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Research on resting state brain activity using fMRI offers a novel approach for understanding 
brain organization at the systems level. Resting state fMRI examines spatial synchronization 
of intrinsic fluctuations in blood-oxygenation-level-dependent (BOLD) signals arising from 
neuronal and synaptic activity that is present in the absence of overt cognitive information 
processing. Since the discovery of coherent spontaneous fluctuations within the somatomotor 
system (Biswal, et al. 1995), a growing number of studies have shown that many of the brain 
areas engaged during various cognitive tasks also form coherent large-scale brain networks 
that can be readily identified using resting state fMRI. These studies are beginning to provide 
new insights into the functional architecture of the human brain. This Research Topic will 
synthesize current knowledge about resting state brain activity and discuss their implications 
for understanding brain function and dysfunction from a systems neuroscience perspective. 
This topic will also provide perspectives on important conceptual and methodological 
questions that the field needs to address in the next years. In addition to invited reviews and 
perspectives, we solicit research articles on theoretical, experimental and clinical questions 
related to the nature, origins and functions of resting state brain activity.
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Research on resting-state brain activity using fMRI offers a novel 
approach for understanding brain organization at the systems 
level. Resting-state fMRI (rsfMRI) examines spatial synchro-
nization of intrinsic fluctuations in blood oxygenation level 
dependent (BOLD) signals arising from neuronal and synaptic 
activity that is present in the absence of overt cognitive infor-
mation processing. Since the discovery of coherent spontane-
ous fluctuations within the somatomotor system (Biswal et al., 
1995), a growing number of studies have shown that many of 
the brain areas engaged during various cognitive tasks also form 
coherent large-scale brain networks that can be readily identified 
using rsfMRI (Smith et al., 2009). These studies are beginning 
to provide new insights into the functional architecture of the 
human brain. This special topic synthesizes current knowledge 
about resting-state brain activity and discusses implications for 
understanding brain function and dysfunction from a systems 
neuroscience perspective. Reviews written by experts in the field 
provide perspectives on important conceptual, methodological, 
and empirical questions that need to be addressed in the next 
years. Additionally, this collection includes original research 
articles addressing questions related to the nature, origins, and 
functions of resting-state brain activity.

The low cognitive demand and relatively short duration of 
rsfMRI scans make them well suited for studying pediatric and 
clinical populations with low tolerance for the MRI scanner envi-
ronment. The review by Uddin et al. (2010) summarizes rsfMRI 
studies to date in children and adolescents, and describes new 
insights that have emerged about the typical and atypical devel-
opment of functional brain networks, a topic also examined in 
an empirical study by Littow et al. (2010). The review by Fox and 
Greicius (2010) highlights advantages of examining the resting-
state signal for clinical applications and discusses methodological 
issues that need to be resolved to facilitate translational applica-
tions of rsfMRI. A number of important clinical applications are 
already emerging as emphasized by the studies of functional con-
nectivity in premature children (Damaraju et al., 2010), adoles-
cents with schizotypal traits (Lagioia et al., 2010), major depression 
(Horn et al., 2010), and aging (Langan et al., 2010). Furthermore, 
rsfMRI studies in healthy individuals are continuing to provide 
new insights into cortical and subcortical functional networks 
and their interconnections with a high degree of specificity, as 

demonstrated by Barnes et al. (2010) in the basal ganglia and Fair 
et al. (2010) in the thalamus.

As the neuroimaging field begins to incorporate rsfMRI into its 
arsenal of tools, increasingly sophisticated methods are being devel-
oped to maximize its potential contribution to systems neuroscience. 
Cole et al. (2010) provide a timely review of current methods and 
describe their strengths and limitations with respect to analysis and 
interpretation of rsfMRI data. A number of papers describe new 
tools and methods that are being developed in the field, as described 
in the studies by Chao-Gan and Yu-Feng (2010) (Benjaminsson 
et al., 2010; Liu et al., 2010). Graph theoretical analyses offer insights 
into brain networks at a global level, as discussed by Fornito et al. 
(2010) and reviewed by Wang et al. (2010). These methodological 
and technical advances have paved the way for increasingly sophis-
ticated insights into the topology of human brain networks.

RsfMRI studies would, of course, not be meaningful if they did 
not have an underlying neurophysiological correlate. The review 
by Jerbi et al. (2010) emphasizes the links between rsfMRI connec-
tivity and inter-areal synchronization observed with intracranial 
EEG, and they describe how intracranial EEG studies can provide 
insights into transient neural processes underlying task-induced 
deactivation. Maier et al. (2010) take this a step further and describe 
original research on the laminar pattern of spontaneous activity in 
primate visual cortex. Their demonstration that functional com-
partmentalization in superficial and deep layers found during rest, 
was also preserved when a neuron’s receptive field was stimulated 
during a visual task, suggests that even at this level of brain organi-
zation, resting-state activity imposes massive constraints on stimu-
lus processing. Sadaghiani et al. (2010) provide both a theoretical 
and an experimental perspective on how intrinsic brain activity 
influences task-evoked activity and perceptual response variability. 
Clearly, more work is needed to better understand the relationship 
between resting-state and task-evoked activity. This set of articles 
suggests that both theoretical and neurophysiological approaches 
have much to offer in this regard.

The reviews and empirical articles presented in this special topic 
reveal a complex and rapidly unfolding profile of how the human 
and primate brain are intrinsically organized. Advances in the field, 
both methodological and conceptual, will have profound impli-
cations for understanding human brain function from a systems 
neuroscience perspective.
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Within the striatum are compartments, termed patches and matri-
ces, that have distinct neurochemical markers and receive projec-
tions from different cortical layers (Gerfen, 1989; Graybiel, 1990). 
Beyond basal ganglia nuclei that can be seen on structural MRI 
scans, more fine-grained divisions in human basal ganglia, though 
presumed to exist based on non-human primate and rodent studies, 
are difficult to identify with current neuroimaging methods.

While historically considered to be a motor structure, the basal 
ganglia receive cortical projections from all lobes of the cerebral 
cortex and contribute to both motor and non-motor processing 
(Mink, 1996). Anatomical tracer studies in non-human primates 
(Alexander et al., 1986; Middleton and Strick, 2000; Haber, 2003) 
have documented anatomical connections between the basal 
ganglia and many regions in the cerebral cortex, including lat-
eral prefrontal, orbitofrontal, anterior cingulate, lateral parietal, 
motor, premotor, oculomotor, somatosensory, auditory associa-
tion (superior temporal gyrus), and visual association (inferior 
temporal gyrus) cortex.

Resting-state functional connectivity MRI (rs-fcMRI) and diffu-
sion tensor imaging (DTI) provide a means to assess functional and 
anatomical connectivity non-invasively in humans. It is important 
to note at the outset that these methods yield distinct informa-
tion about brain connectivity. rs-fcMRI measures correlations in 

Introduction
The basal ganglia are subcortical brain structures important for 
motor, cognitive, and emotional processing (Mink, 1996). The 
consequences of basal ganglia pathology can be devastating, exem-
plified by the symptoms of degenerative basal ganglia disorders 
such as Parkinson’s and Huntington’s disease. Understanding the 
location and functional connectivity patterns of basal ganglia 
divisions would improve cognitive neuroscience investigations. 
Indeed, methods that could identify putative basal ganglia divi-
sions are needed to test hypotheses about cortical-basal ganglia 
circuitry in typical development (Rubia et al., 2006), healthy aging 
(Hedden and Gabrieli, 2004), and disorders (e.g., Parkinson’s dis-
ease, Huntington’s disease, Tourette’s syndrome) and are critical 
for region identification needed to develop more precise models 
of whole-brain connectivity (Butts, 2009).

There are multiple levels of organization in the basal ganglia. 
Anatomically, the basal ganglia comprise five gray matter nuclei: 
the caudate, putamen, globus pallidus, substantia nigra, and sub-
thalamic nucleus. The majority of projections from the cerebral 
cortex to the basal ganglia terminate in the caudate and putamen, 
collectively referred to as the striatum. Discrete cerebral cortical 
regions project to discrete striatal regions that then project, via the 
thalamus, back to those cortical regions (Alexander et al., 1986). 

Identifying basal ganglia divisions in individuals using  
resting-state functional connectivity MRI

Kelly Anne Barnes1*, Alexander L. Cohen1, Jonathan D. Power1, Steven M. Nelson1, Yannic B. L. Dosenbach1, 
Francis M. Miezin1,2, Steven E. Petersen1,2,3,4 and Bradley L. Schlaggar1,2,3,5

1	 Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
2	 Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
3	 Department of Psychology, Washington University School of Medicine, St. Louis, MO, USA
4	 Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
5	 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA

Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) 
in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, 
divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using 
structural MRI. Resting-state functional connectivity MRI (rs-fcMRI) can be used to identify 
putative cerebral cortical functional areas in humans (Cohen et al., 2008). Here, we determine 
whether rs-fcMRI can be used to identify divisions in individual human adult basal ganglia. 
Putative basal ganglia divisions were generated by assigning basal ganglia voxels to groups 
based on the similarity of whole-brain functional connectivity correlation maps using modularity 
optimization, a network analysis tool. We assessed the validity of this approach by examining the 
spatial contiguity and location of putative divisions and whether divisions’ correlation maps were 
consistent with previously reported patterns of anatomical and functional connectivity. Spatially 
constrained divisions consistent with the dorsal caudate, ventral striatum, and dorsal caudal 
putamen could be identified in each subject. Further, correlation maps associated with putative 
divisions were consistent with their presumed connectivity. These findings suggest that, as in the 
cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI. Developing 
and validating these methods should improve the study of brain structure and function, both 
typical and atypical, by allowing for more precise comparison across individuals.
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low-frequency (i.e., <0.1 Hz) spontaneous blood oxygenation level-
dependent (BOLD) signal fluctuations (Fox et al., 2005) and may 
reflect a history of co-activation between regions (Fair et al., 2007; 
Dosenbach et al., 2008). DTI measures the diffusion of water mol-
ecules, which is constrained by the presence of axons, particularly 
myelinated axons, and provides indices of white matter coherence 
used to create visualizations of white matter tracts. While there can 
be overlap in connectivity patterns identified using rs-fcMRI and 
DTI, functional connectivity has been documented in the absence 
of anatomical connectivity. For example, seeds placed in voxels 
corresponding to left and right retinotopic eccentric representa-
tions in primary visual cortex exhibit strong functional connectiv-
ity with rs-fcMRI, but are not anatomically connected (Vincent 
et al., 2007). This observation suggests that functional connectivity 
should not be treated as a measure simply homologous to anatomi-
cal connectivity.

Despite fundamental differences in the types of information about 
brain connectivity that can be gleaned from rs-fcMRI and DTI, these 
methods converge with evidence from anatomical tracer studies 
examining cortical-basal ganglia connectivity, revealing significant 
connectivity between basal ganglia regions and frontal, parietal, and 
temporal regions. Using rs-fcMRI, dorsal and ventral caudate and 
putamen regions of interest (ROIs) were shown to have different pat-
terns of functional connectivity with the cerebral cortex (Di Martino 
et al., 2008; Harrison et al., 2009). Similarly, large-scale cortical ROIs 
(e.g., prefrontal cortex, parieto–occipital cortex) were shown to have 
different patterns of partial correlations with the basal ganglia (Zhang 
et al., 2008). DTI investigations have revealed different anatomical 
connectivity between basal ganglia divisions and large-scale frontal 
ROIs (e.g., prefrontal cortex, orbitomedial frontal cortex) (Lehericy 
et al., 2004; Leh et al., 2007; Draganski et al., 2008). Across these 
methods, convergent findings regarding patterns of cortical-basal 
ganglia connectivity have emerged. For example, both rs-fcMRI 
and DTI respectively reveal functional and anatomical connectivity 
between dorsal caudate and lateral prefrontal cortex, ventral striatum 
and orbitofrontal cortex, and dorsal caudal putamen and motor and 
premotor cortex (Lehericy et al., 2004; Leh et al., 2007; Di Martino 
et al., 2008; Draganski et al., 2008; Harrison et al., 2009).

Basal ganglia divisions have two properties that would facilitate 
identification with noninvasive neuroimaging methods: they have 
different patterns of connectivity with the cerebral cortex and they 
are spatially constrained (i.e., discrete) entities (Alexander et al., 
1986). Thus, it may be possible to identify basal ganglia divisions 
smaller than nuclei on the basis of their unique patterns of cortical-
basal ganglia functional connectivity using rs-fcMRI and commu-
nity detection algorithms, which are used to identify groupings in 
networks. rs-fcMRI is sensitive to changes in patterns of functional 
connectivity across adjacent, proximal (i.e., ∼2 cm apart) cortical 
regions. For example, rs-fcMRI data contained abrupt transitions, 
consistent with boundaries between putative cortical areas, in 
the measured similarity of functional connectivity maps gener-
ated from seeds placed along a line between supramarginal and 
angular gyrus regions (Cohen et  al., 2008). Rather than simply 
measure along a single line, rs-fcMRI methods can also be used to 
sample from a larger structure (e.g., the basal ganglia). By calculat-
ing the similarity in whole-brain rs-fcMRI maps generated from 
each voxel in a structure, we can obtain a matrix of the pairwise 

similarity relationships between voxels. Similarity matrices can be 
used to bring recent developments in graph theory, the mathemati-
cal description of networks, to bear on our question of identifying 
divisions in the basal ganglia.

In graph theory parlance, a graph is composed of two elements: 
nodes, which represent the units of observation in a graph, and 
edges, which represent the pairwise relationships between nodes. 
We can thus view our similarity matrix as a network, with voxels as 
nodes and eta2 values, a measure of similarity, as edges. Community 
detection algorithms (e.g., modularity optimization [Newman, 
2006] used here) can be applied to cluster the nodes into highly 
interconnected communities, with relatively few edges between 
communities. In other words, these algorithms can be viewed as 
grouping voxels with similar correlation maps. Returning to our 
question of interest, these groupings can be examined to determine 
whether they reflect expected divisions within the basal ganglia. If 
(1) the anatomical loci of modularity optimization groupings is 
consistent with basal ganglia divisions identified from anatomical 
studies in non-human primates and rodents and (2) functional 
connectivity maps generated from the modularity optimization 
groupings are consistent with presumed patterns of cortical-basal 
ganglia connectivity, then we will consider these groupings to be 
putative basal ganglia divisions.

In this paper, we demonstrate that a novel approach to functional 
mapping that combines rs-fcMRI and modularity optimization 
analyses can reveal putative basal ganglia divisions in individuals. 
Our approach identifies putative basal ganglia divisions with reliable 
patterns of functional connectivity with an amount of data that can 
be acquired in a single, brief MRI session (i.e., one ∼8-min structural 
scan and three ∼5-min scans of relaxed fixation). Remarkably, these 
results appear to be robust at the individual subject-level.

Materials and Methods
Subjects
Two cohorts of healthy young adult subjects were recruited from 
the Washington University community. Subjects were screened with 
a self-report questionnaire to ensure that they had no current or 
previous history of neurological or psychiatric diagnosis. Informed 
consent was obtained from all subjects, and the study was approved 
by the Washington University Human Studies Committee. Cohort 
One consisted of 15 subjects (four males, ages 21–29 years, mean 
age = 25 years). Cohort Two consisted of 11 subjects (five males, 
ages 21–27 years, mean age = 25 years). The purpose of examining 
two cohorts was to test independently the reliability of the results 
(see Ihnen et al., 2009).

Data acquisition
Data were acquired on a Siemens 3 Tesla MAGNETOM Trio sys-
tem (Erlangen, Germany) with a Siemens 12 channel Head Matrix 
Coil. To help stabilize head position, each subject was fitted with a 
thermoplastic mask fastened to holders on the head coil. Structural 
images were obtained using a sagittal magnetization-prepared rapid 
gradient echo (MP-RAGE) three-dimensional T1-weighted sequence 
(TE = 3.08 ms, TR (partition) = 2.4 s, TI = 1000 ms, flip angle = 8°, 
176 slices with 1 × 1 × 1 mm voxels). Functional images were obtained 
using a BOLD contrast sensitive gradient echo echo-planar sequence 
(TE = 27 ms, volume TR = 2.5 s, flip angle = 90°, in-plane resolution 
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intensity differences attributable to interleaved acquisition without 
gaps, (iii) correction for head movement within and across runs, 
and (iv) intensity normalization to a whole-brain mode value of 
1000 for each run. Atlas transformation of the functional data was 
computed for each individual via the MP-RAGE and T2 weighted 
scans. Each run was then resampled in atlas space on an isotropic 
2-mm grid combining movement correction and atlas transfor-
mation (12 parameter affine co-registration) in one interpolation 
(Lancaster et al., 1995; Snyder, 1996). All subsequent operations 
were performed on the atlas-transformed volumetric time series.

Several additional pre-processing steps were used to reduce spu-
rious variance (e.g., heart rate and respiration) unlikely to reflect 
neuronal activation. These steps included: (i) temporal bandpass 
filtering (0.009 Hz < f < 0.08 Hz) and spatial smoothing (4 mm full 
width at half maximum), (ii) regression of six parameters obtained 
by rigid body head motion correction, (iii) regression of the whole-
brain signal averaged over the whole brain, (iv) regression of ven-
tricular signal averaged from ventricular ROIs, and (v) regression of 
white matter signal averaged from white matter ROIs. [Ventricular 
and white matter ROIs were defined using masks described in Fox 
et al. (2005) and depicted in Supplemental Figure 1 of Fox et al. 
(2009)]. Regression of first order derivative terms for the whole 
brain, ventricular, and white matter signals and any trend term from 
the movement regressors was also included in the pre-processing.

