference
concentration
site
g FDG Glucose glycolysis Diagnosis, staging, treatment monitoring Bone sarcoma and STS (42)
18F EMISO Hypoxic tissue Diagnosis, efficacy evaluation Head and neck sarcoma (14)
15p HX4 Hypoxic tissue Diagnosis, efficacy evaluation Head and neck sarcoma (101)
i FLT DNA replication Diagnose, assess scope, monitor Brain glioma (102)
for recurrence
8p FGFR1 FGFR Diagnosis Lung cancer (113)
Bp NaF Bone metastasis Detection of bone metastasis Metastatic tumor of bone (103)
i} FMT Amino acid Diagnosis, identification Bone sarcoma and STS (108)
Bpne Choline Cell membrane Diagnosis, staging Prostate cancer, bone (110, 112)
metastases, STS
SFGa RGD Integrin o3 Diagnosis, treatment, prognosis Bone sarcoma and STS (104, 106)
%Ga/'”Lu | ibandronic Bone metastasis Detection of bone metastasis, treatment Metastatic tumor of bone (114)
acid (IBA)
BGa FAPL FAP Diagnosis, treatment, prognosis Bone sarcoma and STS (115)
SGa FAPI-RGD FAP, integrin ovp3 Diagnosis, treatment, prognosis Bone sarcoma and STS (105)
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1 PET/CT 203 osteosarcoma 0.22
dj t
2 BEEDG 198 neoadjvan 0.19
chemotherapy
soft . o
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4 bone tumor 141 0.14
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j t
5 menailjivas 132 bone tumor 0.13
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; prognostic 43 gene . 6.5
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8 metastases 53 survival 0.11
9 survival 49 metastases 0.11
10 Ewing sarcoma = 37 ®F-FDG 0.09
11 diagnosis 36 follow up 0.09
12 MRI 36 MRI 0.08
13 children 36 breast cancer 0.08
14 gene 29 %L 0.07
expression tissue sarcoma
Non-small cell 5
15 28 Ewing sarcoma | 0.07

lung cancer
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Frequency Highly-Cited Reference Centrality

1 TATEISHIU 84 Bone metastases in patients with metastatic breast cancer: Morphologic and metabolic BENZ MR 0.13
monitoring of response to systemic therapy with integrated PET/CT

2 BENZ MR 77 FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after the Initial HAWKINS 0.11
Cycle of Neoadjuvant Chemotherapy in High-Grade Soft-Tissue Sarcomas DS
3 BYUN BH 70 Combination of F-'®-FDG PET/CT and Diffusion-Weighted MR Imaging as a Predictor BIELACK SS 0.11

of Histologic Response to Neoadjuvant Chemotherapy: Preliminary Results
in Osteosarcoma

4 FRANZIUSC = 69 Guidelines for F-"*-FDG PET and PET-CT imaging in paediatric oncology COSTELLOE | 0.1
CcM
5 HAWKINS 64 Ewing Sarcoma: Current Management and Future Approaches Through Collaboration BYUN BH 0.09
DS
6 COSTELLOE = 63 F-"8-FDG PET/CT as an Indicator of Progression-Free and Overall Survival FRANZIUSC | 0.09
M in Osteosarcoma
7 VOLKERT | 57 Positron emission tomography for staging of pediatric sarcoma patients: Results of a VOLKER T 0.09
prospective Multicenter trial
8 EARY JF 56 Spatial Heterogeneity in Sarcoma F-'*-FDG Uptake as a Predictor of Patient Outcome EVILEVITCH | 0.09
v
9 BRENNER W | 44 Monitoring Primary Systemic Therapy of Large and Locally Advanced Breast Cancer by = WAHL RL 0.09

Using Sequential Positron Emission Tomography Imaging With
[F-'*] Fluorodeoxyglucose

10 IM HJ 43 Prognostic value of volumetric parameters of F-'*-FDG PET in non-small-cell lung TATEISHI U 0.08
cancer: a meta-analysis
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| Kong, . Korea Institute of Radiological SOUTH
Chang-Bae & Medical Sciences KOREA
Korea Institute of Radiological SOUTH
2 Lim, Tlh 7
1, Shan & Medical Sciences KOREA
3 Daw, o UTMD Anderson USA
Najat C Cancer Center
Byun, SOUTH
4 Byung 6 National Cancer Center - Korea =~ KOREA
Hyun
3 SOUTH
5 g::_ Getin 5 National Cancer Center - Korea KOREA
Lim, SOUTH
6 s::]lg Moo 5 National Cancer Center - Korea KOREA
Cho, SOUTH
7 Wan 5 National Cancer Center - Korea =~ KOREA
Hyeong
g Anderson, P Cleveland Clinic Foundation USA
Peter M
9 Amini, s UTMD Anderson USA
Behrang Cancer Center
it Jiang, 5 Northeastern University China
Huiyan

NP, total number of publications.
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Patients diagnosed with breast adenosis or IDC between January 2018 and December 2022

(n=398)

Included criteria:
(i) Patients with pathologically confirmed breast adenosis or
IDC after surgical operation or core needle biopsy;
(ii) Patients who had undergone both MG and US within a

Lesion included : ¢ .
month prior to any surgical operation.

(n=191)

Exclusion criteria:
(i)  Patients with a history of undergoing therapies, such as

breast surgery, radiotherapy or chemotherapy;

X (i) Poor image quality such as significant motion artifact.

Lesion included

(n=147)
Training cohort Test cohort
(113 patients were treated between (34 patients were treated between
January 2018 and December 2021 ) January 2022 and December 2022)
Breast adenosis IDC Breast adenosis IDC
(n=50) (n=63) (n=11) (n=23)






