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Editorial on the Research Topic
The role of artificial intelligence technologies in revolutionizing and aiding cardiovascular medicine



1 Introduction

Cardiovascular disease (CVD) continues to be the foremost worldwide contributor to mortality and morbidity (1), accounting for roughly 17.9 million fatalities each year—a burden anticipated to increase due to aging populations and lifestyle modifications (2). Despite progress in prevention, diagnosis, and treatment, the application of research in clinical practice continues to be difficult, as cardiologists face complicated decision-making amidst varied patient requirements, swiftly changing evidence, and the incorporation of multimodal data from high-resolution imaging and ongoing biomedical signal tracking (3). The exponential increase in medical data and the advancement of diagnostic tools present a potential for enhancing care, yet they also pose challenges in providing timely and personalised interventions. Artificial intelligence (AI) has been recognised as a transformative technology capable of improving diagnostic precision, optimising treatment methodologies, and ultimately alleviating the worldwide incidence of CVD by connecting research innovation with practical clinical application (4).

AI encompasses a variety of technologies that have rapidly progressed to improve individual decision-making and address important issues in cardiovascular care, including machine learning, deep learning, computer vision, pattern recognition, federated learning, natural language processing, and generative AI (5). Traditionally, the diagnosis and treatment of cardiovascular diseases have mostly relied on conventional approaches, which usually face restrictions in accuracy, fast identification, and tailored strategies for treatment (6). The utilisation of AI in cardiology takes note of an unprecedented evolution in the manner of data-driven decisions and predictive models leading to personalised medicine tailored to the individual preferences of each patient (7). Utilising extensive data obtained from various sources, including electronic health records (EHRs), medical imaging (MRI, CT), genomic profiles, wearable technology, biosignals (ECG, PPG), and real-time tracking platforms (8), AI makes limitless breakthroughs in deciphering complex patterns concerning population demographics (6) by means of computational power to evaluate these massive datasets. For example, AI-predictive models can predict the chances of clinical-anatomical intervention after endovascular repair (9, 10). Additionally, computer-aided diagnostic systems based on deep learning techniques assist in diagnosing myocardial infarction (MI) in its early stages using MRI scans (11). Moreover, ML-based analytics, in conjunction with biosignals such as the ECG, can detect cardiac abnormalities in fetal during pregnancy (12). This change in technology is particularly of utmost importance with the rapid growth of wearable AI-based devices like smartwatches that support atrial fibrillation (AF) detection and treatment in real-time (13). These advances help to enhance both risk stratification and diagnosis accuracy for personalised outcome predictions such as recurrent heart failure or post-interventional effects (3).

Advanced AI technologies are also going to enhance research and clinical programs within cardiology to achieve validity, efficiency, and improved patient-centered care AI drives a transformative impact on cardiovascular healthcare including drug discovery and development, risk profiling, predictive analysis, and clinical decision support system advancement. However, reaching the full potential of AI in cardiology requires synergistic cooperation among cardiologists, computer scientists, and biomedical engineers to create comprehensive models with multiple data types while upholding ethical standards, accountability, and repeatability (14). The conjoining of precision medicine, the Internet of Medical Things (IoMT), and AI holds remarkable potential to change the way healthcare is delivered (15). Harnessing such synergies leads us to a future where health management can enhance clinical decision-making.

This editorial highlights the state-of-the-art applications of AI in cardiovascular medicine with a focus on AI technologies implemented in studies published in the section of the Research Topic in the Frontiers in Cardiovascular Medicine Journal. From early diagnosis to outcome prediction, this editorial aims at the potential uses of these approaches in solving major cardiologic challenges and discusses the possible effects of their application on patients and physicians. There is an appeal for further investigations and innovation in the evolving discipline.



2 An overview of the studies that contributed to this research topic

On this research topic, twenty articles were received. Each article submitted to the Research topic went through an exhaustive review procedure including at least two reviewers and two rounds of extensive edits prior to acceptance. Nine papers in all—two systematic reviews, one study protocol, and six original research publications—were chosen. The following is a list of the works significantly advancing this area of study.

The AI-based identification of atrial fibrillation during sinus rhythm (AIAFib) trial is a prime example of how AI might transform AF management by filling in a major diagnostic void. Early identification is difficult even with AF's great morbidity and death risks, especially in sinus rhythm (SR) when paroxysmal AF (PAF) prevents traditional techniques for diagnosis. Targeting to predict PAF during SR, the multicenter retrospective study protocol (Baek et al.), uses a deep learning method to analyse >50,000 12-lead ECGs from 10 Korean tertiary hospitals, so linking clinical findings such hospitalisation, procedural interventions (e.g., ablation), and mortality with risk scores determined by AI. The trial aims to verify not only the prognostic value in real-world cohorts but also confirm the diagnostic accuracy of the algorithm by using strict multivariate Cox regression and survival analyses. If effective, AIAFib might restructure risk stratification paradigms, enable earlier, data-driven interventions, and underline AI's ability to turn ordinary ECGs into potent predictive tools. This protocol fits a larger movement towards AI-enhanced precision cardiology, in which scalable computational methods and multimodal analysis of information promise to maximise findings for cardiovascular diseases worldwide.

The systematic review and meta-analysis (Fadilah et al.) assess the diagnostic efficacy of ML methods integrated with diverse non-invasive modalities for the diagnosis of pulmonary arterial hypertension (PAH), a critical cardiovascular disorder conventionally diagnosed through the invasive gold standard of right heart catheterisation (RHC). The study investigates the accuracy of techniques such as electrocardiogram (ECG), echocardiogram hematological biomarker, and imaging modalities like chest x-ray, CT, and MRI when employed with AI. Analysing 26 studies, the authors used STATA V.12.0 for meta-analysis and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for quality evaluation and found an overall sensitivity of 81%, specificity of 84%, and an area under the curve (AUC) of 89%. While ECG showed similar accuracy, echocardiograpm showed amazing performance with a sensitivity of 83% and a specificity of 93%. With their lowest negative likelihood ratio (NRR), blood biomarkers proved useful in PAH exclusion. These results show that ML-enhanced echocardiogram and ECG could be interesting, less invasive substitutes for RHC, so improving accessibility and safety in PAH diagnosis and hence preserving high diagnostic accuracy (AUC of 89%).

In addition, the systematic review (Chavez-Ecos et al.) provides comprehensive coverage of the quality and efficacy of Mobile Health Applications (MHAs) intended for cardiovascular risk assessment by healthcare practitioners. The methodology used in this research included applications available on major digital markets (Apple Store, Play Store, and Microsoft Store) as relevant as of August 2023. These were analyzed against recognised clinical protocols from the European Society of Cardiology and various risk approaches including the Framingham Risk Score and Atherosclerotic Cardiovascular Disease (ASCVD) score. The researchers applied the validated Mobile Apps Rating Scale (MARS) and the IMS Institute for Healthcare Informatics functionality scale and they discovered that only six of the 18 applications reached the highest rankings in quality with ESC CVD Risk Estimation and ASCVD Risk Estimator Plus being considered “the best”. In spite of the growing demand for mHealth tools, it points out the major gap in the supply of quality, evidence-based applications for healthcare professionals dealing with cardiovascular risk evaluation; the call for improvement in app design is for incorporation of collaborative decision-making modalities for the clinicians. On the one hand, the research promises big, while on the other what comes through is the challenge in assuring that these technologies work reliably and are usable in real-world contexts.

The study (Yordanov et al.), on the other hand, concerns the empirical assessment of the efficacy of federated learning (FL) algorithms in developing clinical forecasting algorithms related to the thirty-day death risk of individuals experiencing transcatheter aortic valve implantation (TAVI). The research studied through four multicentric modeling perspectives employing data spanning sixteen Dutch TAVI hospitals from 2013 to 2021-entail ensemble: aggregating predictions from local models; federated averaging (FedAvg): gathering model predictions without distributing raw data; local: separate models per hospital; and central: a single model learned on combined data. These results show that during internal validation, FedAvg and ensemble outperformed the local strategy while matching the predictive performance of the central strategy (AUC = 0.67–0.68). Interestingly, both FedAvg and ensemble performed similarly to the central against external geographic validation with slight calibration variations. This finding indicates that FL methods retain generalisability and predictive accuracy without reliance on pooling data, and adequately handling privacy issues while permitting joint model development among institutions. This is a pivotal work demonstrating the feasibility of FL as a viable alternative to centralized training procedures in clinical settings, opening the way to further common acceptance in cardiovascular research and beyond.

Another article on this research topic (Shiferaw et al.) provides an extensive evaluation of the rapid-moving contribution of AI to CVD research. Using topic modeling based on latent Dirichlet allocation (LDA) and bibliometric analysis of 23,846 studies from the Web of Science and PubMed, the authors of this article map major issues, trends, and collaborations influencing this ever-evolving field. Driven mostly by contributions from nations including the USA, China, India, the UK, and Korea, the investigation notes an exponential rise in AI-related CVD research. The UK, Germany, and Australia especially lead in worldwide cooperative projects. Along with developing areas like “robotic-assisted cardiac surgery,” “stroke and robotic rehabilitation therapy,” “cardiac image analysis,”, and “retinal image analysis and CVD,” significant areas of study recognised are “biomarker and wearable signal analyses.” Emerging as major methods are convolutional neural networks, long short-term memory (LSTM), and K-nearest neighbor (KNN), which reflect growing attention on neural networks and cutting-edge imaging methods. This paper not only emphasises the transforming possibilities of AI in improving diagnosis, treatment, and patient outcomes but additionally provides a useful tool for researchers, doctors, and policymakers trying to negotiate and maximise the future paths of artificial intelligence in preventing CVD.

The work (Amadou et al.) addresses a long-standing obstacle in cardiac imaging: operator-dependent variations in ultrasonic acquisition, which usually reduces diagnostic consistency. This research uses a GPU-accelerated simulation process that synthesises patient-specific, view-dependent ultrasonic images from multi-modal segmentations (e.g., MRI/CT), so enabling adaptable training of AI models for autonomous probe navigating tasks. The synthetic dataset, which was created from over 1,000 patient anatomy, was validated using phantom experimentation and real-world echocardiography view classification tasks. It showed its ability to improve neural network efficiency, especially for insufficiently represented perspectives where real-world data is limited. This significant development not only avoids the “data hunger” of conventional AI algorithms but also democratises the availability of high-quality imaging knowledge, lowering dependency on operator ability. The research advances AI's role in standardising cardiac ultrasonic by addressing simulation-to-reality gaps, so opening the path for autonomous systems that might transform point-of-care diagnostics and interventional recommendations in resource-limited environments.

This study (Kirdeev et al.) examines significant deficiencies in personalised medicine by investigating the incorporation of genetic factors into prognostic models for MI individuals. The research employs ML methods to forecast major adverse cardiac events (MACEs) employing clinical, imaging, laboratory, and genetic data from 218 MI patients over a 9-year follow-up duration. The findings illustrate the importance of the VEGFR-2 genotype (rs2305948) as one of the five best-predictive attributes, in conjunction with statin dosage, coronary artery lesions, left ventricular parameters, diabetes status, type of revascularisation, and age. The CatBoost algorithm, enhanced through sequential feature selection (SFS), attained a remarkable AUC of 0.813 on the test cohort, demonstrating the model's efficacy. Applying the SHapley Additive exPlanationsis (SHAP), a model-agnostic method elucidates additive risk contributions, facilitating the precise stratification of high-risk subgroups, underscoring how ML can customise post-MI care. This study illustrates how AI can integrate omni-omics data with biological, biochemical, and imaging, advancing personalised risk prediction by linking the insights of the molecular to therapeutic decision-making-prime innovations that could optimise additional preventive efforts in cardiology. This new strategy highlights the role of genetic factors in assessing cardiovascular risk while accentuating the true potential of AI to advance precision medicine in patients suffering from myocardial infarction.

In addition, (Tang et al.) provide a comprehensive overview of the use of ML and data mining techniques to evaluate the risk of in-hospital death in patients with acute ST-elevation MI (STEMI) following primary percutaneous coronary intervention (PCI). The work investigates several gradient-boosting methods. Furthermore, feature selection methods including SHAP and recursive feature elimination (RFE) are applied. The study uses a large database including 4,677 people from a regional vascular centre in Vladivostok between 2015 and 2021. To improve and increase the predictive power, hybrid algorithms also combine metaheuristic optimisation. With the extreme gradient boosting, optimised with bald eagle search optimiser, these hybrid techniques are shown to be able to stretch beyond more than the conventional global registry of acute coronary events (GRACE) score and produce recall up to 0.99. This study would be a suitable tool for informed decision-making for patient treatment and enhanced outcomes in the cardiovascular sector since it shows the application of ML techniques to increase a clinician's capacity to derive better assessments of mortality risk and, hence, would be an appropriate tool.

The final study on this research topic is (Seki et al.), which explores zero-shot visual question answering (VQA's) adoption with multimodal large language models (LLMs) for interpreting 12-lead ECG images. The research showcases the potential of VQA in clinical diagnosis while earmarking crucial drawbacks. Although multimodal LLMs are proficient in logical reasoning and conveying certain assumptions therein, recurrent instances of failing to properly elicit and express these image features from ECGs were accepted as contributing keys to answer selection and producing incorrect answers upon the availability of correct final options. Findings suggest that the model-induced “image hallucinations” are the reason behind the incorrect deductions about visual data and that traditional performance metrics, like percentage correct on multiple-choice items, may poorly reflect a certain architecture of performance complexity with VQA in fine clinics. It does show the established advantages and perceivable disadvantages of multimodal LLMs in medical imaging analysis so that future questions can enhance the pace and contribute to precision and reliability in practical applications.



3 Conclusion

The integration of AI in cardiovascular medicine may serve as a novel transformation in disease prevention, diagnosis, and treatment, as exhibited by studies conducted on this Research Topic. These articles collectively highlight AI's revolutionary capabilities of improving early detection of AF by means of AI-augmented ECGs, better non-invasive diagnosis of pulmonary arterial hypertension, optimisation of risk stratification for important adverse cardiovascular events post-MI, and prediction of in-hospital mortality following percutaneous coronary intervention. Innovations, such as FL and synthetic ultrasound simulation, demonstrate the ability of AI to tackle data privacy and scarcity issues without compromising clinical accuracy. Simple as this may appear, these studies remain constrained by the significant limitations of AI-based systems. Many models are only able to leverage multiple algorithms within data silos. Algorithmic biases and inadequate external validation limit traditional models, while multimodal large language models reveal dangers of critical interpretation “hallucination”.

Furthermore, there stand major barriers to the sustainability of integration of AI into standard practices, namely harmonising data disparities leveraging privacy-preserving systems, departing from accuracy scores to standard assessment metrics, and achieving interpretability for bolstered clinician trust. In addition, the disparity between technocentric agility and applicable clinical processes, aptly illustrated through shortcomings in the mHealth application capabilities, demands better cooperation from engineers, practitioners of healthcare, and policymakers.

Further efforts should emphasise multimodal AI algorithms that incorporate genomics, imaging, wearables, and EHR into comprehensive predictive frameworks. Progress in compact structures (e.g., MobileViT, EfficientFormer) and synthesised data generation may facilitate broader access to AI tools, especially in resource-constrained environments. Concurrently, ethical frameworks for bias reduction, regulatory supervision, and patient-centered design are essential for ensuring equitable adoption. The bibliometric examination indicates that the rapid expansion of AI-CVD research requires international collaboration to standardise practices and expedite translation. By overcoming these challenges, AI can advance beyond its current function as a decision-support instrument, becoming a fundamental element of precision cardiology—one that enables clinicians to customise care and ultimately transform cardiovascular outcomes globally.
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Introduction: Atrial fibrillation (AF) is the most common arrhythmia, contributing significantly to morbidity and mortality. In a previous study, we developed a deep neural network for predicting paroxysmal atrial fibrillation (PAF) during sinus rhythm (SR) using digital data from standard 12-lead electrocardiography (ECG). The primary aim of this study is to validate an existing artificial intelligence (AI)-enhanced ECG algorithm for predicting PAF in a multicenter tertiary hospital. The secondary objective is to investigate whether the AI-enhanced ECG is associated with AF-related clinical outcomes.



Methods and analysis: We will conduct a retrospective cohort study of more than 50,000 12-lead ECGs from November 1, 2012, to December 31, 2021, at 10 Korean University Hospitals. Data will be collected from patient records, including baseline demographics, comorbidities, laboratory findings, echocardiographic findings, hospitalizations, and related procedural outcomes, such as AF ablation and mortality. De-identification of ECG data through data encryption and anonymization will be conducted and the data will be analyzed using the AI algorithm previously developed for AF prediction. An area under the receiver operating characteristic curve will be created to test and validate the datasets and assess the AI-enabled ECGs acquired during the sinus rhythm to determine whether AF is present. Kaplan–Meier survival functions will be used to estimate the time to hospitalization, AF-related procedure outcomes, and mortality, with log-rank tests to compare patients with low and high risk of AF by AI. Multivariate Cox proportional hazards regression will estimate the effect of AI-enhanced ECG multimorbidity on clinical outcomes after stratifying patients by AF probability by AI.



Discussion: This study will advance PAF prediction based on AI-enhanced ECGs. This approach is a novel method for risk stratification and emphasizes shared decision-making for early detection and management of patients with newly diagnosed AF. The results may revolutionize PAF management and unveil the wider potential of AI in predicting and managing cardiovascular diseases.



Ethics and dissemination: The study findings will be published in peer-reviewed publications and disseminated at national and international conferences and through social media. This study was approved by the institutional review boards of all participating university hospitals. Data extraction, storage, and management were approved by the data review committees of all institutions.




Clinical Trial Registration: [cris.nih.go.kr], identifier (KCT0007881).
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1. Introduction

Atrial fibrillation (AF), the most common arrhythmia, is a significant public health problem with an increasing worldwide prevalence, leading to higher healthcare costs and increased mortality, as well as the risk of ischemic stroke, heart failure, and dementia in patients (1–5).

However, it is difficult to identify AF, particularly paroxysmal AF (PAF), from electrocardiography (ECG) acquired during sinus rhythm (SR). Various screening methods, from palpation or auscultation to handheld ECG, patch-type, and implantable loop recorder, increase AF detection (5). Despite these efforts, AF remains underdiagnosed and undertreated (6). Thus, it is important to emphasize screening and early detection, with or without symptoms, to prevent cardiovascular outcomes associated with AF. The EAST AF NET trial demonstrated that early rhythm control reduced cardiovascular outcomes in patients with early AF (7, 8).

While ECG interpretation typically requires specialized knowledge and experience, AI-enhanced ECGs, using deep neural networks, have the capability to detect complex signals and patterns that elude human experts. The AI-enhanced ECG is a powerful non-invasive biomarker that has considerable clinical potential within this emerging specialized field (9, 10). Recently, machine learning and artificial intelligence (AI) have shown promising results in identifying individuals with previous AF episodes from those with SR (11, 12). A deep learning-based algorithm using a 12-lead ECG has been developed, demonstrating high accuracy in detecting AF during SR. However, external validation is needed, and multicenter studies are essential to establish its clinical utility and association with clinical outcomes.

This multicenter study aims to validate and externally verify an AI-enhanced ECG for predicting PAF during sinus rhythm. This study also aims to investigate whether this algorithm is associated with AF-related clinical outcomes including hospitalization, related procedure outcomes, and mortality.


1.1. Hypothesis

We hypothesized that an AI-enhanced electrocardiogram (ECG) algorithm for predicting PAF during sinus rhythm would demonstrate a significant association with AF-related clinical outcomes, including hospitalization rates, procedural success, and mortality, when validated and externally verified across multiple tertiary hospitals. This hypothesis implies that the application of this advanced AI-enhanced ECG algorithm may lead to improved PAF prediction, enhanced patient care, and optimization of clinical management strategies.




2. Methods and analysis


2.1. Study design and the AI modeling process

This study is a retrospective cohort analysis based on over 50,000 12-lead ECGs. It includes ECGs displaying SR in both patients with PAF and healthy individuals, with each group comprising over 25,000 cases. Data from Inha University Hospital were collected between May 2020 and December 31, 2021, to ensure that the data are independent and do not overlap with those used in our previous research, thereby avoiding potential overfitting and bias (12). Additionally, data from nine other institution in South Korea were collected between November 1, 2012, and December 31, 2021. The study will be conducted in a multicenter setting and patient data, including baseline demographics, comorbidities, laboratory findings, echocardiographic parameters, hospitalization, and AF-related clinical outcomes, will be collected from the medical records. The de-identified ECG data will be analyzed using our AF prediction AI algorithm (SmartECG-AF®), which uses data encryption and anonymization. As we described in our previous paper on the model we developed, we will extract and analyze XML data from the MUSE data management system to minimize artifacts (GE Healthcare, Chicago, IL, USA). The original ECG recordings are measured on 12 leads. However, due to the data storage methodology of the device, only data from eight leads are stored excluding Lead III, aVR, aVL, and aVF. Nevertheless, data from these four leads can be calculated with simple arithmetic expressions, and it is a common practice to approximate the data with these operations. Therefore, this study will utilize only the eight measured signals of leads I, II, V1, V2, V3, V4, V5, and V6. The signals will be measured for 10 s on each lead simultaneously. As a result, eight one-dimensional arrays for each XML file will be obtained. As illustrated in Figure 1, the extracted data will be securely stored within the database, employing Advanced Encryption Standard (AES)-256 encryption on personal information. Subsequently, signal data preprocessing will eliminate cases with potential noise artifacts. A procedure will be implemented to exclude abnormal changes in the signal data that could be interpreted as noise artifacts. The AI algorithm will use Bidirectional Long Short-Term Memory (Bi-LSTM) and a Convolutional Neural Network (CNN), each with unique characteristics. Bi-LSTM models excel in handling sequential data, making them particularly suitable for tasks involving time series or axis such as ECG. The algorithm uses a softmax function in its final layer to produce a probability distribution for multiple classes. This “AF probability” is then presented as a confidence measure for predicting the likelihood of AF during SR. Furthermore, CNNs will be prominently employed for processing grid-like data such as images. To facilitate interpretation, a Class Activation Map (CAM) will be adopted as an explainable AI to interpret the class prediction result. CAM will allow the identification of the most influential regions within the input data that contribute to the class prediction. Finally, the output of the model will yield the probability of AF (Figure 1).


[image: Diagram showing a data processing workflow for ECG analysis. XML files with 12-lead data are extracted, de-identified using AES-256, and stored in a database. Data is loaded and pre-processed to remove artifacts. A model is trained using a neural network structure with convolutional layers and LSTM units. Results are analyzed with a class activation map, displaying a PAF score of 78.51%.]
FIGURE 1
Study flowchart for the artificial intelligence modeling process.




2.2. Inclusion criteria for center and patient

Our study included university institutions with ECG raw data in the XML format, staffed by cardiologists specialized in electrophysiology, aiming to minimize artifacts and optimize artificial intelligence performance through enhanced data quality and labeling. Study participants include patients aged 18 years and above diagnosed with PAF with a minimum follow-up period of one year. The initial ECG recording with AF is denoted as the index ECG, and subsequent ECGs with SR will be obtained. According to the guidelines, PAF is defined as AF episodes lasting less than 48 h, resolving spontaneously within 7 days, or terminating within 48 h following electrical or pharmacological cardioversion (5). Patients diagnosed with PAF will be initially identified through Electronic Medical Records (EMRs) and Clinical Data Warehouse (CDW) systems in their hospital. Cardiologists who are specialists in electrophysiology at each participating institution will review the patients according to the above definition. An SR ECG will be obtained 1 month prior to the index AF date and repeated after the index AF date (11, 12). To reduce the potential for distorted results in external validation, it is necessary to limit the number of ECGs per patient to five or fewer. Consistent with our previous research exploring the impact of electrical and structural remodeling on the “window period”, we will select ECGs that are temporally close to either the most recent or remote AF onset time. The control group will consist of individuals with normal sinus rhythm (NSR) ECGs who have no diagnosis of PAF or any recorded AF rhythm (healthy-NSR) after reviewing EMRs, CDW, and ECGs. The healthy-NSR group will be mainly selected from those who have undergone annual health check-ups or screenings at the respective hospitals for a minimum of two years to ensure their accurate classification.



2.3. Exclusion criteria

Patients with incomplete or missing baseline demographic data, comorbidities, laboratory findings, echocardiographic findings, and hospitalization-related procedure outcomes are excluded from the study. Patients with pacemakers, implantable cardioverter defibrillators, or other implanted devices that may interfere with ECG data acquisition are excluded to eliminate the potential effects of myocardial pacing. Patients with a history of permanent AF are also excluded from the study in accordance with the protocol. Other exclusion criteria include ECGs with artifacts or noise, isoelectric line-shaken ECGs, and ECGs deemed inadequate by physicians. Figure 2 summarizes the inclusion and exclusion criteria.


[image: Timeline illustrating the progression of electrocardiograms (ECGs) with color coding for normal sinus rhythm (blue) and atrial fibrillation (red). A highlighted section shows the index atrial fibrillation ECG occurring one month into the timeline, with arrows leading to two ECG snapshots. The first snapshot indicates a SmartECG-AF probability of 25%, and the second shows a 90% probability. Inclusion criteria detail conditions for patient ECGs, while exclusion criteria list disqualifying factors such as ECG artifacts and pacing influences.]
FIGURE 2
Summary diagram of inclusion and exclusion.




2.4. Study variables

We will examine the patients' basic demographic characteristics, family history, and CHA2DS2-VASc and HAS-BLED scores. The index date for AF diagnosis is defined as the date of the first documented AF ECG, and the most recent AF event since registration is defined as the latest AF date. The window period is defined as the difference between the registration date and the recent AF date. If there are blood test results within 1 month and echocardiography findings within 3 months of the registration date of the ECG, they will be additionally obtained. Information about continuous medication for more than 3 months will also be recorded. The records of hospitalizations or emergency departments will be investigated, as well as deaths after the acquisition date. Medical history of direct current cardioversion (DCCV) or AF ablation procedures will also be examined to investigate the relationship between the AI-enhanced ECG-based AF score (SmartECG-AF®) and response to AF treatment. Information collected from the patients enrolled in this trial is presented in Table 1.


TABLE 1 Information collected from enrolled patients.

[image: Table displaying various health variables tracked over time intervals: Baseline, 3 months, 6 months, 9 months, and 12 months follow-up. Variables include demographics, family history, comorbidities, ECG findings, laboratory results, medications, and procedures. 'X' marks indicate data collection points. Acronyms and terms are defined below, such as AF (atrial fibrillation), NOAC (non-vitamin K oral anticoagulant), and TTE (transthoracic echocardiogram).]



2.5. Follow-up

All patients with a follow-up observation period of at least one year will be included in the study. A sub-analysis will be performed to record DCCV or AF ablation procedures to investigate the relationship between the AF score by AI-enhanced ECG and AF procedure. Subsequently, SR maintenance or AF recurrence at 3, 6, 9, and 12 months will be determined.



2.6. Objectives

The primary objective of this multicenter retrospective cohort study is to externally validate a deep-learning-based algorithm (SmartECG-AF®) for predicting PAF during SR using 12-lead ECG data. The secondary objectives are to evaluate the impact of AI-enhanced ECG on AF-related clinical outcomes and to assess its relationship with key clinical endpoints, including all-cause mortality, cardiovascular-related mortality, cardiovascular-related hospitalization, and major adverse cardiovascular events. A sub-analysis will be conducted to investigate the relationship between AF scoring and maintenance of SR status at 1, 3, 6, and 12 months in those who received rhythm control treatment by AF catheter ablation, cryoablation, or DCCV. The risk score by AI-enhanced ECG will be used to examine the relationship between AF progression, AF duration, CHA2DS2-VASc score, and HAS-BLED score. Medications (such as non-vitamin K oral anticoagulant (NOAC) and antiarrhythmic drug (AAD)) and laboratory findings (complete blood count, electrolytes, creatinine, blood urea nitrogen, N-terminal pro b-type natriuretic peptide, fasting plasma triglycerides, high density lipoprotein cholesterol, total cholesterol, and C-reactive protein and transthoracic echocardiogram findings (ejection fraction, left atrial size, E/e') will be analyzed according to the AF risk determined by AI analysis.



2.7. Statistical analysis

The necessary sample size for this study was determined using power analysis. Based on an AUC value of 0.78 in our previous study, we aim for an AUC of 0.80 in the current study (12). Our study sample of 50,000 enrollees including 25,000 in the PAF-NSR group (positive group) and 25,000 in the healthy-NSR group (negative group) can achieve a statistical power of over 99% to detect a difference between AUC0 = 0.78 under the null hypothesis and AUC1 = 0.80 under the alternative hypothesis using a two-sided z-test at a significance level of 0.05.

Categorical variables are presented as frequencies and percentages, while continuous variables are summarized as means and standard deviations or medians and interquartile ranges. To determine the distribution of the continuous variables and the appropriate statistical methods for their analysis, the normality of these distributions will be assessed using the D'Agostino-Pearson omnibus test. Comparisons between groups for categorical variables will be performed using the chi-square test or Fisher's exact test, while continuous variables will be compared using the independent samples t-test or Mann–Whitney U test, depending on the results of the normality assessment.

To evaluate the performance of the AI- enhanced ECG algorithm in predicting PAF during SR, a comprehensive statistical analysis will be performed. The sensitivity, specificity, positive predictive value, negative predictive value, overall accuracy, and F1 score of the algorithm will be calculated by comparing its predictions with the reference to standard diagnoses. ROC analysis is conducted to determine the AUC, providing a comprehensive measure of the diagnostic performance of the algorithm. Optimal cutoff points are identified by maximizing the Youden index, which considers both sensitivity and specificity. To assess the performance of our AI model, we compared the AUCs from the current and previous datasets using the z-statistic (13). Additionally, measures including sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and F1 scores from both datasets were analyzed using a two-sample proportion test.

Furthermore, subgroup analyses stratified by variables such as age, sex, and the presence of comorbidities will be conducted to evaluate the performance of the algorithm across diverse patient populations. Kaplan–Meier survival functions will be used to estimate the time to hospitalization, AF-related procedure outcomes, and mortality, with log-rank tests to compare patients with low and high risk of AF by AI. Using a multivariate Cox proportional hazards regression model, we will estimate the effect of AI-enhanced ECG multimorbidity on clinical outcomes after stratifying patients into groups according to AF probability as determined by AI, while adjusting for potential confounders such as age, sex, comorbidities, medications, and other clinically relevant factors. Additionally, we will conduct a subgroup analysis with 1:1 propensity score matching to adjust baseline characteristics for both groups to further understand their impact on our findings. The absolute standardized mean difference will be calculated to validate the propensity score matching. Moreover, adjustments will be made for various confounding factors, including age, sex, history of heart failure, hypertension, diabetes mellitus, previous ischemic stroke, transient ischemic attack, vascular events, and thromboembolism.

All statistical analyses will be performed using IBM SPSS Statistics 29 (IBM Corp., Armonk, NY, USA) and Python. Statistical significance is set at two-tailed p < 0.05. The necessary sample size for this study will be determined through power analysis using PASS 11 software (PASS 11, NCSS, LLC. Kaysville, Utah, USA) (13, 14).




3. Discussion

We will evaluate and validate the AI-enhanced ECG algorithm using a real-world large-scale dataset. Furthermore, we will examine the feasibility of incorporating the AI-ECG algorithm into clinical practice and evaluate its influence on AF-related patient outcomes.

This multicenter study involves 10 major university hospitals with a large sample size of over 50,000 cases. To date, no large-scale validation studies have been conducted at multiple institutions; hence, our study will provide a robust foundation for drawing meaningful conclusions with generalizable results.

Given the multifactorial nature and progressive characteristics of AF, it is important to consider various factors beyond the diagnosis itself, such as the timing of AF diagnosis, window period, and accurate comorbidity information. Therefore, accurate data labeling is essential for accurate and effective AI training (15, 16). One notable strength of our research design is the meticulous selection of data by specialized electrophysiologists from the cardiology departments of university hospitals. Within the landscape of AI-driven medical research, data labelling is a priority. Compared to previous studies, we do not solely rely on machine interpretations of the ECG readings. Instead, we will enhance the accuracy and reliability of our data through meticulous categorizing by electrophysiologists from all participating university hospitals.

Unlike traditional diagnostic methods that distinguish between AF and sinus rhythm only during ongoing “irregularly irregular” AF episodes, our AI model is uniquely designed to diagnose and predict AF occurrences even during SR. This breakthrough addresses a critical unmet medical need considering the sporadic and asymptomatic nature of PAF which often evades low detection yield by conventional methods, despite the risk of severe complications such as stroke and heart failure. Our methodology diverges fundamentally from existing approaches such as Holter monitors, smartwatches, and implantable cardiac monitors, not only in terms of data acquisition but also in the sophistication of our algorithm. Our AI model excels in identifying and amplifying specific ECG regions indicative of AF. Validated by cardiac arrhythmia experts rather than relying solely on machine-generated ECG readings, our approach has achieved a significantly higher F1 score, affirming its effectiveness and precision (9).

Our study will build on the significant findings of atrial remodeling and fibrosis in patients with recurrent AF after AFCA. Echocardiography and magnetic resonance late gadolinium enhancement can visualize these pathological changes (17). The promise of AI-enhanced ECG in detecting inflammation and fibrosis via the normal SR in patients with AF has been underscored. Recent AI-enhanced ECG data suggest that inflammation and fibrosis may be discerned through NSR on ECG in patients with AF (18). The use of AI-enhanced ECG-guided AF screening in SR has significantly improved AF detection rates (19). Our study aims to advance this field further. Our primary focus is not merely to improve AF diagnosis using AI, but to strengthen the connection with relevant clinical data. We anticipate that by implementing this comprehensive strategy, the capabilities of AI will be enhanced, with further improvements in the detection of AF and deeper understanding of the disease. We intend to further investigate the ability of AI-enhanced ECG to detect subtle changes in atrial inflammation and fibrotic remodeling. A central point of our investigation is the relationship between AI-enhanced ECG findings and the maintenance of SR in patients undergoing AF-related procedures. A recent study also highlighted the impressive performance of AI-enabled ECG in detecting AF on SR-ECG, showing increased efficacy when the algorithm incorporated SR-ECG after the index AF-ECG (20). This is consistent with the “window period” approach in our previous study.

Building on these findings, our study aims to report the ability of AI-enhanced ECG to accurately detect even subtle variations in atrial inflammation and fibrotic remodeling. Additionally, we will investigate the correlation between AI-enhanced ECG findings and the maintenance of SR in patients undergoing AF-related procedures. To gather relevant data, we will obtain ECG data at 3 and 6 month follow-ups, and every 6 months thereafter, to evaluate the outcomes of SR maintenance in patients undergoing AF catheter ablation, cryoablation, and DCCV.

We will also investigate the relationship between AI-enhanced ECG and antiarrhythmic medications, including their potential effects on ECG parameters. We aim to gain insights into the impact of antiarrhythmic agents on ECG patterns and identify any potential correlations between medication usage and AI-enhanced ECG findings (21–23). This research will contribute to a better understanding of the interaction between AI-enhanced ECG and antiarrhythmic therapies, ultimately informing clinical decision-making and optimizing treatment strategies for patients with AF. This analysis will enable us to assess the influence of medication use on the performance of AI-enhanced ECG in predicting AF. Examining the relationship between antiarrhythmic therapy and AI-enhanced ECG findings, this will provide valuable insights into the effect of medication status on the accuracy and effectiveness of AF prediction models.

The incidence of AF significantly increases in the population aged 65 years and above, and it is anticipated that this prevalence will increase further with the aging of the population (24). AF is asymptomatic in up to 40% of patients, but the risk of complications remains regardless of the presence or absence of symptoms (25). The yield of single time-point screening, including 12-lead ECG or handheld ECG, for unknown AF is 1%, rising to 1.4% for those aged 65 and older; importantly, only a minority of patients with a diagnosis of AF experience symptoms, and a significant proportion are undertreated (26). Our study aims to bridge a significant gap in the detection of AF. Conventional 12-lead ECG methods have shown limited detection yield, particularly in asymptomatic populations. However, in the EAST-AFNET 4 trial, early rhythm control was found to consistently improve clinical outcomes, reducing mortality rates, hospitalizations, and complications by 21%–24% in both asymptomatic and symptomatic patients newly diagnosed with AF (7, 8). These findings underpin the critical need for early detection and management of AF. This approach allows the promotion of early intervention to improve patient outcomes, aligning with the “early detection, early management” paradigm. The use of AI-enhanced 12-lead ECG shows potential for improving the early detection of AF, particularly in high-risk patients with paroxysmal episodes. In real-world clinical settings, patients identified as high-risk through AI-enhanced ECG could undergo intensive and prolonged Holter monitoring, along with rigorous outpatient follow-up, as a proactive approach to mitigate potential complications. This could represent a significant technological breakthrough in AF detection and screening that can be applied to the general population (5).

This study has some limitations. First, the retrospective design of our study may raise concerns about selection bias, documentation gaps, and data inconsistencies across hospitals. Our decision to use a retrospective approach was driven by the challenges of obtaining large-scale data that combines various clinical datasets, particularly in the field of AI-ECG research on AF. Notably, in the current NOAC era, discerning the relationship between AI-ECG and clinical outcomes such as stroke and systemic embolism associated with AF remains a significant hurdle, even within the design of a prospective study. Previous studies linking stroke to extensive clinical data used a retrospective dataset because of these challenges (27). Nevertheless, there remains a need for a large prospective clinical trial to validate the correlation with clinical outcomes. Second, our study will be conducted across a multicenter network of 10 major university hospitals. These variations can introduce heterogeneity into the data, potentially influencing the outcomes of our study. Although this enhances the generalizability of our findings to some extent, it is important to note that there may still be variations in patient populations, treatment protocols, and healthcare practices across different centers. Given the varying circumstances under which ECGs are performed in these settings, we used raw XML digital data to minimize the potential for bias and artifacts. Third, the algorithms used in AI are generally known as “black boxes” in terms of how they reach conclusions. This lack of transparency can be a significant barrier to the adoption of AI systems in medical settings, where understanding the reasoning behind recommendations is crucial for building trust and patient compliance. To address the challenges of AI interpretability in the arrhythmia field, we have incorporated Class Activation Maps (CAM) from methodologies like Grad-CAM, SHAP, and Dense Neural Networks, emphasizing explainable AI (28). Fourth, despite the impressive performance exhibited by deep learning algorithms, the challenge of effectively addressing false positives and false negatives to accurately identify appropriate therapies and forecast results remains a significant concern. Finally, in contemplating future applications of our AI-enhanced ECG algorithm, several suggestions warrant attention. Immediate plans include the development of an intuitive user interface designed to integrate seamlessly into routine clinical workflows, thereby augmenting the detection of AF. The sustainability of the effectiveness of the algorithm necessitates periodic re-training with updated data sets. Furthermore, addressing ethical considerations regarding data privacy and informed consent is imperative to ensure the responsible clinical integration of the algorithm. Addressing these critical factors is pivotal for the successful and ethical deployment of our technology in healthcare environments.

In conclusion, this large-scale, multi-center study aims to validate the real-world performance of our AI-enhanced ECG algorithm in diagnosing AF and to explore its association with AF-related clinical outcomes, thereby contributing to the improvement of AF detection and its potential integration into clinical practice.
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Artificial intelligence (AI) has emerged as a promising field in cardiovascular disease (CVD) research, offering innovative approaches to enhance diagnosis, treatment, and patient outcomes. In this study, we conducted bibliometric analysis combined with topic modeling to provide a comprehensive overview of the AI research landscape in CVD. Our analysis included 23,846 studies from Web of Science and PubMed, capturing the latest advancements and trends in this rapidly evolving field. By employing LDA (Latent Dirichlet Allocation) we identified key research themes, trends, and collaborations within the AI-CVD domain.
The findings revealed the exponential growth of AI-related research in CVD, underscoring its immense potential to revolutionize cardiovascular healthcare. The annual scientific publication of machine learning papers in CVD increases continuously and significantly since 2016, with an overall annual growth rate of 22.8%. Almost half (46.2%) of the growth happened in the last 5 years. USA, China, India, UK and Korea were the top five productive countries in number of publications. UK, Germany and Australia were the most collaborative countries with a multiple country publication (MCP) value of 42.8%, 40.3% and 40.0% respectively. We observed the emergence of twenty-two distinct research topics, including “stroke and robotic rehabilitation therapy,” “robotic-assisted cardiac surgery,” and “cardiac image analysis,” which persisted as major topics throughout the years. Other topics, such as “retinal image analysis and CVD” and “biomarker and wearable signal analyses,” have recently emerged as dominant areas of research in cardiovascular medicine.
Convolutional neural network appears to be the most mentioned algorithm followed by LSTM (Long Short-Term Memory) and KNN (K-Nearest Neighbours). This indicates that the future direction of AI cardiovascular research is predominantly directing toward neural networks and image analysis.
As AI continues to shape the landscape of CVD research, our study serves as a comprehensive guide for researchers, practitioners, and policymakers, providing valuable insights into the current state of AI in CVD research. This study offers a deep understanding of research trends and paves the way for future directions to maximiz the potential of AI to effectively combat cardiovascular diseases.
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Introduction

The application of advanced big-data analysis appears to shape the future of healthcare (1–3). Artificial intelligence (AI) has become a common tool for researchers and practitioners in several medical contexts (4). One medical condition where AI is extensively used is cardiovascular disease (CVD) (5). CVD is one of the leading causes of death in the world (33% of all deaths) and reason for more than 60 million potential years of life lost in Europe (6). A steadily increasing number of studies are conducted to understand the complex and dynamic nature of CVD, ascertaining the relevance of AI for risk, treatment and event/outcome prediction/classification. Publications in peer reviewed academic journals suggesting a customized machine learning (ML), deep learning (DL) and natural language processing (NLP) models for diagnosis and prognosis of CVD is increasing (7).

Several studies have explored the increasing application of AI in CVD, including early detection of stroke and heart disease (7). The study depicted a sharp increase in number of publications on the topic of applied AI and pointed out the increased use of robotics in diagnostics and stroke rehabilitation. Similarly, a systematic review by Arshia et al., showed the exponentially growing number of publications regarding the application of AI and ML in vascular surgery (8). The study analysed 249 literatures from three databases (MEDLINE, Embase and Ovid HeathStar) and indicated that carotid artery disease, peripheral arterial disease and abdominal aortic aneurysm are the most dominant topics in which AI and ML methods are highly applied in the vascular surgery domain. The review also showed that neural networks and support vector machines were the most frequently applied methods. According to Ginette et al. the overall trend for wearable technologies in cardiovascular disease has increased, and the application of AI became prominent since 2020 (9). The study also commented on the significant imbalance in scientific contribution from low income countries.