Identifying the basal ganglia
Two methods were used to identify basal ganglia voxels in individual 
subjects. For Cohort One, the caudate, putamen, and pallidum were 
manually traced from each subject’s MP-RAGE scan. For Cohort 
Two, the caudate, putamen, and pallidum were identified from each 
subject’s MP-RAGE using FreeSurfer1, an automated segmenta-
tion algorithm (Fischl et al., 2002, 2004). Automated segmentation 
results for each subject were reviewed as a quality control step. From 
this point forward, the methods applied to the two cohorts were 
identical. The purpose of examining two cohorts separately, rather 
than collapsing cohorts into a single group, was to test independ-
ently the reliability of the results.

rs-fcMRI and modularity optimization analysis
For each basal ganglia voxel, whole-brain rs-fcMRI correlation 
maps were generated by correlating each basal ganglia voxel’s 
timecourse with all other voxels in the brain (see Figure 1B for 
example basal ganglia time courses). To quantify the similarity of 
the whole-brain rs-fcMRI correlation maps, a measure of similar-
ity, eta2, was computed between each pair of correlation maps for 
each hemisphere in each subject (see Cohen et al., 2008). Thus, for 
each hemisphere in each subject, we generated a similarity matrix 
that could be examined to identify basal ganglia voxels with similar 
patterns of functional connectivity.

Modularity optimization (Newman, 2006), a network analysis 
tool, was used to identify basal ganglia voxels with similar pat-
terns of functional connectivity and then to assign voxels, based on 
their similar patterns of connectivity, to groups termed modules. 
In graph theory terms, each voxel in each subject’s basal ganglia 
was treated as a node and the similarity (i.e., eta2) between each 

4 × 4 mm). Whole-brain coverage was obtained with 32 contiguous 
interleaved 4-mm axial slices. Three runs of either 133 (Cohort One) 
or 132 (Cohort Two) BOLD volumes per run were acquired. Steady 
state magnetization was assumed after four frames (i.e., 10 s). An 
auto align pulse sequence protocol provided in the Siemens soft-
ware was used to align the acquisition slices of the functional scans 
parallel to the anterior and posterior commissure (AC–PC) plane 
and centered on the brain. A T2 weighted turbo spin echo structural 
image (TE = 84 ms, TR = 6.8 s, 32 slices with 1 × 1 × 4 mm voxels) 
in the same anatomical plane as the BOLD images was also obtained 
to improve alignment to the atlas.

During functional scans, subjects viewed a centrally presented 
crosshair that subtended <1 visual degree and were instructed to 
relax and maintain fixation on the crosshair. The fixation cross was 
either white on a black background (Cohort One) or black on a 
white background (Cohort Two).

Data pre-processing
The analysis stream from the present study is depicted in Figure 1A. 
Functional images were first processed to reduce artifacts (Miezin 
et al., 2000). These steps included: (i) removal of a central spike 
caused by MR signal offset, (ii) correction of odd versus even slice 

Figure 1 | (A) Flowchart of analysis stream. (B) Time courses extracted from 
two basal ganglia voxels ([-11 5 12] and [11 5 12]) are highly correlated 
(r = 0.70). Time courses such as these were used to generate whole-brain 
correlation maps for each basal ganglia voxel.

1http://surfer.nmr.mgh.harvard.edu.
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masked image. This analysis revealed that the spatial location of 
each putative basal ganglia division overlapped across subjects in 
anatomical locations consistent with the stereotactic guidelines 
described above (see Figure 2, row 4).

To assess the validity of the modularity optimization results, we 
examined functional connectivity maps derived from modularity 
optimization assignments. For each of the three basal ganglia 
divisions (i.e., the voxels labeled as the putative dorsal caudate, 
dorsal caudal putamen, and ventral striatum) we generated six 
whole-brain correlation maps for each subject (three putative 
divisions  ×  two hemispheres). Each subject’s z-transformed 
whole-brain correlation map was used in a second level random-
effects analysis involving one-sample t-tests (z > 3.00, k = 21, 

pair of nodes was treated as an edge. Networks with N nodes were 
mathematically represented as a N  ×  N matrix of relationships 
where cell ij contained the measure of the similarity between node 
i and node j. Similarity matrices were thresholded such that all cells 
with values below a certain threshold were set to zero, effectively 
removing the edges between the nodes. We therefore explored a 
range of thresholds in our analyses to ensure that our results were 
not specific to a particular threshold. Modules, our unit of analysis 
to test for putative divisions within the basal ganglia, were detected 
with modularity optimization algorithms adopted from Newman 
(2006) and described in Fair et  al. (2009). The modularity (Q) 
of a given set of module assignments for a graph is a measure of 
the number of connections found within the assigned modules 
versus the number predicted in a random graph with equivalent 
degree distribution. A positive Q indicates that the number of intra-
module connections exceeds those predicted statistically. A wide 
range of Q may be found for a graph, depending on how nodes 
are assigned to modules. Thus modularity optimization returns 
the set of node assignments that returns the highest Q, that is, the 
optimal modular description of the data.

Results
Cohort One
Modularity optimization groupings were examined to determine 
whether they were consistent with putative divisions in the basal 
ganglia. An eta2 threshold of 0.85 was selected for the analyses 
reported below because at this threshold the network was sparse 
(i.e., edge density < 0.1) but fully connected (i.e., graph connected-
ness ∼1.0) and there was strong community structure (i.e., Q > 0.3) 
in the network (see Figure S1 in Supplementary Material).

Modularity optimization generated discrete, contiguous group-
ings of basal ganglia voxels in locations consistent with presumed 
basal ganglia divisions (see Figure 2, rows 1–3). The number of 
modules identified for the left (M = 6.60, SD = 2.19, range = 3–11) 
and right (M = 6.73, SD = 2.76, range = 3–13) hemispheres did 
not differ, p = 0.87. We focused on identifying and characterizing 
three modules because at least three modules were generated across 
subjects in Cohort One.

In each hemisphere for each subject, we identified groupings of 
basal ganglia voxels that were consistent with the location of the 
dorsal caudate, the ventral striatum, and the dorsal caudal puta-
men. Labels were assigned on the basis of stereotactic coordinates 
reported in prior functional connectivity (Di Martino et al., 2008; 
Harrison et al., 2009) and functional MRI co-activation (Postuma 
and Dagher, 2006) studies. The dorsal/ventral distinction for the 
caudate and putamen was z = 2 (i.e., dorsal = z ≥ 2; ventral = z ≤ 2). 
The rostral/caudal distinction for the putamen was y = 0. When 
more than one module met these criterion, the module closest to the 
coordinates reported in Di Martino et al. (2008) was assigned the 
particular label (i.e., dorsal caudate, ventral striatum, dorsal caudal 
putamen). As the spatial extent of each module was not fixed across 
subjects and hemispheres (it was determined by the number of 
voxels assigned to a particular grouping using modularity optimiza-
tion), we sought to determine whether these stereotactic guidelines 
identified modules in similar locations across subjects. Accordingly, 
we conducted a conjunction analysis for each label by creating a 
masked image of that putative division and summing each subject’s 

Figure 2 | Rows 1–3. From Cohort One, three subjects’ basal ganglia voxels 
colored with respect to modularity optimization groupings (shown on each 
subject’s MP-RAGE; coloring for each hemisphere and each subject is 
arbitrary). Arrows indicate modules labeled as dorsal caudate (red arrows, 
z = 16), dorsal caudal putamen (blue arrows, z = 10), and ventral striatum 
(purple arrows, z = −8). Row 4. Conjunction of modules ascribed the same 
label across Cohort One subjects. Color bar depicts number of subjects with a 
module assignment at each voxel.
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robust functional connectivity in the random-effects analyses 
were driven by a handful of the subjects or whether overlapping 
patterns of functional connectivity could be seen in a majority 
of subjects. Conjunction analyses for each putative basal ganglia 
division across all Cohort One subjects revealed that regions of 
functional connectivity identified in the random-effects analy-
ses seen in individual subjects (see Figure  4, rows 1–3) were 
present in a majority of subjects (see Figure 4, row 4). These 
findings suggest that putative basal ganglia divisions yield pat-
terns of functional connectivity that are reliable at the individual 
subject-level.

Cohort Two
We examined a second cohort to assess independently the reliability 
of our results. First, we examined Cohort Two to test whether we 
would find similar groupings. As with Cohort One, the number of 
groupings identified for the left (M = 6.82, SD = 2.04, range = 3–10) 
and right (M = 9.09, SD = 5.87, range = 4–21) hemispheres did 
not differ, p = 0.25. Further, the number of groupings identified 
for each hemisphere did not differ across cohorts (left hemi-
sphere: p = 0.80, right hemisphere: p = 0.18). Visual inspection 
of the groupings’ locations revealed that modularity optimization 

corresponding to p < 0.05, Monte Carlo corrected). The random-
effects maps for the left hemisphere (Figure 3, row 1) revealed 
qualitatively distinct patterns of functional connectivity for the 
putative dorsal caudate, dorsal caudal putamen, and ventral stria-
tum (see Figure S3 in Supplementary Material, Row 1 for ran-
dom-effects analyses for putative right basal ganglia divisions.)

Functional connectivity maps from modularity optimization 
assignments revealed patterns of functional connectivity similar to 
the previously reported patterns of anatomical and functional con-
nectivity of the dorsal caudate, dorsal caudal putamen, and ventral 
striatum (see Figure 3, row 1; Table 1). For example, the dorsal 
caudate was functionally connected to regions in lateral prefrontal 
cortex, the dorsal caudal putamen was functionally connected to 
regions in premotor and motor cortex, and the ventral striatum 
was functionally connected to regions in orbitofrontal and ventro-
medial prefrontal cortex.

The three putative basal ganglia divisions had distinct pat-
terns of functional connectivity that were qualitatively reliable 
across individuals. We generated thresholded (z > 2.00), bina-
rized images of individuals’ z-transformed correlation maps for 
the putative left dorsal caudate, left dorsal caudal putamen, and 
left ventral striatum and summed them to determine whether 

Figure 3 | Z-transformed rs-fcMRI maps from modularity assignments are 
statistically reliable within each cohort for the left hemisphere divisions 
(first and second rows, z > 3.00, k = 21, corresponding to p < 0.05, Monte 
Carlo corrected) and yield common regions of correlation across cohorts 

(conjunction analysis, third row). Positive correlations are depicted in warm 
colors (first two rows) and their overlap is depicted in red in the conjunction 
analysis (third row). Negative correlations are depicted in cool colors (first two 
rows) and their overlap is depicted in green in the conjunction analysis (third row).
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Table 1 | Brain regions showing significant functional connectivity with 

putative basal ganglia divisions identified using random-effects 

one-sample t-tests (z > 3.00, k = 21, corresponding to p < 0.05, Monte 

Carlo corrected).

X	 Y	 Z	 Hemisphere	 Anatomical	 Z-score 

				    landmark

Dorsal caudate: positive correlations

Subcortical

−12	 8	 8	 Left	 Caudate	 7.42

13	 10	 7	 Right	 Caudate	 7.13

−23	 0	 10	 Left	 Putamen	 6.49

−6	 −5	 7	 Left	 Anterior thalamus	 6.33

24	 6	 −4	 Right	 Putamen	 5.88

6	 −5	 4	 Right	 Anterior thalamus	 5.29

−30	 −17	 −4	 Left	 Putamen	 5.08

−17	 −14	 15	 Left	 Thalamus	 5.08

Frontal

−7	 26	 41	 Left	 Medial frontal gyrus	 5.73

−5	 45	 32	 Left	 Medial frontal gyrus	 5.07

14	 30	 32	 Right	 Medial frontal gyrus	 5.00

−6	 35	 11	 Left	 Cingulate gyrus	 4.92

−17	 22	 58	 Left	 Superior frontal	 4.91 

				    gyrus

−37	 45	 3	 Left	 Inferior frontal gyrus	 4.83

Cerebellar

22	 −81	 −27	 Right	 Cerebellum	 5.33

38	 −55	 −41	 Right	 Cerebellum	 4.88

Dorsal caudate: negative correlations

Frontal

41	 −9	 47	 Right	 Precentral gyrus	 −5.05

−35	 −15	 43	 Left	 Precentral gyrus	 −4.86

Occipital

12	 −85	 40	 Right	 Cuneus	 −5.71

7	 −84	 31	 Right	 Cuneus	 −5.41

−16	 −88	 38	 Left	 Cuneus	 −5.27

4	 −90	 20	 Right	 Cuneus	 −5.20

22	 −54	 −7	 Right	 Lingual gyrus	 −4.95

−49	 −80	 −6	 Left	 Inferior occipital	 −4.92 

				    gyrus

−15	 −74	 3	 Left	 Lingual gyrus	 −4.87

15	 −72	 34	 Right	 Cuneus	 −4.85

5	 −73	 4	 Right	 Lingual gyrus	 −4.80

−16	 −98	 19	 Left	 Middle occipital	 −4.74 

				    gyrus

25	 −86	 23	 Right	 Middle occipital	 −4.71 

				    gyrus

−37	 −87	 25	 Left	 Middle occipital	 −4.69 

				    gyrus

−32	 −76	 −9	 Left	 Fusiform gyrus	 −4.66

Dorsal caudal putamen: positive correlations

Subcortical

−24	 −14	 7	 Left	 Putamen	 7.47

30	 −11	 5	 Right	 Putamen	 7.45

−12	 −20	 5	 Left	 Thalamus	 6.07

12	 −17	 1	 Right	 Thalamus	 5.67

19	 −10	 8	 Right	 Thalamus	 5.67

Frontal

42	 8	 10	 Right	 Insula	 5.95

−40	 7	 3	 Left	 Insula	 5.83

−52	 3	 11	 Left	 Precentral gyrus	 5.72

53	 4	 11	 Right	 Precentral gyrus	 5.60

9	 13	 39	 Right	 Cingulate gyrus	 5.53

−43	 15	 10	 Left	 Inferior frontal gyrus	 5.38

−6	 11	 34	 Left	 Cingulate gyrus	 5.29

−6	 8	 56	 Left	 Pre-supplementary	 5.07 

				    motor area

Parietal

66	 −35	 34	 Right	 Inferior parietal	 5.09 

				    lobule

−56	 −28	 28	 Left	 Inferior parietal	 4.91 

				    lobule

Dorsal caudal putamen: negative correlations

Frontal

5	 45	 −5	 Right	 Anterior cingulate	 −4.37 

				    cortex

−2	 45	 −14	 Left	 Ventral anterior	 −4.24 

				    cingulate cortex

46	 24	 36	 Right	 Middle frontal gyrus	 −4.16

−13	 50	 0	 Left	 Anterior cingulate	 −4.12 

				    cortex

Parietal

−1	 −71	 31	 Left	 Precuneus	 −5.41

5	 −76	 49	 Right	 Precuneus	 −4.86

8	 −64	 27	 Right	 Precuneus	 −4.67

42	 −72	 41	 Right	 Inferior parietal	 −4.66 

				    lobule

47	 −50	 36	 Right	 Supramarginal gyrus	 −4.56

−13	 −60	 20	 Left	 Posterior cingulate	 −4.55 

				    cortex

−7	 −50	 9	 Left	 Posterior cingulate	 −4.41 

				    cortex

11	 −50	 8	 Right	 Posterior cingulate	 −4.38 

				    cortex

8	 −41	 39	 Right	 Cingulate gyrus	 −4.15

Occipital

11	 −101	 −10	 Right	 Lingual gyrus	 −4.25

3	 −82	 −2	 Right	 Lingual gyrus	 −4.19

Ventral striatum: positive correlations

Subcortical

−20	 12	 −11	 Left	 Ventral striatum	 5.90

−8	 12	 −7	 Left	 Ventral striatum	 5.34

4	 13	 −4	 Right	 Ventral striatum	 4.99

−12	 21	 −5	 Left	 Caudate	 4.75

Frontal

10	 42	 −8	 Right	 Ventral anterior	 4.26 

				    cingulate cortex

−33	 38	 42	 Left	 Middle frontal gyrus	 3.95

12	 30	 −9	 Right	 Ventral anterior	 3.54 

				    cingulate cortex

−18	 36	 −14	 Left	 Ventromedial	 3.36 

				    prefrontal cortex
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row 2) revealed qualitatively distinct patterns of functional con-
nectivity for the putative dorsal caudate, dorsal caudal putamen, 
and ventral striatum. (More spatially extensive regions of above 
threshold correlations in Cohort One than Cohort Two likely results 
from Cohort One’s larger sample size.) Conjunction analyses (con-
ducted by thresholding the one-sample t-test images for each group 
at z > 3.00, k = 21, p < 0.05, Monte Carlo corrected (see Forman 
et al., 1995), binarizing the thresholded images, and then searching 
for overlap) across Cohort One and Cohort Two’s random-effects 
analyses revealed largely overlapping patterns of functional con-
nectivity across cohorts for each putative basal ganglia division 
(Figure 3, bottom row). (See Figure S3 in Supplementary Material 
for random-effects analyses for the right hemisphere for Cohort 
Two and conjunction analyses across cohorts.) These data indicate 
that putative basal ganglia divisions generated for two independ-
ent cohorts yield replicable patterns of functional connectivity. 
Accordingly, this independent replication increases our confidence 
in using rs-fcMRI to identify putative basal ganglia divisions.

