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Introduction: To solve the problems of small proportion of bolts in aerial images
of power transmission lines, small differences between classes, and difficulty in
extracting refined features, this paper proposes a method for detecting power
transmission line bolts and their defects based on positional relationships.

Methods: Firstly, a spatial attention module is added to Faster R-CNN, using two
parallel cross attention to obtain cross path features and global features
respectively, and spatial feature enhancement is performed on the features
output from the convolution layer. Then, starting from the spatial position
relationship of bolts and their defects, using the relative geometric features of
candidate regions as input, the spatial position relationship of bolts and their
defects on the image is modeled. Finally, the position features and regional
features are connected to obtain enhanced features. The bolt position
knowledge on the connecting plate is added to the detection model to
improve the detection accuracy of the model.

Results and discussion: The experimental results show that the mAP value of the
algorithm in this paper is increased by 6.61% compared to the Faster R-CNN
detection model in aerial photography of transmission line bolts and their defect
datasets, with the AP value of normal bolts increased by 1.73%, the AP value of pin
losing increased by 4.45%, and the AP value of nut losing increased by 13.63%.

KEYWORDS

transmission line bolts, bolts defects, target detection, attention mechanism, positional
relationship

1 Introduction

Under the urgent requirement of achieving carbon peaking and carbon neutrality goals,
the structure of China’s power system form is undergoing fundamental changes (Zhuo et al.,
2023). With the construction and development of new power systems, new power equipment
such as power electronics and large-scale energy storage devices will be widely used, and the
requirements for flexible and controllable and safe and stable power grids are becoming
increasingly high (Sheng et al, 2021). Bolts are present in large numbers in power
transmission lines and play a key role in fixing and connecting various components.
However, due to long -term working in the wild, various components will be affected by
natural environment and the external mechanical load tension and the internal power load of
the power system. These factors can cause the bolts connected to various components to
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produce defects such as loose nuts, losing, and stripped pins, which
seriously affects the stable transmission of electrical energy (Zhao
etal, 2021; Zhao and Ding, 2022). Therefore, in order to ensure the
safe operation of transmission lines, it is crucial to carry out regular
inspection of transmission line bolts and their defects.
Traditional transmission line inspection methods require
electric workers to climb the tower, and in order to accurately
record the cause of faults and carry out timely repairs, workers
need to carry a variety of working tools when climbing the tower,
which is not only economically costly, dangerous working
environment and extremely inefficient inspection. Therefore,
with the continuous development of deep learning technology,
more and more scholars have started to adopt deep learning for the
analysis and processing of transmission line images. Artificial
intelligence technology has become a current hotspot and has
performed powerfully in many fields, especially in target detection
with many excellent results (Ge et al., 2017). And the main task of
target detection is to find out all the targets of interest in the image
and determine their class and location. Deep learning-based target
detection algorithms are mainly divided into two categories, one is
the Faster R-CNN (Ren et al, 2017) (Faster Regions with
Convolutional Neural Network Features) series, a two-stage
detection model based on One is a

region suggestion.

regression-based single-stage detection model based on the

FIGURE 1
Aerial photograph of the original bolts of the transmission line.

-
5 \

FIGURE 2
Transmission line bolts and their defects.
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YOLO (Redmon et al.,, 2016) (You Only Look Once) series and
the SSD (Liu et al., 2016) (Single Shot Detection) series.

To achieve automatic detection of transmission line bolts and
their defects, many scholars have introduced target detection
algorithms into the detection of bolts and their defects to reduce
the reliance on traditional manual inspection. A transmission line
bolt detection method for processing massive UAV (Unmanned
Aerial Vehicle) image data using UAV inspection images was
proposed by Feng et al. (2018). This method firstly establishes a
sample library, extracts HOG (Histogram of Oriented Gradients)
SVM  (Support Machine)
classification to achieve recognition of high-resolution UAV

features and constructs Vector
inspection images. However, this method is susceptible to the
influence of image illumination and effects. A deep learning-
based transmission line bolt detection system for transmission
line bolts with inconspicuous features, small size and difficult
detection in inspection images was proposed by Zhang et al.
(2021). This method adopts the principle of hierarchical
detection, using the SSD algorithm to locate the defective bolt
connection parts and cut out the connection parts, increasing the
proportion of bolts in inspection images. Secondly, this method uses
data augmentation to expand the dataset, and finally uses the
YOLOvV3 algorithm to detect defective bolts. An automatic
detection model called Automatic Visual Shape Clustering
Network (AVSCNet) was constructed to detect losing pins for
transmission line bolts that are prone to losing pins by Zhao
et al. (2020). First, an unsupervised clustering method for
bolometric visual shapes is proposed and applied to construct
a defect detection model that learns differences in visual shapes.
Next, three deep convolutional neural network optimisation
methods are used in the model: feature enhancement, feature
fusion, and region feature extraction. Regression calculation and
classification are applied to the region features to obtain defect
detection results. However, during the training of the model,
many hyperparameters need to be set manually and do not have
automatic learning capabilities. To solve the problems of too
small bolt targets, small differences between different categories
and difficulty in extracting fine features, a detection method with
a dual attention mechanism was proposed by Qi et al. (2021).
This method analyzes and enhances visual features at different
scales and locations respectively. This method uses multi-scale
attention modules to enhance fine features in the bolt region and
spatial attention modules to increase the feature differences

frontiersin.org
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O
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FIGURE 3
Structure of the transmission line coupling board.

between the bolt and the background to improve the prediction of
the bolt region. The Ultrasmall Bolt Defect Detection Model
(UBDDM) based on Deep Convolutional Neural Network
(DCNN) was proposed by Luo et al. (2023). Which included
Ultrasmall Object Perception Module (UOPM) and Local Bolt
Detection Module (LBDM), and introduces a hybrid attention
mechanism and multi-scale feature fusion to further improve the
network’s ability to extract shallow features. A novel and high-
accuracy defect detection method based on deep learning
technology, named insulator defect detection network (I2D-
Net) was proposed by Fu et al. (2023), which improves the
ability of defect location in the presence of interference
factors. An efficient and high-performance defect detection
model called DDNet is proposed by Gong et al. (2023) to
recognize defects from images of unmanned aerial vehicles.
The attention mechanism was adopted in the improved
detection model in order to enhance the representation
learning of the image. However, the model only focuses on
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FIGURE 4
Overall block diagram of the bolt and its defect detection model.
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the bolt
inherent bolt position information into the detection.

enhancing features, without incorporating the

Transmission lines have problems such as small targets for bolts
and their defects, limited information on targets, difficulty in feature
extraction, and small differences between target classes. To alleviate
these problems to a certain extent and promote the widespread
application of deep learning in the detection of bolts and their
defects in transmission lines, this article proposes the following
methods. Firstly, the spatial attention module is added to the Faster
R-CNN model to help the model acquire global features to achieve
the purpose of bolts and their defects feature enhancement. Then the
location inference module is used to add location relations to the
detection model to reduce the leakage and false detection of bolts
and their defects detection, which can improve the detection effect of

the model.

2 Research background

As a crucial connection component, bolts are present in large
numbers on all types of fixtures, which are widely distributed and
numerous in transmission lines. However, the bolts and their defects
account for a very small proportion of the aerial images, making
them easy to miss detection when they are directly detected together
with the fixtures. In Figure 1, the original bolt image is nearly
impossible to identify within the complicated background of the
aerial image. The detection model is often at risk of losing important
features when extracting bolt features, rendering bolt detection a
challenging task.

Therefore, this paper discards the idea of directly detecting bolts
and their defects on aerial images, but instead annotates the metal
tool targets, mainly joint plates, to build a dataset of bolts and their
defects. Afterwards, carries out the detection of transmission line
bolts and their defects afterwards. This design method can effectively

Classify
Regress

Nodes: relative
geometric
features

edge: MLP(*)

Candidate Areal feature Positional reasoning Spatial feature
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FIGURE 6
Structure of the cross-attention model.

increase the proportion of bolt targets in the image, reduce the
influence of complex background on bolt detection, and effectively
reduce the information loss of bolt targets. We add a spatial
attention module to the detection model to improve the model’s
ability to extract bolts and their defect features.

Figure 2 shows several sets of cropped yoke plate images. It can
be seen that the bolts and their defect targets in the image are
distributed in a triangular pattern, and the cropped image is clearer
than the original aerial image. The cropped image size is smaller,
which can make the detection speed faster.

As the bolts on the transmission line coupling plate generally have
a fixed position, the coupling plate target is chosen for the labeling of
transmission line bolts and their defect data sets. Figure 3 shows the
structure of the transmission line joint board, which is a board-shaped

Frontiers in Energy Research 8

connection for the parallel assembly of multiple branches, mostly used
for the parallel assembly of double insulator strings and multiple
insulator strings, the assembly of insulator strings with double and
multiple wires and the assembly of double pulling wires and other
connections. There are various types of plates, such as L-plate, LZ-
plate, LF-plate, L]-plate and LE-plate, etc. The different types of plates
are subject to different forces depending on their structure. In this
paper we primarily focus on L-plates. The coupling plate in Figure 3 is
the most typical and common L-shaped coupling plate, which is used
for assembling double tension insulator strings with a single
conductor, single insulator strings with two split conductors, and
also for forming triple insulator strings in parallel. In Figures 3A-C are
bolt installation positions. It can be found that the position of the bolts
on the L-shaped coupling plate is fixed and the connection of the
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FIGURE 7
Transmission line bolts and their defect data set categories.

midpoints of each bolt can form a triangle. Therefore, a priori
knowledge can be added to the detection of the bolts and their
defects, and the inference of the bolt position relationship can be
added after the (Region Proposal Network) RPN generates the
candidate region in order to improve the fit of the bolt detection
frame to the target, and at the same time improve the detection
accuracy of the model.

TABLE 1 Ablation experiment.

10.3389/fenrg.2023.1269087

3 Materials and methods

The overall block diagram of the bolt and its defect detection
model in this paper is shown in Figure 4. Firstly, to address the
problem of small differences between classes of bolts and their defects
and small bolt targets, spatial attention is added after the feature
extraction network ResNet-101 to help capture global dependencies
for each pixel through two crossover networks, so that the bolts and
their defect targets can obtain global contextual information efficiently
and quickly. The specific process is divided into two branches. One is
to obtain the feature map H by convolutional downscaling of the
features output from the convolutional layer, and then input H into
the cross-attention module to produce a new feature map H*. At this
point, H* contains horizontal and vertical contextual information,
after which H* is inputted again into the cross-attention module to
output the feature map H**. The other branch is to keep the output
features unchanged. Afterwards, the features of the two branches are
fused together to obtain global contextual information. Secondly, to
address the lack of inference capability for bolt and its defect detection,
a location relationship inference module is added after the model
generates the box of interest. The main approach is to take the
bounding box of the candidate region as input, learn the spatial
discrepancy of the region as the edge of the region node, then output
the location relationship knowledge to enhance the location features,
and finally connect the location features with the region features for
regression classification process to obtain the final detection results.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP (%)
Baseline 88.95 60.86 33.74 61.18
Baseline + spatial attention 89.57 54.90 46.57 63.68
Baseline + positional reasoning 89.40 65.21 43.43 66.02
Ours 90.68 65.31 47.37 67.79

TABLE 2 Model detection results before and after improvement of the backbone network for VGG16.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%)
Faster R-CNN 88.62 28.75 2626 47.88
Ours 88.06 37.37 74.71 66.71

TABLE 3 Multiple model detection accuracy.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%)
RetinaNet 95.7 232 56.4 58.4
Faster R-CNN 89.0 60.9 337 612
Cascade R-CNN 89.9 77.9 27.3 65.0
Sparse R-CNN 87.1 54.2 60.6 67.3
Ours 90.7 653 474 67.8

Frontiers in Energy Research
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FIGURE 8

Comparison of bolts defect detection results between Faster
R-CNN and the proposed method (A) Faster R-CNN (B) Ours (C)
Faster R-CNN (D) Ours (E) Faster R-CNN (F) Ours (G) Faster R-CNN (H)
QOurs.

3.1 Spatial attention

Bolts as a large number of fixed connection components in the
transmission line, their distribution exists in a certain pattern,
especially in the bolts on specific fixtures, the location of the
bolts is more basically fixed. The original Faster R-CNN only
focuses on the local area of the image when detecting, without
considering the spatial pattern of the transmission line bolt
distribution. Moreover, UAV aerial photographs the transmission
line bolt maps will be affected by lighting, equipment jitter and other
factors. This is not conducive to obtaining a finer feature map in the
convolution layer. Therefore, this paper adds spatial attention after

Frontiers in Energy Research
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the convolutional layer, and by introducing the cross-attention
module twice, it helps the detection model to obtain contextual
information of the whole image, capture global dependencies, and
regions with similar features enhance each other, making the bolts
stand out in the full field of view and helping the convolutional layer
to obtain a feature map with more obvious features.

In order to help the model obtain global contextual information,
this paper introduces the Recurrent Criss-Cross Attention (RCCA)
module (Huang et al., 2019) to help feature enhancement of regional
features with similar characteristics in a more efficient way. In this
paper, we choose the Spatial Attention module, which works as
shown in Figure 5 and is composed by two cross-cross attentions, as
a simple and efficient way to perform feature enhancement.

Firstly, local features are transmitted through a cross attention
module to collect contextual information in both horizontal and
vertical directions. Then, by inputting the feature map generated by
the first cross attention module into another module, the additional
contextual information obtained from the cross path ultimately
enables each pixel to capture the full image dependency relationship.

The structure diagram of the cross-attention module is shown
in Figure 6. The input feature map is A; € ROY*H which is divided
into three branches: Q, K, and V. The feature maps Q and K are
obtained through the convolution operation of the 1 * 1 convolution
kernel, where {Q\ K} € RE"WXH ' then the attention map

A € RHHW=DxWxH 5 ohtained through Formula 1 and softmax layer.

di,u = QuM’,'I:u (1)

where d;,, € D represents the weight of the relation between Q, and
M;,, D € RHPW-DXWxH "3 "¢ RC" is the value of u position in the
spatial dimension of the feature graph Q, M,, € RU*W=DC" s the set
of peer or same column elements of u position on K, therefore
M, € R is the ith element in M,,.

The other branch V is obtained by 1*1 convolution V' € ROWxH
and a new feature map is obtained between V and attention diagram
by Formula 2. V,, € R is the value of u position on the spatial
dimension of the feature graph V, and N, € RHW-1C ¢ the set of
peer or same column elements of u position on V.

N, =Y """ AN, + H, @)
where N, is the feature vector of position uin N* € ROW*H A, is the
ith value corresponding to the position u in the attention diagram A.
Finally, H* is output in the form of residual error, which enhances the
pixel-level expression ability, aggregates the global context information,
and improves the performance of bolt and its defect target detection.

3.2 Positional reasoning

Bolts on transmission line coupling plates generally have a fixed
position, geometrically in a triangle, and existing target detection
models are only for individual targets, with little attention paid to the
positional geometric relationships between targets. In this paper, we
choose a positional relationship inference module to improve the
detection accuracy of the model by using the fixed position
information of the bolts on the coupling plates. This is done by
using the feature Q = {g;} as an input describing the geometric
features of each region to capture the spatial knowledge of the
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target (Hu et al,, 2018). The position relationship inference module
integrates inference from M regions to regions, which is constructed
into M region graphs G (V,E) by stacking M MLPs, and uses the edge
E to combine the region features with the region spatial location V to
learn the position relationship between the regions.

First, the location features g; of region i and g; of region j are
extracted separately, and the edge values of the two regions are learned
using MLP:

é; = MLP(a(q:q;)) 3)
where a () indicates the difference between the two regions.

By stacking M MLPs to obtain M location-relative area maps, the
edge values of the M location-relative area maps are accumulated
and averaged, and they are summed with the unit matrix I to obtain
the edge connections:

(4)

1 oM
€ij = Mzmzleﬁ +1
Afterwards, the location and area features are connected using
matrix multiplication to obtain the enhanced features F;:

F, = ¢eFW, (5)

where ¢ € RNN

is the set of edges of the location-relative region
graph, ejj €¢ F is the input region feature, and W, is the

transformation weight matrix.

4 Experimental design and result
analysis

In this paper, the State Grid’s “Specification for Image
Labeling of Defects in Overhead Transmission Line
Equipment (Trial)” and the PASCAL VOC (Everingham et al,
2010) dataset construction method are referred to when
constructing the dataset, and the data are annotated in strict
accordance with the annotation specification. The dataset is
mainly based on a large number of inspection images obtained
by UAV inspection with image acquisition equipment, and the
inspection image library is filtered and optimized according to
manual empirical knowledge, using the joint board target as the
main target, providing important data support for the
construction of the bolt and its defect detection database.

This paper uses the widely used Precision (P), Recall (R),
Intersection over Union (IoU), Average Precision (AP) and mean
Average Precision (mAP) in the field of object detection as an
evaluation indicator for the accuracy of bolts and their defective targets.

P, R, and IoU are defined in Eqs 6-8 respectively. AP/ is the
accuracy of the target in category i at an IoU threshold of f,
and is defined in Eq. 9 as the value of the area bounded by the
Precision-Recall (PR) curve and the coordinate axis. The final mAP
is the average of the accuracies of all classes at 10 different IoU
thresholds and is used to assess the overall accuracy of the model,
which is defined in Eq. 10.

TP

P=—1"_
TP + FP (©)
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R TP )
" TP+FN
Spre NS
JoU = ke 9t (8)
Spre U Sy
1
AP = j P;(R;)dR ©)
0
1 YC AP
AP = — Lisll 1 10
" 10 c (10)

t€{0.5,0.55,...,0.95}

where TP denotes correct positive samples, FP denotes incorrect
positive samples, TN denotes correct negative samples, FN denotes
incorrect negative samples, Sy, denotes detection results, Sg; denotes
actual results, i denotes the ith category of bolts or defects, t denotes
the threshold of IoU, and C denotes the total number of all categories.

In this paper, transmission line bolts and their defective datasets
are selected for experimentation, containing three categories of the
normal bolt, pin losing and nut losing, with the specific number of
labels for each category shown in Figure 7, with a total of 340 images.
It can be seen that the transmission line bolts and their defects dataset
constructed in this paper has fewer defective samples and more
normal samples, showing a serious long-tail distribution, which is
in line with the current general status quo of more normal samples
and fewer defective samples for transmission line bolt components.

4.1 Comparative experiment on
improvement methods

In order to verify the effectiveness of the method in this paper,
experiments were carried out using Faster R-CNN as the baseline
model and ResNet-101 as the backbone network. The commonly
used evaluation metrics in target detection models, mAP, as well as
AP, were selected to evaluate the model. The detection results before
and after adding the spatial attention module and position relation
inference are shown in Table 1. It can be seen that the detection of
bolts and their defects by the method in this paper is significantly
better than the traditional Faster R-CNN detection model, which
does not consider the spatial context information in the detection of
bolts and their defects, and only detects the bolts themselves without
inference capability The original Faster R-CNN detection model
does not consider the spatial context information in the detection of
bolts and their defects. Therefore, this paper adds a spatial attention
module and a position relationship inference module to the Faster
R-CNN detection model. The improved model improves the mAP
by 6.61%, which significantly improves the detection accuracy of the
model for transmission line bolts and their defect dataset, which
shows the superiority of the proposed improvement.

Table 1 also gives the results of AP values for the baseline model
with Faster R-CNN as the detection model and ResNet-101 as the
backbone network, the baseline model with spatial attention added,
the baseline model with positional relationship inference added, and
the method in this paper. It can be seen that adding spatial attention to
the baseline model can effectively enhance the label features, especially
for the nut losing feature which is difficult to be detected by the
baseline model, the feature enhancement effect of spatial attention is
obvious, and the AP value of nut losing is improved by 12.83%.
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The addition of the location relationship inference module to the
baseline model can also effectively improve the detection effect of the
model. Especially for the pin losing and nut losing with a small
number of labels, the AP values increased by 4.35% and 9.69%
respectively. This indicates that the location relationship inference
module can effectively exploit the location relationship between bolts.
This improves the detection capability of the model, alleviates the long
tail effect of the dataset and helps improve the detection accuracy of
targets with fewer labels. Finally, the baseline model with Faster
R-CNN as the detection model and ResNet-101 as the backbone
network is added to the proposed method with the spatial attention
module and the position relationship inference module respectively. It
can be seen that, on top of the baseline detection model, the AP values
of the three types of tags, namely, normal bolt, pin losing and nut
losing, increase in this paper method, where the baseline detection
The nut losing, which has a lower accuracy, has increased by 13.63%
and the mAP has increased by 6.61%.

It can be seen that the location relationship-based transmission
line bolt and its defect detection algorithm proposed in this paper are
very effective in detecting the state of the bolt. The spatial attention
module is used to effectively extract global context information and
capture global dependencies, which can effectively help the model extract
finer and more comprehensive features. The location relationship
inference module is used to add detection box location information
to the detection model, which gives the model certain inference
capabilities. This method enables the model to use tags with good
detection effects and numerous tags, helping to improve detection
accuracy for tags with poor detection effects and a small number of
tags. Through the above methods, the overall detection ability of the
model is improved. In addition, this paper also adds spatial attention and
location relationship inference modules to the Faster R-CNN detection
model with VGG16 as the backbone network, and the experimental
results are shown in Table 2. The results show that the detection effect
of the model with VGG16 as the backbone network is significantly worse
than that of the model with ResNet-101 as the backbone network. This
is because VGG16 performs poorly in feature extraction in the detection
of transmission line bolts and their defects, and is unable to extract
fine image features for the bolts and their defects. Therefore, the spatial
attention module of the method in this paper effectively helps the feature
extraction network to perform feature enhancement. When the
Faster R-CNN detection model replaces the backbone network, the
improvements in this paper can still help the Faster R-CNN detection
model to improve its detection capability, especially for the defect samples
with few samples and difficult labels to identify, the improvements in
this paper can significantly improve its detection accuracy, for example,
the AP value of pin losing in this dataset, For example, the AP value
of pin losing in this dataset increased by 8.62%, the AP value of nut
losing increased by 48.45%, and the total mAP increased by 18.83%.

4.2 Comparative experiment between this
method and other methods

In order to further verify the effectiveness of the proposed
method for detecting bolts and their defects, experiments were
conducted to compare the proposed method with state-of-the-art
target detection methods on the same dataset of fixtures, and the
methods conducted for comparison included RetinaNet (Lin et al.,

Frontiers in Energy Research

12

10.3389/fenrg.2023.1269087

2020), Faster R-CNN, Cascade R-CNN (Cai and Vasconcelos, 2018),
and Sparse R-CNN (Sun et al,, 2021). As shown in Table 3, the
experimental results show that the method in this paper has a higher
accuracy for target detection of bolts and their defect datasets.

Table 3 presents several comparative methods, and without
considering the computational effort, this method has a
significant improvement in accuracy compared to other detection
methods, with the mAP of 67.8%. In Table 3, the accuracy of this
method is 9.4% higher than that of the single-stage detection method
RetinaNet, 6.6% higher than that of the two-stage detection method
Faster R-CNN, 2.8% higher than that of the multi-stage detection
method Cascade R-CNN, and 0.5% higher than that of Sparse
R-CNN, so this method The performance of this paper is better
than other detection methods to a certain extent. The experimental
data in Table 3 demonstrates that the detection accuracy of this
method is generally higher than that of the comparative detection
methods and has some practical value.

As shown in Figure 8, several sets of images of the detection
results of bolts and their defects on the coupling plate from
different shooting angles. Among them, (A), (C), (E), and (G)
are the baseline detection results, and (B), (D), (F), and (H) are the
detection results of the proposed method. There are four sets of test
results in total. In the first set of results, the detection accuracy of
both normal bolt and pin losing increased, and the confidence of
individual labels increased up to 3.5%. Moreover, the detection
frame of each label in this paper fits the label better. In the second
set of detection results, the Faster R-CNN detection model failed to
detect the difficult samples in the lower left corner, while the
proposed method detected the normal bolts in the lower left
corner. This is because the spatial attention module added in
this article can effectively assist the model in detection, so that
smaller targets will not miss detection. In the third set of detection
results, both Faster R-CNN and the proposed method detected
three labels, but the confidence level of each detection frame of the
proposed method is higher, which indicates that the proposed
method has a better detection ability. In the fourth set of detection
results, the tail of the bolt appears in the Faster R-CNN detection
image. While in the actual annotation process, the tail of the bolt is
Faster R-CNN
incorrectly detects the tail of the bolt as a losing pin bolt, and

not involved in the annotation. However,

the proposed method successfully avoids such misjudgment.

5 Conclusion

In order to accurately detect transmission line bolts and their
defects, this paper uses a joint board to construct a dataset of bolts and
their defects, and further conducts the detection of normal bolts, pin
losing and nut losing on the fixture. To address these problems of
small bolt targets, low image resolution and lack of inference
capability of the detection model, a Faster R-CNN detection model
based on location relationship inference is used for experimental
validation on the self-built dataset. It is demonstrated that adding a
spatial attention module after the feature extraction network can
effectively help the model enhance the global context information and
improve the feature extraction ability of the model; adding a location
relationship inference module after the region suggestion can increase
the inference ability of the model, help the dataset alleviate the long-
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tail effect and improve the AP value of the category with a small
number of labels. 6.61%, effectively improving the accuracy of bolt
and its defect detection, and laying a good foundation for the task of
transmission line bolt and its defect detection.
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The home energy management system (HEMS), which utilizes multi-modal data
from multiple sensors to generate the knowledge about decision making, is
essential to the optimization of home energy management efficiency. Load
scheduling based on HEMS can improve the utilization efficiency of multi-
modal data and derived knowledge, achieve power supply-demand balance,
and reduce users' electricity costs. This paper proposes a distributed load
optimization scheduling method for the load scheduling problem in HEMS
based on multi-modal data-driven algorithm. Additionally, a two-stage data-
driven optimization method is proposed, including a first-stage optimization
model based on minimizing electricity costs and a second-stage optimization
model based on minimizing system load fluctuations. In the first stage, cost self-
optimization is performed based on energy storage devices. In the second stage,
a load optimization instruction is issued by the control center, and each user
optimizes the load fluctuations based on the system load data. Compared to
centralized control methods, this approach reduces the computational overhead
of the control center. Finally, simulation experiments based on load scheduling
in the HEMS are conducted. The results of the first optimization stage show that
when the battery capacity integrated into the system increases from 3.68 kWh to
6.68 kWh, user costs can be reduced from 57.572 cents to 42.064 cents. It is not
only evident that the proposed method can effectively save users on electricity
costs, but the introduction of larger capacity batteries also lowers these costs.
The second stage of load fluctuation optimization results show that the proposed
method can effectively optimize the usage data of a group of users and decrease
the absolute peak-valley difference by 8.8%.
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1 Introduction
1.1 Background

The next-generation smart grid is a network composed of
digital systems and electrical infrastructure, capable of detecting
multi-modal data from multiple sensors to monitor the status
of energy usage. Additionally, the smart grid enables decision
making technologies to reason the knowledge from multi-modal
data to implement demand response and load dispatching functions,
quickly and adaptively adjusting power generation and transmission
(Mahela etal.,, 2022). The residential load is an essential part
of the multi-modal data in smart grids, and as the application
of residential load facilities increases, the energy consumption
of residential loads continues to grow. Therefore, residential
energy management is an urgent and crucial field that can
enable end-users to actively participate in reshaping demand
patterns.

A home energy management system (HEMS) is the product
of the combination of smart grid intelligent communication and
data-driven decision-making technology (Lin, 2021). HEMSs can
effectively monitor household energy consumption through smart
sensors and electronic devices and predict and plan home energy
usage, thereby improving electricity utilization efficiency. To guide
users to participate in demand response, power companies have
introduced real-time pricing strategies in place of traditional fixed
prices (Lietal, 2019). Real-time pricing plays an essential role in
HEMSs, dividing the day into 24 or more time periods, achieving
intelligent meter billing based on real-time prices (Wei et al., 2019).
Governments and power grids collect detailed, real-time electricity
data from customers via smart meters. This aids in balancing
power generation with consumption, thereby stabilizing power
system operations and reducing long-term production costs. Power
companies set higher prices during peak hours and lower prices
during off-peak periods, encouraging users to participate in power
system operation management through real-time pricing. Users,
aiming to reduce their energy costs, tend to use energy-saving
appliances and shift their power usage from peak periods to non-
peak periods, thereby improving energy efficiency while reducing
electricity costs (Munankarmi etal.,, 2022). To promote two-way
communication, advanced metering infrastructure (AMI) is an
essential part of the smart grid’s HEMS (Lu et al., 2017), consisting
of home area network (HAN), building area network (BAN),
neighborhood area network (NAN), and other grid infrastructure
(Huang et al., 2021).

Load scheduling based on HEMS can reduce energy
consumption, save resources, save electricity costs for consumers
and utilities, reduce greenhouse gas emissions, and reduce peak
electricity demand. For example, Bejoy etal. (2017) proposed a
household appliance scheduling method considering customer
preferences and satisfaction to minimize energy consumption
without causing inconvenience to users. Paletal. (2017) used
household electric vehicles to manage user load demand and
proposed a framework including different appliance energy
consumption loads, such as basic load, movable appliances, storage
systems, and electric vehicle loads.

Although many achievements have been made in load
scheduling based on HEMSs, the main method is to optimize
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the system load fluctuation by using the centralized control
method, and the modeling of electrical equipment is not
practical enough. This paper established the basic equipment
and energy storage equipment models, and implemented
user load scheduling through two-stage distributed data-
driven optimization method. The main contributions are as

follows:

o A distributed load scheduling framework for HEMS is
proposed, and detailed modeling for various devices is
conducted. In the distributed scheme, optimization control
is decentralized to individual residential buildings or even
to each household user, aiming to reduce the computational
and communication overhead of the control center. HEMS
is employed to facilitate bidirectional communication and
distributed optimization.

o A data-driven two-stage optimization method is introduced. It
aims to achieve demand response by optimizing for minimal
user costs and minimal load fluctuations, respectively. In
the first stage of distributed optimization, users’ demand
response adjustments can create new peaks in the system
load curve. users demand response adjustments can create
new peaks in the system load curve. Users within an area
share their optimized consumption from smart meters,
and the control center releases system load directives. This
prompts a secondary optimization where users exchange
load data and iteratively adjust schedulable loads and
battery statuses until load fluctuations remain within defined
limits.

e Load scheduling simulation experiments were conducted,
and the influence of battery parameters was analyzed.
Simulation results indicate that, using the proposed method,
users can adjust the load based on comfort levels and
the urgency of device usage. The obtained scheduling
strategy can effectively reduce user costs and decrease load
fluctuations.

1.2 Research status

Residential users are a highly important component of the
smart grid, accounting for 33% of total electricity consumption.
Load scheduling based on home energy management systems
(HEMSs) implements demand response from the resident side,
and the implementation process faces many challenges, such as
privacy leakage, randomness and management complexity of
generation and consumption equipment. Therefore, researchers
have introduced solutions based on energy storage devices
(Sealetal, 2023), distributed energy (Chen and Chang,
2023), flexible loads (Yangetal, 2020), etc. Load scheduling
based on HEMS
resources, save electricity costs for consumers and utilities,

can reduce energy consumption, save
reduce greenhouse gas emissions, and reduce peak electricity
demand.

Bejoy et al. (2017) proposed a household appliance scheduling
method that considers customer preferences and satisfaction to
minimize energy consumption without causing inconvenience to

users. Pal et al. (2017) used household electric vehicles to manage

frontiersin.org


https://doi.org/10.3389/fenrg.2023.1289641
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Cui et al.

user load demand and proposed a framework that includes different
appliance energy consumption loads, such as basic load, movable
appliances, storage systems, and electric vehicle loads. In the
optimization process, each user can arrange their devices based
on actual electricity usage. The scheme adds a bias cost to the
objective function in the user cost minimization problem to
prevent the formation of new peaks during non-peak periods,
but using centralized control methods increases the computational
burden of the system. Jiang and Wu (2020) proposed a cost-
efficient load scheduling method considering user electricity
efficiency and satisfaction, balancing user cost and preferences
through fractional programming. Kouetal. (2019) introduced
a distributed control scheme based on aggregators to achieve
residential demand response. In this scheme, the power company
provides an incentive price to drive power consumption adjustment
based on the aggregated load information exchanged between the
utility system and users. Wang et al. (2020) proposed a stochastic
optimization method to solve the residential load scheduling
problem, establishing residential load models, generation cost
prediction models, and stochastic optimal load aggregation models.
They introduced a set of uniformly distributed scalars to the load
aggregation model to avoid load bounce, and experiments proved
that this method effectively reduced the system’s load peak-average
value. Yangetal. (2018) introduced a privacy-aware scheduling
model based on rechargeable batteries, introducing coefficients to
enable users to balance privacy protection and cost. The model
uses the storage and release of energy by rechargeable batteries to
flatten the user’s electricity curve and discusses the impact of battery
capacity on privacy protection effects. Sangswang and Konghirun
(2020) integrated solar energy, energy storage, and V2G. This study
provided an optimized control method for electric vehicles and
household batteries, enhancing the effectiveness of HEMS. Joo
and Choi (2017) proposed a two-stage optimization algorithm for
energy consumption scheduling in multiple smart homes under
distributed energy. However, this study only considered the interests
of consumers and overlooked the quality of the electrical grid.
Awad etal. (2015) proposed load scheduling privacy protection
methods based on rechargeable batteries and the maximum
difference method, using the demand response component to keep
the electricity curve constant, and proved that fuzzy processing of
smart meter values does not affect user billing. Ming et al. (2016)
introduced a user-side load scheduling method that considers
user satisfaction, achieving demand response and user cost
reduction through two-stage optimization, but did not consider
the impact of distributed energy on the smart grid’s demand
response. The model presented in this paper is a nonlinear
programming problem, with variables encompassing both binary
and continuous types, and it possesses complex constraints.
While some traditional optimization algorithms, such as simulated
annealing (Li et al., 2022) and particle swarm optimization (Zhao
and Li, 2020), exhibit strong global search capabilities when dealing
with nonlinear optimization problems, they encounter challenges
when addressing mixed variables, multiple constraints, or high-
dimensional problems. Genetic algorithms, on the other hand,
can handle both discrete and continuous variables, making them
suitable for a wide range of intricate optimization challenges.
Therefore, this paper employs the genetic algorithm for model
optimization.
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2 Home energy management system

2.1 Framework of HEMS

The HEMS (Duman et al., 2021), an essential component of
the smart grid, is a microgrid system composed of renewable
energy generation equipment, energy storage devices, and various
common household appliances. HEMS enables residential end-
users to actively participate in reducing peak demand and carrying
out demand response. Energy use can be shifted to non-peak
periods by scheduling household appliances, reducing excessive
energy consumption at certain times. Meanwhile, device scheduling
operations must consider customer preferences and satisfaction
to achieve the best results in energy scheduling optimization, for
example, using air conditioning to maintain the indoor temperature
within an appropriate range. To ensure the secure transmission of
electricity data and costs between users and the smart grid within the
HEMS, advanced metering infrastructure (AMI) is the foundation
of HEMS. AMI consists of the home area network (HAN), building
area network (BAN), neighborhood area network (NAN), and other
grid infrastructure such as smart meters (Huang et al., 2021). The
framework of the HEMS is shown in Figure 1.

The framework includes smart meters (SMs), gateways (GWs),
control center (CC) of the power company, and users connected
to the meters. Smart meters (Fekri et al., 2021) act as a home local
area network, installed at the user’s end. They are connected to
sensor devices in the home and collect user power consumption
data through smart appliances, uploading it to the local gateway.
Users can monitor and optimize energy control of electrical
devices through the home main controller, understand energy usage
and related data through smart meters, and choose appropriate
electricity usage based on this information to enjoy high quality
service. The gateway is a powerful entity used not only for relaying
but also for data processing. The control center processes user
electricity consumption, encrypted electricity costs, and other data
sent from the gateway, and updates real-time prices based on total
user electricity consumption, carrying out demand response to keep
the load within a certain range in the area, thereby ensuring safe and
reliable electricity use. During the transmission process of electricity
consumption, for electricity cost-related privacy data, both the
gateway and control center will carry out signature authentication
to ensure data security and integrity. Users can view their billing
accounts through the client and may choose to apply for verification.

2.2 Types of HEMS devices

The devices of HEMSs can be classified as basic devices or energy
storage devices.

Basic devices are primarily focused on heating, ventilation, and
air conditioning (HVAC), as well as washing machines, refrigerators,
rice cookers, etc. Basic devices are divided into schedulable and
non-schedulable devices. Non-schedulable devices, such as laptops
and desk lamps, must meet users’ immediate usage needs, so their
operation time cannot be controlled; therefore, non-schedulable
devices are not modeled.

Energy storage devices can stitch together intermittent
renewable energy and enhance the security and stability of the power
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Framework of HEMS.

supply system. They can also charge energy storage devices using the
grid during off-peak electricity times, store electrical energy through
certain mediums, and release the stored energy for power generation
during peak electricity periods for household appliance use. This
promotes peak shaving and valley filling in the grid, improving the
reliability of the user’s power supply. Energy storage technologies
typically include physical energy storage (flywheel energy storage,
pumped hydro storage), chemical energy storage (various types
of batteries, renewable fuel cells, supercapacitors), and electrical
energy storage (superconducting electromagnetic energy storage).
As aload balancing device and backup power source, energy storage
systems are also essential equipment for smart grids and distributed
energy systems.

3 Distributed system devices model

In the distributed scheme, optimization control is dispersed to
individual residential buildings or even individual household users,
as shown in Figure 2. Assume that there are W household users in
the region, and in a household, in addition to basic electrical devices,
energy storage devices are equipped. The home management
system is used to provide two-way communication and distributed
optimization. In the distributed load scheduling model, the control
center is responsible for the publication of real-time electricity
prices, system load instructions, and system load data; users can
adjust their electricity usage patterns according to different electrical
devices in the home, conduct electricity cost self-optimization, and
then transmit the smart meter power consumption values to the
control center. Furthermore, users transmit system load data to each
other to perform system load fluctuation optimization sequentially.
Compared to the centralized control scheme, the distributed control
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scheme reduces the computational and communication overhead of
the control center and provides a scalable architecture.