Other studies have explored the use of AI in specific aspects of cerebrovascular and heart diseases. For example, in a review by Andrew et al., the potential advancement and benefits of decision support systems developed to aid clinicians in selecting the most appropriate treatment strategy for acute ischemic stroke was discussed (10). Despite these efforts, a comprehensive analysis of the general research landscape on the application of AI in managing cardiovascular diseases would benefit in shaping the direction of research and signalling the emerging topics and methods in applying AI in cardiovascular medicine.

Synthesis of the vastly increasing scientific evidence in this field is needed to identify the trends and topics that have been studied over the years. In this context, bibliometric analysis is a suitable research methodology as it enables researchers to explore the current trend in a particular research area using citation information (11). It mainly provides an overview of who is doing what, where, with whom and the intensity of collaboration across countries, authors and affiliations. Additionally, topic modeling helps in discovering patterns of word use and connecting documents with similar patterns to identify dominant topics from a large corpus of text (12).

Undoubtedly, the application of AI methods in CVD has evolved over time, influenced by the advancement in computer processing power and rapidly evolving research in data science. Therefore, by identifying the key trends and research themes in CVD and AI, this study aims to guide future research and development efforts in the field of in AI-enhanced healthcare for cardiovascular diseases.



Methods


Search strategy

Keywords from previous literature and the 2019 online version of the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) have been used to scan for all CVD related diseases (13, 14). Medical subheadings, mixing keywords with subject headings, truncated keywords and controlled vocabularies were applied in iterative manner. We implemented a systematic approach to make sure the included papers are relevant. The search was commenced by two independent reviewers and crosschecked to ensure consistency in the search result. Afterward, we removed duplicates and curated for papers with no citation information.. The search was conducted on PubMed and Web of Science (WoS) by limiting the year from 2000 to 2022. Any discrepancies in the search results were discussed and resolved.



Screening strategy

Journal articles, preceding papers, reviews, conference abstracts, early access and book chapters were included. The search was limited to English language, human studies and studies with abstract. The search was further restricted to studies that had applied AI/ML as a major intervention in cardiovascular medicine. After the search by the two independent reviewers (KBS and PW), duplicates were removed using Endnote. The detailed search results are presented in Figure 1.


[image: Flowchart of a research paper filtering process. Initial search results from databases total 27,533 papers. Duplicates removed: 2,648, leaving 24,885 papers for bibliometric analysis. After excluding 1,039 papers with missing data (abstract and title), 23,846 papers remain for topic modeling.]
FIGURE 1
Search result flowchart. The search results of keywords associated with CVD and AI.





Analysis

Descriptive analysis, bibliographic network visualizations and network analysis were performed using the Bibliometrix package in R and the VOS viewer (15, 16). The trend in publication and collaboration network will show the number of published studies related to AI and CVD, who is contributing more, who is collaborating most, and where those studies are from.

Topic modeling is an unsupervised machine learning algorithm to extract hidden topics or semantic structure from a corpus of text. It will help us identify key words and dominant topics associated with AI and CVD. The method assumes that all text in a specific document is composed of different topics and every topic is composed of related words (12). The most common approaches of topic modeling are: Latent semantic analysis (LSA), probabilistic Latent Semantic Analysis (pLSA), and Latent Dirichlet allocation (LDA). LSA is a statistical method to extract and represent the contextual meaning of words in a large volume of unstructured corpus of text based on their proximity in semantic space (17, 18). pLSA is another probabilistic statistical approach that aims to differentiate and identify meanings of words in different contexts (19).

LDA considers documents as a random mixture of latent topics and topics as a dominant distribution of words (17). It is the most appropriate model for the research question addressed in this work. Figure 2 illustrates the detail of LDA model representation demonstrated by Blei et al. (17).


[image: Flowchart diagram displaying a graphical model structure with nodes labeled alpha, theta, z, beta, and w. Arrows indicate the flow between alpha to theta, theta to z, and z to w. Beta connects directly to w. Rectangular boxes labeled M and N encompass parts of the diagram.]
FIGURE 2
Graphical representation of LDA model. The boxes represent replicates. The outer plate represents total number of documents (M), while the inner plate represents the repeated choice of topics (z) and words (w) within a document (N). α, represents” topic distribution per document”; β, represents “word distribution per topic”; θ, represents “topic distribution per document M”.


We applied the data pre-processing steps presented in Table 1 prior to the topic modeling.


TABLE 1 Data cleaning and pre-processing steps.

[image: A table with two columns: "Step" and "Description". The steps listed are: 1. Tokenization, 2. Punctuation and special character removal, 3. Stop word removal, 4. Lemmatization, and 5. Bigrams and trigrams. Each step has a detailed description explaining the process and purpose. Tokenization involves breaking text into tokens; punctuation removal eliminates irrelevant characters; stop word removal optimizes text by filtering common words; lemmatization reduces words to root forms; and bigrams and trigrams recognize frequently occurring word pairs or triples. Numbers in parentheses refer to citations.]

For the topic modeling, we analyzed publication's title, abstract and author keywords from 2010 to 2022. The topics were clustered and visualized using intertopic distance map and t- stochastic neighbor embeding t-SNE.



Results

The search resulted in a total number of 27,533 studies. After removing duplicates, 24,885 studies were considered for further bibliometric analysis. For subsequent topic modeling analysis, 23,846 studies were considered after removing 1,039 studies with missing abstract or title (see Figure 1).

More than 60% of the publications were journal articles followed by proceeding papers (19%). The annual scientific production of machine learning papers in CVD increases continuously and significantly since 2016, with an overall annual growth rate of 22.8%. Almost half (46.2%) of the growth happened in the last 5 years. A significantly higher number of studies with a focus on the application of AI in CVD is indexed in WoS than in PubMed (Figure 3). To have a clear insight, we also compared the results with AI-medicine search result and the comparison showed that AI application in CVD domain shares a significant portion (31.2%) of AI studies in medicine.


[image: Four graphs display trends in research studies from 2000 to 2022. The first graph shows a rising trend in studies for CVD + AI (green) and AI + Medicine (red), with AI + Medicine increasing notably since 2015. The second graph shows an upward trend in Medicine (purple) and CVD (yellow), with Medicine rising more sharply. The third graph compares AI + Medicine (red) and AI only (blue), with both showing significant growth, especially AI only. The fourth diagram is a Venn diagram illustrating the overlap between studies in Medicine, AI, and CVD, showing the shared and separate studies counts.]
FIGURE 3
Annual publication trend. Studies related to the application of AI in cardiovascular disease and medicine since 2000.


We also saw that USA, China, India, UK and Korea were the top five productive countries in number of publications. UK, Germany and Australia were the most collaborative countries with a multiple country publication (MCP) value of 42.8%, 40.3% and 40.0% respectively (Table 2). The country of first author's affiliation is considered as corresponding author's country and the MCP ratio is calculated using the publications authored by authors from multiple countries divided by the total publication record of the country.


TABLE 2 Most productive corresponding author's countries and collaboration ratio.

[image: Table displaying the number of publications from various countries in databases WoS and PubMed. It includes categories for Single Country Publications (SCP) and Multiple Country Publications (MCP) along with their MCP ratios. The USA leads with 4,470 publications on WoS, followed by China with 3,942. The MCP ratio is highest for the United Kingdom in WoS at 42.8%.]

The density map in Figure 4 showed that most of the studies conducted in this area of research arises from developed countries and it is also important to note the population size in interpreting this result. The figure only shows the number of publications and not the proportion per population size. Yet this can be an important input to understand the overall publication size in this domain of research.


[image: Word cloud visualization showing country names with varying brightness indicating prominence. "USA," "people's r China," and "England" are the most prominent. The background is a gradient of blue to green. Created with VOSviewer.]
FIGURE 4
Density map of publications in the area of AI in CVD context. The density size and color show the intensity of contribution.


IEEE access, IEEE engineering in medicine and biology (annual conference), Scientific reports, PlosOne and sensors were the top five sources indexed in WoS (Figure 5).


[image: A paired bar chart comparing the number of publications from WoS-indexed and PubMed-indexed sources. The WoS chart shows IEEE Access with the highest number, followed by Sensors, and Scientific Reports. The PubMed chart highlights the Annual International Conference of the IEEE as leading, followed by Scientific Reports and PLOS ONE. Both charts display varying publication counts across different journals.]
FIGURE 5
Most relevant sources indexed in WoS and PubMed. The graph shows where most of the publications associated with CVD and AI are published between 2000 and 2022.




Results for the topic modeling

After cleaning the list of studies, the abstracts from each study was extracted for further analysis. The number of topic was identified by using coherence (22). The coherence score calculates how words in a particular topic are similar to each other based on the calculated word co-occurrence, normalized pointwise mutual information (NPMI) and the cosine similarity (23).

The distribution of word counts across documents is assessed to visualize the patterns in the data and the shape of word distribution among abstracts. It is important to assess the word distribution because if the distribution is heavily skewed to the left, with a large proportion of documents having a low word count, it may indicate that many of the documents are short or that the data is not well-suited for LDA analysis. The average word count per abstract were 215 words with standard deviation of 92 words (Figure 6). This imply that that the average word count in the abstracts is more or less representative (meaning, the tail effect is reduced considering that most journals limit the abstract to 350 words).


[image: Histogram showing the distribution of word counts in abstracts, with word counts on the x-axis ranging from 50 to 500 and the number of studies on the y-axis up to 250. The data is skewed right, peaking around 200 words. Statistics displayed are mean: 214.58, median: 208.00, and standard deviation: 91.43.]
FIGURE 6
Distribution of word count in documents of publications in 2010–2022. The y-axis represents the number of studies and the x-axis represents the word counts in the abstract. Most abstracts have a word range between 100 and 300 words.


The intertopic distance map is an interactive visualization of topics identified by the LDA model. It shows how the topics differ from each other (24). More specifically, the left panel of an intertopic distance map shows the global view of topic prevalence and how the topics relate to each other (by plotting topics as a circle). The right panel shows keywords contributing to the topic (by plotting each keyword as a bar chart based on their frequency) (24). Although we were able to identify 22 topics (Table 3), the result showed how some topics are closely related and some of them are distinct in the context of AI application in CVD (Figure 7). The provided intertopic distance map on Figure 7 offers a visual representation of the relationships and distances between different topics generated through topic modeling. By observing the intertopic distances on the map, we can discern patterns of topic similarity and divergence. Topics located closer to each other on the map are more closely related, sharing common keywords or themes. Conversely, topics positioned farther apart exhibit greater dissimilarity, suggesting unique subject matter or content.


TABLE 3 List of topics with AI application in cardiovascular disease in alphabetical order and their associated number of publications.

[image: A table listing identified topics related to machine learning in the context of cardiovascular diseases (CVD) and the associated number of publications. The topics include aneurysm, atherosclerotic plaque, biomarkers, blood pressure, cardiac image analysis, cardiac motion estimation, cardiovascular risk prediction, clinical applications, coronary artery disease, heart failure, innovative systems, liver fibrosis, atrial fibrillation, clinical decision systems, heart disease diagnosis, surgical outcome prediction, neural network and occlusion detection, natural language processing, real-time cardiac data, robotic surgeries, rehabilitation therapy, and wearable sensors. The number of publications ranges from 72 to 6,401.]


[image: Intertopic distance map and bar chart visualization. On the left, a scatter plot with labeled, colored circles shows topic distribution and distances using multidimensional scaling. On the right, a bar chart lists the top thirty relevant terms for Topic 2, with bars indicating overall and estimated term frequencies. The visualization aids in understanding topic relevance and distribution within a dataset.]
FIGURE 7
Inter-topic distance map of publications since 2010–2022. PC, principal component, the numbers inside the circles indicate number of topics and the size of circle indicate topic dominance.


After identifying dominant topics, topic labeling was done based on the result from word relevance, inter-topic distance map and keyword weight. Afterward, the topic labeling was done by two experts (KBS and PW), it was further discussed among the working group (KBS, PW, AZ, DW) for consensus. The word cloud in Figure 8 highlights the relevant keywords for the identified topics. Prominent and larger words in the word cloud represent central concepts that recurrently emerge across multiple topics. These words can signify dominant subject areas or recurring terms that hold significance. In contrast, smaller words in the word cloud may represent less frequent or more specialized terms. These terms offer insight into nuanced or distinctive subtopics within the dataset. The word cloud's arrangement does not only highlight the most common words but also visually groups related terms together in terms of semantic distance. This visualization aids in identifying potential clusters of themes and understanding the overall content landscape.


[image: Word cloud visualization displaying key terms associated with 22 topics, each labeled and distinguished by different colors. Notable terms include "cardiac," "network," "therapy," "heart," "sensor," "surgery," "stroke," "cancer," and "pressure." Topics cover a range of subjects, such as medical conditions, procedures, and technologies.]
FIGURE 8
Word cloud of dominant topics in the context of AI application in CVD since 2000.


To get more insight, each publication was plotted as a datapoint in a 2-dimensional plot and clustered by the dominant topics using t-stochastic neighbor embedding (t-SNE) (Figure 9). The result showed that some topics are more dominant than the others such as cardiac image analysis and cardiovascular risk/outcome prediction (See the details of the identified topics in Table 3). In Figure 9, the clusters of topics that appear close together indicate high similarity (similar colours) in their distributions of words and themes. This suggests that these topics share common keywords or concepts and are likely to be related in content.


[image: Scatter plot displaying clustered data points in various colors, including green, red, blue, pink, brown, purple, orange, and yellow. Each color represents a distinct cluster on a two-dimensional grid.]
FIGURE 9
Cluster of topics in the application of AI in CVD since 2000. Each data points indicates publications and similarity in color shows the presence of common keyword and topic similarity. From here, cardiac image analysis, stroke and robotic rehabilitation therapy, coronary artery disease and machine learning, robotic-assisted cardiac surgery, wearable sensors and heart signal analysis, blood pressure and machine learning, and cardiovascular disease risk/outcome prediction are the predominant topics.




Identified topics

We were able to identify 22 topics with AI application in CVD (Table 3). Our analysis shows an increase in number and diversity of topics over the years. Some topics like “stroke and robotic rehabilitation therapy” and “Cardiac image analysis” persisted as major topics throughout the years. Other topics like “Retinal image analysis and CVD” emerge as a dominant new topic since 2020. Furthermore, the type and number of cardiovascular disease conditions in which AI is becoming a major methodical solution increase over time. Diseases like “coronary artery disease”, “Myocardial infraction/Heart attack” and “stroke” are the widely studied contexts. The results also indicate that prediction models for prognosis/diagnosis of heart disease are becoming more prevalent. Furthermore, image and signal analysis are the most widely applied application of AI in CVD context.

In this rapidly evolving landscape of scientific research, the application of advanced algorithms has become pivotal. To get the grasp in the relevant algorithms used in AI related cardiovascular research, we delve into the mention and utilization of algorithms within the abstracts of our study's corpus. Through a meticulous analysis, we aim to illuminate the prevalence, diversity, and significance of algorithms as integral tools shaping contemporary research paradigms. We listed all the available supervised, unsupervised and reinforcement learning algorithms, NLP algorithms, and deep learning algorithms and calculated the number of mentions in the abstracts. This will give us a glimpse of information which algorithms are widely used in cardiovascular research. The number of mentions is not a certain measure that the studies used may not necessarily ascertain the use of these algorithms but can show the prevalence of discussion about the algorithms in the abstracts which gives an idea of the algorithms that are being talked about. Figure 10 shows that CNN (Convolutional Neural Network) is the most mentioned algorithm among the abstracts followed by LSTM (Long Short-Term Memory) and KNN (K-nearest Neighbour). From the result, we can see that neural network architectures are widely used in AI-CVD studies which makes sense given that the most dominant area of research identified was cardiac image analysis.


[image: Bar chart showing algorithm mention frequencies in abstracts. Convolutional Neural Network (CNN) is the most mentioned, followed by Long Short-Term Memory (LSTM), K-nearest neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Gated Recurrent Units (GRU), Gradient Boosting, Decision Tree (DT), and Naive Bayes (NB). CNN has the highest frequency, approaching 14,000 mentions, while others decrease progressively.]
FIGURE 10
Algorithmic mentions in abstracts of studies on AI-CVD studies since 2010–2022. This marks the relevance of neural network architecture in cardiovascular medicine (CNN, LSTM, GRU).


Identifying the topics and most mentioned algorithms provide an interesting information but to see the evolution of these topics over time is also important. The topic change over time (Figure 11) shows that the number of publications and diversity of topics significantly increased over the years. In 2010 and 2011, there were fewer number of topics (the studies were mainly focused on three topics (stroke and robotic rehabilitation, cardiac image analysis and robotic assisted cardiac surgery) and that changed over the years and yet cardiac image analysis is still the widely studied topic in the context of AI in CVD.


[image: Stacked area chart depicting the use of machine learning in cardiovascular studies from 2010 to 2020. It shows various research topics such as aneurysm, biomarkers, cardiac image analysis, and more, with each area representing the proportional focus on each topic over time. Key topics like cardiovascular disease prediction and coronary artery disease show increased research over the years, while others remain stable or decrease.]
FIGURE 11
Topic change over time from 2010 to 2022 in the context of cardiovascular disease and AI application.




Discussion

In this work, we applied bibliometric analysis and topic modeling based on publications indexed in Web of Science and PubMed to evaluate research trajectories and to identify AI topics focused on cardiovascular disease.

The result showed a substantial increase in publications since 2016. This trend is not specific to AI applications in CVD but it can be observed in most AI studies in medical context (25, 26). Aside from the enormous increase in publication, studies showed a significant geographical disparity in contribution and collaboration globally (Figure 4). This might result in an “AI divide”, as reported by Lutz et al. indicating that most of the contributions and networking are cantered in developed countries (27). AI divide refers to the gap in level of access, usage and concern for AI technologies between demographic regions of the world. According to the literature, this gap is widening rather than closing (7, 27). This observation is backed up by our reported result. Potential reasons include socio-economic factors, the fact that AI studies are usually computer power intensive, and the gap in research and data infrastructure (28–30).

We also observed that the majority of publications associated with AI and CVD are indexed in WoS and CVD is the widely studied context compared to other conditions. The contribution in publication from the USA and China was identified as the major without normalizing to the population size. However, the multiple country collaboration (MCP) was higher in UK, German and Australia with 42.8%, 40.3% and 40.0% respectively (Table 2). This finding was in line with other studies showing more networking among European countries (26).

The distribution of word counts in the abstract showed a composition of abstracts with different number of words ranging from 50 to 500 words with mean word distribution of 215 words (Figure 6). Which was considered good fit given the fact that most journals use 350 words as a limit. The number of topics were identified by using coherence score and resulted in k = 22 (k = number of topics). The intertopic distance map showed the relationship between the 22 topics signifying that some topics were closely related and some of them were distinct (Figure 7). The most important keywords responsible for each topic were visualised using wordcloud (8) and the 2-dimentional t-SNE plot showed the topic distribution by taking each abstract as a data point and colour them based on topic similarity (Figure 9).

We identified 22 general topics from the corpus of 23,846 abstracts. One of the extensively explored aspects of AI applications in CVD is “cardiac image analysis”. Cardiac Image ranges from 3D/4D of Magnetic Resonance Images (MRIs), echocardiography (ECG), Ultrasound images, Computed Tomography (CT) scans and Nuclear medicine imaging. The analysis includes image segmentation, classification and pattern recognition. Furthermore, the application of neural networks and multiple deep learning algorithms in cardiovascular image analysis has become an outstanding solution over the years (31). Studies pined that deep learning has revolutionized computer vision in CVD imaging and that has a remarkable potential to facilitate diagnosis and prognosis. This finding contends with a similar study conducted by Tran et al., denoting that robotic assisted surgery and stroke rehabilitation were the dominant topics (7). Our results, however, indicated an upsurge of research focus on cardiac image analysis. The differing observations could be explained by the difference in study periods and context differences. The former study compiled search results from 1991 to 2018 and focused on the context of stroke and heart disease whereas we gathered publications from 2000 to 2022 and focused on the general cardiovascular disease groups. In other word, the former study included 18 years of publications that we didn't include (1991–2009) which might contribute to the difference in keyword relevance/weight. Conversely, our research incorporated data from the recent 3 years (2019–2022) representing a significant portion of the overall publications, which the prior study did not include.

Over the past decade, “Robotic-assisted cardiac surgery” has consistently emerged as the second most dominant topic of study. Robotic assisted cardiac surgery is a cardiac surgical procedure assisted by robotic technologies with minimal invasive techniques (32). Frequently studied cardiac cases include mitral valve repair, cardiac revascularization, left ventricular lead placement, aortic valve repairs, cardiac resynchronization therapy (CRT), tumour resections, endoscopic coronary artery bypass grafting, atrial fibrillation ablation and cardiac arrhythmia surgery (33). Surgical robotic systems are certainly one important element in these procedures, including the widely known surgical systems “The DaVinci surgical system (Intuitive Surgical, Inc.; Sunnyvale, Calif)” and The ZEUS system (34, 35).

The topic of “Stroke and robotic rehabilitation therapy” was identified as a third dominant topic. Considering its importance for patients with motor disorder, the number of studies in rehabilitation robotics has also profoundly increased over the years (36). Due to the motor disfuntioning effect of Stroke, rehabilitation therapy is considered almost always to recover motor disorder in patients with Stroke. The potential of robotic devices in facilitating rehabilitation in stroke patients is one of the main research topics (37).

Apart from the persistent topics already discussed in the literature, new topics such as “biomarker” and “wearable sensor signal analysis” are gaining more attention. Biomarker is an objectively measured attribute considered as an indicator of normal biological, pathogenic or pharmacologic reaction to therapeutic intervention (38). The use of circulating, genetic and imaging biomarkers in cardiovascular risk prediction, diagnosis and prognosis has gained considerable attention (39). Accordingly, AI models are applied to identify and analyse most relevant cardiovascular biomarkers in diagnostic or prognostic performance. These novel methods are another step towards precision and personalized medicine (40).

The algorithmic mention graph showed that neural network architectures are the widely used method in cardiovascular AI research with most of its application in cardiac image analysis. This is inline with the review conducted by Litjens et al. (31). Convolutional neural network appears to be the most mentioned algorithm followed by LSTM and KNN. This indicates that the future direction of AI cardiovascular research is predominantly neural network and image analysis.

Overall, the application of AI in cardiovascular medicine has grown both with respect to scientific production and dimensions of topics. Topics and trends change with technological advances and improvement of methodological approaches. Thus, the mapping and modeling of topics over time is an important element in directing research and future guideline development.



Limitations

Although we were able to identify the predominant topics in AI-related cardiovascular studies, one limitation of topic modeling is the subjective judgment on topic labelling. The algorithm can only suggest keywords based on probabilistic statistical computations. The actual labelling of topics is the researchers’ task. We used different techniques to identify the most appropriate topic labels. First, we labelled the topics independently with two co-authors based on the identified keywords. We then performed a crosscheck with the suggestion of the other two co-authors and amended based on consensus. We believe that the multidisciplinary background of co-authors helped in handling this challenge.

A notable limitation of our study is the challenge we faced in labelling certain topics as it was difficult to correlate the keywords with a cardiovascular context. Furthermore, our analysis was confined to English-language studies and studies indexed in WoS and PubMed which potentially omits pertinent studies published in other languages and studies that are not indexed in Scopus or PubMed.



Conclusion

In light of the overall growth in scientific contributions in AI-related cardiovascular research, it's evident that the significant imbalance in collaboration across world regions remains a notable challenge, exacerbating the AI divide between developed and developing countries. Alternative solutions like open data and platform for sharing AI research infrastructures should be considered to attain regional and international partnership on knowledge sharing, access to science, technology and innovation.

Our analysis indicated a growing interest and diversity of topics over the years. Cardiac image analysis, robotic assisted cardiac surgery and stroke and robotic rehabilitation therapy are among the predominant topics identified. The result also showed that neural network architectures mainly convolutional neural network, LSTM (Short Long-Term Memory) and GRU (Gated Recurrent Unit) followed by KNN (K-Nearest Neighbour), SVM (Support Vector Machines) and RF (Random Forest) machine learning algorithms. Furthermore, topics such as biomarker and wearable signal analysis are the emerging dominant topics. Detailed refining research focused on the identified topics is required to explore the specifics of AI functionalities in cardiovascular medicine.
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Background: Federated learning (FL) is a technique for learning prediction models without sharing records between hospitals. Compared to centralized training approaches, the adoption of FL could negatively impact model performance.



Aim: This study aimed to evaluate four types of multicenter model development strategies for predicting 30-day mortality for patients undergoing transcatheter aortic valve implantation (TAVI): (1) central, learning one model from a centralized dataset of all hospitals; (2) local, learning one model per hospital; (3) federated averaging (FedAvg), averaging of local model coefficients; and (4) ensemble, aggregating local model predictions.



Methods: Data from all 16 Dutch TAVI hospitals from 2013 to 2021 in the Netherlands Heart Registration (NHR) were used. All approaches were internally validated. For the central and federated approaches, external geographic validation was also performed. Predictive performance in terms of discrimination [the area under the ROC curve (AUC-ROC, hereafter referred to as AUC)] and calibration (intercept and slope, and calibration graph) was measured.



Results: The dataset comprised 16,661 TAVI records with a 30-day mortality rate of 3.4%. In internal validation the AUCs of central, local, FedAvg, and ensemble models were 0.68, 0.65, 0.67, and 0.67, respectively. The central and local models were miscalibrated by slope, while the FedAvg and ensemble models were miscalibrated by intercept. During external geographic validation, central, FedAvg, and ensemble all achieved a mean AUC of 0.68. Miscalibration was observed for the central, FedAvg, and ensemble models in 44%, 44%, and 38% of the hospitals, respectively.



Conclusion: Compared to centralized training approaches, FL techniques such as FedAvg and ensemble demonstrated comparable AUC and calibration. The use of FL techniques should be considered a viable option for clinical prediction model development.
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federated learning, multicenter, prediction models, TAVI, distributed machine learning, privacy-preserving algorithms, risk prediction, EHR





1 Introduction

The increasing adoption of electronic health records (EHRs) across healthcare facilities has led to a wealth of data that can be harnessed for developing prediction models for various medical applications. Such models may improve patient stratification, inform clinical decision-making, and ultimately enhance patient outcomes. In the field of cardiovascular medicine, combining records from multiple centers has successfully been used in training clinical prediction models (CPMs) (1). Such multicenter models tend to generalize better and are more robust than those derived from individual centers. Although models trained on data from a single center may perform well within their local hospital settings, they require a large number of records for training, and their performance often deteriorates when applied to new centers or other patient populations. However, sharing patient data between centers is not always straightforward. Concerns about patient privacy, the implementation of new regulations such as the General Data Protection Regulation (GDPR), and the challenges of integrating data from different centers all pose significant challenges. There is a growing need to implement strategies for training prediction models on multiple datasets without sharing records between them.

Federated learning (FL) has emerged as a promising approach to address this challenge. FL is a machine learning approach that enables multiple parties to build a shared prediction model without needing to exchange patient data.

However, implementing FL comes with its own set of challenges. Aside from logistical and communication issues, an important question is whether FL has a detrimental impact on the quality of learned models (2). While promising, the impact of FL on model quality has yet to be thoroughly examined in various areas of medicine.

Understanding the potential benefits and limitations of FL in developing multicenter prediction models helps facilitate a more effective and privacy-preserving use of electronic patient data in risk prediction. To that end, our analysis investigates the potential of FL as a viable strategy for multicenter prediction model development.

FL has rarely been studied in the cardiovascular context (3–5) and not yet in the transcatheter aortic valve implantation (TAVI) population, which is the focus of this study. TAVI is a relatively new and minimally invasive treatment for severe aortic valve stenosis. The Netherlands Heart Registration (NHR) is a centralized registry that holds records of all cardiac interventions performed in the Netherlands, including those of TAVI patients who are treated in the 16 hospitals performing this operation. Across these 16 hospitals, the TAVI patient population could vary for a number of reasons, such as regional population demographic differences.

Risk prediction models for TAVI patients have been developed using data originating from a single hospital (6) or combining records from multiple centers (1, 7, 8). In a previous study, we evaluated the performance of one such centralized, multicenter TAVI early-mortality CPM and observed the model to have a moderate degree of external performance variability, most of which could be attributed to differences in hospital case-mix (9). However, the performance of such models in an FL approach, compared to a centralized or local approach, remains unknown.

We aimed to evaluate the impact of two important FL techniques: federated averaging (FedAvg) (10) and mean ensemble (henceforth referred to as ensemble) (11), explained further in the Materials and methods section, on the predictive performance of TAVI risk prediction models. This performance is compared to a centralized model and local center-specific models (Table 1).


TABLE 1 Method overview of model development strategies with respect to types of data sharing and validation performance evaluation (the main differences and similarities between the four model strategies used in the current experiments are shown).

[image: Table comparing model strategies: Central, Local, FedAvg, and Ensemble under Federated Learning. It outlines aspects like sharing predictor data, outcome data, model parameters, predictions, optional parameters, calibration, and recalibration. Validation includes stacking predictions CV and LCOA, and obtaining performance. Each model displays different sharing and validation conditions. Clarifications provide additional context.]



2 Materials and methods

This study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement (12). This study meets all five of the CODE-EHR minimum framework standards for the use of structured healthcare data in clinical research (13).


2.1 Dataset

In this nationwide retrospective multicenter cohort study, we included all patients who had a TAVI intervention in any Dutch hospital for the 9-year period from 1 January 2013 to 31 December 2021. Data were collected by the NHR (14). Permission was granted for this study to use the data and include a pseudonymized code indicating the center in the dataset (Supplementary Appendix A).

The outcome of interest was the 30-day post-operative mortality. Mortality data were obtained by checking the regional municipal administration registration, Basisregistratie Personen (BRP).

Patients lacking the outcome measurement of 30-day mortality were excluded.

No ethical approval was needed according to the Dutch central committee of Human Research, as the study only used previously collected cohort registry data. All data in this study were fully anonymized before we accessed them. Approval for this study was granted by the Committee of Research and Ethics of the Netherlands Heart Registry on 2 February 2021.



2.2 Model strategies

Four different model development strategies (henceforth referred to as models) were considered in our experiments (Table 1). A central model was derived using the combined records from all hospitals (Supplementary Figure S1). The derivation of such a model consists of two steps: (1) performing variable selection from the list of candidate predictor variables (explained further in Section 2.3); and (2) fitting predictor variable coefficients. Leveraging the entire dataset enables capturing relationships between predictors and outcomes across multiple centers. Due to the nature of the central design, all data between hospitals are shared, including individual patient record variables.

In the next strategy, multiple local models were trained, one for each hospital's dataset (Supplementary Figure S2). The derivation of each center local model would follow in much the same steps as in the centralized model strategy. As the local models are specific to each hospital, they avoid the need to share any data between centers.

In addition to these baselines, we considered two popular FL techniques: FedAvg and an ensemble model. To conceptualize the idea behind FedAvg, one can think of averaging the knowledge of a classroom where students train on their schoolwork and then share their key learnings with a central teacher who combines them to create a better understanding for everyone. In the case of the current study, each participating center trains a local model for one epoch (that is, one pass on all the data) and shares its model parameters with a central server (10). Once each center has shared model parameters, model updates are aggregated by the central server (Supplementary Figure S3). This new aggregated model is then sent back to the centers for further local training in the next epoch. This process continues until convergence or a pre-specified number of epochs is reached.

The ensemble model approach is similar to combining votes from a diverse group, where the final prediction is the most popular choice (similar to how a majority vote wins an election). For the ensemble model in this case, a local model is fitted on each center's data. The ensemble's prediction for each patient is then formed by averaging the predictions of each local model from all hospitals (Supplementary Figure S4) (15). With this strategy, only hospital-level models are transmitted between the centers.

For all model development strategies, we fitted logistic regression models with Least Absolute Shrinkage and Selection Operator (LASSO) penalization. This approach results in automatically selecting variables deemed predictive of the outcome.


2.2.1 Model recalibration

Table 1 provides a framework for summarizing, among others, the aspect of model recalibration. Ensuring a model is well-calibrated before its application in practice is critical. If a decision is to be made based on a predicted probability from a model, then the predicted probability should be as close as possible to the true patient risk probability. This is what calibration performance measures.

The recalibration aspect describes the addition of a final step to the model derivation process, where recalibration of the intercept and slope of the linear predictor is performed using the model's predictions on the training data. The derived recalibration function is used thereafter whenever the model makes predictions. Specifically, in recalibration, we align the true outcomes from the different centers with their corresponding model predictions followed by fitting the recalibration function. This is done by fitting a logistic regression model in which the predicted 30-day mortality probability is the sole covariate to predict the true 30-day mortality outcome. As listed in Table 1, recalibration could be done in a local, central, or federated manner. In the local case, a recalibration function would be learned for each individual hospital and then used for adjusting model predictions for patients belonging to the corresponding hospital. In the central case, a single recalibration function would be learned on the combined training dataset predictions from all hospitals. In the federated recalibration approach, a federated learning strategy (such as FedAvg) would be used to derive a single recalibration function while also avoiding the need to share the uncalibrated predictions between centers.

In our main analysis, we focused on the results from the FL techniques with central recalibration and did not investigate all options, such as learning the recalibration function in a federated manner.




2.3 Candidate predictor variables

The TAVI dataset included variables for patient characteristics (e.g., age, sex, and body mass index), lab test results (e.g., serum creatinine), relevant medical history (e.g., chronic lung disease), and procedure characteristics (e.g., access route and use of anesthesia) (Supplementary Table S1). All 33 candidate predictors were collected prior to the intervention. Threshold values for the body surface area (BSA) were used in summarizing patient characteristics.

In all model strategies, we used LASSO to perform automatic variable selection. In the case of FedAvg, LASSO was first used on each hospital dataset. Later, the selected predictors from each hospital-local LASSO were aggregated via center-weighted voting and a center agreement strength hyperparameter (Supplementary Methods S1).



2.4 Experimental evaluation

We adopted two primary evaluation strategies to fit the type of evaluation: a 10-fold cross-validation (CV) approach for the internal validation and leave-center-out analysis (LCOA) for the geographic validation.

In some cases, a hospital-local model could not be fitted due to the insufficient number of records for the prevalence of outcomes. We compared the performance of the local model to the other models only in cases where a local model was successfully derived and reported the cases where fitting a local model failed.


2.4.1 Cross-validation

For cross-validation, we first randomly partitioned the entire dataset into ten equal subsets, stratified by the outcome. In each iteration of the CV, we utilized nine subsets (90% of the records) for model training and held out the remaining subset (10% of the records) for testing. This process was repeated 10 times, each with a different test set. In the case of local, FedAvg, and ensemble, the entire dataset was first partitioned by hospital, and thereafter each hospital dataset was randomly partitioned into 10 equal subsets stratified by the outcome.



2.4.2 Leave-center-out analysis

For the federated strategies, we conducted a LCOA for a more robust external geographic validation (9). In this approach, we created as many train/test dataset pairs as there were hospitals in the dataset. For each pair, the training set encompassed records from all hospitals but one (the excluded hospital), while the test set solely contained records from the excluded hospital. This method allows us to evaluate how well each model performed when applied to a new center.



2.4.3 Pooling results

In the context of CV, mean metric values and confidence intervals (CIs) for a model were derived from the individual metric results per test set. During this process, the predictive performance of each model was computed separately for each test set, generating 10 metric values. These 10 values were then averaged to arrive at the mean pooled metric, and their standard deviation was used to compute a 95% CI.

During the LCOA, performance was calculated per external hospital and then pooled via random effects meta-analysis (REMA) with hospital as the random effect to give a mean estimate and 95% CI.



2.4.4 Performance metrics

Discrimination was evaluated using the area under the ROC curve (AUC-ROC, henceforth referred to as AUC). The AUC metric summarizes a model's ability to discriminate between events and cases. It involves sensitivity (also called recall in information retrieval) and specificity across all possible threshold values. Calibration was evaluated by the Cox method using the calibration intercept and slope and their corresponding 95% CIs (16). A model's predictions were deemed to be miscalibrated if either (1) the 95% CI for its Cox calibration intercept did not contain the value zero (miscalibration by intercept) or (2) the 95% CI of its intercept did contain the value zero, but the 95% CI for its Cox calibration slope did not contain the value one (miscalibration by the slope) (16).

In addition, calibration graphs showing a model's predicted probabilities vs. the observed frequencies of positive outcomes were drawn for visual inspection.

Net reclassification improvement (NRI) was calculated between the predictions of any two models in either validation strategy (CV and LCOA) (Supplementary Methods S2).



2.4.5 Significance testing

Bootstrapping with 3,000 samples was used to test for a difference in (paired) AUCs between two prediction models (17). This test was run per AUC of each test fold dataset during CV. Analogously, the test was applied per AUC of each external center dataset in the LCOA.



2.4.6 Sensitivity analyses

Apart from the main experimental setup, we considered two additional modifications to it in the form of sensitivity analyses.

First, to see what effect the recalibration step was having on the two FL approaches (FedAvg and ensemble), we evaluated their performance without recalibration in a sensitivity analysis. In a second sensitivity analysis, we excluded hospitals with a low TAVI volume from the dataset and re-evaluated the models’ performance results. In this case, we defined a low TAVI volume to be any hospital that performed fewer than 10 TAVI procedures in any year of operation after its first year.




2.5 Hyperparameter optimization

Hyperparameters for LASSO and FedAvg were optimized empirically on the training data (Supplementary Methods S3). For LASSO, we optimized the regularization parameter lambda, while for FedAvg, we optimized on the learning rate, number of training epochs, and variable selection agreement strength (Supplementary Methods S1).



2.6 Handling of missing data

Variables with more than 30% missing values were not included as predictors.

The remaining missing values were assumed to be missing at random and were imputed using the Chain Equations (18). As shown in Table 1, imputation was done on the center-combined dataset for the central model, while for the other models, imputation was handled separately per-center dataset. In both validation strategies (CV and LCOA), missing values were imputed separately on the training and test sets (further information is provided in Supplementary Methods S4).



2.7 Fitting final models

From each of the four strategies, a “final” version of their model was fitted using records from the complete dataset. We used the resulting final models to report on and compare the predictor variables selected by each model strategy. In the case of central and FedAvg, the “final” model comprised of just one single logistic regression model, while for local, the “final” model was a set of h hospital-local models (where h is the number of hospitals in the dataset). The ensemble produced a “final” model comprised of h local models and one top-level model, which averaged the predictions from the h hospital-level models.



2.8 Software

All statistical analyses were performed in the R programming language (version 4.2.1) and R studio (version 2023.03.1). The metamean function from the meta package was used for conducting the REMA, and the roc.test function from the pROC package was used for the bootstrap testing for the difference in AUCs between two models. The “mice” package in R was used for imputing missing values (mice version 3.14.0). All the source code used in this analysis was documented and made openly available on GitHub (https://github.com/tsryo/evalFL). Experiments were carried out on a desktop machine with 16 GB of memory and an i7-10700 2.9 GHz processor and took approximately 2 days to run.




3 Results

The results in this section are structured into four sub-sections. First, we provide summary statistics of the TAVI dataset and its pre-processing. We then report on the models’ predictive performance measures from cross-validation and LOCA. Third, we report on selected predictor variables in each model type. Finally, we present results from the sensitivity analyses. Figure 1 provides a graphical overview of the experimental setup, methods, and key findings from our analyses.


[image: Performance comparison of federated learning-based models in Dutch TAVI population is shown. Four model types: Central, Local, FedAvg, and Ensemble are tested using cross-validation and leave-center-out analysis. Federated learning performed comparably to central models, outperforming local strategies. The dataset consists of 16,661 entries from 16 hospitals between January 2013 and December 2021.]
FIGURE 1
Graphical summary of the dataset used, prediction models considered, validation strategies employed, and main findings for the current study on 30-day mortality risk prediction models for TAVI patients. Key questions are as follows: In the context of multicenter TAVI risk prediction models, what is the impact on model performance from adopting two federated learning strategies (FedAvg and ensemble) compared to central and local-only model strategies? Key findings are as follows: Both federated learning strategies (FedAvg and ensemble) had comparable performance, in terms of discrimination and calibration, to that central models and outperformed the local-only models. Take-home message is as follows: Use of federated learning techniques should be considered a viable option for TAVI patient clinical prediction model development.


Between 2013 and 2021, there were 17,689 patients with a TAVI intervention in one of the 16 Dutch hospitals (labeled A–P). In total, 1,028 patients lacked an outcome measurement; therefore, these patients were excluded from the analysis.

The final TAVI dataset consisted of 16,661 records with an average outcome prevalence of 30-day mortality of 3.4%. The prevalence ranged from 1.2% to 5.8% between hospitals, with an intra-quartile range (IQR) of 2.8%–3.9% (Supplementary Table S2). From the list of all 33 candidate predictor variables, only the variable of frailty status was excluded for having more than 30% of its records missing.


3.1 Model performance

Predictive performance results for each model across both internal validation (CV) and external validation (LCOA) are reported in the following.

Due to the lower volume of TAVI records and low outcome prevalence, fitting a hospital-local model failed in some iterations of the CV analysis. From the 10 folds during CV, a local model could not be fitted in 100% of folds in centers L and P, 90% of folds in center M, 70% in center I, 60% in center K, 40% in N, 20% in C and J, and 10% in centers F and O (Supplementary Table S3).


3.1.1 Discrimination


3.1.1.1 Cross-validation

The central model had the highest mean AUC during internal validation (0.68, 95% CI: 0.66–0.70), followed by FedAvg (0.67, 95% CI: 0.65–0.68), ensemble (0.67, 95% CI: 0.66–0.68), and local (0.65, 95% CI: 0.63–0.67) (Figure 2A, Supplementary Table S4). Comparing model AUCs for significant differences with the bootstrap method showed central to outperform local and FedAvg in two (20%) and 1 (10%) out of 10 folds, respectively (Supplementary Table S5). AUC results of local models ranged from 0.52 to 0.84 across centers (Supplementary Table S6).


[image: AUC-ROC curves for two analyses are shown. Panel A displays curves from cross-validation with four models: Central (0.68), Local (0.65), FedAvg (0.67), and Ensemble (0.67). Panel B shows curves from leave-center-out analysis with three models: Central (0.68), FedAvg (0.68), and Ensemble (0.67). Sensitivity is plotted against specificity, with lines indicating performance metrics.]
FIGURE 2
AUCs from cross-validation (A) and leave-center-out analysis (B) of TAVI patient 30-day mortality risk prediction models. Next to each model's name, its mean AUC is given.




3.1.1.2 Leave-center-out

The meta-analysis pooled mean AUC from the LCOA was 0.68 (95% CI: 0.66–0.70) for the central model (Figure 2B, Supplementary Table S4), and AUC values ranged from 0.62 to 0.76 between external centers (Supplementary Table S7). FedAvg also had a mean AUC of 0.68 (95% CI: 0.65–0.70), and its AUC values for the individual centers ranged from 0.56 to 0.80. For the ensemble, the mean AUC was 0.67 (95% CI: 0.65–0.70), and AUC values ranged from 0.46 to 0.76 between external hospitals.