Discussion
The present study demonstrates that a combination of rs-fcMRI 
and graph theoretic analyses (i.e., modularity optimization) can be 
used to reliably identify divisions in the basal ganglia of individual 
subjects. For each subject, multiple divisions were identified and 
these divisions were similarly located across subjects. Furthermore, 
the correlation maps generated from modularity optimization 
groupings were similar across subjects. The putative basal ganglia 
divisions identified using modularity optimization have strong face 
validity since the locations of significant cortical-basal ganglia func-
tional connectivity was consistent with the presumed connectivity 
of basal ganglia divisions.

Our approach to non-invasively parcellating the basal ganglia 
extends prior methods in ways that facilitate examination of indi-
vidual subjects. We conducted voxel-wise whole-brain correlations, 
which allowed us to examine cortical-basal ganglia functional con-
nectivity with a higher resolution than studies that apply large-
scale cortical ROIs (Lehericy et al., 2004; Leh et al., 2007; Zhang 
et al., 2008), which encompassed very large swaths of cortex (e.g., 
prefrontal cortex) up to multiple lobes (e.g., parietal and occipi-
tal cortex). Additionally, by generating divisions for each subject 
rather than applying ROIs to fixed stereotactic locations (e.g., Di 
Martino et al., 2008; Harrison et al., 2009) we can better accom-
modate individual variation in subcortical volume, either total basal 
ganglia volumes or volumes of particular basal ganglia divisions. 
Accommodation of individual differences in regional brain volume 
is particularly important when examining individuals with disor-
ders where basal ganglia volumes are thought to be reduced, such 
as Tourette’s syndrome (see Albin and Mink, 2006) and attention 
deficit hyperactivity disorder (see Valera et al., 2007). For instance, 
it is unclear whether volumetric reductions in the caudate in indi-
viduals with Tourette’s syndrome stem from a volumetric reduction 
of a particular basal ganglia division or from a more generalized 
shrinking. Following further validation, future studies could use 
these methods to identify putative basal ganglia divisions in indi-
vidual subjects prior to spatial normalization and could help deline-
ate between these alternatives because regional brain volumes and 
spatial extent characteristics would be retained.

generated discrete, contiguous groups of basal ganglia voxels in 
locations consistent with presumed basal ganglia divisions (see 
Figure S2 in Supplementary Material for representative Cohort 
Two subjects and conjunction analysis for Cohort Two). Again, we 
could identify groupings of basal ganglia voxels consistent with the 
location of the dorsal caudate, the dorsal caudal putamen, and the 
ventral striatum in each hemisphere and subject.

Next, we examined whether functional connectivity maps derived 
from modularity optimization assignments were consistent across 
cohorts. As described above, for each of the three basal ganglia divi-
sions (i.e., the putative dorsal caudate, dorsal caudal putamen, and 
ventral striatum) we generated six whole-brain correlation maps 
for each subject (three putative divisions × 2 hemispheres). Each 
subject’s z-transformed whole-brain correlation map was used in 
a second level random-effects analysis involving one-sample t-tests 
(z > 3.00, k = 21, p < 0.05, Monte Carlo corrected). The random-
effects maps for the left hemisphere for Cohort Two (Figure  3, 

X	 Y	 Z	 Hemisphere	 Anatomical	 Z-score 

				    landmark

−19	 55	 −17	 Left	 Orbitofrontal cortex	 3.32

−3	 69	 2	 Left	 Ventromedial	 3.30 

				    prefrontal cortex

−25	 21	 −15	 Left	 Inferior frontal gyrus	 3.29

Ventral striatum: negative correlations

Frontal

20	 19	 49	 Right	 Superior frontal gyrus	 −4.51

15	 −7	 36	 Right	 Cingulate gyrus	 −4.24

10	 38	 45	 Right	 Superior frontal	 −3.64 

				    gyrus

34	 14	 28	 Right	 Middle frontal gyrus	 −3.57

−19	 19	 33	 Left	 Anterior cingulate	 −3.44 

				    cortex

Parietal

34	 −57	 53	 Right	 Superior parietal	 −4.21 

				    lobule

12	 −44	 22	 Right	 Posterior cingulate	 −3.92 

				    cortex

55	 −10	 18	 Right	 Postcentral gyrus	 −3.64

30	 −68	 44	 Right	 Inferior parietal	 −3.61 

				    lobule

Temporal

−53	 −13	 −18	 Left	 Middle temporal	 −4.34 

				    gyrus

58	 −11	 −21	 Right	 Inferior temporal	 −3.87 

				    gyrus

47	 −11	 −17	 Right	 Middle temporal	 −3.76 

				    gyrus

62	 −33	 −1	 Right	 Middle temporal	 −3.53 

				    gyrus

Occipital

−33	 −87	 6	 Left	 Middle occipital	 −3.64 

				    gyrus

Cerebellum

−32	 −84	 −20	 Left	 Cerebellum	 −3.53
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Figure 4 | Z-transformed rs-fcMRI maps from three representative 
subject’s modularity optimization assignments for the left hemisphere 
(putative dorsal caudate, left column, putative dorsal caudal putamen, 
middle column, and putative ventral striatum, right column, z > 2.00) are 
similar. Black circles depict regions identified from the random-effects analysis 

(superior frontal gyrus: lateral rendering, first column; anterior cingulate cortex, 
medial rendering, first column; ventral premotor cortex: lateral rendering, 
second column; pre-supplementary motor cortex: medial rendering second 
column; orbitofrontal cortex: ventral rendering, third column). Row 4. 
Conjunction image of all subjects rs-fcMRI maps (z > 2.00).

While this method appears to provide a substantial advance in the 
ability to parcellate the basal ganglia in individual subjects, it is not 
clear whether this method would successfully parcellate very small 
subcortical structures, for instance smaller basal ganglia nuclei such 
as the subthalamic nucleus and substantia nigra. First, it is difficult 
to distinguish these smaller basal ganglia nuclei from neighboring 
structures in BOLD scans (e.g., substantia nigra and the nearby 
ventral tegmental area, Aron et al., 2007). Second, small structures 
will necessarily yield a smaller number of voxels for analysis than 
will large structures. Modularity optimization algorithms ought to 
be more successful with larger networks (c. >100 nodes) because 
groupings in large networks are less influenced by the placement of 
individual edges. Therefore, the graph theory methods used in the 
present study may not be appropriate for the smaller networks gen-

erated from smaller structures. However, it is likely that the present 
methods would be appropriate for parcellating other larger, subcor-
tical structures (e.g., the thalamus) on a subject-wise basis.

In this manuscript we have only focused on characterizing 
three putative basal ganglia divisions. This focused look at putative 
basal ganglia divisions was predicated on the minimum number 
of groupings identified across subjects using modularity optimi-
zation. However, on average, modularity optimization identified 
6–7 groupings. Using rs-fcMRI, Di Martino et al. (2008) reported 
different patterns of cortical-basal ganglia functional connectiv-
ity for six ROIs placed in the caudate and the putamen. Thus, the 
average number of groupings identified with modularity optimiza-
tion converges with prior investigations of basal ganglia divisions 
in humans. Further work is needed to understand the sources of 
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exhibit white matter (WM) injury on clinical MRI scans, not all 
do, and it often isn’t until later school age that cognitive deficits 
become evident (Anderson and Doyle, 2003). Because earlier 
treatment is generally more effective for neurocognitive problems 
associated with prematurity, a method of more accurately identi-
fying those children at risk for developmental delay would be of 
tremendous clinical benefit.

Recent advances in neuroimaging offer an opportunity to bet-
ter characterize the effects of prematurity on brain structure. High 
resolution imaging identifies regional brain volumes that may be 
more sensitive to the effects of prematurity than overall structure 
(Kesler et al., 2004; Thompson et al., 2007; Tzarouchi et al., 2009), 
and diffusion tensor imaging suggests that fractional anisotropy 
identifies WM abnormalities not apparent on standard MRI scans 
(Miller et al., 2002; Anjari et al., 2007). In a recent review of neu-
roimaging in prematurity, 16 studies using diffusion tensor imaging 
and 10 high resolution structural studies were identified (Ment 
et al., 2009). However the effect of prematurity on brain function 
has been less well studied. This report focuses on one aspect of 
brain function, resting-state networks that are related to functional 
networks and can be obtained in sleeping children.

Only several studies have examined the RSNs in infants. In two 
studies Fransson et al. have presented results on the presence of 
RSNs. In the first study (Fransson et al., 2007) 12 pre-term infants 
were imaged 41-weeks gestational age and in the second, 19 term 
unsedated infants (Fransson et  al., 2009) were studied. In both 

Introduction
Patterns of low frequency spontaneous correlations in large-scale 
brain regions in humans have been detected (Biswal et al., 1995) 
from blood oxygenation level dependent (BOLD) functional mag-
netic resonance imaging (fMRI) signals collected at rest. These cor-
relations are used to obtain resting-state networks (RSNs), which 
may represent functional connectivity within the brain, and have 
been largely studied in adult populations (Buckner et al., 2008). 
Among these RSNs, a default mode network (DMN) has been iden-
tified which is characterized by a decrease in neuronal activation 
when the subject concentrates on an external task (Binder et al., 
1999; Raichle et al., 2001). Differences in the functional connectiv-
ity of RSNs have been implicated in neurological disorders such as 
Schizophrenia (Garrity et al., 2007; Rotarska-Jagiela et al., 2010) 
and Alzheimer’s disease (Greicius et al., 2004; Sorg et al., 2007). In 
this paper we study the maturation of RSN functional connectivity 
during early human development in healthy term born children and 
in former premature children between 18 and 36 months of age.

Extremely low birth weight (ELBW) premature infants have a 
high risk of developmental delay. Almost half of the ELBW infants 
go on to develop moderate to severe cognitive intellectual impair-
ment (Hack et al., 2004; Taylor et al., 2004; Vohr et al., 2004; Wilson-
Costello et al., 2005) and even premature children with normal 
IQs are at high risk for school failure due to deficits in executive 
function (Vicari et al., 2004). The mechanisms underlying these 
deficits are often not well understood. While many ELBW children 

Resting-state functional connectivity differences in  
premature children
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We examine the coherence in the spontaneous brain activity of sleeping children as measured 
by the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) signals. The results are described in terms of resting-state networks (RSN) and their 
properties. More specifically, in this study we examine the effect of severe prematurity on the 
spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, 
the temporal response properties of each of these networks, and the functional connectivity 
between them. Our results suggest that the anatomical locations of the RSNs are well developed 
by 18 months of age and their spatial locations are not distinguishable between premature and 
term born infants at 18 months or at 36 months, with the exception of small spatial differences 
noted in the basal ganglia area and the visual cortex. The two major differences between term 
and pre-term children were present at 36 but not 18 months and include: (1) increased spectral 
energy in the low frequency range (0.01–0.06 Hz) for pre-term children in the basal ganglia 
component, and (2) stronger connectivity between RSNs in term children. We speculate that 
children born very prematurely are vulnerable to injury resulting in weaker connectivity between 
resting-state networks by 36 months of age. Further work is required to determine whether 
this could be a clinically useful tool to identify children at risk of developmental delay related 
to premature birth.
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children and adults (Fair et  al., 2009; Supekar et  al., 2009). An 
interesting finding was that development of children to adults was 
accompanied by a decrease in connectivity of short range connec-
tions and an increase in long-range connectivity. In this paper we 
do not discuss such differences in network metrics.

Materials and Methods
Participants
In this study we recruited very low birth weight premature infants 
(≤1500  g at birth) and full-term children at 18–22  months and 
36–48 months of age. All of the subjects sustained normal develop-
ment and had no abnormalities on neurologic examination or on 
standard MRI scan. The subjects were categorized into four groups: 
(a) 16 premature infants at 18 months (P18), (b) 13 premature infants 
at 36 months (P36), (c) 9 full-term infants at 18 months (F18), and 
(d) 9 full-term infants at 36 months (F36). All experiments were done 
on sleeping children. The term children were not sedated while some 
premature children were lightly sedated with 50 mg/kg chloral hydrate 
administered orally. Prior to scanning, written informed consent was 
obtained from the parents and the study was approved by Institutional 
Review Board of the University of New Mexico. Light chloral hydrate 
sedation (50 mg/kg orally) was used for 11 of 16 premature infants at 
18 months and 9 of 13 premature infants at 36 months. The mean ges-
tational age for pre-term 18-month-old children was 28.7 weeks (±1.38, 
range 26.3–30.5 weeks) and the mean gestational age for pre-term 
36-month-old children was 29.9 weeks (±1.58, range 28–32 weeks).

Data Acquisition
Initially, a high resolution five-echo T1-weighted magnetization 
prepared rapid gradient-echo (MPRAGE) image was acquired 
on a 3T Siemens Trio scanner [TE  =  1.64, 3.5, 5.36, 7.22, and 
9.08 ms, TR = 2530 ms, flip angle = 7°, FOV = 256 mm, matrix 
size = 256 × 256, 1 mm3 isotropic voxel]. The resting-state data was 
collected from a gradient-echo echo-planar sequence [TE = 29 ms, 
TR = 2 s, FOV = 240 mm, matrix size = 64 × 64, 32 slices, thickness 
4.45 mm]. Resting-state data was collected for 5 min 16 s resulting 
in 158 volumes of BOLD fMRI data per subject.

Data Analysis
The data was preprocessed using a mixture of free and commercial 
packages including SPM1, GIFT2, AFNI (Cox, 1996) and MATLAB 
(The Mathworks Inc). The first four volumes of the functional data 
were discarded to account for T1 equilibrium effects. The remaining 
154 volumes of EPI data of each subject was first motion corrected 
(INRIA align) followed by slice time correction. The data was then 
de-spiked using AFNI. Each subject’s de-spiked EPI data was aligned 
to an infant’s template obtained from the subjects in our study. 
In order to compare the 18-month and the 36-month infants we 
pooled our data and obtained one common template. A two step 
procedure was used to reduce the effect of the adult template (Altaye 
et al., 2008). We first aligned all the infant T1 images to the adult 
MNI template. The mean of these infant T1 registered images was 
our study specific infant template. In the second step, the spatial 
normalization was repeated by registering each infant’s image to 

these groups RSNs were found in the sensory cortices, parietal 
and temporal areas, and the prefrontal cortex. Another study (Gao 
et al., 2009) compared DMNs and their functional connectivity in 
neonates, 1-year-old and 2-year-old infants. They found the pres-
ence of an incomplete DMN in neonates, which was developed in 
1-year olds and was similar to adults in 2-year olds. Recently longi-
tudinal neural network development was studied in pre-term chil-
dren (Smyser et al.) from postmenstrual age of 26–40 weeks. They 
were able to find RSNs in various cortical regions and map their 
spatial growth longitudinally as a function of child’s age. Although 
the presence of RSNs have been demonstrated in infants as early 
as 42 weeks, no study has examined the effects of prematurity on 
the spatial and temporal properties of RSNs systematically. Our 
goal was to compare age and prematurity dependent RSN property 
differences and their functional network connectivity (FNC) (Jafri 
et al., 2008). Forty seven children participated in this study, where we 
compare differences in RSNs in premature (≤1500 g) and full-term 
children imaged at 18–22 months and 36–48 months of age.

Temporally coherent networks of low frequency spontaneous 
oscillations were found from BOLD data collected on sleeping chil-
dren. We call these networks as RSNs to mean networks found when 
the subjects were not actively doing a specific task. This does not 
exclude the presence of these networks during a task as well.

Currently there are two main methods for doing rs-fcMRI analysis. 
The first method consisted of the seed based correlation approach in 
which few region of interest (ROI) time series are selected a priori and 
voxelwise cross-correlation is computed across the whole brain (Fox 
et al., 2005). The ROI approach is more suitable to study adult resting 
fMRI data as the ROI’s are well defined by many researchers and may 
not be completely evolved in a younger population (Fair et al., 2008). 
The second approach to identify RSNs uses independent component 
analysis (ICA). The advantage of ICA is that it is a model free data-
driven approach that decomposes the data into linear mixtures of 
spatially independent and temporally coherent source signals/compo-
nents. The applicability of the technique to resting fMRI data to extract 
RSNs has been demonstrated previously (Beckmann and Smith, 2004; 
Greicius et al., 2004; Calhoun and Adali, 2006; Damoiseaux et al., 
2006). In this paper we use a ROI based rs-fcMRI analysis, where the 
ROIs are defined by the ICA spatial maps. Rather than define ROIs 
based on some atlas that may not be representative of functional units 
in infants, we treat ICA as a clustering algorithm to define regions with 
high within cluster correlations. We define functional ROIs based on 
the data itself. Although, the goals of both these methods is to identify 
functional connectivity, the network nodes and the time courses used 
for functional connectivity are different in the two methods. The ICA 
method defines a spatial map across the whole brain while the ROI 
based method uses locally defined clusters. The ICA method uses 
time courses associated with each ICA spatial map, while the ROI 
based method uses BOLD time response local to that specific ROI 
after removing effects of physiological noise. Thus there are significant 
differences between the two approaches and it is reassuring that the 
results of the two methods are similar.