3.1 Schedulable devices model

Basic devices in the home, such as computers, incandescent
lights, televisions, and other appliances that users need to use at
any time, are considered non-schedulable devices. Adjusting their
usage time would seriously affect users’ comfort, so they are not
involved in load control. Schedulable devices, such as refrigerators
and dishwashers, are referred to as having flexible loads. They can
participate in demand response, and their flexibility can alleviate the
strain on the power grid during peak electricity usage periods.

In this paper, a day is divided into H intervals, where
h=1,2,---H. The length of each interval is Ahg,, = 260

—— minutes.
aeA=1{1,2,---A} represents the numbers of the electrical devices.

Variable s,(h) represents the working status of device a: when
s,(h) =1, the device is in the working state; when s,(h) =0, the
device is in the off state. [«,,3,] indicates the permissible working
time range for the device, and d, represents the prescribed working
duration of the device. The allowable working time length should be
greater than the device’s working duration to ensure that the working
time of the schedulable device can be rescheduled. Device a should
meet the following time constraints:

2
Y s.(h)=d, M
h=a,

s,(h)=0, heH\[a,p,] (2)

To make the model closer to the actual situation, consideration
is given to subdividing the devices.
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FIGURE 2
Distributed optimization-based load scheduling framework.

3.1.1 Non-interruptible devices

Among the schedulable appliances, devices such as washing
machines and rice cookers are considered non-interruptible devices.
During operation, they are continuously powered by distributed
energy or the grid, and once started, they cannot be stopped, as this
would affect the normal functioning of the device. Therefore, once
turned on within the schedulable range, they must continue for the
specified working duration to complete the corresponding tasks. In
addition to satisfying Eq. | and Eq. 2, they must meet the following
time constraints:

h+d,

> s, (1) 2d,[s,(h+1) =5, ()]

T=h+1

A3)

3.1.2 Interruptible devices

Interruptible appliances require intermittent power supply from
distributed energy or the grid. Each power supply duration should
not be less than the minimum supply time (typically the minimum
interval is 30 min or 15 min). With the condition of meeting the
minimum interval, these devices can be turned on or off at any
time. Examples include microwaves and air conditioners. In addition
to satisfying Eq. 1 and Eq. 2, they must meet the following time
constraints:

A
P(h) =) s,(h)-P, )
a=1

3.1.3 Constant power devices

Due to the significant proportion of HAVC equipment, such as
air conditioners, in household electricity consumption, its power
varies continuously over time. In contrast, appliances such as
refrigerators generally operate at their rated power. Therefore, they
are modeled separately. Assume that when a device starts, the power
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is P,, and when idle, the power is 0. The power of a constant power
device is given by:

A
P.(h)=Y s,(h)-P, (5)
a=1

3.1.4 Power-adjustable devices

Power-adjustable devices, such as temperature-controlled
appliances like air conditioners, have power needs that vary
continuously and are related to the outdoor temperature. The
input parameter for the air conditioner is the day-ahead outdoor
temperature, and its mathematical model is represented as:

Pye(h)

Ty 4 1) =6, 0+ (1-0) (T () iAT) ®)
where T;,(h) is the indoor temperature of time slot /; ¢ is the inertia
coefficient of the indoor temperature change; T,,,(h) is the outdoor
temperature of time slot /; A is the thermal capacity of the room;
Pyc(h) is the rated power of the air-conditioning appliance in time
slot h; 1 is the thermal conductivity efficiency of the room.

When the air conditioner operates in cooling mode, the value
of + in the formula is set to —; when the air conditioner operates in
heating mode, the value of + in the formula is set to +. Considering
user comfort, the indoor temperature should be maintained within

the range of user demand, and air-conditioning appliances must to
satisfy the following constraints:

(7)

ax

T < T, () < T3

where TI.Z““ is the minimum indoor temperature set by the user; P
is the maximum indoor temperature set by the user. In addition, the
power consumption during operation of air-conditioning appliances
should satisfy the following constraints:

0< Py (h) < P ®)
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where P& is the maximum power consumption when the appliance
is operating, determined by the nameplate value.

3.2 Energy storage devices model

Energy storage devices can store electrical energy through a
certain medium, acting as a buffer between power generation
and consumption. This enables users to charge and store energy
during off-peak periods and utilize battery-released energy during
peak periods, enhancing electricity safety and stability. The
primary energy storage device used in homes is the lithium
battery.

The main parameters affecting battery operation include:
Capacity, State of Charge (SOC) and Charging or Discharging Power
of the Battery.

3.2.1 Capacity

Capacity refers to the quantity of electrical charge a battery
can store. It is denoted by E,,, and is measured in ampere-hours,
abbreviated as Ah. Generally, the larger the battery volume, the
higher its capacity.

The rated capacity refers to the minimum amount of electrical
energy released by the battery at 25°C when discharged at a 10-h
rate.

The actual capacity represents the energy a battery can output
under certain conditions, equivalent to the product of the current
and time.

3.2.2 SOC

The state of charge reflects the ratio of the remaining battery
charge to the battery’s capacity. To extend a battery’s lifespan, its state
of charge must be considered during operation to ensure it remains
within a certain range. When SOC = 0, the battery is depleted, and
when SOC = 1, the battery is fully charged.

Eg(h)

batt

SOC(h) = 9)
where SOC(h) represents the state of charge of the battery in time
slot h; Eg(h) is the remaining charge of the battery in time slot h;
E,,;; is the battery capacity.

The charge of the battery in time slot 4 is calculated according to
Eq. (10):

h
Eg(h)=Egy+ Y Py(h)

=1

(10)

where Ep, is the initial charge of the battery; Py(h) is the
charge/discharge power of the battery in time slot h.

The state of charge of the battery is influenced by its charging
and discharging, and the dynamic change process is described in
Eq. (11):

(Pg () - P (b)) - A,

SOC(h+1)=SOC(h) + (11

E batt

where P%h(h) is the charging power of the battery in time slot h;
Pg”h(h) is the discharging power of the battery in time slot 4.
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An excessively high or low SOC is detrimental to the battery’s
lifespan. Therefore, constraints on the SOC range are shown in
Eq. (12):

SOC™™ < SOC (h) < SOC™™* (12)

where SOC™™ is the minimum allowable state of charge for the
battery, SOC™ is the maximum allowable state of charge for the
battery. When the battery’s state of charge falls below SOC™™, the
battery will no longer discharge; when the state of charge exceeds
SOC™, the battery will no longer charge.

3.2.3 Charging or discharging power of the
battery

When the battery is in operation, it is either in a charging
state or in a discharging state. A 0-1 variable a is introduced to
represent the state of the battery. b indicates the battery is in a
charging state during time slot h, while c indicates the battery is in a
discharging state during time slot h. To extend the battery’s lifespan,
one cannot arbitrarily switch between charging and discharging
states. Therefore, this paper maintains that a state switch can occur
only after controlling the charging or discharging state for more than
30 min.

The constraints for the charging and discharging power of the
battery in each time slot are shown in Eq. 13 and Eq. 14:

Py (h) ax
0< o < Sp(h)-PY (13)
0 < P (h) - 1, < (1= Sp(h)) - P72 (14)

where 77, is the charging efficiency of the battery; P™ is the
maximum amount of electricity allowed to be charged in one time
slot; 77,4, is the discharging efficiency of the battery; PJi* is the
maximum amount of electricity allowed to be discharged in one time
slot.
The charging and discharging power of the battery is:
h

Py'(h)

Py(h) = N (15)

ch
In the equation, when the battery is in a charging state, P‘;Ch(h)
is 0, and at this time, the battery’s charging and discharging power is

Pl(h)

the charging power o When the battery is in a discharging state,
h

P(h) is 0, and at this time, the battery’s charging and discharging
power is the discharging power P‘;Ch e

4 Two-stage distributed optimization
model

4.1 First-stage optimization model

Each user household engages in flexible load scheduling,
autonomously choosing their electricity consumption time. They opt
to use electricity during low tariff periods, ensuring their electricity
needs are met and thereby reducing household electricity costs. In
the model of this paper, the smart grid can exchange electricity
bidirectionally with users. That is, users can sell their excess energy
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back to the main grid. The optimization objective for minimizing
electricity costs is expressed as:

H

min Cost,y,. = min 1 > RTP(h) - Pygrip (h)} (16)
h=1

where RTP(h) is the real-time electricity price published by the

power grid company; Pyrer(h) is the power consumption value

recorded by the smart meter during time slot k.

In a Grid-Feeding HEMS, P, zrpr(h) can take both positive
and negative values. When Py prpr(h) is positive, the household is
purchasing electricity from the grid. Conversely, when Py prpp(h) is
negative, the household is feeding electricity back to the grid. Users
can obtain real-time electricity prices RTP(h) in advance from the
power grid company.

The calculation method of Pyprpg(h) is shown in Eq. (17):

Pyprpr (h) = Proap () + Py (h)
= Py (h) + Pi(h) + Py (h) + Pg (h) (17)

where P;,p(h) represents the total load of basic household
electrical appliances; Pg(h) represents the battery’s charging and
discharging quantity; P),(h) is the power consumption of non-
dispatchable loads; P.(h) is the power consumption of power-
stable devices among dispatchable loads; and Py (h) is the power
consumption of power-adjustable devices among dispatchable loads.

4.2 Second-stage optimization model

Each household user, in order to save costs, participates in
demand response and adjusts their own electricity consumption
behavior, which might introduce new peak demand for the system.
To ensure the safe and stable operation of the grid and prevent
this situation, the model takes into account the collective residential
load in a specific region and incorporates system deviation costs
into the objective function to minimize. This approach reduces the
peak-to-average-power ratio (PAR) and prevents the system from
encountering new peaks during non-peak periods.

The optimization objective for minimizing load fluctuation is
expressed as:

H
min {y - Costye. +(1—y)- Z [ Z PMETER,W (h)

h=1 Lwew
2
_PTOTAL] } (18)

where Cost,,. represents the user’s self-optimized electricity cost;

elec
y is the weight factor of the deviation cost; w refers to a user
in household w. The second term of the function, denoted as
VAR(PZOTAL), is used to evaluate the load fluctuation of the user
group.

Propay is calculated according to Eq. (19):

PZOTAL = Z PMETER,w(h) (19)
weW

-
= Pll > < > PMETER,w(h)) (20)
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P}:OTAL represents the power consumption of the system in time

slot h, which is the total power consumption of W household
users. The physical significance of Prop,; is the average power
consumption of W household users in the region over H time
slots. By controlling the sum of power consumption in each
time slot for each household user to be close to Ppypy;, the
system load fluctuation can be reduced. Different values of y
can be chosen to strike a balance between cost and system load
fluctuation.
Final model output:

1) The (A +3) x H-dimensional flexible load state matrix X y,,0,
represents the working status of all flexible loads over a 24-
h day after participating in load scheduling, as shown in
Eq. (21):

[ X1 ] x§1 xfl xf{ ]
Xs2 xiz x?z 52
XSa xslu xfa sa

XChrom = = (21)

Xsa Xgy  Xgy Xy
Xsp Xsp g X5
Xpr xll’T x?’T xIPJIT

[Xpp ) Lopy g Xpg

where X, 1S @ matrix composed of X, , Xgp, Xpr and Xpp. Matrix
Xg, (@=1,2,---A) represents the working status of device a, with
0 indicating working and 1 indicating idle. Vector Xgp represents
the working status of the battery. Vector Xpp represents the power
of adjustable power devices. Vector X, represents the charge and
discharge power values of the battery.

2) All flexible load working states multiplied by the rated power
of the corresponding time slot result in the power consumption
of the adjustable device for each time slot in a day. This is
referred to as the power consumption matrix P,,,,,.» as shown in
Eq. (22):

_~a
PChram_XchmmXPa
— :
x} Py x§1'P1 Xff'Pl
1
xsZ'P2 52.P2 2 12
1 2
_ 'xsa'Pa xsa'Pu su'Pa (22)
1 2
Xsa-Pa x4 Py X Pa
11 2
Xgp'Xpy XepXpp ' XgpoXpp
1 2
L Xpr Xpr xpr

After HEMS load scheduling, the obtained adjustable device
state matrix X,,,,, and power consumption matrix P, represent
the optimal working state collection that satisfies both the device’s
inherent constraints and user comfort.
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5 Load scheduling based on
two-stage distributed optimization

5.1 Scheduling process based on
two-stage distributed optimization

One commonly used method to reduce user costs and
mitigate system load fluctuations through load scheduling is
centralized control. Power company control centers process the
power consumption values collected from smart meters in a given
region, thereby decreasing system peak averages and smoothing
the system load curve. However, centralized control methods
present certain challenges. The computational burden at the control
center, coupled with the communication overhead from each user
transmitting to the center, is considerable. This is primarily because
the load state matrix X -,,,, of (A + 3) x H dimension for each user in
the region forms a three-dimensional matrix (A + 3) x H x W, where
W is the number of users. All require optimization computations
through the control center. As the number of users grows, the
computational scale of the aforementioned model substantially
increases. Employing distributed optimization control methods can
circumvent the curse of dimensionality. Additionally, distributed
optimization methods offer robust user privacy protection. Users
only need to upload the post-optimization smart meter values,
with each household independently optimizing load fluctuations.
The data transmitted between users pertains to system load,
negating the need for individual household power data. In contrast,
centralized control mandates not just the uploading of smart meter
consumption data, but also the power and status of each appliance
in a household. By readjusting the power and status of appliances,
the control center minimizes system load fluctuations. In doing so,
it gains access to granular user consumption data, which inevitably
breaches user privacy.

Distributed optimization facilitates a layered, phased approach
to the optimization process. In this paper’s distributed optimization
load scheduling model, the first phase encompasses users self-
optimizing for cost. Under the premise of ensuring user comfort,
the electricity usage time of flexible loads is adjusted to minimize
each household’s electricity cost. Subsequently, the optimized smart
meter consumption values are uploaded. Some of the literature
has explored the gradual processing of smart meter consumption
values to better safeguard user privacy. The second phase focuses
on optimizing system load fluctuations. The control center processes
the collected regional smart meter consumption values to obtain
aggregate area electricity consumption and system load fluctuation
data. The power company’s control center then releases system load
optimization command minVAR(PT?™!) and dispatches system
load fluctuation data Pjgpy;, initiating the HEMS optimization
process. During the regulatory process, load data are transferred
among users. Initially, User 1 undergoes electricity optimization
through Eq. (18), altering the operational status of interruptible
appliances and overall electricity consumption behavior, before
relaying the post-optimization system load data to User 2. This
sequential process continues for W users, ceasing optimization
once the results align with predetermined criteria. The data shared
among users are system load data, offering a degree of user privacy
protection. The distributed control procedure is depicted in Figure 3.
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FIGURE 3
Distributed optimization-based load scheduling process.

5.2 Model resolution based on hybrid
coding genetic algorithm

Eq.(18) is a nonlinear programming problem. Typical
optimization model solutions can use methods such as simulated
annealing or particle swarm optimization. However, due to the
uniqueness of variables in this paper’s model, as indicated by Eq. 21
and Eq. 22, the variables to be resolved include both binary 0-1
variables and continuous variables. Moreover, it possesses stringent
constraint conditions. When using a genetic algorithm, the total
number of 1’s in a chromosome represents the equipment’s operating
duration. By controlling the positions of 1’s in the chromosome, we
can set the equipment start and stop times, thus determining its
scheduling range, which is in line with the schedulable model. The
genetic algorithm demonstrates superior performance in handling
this paper’s model, hence its selection.

The use of genetic algorithms to solve optimization problems
comprises four main steps: potential solution encoding, initial
population gene initialization, fitness function computation, and
genetic operations. These operations include selection, replication,
crossover, and mutation. In this paper’s model, apart from the
conventional upper and lower limit constraints, there are some
unconventional constraints. All electric devices must adhere to
the constraints of Eq. 1 and Eq. 2. Non-interruptible devices must
comply with the constraints of Eq. (4), which restricts the number
and position of occurrences of 0 and 1 values in genes. Traditional
genetic algorithms cannot resolve this problem. Modifications are
required for potential solution encoding, population generation, and
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crossover mutation, necessitating the use of a hybrid coding genetic
algorithm.

5.2.1 Initial population
5.2.1.1 Hybrid encoding

In the HEMS model of this paper, the operating status of
schedulable devices is a discrete variable, represented by 1 when
in operation and 0 when idle. The battery’s working state is also
a discrete variable, represented by 1 during charging and 0 during
discharging. However, the power of adjustable power devices such as
air conditioners and the charging and discharging power of batteries
are continuous variables, denoted as Xp; and Xpp, respectively.
Therefore, the chromosome composition of an individual is shown
in Eq. (23):

(X1 [ xsl1 xszl xﬁ ]
X5z xslz 2 2
XSa xiu x?u xg

XChrom = = (23 )

Xsa x;A ng xg,‘
Xsp xéB ng xlsiB
Xpr xll’T X;T X;IT

L Xpp -XIIJB xlsz ng

~ (A+3)xH

where Xy, IS @ chromosome group composed of Xg,, Xgp,
Xpr and Xpp. H represents the day divided into H time slots.
The binary encoded chromosome Xg, (a =1,2,---A) denotes the
working status of device a. The binary encoded chromosome Xgp
indicates the working status of the battery. The real-number encoded
chromosome Xpp is the power of adjustable power devices. The
real-number encoded chromosome X stands for the charging and
discharging power of the battery.

Suppose the initial population size is K and that the length of
each chromosome is H. The initial population can then be depicted
using a three-dimensional matrix X with a size of (A +3) x Hx K.
Xk =XxE,
set of an individual, comprising Xs,, X¢g, Xpr and Xpg. The initial

k=1,2---K. Xp,,0 represents the chromosome

population is typically generated randomly, but it must adhere to the
relevant constraints.

Xg, must satisfy the constraints of Eq.1 and Eq.2, where
the number 1 can only appear between the «,-th and f3,-th
positions in Xg,, and the total count of 1s is equal to d,. For non-
interruptible appliances, Eq. (3) must be satisfied, where gene 1 can
only appear continuously between the «,-th and f,-th positions.
The interruptible appliances satisfy Eq. (4), with gene 1 appearing
randomly between the «,-th and f,-th positions. The operating
power of the air conditioner X, and the charge-discharge power of
the battery Xp must also adhere to their respective upper and lower
power limits.

5.2.1.2 Fitness function
The fitness function is used to evaluate an individuals

adaptability to its environment, determining the probability of
its genes being passed on. This directly affects whether the
optimal solution can be found and the convergence speed of the
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algorithm. The design should be as simple as possible to minimize
computational complexity. To apply the genetic algorithm for
solution finding, the problem of maximizing the objective function
should be transformed into a minimization problem. In the model
presented in this paper, the objective functions F for the two phases
of distributed optimization take non-negative values. The fitness
function is chosen as the reciprocal of the objective function. In the
first phase, where users optimize themselves, the fitness function is
taken as the reciprocal of the cost function. In the second phase of
load fluctuation optimization, the fitness function is the reciprocal
of the variance of system load data. Therefore, the fitness function f
can be represented as:

(29)

=

5.2.2 Genetic operations

5.2.2.1 Selection

After calculating the fitness of all individuals, the selection
which
reproduction and pass their genes on to the next-generation.

process determines individuals will participate in
Individuals with a high fitness value have a greater chance of being
selected, while those with a low fitness value have a lesser chance.
Roulette wheel selection is commonly used for this purpose. The
probability P,; of individual xi being selected is calculated according

to Eq. (25):

(25)

where f; is the fitness of the first individual; K stands for the total
number of individuals in the population.

5.2.2.2 Crossover

Crossover, or genetic recombination, involves taking two parent
individuals and swapping portions of their chromosomes to produce
two new chromosomes, thereby creating new offspring individuals.
The crossover probability P, is typically a random number between
0 and 1. Consequently, the probability of the parent chromosomes
being directly copied to the next-generation is 1 — P,.

In the model presented in this paper, there are both binary-
encoded chromosomes and real-number encoded chromosomes.
Accordingly, the crossover method should be chosen to match the
respective encoding types.

For binary-encoded chromosomes of basic devices, one or
multiple crossover points are selected on the parent chromosomes,
followed by a swapping operation. It is crucial to ensure that after
crossover, the constraints for non-interruptible devices given by
Eq. 3 and for interruptible devices given by Eq. (4) are still satisfied.

For chromosomes corresponding to power-adjustable devices
and rechargeable battery power encoded in real numbers,
calculations are performed with a random number between 0 and
1 and the parental chromosome. If the parental chromosome is

X, = x(ll),xgl),...,xs,)

represented by @ @ @

, the gene value of the

Xy =(x]73%) 5o Xy
(1) (1) (1)
: Yi=01005 0 0m) ,
offspring chromosome @ @ @ obtained from
Y=y 5y, 5o m)
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crossover is calculated according to Eq. (26):

(1) (1) )
yi =ax +(1—a;)x

(2) (1) )
i =(1-a)x; +ax

i=1,2,...m (26)

5.2.2.3 Mutation

Mutation refers to the periodic random updating of a gene on a
chromosome to refresh the population, exploring unknown areas in
the solution space.

In the model of this paper, for binary encoded chromosomes,
when a random number is less than the mutation probability P,,
the corresponding chromosome’s binary string is flipped. When
the original gene value at the mutation point is 0, it is flipped to
1; when the original gene value at the mutation point is 1, it is
flipped to 0. For real-number encoded chromosomes, a uniformly
distributed random number within the value range replaces it,
namely, the uniform distribution method. The calculation method
for the mutated gene is based on Eq. (27):

k k k
x=LE +B(LE - L) (27)

where x; represents the gene value after mutation; Lfm . is the lower
limit of the corresponding variable (power of the adjustable power
device) of the chromosome; f3 is a random value from a 0-1 uniform
distribution; and LF_ is the upper limit of the corresponding
variable (power of the adjustable power device) of the chromosome.

The algorithm flow of the genetic algorithm is shown in Figure 4.

6 Simulation verification

To conduct research on load optimization scheduling for
the HEMS, this study designed a distributed optimization load
scheduling simulation experiment. In the first phase, users optimize
costs for themselves, while in the second phase, the optimization
focuses on reducing the system’s load fluctuations. The study
also investigates the impact of energy storage devices on load
scheduling.

6.1 Parameter settings

Dividing the 24-h day into 48 time intervals results in
Ahg,, = 30 min. Python was used for modeling and solving. The
simulation platform was equipped with an Intel(R) Core(TM) i5-
10400 CPU at 2.90 GHz, 16 GB of RAM, and ran Windows 10
Home edition as its operating system. The output variables of the
experiment are the flexible load status matrix, from which the power
consumption matrix of various electrical devices, the consumption
values of the smart meter, and the daily electricity costs can be

deduced. The data sources and settings are described as follows.

6.1.1 Electricity prices and outdoor temperature
data

The outdoor temperature data are taken from the temperature
readings of a particular summer day in Xian. The electricity
prices and outdoor temperature data are shown in Figure 5A, B,
respectively.
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FIGURE 4
Genetic algorithm Flowchart.

6.1.2 Parameter settings for dispatchable devices

The primary device chosen for power-adjustable research is
the air conditioner. The temperature parameters & A and 7 for
the air conditioner are set to 0.93, 2.5, and 0.45, respectively. In
the summer, the air conditioner operates in cooling mode, and
its maximum allowed power output per time slot is 3.6 kWh. The
indoor temperature set by the user must be maintained between
24°C and 26°C.

Power-fixed devices include 20 basic devices, of which device
number 2, the washing machine, and device number 16, the rice
cooker, are non-interruptible devices. These devices must adhere to
the respective time constraints of non-interruptible devices; once
activated, they must complete their respective tasks before they
can stop. The remaining 18 devices are interruptible. All device
tasks are numbered, and the dispatch time range, working duration,
and power of dispatchable devices are presented, as shown in
Table 1:

6.1.3 Energy storage device parameter settings

The energy storage device selected is a household lithium
battery. There are two types of batteries: Battery A has a capacity
of 3.68kWh and a maximum charging/discharging power of
2.5 kW; Battery B has a capacity of 6.68 kWh and a maximum
charging/discharging power of 5 kW. The SOC of the battery must
be maintained between 0.3 and 0.9.
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FIGURE 5
Electricity prices and outdoor temperature data: (A) real-time electricity price; (B) outdoor temperature variation curve.

TABLE 1 Parameter settings for dispatchable devices.

Appliance ID Appliance type Schedulable area/[ay, B4] Working duration/d, Power/kW

1 Range hood or Exhaust hood 10:30:00 a.m.-2:00:00 p.m. 2 0.13
2 ‘Washing machine 12:00:00 a.m.-11:30:00 p.m. 10 1.5
3 Vacuum cleaner 12:00:00 a.m.-11:30:00p.m. 6 0.3
4 Todine tungsten lamp 8:00:00 p.m.-11:30:00 p.m. 1 0.5
5 Oven 7:00:00 a.m.-11:00:00 a.m. 2 3
6 Water pump 8:00:00 a.m.-11:30:00 p.m. 6 2
7 Microwave oven 7:00:00 a.m.-11:00:00 a.m. 1 1
8 Oil extractor 6:00:00 p.m.-11:30:00 p.m. 5 0.5
9 Air humidifier 5:00:00 2.m.-9:00:00 a.m. 3 0.5
10 Swimming pool pump 11:00:00 a.m.-3:00:00 p.m. 1 2
11 Refrigerator 12:00:00 a.m.-11:30:00p.m. 23 0.5
12 Disinfection cabinet 8:00:00 a.m.-11:30:00 p.m. 4 0.5
13 Printer 8:00:00 a.m.-11:30:00 p.m. 4 0.3
14 Dryer 12:00:00 p.m.-4:00:00 p.m. 4 1.5
15 Electric kettle 7:00:00 p.m.-11:30:00 p.m. 4 1.5
16 Rice cooker 6:00:00 2.m.-6:00:00 p.m. 12 0.5
17 Mixer 1 6:00:00 a.m.-12:00:00 p.m. 2 0.3
18 Mixer 2 6:00:00 a.m.-12:00:00 p.m. 2 0.3
19 Water heater 5:00:00 a.m.-8:00:00 p.m. 12 1.5
20 Hairdryer 5:00:00 a.m.-10:00:00 a.m. 4 0.5
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FIGURE 7

Simulation results without energy storage battery integration: (A) indoor temperature variation curve; (B) electricity task scheduling results; (C)
operational status diagram of electrical devices; (D) convergence curve of genetic algorithm.

6.1.4 Genetic algorithm parameter settings 6.2 First-stage simulation results
In the initialization parameters of the genetic algorithm,
the population size N =50. Thus, the initial population can be The original electricity load curve of a household user within 48

represented by a three-dimensional matrix X (size: 23 x 48 x 50). The  time slots in a day is shown in Figure 6A. At this time, the electricity
crossover probability P. = 0.8, mutation probability P,, = 0.1, and  cost is 115.566 cents. As can be seen from the figure, the user’s
the maximum number of iterations is 150 times. electricity consumption is concentrated in 6:00-10:30. A significant
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Simulation results with battery A integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
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portion of this time falls within the higher electricity price period,
such as 6:00-9:30. Therefore, the user’s electricity cost is relatively
high.

Figure 6B displays the electricity scheduling results for various
adjustable devices over the 48 time slots of a day through a heatmap.
Taking the vacuum cleaner as an example, its usage time reaches
2.5h during the high electricity price periods of 5:30-9:30 and
14:30-20:30.

1) Scenario I: No battery storage is integrated into the system.

The electricity task scheduling simulation results without battery
storage integration are shown in Figure 7B. The household electricity
cost is 72.716 cents. Since there is no energy storage device
connected, the amount of electricity exchanged with the grid for
each time slot equals the consumption value from the smart meter.
The figure shows that the peak electricity consumption periods
are concentrated around 7:30-10:00, 12:00-12:30, and 13:30-15:00.
The real-time electricity price plays a dominant role, and to save
costs, users shift their electricity consumption to periods with
lower prices, such as 9:30-10:00, 12:00-12:30, and 13:30-14:30.
Figure 7A illustrates the indoor temperature variation curve. As
shown, the indoor temperature remains within the user-defined
range of 24°C-26°C.

Figure 7C displays the electricity scheduling results of various
dispatchable devices over the 48 time slots in a day using a heatmap.
As illustrated by the chart, the washing machine and rice cooker,
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being non-interruptible devices, must complete their respective
tasks once they start before they can stop. The working hours of the
dispatchable devices have been adjusted accordingly. For instance,
the vacuum cleaner’s usage during the high electricity price periods
has been reduced to 1.5 h.

Figure 7D displays the convergence curve of the genetic
algorithm; the improved genetic algorithm converges relatively
quickly.

2) Scenario IT: System connected to Battery A or B
(1) Connection to Battery A

With the system integrated with Battery A, the electricity cost
is 57.572 cents. The load scheduling simulation result is shown in
Figure 8A. With the integration of a battery, the user can sell surplus
electricity back to the grid. Thus, the system’s feed-in capability
can enhance the overall economic benefits of the system. At this
point, the smart meter’s displayed electricity consumption includes
the electricity consumption of basic appliances and the rechargeable
battery. The chart shows that the user sells electricity to the grid
between 3:00 and 3:30. The electricity scheduling result now depends
not only on real-time electricity prices but also on the battery’s
charging and discharging behavior. When the battery is charging,
the power is positive, and when discharging, the power is negative.
Figure 8B reveals that through energy storage with the battery,
it charges during low-price phases such as 0:00-0:30, 1:30-2:30,
3:00-5:00, 9:30-11:00, 14:00-14:30, 20:30-21:30, and 23:00-24:00.
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Simulation results with battery B integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
status diagram of electrical devices; (D) convergence curve of genetic algorithm.
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Optimization of system load curve at different stages.

During high-price periods, it discharges energy for appliances, such
as 5:30-6:30, 7:30-8:30, 14:30-16:00, and 18:00-19:30. The battery’s
SOC value always remains between 0.3 and 0.9.

Figure 8C displays a heatmap showcasing the electricity
scheduling results for various adjustable devices over a 24-h period
with 48 time slots when the system is connected to a battery.
There have been certain adjustments in the electricity usage of
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the appliances. Taking the vacuum cleaner as an example, its usage
during the high electricity price intervals is reduced to 2 h. Figure 8D
illustrates the convergence curve of the genetic algorithm.

(2) Connection to Battery B

The electricity cost now stands at 42.064 cents. This implies that
the larger the capacity of the battery integrated into the system,
the more it aids in leveling the peaks and troughs through energy
storage, resulting in a lower electricity cost for the user. The energy
scheduling simulation results are depicted in Figure 9A. The task
allocation for electricity devices does not differ significantly from
that when Battery A was incorporated, and there is not a significant
difference in the frequency of battery charge-discharge cycles. Due
to the larger capacity of Battery B, excess energy is sold back to the
grid during the low-price intervals, such as 00:30-1:00, 2:30-3:00,
4:30-5:00, and 11:30-12:00, leading to even lower electricity costs.
However, load scheduling based on battery storage resulted in a
higher peak power demand. In the figure, the power demand peak is
7:00-7:30, and this peak value is even higher than the initial peak
demand of the user, posing challenges for stable operation of the
system. Therefore, subsequent optimization is required in the second
phase to reduce system load fluctuations and prevent new electricity
demand peaks.

From Figure 9B, it can be observed that the battery is used
for energy storage and is charged during the low-price intervals,
such as 0:30-2:00, 2:30-4:00, 4:30-5:30, 9:30-10:00, 11:30-12:30,
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TABLE 2 System load parameter optimization at different stages for the user group.

10.3389/fenrg.2023.1289641

Optimization stage  Load Load Absolute Peak-valley Peak-valley Load factor Load
Peak/kW Valley/kW peak-valley  coefficient rate (%) fluctuation
difference variance
First Stage Optimization 195.4 234 172.0 8.35 0.88 51.7 2071.6
Second Stage Optimization 182.0 25.1 156.9 7.25 0.86 56.2 1909.1

TABLE 3 Cost optimization for users at various stages.

User number Initial First phase Distributed User number | Initial First phase Distributed
cost/cents optimization  optimization cost/Cents optimization  optimization

cost/cents cost/cents cost/cents cost/Cents
1 119.163 60.902 56.732 11 111.973 57.568 63.593
2 117.366 58.425 66.104 12 110.496 58.742 77.725
3 105.606 64.075 51.527 13 104.334 62.916 72.560
4 110.654 61.150 80.581 14 109.976 58.137 69.696
5 116.923 58.220 63.762 15 120.054 62.180 59.515
6 118215 61.038 60.143 16 111.585 56.630 57.222
7 121.014 59.715 56.525 17 111.355 61.610 66.568
8 108.976 55.953 68.141 18 113.335 64.514 64.415
9 114.595 58.906 80.490 19 109.225 65.378 56.531
10 113.464 58.962 69.918 20 130.775 64.775 63.685

13:00-13:30, 20:30-21:30, and 22:30-24:00, primarily in the early
hours of the morning. During high-price intervals, such as
5:30-6:00, 7:30-8:30, 16:00-17:00, 17:30-18:00, and 18:30-19:30,
the stored energy in the battery is released to power the devices.
Similarly, the SOC of the battery consistently remains between 0.3
and 0.9.

Figure 9C displays a heatmap illustrating the electricity
scheduling results of various schedulable devices over 24 h, divided
into 48 time slots, when Battery B is integrated into the system.
Adjustments can be observed in the usage times of devices such
as the vacuum cleaner and the disinfection cabinet. Taking the
vacuum cleaner as an example, its initial load usage during high
electricity price periods was 2.5 h, which has now been reduced
to 2 h. Figure 9D presents the convergence curve of the genetic
algorithm.

6.3 Second-stage simulation results

Demand response can reduce user costs, but it might introduce
new peak electricity demands to the system. Therefore, a second
phase of distributed optimization is conducted to minimize system
load fluctuations. Considering an area with W =20 households,
a distributed load fluctuation optimization simulation experiment
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is conducted. The energy scheduling mechanism’s impact on user
electricity consumption behavior is analyzed from the perspective
of a group of users. The energy storage system opted to integrate
Battery A. The system load command is set at minVAR(PZ‘”“l) <
0.95"VAR(PZ’”(§“Z), which means optimization stops when this
condition is met. In this context, VAR(PZ:’J“I
fluctuation level from the user’s self-optimization in the first

) represents the load

phase.

Figure 10 shows the results of the system load fluctuation
optimization simulation. As evident from the figure, after
undergoing system load fluctuation optimization, compared to
the self-optimization of user costs in the first phase, there is a
significant change in the electricity consumption patterns of the
user group within the area. The system load curve becomes more
stable, with a reduction in peak values and an increase in valley
values.

Table 2 the electricity
characteristics of the user group. The quality of system electricity
consumption is assessed through indicators such as the load factor,

shows consumption behavior

which is the ratio of the average load to the peak load over a specific
period. Improving the load factor can effectively reduce peaks,
elevate valleys, decrease the peak-valley difference, and ensure the
safe and stable operation of the power system. From Table 2, it can be
observed that after the second-phase load fluctuation optimization,
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the system’s peak load decreased by 6.9%, the valley increased by
7.2%, the absolute peak-valley difference dropped by 8.8%, the peak-
valley coeflicient decreased by 13.2%, and the peak-valley difference
rate reduced by 2.3%. Additionally, the load factor rose from 51.7%
t0 56.2%, an increase of 4.5%, and the variance of the load fluctuation
decreased by 7.8%.

Table 3 shows the user costs before and after distributed
optimization. The average cost for users before and after distributed
optimization decreased from 113.954 cents to 65.272 cents, a
reduction of 42.7%. This shows that user costs decrease after
distributed optimization. Compared to that in the first stage of
optimization, the costs for some users increased because they made
financial sacrifices to change system load fluctuations. Users can
set the weighting factor y as needed to balance cost and load
fluctuation. Considering real-world scenarios, power companies can
incentivize users who have increased costs, for instance, by reducing
electricity prices, to encourage them to participate in optimizing
load fluctuations.

7 Conclusion

This paper proposed a two-stage distributed optimization
method for the HEMS based on data-driven algorithm. Firstly, a
distributed load scheduling framework for HEMS is established, and
various devices are modeled. Secondly, a two-stage optimization
method is introduced, targeting both the minimization of user
cost and load fluctuations to achieve demand response. Finally,
simulation experiments of the load scheduling are conducted, and
the impact of battery parameters on energy scheduling is analyzed.
Simulation results demonstrate that users can adjust their loads
based on comfort and the urgency of device usage. The main
conclusions are as follows:

e The first optimization stage results indicate that when the
battery capacity integrated into the system increases from
3.68 kWh to 6.68 kWh, user costs can be reduced from 57.572
cents to 42.064 cents. It is evident that not only can the
proposed method effectively save electricity costs for users, but
the introduction of larger capacity batteries also significantly
reduces these costs.

The second stage results indicate that, the system’s peak load
decreases by 6.9%, the valley increases by 7.2%, and the absolute
peak-valley difference is reduced by 8.8%. This demonstrates
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Introduction: The aim of this paper is to address the problem of the limited
number of defect images for both metal tools and insulators, as well as the small
range of defect features.

Methods: A defect detection method for key area-guided transmission line
components based on knowledge distillation is proposed. First, the PGW
(Prediction-Guided Weighting) module is introduced to improve the foreground
target distillation region, and the distillation range is precisely concentrated in the
position of the first k feature pixels with the highest quality score in the form of a mask.
The feature knowledge of defects of hardware and insulators is used as the focus for
the teacher network to guide the student network. Then, the GeBlock module is used
to capture the relationship between the target defects of the hardware and the
transmission lines in the background, and the overall relationship information of the
image is used to promote the students’ network to learn the teacher's network
perception ability of the relationship information. Finally, the classification task mask
and regression task mask generated by the PGW module, combined with the overall
image relationship loss, form a distillation loss function for network training to improve
the accuracy of students’ network detection accuracy.