Bootstrap AUC testing from LCOA showed that both FedAvg and ensemble outperformed central in one hospital (P) (Supplementary Table S8). In another two centers (C and N), FedAvg outperformed ensemble, and in one hospital (H), central outperformed ensemble.




3.1.2 Calibration

Calibration performance results varied across the different models and validation strategies.

Calibration graphs showed that all models suffered from over-prediction in the higher-risk ranges. To better inspect the lower-risk probabilities (found in the majority of the records), calibration graphs for a model were visualized excluding the top 2.5% of highest predicted probabilities.


3.1.2.1 Cross-validation

From CV, all models showed miscalibration by slope when evaluated via the Cox method, and only ensemble showed miscalibration from its intercept (Figure 3A, Supplementary Table S9). Central had a calibration intercept of −0.003 (95% CI: −0.03 to 0.02) and a calibration slope of 0.89 (95% CI: 0.80–0.98). Local models had a mean calibration intercept in CV of −0.01 (95% CI: −0.04 to 0.01) but had a poor calibration slope of 0.54 (95% CI: 0.40–0.67). From the 14 hospitals where local models could be fitted (88% of all the hospitals in the dataset), miscalibration occurred in 13 of them (93%) (Supplementary Table S10). For FedAvg, the calibration intercept was −0.04 (95% CI: −0.07 to −0.02), and the calibration slope was 0.86 (95% CI: 0.78–0.93). Ensemble models showed a calibration intercept of −0.04 (95% CI: −0.06 to −0.01) and a calibration slope of 0.89 (95% CI: 0.82–0.96). Calibration graphs of the four models showed central to most closely resemble the ideal calibration graph, followed by local (Figure 3A).


[image: Graph A shows a calibration graph for cross-validation with observed average on the y-axis and predicted value on the x-axis. Lines represent different methods: Central, Local, FedAvg, and Ensemble, each with distinct colors and line styles. Graph B presents a similar calibration graph for leave-center-out analysis, featuring Central, FedAvg, and Ensemble methods. Both graphs include a red diagonal line representing perfect calibration and a legend detailing the methods and their respective coefficients.]
FIGURE 3
Calibration graphs from cross-validation (A) and leave-center-out analysis (B) results. The calibration graphs are shown after trimming the 2.5% highest predicted probabilities to focus on the bulk of the sample. The legend shows the calibration intercept and slope of each model, respectively, as obtained from the Cox method (16). Mean values for cross-validation were obtained by computing performance metrics on the combined predictions from all corresponding test sets. An asterisk (*) is placed after the names of the models where miscalibration was detected by way of the Cox method, and a hat (^) symbol is placed if miscalibration occurred in the calibration slope. The calibration intercept and slope values shown in the legend are calculated from all the predictions, including the 2.5% highest predicted probabilities.




3.1.2.2 Leave-center-out

In the LCOA, the mean meta-analysis pooled calibration intercept for the central model was −0.01 (95% CI: −0.16 to 0.15) and the calibration slope was 0.88 (95% CI: 0.76–1.01) (Supplementary Table S9). Miscalibration was detected in 44% of external hospital validations for the central model (Supplementary Table S11). In FedAvg, the calibration intercept was 0.01 (95% CI: −0.16 to 0.18), the calibration slope was 1.04 (95% CI: 0.89–1.19), and miscalibration occurred in 44% of the external hospitals. The ensemble model had a calibration intercept of 0.01 (95% CI: −0.14 to 0.16), the calibration slope was 0.97 (95% CI: 0.82–1.12), and miscalibration was seen in 38% of centers.

Similar to the calibration graph from CV, the calibration graph in LCOA showed central to most closely follow the line of the ideal calibration graph (Figure 3B).




3.1.3 Net reclassification improvement

NRI comparison results showed central models to outperform the rest in predicting positive outcomes during CV and LCOA. From CV, local models were superior to the rest for predicting negative outcomes, while during LCOA, central models showed a higher NRI than the rest for negative outcomes. In both CV and LCOA, FedAvg beat ensemble in the case-negative group. In the LCOA case-positive group, ensemble had a better NRI than FedAvg. Full results from comparing model predictions using NRI can be found in Supplementary Results S1.




3.2 Predictors selected

From the final models fitted using the whole dataset, FedAvg and ensemble both used the same set of 20 variables (Supplementary Tables S12, S13).

The hospital-local models used between 2 and 14 variables (IQR 4–9). Selected variables occurring in at least 50% of all local models were age, left ventricular ejection fraction (LVEF), body mass index (BMI), BSA, and procedure access route. In the case of two hospitals (L and P), no local model could be trained due to insufficient TAVI record volumes with a positive outcome.

The central model selected 19 predictor variables (Supplementary Table S12), which comprised 13 predictors already selected by the other strategies, plus an additional 6 new predictors [Canadian Cardiovascular Society (CCS) class IV angina, critical preoperative state, dialysis, previous aortic valve surgery, previous permanent pacemaker, and recent myocardial infarction]. More information on the considered and selected variables can be found in Supplementary Table S14.



3.3 Sensitivity analyses

In such an analysis, where the recalibration step from model training was skipped for FedAvg and ensemble models, we saw that both performed significantly worse in calibration but not in AUC. In the second sensitivity analysis, where three low-volume heart centers (P, O, and N) were excluded from the analysis, the performance of the ensemble model remained mostly unchanged, while AUC was negatively affected for the other models. From this same analysis, an improvement was observed in calibration during CV for FedAvg and a worsening for central was observed during LCOA. Full results from the two sensitivity analyses are available in Supplementary Results S2.




4 Discussion


4.1 Summary of findings

In this study, we investigated the performance of two FL approaches compared to central and local approaches for predicting early mortality in TAVI patients. We showed that FedAvg and ensemble models performed similarly compared to a central model. The hospital-local models were worse in terms of average AUC compared to the other approaches.

Testing for AUC differences showed the central model to outperform local and FedAvg models but not ensemble during internal validation. The local models, however, did not significantly outperform the federated ones, suggesting that the AUC performance of FedAvg and ensemble lied somewhere between that of the central and local models.

Central and federated models performed similarly well in terms of calibration, whereas local model predictions were more frequently miscalibrated. Furthermore, in two cases, the local models could not be fitted due to the low number of positive outcome records in their datasets. Although local models were calibrated by design to their corresponding hospital-local training datasets (Table 1), this was often not sufficient to produce a good calibration on their corresponding test sets. While the federated models may not have been calibrated by design, they offered more options for recalibration (such as global, local, or federated recalibration). This could provide model developers with more fine-grained control over tradeoffs between maintaining data privacy and improving model calibration.

In the main experiments, the choice was made to use the central recalibration strategy (as opposed to local or federated) for the federated approaches. Although this approach requires the sharing of patient outcome data and model predictions between centers, it does offer the most promising recalibration approach of the three options.

In terms of NRI, there was an observed improvement from local to FedAvg and ensemble to central when looking at the outcome-positive group of records during internal validation (Supplementary Results S1).

When comparing the two federated approaches, it is difficult to say that one strategy was better than the other, as both had strengths and weaknesses. In terms of discrimination, FedAvg seemed to be slightly superior to the ensemble model. For model calibration during internal validation, FedAvg and ensemble showed near-identical results; however, in the external validation, the ensemble approach was miscalibrated in fewer external hospitals.

From an interpretability standpoint, the FedAvg model would be preferred to the ensemble one, as it delivers a single parametric model with predictor variables and their coefficients. The ensemble, on the other hand would, comprise a list of parametric models (which may not all use the same variables), plus a top-level parametric model that combines the outputs from the aforementioned list. While the ensemble model is not as easily interpretable immediately, techniques like metamodeling could be useful to bridge this gap (19).

It is worth noting that, although easily interpretable, the FedAvg model was more costly to develop than the ensemble one regarding computing resources. Depending on the number of hyperparameter values considered, we saw that the training times for the FedAvg model could easily become orders of magnitude larger than those for the ensemble model. In the current experiments, we developed our in-house frameworks for both federated approaches and encountered more hurdles with the FedAvg strategy—these included issues such as model convergence problems and the need to use a more elaborate variable selection strategy, which introduced the need for an additional hyperparameter.



4.2 Strengths and limitations

Our study has several strengths. It is the first study on employing federated learning in the TAVI population and one of the very few FL studies in cardiology. It is also based on a large national registry dataset consisting of all 16 hospitals performing TAVI interventions in the Netherlands. In addition, we provided a framework (in Table 1) of the various important elements to consider when adopting FL strategies in this context. We also considered multiple aspects of predictive performance and employed two validation strategies to prevent overfitting and optimism in the results. Finally, two sensitivity analyses were conducted to understand the robustness of our findings.

Our research also has limitations. We looked at FL prediction models for TAVI patients, considering only one outcome: the 30-day mortality. However, early post-operative mortality is a relevant and important clinical outcome in the TAVI patient group.

From a privacy perspective of local hospitals, we did not evaluate additional techniques that could be used to preserve patient privacy at local centers (such as differential privacy).

We also considered only one type of ensemble approach (mean volume-weighted ensemble) and only one type of federated aggregation approach (FedAvg),although a number of alternatives are available in both cases (11, 20). Although relatively small, the group of patients excluded from the analysis due to missing outcome values could have somewhat biased our results in model performance. Changes over time in TAVI intervention modalities and patient selection protocols could also have impacted model performance estimates (21).

Finally, we did not extensively tune hyperparameters, which might have affected the performances of the FedAvg and ensemble models (22).



4.3 Comparison with literature

Few studies have investigated the impact of FL in the cardiology domain (23–25). In only one study, the authors look at risk models for TAVI patients (23). In this study, Lopes et al. developed non-parametric models for predicting 1-year mortality after TAVI on a dataset from two hospitals. They compared hospital-local model performance against that of federated ensemble models and found the ensemble models to outperform the local ones. Our findings on the ensemble model's superior performance align with the study by Lopes et al. However, we expanded on their findings, first, by evaluating predictive performance with a much larger number of hospitals (16 vs. 2); second, by considering model calibration performance and NRI in addition to AUC; third, by performing additional geographic validation; and finally by considering a centralized model strategy as a baseline in addition to local and federated ones.

Another study by Goto et al. looked at training FL models to detect hypertrophic cardiomyopathy using ECG and echocardiogram data from three hospitals (24). The authors considered the AUC metric for discrimination and looked at FedAvg and local hospital models. They reported that the FL models outperform local models in terms of AUC, something we also observed in the current study.

In other medical domains, FL models have previously been evaluated on their performance compared to models derived from non-FL techniques.

A similar study to ours that described the benefits of using centralized models compared to federated and local ones is that by Vaid et al. (26). In their study, the authors developed prediction models for COVID-19 patient 7-day mortality outcomes and reported that in five out of five hospital datasets, the models derived from a central development strategy outperformed both local and federated models in terms of AUC. This finding was corroborated in our study for the local models but not for the federated models, which performed on par with the central ones. Differences in the domain of application and in the datasets may explain this. From inspecting the NRI of our models, however, it became clear that the central models offered an improvement on the federated ones, albeit not a statistically significant one. The findings from Vaid et al. (26), namely, that local models tended to underperform compared to central and federated models (in AUC but also in calibration), align with our findings.

Sadilek et al. (2) looked at eight previous studies of prediction models that used a centralized model approach and attempted to reproduce these eight models with the modification of using FL in their development strategies. From the eight models they evaluated, only one looked at hospital as the unit of the federation and reported a coefficient estimate for extrapulmonary tuberculosis in individuals with HIV. This coefficient differed significantly between the centralized and federated approaches. However, in a different setting, we observed similar findings with respect to the coefficients of our federated and centralized TAVI risk models.



4.4 Implications and future studies

For clinicians wanting to adopt a federated learning approach for developing prediction models for TAVI patients, our recommendation would be to use the ensemble strategy if predictive performance is most important, while the FedAvg strategy should be considered if one is willing to sacrifice a bit of model performance for better interpretability.

From the federated learning aspects overview (Table 1), possible model strategy setup options were described. While we attempted to make a comprehensive experimental setup, the purpose of this study was not to evaluate all possible options from this table. This methods’ overview could thus be further used to guide an evaluation of how predictive performance would change if one explored the various setup options.

Further studies should be done to refine the FedAvg and ensemble models, focusing on the use of additional techniques to enhance privacy-preservation and hyperparameter tuning (22). The evaluation of model performance should also be considered for other outcomes in addition to the 30-day post-operative mortality, as well as for other FL models in addition to the two types considered here. Future research could also investigate further aspects of model predictive performance by incorporating additional metrics, such as model's sharpness, the area under the precision-recall curve (AUC-PR), and the F1 score. In addition, the questions of investigating model performance in terms of scalability and computing resource requirements are important and merit future research.

The limitation of fitting a local model in centers with an insufficient number of case records emphasizes an issue that has not been extensively covered. This area represents a potential direction for future research to improve predictive modeling in such contexts.

Our experiments focused on parametric models, or more precisely models that use logistic regression. It is unclear whether the current findings would translate into federated learning for non-parametric or deep learning models.

Performance variations observed across different models emphasize the importance of selecting the appropriate model development strategy for each individual setting. Finally, examining the potential benefits and limitations of federated learning in cardiology, in general, merits future research.




5 Conclusion

Both the FedAvg and ensemble federated learning models had comparable AUC and calibration performance to the central risk prediction model of TAVI patients. This suggests the FedAvg and ensemble models are strong alternatives to the central model, emphasizing their potential effectiveness in the multicenter dataset.

The heterogeneity in performance across different hospitals underscores the importance of local context and sample size. Future research should further explore and enhance these distributed learning methods, particularly focusing on the robustness of federated learning models across diverse clinical settings.
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Introduction: Ultrasound is well-established as an imaging modality for diagnostic and interventional purposes. However, the image quality varies with operator skills as acquiring and interpreting ultrasound images requires extensive training due to the imaging artefacts, the range of acquisition parameters and the variability of patient anatomies. Automating the image acquisition task could improve acquisition reproducibility and quality but training such an algorithm requires large amounts of navigation data, not saved in routine examinations.



Methods: We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions, such that this pipeline can later be used by learning algorithms for navigation. We present a novel simulation pipeline which uses segmentations from other modalities, an optimized volumetric data representation and GPU-accelerated Monte Carlo path tracing to generate view-dependent and patient-specific ultrasound images.



Results: We extensively validate the correctness of our pipeline with a phantom experiment, where structures' sizes, contrast and speckle noise properties are assessed. Furthermore, we demonstrate its usability to train neural networks for navigation in an echocardiography view classification experiment by generating synthetic images from more than 1,000 patients. Networks pre-trained with our simulations achieve significantly superior performance in settings where large real datasets are not available, especially for under-represented classes.



Discussion: The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
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1 Introduction

Ultrasound (US) is pivotal in the diagnosis, treatment and follow-up of patients in several medical specialities such as cardiology, obstetrics, gynaecology and hepatology. However, the quality of acquired images varies greatly depending on operators’ skills, which can impact diagnostic and interventional outcomes (1).

Providing guidance or automation for the image acquisition process would allow for reproducible imaging, increase both the workflow efficiency and throughput of echo departments and improve access to ultrasound examinations. This requires an intelligent system, capable of acquiring images by taking into consideration the high variability of patient anatomies.

Several works are investigating US acquisition automation but commercially available systems do not go beyond teleoperated ultrasound (2). Recent research towards autonomous navigation has used imitation learning (3) and deep reinforcement learning (4, 5). While these methods achieve varying degrees of success, they struggle to adapt to unseen anatomies, can only manage simple scanning patterns or are tested on small datasets.

The main advantage of a simulation environment is the ability to generate views that occur when operators navigate to a given standard view or anatomical landmark but are not saved in clinical routine. These datasets, which we call navigation data, can also contain imaging artefacts (e.g. shadowing caused by ribs). Hence, recent ultrasound image synthesis methods using neural networks (6, 7) face significant challenges in generating these views due to the necessity of comprehending ultrasound physics and the unavailability of large-scale datasets of complete ultrasound acquisitions. Besides, learning-based approaches for navigation (5) require a large number of images for training, including non-standard views, which are not available in classical ultrasound training datasets.

Using a simulation environment to train such a system would have several benefits. The trained model could learn while being exposed to a varying range of anatomies and image qualities, hence improving its robustness, and the training could be done safely, preventing the wear of mechanical components and potential injuries. This simulation environment should be: (1) Fast, to enable the use of state-of-the-art reinforcement learning algorithms. (2) Reproduce patients’ anatomies with high fidelity. (3) Recreate attenuation artefacts such as shadowing. Moreover, exposing the system to a wide range of anatomies requires large-scale data generation capabilities, meaning the pre-processing of data must be streamlined.

This paper presents an ultrasound simulation pipeline using Graphical Processing Unit (GPU) based ray tracing on NVIDIA OptiX (8), capable of generating US images in less than a second. By combining networks capable of segmenting a wide range of tissues and a volumetric data representation, we overcome the scene modelling limitations of previous mesh-based simulation methods, enabling efficient processing of numerous datasets from different modalities. Our pipeline, described in Figure 1 takes as input segmentations of the organs of interest and, coupled with user-defined transducer and tissue properties, generates a simulated US by combining Monte Carlo path tracing (MCPT) and convolutional approaches.


[image: Flowchart illustrating ultrasound simulation. Section A (Inputs) includes transducer properties, segmentations, and tissue acoustic properties. Section B (Pre-processing) involves conversion to NanoVDB volume and creating a virtual scene. Section C (Simulation Module) details Monte Carlo path tracing, scatterers generation, and RF lines computation using the COLE algorithm. Sections D and E show simulated and real ultrasounds. Each step follows a sequential path leading to post-processing.]
FIGURE 1
Simulation Pipeline. Using input segmentations from other modalities, transducer and tissue acoustic properties (A), we convert the segmentation to a NanoVDB volume (B.1) for ray tracing on the GPU. (B.2) shows a volume rendering of the ray tracing scene with various organs and the transducer’s fan geometry. We model the sound waves as rays and perform ray tracing to simulate their propagation (C.1). We then generate a scattering volume (C.2) and compute the RF lines (C.3). Time-gain compensation and scan conversion are performed to yield the final simulation (D). A real ultrasound is shown for qualitative comparison (E).


Our contributions are the following:


	•Our pipeline is able to generate images from a large number of datasets from other modalities. Using an efficient GPU volumetric representation that allows for the modelling of arbitrary patient anatomies, and a Monte Carlo path tracing algorithm, we are able to synthesize more than 10,000 images per hour using a NVIDIA Quadro K5000 GPU. Furthermore, we demonstrate scalability by generating images from 1,000 CT patient datasets in our experiments. In contrast, existing ray tracing methods limit their experiments to datasets one or two orders of magnitude smaller.

	•We extensively validate the ability of our pipeline to preserve anatomical features through a phantom experiment by looking at distances and contrast between structures. Ultrasound image properties are further assessed by looking at first-order speckle statistics.

	•We demonstrate the usability of our pipeline in training neural networks for transthoracic echocardiography (TTE) standard view classification, a task critical in ultrasound navigation guidance. The neural networks were initially pre-trained on synthetic images and subsequently fine-tuned using varying amounts of real data. With around half of the real samples, fine-tuned networks reach a performance level comparable to those trained with all the real data. We also report an improved classification performance when using pre-trained networks, particularly for under-represented classes.



This paper is organised in the following way: In Section 2.1, we provide an overview of relevant ultrasound simulation methods and highlight their limitations in terms of suitability as simulation environments. The next subsections in Section 2. detail our simulation implementation. Experimental results using a virtual phantom and a view classification network are shown in Section 3. This is followed by a discussion and a conclusion.



2 Methods


2.1 Related work

Early methods were attempting to simulate the US image formation process by solving the wave equation using various strategies (9–13). While being accurate, these methods take a substantial amount of time to generate images [in the order of several minutes to hours (9–12)], which is not scalable for large-scale training.

The COLE Algorithm developed by Gao et al. (14) is at the core of Convolutional Ray Tracing (CRT) methods. This approach allows for a fast simulation of ultrasound images with speckle noise by convolving a separable Point-Spread Function (PSF) with a scatterer distribution. Methods in (15–17) replace the ray casting by ray tracing and combine it with the COLE algorithm to simulate images on the GPU. These methods follow a similar methodology where the input volumes are segmented and acoustic properties from the literature are assigned to each tissue. Scatterers amplitude are hyperparameters chosen such that the generated ultrasounds look plausible. Ray tracing is used to model large-scale effects at boundaries (reflection and refraction) and attenuation within tissue. Finally, the COLE algorithm is applied to yield the final image. The method developed in Mattausch et al. (17) distinguishes itself by employing Monte-Carlo Path Tracing (MCPT) to approximate the ray intensity at given points by taking into account contributions from multiple directions.

CRT methods enable fast simulations and the recreation of imaging artefacts. Methods in (15, 17) both make use of meshes to represent the boundaries between organs. However, using meshes comes with a set of issues as specific pre-processing and algorithms are needed to manage overlapping boundaries. This can lead to the erroneous rendering of tissues, hence limiting the type of scene that can be modelled, as reported in Mattausch et al. (17). A further limitation of CRT methods lies in tissue parameterization, where scatterers belonging to the same tissue have similar properties, preventing the modelling of fine-tissue variations, and thus limiting the realism of the images.

Another line of work generates synthetic ultrasound images by directly sampling scatterers’ intensities from template ultrasound images and using electromechanical models to apply cardiac motion (18, 19). These are different from our line of work as they require pre-existing ultrasound recordings for a given patient, while we generate synthetic images from other modalities, which also enables us to simulate different types of organs other than the heart.

Finally, as deep learning has become increasingly popular, the field shifted towards the use of generative adversarial networks (GAN) or diffusion models for image synthesis. These generative models have been used in several ways for image simulation: Either for generating images directly from segmentations (6, 7, 20), calibrated coordinates (21), or for improving the quality of images generated from CRT simulators (22–24). However, using GANs comes with several challenges: For instance, authors in Hu et al. (21) report mode collapse when generating images for poses where training data was not available and authors in Gilbert et al. (6) report hallucination of structures if anatomical structures are not equally represented in datasets. This suggests generative neural networks would struggle in generating out-of-distribution views or with image artefacts such as shadowing. This would be problematic for ultrasound navigation guidance as out-of-distribution views are frequently encountered before reaching a desired standard view.

Methods taking as input low-quality images from CRT simulators seem the most promising, but several works report issues in preventing the GANs from distorting the anatomy (24) or introducing unrealistic image artefacts (22). While CRT methods are limited in realism, they match our requirements (speed, artefacts recreation, anatomical fidelity through accurate geometry) to train navigation/guidance algorithms.



2.2 Pre-processing pipeline

This section presents our novel pre-processing pipeline, shown in Figure 1, which enables large-scale data generation by avoiding technical pitfalls caused by the use of meshes (17), thus allowing us to model any anatomy. Besides, the use of segmentations is essential to implement constraints on the environment for navigation tasks.

Input volumes (Figure 1A) are segmentations obtained from either CT or Magnetic Resonance Imaging (MRI) datasets, which are processed by a four chamber (25) and multi-organ segmentation algorithm (26). The segmentation output contains all the structures relevant for echocardiography, e.g. individual ribs, sternum, heart chambers, aorta, and lungs.

During ray tracing, voxels need to be accessed at random. The access speed is highly dependent on the memory layout of the data. This problem has been addressed by OpenVDB (27) with its optimized B+ tree data structure and by its compacted, read-only and GPU-compatible version, NanoVDB (28). Data in Open/NanoVDB are stored in grids. These grids can be written together into a single file, which we call an Open/NanoVDB volume. We convert the segmentation volumes into NanoVDB volumes (Figure 1B) as described below.

A detailed overview of the pre-processing pipeline is shown in Figure 2. Firstly, the segmentation volume with all labels is converted to a NanoVDB grid (Figure 2iii-1). This grid is used during ray tracing to access a label associated with a given voxel. Then, for each label in the segmentation volume, a narrow-band signed distance function (SDF) is computed such that the distance from voxels in the neighbourhood of the organ to its boundary is known (Figure 2ii). Blue (resp. red) bands represent the voxels with negative (resp. positive) distance to that boundary, i.e. inside (resp. outside) it. The SDF grids are written to the output volume (Figure 2iii-3) and are later used during traversal to compute smooth surface normals by looking at the SDF’s gradient (Figure 2v).


[image: Flowchart illustrating the conversion of segmentation volume with labels into a NanoVDB volume. Process starts with the segmentation volume, proceeds through an OpenVDB grid, then a signed distance function grid, resulting in a NanoVDB volume. This volume is used for shader binding tables and surface normals visualization.]
FIGURE 2
Overview of the pre-processing pipeline. A segmentation volume containing N labels (one for each organ) is converted to a NanoVDB volume (iii) for use on the GPU. On the one hand, S is directly converted to a grid containing all the labels (iii-1). On the other hand, for each label, an OpenVDB grid (i) containing only voxels belonging to the given label is created. In (ii), the SDF w.r.t the organ boundary is computed and used later during traversal to obtain surface normals. The blue and red bands represent negative (resp. positive) values of the SDF. (v) The final NanoVDB volume contains for each label, the corresponding voxel (iii-2) and SDF (iii-3) grids. Pointers to each grid are stored in the Shader Binding Table for access on the GPU (iv).


A separate grid containing only the voxels associated with the current organ is also saved (Figure 2iii-2) in the output volume. Hence, the final NanoVDB volume (Figure 2iii) contains the original voxel grid and, for each label, two grids: the SDF grid as well as the voxel grid. In practice, the pre-processing takes less than five minutes per volume and we use several worker processes to perform this task on multiple volumes in parallel.



2.3 Scene setup

Similarly to previous work (15–17), the sound wave is modelled as a ray. The simulation is done using OptiX (8), which is a CUDA/C++ general-purpose ray tracing library providing its users with fast intersection primitives on the GPU. The previously generated NanoVDB volume is loaded and the voxel grids corresponding to each label (Figure 2iii-2) are represented as Axis-Aligned Bounding Boxes (AABB) which are grouped together to create the Acceleration Structure (AS) used by OptiX to compute intersections. We assign acoustic properties from the literature (29) to each organ. A summary of all the assigned properties is listed in Table 1. Values for μ0,μ1,σ0 are detailed in Table A1 in the Appendix. To retrieve data during traversal, OptiX uses a Shader Binding Table (SBT). We populate it with tissue properties, pointers to the organs’ SDFs and a pointer to the original voxel grid (Figure 2iv). Finally, a virtual transducer is positioned in the scene. Transducer parameters are listed in Table 2.


TABLE 1 List of properties assigned to tissues.

[image: Table outlining properties related to acoustic parameters. Columns are Property, Description, and Domain. Impedance (Z), attenuation coefficient (α), and sound speed (c) have no specific domain values. Scattering parameters (μ₀, σ₀, μ₁) with domain [0, 1], τ with domain [0, 3], and γ with domain [-2, 2]. Additional information refers to tables A1 and A2 in the appendix for more details.]


TABLE 2 List of parameters used to configure the transducer.

[image: Table listing properties of imaging equipment with their descriptions. Properties include center frequency, sampling frequency, element width and height, kerf, number of elements, and scan geometry. Descriptions specify measurement units and the nature of each property, such as frequencies in Hertz, dimensions in millimeters, spacing between elements, and scan geometry types like linear or phased.]



2.4 Simulation module

The goal of the simulation module (Figure 1C) is to generate view-dependent US images. This module is made of two parts.

The first part performs the ray tracing using OptiX. The goal of this module is to model large-scale effects (reflections, refractions and attenuation). This is done by computing, for each point along a scanline, the intensity I sent back to the transducer. The second part generates the US image by convolving the point spread function (PSF) with the scatterer distribution while taking into account the corresponding intensity I(l) along the scanline.


2.4.1 Background


2.4.1.1 Ultrasound physics

Here we first describe the phenomena happening during ray propagation: The wave loses energy due to attenuation following I(l)=I0e−lfα, with I0 the initial wave intensity and l the distance travelled in a given medium with attenuation α at frequency f. When it reaches a boundary, it is partially reflected and transmitted depending on the difference in impedance between the two media. The reflection and transmission coefficients R and T are written following Equations 1, 2:?>




	R(Z1,Z2,θ1,θ2)=(Z2cos⁡(θ2)−Z1cos⁡(θ1)Z2cos⁡(θ2)+Z1cos⁡(θ1))2

	(1)









	T(Z1,Z2,θ1,θ2)=1−R(Z1,Z2,θ1,θ2)

	(2)









	cos⁡(θ1)=n→⋅v→

	(3)









	cos⁡(θ2)=1−(Z1Z2)2(1−cos2(θ1))

	(4)






Where Z1 and Z2 are the impedances of the media at the boundary. θ1 computed following Equation 3, is the angle between the incident ray v→ and the surface normal n→. Finally, θ2 is the refracted angle and computed following Equation 4.



2.4.1.2 Rendering equation

When the wave propagates in tissue, it can encounter several boundaries and bounce multiple times, depending on the scene geometry. Hence, retrieving the total intensity at a given point P requires taking into account contributions coming from multiple directions. The field of computer graphics has faced similar challenges to compute global illumination.

We take inspiration from the rendering equation (30):




	LP→ν=OP→ν+∫ΩfP,ω→νLP←ωcos⁡(θ)dω

	(5)






where:


	•Ω is the surface hemisphere around the surface normal at point P.

	•LP→ν is the amount of light leaving point P in direction ν.

	•OP→ν is the light emitted at P in direction ν.

	•fP,ω→ν is a Bidirectional Scattering Distribution Function (BSDF) giving the amount of light sent back by a given material in direction ν when it receives light from direction ω at point P.

	•LP←ω is the amount of light received by P in direction ω.

	•Finally, θ is the angle between the surface normal at P, nP→ and the incoming light direction ω.






2.4.2 Model derivation

Several modifications are made to adapt Equation 5 to US physics. Firstly, the term OP→ν is zero in our case as scatterers do not emit echoes.

We can then refer to the intensity sent back to the transducer from P as ITr. This term depends on the intensity I(P) arriving at P, expressed following Equation 6:




	I(P)=∫ΩIP′→ωAP′→Pdω

	(6)






This represents the accumulation of echoes reaching P along directions ω from several points P′ located on other boundaries in the scene. This is illustrated in Figure 3 where contributions from P3 and P2 are gathered at P. IP′→ω is the intensity leaving P′ in direction ω and AP′→P is the attenuation affecting the wave from P′ to P along ω (denoted as ∼α− in Figure 3). IP′→ω depends in turn on the intensity accumulated at P′ (illustrated by incident rays at P1⋯P3 in Figure 3) following Equation 7:




	IP′→ω=I(P′)fP′,ω′→ωcos⁡(θ′)

	(7)






With θ′ the angle between the incident ray ω′ and nP′→, and fP′,ω′→ω=R(Z1,Z2,ω′,ω)βT(Z1,Z2,ω′,ω)1−β where β is a binary variable equal to one when the ray is reflected, and zero otherwise. We randomly choose whether to reflect or refract a ray and β=1 when u<R(Z1,Z2,θ1,θ2), with u∼U(0,1), otherwise β=0. Here f is analogous to the BSDF in rendering and the corresponding loss of energy is represented at boundaries by |−| in Figure 3.


[image: Diagram A shows a schematic of beam paths involving energy loss due to attenuation and reflection/refraction, indicated by varying line styles and colors. The legend defines symbols like triangles for beams from a transducer, arrows for directions, and boxes for energy loss indicators. Diagram B presents a 3D plot with a red and blue gradient indicating beam intensity, with an arrow pointing towards the center.]
FIGURE 3
(A) A summary of the Monte Carlo path tracing logic: For a given point P in the scene, we integrate the contributions from multiple waves reaching P over its surface hemisphere. (B) A visualisation of the sampling pdf at intersections. The black arrow is analogous to the main beams in (A). Directions close to the main beam (e.g. ray leaving P1 in (A) have a higher chance of being sampled (thick red arrow) than the ones far from it (thick blue arrow, e.g. ray leaving P3 in (A). (A) Path tracing logic and (B) Ray distribution at intersection.


As we now have an expression for I(P), we can compute ITr. This term depends on whether or not P lies on an organ’s surface. The two cases are described below:


	•Similarly to Burger et al. (15), on a boundary, the intensity reflected to the transducer ITr(P)=IR(P) is written following Equation 8:



	IR(P)=(Z2−Z1Z2+Z1)2I(P)τcos⁡(θ)γ

	(8)








	•Otherwise, it is simply equal to I(P) as shown in Equation 9:



	ITr(P)=I(P)

	(9)










For a given point along a scanline with radial, lateral and elevation coordinates (r,l,e), the expression for the received echo is described by Equation 10:




	E(r,l,e)=ITr(r,l,e)ρ(r,l,e)⊗T(r,l,e)

	(10)






where ρ(r,l,e) is a cosine modulated PSF and T(r,l,e) the scatterer distribution. Their expressions are given in Equations 11, 12, respectively. ?>




	ρ(x,y,z)=exp⁡(−12(r2σr2+l2σl2+e2σe2))cos⁡(2πfr)

	(11)









	T(r,l,e)=∑q=1Nwqaqδ(r−rq)

	(12)






N is the number of scatterers, aq is the tissue-dependent scatterer amplitude, computed similarly to (15–17). Each scatterer is projected onto the scanline and associated with the closest radial sample rq. Finally, wq is used to weight the contribution of a scatterer depending on its distance to the scanline. Let’s write ΔL and ΔE=e−eS as the lateral and elevational distances of a scatterer to a scanline. Then wq can be computed in two ways:


	•Using an analytical beam profile, defined by a gaussian PSF with lateral and elevational variance σL,σE and expressed in Equation 13:



	wq=exp⁡(−12(ΔL2σL2+ΔE2σE2))

	(13)








	•Using a pulse echo field generated from Field II (offline) with the desired transducer configuration. The field is sampled based on ΔL and ΔE and the scatterer’s radial depth.



The computation of E is done using the fast implementation of the COLE algorithm from Storve et al. (31).



2.4.3 Monte Carlo path tracing

By substituting I(P′) in Equation 7 by its expression in Equation 6, it is easy to see the recursive nature of the integral, which makes the problem hard to solve. Hence, we resort to Monte-Carlo integration, which is a useful tool to approximate high-dimensional integrals.

This allows us to express I(P) following Equation 14:




	I(P)=1N∑i=1NI(Pi)fPi,ω′→ωiAPi→Pcos⁡(θi)p(ωi)

	(14)






Unlike in Mattausch et al. (17), we explicitly weight the pdf’s contribution, p(ωi), which is the probability of generating a sample in direction ωi. Indeed, at boundaries, rather than randomly varying the surface normal to choose a direction to trace reflected/refracted rays, we choose a random direction by sampling in a cone around the reflection/refraction directions, represented by the black arrow in Figure 3B. Indeed, when the wave hits large spherical scatterers, the reflected wavefront is a replica of the shape of the intersected area, which would take a conic shape in the case of spherical scatterers (29).

We generate random directions by sampling in spherical coordinates. More precisely, we have θ∼U(0,2π) and ϕ∼ψ(σ,μ,a,b) where ψ(σ,μ,a,b) is a truncated normal distribution. ϕ is sampled using inverse transform sampling. The joint distribution is p(θ,ϕ)=ψ(σ,μ,a,b)2π and is illustrated in Figure 3B, where directions close to the reflection/refraction direction have a higher chance of being sampled (red colour) than the ones far from it (blue colour).

Finally, since we are working with solid angles, the distribution needs to be converted accordingly, with:




	p(ω)=p(θ,ϕ)sin⁡(θ)=ψ(μ,σ,a,b)2πsin⁡(θ)

	(15)






When propagating, the sampled ray deviates from its main beam (blue, red and yellow rays in Figure 3A, yielding a reduced echo intensity. Thus, in addition to the attenuation due to propagation through tissue, the sampled rays’ intensities are further reduced by weighting them with a factor wR corresponding to the beam coherence (BC) as done in Mattausch et al. (17). For each point P′ along the sampled ray, the amplitude is weighted by wR=C0C0+d(P,P′), where C0 is a user-defined constant and d(P,P′) is the distance between P′ and its projection on the main beam P, as illustrated in Figure 3A. We typically use C0 values in the range [0,1].



2.4.4 Traversal

Rays are sent from the virtual transducer depending on its scan geometry. The intersection with the volume is computed and from that point, we march stepwise along the ray using a hierarchical digital differential analyser (HDDA) (32). At each step, the ray is attenuated and once a boundary is reached, we randomly reflect or refract the ray. We repeat the process until a maximum number of collisions is reached.

Once the RF scanlines are computed, we apply time-gain compensation, log compression, dynamic range adjustment and scan conversion to obtain the final simulated US.





3 Experiments

In the following sections, we begin by presenting qualitative results, where we examine the impact of different parameterizations and evaluate the pipeline’s ability to replicate image artefacts and patient anatomies (Section 3.1).

Subsequently, we detail our phantom experiments, which serve as a validation of essential aspects of our simulation pipeline for its role as a learning environment. We assess its capability to reproduce anatomical structures by measuring physical distances and assessing contrast, using a calibration phantom as a reference. We further investigate its aptitude in generating a fully-formed speckle pattern, as speckle is an inherent property of ultrasound images (Section 3.2).

Lastly, we showcase the utility of these simulations in training a neural network for cardiac standard view classification, a critical task for ultrasound navigation guidance (Section 3.3).


3.1 Qualitative results

Figure 4 shows examples of simulated echocardiograms with various parameterizations: Firstly, the number of rays traced is critical in allowing the Monte Carlo process to converge and reveal the anatomy in the scene. Indeed, the left atrium is hardly visible in Figure 4B without MCPT, as rays reflect in deterministic directions, thus not propagating in the whole scene. Using MCPT with a greater number of rays improves the visibility of the anatomical structures as demonstrated in Figures 4C,D. The beam coherence value C0 impacts the intensity of the rays deviating from the main beams. This is illustrated in Figure 4E where a higher C0 reveals the aorta as deviating rays are less attenuated. Additionally, we report the Kernel Inception Distance (KID) (33) for each synthetic image, where the features are extracted from the penultimate layer of a neural network trained on real images for view classification (see Section 3.3 for network and training details) and compared to features from unseen real apical two chamber (A2C) images. The reported values for each image are obtained after averaging KID values from 100 random resamplings on the real features, following the methodology in (33). For our experiments and for future use as a training environment, the preferred simulation outcome would be similar to Figure 4E, as critical structures for identifying the view are clearly visible and the KID is the lowest.


[image: Illustration A shows a color-coded schematic of heart anatomy. Images B to H depict echocardiogram views of the heart with varying focus and contrast. Image E has an orange outline highlighting a specific area. Each image presents a distinct perspective or detail level of the heart structure.]
FIGURE 4
Illustration of the influence of the MCPT, beam coherence C0 value, scatterer weighting strategy, τ and γ terms. All simulations use MCPT, 2,500 rays, a pulse-echo field from Field II with a focus at 60mm, C0=0.1 and the myocardium properties are τ=2.0 and γ=0.1 unless stated otherwise. The values in parentheses indicate the Kernel Inception Distance (KID) for each image, computed w.r.t real A2C images from the test dataset. Features for KID computation were extracted from a network trained on real images. (A) is an input segmentation map for an A2C view, where the orange label is associated with the aorta. In (E), the orange box denotes the aorta, showing the simulations reproduce patient-specific anatomy with fidelity. (A) Segmentation. (B) No MCPT (1.494). (C) 500 rays (1.490). (D) 2,500 rays (1.493). (E) C0=0.2 (1.488). (F) γ=−1.8 (1.493). (G) τ=2.8 (1.492) and (H) σL=1.5−3(1.492).


Figures 4F,G show an amplification of myocardium reflections in two ways using γ and τ: The reflection intensities in Figure 4F are angle-dependent while in Figure 4G all reflections are amplified. When using an analytical profile in Figure 4H, the axial distance of the scatterers along the scanline is not taken into account in wq, meaning their amplitude is not attenuated with depth, yielding a brighter image in the far field.

Figure 5 shows real acquisitions (left column) apical 5, 4, 3 chamber views (top to bottom) alongside simulations (right column). The chambers appear clearly in the images but the simulations lack fine tissue detail, as this information is lost when segmenting the input data. This is highlighted by the orange box in the four-chamber view, where the papillary muscles and valve leaflets in the real left ventricle acquisition make the ventricle’s border fuzzier than in our simulation. Nevertheless, this shows the potential of the pipeline in generating any type of view.


[image: Six ultrasound images of a heart in various views. The upper left and lower left images show distinct heart structures, including chambers and valves. The top right and middle right images display enhanced contrast techniques for clarity. The middle left image has an orange rectangle highlighting a specific area. The bottom right image shows another heart perspective. A grayscale bar on the top right indicates intensity levels, with values ranging from zero to two hundred fifty.]
FIGURE 5
Real (left column) and simulated (right column) Apical 5, 4, 3 chambers views (top to bottom, not paired). The orange box denotes papillary muscles and fine cardiac structures which are not captured by the simulations, making the ventricles’ borders sharper in the synthetic images.


Figure 6 demonstrates post-acoustic enhancement and shadowing artefacts using a virtual sphere placed in a propagating medium. Post-acoustic enhancement is demonstrated in Figure 6A, similar to artefacts caused by fluid-filled cystic structures in clinical settings. When using a highly reflective and attenuating sphere, a shadow is cast as in Figure 6B. Figures 6C,D illustrate acoustic shadowing in a more complex scene, where a rib is in front of the transducer. The advantage of our pipeline lies in its ability to produce such views, which are neither routinely saved nor available in open-source ultrasound datasets.


[image: Four different ultrasound images labeled A, B, C, and D. Image A shows a bright circular shape in the center. Image B features a bright arc shape. Image C is a color-coded diagram with various regions marked in different colors. Image D displays a grayscale ultrasound with a distinct, bright area at the top.]
FIGURE 6
Our pipeline is able to recreate some artefacts such as (A) post-acoustic enhancement and (B) shadowing. Spheres filled with fluid (A) and with high attenuation (B) were used to recreate the artefacts. (C) shows segmentation labels of a scene with a rib in front of the transducer (white label) and (D) is the corresponding simulated image, demonstrating acoustic shadowing. (A) Post-acoustic enhancement. (B) Acoustic shadowing. (C) Segmentation map and (D) Rib shadowing.