Once the functional connectivity network is obtained graph-
theoretic metrics can be used to study network properties (Bullmore 
and Sporns, 2009). These include parameters such as path-length, 
network clustering, modularity, and small-world topology. At least 
two recent papers discuss differences in network properties between 

1www.fil.ion.ucl.ac.uk/spm
2http://icatb.sourceforge.net
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where k indexes spatial location, and the signal has energy at two 
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the total energy will be higher at a frequency where the contributions 
are coherent. This shows that a stronger within network connectiv-
ity at a frequency can lead to a higher power spectrum peak for that 
frequency. Unfortunately we cannot conclude the reverse. If the power 
spectrum has higher energy at some frequency, we cannot conclude 
that the within network correlations are higher at that frequency.

Another advantage of a signal with higher energy is that in the 
presence of noise, the accuracy of correlation coefficient calculation 
increases for higher signal amplitudes. The correlation coefficient 
between A

1
cos(ω

0
t+α

1
)+θ1(t) and A

2
cos(ω

0
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2
) is cos(α

1
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2
) if 

noise θ(t) is zero. On the other hand, the correlation coefficient 
tends to zero with increasing noise variance. Thus in the absence 
of noise, the signal amplitude does not matter for correlation cal-
culations; but with noise, a higher signal-to-noise ratio improves 
accuracy of correlation coefficient estimates, making it easier to 
detect connectivity.

Two sample t-tests (assuming unequal variance) were performed 
to investigate the effects of age and prematurity on power spectrum 
differences. Significant p-values are reported after correcting for 
multiple comparisons using false discovery rate (FDR) (Benjamini 
and Hochberg, 1995). Significance of the observed effect was also 
verified by permutation tests. Subject group membership was 
randomly permuted 10000 times and null distribution of group 
differences was obtained. The probability of observed difference 
given the empirical null was obtained. This p-value was corrected 
for multiple comparisons.

Functional Connectivity
To assess the strength of functional connectivity within an ICA net-
work across groups, two sample t-tests (assuming unequal variance) 
were performed on the spatial maps to test age and term related differ-
ences. To restrict the search space, first a one-sample t-test for a given 
spatial map was performed for the corresponding group. For example 
to test term related effect in the 18-month kid group, for each ICA 
spatial map a one-sample t-test was performed on all of the 18-month 
kid’s data. This map was thresholded at a FDR corrected p < 0.05 
value and all the positively active voxels in this thresholded map were 
used to define a mask. The two sample t-tests for that independent 
component were then performed within these voxels. The resulting 
maps were thresholded at an FDR corrected value of p < 0.05.

Functional Network Connectivity
The 14 (manually selected) resting-state networks were divided 
into the following five functionally defined major groups with sub-
networks. These being: (1) Visual networks, (2) Default mode net-
works, (3) Temporal network, (4) Motor network, and (5) Basal 
ganglia. These are discussed in Table 1.

the infant template found in the first step. The spatially normalized 
images were resampled to 3 mm isotropic cubic voxels and then 
smoothed with a 6-mm Gaussian kernel. Finally each voxel’s time 
series within the brain tissue was normalized to a mean of 100.

All of the preprocessed data from both the age groups was ana-
lyzed together in a single group ICA framework as implemented in 
the GIFT package. A two step data reduction approach using prin-
cipal component analysis (PCA) was taken prior to performing the 
ICA analysis. In the first step, 80 principal components were obtained 
from each individual subject data to retain most of the subject specific 
variance. Then each of the subject’s reduced data was concatenated 
in time and a second PCA was performed to retain 30 components. 
Recent extensive experiments on simulated and real fMRI data sets in 
our lab have shown that accounting for greater subject specific vari-
ance by retaining more components at the first PCA reduction step 
yields more reliable group and subject specific back reconstructed 
maps using GIFT package (Erhardt et al., 2010). Then Infomax ICA 
algorithm was used to obtain 30 independent components. The sta-
bility of the estimated components was ensured using 10 ICASSO 
(Himberg and Hyvarinen, 2003) iterations. Individual subject spe-
cific maps were subsequently obtained using the improved back 
reconstruction algorithm implemented in GIFT package.

Out of the 30 independent components, a set of 14 resting-
state networks within the cortex were identified (Figure 1). These 
networks are listed in Table 1. The remaining components corre-
sponded to subject’s motion or were spatially confined to cerebro-
spinal fluid (CSF), and blood vessels. The independent component 
spatial maps obtained were first z-scored and one-sample random 
effects maps for the whole group were generated. Each subject’s 
reconstructed ICA time courses were orthogonalized with respect 
to their estimated motion parameters, and representative WM and 
CSF signals. CSF and WM regions were identified based on the 
infant template found earlier. Several small ROI’s were manually 
drawn in the CSF and WM regions of the template and the mean 
time signal in CSF and WM was calculated for each subject for use 
in orthogonalization. Spectral analysis was performed on these 
time courses. Subject specific time courses were variance normal-
ized. Time course spectra were then determined using multi-taper 
spectral estimation3. In our data, the power spectrum had a peak 
at approximately 0.03 Hz and we compared for the differences in 
the power spectrum within the low frequency range (0.01–0.06 Hz) 
by averaging across this range for the four infant groups. The 
average spectral power was obtained in the low frequency range 
0.01–0.06 Hz because it has been suggested in the literature that 
the cross-correlations between resting-state BOLD data is reflected 
in frequencies less than 0.1 Hz (Cordes et al., 2001).

An increased power density at a frequency can be caused by 
higher within network connectivity at that frequency. In addition, 
higher power density at a frequency makes it easier to detect con-
nectivity between networks associated with that frequency. The ICA 
time course has contributions from the whole brain weighted by the 
ICA spatial map. For simplicity we assume that there are only two 

voxels and two frequencies present. The ICA time course can then be 

expressed as x t A t B tk k k k k k( ) cos( ) cos( )= ∑ + + ∑ += =1
2

0 1
2

02ω α ω β , 

3http://chronux.org
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We computed correlation between each pair of ICA time courses 
(Jafri et  al., 2008). These correlation values were converted to 
z-scores using Fisher’s Z transform [z = 1/2ln(1+r)/(1−r)], and two 
sample t-tests were performed on these z-scores to probe age and 
term related effects. In order to calculate the group mean correla-
tion, we averaged the Z-scores and back calculated the correlation. 
The results of differences in correlations between different groups 
are presented similarly. We calculate the Z-score for the group mean 
difference and for presentation convert it back to a correlation.

There is considerable discussion in the literature in merits of 
simply averaging the untransformed correlations (Schmidt-Hunter 
method, Schmidt and Hunter, 1999) or averaging the Z-scores after 
transformation. We believe that both the methods will give similar 
results. Monte-Carlo simulation studies have shown that Schmidt-
Hunter method results in estimates with an under-bias and the 
Fisher’s transform method leads to a slight over-bias (Law, 1995). 
Even for the Schmidt-Hunter method the significance is tested by 
using Fisher’s Z transform. The conversion of Z-score back to a 
correlation is less common but has been used previously in fMRI 
data analysis (see Gao et al., 2009).

Region of Interest Analyses
Additionally region of interest (ROI) based connectivity analysis 
was also performed. One-sample t-tests were performed on the 14 
group ICA networks. These maps were thresholded at an arbitrary 
value of t > 5 and clusters of at least 80 contiguous voxels were 
obtained. A total of 44 regions of interest (ROIs) were obtained 
from all of the 14 independent components. A multiple regression 
was performed on each subject’s preprocessed BOLD fMRI data 
with their estimated motion parameters and their WM and CSF 
signals as regressors and residuals were obtained. ROI time courses 
for the clusters defined above were obtained by weighted average of 
these residual fMRI time series, free of physiological and motion 
artifacts, within voxels of each cluster. The weighting factor, a value 
in the range 0–1, was obtained by scaling the contribution or load-
ing value of the voxel in the cluster with respect to all the voxels 
in the spatial map that survived a threshold of t > 5. Correlation 
matrices between these ROI time courses were computed for each 
subject. This resulted in 946 correlations per subject. These values 
were Fisher Z transformed. PCA was performed on the Fisher Z 
transformed correlation matrix of all subjects (946 × 47 matrix). 
The loading parameters/principal component coefficients of first 
and second eigenvectors were used to probe for age and term related 
effects. For visualization, correlation matrix projected into first two 
eigenvector spaces is plotted. The loading values for each group 
were plotted in the inset of these figures. Also the mean difference 
Fisher Z transformed maps between full-term and pre-term infants 
at 18  months and 36  months were obtained. These maps were 
inverse Z transformed to obtain a mean difference in correlation 
strength across groups and plotted.

Results
Spatial maps
All of the children at 18 and 36 months exhibited well developed 
resting-state networks. Except for the right and left lateral fronto-
parietal networks, we found all other major RSNs found in adults. 
The children exhibited a sub-cortical RSN (IC12) not seen in the 
adult population. The hippocampal formation is usually considered 

as part of the DMN. In our ICA analysis it manifested within the 
component consisting of primarily visual regions (IC22 and IC23). 
The spatial maps of RSNs are summarized in Figure 1, and Table 1 
summarizes the network properties with their functional grouping. 
The volumes in Table 1 were calculated by thresholding the spatial 
maps at an arbitrary value of t > 5 and retaining clusters of at least 
80 contiguous voxels.

To compare the functional connectivity differences within each 
IC, we performed two sample t-tests with subjects as random 
factor probing the differences in spatial extent of independent 
component networks with age or term. Our data revealed that 
spatially IC’s were similar between pre-term and full-term chil-
dren at both ages. However, a main effect of age was observed 
(p < 0.05 whole brain FDR corrected) in IC02, the bilateral visual 
cortex and IC12, basal ganglia including bilateral amygdala and 
putamen (Figure 2).

Time courses
The power spectrum of the temporal response for each network 
was compared for group differences across subjects. The signal 
power had a maximum in the range (0.02–0.05 Hz) for all sub-
jects. This supports the trend in resting-state analysis to filter the 
data below 0.1 Hz. The signal power in the low frequency range 
(0.01–0.06 Hz) was higher in pre-term infants at FDR corrected 
p < 0.05 than term born infants at 36 months in IC12, bilateral 
amygdala, and putamen (Figure 3). Although there was a trend 
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Figure 1 | Group ICA estimated resting-state patterns grouped into: (A) 
Visual resting-state networks, (B) Default mode networks, (C) Basal 
ganglia, (D) Temporal networks, and (E) Motor networks. Group maps are 
z-scored and voxels above a z thresholded of 2 are displayed. The left 
hemisphere of the brain corresponds to the left side of the image.
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Table 1 | Resting-state networks obtained from group ICA. Clusters of at least 120 voxels at a threshold t > 5 are reported.

Component number, Talairach regions	 Broadman areas	 Volume (mm^3)	 Maximum T	 MNI coordinates in mm LPI

(1) Visual networks

IC02 – Bilateral visual

Bilateral lingual gyrus	 17,18	 2820	 24	 (1,−93,−9)

IC16 – Bilateral medial visual

Bilateral medial primary visual areas	 17	 3800	 34.1	 (2,−81,9)

IC15 – Bilateral secondary visual

Bilateral secondary visual areas	 19,39	 6500	 28	 (39,−80,−1)

Right middle cingulate cortex	 24	 144	 9.8	  (2,6,34)

IC22 – Right visual/hippocampal formation

Right lingual and right parahippocampal gyrus	 17,30	 4820	 25.3	 (20,−59,3)

Left parahippocampal gyrus	 36	 585	 10	 (−24,−51,−8)

IC23 – Right visual/hippocampal formation

Left lingual and left parahippocampal gyrus	 17,30	 5120	 30.9	  (−12,−53,0)

Left paracentral lobule	 31	 384	 7.2	  (−7,−33,52)

Right precentral gyrus	 4	 147	 10.2	 (46,−26,68)
(2) Default mode networks

IC17 – Post. cingulated cortex/Inferior parietal lobe

Bilateral posterior cingulate cortex	 31	 3000	 32.5	 (0,54,5)

Left angular gyrus	 39	 1230	 18.1	 (−45,−73,32)

Right angular gyrus	 39	 1110	 17.4	 (45,−70,32)

Bilateral mid orbital gyrus		  466	 8.9	 (0,54,5)

IC27 – Bilateral angular gyrus/Sup, medial gyrus

Bilateral superior medial frontal gyrus	 8	 2170	 18.8	 (1,34,50)

Bilateral precuneus		  887	 15.8	 (−1,−56,50)

Left angular gyrus		  211	 15.2	 (−48,−68,32)

Left hippocampus	 37	 161	 10.9	 (−18,−20,−15)

Right hippocampus	 37	 121	 10.2	 (18,−21,−11)

IC28 – Superior frontal gyrus

Bilateral dorsal medial prefrontal cortex	 6	 4890	 30.7	 (2,7,62)

IC11 – Bilateral anterior cingulate

Bilateral anterior cingulate cortex	 32	 4000	 27.2	 (0,34,21)

Bilateral cuneus	 19	 375	 7.6	 (4,−93,28)
(3) Temporal networks

IC25 – Bilateral posterior temporal cortex

Right superior temporal gyrus		  3600	 25.9	 (56,−27,3)

Left superior temporal gyrus		  1879	 17.2	 (−51,−37,10)

Bilateral precuneus	 7	 612	 7.7	 (0,−54,67)

Bilateral medial frontal gyrus	 6	 151	 6.7	 (−2,−16,54)

IC26 – Bilateral middle temporal cortex

Right rolandic operculum	 43	 3189	 24	 (54,−11,25)

Left rolandic operculum	 43	 2140	 16.9	 (−47,−18,25)

Bilateral cuneus	 19	 476	 6.5	 (0,23,40)

Bilateral medial frontal gyrus	 32	 233	 9	 (1,23,40)
(4) Motor cortex

IC03 – Right motor cortex

Right precentral gyrus	 4	 3390	 26.3	 (34,−28,65)

Left postcentral gyrus	 5	 125	 8.2	 (−37,−46,69)

IC10 – Left motor cortex

Left precentral gyrus	 4	 4116	 22.2	 (−31,−33,61)

Right calcarine gyrus	 17	 293	 7	 (13,−76,−3)

Right postcentral gyrus	 5	 138	 8.5	 (43,−46,65)
(5) Basal ganglia

IC12 – Bilateral putamen/amygdala

Left putamen		  1700	 26.2	 (−24,1,5)

Right putamen		  1670	 20	 (26,1,5)
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lower half of the correlation matrix excluding the diagonal is 
shown. The ICA components have been ordered according to the 
groups indicated in Table 1 (Visual, DMN, Motor, Temporal, and 
the Basal Ganglia region). We probed for differences in correla-
tion between these sub-networks as a function of prematurity. 
The results are summarized in Figure 4B. In the default mode 
networks, we did not observe any significant difference in cor-
relation between the pre-term and term born children nor did 
we observe any age related effects. In the visual network the 
pre-term children had higher correlation between the Bilateral 
secondary visual (IC15) and the Bilateral medial visual (IC16) 
(p = 0.03, FDR corrected) at 18 months. For the temporal/motor 
network there was significantly higher correlation in pre-term 
infants between left motor cortex (IC10) and the bilateral pos-
terior temporal cortex (IC25) at 18 months and at 36 months of 
age (p < 0.05, FDR corrected). Connectivity differences between 
the sedated and unsedated pre-term children were studied for 
the two age groups. The difference in mean correlation values is 
plotted for 18-month group (Figure 5A) and 36-month group 
(Figure  5B). Since the number of unsedated children is low, 
significance of differences was assessed using a permutation test. 
The cells which depict significant correlation differences after 
multiple comparison correction are enclosed in a black square. 
The effect of sedation seems to be more in the 18-month children. 
None of the correlation strength differences reached significance 
for 36-month group.

Functional network connectivity based on ROI analysis
Spatial clusters obtained from independent component analysis 
were used to define ROI’s. Mean ROI time courses were computed 
from each subject’s preprocessed fMRI time courses that were 

for signal power in the low frequency range (0.01–0.06 Hz) to be 
higher in pre-term infants in several RSNs, we did not see sig-
nificant differences. A similar comparison was done comparing 
18-month and 36-month-old infants. No age dependent differ-
ences were observed in the spectral power of respective IC time 
courses. Differences between the time course spectral properties 
for the sedated and unsedated children were compared for the 
18-month and the 36-month group and no significant differences 
were found. The signal power in the low frequency range (0.01–
0.06 Hz) was higher in pre-term infants even after the sedated 
children were removed.

Functional network connectivity based on ICA components
Functional network connectivity between two independent 
components was defined as the correlation between their time 
courses. A correlation matrix between each pair of 14 ICA com-
ponents was calculated and is shown in Figure  4A. Only the 

X = 9Y = 99Z = -9

X = 18Y = -18Z = -3

L R IC12

IC02

Figure 2 | Independent component maps depicting significant age 
related differences in two sample random effects analysis. Maps are 
thresholded at a whole brain voxelwise FDR corrected p < 0.05.
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Figure 3 | Spectral analysis of ICA time courses of basal ganglia (IC12) 
component. Plotted here is the mean spectral power for pre-term children 
(blue) at 36 months along with their standard errors (cyan) and mean spectral 
power for full term children (red) at 36 months along with their standard errors 
(yellow).

Table 2 | ROI labels for Figures 5 6 and 7.