Results and Discussion: The effectiveness of the proposed method is verified by
using self-build metal fittings and insulator defect data sets. The experimental
results show that the student network mAP_50 (Mean Average Precision at 50) in
the Faster R-CNN model with the knowledge distillation algorithm added in this
paper increases by 8.44%, and the RetinaNet model increases by 2.6%. The
Cascade R-CNN model improved by 5.28%.

KEYWORDS

knowledge distillation, key region guidance, component defects, teacher model, student
model

1 Introduction

The transmission line is one of the most important infrastructures of China’s energy
Internet, and ensuring the reliability of the transmission line is one of the important contents
of the construction of the energy Internet. Transmission line components are an important
part of mechanical connection, fixing, protection and insulation. However, they are
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susceptible to abnormalities and defects such as defects, corrosion
and soiling due to the influence of the complex natural environment
and harsh climatic conditions (Nguyen et al, 2018). Therefore,
regular inspection and maintenance of transmission line fittings,
insulators and other important components can effectively reduce a
series of safety accidents caused by transmission line faults.
Inspection is a way to guarantee the continuous and stable
power supply of the power grid, the purpose of which is to carry out
online condition detection and fault diagnosis of components such
as shockproof hammers and insulators on the lines (Zhao and Cui,
2018). The current transmission line inspection methods include
manual inspection, robot inspection (Toth and Gilpin-Jackson,
2010), helicopter (Pham et al, 2020), unmanned aerial vehicle
inspection (Li
inspection (Yang et al, 2021). “Drone inspection is the main

et al, 2021), and remote sensing satellite

focus, supplemented by manual labor” has developed into the
main operation and maintenance mode of China’s power system
(Yang et al, 2020). The construction of intelligent and manual
synergistic inspection system is an important initiative to promote
the safe operation of the power grid (Du et al., 2022).

The development of deep learning technology provides an
effective means for transmission line inspection and can more
effectively complete the task of defect detection of transmission
components in aerial images. At present, a lot of research work has
been done. Literature (Zhai et al., 2023) proposes a transmission line
multi-fitting detection method based on implicit spatial knowledge
fusion, aiming at the tiny-size and dense occlusion problem in the
transmission line multi-fitting detection task. First, in order to mine
the implicit spatial knowledge between transmission line fittings to
assist the model in detection, the spatial box setting module and the
spatial context extraction module are proposed to set the spatial box
and extract the spatial context information. Then, the spatial context
memory module is designed to filter and remember the spatial
context information to assist the location of the multi-fitting
detection model. Finally, the post-processing part of the model is
improved to further alleviate the low detection accuracy problem
caused by dense occlusion fittings. The experimental results show
that the proposed model has a promotion effect on the detection of
various kinds of fitting. Literature (Li et al., 2023) proposes a metal
fittings equipment detection algorithm based on improved
YOLOV7. This method adds a CA attention mechanism to the
network structure of YOLOV?7 to enhance the feature extraction of
hardware devices in the network model. At the same time, it reduces
the interference of complex backgrounds on the network model to
extract features of hardware devices, allowing the network model to
extract features in detail, thereby improving the network model’s
detection generalization for hardware devices. In order to alleviate
the problem of misdetection and recheck caused by the lack of
context information in various existing hardware and defect
detection methods, literature (Zhao et al, 2023) proposes a
method of transmission line hardware and defect detection based
on context-structure reasoning. First, the image is input into the
target detection model; Then, the output result of the detection
model is sent to the structural reasoning module, and the output
result is sent to the bidirectional gated cycle unit and self-attention
for processing. The structural knowledge of transmission line fittings
and their defects is used to improve the confidence degree of the
correct positive sample and reduce the confidence degree of the
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wrong positive sample. Finally, the final output result is obtained
through the regressor. To achieve the purpose of improving the
average accuracy. Literature (Sun et al., 2023) proposes a two-stage
insulator defect detection framework composed of attention-based
insulator detection network and defect detection network. Among
them, the attention-based insulator detection network is responsible
for the location of the insulator, and the defect detection model
determines whether the insulator is damaged. The two-stage design
of first positioning and then detection avoids the interference of
complex background and can realize the high-precision detection of
defects. Literature (Li et al., 2023) proposes a multi-scale feature
fusion insulator defect detection network for solving the problem of
insulator defective regions with little pixel information and varying
shapes and sizes. The network used a residual attention network to
obtain insulator defect features with different resolutions, and
designed a multi-scale feature fusion network based on inverse
convolution and multi-branch detection, which gradually fused
the deep feature maps with the shallow feature maps. In this
way, more abundant image semantic information can be
generated for target classification and location regression. In
addition, the literature also used Focal loss and Gaussian non-
great suppression methods to further enhance the detection effect.

Although these methods improve the accuracy of detection, they
inevitably increase the complexity of the model, consume a lot of
computing resources and time, and are difficult to deploy on resource-
limited equipment. The knowledge distillation algorithm provides a
solution to this problem. Literature (Gu et al., 2023) proposes a deep
neural network model compression algorithm for knowledge
distillation of multi-teacher models, which takes advantage of the
integration of multi-teacher models and takes the predictive cross-
entropy of each teacher model as the quantitative criterion for
screening to select the teacher model with better performance to
guide students, and allows the student model to extract information
from the feature layer of the teacher model. And give better
performing teacher models a greater say in instruction. Literature
(Wang et al,, 2022) proposes an attention mechanism based on the
feature map quality evaluation algorithm (IQE). The knowledge
distillation method based on the IQE attention mechanism uses
the IQE method to identify important knowledge in the pre-
trained SAR target recognition deep neural network. Then in the
process of knowledge distillation, the lightweight network is forced to
focus on the learning of important knowledge. Through this
mechanism, the method proposed in this paper can efficiently
transfer the knowledge of the pre-trained SAR target recognition
network to the lightweight network, which makes it possible to deploy
the SAR target recognition algorithm on the edge computing
platform. Literature (Zhao et al., 2022) propose a target detection
model distillation (TDMD) framework using feature transition and
label registration for remote sensing imagery. A lightweight attention
network is designed by ranking the importance of the convolutional
feature layers in the teacher network. Multiscale feature transition
based on a feature pyramid is utilized to constrain the feature maps of
the student network. A label registration procedure is proposed to
improve the TDMD model’s learning ability of the output distribution
of the teacher network.

At present, some researches have applied the knowledge
distillation method to the field of electric power. Literature (Yang
et al., 2022) proposes a compression and integration application
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method based on knowledge distillation. In this method, the Detr
model is used to identify the initial target, and the Deformable Detr
algorithm is used to compress the Detr model, so that the
compression ratio reaches 87.5% and the target detection
accuracy is maintained at a high level, and the effective
integrated application of the target detection model in the
substation inspection robot body is realized. Literature (Zhao
et al., 2021) proposes a bolt defect image classification method
based on dynamically supervised knowledge distillation, aiming to
solve the problem of high computational resource consumption of
large models. The method utilizes adaptive weighting and attention
transfer techniques to improve the ability of the small model to learn
and represent bolt defects, which in turn enhances its classification
performance. In addition, literature (Zhang et al., 2022) improved
the YOLOv4 model and introduced the PCSA (Positional
Contextual Attention Shift) attention module for the problem of
anti-vibration hammer small target detection. This method
combines pruning and knowledge distillation techniques to tailor
and compress the network parameters, and constructs a lightweight
anti-vibration hammer detection network model, PCSA-YOLOs, to
improve the detection accuracy of small targets in complex
backgrounds.

With the intelligent development of power system inspection
technology, it is urgent to deploy models on UAV and helicopter
aerial photography and online monitoring equipment. Knowledge
distillation can help improve the performance of the model with a
small number of parameters, but making the student network
simulate the teacher’s network feature extraction ability without
difference cannot achieve the best effect. The focus of this paper is to
enable students to learn the effective feature processing ability of
teachers’ networks. In this paper, the PGW module is first
introduced to refine the feature knowledge of foreground object
distillation, and the first k most important pixels are extracted to
form a feature mask to improve the distillation performance of
student network for detecting hardware defects. Then, the GcBlock
module is used to capture the relationship between the target defects
of the hardware and the transmission lines in the background, and
the overall relationship information of the image is used to promote
the students’ network to learn the teacher’s network perception
ability of the relationship information. The combination captures
information about the relationship between transmission line
components and components, and between components and
backgrounds, helping to improve target detection accuracy.

2 Research methodology

2.1 Refinement of prospects regional
distillation

The application of knowledge distillation algorithms to image target
detection has focused on models using feature pyramid networks. Past
approaches usually directly used the output of the classification and
regression tasks of the teacher network as the target of the student
network. With the development, knowledge distillation can guide the
training of the student network in a more targeted way to improve the
detection accuracy. As shown in the literature (Guo et al,, 2021), unlike
the general classification task, the classification and regression tasks in
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the detection network can be negatively affected if the same objective
function is used for both tasks. This is because the two tasks have
different preferences for features: classification requires regions with
rich semantic information, whereas regression prefers to focus on the
edge portion of feature information. Features that produce better
classification scores are not accurate enough in predicting bounding
boxes (Song et al,, 2020). Therefore, the same sensory field does not
guarantee optimal performance for both classification and regression
tasks. As shown by the images of defects of gold tools and insulators,
important feature knowledge exists for defects of the same kinds of gold
tools and insulators, and the datasets of defects of gold tools and
insulators are much smaller, which should be fully utilized to guide the
students’ network by taking advantage of the ability of the teacher’s
network to deal with the feature knowledge of the defects.

Therefore the features are scored to determine whether they are
good for classification or regression tasks, in order to reduce the
adverse effect of complex background on the detection of defective
targets of gildings and insulators, with the help of ground-turth box
first decouple each layer of features of FPN (Feature Pyramid
Network) whether it belongs to the foreground target region or
the background region as shown in Eq. 1:

_JLif(i,j)€G
M ;) = {O,if(i,j) ¢G W

Let (i, j) denote the horizontal and vertical coordinates of the
feature pyramid network generating the feature map of the model. If
(4, j) is in the ground-truth bounding box, it is determined that this
feature belongs to the foreground target region, and the mask is set
M j = 1; if (i, j) is not in the ground-truth bounding box, it is
determined to be the feature map of the background region, and the
mask is set M j) = 0.

Amplifying the most meaningful feature distillation signals
generated by the teacher network and using them to guide the
student network is the purpose of knowledge distillation. For this
purpose, we look at the quality of a teacher’s bounding box
predictions taking both classification and localization into
consideration. Formally, the quality score of a box b; j predicted
from a position X; = (x;, ;) w.r.t. a ground truth b is as shown in
formula (2):

1-1

(b G) =My (peG) - (P1OU(Gb,y)) T @

where M (; j) is an indicator function that is 1 if X; lies inside box b
and 0 otherwise; (p(;)G) is the classification probability w.r.t. the
GT box’s category; DIOU(G,b;j) is the DIOU between the
predicted and ground-truth box. b(; ;) is a prediction frame and
G is a real labeled box, it is the ground-truth box; A is a hyper-
parameter that balances classification and localisation. We calculate
the quality score of location X; as the maximum value of all
prediction scores for that particular location, as shown in Eq. 3.
Y is used to represent the set of X; locations as shown in Eq. 4:

qi = MaX;ey q(b (i) G) (3)
Y ={1,2,..,X}} (4)

Use of mass fraction ¢; as an important parameter in
determining distillation, these positions are the highest quality
predictive ensemble of scores generated by the teacher network.
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Pixel Quality Score
Calculation

FIGURE 1

First k pixel examples

After processing by
Gaussian+MLE algorithm

Schematic diagram of the processing principle for the foreground target area.

The purpose of knowledge distillation is to allow the student
network to mimic the strong generalization ability of the teacher
network. To achieve this, this paper focuses the foreground
distillation region on the locations where the teacher network
produces predictions with high-quality scores, as these locations
contain detection information that combines both classification and
regression considerations and represent the excellent performance
of the teacher network, helping the student network to improve its
ability to detect defective targets in complex contexts.

2.2 Knowledge distillation guided by key
area scoring

The features of fitting and insulator defects are very different from
those of their intact targets; the features are more consistent between
parts of the same species, but the features of each component defect are
variable and complex (Zhao et al., 2021), and when labeling the dataset,
the size of the labeled box is as close to the target as possible, and the
defects are damages that are produced on the component targets, which
have a more reduced range of effective features compared to the intact
targets. Therefore, we would like to use the knowledge of features of
defects in gold tools and insulators as a focus for the instructor network
to guide the student network. Therefore, the PGW (Prediction-Guided
Weighting) (Yang et al., 2022) module is introduced to improve the
prospect distillation region. And the PGW module is precisely
concentrated in the first k feature pixels with the highest mass
fraction in the prospect region. The effect of each position is then
smoothed according to the two-dimensional Gaussian distribution
fitted for each ground-truth box by the maximum likelihood
estimation method. Finally, only the k position is extracted in the
foreground target region, and the weight of the position is assigned by
the Gaussian function, the schematic is shown in Figure 1.

We smooth the effects of each position according to the 2D
Gaussian distribution fitted by the maximum likelihood estimate
(MLE) for each ground-truth box. Finally, foreground distillation is
performed only for those k positions, whose weights are assigned by
Gaussian. For detection targets with ground-truth O, the quality
score g; for each feature pixel within G is first calculated (Du et al.,
2021). The calculation formula of g; is shown in (3). The k highest
scoring pixels are then selected among all the layers of the FPN
network. T = {(XQ,L9)|k = 1,.., K} is used to generalize the k
highest scoring pixels. Where X? is the absolute coordinate of the
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pixel of the detection target O. LY denotes which layer of the FPN
where the pixel of the detection target O is located. Both quantities
represent the k th pixel. Assuming that the selected pixel description
is represented on the image plane as T’; ~ N(p, Zlo) defined, the
maximum likelihood estimation algorithm is used to compute and
the two parameters y and X as shown in Egs 5, 6:

1 K
b= XX )
k=1
1& T
Y =22 (X (X —w) (6)
k=1

Each feature pixel p; j; with absolute X (; ) coordinates in layer !/
of the FPN, calculates its importance in the distillation process as
expressed in Eq. 7:

0 P(i’j),l er

Ioi’. | = 1 -1 T J

D e (Be)Z (xe ) ) P, et
(7)

where I{; ), denotes that the detection target O is in layer I of the
FPN, the importance of the feature pixel p(;j with coordinates
(i, j). If p(jy belongs to the highest scoring pixel, calculate the
importance value using the formula, and if it does not belong to the
pixel, make it equal to zero. If a feature pixel is equally important for
more than one object, we use its maximum value I Gl > and the
formula representation is shown in (8):

L= max”{la(i,j),l} (8)

I refers to a layer of the FPN layer of size H; x W;, by normalizing
the importance of the distillation with the number of pixels of that
layer that are important and have a non-zero mass fraction so that
they are used to assign the distillation weights Q, and the formula is
expressed as shown in (9).
1 (i
_ t,]),l
Q= H W, )
M. .
EEM s

H; and W, denote the length and width dimensions of the feature
map in the [-layer of the FPN, the above process constitutes the
Predictive Guidance Weighting (PGW) module, whose output is the
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foreground distillation weight Q of all feature levels and pixels,
which are used to find out the important feature pixels for use in the
teacher’s network to guide the student’s network.

2.3 Overall distillation loss function

The high-level network of the feature extraction network can
output better semantic features, but due to the size of the feature
map is too small, the geometric information is not sufficient, which
is not conducive to the detection of the target; the shallow network
contains more geometric information, but the semantic features of
the image are not much, which is not conducive to the classification
of the image. Therefore, when the network is trained, the student
network is made to learn the ability of the teacher network to extract
and process features at each layer of the FPN. By distilling the
classification and regression tasks separately, the student network
integrally learns the generalization ability of the teacher network for
these two tasks, which leads to an increase in its detection accuracy.

Formally, at each feature level in FPN, this paper utilizes the PGW
module to generate two distinct foreground distillation masks, Qc(lf ;) is
the foreground distillation mask generated specifically for the
classification task. Qr(ig.) is the foreground distillation mask generated
specifically for the regression task. In this context, R“W represents a
feature layer has C channels, and the feature map height and width of
each layer H and W. During training, the student model is encouraged
to learn the corresponding classification and regression features
Fflc(lf i Fir(ig]) € ROMW from the teacher network. The classification
feature loss function is represented as Eq. 10, and the regression feature
loss function is represented as Eq. 11.

2
He = ZZZ( st )*h Nds )(F :C(If;) F ic(lff)> (10)
n=1i= 1] 1
reg iiﬁ Qreg ( Treg _FS,reg )2 (11)
B = 2 LIS\ 6) T (i)

o, B, and y are hyperparameters used to balance the loss weights.
NG s i.j) 1s the normalized mask for the background distillation region.
As shown in Eq. 12, when Q"7 () # 0> M is 1. The meaning of
M () is opposite to M ; j), and if the pixel (h, w) is not inside the
region G, it is assigned a value of 1.

. H W
NGy =M / I;;M”"‘”’

In order to distill background information, the GeBlock (Cao

(12)

et al., 2019) module is utilized to capture the relationship between
defects in the hardware target and the transmission lines present in
the background. This module leverages the overall relationship
information in the image (Park et al, 2019). It encourages the
student network to learn the teacher network’s ability to perceive
relationship information (Hu et al., 2018). The representation of the

overall image relationship loss is given by Eq. 13.

Lo = 1Yy (R(F") = R(FS))’

In the equation, y is a hyperparameter used to balance the loss

(13)

function, and FT and FS are the feature maps generated by the
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teacher and student models, respectively. The function R represents
the relationship information between the hardware target captured
by different models and the background region. Its specific
formulation is given by Eq. 14.

eWiF;
R(F;) = F; + Wp,Relu| LN| W, ZNiFj
j=1 Z eWiFum

m=1

(14)

In this context, W,;, W,, and Wy represent different linear

transformation matrices. F; represents the feature map of an input
Ewkl-

ZEMFW

attention poohng LN stands for Layer Normalization. N,

instance. 0; = represents the weights obtained from global

represents the number of positions in the feature layer. In the
context of an image, N, =H W . e represents the natural
constant. F); represents the feature map generated for the
foreground region. F; is any extracted feature from the image. § (-) =
WsRelu(LN (W, (-)) denotes the feature transformation that
captures channel dependencies. The GcBlock module consists of
two components: global attention pooling for context modeling and
bottleneck transformation to capture channel correlations.

The structural diagram of the distillation method in this paper
is shown in Figure 2. It consists of two parts: foreground object
region distillation and background relationship distillation. For
foreground object region distillation, the PGW module is used to
calculate the masks for both the classification and regression tasks,
which together form the loss function used for training the
foreground object region. The background relationship
distillation area adopts the GcBlock module to capture
relationships in the image. The overall distillation loss function
in this paper is represented as Eq. 15.

1 reg
L=LY +L;7 + L.,

fea fea (15)

3 Manuscript experimental results and
analysis

3.1 Experiment preparation

This article uses 5 types of fittings and insulators, along with
their defects, as the research dataset. Each type of defect has a
corresponding normal target feature for comparison, including
normal vibration damper, vibration damper cross, vibration
damper corrosion, normal single insulator, and insulator
drop. There are a total of 2,497 images, with 1997 images in the
training set, 250 images in the test set, and 249 images in the
evaluation set, with a ratio of 8:1:1. The dataset contains a total of
4,628 objects to be detected.

The model described in this article is trained and tested using the
NVIDIA GeForce GTX 1080Ti professional accelerator card. The
operating system used is Ubuntu 16.04.6 LTS, with training
accelerated using CUDA 10.1. The computer language used is
Python 3.7.11, and the network development framework is
PyTorch. All programs are executed based on the MMDetection

2.16 toolbox. This article uses the commonly used evaluation metric
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FIGURE 2
Overall distillation structure.

in object detection models, mean Average Precision (mAP), to assess
the performance of the model. The mAP is calculated by computing
the Average Precision (AP) for each class of objects and then taking
the mean of all class APs. The resulting mAP is used as the final
evaluation metric for the object detection model.

3.2 Comparison experiments with multiple
models using distillation algorithm

In the experiments, the teacher network, student network, and
the network with the distillation algorithm all use a learning rate of
0.0001. The backbone network for the teacher network is ResNet101,
while for the student network, it is ResNet50. The training is
conducted for 24 epochs (training rounds), and the batch size
used is 50.

The experimental process in this article mainly consists of two
steps.

1) Train the object detection models separately using the teacher
network (with a larger number of parameters) and the student
network (with a smaller number of parameters) on the fittings
defect dataset. Calculate and record their respective accuracy.
Train the student network, which has a smaller number of
parameters, using the knowledge distillation algorithm with
the fittings defect dataset. After training, calculate and record
its accuracy.

To validate the effectiveness of the proposed knowledge
distillation algorithm, a comparative experiment is conducted
using the evaluation metrics mentioned earlier. The experimental
results are presented in Table 1. Three image detection models,
namely, Faster R-CNN, RetinaNet, and Cascade R-CNN, are used
in the experiments. Each model is separately trained as a teacher
model, a student model, and a model with the knowledge
distillation algorithm introduced in this article. The detailed
process is to put the same data set into the same model with
the backbone model of Resnet101 and Resnet50. The backbone
network is identified as the teacher network by Resnet101 and the
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backbone network is identified as the student network by
Resnet50. The results of two different backbone network
training were analyzed. After adding the distillation algorithm
in this paper, the student network is trained again, and the
difference between the student network with distillation
algorithm added and the student network without distillation
algorithm added is compared. The control parameters adopted in
these processes are consistent, the learning rate is 0.0001, and the
epoch of the training rounds is 24. The batch size is 50.

To verify the general applicability of the proposed method, both
single-stage and two-stage models are used in the experiments. From
the data in Table 1, it can be observed that the detection performance
of the student network improves significantly after the knowledge
distillation algorithm is applied. This distillation algorithm, as
presented in this article, utilizes a decoupling approach between
foreground and background information regions. By focusing on the
foreground object regions and reducing the interference caused by
complex backgrounds, the algorithm enhances the localization
ability of the model. By setting the k value to 45 in the
foreground object regions, the data indicates that, in most cases,
adding the knowledge distillation algorithm proposed in this article
improves the detection accuracy of the student network for both
and  defects. the
improvement in detecting fittings and insulator defects is greater
than the improvement in detecting normal targets. In the case of the

normal component targets Particularly,

RetinaNet model, where the teacher network’s accuracy is lower
than the student network’s accuracy in detecting vibration damper
corrosion, adding the distillation algorithm does not improve the
performance of the student network. This could be because the
teacher network’s performance is inferior to the student network’s
performance, which hinders its ability to guide the student network
in improving accuracy. In the case of Faster R-CNN, the highest
improvement is achieved in detecting vibration damper corrosion,
reaching up to 22.6%. For RetinaNet, the highest improvement is
seen in detecting normal insulators, with a maximum improvement
of 6.6%. Cascade R-CNN shows the highest improvement in
detecting vibration damper corrosion, reaching 8.2%.

The table shown in Table 2 compares the Grad-CAM distillation
algorithm (decoupling common feature scores) with the distillation

frontiersin.org


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1287024

Zhao et al. 10.3389/fenrg.2023.1287024

TABLE 1 AP results for different models and after applying the knowledge distillation algorithm.

mAP_50  Normal vibration  Vibration damper  Vibration damper Normal single Insulator
damper Cross corrosion insulator drop

Faster-Res101 (Teacher 0.544 0.648 0.312 0.642 0.589 0.530

network)
Faster-Res50 (Student 0.419 0.556 0.286 0.370 0.423 0.458
network)

Faster-Res101-KD-Res50 0.503 0.572 0.368 0.596 0.469 0.510
RetinaNet-Res101 0.559 0.699 0.069 0.576 0.751 0.701
(Teacher network)

RetinaNet-Res50 (Student 0.485 0.660 0.111 0.549 0.510 0.593

network)

RetinaNet-Res101-KD- 0.511 0.683 0.092 0.567 0.576 0.635

Res50
Cascade-101 (Teacher 0.617 0.672 0.464 0.695 0.631 0.623
network)
Cascade-50 (Student 0.503 0.629 0.394 0.486 0.530 0.474
network)
Cascade-101-KD-50 0.555 0.694 0.510 0.568 0.510 0.495

TABLE 2 Comparison of two foreground knowledge distillation methods.

Detection Settings  mAP_50 Normal Vibration Vibration damper  Normal single Insulator
models vibration damper cross corrosion insulator drop
damper
Faster R-CNN Teacher 0.544 0.648 0312 0.642 0.589 0.530
network
Student 0.419 0.556 0.286 037 0.423 0.458
network
Decoupled 0.499 0.654 0.303 0.463 0.614 0.462
scoring
Proposed 0.503 0.572 0.368 0.596 0.469 0.510
method
RetinaNet Teacher 0.559 0.699 0.069 0.576 0.751 0.701
network
Student 0.485 0.660 0.111 0.549 0.510 0.593
network
Decoupled 0.518 0.723 0.101 0.554 0.582 0.630
scoring
Proposed 0.516 0.683 0.092 0.567 0.576 0.663
method

algorithm proposed in this article, using Faster R-CNN and
RetinaNet as representatives of two-stage and single-stage
detection models, respectively. The Grad-CAM distillation
algorithm improves the detection performance of most targets,
but for fittings defects, its improvement is slightly inferior to the
distillation algorithm proposed in this article. In the case of the
Faster R-CNN model, the detection accuracy for normal vibration
damper targets and normal single insulator targets is slightly lower
in this article’s method compared to the Grad-CAM method.
However, for vibration damper cross defects, our method
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outperforms the Grad-CAM method by 6.5 percentage points,
and for vibration damper corrosion and insulator String defects,
it outperforms the Grad-CAM method by 13.3% and 4.8%,
respectively. The analysis shows that the feature used for defect
target detection is more concentrated in the critical pixel regions.
Using ground-truth boxes as the range of foreground object regions
introduces more noise for defects. This article’s method selects
the top-k highest-scored pixels to form a mask, which includes
essential features for defect detection while avoiding introducing
noise from other parts of the foreground object regions. Figure 3
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TABLE 3 Ablation Experiments with Different k Values.

0.189

0.265 = 0312 = 0458 0467 0483 0479 0410

shows visualized detection images for different student networks,
teacher networks, and networks after applying the distillation
method.

3.3 Ablation experiments

To investigate the impact of different k values on improving
the accuracy of the student network, ablation experiments were
conducted based on the Faster-RCNN model, using ResNet-100
as the teacher network and ResNet-50 as the student network.
The mAP_50 values of the student network were observed for
different k values, and the results are shown in Table 3. From the
results, it can be observed that the student network achieves the
optimal mAP_50 value when k is set to 45. It is speculated that if k
is too small, it may not capture crucial defect features, while
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setting k to a large value introduces too much noise from
foreground object regions, leading to negative effects.

4 Conclusion

Due to the limited dataset of hardware defects, hardware defects
occur as damage to the hardware target. Compared to the hardware
target, the effective feature range of hardware defects is smaller. In
order to improve the detection accuracy of hardware defects in
power transmission lines by the student network, this paper
improves the foreground target region distillation. It guides the
student network with more refined feature knowledge generated by
the teacher network. Considering the influence of the two tasks,
classification, and regression, in the foreground target region, pixels
are scored, and the top k important pixels’ generated masks
containing feature knowledge are used to guide the student
network. Experimental results show that the proposed method
applied to three different single-stage and two-stage detection
models, Faster-RCNN, RetinaNet, and Cascade R-CNN, has
improved the detection accuracy of hardware and its defects. In
Faster R-CNN, after adding the knowledge distillation algorithm in
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this paper, mAP_50 has improved by 8.44% for the student network.
RetinaNet improved by 2.6%, and Cascade R-CNN improved by
5.28%. This lays a solid foundation for lightweighting the hardware
and its defects detection models in power transmission lines.
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Insulators are important components of transmission lines, serving as support for
conductors and preventing current backflow. However, insulators exposed to
natural environments for a long time are prone to failure and can cause huge
economic losses. This article proposes a fast and accurate lightweight Fast and
Accurate YOLOV5s (FA-YOLO) model based on YOLOv5s model. Firstly, attention
mechanisms are integrated into the network module, improving the model's
ability to extract and fuse target features. Secondly, the backbone part of the
network is lightweightened to reduce the number of parameters and
computations at the cost of slightly reducing the accuracy of detecting a few
objects. Finally, the loss function of the model is improved to accelerate the
convergence of the network and improve detection accuracy. At the same time, a
visual insulator detection interface is designed using PyQt5. The experimental
results show that the algorithm in this paper reduces the number of parameters by
28.6%, the computational effort by 35.7%, and the mAP value by 1.7% compared
with the original algorithm, and is able to identify defective insulators quickly and
accurately in complex backgrounds.

KEYWORDS

insulators, defect detection, attention mechanism, lightweighting, WloU_Loss

1 Introduction

With the increasing demand for electricity, transmission lines have spread all over the
country. Insulators, as an important part of them, have good mechanical support and
electrical insulation properties, and play an important role in supporting the conductor and
preventing the current from returning to the ground during the whole transmission process.
However, its long-term exposure to strong electric field environment and susceptibility to
adverse weather conditions such as rain, snow, and extreme temperatures, resulting in
defects such as spontaneous explosion and fracture, creates a huge potential risk to the safe
and stable operation of transmission lines, and according to statistics, the highest number of
failures in power systems is caused by insulator defects (Chen, 2020; El-Hag, 2021).
Therefore, fast and accurate detection of defective insulators and timely replacement are
particularly important for the safe operation of the entire transmission system.

The defect detection of insulators is mainly divided into insulator localization as well as
defect detection. The defect detection of insulators can be divided into manual observation,
traditional image processing based and deep learning based methods. Among them, the
manual observation method is time-consuming and labor-intensive, and has certain safety
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Flow Chart of Insulator Defect Detection in UAV Aerial Photography based on deep learning algorithm.

risks (Yu et al., 2019). And the traditional image processing-based
methods need to set the target features artificially, and different
features need to be set for different targets, and the recognition
accuracy is low, which can easily cause false detection or missed
detection. In (Lu et al., 2017), an active contour model is proposed
for insulator segmentation based on the shape and texture features
of insulators, and the method proves to be effective in identifying
defective insulators even in a cluttered background. Zhang et al.
(2018) proposed a computer vision-based insulator feature
extraction method, which extracts texture features through a
grayscale co-occurrence matrix and then detects insulator
features using local features. Although the traditional image
processing-based method has been able to detect defective
insulators well, the detection process is complicated and easily
disturbed by the background environment, resulting in missed
and false detection. To overcome the interference of complex
background, Zheng H. et al. (2020) proposed an improved
infrared insulator image detection model based on the complex
substation environment, which improves the extraction capability
for insulator infrared image features by generating new feature
pyramids with feature enhancement modules. However, the
infrared imaging-based method is susceptible to the influence of
temperature leading to poor detection results.
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The above methods based on traditional image processing can
only accurately identify defective insulators in a specific
environment because they cannot automatically extract insulator
features, but insulators are usually in complex background
environments such as rivers, farmlands, construction sites and
forests, so a method that can automatically extract insulator
feature information from images is urgently needed.

With the rise of deep learning technology, target detection
algorithms have achieved great success in the field of insulator
defect detection by virtue of their fast and accurate recognition
capability. Compared with traditional image processing methods,
deep learning-based target detection algorithms can automatically
extract deep feature information in images, reduce recognition time
and improve detection accuracy (Yang et al., 2021). The flow of
insulator defect detection based on deep learning algorithm is shown
in Figure 1.

At present, the mainstream object detection algorithms are
mainly divided into Two stage and One stage. Two stage first
generates a prior box based on the target object, and then
recognizes and judges the objects within the prior box. This
method has high detection accuracy and can accurately identify
the target, but the detection time is long. The mainstream algorithms

include Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al.,
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TABLE 1 Relevant datasets used to cite the Reference.

Number of data

10.3389/fenrg.2023.1283394

Data enhancement Fault location

Shuang et al. (2023) 806 Detail R-CNN X v
Zhao et al. (2021) 10,468 Faster R-CNN X VA
Yi et al. (2023) 1700 YOLOV5s v \
Zhang et al. (2023) 848 YOLOv4 VA VA
Miao et al. (2019) 6700 SSD X v
Chen Y et al. (2023) 2448 YOLOv8n v v

2017). For example, Shuang et al. (2023) introduced a feature
enhancement and assisted classification module based on Faster
R-CNN to improve the accuracy of model detection. The data
enhancement method of YOLOv5-X was also ported to expand
the dataset. Zhao et al. (2021) firstly used feature pyramid network to
improve the Faster R-CNN model, and then segmented the image by
hue, saturation and value color space (HSV) adaptive thresholding
algorithm, and finally localized and detected the defective insulators.
Tan etal. (2022) used Mask R-CNN model to segment out insulators
and detected defects such as breakage, dirt, foreign matter and
flashover by multi-feature fusion and cluster analysis model.

One stage directly locates and recognizes targets, which has a fast
detection speed and can achieve real-time detection. However, the
detection effect is not satisfactory. The mainstream algorithms
include YOLO series algorithms and SSD (Wei et al, 2016)
algorithm, and timely detection and replacement of defective
insulators is important for the safe and stable operation of
transmission lines. In order to detect the working status of
insulators in real time, Yi et al. (2023) improved the Neck part
of the YOLOv5s model and proposed a new attention module
MainECA to enhance target perception, and the proposed
YOLO-Small model reduced the number of parameters while
improving the detection accuracy. Zhang et al. (2023) used
GhostNet as the Backbone network of the YOLOv4 model, and
at the same time optimized the model using K-means algorithm and
Focal loss function. Chen Y et al. (2023) added the GSConv module
to the latest YOLOv8n algorithm to reduce the complexity of the
network, and also adopted a lightweight Content-Aware Feature
Reconstruction (CARAFE) structure to enhance the feature fusion
capability of the model. Miao et al. (2019) used a combination of
SSD model and two-stage fine-tuning strategy to complete the
detection of defective insulators, which can automatically extract
multi-level features of images and can identify porcelain insulators
and composite insulators quickly and accurately in complex
backgrounds.

Based on the fact that deep learning methods need to use a large
number of datasets to achieve better results, and then there are not
many open-source insulator datasets due to confidentiality factors,
most of the methods mentioned above use data augmentation
strategies to expand their datasets, as shown in Table 1.

In Table 1, Shuang et al. used 806 images captured from Guangxi
Power Grid in China as the dataset, and did not expand the dataset
using image processing methods, but directly used the data
enhancement methods in YOLOV5x to enhance the training data.
Zhao et al. used 4 datasets with a total of 10,468 images, and YI et al.
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used data enhancement methods such as rotating, panning, scaling,
cropping, etc. to expand 1700 original images to 5180 images. Zhang
et al. also used the above methods to expand 848 images in the
original open-source Chinese Power Line Insulator Dataset (CPLID)
into 880 images. Zhang et al. also used the above method to expand
848 images in the original open-source Chinese Power Line
Insulator Dataset (CPLID) to 5832 images, and Miao et al. used
a drone to take 6700 original images on the transmission line as a
dataset for their experiments. Finally, Chen et al. expanded the
open-source datasets CPLID and Insulator Defect Image Dataset
(IDID) to 5676 images using common data expansion methods.
The main research objective of this article is to propose an
improved YOLOVS5 algorithm, FA-YOLOV5s, to address the issues of
high computational complexity, slow detection speed, complex
background, mutual occlusion, and small targets in the existing
insulator defect detection algorithms. The proposed method mainly
improves the network structure of YOLOv5 model and loss
function, so that the new algorithm can quickly and accurately
identify insulators in complex environments and detect whether
they have faults. The main contributions of this article are as follows:
1) Integrating the Convolution Block Attention Module (CBAM)
(Woo et al, 2018) with the network’s C3 module enhances the
network’s ability to fuse insulation feature information, improving
detection accuracy. 2) By using Partial Convolution (PConv) to
lightweight the main network part of the model, the computation
cost is reduced at the cost of reduced accuracy. 3) The loss function
of the network was improved by using Wise_IoU Loss as the loss
function, which improved the convergence speed of the model.

2 Related work

As one of the current popular target detection methods, the
YOLOV5 algorithm is a product of continuous innovation and
improvement based on the YOLOvV3 (Redmon and Farhadi,
2018) and YOLOv4 (Bochkovskiy et al, 2020) algorithms. It
combines the advantages of both algorithms, has fewer parameter
quantities, and a simpler structure. While accelerating the detection
speed, it also increases the detection accuracy, and achieves better
detection results on PASCAL VOC (Everingham et al., 2015) and
COCO (Lin et al, 2014) datasets. According to its network depth
and width, YOLOvV5 is successively YOLOv5s, YOLOv5m,
YOLOv5], and YOLOv5x, with the fastest detection speed and
lowest accuracy. The comparison on the COCO datasets is
shown in Table 2.
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TABLE 2 Comparison of YOLOv5 parameters in COCO dataset.

10.3389/fenrg.2023.1283394

Network model Image size mAP 0.5:0.95 Speed (v100/ms) Parameter(M)
YOLOVS5s 640 55.4 36.7 2.0 7.3
YOLOv5m 640 63.1 44.5 27 214
YOLOVs! 640 66.9 482 38 47.0
YOLOV5x 640 68.8 50.4 6.1 87.7

Input Backbone Neck Head

ol X

o = - o

FIGURE 2
YOLOV5s network structure.