3.2 Phantom experiments

We use a commercial calibration phantom (Multi-Purpose Multi-Tissue Ultrasound Phantom, model 040GSE, Sun Nuclear, USA) to perform the validation. Real acquisitions with a SiemensTM Healthineers ACUSON P500TM system (P4-2 phased transducer) are taken for lesion detectability comparison with the simulated images. To generate our simulations, a virtual phantom is built following the technical sheet describing the arrangement of structures in the phantom. Each type of structure is assigned a label and a segmentation volume is built. We simulate three different views, with each containing a different set of targets and perform various measurements on each synthesized view. As we perform a comparison of lesion detectability in simulated and real images, we set the image pixel spacing of our simulations to the same value as the real acquisitions, i.e. at 0.23 mm. All simulations are done using a Desktop computer equipped with an NVIDIA Quadro K5000 GPU.


3.2.1 Experiment parameters

The transducer, simulation and post-processing parameters for phantom and view classification experiments are listed in Table 3. For the phantom experiment, the transducer is parameterized similarly to the real one following the parameters listed in Table 2. The parameters for the truncated normal distribution ϕ are μ=0,σ=π4,a=0,b=π2.


TABLE 3 Parameters used in the experiments.

[image: Table comparing experimental parameters for "Phantom" and "View classification" under three categories: transducer, simulation, and post-processing parameters. Key differences include field focus, analytical profile standard deviation, and dynamic range. "View classification" has ranges for some parameters, such as beam coherence and number of rays per element.]



3.2.2 Distance measurements

We sampled pixels along a 1-D line going through nylon targets. The coordinates of the line were automatically computed given the technical phantom sheet. A 1-D signal was extracted from this line and peaks (corresponding to the centre of nylon wires) were identified. Knowing the virtual transducer’s position as well as the peaks’ location along the line allowed us to compute a Target Registration Error (TRE) between the expected and simulated nylon wire positions. Examples of targets used in this experiment are shown by the orange box in Figure 7D. A detailed summary of the error per view and per target group is given in Table 4. An error of 0.20±0.32 mm was reported when measuring the TRE from 60 targets.


[image: Ultrasound images labeled A through D show varying patterns and lesions marked by red and blue outlines. Image D includes an orange rectangle emphasizing a specific area. Graphs E through H display histograms with pixel intensity on the x-axis and density on the y-axis, comparing background and lesion distributions, with clear differentiation in intensity values across graphs.]
FIGURE 7
Examples of real and simulated views used in the lesion detectability and contrast experiment, alongside the corresponding histograms showing the lesion area and distribution (red) and the background area and distributions (blue). (A,B) Real and simulated acquisitions and the corresponding histograms [resp. (E,F)] associated with the hyperechoic lesion. (C,D) Real and simulated acquisitions and the corresponding histograms [resp. (G,H)] associated with the anechoic lesion. In the histograms, ϵ0 denotes the optimal intensity threshold found that minimizes the probability of error when classifying pixels as belonging to the lesion or the background (34). The orange box in (D) denotes examples of targets used for the distance assessment.



TABLE 4 Target Registration Error (TRE) between expected and simulated wire positions (mean ± std).

[image: Table displaying Target Registration Error (TRE) per view in millimeters for different target groups. Vertical distance shows 0.03 ± 0.03 for View 1, 0.09 ± 0.07 for View 2, and 0.12 ± 0.09 for View 3. Horizontal distance 1 (near-field) shows 0.05 ± 0.04 for View 1, 0.16 ± 0.14 for View 2, and 0.28 ± 0.05 for View 3. Horizontal distance 2 (far-field) shows 0.34 ± 0.33 for View 1, 0.25 ± 0.59 for View 2, and 0.33 ± 0.37 for View 3.]

A pattern emerges from Table 4, where the error increases with depth (Horizontal Distance Groups 1 and 2). This is due to beam divergence in the far field, which decreases the lateral resolution. This agrees with experimental measurements.



3.2.3 Lesion detectability and contrast

Having an accurate contrast between background and surrounding structures is critical in ultrasound as it allows users to discriminate between tissues. Thus, we investigate the ability of our pipeline to simulate structures of various contrast. To this end, we compare anechoic and hyperechoic lesions from our virtual phantom to the same lesions from real acquisitions.

In addition to classical metrics such as Contrast to Noise Ratio (CNR) and contrast, we reported the generalized Contrast-to-Noise Ratio (gCNR) (34), a metric robust to dynamic range alterations and with a simple interpretation. Since our post-processing pipeline differs from the P500’s as it is a commercial system, this metric would provide a way to compare the lesion detectability independently of post-processing differences.

We computed gCNR, CNR and contrast between lesions and background using two views. The background patch size was calculated to have a sample size similar to the lesion patch. Real and simulated acquisitions, as well as histograms of the lesions and background distributions, are illustrated in Figure 7.

A summary of the scores between real and simulated images is indicated in Table 5. Overall, gCNR, CNR and contrast values between real and simulated values are close, suggesting our pipeline reproduces lesions with fidelity. Contrast values for the second and third anechoic lesions differ as in the real acquisition, the far field is more hypoechoic compared to the focus area in the centre of the image.


TABLE 5 gCNR, CNR and contrast (in dB), values from lesions in real and simulated US acquisitions (mean ± std).

[image: Table comparing real and simulated metrics for different lesions, including hyperechoic at +6 dB and +15 dB, and anechoic 1 to 3. Metrics include gCNR, CNR, and contrast, with values presented for both real and simulated scenarios, the latter with associated uncertainties. A note clarifies simulations were generated ten times to account for stochasticity and scatterers' generation.  ]



3.2.4 Speckle pattern analysis

In this section, we analyze the capability of our simulator to generate a fully-developed speckle pattern. To this end, we conduct a comparative analysis similar to Gao et al. (35), where random scatterers at a density of 600 mm-1 and fixed amplitude of 1 are distributed in a 40×40 mm2 volume. It is known for such an experiment that the envelope detected signal follows a Rayleigh distribution and its signal-to-noise ratio (SNR) reaches a value of 1.91 (36). The experiment is repeated 10 times to take into account its stochastic nature. Here, we use an analytical beam profile with ΔE,ΔL=2.0 mm. For each run, the SNR is computed and the sum-of-squared errors (SSE) w.r.t a fitted Rayleigh distribution is calculated. An example histogram and fitted distribution from a run is shown in Figure 8.


[image: Histogram showing simulated data of gray values with a blue area and a red line representing the fitted Rayleigh probability density function. The density peaks around a gray value of 50 and decreases towards higher values. Legend indicates colors for simulated data and fitted Rayleigh pdf.]
FIGURE 8
Rayleigh distribution fit. The histogram shown is from a random run out of 10. We obtain a mean sum-of-squared Errors of 1.89e−5 w.r.t the fitted Rayleigh distribution and a SNR of 1.89±0.01, which is in the ranges reported in the literature (14, 16, 35).


We obtain a mean SSE of 1.81e−5 and SNR of 1.89±0.01, which is in the ranges reported in the literature (14, 16, 35). This suggests that our pipeline is able to create a fully developed speckle pattern.




3.3 View classification

Our last experiment assesses the usability of simulated images to train neural networks for view classification. This task is intrinsic to navigation as a network must be capable of identifying when a target view has been reached. We train networks to classify real apical views (A2C, A3C, A4C, A5C) and investigate the impact of fine-tuning with real data on the networks’ performance, as networks trained in the simulation environment would likely be fine-tuned to adapt to real scenarios. Synthetic and real dataset generation are described in Sections 3.3.1 and 3.3.2. Furthermore, we conduct an ablation study where we evaluate the impact of parameters we believe impact the image quality the most, namely: the use of MCPT and the weighting method when projecting scatterers, i.e. with an analytical function or using a pulse echo field from Field II. The experimental setup is detailed in Section 3.3.3, followed by the results in Section 3.3.4.


3.3.1 Simulated TTE dataset

Chest CTs and Cardiac CTs from 1,019 patients from the FUMPE (37) and The Cancer Imaging Archive (38) [LIDC-IDRI (39)] datasets were used to generate simulated images. The volumes were automaticall segmented using (40) and pre-processed according to the pipeline described in Figure 2 and several landmarks were automatically obtained (apex, the centre of the heart chambers…) and used to find the appropriate transducer orientations and positions to acquire the standard views.

For each view, we generate multiple synthetic samples by varying simulation parameters as described in Table 3. We generated more synthetic samples for the A5C view to compensate for the low number of datasets where we were able to automatically obtain a suitable view. The final dataset distribution is 30%, 30%, 30% and 10% resp. for the A2C, A3C, A4C and A5C classes.

All the samples from the simulated dataset are used for training. The average simulation time per image was 300 milliseconds. This number includes only the simulation step (i.e. Figure 1C).

Finally, to conduct the ablation study, 3 different simulated datasets are created.


	•sim NO MCPT, where MCPT was disabled. Thus all samples are generated with deterministic raytracing.

	•sim + MCPT, where MCPT was enabled and an analytical beam profile used.

	•sim + MCPT + FIELD, where MCPT was enabled and a pulse echo field from Field II was used to weight the scatterers’ contributions.





3.3.2 Real TTE dataset

We used real US acquisitions to train and test the view classification network. The video sequences came from Siemens and Philips systems. During training, we sample randomly one frame from a given sequence and add it to the training batch. The real training dataset is also imbalanced, where the sample distribution in each fold for A2C, A3C, A4C and A5C classes is around 21%, 18%, 51% and 10%.



3.3.3 Evaluation methodology

For this experiment, we used a Convolutional Neural Network (CNN) with a DenseNet architecture (41) to classify views. The network architecture is kept fixed for all experiments. Random weighted sampling is used to fight class imbalance. We divide the real dataset into 5 folds for cross-validation but always use the same synthetic dataset for pre-training.

In each fold, we create subsets dr of the real training dataset Dreal with varying amounts of real data. For each dr, we train four networks: One network on dr only, to establish a baseline and then we pre-train 3 other networks on each one of the simulated datasets and fine-tune them on dr. Validation and testing are always done on the same real datasets, independently of dr’s size.

When pre-training, we employ the following data augmentations on the synthetic samples to match the variations observed in the real dataset: Cropping/zooming (e.g. to mimic real sequences where there’s a zoom on a chamber or a valve), Gaussian smoothing, brightness and contrast jittering (to replicate varying texture qualities), fan angle variation (for real sequences where the fan angle is changed by the operator). No augmentations are applied to the real data.

When evaluating, for each video sequence, we perform a majority vote on the network’s predictions on each frame to determine which label to assign to the sequence.



3.3.4 Results

We report averaged F1-score and accuracy for all the classes in Figures 9A,B and F1-score for the A5C and A4C classes in Figures 9C,D.


[image: Graphs A to D show performance metrics across training dataset counts.   A: F1_score increases with dataset size for "sim NO MCPT", "sim + MCPT", and "sim + MCPT + FIELD", outperforming "real only".  B: Accuracy trends are similar, with greater increases for simulated datasets.  C: F1_score for class A5C shows simulated datasets outperform "real only", with similar growth.  D: F1_score for class A4C reaches highest values with simulated data, exceeding "real only".   Lines and symbols denote different training methods in all graphs.]
FIGURE 9
Results of the view classification ablation study averaged over 5 folds. Networks pre-trained with simulations and then fine-tuned on real samples were compared to networks trained on real data only. The x-axis indicates the size of the subset of real data dr. (A,B) report the F1-score and accuracy over the 4 classes while (C,D) report the metrics for the (most-represented) A4C and (under-represented) A5C classes. For a given dr, a star is displayed on a graph if the p-value from a right-tailed Wilcoxon signed rank-test is <0.05.


Figure 9 suggests pre-trained networks achieve a performance level comparable to networks trained on all real datasets when fine-tuned with at least half of the real data.

Fine-tuned networks show significant improvements over their counterparts trained on real data (when dr<800). This trend is accentuated for the A5C class, which is the most under-represented in the dataset. Using simulated data for pre-training still benefits the dominant A4C class, as shown in Figure 9D. Results for networks trained on simulated data only are not reported as they overfitted easily and performed poorly on the real test dataset.

Confusion matrices for dr=450 are reported in Figure 10 for the baseline trained on real data only (Figure 10A) and the network pre-trained on sim + MCPT (Figure 10B). There is a noticeable improvement in the results, highlighted by a reduction in confusion between the A5C and A4C classes.


[image: Confusion matrices labeled A and B depict predicted versus ground truth labels for four classes: a2c, a3c, a4c, and a5c. Matrix A shows high accuracy for a4c with 762 correct predictions, while Matrix B shows an increase to 843 correct predictions for a4c. Both matrices illustrate varying misclassification rates for other classes. Each matrix includes a color scale for visualizing the frequency of predictions.]
FIGURE 10
Confusion matrices for dr=450 in the view classification experiment. (A) Confusion matrix for the baseline trained on real data only. (B) Confusion matrix for the network pre-trained on simulated data with MCPT enabled. An analytical beam profile was used. The network pre-trained on simulated data (B) notably reduces the confusion between A5C and A4C classes.


Finally, no statistically significant differences were found when comparing the results of the networks pre-trained on sim + MCPT and sim + MCPT + FIELD (p>0.05). This suggests the choice of the weighting method for scatterers has little influence on neural network training on this task. Results were statistically different between sim NO MCPT and sim + MCPT when dr<450 and only different between sim NO MCPT and sim + MCPT + FIELD when dr<150.





4 Discussion

In this section, we first discuss experimental results from the view classification experiment in Section 4.1. We then address the limitations of our proposed simulation pipeline in Section 4.2 and finish by expanding on potential applications of the pipeline and future work in Section 4.3.


4.1 View classification

In Figure 9, pre-trained networks show improved performance compared to the ones trained on real data only, meaning the simulations can be used to generate data when large datasets are not readily available or to target a sub-population which is less prevalent. This suggests our pipeline could be used to generate data for other tasks, given some improvements are made to circumvent the limitations caused by using segmentations. We expand on this in Section 4.2.

Moreover, networks pre-trained without MCPT achieved in some cases performances similar to their counterparts trained with MCPT. While MCPT allows for a better visibility of the anatomical structures as demonstrated in Figure 4, the discriminating features between views (i.e. heart chambers) are still present in the images without using MCPT. This would explain why the networks can still learn from such images. However, we believe using MCPT might be more critical in applications where all structures need to be clearly observable, such as image segmentation.

We limited the view classification experiment to four views as apical views were the only ones we could obtain robustly in an automatic way. Even then, we were not always successful in obtaining correct transducer orientations for each apical view in every patient dataset, especially for the A5C view. Indeed, view planes for each patient are obtained by finding landmarks using segmentations and morphological operations and then fitting a plane. Our automated method failed to consistently find a plane where the aorta and the four chambers were visible in the simulations. This is related to the fact that we obtain our segmentations from CT data, where the patients are lying supine, and it is known that finding A5C views when patients are in the supine position is complicated in clinical settings as the imaging plane is suboptimal (42). This explains the synthetic training data distribution in the view classification experiment. However, using an algorithm capable of navigating between views (which is what we intend to develop using the simulator), we could potentially generate datasets with a greater number of standard views.

Finally, in Figure 10, there is a confusion between A2C and A4C classes. Our data is annotated such that all frames in a video sequence have the same label. However, there are multiple A4C sequences in which some frames resemble A2C views (due to suboptimal probe positioning or cardiac phase) but are labelled as A4C, which introduces confusion for the network during training.



4.2 Proposed simulation pipeline

While this pipeline allows for the fast simulation of arbitrary anatomies from a large number of patient datasets, it presents limitations:


	(1)Similarly to other raytracing methods, we cannot simulate non-linear propagation. This prevents us from using techniques such as tissue harmonic imaging. Furthermore, we cannot reproduce reverberations. These could be simulated by summing the ray contributions temporally (i.e. by keeping track of the distance travelled by a ray) rather than spatially. However, this requires a careful weighting of the contribution of the randomly sampled rays with the beam coherence, so as to not yield incorrect results.

	(2)As seen in Figure 5, the border with the blood pool is sharp and the inhomogeneities of tissues are not represented in the simulations. This is due, respectively, to smaller cardiac structures (e.g. papillary muscles, trabeculae …) which are difficult to annotate and segment, and to the assumption of homogeneity within the tissue (i.e. all scatterers’ intensities in a given medium follow the same distribution) since the intensity variation between pixels is lost with the segmentations. Additionally, the segmentation algorithm can also produce inaccurate labels. The impact of these factors depends on the downstream tasks.A quantitative evaluation of segmentation errors could be made using a CT with accurate segmentation labels and then altering the labels with geometric and morphological operations to assess the impact of inaccuracies on the outcomes. Furthermore, given pairs of registered CT and real ultrasound images, one could assess the ability of the pipeline in simulating pathological cases, as in Figures 6A,B.The impact of the tissue homogeneity assumption was illustrated in our attempt to train networks solely on simulated data for the view classification experiment, but the performance was poor. We noticed the network quickly overfitted the data. While the range of anatomies simulated is wide (+1,000 patients), the lack of fine-tissue detail seems to limit the diversity of generated samples. We believe a potential solution to this challenge would be a combination of our pipeline with generative models, to improve the realism and quality of simulations. This could enable the generation of large and realistic ultrasound datasets, with readily available anatomical labels.

	(3)While we do not address the topic of cardiac motion in this manuscript, it is possible to generate such sequences with our pipeline, given input volumes for each timestep of the cardiac cycle.

	(4)We recognize that the pressure applied by sonographers on the patient’s chest during TTE examinations can impact the image quality. We plan to address this in future work by incorporating a volumetric deformation model over the anatomical volume. Nevertheless, we note that the proposed framework would still be sufficient for training navigation algorithms for transesophageal imaging, where the impact on images of such anatomical shape deformations due to the ultrasound probe would be significantly smaller.






4.3 Applications and future work

We aim to use our pipeline as a simulator to train navigation algorithms, similar to Li et al. (5). While the motivation behind the development of our pipeline is autonomous navigation, its capabilities could enable numerous downstream applications. Large dataset generation from segmentations could allow for the training of neural networks for tasks such as view classification, image segmentation or automated anatomical measurements.

In addition to the proposed use for automated acquisition, the method could be used for training or guidance of a semi-trained or novice ultrasound operator. Typically, guidance methods use 2D images from a pre-acquired 3D dataset. However, a simulation method would enable larger adjustments to the probe position.

While we focus on cardiac TTE imaging in this paper, other organs or modalities such as Transoesophageal Echocardiography (TEE) or Intracardiac Echocardiography (ICE), in 2D or 3D, could be simulated as a result of the built-in flexibility of our pipeline. Our future work will investigate both the use of the simulation pipeline as an environment to train deep reinforcement learning agents for autonomous navigation and the use of generative networks to improve the realism and train networks for several downstream tasks.




5 Conclusion

We have presented an ultrasound simulation pipeline capable of processing numerous patient datasets and generating patient-specific images in under half a second. In the first experiment, we assessed several properties of the simulated images (distances, contrast, speckle statistics) using a virtual calibration phantom. The geometry of our simulations is accurate, the contrast of different tissues is reproduced with fidelity and we are able to generate a fully developed speckle pattern.

We then synthesized cardiac views from more than 1,000 real patient CT datasets and pre-trained networks using simulated datasets. The pre-trained networks required around half the real data for fine-tuning to reach a performance level comparable to networks trained with all the real samples, demonstrating the usefulness of simulations when large real datasets are not available.

The main limitation lies in the use of segmentations, unable to capture smaller cardiac structures or intensity variations between neighbouring pixels. Using a generative neural network to augment the simulations is a potential workaround. Such a pipeline enables a large number of downstream applications, ranging from data generation for neural network training (segmentation, classification, navigation) to sonographer training.
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Appendix


TABLE A1 Acoustic properties of different media.

[image: A table lists properties of five mediums: skull bone, soft tissue, cardiac muscle, blood, and lung. Columns include impedance, attenuation, and parameters µ0, µ1, σ0, γ, τ. Data values vary for each medium.]


TABLE A2 Structures used in the simulation and associated media.

[image: Table showing two columns. The first column is labeled "Structure" with entries: Aorta, pulmonary veins, ventricles, atrias; Lungs; Pericardium; Body; Ribs. The second column is labeled "Associated media" with entries: Blood; Lungs; Cardiac muscle; Soft tissue; Skull bone. A note states "Body" is the label for tissues between organs.]
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Introduction: Pulmonary arterial hypertension (PAH) is a severe cardiovascular condition characterized by pulmonary vascular remodeling, increased resistance to blood flow, and eventual right heart failure. Right heart catheterization (RHC) is the gold standard diagnostic technique, but due to its invasiveness, it poses risks such as vessel and valve injury. In recent years, machine learning (ML) technologies have offered non-invasive alternatives combined with ML for improving the diagnosis of PAH.



Objectives: The study aimed to evaluate the diagnostic performance of various methods, such as electrocardiography (ECG), echocardiography, blood biomarkers, microRNA, chest x-ray, clinical codes, computed tomography (CT) scan, and magnetic resonance imaging (MRI), combined with ML in diagnosing PAH.



Methods: The outcomes of interest included sensitivity, specificity, area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). This study employed the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for quality appraisal and STATA V.12.0 for the meta-analysis.



Results: A comprehensive search across six databases resulted in 26 articles for examination. Twelve articles were categorized as low-risk, nine as moderate-risk, and five as high-risk. The overall diagnostic performance analysis demonstrated significant findings, with sensitivity at 81% (95% CI = 0.76–0.85, p < 0.001), specificity at 84% (95% CI = 0.77–0.88, p < 0.001), and an AUC of 89% (95% CI = 0.85–0.91). In the subgroup analysis, echocardiography displayed outstanding results, with a sensitivity value of 83% (95% CI = 0.72–0.91), specificity value of 93% (95% CI = 0.89–0.96), PLR value of 12.4 (95% CI = 6.8–22.9), and DOR value of 70 (95% CI = 23–231). ECG demonstrated excellent accuracy performance, with a sensitivity of 82% (95% CI = 0.80–0.84) and a specificity of 82% (95% CI = 0.78–0.84). Moreover, blood biomarkers exhibited the highest NLR value of 0.50 (95% CI = 0.42–0.59).



Conclusion: The implementation of echocardiography and ECG with ML for diagnosing PAH presents a promising alternative to RHC. This approach shows potential, as it achieves excellent diagnostic parameters, offering hope for more accessible and less invasive diagnostic methods.



Systematic Review Registration: PROSPERO (CRD42024496569).
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machine learning, pulmonary arterial hypertension, diagnostic method, area under the curve, area under receiving operator curve





Introduction

Pulmonary Arterial Hypertension (PAH) is a severe cardiovascular condition marked by increased blood pressure in the pulmonary arteries, resulting in gradual harm and eventual failure of the right side of the heart (1, 2). Traditional diagnostic techniques, particularly right heart catheterization (RHC), have been widely regarded as the most reliable method for evaluating PAH. Although RHC offers precise hemodynamic measurements, its invasive nature presents inherent risks to patients and may hinder prompt diagnosis (3, 4).

The emergence of machine learning (ML) technologies in recent years has brought about a significant change in medical diagnostics, providing non-invasive alternatives that question the existing practices (5). Machine learning techniques utilize computational algorithms to analyze intricate datasets and extract significant patterns, empowering clinicians to make accurate and prompt diagnosis. This paper investigates the potential of non-invasive machine learning (ML) methods to completely transform the diagnosis of pulmonary arterial hypertension (PAH) (6). These methods offer a safer and more patient-friendly alternative to the conventional invasive approaches currently used. The constraints of right heart catheterization (RHC), which encompass the inherent procedural hazards and discomfort, underscore the necessity for pioneering diagnostic instruments. Non-invasive machine learning methodologies, such as advanced analysis of images, processing of signals, and recognition of patterns, offer a chance to overcome these difficulties. ML models can achieve high accuracy in identifying PAH by utilizing data from diverse sources such as medical imaging, patient history, and physiological parameters to detect subtle patterns (7).

This paper examines the current state of diagnosing pulmonary arterial hypertension (PAH), highlighting the limitations of invasive methods, and highlighting the potential of machine learning (ML) as a revolutionary force. We explore the different non-invasive machine learning methodologies used in PAH research, examining their advantages, constraints, and future potential. In addition, we emphasize the ethical and practical factors related to the implementation of machine learning in clinical practice, guaranteeing a thorough comprehension of the consequences for patient care. This paper aims to shed light on the path toward a new era in diagnosing pulmonary arterial hypertension (PAH) by exploring the intersection of machine learning and cardiovascular medicine. By adopting non-invasive machine learning techniques, our goal is to not only question the traditional approach of invasive procedures but also reshape the field of cardiovascular diagnostics. This will ultimately improve patient outcomes and enhance the overall management of pulmonary arterial hypertension.



Methods

This meta-analysis was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines (8). This study was registered in PROSPERO with registration number CRD42024496569.


Search strategy

The literature search was carried out on six databases, namely PubMed, ScienceDirect, ProQuest, Taylor & Francis, Embase, and EBSCO until December 2023. The literature search was carried out with keywords using Boolean operators: (“machine learning” OR “deep learning” OR “artificial intelligence”) AND (“pulmonary hypertension”) AND (“sensitivity” OR “specificity” OR “AUC” OR “ROC” OR “AUROC” OR “PPV” OR “NPV” OR “TN” OR “FN” OR “TP” OR “FP”).



Study eligibility criteria

Study Inclusion and exclusion criteria were determined before the literature search to make the results specific and homogenous. The inclusion criteria were (1) data available or accessible in English language, (2) studies that involve patients with PAH as their sample, (3) studies that use right heart catheterization (RHC) for making PAH diagnosis, and (4) studies that include at least one diagnostic data to be analyzed in this study, namely: true/false negative value, true/false positive value, specificity, sensitivity, area under curve (AUC), area under receiver operating characteristic (AUROC) curve, positive predictive value (PPV), and negative predictive value (NPV). The exclusion criteria were (1) non-human sampling studies and (2) irretrievable articles or articles with incompatible language. Using these inclusion and exclusion criteria, four authors independently assessed the eligibility of the papers, and any disagreements were resolved through discussion.



Outcome measures

The primary outcome measures of this study are the sensitivity and specificity of overall diagnostic performance. The secondary outcomes are the sensitivity and specificity of subgroup diagnostic performance, namely ECG, blood biomarkers, echocardiography, miRNA, and other subgroups (chest x-ray, clinical code, MRI, and CT scan). All authors independently extracted the outcomes from the included papers to be used for quantitative analysis and any disagreements were resolved through discussion.



Quality assessment and statistical analysis

The risk of bias for each study will be independently assessed by all reviewers as low, moderate, or high using the tool, Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (9). Diagnostic meta-analysis will be performed using STATA V.12.0 (10). The software will be used to test the heterogeneity, and the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and other effect sizes to generate the summary receiver operating characteristic (SROC) curve for comprehensive evaluation. If high heterogeneity is found, meta-regression analysis will be done to explore the source of heterogeneity alongside subgroup analysis. The competing diagnostic tests will be ranked by their superiority index. Begg's funnel plots will also be used to assess publication bias in the meta-analysis of the diagnostic studies.




RESULTS


Study selection and identification

After removing duplicate studies and screening abstracts, a thorough assessment was conducted on a total of 36 clinical trial studies. Ultimately, 26 clinical trials were selected for inclusion in the meta-analysis, as depicted in Figure 1. Two studies were excluded because their data was unrelated to the focus of this study, five were excluded due to insufficient details for a comprehensive evaluation, and three were excluded as their outcomes were irrelevant to the aim of this study. The selected studies underwent evaluation for quality and were extracted for subsequent analysis using statistical methods.


[image: Flowchart of a systematic review process. Identification: Articles identified through six databases, totaling 1,809. Screening: 1,762 articles excluded based on title and abstract, leaving 47 screened; 11 duplicates removed, resulting in 36 articles. Eligibility: All 36 full-text articles assessed. Inclusion: 26 studies included in qualitative synthesis. Ten studies excluded for irrelevance, insufficient detail, or unrelated focus.]
FIGURE 1
Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart for study identification and selection. The original database search resulted in 1,809 studies from six databases searched, namely PubMed, ScienceDirect, ProQuest, Taylor & Francis, Embase, and EBSCO. Through title and abstract screening, 1,762 articles were removed, and 47 articles were screened for duplication. Duplicate screening resulted in 11 removed articles. Thirty-six articles were further assessed for eligibility and ten articles were removed due to irrelevant data, evaluation, or outcomes. The final step resulted in 26 clinical trials included in the qualitative synthesis.




Demography and clinical characteristics of the included studies

The demography and clinical characteristics of 26 included studies were examined and listed in Supplementary Table S1.



Quality appraisal

The final clinical trials included in the analysis underwent a comprehensive quality evaluation using the QUADAS-2 tool (Figure 2). The assessment revealed that 12 of the studies had a low risk of bias across the four domains evaluated. However, there were nine studies with a moderate risk of bias and five with a high risk of bias. Notably, studies conducted by Diller et al., 2022; Imai et al., 2023; Kanwar et al., 2020; Kiely et al., 2019; Kusunose et al., 2022; Kwon et al., 2020; Leha et al., 2019; Seidler et al., 2019; Suvon et al., 2022; and Zeng et al., 2021 (6, 7, 11–18) did not implement any randomization process in their methodology, thus they were considered to have moderate regarding bias in the patient selection domain. Furthermore, studies conducted by Imai et al., 2023; Kogan et al., 2023; Schuler et al., 2022; and Seidler et al., 2019 (12, 16, 19, 20) had unclear pre-specified thresholds in their diagnostic method standards, leading to a moderate risk of bias in the index test domain. Additionally, the study by Seidler et al., 2019 (16) had an incomplete reference standard for interpreting results, resulting in a moderate risk of bias in the reference standard domain. Lastly, studies conducted by Bauer et al., 2021; Schuler et al., 2022; and Suvon et al., 2022 (17, 20, 21) had the notable loss to follow-up samples, which raised a moderate risk of bias in the flow & timing domain.


[image: Risk of bias table for various studies, listing domains D1 to D4 and overall judgment. Symbols: green (low risk), yellow (some concerns), red (high risk). Each row represents a study with its respective bias assessment. A bar chart at the bottom summarizes the proportion of studies in each category for different domains.]
FIGURE 2
Risk of bias summary using the QUADAS-2 tool for diagnostic studies. The green region represents studies with a low risk of bias, the yellow region shows studies with a moderate risk of bias, and the red region shows studies with a high risk of bias.




Overall diagnostic performance analysis

A total of twenty-six studies were included in the meta-analysis for the overall diagnostic method, consisting of 6 studies for ECG, 6 studies for echocardiography, 4 studies for blood biomarkers, 5 studies for miRNA, and 6 studies for other diagnostic methods, including chest x-ray, clinical code, MRI, and CT scan. These parameters are analyzed with various thresholds with the number of studies included and cases, their combined sensitivities, and specificities shown in Table 1.


TABLE 1 Subgroup analysis of diagnostic method in machine learning study for pulmonary hypertension.

[image: A table comparing diagnostic methods: ECG, Blood Biomarkers, Echocardiography, miRNA, and Others. It lists sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratios, each with confidence intervals. Statistical values like Q, degrees of freedom, p-values, and I-squared are also provided for sensitivity and specificity for each method.]

As shown in Figure 3, there was significantly high heterogeneity in the pooled sensitivity [I2 = 93.27%, p < 0.001] and specificity [I2 = 97.61%, p < 0.001] values. Therefore, the random-effects model was used to analyze diagnostic parameters. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was significant with a value of 0.81 [95% CI = 0.76–0.85, p < 0.001] and specificity was also significant with the value of 0.84 [95% CI = 0.77–0.88, p < 0.001]. In addition, Figure 4 shows a summary receiver operator characteristic (SROC) curve with an AUC of 0.89 [95% CI = 0.85–0.91].


[image: Forest plot showing sensitivity and specificity with 95% confidence intervals for multiple studies. Sensitivity values range from 0.12 to 1.00, while specificity values range from 0.47 to 1.00. Red dashed lines indicate average sensitivity at 0.81 and specificity at 0.84. Both plots display significant variation across studies.]
FIGURE 3
Forest plot showing overall sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.



[image: Receiver operating characteristic (ROC) plot showing observed data points and a summary operating point, marked by a red diamond. Sensitivity is plotted on the y-axis, and specificity on the x-axis. The summary operating point has a sensitivity of 0.81 and specificity of 0.84. The summary ROC curve's area under the curve (AUC) is 0.89, with a 95% confidence contour and prediction contour.]
FIGURE 4
Summary ROC curve with confidence and prediction regions around mean operating sensitivity and specificity point.


Figure 5 shows the construction of a bivariate boxplot, which is a useful tool for detecting heterogeneity in each study. One study did not occur in the boxplot, including study 13 meanwhile three studies presented as outliers, including studies 10 (22), 12 (13), and 24 (12). Study 12 (23) involved patients with PAH and other subtypes of PH, study 10 involved the use of Chest x-ray, study 24 involved the use of ECG, meanwhile, study 12 involved the use of clinical code. This implies that the type of diagnostic method conducted prior to the machine learning algorithm could be the main cause of heterogeneity.


[image: Bivariate boxplot displaying data points plotted with LOGIT_SPEC on the x-axis and LOGIT_SENS on the y-axis. The plot features an inner gray area representing the interquartile range and an outer gray area showing the 95% confidence interval. Individual data points are marked with numbers, indicating specific values within the plotted distribution.]
FIGURE 5
Bivariate boxplot with most studies clustering within the median distribution with three outliers suggesting indirectly a lower degree of heterogeneity.


This study also employed Deek's funnel plot asymmetry test to assess the potential of publication bias between included studies. A value of P = 0.67 indicates a symmetric funnel shape, suggesting the absence of publication bias within the dataset under examination. This finding implies that the distribution of studies across the range of effect sizes is balanced and unbiased, contributing to the reliability and robustness of the analysis.



Subgroup diagnostic performance analysis

Then, subgroup analysis was performed based on the diagnostic type of machine learning. Results are shown in Table 1. Concerning the diagnostic type, miRNA studies exhibited the highest sensitivity (0.87; 95% CI = 0.81–0.92; p = 0.45), however, the result was not statistically significant. Echocardiography followed with the second-highest sensitivity and yielded statistically significant results (0.83; 95% CI = 0.72–0.91; p < 0.001). The echocardiography also showed the highest specificity (0.93; 95% CI = 0.89–0.96; p = <0.001). The highest positive likelihood ratio (PLR) with a value of 12.4 (95% CI = 6.8–22.9) is also shown by echocardiography and the highest negative likelihood ratio (NLR) with a value of 0.50 (95% CI = 0.42–0.59) was shown by blood biomarkers. Furthermore, echocardiography also exhibited the highest diagnostic odds ratio (DOR) with values of 70 (95% CI = 23–213).

Figure 6 shows the diagnostic subgroup analysis of ECG as machine learning's diagnostic method. There was significantly high heterogeneity in the pooled sensitivity [I2 = 79.18%, p < 0.001] and moderate heterogeneity in the pooled specificity [I2 = 71.87%, p < 0.001] values. Therefore, the random-effects model was used to analyze diagnostic parameters. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was significant with the values of 0.82 [95% CI = 0.80–0.84, p < 0.001] and specificity was also significant with the values of 0.82 [95% CI = 0.78–0.84, p < 0.001].


[image: Funnel plot for Deeks' asymmetry test with a p-value of 0.67. The plot shows circles representing studies plotted against diagnostic odds ratio on the x-axis and one over the square root of ESS on the y-axis. A regression line is included.]
FIGURE 6
Funnel plot with superimposed regression line. The vertical axis displays the inverse of the square root of the effective sample size [1/root(ESS)]. The horizontal axis displays the diagnostic odds ratio (DOR). This Deek's funnel plot asymmetry test is a useful tool for assessing the potential publication bias in studies.


Figure 7 shows the diagnostic subgroup analysis of echocardiography as machine learning's diagnostic method. There was significantly high heterogeneity in both the pooled sensitivity [I2 = 89.98%, p < 0.001] and specificity [I2 = 95.63%, p < 0.001]. Therefore, the random-effects model was used to analyze diagnostic parameters. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was significant with values of 0.83 [95% CI = 0.72–0.91, p < 0.001] and specificity was also significant with values of 0.93 [95% CI = 0.89–0.96, p < 0.001].


[image: Forest plot comparing sensitivity and specificity, displaying confidence intervals as horizontal lines for various studies. Sensitivity ranges from 0.79 to 0.91 on the left, specificity from 0.70 to 0.90 on the right. Overall sensitivity is 0.82, and specificity is also 0.82, with p-values indicating statistical significance.]
FIGURE 7
Forest plot showing echocardiography subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.


Figure 8 shows the diagnostic subgroup analysis of blood biomarkers as machine learning's diagnostic method. There was no significant heterogeneity in the pooled sensitivity [I2 = 1.86%] and significantly moderate heterogeneity in specificity [I2 = 71.77%, p < 0.001] values. Therefore, the random-effects model was used to analyze diagnostic parameters. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was insignificant with values of 0.60 [95% CI = 0.52–0.67, p = 0.38] and specificity was significant with values of 0.82 [95% CI = 0.71–0.89, p = 0.01].


[image: Forest plots displaying sensitivity and specificity with 95% confidence intervals for six studies. The left plot shows sensitivity ranging from 0.69 to 1.00, with a pooled estimate of 0.83. The right plot shows specificity ranging from 0.83 to 1.00, with a pooled estimate of 0.93. Red dashed lines mark pooled estimates. Statistical heterogeneity indices are provided below each plot.]
FIGURE 8
Forest plot showing blood biomarkers subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.


Figure 9 shows the diagnostic subgroup analysis of microRNA as machine learning's diagnostic method. There was nonsignificant heterogeneity in both the pooled sensitivity [I2 = 0.00%] and specificity [I2 = 0.00%] values. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was insignificant with the values of 0.87 [95% CI = 0.81–0.92, p = 0.45] and specificity was also insignificant with the values of 0.66 [95% CI = 0.52–0.77, p = 0.99].


[image: Forest plot showing sensitivity and specificity of a diagnostic test with 95% confidence intervals. Sensitivity ranges from 0.54 to 0.66; pooled sensitivity is 0.60. Specificity ranges from 0.71 to 0.91; pooled specificity is 0.82. Heterogeneity statistics include Q, degrees of freedom, and p-values, with I-squared values for sensitivity and specificity.]
FIGURE 9
Forest plot showing microRNA subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.


Figure 10 shows the diagnostic subgroup analysis of others, including chest x-ray, CT scan, MRI, and clinical code, as machine learning's diagnostic method. There was a significantly high heterogeneity in both the pooled sensitivity [I2 = 96.48%, p < 0.001] and specificity [I2 = 99.23%, p < 0.001] values. Therefore, the random-effects model was used to analyze diagnostic parameters. The forest diagram shows the value of machine learning in the diagnosis of pulmonary hypertension; the pooled sensitivity was significant with values of 0.79 [95% CI = 0.62–0.89, p < 0.001] and specificity was also significant with values of 0.85 [95% CI = 0.62–0.95, p < 0.001].


[image: Forest plot showing sensitivity and specificity with 95% confidence intervals for a study. The left panel depicts sensitivity ranging from 0.77 to 0.91 across five studies, with an overall sensitivity of 0.87. The right panel shows specificity ranging from 0.64 to 0.70, with an overall specificity of 0.66. Both panels display confidence intervals as horizontal lines with square markers for each study, and a diamond marks the overall effect size. Statistical heterogeneity is indicated by Q and I-squared values at the bottom.]
FIGURE 10
Forest plot showing other subgroups’ mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.




Diagnostic precision properties analysis

A single-group meta-analysis was utilized to analyze the diagnostic precision properties (Supplementary Table S2). Among the twenty studies assessing sensitivity, the overall estimated proportion was 77.98%, with a 95% CI ranging from 71.53% to 84.43% (Supplementary Figure S5). This suggests a high prevalence of sensitivity across the studies included, with the confidence interval indicating greater precision and statistical significance. High and significant overall heterogeneity was observed (I2 = 100%; P < 0.01).

For specificity, twenty studies were examined, revealing an overall estimated proportion of 79.93%, with a 95% CI between 73.66% and 85.01% (Supplementary Figure S6). Similar to sensitivity, there was a high prevalence of specificity, supported by a precise and statistically significant confidence interval. Overall heterogeneity was also high and significant (I2 = 100%; P < 0.01).

In the case of the AUC, fourteen studies contributed to an overall estimated proportion of 87.94%, with a 95% CI from 85.07% to 89.70% (Supplementary Figure S7). This indicates a high prevalence of AUC, with a precise and statistically significant confidence interval. Overall heterogeneity remained high and significant (I2 = 97%; P < 0.01).

Regarding the ROC, six studies were analyzed, resulting in an overall estimated proportion of 87.25%, with a 95% CI between 81.76% and 91.27% (Supplementary Figure S8). Again, a high prevalence of ROC was observed, supported by a precise and statistically significant confidence interval. Overall heterogeneity was high and significant (I2 = 92%; P < 0.01).

For positive predictive value (PPV), ten studies were considered, revealing an overall estimated proportion of 84.09%, with a 95% CI ranging from 57.18% to 95.44% (Supplementary Figure S9). A high prevalence of PPV was found, along with a precise and statistically significant confidence interval. Overall heterogeneity remained high and significant (I2 = 100%; P < 0.01).

Lastly, ten studies contributed to the analysis of negative predictive value (NPV), resulting in an overall estimated proportion of 93.78%, with a 95% CI from 81.17% to 98.14% (Supplementary Figure S10). Similar to the other metrics, a high prevalence of NPV was observed, supported by a precise and statistically significant confidence interval. Overall heterogeneity was once again high and significant (I2 = 100%; P < 0.01).




Discussion


Conventional method in diagnosing pulmonary arterial hypertension

Pulmonary hypertension (PH) encompasses a spectrum of conditions characterized by elevated blood pressure in the pulmonary arteries, with pulmonary arterial hypertension (PAH) being a distinct subgroup primarily affecting the small pulmonary arterioles. PAH presents significant challenges in diagnosis due to its multifaceted etiology and diverse clinical manifestations (24) To accurately diagnose PAH and differentiate it from other forms of PH, a comprehensive diagnostic approach combining clinical assessment, imaging modalities, and invasive procedures is necessary.

Clinical evaluation forms the cornerstone of PAH diagnosis, involving a detailed medical history, physical examination, and assessment of symptoms. Symptoms of PAH can vary widely, ranging from early indicators such as exertional dyspnea and fatigue to more advanced symptoms like exertional chest pain and syncope. Recognizing these symptoms alongside physical examination findings, such as an enlarged right ventricle or abnormal heart murmurs, provides crucial initial insights into the possibility of PAH (24, 25).

Diagnostic imaging plays a pivotal role in identifying structural and functional abnormalities associated with PAH. Electrocardiography (ECG or EKG) provides valuable information by detecting electrical abnormalities indicative of right ventricular hypertrophy and strain, common features of PAH. Transthoracic echocardiography (TTE) offers non-invasive assessment of pulmonary artery pressures and right heart function, aiding in the diagnosis and monitoring of PAH progression. Chest x-rays complement these assessments by visualizing cardiac and pulmonary structures, revealing characteristic findings such as central pulmonary arterial dilatation and signs of right heart enlargement (24).