R – Right	 IFG – Inferior frontal gyrus

Vis – Visual	 PreCG – Precentral gyrus

Cun – Cuneus	 PoCG – Post central gyrus

PreCu – Precuneus	 HF – Hippocampal formation

Put – Putamen	 Bi – Bilateral

FFG – Fusiform gyrus	 S – Secondary

Ang – Angular gyrus	 MOG – Middle occipital gyrus

Amy – Amygdala	 MeFG – Medial frontal gyrus

Hip – Hippocampus	 dMePFC – Dorsal medial prefrontal cortex

L – Left	 SMA – Supplementary motor area

SPL – Superior parietal lobe	 STG – Superior temporal gyrus

IPL – Inferior parietal lobe	 ITG – Inferior temporal gyrus

SFG – Superior frontal gyrus	 ACC – Anterior cingulate cortex

	 MCC – Middle cingulate cortex
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across all subjects and the corresponding regions are indicated in 
Figure 6B. Time courses were arranged such that neighboring brain 
areas are placed closer in the matrix. A strong positive correlation 
can be observed among different visual areas and also among motor 

orthogonalized with respect to their motion parameters, CSF and 
WM signals. We then investigated the effects of prematurity and 
age in the correlation between these time courses. Figure 6A depicts 
the overall correlation between these ROI time courses collapsed 
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Figure 6 | (A) Mean correlation matrix of the all the subjects for all of the 
ROI pairs. The correlation values obtained for each pair were Fisher Z 
transformed, averaged across all of the subjects and finally inverse Fisher Z 
transformed to obtain a mean correlation value for each pair. The color coding 

next to ROI labels shows the grouping of regions based on their location in 
brain. Abbreviations of labels are listed in Table 2 and the brain regions are 
displayed in (B). (B) Brain maps depicting the weighted ROI masks used in 
ROI analysis.
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Figure 7 | Principal component analysis results: Individual correlation 
values of all of the subjects projected into first (A) and second 
(B) principal component space. The insets in each panel show bar 
graphs of group mean loadings with standard errors for each of the 
four groups for the corresponding component score. Subject specific 

loadings are plotted in circles overlaid on top of bar graphs. * represents 
significant difference between pre-term and full term groups for 
corresponding age groups. In inset of (B), for the pre-term group, loadings 
for unsedated children are displayed in filled circles shifted slightly to 
the right.

networks. Also positive correlation exists between visual and motor 
networks, and motor and frontal networks. Results from the PCA of 
subject specific correlation matrices are presented in Figures 7A,B. 
The PCA we did is a variant on the standard PCA. In the stand-
ard analysis the subjects would be the number of samples and the 
mean would be subtracted across subjects. We changed the roles 
of samples and their attributes, with the mean along the attributes, 
the column of the correlation matrix (946 × 47) matrix being sub-
tracted. This has the effect of the first principal component score 
(Figure 7A) reflecting the pattern of a shifted group mean plot 
(Figure 6). The corresponding subject loadings (inset Figure 6A) 
did not show any difference across groups. The second principal 
component score represents modulation or variances in the con-
nectivity among different regions. Here a main effect of prematurity 
in the group loadings (inset Figure 7B) is evident (p = 0.009). The 
unsedated subjects in the premature group are marked with fill 
in the dots. The observed difference in loadings is preserved in 
the 36-month children as most of the unsedated kids fall in the 
same distribution as the sedated kids do. Insights into the second 
principal component score map can be obtained from the group 
differences in the correlation maps between pre-term and full-term 
kids depicted in Figures 8A,B for ages 18 months and 36 months 
respectively. It should be noted that stronger connectivity among 
visual areas in pre-term infants compared to full terms at both 
ages, a stronger connectivity among visual and motor networks 

and motor and frontal regions in full-term infants compared to 
pre-term infants is reflected in the second PCA score. The third 
principal component score mainly corresponded to regions of weak 
correlations (values of r < 0.1) in mean correlation matrix shown in 
Figure 6. So the third and higher PCA components were not consid-
ered for further analysis. Connectivity differences between sedated, 
and unsedated pre-term children was studied for the two age groups 
(Figure 9). A trend of stronger connectivity differences between 
sedated and unsedated children is apparent in the 18-month group, 
but not in the 36-month group. None of the differences survived 
multiple comparison correction.

Discussion
The effects of prematurity and age on the RSNs of children at 18 and 
36 months was investigated. Our group independent component 
analysis yielded RSNs similar to those observed in adults. Visual 
(Figure 1A), default-mode (Figure 1B), temporal (Figure 1D) and 
motor networks (Figure 1E) consistently observed in adults (for 
reference see Figure 1 in both Damoiseaux et al., 2006; Calhoun 
et al., 2008) were present as early as 18 months. The fronto-parietal 
network (Figures 1C,D Damoiseaux et al., 2006), which is usually 
lateralized in adults is not present in our data. This network is 
consistently shown to be involved in active memory tasks and may 
not be present prior to 3 years of age. We observed an additional 
network in the basal ganglia that encompasses caudate nucleus, 

25

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 23  | 

Damaraju et al.	 Prematurity and resting-state networks

R Put: IC17
R Amy, Put: IC12
L Amy, Put: IC12

R Put: IC03
Bi MCC: IC26

MCC: IC15
Bi dMePFC: IC28

Bi SFG: IC27
Bi MeFG: IC25

Bi SMeFG: IC25
Bi MOG: IC17
Bi ACC: IC11

L IFG, Ins: IC26
R IFG, Ins: IC26

L STG: IC25
R STG: IC25
L MCC: IC23
R ITG: IC17

R PoCG: IC23
L PoCG: IC22

R PreCG: IC17
Bi SMA: IC15

R PoCG: IC10
L Motor: IC10
L PoCG: IC03
R Motor: IC03

R Ang: IC27
L Ang: IC27

Bi SPL: IC25
Bi PCC, IPL: IC17

R Hip: IC27
L Hip: IC27

L FFG,PHG: IC22
Bi PreCu: IC27

Bi Cun: IC26
L Vis, HF: IC23
R Vis, HF: IC22
Bi Me Vis: IC16
 Bi S Vis: IC15 

Bi Cun: IC11
R SOG: IC10

R Vis: IC10

L Put: IC17

R
 P

ut
: I

C
17

R
 A

m
y,

 P
ut

: I
C

12
L 

A
m

y,
 P

ut
: I

C
12

R
 P

ut
: I

C
03

B
i M

C
C

: I
C

26
M

C
C

: I
C

15
B

i d
M

eP
FC

: I
C

28
B

i S
FG

: I
C

27
B

i M
eF

G
: I

C
25

B
i S

M
eF

G
: I

C
25

B
i M

O
G

: I
C

17
B

i A
C

C
: I

C
11

L 
IF

G
, I

ns
: I

C
26

R
 IF

G
, I

ns
: I

C
26

L 
S

TG
: I

C
25

R
 S

TG
: I

C
25

L 
M

C
C

: I
C

23
R

 IT
G

: I
C

17
R

 P
oC

G
: I

C
23

L 
P

oC
G

: I
C

22
R

 P
re

C
G

: I
C

17
B

i S
M

A
: I

C
15

R
 P

oC
G

: I
C

10
L 

M
ot

or
: I

C
10

L 
P

oC
G

: I
C

03
R

 M
ot

or
: I

C
03

R
 A

ng
: I

C
27

L 
A

ng
: I

C
27

B
i S

P
L:

 IC
25

B
i P

C
C

, I
P

L:
 IC

17
R

 H
ip

: I
C

27
L 

H
ip

: I
C

27
L 

FF
G

,P
H

G
: I

C
22

B
i P

re
C

u:
 IC

27
B

i C
un

: I
C

26
L 

V
is

, H
F:

 IC
23

R
 V

is
, H

F:
 IC

22
B

i M
e 

V
is

: I
C

16
B

i S
 V

is
: I

C
15

 
B

i C
un

: I
C

11
R

 S
O

G
: 

IC
1

0
R

 V
is

: I
C

10
B

i P
 V

is
: I

C
02

R Put: IC17
R Amy, Put: IC12
L Amy, Put: IC12

R Put: IC03
Bi MCC: IC26

MCC: IC15
Bi dMePFC: IC28

Bi SFG: IC27
Bi MeFG: IC25

Bi SMeFG: IC25
Bi MOG: IC17
Bi ACC: IC11

L IFG, Ins: IC26
R IFG, Ins: IC26

L STG: IC25
R STG: IC25
L MCC: IC23
R ITG: IC17

R PoCG: IC23
L PoCG: IC22

R PreCG: IC17
Bi SMA: IC15

R PoCG: IC10
L Motor: IC10
L PoCG: IC03
R Motor: IC03

R Ang: IC27
L Ang: IC27

Bi SPL: IC25
Bi PCC, IPL: IC17

R Hip: IC27
L Hip: IC27

L FFG,PHG: IC22
Bi PreCu: IC27

Bi Cun: IC26
L Vis, HF: IC23
R Vis, HF: IC22
Bi Me Vis: IC16
 Bi S Vis: IC15 

Bi Cun: IC11
R SOG: IC10

R Vis: IC10

L Put: IC17

R
 P

ut
: I

C
17

R
 A

m
y,

 P
ut

: I
C

12
L 

A
m

y,
 P

ut
: I

C
12

R
 P

ut
: I

C
03

B
i M

C
C

: I
C

26
M

C
C

: I
C

15
B

i d
M

eP
FC

: I
C

28
B

i S
FG

: I
C

27
B

i M
eF

G
: I

C
25

B
i S

M
eF

G
: I

C
25

B
i M

O
G

: I
C

17
B

i A
C

C
: I

C
11

L 
IF

G
, I

ns
: I

C
26

R
 IF

G
, I

ns
: I

C
26

L 
S

TG
: I

C
25

R
 S

TG
: I

C
25

L 
M

C
C

: I
C

23
R

 IT
G

: I
C

17
R

 P
oC

G
: I

C
23

L 
P

oC
G

: I
C

22
R

 P
re

C
G

: I
C

17
B

i S
M

A
: I

C
15

R
 P

oC
G

: I
C

10
L 

M
ot

or
: I

C
10

L 
P

oC
G

: I
C

03
R

 M
ot

or
: I

C
03

R
 A

ng
: I

C
27

L 
A

ng
: I

C
27

B
i S

P
L:

 IC
25

B
i P

C
C

, I
P

L:
 IC

17
R

 H
ip

: I
C

27
L 

H
ip

: I
C

27
L 

FF
G

,P
H

G
: I

C
22

B
i P

re
C

u:
 IC

27
B

i C
un

: I
C

26
L 

V
is

, H
F:

 IC
23

R
 V

is
, H

F:
 IC

22
B

i M
e 

V
is

: I
C

16
B

i S
 V

is
: I

C
15

 
B

i C
un

: I
C

11
R

 S
O

G
: I

C
10

R
 V

is
: I

C
10

B
i P

 V
is

: I
C

02

         36 m : full - pre     18 m : full - preA B

−0.2−0.100.10.20.3 −0.3

Figure 8 | Difference in ROI based group average correlation maps between full-term and pre-term children at age 18 months (A) and at 36 months (B). 
The cells enclosed in black square represent, significant connectivity difference between groups based on a two sample t-test assuming unequal variance and 
surviving and FDR corrected threshold of p < 0.05.
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Figure 9 | Connectivity differences in the ROI based functional 
connectivity between pre-term unsedated and sedated children for the 
18 month (A) and the 36 month (B) groups. Although no significant 

differences were observed at an FDR corrected p < 0.05 for either groups, a 
trend towards higher connectivity for unsedated children was observed for 
18-month group as compared to sedated children.

26

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 23  | 

Damaraju et al.	 Prematurity and resting-state networks

putamen and amygdala. This is consistent with the recent finding 
by Fransson et al. (2009) who observed the network in term born 
infants scanned when they were sleeping naturally. The sensori-
motor component (Figure 1E) showed predominant hemispheric 
lateralization with a small but significant cluster in contralateral 
hemisphere. This is supported by a recent study by (Liu et al., 2008) 
in which they observed the same unilateralization of the network in 
9 out of 11 infants scanned at 12 months. This effect is speculated 
to be mediated by the breakdown of effective cortical connectivity 
in the motor cortex during certain stages of sleep.

The same spatial maps existed in premature as well as term 
born children at both ages suggesting a similar pattern of network 
development. This finding should be interpreted with caution, how-
ever, as only premature children with normal development and 
normal brain structures were included. Therefore this may only 
suggest that prematurity per se does not interfere with the normal 
process of functional brain network development. Development 
of functional brain networks may indeed be affected by lesions 
sometimes associated with prematurity (such as periventricular 
leukomalacia or intraventricular hemorrhage), or with more subtle 
injury resulting in cognitive deficits that are not clinically apparent 
until subjects are older.

The role of different frequency bands towards functional con-
nectivity in adults has been previously studied (Wu et al., 2008). 
They showed that 0.01–0.06 Hz band demonstrated strong corti-
cal connections, while connections between limbic structures was 
distributed over a wider frequency range (0.01–0.14 Hz). Although 
we did not compare the role of different frequency bands towards 
functional connectivity we did see higher power density in the 
0.01–0.06 Hz band in pre-terms at 36 months of age in amygdala 
and putamen regions (Figure 3).

The two methods of calculating network connectivity (ICA 
components and hybrid ROI approach) gave similar group mean 
connectivity patterns as seen by comparing Figures 4A and 6. One 
difference between them was that there were considerable more 
negative correlations present with the ICA method. The similarity 
is remarkable and one reason for the differences can be that the 
ICA spatial maps extend over the whole brain and can in part be 
negative. In the ROI method we obtained the regions from only the 
positive part of the ICA map which had a t-value >5. The patterns 
for the difference between premature and full-term children were 
also similar with two methods (compare Figures 4B and 8). In the 
visual area the premature children had higher connectivity at both 
18 months and 36 months of age with both methods of analysis. 
However, regions with statistically significant network connectiv-
ity were different between the two methods. In the ICA method 
we found significant differences in connectivity only in the visual 
area and between the temporal and the motor cortex, while with 
the hybrid ROI method we found significant differences in motor – 
frontal and the motor – visual areas.

A significant difference we found was stronger connectivity in the 
resting-state networks in term born children at 36 but not 18 months 
of age compared to former premature children. This was consistently 
identified in the two strongest networks present: motor – frontal 
and motor – visual networks (Figure 7). Prior work by Chugani 
(1998) using PET scans in the first year of life showed regional 
changes in cerebral metabolism that occurred starting in the primary 

sensory motor cortex and deep gray matter (newborn) to parietal 
lobes (3 months) to frontal lobes (8 months). A somewhat simi-
lar pattern of myelination occurs, with primary sensorimotor and 
visual pathways myelinating before parietal and finally frontal lobes 
(for review see Marsh et al. (2008)). It is of interest that networks 
involving the motor (and possibly premotor) and visual areas were 
the strongest we identified, raising the possibility that resting-state 
network development, although occurring later, follows a similar 
pattern as does early brain metabolism and myelination. In our 
subjects there was consistently stronger network connectivity in 
the term born children compared to premature children. Thus, the 
connectivity, not simply the presence, of resting-state networks may 
be particularly sensitive to the effects of prematurity.

Only minor effects of age were observed spatially in our group 
of children between 18-months and 36-months old. The children 
at 36 months exhibited a stronger contribution to visual cortex and 
basal ganglia components compared to 18-month sample. Similarly, 
the only difference in the time course of the premature and the 
term born infants was in the basal ganglia network. It should be 
pointed out that our conclusions are dependent on our methods of 
analysis. Our method of back-projection of group spatial ICA maps 
and time courses to individual subjects does preserve differences 
but enhancing differences is not the primary objective in the initial 
PCA data reduction step and subsequent ICA analysis. Alternate 
methods which incorporate prior information about the subject’s 
group are being developed and may increase sensitivity to group 
differences (Sui et al., 2009a,b).

Our ROI based functional connectivity analysis was based on 
regions-of-interest being defined by ICA spatial maps. We avoid 
selecting ROIs based purely on anatomical considerations, or some 
form of atlas. Instead we use the data itself to define functionally 
connected regions. We treat ICA as a means of cluster analysis, 
where disjoint brain regions are identified with correlated BOLD 
response. An advantage of this hybrid ROI approach is that by 
decomposing an ICA network into smaller contiguous clusters 
allows us to define connectivity between regions whose function 
is known from prior work. Our method is not based on pre-defined 
atlas with sharp boundaries but clusters and the associated weight-
ing function obtained from the data itself. Thus functional associa-
tions in the data are preserved and the data defines the location 
and weighting of the cluster. A disadvantage of this ICA based 
cluster definition is that we have not taken any advantage of ICA’s 
filtering properties. In ICA the time course of one voxel is factored 
into multiple time courses which can be shared between different 
ICA networks and those associated with noise get factored out into 
separate components. In the proposed hybrid method we do not 
have this advantage and each voxel’s time course had to be further 
filtered to remove effects of physiological noise. The hybrid method 
does use ICA to calculate the fractional contribution of each time 
course to the mean cluster time course.

A problem with our approach is that we have used the same 
data sets for doing the ICA analysis and selecting the ROIs and 
then doing a ROI based connectivity analysis on these regions 
(Kriegeskorte et al., 2009; Vul et al., 2009). If validation of the ICA 
method was our goal then our results would have been stronger 
if the groups we had used for identifying clusters were based on 
one group of subjects and then the ROI analysis for these clusters 
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spectral energy and the difference in connectivity between 
pre-term and term children was not changed by considering 
sedation.