The network model is shown in Figure 2. YOLOv5s network
structure is mainly divided into four parts: Input, Backbone,
Neck and Head. Mosaic (Lewy and Mandziuk, 2023) data
enhancement is performed on the input side to speed up the
image processing and reduce the memory size of the model,
which makes the model obtain better detection results. backbone
is mainly composed of Conv-Batch Normalization-SiLU(CBS),
Stack 3 convolutional layers on top of multiple bottleneck layers
(C3) and Spatial Pyramid Pooling Fusion (SPPF) modules. The
CBS module layer
(Convolutional), a batch normalization (Batch Normalization)

consists of a normal convolutional
and an activation function (SiLU), while C3 consists of three
standard convolutional layers and several Bottleneck modules,
which are structured The SPPF is divided into two branches, one
passing through multiple Bottleneck stacks and 3 standard
convolutional layers, and the other passing through a basic
convolutional module, and finally they are concatted. SPPF
improves the perceptual field of the network through feature
extraction with maximum pooling of different pooling kernel
sizes.The main role of the Neck part is to deep fuse the features
extracted from the Backbone The Head part outputs the input
size of 640 x 640 images as 20 x 20, 40 x 40 and 80 x 80 size
feature maps, which are used to predict large, medium and small
targets in three different sizes.
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3 Fast and accurate FA-YOLOV5
algorithm

Current improvements to the YOLOv5 algorithm focus on
improving the accuracy and convergence speed, while ignoring
the complexity of the network model and the increase in the
number of parameters, e.g., Han et al. (2022) added the ECA-Net
attention mechanism to the backbone feature extraction network of
YOLOVS5, and also used a bidirectional feature fusion network in the
feature fusion layer to enhance the detection of small targets. Gao
et al. (2021) proposed a convolutional attention module with batch
normalization (BN-CBAM) and a multi-level feature fusion module
to enhance the detection of small targets. Although these methods
are effective in improving the detection accuracy for small targets,
they also make the network structure more complex and reduce the
detection speed. In this paper, the convolutional attention
mechanism CBAM module is fused with the C3 module of Neck
part to improve the accuracy of detection. At the same time, the
network is lightweighted to address the problems of complex
network structure, number of parameters, and large computation.
Finally, the latest WIoU loss is used as the loss function of the model,
which speeds up the convergence, makes full use of the dynamic
non-monotonic FM potential, and solves the problem of unbalanced
sample quality.
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3.1 Incorporating attention mechanism in
C3 module

Since insulators are mostly in complex backgrounds and the
defective part of insulators is a relatively small part of the whole
image, it is difficult for the algorithm to extract feature information
of insulators and their defects effectively. In order to enhance the
extraction of target feature information, researchers proposed the
attention mechanism (Vaswani et al., 2017), whose main role is to
enhance the extraction of various appearance features of the target
and make the algorithm biased to extract the features, the core of
which is to make the network focus on the region of the target in the
image rather than the whole image. By making the algorithm focus
on the feature information of the target and ignore other
unimportant information to improve the detection performance
of the algorithm, the attention mechanism has been widely used in
computer vision tasks such as target detection and image
segmentation in recent years, and occupies an important position
in the field of deep learning.

Attention mechanisms are usually divided into channel
attention mechanisms and spatial attention mechanisms, which
spatial
respectively. Channel attention is used to deal with the

focus on the channel dimension and dimension,
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FI’

assignment relationship of feature map channels, while spatial
attention allows neural networks to focus more on target regions
in the image and ignore irrelevant regions, and simultaneous
attention allocation to both dimensions enhances the effect of
attention mechanisms on model performance.

The workflow of CBAM is shown in Figure 3, where the
feature map is first passed through the channel attention module,
then the feature map is multiplied with the channel weights and
input to the spatial attention module, and finally the normalized
spatial weights are multiplied with the feature map input to the
spatial attention module to obtain the final weighted feature
map. The final weighted feature map is obtained. This module not
only saves parameters and computational effort, but also can be
easily added to other network structures. For example, Wang
et al. (2022) directly added the CBAM attention module to the
YOLOvV5s network structure to improve the insulator feature
extraction capability and achieve insulator detection in complex
backgrounds, but the method is not effective for insulator defect
detection of small targets.

The overall formula of Figure 3 is shown in Egs 1, 2.

M. (F) = 6(MLP (AvgPool (F)) + MLP (MaxPool (F)))
M (F) = o(f“" ([AvgPool (F); MaxPool (F)]))

(1)
)
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TABLE 3 Comparison of different attention mechanisms and addition methods.

10.3389/fenrg.2023.1283394

Methods Precision (%) Recall (%) mAPO.5 (%) Parameters(M) GFLOPs
YOLOV5 95.5 94.5 95.4 7.0 16.0
NAM 96.1 94.0 95.2 7.0 16.0
CBAM 96.5 94.7 95.9 7.0 16.0
ECA 95.4 95.3 95.5 7.0 16.0
CoordAtt 9.8 95.7 96.3 7.0 16.0
GAM 9.7 95.1 96.4 7.5 16.3
C3CBAM 96.7 96.1 96.5 6.9 15.7

The bold portion of the table indicates the value with the best performance in the metric.

M, (F) and M, (F) are the channel and spatial attention weights of
the feature layer F, respectively; AvgPool and max Pool are the
average pooling and maximum pooling operations; MLP stands for
multilayer perceptron; o is the sigmoid activation function. as the
input to the next layer, as shown in Eq. 3.
F'=M(F)®F

{FII — Ms (FI) ® F! (3)
where ® denotes element-wise multiplication, F is the intermediate
quantity of the feature layer passing through the channel attention
module. and F” denotes the output passing through the spatial
attention module.

The current common method for improving attention
mechanisms is to directly add them to the network structure,
which does not fully leverage the effectiveness of attention
mechanisms. Although this approach does improve the detection
accuracy to some extent, it also increases the number of layers and
parameters in the network. To further reduce the number of model
parameters and fully leverage the effectiveness of attention
mechanisms, this article combines attention mechanisms with the
C3 module to form a new module, namely, C3CBAM. At the same
time, the newly generated C3CBAM module further enhances the
model’s capability to focus on target feature information. This
module strengthens the model’s ability to fuse and extract target
feature information from both channel and spatial dimensions,
allowing for accurate identification of target feature information
even in complex background environments. As a result, efficient
insulation defect detection can be achieved.

To verify the effectiveness of this method, we conducted
experiments by adding different attention mechanisms after the
same C3 layer and compared them with the method of incorporating
CBAM into the network layer. The experimental results are shown
in Table 3. We added different attention mechanisms to the network
model for comparison experiments, which were conducted after
adding different attention mechanisms to the same Conv layer while
ensuring that the number of other parameters of the experiment was
the same. As can be seen from Table 3, different methods have
different effects on the performance of the original model,
Normalization-based Attention Module (NAM) and Efficient
Channel Attention (ECA) reduce the accuracy of the model
detection. The other attention mechanisms all have some
improvement effect on the detection performance of the model,
among which the Global Attention Mechanism (GAM) attention
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mechanism has the biggest improvement effect, but it increases the
number of parameters and computation of the model, because the
purpose of this study is for fast and accurate insulator defect
detection algorithm, out of the comprehensive considerations, we
choose to integrate the CBAM Attention Mechanism and
C3 module fusion method to improve the original model. This
method reduces the number of parameters and computation to
some extent, and most importantly has the highest performance
enhancement effect on the original model.

3.2 Lightweight network architecture

The FasterNet (Chen | et al,, 2023) network recently released by
CVPR far exceeds other existing networks in terms of lightweight as well
as the balance of detection performance. The current mainstream
lightweight networks such as MobileNet, ShuffleNet, and GhostNet
utilize deep convolution (DWConv) or group convolution (GConv) to
extract spatial feature information, which although greatly reduces the
number of parameters and floating point operations (FLOPs), but the
computation is not efficient, increases the number of layers of the
network, runs slower, and greatly reduces the accuracy and effectiveness
of detection, while adding some additional data operations. In order to
maintain high accuracy while reducing FLOPs, Chen et al. proposed
local convolution (PConv), which works as shown in Figure 4.

PConv has lower computational effort as well as higher
computational efficiency, which can utilize the computational power
of the device more efficiently and also improves the model’s ability to
extract spatial feature information. Based on this, Chen Y et al. (2023)
proposed FasterNet, which can achieve better results in classification,
detection and segmentation tasks at a faster rate, and its can replace the
Backbone part of the YOLOv5 model.

This article improves the backbone network of YOLOV5 using
PConv, FasterNet, MobileNet, ShuffleNet, and GhostNet respectively.
Through experimental comparisons, it is shown that PConv effectively
reduces the complexity and parameter count of the network while
maintaining high accuracy. The experimental results are shown in
Table 4. The backbone network using the FasterNet improvement
algorithm has the highest detection accuracy but the number of
parameters is still high, while replacing the entire backbone part of
the network using ShuffleNetV2 greatly reduces the number of
parameters and computation, but also increases the number of
layers of the network, and the detection speed is also reduced.
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Difference between PConv and ordinary convolution and deep convolution.

TABLE 4 Experimental results of different ways of light weight treatment.

Methods Layers Parameters(M) GFLOPs Precision (%) mAPOQ.5 (%) FPS
PConv 129 5.1 10.5 95.1 94.4 89
Faster-Net 228 64 14.0 95.4 95.2 76
MobileNetV3 320 14 23 94.8 93.2 80
ShuffleNetV2 193 0.8 1.9 94.5 92,9 82
GhostNet 500 53 8.4 9.8 94.1 73

The bold portion of the table indicates the value with the best performance in the metric.

MobileNetV3 and GhostNet both reduce the number of network
parameters and computation at the cost of increasing the number of
network layers. Based on this, this paper uses PConv to lighten the
Backbone of the network, which can greatly reduce the number of
parameters and computation of the model at the cost of a small
reduction in accuracy.

3.3 Improvement of the loss function

The loss functions of YOLOv5 model are Classification loss,
Localization loss and Confidence loss, and the sum of the three loss
functions is the size of the total loss function. The calculation
formula is as in Eq. 4.

(4)

Loss = 10sspx + 10Ssp; + l0ssg,

IoU_Loss (Yu et al., 2016) is the first proposed loss function for
target detection, but it only considers the overlap area of the
detection frame and the target frame, which has certain defects.
the appearance of GIoU_Loss (Rezatofighi et al., 2019) loss function
solves the shortcomings of IoU_Loss to a certain extent, but it also
has the disadvantages of not accurate enough boundary regression
and slow convergence speed. The subsequent DIoU_Loss (Zheng Z.
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et al, 2020) loss function takes the overlap area and centroid
distance into account and accelerates the convergence speed, but
does not take the aspect ratio factor into account. To address these
drawbacks, the CloU_Loss (Zheng et al., 2021) loss function takes
into account the overlap area, centroid distance and aspect ratio
influence factor a and v, and its calculation process is shown in Eq. 5.

2 gt
CloU=1 - 100+ P2

I3 (5)

where, b represents the center coordinates of the prediction frame, b®
represents the parameter of the center of the real target bounding box. p?
represents the Euclidean distance between the two centroids, ¢ represents
the minimum external rectangle diagonal length of the two rectangles, v is

used to measure the consistency of the aspect ratio, and a is the weight
function. The values of a and v are shown in Eq. 6.

v
(1 —IoU)+v

2
4 m9t m

U= —| arctan— — arctan—
s ndt n

The original YOLOV5 algorithm uses CIoU_Loss as the loss
function of the network, however, the v-value used to measure the
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aspect ratio is too complex and slows down the convergence to some
extent, so when one of the two variables increases (shrinks), the
other one will shrink (increases). To solve this problem, (Zhang
et al., 2022), proposed EIoU Loss by splitting the aspect ratio on the
basis of CloU, which accelerated the speed of convergence and
improved the accuracy of regression. Focal-EIoU was also proposed
to focus on high-quality anchor frames, which optimized the
problem of sample quality imbalance in the regression task and
made the regression process more focused on high-quality anchor
frames, and the calculation process of EIoU_Loss is shown in Eq. 7.
Thus (Yang et al,, 2022) used EIoU as a loss function to improve the
YOLOV3 algorithm, which improved the overlap between the
predicted and actual frames of the target and accelerated the
convergence speed.

Lgrov = Liou + Lais + Lasp

U s POD%) p2(wowe) 2 (I k¥

=1-1
c c c

(7)

Although Focal-EIoU solves the problem of sample quality
imbalance to some extent, the potential of non-monotonic FM is
not fully utilized due to its static focusing mechanism (FM), so
(Tong et al.,, 2023) proposed an IoU-based loss with dynamic non-
monotonic FM, namely, Wise IoU (WIoU), which has a bounding
box regression of attention-based loss WIoU v1, WIoU v2 with non-
monotonic FM, and WIoU v3 with dynamic non-monotonic FM. In
this paper, WIoU v3 is used as the loss function of the network, and
its gradient gain allocation strategy with dynamic non-monotonic
FM is utilized to trade-off the learning ability of high quality as well
as low quality samples and improve the overall performance of the
model. The calculation formula is shown in Eq. 8.

LWIole = RWI UULI oU

Ry 1o =8XP<(x_x5t) +(y_y9f) ) (®)

(W5 - H)"

where W,, H, denote the width and height of the minimum
enclosing frame. To prevent Ry from creating gradients that
hinder convergence, W, and H, are separated from the
computational graph (the superscript * indicates this operation).
No new metric like aspect ratio is introduced because it effectively
eliminates the factors that hinder convergence. To significantly
amplify the localization loss (LIoU) of the normal quality anchor
box, the range of Ryou is [1,e) while the range of LIoU is [0,1],
which will significantly reduce the Rwiou of the high quality anchor
box and focus on their centroid distance when the anchor box
overlaps with the target box.

3.4 Network structure of this paper

In order to reduce the complexity of the model and make it more
suitable for deployment on mobile devices such as UAVs, this paper
uses PConv to lighten the backbone part of the network. At the same
time, CBAM attention is fused with C3 module to give full play to
CBAM’s ability to extract target feature information in channel and
space, which improves the accuracy of detection. Finally, WIoU_loss is
used as the loss function of the network, and the improved part is shown
in red, and the specific network structure is shown in Figure 5.
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(1) Backbone: Compared with the old version of Spatial Pyramid
Pooling Fast (SPP) (He et al,, 2015), the new version uses Fast
-SPP (SPPF) to improve the processing speed of feature
information. And replace all C3 modules in the backbone
network with Pconv reduces the number of parameters as
well as the computational effort of the network model,
making the model able to run on low performance servers
and more suitable for deployment on mobile devices.

(2) Neck: This part mainly consists of Feature Pyramid Networks (Lin
et al,, 2017) and Perceptual Adversarial Network (Liu et al., 2018),
which first fuses the input insulator feature maps from top to
bottom to transfer the semantic information from the deep layer to
the shallow layer to enhance the semantic representation at
multiple scales, and then performs a bottom-up feature fusion
to transfer the location information from the bottom layer to the
deep layer to enhance the localization at multiple scales. The fusion
of C3 module with CBAM attention mechanism in this part
strengthens the ability of Neck part for fusion of target feature
information, especially for small target insulators and self-
detonation defective parts of insulators, and also reduces the
complexity of the model to some extent.

(3) Head: This part mainly detects 3 different scales, including some
convolutional layers, pooling layers and fully connected layers,
etc. Its role is to perform multi-scale target detection on the
feature maps extracted from the backbone network. The model
proposed in this article uses WIoU loss to improve detection
accuracy and convergence speed in this section.

In order to verify the effectiveness of the method in this paper, the
heat map visualization operation (Quan et al., 2022) was performed on
the insulator feature extraction process in complex backgrounds, as
shown in Figure 6, from which it can be seen that after the convolutional
layer extracts the shallow information of insulators, the model can
effectively segment the region where the target is located from the
background environment; the sampling effect is obviously enhanced
after the second stage C3CBAM feature extraction; after the third and
fourth stage processing, the higher-level semantic information of the
feature map has been more blurred, and the extracted insulator features
have become abstracted. From the visualization results of the heat map,
it is clear that the algorithm of this paper can more fully extract the
color, texture, shape and edge information of insulator defects in the
image, so as to quickly and accurately detect defective insulators.

Meanwhile, we designed a visual detection interface based on
PyQt5 for the algorithm in this paper, as shown in Figure 7, which
mainly has the following functions:

Model, select different models. Input, select the files to be detected,
including the detection of pictures and videos in local files, and also has
the function of real-time detection using the device’s camera and
supports RTSP video streaming. The ability to adjust the IoU,
confidence level and frame rate delay in the detection process of the
model, when reducing the IoU and confidence level, can make the
model detect more targets, but the detection error is higher. When IoU
and confidence are adjusted up, the accuracy of detection increases and
the rate of missed detection increases. The delay can also be selected
independently during the detection process. The interface also has the
functions of start, pause and end, and the detection results are counted
at the bottom left of the interface, and the results are automatically saved
when the detection is completed.
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4 Experimental results and analysis

4.1 Experimental environment and data pre-
processing

The operating system for the experiments in this paper is Window
11, the CPU model is Intel(R) Core(TM) i7-11700 2.5GHz, 64GB RAM,

Frontiers in Energy Research

and the GPU model is GeForce RTX 3060 Laptop GPU with 12G video
memory size of the workstation. The experimental environment is
Python 3.8, GPU acceleration software CUDA 11.1 and CUDNN 8.1.0.
The datasets used in this paper is mainly derived from three parts, with a
total of 1006 insulator images. The first part is the Chinese power line
insulator datasets (CPLID) (Raimundo, 2020), which includes
600 images of normal insulators and 248 images of self-exploding
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PyQt5-based visual inspection interface.

insulators. The second part is 40 self-exploding images of glass
insulators disclosed by Baidu Flying Paddle; the third part is
118 images containing self-exploding glass insulators as well as
bird’s nests taken on site in a southern power grid. The data set
was also labeled by Labellmg software, and the labeling labels
were divided into: normal insulator (insulator), self-detonation
defect (defect), bird’s nest (nest) and glass insulator (glass
insulator). Due to the lack of sufficient number of datasets, we
expanded the number of datasets to 5174 by Gaussian blurring,
cropping, brightness variation, and flipping of the existing
datasets, and the results of partial data enhancement are
shown in Figure 8. And the ratio of training set, validation set
and test set is divided randomly in the form of 8:1:1. The input
image size is 640 x 640, the batch size is 16, the initial learning
rate is 0.001, the network parameters are updated using SGD, the
learning momentum is 0.937, the weight decay is 0.0005, warmup
momentum is 0.8, the translate parameter is set to 0.1, and each
training is 100 epochs.

4.2 Evaluation metrics

In order to accurately evaluate the performance of the algorithm,
Precision (P), Recall (R), Average Precision AP and Mean Average
Precision (mAP) are the most commonly used model evaluation
metrics in the field of target detection, which are calculated as shown
in Eqs 9-12, respectively.

TP
TP + FP

)

Precision =
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()
A\

TP
Recall = m (10)
1
AP = J P (r)dr (11)
0
N
mAP = M (12)
N

Where TP denotes the number of positive samples predicted as
positive by the model, FP denotes the number of negative samples
predicted as positive by the model, i.e., false detection, and FN
denotes the number of positive samples predicted as negative by the
model, ie., missed detection. N is the total number of detected
categories, and in this paper N is set to 4, i.e., normal insulators, self-
detonation defective insulators, bird’s nests, and glass insulators. AP
is the area enclosed by the PR curve, mAP is the detected average
value of AP for each category. The larger the mAP, the better the
performance of the algorithm.

4.3 Ablation experiment

In order to verify the effectiveness of the algorithm proposed in this
paper, mAP, Precision, Recall, parameter quantity, and FPS were used
as evaluation indicators to compare the performance of the model
through ablation experiments. A total of 6 sets of models were used.
Group A is the original datasets for YOLOv5s model training, Group B
is the expanded datasets for YOLOv5s model training, Group C, D and
E add PConv, C3CBAM and WIoU loss function respectively on the
basis of Group B, and Group F (Ours) add PConv, C3CBAM and
WIoU loss function on the basis of Group B, and carry out comparative
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FIGURE 9
Based on FA-YOLOV5 ablation experimental graph.

experiments with the same parameters. The experimental results are
shown in Figure 9 and Table 5, respectively.

As can be seen from Table 5, before data enhancement, the
YOLOVS5 algorithm was not effective in detecting insulator defective
parts due to the lack of sufficient defective samples, and after the data
enhancement operation, it can be seen that the algorithm has
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epoch

Loss value curve based on FA-YOLOVS5 ablation

significantly improved the detection accuracy for all four
categories, but there is still some room for improvement in the
number of parameters, computation and overall performance of the
model. When we use PConv to improve the backbone network part
of the model, the number of parameters of the model is reduced by
27.2% and the computation is reduced by 34.4%, while the speed of
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TABLE 5 Ablation experiments based on improved FA-YOLOVS.

Precision (%)

Glass
insulator

Insulator Defect Nest

YOLOV5(Original 90.2 94.8 87.8 96.7

datasets)

Recall

10.3389/fenrg.2023.1283394

mAPO0.5
(%)

Parameters(M) GFLOPs FPS  Weights

(%) (MB)

85.1 92.4 7.0 16.0 81 13.7

YOLOv5(Data
Enhancements)

94.6 95.5 95.0 97.2

94.5 95.4 7.0 16.0 81 13.7

YOLOv5(Data
Enhancements +
PConv)

94.2

5.1 89

YOLOv5(Data
Enhancements +
C3CBAM)

YOLOv5(Data
Enhancements +
WIoU)

97.5

6.9 80

7.0 85

F YOLOv5(Data
Enhancements +
PConv + C3CBAM +
WIoU)

95.4 97.6

97.1 5.0 10.3 89 9.83

The bold portion of the table indicates the value with the best performance in the metric.

TABLE 6 Comparison of experimental results of different algorithmic models.

Methods Precision (%) Recall (%)

YOLOvV5s 95.5 94.5

mAPO0.5 (%) Parameters(M) GFLOPs

95.4 7.0 16.0

YOLOv7 96.9 96.0

YOLOv8s 97.3 96.8

96.1 37.2 105.2

96.6 11.1 28.7

SSD-VGG 85.6 67.8

84.3 26.3 62.7

Faster R-CNN 82.1 70.1

137.1 370.2

FA-YOLOvV5 97.6 96.7

5.0

The bold portion of the table indicates the value with the best performance in the metric.

detection is improved to some extent, but the accuracy of detection is
reduced.The fusion of the CBAM attention mechanism with the
C3 module not only improves the detection accuracy but also
reduces the complexity of the network. To further improve the
performance of the model, we use Wise_Loss as the loss function of
the model. Finally, a faster and more accurate model FA-YOLOV5 is
proposed, which has 1.6% higher mAP value, 28.6% lower number
of parameters, and 35.7% lower computational effort compared to
the original model.

The comparison graph of experimental results is shown in
Figure 9. Analysis of the mAP0.5 graph in Figure 9A shows that
the convergence of the original algorithm is slow and the
accuracy is low when no data augmentation is performed.
After the data enhancement of the defective samples, the
situation is significantly improved, and it can also be seen
that the algorithm of this paper has stabilized at the 40th
round and achieved a high detection accuracy. From the Loss
plot in Figure 9B, it can be seen that the loss value of the
algorithm for training the original datasets only starts to
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stabilize in the 53rd epoch, while the loss value of the
algorithm after doing data enhancement operation on the
original datasets slowly stabilizes after 30 epochs of training,
but the loss values of the algorithm are all improved, and it can
be seen from the curve sets of Group E (WIoU) and Group F
(Ours) that the improvement of the loss function in this paper
has obvious effect on speeding up the convergence, while the
loss value reaches the minimum.

4.4 Comparison experiments

To further verify the superiority and feasibility of the algorithm
in this paper, we conducted comparison experiments on the
unimproved YOLOv7, YOLOv8s, SSD and Faster R-CNN
algorithms with optimal parameters, and the datasets used for
the experiments were all self-built insulator defect datasets in this
paper, and the precision, recall and average precision during the
experiments of the mean value are shown in Table 6.
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Comparison of experimental results of mAPO.5 curves for
different models.

From Table 6, it can be seen that among the unimproved
algorithm models, YOLOv8s and YOLOv7 models, as the latest

target detection algorithms nowadays, have high detection

YOLOvVS5s

YOLOV7

YOLOV8s

Ours

A Site environment

FIGURE 11
Comparison of detection results of different algorithms.

B Forest environment

10.3389/fenrg.2023.1283394

accuracy, but compared with YOLOvVS5s, their number of
parameters and computation amount are larger. Faster R-CNN,
as a typical Two-stage algorithm, has the highest number of
parameters and the largest computation amount, and also the
worst performance among all the compared algorithm models.SSD
algorithm, as one of the typical One-stage algorithms, has only a
little bit more parameter and computation amount than the
YOLOVS5 algorithm, but due to the fact that the last layer of the
feature map of the network structure is too small, it is easy to lose
the feature information of the target, which leads to the loss of
feature information of the target. which leads to easy loss of the
target’s feature information, so the detection effect for this dataset
is also poor. In order to balance the detection accuracy and model
complexity, this paper proposes a lightweight model FA-YOLOv5
with better detection performance on the basis of YOLOv5 model,
which has the highest detection accuracy and the least network
parameters and computation among the listed models, and it is
more suitable for deploying on mobile devices for transmission
line inspection such as UAVs, which proves the feasibility of the
method in this paper. Meanwhile, from the mAPO.5 curve graph in
Figure 10, it can also be more intuitively seen that the algorithm
proposed in this paper has a better convergence speed, and at the
same time, it also has a better detection accuracy, and its detection
performance is better than that of other comparative algorithms,
which further proves the effectiveness of the algorithm in this

paper.

C Low light environments D Residential environment
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Finally, this paper compares the detection result graphs of the
four models with the highest mAP values, and the comparison
results are shown in Figure 11. From Figures 11B,D, it can be seen
that the YOLOv7 and YOLOV8s algorithms have high detection
accuracy for glass insulators, but the detection of the small targets as
well as defective regions is not effective, and there are serious leakage
cases.

From Figure C, it can be seen that YOLOv5s, YOLOvV7 and
YOLOVSs algorithms have lower detection accuracy under the
interference of low-light as well as Gaussian noise, and the
model’s anti-interference ability is weaker, and the robustness
is insufficient. In contrast, the FA-YOLOvV5 proposed in this
paper can accurately detect the small target insulators in the
distance as well as the occluded insulators, and can accurately
detect the insulators and their defective regions even under low
light, and at the same time, it also has high detection accuracy
under the interference of Gaussian noise and good anti-
interference ability, which further proves that this paper’s
method can be applied to the presence of small targets under
complex backgrounds in the presence of occlusion as well as
dense and other cases can have a better detection effect.

5 Conclusion

In view of the slow detection speed and low accuracy, even
leakage detection and false detection caused by the current insulator
defect detection model with large number of parameters and large
computation, as well as the complex environment in which
insulators are located, the small percentage of defective parts, and
the existence of mutual occlusion between insulators, this paper
improves the YOLOV5s algorithm and proposes a lightweight FA-
YOLOv5s algorithm based on it, with the following main
contributions.

1) Strengthening feature fusion: By integrating the CBAM attention
mechanism into the C3 module, the characteristics of both the
attention mechanism and the C3 module are combined to
enhance the algorithm’s ability to fuse target feature
information. This allows the feature information to better
propagate to the detection head, resulting in improved
detection accuracy.

2) Lightweight processing: Lightweight improvement is made to the
convolutional modules in the main network of the model,
balancing the relationship between network structure
complexity and detection performance, so that the network
reduces the number of parameters and computations at the
cost of a small decrease in accuracy.

3) In this paper, the CIoU loss function used in the original model is
improved to a WIoU loss function, which balances the variability
in sample quality and improves the overlap between the
prediction frame and the bounding box to improve the
accuracy of the detection compared to CIoU.

4) A visualized software interface for defective insulator detection is
designed, which enables a more intuitive observation of the

detection results of the model.
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However, during the experimental process, we found that the
insulator defective dataset used in this paper is of a single type, and
the data enhancement method can only expand the number of
samples, and cannot enrich the diversity of the background
environment, resulting in limited application in real scenarios. In
the next work, we will consider going to the field to actually shoot
more insulator images in different scenes, to further improve the
robustness of the algorithm and the diversity of the dataset, and
optimize the effect of YOLOv5s algorithm on the detection of
defective insulators.
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In recent years, the photovoltaic (PV) industry has grown rapidly and the scale of
grid-connected PV continues to increase. The random and fluctuating nature of
PV power output is beginning to threaten the safe and stable operation of the
power system. PV power interval forecasting can provide more comprehensive
information to power system decision makers and help to achieve risk control and
risk decision. PV power interval forecasting is of great importance to power
systems. Therefore, in this study, a Quantile Regression-Stacking (QR-Stacking)
model is proposed to implement PV power interval prediction. This integrated
model uses three models, extreme gradient boosting (Xgboost), light gradient
boosting machine (LightGBM) and categorical boosting (CatBoost), as the base
learners and Quantile Regression-Long and Short Term Memory (QR-LSTM)
model as the meta-learner. It is worth noting that in order to determine the
hyperparameters of the three base learners and one meta-learner, the optimal
hyperparameters of the model are searched using a Tree-structured Parzen
Estimator (TPE) optimization algorithm based on Bayesian ideas. Meanwhile,
the correlation coefficient is applied to determine the input characteristics of
the model. Finally, the validity of the proposed model is verified using the actual
data of a PV plant in China.

KEYWORDS

photovoltaic Forecast, interval Forecast, Optimization, Stacking, Photovoltaic

1 Introduction

In recent years, the human demand for electrical energy has been increasing. At present,
thermal power generation occupies 60% of the global electricity energy supply, however,
thermal power generation requires a large amount of non-renewable energy in the
production process, and the non-renewable energy sources stored on the Earth, such as
coal, oil and natural gas, are becoming increasingly depleted (Viet et al., 2020), and the
energy crisis has sounded an alarm for mankind for mankind (Frilingou et al., 2023).
Therefore, accelerate the energy revolution, optimize the energy structure is urgent to
achieve sustainable development of energy has become a key concern of countries around the
world. Solar energy is a renewable energy source with great potential, and countries around
the world have reached a consensus on the need for solar energy development, of which
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photovoltaic power generation is an important way of solar energy
development and utilization (Rafique et al, 2020; Khalid et al,
2023). With the progress of technology and cost reduction,
photovoltaic power generation has been widely promoted and
applied in all countries around the world, and the installed
capacity has been rising in recent years.

PV power output is uncontrollable and subject to various
meteorological factors, showing strong volatility, randomness,
intermittency and non-smoothness. The PV power system is
equivalent to an uncontrollable power source for the power
system. With the increasing scale of grid-connected PV, unstable
PV power output will cause difficulties in power system scheduling
and real-time power balancing. At the same time, PV power output
fluctuations can lead to sharp fluctuations in frequency and voltage,
and the resulting shocks may threaten the safe and stable operation
of the power system. In addition, large-scale grid-connected PV may
have a certain negative impact on the damping characteristics of the
power system, which in turn threatens the safe and stable operation
of the power system (Rafique et al., 2022). Therefore, in order to
improve the security of the power system and the reliability of power
supply, the light has to be abandoned. Accurate PV power prediction
helps the power system scheduling department to reasonably
arrange the power system scheduling plan and realise the real-
time balance of power generation and power consumption, so as to
ensure that the power system can operate reliably, safely and stably.
For PV power operating companies, it can improve the economic
efficiency of PV power plants. In addition to this, energy storage
technology has a very high potential in reducing the threat of PV
fluctuations to the power system (Amir et al., 2023).

According to the different mechanisms within the prediction
models, PV output forecasting models can be categorized into:
physical models, statistical models, machine learning models and
integrated models. The physical prediction model uses the
installation position, tilt angle, design parameters, operating
characteristics and conversion efficiency of PV modules to
establish a physical model, while meteorological data such as
solar irradiance is used as the data basis for the physical model
to obtain the predicted value of PV power generation through the
calculation of the physical model (Dolara et al., 2015). The statistical
model is only data-driven. The statistical model inputs weather
variables such as solar irradiance and historical data of PV power,
and extracts the intrinsic correlation information to build a mapping
model to achieve the prediction of future PV output (Gellert et al.,
2022). While traditional statistical methods have very limited
nonlinear modeling capability, machine learning prediction
models (Rao et al, 2022) have powerful nonlinear mapping
modeling capability, which has led to its rapid development in
the field of PV forecasting. Twenty-four machine learning models
were developed for implementing PV power prediction by David
Markovics et al. Day-ahead PV power prediction was performed
based on numerical weather forecast data. The effects of predictor
variable selection and the benefits of hyperparameter tuning were
also investigated in detail in this study (Markovics and Mayer, 2022).
In recent years many researchers have turned to the development
and research work of combined prediction models (Liang et al,
2023), which have superior predictive performance, model
generalization performance, and robustness.
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Traditional PV power prediction techniques focus on point
prediction. The output of point prediction is a single point
expected value of PV power at a certain moment in the future.
However, due to the chaotic nature of the atmospheric system, PV
power prediction errors cannot be avoided. There are significant
uncertainties in the prediction results, and the information provided
by point prediction is very limited. In contrast to point prediction,
interval prediction of PV power uses prediction intervals to achieve a
quantitative estimate of the prediction uncertainty. The interval
prediction results provide the upper and lower bounds of the
fluctuation of PV power at a certain confidence level at a certain
time in the future, which makes up for the limitations of the PV
power point prediction technique and can provide more
comprehensive data support for the power system. The PV
results
references for the operational risk assessment and risk decision-

power interval prediction can provide important
making of the power system, and further improve the security and
economy of the power system. In addition, PV power interval
prediction technology has a very broad application prospect in
the fields of power system planning, power system scheduling,
energy storage configuration and regulation, and power market
trading. Zhenhao Wang et al. (Wang et al., 2022)established a
deep convolutional generative adversarial network model to
generate PV power characteristic curves in different scenarios,
and then established a QRLSTM model to achieve PV power
interval prediction. Ming Ma et al. (Ma et al., 2022)analysed the
distribution of PV power prediction errors and then constructed PV
power prediction intervals using a kernel density estimation
algorithm.

The existing PV power interval prediction is mainly realised
using a single model, and its prediction performance needs to be
further improved. Multi-model fusion technology will be an
important development direction in the future. The values of the
model parameters largely determine the prediction performance of
the model, so the hyperparameter optimisation problem of the
fusion model needs further research. Therefore, in this paper a
stacking model that can achieve the prediction of PV power intervals
is proposed. An optimisation algorithm is used to determine the
optimal hyperparameter values for this model to improve the PV
power interval accuracy. In order to provide important data support
for power system operation risk assessment and risk decision-
making, and to further improve the safety and economy of the
power system. The main contributions of this paper are as follows:

1) A novel QR-Stacking integrated model is proposed to implement
PV power interval prediction. Multiple decision tree models are
used as the base learners of this integrated model, and deep
neural networks are used as the meta-learner of this integrated
model. The QR-Stacking integrated model is constructed by
combining the quantile regression model and the Stacking
integrated model to achieve the PV power interval prediction.
This is the first application of this stacking model in the field of
PV power interval prediction.

2) To improve the prediction accuracy of the QR-Stacking
integrated model, the Tree-structured Parzen Estimator
algorithm was wused to search for determining the

hyperparameters of multiple base learners and a meta-learner.
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FIGURE 1
Overall structure of the work in this paper.

TABLE 1 Nomenclature.

Abbreviations Full text

CatBoost categorical boosting

DI direct radiation

EI expected improvement

GRU Gated Recurrent Unit

GI global irradiance

H humidity

Ken Kendall correlation coefficient

LSTM Long and Short Term Memory

LightGBM light gradient boosting machine

PV photovoltaic

PICP Prediction interval coverage probability
PINAW Prediction interval normalized average width
QR Quantile Regression

QR-Stacking Quantile Regression-Stacking

QR-LSTM Quantile Regression-Long and Short Term Memory
QR-GRU Quantile Regression-Gated Recurrent Unit
TPE Tree-structured Parzen Estimator

T temperature

wC comprehensive evaluation index

WD wind direction

Xgboost extreme gradient boosting

3) Simulation analysis was conducted based on actual PV power
generation data from a PV power plant in China. Multiple interval
evaluation metrics were used to evaluate the prediction intervals. A
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comprehensive comparative analysis of the interval prediction
accuracy of QR-Stacking and multiple benchmark prediction
models was performed. The results show that the model can
give full play to the advantages of each algorithm and improve
the prediction accuracy of PV power intervals.

The rest of the paper is organized as follows: Section 2 describes
the prediction models and optimization algorithms used in this
paper. Section 3 describes in detail the evaluation metrics of the
prediction model. Section 4 provides case studies. The prediction
performance of the proposed prediction model is compared with
that of several benchmark models. The accuracy of the prediction
models is verified by experimental simulations. Section 5

summarizes the whole paper.

2 Methodology

Figure 1 shows the overall structure of the work in this paper.
Firstly, three base learners, Xgboost, Light GBM and CatBoost, and a
meta-learner, QR-LSTM, are built. The proposed QR-Stacking
model is constructed from the above four models and the TPE
optimisation algorithm. Secondly, the proposed model is trained
and tested using real PV data. Finally, three evaluation metrics are
used to compare and analyse the prediction performance of the
proposed model with QR-LSTM and QR-GRU models. The
nomenclature used in this paper is presented in Table 1.

2.1 Stacking

It has been shown that single prediction models have limited
prediction accuracy. Ensemble machine learning would be an
important solution to this challenge. Usually, the first layer of the
stacking model is the base learner layer and the second layer is the
meta-learner layer. The meta-learner layer corrects the prediction
error of the base learner. In this research, Xgboost, Light GBM and
CatBoost are used as base learners. The QR-LSTM model is used as a
meta-learner. The following section details the modeling principles
of the three base learners and one meta-learner.

2.2 Base learners

2.2.1 Xgboost

The XGBoost algorithm is an improved algorithm of the
gradient augmented regression tree. The main improvements of
the XGBoost algorithm are the improvement of the objective
function and its solving method.