While non-invasive tests provide valuable diagnostic information, invasive procedures such as right heart catheterization (RHC) remain the gold standard for confirming PAH diagnosis. RHC enables direct measurement of pressures in the heart and pulmonary arteries, including mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR). These hemodynamic parameters aid in distinguishing between pre-capillary and post-capillary PH and guide therapeutic decision-making. Post-capillary PH is defined by hemodynamic measurements of mPAP greater than 20 mmHg and pulmonary artery wedge pressure (PAWP) greater than 15 mmHg (25).

Laboratory tests, including hematological assessments, contribute additional diagnostic insights by identifying specific biomarkers associated with PAH, such as brain natriuretic peptide (BNP) or N-terminal pro-brain natriuretic peptide (NT-proBNP). Elevated levels of these biomarkers may indicate cardiac stress and provide prognostic information in PAH (26).

Despite advancements in diagnostic techniques, challenges persist in optimizing early detection and improving prognostication in PAH. Future directions in PAH diagnosis may involve the integration of novel biomarkers, advanced imaging technologies, and machine learning algorithms to enhance diagnostic accuracy and tailor treatment strategies to individual patient needs.



General mechanism of machine learning

ML forms the core of artificial intelligence (AI), enabling computers to handle complex tasks using an array of advanced methods (25, 27). ML harnesses algorithms that elucidate relationships between variables to drive accurate predictions (28). The fundamental premise of machine learning is to enable computers to improve their performance on a specific task over time as they are exposed to more data through training (29).

The landscape of ML methods is diverse, but they broadly fall into two categories: supervised and unsupervised learning (30). Supervised learning involves training models on inputs linked with known outcomes. For example, in medical diagnosis, models can be trained on various patient characteristics to predict the onset of diseases. Supervised algorithms are meticulously developed using datasets containing multiple variables and relevant outcomes. However, the risk of overfitting, where the model overly tailors itself to the training data, necessitates careful validation through techniques like splitting datasets into training and testing segments. In each segment, there is a randomly chosen portion of features along with their corresponding outcomes. This enables the algorithm to link specific features or traits to outcomes, a process known as algorithm training. Following training, the algorithm is applied to the features in the testing dataset without their corresponding outcomes. The predictions generated by the algorithm are subsequently compared to the known outcomes of the testing dataset to evaluate model performance. This step is crucial for enhancing the algorithm's ability to effectively generalize to new data (28). On the other hand, unsupervised learning ventures into uncharted territory, seeking patterns and clusters within datasets without predefined outcomes. These techniques, while exploratory, offer invaluable insights into complex data structures (28, 31, 32).

In the domain of medical diagnosis, leveraging ML entails a complex sequence of procedural steps. It commences with data acquisition, encompassing diverse sources like clinical records, imaging, and patient histories. Subsequently, data undergoes processing, addressing issues such as missing values and noisy data. Identification of target variables and predictors follows suit, paving the way for model training. Once trained, these models serve as powerful diagnostic tools, aiding healthcare professionals in making informed decisions (5).

Essentially, the framework of machine learning surpasses mere algorithms; it embodies a comprehensive approach that spans data acquisition, processing, model training, and practical application. As ML continues to develop, its integration into various domains promises transformative outcomes, revolutionizing how complex tasks are undertaken and decisions are made.



Current Use of machine learning in medical fields

In recent years, artificial intelligence (AI) and machine learning (ML) have emerged as potent tools across various domains, promising transformative solutions to complex challenges (33). Specifically, within medical field, ML-assisted diagnosis stands out as a potential game-changer, leveraging vast patient datasets to deliver precise and personalized diagnoses. Despite considerable research and commercial interest, diagnostic algorithms helped to increase the diagnostic accuracy of human doctors in scenarios involving multiple potential causes for a patient's symptoms.

Medical diagnosis is inherently intricate, with numerous factors such as overlapping structures, distractions, fatigue, and limitations of the human visual system contributing to potential misdiagnosis. ML methods have been increasingly adopted to help clinicians in overcoming these challenges, facilitating informed and accurate decision-making in disease diagnosis (5). By employing intelligent data analysis tools, ML helps unveil intricate relationships within datasets, providing valuable second opinions to clinicians and potentially improving patient outcomes while reducing treatment costs.

ML techniques hold promise in two key areas within medical practice: diagnosis and outcome prediction. These methods have demonstrated success in tasks such as classifying skin cancer from images and predicting the progression from pre-diabetes to type 2 diabetes using electronic health record data (28). Moreover, ML is finding increasing application in cardiovascular disease diagnostics, spanning modalities such as echocardiography, electrocardiography, and non-invasive imaging (34, 35).

In the realm of medical imaging, ML algorithms play a pivotal role in enhancing the detection and diagnosis of conditions from x-rays, CT scans, and MRIs, aiding in the identification of tumors, fractures, and anomalies (34, 36). Additionally, ML is instrumental in genomic data analysis, facilitating the detection of disease-related patterns and mutations, thereby offering insights into individual responses to treatments (Wu and Zhao, 2019).

Furthermore, ML contributes to drug discovery by elucidating disease molecular mechanisms and predicting potential medication candidates, thereby enhancing efficiency and quality in lead synthesis pathways (31, 37). ML-driven decision support systems analyze patient data extracted from electronic health records (EHRs), aiding healthcare providers in identifying issues, suggesting remedies, and assessing illness probabilities (5).

Beyond diagnosis and treatment, ML models analyze extensive datasets to identify trends and patterns in disease occurrence, informing preventive measures in public health (dos Santos et al., 2019). Additionally, ML-based predictive models analyze behavioral patterns and social media data to predict mental health conditions, with ML-powered chatbots and virtual therapists offering support and counseling (38).

However, integrating ML into healthcare necessitates careful consideration of data privacy, model interpretability, and ethical concerns despite its potential to revolutionize healthcare delivery (39). As research and technological advancements continue, the field of ML in healthcare is expected for further advancement and innovation.



Precision of machine learning in diagnosing pulmonary arterial hypertension


Overall diagnostic performance analysis

This study assesses overall diagnostic performance machine learning in diagnosing PAH using several methods (data source) of PAH diagnostic, which are ECG, Echo, blood biomarkers, miRNA, and other (unclassified) diagnostic methods (x-ray, clinical code, MRI, and CT scan). The results of this study found that although significant heterogeneity is found, the diagnostic approach using machine learning is significant and specific with an excellent value of SROC (0.8–0.9 is excellent, while more than 0.9 is outstanding). However, the heterogeneity is found due to the variety of machine learning methods employed in the analysis.

By analyzing various data types such as medical images, patient records, and biomarkers, machine learning algorithms can identify patterns and correlations that may not be apparent to human observers. Therefore, the usage of machine learning is remarkable in increasing sensitivity and specificity compared to conventional methods of diagnosis. However, it's essential to recognize that the performance of machine learning models depends on the quality and quantity of the data used for training. Due to the heterogeneity of the data source, subgroup analysis is done to compare the quantity and quality of the data itself.

In a study by Bauer et al. in 2020, it is stated that machine learning demonstrated the potential of machine learning algorithms in predicting outcomes in PH patients based on variables such as demographic information, comorbidities, and hemodynamic parameters (21). Another study by Swift et al. (2021) shows the superiority of automatic detection and segmentation of the ventricles using machine learning which makes data derived from these approaches may reduce the need for manual adjustments that are currently labour intensive, especially for the right ventricle and therefore, increasing the accuracy of the diagnostic method (40).

Machine learning algorithms excel at identifying patterns within extensive datasets. Diagnosing pulmonary arterial hypertension (PAH) involves assessing multiple clinical parameters like echocardiography results, pulmonary function tests, blood biomarkers, and patient history. ML models can thoroughly analyze these diverse data points, detecting nuanced patterns that traditional diagnostic approaches might miss (6, 41). ML algorithms are proficient at integrating data from various sources, including imaging studies, clinical assessments, and laboratory tests. They excel at managing multimodal data, enabling a comprehensive analysis that encompasses all pertinent information for diagnosing PAH (7, 42).



Subgroup diagnostic performance analysis

Echocardiography showed outstanding results on sensitivity, specificity, PLR, and DOR with statistically significant results compared to other diagnostic methods. With 83% sensitivity and 93% specificity, echocardiography showed great precision in diagnosing PAH. This finding is aligned with previous studies, which stated that echocardiography is superior in diagnosing PAH (11, 43, 44).

Blood biomarkers yielded the most favorable result for NLR (0.50), indicating their capability to accurately identify patients as negative for PH. However, blood biomarkers displayed moderate sensitivity at 60%. A high negative likelihood ratio (LR-) combined with low sensitivity suggests that while the test is adept at correctly identifying individuals without the condition (true negatives), it may be less effective at detecting those who actually have the condition (false negatives). Essentially, although the test excels in ruling out the presence of the condition in healthy individuals, it may frequently miss detecting the condition in those who are afflicted. This situation could be attributed to various factors such as limitations of the test, inherent variability in the condition being examined, or the influence of confounding variables on the test outcomes (45, 46).

When 80% is set as a cutoff value of excellent sensitivity and specificity, ECG is still considered a precise method to diagnose PAH with 82% and 82%. This finding is aligned with previous studies, which stated that ECG in combination with machine learning is able to increase the diagnostic sensitivity and specificity, even using fewer than 12 leads ECG. Since electrocardiograms (ECGs) are widely available in clinical settings, it's also feasible that this algorithm could be utilized in primary care or resource-limited environments (47). According to a study by Kwon et al. (2020), the dependable performance of an AI algorithm based on a single-lead ECG suggests the potential for screening pulmonary arterial hypertension (PAH) using both standard 12-lead ECGs and simpler wearable or monitoring devices. The study also highlights the significant diagnostic accuracy achieved by combining ECG data with machine learning techniques (15). This could potentially expedite echocardiographic assessments, diagnoses, and referrals to specialists.

Although miRNA deployed excellent sensitivity (87%) and moderate specificity (66%), both results are considered to be statistically insignificant. This might develop from the minimal number of studies and variations in machine learning software. The “others” category demonstrated impressive sensitivity (79%) and specificity (85%). However, it is important to highlight that this category includes chest x-ray, clinical code, CT scan, and MRI, making it impossible to analyze these diagnostic methods separately. Future research should aim to individually assess these diagnostic methods to thoroughly evaluate their diagnostic efficacy.




Non-Diagnostic (single-arm) meta-analysis of diagnostic parameters analysis

This study assesses diagnostic parameters of the machine learning performance using non-diagnostic (single-arm) meta-analysis which is able to display each of the study's proportions in assessing the significance of a certain parameter. Each assessment of a specific parameter's efficacy is supplemented with a subgroup examination aimed at elaborating the diagnostic technique utilized.

In sensitivity parameter, the study identified significant findings with variations from high to low heterogeneity across different categories, namely clinical codes, blood biomarkers, ECG, and miRNA while the heterogeneity of chest x-ray and CT scan cannot be assessed due to the minimal studies conducted regarding this mode of diagnosis. miRNA displayed the lowest heterogeneity (11%) due to the same gene sequence used with the main difference in the type of software utilized (48). High heterogeneity found in other studies might depict the variations of patients' baseline characteristics, different approaches in conducting the main diagnostic method, or the variety of machine learning software used. Similar results were found in Figure 11 (specificity), Figure 6 (AUC), Figure 8 (PPV), and Figure 9 (NPV). The random forest method was particularly effective in pinpointing patients with pulmonary arterial hypertension (PAH) with high sensitivity, although XGBoost also yielded a similarly strong Area Under the Curve (AUC). One specific microRNA, MiR-187, stood out in this study and was notably upregulated in samples from endoarterial biopsies in a porcine model. This suggests that MiR-187-5p and MiR-636, identified as potential biomarkers, could be linked to the progression of PAH. This validation underscores the relevance of our machine learning approach in identifying microRNA biomarkers, indicating their potential utility as personalized prognostic indicators (48).
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FIGURE 11
Forest plot showing ECG subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.


However for the study depicted in Figure 7 (ROC), significant findings were identified with lowest heterogeneity in blood biomarkers method. The diagnostic characteristics of biomarkers are deemed vital for enhancing accuracy, particularly in processes like pulmonary vascular remodeling involving proteins such as RAGE and MMP-2, angiogenesis, and cellular growth involving collagen IV, endostatin, IGFBP-2, and neuropilin-1, as well as cardiac dysfunction marked by NT-proBNP and IGFBP-7. RAGE, among the highest-ranked proteins, holds significance in accumulating extracellular matrix proteins, particularly influencing vascular remodeling (49–51). However, the usage of other methods are also significant considering its proportional efficacy and significance in diagnosing PAH, especially due to its personalized approach in diagnosing (3, 44).



Benefits and implications of implementing machine learning-based diagnostic method for diagnosing pulmonary arterial hypertension

Machine learning plays a crucial role in early diagnostic approaches for patients with pulmonary arterial hypertension (PAH). By analyzing extensive datasets encompassing patient medical history, symptoms, and diagnostic tests, ML can discern patterns suggestive of PAH (11). This early detection facilitates timely intervention, ultimately improving patient outcomes (40). Moreover, machine learning enhances the accuracy of diagnosing pulmonary hypertension by scrutinizing intricate data from diverse sources. Through this, it tailors treatment plans to individual patients, constituting personalized medicine. Consequently, treatment efficacy is potentially heightened, and adverse effects are mitigated. Furthermore, machine learning serves as a risk stratification tool by evaluating various factors to gauge the likelihood of disease progression and complications in pulmonary hypertension patients (2, 40). This empowers healthcare providers to prioritize high-risk individuals for vigilant monitoring and proactive intervention (21, 40).

In the realm of pulmonary hypertension, machine learning algorithms exhibit the capability to forecast the condition with remarkable precision by leveraging a wider array of echocardiographic data, eliminating the need for estimated right atrial pressure as a reliance factor (6). ML algorithms can effectively predict pulmonary hypertension in patients with invasively determined pulmonary artery pressure, potentially improving decision-making in PAH treatment (6). Additionally, deep learning algorithms demonstrate the capacity to precisely detect anomalies suggesting pulmonary hypertension in chest radiographs, exhibiting both high accuracy and broad applicability. This presents a hopeful, non-invasive, and easily accessible method for screening patients (22). Machine learning algorithms trained on large datasets can estimate prognosis and potentially guide therapy in adult congenital heart disease (ACHD (11, 52). In the field of cardiology, machine learning techniques can also enhance efficiency by optimizing performance and extracting valuable data from both contrast-enhanced cardiac CT angiography (CCTA) and non-contrast enhanced cardiac CT scans. This improvement in diagnostic accuracy also holds significant implications for prognosis (34).



Study strengths and limitations

This diagnostic meta-analysis provides a comprehensive investigation into the diagnosis of PAH by employing the combination of multiple non-invasive diagnostic techniques augmented with ML algorithms, based upon the latest studies. This study serves as the first diagnostic meta-analysis to evaluate this progression, based on the availability of studies in scholarly databases and the PROSPERO registry. Additionally, it delves into the individual diagnostic performance of each method, aiding in the identification of superior diagnostic approaches. Nonetheless, the study is not without limitations; notably, there is an uneven distribution of studies across different diagnostic methods, with a predominant focus on ECG and echocardiography. Moreover, a comparison of diagnostic performance with RHC considered the gold standard, was precluded due to the unavailability of studies directly comparing ML-based diagnostic methods with RHC in diagnosing PAH. While echocardiography has shown some encouraging results, further study comparing these results to RHC outcomes and to readings from patients with a variety of heart diseases is necessary. The diagnostic use of echocardiography for PAH will be better understood with the aid of this more comprehensive comparison of its sensitivity and specificity. Another limitation is, there is no study including any Doppler imaging modalities as its imaging modality due to lack of study. Therefore, we only included secondary signs of it and recommend further researchers to conduct primary research using machine learning and Doppler imaging modality.




Conclusion

The integration of echocardiography and ECG with ML techniques for the diagnosis of PAH shows a promising avenue in non-invasive diagnostic strategies, potentially serving as a viable alternative to RHC as the gold standard. This innovative approach demonstrates considerable potential by yielding outstanding diagnostic outcomes, thereby fostering the development of more accessible and less invasive diagnostic modalities. While ECG and echocardiography are advancing, they do not replace RHC’s direct pressure measurements, despite its limitations. Nonetheless, further primary research is imperative, particularly in comparing combination of ML-based echocardiography and ECG with RHC in diagnosing PAH.
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Machine learning models for predicting risks of MACEs for myocardial infarction patients with different VEGFR2 genotypes
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Background: The development of prognostic models for the identification of high-risk myocardial infarction (MI) patients is a crucial step toward personalized medicine. Genetic factors are known to be associated with an increased risk of cardiovascular diseases; however, little is known about whether they can be used to predict major adverse cardiac events (MACEs) for MI patients. This study aimed to build a machine learning (ML) model to predict MACEs in MI patients based on clinical, imaging, laboratory, and genetic features and to assess the influence of genetics on the prognostic power of the model.
Methods: We analyzed the data from 218 MI patients admitted to the emergency department at the Surgut District Center for Diagnostics and Cardiovascular Surgery, Russia. Upon admission, standard clinical measurements and imaging data were collected for each patient. Additionally, patients were genotyped for VEGFR-2 variation rs2305948 (C/C, C/T, T/T genotypes with T being the minor risk allele). The study included a 9-year follow-up period during which major ischemic events were recorded. We trained and evaluated various ML models, including Gradient Boosting, Random Forest, Logistic Regression, and AutoML. For feature importance analysis, we applied the sequential feature selection (SFS) and Shapley’s scheme of additive explanation (SHAP) methods.
Results: The CatBoost algorithm, with features selected using the SFS method, showed the best performance on the test cohort, achieving a ROC AUC of 0.813. Feature importance analysis identified the dose of statins as the most important factor, with the VEGFR-2 genotype among the top 5. The other important features are coronary artery lesions (coronary artery stenoses ≥70%), left ventricular (LV) parameters such as lateral LV wall and LV mass, diabetes, type of revascularization (CABG or PCI), and age. We also showed that contributions are additive and that high risk can be determined by cumulative negative effects from different prognostic factors.
Conclusion: Our ML-based approach demonstrated that the VEGFR-2 genotype is associated with an increased risk of MACEs in MI patients. However, the risk can be significantly reduced by high-dose statins and positive factors such as the absence of coronary artery lesions, absence of diabetes, and younger age.
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1 Introduction

Despite significant advances in cardiovascular surgery, interventional procedures, and pharmacotherapy, the in-hospital and long-term rates of major adverse cardiac events (MACEs)—including death, recurrent acute coronary syndrome (ACS), stroke, and myocardial revascularization—remain high worldwide among myocardial infarction (MI) patients (1, 2).

Secondary prevention programs for these individuals are based on identification of high-risk patients using models that focus on clinical features of MI (ST-segment deviation, left ventricular ejection fraction (LVEF), Killip class, and coronary artery lesions) and conventional risk factors (hypertension, diabetes, chronic kidney disease, dyslipidemia, and smoking) that worsen cardiac outcomes (3, 4).

Identifying patients at high risk of MACEs is crucial. Various clinical scores, such as GRACE, ACEF, CADILLAC, TIMI, PROCAM, PREDICT, PURSUIT, DAPT, and PRECISE-DAPT are available, These scores, primarily based on regression models using clinical parameters, estimate cardiovascular (CV) risk over a 1- to 3-year period after an index MI. Nevertheless, modern personalized approaches to the treatment of post-MI individuals already require more precise clinical scoring systems incorporating biomarkers and genetics data (5, 6).

The pathological basis of coronary artery disease (CAD) and acute coronary syndrome (ACS) is atherosclerosis. Factors such as lipid metabolism disorders, vascular endothelial cell damage, inflammation, and immune dysfunction can promote the development and progression of coronary atherosclerosis, potentially leading to CAD and ACS. The vascular endothelial growth factor (VEGF) family is involved in angiogenesis, inflammation, oxidative stress, and lipid metabolism, presenting potential therapeutic and prognostic value for ACS and MI (7, 8).

The prognostic performance of VEGF serum levels following cardiac ischemia shortly after MI was previously investigated in the Coronary Disease Cohort Study. VEGFs primarily bind to three tyrosine kinase receptors (VEGFR-1, VEGFR-2, and VEGFR-3) with different affinities. Single nucleotide polymorphisms (SNPs) from VEGFR-2 are associated with the development of cardiovascular disease (7). Moreover, three SNPs of the VEGFR-2 gene were identified and significantly associated with coronary atherosclerosis: +1192C > T (rs2305948), −604 T > C (rs2071559), and + 1719A > T (rs1870377) (9–13). Consequently, VEGFR-2 gene allelic variants have the potential to be evaluated as prognostic markers in MI (14).

Recently, machine learning (ML) approaches have proven efficient in predicting patient outcomes based on clinical, imaging, and biomarker data. The largest study, based on the clinical data including 23,000 patients in the BleeMACS and RENAMI registries, showed that ML models can predict all-cause death, recurrent MI, and major bleeding after ACS (15) using 25 clinical features. Other approaches, based on considerably smaller datasets, have also proven the efficacy of ML models for cardiovascular outcomes research (16–20). One advantage of ML modeling is its ability to perform feature importance analysis and rank features according to their contribution to model performance. This not only reveals the most important features but also helps to select a minimal set that can reduce overfitting and improve the accuracy of the model. Additionally, an ML model with a small set of features can be easily applied in practice. Thus, ML models have shown that serum creatinine and LVEF alone can predict all-cause death (16). In another study (21), an ML model trained to predict all-cause death reduced the feature space from 430 to 25. Other models provide evidence of the predictive power of ML models and present the most important features. These include models for prognosis of post-thrombotic syndrome (22), prognostication of the time to death of patients in the Coronary Care Unit (23), prediction of mortality and heart failure (HF) hospitalization in patients with preserved LVEF (17), prediction of long-term risk of MI and cardiac death (24), and in-hospital all-cause mortality in HF patients (20). All the aforementioned ML models were trained using clinical features routinely measured at hospital admission. In some studies, these features were complemented by demographic and social characteristics.

All proposed prognostic ML models do not have high-performance metrics with ROC AUC lying in the interval of 70–80%. One way to improve ML model prediction power is to include more information about patient status, with genetic markers potentially serving a key role. Adding genetic markers as features to an ML model does not mean that clinical features are not prognostic or that, in the future, they are supposed to be replaced with genetic markers only. However, genetic markers can significantly improve patient risk assessment when taken together with other clinical characteristics. This kind of model is limited due to the high-cost genetic testing, and most MI patient clinical datasets do not contain genetic information. Here, for the first time, we incorporate genetic information into an ML model to predict MACEs in MI patients.



2 Methods


2.1 Clinical data collection

The prospective observational study consecutively included 218 patients with acute MI who were admitted to the Surgut District Cardiology Clinic of the Center for Diagnostics and Cardiovascular Surgery. This study was approved by the local ethics committee at the clinic. During the initial admission to the emergency department, medical researchers (cardiologists) explained the main points of the study protocol to the patients and obtained their informed consent to participate. Then, the patients were transported to the operating unit to undergo emergent coronary angiography (CAG). Significant lesions (stenoses) in the coronary arteries were considered present when the lumen was narrowed by more than 70%. For the left main coronary artery (LMCA), significant stenosis was considered present when the lumen was narrowed by more than 50%. Based on the CAG results, balloon angioplasty and stenting or coronary artery bypass grafting (CABG) were performed. Standard transthoracic echocardiography was also performed during in-hospital treatment.

All patients received guideline-based therapy, including RAAS-blockers, beta-blockers, statins, and dual antiplatelet therapy. High-dose statin therapy was defined as atorvastatin 40–80 mg and rosuvastatin 20–40 mg daily, whereas low-dose statin therapy was defined as atorvastatin 10–20 mg and rosuvastatin 5–10 mg daily, for at least 12 months post-MI.

The inclusion criteria were as follows: acute myocardial infarction with or without ST-segment elevation and age range of 30–70 years. The exclusion criteria were as follows: contraindications to the use of statins; pregnancy and lactation; advanced tumor disease; HIV; and patient’s refusal to participate in the study.

During the laboratory stage, DNA was isolated from the leukocyte rings in the collected blood samples and then frozen at −80°C for future genetic testing. VEGFR-2 (rs2305948) genotypes (C/C, C/T, T/T) were determined by real-time polymerase chain reaction (PCR) using a Real-Time CFX96 Touch device (Bio-Rad Laboratories, United States). The T-allele of VEGFR-2 (rs2305948) is commonly regarded as a risk allele for unfavorable ischemic post-MI outcomes. Glomerular filtration rate (GFR) was assessed using a CKD-EPI calculator to classify chronic kidney disease. Major ischemic events (cardiovascular death, recurrent ACS, stroke, and myocardial revascularization) were registered based on the results of clinical observation between 9 and years (2015–2024) after the indexed MI. The information was collected from in-hospital medical records of patients who were re-admitted to the clinic after the index MI. Additionally, patients were contacted by phone, and the fact of hospital treatment for ischemic events in other medical organizations was confirmed by requesting corresponding medical records. Cases of death in the post-infarction period were recorded in the health insurance policy database, while cardiovascular (ischemic) causes of death were specified by clinical autopsy services based on the patient’s residence. Basic statistics analysis was performed in the SPSS 23.0 software package.



2.2 Data preprocessing

For logistic regression, all non-categorical features were normalized using Standard Scaler. For tree-based models that do not require normalization, data transformation was not performed. There was no additional preprocessing of categorical features as all categorical features were either binary or ordered.

For data imputation, we used the Multivariate Imputation by Chained Equations (MICE) method (25). A Linear Regression model with default parameters was used as an estimator for MICE with 100 iterations for numerical data. For categorical and binary features, we used the logistic regression model with a ‘liblinear’ solver as the default estimator for MICE with 100 iterations.

The dataset was randomly split in a 75:25 ratio into training (n = 163) and test (n = 55) sets respectively, to develop and validate the models. Data imputation and scaling, hyperparameter tuning, feature selection, and the final model training were performed on the training set. Evaluation of metrics of the developed models was performed on the test set.



2.3 Machine learning models

We built machine learning models based on Gradient Boosting (Catboost and LightGBM), Random Forest, and Logistic Regression algorithms with hyperparameter tuning using 10-fold cross-validation on the training dataset. For the AutoML approach, we used FLAML (26), a Python package for automatic machine learning that automates the process of model selection, hyperparameter tuning, and feature construction.

To optimize model performance, we used Optuna (27), a Python package that automates hyperparameter tuning using Bayesian optimization algorithms. We utilized a tree-structured Parzen Estimator with 10 startup trials as our search algorithm and used 10-fold cross-validation during the optimization process to obtain a robust estimate of the ROC AUC metric. The sequential forward selection (SFS) method was used to determine the optimal number of training features. During the feature selection cycle, we used 5-fold cross-validation and used the mean ROC AUC as the evaluation metric. The model with the best average metric was chosen as the baseline model for the feature selection procedure. We added one feature at a time until we explored all the features and then selected the subset with the best metric as the final feature subset.

Feature importance analysis was performed using Shapley’s scheme of additive explanation (SHAP) (28). SHAP provided visualization of the feature importance for the selected model and individual contributions of features to the predictive power of the model. Additionally, we constructed partial dependence plots (PDP) and individual conditional expectation (ICE) (29) plots.

To evaluate the predictive performance of the developed models, we scored data samples from the test set. Specifically, we generated 1,000 bootstrap samples of the initial test sample size to obtain the distribution of PR AUC and ROC AUC. By averaging the metrics across all iterations, we obtained the average PR AUC and ROC AUC as the final evaluation metrics.




3 Results


3.1 Characteristics of MI patients

The dataset used in this study included 218 patients admitted to the emergency department at the Surgut District Center for Diagnostics and Cardiovascular Surgery, Russia, with MI. For each patient, standard clinical measurements, including laboratory tests and imaging indices were selected for inclusion in the model (Table 1). Additionally, each patient was genotyped for VEGFR-2 variation, rs2305948 which includes the C/C, C/T, and T/T genotypes.



TABLE 1 Clinical and imaging characteristics, laboratory, and genetic testing of patients with MI (n = 218).
[image: Table displaying clinical and imaging characteristics of a study sample. Key data includes: 78% male, average age 58 years, BMI of 29, 34% with ST elevation, 44% with anterior wall infarction, 82% with hypertension, 24% with type 2 diabetes, and 16% with a family history of cardiovascular disease. Myocardial revascularization was performed via PCI in 95% and CABG in 5%. High doses of statins were used by 54%, with 46% taking low doses. Laboratory results show average LDL cholesterol at 3 mmol/L and VEGFR-2 genotypes distribution with C/C at 65%, C/T at 34%, and T/T at 1%.]



3.2 Machine learning models

The data underwent imputation and preprocessing and were split into training and test sets in a 75–25% ratio for training and validation. In order to choose the best model, we trained and tested the following ML algorithms: Gradient Boosting (CatBoost and LightGBM), Random Forest, Logistic Regression, and AutoML approach (see Methods section for details). For model performance metrics, we took an average ROC AUC calculated on the bootstrap samples from the test set. Model performance comparison is presented in Figure 1A, and the best metric was obtained for the CatBoost model (ROC AUC of 0.787), which was significantly better than the second-best Random Forest (p < 1e−03, t-test) (Figure 1A). The CatBoost ROC curves for training and test sets are given in Supplementary Figure S1. We chose the CatBoost model for feature selection and feature importance analysis.

[image: Two side-by-side bar charts compare the AUROC values of different models. Chart A shows CatBoost with 0.787, RandomForest 0.778, AutoML 0.767, LightGBM 0.762, and Logistic Regression 0.619. Chart B displays CatBoost After SFS with 0.813, CatBoost 0.787, RandomForest 0.778, CatBoost with Statins and VEGFR2 Genotype 0.776, AutoML 0.767, LightGBM 0.762, and Logistic Regression 0.619. Both charts have AUROC on the x-axis and model names on the y-axis.]

FIGURE 1
 ML model performance comparison based on ROC AUC metrics for 1,000 bootstrapped test sets. (A) ML models trained on 39 features. (B) ML models trained on various number of features.




3.3 Feature selection to find the best model

The initial ML models were trained on 39 features (Table 2). We explored the contribution of each feature to model performance using the forward sequential feature selection (SFS) method (see Figure 2). We chose the SFS method due to its balance between computational efficiency and robustness. SFS directly evaluates the contribution of each feature to model performance using cross-validation at each step, ensuring a resilient and accurate feature selection process. This avoids potential inaccuracies associated with heuristic methods like feature importance in tree-based methods or feature imputation, which can be misleading, especially with high cardinality features. Thus, SFS is a simple and straightforward method for the selection of a minimal set of features that provide maximal precision of an ML model.



TABLE 2 List of 39 features initially included in the model.
[image: A table listing 39 features with some highlighted. The highlighted features include anterior LV wall, BMI, comorbidity index, coronary artery lesion, lateral LV wall, left main coronary artery lesion, PCI or CABG, post-stent, and VEGFR2 genotype. A note mentions nine features selected by the SFS method.]

[image: Line graph titled "SFS" depicting performance against the number of features. Performance improves sharply from 0.74 to 0.86 between one and six features, peaks around six to eight features, then gradually declines to 0.82 at thirty-nine features. The shaded area represents a range of variability.]

FIGURE 2
 Sequential forward feature selection for the model with the best performance on all features (CatBoost).


Since CatBoost showed the best performance with 39 features, it was used as the baseline model for SFS. The model’s performance increased gradually with the addition of the first nine features, but then began to decline as additional features were included. These first nine features (presented in Figure 3) were selected for retraining the CatBoost model (Supplementary Table S1). The CatBoost model trained on the nine selected features showed statistically significant improvement in the model’s performance compared to the CatBoost model trained on 39 features (ROC AUC of 0.813 vs. 0.787, p = 5e−19, t-test) (Figure 1B and Supplementary Figure S2). Thus, the CatBoost model trained on nine features was chosen for further analysis of MI patients.

[image: SHAP summary plot shows the impact of various features on the model output. Features listed include Statin Dosage, Comorbidity Index, and others. Points are colored by feature value from low (blue) to high (red), with SHAP values plotted on the x-axis.]

FIGURE 3
 SHAP feature importance plot for Catboost model built on 9 SFS-selected features.




3.4 Feature importance analysis

For feature importance analysis, we chose SHAP because it estimates the contribution of the selected features to the model performance, and it considers the cooperative effect of other features. SHAP values can be added to show the joint contribution of several features to a final ML model prediction. This helps to understand the combined effect of multiple features on risk assessment.

We applied the SHAP method using the best CatBoost model with the nine features selected by the SFS method (Figure 3). The nine features are ranked from the most important (top) to the least important (bottom). A higher SHAP value for a feature indicates a greater risk of MACEs. Feature values are color-coded, with red representing higher values and blue representing lower values. We can see from the SHAP plot that the most important feature is the dose of statins with low values of the dose corresponding to a high risk of MACEs. Interestingly, the VEGFR-2 genotypes appeared to be the fourth top important feature with the risk T-allele corresponding to higher risk of MACEs. The other important features are comorbidity index, coronary artery lesions, LV parameters, such as lateral LV wall, CABG or PCI, body mass index (BMI), and sex (see Figure 3).

Additionally, we constructed partial dependence plots (PDP) and individual conditional expectation (ICE) plots for key features to provide a more intuitive understanding of their impact on predictions (Supplementary Figure S3). PDP shows the average effect of a feature on the predicted outcome, whereas ICE plots illustrate the impact of a feature at the individual observation level, highlighting variability across different data points. The provided PDP and ICE curves offer a detailed visualization of how individual features influence the predicted risk of MACEs in MI patients. PDP graphs depict the marginal effect of each feature, whereas the ICE curves illustrate the variability in predictions across different patients.

For continuous variables, the plots revealed the following trends: an increased BMI and a higher comorbidity index are associated with a greater risk, while a higher statin dosage is linked to a reduced risk. Similarly, greater severity in coronary artery lesions and left main coronary artery lesions leads to an increased risk. The average effect is represented by the orange dashed line, and individual patient trajectories are shown in blue (Supplementary Figure S3).

For categorical features, the bar plots highlight distinct differences in risk levels: male sex, undergoing PCI instead of CABG, lateral LV wall involvement in MI, and the presence of the risk T-allele in the VEGFR2 genotype—all correspond to a greater risk. These visualizations underscore the importance of considering both average trends and individual variances in the assessment of ML model predictive power.

We built the ML model based on only two features: the most important feature—a dose of statins and the genetics—VEGFR2 genotype, and the model performance reached 0.80 ROC AUC, which is only 0.013 less than the best model (Figure 1B). This means that these two predictors can serve as markers in assessing the risk of MACEs in MI patients.



3.5 Model risk assessment for individual patients

With SHAP methods, one can evaluate the contributions of each parameter to the individual risk of a patient. The ML model risk assessment for high- and low-risk patients with corresponding SHAP values is presented in Figures 4, 5.

[image: Bar chart illustrating factors contributing to a comorbidity index score. The highest contributor is the comorbidity index (+0.079), followed by coronary artery lesion (+0.07), statin dosage (+0.055), and others. Each factor is displayed with a corresponding value, impacting the final score of 0.916. The expected value, E[f(X)], is 0.558.]

FIGURE 4
 ML model risk assessment for a high-risk patient.


[image: Bar chart displaying the impact of various factors on a prediction model with `E[f(x)] = 0.558`. Factors include CABG, coronary artery lesion, and comorbidity index. Bars indicate positive or negative contributions, with `CABG` having the largest negative effect of `-0.15`, and `Left Main Coronary Artery Lesion` having a positive effect of `+0.068`.]

FIGURE 5
 ML model risk assessment for a low-risk patient.


A high-risk patient with a 92% risk (Figure 4) has the following top five major contributors: high comorbidity index (score = 4; red arrow in Figure 4) with a 7.9% contribution, followed by the critical left main coronary artery lesion (>50%) with a 7% contribution, low dosage of statins with a 5.5% contribution, risk T-allele with a 5.2% contribution, and multivessel coronary artery lesion with a 4% contribution. Additionally, lateral LV wall involvement, PCI, and a BMI of 32 kg/m2 contribute to the risk by 3.9, 1.3, and 1.1%, respectively.

An example of a patient with a low risk of MACEs among the investigated patients (15% risk) shows that all features contribute positively (indicated by blue arrows) to reducing the total risk (Figure 5). The first risk-reducing parameter is CABG followed by the absence of coronary artery lesion. However, left coronary artery lesions increase the risk by almost 7% (indicated by the red arrow in Figure 5). A low comorbidity index and high statin dosage reduce the risk by 6.6 and 5.9%, respectively. Other factors such as normal body weight, non-risk genetics, non-involved lateral LV walk, and sex further reduce the risk cumulatively by 8%.




4 Discussion

Several studies have shown strong associations between VEGFs, VEGFRs serum levels, and other growth factors with clinical characteristics and prognosis in ACS (30). VEGFR-2 SNPs have previously been shown to be associated with the development of CVDs such as CAD, ACS, and Kawasaki disease (11) and have also been evaluated as prognostic markers in stroke and ACS. Thus, in the meta-analysis of Qui et al. (10), VEGFR-2 rs2305948 and rs1870377 (both found in exon regions of VEGF receptor-2 and lead to aminoacidic substitutions that reduce the binding affinity of VEGF to VEGF receptor-2), but not rs2071559, were associated with an increased risk of stroke. In another meta-analysis, Wang et al. (31) proved that VEGFR2 polymorphisms (rs1870377, rs2071559, and rs2305948) could be used to identify individuals with increased susceptibility to atherosclerotic cardiovascular disease. In another study, based on the Nanjing Stroke Registry, rs1870377 could predict the 3-month outcome of patients with large artery atherosclerotic stroke (32). Marks et al. showed that none of the VEGFR-2 SNPs (rs1870377, rs2071559, and rs2305948) were associated with mortality in 2067 ACS patients of the New Zealand Coronary Disease Cohort Study (14). We, for the first time, included the VEGFR-2 genotype as a feature in the prognostic model for MI patients’ outcomes and found that the genetic factor is included in the top five most important features.

We also evaluated the impact of various factors—clinical, imaging, genetic, and treatment-related—on risk prognosis. Using the developed ML approach, we demonstrated a sufficient negative impact of various factors on combined clinical endpoints, including cardiovascular death, recurrent ACS, stroke, and myocardial revascularization. The key factors are as follows: clinical factors—male sex, high body mass index, and complex comorbidity; imaging factors—multivessel coronary lesions and LV lateral wall involvement; genetic factors—minor allelic variants of VEGFR-2 rs2305948; and treatment factors—PCI only for the infarct-related coronary artery instead of CABG in cases of multivessel coronary artery disease, and low-intensity statin dosage. At the same time, high versus low doses of statins and CABG versus PCI in the study cohort of MI patients showed significant benefits in reducing MACEs during the 9-year follow-up.

Advanced age, female sex at menopause (33), and comorbidities such as diabetes, obesity, and dyslipidemia are well-known conventional risk factors for MACEs (recurrent ACS, stroke, and death) in MI patients. A dramatic shift has been observed over the last 25 years in the epidemiology of cardiovascular events. The incidence of MI and ischemic stroke has decreased 3- to 4-fold, which can be attributed to major changes in population risk factors with substantial decreases in systolic blood pressure, cholesterol concentrations, and smoking rates, although this has been offset by increases in body mass index, diabetes, and other comorbidities prevalence. Additionally, a positive impact has been made by the wider post-MI use of cardioprotective medications, such as high-dose statins, P2Y12-platelet inhibitors, beta-blockers, and newer drugs in real clinical practice (34–37). Involvement of the lateral LV wall in MI is a negative prognostic marker of maladaptive cardiac remodeling, often requiring more advanced treatment options (e.g., surgical ventricular restoration) to prevent the development of congestive heart failure (38). During the last two decades, the role of multivessel cardiac disease (including the left main coronary artery lesions) has been actively discussed in the prognosis of MI patients (39, 40). According to data from the SWEDEHEART registry, CABG in patients with LMCA disease is associated with lower mortality and fewer MACEs compared to PCI (41). Complete PCI revascularization following MI reduces all-cause mortality, cardiovascular mortality, recurrent ACS, and repeat symptom-driven revascularization. Immediate complete PCI or CABG revascularization in MI may be equally beneficial, but it requires additional head-to-head trials (42).

Comparison to other ML prognostic models revealed similarities in our findings with respect to clinical and imaging factors. In the study (15), feature importance analysis revealed LVEF, age, diabetes, estimated GFR, multivessel disease, peripheral artery disease, complete revascularization, hemoglobin level, previous bleeding, malignancy, ACE inhibitors or ARB at discharge, and statin therapy at discharge as the most important features to predict all-cause death and recurrent MI. Similar to our results, significant risk factors of MACEs included comorbidities (age, multivessel disease, diabetes, chronic kidney disease, and malignancies), complete myocardial revascularization, and in-hospital and post-discharge high-intensity statin usage.

ML models for predicting all-cause death at 3-year follow-up, based on clinical data from the nationwide perspective registry of AMI in Korea (n = 13,104) (43), identified the following top 10 predictors: statin use at discharge, sex, body mass index, use of glycoprotein IIb/IIIa inhibitors, in-hospital duration, coronary lesion classification, NT-proBNP, total cholesterol, door-to-balloon time, and peak troponin I. The majority of the predictors were also shown as significant for the Russian MI population in our prognostic model for the combined end-point. Specifically, the top important features include: coronary lesions, (high-intensity dose) statin use at discharge, sex, and body mass index. Wang et al. (44) presented the ML risk model including 21 patient characteristic variables for a 6-month prediction of MACEs for 1,004 Chinese patients who had undergone coronary revascularization. The model also found age and CABG as the top important factors.

In another large prospective study (45) based on the UK Biobank cohort, the authors revealed 10 predictors for 473,611 CVD-free participants, namely age, sex, cholesterol and blood pressure medications, cholesterol ratio (total/high-density lipoprotein), systolic blood pressure, previous angina or heart disease, number of medications taken, cystatin C, chest pain, and pack-years of smoking. Direct comparison is difficult due to different cohorts (CVD-free participants or post-MI patients); however, cholesterol medications, age, coronary artery disease, and comorbidities (such as diabetes) were also detected as top important factors.