Our results suggest that the anatomical locations of the RSNs 
are well developed by 18 months of age and their spatial locations 
are not distinguishable between premature and term born infants 
at 18 months or at 36 months, with the exception of small spatial 
differences noted in the basal ganglia area and the visual cortex. The 
two major differences between term and pre-term children were 
present at 36 but not 18 months and include: (1) increased spectral 
energy in the low frequency range (0.01–0.06 Hz) for pre-term 
children in the basal ganglia component, and (2) stronger connec-
tivity between RSNs in term children. We speculate that children 
born very prematurely are vulnerable to injury resulting in weaker 
connectivity between resting-state networks by 36 months of age. 
Further work including longitudinal studies of brain-behavioral 
relationships will be necessary to determine whether the resting-
state networks connectivity properties may indeed be early markers 
of brain injury associated with prematurity.
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done on a separate group of subjects. The present analysis is valid 
to show that the clusters found by ICA also show high correla-
tions for the same subjects even when the time courses are pulled 
directly from the input data. This is interesting because the ICA 
algorithm is based on mutual information cost function and does 
not directly use correlations as basis of optimization. Thus it is 
important to understand the differences between the meaning 
of correlations obtained from the time courses corresponding to 
ICA maps and correlations obtained directly from the input data 
based on a cluster. This consistency of the correlations between the 
two different time courses is intuitively expected but additional 
work needs to be done to tie down the connection between the 
two approaches.

In order to address the problem of sedation we have looked 
at the spectral properties of the time courses and found no dif-
ference in the energy distribution. Some differences were found 
in the functional connectivity of sedated and unsedated pre-
term children. We found a trend for stronger connectivity in 
unsedated pre-term children as compared to sedated children 
for the 18-month group. No such differences were found for 
the 36-month group. Although the amount of chloral hydrate 
administered was the same proportion of the child’s weight, the 
previous observation may indicate that at the younger age of 
18  months the children were more sensitive to sedation. Our 
results presented for the 36-month group for the time course 
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tigations have focused on cortical–cortical interactions, subcorti-
cal structures and their cortical interactions also develop during 
childhood and adolescence (Jones, 2007). Indeed, recent rs-fcMRI 
studies have suggested distinct developmental changes that occur 
between cortical and subcortical structures (Fair et al., 2007a, 2009; 
Kelly et al., 2009; Supekar et al., 2009). Thus, important insights 
regarding brain development are likely to emerge from additional 
examination of cortical–subcortical functional relationships.

Knowledge concerning the developmental trajectory of rs-fcMRI 
is especially lacking with regards to the thalamus, a key structure for 
nearly all brain operations. Innovative work by Zhang et al. (2008, 
2009) in adults has recently used rs-fcMRI to map thalamo-corti-
cal interactions. This methodology utilizes known cortical con-
nectional anatomy (Alexander and Crutcher, 1990; Jones, 2007) 
to identify functional boundaries in the thalamus and other sub-
cortical structures. In this procedure (Zhang et al., 2008), regions 
of interest (ROIs) are identified that encompass major subdivisions 
of the cortex (see Figure 1). The average spontaneous signal gener-
ated in each cortical ROI is then correlated with all of the voxels 
in the thalamus. Using a ‘winner take all’ strategy, where the corti-
cal subdivision that correlates strongest with a given voxel ‘wins,’ 
Zhang et al. partitioned the thalamus into distinct subdivisions 

Introduction
Recent years have witnessed a surge of investigations examining 
brain function and organization using the relatively new technique 
of resting-state functional connectivity MRI (rs-fcMRI) (Biswal 
et al., 1995). rs-fcMRI measures correlate, low frequency (usually 
<0.1 Hz) blood oxygenation level dependent (BOLD) fluctuations 
between brain regions while subjects are at rest, not performing goal-
directed tasks (Biswal et al., 1995; Fox et al., 2005; Fair et al., 2007a,b, 
2008; Fox and Raichle, 2007). By cross correlating the BOLD signal 
time series between different regions or voxels, one can determine 
which regions are ‘functionally connected’ (see Friston et al., 1993; 
Lee et al., 2003 for specific definition). To date, this method has been 
used in several domains to examine systems-level brain organization 
in typical and atypical populations (Biswal et al., 1995; Fox et al., 
2006; Hampson et al., 2006; Andrews-Hanna et al., 2007; Dosenbach 
et al., 2007; Fair et al., 2007a, 2008, 2009; Greicius et al., 2007; Seeley 
et al., 2007; Uddin et al., 2008; Church et al., 2009).

Recent work has shown that rs-fcMRI is also quite useful for 
studying the maturation of functional brain networks. This work 
has led to key insights regarding typical and atypical brain develop-
ment (Fair et al., 2007a, 2008, 2009; Fransson et al., 2007; Kelly et al., 
2009; Supekar et al., 2009). Whereas the majority of these inves-
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Recent years have witnessed a surge of investigations examining functional brain organization 
using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used 
to examine systems organization in typical and atypical developing populations. While the 
majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical 
interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have 
identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation 
to identify functional boundaries in the thalamus that are remarkably similar to known thalamic 
nuclear grouping. However, despite thalamic nuclei being well formed early in development, the 
developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic 
maps generated by rs-fcMRI are based on functional relationships, and should modify with the 
dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, 
we employed a strategy as previously described by Zhang et al. to a sample of healthy children, 
adolescents, and adults. We found strengthening functional connectivity of the cortex with 
dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus 
children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus 
weakened with age. Changes in sensory and motor thalamo-cortical interactions were also 
identified but were limited. These findings are consistent with known anatomical and physiological 
cortical–subcortical changes over development. The methods and developmental context 
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(Figure 1). The spatial organization of these thalamic subdivisions 
is in substantial agreement with known thalamic nuclear group-
ing based on postmortem human studies (Morel, 2007; Mai et al., 
2008) and anatomical track-tracing data from other mammalian 
species (Nieuwenhuys, 1988; Webster et al., 1995; Jones, 2007). 
The rs-fcMRI results also are remarkably similar to tract-tracing 
results based on diffusion tensor imaging (DTI) (Behrens et al., 
2003; Johansen-Berg et al., 2005; Zhang et al., 2009).

While anatomically distinct nuclear groups are well formed 
within the thalamus early in development (Jones, 2007), it is 
unknown whether thalamo-cortical fcMRI is the same in children 
and adults. Because the thalamic maps generated by fcMRI are based 
on functional relationships, we hypothesized they should not mimic 
organization found in adulthood, but should track the dynamic tha-
lamocortical changes that are believed to occur throughout matura-
tion (e.g., the pruning of temporal-thalamic contacts, and increased 
frontal-subcortical coherence over age) (Giedd et al., 1999; Jones, 
2007; Galinanes et al., 2009). This developmental characterization 
between thalamus and cortex has the potential to lay the ground-
work for a better understanding of how cortical–subcortical interac-
tions contribute to the shift from reflexive, stimulus-bound behavior 
in childhood, to the goal-directed and more flexible functioning 
found in adulthood. It will also provide the neural context necessary 
to examine how cortical-thalamic interactions relate to prominent 
models of several developmental neuropsychiatric disorders. Hence, 
we employed a strategy previously detailed by Zhang et al. to study 
correlated spontaneous brain activity between the cortex and the 
thalamus in healthy children, adolescents, and adults.

Materials and Methods
Participants
Participants were recruited through a combination of public 
advertisements, county mailings, and via the Oregon Health & 
Sciences University local outreach systems. Participants were 

screened with a series of interviews and questionnaires for inclu-
sion. Informed consent was obtained from all subjects in accord-
ance with the guidelines and approval of the Oregon Health & 
Science University Human Investigation Review Board. A total 
of 52 subjects (17 aged 7–9; 21 aged 11–16; 14 aged 19–32) were 
included in the study (see Table 1; Table S1 in Supplementary 
Material). All participants were free of major sensory, medical, 
neurological, or psychiatric (including substance abuse) illness 
and had normal-range intelligence.

Data acquisition and processing
Participants were scanned using a 3.0 Tesla Siemens Magnetom 
Tim Trio scanner with a twelve-channel head-coil at the OHSU 
Advanced Imaging Research Center (AIRC). One high resolution T1-
weighted MPRAGE sequence (orientation = sagittal, TE = 3.58 ms, 
TR = 2300 ms, 256 × 256 matrix, resolution = (1 mm)3, 1 average, 
total scan time = 9 min 14 s) was collected. Blood-oxygen level 
dependent (BOLD)-weighted functional imaging was collected in 
an oblique plane (parallel to the ACPC line) using T2*-weighted 
echo-planar imaging. Resting data from adult participants were 
originally collected as part of a separate study. As such, acquisi-
tion parameters were slightly different for adults and children/
adolescents (adults: TR = 2000 ms, TE = 30 ms, flip angle = 90°, 
FOV = 240 mm, 36 slices, slice thickness = 3.5 mm in-plane res-
olution = 3.75 mm2; children: TR = 2000 ms, TE = 30 ms, flip 
angle = 90°, FOV = 240 mm, 36 slices covering the whole brain, 
slice thickness = 3.8 mm, in-plane resolution = 3.8 mm2). Steady 
state magnetization was assumed after five frames (∼10 s). The 
parameters for this acquisition have been optimized (e.g., oblique 
acquisition) to reduce susceptibility artifact, which causes signal 
drop out in orbitofrontal cortex. Three rest runs of 3.5-min dura-
tion obtained for all children. Two rest runs of 5-min duration 
were obtained for all adolescents and adults. During rest periods, 
subjects were verbally instructed to continue to stay still, view a 

Figure 1 | The ‘winner take all’ strategy for identifying subdivisions of the 
thalamus (Zhang et al., 2008), utilizes known thalamocortical topographic 
segregation (Alexander and Crutcher, 1990; Jones, 2007) to identify functional 
boundaries in the thalamus. (A) Regions of interest (ROIs) used for the current 
analysis. These regions are composed of five disjoint cortical subdivisions, which 
include the prefrontal cortex (blue), motor/premotor (green), somatosensory 
(yellow), parietal/occipical cortex (purple), and temporal corex (red). (B) The average 
spontaneous signal generated from each cortical ROI is then correlated with all of 

the voxels in the thalamus. This creates five voxelwise statistical maps of the 
thalamus. (C) The strength of connectivity is then compared for each cortical ROI 
within each voxel. The cortical subdivision that correlates strongest with any given 
voxel ‘wins.’ The given voxel is then assigned the color of the winning cortical ROI. 
The resulting thalamic subdivisions are in substantial agreement with known 
thalamic nuclear grouping based on postmortem human studies (Morel, 2007; Mai 
et al., 2008) and anatomical track-tracing data from other mammalian species 
(Nieuwenhuys, 1988; Webster et al., 1995; Jones, 2007)
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was similar except that the whole brain signal was not included as 
a nuisance regressor. The correlation procedures associated with 
these two separate pre-processing strategies are described below (in 
Correlations between cortical subdivisions and thalamus).

Cortical ROI definition
Cortical ROI definition was as in Zhang et al. (2008). In short, the 
cortex in each hemisphere was partitioned into five subregions 
(Figure 1). The MP-RAGE image from a normal young adult volun-
teer (not included in this study) was segmented along the gray/white 
boundary and deformed to the population-average, landmark and 
surface-based (PALS)-B12 atlas (Van Essen, 2005) using SureFit and 
CARET software (Van Essen and Drury, 1997; Van Essen et al., 2001). 
Partition boundaries were manually drawn based on major sulcal 
landmarks, following work by Behrens et al. (2003). Five cortical 
ROIs were thus defined: (1) frontopolar and frontal cortex including 
the orbital surface and anterior cingulate; (2) motor and premotor 
cortex (Brodmann areas 6 and 4 – excluding adjacent portions of 
cingulate cortex); (3) somatosensory cortex (Brodmann areas 3, 
1, 2, 5, and parts of 40); (4) parietal and occipital cortex including 
posterior cingulate and lingual gyrus; (5) temporal cortex includ-
ing the lateral surface, temporal pole, and parahippocampal areas 
(Figure 1). For details see (Zhang et al., 2008, 2009).

Correlations between cortical subdivisions and thalamus
Resting state (fixation) data from 52 subjects (17 aged 7–9; 21 aged 
11–16; 14 aged 19–32) were included in the analyses. The adolescent 
age range was chosen for two reasons. First, while there are sev-
eral ways of defining adolescence, we chose an age-range that best 
encompasses the peripubertal years – a time of dynamic behavioral 
and neural maturation (Paus, 2005). By age 11, many children have 
initiated early pubertal processes (especially among females), and 
by age 16, most youth have attained pubertal maturation (Kreipe, 
1992). The second consideration regarded our prior connectivity 
results, which have shown significant transitions in connectivity 
between similar age groups (e.g., see Fair et al., 2007a). All par-
ticipants contributed between 420–630 s of resting-state data. The 
data were first analyzed with a total correlation procedure, which 
included whole brain signal regression in the initial pre-processing 
steps (see Functional Connectivity Pre-processing). In this case, for 
the five cortical subdivisions, an average resting state timeseries 
was extracted and correlated (r) with all voxels of the thalamus 
separately and for each individual. Shared variance among the five 
cortical subdivisions is accounted for in this instance with the initial 
whole brain signal regression. This procedure is similar to the total 
correlation procedure used in Zhang et al. (2008). In the second 
analysis, whole brain signal regression was not used in the initial 
pre-processing. Rather, shared variance was accounted for by partial 
correlation, wherein the correlation between a cortical ROI and the 
thalamus was computed after covarying out the other four cortical 
regions. Total correlation yielded slightly less specificity but more 
uniformity across subjects in comparison to partial correlation. In 
both analyses, to calculate statistical significance within each age 
group, we first applied Fischer’s z transformation to the correlation 
coefficients (r) to improve normality. From here, these values were 
converted to Z scores by dividing by the square root of the variance 
within each group, as in Fox et al. (2005). Z-score maps were then 

Table 1 | Subject characteristics.

	 Adults	 Adolescents	 Children

	 Mean	 Std. Dev.	 Mean	 Std. Dev.	 Mean	 Std. Dev.

Age	 25.33	 3.85	 13.02	 1.37	 8.57	 0.67

Mvmt. (rms)	 0.36	 0.40	 0.41	 0.21	 0.34	 0.33

Gender	 %	 N	 %	 N	 %	 N

Male	 50	 7	 61.90	 13	 29.4	 5

Female	 50	 7	 38.10	 8	 70.6	 12

cross in the middle of the screen, and be sure to stay awake. The 
stimulus display consisted of the standard fixation-cross in the 
center of the stimulus field.

Functional images were processed to reduce artifacts (Miezin 
et al., 2000). These steps included: (i) removal of a central spike 
caused by MR signal offset, (ii) correction of odd vs. even slice 
intensity differences attributable to interleaved acquisition with-
out gaps, (iii) correction for head movement within and across 
runs, and (iv) within run intensity normalization to a whole brain 
mode value of 1000. Atlas transformation of the functional data 
was computed for each individual via the MP-RAGE scan. The 
fMRI data then were resampled (3 mm cubic voxels) in Talairach 
atlas space (Talairach and Tournoux, 1988) as defined by the spa-
tial normalization procedure (Lancaster et al., 1995). This resam-
pling combined movement correction and atlas transformation 
in one interpolation. All subsequent operations were performed 
on the atlas-transformed volumetric time series. For presentation 
purposes, voxel boundaries were interpolated to 1 mm3 voxels and 
displayed using CARET software (Van Essen et al., 2001).

Participant head motion was measured and corrected using rigid 
body translation and rotation. Summary statistics were calculated 
as root mean square (RMS) values for translation and rotation 
about the x, y, and z-axes. Total RMS values were calculated on a 
run-by-run basis for each participant. BOLD runs with excessive 
movement (>2 mm RMS) were excluded from further analysis. 
Movement was relatively low in all groups (see Table 1).

Functional connectivity pre-processing
The functional data were additionally pre-processed in two ways for 
two separate analysis strategies, as outlined below. In the first analysis 
(total (marginal) correlation – see below) pre-processing was carried 
out as previously described (Fox et al., 2005; Fair et al., 2007a,b, 2008, 
2009) to reduce spurious variance unlikely to reflect neuronal activity 
(Fox and Raichle, 2007). These steps included: (i) a temporal band-
pass filter (0.009 Hz < f < 0.08 Hz), (ii) regression of six parameters 
obtained by rigid body head motion correction, (iii) regression of 
the whole brain signal averaged over the whole brain, (iv) regres-
sion of ventricular signal averaged from ventricular region of inter-
est (ROI), and (v) regression of white matter signal averaged from 
a white matter ROI. Regression of first derivative terms for whole 
brain, ventricular, and white matter signals were also included in the 
correlation pre-processing. These pre-processing steps are, in part, 
intended to remove developmental changes in connectivity driven 
by changes in respiration and heart rate over age. Pre-processing in 
preparation for the second analysis (partial correlation – see below) 
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combined across subjects using a fixed effects analysis. Results pre-
sented here are restricted to the thalamus, whose boundaries were 
created by manual tracing of the atlas template. For the ‘winner take 
all’ strategy (see Figure 3), the cortical subdivision that correlated 
most strongly for any given voxel was assigned the designated color 
for the ‘winning’ cortical subdivision.