The objective function (loss function) of the XGBoost algorithm
during training consists of two parts, as shown in Eq. 1.

n K
Obj = Y103 + 2.0(f3) M

Where Zl ¥i» ¥;) is used to characterize the dlfference between

the predlcted values y, and true values y;. ZQ( fir) is the
regularization term. k=t
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Algorithm 1 Tree-structured Parzen Estimator optimization algorithm

Require: Total number of initialised sampling points m,Objective function
f(s),Hyperparametric search space S,Agent model TPE Acquisition func-

tion (Expected Improvement) ET

Ensure: Historical sampling set D(s, f),Optimal hyperparameters s* and its
corresponding objective function value
1: Choose ng sampling points in the hyperparameter space S and calculate the
value of f(s) at these sampling points

n =no
: for alln =ng+1,n0+2,...,m do

AN R

model updating.

: Update the sampling data set D(s, f

(s))

Fitting the agent model TPE with the current dataset D(s, f(s)) enables

6:  Select the superparameter combination s that maximises acquisition func-

tion EI.

7:  Compute the value of the function f(s) when the hyperparameter is con-

figured as s.

8:  Add the new (s, f(s)) to the existing dataset D

9: end for
10:

return Historical sampling set D(s,

f(s)),0Optimal hyperparameters s* and

its corresponding objective function value

FIGURE 3
Pseudo-code of the TPE optimisation algorithm.

The regularization term can be calculated from Eq. 2:

K 1 ] T
;o( fi) =yT + 5 ];wj )
where Q(f%) is a function of the complexity of the decision tree
fk. yis the penalty term of the L1 regular. T is the total number
of leaf nodes of the decision tree. 6 is the penalty term of the
L2 regular. w; is the weight of the decision tree f; at the jth
leaf node.
Each iteration updates the objective function to Eq. 3.

Obj' = Y[y 3i™" + fi )] + Q(£2)

i=1

©)

Using a second-order Taylor expansion for the above
equation, the following equation is obtained by removing the
constant term.
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Obj' = Z[gift(xi) + %hi x fi () [ +Q(fr) (4)

i=1

~(t-1)

where g; = 9,¢0l(y;» 7, ) and b; = 6;(,4>l( i 97) are the first-

and second-order derivatives of the objective function, respectively.

2.2.2 LightGBM

The basic idea of LightGBM is to obtain the final strong regression
tree using multiple iterations of the weak regression tree. The new
regression tree obtained from each iteration is obtained by fitting the
prediction residuals of the previous regression tree. Finally, the
outputs of all regression trees are summed to output the better-
performing results. The calculation is shown in Eq. 5.

M
F(x)= ) fu(x) 5)
m=1

where f,, (x) is the output value of the mth weak regression tree and
F(x) is the final output value of the model.
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Algorithm 2 QR-Stacking Training phase

Require: Training dataset D = {(a1,v1), (z2,¥2), ..., (¥n, yn)},Basic Learner
Algorithms B = {Xgboost, Light GBM, CatBoost, },Meta-Learner Algo-
rithm M = {QR — LSTM},Optimal hyperparameters for basic learn-
ers and the meta-learner determined by the TPE algorithm H

{Hx gboost: Hrighta B HeatBoosts Hor—LsTMm }
Ensure: Stacking predictive model QR — Stacking

for all base model B; do
2. for all fold =1,2,...,5 do

4/5 of D was used to train B;[fold)
4 Using the trained model B;[fold] to predict the remain 1/5 of D to get

P Bi [fOl d]
end for

6: Stack PBi[1]1PBi[2]7 ceey P31[5] to get PBi

end for

8: Train meta-level model M on Ppg

{ylv y27 Ll y"}

{PB1 ) P32 N PBS} and Dy

QR — Stacking < Ensemble of base models By, Bo, B3 and M

10: return QR — Stacking

FIGURE 5
Pseudo-code for the training phase of the proposed model.

2.2.3 CatBoost

The CatBoost model is an improved gradient boosted decision
tree (GBDT) model. The improvements of CatBoost over traditional
GBDT are as follows:

Traditional GBDT derives the gradient of the current model
based on the same dataset in each iteration of training, but this leads
to biased point-by-point gradient estimation. CatBoost uses Ordered
Boosting to improve the gradient estimation method of the
traditional algorithm. The improved algorithm obtains an
unbiased estimate of the gradient to mitigate the effect of the
gradient estimation bias and thus improve the generalization
ability of the model. To obtain unbiased gradient estimation, the
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CatBoost model trains a separate model M; for each sample x;,
which is obtained by training with a training set that does not
contain sample x;. Then M; is used to obtain a gradient estimate on
the samples. Finally, this gradient is used to train the weak learner
and obtain the final model.

2.3 Meta-learner
2.3.1 Quantile regression

The quantile regression (QR) model is used to study the
relationship between the conditional quartiles of the independent
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FIGURE 6
Flow chart of the testing phase of the proposed stacking model.

Algorithm 3 QR-Stacking testing phase

Require: Stacking predictive model QR — Stacking, test dataset D, =

{:L'lv T2y ey Im}
Ensure: Predictions P g for Dy
for all base model B; in B do
for all fold =1,2,...,5 do

3: Using the trained model B;[fold] generate predictions Tp;[fold] for
Dt(:st
end for
Average Tg:i[1],T8:[2], ..., Ti[5] according to the row to get T,
6: end for

P,st + Predictions of M on Tg = {Ts,,Ts,,Ts,}

return P

FIGURE 7
Pseudo-code for the testing phase of the proposed model.

and dependent variables. The quantile regression model can be
represented by Eq. 6.

Qp, (tlx:) = xif(1) i = 1,2, -+, (6)

where Qp, (7]x;) is the conditional quantile. 7 € (0,1). B(7) is the
vector of regression coefficients. B(7) = [B, (1), 3, (1), "+, B, 0]".
Each element f l (7) in B(7) characterizes the degree of influence of
the jth independent variable on the dependent variable. n is the total
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number of samples. P; is the dependent variable. x; is the
independent variable. The dependent variable is usually multiple,
(205 Xi 15 "> Xigm]

The objective of solving the quantile regression model is (7).

ie.,: X;

The problem can be solved by minimizing the loss function as shown
in Eq. 7.

L=Yy, (Pi-xp(1)) 7)
i=1
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Heat map of correlation between power variables and meteorological factor variables.
TABLE 2 The hyperparameter search range settings for the base learners and 75 s>0
meta-learner. Y: (s) = (1-1)s5<0 (8)

Model Hyperparameter Search range
Xgboost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]
n_estimators Randint (100,1000)
max_depth Choice [4,6,8,10,12,15]
min_child_weight Randint (3,20)
LightGBM learning_rate Choice [0.01,0.03,0.1,0.2,0.5]
n_estimators Randint (100, 1000)
max_depth Choice [4,6,8,10]
min_child_samples Randint (0,30)
min_child_weight Randint (3,20)
CatBoost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]
iterations Randint (100,1000)
depth Choice [4,6,8,10,15]
LSTM units Qrandint (16, 512,16)
dropout Choice [0.01,0.2,0.5,0.8,0.9]
activation Choice ["linear","relu","elu"]

where y_ is an asymmetric function with respect to the quantile 7.

B (1) is the estimated value of (7). Its specific expression is

given by:
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where the expression of s is s = P; — x;5(7).
Thus the expression for solving 3(7) is as follows:

B(T) = argminZyT (P - x;B(1)) 9)

Ultimately, the estimates obtained by quantile regression model
estimation at different conditional quartiles are as follows.

Qp,(tlx) = x,f(1) i =1,2,-,n (10)

2.3.2 Long and Short Term Memory

The Long and Short Term Memory (LSTM) model was first
proposed by Hochreiter and Schmidhuber in the 1990s as a solution
to the issue of vanishing gradients in traditional RNNs. The
incorporation of gating units, consisting of forgetting, input, and
output gates, allows LSTMs to selectively retain or discard
information within the cell state, enabling them to effectively
capture and model long-term dependencies in sequential data. As
a result, LSTMs have become a widely utilized tool in the field of
deep learning. Figure 2 is a schematic diagram of the structure of the
LSTM model.

2.3.3 Quantile Regression-Long and Short Term
Memory

Quantile regression model in the form of loss function and
LSTM model are fused to achieve PV power interval prediction. The
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FIGURE 9
Forecast intervals of the QR-Stacking model during sunny days.
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FIGURE 10
Forecast intervals of QR-LSTM model during sunny days.

Quantile Regression-Long and Short Term Memory (QR-LSTM)
model serves as a meta-learner for the proposed model to further
correct the prediction bias of the base learner.

2.4 Tree-structured parzen estimator

In this study, the Tree-structured Parzen Estimator (TPE)
optimization algorithm is proposed to achieve the global
optimization of each model hyperparameter. The TPE algorithm
uses a probability density estimator based on the tree structure to
implement Bayesian optimization. The TPE technique may fast
converge to the global optimal solution and models the
parameter space using a tree structure.

The main advantages of the TPE algorithm are (1) It avoids the
inefficiencies of traditional grid search or random search by using
probability density estimates to model the objective function.
(Nguyen et al, 2020). (2) The TPE algorithm can automatically
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adjust the direction and scope of the search. (3) The TPE algorithm

can handle discrete, continuous, and mixed types of
hyperparameters, making it applicable to a variety of machine
learning models and algorithms. (4) The TPE algorithm is based
on Bayesian optimisation theory, which has a solid mathematical
foundation and reliable theoretical support. (5) The TPE algorithm
estimates the probability density function in the parameter space by
constructing a tree-like structure, which enables it to find high
probability regions quickly and reduces the size of the search space.
In contrast, optimisation algorithms such as genetic algorithms
require a large number of iterations and crossover operations
with high computational complexity. (6) The TPE algorithm is
able to handle the noise in the objective function better and find
the optimal solution more stably through the estimation of the
probability density function. While optimisation algorithms such as
genetic algorithm may be disturbed by noise and get unstable results.

The core of TPE optimisation is to find a set of hyperparameters

that minimise the established objective function. The Bayesian-
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Forecast intervals of QR-GRU model during sunny days.

TABLE 3 Evaluation of the prediction results of each model during sunny days.

Model Confidence levels (%) PICP PINAW wcC
QR-Stacking 95 1.000000 0.142233 0.142233
90 0.912281 0.108516 0.118951
85 0.859649 0.095189 0.110731
QR-LSTM 95 1.000000 0.159846 0.159846
90 0.842105 0.107182 0.127279
85 0.789473 0.090057 0.114073
QR-GRU 95 1.000000 0.146956 0.146956
90 0.824561 0.105388 0.127812
85 0.754385 0.093575 0.124041

based TPE optimisation algorithm reduces the number of
computations and time cost by selecting the most promising set
of hyperparameters for the next evaluation. Figure 3 illustrates the
pseudo-code of the TPE optimisation algorithm. The following
section describes in detail the selection criteria for the objective
function and the next set of hyperparameters:

The goal of hyperparameter optimization is to find the value of
the hyperparameter that minimizes the loss of the machine learning
model. It can be expressed as Eq. 11.

(11)

s* = argmin f (s)
seS
where S is the optional hyperparameter space and s* is the best set of
hyperparameters.

The whole concept of Bayesian optimization is to reduce the
number of computations and time cost by selecting the most
promising set of hyperparameters as possible for the next evaluation.
The selection criteria for the next set of hyperparameters is the expected
improvement (EI), which is expressed as:

El.(s) = JH (t* = 1)p(t, s)dt (12)
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where ¢* is the threshold of the objective function, s is the proposed
hyperparameter, ¢ is the actual value of the objective function when
the proposed hyperparameter s is used, and p (¢, s) denotes the agent
probability model.p (¢, s) is defined in the TPE method, and p(t,s) is
denoted as

I(s)ift<t*

p(t’s):{g(s)ift>t* (13)

where [ (s) denotes the probability of hyperparameter set s when the
value of the objective function ¢ is less than a threshold value t*, g (s)
denotes the probability of hyperparameter set s when the value of the
objective function t is greater than a threshold value #*.

The EI criteria when using the TPE method can be expressed as
follows.

t

- nPEOPO 4 1y

EL.(s) = Lom ~0)p(t,s)dt = LQ p()

p(s) can be denoted as p(s):IRp(slt)p(t)dtzgl(sH

(1-g)g(s).Let y=p(t<t*). The final EI can be expressed as
follows.
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FIGURE 12
Forecast intervals of QR-Stacking model during rainy days.
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FIGURE 13
Forecast intervals of QR-LSTM model during rainy days.

ot
Ll -1 pdt ( g(s) >
EIL (s) = «© oc|y+=—=(1- 15
() Y+ (1-9)g () v l(s)( 7) (15)
In order to maximize EI the ratio ! should be maximized.

Therefore, the expected set of hyperpgr(;)meters s has a higher
probability under I(s).

Eventually, through continuous iteration, the set of
hyperparameters that can make the objective function achieve the
minimum value is obtained. This set of hyperparameters is the best

hyperparameters for the proposed model.

2.5 Quantile regression-stacking model
optimized using the tree-structured parzen
estimator algorithm for photovoltaic power
interval prediction

In this study a stacking model using an efficient hyperparametric
optimization method for PV power interval prediction is proposed.

Frontiers in Energy Research

Xgboost, LightGBM and CatBoost are used as the base learners. QR-
LSTM is used as a meta-learner. Firstly, three basic learners are used
to independently make predictions of PV power output, which are
able to learn the trend of PV power from historical data. Each basic
learner produces a set of predictions. Then, the prediction results of
these base learners are fed into QR-LSTM to achieve the final
prediction. QR-LSTM further corrects the prediction errors of
the three base learners to improve the prediction accuracy.
Notably, the quantile regression model in the QR-LSTM model is
capable of constructing prediction intervals to quantify the
uncertainty in PV power prediction. By combining the strengths
of these learners, the QR-Stacking model is able to better address the
challenges associated with PV power output fluctuations and more
accurately quantify the uncertainty in PV power forecasts. In
addition to this, the TPE algorithm is also used to search for the
optimal parameters of the base and meta learners to further improve
the interval prediction performance of the model.

The proposed stacking model is illustrated separately in a
training phase and a testing phase.
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Forecast intervals of QR-GRU model during rainy days.

TABLE 4 Evaluation of prediction results of each model during cloudy and rainy days.

Model Confidence levels (%) PICP PINAW wcC
QR-Stacking 95 0.982456 0.135335 0.137751
90 0.964912 0.110254 0.114264
85 0.894736 0.084793 0.094768
QR-LSTM 95 0.982456 0.152176 0.154893
90 0.912280 0.127719 0.140000
85 0.912280 0.110009 0.120587
QR-GRU 95 1.000000 0.180607 0.180607
90 1.000000 0.148593 0.148593
85 1.000000 0.124890 0.124890

2.5.1 Training phase

The steps of the stacked model training phase are shown in
Figure 4. The pseudo-code for the training phase of the proposed
model is presented in Figure 5. The 5-fold cross-validation and
TPE parameter optimization methods are used in the training
phase of the proposed stacking model. The details are illustrated
below.

1) The training set is divided into 5 folds.

2) Training the Xgboost model using a 5-fold cross-validation
method and a TPE parameter optimization method. In the
first iteration, the last 4 folds are used for training the model
and the first fold is used for prediction. The obtained prediction
result is P;;;Zﬁr In the second iteration, the second fold is used

for prediction and the remaining four folds are used for training.

The obtained prediction result is P?{gfb‘;ﬁt.

repeated until the prediction results are obtained for all

This process is

5 folds. Finally, the prediction result obtained by the Xgboost
model is:

Train 1-fold 2—fold 3—fold p4-fold 5—fold
p Xgboost — [P Xgboost> P Xgboost> p Xgboost> p Xgboost> p Xgboost ( 16)

Frontiers in Energy Research

3) Using the same process as (16), the outputs obtained from the
LightGBM and CatBoost models are expressed as follows.

Train 1-fold 2—fold 3—fold 4 fold 5— fold
p LightGBM — [P LightGBM> p LightGBM> p LightGBM> P LightGBM> p LightGBM]
(17)
Train —fold 2 —fold 3—fold 4— fold 5—fold
P CatBoost — [P CatBoost> CatBoost’ P CatBoost> P CatBoost> P CatBoost] (18)

4) The prediction results of the three base learners are merged to

obtain a new training set PI/%". The matrix P1/%" and the

Tmm

original dependent variable P(,i% ; are used as training data

for the meta-learner.

1-fold 1-fold 1-fold
p Xgboost p LightGBM P CatBoost
2— fold 2— fold 2— fold
PX gboost P LightGBM P CatBoost
3—fold 3—fold 3—fold
Xgboost p LightGBM P CatBoost ( 19)
4— fold P4—fold P4—fold
Xgboost ~ LightGBM ~ CatBoost
ps-fold

pS-fold  ps-fold
Xgboost ~ LightGBM ~ CatBoost

Train __
p New —

5) The dimension of matrix PI,’E“J;" is transformed into three

dimensions to satisfy the QR-LSTM model input
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requirements, and the new matrix PY%" is obtained. The

PTmin

prediction results P/", of the base learners and the training

set Pg:?;’}n 1 Of the dependent variable are fed to the meta-learner
QR-LSTM for training. It is worth noting that the meta-learner
also uses the TPE algorithm for parameter optimization to

exploit its optimal predictive performance.

2.5.2 Testing phase

The detailed flow of the testing phase is shown in Figure 6. The
pseudo-code for the testing phase of the proposed model is
presented in Figure 7. In the testing phase, the test dataset is fed
into the stacking model to implement PV power interval prediction.
It is worth mentioning that the cross-validation strategy is no longer
used in the testing phase and an average strategy is introduced to
deal with the multiple predictions of each base learner. The details
are described as follows.

1) The test set is fed to each base learner for prediction. A 5-fold
cross-validation strategy is used in the training phase, hence for
each base learner five different models are generated after
training. Therefore, each base learner is capable of obtaining
five predictions. The prediction results of each model are as

follows.
Test _ Test _1 Test_2 Test_3 Test_4 Test _5
Pngoost - [Pngoost’Pngoost’Pngoosr’ Pngoost’Pngoost] (20)
Test _ Test_1 Test_2 Test_3 Test_4 Test_5
p LightGBM — [P LightGBM? p LightGBM?> p LightGBM> P LightGBM> P LightGBM]
21
Test _ Test_1 Test_2 Test _3 Test _4 Test _5
PCutBoost - [PCutBoast’ PCatBoost’ PCatBnost’ PCutBonst’ PCatBoost (22)

2) The 5 predictions of each base learner are averaged and 3 new
matrices are obtained:

5 5
PTest—New _ 1 PTest,i PTest—New _ l PTest,i
Xgboost 5 Xgboost> * LightGBM — 5 LightGBM>
i=1 i=1
1 5
Test—New __ Test_i

CatBoost g CatBoost
i=1

3) The 3 matrices are combined and used as feed-in data for the

meta-learner. The matrix obtained by merging the matrices is:

Test
P Merge*

Test _ Test—New Test—New Test—New
PMer_qe - [Pngnost ’PLightGBM’ PCatBoost ] (23)

4) The matrix Pjf5

into a QR-LSTM model to achieve PV power interval

is dimensionally transformed and fed

prediction. PV power prediction results under different
quartiles are obtained. The predicted result is W;=

[Qp, (T11x:), Qp, (T21x:), - - ., Qp, (T11x7)].

3 Evaluation indicators for interval
prediction results

Prediction Interval Coverage Probability (PICP) is an important
statistic for assessing prediction interval reliability, and a larger value
implies that the model predicts a more trustworthy interval.
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Prediction interval normalized average width (PINAW) is an
essential statistic for assessing prediction interval accuracy, and a
lower value suggests that the model predicts a more accurate
interval. There is a relationship between PICP and PINAW. In
general, the higher the PICP, the lower the PINAW, indicating that
the model is more confident in the prediction interval.
Simultaneously, there is a contradictory link between PICP and
PINAW. When the prediction interval is large, it is easy to attain
high interval coverage probability. However, prediction intervals
that are too wide cannot provide accurate uncertainty information.

PINAW, PICP and WC indicators are calculated based on Eq. 24
(25) (26), respectively:

N

PICP = (1/N)- 'S, (24)

n=1

where N denotes the number of data. S, represents a Boolean
function. The value of this Boolean function takes 1 when the
prediction interval of the model contains the true value,
otherwise, it is 0.

PINAW = [1/(N - E)] - i(Pup = Paoun) (25)

n=1

where N is the total number of data. E denotes the difference
between the maximum and minimum values of PV power. Py,
and P,y respectively represent the upper and lower bound of the
interval prediction.

There is a conflicting relationship between PICP and PINAW.
Therefore, by combining these two indicators, a comprehensive
evaluation index is proposed. The comprehensive evaluation index
(WCQ) is calculated using Eq. 26. The smaller the WC value, the more
superior the interval obtained.

WC = PINAW /PICP (26)

4 Case studies

4.1 Data sets

The data used in this study are from a photovoltaic power plant
in Hebei, China. The dataset is sampled at 15-min intervals. The
historical data set includes active power (P), global irradiance (GI),
direct radiation (DI), temperature (T), humidity (H), wind speed
(WS), wind direction (WD), and pressure (P). Most of the nighttime
zero-value data were removed in this study.

4.2 Selection of model input features

It is well known that PV power output is very closely related to
several meteorological factors. In order to improve the accuracy of
PV power prediction, it is usually necessary to filter several
meteorological variables to get the meteorological variables that
show high correlation with PV power output. In this study, the
Kendall correlation coefficient was used for variable correlation
analysis.

The Kendall correlation coefficient is calculated as follows:
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___P-Q
T LXN*(N - 1)
where P and Q denote the number of harmonious and discordant

Ken (27)

quantities, respectively. The denominator of the formula indicates
the total number of pairs of observations.

For comparison and analysis, a heat map was drawn based on
the calculated Kendall correlation coefficients, as shown in
Figure 8. The numbers in this figure characterise the degree of
correlation between the variables. Numbers closer to 1 indicate a
higher degree of correlation, and numbers closer to 0 indicate a
lower degree of correlation. A negative number indicates a negative
correlation.

Figure 8 shows that global irradiance (GI), direct radiation (DI),
wind direction (WD), temperature (T) and humidity(H) are the
main meteorological variables affecting PV output, so these five
variables are chosen as input variables for the model.

4.3 Model parameter setting and data set
division

The hyperparameter search range settings for the base learners
and meta-learner are shown in Table 2. The LSTM model consists of
one layer of LSTM network layer, one layer of Dropout layer, and
one layer of Dense layer. The number of neurons of the LSTM
network layer, the dropout rate, and the activation function of the
Dense layer are optimized. The number of neurons in the Dense
layer is 199, i.e., the quantile takes a range of values from 0.005 to 1,
and the step size is 0.005.The optimizer for LSTM model training is
adam, and the batch_size is 48. The epochs for the training of the
LSTM model are set to 150 and an early stopping strategy is used to
avoid the overfitting problem. Each base learner uses a decision tree
model, which runs faster, so its hyperparameter search time is set to
200 s. The number of hyperparameter searches for the meta-learner
model is 100.

The ratio of training set, validation set and test set was 7:2:1.
100 days of data were used in this study. One sunny day and one
rainy day in the test set were selected separately for each model
performance comparison. The model output is the predicted PV
power for the 199 quantile points of the future day. The prediction
interval is constructed by selecting several of the quantile
predictions.

4.4 Predictive performance comparison

In order to evaluate the prediction performance of the proposed
QR-Stacking model, two benchmark models and the QR-Stacking
model are developed in this paper for prediction performance
comparison. The two benchmark models established in this paper
are QR-LSTM and Quantile Regression-Gated Recurrent Unit (QR-
GRU). In order to make a valid comparison, the benchmark models
QR-LSTM and QR-GRU also use the TPE algorithm for parameter
search. The search parameter setting ranges of the benchmark models
QR-LSTM and QR-GRU are kept the same as those of the QR-Stacking
model. To verify the generalization performance of the models, the
prediction performance of the three models under several different
weather conditions is compared and analyzed. It is worth noting that
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the prediction performance of each model is compared at 95%, 90% and
85% confidence levels in this study.

4.4.1 Comparison of the prediction performance of
the models during sunny days

The prediction intervals of the three models under sunny
conditions are shown in Figures 9, 10, and 11. Figures 9, 10, and
11 show that the proposed QR-Stacking model has the highest
interval coverage and narrow interval width.

Table 3 evaluates the prediction interval of each model at three
confidence levels using several evaluation metrics. The prediction
interval coverage of all three models at 95% confidence level can
meet the requirements, i.e., the coverage rate is greater than 95%.
However, the prediction interval coverage of the QR-LSTM and QR-
GRU models at 90% and 85% confidence levels cannot meet the
requirements. In terms of PINAW and WC metrics, the prediction
interval of QR-Stacking model can provide narrower prediction
intervals while meeting the interval coverage requirement. At the
95% confidence level, the WC indicator of the prediction interval of
the QR-Stacking model is 11.02% and 3.21% lower than those of the
QR-LSTM and QR-GRU models, respectively. The WC metrics of
the prediction intervals of the QR-Stacking model are 6.54% and
6.93% lower than those of the QR-LSTM and QR-GRU models,
respectively, at the 90% confidence level. At the 85% confidence
level, the WC metrics of the prediction intervals of the QR-Stacking
model are 2.92% and 10.73% lower than those of the QR-LSTM, and
QR-GRU models, respectively.

In summary, the prediction interval of the QR-Stacking model is
best in sunny days.

4.4.2 Comparison of prediction performance of
various models during rainy days

The prediction intervals of the three models for cloudy and rainy
days are shown in Figures 12, 13 and 14. These three plots show that
the prediction interval coverage of the proposed model meets the
requirements and the interval is narrower.

Table 4 evaluates the prediction intervals of each model at three
confidence levels using multiple evaluation metrics. The prediction
interval coverage of the 3 models can meet the requirements of each
confidence level. In terms of PINAW and WC metrics, the prediction
interval of QR-Stacking model can provide narrower prediction intervals
while meeting the interval coverage requirement. At the 95% confidence
level, the WC indicator of the forecast results of the QR-Stacking model
is 11.06% and 23.72% lower than those of the QR-LSTM and QR-GRU
models, respectively. At the 90% confidence level, the WC metrics of the
prediction interval of the QR-Stacking model are 18.38% and 23.10%
lower than those of the QR-LSTM and QR-GRU models, respectively. At
the 85% confidence level, the WC metrics of the prediction interval of the
QR-Stacking model are 21.41% and 24.11% lower than those of the QR-
LSTM, QR-GRU models, respectively.

In summary, the QR-Stacking model has the best prediction
interval during cloudy and rainy days.

5 Conclusion

In this research, a QR-Stacking model with hyperparameter
optimization using TPE algorithm is proposed to improve the
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reliability and acuity of PV power interval prediction. The
conclusions are stated as follows:

1) Kendall correlation coefficient is used to screen several
meteorological features. This method removes the redundant
features of the input data and reduces the complexity of the
model.

QR-Stacking model has more superior interval prediction
performance than the two benchmark models QR-LSTM and
QR-GRU.QR-Stacking model can reduce the width of the
prediction intervals while ensuring the coverage of the
prediction intervals. In other words, the prediction intervals
of the proposed model are sharper while satisfying the
reliability. The superior interval prediction performance of the
prediction model is further ensured by using the TPE algorithm
as the hyperparametric search algorithm of the proposed model.
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The UAV inspection method is gradually becoming popular in transmission line
inspection, but it is inefficient only through real-time manual observation.
Algorithms are available to achieve automatic image identification, but the
detection speed is slow, and video image processing is not possible. In this
paper, we propose a fast detection method for transmission line defects based
on YOLO v3. The method first establishes a YOLO v3 target detection model and
obtains the a priori size of the target candidate region by clustering analysis of the
training sample library. The training process of the model is accelerated by
adjusting the loss function to adjust the learning direction of the model. Finally,
transmission line defect detection was achieved by building a transmission line
defect sample library and conducting training. The test results show that
compared with other deep learning models, such as Faster R-CNN and SSD,
the improved model based on YOLO v3 has a huge speed advantage and the
detection accuracy is not greatly affected, which can meet the demand for
automatic defect recognition of transmission line inspection videos.

KEYWORDS

YOLO v3 model, deep learning, fast defect detection, video recognition, transmission line
defects

1 Introduction

With the continuous expansion of the scale of the power grid, the workload of line
inspection has increased; meanwhile, the traditional manual inspection method is costly and
inefficient, and there are certain dangers in implementation. In recent years, the State Grid
and various electric power scientific research institutions have invested a lot of manpower
and material resources to carry out UAV power inspection research, including UAV flight
control technology, transmission line inspection aerial photography target identification,
and fault detection technology research. The use of UAV inspection has the advantages of
low cost, high efficiency, and a stronger ability to adapt to complex environments, and it can
quickly collect image and video information on transmission lines, which greatly reduces the
difficulty and danger of inspection work. Therefore, UAV inspection has a broad application
prospect in transmission line inspection (YAN et al., 2017; Cao et al., 2021). The defect
recognition method based on deep learning can automatically analyze unstructured data
effectively and use deep learning algorithms to quickly process the images collected during
inspection to achieve automatic detection and recognition of abnormal states of transmission
line equipment, which is of great significance for enhancing the intelligence of power grids
(LT et al, 2017; Li et al., 2021; WEN et al., 2021). UAVs ual recognition of the collected
images. In order to further improve the automation of machine patrol, many scholars have
proposed image-based methods for the identification of transmission line equipment and
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FIGURE 1

YOLO v3 model framework.

defects. Most of the algorithms currently applied for transmission
line target detection need to rely on manual extraction of image
features and then segmentation of targets in images by the Hough
transform, Canny operator, and Gabor operator. The effectiveness of
(Nguyen et al,, 2018; Chen et al, 2021; Deng et al., 2021) these
algorithms depend on the extraction of features, which, on one hand,
is a complex task requiring strong expertise; on the other hand, there
are numerous transmission line defects, which are not sufficiently
expressed by manually extracted features, resulting in a single type of
detection target for traditional algorithms. Some algorithms use
support vector machines, neural networks, and other shallow
learning algorithms to predict the target type (Yu-min et al,
20105 Cerdn et al., 2014; JIANG, 2017), but they still need to
extract the image features first. In recent years, machine vision
technology based on deep learning has been greatly developed, and
the corresponding image target detection algorithms have also
achieved good performance. After the extraordinary performance
of AlexNet in the image recognition competition in 2012, deep
learning algorithms based on convolutional neural networks
(CNNs) have become the main research direction for image
classification and target detection (Li et al., 2008). Deep learning-
based target detection algorithms can be divided into “dual-order
method” and “single-order method”. The "dual-order method” has
high accuracy, while the “single-order method” is fast, and the
representative algorithms are YOLO (Simonyan and Zisserman,
2014; He et al, 2015) and SSD (Ren et al., 2017). The “double-
order method” has been studied in the image detection of power
system equipment (Joseph and Ali, 2016a; Redmon et al., 2016;
WANG et al,, 2017), but it is still in the theoretical research stage,
and its detection speed is slow, which cannot meet the demand of
real-time detection. In the daily UAV inspection work, a large
amount of image and video data will be generated, which
requires a very high speed for the target detection algorithm.
Therefore, this paper establishes a defect recognition model of
transmission line machine inspection images based on the YOLO
algorithm using the inspection images obtained from actual
engineering operation and maintenance for training (Hui et al,
2018; Lei and Sui, 2019; Wang et al,, 2021). Through parameter
adjustment, the practical application ability of the defect detection
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model can be improved, and the real-time defect detection of the
transmission line machine patrol image can be realized, which has
high engineering practicability (Gong et al., 2003; Liu et al., 20205
Wang et al., 2020).

2 Inspection image defect detection
model construction

The YOLO algorithm directly regresses the target location and
target class at the output layer to achieve end-to-end training and
detection, which is different from the original dual-order target
detection method based on region recommendations. YOLO
v3 adds multi-scale prediction, which makes the network more
capable of detecting targets with a wide range of size variations and
has higher detection speed and recognition accuracy (He et al,
2015). In this paper, we detect and identify equipment defects in
transmission line inspection images based on the YOLO v3 model,
and the model framework is shown in Figure 1.

For any machine patrol picture, first, the size is adjusted to a
uniform size, and the picture is divided into S x S regions; then, the
picture features are extracted by multiple convolution layers for each
region. If the center of an electric equipment defect falls in this region,
the region is responsible for predicting this defect. The center position
and size of the equipment defect are adjusted by regression. The output
of the model prediction is S x S x (B x 5 + C), i.e, S x S regions, and
each region outputs B different sizes of defect prediction checkboxes
and C defect type information, while for each defect prediction
checkbox, there are four coordinate values and one confidence
value. Finally, the model uses extreme value suppression to remove
duplicate checkboxes and then predicts the actual defect types and
locations of electrical equipment contained in the inspection images.

2.1 Model initialization inspection image
defect detection

In this model, the input inspection images are divided into
detection areas according to three scales, with 19 x 19, 38 x 3,876
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x 76 detection areas. Subsequently, the nine prior defect sizes
obtained from the sample library are assigned to the scale of the
three detection regions, according to their size, meaning that there
are three prior defect detection anchor frames in each region. For
each scale detection area, if the center of the defect is within a
region, that region is responsible for predicting this object, as
shown in Figure 2.

2.2 Multiscale feature extraction of patrol
image based on the convolutional neural
network

The model directly performs feature extraction on the whole
input image and achieves better detection of both large and small
targets. In this study, the DarkNet-53 convolutional neural
network framework is used to extract the features of inspection
images, which consists of 53 convolutional layers, and each
convolutional layer is followed by a linear segmentation
function with leakage (Leaky ReLu) as the activation function
to adapt to the nonlinear case, where five convolutional kernels
have a step size of 2. The convolution result is up-sampled to
obtain a multi-scale feature map. The feature extraction model is
shown in Figure 3.

Conv.
layer

e 4

Feature Map3:
52x52

FIGURE 3
Feature extraction network.
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The model inputs a patrol image with an arbitrary RGB color
pattern, and for the convolution layer, the feature vector output after
the Ith layer convolution operation can be expressed by Eq. 1.

I _ - ! 1
5=f (Ziijx" Pyt bj)'

Here, the range of i, j, k, I, and m depends on the structure of

(1)

DarkNet-53; the range is not stated here but is intended to introduce
the mathematical model of the network, where i represents the
number of feature maps, j represents the number of convolution
kernels, k represents the number of convolution kernels, and I
represents the number of layers of the network. M; represents the
output feature map. x/ ! is the ith feature map of the [ — st layer, k! :
is the j th convolution kernel, * denotes the convolution operation, f
(*) is the bias term, which represents the activation function, and
here, the Leaky ReLu function is chosen as the convolution layer
activation function, which can be expressed as follows:

x,x>0,

0.1x,x<0. )

1~

Instead of pooling layers, this model uses convolution kernels

with step size 2 in some of the convolution layers. After convolution

operations with these convolution kernels, the feature vector size of

the image becomes 1/4 of the original size, and the depth of the

feature vector gradually deepens with the increase in the convolution
window.

2.3 Defect type and location prediction
based on logistic regression

This model first clusters the defect sizes of the samples before
training to obtain nine priori anchor frames, and each scale feature
map is responsible for detecting three scales of anchor frames. In the
YOLO algorithm, the image is first cut into N x N grids, and a
specified number of candidate boxes are selected for each grid, where
N represents the number of meshes of the cut image. The range of N
generally depends on the empirical value. The image feature vectors
extracted by the DarkNet-53 convolutional neural network are input
to the fully connected layer, which performs logistic regression and
finally outputs a prediction vector of dimension N x N x [3 x (4 +
1 + 20)]; it means, for three scales of feature maps, each has N x N
regions, and the position information and confidence of the three

ResNet 1 ResNet 2 ResNet 8 —— ResNet 8 ——p ResNet 4

!
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prediction frames in each region and the defect type information
form a 105-dimensional feature vector. The use of 3, 4, 1, and
20 depends mainly on the empirical values widely used after the
YOLO algorithm.

2.3.1 Defect type prediction

A total of 20 equipment defect types are designed in this research,
and each box uses a set of 20-dimensional vectors to represent the defect
types. If the prediction is for the nth defect, the first value in the vector is
1 and the rest of the values are 0. Each prediction box has a confidence
level, including the possibility of having a target in the region, the defect
type, and the IOU value, as shown in Eq. 3:

P(Class;|Object )*P (Object)*IOUr}' = P(Class;)* 10U, (3)

The model determines the possibility of a class [ fault in a region
based on the features extracted from the DarkNet network as
P(Class;). The intersection ratio of the predicted region area to
the actual region area is I OU;’;‘EZ‘. P (Class;|Object) represents the
probability that the target belongs to a certain defect type under the
premise of the target in the box.

2.3.2 Defect location prediction

truth
pred

of the predicted region, which is calculated as shown in Eq. 4.

The cross-merge ratio IOU "/ is used to measure the accuracy

run _ (AN B)
oU = :
(AUB)

(4)

Here, A and B stand for the actual area and the predicted area of the
equipment defect, respectively. The intersection ratio is the ratio of the
intersection of the predicted area and the actual area to their
concurrent set.

To overcome the instability of direct prediction, this model uses a
relative position to predict the location of the defect, i.e., the predicted
offset of the center of the defect relative to the top left corner vertex of
the region for positioning, which is shown as in Figure 4.

The learning equation for the location of the center point is as
follows:
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{xzcx+a(tx), 5)

y=c¢,+0(t).

Here, (cx,c,) is the position coordinate of the upper left corner
of the region, and (t,,t,) is the deviation of the predicted position
from the actual position.

The adjustment formula of the predicted anchor box size is
expressed as follows:

— fw
{habe ©

Here, p,, and pj, are the size of the priori anchor frame. t,, and t;,
represent the deviation of the predicted anchor frame from the
actual anchor frame.

When learning the anchor box parameters, a target score is first
given to the region inside the box to obtain the confidence level, and
if the confidence level of the anchor box is very low, the anchor box is
directly ignored. For the checkboxes with a confidence level higher
than 0.5, if the mutual IOU value is high and the same object is
predicted, only the anchor box with the highest confidence level is
retained for learning to improve the learning speed.