As for the best model performance, the initial model selection was guided by an AutoML framework (FLAML) that evaluated multiple algorithms, including Random Forest, CatBoost, and LightGBM. The AutoML process identified CatBoost as the optimal base estimator, highlighting its balance between accuracy and generalization. Although Random Forest showed higher performance metrics on the test dataset, this can be attributed to overfitting as indicated by its exceptionally high results. CatBoost, on the other hand, demonstrated performance without overfitting, making it a more reliable choice for our clinical application. Boosting algorithms, in general, are well-documented for providing state-of-the-art performance for tabular data. In particular, CatBoost with hyperparameter tuning has been shown to be the best-performing model on average as detailed in (46). This consistency in performance underscores the reliability of CatBoost for our study. Ultimately, CatBoost showed superior performance on the test dataset, reinforcing its suitability as the primary algorithm.

The present study demonstrates that VEGFR-2 genotypes can be used as a predictor of MACEs. While these findings might be specific to the study population due to the lack of external validation, the results provide a solid foundation for conducting larger studies. Such research could lead to the development of a universal prognostic tool for MACEs using this genetic biomarker.

To our knowledge, genetic factors have not previously been used in ML models for predicting MACEs in MI patients, mostly due to the fact that sequencing or even single nucleotide genotyping is not routinely performed in hospitals. In this respect, this study is pioneering in showing that the risk allele of the VEGFR-2 variant is among the top 5 most important factors for predicting long-term outcomes in MI patients.

We see a large potential for integration of the model into current clinical practice. Patient MACE risk assessment can be integrated into telemedicine service and automatically assessed based on patients’ clinical and genetic data. Telemedicine service will provide feedback on patient status and facilitate corrections to the model, thereby improving the prognostic accuracy of the model.

Directions for future research include the improvement of the ML model by training on a larger dataset, performing external validation, and investigating other genetic markers known to be associated with the risk of MACEs. The latter is the subject of extensive research worldwide, and patient genetic information will help to improve personalized treatment strategies.



5 Conclusion

We developed an ML model that can predict long-term (9 years) ischemic outcomes in MI patients with ROC AUC of 0.813, based on nine features selected from an initial set of 39. For the first time, we included genetic factors in the ML predictive model for assessing the risk of MI patients from a long-term perspective. VEGFR-2 rs2305948 (C/C, C/T, T/T) genotypes showed high predictive power with risk T-allele increasing the risk of MACEs. Additionally, we demonstrated that high-dose statin therapy for 12 months post-MI, along with other factors, can minimize cardiac risk for patients carrying the risk T-allele.

Integration of VEGFR-2 genotypes in MACE prediction models requires a larger study. However, we find this model suitable for the risk assessment for patients at the Surgut District Cardiology Clinic. Immediate integration of this model into clinical practice requires an easy-to-use risk assessment application.
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Introduction: mHealth apps (MHA) are emerging as promising tools for cardiovascular risk assessment, but few meet the standards required for clinical use. We aim to evaluate the quality and functionality of mHealth apps for cardiovascular risk assessment by healthcare professionals.



Methods: We conducted a systematic review of MHA for cardiovascular risk assessment in the Apple Store, Play Store, and Microsoft Store until August 2023. Our eligibility criteria were based on the 2021 European Society Cardiology Guidelines on Cardiovascular Disease Prevention in Clinical Practice, the Framingham Risk Score, and the Atherosclerotic Cardiovascular Disease score. Our protocol was drafted using the Preferred Reporting items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. To assess quality, we used the validated Mobile Apps Rating Scale (MARS) score, which includes 19 items across four objective scales (engagement, functionality, aesthetics, and information quality) and one additional subjective scale. For functionality evaluation, we used the IMS Institute for Healthcare Informatics functionality scale. We performed data synthesis by generating descriptive statistics.



Results: A total of 18 MHA were included in the review. The most common scores used were the Framingham score, ASCVD score, and Score 2. Only six apps achieved an overall score of 4 or greater in the MARS evaluation. The MHA with the highest MARS score was ESC CVD Risk Calculation (5 points), followed by ASCVD Risk Estimator Plus (4.9 points). In the IMS scale, four MHA had a high functionality score: ASCVD Risk Estimator Plus (5 points), ESC CVD Risk Calculation (5 points), MDCalc Medical Calculator (4 points), and Calculate by QsMD (4 points).



Discussion: A gap exists in the availability of high-quality MHA designed for healthcare professionals to facilitate shared decision-making in cardiovascular risk assessment.



Systematic Review Registration: The International Prospective Register of Systematic Reviews, identifier CRD42023453807.
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systematic review, heart disease risk factors, mobile applications (apps), cardiology, risk assessment





1 Introduction

Cardiovascular disease (CVD) prevalence has been on the rise worldwide, with the number of individuals who have the disease increasing from 271 to 523 million from 1990 to 2019 (1). According to the World Health Organization (WHO), approximately 75% of cardiovascular diseases can be prevented, and reducing risk factors could significantly lower the burden of CVD (2). Since the first cohort of the Framingham study in 1948, early detection and treatment of cardiovascular risk factors have been proven useful in preventing myocardial infarction, stroke, and even death (3).

New technologies are emerging to assist in the diagnosis and treatment of cardiovascular diseases (4). One such technology is the Mobile Health applications (MHAs), as per the World Health Organization's definition “medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants (PDAs), and other wireless devices.” (5) There are over 350,000 mobile health applications currently available on the market (6). MHAs have emerged as helping tools in decision-making for various diseases such as cardiovascular, endocrine, and psychiatric conditions (7–9). To what extent do MHAs meet the quality and functionality standards required in the evaluation of cardiovascular risk?

Although the number of applications has increased significantly nowadays and they play an important role in health, healthcare personnel who evaluate patients daily are particularly interested in applications that measure cardiovascular risk. Given the rapid growth in the number of such MHAs, how well do these tools align with the needs and expectations of healthcare professionals? Consequently, this systematic review aims to assess the quality and functionality of mobile health applications designed by healthcare professionals to measure cardiovascular risk.



2 Materials and methods

This study was performed according to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (10) and we conducted an approach according to Gasteiger et al. methodology (11). The study protocol was registered in the International Prospective Register of Systematic Reviews (CRD42023453807). Our clinical question of interest is according to acronyms TECH (11), “What is the functionality and quality of mobile health applications that measure cardiovascular risk used by healthcare personnel?”


2.1 Eligibility criteria

We used the Clinical Guide Practical “2021 ESC Guidelines on cardiovascular disease prevention in clinical practice” (12), Framingham risk score (3), and ASCVD score considering the main outcomes in patients with comorbidities: (1) age; (2) chronic kidney disease (CKD); (3) familial hypercholesterolemia; (4) Diabetes Mellitus type 2 (DM2). In patients without comorbidities, we included the variables of the SCORE2 and SCORE2-OP: (1) age; (2) sex; (3) systolic blood pressure; (4) total cholesterol; (5) HDL-cholesterol; (6) LDL-cholesterol; (7) current smoker (13, 14).



2.2 Information sources and search strategy

We performed a search strategy in the Apple Store, Google Play Store, and Microsoft Store until August 2023. Additionally, we include a strategy search in PubMed and Scopus for identifying articles of our interest where MHA were included for validation. We included terms in Spanish, English, and Portuguese with the continuous terms “score” OR “risk”, AND “cardiovascular” (Supplementary Table S1).



2.3 Study selection

Duplicate MHAs were removed by two authors (FC & RC). After that, the MHAs were selected to identify potentially relevant characteristics according to the inclusion criteria; potential MHAs were evaluated and downloaded to assess their eligibility in the IOS and Android platforms. For paid applications, the authors purchased them to evaluate. Two researchers (FC & RC) assessed rigorously to exclude apps. Subsequently, the same authors evaluated the potential MHAs using the eligibility criteria to determine their inclusion. In case of disagreements, a third researcher (MC) made the final decision.



2.4 Data collection process

Two authors (FC & RC) independently extracted the following data from each included app using a standardized Microsoft Excel 2016 sheet form. This form contains the app name, platform, language, last update, developer, version, cost, cost-upgrade, privacy policy, size, recommendations based on Clinical Practice Guidelines (CPGs), adds, and type of score.



2.5 Quality evaluation

For quality evaluation, three reviewers (FC, RC & MC) assessed using the Mobile App Rating Scale (MARS), which comprises 19 items across four objective scales (engagement, functionality, aesthetics, and information quality) and an additional 4 items for the subjective quality scale. Each item is rated on a 5-point Likert scale: (1) inadequate, (2) poor, (3) acceptable, (4) good and (5) excellent (15). This tool was validated and suitable for the quality assessment (16).



2.6 Functionality evaluation

Three reviewers (FC, RC & MC) assessed functionality using the IMS Institute for Healthcare Informatics functionality scoring criteria. This score has 7 functionality criteria and 4 functional subcategories. If a function was present, it was coded as 1; otherwise, it was coded as 0. Functionality scores ranging from 0 to 11 were generated for each app. However, we have reached a consensus among the authors not to include the following items (evaluate data, intervene, remind or alert, and communicate) as they measure the patient's use of the application, which does not apply to our work aimed at health personnel. In the evaluation, we reached a consensus between the three reviewers in case of disagreements (17). We considered a MHA with high functionality (≥4 points), and low functionality (<4 points).



2.7 Statistical analysis

Data synthesis was performed by generating descriptive statistics (sums, mean, standard deviations, and percentages) on relevant items or combining these with forms of qualitative synthesis. We identified the highest scores of MHAs regarding quality and functionality; and presented these with a written description of their main features. Additionally, we used the intraclass correlation coefficient (ICC) for calculating interrater reliability for the ordinal MARS score. For figures, we used Python with Matplotlib to create the bar graphs for our data. Matplotlib helped us design and customize the graphs, while NumPy assisted with data calculations. This approach allowed us to clearly present the scores and other metrics.




3 Results


3.1 Mobile health apps selection

A flow diagram describing our literature search process is provided in Figure 1. A total of 112 MHA were identified through the search strategy. Of these, 35 remained after removing duplicates and were evaluated. Twenty-nine were included in the assessment for eligibility and 12 MHA were excluded (Supplementary Table S1). Finally, we included 18 MHA for the MARS and IMS Institute for Healthcare Informatics score evaluation.


[image: Flowchart illustrating the identification of studies via databases and registers. Records start from AppStore (49), Play Store (56), and Microsoft Store (7). Seventy duplicate and seven ineligible records are removed, leaving thirty-five screened. Four records are excluded; one report is not retrieved. Thirty reports are assessed, with twelve excluded for various reasons, resulting in eighteen apps included in the review.]
FIGURE 1
Flowchart of the mHealth apps selection process. *Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers). **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.




3.2 Characteristics of mobile health apps included

The characteristics of the MHAs included are presented in Table 1. 18 MHAs were included, and 11 of these are included in both IOS and Android platforms. The main language found is English in 16 apps; 5 apps offered Spanish language; apps with multiple languages were 4. Fifteen apps were free of cost and 16 apps had privacy policies. The mean size was 22.3 megabytes (IQR: 1.0–66.9). The MHA ESC CVD Risk Calculation included three scores (Framingham score, ASCVD score, and Score 2), being the Framingham score the most used and Score 2 the least used. CV Risk Estimation, MDCalc Medical Calculator, MedCalX, and Calculate by QxMD included two scores in their MHA. Eight MHAs included recommendations based on Clinical Practice Guidelines, the MHA ASCVD Risk Estimator Plus included (2019 ACC/AHA Guideline Primary Prevention of Cardiovascular Disease), ESC CVD Risk Calculation included (2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice), CardioRisk Calculator included (2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults), and CV Risk Estimation, MDCalc Medical Calculator, MedCalX, Calculate by QxMD and Clinical Calculator PLUS included (2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk).


TABLE 1 Characteristics of the mHealth apps.

[image: Table listing various cardiovascular risk calculator apps with details like app name, platform, language, last update, developer, cost, privacy policy, size, ads presence, guidelines recommendations, and scores on Framingham, ASCVD, and other measures. Apps include ASCVD Risk Estimator Plus, CardioCal, Regicor, MedCalX, and more, with cost mostly free, platforms including iOS and Android, and languages such as English and Spanish. Scores and guideline recommendations vary.]



3.3 MARS and IMS institute for healthcare informatics evaluation

In MARS evaluation the MHA with the highest score was ESC CVD Risk Calculation (Engagement: 5.0, Function: 5.0, Information: 5.0, Aesthetics: 5.0, Satisfaction: 5.0, and Overall:5.0), the next were ASCVD Risk Estimator Plus (Engagement: 4.8, Function: 5.0, Information: 5.0, Aesthetics: 4.7, Satisfaction: 4.8, and Overall:4.9) and MDCalc Medical Calculator (Engagement: 4.9, Function: 4.9, Information: 5.0, Aesthetics: 4.9, Satisfaction: 4.8, and Overall:4.9). Three independent reviewers assessed the interrater reliability of four MHAs in a randomized manner (ICC = 0.91, CI 95% 0.83–0.96) (Table 2, Figures 2, 3).


TABLE 2 MARS evaluation of the mHealth apps included.

[image: Table comparing various health risk calculators across six criteria: engagement, function, information, aesthetics, satisfaction, and overall rating. Each criterion is rated from one (inadequate) to five (excellent). ASCVD Risk Estimator Plus and ESC CVD Risk Calculation received the highest overall ratings of 4.9 and 5.0, respectively, while CV Risk Calc had the lowest at 1.8.]
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FIGURE 2
Simulated radar graph mapping the MARS criteria engagement.



[image: Bar chart titled "Quality Scores of Mobile Health Applications" shows various apps rated by MARS score. ESC CVD Risk Calculation scores 5.0, ASCVDRisk Estimator Plus 4.9, and others range between 1.8 and 4.1.]
FIGURE 3
Quality scores of mobile health applications.


In IMS Institute for Healthcare Informatics, 4 MHA had high functionality ASCVD Risk Estimator Plus (5 points) ESC CVD Risk calculation (5 points) MDCalc Medical Calculator (4 points), and Calculate by QxMD (4 points). (Figure 4) (further details, see Table 1).


[image: Bar chart titled "IMS Institute for Healthcare Informatics Scores of Mobile Health Applications" depicts the scores of various health apps. ASVCD Risk Estimator Plus and ESC CVD Risk Calculation score the highest with 5.0. RapidASCVCD: ASCVD Risk Calc and MedCalX score 4.0. CardioCal, Calculadora de Riesgo Cardiova, Healthy Heart 2021, and Clinical Calculator PLUS all score 3.0. Scores for other apps vary, with some at 1.0 or 2.0. The x-axis represents scores from 0 to 5.]
FIGURE 4
IMS institute for healthcare informatics scores of Mobile health applications.





4 Discussion


4.1 Main findings

In our systematic review of cardiovascular risk assessment apps, our analysis of 35 MHAs available on Apple iOS, Android, and Microsoft store platforms revealed some notable findings. Approximately half of these apps did not align with a validated cardiovascular risk scoring system or were not designed for use by healthcare professionals. Furthermore, only one-third of the evaluated apps achieved overall ratings of “good” or “excellent” in quality assessment for healthcare professionals.

Employing the validated MARS scoring system, only six apps achieved an overall score of 4 or greater (18). These top-performing apps included “ASCVD Risk Estimator Plus” by the American College of Cardiology, “ESC CVD Risk Calculation” by the European Society of Cardiology, “CV Risk Estimation” by United Health Services, Inc., “MDCalc Medical Calculator” by MD Aware LLC, “Calculate by QxMD” by WebMD Health Corporation, “Clinical Calculator PLUS” by Skyscape Medpresso Ins. Among these, the first two MHAs received the highest scores for functionality assessment, both according to the IMS, which evaluates the availability of the functionality, and the MARS score, which measures the quality of app performance (16, 19).

It is important to note that these assessments were conducted as of August 2023, and the MHAs landscape are dynamic. Consequently, while “ASCVD Risk Estimator Plus” and “ESC CVD Risk Calculation” stood out as top performers during our analysis, the landscape may have evolved since our evaluation.

To our knowledge, there has been no prior study evaluating the quality of cardiovascular risk assessment MHAs for use in healthcare professional training and practice.



4.2 Comparison between apps


4.2.1 Comparison of risk estimation guidelines

When confronted with the choice between “ASCVD Risk Estimator Plus” and “ESC CVD Risk Calculation”, our top-performing apps, it is essential to consider the foundational guidelines they rely on for risk estimation and recommendations. Notably, the former follows advice from the 2019 Primary Prevention Guideline, 2018 Cholesterol Guideline, and 2017 High Blood Pressure Guideline, while the latter follows advice from the 2019 ESC/EAS Guidelines for the management of dyslipidemias, 2021 ESC Guidelines on Cardiovascular Disease Prevention in clinical practice, and 2018 ESC/ESH Clinical Practice Guidelines for the Management of Arterial Hypertension guidelines (12, 20–24).



4.2.2 ASCVD risk estimator plus app

The “ASCVD Risk Estimator Plus” predominantly focuses on the primary prevention of CVD and provides an adaptation of the original ASCVD Risk Estimator. However, it lacks age-specific risk thresholds for individuals aged 40–75 and employs relatively higher risk percentages to define intermediate and high-risk categories (25). However, it distinguishes itself through its adaptability, supporting the utilization of other risk calculators like the Pooled Cohort Equation (PCE) for lifetime risk calculation by age, sex, and ethnicity, making it suitable for a diverse demographic group, including Asian and Hispanic individuals (26). Furthermore, based on the guidelines, it advises the use of additional biomarkers such as C-reactive protein, apolipoprotein B, lipoprotein (a), and triglycerides for further risk classification for clinician-patient risk discussion (CPRD). Another noteworthy feature is its capability to provide project risk reduction scenarios founded on lifestyle modifications and pharmacological management. Most significantly, it provides each piece of advice with a level of evidence, allowing healthcare providers to make well-informed decisions. Additionally, this app offers the convenience of printing or emailing treatment advice, streamlining communication between healthcare providers and patients, thereby enhancing shared decision-making and CPRD.



4.2.3 ESC CVD risk calculation app

On the other hand, the “ESC CVD Risk Calculation” reflects the comprehensive 2021 ESC Guideline, encompassing both primary and secondary prevention of CVD. This app extends its prevention recommendations to include broader population-level threats to cardiovascular health, such as environmental factors like air and noise pollution and urban planning. Notably, it incorporates the European Systemic COronary Risk Estimation 2 (SCORE2) and SCORE2-Older Persons (SCORE2-OP) risk calculators, a critical feature encompassing both fatal and nonfatal CVD outcomes, enabling precise 10-year atherosclerotic CVD (ASCVD) risk estimation for patients below and over 70 years old respectively (13, 14). However, it is essential to consider that it requires the selection of a specific European region, limiting its specificity for users outside these regions. Furthermore, it does not endorse imaging for further risk stratification or provide an option to determine the therapy impact nor offer specific advice for shared decision-making or CPRD.



4.2.4 Common features and shared decision-making support

In common, both apps share the use of lifetime risk calculators [PCE and LIFEtimeperspective CVD (LIFE-CVD)] to facilitate and foster informed and shared decision-making discussions concerning specific risk factors, such as diabetes mellitus and previous CVD events (26, 27).



4.2.5 Alternative: MDCalc medical calculator app

In addition to these top-performing apps, “MDCalc Medical Calculator” stood out as a noteworthy alternative. This versatile app encompasses a wide array of calculators for various diseases. For cardiovascular risk assessment, it considers the ASCVD risk score based on the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk and the Framingham risk score (26, 27). It provides advice and evidence regarding statin use for the ASCVD score and additional blood pressure advice for the Framingham score. However, it's important to note that the recommendations are based on the 2013 ACC/AHA guidelines and do not include further assessment for risk stratification or features for shared decision-making.




4.3 Clinical implications

Quantitative absolute risk assessment has assumed a prominent role in U.S. and international guidelines, facilitating decision-making in primary prevention (28). The choice between “ASCVD Risk Estimator Plus” and “ESC CVD Risk Calculation” should be dictated by the specific preferences and requirements of MHAs users, supported by guideline recommendations and individualized patient needs. Should users prioritize a comprehensive approach encompassing both primary and secondary prevention, age stratification, alongside the consideration of broader environmental factors, “ESC CVD Risk Calculation” may emerge as the preferred choice. However, “ASCVD Risk Estimator Plus” could prove to be the more appropriate selection if users demand greater flexibility in risk calculation, biomarker or imaging consideration, and comprehensive team-based care for risk factor management and shared decision-making. It is also worth mentioning that users should consider their ethnicity, as both guidelines provide specific multipliers for select populations, thereby ensuring a personalized approach to risk assessment.

Despite “MDCalc Medical Calculator” being one of the top-performing apps, several implications need to be considered. Users may find it valuable as it contains a wide variety of scores for different subspecialties, making it a practical app for daily clinical decision-making (29). When contemplating a primary prevention approach, practitioners can choose to use the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk or the Framingham risk score (intended for use in non-diabetic patients aged 30–79 years with no prior history of coronary heart disease or intermittent claudication) (26, 27). For secondary prevention, the app offers the ASCVD Risk Algorithm including Known ASCVD from AHA/ACC (30). This app provides advice and evidence for each risk assessment tool included however, the recommendations are based on the 2013 ACC/AHA guidelines and do not include further assessment for risk stratification of features for shared decision-making.

Language also poses a consideration. The top three performing apps are exclusively available in English, creating a language barrier for non-English speaking regions. Conversely, “Calculate by QxMD”, another high-performing app, offers a variety of languages and, similar to “MDCalc Medical Calculator”, provides the ASCVD risk score based on the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk or the Framingham risk score (26, 27).

Our findings, in conjunction with related studies that show little evidence-base for commercially available MHAs, highlight that the majority of MHAs are not suitable for healthcare provider use (31, 32). A critical need exists for periodic reviews utilizing validated scoring systems to identify accurate and reliable MHAs for cardiovascular risk stratification. Given the prevalence of smartphones in daily healthcare practice, healthcare professionals increasingly need dependable electronic resources (33). The high-performing apps identified in this study are highly valuable tools for daily cardiovascular risk assessment. Specifically, “ASCVD Risk Estimator Plus” can facilitate shared decision-making and CPRD potentially strengthening clinician-patient relationships, enhancing patient engagement, and promoting medication adherence (34). Further research is necessary to assess healthcare professionals’ specific needs and develop interactive MHAs that optimize global risk scores, enhancing adherence to guideline-based therapy (35). Finally, research should focus on evaluating the impact of MHAs on clinical practice and patient outcomes.



4.4 Limitations

The strengths of this study include the utilization of a widely accepted, validated system for standardized analysis of MHAs. Furthermore, we conducted an extensive search encompassing both paid and unpaid apps available on both Apple iOS and Android platforms. However, it is essential to acknowledge certain limitations including the rapid pace of product development, availability, and updates which present challenges in timely evaluation. There is a need for guidelines assessing MHAs in quality and functionality for healthcare professional use. Moreover, our screening and evaluation process was not conducted by cardiologists or cardiology fellows but rather by medical students trained in systematic reviews at Red de Eficacia Clínica y Sanitaria (REDECS). Finally, we did not assess cardiovascular risk apps incorporating the Multi-Ethnic Study of Atherosclerosis (MESA) 10-Year CHD Risk with Coronary Artery Calcification due to its limited availability in only one app, which was developed by the same study and limited our comparison between the other risk calculators (36). However, it can be considered as a complementary tool for risk stratification in patients with borderline or intermediate risk (20).




5 Conclusions

A significant gap is evident in the availability of high-quality MHAs designed for healthcare professionals specifically designed for healthcare professionals to facilitate shared decision-making in cardiovascular risk assessment. This gap underscores the need for efforts towards the development of comprehensive guidelines aimed at evaluating the quality and functionality of MHAs intended for provider use, moving beyond the scope of self-care management apps. Additionally, continuous app updates and enhancements are essential to ensure healthcare professionals have access to language-diverse and up-to-date tools for effective risk assessment and management. Lastly, while the selection of MHAs should be guided by individual preferences, it is essential that they align with the most current clinical practice guidelines, thereby emphasizing the importance of evidence-based decision-making in optimizing patient outcomes.
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Appendix

Summary and reflections box.


 

[image: Summary and reflections on cardiovascular risk apps review. Summary: Many apps lack alignment with validated risk scores; only one-third are high quality. Top apps are "ASCVD Risk Estimator Plus" and "ESC CVD Risk Calculation". App landscape changes rapidly. App comparison highlights functionality differences. Clinical implications stress app choice based on needs. Reflections: High-performing apps improve engagement; need more high-quality, language-diverse apps. Limitations involve app updates and non-specialist evaluation. Future directions call for updated guidelines and focus on interactive apps' real-world impact.]
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Introduction: Accurate in-hospital mortality prediction following percutaneous coronary intervention (PCI) is crucial for clinical decision-making. Machine Learning (ML) and Data Mining methods have shown promise in improving medical prognosis accuracy.



Methods: We analyzed a dataset of 4,677 patients from the Regional Vascular Center of Primorsky Regional Clinical Hospital No. 1 in Vladivostok, collected between 2015 and 2021. We utilized Extreme Gradient Boosting, Histogram Gradient Boosting, Light Gradient Boosting, and Stochastic Gradient Boosting for mortality risk prediction after primary PCI in patients with acute ST-elevation myocardial infarction. Model selection was performed using Monte Carlo Cross-validation. Feature selection was enhanced through Recursive Feature Elimination (RFE) and Shapley Additive Explanations (SHAP). We further developed hybrid models using Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO), integrating features selected by these methods with the traditional GRACE score.



Results: The hybrid models demonstrated superior prediction accuracy. In scenario (1), utilizing GRACE scale features, the Light Gradient Boosting Machine (LGBM) and Extreme Gradient Boosting (XGB) models optimized with BES achieved Recall values of 0.944 and 0.954, respectively. In scenarios (2) and (3), employing SHAP and RFE-selected features, the LGB models attained Recall values of 0.963 and 0.977, while the XGB models achieved 0.978 and 0.99.



Discussion: The study indicates that ML models, particularly the XGB optimized with BES, can outperform the conventional GRACE score in predicting in-hospital mortality. The hybrid models' enhanced accuracy presents a significant step forward in risk assessment for patients post-PCI, offering a potential alternative to existing clinical tools. These findings underscore the potential of ML in optimizing patient care and outcomes in cardiovascular medicine.
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1 Introduction

Cardiovascular disease (CVD) constitutes a dominant global health challenge, particularly accentuated within low- and middle-income countries (LMICs). The growing prevalence of CVD risk factors within these regions obviously increases the burden of mortality associated with this disease (1–3). Myocardial infarction (MI) is a severe medical condition stemming from a sudden reduction in blood flow to the heart, resulting in tissue damage. Clinical manifestations typically include chest pain, shortness of breath, and weakness (4, 5). Preventative measures mostly contain lifestyle changes and pharmacological interventions (6). Treatment modalities include the management of beta-blockers, diuretics, ACE inhibitors, calcium channel blockers, and nitrates.

The effective management of ST-segment elevation myocardial infarction (STEMI) is considered important in inpatient care, a fact emphasized by the guidance provided in the 2012 and 2017 ESC Guidelines. These guidelines prioritize early reperfusion therapy, particularly through main percutaneous coronary intervention (PCI), for optimal STEMI treatment. The diagnosis of STEMI poses challenges due to its potential to represent conditions, requiring careful consideration of various clinical factors during electrocardiogram interpretation (7, 8). Furthermore, STEMI rises as a complication of infective endocarditis, associated with a distinguished 30-day mortality rate (9). Timely diagnosis and immediate restoration of blood flow, preferably through primary PCI, are key steps in reducing myocardial damage and preventing complications following STEMI (10).

Despite the developments in PCI technologies, the in-hospital mortality (IHM) subsequent to PCI in emergency cases persists at a remarkably high rate. A study conducted by Moroni (11) clarified that IHM often correlates with pre-existing serious cardiovascular conditions, with procedural complications attributing to a minority of cases. This suggests an imperative for enhanced treatment modalities for severe cardiovascular situations, particularly in addressing cardiogenic shock. However, the utility of procalcitonin (PCT) as a prognostic indicator in these conditions remains controversial. Covino et al. (12) observed that early assessment of PCT in patients with intra-abdominal infection (IAI) did not yield a significant impact on IHM, while Dutta et al. (13) highlighted the potential of PCT levels in predicting mortality in disapprovingly ill surgical patients. Within the spectrum of STEMI, Dawson et al. (14) reported a lack of substantial reduction in IHM despite changes in technical characteristics. These findings emphasize the demand for further research activities and targeted interventions aimed at justifying IHM following PCI in emergency scenarios.

In contemporary clinical practice, a multitude of risk grading tools are employed to assess the risk of IHM among patients. Notable among these are the History, Electrocardiogram, Age, Risk factors, initial Troponin (HEART) score, the Thrombolysis in Myocardial Infarction (TIMI) score, and the Global Registry of Acute Coronary Events (GRACE) score, as identified by Liu (15). Nevertheless, the efficacy of these tools can fluctuate across diverse patient populations, with certain instruments demonstrating suboptimal performance in present-day practice (16). Within main care backgrounds, there is an observable trend toward utilizing routine healthcare data for risk grading. However, comprehensive documentation regarding the specific tools applied and their performance remains lacking (17). Additionally, within the intensive care situation, there is incredulity regarding the relevance and reliability of scales employed to measure job stressors. This underscores the imperative for further investigation and scholarly inquiry in this domain (18).

Regarding the GRACE scale, despite advancements in treatment approaches, it continues to be a critical tool for evaluating the risk of adverse outcomes in cases of serious coronary syndromes (19). Continuous monitoring of mortality rates in coronary care elements using the GRACE score indicates that while it generally performs adequately, there are still areas where improvements can be made (20). Additionally, research has shown that the GRACE score is effective in predicting major cardiac events in patients presenting with chest pain and suspected acute coronary syndrome (21). Moreover, a modified version of the GRACE score, identified as the angiographic GRACE score, has been developed and validated as a beneficial tool for predicting IHM, specifically in Japanese patients with acute myocardial infarction (22).

Over the past few decades, Data Mining (DM) and Machine Learning (ML) have emerged as influential tools in medicine, particularly in predicting and diagnosing cognitive diseases (23). These methods have been applied to a wide variety of medical conditions, including type 2 diabetes, hypertension, cardiovascular disease, renal diseases, liver diseases, mental illness, and child health (24). The usage of ML in medical informatics has seen a significant increase, with Support Vector Machine (SVM) and Random Forest (RF) being the most popular algorithms for classification problems (25). However, there is no single algorithm that is universally suitable for diagnosing or predicting diseases, and the combination of different processes often yields the greatest results (26).

ML models have shown potential in predicting IHM following PCI in patients with serious STEMI. Studies conducted by Li (27) and Yang (28) employed data from the Chinese Acute Myocardial Infarction (CAMI) registry to develop prediction models, achieving both high performance and interpretability. Moreover, Deng (29) applied a RF algorithm to forecast both no-reflow and IHM in STEMI patients undergoing key PCI, demonstrating superior discrimination. Falcao (30) identified predictors of IHM in patients with STEMI undergoing pharmacoinvasive treatment, including age, comorbidities, and practical success. Additionally, Tanık (31) found that the PRECISE-DAPT score, a predictive tool for bleeding risk, was independently associated with IHM in STEMI patients undergoing primary PCI. Furthermore, Bai (32) compared the performance of various ML models in predicting 1-year mortality in STEMI patients with hyperuricemia, with the CatBoost model showing the highest accuracy. To validate the accuracy of ML models, particularly the XGBoost model, in predicting 1-year mortality in patients with anterior STEMI, Li (33) conducted further research. Collectively, these studies highlight the significant potential of ML in improving risk prediction for STEMI patients post-PCI, offering valuable insights into prognosis and treatment strategies. However, there is a gap in existing literature related to ML prediction model development based on imperative features of patients rather than those four parameters leading to GRACE score development. Also, integrating currently developed optimization algorithms for enhanced prediction accuracy by hybrid and ensemble approaches are the innovative methods which their absence is strongly felt in the literature review.

This study aims to introduce a new approach to investigate the risk factors contributing to IHM in patients with MI following PCI, applying advanced ML techniques. The research methodology involved gathering datasets related to various features of patients to assess their impact on the mortality risk of patients utilizing classifiers like Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), Stochastic Gradient Boosting (SGB), and Histogram Gradient Boosting (HGB). Monte Carlo Cross-Validation (MCCV) was used to select the best prediction models based on their Accuracy. Techniques, for instance, Recursive Feature Elimination (RFE) and Shapley Additive Explanations (SHAP), were employed to identify important features for classification. Three different scenarios were designed to predict the risk of IHM within 30 days to provide clinicians with an estimate of patient survivability or mortality likelihood pre-treatment. The first scenario studies the efficacy of the traditional GRACE scale system (including Age, patient age, heart rate (HR), systolic blood pressure (SBP), and acute heart failure (AHF) class), widely entrenched within hospital protocols. The second and third scenarios employ a subclass of features selected via the Shapley Additive explanations (SHAP) and Recursive Feature Elimination (RFE) methods, respectively. All analysis conducted in Python programming software. By comparing the prediction performance of base single models and their hybrid framework (optimized with meta-heuristic algorithms such as Augmented Gray Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO)) utilizing these scenarios, the study aims to give valuable insights to enhance risk assessment strategies and patient care paradigms for MI patients undergoing PCI intervention.



2 Classification and model selection based on machine learning techniques

The boosting approach involves utilizing a “weak” or “base” learning algorithm repeatedly, each time with a different subset of training examples (or a varied distribution or weighting over the examples). In each iteration, the base learning algorithm generates a new weak prediction rule. After numerous rounds, the boosting algorithm combines these weak rules into a single prediction rule, aiming for a substantially improved level of accuracy compared to any individual weak rule (Figure 1). This iterative process enhances the overall predictive power of the model (34).


[image: Diagram illustrating the boosting algorithm process. Models from one to \( N \) adjust the weights of weaknesses identified in sequential stages. The process consolidates into an improved "Boosting" model.]
FIGURE 1
Boosting approach in ML.



2.1 Extreme Gradient Boost (XGB)

The Extreme Gradient Boost Classifier (XGBC) represents a sophisticated implementation of the gradient boosting technique, employing an ensemble approach to combine multiple sets of base learners (trees) to establish a strong model capable of making significant predictions (35). XGBC offers various advantages, including the ability to leverage parallel processing for improved computational efficiency, providing flexibility in setting objectives, incorporating built-in cross-validation, and effectively addressing splits in the presence of negative loss. With these advantages, XGBC emerges as a highly suitable choice for analyzing classification data. Applying a tree-based methodology, XGBC constructs decision trees to classify training data, facilitating the achievement of specific target outcomes (36).

The gradient boosting procedure encompasses the subsequent sequential steps:


	•The initialization of the boosting algorithm involves the description of the function F0(x) (Equation 1):



	F0(x)=argminℸ∑i−1n⁡L(yi,ℸ)

	(1)








	•The iterative calculation includes the derivation of the gradient of the loss function (Equation 2):



	rim=−α[∂(L(yi,F(Xi)))∂F(xi)]F(X)=Fm−1(x)

	(2)










Where α is the learning rate.


	•Subsequently, each hm(x) is fitted based on the gradient developed at each iterative step:

	•The purpose of the multiplicative factor ym for each terminal node is executed, and subsequently, the boosted model Fm(x) is formulated (Equation 3):



	Fm(x)=Fm−1(x)+ℸmhm(x)

	(3)












2.2 Light Gradient Boosting (LGB)

LGB is a rapid training outline that blends decision tree algorithms with boosting methods. It prioritizes speed, using histogram-based techniques to accelerate training and conserve memory (37). Different from traditional trees, LGB employs leaf-wise tree growth, efficiently identifying high-branching gain leaves to optimize performance (38, 39).

The calculation procedures of LGB, delineated step by step in (40), involve finding a projected function f^(x) that approximates the function f∗(x) based on the given training dataset X={(xi,yi)}i=1m. The primary objective is to minimize the expected values of specific loss functions, signified as L(y,f(x)) (Equation 4).




	f^(x)arg⁡minf⁡Ey,xL(y,f(x))

	(4)






In the process of approximating the final model, LGB will integrate a combination of multiple regression trees, represented as ∑t=1T⁡ft(x) (Equation 5).




	fT(X)=∑t=1T⁡ft(X)

	(5)






The regression trees signified as wq(x),q∈{1,2,…,N}, denote decision rules, where N is the number of leaves in each tree. q signifies the decision rule, and w is a vector representing the weights of the leaf nodes. The model is incrementally trained at step t in an additive manner.




	Γt≅∑j=1N⁡L(yi,Ft−1(xi)+ft(xi))

	(6)






The Newton's method is employed to rapidly estimate the objective function, and (Equation 6) is simplified by eliminating the constant term:




	Γt≅∑j=1N⁡(gift(xi)+12hift2(xi))

	(7)






In the given equation, gi and hi denote the first- and second-order gradient statistics of the loss functions. If the sample set for leaf j is denoted as Ij, then (Equation 7) can be transformed into (Equation 8):




	Γt=∑j=1J⁡((∑iϵIj⁡gi)ωj+12(∑iϵIj⁡hi+λ)ωj2)

	(8)






Equations 9, 10 are employed to calculate the optimal leaf weights ωj∗ and the extreme values of ΓK concerning the tree structure q(x):




	ωj∗=−∑iϵIj⁡gi∑iϵIj⁡hi+λ

	(9)









	ΓT∗=−12∑j=1J(∑iϵIj⁡gi)2∑iϵIj⁡hi+λ

	(10)






The term ωj∗ signifies the weight function assessing the effectiveness of the tree structure q(x). Ultimately, the objective function is derived by consolidating the splits.




	G=12((∑iϵIl⁡gi)2∑iϵIl⁡hi+λ+(∑iϵIr⁡gi)2∑iϵIr⁡hi+λ+(∑iϵI⁡gi)2∑iϵI⁡hi+λ)

	(11)






The objective function is defined as the sum of the splits with Il and Ir representing the samples in the left and right branches, respectively (Equation 11).



2.3 Histogram-based Gradient Boosting (HGB)

Histograms are valuable tools for visualizing data distribution and frequency, especially with repetitive data. Grouping input data into bins, as in histograms, enhances model flexibility. Combining histogram-based methods with gradient boosting leads to strong ML ensembles, yielding high-performance models (41). HGBoost employs numeral-based data structures like histograms instead of sorted continuous values during tree-building, enabling it to capture complex nonlinear relationships in datasets effectively. This integration of gradient boosting with histogram-based techniques allows HGBoost to excel in modeling and optimizing feature connections (42).

Histogram-based Gradient Boosting Classification (HGBC) represents a difficult iteration of gradient boosting, employing decision trees as fundamental models and leveraging histograms to achieve outstanding improvements in computational efficiency. Observed remarks show that this methodology yields superior outcomes, diminishes ensemble size, and expedites inference, rendering it an attractive proposition for tackling intricate datasets within academic investigations (43).



2.4 Stochastic Gradient Boosting Machines (SGB)

Friedman (44) proposed Stochastic Gradient Boosting Machines (SGB), a method extensively employed in both classification and regression tasks. Decision stumps or regression trees serve as common choices for weak classifiers within SGB. The main aim of SGB is to train weak learners to minimize loss functions, such as mean square errors, with subsequent weak learners benefiting from the residuals of preceding ones for training.

Consequently, there is a reduction in the value of the loss function for the present weak learners. Employing the bagging technique serves to mitigate correlation among these learners, with each undergoing training on subsets sampled without replacement from the entirety of the dataset. The final prediction is then derived through the amalgamation of predictions generated by this cohort of weak learners (45).



2.5 Monte-Carlo cross-validation (MCCV) for model selection

Numerous methods, such as the Akaike information criterion (46) and Cp statistics (47), tackle the task of model selection. Nevertheless, cross validation (CV) emerges as a standout approach (48–51), arranging a predictive perspective in this process. In CV, upon selecting a model (α), the n samples (referred to as S) undergo a division.

The initial component, identified as the calibration set (Sc), consists of nc samples applied for fitting the model, represented by the submatrix XαSc and sub-vector YSc. The subsequent section termed the validation set (Sv), comprises nv=n−nc samples dedicated to model validation, depicted by the submatrix XαSv and sub-vector YSv. This arrangement leads to a total of (nnv) possible sample divisions. In each division, the model is fitted using the nc samples from the standardization set Sc, resulting in the estimation β^αSc. Treating the samples in the validation set as if they were future data points, the fitted model predicts the response vector ySv (Equation 12).




	y^αSv=XαSvtβ^αSc

	(12)






The Accuracy across all samples in the validation set is considered by (Equation 13):




	Accuracy(Sv,α)=1nv||ySv−y^αSv||2

	(13)






The formula involves calculating the Euclidean norm of a vector within a framework where a set S is comprised of elements from various validation sets, each corresponding to different sample splits denoted as (nnv). In this framework, the CV standard is defined by excluding a specific number of samples nv for validation, providing a method for systematically evaluating models on subsets of data.




	CVnv(α)=∑Sv∈S⁡Accuracy(Sv,α)(nnv)

	(14)






For each α∈R, the computation of CVnv(α) is conducted. (Equation 14) serves as an estimate for Accuracy within the constraints of finite samples. The CV criterion is focused on identifying the optimal α∗ that maximizes values across all CVnv(α) for α∈R. As a result, the model is characterized by variables indexed by the integers in α∗ is chosen.

The widely used leave-one-out Cross-Validation (LOO-CV), where nv=1, is extensively applied in chemometrics. However, research findings have shown that models selected through LOO-CV can be inaccurately asymptotic. Although LOO-CV can choose a model with a bias bα=0 that approaches infinity encompassing all non-zero elements in βα, it tends to include unnecessary additional variables in the model (52). This suggests that the model's dimension Pα is not optimally concise, potentially leading to overfitting concerns.

It has been established that, in general, CV, under the conditions nc→∞ and nv/n→1 (53), the likelihood of selecting the model with the best predictive capability tends toward unity when nv samples are reserved for validation. Consequently, the CVnv(α) benchmark (Equation 14) shows asymptotic consistency. Yet, practically computing CVnv with a large nv is infeasible due to its exponential computational complexity. To tackle this issue, MCCV offers a simple and efficient solution. For a given α, the samples are randomly split into two sets: Sc(i) (of size nc) and Sv(i) (of size nv). This process is repeated N times, defining the repeated MCCV criterion as follows (Equation 15):




	MCCVnv(α)=1Nnv∑i=1N⁡‖ySv(i)−y^αSv(i)‖2

	(15)






Employing the Monte Carlo method greatly decreases computational complexity. Theoretically, decreasing the number of samples for model calibration requires increasing the number of repetitions. Typically, it is deemed adequate to set N=n2 to ensure that MCCVnv achieves similar performance to traditional CVnv (54).

In this study, 70% of the samples were considered for the fitting (training) of the prediction models, 30% were allocated for the validation process (testing), and finally, two LGBM and XGBC models with an accuracy of 0.97 and 0.98 have been selected, and in the following, only these two models will be examined in their hybrid version.