To test significant change over development, direct comparisons 
between the two end point groups, children and adults, were per-
formed. This between-group end point approach, as opposed to using 
the entire sample, has been shown to be more robust to potential 
non-linear changes (Fair et al., 2006). For such direct comparisons, 
we performed two-sample, two-tailed t-tests (random effects analysis 
assuming unequal variance; p ≤ 0.05) for each cortical subdivision 
applied to Fischer z-transformed r values. For the voxelwise, fixed 
effects maps, thresholding based on Monte Carlo simulation was 
implemented (Forman et al., 1995). To obtain multiple comparisons 
corrected, p < 0.05 voxel clusters, a threshold of 35 contiguous voxels 
with a Z-value > 2.5 was used. Maps showing statistically significant 
changes with age were uncorrected (as few voxels passed our stringent 
correction), and displayed with a threshold of Z > 2.

Results
Functional connectivity of cortical subdivisions within the 
thalamus in adults show a spatial organization in 
agreement with known thalamic nuclear grouping
Replicating prior reports, (Zhang et al., 2008, 2009), in our adult 
sample, correlations between the thalamus and each cortical subdi-
vision were distinct, with substantial correspondence with known 
axonal connectivity with thalamic nuclei in primates (Jones, 2007; 
Morel, 2007). Specifically, the parietal-occipital cortical subdivi-
sion showed strong correlations with the lateral and posterior por-
tions of the thalamus. This portion of the thalamus and dorsal 
brain stem are comprised of lateral pulvinar, lateral geniculate, and 
superior colliculus, which contain combinations of afferent input, 
and projections, to parietal occipital association areas and primary 
visual cortex (Lock et al., 2003; Jones, 2007) (see Figure 2 – row 1, 
column 2; Figure S1 in Supplementary Material). The temporal 
cortical ROI correlated strongly with medial, inferior, and posterior 
portions of the thalamus. This segment of the thalamus and dorsal 
brainstem presumptively corresponds to medial pulvinar, inferior/
superior colliculi, medial geniculate, and medial dorsal nucleus 
(Webster et al., 1995; Jones, 2007), which have combinations of 
inputs from, and projections to, temporal cortex (see Figure 2 – row 
1, column 5; Figure S2 in Supplementary Material). The prefrontal 
cortical subdivision showed strong interactions with dorsal, medial, 
and anterior portions of the thalamus. This thalamic area contains 
medial dorsal and the anterior nuclear groups, with inputs and 
outputs to cingulate and prefrontal portions of the cortex (Jones, 
2007) (see Figure 2 – row 1, column 1; Figure S3 in Supplementary 
Material). Somatosensory cortical areas strongly correlated with 
ventral, lateral, and posterior thalamic regions, which presump-
tively correspond to ventral posteriolateral and posteriomedial 
nuclei (Jones, 2007); see Figure 2, row 1, column 4, and Figure 
S4 in Supplementary Material. Finally, the motor cortex subdivi-
sion correlated strongly with lateral and ventral thalamic areas that 
presumptively correspond to ventral lateral and ventral anterior 
nuclei (see Figure 2 – row 1, column 3; Figure S5 in Supplementary 

Material). As can be seen in Figure 3, these findings are perhaps 
most clearly evident in ‘winner take all’ displays (Zhang et al., 2008, 
2009); also see Figure S6 in Supplementary Material).

Functional connectivity of cortical subdivisions with the 
thalamus changes substantially over development
Although thalamic nuclear groups are defined early in development 
(Jones, 2007), we saw substantial differences in connectivity pat-
terns between our younger participants and adults. Figure 2 (rows 
1–3) suggests a transitional change from childhood, through ado-
lescence, to adulthood for thalamo-frontal and thalamo-temporal 
interactions. Specifically, frontal lobe correlations are weak in child-
hood and appear to strengthen by adulthood. Temporal lobe cor-
relations with the thalamus, however, are much stronger in children, 
and weaken progressively in adolescence and adulthood. This find-
ing was obtained both by total correlation (Figure 2) and partial 
correlation analyses (Figure S7 in Supplementary Material). The 
finding also held true when looking at raw correlation values (r), 
rather than z statistics (Figure S8 in Supplementary Material).

This particular finding (i.e., increased thalamo-frontal interac-
tions and decreased thalamo-temporal interactions over age) is 
clearly seen in the ‘winner take all’ displays. In adolescents (Figure 3), 
the picture was slightly modified from what was seen in the adult 
group. Along the midline bilaterally, the thalamo-temporal correla-
tions encompassed a greater portion of anterior and midline thala-
mus, while frontal lobe correlations encompassed much less of the 
anterior portions of the thalamus. This trend, in which frontal (and 
to a lesser extent, motor) correlations give way to temporal correla-
tions, was observed to an even greater extent in the youngest age 
group. In children, thalamo-temporal correlations were stronger 
and more widespread – not only encroaching on areas occupied by 
thalamo-frontal correlations in adults, but also parts of the thala-
mus functionally connected with motor/premotor, somatosensory, 
and occipital/parietal areas. In contrast, the spatial extent of the 
thalamo-frontal interaction was minimal in children and somewhat 
stronger in the adolescent group although, still limited relative to 
the adults. This dynamic can also be observed in Movie S1–S4 
in Supplementary Material. Again, Figure S9 in Supplementary 
Material shows these findings were largely unchanged when using 
partial correlations. (Our child and adolescent groups had a slight 
excess of females and males, respectively. Accordingly, we repeated 
our analysis using equal numbers of males and females in each 
group. These findings, shown in Figure S10 in Supplementary 
Material, suggest that gender had minimal effect on the overall 
patterns observed here.)

Direct statistical comparisons between children and adults con-
firmed the qualitative observations for the frontal–thalamic and 
temporal–thalamic interactions. Thalamo-cortical interactions 
observed with somatosensory cortex were qualitatively similar, but 
showed statistical differences between groups of both increased 
(lateral/inferior) and decreased (medial/dorsal) connectivity 
with specific parts of the thalamus (Figure 4). Similar findings 
were observed for motor-premotor cortex. Correlations with the 
occipital/parietal ROI appeared qualitatively unchanged across age 
groups. This observation was also confirmed with the direct sta-
tistical comparisons (Figure 4). The direct comparisons between 
children and adults using partial correlations (without whole brain 
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signal regression – Figure S11 in Supplementary Material) were 
slightly different in that statistical differences observed between 
somatosensory and motor-premotor ROIs appeared weaker.

Discussion
In this report we replicate prior findings that demonstrate spatially 
distinct BOLD correlations between the thalamus and specific corti-
cal subdivisions that are in substantial correspondence with known 
thalamic connectivity in primates (Jones, 2007; Morel, 2007). We 
also saw significant development in thalamo-cortical correlations 
over maturation via rs-fcMRI. Specifically, we showed a progres-
sive strengthening of functional connectivity of the frontal cortex 
with dorsal/anterior subdivisions of the thalamus. We also saw a 
systematic weakening of temporal lobe connectivity with ventral/
midline/posterior subdivisions of the thalamus. Premotor-motor 
and somatosensory cortical subdivisions also showed increased 
connectivity in lateral/inferior portions of the thalamus and 
decreased connectivity in medial/dorsal portions of the thalamus. 
Occipital–parietal correlations with the thalamus were relatively 
stable over our samples.

Of note, considering the nature of the BOLD response, it is 
conceivable that developmental differences in the hemodynamic 
response could affect our results (D’Esposito et al., 2003). We 

feel this is unlikely considering reports suggesting that changes 
observed over development with fMRI are not the product of 
changes in hemodynamic response mechanisms over age (Kang 
et al., 2003; Wenger et al., 2004). Similarly, we also note that our 
observations could be affected by physiologic noise such as res-
pirations and heart rate, but believe this is also unlikely for two 
reasons. First, most of these nuisance signals are likely removed 
with our band-pass filter and/or the removal of shared variance 
via partial correlations or whole brain signal regression. Second, 
the observations in this report (and elsewhere, Fair et al., 2007a, 
2009; Kelly et al., 2009; Supekar et al., 2009) show age-related 
changes over development that occur in both directions (i.e., 
strengthen and weaken). It would be difficult to explain how a dif-
ference in heart rate or respiration could account for these oppos-
ing dynamics. With that said, it would be beneficial for future 
reports to include these additional physiologic noise parameters 
as regressors into the processing strategy of rs-fcMRI; however, 
it will be equally interesting in future reports to determine how 
brain oscillations might actually drive cardiac and respiratory 
fluctuations. Assuming that the age-related alterations described 
here represent true change in functional connections, the ques-
tion then becomes: What are the neurobiological underpinnings 
of that change?

Figure 2 | Fixed effects functional mapping of the thalamus for each 
cortical ROI, in each age group (Children, Adolescents, Adults). This 
qualitative comparison appears to show substantial change over development 
regarding the thalamo-cortical functional interactions. The functional 
neuroanatomy of the adult group is quite similar to previous publications 

(Zhang et al., 2008, 2009). The most prominent differences between age 
groups shows frontal lobe interactions that are weaker in children and appear 
to increase over age. In contrast, temporal lobe interactions are much stronger 
in children, but weaken progressively in adolescents and adults: Transverse 
Z = +8
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Changes in the functional relationships of cortical 
structures with the thalamus may, in part, reflect changes 
in the underlying neural substrate
There are multiple sources of developmental change that may 
account for the changes in functional connectivity observed from 
the child to adult thalamus reported here. Based on comparisons 
of this method with similar methods using DTI in adults (Zhang 
et al., 2009), it is clear that some of the functional relationships 
seen here are related to large fiber-tracts connecting the cortex 
with specific subdivisions of the thalamus. This is not to say that 
nuclear groupings are not fully developed early in development 
(at birth thalamic nuclei are known to be composed of connec-
tional and functionally distinct cell types; Jones, 2007). Nor is this 
to say that large fiber bundles are growing or being eliminated 
over the age span studied here; these are in place by ∼9 months 
of age (Conel, 1939–1963). However, there does continue to be 
significant refinement in connectional anatomy that occurs well 
into young adulthood.

For example, axonal retraction and the elimination of 
axon collaterals continues throughout development and aging 
(O’Leary, 1989; Luo and O’Leary, 2005). Following a proliferation 

of synapses early in development, there is a protracted period 
of synaptic pruning that reaches adult levels in the late second 
decade of life (Huttenlocher, 1979; Huttenlocher et al., 1982; 
Elman et al., 1996; Huttenlocher and Dabholkar, 1997; Casey 
et al., 2005; Jones, 2007). Importantly, these regressive processes 
are not random. They are selective, reduce connectivity between 
specific regions, and occur in both cortical and subcortical struc-
tures (Ebbesson, 1980; Greenough et al., 1987; Luo and O’Leary, 
2005; Jones, 2007).

Such phenomena may account for some of the findings shown 
here. For example, work conducted by Webster et al. (1995) in 
developing macaques provides a compelling parallel with regard 
to weakening thalamo-temporal connectivity over age. In this 
study, the authors compared the subcortical connections of inferior 
temporal cortex (Areas TE and TEO) in infant vs. adult monkeys. 
While the connectional anatomy was similar in infant and adult 
monkeys, there was significant refinement of the subcortical con-
nections. Specifically, while projections from TE (and to a more 
limited extent TEO) to the nucleus medial dorsalis were present 
in infants and adults, they were more widespread in infants and 
significantly reduced in the adult animals. The same was true for 
connections from area TE projecting to the superior colliculus. 
Similar changes potentially occur in medial and polar aspects of 
the temporal lobe (Russchen et al., 1987). Importantly, both frontal 
and temporal cortical subdivisions share anatomical connections 
to the nucleus medial dorsalis (Webster et al., 1995; Jones, 2007), 
which is consistent with the thalamo-temporal and thalamo-frontal 
connectivity seen here (Figure 3). Hence, the refinement of inferior 
temporal lobe projections directly to nucleus medial dorsalis, may, 
in part, account for the reduced thalamo-temporal connectivity 
observed during development.

The reduced connectivity associated with somatosensory and 
motor-premotor cortical subdivisions is also likely related to 
similar phenomena as the temporal lobe. For example, in mice, 
relay neurons of the ventral posterior medial nucleus undergo 
significant dendritic refinement over age, with more than 300% 
reduction in the extent of their dendritic fields from age P6 to 
adulthood (Brown et al., 1995; Zantua et al., 1996; Jones, 2007). 
Work by Dennis O’Leary and colleagues (Luo and O’Leary, 2005) 
has shown in rodents, that cortical layer V neurons, after early 
extensive interstitial branching, acquire functionally appropriate 
connections through selective elimination, dictated by the cortical 
area in which the neuron is located. For example, in newborns, 
motor and visual neurons project to common targets in the brain-
stem and spinal cord. During maturation, functionally appropri-
ate connections are acquired through selective axon elimination, 
determined by the cortical area (i.e., motor or visual) in which the 
neuron is located.

In addition to a reduction in thalamo-temporal correla-
tions, we also demonstrated increased thalamo-frontal correla-
tions across development. One commonly cited contributor to 
increased connectivity between regions is myelination. Indeed, 
myelination has been shown to be closely related to rs-fcMRI 
measures (Hagmann et al., 2008; Greicius et al., 2009) (although 
this has not yet been examined in children). Myelination increases 
at least through young adulthood. It proceeds from primary 
sensory and motor regions to association areas (Flechsig, 1920; 

Figure 3 | ‘Winner take all’ displays across age. As previously observed, 
the color-coded thalamus based on the winner take all strategy in adults 
shows a functional organization that is remarkably similar to known nuclear 
groupings in the primate thalamus. However, the picture is different in 
adolescents and children. In agreement with Figure 2, in both adolescents 
and to a greater extent children, thalamo-temporal interactions encompass a 
greater portion of anterior and midline thalamus, while the frontal lobe 
interactions encompass much less of the anterior portions of the thalamus. In 
children, thalamo-temporal interactions not only encroach on areas that, in 
adults, are dominated by thalamo-frontal interactions, but also impinge on 
thalamic zones that later become functionally more connected with motor/
premotor, somatosensory, and occipical/parietal cortex (also see Movies in 
Supplementary Material); Transverse Z = +8, Sagittal X = −12, Coronal Y = −27.
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These types of functional changes identified by Galinanes 
and colleagues highlight an important aspect regarding tha-
lamic organization and the developmental changes observed 
in this report. As put by Sherman and Guillery (2006), ‘It is 
important to distinguish the functional input that carries the 
messages for transmission to the cortex, the driver, from the 
many other inputs, the modulators, which can modify the way 
in which the message is transmitted…’ The circuitry of the tha-
lamus is complex. Its function is determined not only by the 
driver connectional anatomy to the cortex, but also modulators 
(interneurons, other subcortical inputs, various neurotransmit-
ter systems) (Sherman and Guillery, 2006; Jones, 2007). Indeed, 
throughout the thalamus, driver synapses to relay cells encompass 
only a fraction of the total number synapses (∼2–10%) (Sherman 
and Guillery, 2006). To the contrary, modulatory synapses to 
relay cells account for over 90% of synaptic contacts with relay 
neurons. Importantly, many properties related to modulatory 
action continue to develop postnatally (Jones, 2007). Hence, it 
is likely that increases and decreases in thalamo-cortical con-
nectivity seen here over age are influenced by maturation of 
modulatory systems (Jones, 2007).

Future directions
In this report, we showed dynamic maturing functional interac-
tions between the thalamus and cortex. The gross partitioning of 
cortical regions, as used in the present study, is adequate to produce 
connectivity maps with thalamic nuclei that are consistent with 
known structural connectivity, and is promising. In addition, there 
appears to be little difference in results obtained by partial vs. total 
correlation analysis. However, it is important to note that while 
the currently applied methods appear well suited for identifying 
distinct subcortical structures in adults, they do not provide the 
same specificity in children. This difference likely reflects func-
tional and anatomic maturational mechanisms. Alternative rs-
fcMRI techniques may be better suited for identifying nuclear 

Brody et al., 1987; Paus et al., 2001; Sowell et al., 2002), roughly 
following the hierarchical organization introduced by Felleman 
and Van Essen (1991). As such, increased signal propagation, 
through the maturation of the myelin sheath, is a likely contribu-
tor to the increased interaction between the frontal cortex and 
subregions of the thalamus, particularly those in the anterior 
and medial dorsal portion (Luna and Sweeney, 2004; Fair et al., 
2007a, 2008; Kelly et al., 2009).

Changes in the functional relationships of cortical 
structures with the thalamus likely reflect changes beyond 
the maturing neural substrate
Changes in cortical-subcortical dynamics, particularly with the 
frontal cortex, are likely not solely due to changes in the underlying 
neural substrate (Honey et al., 2007; Fair et al., 2009; Lewis et al., 
2009). It is now apparent that the connectivity signal measured 
via rs-fcMRI is not a pure representation of monosynaptic ana-
tomical connectivity (Vincent et al., 2007; Hagmann et al., 2008; 
Zhang et al., 2008), and thus, other explanations must be consid-
ered. For example, modeling work has shown that complex spatial 
and temporal patterns of synchronous activity can develop over 
time in the absence of external input and without changes in the 
neuroanatomy (Honey et al., 2007). Other work by Galinanes et al. 
(2009) has shown, in mice, that subcortical neurons in the striatum 
are more temporally tuned to frontal cortical rhythms in adults 
than they are in infancy (i.e., they are more strongly functionally 
connected – albeit in different frequency ranges than examined 
here). Importantly, Galinanes found that these changes in func-
tional properties are unlikely to be secondary to direct develop-
ment of anatomical changes per se, but rather the modulation of 
functional properties through the maturation of the dopaminergic 
system. While this work targeted the striatum, similar phenomena 
could be occurring indirectly (or directly) in the thalamus with-
out direct changes in the gross neuroanatomy, and independently 
of myelination.