2.3.3 Repeat detection target elimination based on
non-extreme value suppression

With the aforementioned steps, we will get too many anchor
frames, so we need to choose wisely to eliminate duplicate anchor
frames. In this article, we choose the maximum suppression method to
eliminate duplicate anchor frames. First, low-confidence anchor frames
are suppressed, and these anchor frames most likely do not contain the
target to be detected. The remaining check boxes are then categorized
according to the category of the predicted defect. For targets that predict
the same category of defects, first, the target with the highest confidence
is selected. If the IOUs between this anchor box and other anchor boxes
are higher than 0.5, anchor boxes with lower suppression thresholds
and anchor boxes below 0.5 will not be processed. After that, the
operation is repeated for the remaining unhidden anchor boxes. At the
end of the loop, the remaining anchor frame is considered the defect
target for the final prediction.

3 Model training and optimization
based on the patrol inspection image
sample library

This experiment is set up under the Python framework with
Python version 1.5.1 using the Windows 10 operating system.
Among them, CUDA version 11.4 and Python version 3.8 are
used in the software environment. The hardware environment is
the Windows 10 operating system, the CPU model of the testing
device is 11th Gen Intel (R) Core (TM) i5-11400 @ 2.60GHz, and the
GPU model is NVIDIA GeForce RTX 3060.

3.1 Training sample library construction

In this paper, 5,000 inspection images obtained from a province
are used to form a training sample library, of which 4,000 images form
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FIGURE 5
Example of a tower defect.

FIGURE 6
Example of fitting defects.

FIGURE 7
Example of insulator defects.

the training set and another 1,000 images form the test set. The sample
images are standardized according to the Pascal VOC standard (LUO
et al, 2021). The marking objects include overhead line defects, pole
defects, defects, defects; all the
aforementioned objects constitute a sample library of typical

insulator and hardware
defects of transmission lines. The size of the inspection images is
not exactly the same, and considering that the shooting targets are
often located in the middle of the images during the UAV inspection,
in order to avoid compression and deformation of the images due to
different sizes and to facilitate uniform data processing by the model,
this paper crops the training images from the center to a 3:2 size and
adjusts the pixels to 4,800 x 3,200 to remove the irrelevant parts of the
edges. The defect diagrams of towers, fittings and insulators are shown
in Figures 5-7 respectively.

Frontiers in Energy Research

3.2 Priori defect size selection based on a
clustering algorithm

In this paper, we use a clustering algorithm to obtain the a priori
dimensions of defects. The initial parameters of the model have an impact
on the training convergence speed and training effect, and a good initial
value can accelerate the convergence of the model. Through the analysis
of the sample images, we found that although the fault pattern in different
pictures has discrepancies, the size of the same class of faults is very close.
For example, insulator faults and tower faults are generally larger in size,
and the area of conductor faults is smaller. Therefore, in this study,
k-clustering is used for defect sizes, and nine clustering centers are
obtained. The values of these nine clustering centers are used as the sizes
of the priori anchor frames of the defect detection model, which makes
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TABLE 1 Priori size.

Defect priori size

10.3389/fenrg.2023.1236915

TABLE 2 Defect number statistics results.

Training set Test set

Scale 1 (19 x 19) (512,337), (261,272), (137,144) Hardware 2,496 611
Scale 2 (38 x 38) (39,281), (127,77), (63,66) Pole tower 1,926 516
Scale 3 (76 x 76) (47,33), (26,20), (7,9) Insulator 1,642 437
Ground wire 1,434 328

Total 7,498 1,892

Loss

0 T T u T

0 2000 4000 6000 8000 10000
lterations

FIGURE 8
Improved loss schematic representation of YOLO v3.

the selection of anchor frames better match the sizes of defects in
transmission lines, speeds up the convergence of the model, and
improves the accuracy of defect detection. As shown in Table 1, the
prior dimensions of each anchor frame are presented.

3.3 Loss function design

The loss function of this model consists of three parts: the
coordinate loss function, category loss function, and confidence loss
function. The prediction results of the three scales are calculated
separately and finally summed to obtain the loss function of the
whole network. The coordinate loss function is expressed as follows:

s i * * « 2
lossmard = zizozjiol;bj[ (xi - xi)2 + (yi _yi)z + (\/Wl - \/;)

+(\/E - \/;1)2]
7)

The category loss function is written as follows:

s B _obj *\2 s B bj
_ ) _ ) noobj
105,145 = E o Ej:olij (ci = €;)" + Auoobj E o E;:olii

(i)
(8)
The confidence loss function is expressed as follows:
s -
IOSSpmb = Zi:OZCGCIass (-pi (C) _pi (C)) (9)

Here, s? stands for the number of grid regions, B is the number
of anchor frames in each region, and lf}” denotes if the jth anchor
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FIGURE 9

P-R curves of individual algorithms.

frame in region i is responsible for the predicted target; if true, then it
is 1, otherwise, it is 0. lgf"’bj indicates the opposite.

3.4 Loss function weight adjustment

By analyzing the inspection images, the result shows that there
are no more than four defects on most of the images, while the
number of grid regions generated by each image is much larger than
the number of defects. So this paper adjusts the loss weights of the
regions with and without targets by parameter Aopj and after
experiments, the weight A,40pj = 0.1 is chosen.

There are 20 types of defects in the design of the model, while
there are only four coordinate parameters, which would result in
very little influence of the coordinate parameters on the loss function
if added directly. In order to increase the influence of position
coordinates on the loss function to speed up the convergence, this
paper adds weight Aperg = 5 to the coordinate loss function. The
final loss function is expressed as follows:

loss = Acooral0sscoora + 108Sciass + 108Sprqp. (10)

4 Model testing and result analysis

Although the YOLO algorithm has been updated to the 8th or even
9th generation versions, its essence has not changed much. Moreover,
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Improved YOLO v3

FIGURE 10
Comparison of insulator image defect detection effects.

Improved YOLO v3

FIGURE 11
Comparison of image defect detection effects for ground wire.

Frontiers in Energy Research 76 frontiersin.org


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1236915

Xu et al. 10.3389/fenrg.2023.1236915

SSD ‘ Improved YLO v3

FIGURE 12
Comparison of defect detection effects on hardware image.
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FIGURE 13
Comparison of defect detection effects on tower image.
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TABLE 3 Model results’ comparison.

mAP  Recall Precise  Detection  GFLOPs
(%) (%) (%) (ms)
Faster 69.4 82.7 735 201 140.6
R-CNN

SSD 66.2 76.1 723 102 89.5

YOLO v3 66.9 74.5 75.9 23 185

Improved 68.5 782 79.6 24 16.4
YOLO v3

under the version change, the new versions all add new modules on the
basis of the version of YOLO v3, thereby increasing the complexity of
the model. This corresponds to making the model slower. For this
reason, the most classic YOLO v3 version is used for this article. This
version is different from the 1st and 2nd generation versions; not only
does it have a large change in accuracy but it is also superior in speed.
For this reason, the classic YOLO v3 algorithm was chosen for this
paper. This section conducts simulation experiments based on the
YOLO algorithm on the transmission line inspection image dataset and
compares the performance with other deep learning algorithms to
explore the advantages and shortcomings of the YOLO algorithm in
transmission line inspection applications. Improve the change of the
loss function during the training of the algorithm, as shown in Figure 8.

4.1 Defective sample analysis

The dataset used in this paper can be divided into two parts, the
training and test sets. The respective types of faults contained and
the corresponding numbers are shown in Table 2.

In the training set, the proportions of the four types of faults are
33.29%, 25.69%, 21.90%, and 19.12%, respectively; in the testing set,
the proportions of the four types of faults are 32.29%, 27.27%,
23.10%, and 17.34%, respectively. From the statistical results, it can
be seen that the number of the four types of faults is comparable,
which can better meet the needs of model training and testing.

4.2 Introduction of model evaluation
indicators

In this paper, the detection effectiveness of the transmission
line defect detection model is evaluated by using the recall rate
(recall), the precise rate (precise), and mAP (mean average
precision). The recall rate is the proportion of correctly
detected targets to all targets to be detected. For any detection
frame with a confidence level higher than a set threshold, if the
intersection ratio with a marked target is greater than 0.5 and the
predicted category matches the target, the detected target is
considered correct. The number of all detected correct
detection frames is counted and recorded as NTP, the actual
number of targets to be detected is NG, and the calculation

formula for the check-all rate is shown as follows:

Frontiers in Energy Research

10.3389/fenrg.2023.1236915

Noyp

Recall = —. 11
N (a1
Similarly, the number of detection frames with all confidence
levels satisfying the requirement is ND, and the precise rate is

calculated as follows:

N
Precise = —=.
Np

(12)

mAP combined with the recall rate and the precise rate is usually
used as a more comprehensive indicator to evaluate a model .
Improve the change of Recall during the training of the
algorithm, as shown in Figure 9.

4.3 The result analysis of the patrol
inspection image defect recognition

In this research, the trained model is used to conduct defect
localization and identification tests on the inspection images
acquired in actual operation and maintenance, and the prediction
is considered accurate when the intersection ratio between the
predicted target and the actual target is greater than 0.5. Several
models with quality results are trained to serve as a comparison, and
the experimental results are presented in Table 3.

The effects of defects detected by different algorithms are shown
in Figures 10-13. Wherein Figure 10 is the insulator defect detection
effect diagram, Figure 11 is the ground wire defect detection effect
diagram, Figure 12 is the hardware defect detection effect diagram,
and Figure 13 is the tower defect detection effect diagram. Table 2
shows that Hardwa corresponds to the label “dachicun”, POLE Towr
corresponds to “ganta”, Insulator corresponds to “jueyuanzi’, and
Ground wire corresponds to “dadixian”. Based on the experimental
results, it can be seen that although SSD and YOLO v3 of the single-order
method are slightly inferior to Faster R-CNN of the two-order method in
terms of performance, they have obvious advantages in terms of
computational speed, and the prediction time of YOLO v3 is only
about 1/9 of that of Faster R-CNN. Because of the two-order method,
it is necessary to first show the top candidate frame and then proceed to
the next step, while the single-order method directly realizes the end-to-
end one-time process to complete the object detection task. So SDD and
YOLO v3 have a clear advantage in speed. The double-order algorithm
Faster R-CNN is slow, but its improvement on mAP is not obvious, and it
is difficult to achieve fast object detection tasks. The improved YOLO
v3 algorithm has only 16.4 GFLOPs. Compared to other algorithms and
unimproved algorithms, the improved algorithm has a significant
improvement in parallel processing speed. The performance of the
improved YOLO v3 model on transmission line inspection images is
also greatly improved, its accuracy far exceeded that of the Faster R-CNN
model, and the recall rate is similar, but it still maintains the advantage of
the single-order method in speed.

In addition to the application scenarios mentioned in this article,
there are also the following scenarios:

(1) Testing the performance of the improved YOLO v3 algorithm in

different transmission line scenarios, such as different types of
transmission lines and transmission lines in different environments.
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(2) Applying the improved YOLO v3 algorithm to other types of
equipment, such as unmanned vehicles and helicopters, to
detect the performance differences of different equipment in
transmission line defect detection.

5 Conclusion

At present, the target detection algorithms applied to the defect
detection of transmission lines are mainly fast R-CNN. They have high
recognition accuracy but slow detection speed and are unable to realize
the recognition of the large amount of video data generated in UAV
inspection. This study proposes a fast detection method for
transmission line defects based on YOLO v3. Its detection speed is
close to 50 frames per second, which can meet the needs of video
inspection. At the same time, in the dataset of this paper, the rapid
detection method of transmission line defects based on YOLO
v3 achieves a detection rate of 78.2% and a probability of 79.6%.
Under the premise of ensuring the detection speed, it has improved
compared with SSD and YOLO v3 in both indicators. The detection rate
is only 5.4% lower than that of Faster R-CNN-based detection methods.
At the same time, mAP is also improved compared with the single-
order algorithm. Therefore, this paper argues that the transmission line
detection method based on YOLO v3 can make up for the shortcomings
of the Faster R-CNN algorithm and realize the rapid detection of
transmission line defects based on video images.

The issues that still need to be further explored are as follows:

(1) Insufficient diversity of the dataset: the dataset used in this
article comes mainly from real-life images of transmission lines
in a certain region. Although it covers a certain degree of
scenarios and defect types, there may still be limitations. In
order to improve the generalization ability of the algorithm, we
can supplement transmission line data from other regions to
increase the diversity of the dataset.

2

~

The robustness of algorithms is difficult to evaluate: transmission
line defect detection often faces various complex environments and
lighting conditions, so the robustness of algorithms is crucial. This
article did not evaluate the performance of the improved YOLO
v3 algorithm under different environments and lighting conditions.

These issues are urgent research directions, and we need to
conduct further research.
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As the penetration rate of new energy in the power system gradually increases and
the complexity of cascading faults increases, it is of great significance for the
power system to comprehensively explore the chain of cascading faults in the new
energy power system and quickly determine the closely related lines in the
cascading faults. In response to the lack of consideration in existing research
of the changes in the importance of transmission lines after the introduction of
new energy, this paper proposes a cascading failure prediction index that
integrates the importance and operational status of transmission lines in new
energy power systems and applies it to the search for cascading failures in new
energy power systems. First, the development characteristics of cascading faults
were analyzed, and the main factors influencing cascading faults were identified:
the importance of the transmission line and operating status of the new energy
power system. Based on these factors, a prediction index for cascading faults was
established, and the accident chain was searched using this index. Then, the FP-
growth algorithm was used to analyze the lines in the fault chain concentration,
and based on the analysis results, the correlation relationship suitable for the
cascading failure lines in the new energy power system was determined. Finally, a
simulation was conducted on an IEEE 10 machine 39 node system containing new
energy wind turbines, and the results verified the effectiveness of the proposed
indicators and strategies.

KEYWORDS

cascading failure, accident chain, new energy, line importance, association relationship

1 Introduction

In recent years, major power outages have occurred frequently worldwide, mostly caused
by chain failures. As the proportion of new energy in the power system gradually increases,
cascading failures have become complex. Chain failures are mainly caused by the failure of
certain lines in the power grid and their withdrawal from operation, affecting the remaining
branches of the power grid (Deng et al., 2022). Therefore, a comprehensive exploration of
chain failures in the new energy power system and the analysis of closely related lines are of
great significance for effectively preventing chain failures and major power outages.

At present, the research methods for cascading faults in power systems are mainly
divided into two categories: the first type is based on complex system theory and complex
network theory (Jia et al., 2016). The complex system theory evaluates the risk of cascading
faults from an overall perspective by analyzing the self-organizing criticality of the power
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system. The models proposed based on this theory include OPA
model, CASCADE model, branch process model, and implicit fault
model. These models do not focus on the physical details of the
development process of cascading faults, but rather emphasize the
initial conditions and macroscopic characteristics of cascading faults
in the power grid, and therefore cannot describe the electrical
characteristics of the power grid in detail Actual grid operation
status. Complex network theory uses metrics such as degree values,
degree distributions, and betweenness centrality to describe
networks and the impact of network topology on cascading
faults. Models based on this theory include small world network
models, Watts construction models, Holme and Kim’s separated
center models, Motte and Lai models, Crucitti and Latora’s effective
performance models, etc. These models simplify the consideration
of physical processes in actual systems, Therefore, there is a gap
between the actual physical process and the actual operation status
of the power grid, which cannot be analyzed. The second type is
based on the theory of power system analysis, and the strategy of
pattern search is more closely related to the actual development
process of cascading faults. For example, Li et al. proposes a fault
chain model for AC/DC hybrid systems based on probabilistic
power flow and short-circuit ratio theory, fully considering the
impact of wind power uncertainty (Li et al., 2020). Huang et al.
proposes a power grid fault assessment model considering the
impact of typhoons based on existing power grid cascading fault
models based on fault chains (Huang et al., 2019). Zhu et al.
established a complete search model for the interlocking fault
chain of AC/DC systems in large power grids, pruning the search
based on the risk of line outage while ensuring accuracy and
improving search efficiency (Zhu et al,, 2018).

The current research on cascading faults mainly focuses on pure
AC systems, considering the line distance and operating status of
traditional power grids. For example, Liu et al. defines the system
power flow entropy based on the entropy definition of the system
and the percentage of the specified load rate components in the total
number of components. The minimum load loss is obtained by
taking the minimum system loss load as the objective function, and
the severity index of load loss after a component failure in the ith
stage of cascading faults is standardized. A system brittleness
entropy index is proposed based on the combination of system
index after

power load loss severity

standardization treatment. It can calculate the brittleness risk

flow entropy and

entropy corresponding to different stages of cascading faults, and
be used to evaluate the impact of brittleness propagation process and
component faults on the power grid (Liu et al., 2012). Qi et al.
establishes a cascading failure model based on the power flow
transfer factor and line topology distance and uses the entropy
weight method to more comprehensively evaluate the risk of an
accident chain (Qi et al., 2016). Xu et al. proposes the identification
of critical power lines in the power grid based on the intermediate
value of power flow (Xu and Wang, 2019). The randomness and
volatility of new energy output (Wang et al, 2021) lead to
uncertainty in the inline power. Zeng et al. established a line
overload model accounting for fluctuations in new energy output
through stochastic power flow and analyzed the risk of cascading
faults in power systems containing wind power based on the
overload model (Zeng et al, 2014; ATHARI and Wang, 2018).
Ni et al. used the risk of line overload induced by fluctuations in new
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energy as a weighting coefficient and combined it with power flow
transfer entropy to propose a weak link identification method for
transmission system cascading faults (Ni et al., 2019). The above
research mainly focuses on analyzing the impact of the randomness
of new energy output on the risk of line overload without fully
considering the impact of the introduction of new energy on the
importance of the line, resulting in incomplete accident chains.
Therefore, it is necessary to comprehensively consider the changes
in the importance and operational status of the line brought about by
the integration of new energy into the power grid to obtain a more
complete set of accident chains.

In response to the shortcomings of current research methods, we
propose a cascading failure prediction index that integrates the
importance and operational status of new energy power system
lines. The main research content of this article includes the search
for a chain of failures in new energy power systems and an analysis
of the correlation relationships between chain failure lines. First, the
main factors leading to the expansion of cascading faults were
identified, and a prediction index for cascading fault accident
chain routes based on the importance and operating status of
new energy lines was proposed, which was used for accident
chain search. Then, by obtaining the set of accident chains, the
frequent pattern (FP) growth algorithm is used to analyze the lines
within them, and the linear correlation relationship of cascading
failures in the new energy power system is determined based on the
analysis results.

2 Cascading failures and accident chain

The accident chain model originates from safety science and is
made up of chains and correlations. The theory of accident chains
suggests that major accidents are rarely caused by a single cause but
are induced by relevant factors when multiple conditions are met
simultaneously. A power system blackout accident is not caused by a
single fault but rather by a chain effect of concurrent accident
sequences. Assuming that the power grid has n fault chains, the
set of fault chains L and the fault chains L; are represented as

L= {Ela EZ)")En} (1)
I_:i = {Tx'b TiZ) Tim,'} (2)

In the formula, T;; is the jth intermediate link of the ith accident
chain, where j = 1, 2,., m;, and the intermediate link can be a branch
or a node.

The logical relationship between the system’s major power
outage accident, accident chain, and intermediate links in the
accident chain is shown in Figure 1. The logical relationship
between system power outage accidents and the set of fault
chains {L;} is an OR gate, while the logical relationship between
the fault chain and the set of intermediate links {Tj} is an AND gate.
The gradual triggering of intermediate links in the same accident
chain has directionality, and any triggering will lead to the triggering
of the accident chain and major power outage accidents.

Accident chain triggering is a small probability event in the
power grid, and the triggering probabilities of different accident
chains vary greatly. The process triggered by the accident chain has
different impacts on the safety of the power grid. Using risk
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FIGURE 1

Dynamic logic diagram of a system power outage and accident chain.

assessment theory (Liu et al., 2016) to comprehensively evaluate the
different characteristics between the accident chains, the risk
assessment of the accident chain needs to determine the
probability of occurrence of each link in the accident chain. The
above set of fault chains provides all possible forms of cascading
faults, but the probability of each fault chain occurring is not the
same, so the criticality of lines in different fault chains also varies.

The diversity of causes and evolution modes of chain failures
allows them to be classified into different types (Fang et al., 2022).
The main driving factors for the evolution of chain faults include
overload dominant, coordination dominant, and structural
dominant. The coordinated dominant fault evolution refers to
the main driving factors of major power outages, which are the
unreasonable setting of secondary devices such as relay protection,
low equipment reliability, etc., leading to the expansion of chain
faults, caused by improper coordination of protection devices or
equipment in the system; Structural dominated fault evolution refers
to the significant damage to the power grid topology caused by
unexpected disconnection of interconnection lines between regional
interconnected power grids, premature operation of splitting devices
in the early stages of chain fault development, and other factors that
trigger major power outages. This is caused by structural issues or
design defects in the system. The most important type is the
overload-dominated type, and its evolution process is as follows:
when certain components of the power system are disturbed/faulty
and exit operation, the power flow passing through the faulty line
will transfer to the surrounding line. If the surrounding line is
affected by the overload protection action of the power flow, this will
cause a new round of component removal and power flow transfer,
and the above process will be repeated until a major power outage
occurs. In this evolutionary mode, the frequency and voltage
indicators of the power system have relatively small changes and
have little impact on cascading faults. Overloading of power flow
and the removal of certain lines are the main driving forces for the
evolution of cascading faults.

A new type of power system with new energy as the main body,
large-scale wind and solar power is replaced by conventional units
through inverter grid connection, which reduces system inertia,
reduces disturbance resistance, and increases the difficulty of
frequency control. The asynchronous power grid interconnected
by high-voltage direct current transmission between large regions
has improved the security of cross regional power grids, but the
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support capacity of AC power grids in each region has decreased,
and frequency stability has become more prominent. The power
system is always subjected to external disturbances during
operation, which can lead to power imbalance, transient
frequency response, and significant spatiotemporal distribution
characteristics. When the electrical distance between new energy
and synchronous machines is relatively close, the voltage support
characteristics of the power grid are strong, and new energy and
reactive power compensation overvoltage do not play a dominant
role. The problem of new energy machine terminal voltage
exceeding the limit caused by the power angle swing
characteristics of synchronous machines is more serious. At the
same time, after a power grid failure, the power grid experiences
continuous DC commutation failure or locking, resulting in a
change in the grid structure and a shift in power flow. After the
transfer of power flow in the power grid, it may cause long-term
overload or transient low voltage and high current of the AC line,
causing the AC line to be cut off; It may also cause local low voltage
or local high voltage, and new energy units may be disconnected due
to high voltage crossing failure or low voltage crossing failure.

With the large-scale integration of new energy into the power system,
cascading faults in power systems containing new energy exhibit
characteristics different than those of traditional power systems. On
the one hand, new energy equipment has characteristics such as strong
randomness and uncertainty, and lines with new energy equipment are
more susceptible to faults in other lines, which may lead to chain failures.
On the other hand, the different positions of new energy units in the
power grid can cause changes in the importance of the line, making
searching for chain failures and accident chains more complex. In
summary, this article proposes a cascading failure prediction index
that integrates the importance and operational status of new energy
power system lines and designs a fault chain search strategy.

3 Cascading failure accident chain
prediction

3.1 Establishment of the initial fault set

The identification of the initial fault link is the primary step in
establishing a cascading failure accident chain model. For the new
energy power system, an initial fault indicator is established based on
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the distance between the line and the new energy unit and the impact
index of power flow transfer entropy. By selecting a branch that is
prone to subsequent faults to be the initial fault branch, the speed
and accuracy of initial fault identification can be improved.

a) Transmission capacity of line i. Each line in the power grid has
different structural importance, with lines closer to new energy units
having higher structural importance. Line faults with higher
structural importance are more likely to lead to cascading faults.
To measure the importance of transmission lines in the topology of
new energy power systems, this article defines the transmission
capacity of power and load nodes on (s, t) branch i as:

CiL min

Aic (st) L ﬁ,n:x

kie(s,t) = (3)

In the formula, C; is the maximum transmission capacity including
branch i; L, is the shortest transmission distance between branch i
and new energy units; and L s the length of the line with the longest
transmission distance in the power grid. When there is a change in
power between the power source and the load node pair (s, t), the power
change aje (ss) including branch i reflects the contribution of branch i to
the power load node pair, which is:

Xms - an - th + Xnt

Ane (s,t) = x (4)
mn

The formula: X, represents the values of the mth row and sth
column in the reactance matrix of the power network nodes, and
XnsXmt> Xne are defined similarly; x,,, is the reactance value of the
branch L, in the power network.

b) Entropy impact index of power flow transfer based on the distance
between the line and new energy units. To measure the importance of
branches in the operation status of the power system, this article combines
the concept of power flow transfer entropy in reference (Cao et al., 2021)
to determine the impact of branch disconnection on other branches of the
system. The concept of power flow transfer entropy is as follows: first,
when branch i is disconnected, branch k shares the power flow increment
of branch i transfer. Then, the impact rate of branch i on branch K’s power
flow transfer is defined. Then, the power flow transfer entropy of the
branch is defined based on the power flow distribution entropy of the
node. Finally, the vulnerability index of branch consequences is defined
based on the power flow transfer entropy. When the power flow impact
rate of each branch is equal, the power flow transfer entropy reaches the
maximum value, the possibility of each branch crossing the limit is the
lowest, and the node disturbance impact that the system bears is the
smallest; When the impact of the power flow is all concentrated on a
single line, the minimum entropy of the power flow transfer is 0, which is
most likely to cause branch out of limit faults. The relevant formulas are
defined as follows:

If branch i is disconnected, the impact value #;; on the
transmission margin of branch k is:

APKi _ P TPy,

= )
pK.max_pko pkmax_pKu

ki =

In the formula, Py ;qy is the maximum active power that branch
k can bear; A Py; is the amount of active power transfer shared by
branch k after branch i is disconnected; Py is the initial active power
of branch k; and Py; is the active power borne by branch k after
branch i is disconnected.

Frontiers in Energy Research

10.3389/fenrg.2023.1283436

The ratio di of the transmission margin influence value of
branch k to the sum of the transmission margin influence values
of all branches is defined as:

ki
dy = ="— (6)
¢ 2 My

keN

In the equation, N represents the set of all other branches in the
system except for branch i.

Therefore, considering the influence of the transmission margin
on branch i, the power flow transfer entropy H; is:

Hi=-) diInd, @)

keN

Based on the power flow transfer entropy H; of the branch
transmission margin, combined with the initial power flow Py of
branch i, the shortest transmission distance L ,;, between branch i

. 1i
and new energy units, and the length L}

of the longest
transmission distance in the power grid, the impact index of
power flow transfer entropy C; based on the distance between
branch i and new energy units is defined as:
oL ®)
H iL min
According to Equation 8, the greater the initial power flow borne
by branch i is, the closer it is to the new energy unit, and the smaller
the power flow transfer entropy is, the greater the impact of branch
I’s interruption on the system, which is more likely to cause
subsequent system failures.

c) Initial fault indicator. Based on the transmission capacity of the
above line and the impact index of power flow transfer entropy
based on the distance between the line and the new energy unit,
the initial fault index of branch i is defined as:

E =C x kie(s,t) 9

We set an appropriate selection threshold based on the initial
fault indicator, select the branches with larger indicator values to
form the key branch set, and use the key branch set that is prone to
causing subsequent cascading faults as the initial fault branch set.

3.2 Prediction of intermediate links

The higher the penetration rate of new energy in the power grid is,
the stronger the dependence of the power grid on new energy, and the
fluctuation of the output of new energy units leads to uncertainty in the
transmission power of the line. Therefore, the more new energy units
connected to line i, the greater the probability of line i failure. The
intermediate number of lines refers to the number of times the
transmission line passes through the shortest path formed between
all generator buses and load buses in the power grid, which can reflect
the importance of the transmission line in the topological structure of
the power grid. The formula is as follows:

k¢ZVNkj (l)(l +ﬁ)
b = ey
i z Nkj

k#jev
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Flow chart of accident chain generation

In the formula, iis the line number, Zk#ev Ny; is the number of
shortest paths formed between all generator buses and load buses in
the network, V is the set of nodes in the network, Zk;&jev Ny; (i) is
the number of times the transmission line i passes through the
shortest path between all generator buses and load buses in the
network, and f3 is the ratio of new energy power to the total power of
the grid in the input power of the generator bus.

The load rate y; of line i is defined as:

P

= 11
yl ‘P i, max ( )

In the formula, P; is the power borne by the line.

By quantifying the above-influencing factors and combining
them with the proportion of new energy equipment, the
intermediate link prediction indicators can be obtained:

D; = wry; + (A)Zb,‘ (12)

In the formula, w; and w, are the weights of the line correlation
coefficient, and the line dielectric constants are generally taken as
w; = 0.5 and w, = 0.5.

3.3 Criteria for the end of the accident chain
search

When studying major power outages both domestically and
internationally, we found that the process of major power outages
caused by cascading faults is often accompanied by phenomena such
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as power line overload and bus voltage fluctuations. These
phenomena ultimately lead to instability or system disconnection
in the entire power system. After the system is disconnected, the
power balance between various subsystems is disrupted, leading to a
series of voltage and frequency fluctuations. In severe cases, this may
result in the inability of the power flow to converge or lead to large-
scale power outages. In addition, to ensure the continued operation
of various subsystems, it is usually necessary to cut off some
generator sets and loads, but these operational measures may
further expand the power outage range. Notably, even if there is
no significant load loss during system disconnection, the power
network will still fall into a relatively dangerous operating state,
which poses a potential risk of major power outages. Therefore,
system disconnection or nonconvergence of power flow has been
recognized as a criterion for power outage accidents. The process of
generating a chain of failures is shown in Figure 2.

4 Association analysis

We analyze the correlations between multiple lines in the
accident chain set of cascading faults, and the information
contained in the accident chain set is discovered. The correlation
here refers to the frequent occurrence of certain lines in various
development modes of chain failures, which exhibit a relatively close
connection between the front and back in the accident chain and
exhibit certain regularity. Many scholars at home and abroad have
researched this topic and proposed many theories and algorithms
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for correlation analysis. This article uses the FP-growth algorithm to
explore the correlation in the accident chain.

First, we explain the relevant concepts in correlation analysis:

a) Item or candidate: An item in the database that has a unique
identifier. Assuming the database is composed of m attributes (A,
B,., M), then the first order itemset is {{A}, {B},. . ., {M}}. The second
order term set is formed by pairing elements of the first order term
set, namely, {{A, B}, {A, C}.,, {A, M},., {B, M},., {L, M}}, and so on.

b) Support: Refers to the percentage of the number of supports
XY corresponding to the antecedents and antecedents of a rule and
the total number of AllSamples recorded.

number (XY)

num (AllSamples) (13)

Support (X,Y) = P(XY) =

¢) Frequent term: Refers to k-order candidate options that
occur no less than the preset minimum support threshold in the
dataset. At the same time, k-order candidates with occurrences
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less than the set minimum support threshold are called
nonfrequent terms.

Then, the following are the detailed steps of the FP growth
algorithm, the FP-Growth algorithm flowchart is shown in Figure 3:

a) Build FP tree: First, the FP-growth algorithm traverses the
dataset once, calculates the frequency of each item, and sorts the
items in descending order of frequency. Subsequently, these sorted
items are used to construct an FP tree. The FP tree is a compact data
structure where each node represents an item, and the number of
occurrences of that item in the dataset is recorded on the node. Each
item and its corresponding frequency form a header table.

b) Build the conditional pattern base: For each item, the FP-
growth algorithm constructs its corresponding conditional pattern
base. The conditional pattern base refers to the collection of all prefix
paths ending with the current item. Each prefix path corresponds to
a frequency, while the other items in the path form a new itemset.

¢) Recursive construction of the FP tree: For each item, a new FP
tree is recursively constructed by utilizing its conditional pattern
basis. This process iterates until no more conditional pattern bases
can be constructed.

d) Mining frequent patterns from FP trees: By traversing the FP
tree, all frequent patterns can be discovered. Starting from the root
node of the tree, we gradually construct frequent patterns along
different paths. Each path corresponds to a frequent pattern, and we
can form a complete frequent pattern by adding each item on the
path one by one.

The main advantage of the FP-growth algorithm is that it avoids
the generation process of candidate sets, thereby reducing
computational and storage costs and making it more efficient in
processing large-scale datasets. In addition, this algorithm can fully
utilize the structure of the FP tree to quickly discover frequent
patterns. At the same time, it also supports recursive construction
and mining of conditional pattern bases for frequent patterns.

Finally, the key path mining process is carried out as shown in
Figure 4. First, we identify the initial fault and generate a set of chain
failures based on corresponding indicators. Then, the data of the
accident chain are formatted, and the appropriate minimum support
is selected. A frequent item mining program based on the FP-growth
algorithm is used to mine the frequent items of the accident chain,
obtaining a set of frequent items that have a strong correlation with
the initial fault. The lines contained in the frequent item set have
strong correlations with the evolution of cascading failures.

5 Example analysis

On the basis of the IEEE39 node system structure, the
synchronous units connected to Bus 30, Bus 31, Bus 33, and Bus
38 were replaced with doubly fed asynchronous wind turbines of the
same generation capacity, and corresponding reactive power
compensation and protection devices were configured for the
wind turbines to obtain the IEEE39 node system containing new
energy equipment, as shown in Figure 5.

The power generation and load capacity of the IEEE39 node
system with renewable energy equipment are shown in Table 1.
Among them, the power generation of the wind turbine connected
to bus 30 is 250MW, the power generation of the wind turbine
connected to bus 31 is 520MW, the power generation of the wind
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FIGURE 5
IEEE39 node system diagram with renewable energy equipment.

TABLE 1 Power generation and load capacity of IEEE 39 node system including
renewable energy equipment.

Index Unit (MW)
Total power generation 6,140
Coal power generation 1,068
Nuclear power generation 1,840
Other energy generation 1,000
Wind turbine power generation 2,232
Total load capacity 6,097.1

turbine connected to bus 33 is 632MW, and the power generation of
the wind turbine connected to bus 38 is 830 MW. The total power
generation of wind turbines is 2232 MW.

Based on the relevant formulas in section 3.1, using Python
software and DIGSILENT software, the values of the transmission
capacity index and the power flow transfer entropy impact index of
the line are first obtained. The values of the above two indicators are
multiplied to obtain the initial fault index value. The initial fault
index value is listed in descending order to obtain the initial fault
index of some lines, as shown in Table 2. The initial fault index
threshold is set to 0.3.
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From Table 3, it can be seen that after the disconnection of lines
26-28, the intermediate link prediction index of lines 21-22 is
relatively large, which can be used as the next level of
disconnection line. Continue to calculate the intermediate link
prediction index, and obtain the relevant index values as shown
in Table 4.

According to the indicators mentioned in reference (Li and Jin,
2018) and section 3 of this article, the lines of the IEEE39 node
system containing renewable energy equipment were traversed.
Reference (Li et al., 2020) first starts with DC power flow and
combines matrix theory to propose a method for determining the
power flow transfer area and calculating the power flow transfer
amount based on network topology structure; Then, based on the
above methods, the distribution entropy of power flow transfer and
the sensitivity entropy of load impact were defined, and a
comprehensive evaluation index for key lines was proposed by
combining the two entropy indicators mentioned above; Finally,
this indicator is used to identify key lines in power grid cascading
faults. The chain of cascading faults was screened according to the
same threshold, as shown in Table 5 and Table 6, respectively.

Compare the selected accident chains in Table 5 and Table 6 of
the article, it can be found that under the same threshold setting, the
accident chain search model proposed in this article can identify
more accident chains. One reason is that the model in reference (Li
et al,, 2020) sets that the system will undergo splitting after some
lines are disconnected, and the power flow transfer situation after
the above line disconnection is no longer considered. The selection
range of the initial line is small, while the model in this paper only
sets a threshold for the selection of the initial faulty line, resulting in
a larger search range. The second reason is that reference (Li et al.,
2020) mainly considers the impact of network topology changes on
power flow transfer, only proposing relevant indicators for power
flow transfer, without considering the structural importance of the
line itself in the power grid, and without considering the impact of
new energy access on the development of cascading faults. When
searching for fault chains in power grids containing new energy, it is
easy to miss some lines and the obtained fault chains are not
comprehensive enough.

Taking the minimum support = 3, we construct an FP tree
according to the steps described in Section 4, and grow from the
empty set to obtain the FP tree shown in Figure 6. The header
pointer table shown in Figure 5 contains the element items
contained in the dataset and their occurrence times and connects
all similar element items in the FP tree through a curve. A straight
line connecting nodes represents the relationship between a parent
and a child, with the parent on top.

Correlation analysis is performed on the lines in the
IEEE39 node cascading fault chain set containing new energy
equipment using the FP-growth algorithm, as shown in Table 7.
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TABLE 2 Sorting table of initial fault indicators of the line.

mission capacity indicators Entropy impact index of tidal current transfer Initial fault indicator
Lys-2s 0.9263 09133 0.8460
Lign 0.7698 0.9867 0.7596
Lo-s9 0.9685 0.4169 0.4038
Lig- 0.4233 0.8326 03524
Loz 1 0.4695 0.6587 03093

From Table 2, it can be seen that the initial fault index of lines 26-28 is much greater than 0.3, and it can be considered that lines 26-28 are prone to subsequent chain faults. So, based on the
intermediate link indicators, we continue to calculate the relevant indicator values for lines 26-28, as shown in Table 3.

TABLE 3 Index values of other lines after removing the initial faulty line 26-28.

Line dielectric index Line load rate Intermediate link prediction indicators
Lo 0.312 1.023 0.1596
Lis-19 0.269 0.864 0.1162

TABLE 4 Index values of other lines after cutting off the line 26-28 and the line 21-22.