3 Detailed data assessment


3.1 Data description and preprocessing

The study used data from patients treated at the Regional Vascular Center of Primorsky Regional Clinical Hospital in Vladivostok from 2015 to 2021. Patients were selected for inclusion in the STEMI and PCI study based on criteria confirmed upon their admission to the hospital. Exclusion criteria comprised non-ST elevation myocardial infarction, unconfirmed STEMI, or the absence of an indication for PCI. Finally, 4,677 patients were included in the study, from which 4,359 patients were in the “Alive” group who did not die within 30 days of the study after PCI, and 318 patients were in the “Die” group who died in hospital. The “Die” group comprised patients who passed away at any point during these 30 days, including those who did not survive to undergo post-PCI assessments. Conversely, the “Alive” group consisted of patients who survived the entire 30-day period and were monitored in the hospital throughout. It is important to note that patients with missing data were excluded from the dataset of those patients with no risk of death due to the abundance of information (the number of samples decreased to 2,709). For 318 patients who experienced IHM after PCI, the Multiple Imputation by Chained Equations (MICE) method was used to handle missing data. MICE achieves multiple imputation by creating multiple complete datasets, analyzing each dataset separately, and then combining the results to reduce the bias that a single imputation method might introduce (55). This method fully considers the uncertainty of the data when dealing with missing data, especially suitable for the complex multivariate data structure in this study. Compared with single imputation, MICE can provide more reliable statistical inference when dealing with a large amount of missing data. Ultimately, a cleaned dataset of 3,027 patients with 41 features, as described below in related categories, was chosen for the prediction task:


3.1.1 Cardiovascular parameters

SPAP (Systolic Pulmonary Arterial Pressure), LVRMI (Left Ventricular Regional Motion Index), EF LV (Left Ventricular Ejection Fraction), ESV (End-Systolic Volume), LVRWTI (Left Ventricular Relative Wall Thickness Index), La1 (Left Atrial Diameter), Ra2 (Right Atrial Diameter), Ra1 (Right Atrium Pressure), PI (Pulsatility Index), EDV (End-Diastolic Volume), La2 (Left Atrial Pressure), SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure).



3.1.2 Blood parameters

NEUT (Neutrophils), EOS (Eosinophils), WBC (White Blood Cell count), Hb (Hemoglobin), RBC (Red Blood Cell count), PLT (Platelet count), LYM (Lymphocyte count).



3.1.3 Coagulation parameters

TT (Thrombin Time), INR (International Normalized Ratio), APTT (Activated Partial Thromboplastin Time), PCT (Plateletcrit).



3.1.4 Metabolic parameters

Urea [Blood Urea Nitrogen (BUN)], Glu (Glucose), Cr (Creatinine).



3.1.5 Anthropometric parameters

Age (Patient's Age), Weight (Patient's Weight), Height (Patient's Height), BMI (Body Mass Index).



3.1.6 Diagnostic parameters

Killip class [Killip Classification (classification of heart failure severity)], Form STEMI (STEMI Diagnosis), CKD (chronic kidney disease), AFib (Atrial Fibrillation), Diabetes (Diabetes Mellitus), COPD (Chronic Obstructive Pulmonary Disease), aMI (Acute Myocardial Infarction) And Sex (Patient's Gender).




3.2 Feature selection


3.2.1 Shapley Additive Explanations (SHAP)

SHAP, a method for attributing features additively, draws from both game theory and local explanations (56). The Shapley value has gained popularity as a method for providing interpretable feature attribution in ML models (57). SHAP simplifies inputs by transforming the original inputs x into a simplified representation z through a mapping function x=hx(z). This simplification enables the approximation of the original model f(x) using a linear function of binary variables based on z (Equation 16):




	f(x)=g(z)=φ0+∑i=1M⁡φizi

	(16)






z is a binary vector with M elements representing input features, φ0 denotes the attribution value of the model when z is all zeros, calculated as f(hx(0)), and φi represents the attribution value of the ith feature (Equations 17, 18).




	φi=∑S∈F/{i}|S|!(M−|S|!−1)!M![fx(S∪{i})−fx(s)]

	(17)









	fx(S)=f(hx−1(Z))=E[f(x)|xs]

	(18)






SHAP stands out due to its three core properties: local accuracy, consistency, and proficiency in handling missing data. It uses the SHAP value φi as a unified metric for additive feature attributions. In the SHAP framework, F represents the subset of non-zero inputs in z, while S indicates the subset of F obtained by excluding the ith feature (58). Known for its model-agnostic nature, SHAP shows impressive adaptability across various ML and DL models, effectively determining the relative importance of individual input features within additive feature attribution methodologies (59). Table 1 reports SHAP values obtained for each feature in the dataset based on each base models and selected features.


TABLE 1 SHAP values and selected features from the dataset based on each base model (scenario 2).

[image: Table comparing SHAP values for parameters using LGB and XGB models. Columns include Parameter, SHAP values (LGB), Selected features (LGB), SHAP values (XGB), and Selected features (XGB). Parameters like Age and HR show selection differences between models. Check marks denote selected features.]

Figure 2 illustrates the features identified by the SHAP method for the LGB model, while Figure 3 shows the selected features for the XGB model. In the LGB model, ten features were recognized as essential factors in modeling and forecasting, while the XGB model identified 13 features. After a comprehensive examination of the relationships, it becomes apparent that the correlation between systolic pulmonary arterial pressure and heart rate, along with the correlation between neutrophils and glucose, is direct. Conversely, the relationship between neutrophils and eosinophils shows an inverse trend.


[image: Correlation matrix titled "LGB_SHAP" displaying various medical indicators such as NEUT, TT, INR, Urea, Glu, SPAP, EOS, LVRMI, HR, and EF LV. Each cell contains correlation coefficients, with colors ranging from blue to yellow, indicating negative to positive correlations. The gradient scale on the right represents values from -1 to 1. The largest negative value is -0.55, and the largest positive value is 0.25.]
FIGURE 2
Feature selection and SHAP analysis for LGB.



[image: Heatmap titled "XGB_SHAP" displaying interactions between twelve variables, such as NEUT, INR, and Urea. Color and circle size depict interaction strength, ranging from red (positive) to blue (negative), with a scale from one to negative one on the right.]
FIGURE 3
Feature selection and SHAP analysis for XGB.




3.2.2 Recursive Feature Elimination (RFE)

The Recursive Feature Elimination (RFE) selection method (60) fundamentally operates through a recursive procedure wherein features are systematically ranked based on a specified measure of their significance.

A feature ranking criterion that performs well for individual features may not be suitable for assessing feature subsets effectively. Metrics such as Dj(i) or (wi)2 measure the impact of removing single features on the objective function but may struggle when removing multiple features simultaneously, which is crucial for obtaining a concise subset. To overcome this limitation, RFE employs an iterative approach to systematically remove the least relevant features in each iteration. RFE considers potential changes in feature importance across various feature subsets, particularly for highly correlated features. The order of feature elimination determines the final ranking, and the top n features are selected from this ranking for the feature selection process (61). Train the classifier, compute the ranking criterion for all features, and then remove the feature with the smallest ranking criterion.

When features are eliminated one by one, they are correspondingly ranked. However, the features ranked highest (eliminated last) may not necessarily be individually the most relevant. The optimal subset is determined by considering features collectively rather than individually. It is important to note that RFE does not affect correlation methods, as the ranking criterion is computed based solely on information from individual features. Table 2 reports the RFE ranking obtained for each feature in the dataset based on each base models and selected features.


TABLE 2 RFE ranking and selected features from the dataset based on each base model (scenario 3).

[image: A table lists 41 parameters with their RFE rankings and selected features for LGB and XGB models. Parameters include Sex, Age, BMI, and COPD. Important features marked with a check are BMI, LVRWTI, LVRMI, NEUT, TT, and Glu for LGB, and PBP, SPAP, NEUT, Glu, and T for XGB. The rankings range from 1 to 41.]

The features selected using RFE for the LGB and XGB models are visually depicted in Figures 4, 5, respectively. The selected features consist of 6 parameters for the LGB model and 8 for the XGB model. Upon scrutiny of the presented matrix, it becomes apparent that the left ventricular regional motion index and the left ventricular relative wall thickness index, both cardiovascular parameters, display a direct relationship with each other. Additionally, it is remarkable that neutrophils demonstrate a strong correlation with heart rate, systolic pulmonary arterial pressure, and Killip classification. Conversely, thrombin time shows no significant relationship with other selected parameters.


[image: Bubble chart titled "RFE_LGB" displaying correlations among six variables: BMI, LVRWTI, LVRMI, NEUT, Glu, and TT. Circles vary in size and color, corresponding to the correlation values indicated in the grid and shown with a color gradient bar from -1 to 1 on the right.]
FIGURE 4
Feature selection and RFE analysis for LGB.



[image: Correlation matrix titled "RFE_XGB" showing variable relationships. Metrics include HB, Killip class, SPAP, NEUT, EOS, Urea, INR, and TT, with varying correlation values. Positive correlations are highlighted in green to yellow, negative in orange. A color gradient bar indicates correlation strength from -1 to 1.]
FIGURE 5
Feature selection and RFE analysis for XGB.


In this study, NEUT, TT, BUN, Glu, and SPAP were identified as key factors for the risk of IHM after PCI in patients with STEMI through the above-mentioned feature selection methods. NEUT play a central role in infection and inflammation, and their high levels in MI may indicate inflammatory processes associated with myocardial damage (62). Inflammation not only promotes atherosclerosis but may also lead to plaque rupture, increasing the risk of cardiac events (63). TT is an indicator for assessing the coagulation cascade, and its prolongation may suggest abnormal coagulation factor activity, increasing the risk of thrombosis after myocardial infarction (64). Additionally, prolonged TT may be associated with the use of anticoagulant drugs, which is common in the management of heart diseases. BUN reflects renal insufficiency in heart diseases, which may affect fluid and electrolyte balance, activate the renin-angiotensin-aldosterone system, leading to increased blood pressure and cardiac load, affecting cardiac function and clinical outcomes (65). High blood glucose is an independent risk factor for cardiovascular diseases, and chronic hyperglycemia promotes oxidative stress and inflammatory responses, leading to abnormal vascular endothelial function and accelerated atherosclerosis, exacerbating myocardial injury and the risk of cardiovascular events (66). Elevated SPAP is associated with changes in cardiac structure and function, and after myocardial infarction, it may indicate increased right ventricular load, leading to dysfunction, affecting the heart's pumping ability, increasing the risk of heart failure and death (67). These characteristics affect patient outcomes through various biological pathways, and a deeper understanding of these mechanisms can help better understand the disease development process and develop targeted treatment strategies.





4 Optimization methods

In this study, we combined four metaheuristic algorithms: the Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO). These algorithms, each mimicking unique behaviors in nature, possess different search strategies that effectively avoid local optima and demonstrate efficient search capabilities and robustness in complex decision spaces. To optimize model performance, we employed grid search and cross-validation methods to fine-tune hyperparameters. Grid search systematically iterates through predefined hyperparameter values and evaluates each combination using cross-validation. Cross-validation divides the dataset into multiple subsets, using one subset as a test set and the rest as training sets, to assess the model's generalization ability. This study specifically utilized the Monte Carlo Cross-Validation (MCCV) method, which evaluates the performance of optimizers under different hyperparameter settings through random sampling to determine the optimal parameter combination, thereby maximizing the model's predictive accuracy.


4.1 Augmented Grey Wolf Optimizer (AGWO)

The AGWO algorithm emphasizes the search parameter (A), fluctuating the global Grey Wolf Optimization (GWO). It matches gray wolves’ hunting behavior, where a leader, α, directs the pack, supported by secondary wolves, β, aiding in decision-making. α represents the estimated outcomes targeted at resolving the research issue (68). The hunting process is categorized into four different sections as follows (69):


4.1.1 Foraging for prey

Exploring prey locations is enabled through the divergence of search agents, a condition satisfied when |A| surpasses 1. Parameter A, essential in balancing exploration and exploitation, is primarily contingent upon parameter a as described in (Equation 19):




	a→=2−cos(rand)×t/Max_iter

	(19)









	A→=2−a→.r1→−a→

	(20)









	C→=2.r2→

	(21)






The parameter a randomly and nonlinearly transitions from 2 to 1 as the iteration (t) increases, while r1 and r2 represent consistently dispersed random vectors ranging between 0 and 1 (Equations 20, 21). This process continues until it reaches the maximum iteration.



4.1.2 Surrounding the prey

The mathematical formulation relating to the encirclement of prey is described as follows (Equations 22, 23):




	D→=|C→.Xpi→−Xi→|

	(22)









	Xi+1→=Xpi−A→.D→

	(23)






X represents the vector indicating the location of the grey wolf, while Xp signifies the vector demonstrating the location of the prey.



4.1.3 Hunting and tracking

In the proposed AGWO algorithm (Algorithm 1), the strategy for hunting is determined exclusively by the parameters α and β, which are defined in (Equations 24–26).




	Da→=|C1→.Xai→−Xi→|,Dβ→=|C2→.Xβi→−Xi→|

	(24)









	X1→=Xai→−A1→.Da→,X2→=Xβi→−A2→.Dβ→

	(25)









	X1+i→=X1→+X2→/2

	(26)








4.1.4 Attacking the Pre

The coordinated efforts of search agents may aid in the process of preying on a target; this investigation is conducted when the magnitude of set A is less than one.


Algorithm 1 Pseudocode outlining the AGWO.

[image: Text detailing an algorithmic process for optimizing a problem using grey wolves. It includes steps like initializing the wolf population, estimating fitness, updating positions based on fitness, and researching new solutions, concluding by returning the best solution found.]




4.2 Bald Eagle Search Optimization (BES)

Alsattar et al. introduced the Bald Eagle Search (BES) algorithm, drawing inspiration from the discerning hunting strategy observed in bald eagles (70). This algorithm is arranged around three sequential phases reflective of the bald eagle's hunting behavior. Initially, the algorithm identifies spatial domains characterized by a delicate presence of potential targets. Subsequently, within these delineated spaces, extensive exploration is conducted to determine optimal solutions. Finally, similar to the decisive swooping action of the bald eagle, the algorithm strategically converges towards superior solutions (71). Through this emulation of the bald eagle's hunting strategy, the BES algorithm demonstrates a deliberate and efficient approach to optimization problem-solving (72).


4.2.1 Space selection stage

During this phase, bald eagles strive to select a search area abundant with food, aiming for optimal conditions. Here is the mathematical representation of this stage (Equation 27):




	Xnew,i=Xbest+β∗r(Xmean−Xi)

	(27)






β control's location changes; r is a random number between 0 and 1. Xnew,i is a new position, Xbest is the best position found, Xmean is the average position of all eagles and Xi is the current eagle's position.



4.2.2 Searching-in-space stage

During this stage, the bald eagle conducts a methodical search across various directions within the designated space to locate potential prey. It strategically assesses optimal hunting positions and plans its swooping maneuvers accordingly. This stage can be succinctly described in mathematical terms as (Equations 28–34):




	Xnew,i=Xi+f(i)∗(Xi−Xi+1)+g(i)∗(Xi−Xmean)

	(28)









	g(i)=gr(i)(max|gr|)

	(29)









	f(i)=fr(i)(max|fr|)

	(30)









	gr(i)=r(i).sin⁡(φ(i))

	(31)









	fr(i)=r(i).cos⁡(φ(i))

	(32)









	φ(i)=β.π.rand

	(33)









	r(i)=φ(i)+S.rand

	(34)






S quantifies the total number of search attempts, while β denotes the angle delineating the direction of the search. The term rand encompasses a numerical value within the inclusive range of 0 to 1.



4.2.3 Swooping stage

In the final phase, each bald eagle begins a swinging motion from a superior location toward its predefined prey. The mathematical definition of this behavior in this phase is presented as follows (Equations 35–41):




	Xnew,i=rand.Xbest+g1(i).(Xi−B1.Xmean)+f1(i).(Xi−B2.Xbest)

	(35)









	g1(i)=gr(i)(max|gr|)

	(36)









	f1(i)=fr(i)(max|fr|)

	(37)









	gr(i)=r(i).sin⁡(φ(i))

	(38)









	fr(i)=r(i).cos⁡(φ(i))

	(39)









	φ(i)=β.π.rand

	(40)









	r(i)=φ(i)

	(41)






B1,B2ϵ[1,2]

.

The comprehensive depiction of the BES algorithm is accessible through the subsequent pseudocode (Algorithm 2), and the flowchart of BES is illustrated in Figure 6.


[image: Flowchart depicting an optimization algorithm inspired by bald eagles. It starts with initializing search space, population size, and max iterations. The process involves determining new positions of bald eagles, checking boundary conditions, evaluating the quantity of food, updating positions, and checking if iterations reach max. If so, the best solution is displayed, and the process stops.]
FIGURE 6
The flowchart of BES.



Algorithm 2 Pseudocode outlining the Bald Eagle Search Optimization.

[image: Pseudocode outlines an optimization algorithm. Initial values are assigned to points, and fitness is determined. The algorithm has three main steps: selecting space, searching in space, and swooping and descending. Each part involves updating solutions based on fitness comparisons and updating the best solution found. Iterations continue until termination criteria are met, incrementing a counter with each loop.]




4.3 Golden Jackal Optimizer (GJO)

The Golden Jackal Optimizer (GJO) represents a recent advancement in swarm-based optimization methodologies strategically developed to optimize diverse engineering systems and processes (73). Drawing inspiration from the collaborative hunting tactics observed in golden jackals, the GJO includes three important subprocesses: Prey Exploration, Surrounding, and Attacking (74, 75). Within this section, the mathematical formulation of the GJO is clarified.

At the beginning of the optimization process, the generation of a set of prey location matrices is initiated, achieved via the randomization method described in (Equation 42):




	[Y1,1⋯Y1,j⋯Y1,nY2,1⋯Y2,j⋯Y2,n⋯⋮YN−1,1YN,1⋯⋮⋯⋯⋯⋯⋯⋮⋮⋮YN−1,j⋯YN−1,nYN,j⋯YN,n]

	(42)






The method that the golden jackal hunts, where the E value is greater than 1, is illustrated numerically. N is the number of prey populations at this stage, and n is the total number of variables.




	Y1(t)=YM(t)−E.|YM(t)−rl.prey(t)|

	(43)









	Y2(t)=YFM(t)−E.|YFM(t)−rl.prey(t)|

	(44)






In the given equation, t represents the iteration number, YM(t) and YFM(t) denote the positions of male and female golden jackals, respectively, while prey(t) represents the prey's position vector. The updated positions of the golden jackals are Y1(t) and Y2(t), respectively. The variable E signifies the prey's evading energy, calculated using a specific formula (Equations 45, 46):




	E=E1.E0

	(45)









	E1=c1.(1−(tT))

	(46)






The equation assesses the ability of prey to avoid predators, considering several aspects. Firstly, a random value within the range of −1 to 1, denoted as E0, represents the prey's starting energy level. The parameter T signifies the maximum number of iterations, while c1 is a constant value typically set to 1.5. E1 indicates how quickly the prey's energy decreases over time.(Equations 47, 48) apply the distance between the golden jackal and the prey, expressed as |YM(t)−rl.prey(t)|, where rl denotes a vector of random numbers resulting from the Levy flight function.




	rl=0.05.LF(y)

	(47)









	LF(y)=0.01×(μ×σ)/(|v(1/β)|),σ={Γ(1+β)×sin(πβ/2)Γ(1+β2)×β×(2β−1)}

	(48)






The calculation uses random values for u and v that fall between 0 and 1, and it also includes a constant b that is often set to 1.5 by default.




	Y(t+1)=Y1(t)+Y2(t)2

	(49)






The formula calculates the prey's updated location, Y(t+1), based on the positions of the male and female golden jackals.

The reduced capability of the prey to evade emerges when it faces violence from the golden jackals. This mathematical expression illustrates a decline in evading energy when |E| is less than or equal to 1.




	Y1(t)=YM(t)−E.|rl.YM(t)−prey(t)|

	(50)









	Y2(t)=YFM(t)−E.|rl.YFM(t)−rl.prey(t)|

	(51)






The comprehensive depiction of the GJO algorithm is outlined in the pseudocode provided below (Algorithm 3) and Figure 7 illustrates the flowchart of GJO.


[image: Flowchart illustrating an optimization algorithm. It begins with initializing parameters such as iteration time and population size. The population position and strategy function are generated. A decision diamond checks if time is cubed; if yes, it recalculates. If no, it calculates jackals' positions and prey escape probability, updates positions, and iterates. The process ends with locating the optimal strategy combination for the male golden jackal.]
FIGURE 7
The flowchart of GJO.



Algorithm 3 Pseudocode delineation of the Golden Jackal Optimizer.

[image: Flowchart illustrating an algorithm for finding the position and fitness value of prey within a population. Inputs include the population size \( N \) and maximum iterations \( T \). The process involves initializing prey, computing fitness values, determining the best positions of male and female jackals, and iterating through each prey member. The algorithm adjusts evading energy, modifies the variable \( r \), and refines prey positioning based on certain equations, distinguishing between exploration and exploitation stages. The process repeats until the maximum iterations \( T \) are reached, then returns the best prey position \( Y_1 \).]



4.4 Puma optimizer (PO)

The Puma algorithm was subjected to review by Abdollah Zadeh et al. (76), and its description is as follows:


4.4.1 Inspiration

The Puma, also called cougar or mountain lion, is a large American feline found across a vast range from the Andes to Canada. It is known for its adaptability, nocturnal nature, and ambush hunting style, preying on deer, rodents, and occasionally domestic animals (77–79). Pumas prefer dense scrub and rocky habitats, establish large territories, and display typical territorial behavior (80). They typically capture large prey every two weeks, relocating it for feeding over several days. Pumas are solitary, except for mothers and cubs, and rarely encounter each other except to share prey or in small communities centered around a dominant male's territory (81).



4.4.2 Mathematical representation

This section presents the PO algorithm, which draws inspiration from the hunting behaviors of pumas. Different from conventional meta-heuristic optimizers, PO introduces a unique mechanism for transitioning between the exploration and exploitation phases. It conceptualizes the best solution as a male puma and views the entire optimization space as a puma's territory, with other solutions representing female pumas. Purposeful and intelligent phase selection guides solutions through exploration or exploitation in each iteration. Drawing from puma behavior, diverse optimization approaches are employed in each phase, enhancing the algorithm's efficiency.


4.4.2.1 Puma-inspired intelligence (phase transition mechanism)

The algorithm, inspired by puma behavior, features an exploitation phase for revisiting known hunting grounds and an exploration phase for discovering new territories. It incorporates a sophisticated mechanism resembling an advanced hyper-heuristic algorithm, integrating diversity and intensification components for scoring. The phase transition section adopts two approaches inspired by puma intelligence: inexperienced pumas explore new territories while targeting promising areas for ambush.


4.4.2.1.1 Inexperienced phase

In its early stages, the puma lacks experience and often engages in exploration activities simultaneously due to its unfamiliarity with its environment and lack of awareness of hunting locations within its territory. Conversely, it seeks hunting opportunities in favorable areas. In the Puma algorithm, during the initial three iterations, both exploration and exploitation operations are carried out concurrently until initialization is completed in the phase transition phase. In this section, as the exploitation and exploration phases are selected in each iteration, only two functions (f1 and f2) are applied and calculated using (Equations 52–55):




	f1Explor=PF1.(SeqcostExplore1SeqTime)

	(52)









	f1Exploit=PF1.(SeqcostExploit1SeqTime)

	(53)









	f2Explor=PF2.(SeqcostExplore1+SeqcostExplore2+SeqcostExplore3SeqTime1+SeqTime2+SeqTime3)

	(54)









	f2Exploit=PF2.(SeqcostExploit1+SeqcostExploit2+SeqcostExploit3SeqTime1+SeqTime2+SeqTime3)

	(55)






The values of Seqcost, associated with both exploitation and exploration phases, are determined using (Equations 52–55), while SeqTime remains constant at 1. PF1 and PF2, parameters with predetermined values, are used to prioritize the functions f1 and f2 during the optimization process.




	SeqCostExplore1=|CostBestInitial−CostExlore1|

	(56)









	SeqCostExplore2=|CostExplore2−CostExlore1|

	(57)









	SeqCostExplore3=|CostExplore3−CostExlore2|

	(58)









	SeqCostExploit1=|CostBestInitial−CostExloit1|

	(59)









	SeqCostExploit2=|CostExploit2−CostExloit1|

	(60)









	SeqCostExploit3=|CostExploit3−CostExloit2|

	(61)






In Equations 56, 61, the term CostBestInitial represents the cost of the initial optimal solution generated during the initialization phase. Additionally, six variables, namely CostExlore1, CostExlore2, CostExlore3, CostExloit1, CostExloit2, and CostExloit3, denote the costs associated with the best solutions obtained from the exploitation and exploration phases across three repetitions (Equations 57–60).

After evaluating the functions f1 and f2 following the third iteration, a decision is made to exclusively pursue either exploration or exploitation phases. The positive experiences of other Pumas influence this choice. To determine which phase to prioritize, the coordinates of both the exploitation and exploration points are computed by applying (Equations 62, 63):




	ScoreExplore=(PF1.f1Explor)+(PF2.f2Explor)

	(62)









	ScoreExploit=(PF1.f1Exploit)+(PF2.f2Exploit)

	(63)






After computing ScoreExplore and ScoreExploit using (Equations 62, 63), the system determines whether to proceed with the exploration or exploitation phase based on their values. If ScoreExploit≥ScoreExplore, the exploitation stage is entered; otherwise, the exploration step is chosen. However, a serious consideration arises at the end of the third iteration: each step independently generates solutions exceeding the total population size. To address this, the total cost of solutions from both phases is calculated at the end of the third iteration. Only the best solutions from the entire pool are retained, ensuring that the population size remains constant by replacing the current solutions.



4.4.2.1.2 Experienced and Skilled phase

After three generational iterations, the Pumas acquire a satisfactory level of experience to opt for a singular optimization phase for subsequent iterations. Within this phase, three distinct scoring functions, namely f1, f2, and f3, are applied. The main function, f1, prioritizes either the exploration or exploitation phase based on their comparative performance, with a particular emphasis on the exploration phase. This function is determined using (Equation 52).




	f1texploit=PF1.|Costoldexploit−CostnewexploitTtexploit|

	(64)









	f1texploit=PF1.|Costoldexplore−CostnewexploreTtexplore|

	(65)






Equations 64, 65 define f1texploit and f1texploit for the exploitation and exploration phases at iteration t. Costoldexploit and Costnewexplore are costs before and after improving the current selection, while Ttexplore and Ttexploit indicate unselected iterations. PF1, set between 0 and 1, determines the importance of the first function: advanced values prioritize it.

The second function gives preference to the phase that outperforms the other, focusing on resonance. It assesses good performances sequentially, aiding in the selection of the exploitation phase. (Equations 66, 67) are employed to calculate this function.




	f2texploit=PF2.|(Costold.1exploit−Costnew,1exploit)+(Costold.2exploit−Costnew,2exploit)+(Costold.3exploit−Costnew,3exploit)Tt.1exploit+Tt.2exploit+Tt.3exploit|

	(66)









	f2texplore=PF2.|(Costold.1explore−Costnew,1explore)+(Costold.2explore−Costnew,2explore)+(Costold.3explore−Costnew,3explore)Tt.1explore+Tt.2explore+Tt.3explore|

	(67)






Equations 66, 67 introduce functions for exploration and exploitation in an optimization process, with costs representing solution performance. Updates to solution costs are tracked across current and past selections. Iteration counts capture unselected iterations between selections. The parameter PF2 influences the effectiveness of the exploration-exploitation balance. Overall, these elements form a framework for optimizing strategies.

The third function in the selection mechanism emphasizes diversity by increasing in value when its priority rises and decreasing when it declines. It ensures that less frequently selected phases still have a chance to be chosen, preventing the algorithm from getting trapped in local optima. This function is depicted in (Equations 68, 69).




	f3texploit={ifselected,f3texploit=0otherwise,f3texploit+PF3

	(68)









	f3texplore={ifselected,f3texplore=0otherwise,f3texplore+PF3

	(69)






Equations 68, 69 define functions f3texploit and f3texplore separately, representing the third function in exploitation and exploration stages over iterations signified by t. (Equation 54) specifies that if a stage is not chosen, the value of its corresponding third function increases by a parameter PF3 in each iteration; otherwise, it is set to zero. PF3 is a user-adjustable parameter ranging between 0 and 1, determining the likelihood of selecting a stage. A higher PF3 increases the chances of selecting the stage with a lower score and vice versa. (Equations 70, 71) compute the cost associated with changing stages.




	Ftexploit=(αtexploit.(f1texploit))+(αtexploit.(f2texploit))+(δtexploit.(lc.f3texploit))

	(70)









	Ftexplore=(αtexplore.(f1texplore))+(αtexplore.(f2texplore))+(δtexplore.(lc.f3texplore))

	(71)









	c={{|Costold−Costnew|}exploitation,{|Costold−Costnew|}exploration},0∉lc

	(72)









	αtexplore,exploit={ifFexploit>Fexplore,αexploit=0.99,αexplore=αexplore−0.01,0.01otherwise,αexplore=0.99,αexploit=αexploit−0.01,0.01

	(73)









	δtexploit=1−αtexploit

	(74)









	δtexplore=1−αtexplore

	(75)






Equations 70, 71 determine final costs for exploitation and exploration phases, with parameters a and d varying based on phase results, prioritizing diversity. (Equation 73) penalizes parameter a of the phase with higher cost, adjusting it linearly by 0.01. This approach, as discussed in (82), relies on lc, representing non-zero cost differences between exploitation and exploration phases (Equation 72).




4.4.2.2 Exploration

In the exploration phase, inspired by the behavior of pumas searching for food, a random search is conducted within the territory. Pumas either explore new areas or approach other pumas to potentially share prey. Initially, the entire population is sorted in ascending order, and then each puma refines its solutions using (Equations 74, 75).




	Ifrand1>0.5,Zi,G=RDim∗(Ub−LB)+LBOtherwise,Zi,G=Xa,G+G.(Xa,G−Xb,G)+G.(((Xa,G−Xb,G)−(Xc,G−Xd,G))+((Xc,G−Xd,G)−(Xe,G−Xf,G)))

	(76)









	G=2.rand2−1

	(77)






Equations 76, 77 involves randomly generating numbers within specified bounds and dimensions for problem-solving. Depending on certain conditions, one of two equations is selected to produce a new solution. This solution is then used to improve the current solution (Equations 78–81).




	Xnew={Zi.G,ifj=jrandorrand3≤UXa,G,otherwise

	(78)









	NC=1−U

	(79)









	p=NCNpop

	(80)









	ifCostXnew<CostXi,U=U+P

	(81)








4.4.2.3 Exploitation

In the exploitation stage, the PO algorithm employs two operators inspired by puma behaviors: ambush hunting and sprinting. Pumas, in nature, typically ambush prey from concealed positions or chase them down in open spaces. (Equation 82) simulates the behavior of chasing prey, reflecting one of these hunting strategies.




	Xnew={ifrand4≥0.5,Xnew=(mean(Soltotal)Npop).X1r−(−1)β×Xi1+(α.rand5)otherwise,ifrand6≥L,Xnew=Pumamale+(2.rand7).exp⁡(rand1).X2r−Xiotherwise,Xnew=(2×rand8)×F1.R.X(i)+F2.(1−R).Pumamale)(2.rand9−1+randn2)−Pumamale

	(82)






Equation 82 in the PO algorithm embodies two strategies inspired by puma behaviors: fast running and ambush hunting. During exploitation, if a randomly generated number exceeds 0.5, the fast-running strategy is applied; otherwise, the ambush strategy is chosen. These strategies involve different movements towards prey, with various parameters and random factors influencing the process.

The Puma optimizer stands out for its higher implementation complexity compared to other optimizers due to its multiple phases and operations involved in creating intelligent systems. In each iteration, the cost function is applied only once for each search agent, ensuring acceptable computational complexity, as detailed in the relevant section.





4.5 Hybrid models’ development

AGWO, BES, GJO, and PO optimizers integrated with base models to supplement the efficacy of the selected models. As presented in Tables 3, 4, the fine tunned hyperparameters in the hybridization process for LGBC and XGBC are reported. For instance, the hyperparameters n_estimators, max_depth, and learning_rate are crucial for optimizing ensemble methods like Gradient Boosting Machines. n_estimators define the number of trees in the ensemble, with more trees generally improving performance but increasing computational cost and overfitting risk. max_depth limits the depth of each tree, balancing the ability to capture complex patterns with the risk of overfitting; deeper trees can capture more details but may overfit, while shallower trees might underfit. learning_rate, specific to boosting algorithms, scales the contribution of each tree, with lower rates enhancing robustness and preventing overfitting but requiring more iterations.


TABLE 3 The results of hyperparameters tunning in LGBC-based hybrid models development.

[image: Table listing hyperparameters for machine learning models across three scenarios. For Scenario 1: LGAG (321 leaves, 285 depth, 0.168 rate, 317 estimators, 681,000 bin), LGBE, LGGJ, LGPO. Scenario 2: LGAG (654 leaves, 213 depth, 0.566 rate, 813 estimators, 685,100 bin), LGBE, LGGJ, LGPO. Scenario 3: LGAG (213 leaves, 286 depth, 0.126 rate, 61 estimators, 385,140 bin), LGBE, LGGJ, LGPO.]


TABLE 4 The results of hyperparameters tunning in XGBC-based hybrid models development.

[image: Table showing prediction scenarios, models, and their hyperparameters. For Scenario 1, XGAG has 581 estimators, max depth 48; XGBE, 628 estimators, depth 134; XGGJ, 414 estimators, depth 282; XGPO, 341 estimators, depth 999. Scenario 2: XGAG, 168 estimators, depth 34; XGBE, 345 estimators, depth 315; XGGJ, 478 estimators, depth 167; XGPO, 999 estimators, depth 234. Scenario 3: XGAG, 691 estimators, depth 31; XGBE, 333 estimators, depth 371; XGGJ, 201 estimators, depth 393; XGPO, 394 estimators, depth 595. Hyperparameters include learning rate, colsample bytree, subsample, reg alpha, and reg lambda.]

Furthermore, Figure 8 illustrates the convergence of hybrid models based on LGB across all three scenarios over 200 iterations. In the second scenario, the initial iterations for the hybrid models commence with a modest Accuracy of approximately 0.5, whereas in the third scenario, they begin with a higher Accuracy of around 0.6. Remarkably, the LGBE (S3) model achieves a remarkable accuracy of 0.97 within approximately 140 iterations. The convergence patterns of XGB-based hybrid models are depicted in Figure 9. Initially, the models display an accuracy of approximately 0.6. The XGBE (S3) model attains an Accuracy of nearly one after 125 iterations. Furthermore, the XGAG (S1) model achieves an Accuracy of 0.91 by the 110th iteration, indicating the weakest performance of features in scenario (1) in training hybrid models.


[image: Line graph showing accuracy convergence over 200 iterations for different algorithms: LGPO, LGGJ, LGBE, and LGAG in three scenarios (S1, S2, S3). Most lines converge around 0.9.]
FIGURE 8
The convergence plot of LGB-based hybrid models in all three scenarios.



[image: Line graph depicting convergence accuracy over iterations from zero to two hundred. Multiple colored lines represent different algorithms and scenarios, labeled in the legend as XGPO, XGGJ, XGBE, and XGAG with scenarios S1, S2, and S3. Accuracy increases gradually, leveling off near one as iterations progress.]
FIGURE 9
The convergence plot of XGB-based hybrid models in all three scenarios.





5 Analysis of results


5.1 Metrics for evaluating predictions

The importance of performance evaluation criteria in assessing ML algorithms is highlighted in the article, emphasizing the need to select metrics tailored to the specific problem. For comprehensive comparative analysis in classification tasks, widely recognized measures such as Accuracy, Precision, Recall, F1-Score, Correlation Coefficient (MCC), and Heidke Skill Score (HSS) are employed.

Accuracy serves as the primary metric for evaluating the accuracy of predictions. Precision, Recall, and F1-Score complement Accuracy, especially in scenarios with imbalanced data distributions. Precision measures the Accuracy of positive predictions, while Recall identifies all relevant instances within a class. The F1-Score combines both Precision and Recall to provide a balanced assessment. The MCC evaluates the reliability of binary classifications by considering true positives, true negatives, false positives, and false negatives. Higher MCC scores indicate more accurate predictions. MCC is particularly useful for assessing classifiers, especially in cases of unbalanced datasets, as it treats both positive and negative samples equally. These metrics, defined by (Equations 83–87):




	Accuracy=TP+TNTP+TN+FP+FN

	(83)









	Precision=TPTP+FP

	(84)









	Recall=TPR=TPP=TPTP+FN

	(85)









	F1−Score=2×Recall×PrecisionRecall+Precision

	(86)









	MCC=TP×TN−FP×FN(TP+FP)(TP+FN)(TN+FP)(TN+FN)

	(87)






TP represents the number of true positives, TN stands for the total of true negatives, FP indicates the number of false positives, and FN denotes the count of false negatives.

The HSS is a statistical metric devised by meteorologist Paul Heidke to evaluate the accuracy of categorical forecasts, primarily in meteorology (83). It involves comparing observed and forecasted categorical outcomes, taking into account hits, correct rejections, false alarms, and misses. The HSS formula provides a comprehensive assessment of predictive skills (Equation 88).




	HSS=2×(TPFN−FPTN)(TP+TN)×(TN+FN)+(TP+FP)×(FP+FN)

	(88)






HSS is a metric used in meteorology to assess the accuracy of categorical weather forecasts. It compares observed and forecasted events. A score of 1 indicates perfect agreement, and 0 suggests performance equivalent to random chance.



5.2 Findings and discussion

The results are presented across three scenarios. In the first scenario, the GRACE Scale was applied, incorporating four parameters: HR, Age, SBP, and Killip Class, which are traditionally employed in hospitals (84). Table 5 provides a comprehensive comparison of performance metrics, encompassing Accuracy, Precision, Recall, F1-Score, MCC, and HSS, for the LGBM model alongside its hybrid models (LGAG, LGBE, LGGJ, and LGPO) and the XGBC model with its hybrid versions (XGAG, XGBE, XGGJ, and XGPO) across scenario (1) during both training and testing phases and for all data. Especially, the XGBE model displayed remarkable performance, achieving an Accuracy of 0.954, outperforming other models. Close behind, the LGBE and XGPO models each attained an Accuracy of 0.944. Particular significance was the superior performance demonstrated by the BES optimizer.


TABLE 5 Estimation metrics results for models’ prediction performance based on scenario (1).

[image: A table comparing model performance across various metrics: accuracy, precision, recall, F1-score, MCC, and HSS. The models listed include LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, XGGJ, and XGPO. Each model is evaluated in training, testing, and overall phases. Values are given for each metric and phase, indicating the performance efficiency of each model.]

In the second scenario, the features selected by SHAP were used, which included ten parameters for the LGBM model and 13 parameters for the XGBC model. Table 6 presents the results of evaluation metrics for the two mentioned single models and their hybrid versions based on scenario (2). The LGBM model was characterized by its relatively lower performance, evidenced by an Accuracy score of 0.921. Conversely, the LGBE model emerged as a standout performer within the domain of LGBM hybrid models, showing notable efficacy with an Accuracy score of 0.963. Especially, the XGBC model displayed the highest level of performance, boasting an impressive Accuracy value of 0.978, thereby establishing itself as the benchmark against which all other models are measured.


TABLE 6 Estimation metrics results for models’ prediction performance based on scenario (2).

[image: A table comparing model performance across various metrics. It lists models LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, XGGJ, and XGPO with phases for Train, Test, and All. Metrics include Accuracy, Precision, Recall, F1-score, MCC, and HSS. Each metric has specific values for each model and phase. For example, LGBM shows an Accuracy of 0.916 in Train and 0.933 in Test. MCC and HSS values differ per model, with LGPO showing a high MCC of 0.780. This table facilitates performance comparison across machine learning models.]

The features selected by RFE were applied in the third scenario, comprising six features in the LGBM-based models and eight features in the XGBC-based model. According to Table 7, the XGBE model was the peak performer, boasting an exceptional Accuracy score of 0.990. Following closely, the LGBE model secured the second position with a commendable Accuracy of 0.977, while the XGPO model secured the third rank with an Accuracy score of 0.975. In contrast, the LGBM simple model presented the least impressive performance among the models under analysis.


TABLE 7 Estimation metrics results for models’ prediction performance based on scenario (3).

[image: Comparison table showing model performances across different metrics: accuracy, precision, recall, F1-score, MCC, and HSS for various models including LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, XGGJ, and XGPO during train, test, and all phases. Notable values include XGPO achieving the highest in accuracy, precision, recall, and F1-score with consistent MCC and HSS.]

In general, based on the comparative representations presented in Figures 10–14, it is evident that the models from the third scenario outperform those from the first and second scenarios according to the metrics of Accuracy, Precision, Recall, F1-Score, and MCC.


[image: Bar chart comparing accuracy across three scenarios for different models: XGBM, XGAG, XGBE, XGGJ, XGPO, LGBM, LGAG, LGBE, LGGJ, LGPO. Scenario 1 shows red bars, Scenario 2 yellow bars, and Scenario 3 blue bars. Accuracy values range from 0.893 to 0.99, with XGBE in Scenario 3 achieving the highest accuracy of 0.99.]
FIGURE 10
Graphical comparison of accuracy metric for the three scenarios in prediction models.



[image: Bar chart comparing precision across three scenarios for various models: XGBM, XGAG, XGBE, XGGJ, XGPO, LGBM, LGAG, LGBE, LGGJ, and LGPO. Scenario 1 (red), Scenario 2 (yellow), and Scenario 3 (blue) show increasing precision values for each model from left to right. LGBM has the lowest precision of 0.821 in Scenario 1, while XGBE achieves the highest at 0.99 in Scenario 3.]
FIGURE 11
Graphical comparison of precision metric for the three scenarios in prediction models.



[image: A horizontal bar chart shows recall values for different scenarios and algorithms. Each bar is divided into three colored sections representing Scenario-1 (red), Scenario-2 (yellow), and Scenario-3 (blue). Algorithms listed on the left include XGBM, XGAG, XGBE, XGGJ, XGPO, LGBM, LGAG, LGBE, LGGJ, and LGPO, with recall values increasing across scenarios. Each scenario shows improved recall from around 0.91 to 0.99, demonstrating progressive enhancement in performance across the scenarios.]
FIGURE 12
Graphical comparison of recall metric for the three scenarios in prediction models.



[image: Bar chart comparing F1-scores across three scenarios for different models like XGBM, XGAG, and others. Scenario one is red, scenario two is yellow, and scenario three is blue. F1-scores range from approximately 0.862 to 0.99 across models, showing performance improvement from scenario one to three.]
FIGURE 13
Graphical comparison of F1-score metric for the three scenarios in prediction models.