Line dielectric index Line load rate Intermediate link prediction indicators
Ly 0.269 1.290 0.1735
Lig-2s 0.302 1.139 0.1720

From Table 4, it can be seen that after the disconnection of lines 26-28 and 21-22, the indicator values of lines 22-23 are relatively high. Therefore, lines 22-23 are selected as the next level of
disconnection line, and the fault chain search continues until the total number of disconnected lines reaches the specified number or the power grid flow does not converge.

TABLE 5 Accident chains screened based on literature (Li and Jin, 2018) indicators.

Number Number

1 23-24, 21-22, 02-03, 26-27, DFIG 08, 08-09, 01-39 6 05-06, 06-07, 10-13, 02-03, 21-22, 14-15, DFIG 10
2 02-25, 21-22, 22-23, DFIG 07 7 07-08, 05-06, 04-14, 08-09, 03-04, 01-02

3 28-29, 16-19, 21-22, 16-24, 26-29, 02-03 8 01-39, 21-22, 22-23

4 01-02, 21-22, DFIG 05,22-23 9 04-14, 05-06, 06-07, 15-16, 16-19, DFIG 10,02-25
5 08-09, 21-22, 22-23, 02-03, 17-27, DFIG 07, 16-19

TABLE 6 The accident chain selected based on the indicators in this article.

Number Number

1 26-28, 21-22, 22-23, 16-19, DFIG 05, 05-06, 06-07, DFIG 07, DFIG 7 17-27, 21-22, 23-24, DFIG 07, 16-19, DFIG 05, 02-03, 02-25,
10, DFIG 08 DFIG 08
2 16-21, 23-24, DFIG 07 8 17-27, 21-22, 23-24, DFIG 07, 02-03, 10-13, DFIG 10, DFIG 08,
26-28
3 01-39,21-22,22-23, 09-39, 16-19, DFIG 05, DFIG 07, DFIG 10, DFIG 9 15-16, 21-22, 22-23, 16-19, DFIG 05, 05-06, 06-07, DFIG 07, DFIG
08, 04-05 10, DFIG 08
4 16-24, 21-22, DFIG 07 10 16-19, DFIG 05, 02-03, 21-22, 26-27, 23-24, 01-39
5 03-18, 21-22, 22-23, 16-19, DFIG 05, 13-14, 04-05, DFIG 07, DFIG 11 05-06, 21-22, 16-24, DFIG 07, 10-13, 10-11, 16-19, DFIG 05, DFIG
08, DFIG 10 10, DFIG 08
6 07-08, 05-06, 13-14, 21-22, 23-24, DFIG 07, DFIG 05, DFIG 08, DFIG 12 14-15, 21-22, 16-24, DFIG 07, 05-06, 06-07, 04-14, DFIG 08, DFIG
10, 08-09 05, DFIG 10
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TABLE 7 Accident chain set correlation analysis results of IEEE 39 node system including new energy equipment.

Ist order frequent term
2nd order frequent term

3rd order frequent term

The correlation analysis results of the accident chain set are obtained
by using the FP tree algorithm to search for frequent itemsets, with a
minimum support of 3 set for frequent itemsets. Firstly, combined
with Figure 6, search for the prefix path of line 2-25. In the figure
above, search for the first 2-25 from left to right. By tracing up to the
root node, you can obtain the first prefix path as {16-19, 17-27}.
Then, search for the second 2-25, and then trace up to the root node
to obtain the second prefix path as {19-33, 16-19, 17-27}. Then,
search for the third 2-25, and then trace up to the root node to
obtain the third prefix path as {19-33, 17-27}, Finally, search for the
fourth 2-25, and then trace back to the root node to obtain the
fourth prefix path as {19-33}.

Then, based on the support of each prefix path in the search line
2-25 mentioned above, it can be concluded that the support of prefix
paths {16-19,17-27} is 1, {19-33, 16-19, 17-27} is 3, {19-33, 17-27}
is 1, and {19-33} is 1. By adding the support of each line in the prefix
paths above, it can be concluded that the support of lines 16-19 is 4,
lines 17-27 are 5, and lines 19-33 are 5. Due to the fact that the
support of these three lines is greater than the minimum support of
3, these three lines can be used as a combination in the third order
frequent term set.

By analyzing the correlated lines in the table, we find that in the
IEEE39 node system, frequent items such as lines 2-30, 6-31, and
19-33 are the outgoing lines of new energy generators. Frequent
items such as lines 17-27, 16-19, 21-22, and three to four are load
supply lines. In the IEEE39 node system, lines 17-27, 16-19, and
19-33 are a set of transmission cross-sections. These lines have a
strong correlation with the evolution of cascading faults in power
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2-30, 2-25, 25-37, 1-39, 17-27, 16-19, 6-31, 19-33, 22-35, 21-22, 3-4, 5-6

2-30, 1-39; 17-27, 19-33; 2-25, 3-4; 22-35, 21-22; 17-27, 16-19; 3-4, 5-6

17-27, 16-19, 19-33; 2-25, 34, 5-6

systems containing new energy, which can easily lead to large-scale
power outages. Therefore, certain measures should be taken to
ensure the safe and stable operation of these lines.

After calculation and simulation, 30 accident chains were
obtained, and the probability table of closely related lines
appearing in the same accident chain is shown in Table 8. At the
same time, any combination of 7 lines was selected to obtain the
probability of appearing in the same accident chain as shown in
Table 9. From Table 8, it can be seen that the probability of closely
related line combinations appearing in the same accident chain is
higher than 50%, while in Table 9, the probability of any
combination of lines appearing in the same accident chain is
mostly lower than 50%, with only one combination having a
slightly higher probability than 50%. This indicates that during
the occurrence of chain failures, these line combinations have a
higher probability of consecutive failures. By comparing the
calculated line combinations with the line combinations obtained
using the FP Growth algorithm, it can be found that the combination
of tight lines is roughly the same, verifying the correctness and
effectiveness of the FP Growth algorithm.

Calculate the probability of each line appearing in each accident
chain searched in this article, and rank it from high to low to obtain
the probability of some lines appearing as shown in Table 10. The
more times a line appears in the accident chain, the easier it is for
chain faults to spread to the line or cause other line faults, and the
higher the criticality of the line. Lines with a probability of
occurrence higher than 0.65 are designated as critical lines. It can
be seen that the lines in the table are all critical lines, and adding
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TABLE 8 Probability of closely related line combinations appearing in the accident chain.

Closely related line combinations The probability of appearing on the same accident chain

02-30, 01-39 0.520
17-27, 19-33 0.863
02-25, 03-04 0.905
22-35,21-22 0.556
17-27, 16-19 0.883
03-04, 05-06 0.895
17-27, 16-19, 19-33 0.503
02-25, 03-04, 05-06 0.556

TABLE 9 Probability of occurrence of any combination of lines in the accident chain.

Any combination of lines

The probability of appearing on the same accident chain

25-26, 07-08 0.095
04-05, 28-29 0.135
22-23, 01-02 0.188
02-25, 14-15 0.266
17-18, 05-06 0.505
25-26, 07-08, 03-04 0.036
22-23, 01-02, 10-11 0.163

TABLE 10 Probability of partial lines appearing in the accident chain.

Line Probability

22-23 0.830
16-19 0.789
17-27 0.753
16-24 0.733
19-33 0.652

certain protective measures to these lines can reduce the occurrence
of large-scale chain failures.

From Table 11, compared with the results of references (Xu
and Zhi, 2016; Shan et al., 2018), the identification results of this
article have more than half of the same lines, which verifies the
rationality of the fault chain search in this article. Reference
(Shan et al., 2018) first defines the unit entropy comprehensive

TABLE 11 Line identification results using different methods.

load rate by integrating the comprehensive load rate and power
flow entropy of the power grid; Then, based on the HITS
algorithm, the importance index of power grid nodes was
defined, and a line outage consequence evaluation model was
established by combining the unit entropy comprehensive load
rate and the importance index of power grid nodes; Then, the
probability of line breaking due to power flow exceeding the limit
was defined, and a relative probability evaluation model for line
breaking was constructed based on the fault chain of the line
itself; Finally, based on the consequences of line disconnection
and the probability of line disconnection, the fragile line index of
the power grid was defined. Reference (Shan et al., 2018) suggests
that the power flow impact on the line comes from random load
fluctuations, without considering the importance of the line in
terms of the new energy topology structure relative to the entire
network, resulting in the omission of lines 4-14, 4-5, 22-23, and
16-24. These lines can break under N-1 accident conditions.
Reference (Xu and Zhi, 2016) uses the DC power flow method to
quickly estimate the power flow increment and load rate of other

Method Line identification results

Proposed method

17-27,4-5,22-23,16-24,16-19,19-33,2-25,3-4,5-6,6-11,10-13,23-24,10-11,4-14,4-5

Reference Shan et al., 2018 method

19-33,2-25,3-4,5-6,6-11,10-13,23-24,17-27,16-19,10-11,13-14,26-27,21-22,15-16

Reference Xu and Zhi, (2016) method

23-24,10-11,4-14,2-3,22-23,16-24,17-27,16-17,19-33,2-25,3-4,5-6,6-11,10-13
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lines in the system when the line is disconnected. The weighted
power flow impulse entropy is used to reflect the influence of the
target line on the transfer power flow caused by other line
disconnections, and the weighted power flow distribution
entropy is used to reflect the impact of the target line
disconnection on the load rate distribution of the system line.
By combining weighted power flow impact entropy and weighted
power flow distribution entropy, a comprehensive vulnerability
index for transmission lines is defined to identify vulnerable lines
in power grid fault propagation. Reference (Xu and Zhi, 2016)
focuses on considering the impact of line disconnections on the
power flow transfer process of fault propagation, thus missing
lines 4-5 and 16-19. These line disconnections have a significant
impact on the uniformity of the electrical structure of the power
grid. The identification results of this method indicate that the
importance and operational status indicators of the integrated
new energy power system can be used to search for more
comprehensive cascading failure lines.

6 Conclusion

We propose a cascading failure prediction index based on the
importance and operating status of new energy power system lines,
conduct a fault chain search and analyze the correlation relationship
between cascading failure lines using the FP-growth algorithm. The
prediction indicators for cascading faults include the line
transmission capacity, power flow transfer entropy impact index
based on the distance between the line and new energy units,
structural importance and load rate of the line containing new
energy, and more factors that affect cascading faults. The initial fault
link and intermediate development link of accident chain prediction
are separated, and in the previous part, the initial faults with a low
probability of occurrence are filtered out, accelerating the search
speed of the accident chain. The latter part is based on a risk-first
strategy, which leads the search process toward a higher risk of
cascading failures. The method of line correlation analysis can
calculate the correlation between multiple lines. In the FP-
Growth algorithm, support and the relationship between before
and after are considered to ensure the effective screening of line sets
that are prone to cascading faults and have a strong correlation. By
comparing the simulation results of this article with the results of
other literature, we show that the set of accident chains obtained by
the proposed indicators is more complete. Line correlation analysis
can be used to effectively identify strongly correlated lines in a new
energy power system.
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Introduction: In the field of power systems, power load type prediction is a
crucial task. Different types of loads, such as domestic, industrial, commercial,
etc., have different energy consumption patterns. Therefore, accurate prediction
of load types can help the power system better plan power supply strategies
to improve energy utilization and stability. However, this task faces multiple
challenges, including the complex topology of the power system, the diversity of
time series data, and the correlation between data. With the rapid development
of deep learning methods, researchers are beginning to leverage these powerful
techniques to address this challenge. This study aims to explore how to optimize
deep learning models to improve the accuracy of load type prediction and
provide support for efficient energy management and optimization of smart
grids.

Methods: In this study, we propose a deep learning method that combines graph
convolutional networks (GCN) and sequence-to-sequence (Seg2Seq) models
and introduces an attention mechanism. The methodology involves multiple
steps: first, we use the GCN encoder to process the topological structure
information of the power system and encode node features into a graph data
representation. Next, the Seq2Seq decoder takes the historical time series data
as the input sequence and generates a prediction sequence of the load type. We
thenintroduced an attention mechanism, which allows the model to dynamically
adjust its attention to input data and better capture the relationship between time
series data and graph data.

Results: We conducted extensive experimental validation on four different
datasets, including the National Grid Electricity Load Dataset, the Canadian
Electricity Load Dataset, the United States Electricity Load Dataset, and the
International Electricity Load Dataset. Experimental results show that our method
achieves significant improvements in load type prediction tasks. It exhibits higher
accuracy and robustness compared to traditional methods and single deep
learning models. Our approach demonstrates advantages in improving load type
prediction accuracy, providing strong support for the future development of the
power system.

Discussion: The results of our study highlight the potential of deep learning
techniques, specifically the combination of GCN and Seqg2Seq models with
attention mechanisms, in addressing the challenges of load type prediction in
power systems. By improving prediction accuracy and robustness, our approach
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can contribute to more efficient energy management and the optimization of

smart grids.

KEYWORDS

smart grid, deep learning, optimization of intelligent systems, electric load type
prediction, multi-source data, data analysis

1 Introduction

With the continuous development of society and the continuous
growth of power demand, the power system is rapidly evolving into a
more intelligent, efficient and sustainable form. This is the concept of
smart grid. Smart grids are not only the future of the power industry,
but also the key to solving energy problems, reducing carbon
emissions and achieving sustainable development Han et al. (2022).
In smart grids, understanding and predicting changes in electrical
load types is critical. Electrical load refers to the power consumption
pattern in the power system, which usually includes various types
of loads such as household, industrial, commercial and agricultural
Lietal. (2022a). Each load type has different characteristics and
energy consumption patterns. Therefore, accurate prediction of load
types can help power systems better plan power supply strategies,
improve energy efficiency, reduce costs, and promote sustainable
development.

However, the power load type forecasting task faces many
challenges. First, the topology of the power system is usually very
complex, including various substations, lines, and transmission
towers, which results in complex correlations between power load
data. Secondly, the diversity of time series data also increases
the difficulty of prediction Xuetal. (2021). Different types of
loads exhibit different characteristics over different time periods,
which requires models to be able to identify and capture these
characteristics. In addition, accurate load type forecasting requires
consideration of multiple data sources, such as power system
topology, historical time series data, etc. How to effectively integrate
these data is also a challenge.

To address these challenges, this study focuses on developing
a comprehensive deep learning approach to improve the accuracy
and robustness of electric load type forecasting. We will combine
graph convolutional networks (GCN) and sequence-to-sequence
(Seq2Seq) models to introduce attention mechanisms to better
understand and predict different types of power loads. The core idea
of this method is to effectively integrate information from different
data sources so that the model can better understand the complexity
and temporal changes of the power system.

Studying methods and technologies for power load type
prediction is of great significance to the development of smart grids
and energy management. By improving the accuracy of electricity
load type predictions, it can help the power system better adapt to
the diversity and complexity of energy sources. This helps achieve
high reliability, efficiency and sustainability of the power system,
reduces resource waste, lowers carbon emissions, and promotes
the integration of renewable energy. In addition, this research also
provides new technical support for the intelligence and automation
of the power system, laying a solid foundation for building a more
intelligent power network and social infrastructure.

Frontiers in Energy Research

In research in the fields of smart grid, power load type
forecasting, and deep learning, the following models are mainly used
for improvement and research and development.

Convolutional neural networks (CNN) are a model that has
achieved great success in the field of computer vision, but it
also plays an important role in areas such as electric load type
forecasting Bhatt et al. (2021). The main feature of CNN is its use
of convolutional layers, which enables it to automatically extract
spatial features from input data without manually designing a
feature extractor. This feature is particularly useful for power
load data processing because power load data often contains rich
timing information and volatility that differs between different
load types Lietal. (2020). In power load type prediction, the
application of CNN is mainly reflected in its excellent feature
extraction capabilities. CNN can capture these local features through
convolution operations to identify patterns of different load types.
In addition, CNN can also build hierarchical feature representation
through multi-layer convolution and pooling layers, which helps to
understand the information in power load data more deeply. The
wide application of CNN lies in the adjustment of its convolution
kernel size and number to adapt to features of different scales and
complexity. In addition, CNN can also be used in conjunction
with other deep learning models and techniques, such as recurrent
neural networks (RNN) and attention mechanisms, to better capture
temporality and correlation between data.

Recurrent neural network (RNN) is a type of deep learning
model suitable for sequence data, which is of great value in power
load type forecasting tasks. The unique feature of RNN is that
it has internal cyclic connections, which allows the model to
process variable-length time series data, which is very important
for modeling power load data. In power load type forecasting, RNN
can be regarded as a sliding window in time, which can capture the
dependence between load data at different time points. This is key
to understanding the evolution of load types over time Xiao and
Zhou (2020). However, traditional RNN is prone to problems such
as gradient disappearance or gradient explosion on long sequence
data. For this reason, improved RNN models such as gated recurrent
unit (GRU) and long short-term memory network (LSTM) have
emerged. GRU controls the flow and memory of information by
introducing update gates and reset gates to better process time
series data Dhruv and Naskar (2020). These improved RNN models
perform well in power load type forecasting, especially when long-
term dependencies need to be considered. Choosing an appropriate
RNN model depends on the characteristics of the data and the
requirements of the task to ensure that it can better capture the
information of time series data.

Temporal convolutional network (TCN) is a model that
combines CNN and RNN, and it has broad application prospects
in power load type forecasting. TCN uses convolutional layers
to capture the local and global relationships of time series data,

frontiersin.org


https://doi.org/10.3389/fenrg.2023.1321459
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Sun et al.

avoiding the gradient problem in traditional RNN. This makes TCN
ideal for processing long sequences of data, especially when power
load type forecasting needs to consider a wider range of historical
information Arumugham etal. (2023). The main feature of TCN
is that it has an extended receptive field of variable length, which
means that the model can effectively capture features at different
time scales. In power load type forecasting, different load types may
show different patterns on different time scales, so TCN can help the
model better adapt to this diversity Fan et al. (2023). In addition,
TCN can be combined with other technologies such as attention
mechanisms to further improve model performance.

Gated Recurrent Unit (GRU) is an improved RNN model
designed to overcome the problems of traditional RNN. The main
feature of GRU is that it has update gates and reset gates inside,
which allow the model to better control the flow and memory of
information Cheon et al. (2020). In power load type forecasting,
GRU can be used to capture long-term dependencies of time
series data. One of the advantages of GRU is its simplicity and
efficiency. Compared with LSTM, GRU has fewer parameters
and therefore trains faster Daniels et al. (2020). This makes GRU
ideal for processing large-scale time series data. In power load
type forecasting tasks, choosing the GRU model can reduce
computational costs while maintaining high performance.

Deep reinforcement learning (DRL) is a powerful model whose
main feature is to learn optimal decision-making strategies through
interaction with the environment. In the field of smart grid, DRL
can be used for load management and optimization to achieve
the best balance of energy efficiency and power supply stability
Lengetal. (2021). The DRL model can dynamically adjust the
power supply strategy according to changing power load conditions,
thereby improving energy utilization efficiency. Although DRL
models generally require more data and computing resources, they
perform well in handling complex decision-making problems. In
power load type forecasting, DRL can be combined with other
deep learning models to achieve higher-level decision-making
and control, contributing to the development of smart grids and
optimization of power systems Huang et al. (2019). The choice of
DRL model usually depends on the complexity of the task and the
problem that needs to be solved.

However, there are some shortcomings when applying these
models to the study of smart grid power load type prediction
problems. Although convolutional neural networks (CNN) are good
at extracting spatial features, they have limited modeling of time
series data and are difficult to capture dynamic changes in load types.
Recurrent neural network (RNN) and its improved models (such as
GRU and LSTM) can handle time series data, but are susceptible to
problems such as gradient disappearance and gradient explosion,
which limit their long-term dependency modeling capabilities.
Although temporal convolutional network (TCN) overcomes the
gradient problem of RNN, it may not be flexible enough to adapt
to different scales of temporal data. Deep reinforcement learning
(DRL) requires a large amount of data and computing resources, has
challenges in complexity, and is not suitable for all power load type
prediction scenarios.

In view of this, we propose a GCN-Seq2Seq model that
integrates the attention mechanism. This model combines graph
convolutional network (GCN) and sequence-to-sequence model
(Seq2Seq), and introduces an attention mechanism, which has the
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following advantages. First, GCN can effectively capture the complex
topology of the power system and help the model understand the
relationship between different load types. Secondly, the Seq2Seq
model is suitable for sequence generation tasks, mapping historical
time series data to load type prediction sequences, and better
considering timing. Most importantly, the attention mechanism we
introduced enables the model to automatically focus on the most
important information, improving the accuracy of predictions. Our
model has advantages in comprehensively considering the topology,
time series data and correlation of the power system, and is expected
to improve the performance and efficiency of power load type
prediction, which is beneficial to the development of smart grids and
the optimization of power systems.
The main contributions of this study are as follows:

e Proposal of new deep learning model. We propose an innovative
deep learning model that combines graph convolutional
networks (GCN) and sequence-to-sequence models (Seq2Seq),
and introduces an attention mechanism. This model can
simultaneously consider the topology and timing data of the
power system and automatically capture the correlation of
load types, thereby improving the accuracy and accuracy of
predictions.

e Research on multi-source data fusion. We apply multi-source
data fusion to the power load type prediction task, taking into
account the topological information and historical time series
data of the power system. This data fusion method is expected
to improve the robustness and accuracy of load type forecasting
and provide more comprehensive information for intelligent
management of power systems.

e Promote the sustainable development of smart grids. The results
of this study are expected to contribute to the sustainable
development of smart grids and efficient management of power
systems. Through more accurate load type forecasting, the
power system can better adapt to changing demands, improve
the reliability and efficiency of power supply, and also provide
strong support for the development of sustainable energy
integration and smart grids.

In the following sections, we summarize all the model diagrams
involved in this study, as well as the data analysis diagrams in Part
II. In the third part, we introduce in detail the deep learning model
we proposed, that is, the GCN-Seq2Seq model incorporating the
attention mechanism, and elaborate on the structure diagram and
basic principles of the model. The fourth part is our experiment,
which introduces the data sets used in this study, the detailed
experimental settings and the analysis of experimental results. The
fifth part is the conclusion and summary of the full text. We also
describe the shortcomings of this study and the next research
direction.

2 Related work
2.1 Intelligent power system

As an innovative field in the power industry, smart power
systems cover a series of advanced technologies and concepts,
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aiming to improve the intelligence, efficiency and sustainability of
the power system. The basic concept includes real-time monitoring,
control and optimization of power networks to better meet growing
power demand. The origins of smart power systems can be traced
back to the digital transformation of traditional power systems.
With the continuous advancement of information technology, smart
power systems have gradually evolved into a complex network
that integrates elements such as advanced sensors, communication
technology, data analysis, and artificial intelligence to make the
power system more flexible and intelligent.

In the field of smart power and energy management, recent
research demonstrates the rise of hybrid technology solutions that
focus on improving operational efficiency and system resilience
against potential risks. A study proposes a reinforcement learning-
based energy management system designed to optimize the
performance of fuel cell and battery hybrid electric vehicles
Reddyetal. (2019). The core of the system is to dynamically
adjust the distribution of electric energy, showing the possibility
of improving energy efficiency under changing risk conditions.
In response to smart grid security issues, especially the threat
of denial of service (DoS) attacks, some research has developed
a distributed control mechanism. This mechanism combines the
system’s communication capabilities and control responses to ensure
the stability of grid dispatch and operation even in the event of
a cyber attack Lietal. (2022b). In addition, for microgrid energy
management issues, the latest research introduces a distributed
energy management framework to complete dual-mode energy
distribution within a predetermined time through event-triggered
communication technology. This method can effectively deal with
communication delays and ensure the accuracy and reliability
of energy distribution Liu et al. (2023). These studies as a whole
reflect that the methods used by intelligent systems to improve
performance and security are becoming increasingly complex, and
interdisciplinary technology integration is a significant trend in
current development. From reinforcement learning algorithms to
the application of advanced communication protocols, it reflects
important steps taken in smart energy distribution and power grid
management.

However, smart power systems also face some challenges.
Especially in terms of power load type forecasting, challenges mainly
include the complex topology of the power system, the diversity of
time series data, and the correlation between data. Addressing these
challenges is crucial to achieve comprehensive optimization of smart
power systems and improve power load type forecast accuracy.

2.2 Deep learning technology

Deep learning technology has achieved remarkable application
results in the field of power systems, providing strong support
for the intelligence and efficiency of power systems. In terms of
power load forecasting, deep learning algorithms can be used to
learn and model historical load data to achieve accurate predictions
of future power loads. In terms of power system optimization,
deep learning technology is used to learn the topology structure
and operating status of the power system to achieve real-time
optimal dispatch of the power system Ibrahim etal. (2020). In
terms of smart grid management, deep learning technology is
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used to process a large amount of time series data in the power
grid, which can realize real-time monitoring, fault detection and
intelligent dispatching of the power grid. In terms of power load
forecasting, deep learning technology has been successful in many
cases. For example, in the power load forecasting of the State Grid,
deep learning methods achieve highly accurate load forecasting by
learning the complex spatiotemporal relationships of the power
system, providing an important basis for reasonable dispatch of
the power system O’'Dwyer et al. (2019). In terms of power system
optimization, deep learning technology has also shown strong
capabilities. By training large-scale data from the power system,
deep learning models can better understand the modes and trends
of system operation, thereby achieving intelligent scheduling and
optimization of the system.

Compared with traditional methods, deep learning technology
has significant advantages. Deep learning models can learn and
capture the complex spatiotemporal relationships in power systems
and better adapt to the nonlinear characteristics of the system.
Deep learning models can achieve end-to-end learning, learn feature
representations directly from raw data, without the need to manually
extract features, and improve the generalization ability of the model
Zhang etal. (2019). The deep learning model can automatically
adjust model parameters to adapt to the characteristics of different
power systems, and has stronger adaptability and generalization
capabilities.

Although deep learning has achieved remarkable results in
power systems, it still faces some challenges. Issues such as power
system complexity, data uncertainty, and model interpretability
remain the focus of current research. The reason for choosing the
deep learning method in this study is its advantages in processing
large-scale data, learning complex relationships, and adapting to
uncertainty.

2.3 Optimizing deep learning models

In terms of optimization of deep learning models, a variety of
methods have emerged in recent years, especially in applications
in the field of power systems, including transfer learning,
reinforcement learning, hyperparameter optimization, adversarial
training, etc. Transfer learning uses the knowledge learned on
one task to help learn on another related task. Transfer learning
can reduce the dependence on a large amount of annotated data
and improve the generalization of the model Hafeez et al. (2020).
The introduction of reinforcement learning methods allows the
model to optimize its own performance through interaction with
the environment, which is particularly suitable for real-time
dispatch and control problems in power systems. Optimizing
the hyperparameters of deep learning models through search
algorithms or adaptive methods can improve the performance and
robustness of the model. Introducing adversarial training enables
the model to better cope with perturbations and attacks on input
data, and improves the robustness of the model.

Optimization schemes based on meta-learning have been
applied to deep learning models, especially in the field of
power systems. This method has confirmed its effectiveness in
improving model performance between different systems through
the practice of transfer learning Zhou et al. (2020). At the same time,
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reinforcement learning technology also shows great potential in
load forecasting. It can enhance the model’s adaptability to complex
changes by reproducing different load conditions in a simulated
environment. In addition, the introduction of adversarial training is
regarded as an important development in the field of power system
security. Adversarial samples are added to improve the system’s
ability to identify network attacks, thereby enhancing the defense
mechanism Ye et al. (2020). These research results provide a wealth
of ideas and methods for optimizing deep learning models, and
provide a reference for our optimization of deep learning models in
power load type forecasting.

3 Methodology
3.1 Overview of our network

For the power load type prediction problem, significant progress
has been made in the application of deep learning technology in
smart power systems and related work in model optimization. In
order to further improve the prediction accuracy, this study adopts
an overall model that integrates graph convolution network (GCN)
and sequence-to-sequence model (Seq2Seq), and introduces an
attention mechanism to solve the problem of smart grid power load
type prediction. This model was chosen due to considerations of
the complexity and diversity of power systems and the need for
accuracy and global information capture. The basic principle of this
overall model is to view the power system as a graph structure,
where nodes represent specific time points of load data and edges
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s N
Graph Creation |
o I
g | |
5 |
]
- GCN 4 -
| -( /I I
| o~ - [
I I
. " |
——————— Attention ———————
Decoder
Appliance Signal
FIGURE 1

Overall flow chart of the model.
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Input: Training data: X, Y
Output: Trained GCN-Seq2Seq model
Initialize model parameters © randomly;
Initialize learning rate a;
Initialize loss function: Loss = 0;
while not converged do
Sample a batch of training examples (z;,y;) ~ (X,Y);
Calculate forward pass through GCN-Seq2Seq model:
hi = GCN(zi, A)
i = Seq2Seq(hs)
Calculate loss:

Loss; = CrossEntropy(ii. yi)
Loss = Loss + Loss;

Update model parameters with backpropagation:

0 =0 —aVgLoss

end
Evaluation:
for each evaluation batch (¢, ye) ~ (Xevatl, Yevar) do
Calculate prediction 7 using the trained model;
Calculate Recall, Precision, and other evaluation metrics using g, and y.
end
return Trained GCN-Seq2Seq model

Algorithm 1. GCN-Seq2Seq Training.

represent topological relationships between nodes. First, through
the GCN encoder, the model can effectively capture the topological
information of the power system and represent the node features
into the encoding of graph data. Next, the Seq2Seq decoder accepts
historical time series data as an input sequence and generates a load
type prediction sequence. In this process, an attention mechanism
is introduced, allowing the model to fuse information based on
the importance of different input data and better understand the
relationship between time series data and graph data. The advantages
of this model are obvious. First, it can comprehensively consider the
topology and timing data of the power system while automatically
capturing the correlation between different load types, thereby
improving the accuracy of prediction. Secondly, the introduction of
the attention mechanism enables the model to focus on the most
important information for the current prediction, further improving
the model performance. Most importantly, the comprehensiveness
and global information capturing capabilities of this model are
expected to provide a more powerful tool for intelligent management
of power systems and forecasting of power load types.

The structure diagram of the overall model is shown in Figure 1,
which shows the relationship between the GCN encoder, Seq2Seq
decoder and attention mechanism, forming a comprehensive power
load type prediction model.

The running process of the GCN-Seq2Seq model is shown in
Algorithm 1.

3.2 Graph convolutional network model

In the model of this study, the graph convolutional network
(GCN) is a key component used to process the topological structure
information of the power system Hossain and Rahnamay-Naeini
(2021). The basic principle of GCN is to capture the relationship
between nodes in graph data through effective information transfer
Pengetal. (2023), and then encode the features of the nodes
Chen etal. (2022). In the overall model, the role of GCN is to
treat the power system as a graph structure, in which the nodes
of the graph represent load data at different time points, and
the edges represent topological relationships between nodes, such
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as connection relationships. These nodes and edges constitute  the characteristics of each node to the weighted average of the
the topological information of the power system. The advantage  characteristics of its neighboring nodes, effectively integrating
of GCN in power system modeling is mainly reflected in its  topological relationships into feature representation. This enables
effective processing of complex topological structures. Compared  the model to better understand the interactions and correlations
with traditional methods, GCN can capture the relationship  between different nodes in the power system, thereby improving the
between nodes more comprehensively and achieve a high degree of ~ accuracy of load type predictions. Specifically, the ability of GCN
abstraction and expression of the power system topology. Through  lies in encoding the node information of the power system so that
an iterative information transfer process, GCN is able to update  the model can better understand the spatiotemporal relationship
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Flow chart of the Attention model

between load data. This specific treatment of topology helps the
model more accurately capture the energy consumption patterns of
different types of loads, providing a stronger basis for prediction
tasks.

The operation process of GCN Model is shown in Figure 2.

The main formula of GCN Model is as follows:

HOY (D7 AD  HOWO) )

Here, H” Represents the node feature matrix for layer 1. sigma
Denotes the activation function, typically using ReLU, etc. hatA
Indicates the symmetrically normalized adjacency matrix. hatD
Represents the diagonal matrix of node degrees. W’ Stands for the
weight matrix for layer 1.

In this
representation of nodes through a multi-layer information

formula, GCN gradually updates the feature
transfer process, so that each node contains information about
its surrounding nodes, thereby taking into account the influence of
topological relationships. In the overall model, the role of GCN is to
encode the topological structure information of the power system
into a more information-rich feature representation, providing
important basic information for subsequent load type prediction.
Through the use of GCN, the model can better understand the
relationship between nodes in the power system and improve the
modeling ability of load type prediction problems. This is of great
significance for comprehensively considering the complexity and
diversity of the power system, thereby improving the accuracy of
prediction and the ability to capture global information.

3.3 Sequence-to-sequence model

In our model, the Seq2Seq model (Sequence-to-Sequence
model) is a key component for processing time series data and
load type forecasting tasks Xiong et al. (2021). The basic principle
of the Seq2Seq model is to map the input temporal sequence to
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the output sequence through an encoder-decoder structure, while
retaining and delivering key contextual information Takiddin et al.
(2022). The role of the Seq2Seq model in the overall model approach
is to take historical time series load data as the input sequence,
and then generate the corresponding load type prediction sequence.
The key to this process is to encode the rich information of the
timing data into a fixed-length vector representation, which is then
passed through a decoder to generate a sequence of load types. The
encoder of the Seq2Seq model can effectively capture patterns and
trends in historical time series data, while the decoder converts
this information into load-type predictions Le et al. (2021). The
encoder of the Seq2Seq model has excellent capabilities and can
effectively capture patterns and trends in historical time series data.
By learning representations of historical load data, the encoder
is able to extract key temporal features, allowing the model to
better understand the information required for load type forecasting
tasks. This feature encoding method helps capture the complex
relationships between load data, making the model more flexible
and accurate when processing time series information. On the other
hand, the decoder of the Seq2Seq model is able to effectively utilize
the contextual information passed by the encoder when generating
load type prediction sequences. By incorporating historical timing
correlations into the generation process, the decoder is able to
more accurately predict future load types. This end-to-end sequence
modeling approach enables the model to perform well in load type
prediction tasks, with higher accuracy and robustness compared to
traditional methods and single deep learning models.
The operation process of Seq2Seq model is shown in Figure 3.
The main formula of Seq2Seq Model is as follows:

h, = Encoder (x,, h,_;) (2)

¥, = Decoder (h,,y,_;) ®

Here, h, represents the hidden state of the encoder, which
captures the information in the input sequence x, and passes it to
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Comparison of model performance on different datasets.

Here, Q represents the attention weight of time step Q
to time step Q, which is used to measure the importance of
different time steps in time series data. Q represents the score
for calculating the attention weight, usually obtained using inner
product or other methods. Q represents the context vector at
time step Q, which is obtained by weighted summation of the
encoder output Q according to the attention weights. Q represents
the output after applying attention, which is used for load type
prediction.

The formulation of the attention mechanism describes how to
calculate attention weights, context vectors, and apply attention to
improve load type prediction. This mechanism plays a key role in
the entire model and helps the model better understand and utilize
the correlation between input data.

4 Experiment
4.1 Experimental environment

e Hardware Environment

The hardware environment used in the experiments consists of a
high-performance computing server equipped with an AMD Ryzen
Threadripper 3990X @ 3.70 GHz CPU and 1TB RAM, along with 6
Nvidia GeForce RTX 3090 24 GB GPUs. This remarkable hardware
configuration provides outstanding computational and storage
capabilities for the experiments, especially well-suited for training
and inference tasks in deep learning. It effectively accelerates the
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model training process, ensuring efficient experimentation and
rapid convergence.

e Software Environment

In this study, we utilized Python and PyTorch to implement
our research work. Python, serving as the primary programming
language, provided us with a flexible development environment.
PyTorch, offered
powerful tools for model construction and training. Leveraging
PyTorch’s computational capabilities and automatic differentiation
functionality, we were able to efficiently develop, optimize, and train
our models, thereby achieving better results in the experiments.

as the main deep learning framework,

4.2 Experimental datasets

This paper mainly uses the following four data sets to study the
problem of smart grid power load type prediction.

National Grid Electricity Load Dataset is a very important
data set that provides key information for electric load forecasting
research. The source of this data set is the State Grid of China,
the largest domestic electricity supplier and operator in China.
Data is carefully collected and maintained to ensure accuracy
and reliability Zhang and Hong (2019). The data set includes
multiple years of history, ranging from the past few years up
to the most recent electricity load data. This long time span of
data allows researchers to analyze seasonal and cyclical changes in
electrical loads. The dataset covers different regions within China,
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Comparison of model performance on different datasets.

Comparison of Models on Different Datasets

Flops(G)

== National Grid Electricity Load Dataset
mes Canadian Electricity Load Dataset.
mmm U, Electricity Load Dataset

m International Electricity Load Dataset

350 4
300 A
250
200
& 150 4

100 A

ops(G)

50 4

04

Model

Training Time(s)

== National Grid Electricity Load Dataset
wes Canadian Electricity Load Dataset.
= US. Electricity Load Dataset

= [nternational Electricity Load Datasel.

Training Time(s)

including urban and rural areas. This covers Chinas wide range
of geographical and climatic conditions, providing diversity for
research. The importance of the National Grid Electricity Load
Dataset cannot be underestimated. As data from the State Grid of
China, it provides an opportunity to gain in-depth understanding
of China’s power system operations and load changes. This dataset
is critical for power load type forecasting research as it contains
rich information that helps researchers understand load patterns
in different regions and seasons. In addition, as one of the world’s
largest electricity consumers, research on Chinas power system is
of great significance to global power management and sustainable
development.

Canadian Electricity Load Dataset is an important data resource
that provides key information for electricity load forecasting studies.
Sources for this data set include the Canadian government and
electric utilities across Canada. These agencies are responsible
for collecting and maintaining electrical load data to ensure data
accuracy and availability. The Canadian Electricity Load Dataset
covers multiple years of history, including the past few years up
to the latest electrical load data. This long time span of data
allows researchers to analyze seasonal and cyclical changes in
electricity loads, as well as their evolution over time Igbal et al.
(2021). The dataset covers every province and city in Canada,
including places with different climates and electricity needs. Due
to Canada’s geographical differences and climate diversity, this
dataset is diverse and covers electricity load conditions under
different conditions. Canadian Electricity Load Dataset is important
in the study of electric load type forecasting. First, Canada is
a geographically vast country with a variety of climatic and
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topographic conditions, so this dataset provides information on
electricity load characteristics under different meteorological and
geographical conditions. Second, this dataset reflects the operation
of the Canadian power system, which is critical for power load
management and power system optimization. Most importantly, as a
developed country, Canada’s power system is modern and complex,
so the study of power load type forecasting problems has special
value.

U.S. Electricity Load Dataset is an important data resource
that provides key information for electric load forecasting research.
Sources for this data set include the U.S. Energy Information
Administration (EIA) and various U.S. power companies Lv et al.
(2021). These agencies collect and maintain electrical load data
to ensure data accuracy and availability. The U.S. Electricity Load
Dataset covers many years of history, ranging from the past few
years up to the latest electricity load data. This long time span of
data allows researchers to analyze seasonal and cyclical changes in
electricity loads, as well as their evolution over time. The dataset
covers every state and city in the United States, including places
with different climates and electricity needs. As a country with
geographical diversity and variable climate, the United States has
diverse power load data, covering power load conditions under
different conditions. The U.S. Electricity Load Dataset is important
in power load type forecasting research, providing information
on power load characteristics under different meteorological and
geographical conditions, reflecting the dynamics of large-scale
power supply and demand.

International Electricity Load Dataset brings together data from
the International Energy Agency (IEA) and electricity companies
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TABLE 3 Ablation experiments on the GCN-Seq2Seq module comes from National Grid Electricity Load Dataset, Canadian Electricity Load Dataset, U.S. Electricity Load Dataset and International Electricity Load Dataset.

Datasets

Canadian electricity load dataset U.S. Electricity load dataset International electricity load dataset
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in various countries and regions. The IEA is responsible for
coordinating and collecting electricity load data in various countries
to ensure the accuracy and availability of data. It covers many years of
history, from the past few years up to the latest electrical load data.
This long time span of data allows researchers to analyze seasonal
and cyclical changes in electricity load, as well as electricity load
trends on a global scale Ahmad et al. (2020). The dataset has a global
geographical scope, covering multiple countries and regions. This
makes it a diverse and comprehensive data resource, including places
with different climates, cultures and power system characteristics.
International Electricity Load Dataset is important in electric
load type forecasting research. First, it reflects the operation of
power systems in different countries and regions, providing key
information for power load management and optimization on a
global scale. Secondly, because it covers multiple countries and
regions, this data set helps study cross-border power load forecasting
problems and promotes international cooperation and knowledge
sharing.

4.3 Experimental setup and details

This study uses the GCN-Seq2Seq model integrated with the
attention mechanism to study the problem of smart grid power
load type prediction. To ensure accuracy and reproducibility,
experimental details need to be carefully designed. The experimental
setup and details are as follows:

Step 1: Dataset preparation.

e Data sources: The four data sets come from the State Grid
of China, the Canadian government and power companies,
the US. Energy Information Administration (EIA), and
the International Energy Agency (IEA). These datasets are
historical power load information collected from different
power systems.

e Time span: The data set covers many years of historical data,
ranging from a few years to a few decades, to ensure that
power load data under a variety of seasons and meteorological
conditions are included.

e Geographic scope: These data sets cover different geographical
scopes, including various regions in China, different regions
in Canada, states and cities in the United States, as well as
electricity load data on a global scale.

e Data cleaning and preprocessing: Before using the data, data
cleaning and preprocessing are required, including removing
missing values, processing outliers, data standardization,
etc, to ensure the quality and consistency of the
data.

o Data set division: The data set will be divided into a training set,
avalidation set and a test set. Usually 70% of the data is used for
training, 15% is used for validation, and 15% is used for testing.
This helps evaluate the performance and generalization ability
of the model.

Step 2: Model selection and hyperparameter tuning.
e Model selection: We will consider using GCN, Seq2Seq, and

overall models that introduce attention mechanisms. These
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Comparison of model performance on different datasets.

models were chosen because of their advantages in processing
graph data and time series data.

e Hyperparameter adjustment: In the experiment, we will
perform hyperparameter adjustment, including the selection
of key parameters such as learning rate, batch size, hidden
layer size, and attention weight. We will use cross-validation
to evaluate the performance of different hyperparameter
settings.

Step 3: Model training process.

e GCN model training: For the GCN model, we will build the
graph structure of the power system and use the adjacency
matrix for training. GCN will utilize node features and graph
structure information for training.

e Seq2Seq model training: For the Seq2Seq model, we
will prepare time series data, including historical power
load data as the input sequence, and load type as the
output sequence. The Seq2Seq model will be trained
using an encoder-decoder structure to learn load-type
patterns.

e Holistic model training: In the holistic model, we will consider
both the graph structure and the time series data of the power
system. Attention mechanism will be used to capture the
relationship between them. The overall model will be trained
taking both data into account.

Step 4: Loss function and evaluation metrics.
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e Loss function: We will choose an appropriate loss function
to measure the performance of the model, depending on the
nature of the problem. For classification tasks, the categorical
cross-entropy loss function or the mean square error loss
function is usually chosen.

e Evaluation metrics: We will use a series of evaluation metrics
to measure the performance of the model, including accuracy,
precision, recall, F1 score, etc. These metrics will be used for
performance evaluation on the validation and test sets.

Step 5: Experimental Design.

e Ablation experiments: We will conduct ablation experiments to
gradually evaluate the impact of each component of the model
on overall performance. For example, we will study how the
model performs without using the attention mechanism.

e Comparative experiments: We will conduct comparative
experiments to compare and analyze our model with other
commonly used deep learning models (such as CNN, RNN,
TCN, GRU, DRL) to determine the superiority of our model.

Step 6: Results Analysis and Visualization.

o We will conduct a detailed analysis of the experimental results,
comparing the performance of different models, the impact
of hyperparameter settings, and performance on different data
sets. We will use visualization tools to present key results to help
gain insight into the model’s behavior.
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Comparison of model performance on different datasets.
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4.4 Experimental results and analysis

During the experiment, we collected data including National
Grid Electricity Load Dataset, Canadian Electricity Load Dataset,
U.S. Electricity Load Dataset, International Electricity Load
Dataset. Through experiments, we obtained the following
results.

When we look at the results in Table 1, we can clearly see that our
model performs significantly better than other models on different
datasets. Specifically, on the National Grid Electricity Load Dataset,
our model achieves 96.22% accuracy, 93.54% recall, 91.06% F1 score,
and 94.45% AUC, which performance metrics significantly exceed
other models, such as wang, mohammadi, alotaibi2, alladi and hui.
On the Canadian Electricity Load Dataset, U.S. Electricity Load
Dataset and International Electricity Load Dataset, our model also
achieves the highest level of performance indicators, indicating its
strong generalization ability on different data sets. Digging further
into Figure 5, we can see that after visualizing the results from
Table 1, the comparison of model performance becomes clearer. In
this visualization, our model sits at the top of each dataset by a clear
margin, outperforming other models. This visualization presents
the superior performance of our model on different datasets,
further confirming the excellent performance of our method in

Frontiers in Energy Research

power load type forecasting tasks. It should be emphasized that on
the International Electricity Load Dataset, our model performed
particularly well, reaching an AUC of 98.46%, which is much higher
than other models. This shows that the introduction of the attention
mechanism has important advantages for processing international-
scale power load data and can more accurately capture the complex
patterns of load types.

By analyzing the data in Table 2, we can clearly see the
performance of our model on different data sets. First, we note that
our model has a much lower number of model parameters than
other models on each dataset. For example, on the National Grid
Electricity Load Dataset, our model parameters are only 155.22M,
while the number of parameters of other models exceeds 230M,
which indicates that our model has a more lightweight design.
Furthermore, our model has the lowest Flops and inference time
on all datasets, further demonstrating its efficiency. This is critical
due to resource constraints and response time requirements in real-
world applications. After visualizing these performance indicators,
as shown in Figure 6, we can see that our model achieves the best
performance on each data set, which further confirms its superior
effect in power load type forecasting tasks. It is worth noting
that despite having fewer model parameters, our model performs
particularly well on the International Electricity Load Dataset,
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TABLE 4 Ablation experiments on the Cross Transformer module using different datasets.
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further verifying its generalization ability on different data sets. This
shows that our model not only performs well in performance but
also has a lightweight design that is applicable to various power load
data sets.

By analyzing the data in Table 3, we can gain an in-depth
understanding of the performance of the GCN-Seq2Seq module
on different data sets and its impact on the overall performance
of the model. First, we focus on the key performance indicators
of the model on four different data sets, including accuracy
(Accuracy), recall rate (Recall), F1 score (F1 Score) and AUC value
(Area Under the Curve). On the National Grid Electricity Load
Dataset, the GCN-Seq2Seq module achieved excellent performance,
with an accuracy of 97.48%, a recall of 93.62%, an F1 score of
93.82%, and an AUC value of 93.61, significantly better than
other models (RNN, Resnet50 and Resnetl8). This shows that
the GCN-Seq2Seq module has excellent classification performance
in the power load type prediction task. On other data sets, the
GCN-Seq2Seq module also performed well and maintained a high
level of performance. Especially on the Canadian Electricity Load
Dataset and International Electricity Load Dataset, the model’s
accuracy exceeded 97.9%, the recall rate exceeded 94.75%, the F1
score exceeded 94.5%, and the AUC values exceeded 95.59% and
96.24%. This further verifies the generalization ability and stability
of the GCN-Seq2Seq module. After visualizing these performance
indicators, as shown in Figure 7, we can clearly observe the excellent
performance of the GCN-Seq2Seq module on different data sets,
as well as its advantages over other models. The introduction
of this surface attention mechanism module significantly
improves the model’s performance in power load type prediction
tasks.

By analyzing the data in Table 4, we can gain an in-depth
understanding of the performance of the Cross Transformer
module on different data sets and its impact on the overall
performance of the model. This table provides key performance
indicators on four different data sets, including model parameters
(Parameters), number of floating point operations (Flops), inference
time (Inference Time) and training time (Training Time). First,
let’s focus on the performance of the Cross Transformer module
on the National Grid Electricity Load Dataset. This module has
a parameter volume of 214.96M, a floating point operation count
of 166.91G, an inference time of 202.23 ms, and a training time
of 236.12s. These metrics show the modules performance level
when processing this data set. Then, we observe the performance
of the Cross Transformer module on the other three datasets.
On the Canadian Electricity Load Dataset, U.S. Electricity Load
Dataset and International Electricity Load Dataset, the module
has performance indicators of 156.41M, 178.81G, 189.85 ms
and 108.81s respectively, and corresponding results of 118.44M,
116.06G, 224.99 ms and 187.49s numerical value. These data show
the performance changes of the Cross Transformer module on
different data sets. By visualizing these performance metrics, we
can more clearly observe the performance of the Cross Transformer
module on different data sets. As shown in Figure 8, the module
performs poorly on the National Grid Electricity Load Dataset but
has better performance on the other three datasets. This shows
that the Cross Transformer module has certain flexibility and
adaptability when dealing with different data distributions and
tasks.
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5 Conclusion and discussion

In this study, we focus on solving the problem of power load
type prediction in smart grids to help the power system better
understand and manage load changes. We propose an innovative
deep learning model that combines graph convolutional network
(GCN), sequence-to-sequence (Seq2Seq) model and attention
mechanism to comprehensively consider the complex topology
and time series data of the power system to achieve more accurate
Load type forecasting. Specifically, we first use the GCN encoder
to process the topological structure information of the power
system and represent the node features into encoding of graph
data. Next, the Seq2Seq decoder takes the historical time series
data as the input sequence and generates a prediction sequence
of the load type. In this process, an attention mechanism is
introduced, allowing the model to fuse information based on
the importance of different input data. Finally, the outputs of the
GCN encoder and Seq2Seq decoder are integrated to achieve more
accurate load type prediction. Through extensive experimental
verification, we demonstrate the excellent performance of
load type tasks,
improving the accuracy of load type prediction in power

this model in forecasting significantly
systems.

Despite its remarkable results, this study suffers from two
major flaws. First, the performance of our model in handling
extreme situations needs to be further improved, such as sudden
power load fluctuations, which require more robust processing
capabilities. Secondly, our study still needs to be verified in
more actual power systems to further confirm its generalization
ability and robustness. Future research directions will consider
improving the robustness of the model and extending the
scope of experimental validation to more comprehensively
evaluate its performance. It is also expected to explore more
smart grid application areas, such as automated operation and
maintenance of power systems and smart energy interaction,
to further promote the development and application of smart
grids.

This research provides an innovative method to solve the
problem of power load type prediction and has important
practical significance. By combining graph neural networks,
sequence generation models, and attention mechanisms, we
achieve more accurate predictions of power system load
types, helping smart grids achieve more efficient energy
management and optimization. This is of great significance
to the high reliability, efficiency and sustainability of the
power system, and also makes a positive contribution to
the development of smart sustainable

grids and energy

integration.
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Energy conservation, emission reduction and vigorous development of new
energy are inevitable trends in the development of the power industry, but
factors such as energy storage loss, solar energy loss and line loss in real
power situations have led the problem to a complex direction. To address
these intricacies, we use a more precise modeling approach of power loss and
propose a collaborative optimization method integrating the Deep-Q-Network
(DQN) algorithm with the multi-head attention mechanism. This algorithm
calculates weighted features of the system'’s states to compute the Q-values
and priorities for determining the next operational directives of the energy system.
Through extensive simulations that replicate real world microgrid (MG) scenarios,
our investigation substantiates that the optimization methodology presented here
effectively governs the distribution of energy resources. It accomplishes this while
accommodating uncertainty-induced losses, ultimately achieving the economic
optimization of MG. This research provides a new approach to deal with problems
such as energy loss, which is expected to improve economic efficiency and
sustainability in areas such as microgrids.

KEYWORDS

microgrid, energy management, deep reinforcement learning (deep RL), real power loss,
attention mechanism (AM)

1 Introduction
1.1 Background and related works

With the exacerbating energy crisis and environmental pollution, solar and wind energy
have played an increasingly vital role as distributed energy resources due to their abundant
and pollution-free nature. However, solar and wind energy are random and intermittent,
posing difficulties for grid integration and dispatch. Microgrids have emerged as an effective
solution to facilitate the comprehensive utilization of renewable energy (Zhang and Kang,
2022). Microgrids show enormous potential in resolving renewable energy integration
thanks to their flexible operation and ease of control. Their efficient and cost-effective
operation is a prerequisite for sustainable development. Nevertheless, the multi-source
characteristic of renewable energy sources introduces complexity to the control problem in
microgrid systems. Based on recent surveys, it has been observed that as much as 13% of the
total generated power is dissipated as losses at the distribution level (Wu et al., 2010; Patel
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and Patel, 2016) applied ant colony optimization (ACO) to the
reconfiguration of microgrids with distributed generation (DG) in
order to minimize power losses (Kumari et al., 2017). introduced a
particle swarm optimization (PSO) approach aimed at reducing DG
costs and enhancing the voltage profile while addressing power loss
concerns. Both of the aforementioned methods ascertain the optimal
placement of DG using optimization algorithms. However, they do
not account for the distinction between linear and nonlinear loads in
their calculations. On the basis of this problem, this paper proposes a
more accurate model of the actual line loss.

Energy system scheduling for microgrids has been
investigated in a number of previous studies. Numerous
studies utilize model-based control paradigms, including
model predictive control (MPC) (Gan et al., 2020), mixed-
integer linear programming (MILP) (Paterakis et al., 2015),
dynamic and stochastic programming (Farzaneh et al., 2019),
and alternating direction method of multiplier (ADMM) (Ma
etal., 2018). However, once a large number of DERs connected to
the MG in a disorderly way, the operation of the power grid will
be largely influenced by its randomness and uncertainty. This
makes it difficult to obtain the accurate system model. To solve
these challenges, a model-free technique using reinforcement
learning (RL) has been proven beneficial for energy system
scheduling since the model of the environment is not
necessary in this method. It is now emerging as the pre-
eminent tool for unknown environmental decision-making
issues. The authors of (Kim et al, 2016) present an RL
algorithm that enables service providers and customers to
acquire pricing and energy consumption strategies without
any prior knowledge, thus reducing system costs (Fang et al,
2020). explored a dynamic RL-based pricing scheme to attain
optimal prices when dealing with fast-charging electric vehicles
connected to the grid. To reduce the electricity bills of residential
consumers, a model for load scheduling using RL was developed in
the literature (Lee and Choi, 2022), where the residential load

Frontiers in Energy Research

y storage syftem

2@ Distributed PV
‘Camm

225 [ -

Energy storage system

Load

includes dispatches-available load, non-dispatches-available load,
and local PV generation. In recent research findings, to address the
dynamically changing operational conditions of appliances, a
federated DQN approach has been proposed for managing
energy in multiple homes (Remani et al., 2019). This research
showcased exceptional performance of the DQN method in ad-
dressing continuous state space energy management challenges.
Nevertheless, in MG scenarios, the performance of the DQN model
in energy scheduling is significantly compromised by the inherent
uncertainty of renewable energy sources. Furthermore, there is
currently no well-defined strategy in place to address the complex
issue of multivariate losses.

1.2 Contributions

To overcome the aforementioned challenges, this paper
proposes an optimization method for grid-connected MG
energy storage scheduling based on the DQN cooperative
algorithm, aiming at minimizing the cost of electricity
expenses, which is named AP DQN. Specifically, the proposed
algorithm combines the multi-headed attention mechanism with
the PER mechanism in DQN to improve its performance. In this
configuration, the DQN interacts with the environment to obtain
Q values and form rewards, and uses prioritized experience
replay to stabilize learning. In addition, the algorithm
computes the weighted features of the state using the multi-
headed attention mechanism, and uses the weighted features to
compute the Q-value and priority, which can make the state-
action pair information of the terminal closer to the merit-
seeking target, thus improving the overall convergence speed
of the DQN. The case study verifies the effectiveness of the
proposed algorithm for grid-connected MG energy storage
scheduling with real-world data. The MPCLP algorithm is
subsequently benchmarked against the optimal global solution.
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TABLE 1 Hyper-parameters.

Egtr Etp d err a B

1.1 0.01 0.0001 0.01 0.8 0.6

The primary contributions of this paper can be summarized
as follows:

1. A precise mathematical model encompassing both linear and
nonlinear power losses is developed to address the issue of
multivariate loss factors in MGs.

2. A game combination optimization scheme based on deep
reinforcement learning algorithm DQN is constructed based

the problem of difficult handle
uncertainties in MGs.

3. The AP DQN algorithm incorporating the multi-head attention
mechanism is proposed for the problem of lossy features.

on to multivariate

Experimental results show that the method greatly improves
the exploration efficiency. From the perspective of cost objective,
our model outperforms the standard DQN by 33.5% and
outperforms the MPCLP-based mechanism by up to 17.74%.

2 Microgrid’s DRL model
2.1 Environment model

The environment model serves as the MG system environment
that interacts with the agent. In this project, we considered a MG
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with internal user loads, a photovoltaic field and an energy storage
system (ESS), which is connected to the main grid through only one
distribution line. Figure 1 illustrates the conceptual MG model that
is envisioned in this study. The MG is managed by an energy
management system (EMS), which fully controls all operations of
the MG, including the processes of charging and discharging the
ESS, as well as the power trading activities between the MG and the
main grid. To enhance the stability and ensure the uninterrupted
operation of mission-critical activities, it is necessary to monitor the
state of the microgrid’s emergency load reserve during main grid
outages, called the state of charge (SOC) in the following article. We
divide the MG system into 24 time slots and each time slot is denoted
as t. To enable analytical calculations, the microgrid’s power is
assumed to be balanced, and a quasistatic time-varying energy
model is employed.

Reinforcement learning can be characterized as a Markov
Decision Process (MDP) comprising a state space S, an action
space A, a utility or payoff function r (utility and payoff
functions are used in the report), a state transfer probability
matrix P and a discount factor y (Moradi et al, 2018). The
learning process is the process of making action decisions after
obtaining the next state and reward return through the interaction
between the agent and the environment, and then continuously
optimizing. The discount factor y modulates the agent’s
consideration of the long-term consequences of their decisions
on future states: (1) small values of y force agents to focus more
on the immediate payoffs of the next few steps and significantly
reduce the payoffs of future steps; (2) large values of y force actors to
think more strongly about future payoffs and thus become more
farsighted.
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FIGURE 3
Mean episode reward with AP DQN (smoothing 0.8).
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FIGURE 4
24-h average MG scheduling partial result with AP DQN.

2.1.1 ESS model
In this system, ESS mainly performs charging and discharging
operations with an action space range of —1 to 1. A positive value
represents charging, while a negative value indicates discharging.
We define A; € {-1,-0.8, ..., 0.8, 1} as the discrete action set. In each
time slot ¢, the ESS is limited to performing either a charging action
or a discharging action, but not both simultaneously. The state of the
SOC is updated as follows (Chen and Su, 2018):
A; X P, x i1, xAt

SOC; + E %1 LA >0
r X My
SOC;., =
A; x P, xAt
SOC; + %,else
r X Ny
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where parameters 7, 114, P, E, represent the charging efficiency of
the ESS, discharging efficiency of the ESS, rated power of the ESS,
and energy storage capacity of the ESS, respectively. The energy
trading mechanism incorporates the consideration of wear and tear
costs. The ESS wear cost coefficient, denoted as k, is defined

as follows:

" fyx E x8xN,

where parameters C;, §, N, represent the initial investment cost of
the ESS, the depth-of-discharge and the number of life cycles at a
rated of the depth-of-discharge, respectively.
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FIGURE 5
Results of ablation experiments.

2.1.2 PV model

The DC power generated by the PV module undergoes filtering
in the
electromagnetic interference. It is then converted into AC

DC circuit to eliminate current fluctuations and

power in the inverter circuit. The resulting AC power is
rectified to obtain sinusoidal AC power. Subsequently, the
output-side filter circuit is employed to mitigate high-frequency
interference signals generated during the inverting process. This
enables integration into the grid or direct supply to the load. The
losses incurred during these

mathematically expressed as follows:

Pl = (Piog + Py [ Pe

0SS

transformations can be

v
where parameters Pfass,

inverter losses, the DC/AC loss and the installed capacity,

ng,Pﬁ,Es,Pc represent the photovoltaic

respectively.

2.2 Real power loss of loads

Given the diverse characteristics of loads and their varying
operational conditions, we adopt distinct methods for evaluating
power losses. In the case of linear loads, we calculate losses by
subtracting the output power from the input power to achieve
greater accuracy. For nonlinear loads, we consider power factor
adjustments to account for the influence of factors such as
harmonics and phase differences. The expression for real power
loss in the load is as follows:

N

Py =Y [ (P - PP) + 8,(P™ - P/™)]

i-1
where parameters Py, P, Plou represent the real power loss of
loads, the linear loads power input, the linear loads power output.
The parameters SP,ﬁ:’i",P?out represent the power factor, the
average nonlinear loads power input, the average nonlinear
loads power output (Sima et al., 2023). The N act as the
number of loads.
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2.3 Objective function and
constrains designs

To keep the energy trading decisions of the MG within a
reasonable range, we specify that the ESS must reserve enough
energy for the critical tasks, named the target SOC, to minimize the
MG operation cost under this constraint. The constraint functions
are as follows:

P,
A x Z'<1-80C,, A, € (0,1
r

P,
A, X (—E—> <8OC; - SOCiargers A; € [-1,0]

With such a constraint, the system is able to reserve enough
emergency power for the MG in the case of an accident scenario. In
addition, the objective function of the optimization is described as follows:
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TABLE 2 Comparison and ablation results of different model.

10.3389/fenrg.2023.1324232

Technique p (%) Avg revenue ($) Avg convergence episodes
MPCLP + LSTM 0.00 64.84 —

MPCLP + Seq2Seq 0.00 69.52 —

DQN 2.18 57.18 9000

DQN + PER 24.54 79.28 12000

DQN + MHA 0.34 71.58 4000

Our Model 0.16 76.34 2000

The bold values represents the method we proposed.

24
L,
Obj, = min Pri +k) X Ay x P, x —
7 ;( t ) t L-P,+PV,

inwhich PV,' = PV, - P?"

loss

where Pr, denotes the electric price at time #, L; denotes the
consumer load power at time #, and PV,’ represents the actual
PV power in the MG.

3 Materials and methods

First, this paper designs a more accurate mathematical model of
multivariate loss factors for microgrids with respect to loss
uncertainty as well as ambiguity. Then, based on the problem of
loss feature diversity, an optimization scheme of deep reinforcement
algorithm DQN
mechanism is proposed, which utilizes the principle of attention

learning combined with multi-attention
to process loss data of different sizes more efficiently, and ultimately
derives the optimal scheduling actions of the energy management
system for microgrids according to the objective of economic
optimization.

3.1 Heading baseline-DQN

The issue examined in this paper pertains to a high-
dimensional uncertainty problem that is not amenable to
traditional algorithmic solutions. Reinforcement learning is a
frontier area of machine learning and is a hot topic in the field of
intelligent ~ systems  research.  Reinforcement learning
distinguishes itself from supervised learning in terms of the
availability of training labels or targets. In supervised learning,
the correct labels are provided to train the model. In contrast,
reinforcement learning operates without explicit targets and
adopts a trial-and-error approach. The model learns from its
past mistakes to iteratively enhance its decision-making abilities
for future actions (Mnih et al., 2013).

In the traditional approach to solving the reinforcement
learning problem, a Q-table is constructed to store the
Q-values, which represent the expected rewards of taking
specific actions in particular states. The Q-table is updated
utilizing an iterative updating rule that takes into account the
recursive relationship between the Q-values. Nevertheless, when
a continuous state space is encountered, it becomes impractical to

create a state-action table to record every possible combination of

Frontiers in Energy Research

states and actions. To overcome the limitation, a neural network
known as the DQN is employed. The DQN takes the states as
inputs and generates the Q-values for each possible action as
outputs, which is trained through the trial-and-error process
(Mnih et al., 2013). The Q-values are subsequently updated using
the Bellman equation as follows:

Q(S, Ay) =1 +y xmaxy,,, (Q(St+1,At+l))

where Q(S;, A) is the Q-value at time t, and maxy,,, (Q(S¢1,4441))
denotes the maximum Q-value taking optimal action at the
subsequent step. Under the policy, the value of taking action A
at §; must equivalent to the expected reward of transitioning to the
next state Sy, plus the discounted expected Q-value of taking the
best decision Ay at S¢rqp (Mnih et al., 2013). The interdependence
among the Q-values at consecutive steps ensures that the iterative
update rule enables the discovery of an optimal policy, leading to the
convergence of Q-values towards their optimal values. This
recursive relationship facilitates the convergence of the Q-value
iteration  process,
optimal policy.

allowing for the determination of an

3.2 AP DQN method

In this section, we design the AP DQN method. There are two
main modules in this algorithm, one of them is a learning
network model based on PER DQN, and the other is a
that the multi-head
attention mechanism. The multi-head attention mechanism in

relational network model includes
our work is applied to focus on relevant samples in the experience
replay process as well as the Q-value handling process. The
innovations of this algorithm are mainly represented in the
following: the multi-head attention mechanism is adopted to
enable the network to process the input sequences in parallel, and
the model is able to realize the information fusion and sharing so
as to enhance the learning ability; the network structure is
improved comprehensively, and the addition of the relational
model layer to weight the Q-value provides stronger adaptive
learning flexibility for the network weights. The algorithm
operation process diagram is shown in Figure 2. In this
certain case, we put the mathematical models of ESS and PV
and constraints of devices in the environment module.

Where Q indicates Q (S;, A¢), Q1 indicates max,,,, (Q(St+1,A41)),
and Q2 indicates argmaxy,,, (Q(S¢1,As41)). p indicates the stored
experience tuple (s, a,r,s').
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We use a multi-headed attention mechanism in experience replay
memories. This allows for the selection of experience replay samples by
using the multi-headed attention mechanism to focus on all past
samples in the memory pool and select those that are most
important and relevant for the current learning. At the same time,
the multi-headed attention mechanism is used in the calculation of Q
values. When calculating Q (S;, A¢) values for each action A, under the
state Sy, the different features of s can be weighted using multi-headed
attention, so that the Q value calculation focuses more on those state
features that are most important at the moment. This can produce more
accurate Q-value estimates.

3.2.1 Algorithmic framework
In this section we design the algorithm framework, the operation
process is as follows:

1. First, we initialize the playback memory unit, the priority weights
array P, and the Q network and target network parameters.

2. We capture the experience tuple (s, a,r, s') in the environment
and store it in the memory unit.

3. For each experience tuple (s, a,r,s') stored, the attention-
weighted feature x" of s is computed using the multi-headed
attention mechanism:

(a). Calculate attention headers with number of K:

attn_head) = Softmax (WX, + by),k=1,2,..,K

where Wy indicates the attention parameter matrix, X; is the matrix
corresponding to the state, and by is decided by the attention value.

(b). Fuse the attention header to obtain the final attention
value attn.
(c). Calculate the weighted characteristics:

N
x' = Y attn[i]*X,[i]

i=1

4. Calculate the priority p of each tuple, Q4 is calculated using
the target network parameters, and O is the target
network parameter:

p = (|r| + y*maxa’(erget (x,’ a,; etarget)))a

5. Select the experience tuple with the number of batch size for
learning by priority.
(a). Calculate the Q value for each experience using the Q
network and the weighted state x'.
(b). Calculate the loss of each experience using the Q target:

L= (Qtarget -Q(x'.d'; 0))2

(c). Gradient descent updates the Q-network parameters 6.
6. Update the priority array P and the target network parameter 64,ger
7. Repeat steps 2-6 for training.

3.2.2 Reward function design

A segmented reward function is designed to guide the trading
strategy provided that all conditions are satisfied, where the reward
value depends on:
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1. The state difference from the target SOC.
2. The final cost obtained from the MG operation.

Below the target SOG, it is imperative to prioritize charging the
ESS promptly, irrespective of the price. Similarly, the price must be
high enough to discharge the ESS below the target SOC. Therefore,
the charging and discharging criteria for the ESS differ depending on
whether the SOC is below or above the target level. To optimize the
utilization of the remaining storage capacity, the charging price for
the ESS should decrease as the state of charge (SOC) approaches full
SOC. This incentivizes efficient charging when there is ample
capacity available. Conversely, the price for discharging the ESS
should be higher when the SOC is closer to the target SOC. This
approach encourages the effective utilization of the remaining
available energy and ensures that the SOC is maintained at the
desired level. In addition to this setting, two penalty factors are
introduced to have further control of the ESS operational behavior.
The first penalty term PntESS is applied when the action chosen by
the agent violates a constraint within the system. The second penalty
term Pnt!V is assigned when the ESS with available energy capacity
fails to store excess solar energy. The first penalty term is introduced
to account for the constraint of the ESS, aiming to extend the
operational lifetime of the unit, while the second penalty term
serves the purpose of maximizing the storage of solar
energy within capacity limit of the ESS. The reward function R is

as follows:

R(Pr,, Pr{"*,SOC,|A,) = (Pr{* - (Pr +k)) x (SOCy., — SOC,) x E,
— PutS - Pnt?

24
av . Pr,
Pr" = —Z'—2"4 d

ss _ | 0,else
Pnt; _{10,ifSOC,+A,>lorSOCt—A,<—1

pui?V = | GIFPVi< (Li+ A x P))
t T ) exp(2.5 x (1 - SOC;,1))1-SOC;,1))2.5 x —1,if PV, > (L, + A, x P,)

where Pr;'® represents the average price observed throughout the
24 time slots preceding time t.

3.2.3 Relational model

The main idea of the relational model is the weighted encoding
of states using a multi-headed attention mechanism. The attention
mechanism can be understood as a process of addressing
information, where the attention value is computed by
calculating the attention distribution based on the key and
associating it with the value. This computation is performed with
respect to a task-specific query vector Q, allowing the attention
mechanism to focus on relevant information and selectively
combine it with the query. By dividing each query, key, and
multiple different

calculations are performed on Q, K, and V to obtain multiple

value into multiple branches, attention
different outputs, and then these different outputs are stitched
together to obtain the final output. Indeed, this process
represents the essence of attention, which helps mitigate the
complexity of neural networks. Instead of feeding all N inputs
into the network for computation, attention selectively chooses

task-relevant information to be inputted. This approach is similar
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to the concept of gating mechanisms in Recurrent Neural Networks
(RNNs), where the network learns to focus on relevant information
and effectively allocate computational resources (Azam and
Younis, 2021).

Due to the priority sampling strategy, PER introduces a bias
towards selecting higher priority samples during training (Schaul
et al,, 2015). This bias has the potential to lead to overfitting of the
results obtained by the DQN algorithm. Therefore, to correct for
bias, we introduce the relational model to adjust the sampling
The built-in
monitoring of the training process by highlighting the areas that

weights. attention mechanism allows direct
agents focus on when making decisions. It naturally incorporates the
policy gradient algorithm in reinforcement learning, where each
time-step attention mechanism samples from L = m*m to a position
requiring attention based on a random attention policy mg. This
policy is represented using a neural network whose output is
composed of the probabilities of location selection. Among them,
the formula for calculating and updating the policy gradient

algorithm is as follows:

VI(0) =) p,(5) ) g, (s,@)Vem(als,0)

=E|y' ) 4,(S @)Vor(alS,, 0)]

=E.|y' ) q,(S,a)m(alS,, 0)

Vgﬂ (ang, 0)
7 (alSe, 0)

-E, y’q,, (Sn Ay Vf)”(At|Sn0)]

7(A/1S,,0)
[, Vom(A,lS, )
=E|YG— o
TV W)
Vo (418, 0)
_ t
Our =0+ 0y G 45, 0)

where VJ(0) indicates the strategy gradient and G; indicates the
cumulative rewards. & indicates the step length and y indicates the
discount factor.

4 Experiments and results

In this section, we present simulation results to demonstrate the
effectiveness of the proposed algorithm. These results serve as
empirical evidence supporting the performance and efficacy of
the algorithm. Specifically, the DQN architecture employed in
this study consists of one input layer with four neurons, three
fully connected hidden layers with 40 and 80 neurons, and one
output layer with 14 neurons. This configuration allows for effective
learning and decision-making within the energy management
algorithm. & greedy strategy and hyperparameters of PER are
listed in Table 1. The mean episode reward with AP DQN is
shown in Figure 3. The customer load, solar power and dynamic
tariff are obtained from the self-built datasets. The P, and E, of the
lithium-ion battery ESS used in the experiment are 1,000 kW and
5,000 kWh respectively.

Due to the large range of resultant data, we chose the average
MG scheduling results over a time horizon of 24h as a
demonstration of the scheduling strategy, and the result with AP
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DQN is shown in Figure 4. Due to the large time horizon involved in
the dataset, the obtained ESS scheduling strategy is measured in
terms of the final economic cost and the percentage of the system
working within the constraints. We used a model predictive control
linear programming (MPCLP) based algorithm (Matute et al., 2018)
for comparison and performed ablation experiments. MPCLP is a
linear programming optimization method, which commonly
employs an optimization software to work out the problem. It
satisfying the
assumptions of a linear dynamic system. Among them, MPCLP

provides good optimization accuracy while
uses two prediction models, LSTM and Seq2Seq, respectively. The
results of the ablation experiments are shown in Figure 5. The results
of the comparison experiments are shown in Figure 6.

As seen in Figure 4, Positive values of action in the figure
indicate charging, negative values indicate discharging, and SOC
ranges from 0 to 1. It can be concluded that the EMS will combine
the state of the SOC at the moment with the floating tariff to give the
best possible action within the constrains.

As seen in Figure 5, the base DQN has poor performance in the
ablation experiment, but the average gain rises significantly with the
addition of PER, however, this is a result of large-scale constraint
With the addition of the multi-head attention
mechanism, the algorithm is able to obtain an average return

violations.

close to the PER DQN while maintaining a certain range of
constraints. After adding the multi-headed attention mechanism
to DNQ together with PER, the result of maximizing the average
gain and minimizing the probability of constraint violation can
be obtained.

As seen in Figure 6, AP DQN has the highest average profit in
the comparison experiment, but there is a default rate of 0.16%,
although this is an acceptable range. The reason for this is that the
traditional linear programming approach has a strict adherence to
the constraints and therefore a p-value of 0. In contrast, the
proposed AP DQN algorithm can violate the constraints driven
by the reward values to a minor degree, thus achieving the goal of
maximizing the average profit.

The results obtained from the comparative experiments and
ablation studies using different models are summarized in Table 2.
Comparison and Ablation Results of Different Model. As can be
seen from the table that our model outperforms the standard DQN
by 33.5%, the MPCLP based mechanism by 17.74% at most.
Compared with PER DQN, our model is a better choice in terms
of algorithmic efficiency and conditional constraints.

5 Conclusion

In this paper, we propose an AP DQN algorithm. The algorithm
not only maximizes monetary benefits but also maintains the reliability
of the MG at the same time, being able to maintain sufficient energy
reserves for critical operations. The algorithm presented uses a multi-
headed attention mechanism as well as a prioritized experience replay
mechanism to use current information for optimizing energy trading
decisions. The algorithm we propose is a model-free reinforcement
learning method, which usually has strong generalization ability. This
method learns a wide range of strategies from a large amount of
empirical data so that it can make reasonable decisions in uncovered
states and can adapt better to various situations and conditions. In
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comparison with the MPCLP approach, it can be concluded that the
reinforcement learning based approach has a higher average monetary
benefit in the presence of higher system reliability. It is worth noting
that the reward function in RL can be further adjusted and optimized to
improve the overall results. Fine-tuning the reward function has a
significant impact on the performance of the RL algorithm.
Additionally, it is important to consider that value-based RL
methods generate discrete trading decisions, whereas MPCLP
decisions are continuous in nature. This distinction can affect the
comparison of results obtained from the two approaches. In future
work, policy-based reinforcement learning is an appropriate direction to
be investigated to obtain continuous decisions.
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