[image: Bar chart comparing MCC values for three scenarios across different models: XGBM, XGAG, XGBE, XGGJ, XGPO, LGBM, LGAG, LGBE, LGGJ, and LGPO. Each model has three colored bars for scenarios: red (Scenario-1), yellow (Scenario-2), and blue (Scenario-3), indicating performance differences. Values are labeled on each bar.]
FIGURE 14
Graphical comparison of MCC metric for the three scenarios in prediction models.


Table 8 displays the evaluation criteria values used to assess the effectiveness of the models in distinguishing between the Alive and Die classes for the first scenario, while Tables 9, 10 present these metric values for the second and third scenarios, respectively.


TABLE 8 The results of the evaluation criteria for assessing the effectiveness of the constructed models in classifying patients in scenario (1).

[image: Table showing various models with their phases, precision, recall, and F1-scores. Models include LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, XGGJ, and XGPO, each having metrics for 'Alive' and 'Die' phases. Precision, recall, and F1-scores vary for each model and phase.]


TABLE 9 The results of the evaluation criteria for assessing the effectiveness of the constructed models in classifying patients in scenario (2).

[image: Table comparing model performance with precision, recall, and F1-score indices for different phases labeled "Alive" and "Die" across models LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, and XGJ. Each phase shows varying values, with "Die" generally having higher scores than "Alive."]


TABLE 10 The results of the evaluation criteria for assessing the effectiveness of the constructed models in classifying patients in scenario (3).

[image: A table displaying performance metrics for different models labeled LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGBE, and XGPO. Each model has two phases: "Alive" and "Die." The table includes precision, recall, and F1-score values for each phase, with values ranging from approximately 0.518 to 0.994. The "Die" phase generally has higher metrics than the "Alive" phase.]

In all three scenarios, the models demonstrated higher accuracy in predicting and classifying patients in the Die class compared to the Alive class. Comparing the performance of the models in the Alive class in the first scenario, the XGBE model displayed superior performance with a Precision of 0.844, representing a 12.36% decrease compared to its Precision in the Die class. Conversely, the LGBE model outperformed the LGPO model with a Precision of 0.777. Moving to the second and third scenarios, the XGBE model achieved Precision values of 0.936 and 0.970, respectively, showing improved performance by 9.83% and 12.99% compared to the first scenario. Furthermore, the LGBE model maintains consistent performance in the second scenario, with a marginal difference of 0.13%, while in the third scenario, it demonstrated superior performance with a 12.79% increase.

In the first scenario, the XGBE model achieved the maximum performance in the Die class with a Precision of 0.963, while the LGBE, XGPO, and LGPO models displayed nearly identical performance in this class, with Precision values of 0.956, 0.955, and 0.952, respectively. Moving to the second scenario, the XGPO model demonstrated superior performance in classifying patients in the Die class with a Precision of 0.985, while the XGBE model ranked third with a slight difference of 0.31%. Lastly, in the third scenario, the XGBE model surpassed all others with an impressive Precision of 0.992 in the Die class, securing the top position. The LGBE model followed closely behind with a Precision of 0.986, earning the second rank.

Figure 15 presents a visual comparison of the models introduced in this research across scenarios (1), (2), and (3), using Precision, Recall, and F1-score metrics. In the LGBM and XGBC basic models, the Recall values are lower than those of other hybrid models in the Alive class, with values of 0.109 and 0.419 for the first scenario, 0.641 and 0.690 for the second scenario, and 0.644 and 0.651 for the third scenario, respectively. The lowest Recall value is attributed to the LGBM model in scenario (1) for the classification of Alive patients, while the highest value is recorded for the XGBE model in the third scenario and LGAG in the first scenario in the Die class, both with a value of 0.997.


[image: Ten 3D bar charts compare precision, recall, and F1-score metrics across scenarios for different algorithms: LGBM, XGBC, LGALG, XGALG, LGALG, XGBLG, LGBE, and XGBE. Each chart uses distinct colors for clarity, displaying data for three scenarios labeled "Alive" and "Die."]
FIGURE 15
Comparative visual display of evaluation metrics for models across three scenarios in the Die and alive classes.


Figure 16 displays the confusion matrix depicting the classification performance in scenario (1), using the four features introduced by the GRACE Scale. This visual representation offers insights into the model's classification outcomes across various diagnostic categories. The LGBM model showed the highest error rate in misclassifying individuals from the Alive class into the Die group, with 253 patients misclassified. Following closely, the LGAG model ranked next, committing a similar error with 246 misclassified patients. Conversely, the LGAG model demonstrated the lowest error rate, misclassifying only eight deceased patients into the Alive class.


[image: Grid of eight heat maps comparing LGBM and XGBC models across four scenarios: LGBMC, LGAG, LGBE, LGPO, XGAG, XGBE, XGGJ, XGPO. Each map shows values for "Alive" and "Die" categories, colored from light to dark shades based on intensity. Scales below graphs indicate value ranges specific to each scenario, with LGBM in warmer tones and XGBC in cooler tones.]
FIGURE 16
Confusion matrices depicting the accuracy of individual models within scenario (1).


Additionally, the XGBC model incorrectly classified 97 dead patients into the Alive group. In contrast, the LGBE model showcased superior performance compared to other hybrid models based on LGBM, with 124 and 46 misclassifications in the Alive and Die classes, respectively. Similarly, the XGBE model exhibited the lowest misclassification rate compared to other XGBC-based hybrid models.

Figure 17 depicts the correct and incorrect classification results of the models based on scenario (2), while Figure 18 represents those based on scenario (3). In the second scenario, SHAP was employed to identify effective features in modeling, whereas the third scenario employed RFE, resulting in an obvious increase in model accuracy. In scenario (2), as illustrated in Figure 17, the LGBM model continued to display the highest misclassification rate in the Alive class, speciously placing 102 patients in the Die class; however, it had enhanced its performance by 59.68% in correctly classifying the group of living patients. Conversely, the LGBE and XGPO models demonstrated the lowest errors in classifying living patients, misclassifying only 42 patients while correctly classifying 242 patients. The XGBE model excelled in classifying dead individuals, accurately classifying 2,727 patients while misclassifying only 16 patients.


[image: Nine grid charts comparing alive and die scenarios for different models: LGBM, LGAG, LGBE, LGGJ, LGPO, XGBC, XGAG, XGGJ, XGPO. Each grid details counts for alive and die predictions with a color scale.]
FIGURE 17
Confusion matrices depicting the accuracy of individual models within scenario (2).



[image: Nine heatmaps display predictions of two classifiers, LGBM (left) and XGBC (right), for different scenarios. Each heatmap has quadrants for "Alive" and "Die" predictions and a color scale representing values. Numeric values within quadrants indicate prediction counts, with color intensity reflecting magnitude differences across scenarios marked as LGAC, LGMC, LGPO, etc.]
FIGURE 18
Confusion matrices depicting the accuracy of individual models within scenario (3).


In scenario (3), as delineated in Figure 18, notable discrepancies appear in the classification of alive patients. Specifically, the LGAG model shows a significant degree of error, misclassifying 137 patients. Similarly, the LGBM model demonstrates a considerable level of misclassification, with 99 patients incorrectly assigned to the Alive class. Contrarily, the XGBE model displays admirable performance, achieving 261 correct classifications and 23 misclassifications within the Alive group. Impressively, the XGBE model makes minimum errors, with only eight deceased patients erroneously categorized as Alive.

In general, the models in scenario (1) show the weakest performance, while the highest performance is observed in the third scenario. The application of scenario (1) in hospitals entails a high risk, as it relies only on four features: HR, Age, SBP, and Killip Class. Conversely, in scenario (2), the models employ ten features for LGBM and 13 features for XGB, leading to significantly higher accuracy compared to predictions based on the GRACE score. In scenario (3), the efficiency of the models surpasses that of scenarios (1) and 2 despite using fewer features 6 for the LGBM model and 8 for the XGB model. It is noteworthy that despite the reduced number of parameters, higher accuracy has been achieved. Upon comparing the two models, it can be concluded that the XGBE model offered the highest accuracy with eight features. This level of accuracy allows hospitals and healthcare professionals to predict the probability of survival more accurately, thereby reducing in-hospital mortality rates and tailoring treatments accordingly.

On the other hand, scenario (3) demanded a diminished set of parameters in comparison to scenario (2), thereby reducing the time required for testing. Such efficiency is particularly admirable in the context of patients’ serious conditions, where timely intervention is paramount. Moreover, the efficient testing regimen of scenario three not only hastens decision-making but also mitigates financial burdens. The decreased number of requisite tests translates to lower costs incurred by both patients and healthcare facilities, emphasizing the compelling value proposition of the model's heightened accuracy.

Figures 19, 20 depict HSS values for models based on LGBM and XGBC, respectively, to assess the accuracy of the predictions. In Figure 19, the mean HSS value for the third scenario approximates 0.7, while for the second scenario, it is around 0.65. Notably, the overall mean HSS value for the first scenario is approximately 0.4. This delineates that in scenario (1), the predictive accuracy stands at roughly 40%, which deviates from acceptable performance standards. Conversely, as depicted in Figure 20, the mean HSS value is about 0.5, highlighting the models’ lack of precision in scenario one concerning patient prediction and classification accuracy. Moreover, the mean HSS value for XGBC-based models in scenarios (2) and (3) averages approximately 0.67 and 0.71, respectively. Collectively, these findings prove the superior performance of models in scenario (3), revealing their exceptional forecasting capabilities and optimal operational efficiency.


[image: The image shows a tricolor violin plot comparing three scenarios using HSS-(LGBMC-BASED) metrics. Scenario-1 is pink, Scenario-2 is blue, and Scenario-3 is yellow. Each violin plot includes data points, median lines, and means, with shading to indicate the interquartile range (25%-75%) and lines extending to 1.5 times the interquartile range.]
FIGURE 19
The chart illustrates the HSS values of LGBM models across three scenarios.



[image: Violin plots for three scenarios display the distribution of HSS-(XGBC-BASED) values. Each plot shows a median line, mean symbol, and data points. Scenarios one, two, and three are colored green, red, and purple, respectively. The data range includes twenty-five to seventy-five percent, with lines indicating range within one point five IQR.]
FIGURE 20
The chart illustrates the HSS values of XGBC models across three scenarios.




5.3 Comparative analysis

In this section, for comparing the Accuracy of predictions conducted by the best developed model (XGBE in the third scenario) in the study by those models in existing literature, the metric results are reported in Table 11. The results reveal that the Accuracy, Precision, and F1-score of the XGBE were 3% to 5% higher than the developed Catboost in the previous study.


TABLE 11 Comparison results between the accuracy of the best developed model with models in existing literature.

[image: Table comparing two models. Categorical boosting (Catboost) with reference (32) has an accuracy of 0.96, precision of 0.95, and F1-score of 0.97. XGBE (XGB optimized with BEO) from this study shows an accuracy of 0.99, precision of 0.99, and F1-score of 0.99.]




6 Conclusion

Cardiovascular disease presents a significant global health challenge, especially in low-income countries, contributing to increased mortality rates. Myocardial infarction (MI) arises from reduced blood flow to the heart, leading to tissue damage and symptoms like chest pain and shortness of breath. Effective management of ST-segment elevation myocardial infarction (STEMI) was critical, with early reperfusion therapy, particularly through percutaneous coronary intervention (PCI), prioritized for optimal care. This study employed advanced machine learning (ML) techniques to investigate risk factors influencing in-hospital mortality (IHM) in MI patients following PCI. Many ML classifiers, such as Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), Stochastic Gradient Boosting (SGB), and Histogram Gradient Boosting (HGB), were used, and Monte Carlo cross-validation (MCCV) assisted in selecting top-performing models. Three scenarios were designed to evaluate forecast accuracy, one of which (scenario 1) was based on the traditional GRACE scaling system which can be calculated using online calculators available on medical websites or through electronic health record systems. The objective of this study was to provide insights to improve risk assessment and patient care strategies for MI patients undergoing PCI by using more imperative features of the patients rather than those utilized in traditional methods (GRACE score), which are extracted by feature selection methods. Additionally, meta-heuristic algorithms, including Gray Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO), were employed to enhance prediction accuracy.

In the evaluation of scenario (1) using the F1-Score standard, the LGBE and XGBE models demonstrated superior performance with values of 0.940 and 0.951, respectively. In the second scenario, these values increased to 0.964 and 0.978, indicating an improvement of 2.4% and 2.76% in model performance. Moreover, in scenario (3), these models showed further performance enhancements, with F1-score values increasing by 3.79% and 3.9%. The MCC value for the LGBE and XGBE models in the third scenario reached the highest level, with scores of 0.864 and 0.939, respectively. Despite scenario (1)'s reliance on only four features and its consequent weak performance, scenarios (2) and (3) demonstrate improved accuracy by applying more parameters. Especially, scenario (3) surpasses the others in efficiency despite employing fewer features, with the XGB model achieving the highest accuracy using eight features. This improved accuracy enables hospitals to predict survival probabilities more precisely, thereby reducing in-hospital mortality rates and permitting tailored treatments. Scenario (3)'s streamlined parameter testing process makes it the preferred choice, offering swift decision-making and cost reductions while ensuring accurate forecasts, particularly critical in serious patient conditions. Furthermore, the model constructed in this study can be integrated into clinical decision support systems, such as electronic health record (EHR) systems, to automatically provide risk scores when assessing STEMI patients, assisting doctors in considering the patient's IHM risk when choosing treatment strategies. Thus, a personalized treatment plan can be developed based on the patient's IHM risk level. For example, in high-risk patients, more proactive preventive treatment measures, such as early cardiac rehabilitation programs or intensified medication therapy, can be considered. At the same time, the predictive results of the model can serve as a basis for discussion among multidisciplinary teams, promoting communication and collaboration among medical personnel with different professional backgrounds, and jointly developing the best treatment plan for the patient.



7 Limitations

The main limitation of this study is the single-center nature of the data source, which may limit the assessment of the model's generalizability. Additionally, although we have established an effective predictive model, we have not conducted detailed analyses on different patient subgroups, which may affect the model's applicability within specific subgroups. Future studies will address these limitations by collecting multicenter data and performing subgroup analyses to improve the model's generalizability and accuracy.
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Large Language Models (LLM) are increasingly multimodal, and Zero-Shot Visual Question Answering (VQA) shows promise for image interpretation. If zero-shot VQA can be applied to a 12-lead electrocardiogram (ECG), a prevalent diagnostic tool in the medical field, the potential benefits to the field would be substantial. This study evaluated the diagnostic performance of zero-shot VQA with multimodal LLMs on 12-lead ECG images. The results revealed that multimodal LLM tended to make more errors in extracting and verbalizing image features than in describing preconditions and making logical inferences. Even when the answers were correct, erroneous descriptions of image features were common. These findings suggest a need for improved control over image hallucination and indicate that performance evaluation using the percentage of correct answers to multiple-choice questions may not be sufficient for performance assessment in VQA tasks.
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1 Introduction

Electrocardiography (ECG) is a diagnostic test used to measure the electrical activity of the heart, primarily to detect arrhythmias and ischemic heart diseases. Due to its noninvasive nature and cost-effectiveness, it has emerged as a crucial component of health screening and the initial assessment of cardiac conditions (1). Deriving clinically meaningful assessments from ECG images involves a multifaceted process that integrates background medical knowledge with image feature recognition, culminating in informed judgment. Although 12-lead ECGs initially consist of waveform data, they are commonly depicted in two dimensions for clinical assessments. Early attempts to automate the clinical diagnosis of 12-lead ECGs were rule-based (2–4). However, with the advent of machine learning, various neural network models based on supervised learning have been proposed (5, 6). These methods entail the utilization of machine learning models trained on extensive ECG datasets, with many focusing on classification tasks to predict labels established before training.

With the development of natural language processing, the recent emergence of large language models (LLMs) has enabled natural language generation tasks to produce practical responses to a wide variety of natural language inputs (7, 8). A significant advancement in this development is the ability to address tasks that previously necessitated the creation of task-specific training data and the development of predictive models that are now achievable with few, or even zero, shots (9–11). Furthermore, the multimodal nature of these models has expanded their applicability beyond natural language tasks (12). Although several studies have attempted to input ECGs into LLMs via natural language or unique encoders, limited attempt has been made to validate the direct input of images into a multimodal LLM (13, 14).

Visual question answering (VQA) entails providing a relevant answer based on an image and natural language query, necessitating image interpretation and intricate reasoning (15). VQA is open-ended in both question and answer formats and, by asking visual questions, it is possible to target a wide range of tasks, including details and knowledge-based meanings of features in images, making its application much broader than limited classification problems. In clinical tasks as well as with the same medical images, queries from healthcare professionals may vary depending on the situation. If VQA could accommodate such variations, it would eliminate the need to build independent models for each query, thereby making it possible to construct models that cover a broader range of scenarios in the medical field. This would be considered advantageous.

Zero-shot learning has garnered attention for its ability to achieve performance comparable to task-specific learning through pretraining with extensive data, thus circumventing the need for task-specific training data. Zero-shot VQA has emerged as a burgeoning area of research, spurred by advancements in LLMs and multimodal capabilities of models (16). Zero-shot VQA has garnered significant interest within the medical domain, as evidenced by the organization of competitions such as ImageCLEF aimed at fostering its social implementation (17). Concurrently, there are ongoing efforts to determine how to effectively leverage pre-trained vision language models in medical contexts without requiring domain-specific specialization (18). Noteworthy advancements include the development of vision language models tailored to the medical field, such as Med-Flamingo (19). Efforts are also underway to apply medical multimodal LLMs to VQA (20, 21). Additionally, efforts are being made to develop and publicly release datasets that facilitate model development, with a focus on accumulating image and question-answer pairs from radiological and pathological sources (22). These developments are anticipated to pave the way for the future societal implementation of VQA models for medical imaging.

However, LLMs are recognized for their tendency to produce false information and fabricate nonexistent facts, a phenomenon referred to as hallucination (23, 24). This presents a significant challenge, particularly in the context of applying LLMs in the medical field, and has prompted extensive research on strategies for controlling this phenomenon (25, 26). There is a paucity of reports regarding the patterns of hallucinations in multimodal LLMs, and it remains unclear how LLMs behave when zero-shot VQA is applied, particularly when interpreting 12-lead ECGs. Reading a 12-lead ECG requires the interpretation of the electrical excitation of multiple inductions based on medical knowledge, appropriate detection of abnormal findings, and drawing conclusions consistent with medical knowledge. To ascertain whether hallucinations occur in such a specialized task, it is imperative to deliberate the framework used for its evaluation. Therefore, it is essential to understand how LLMs perform these unique tasks. In this study, we conducted zero-shot VQA using the latest multimodal LLMs for 12-lead ECG imaging. Our aim was to assess the potential for future applications and identify any challenges relevant to its implementation.



2 Material and methods

This study utilized a publicly available dataset comprising 928 12-lead ECG images in JPEG format, each categorized as normal (n = 284), abnormal heartbeat (n = 233), myocardial infarction (n = 240), or previous myocardial infarction (n = 172) (27). The images in the dataset were used as input without any preprocessing, such as changing the image resolution. In addition, the PTB-XL dataset (28) was imaged and used with the ECG-Image-Kit (29) as additional validation data. The PTB-XL dataset used data labelled as 100% normal as normal (n = 7,172) and others as data with abnormalities (n = 14,627). For validation using the PTB-XL dataset, responses that did not correspond to the questions were excluded from the analysis. The image datasets were used in accordance with CC BY 4.0. license (https://creativecommons.org/licenses/by/4.0/).

Three models capable of processing images were employed for validation purposes: a Vision-and-Language Transformer (ViLT) (30), Gemini Pro Vision (31), and ChatGPT Plus (32). Two models, ViLT and Gemini Pro Vision, were evaluated on both datasets, whereas ChatGPT Plus was assessed only on the first dataset. The validation of Gemini Pro Vision and ChatGPT Plus on the first dataset involved a step-by-step response and output of a detailed description leading to the response. For the other validations, only the answer number was output. In the ViLT verification, we employed a method that directly outputs expressions corresponding to labels. In the Gemini Pro Vision verification using the PTB-XL dataset, we used a method that directly instructs models to select an option via a natural language prompt. The specific prompts used are provided in the supplemental file.

ViLT is a model that demonstrates its performance advantage by using a transformer structure instead of convolutional neural networks or object detection methods, which are conventional approaches for image feature extraction in the image encoder (30). They demonstrated that the fusion of image and text processing within the transformer framework enhanced the processing speed and performance in subsequent tasks. In this study, ViLT utilized a fine-tuned model from the COCO dataset (33). The ViLT model used in this study was published in Hugging Face (https://huggingface.co/dandelin/vilt-b32-finetuned-coco). In the ViLT validation, we quantified the fit of each option as a caption to the images entered into the model and the option with the highest value was used as the model response. Google's LLM models of Gemini include Ultra, Pro, and Nano; the Pro model is an intermediate-scale model used for verification (31). Gemini Pro Vision utilizes an API to input the prompt and images, with the output results serving as validation. The version used was gemini-1.0-pro-vision. The default temperature setting of 0.4 was used. ChatGPT Plus (32) is a chat service manually fed with prompts and images, and the resultant outputs are employed for validation. In using ChatGPT plus, the GPT-4 model was used. When using ChatGPT Plus, the temperature setting was not explicitly stated in the prompt. Validation with ChatGPT Plus was conducted between February 22, 2024, and February 28, 2024. The configuration of LLMs primarily serves to control randomness, thereby influencing the diversity of their outputs. While there is ongoing debate regarding the optimal settings and no consensus has been established (34), this study adopted the default configuration. In the performance evaluation, the accuracy and F1 score were calculated for multiple-choice questions, and a confusion matrix was displayed. To estimate confidence intervals, bootstrapping was utilized to derive these intervals from the data without relying on distributional assumptions (35). Confidence intervals for accuracy and F1 scores were calculated using 2,500 bootstrap replicates.

When evaluating the behavior of LLMs, it is important not only to determine whether they correctly answer multiple-choice questions but also to manually assess the generated text. This assessment ensures that the features of the ECG images are being appropriately interpreted by the LLMs and that accurate inferences are being made. To evaluate how the ChatGPT Plus internally interprets image features and performs inference, consistency between the input images and output text was verified by board-certified cardiologists. During the evaluation, a single cardiologist conducted the initial assessment, followed by a second cardiologist who reviewed the evaluation results. In cases where there was disagreement between the two, they engaged in discussions to reach a consensus and finalize the evaluation. This evaluation encompassed three criteria: accuracy of medical assumptions, coherence between the textual description and actual findings in the images, and logical consistency in selecting options based on the provided information. Specifically, the assessment delved deeper into the alignment between the written description and the observed findings in the images. Abnormalities existing in the images were categorized manually as either “not described,” “described as a different abnormality,” or “correctly identified as abnormal.”. Similarly, for normal findings, the evaluation distinguished between those “incorrectly labeled as abnormal” and those “correctly identified as normal”. These were tabulated and displayed as bar graphs. Texts lacking descriptions of the imaging findings were excluded from the tabulation of the imaging findings and logical reasoning. To formulate prompts, we utilized engaging and motivating descriptions, drawing upon established techniques known to enhance accuracy. Differences in the evaluation between the evaluators were evaluated using the Cohen's Kappa coefficients. The prompts were structured to guide the thought process systematically and to elucidate the rationale behind the option selection (Figure 1). If the output did not explicitly provide the answer choice, the image and prompt inputs were re-evaluated and the text output was regenerated. Subsequently, only the outputs that explicitly contained the answer choices were considered for validation.


[image: This is an ECG classification quiz instruction panel. It presents four options for waveform characteristics interpretation: 1. No abnormal findings, 2. Abnormal heartbeat, 3. Myocardial infarction, 4. History of myocardial infarction. Participants choose by selecting options one through four. It emphasizes this is not for clinical decision-making, only for quiz purposes.]
FIGURE 1
The prompt put in with images in this study.


The classification of hallucinations was conducted with reference to previous study (36). Hallucinations are broadly categorized into two types: Factuality hallucination and faithfulness hallucination. factuality hallucination is further divided into factual contradiction and factual fabrication. The former refers to outputs containing content that contradicts real-world facts, while the latter refers to outputs including unverifiable fabrications. Faithfulness hallucination is categorized into instruction inconsistency, which occurs when the output does not follow input instructions; Context inconsistency, where the output contradicts the input; and logical inconsistency, where the output contains internal contradictions. In this study, the instruction inconsistency could not be evaluated; thus, the prevalence of the remaining types was calculated.



3 Results

The prediction results and confusion matrix for the classification of 12-lead ECG images are shown (Figure 2). The percentage of correct answers was approximately 30% for all models. Analysis of the confusion matrix indicated that the selection of all three models was biased toward determining that no abnormal findings were present. The tendency to exhibit a bias towards predicting “normal” was also observed in the PTB-XL dataset (Supplementary Figure S1). However, the results indicated that this tendency was somewhat mitigated in ChatGPT Plus. Accuracy was similar for all three models, but the F1 score of ChatGPT Plus exceeded that of the other two models.


[image: Comparison chart showing performance of ViLT, Gemini Pro Vision, and ChatGPT Plus in predicting ECG image classifications. Metrics include accuracy and F1 score with confidence intervals. Confusion matrices display prediction results for four ECG image labels: normal, abnormal heartbeat, myocardial infarction, and history of myocardial infarction, highlighting different model performances.]
FIGURE 2
Prediction results and confusion matrix for classification of 12-lead ECG images. Performance indices for each model are displayed at the top of the figure, and the confusion matrix is displayed at the bottom of the figure. Red squares in the confusion matrix indicate correct cases.


To investigate the background of this performance, a more detailed analysis of the script output by ChatGPT Plus was conducted. The actual input images and script outputs from ChatGPT Plus are shown (Figure 3). In the examples shown, both samples were labeled as acute myocardial infarction, whereas any sentence in sample A was valid for the content of the image; the sentence in red in the output for sample B was not accurate relative to the image. The outcomes of the ChatGPT Plus outputs, which were meticulously verified and documented for each sample to assess their accuracy, are shown (Figure 4). Remarkably, errors were infrequent, particularly concerning the description of assumptions rooted in medical knowledge and logical process of selecting options based on the information provided. The predominant error observed in abnormal findings within the images was the omission of an abnormality and its corresponding description. For normal findings, several errors were noted and abnormal findings were incorrectly identified. For normal findings, a significant number of errors occurred while identifying non-existent abnormal findings.


[image: Two ECG reports with labeled sections for medical assumptions, image findings, and logical reasoning. Report A highlights abnormalities in the ST segment and T wave, suggesting possible pathological changes. Report B notes a regular rhythm and normal ventricular depolarization, indicating an ECG without abnormal findings. Both emphasize the importance of professional medical evaluation.]
FIGURE 3
Examples of actual input images and text output by ChatGPT plus. Both A and B are samples labeled as myocardial infarction. Yellow text indicates accurate content regarding the image, while red text indicates errors. In logical reasoning, the case of inconsistency with verbalized information was judged as abnormal, and if there was no inconsistency, there was no inconsistency in logical reasoning.



[image: Bar chart displaying the proportion of occurrences across medical assumptions, image findings, and logical consistency. Categories assess inclusion of medical prerequisites, ECG findings, description and identification of abnormalities, and logical contradictions. Colors represent responses: blue for "No," orange for "Yes," green for "Yes (accurate)," and yellow for "Yes (inaccurate)." Bars are mostly divided into blue and orange, indicating a mix of "No" and "Yes" answers, with some occurrences of accurate and inaccurate determinations.]
FIGURE 4
Verification results of all text outputs using ChatGPT plus.


Figure 5 illustrates the validation outcomes of the sentences generated by ChatGPT, which are depicted individually for each label. A higher incidence of missed abnormal findings was observed in the subset of labels containing abnormalities. Figure 6 presents the validation outcomes for the sentences generated by ChatGPT Plus, categorized based on whether the correct answer choice was selected (Figure 6). Even when the correct choice was selected in the output text, a notable frequency of incorrect statements pertaining to the imaging findings remained. The context inconsistency was the main type of observed hallucination, accounting for most of the hallucination cases as shown in Supplementary Table S1.


[image: Bar chart comparing the proportion of occurrences of medical assumptions, image findings, and logical consistency across four groups: Normal (n=284), Abnormal heartbeat (n=233), Myocardial Infarction (n=239), and History of MI (n=172). Categories include accurate/inaccurate medical descriptions, ECG findings, description of abnormalities, correct identification of findings, and logical contradictions. Uses blue for "No" and orange for "Yes."]
FIGURE 5
Validation results for each label for sentence output using ChatGPT plus.



[image: A comparative bar chart showing proportions of occurrences for correctly and incorrectly made choice outputs across categories: medical assumptions, image findings, and logical consistency. Each category is assessed for specific criteria, with blue representing "No," orange for "Yes," and gray for "Yes (accurate or inaccurate)." The left panel displays data for 318 correct outputs, while the right panel shows data for 610 incorrect outputs, illustrating variance in feature descriptions and logical consistency.]
FIGURE 6
Validation results for the sentences output by ChatGPT plus are displayed according to whether the correct answer choice was selected.




4 Discussion and conclusions

In this study, 12-lead ECG imaging was treated as a zero-shot VQA task and a multimodal approach for ECG interpretation was employed. The performance of all three models tested was biased in the direction of judging as normal, which was not at a practical level; however, ChatGPT Plus was slightly lower than the other two models, with a slightly higher F1 score. This is a hypothesis, but it is possible that during the pre-training of the multimodal LLMs used in this study, the training dataset included images of generally normal ECGs but did not contain abnormal ECG images. If this is the case, incorporating abnormal ECG images into the training dataset may potentially enhance the model's performance. Imbalances in the training dataset can potentially degrade the performance of LLMs (37), underscoring the need for the development of methods to address this issue, particularly in multimodal contexts. Additionally, a detailed validation of the ChatGPT Plus outputs revealed a higher frequency of errors in accurately extracting and verbalizing image features compared to errors in prior knowledge and logical inconsistencies in answer selection. It is hypothesized that controlling the hallucinations of input images is important for future iterations of such models. Additionally, validation of the text output by ChatGPT Plus revealed a significant number of instances in which incorrect descriptions of image features persisted despite correct answers. This underscores the importance of evaluating the ability to correctly answer visual question-answering tasks when evaluating model performance for implementation.

While the development and research of zero-shot ECG interpretation to date have suggested the potential for future practical applications, the performance evaluation methods have largely relied on either mechanical assessment of structured output (13, 38) or automated evaluation using sentence similarity scores (39). Consequently, the issue of how to assess cases where the correct answer is selected but errors occur in the generated text, as highlighted in this study, remains obscured. Addressing how to construct an appropriate evaluation framework for such cases, particularly in the context of automatic report generation using multimodal large-scale language models, is considered a critical challenge in this field.

Hallucinations caused by LLM can be divided into factuality and faithfulness (23, 24). Factuality hallucinations were further divided into verifiable factual inconsistencies and fabrication. Generally, the frequency of factual inconsistency is considered the highest, and this study, in which factual inconsistency for imaging findings was the highest, is consistent with such findings. This indicates that the control of hallucinations by retrieval-augmented generation and associated methods (26) may be expected in VQA of 12-lead ECGs. Additionally, the weakness of inaccuracies in verbalizing feature extraction could potentially be addressed by leveraging structured data obtained through automated processes (14).

One of the key limitations of this study is the restricted scope of the dataset and validation method employed. 12-lead ECGs are plotted in two dimensions; particularly, the sequence of leads may vary depending on the device used. Therefore, it is necessary to verify the 12-lead ECG images using different lead sequences. Additionally, ECG abnormalities are considered to be extracted for classification purposes and do not reflect the actual distribution of abnormalities. The abnormal findings in the dataset used in this study were limited, which is a limitation. Moreover, the size of the dataset is another limitation of this study. While bootstrapping has the advantage of estimating confidence intervals without assuming the population distribution, its estimation accuracy may decrease when the sample size is small, even if the assumptions about the distribution are relaxed. Therefore, careful interpretation of the results is required (40). Regarding the performance evaluation metrics of the model, the method we employed does not treat the outputs of the LLM as probability values. Consequently, more detailed performance metrics, such as sensitivity-specificity trade-offs and calibration, are not included in the evaluation. Furthermore, methods that have the potential to improve performance, such as Few-shot method, are not included in the verification. Another limitation of this study is the limited number of models tested and the absence of validation for healthcare-specific models. It is essential to acknowledge the need for future evaluations of the effectiveness of models specifically trained on medical data. This study does not diminish the potential of multimodal LLMs; instead, it highlights the possible hallucinations that may occur when these models are used for ECG image interpretation. Additionally, this study is limited to the use of ECG images as input for multimodal LLMs and does not consider methods that incorporate structured information as input for interpreting ECG images. Integrating structured information along with images could offer significant potential for further enhancing reading performance. Finally, it should be noted that part of this study involves manual validation, and the results are based on a limited dataset, as manual validation of larger datasets has not been possible. Additionally, the evaluation conducted by the two cardiologists involved roles in annotation and verification. While differences between the annotators were minimal (Supplementary Table S2), the limited number of evaluators represents a limitation of this study.

Our validation clarified the current behavior of multimodal LLMs output hallucinations in 12-lead ECG images. Currently, the accuracy of zero-shot VQA for 12-lead ECG images is still far from practical; however, it is at a stage where it is desirable to construct an appropriate evaluation method for future development. Moreover, this issue is not limited to ECG images but may also be relevant in other domains such as audio and waveform data (41). Therefore, fostering active discussion on this topic is highly desirable.
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Supplementary Figure S1

Prediction results and confusion matrix for classification of 12-lead ECG images on PTB-XL dataset. Performance indices for each model are displayed at the top of the figure, and the confusion matrix is displayed at the bottom of the figure. Red squares in the confusion matrix indicate correct cases.
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Characteristics

Clinical and imaging characteristics

Sex, n (%)
Male 169 (78)
Female 9(22)
Age, years, M+SD 5810
BMI, kg/n’, Me [25%; 75%] 29(26:33]

ECG ST—segment deviation, 1 (%)
Elevation 74 (34)
Non-¢levation 144 (66)

Infarcted walls of LV, 1 (%)

Anterior wall 95 (44)
Posterior wall 97 (45)
Lateral wall 79 (36)

Killip class, 1 (%)

-1 213 (98)

m-v 50)
LV EF

<40% 16(7)

240% 202(93)
Hypertension, (%) 179 (82)
Diabetes mellitus type 2, 1 (%) 52(24)
Chronic kidney disease > C2, 1 (%) 74 (34)

Fan

ly history of CVD 35(16)

Stenotic lesions of coronary arteries, 1 (%)

Left main coronary artery 14
One vessel 79(36)
Two vessels 63(29)
23 vessels 72(33)

Duration of angina from the onset of acute MI, n (%)

1-3h 167 (77)
3-12h 94
>12h 4209)

Myocardial revascularization, n (%)
pCI 207 (95)
CABG 1)

Statins (atorvastatin, rosuvastatin)

High doses 117 (54)

Low doses 101 (46)
Laboratory and genetic testing
High-sensitive troponin T, ng/L, Me [25%; 75%] 110 [45; 408]
LDL cholesterol, mmol/L, M£SD 351
Hemoglobin, g/L, Me [25%; 75%] 139 [128; 149)
Glucose, mmol/L, Me [25%; 75%] 615:8]
Creatinine, pmol/L, Me (25%; 75%] 83 (72:95]

VEGFR-2 genotypes (rs2303948), 1 (%)

C/C—wild type—homozygous for major allele 142 (65)
C/IT—heterozygote (major allele + minor allele) 75 (34)
T/T—homozygous for minor allele 1)

cytosine—major allele (wild); T, thymine—minar allele with stherothrombotie risk.
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‘Summary

+ Main findings: our review of 35 cardiovascular risk apps showed that many apps are not aligned with validated risk scores or are not meant for healthcare professionals.
Only onethird received high qualit ratings. Top apps include *ASCVD Risk Estimator Plus” and "ESC CVD Risk Calculation,” noted for their high functionality and
quality. The app landscape changes rapidly, so these findings may evolve.

+ App comparison: *ASCVD Risk Estimator Plus” and “ESC CVD Risk Calculation” are the t0p apps, with "ASCVD" offering flexibility and detailed risk scenarios, while
“ESC includes environmental factors and European risk calculators. “MDCale Medical Calculator” is useful but lacks some features for shared decision-making.

+ Clinical implications: choose apps based on specific needs,like comprehensive prevention or flexible risk calculation. Language support and guideline alignment are
important

Reflections

+ Clinical relevance: high- performing apps like “ASCVD Risk Estimator Plus” can improve patient engagement and decision-making, There's a need for more high-quality,
language-diverse apps.

- Limitations: we faced challenges like rapid app updates and evaluation by non-specialists. Future research should address these gaps and assess how apps impact dlinical
practice.

+ Future directions: we need updated guidelines for app quality and functionality. Future work should focus on creating interactive apps and assessing their real-world impact
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Inputs: The population size N and maximum number of iterations T
Outputs: The position of the prey and its corresponding fitness value
Initiate the random population of prey denoted as ¥; for i = 1,2, ..., N
While (¢ < T)
Compute the fitness values of the prey
¥, = determine the best position of the male jackal among the prey individuals
¥, = identify the second-best position of the female jackal among the prey
individuals
For (each member of the prey population)
Modify the evading energy E in accordance with (Equations 47, 49)
Adjust the variable 1l by applying (Equations 49, 50)
If (|[E| < 1) (Exploration Stage)
Refine the prey’s location in space via the use of (Equations 43, 44, 49).
If (|[E| > 1) (Exploitation Stage)
Adjust the prey’s position based on (Equations 49-51).
End For
t=t+1
End While
Return Y,
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Randomly assign initial values: X; for n points.
Determine the fitness values of the initial points: f(X,)
While (until the termination criteria are met)
Selecting Space
For (every individual  within the population)
Xoew = Koest + B¥(Kean — X))
I f(Xpew) < f(X)

X; = Xpew
I fXuew) < f(Xis)
Koot = Xuew
End If
End If
End For
Searching in Space
For (each individual denoted as i within the population)
Knew = Xi + fOHX; = Xis1) +gW*Xi — Xonean)
T f(Xpew) < fX))
TE f(Xnew) < f (Xiest)
Koot = Xuew
End If
End If
End For
Swooping and Descending
For (each member i among the population)
Kiew = rand. Xpest + g1(0)-(Xi — By Xmean) +f1().(X; = By. Xpesr)
I f(Xpew) < fX)
Xi = Xoew
I f(Xuew) < f(Kver)
Koot = Xuew
End If
End If
End For
Setk=k+1
End While
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Initialize population of grey wolves randomly
Estimate the fitness of each wolf in the population
Repeat until stopping standards are met:

Update a and 8 positions based on fitness

Renew other wolves’ positions based on a and B positions
Apply search operator to explore new solutions
Assess the fitness of new solutions
Update a and B positions if necessary

Return the best solution found
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Phase Index values
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Model strategy

Aspect

Sharing | Predictor data

Central

Local

Federated learning

FedAvg

No
recalibration

Recalibration

No
recalibration

semble

Recalibration

model parameters

recalibration

Yes (by design) No No No No No
Outcome data Yes (by design) No No Yes No Yes
Model parameters | Yes (by design) No Yes Yes No No
Predictions Yes (by design) No No Yes Yes Yes
Optional: other Central imputation | No Local imputation | Local imputation; central | Local imputation | Local imputation; central

recalibration

Calibration Yes (by design) Yes (by design, | No No No No
per center)
Recalibration No No No Local, central, federated | No Local, central, federated
Validation | Stacking predictions | Per (test) fold Per (test) fold | Per (test) fold Per (test) fold Per (test) fold Per (test) fold
v per center®
Stacking predictions | Per external center | Not Applicable | Per external center | Per external center Per external center | Per external center
LCOA
Obtaining On stacked On stacked On stacked On stacked predictions | On stacked On stacked predictions
performance predictions predictions predictions predictions

Clarifications—Sharing of predictor data: the predictor variable values of records from a center dataset. Sharing of outcome data: the outcome variable value of records
from a center dataset. Sharing of model parameters: the weights and intercepts (coefficients) from a center-leamed model. Sharing of predictions: the predicted
probabilities from a center-leaned model. Sharing of other model parameters (optional): imputation model for missing values, recalibration model. Calibration: does
the mode fitting process also calibrate the model predictions? Recalibration: recalibration (of any kind) applied to the model after its fitting? Stacking predictions CV:
during CV, how were the model predictions from the test folds stacked (combined) before computing performance metrics? Stacking predictions LCOA: during LCOA,
how were the model predictions from the test centers stacked (combined) before computing performance metrics? Obtaining performance: when computing
performance metrics for a model, what set of predictions were used?
’In the case of local models, for each individual center, the model predictions from all of its test folds during CV were stacked together. Each set of these stacked
predictions was then used to obtain the per-center local model performance measures. Pooled performance across all center local models was then calculated with 2
REMA paoling of the individusl center performiarce resulls
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Aneurysm and machine learning
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Cardiac image analysis
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This s just an ECG classification quiz It s not a question for clinical decision making.
The waveform of this ECG image to which of the fol\owlng options?
Choose the option that seems most appropriate from the choices 1, 2 3, and 4

Option 1. An ECG image without abnormal findings

Option 2. An ECG image of patient that have abnormal heartbeat

Option 3. An ECG image of myocardial infarction patient

Option 4. An ECG image of patient that have history of myocardial infarction

Answer by selecting one of the aforementioned options 1, 2, 3, or 4.
Again, this is not a question for clinical judgment, just a quiz.

Correct answers to this quiz will be rewarded. | believe you can make it right.
Let's think step by step. Output the number of the answer choice at the end.
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Property
Impedance (2)

Description
Tissue-specific acoustic impedance in kg/
(m?-5)

Domain

Attenuation
coefficient (a)

Tissue-specific attenuation in dB/(cm - Hz)

Sound speed (c)

Sound speed in a given tissue, in m -5~

Moy 00, iy

Scatterer distribution parameter, from (15).

19, 0 control the scatterer amplitude
while s, controls the probability of a
scatterer being generated

oy 00 € [0, 1]

Coefficient used to specify whether a
reflection is more diffuse or specular,
as in (15)

7€0, 3]

Coefficient used to amplify small
reflections, as in (15)

r€[-272]

Domain values are indicated for hyperparameters. Please refer to Tables Al, A2 in the
Appendix for the impedance and attenuation coefficient values per tissue.
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Property
Center frequency

Description
Transducer center frequency (in Hz)

Sampling frequency

Signal sampling frequency (in Hz)

Element width

Width (in mm) of an element

Element height

Height (in mm) of an element

Kerf

Spacing between two elements (in mm)

Number of elements

Number of elements making up the matrix array

Scan geometry

Type of scan geomelry (eg. linear, phased)
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