Figure 4 | Direct comparison between the end groups (i.e., children and 
adults). The direct comparison between children and adults confirmed many of 
the qualitative findings shown in Figure 3. Frontal connectivity with the 
thalamus increases with age, and Temporal connectivity with the thalamus 

weakens with age. Differences in connectivity between children and adults with 
premotor/motor and somatosensory cortex were also revealed with the direct 
comparisons, while the occipical/parietal ROI showed very little difference 
between the groups.
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groupings specific to children and adolescents (e.g., Cohen et al., 
2008; Margulies et al., 2009). Other complementary connectivity 
methods may additionally assist in differentiating changes across 
development related to extent versus strength or magnitude in 
connectivity. For example, as noted in the Introduction section, 
anatomically distinct nuclear groups and large fiber tracts are well 
formed within the thalamus early in development (Jones, 2007). As 
such, anatomically based methods that utilize large fiber bundles 
(see Behrens et al., 2003; Asato et al., 2010, as opposed to function-
ally based methods, may prove successful in further differentiating 
nuclear groupings and extent of connectivity in children.

In future work it will also be necessary to observe how changes 
in thalamo-cortical functional connectivity relate to develop-
mental changes in behavior. It is likely that the cortical-subcor-
tical interactions observed here will correspond to a shift from 
reflexive, stimulus-bound behavior in childhood, to the goal-
directed, self-organized, and more flexible functioning in young 
adulthood (Stuss, 1992) – a distinct hypothesis that can be tested. 
For example, recent theories suggest that, during childhood and 
early adolescence, goal-directed behavior is governed by principles 
of approach and avoidance, with regulation and balance of this 
system developing across adolescence and into adulthood (Ernst 
et al., 2009). While early approach and avoidance is thought to 

be subserved by subcortical and limbic brain regions (consistent 
with greater thalamo-temporal interactions in children), emerging 
control of these affective and appetitive behaviors (among others 
– see Bunge et al., 2002) occurs in concert with the maturation 
of subcortical to prefrontal cortex interactions (consistent with 
emerging increased thalamo-frontal interactions shown across our 
sample) (Chambers et al., 2003; Casey et al., 2008). Along the same 
lines, identifying how these cortical–subcortical interactions relate 
to models of neuropsychiatric disorders will also be of interest in 
future work.
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from underlying neuronal dynamics (Nir et al., 2007; Shmuel and 
Leopold, 2008). Such observations have led to the postulate that 
these so-called resting-state networks represent an intrinsic prop-
erty of functional brain organization (Fox and Raichle, 2007). They 
therefore provide an attractive means by which to characterize func-
tional connectome properties.

One method for understanding rs-fMRI connectivity at a whole-
brain level is graph analysis. Within this framework, the brain is 
represented as a graph comprising N nodes connected by M edges. 
In fMRI analyses, the nodes typically correspond to brain regions 
and the edges to some measure of inter-regional interaction, such 
as a supra-threshold temporal correlation between regional time 
series. Representing the brain in this way enables the application of 
a rich set of mathematical tools and theoretical concepts to under-
stand brain network topology and dynamics (Strogatz, 2001; Albert 
and Barabasi, 2002; Newman, 2003; Bullmore and Sporns, 2009; 
Rubinov and Sporns, 2009). In particular, graph analytic studies 
of rs-fMRI data have demonstrated that functional brain networks 
display a small-world topology which provides high communica-
tion efficiency for relatively low connection cost, high resilience to 
random and targeted attack, and a hierarchical modular organiza-
tion which offers optimal adaptability to varying circumstances 
(Simon, 1962; Achard et  al., 2006; Achard and Bullmore, 2007; 
Bullmore and Sporns, 2009; Meunier et al., 2009). These proper-
ties can be compromised by disease (Liu et  al., 2008; He et  al., 
2009; Wang et al., 2009b), and may therefore provide important 
connectivity-based markers of neural integrity.

Introduction
Our perceptions, thoughts, emotions and experiences are the prod-
uct of dynamic interactions occurring between functionally special-
ized regions of the brain. Thus, a complete understanding of such 
phenomena will only be possible once we understand how these 
interactions are organized and coordinated. An important step 
toward this goal involves developing detailed maps of the brain’s 
connectivity architecture, the so-called neural connectome (Sporns 
et al., 2005), at either the anatomical or functional level, at varying 
spatio-temporal resolutions.

Recent work on functional brain networks has focused on char-
acterizing connectivity patterns of spontaneous, low-frequency 
(<0.1 Hz) fluctuations of the blood-oxygenation-level-dependent 
(BOLD) signal measured using functional Magnetic Resonance 
Imaging (fMRI). This followed seminal observations that such 
fluctuations show a high degree of coherence and spatial organi-
zation when participants are not engaged in a specific task; a condi-
tion commonly referred to as the resting-state (Biswal et al., 1995; 
Beckmann et al., 2005; Fox et al., 2005; Salvador et al., 2005a,b). 
The organization of these resting-state networks recapitulates func-
tional networks observed across a range of cognitive, emotional, 
motor, and perceptual tasks (Fox et al., 2006; Vincent et al., 2007; 
Smith et al., 2009). They are robust across individuals and time 
(Damoiseaux et al., 2006; Buckner et al., 2009; Shehzad et al., 2009), 
can affect task-evoked activity (Fox and Raichle, 2007; Hesselmann 
et  al., 2008), correlate with behavioral measures (Seeley et  al., 
2007; Kelly et al., 2008; van den Heuvel et al., 2009), and emerge 
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resting-state fMRI data

Alex Fornito1,2*, Andrew Zalesky2 and Edward T. Bullmore1,3

1	 Department of Psychiatry, Brain Mapping Unit, University of Cambridge, UK
2	 Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
3	 GSK Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, UK

Graph analysis has become an increasingly popular tool for characterizing topological properties 
of brain connectivity networks. Within this approach, the brain is modeled as a graph comprising 
N nodes connected by M edges. In functional magnetic resonance imaging (fMRI) studies, the 
nodes typically represent brain regions and the edges some measure of interaction between 
them. These nodes are commonly defined using a variety of regional parcellation templates, 
which can vary both in the volume sampled by each region, and the number of regions parcellated. 
Here, we sought to investigate how such variations in parcellation templates affect key graph 
analytic measures of functional brain organization using resting-state fMRI in 30 healthy 
volunteers. Seven different parcellation resolutions (84, 91, 230, 438, 890, 1314, and 4320 
regions) were investigated. We found that gross inferences regarding network topology, such 
as whether the brain is small-world or scale-free, were robust to the template used, but that 
both absolute values of, and individual differences in, specific parameters such as path length, 
clustering, small-worldness, and degree distribution descriptors varied considerably across the 
resolutions studied. These findings underscore the need to consider the effect that a specific 
parcellation approach has on graph analytic findings in human fMRI studies, and indicate that 
results obtained using different templates may not be directly comparable.
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The combination of graph analysis and fMRI offers a power-
ful means for characterizing brain networks. However, the field 
is nascent, and several methodological challenges require resolu-
tion. One of the most difficult involves the appropriate selection 
of brain regions to represent the network nodes. The majority of 
studies have used an a priori anatomical template as the basis for 
regional parcellation. These templates, such as those included in 
the Automated Anatomical Labeling (AAL) toolbox (Tzourio-
Mazoyer et al., 2002), the ANIMAL atlas (Collins et al., 1995), or 
the automated regional parcellation provided with software pack-
ages such as Freesurfer (Fischl et al., 2004), are generated by manual 
delineation of distinct brain regions in either a single individual 
(e.g., AAL) or sample of individuals (e.g., Freesurfer), and then 
mapped on to the brains of new participants using some spatial 
normalization routine. The mean time series is then extracted for 
each region, and pair-wise correlations between regional time series 
are computed to obtain a functional connectivity matrix. While the 
approach is straightforward and has proven useful, it is limited for 
several reasons. First, there is no accepted gold standard for regional 
parcellation, because, particularly in the cortex, there are no clear 
macroscopic boundaries that can be used to delineate adjacent 
regions. Thus, the criteria used are inherently arbitrary and vary 
from one template to the next. Second, the regions can vary in 
size from tens to thousands of voxels, which can affect resulting 
connectivity estimates (Salvador et al., 2008). Finally, because the 
regions are often large, it is likely that they include signals from 
several different functional sub-regions, which can complicate 
interpretation of region-specific findings.

More recently, some investigators have used parcellation meth-
ods that do not depend on arbitrary regional definitions. For 
example, Hagmann et al. (2007) used a random-seeding method 
to parcellate the cortical surface (gray/white matter boundary) into 
500–4000 regions of approximately equal size. These regions were 
then projected out to fill the cortical volume for use with fMRI data 
in subsequent work (Hagmann et al., 2008; Honey et al., 2009). In 
addition, voxel-based approaches have been employed (Eguiluz 
et al., 2005; van den Heuvel et al., 2008; Hayasaka and Laurienti, 
2010). With this approach, each image voxel is treated as a distinct 
network node. While such methods are computationally intensive, 
typically requiring analysis of networks of many thousands of nodes 
and many more edges, they demonstrate that a high degree of spa-
tial specificity is achievable in graph analytic studies.

The range of possible parcellation strategies available for defin-
ing network nodes in graph analysis of fMRI data highlights the 
importance of understanding the degree to which the results of 
any one study may be contingent on the particular parcellation 
scheme employed. To our knowledge, three studies have attempted 
to directly compare the results obtained using different parcella-
tion methods. In one, Zalesky et al. (2010) compared the results 
obtained from diffusion-MRI derived anatomical connectivity 
networks when using the AAL (82 regions) and random-seed 
generated templates comprising 100, 500, 1000, 2000, 3000, and 
4000 regions. General decisions about network topology, such as 
whether the brain is small-world or scale-free, were not affected 
by parcellation scale, but differences did emerge when topology 
was quantified in terms of specific organizational parameters 
such as path length and clustering. However, this study did not 

investigate inter-individual variability of network metrics and 
it is unclear whether their results apply to measures computed 
from resting-state functional connectivity networks. Hayasaka 
and Laurienti (2010) compared rs-fMRI networks generated at 
the voxel- and region-wise levels, as well as two intermediate 
resolutions, and found a trend for increasing small-worldness, 
scale-freeness, and connectedness at higher resolutions. Wang 
et al. (2009a) compared the results obtained using two different 
anatomical parcellations applied to rs-fMRI data–the AAL (90 
regions) and ANIMAL (70 regions) templates and reached similar 
conclusions, although they did not examine spatial scaling effects 
(i.e., the use of a coarse or fine-grained template). The available 
literature suggests that there may indeed be some effect of spatial 
scale on rs-fMRI network topology. For example, studies using 
coarser templates have concluded that resting-state functional 
brain organization is characterized by an exponentially truncated 
degree distribution (Achard et al., 2006; Hagmann et al., 2007), 
whereas voxel-based studies suggest the distribution follows a 
power law and is therefore scale-free (Eguiluz et al., 2005; van den 
Heuvel et al., 2008). Such conclusions have important implica-
tions for understanding how the brain might respond to disease 
or damage (Albert et al., 2000; Achard et al., 2006), and should 
therefore be methodologically validated.

Our goal in the current study was to examine the effects of 
parcellation scale on graph analytic measures of resting-state func-
tional brain organization. To this end, we calculated a number of 
commonly used metrics from functional connectivity matrices gen-
erated using parcellation schemes spanning a wide range of spatial 
scales, and quantified the differences and similarities between them. 
More specifically, we focused on the following network properties, 
as these are by far the most commonly studied in the literature: 
functional connectivity, network connectedness, clustering coef-
ficient, characteristic path length, small-worldness, and degree dis-
tribution. These measures are fundamental to most graph analytic 
studies of network topology and are the basis upon which inferences 
regarding network small-worldness or scale-freeness are made. Our 
results draw attention to the potential role different parcellation 
strategies may have in influencing the findings of graph analytic 
studies, and should inform interpretation of any findings derived 
using such methods.

Materials and methods
Participants
Thirty (19 male) participants took part in the study. The mean age 
of the sample was 26.77 years (SD = 10.30 years). Five participants 
were left-handed. All volunteers were free of personal or family 
history of serious mental illness or neurological disorder, and had 
no history of substance abuse or head injury. All participants gave 
written, informed consent in accordance with local ethics com-
mittee guidelines.

Imaging parameters
Scans were acquired at the Magnetic Resonance Imaging and 
Spectroscopy Unit (MRIS), Addenbrooke’s Hospital, Cambridge, 
UK, using a GE Signa HDxt system (General Electric, Milwaukee 
WI, USA) operating at 3  Tesla (3T). For rs-fMRI analyses, 512 
echo-planar imaging (EPI) volumes depicting blood oxygen level 
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by the AAL node were chosen at random. Each of these voxels 
defined the “origin” of a distinct micro node. The remaining vox-
els encapsulated by the AAL node were then assigned to one and 
only one of the K origins. In particular, a voxel was assigned to the 
origin to which it was closest, as dictated by the shortest Euclidean 
distance. Any ties in distance were broken randomly. This guaran-
teed contiguity of each micro node. The allocation procedure was 
repeated independently for each AAL node. An alternative approach 
would involve arbitrary parcellation of the binarized AAL mask 
without respecting the existing divisions of the AAL template (i.e., 
permit a micro-node to lie across multiple AAL nodes), but this 
method would permit non-sensical nodes that, for example, include 
both hemispheres.

The above procedure was repeated six times, for N = 100, 250, 
500, 1000, 1500, and 5000. We also generated networks using the 
original AAL, resulting in a total of seven parcellation scales being 
studied. Each of these templates was applied to the participants’ 
functional data to extract regional mean time series. To minimize 
noise associated with variable acquisition coverage in different 
individuals, we only retained ROIs where at least 70% of the vox-
els contained a non-zero signal. ROIs not meeting this criterion 
in all subjects were excluded from further analysis. This ensured 
that all networks within a parcellation scale were constructed from 
the same number of nodes. The final result was seven templates, 
comprising 84, 91, 230, 438, 890, 1314, and 4320 regions. From 
hereon, these will be referred to as aal84, parc91, parc230, parc438, 
parc890, parc1314, and parc4320, respectively. The aal prefix is 
intended to denote that the ROI boundaries for that template are 
based on those of the original AAL. The parc prefix denotes that 
the ROI boundaries have been determined using the algorithm 
described above. Details about ROI volumes at each parcellation 
scale are presented in Table 1.

Graph analysis
Network construction
At each parcellation scale, for each subject, the mean time series 
of each region was extracted and decomposed into four distinct 
frequency bands using the maximal overlap discrete wavelet trans-
form (Percival and Walden, 2000; Bullmore et al., 2004; Achard 
et al., 2006). We used the mean time series of each region, as this is 
the most commonly used method for estimating regional activity 
fluctuations. We note that other techniques, such as extracting the 
principal eigenvector, may also provide a representative sample 
of regional activity. The four frequency bands identified were: 
scale 1, 0.16–0.31 Hz; scale 2, 0.08–0.16 Hz; scale 3, 0.04–0.08 Hz; 
and scale 4, 0.02–0.04 Hz. In the present analysis, we focused on 
scale 3 of the wavelet decomposition (0.04–0.08 Hz), as this is the 

dependent (BOLD) contrast were acquired of the whole-brain 
using the following parameters: repetition time (TR) = 1600 ms; 
echo time (TE) = 35 ms; number of excitations (NEX) = 1; number 
of slices = 23; slice thickness = 7 mm plus 0 mm interslice gap 
(spacing between slices = 7mm); Flip Angle (FA) = 90°; field of 
view (FOV) = 240 mm × 240 mm; image matrix size = 64 × 64; 
voxel dimensions = 3.75 mm × 3.75 mm.

Image pre-processing
For each individual, functional volumes were realigned using 
a rigid-body transformation to correct for geometric displace-
ments associated with head movements and rotations. Temporal 
motion correction was then performed by regressing the current 
and lagged first and second order displacements against the time 
series of the realigned images. The residuals of this regression 
were then used for further analysis. These steps were implemented 
using freely available software1. Finally, the realigned, temporally 
corrected images were spatially normalized to the International 
Consortium for Brain Mapping echo-planar imaging template 
supplied with SPM52 using a 12-parameter affine transforma-
tion (Jenkinson and Smith, 2001), as implemented in the FSL 
toolkit3. The accuracy of all normalizations was verified via visual 
inspection. The images were re-sliced to 2 mm3 voxels during the 
spatial normalization.

Template generation
To construct parcellation templates of varying spatial resolution, 
we used an algorithm adapted from that described by Zalesky et al. 
(2010) for partitioning the AAL template into N contiguous regions 
while constraining the ROI volumes to be as uniform as possible. To 
generate a parcellation of finer scale than the native AAL resolution, 
each node composing the AAL template was subdivided into a set 
of micro nodes. Each micro node was constrained to lie within the 
volume encapsulated by its parent AAL node and each micro node 
was ensured to be contiguous.

The parcellation was performed using the following algorithm: 
Let N be the total number of desired nodes (i.e., the number of 
micro nodes). The number of micro nodes into which an AAL 
node was subdivided was proportional to its volume. Specifically, 
if an AAL node encapsulated V% of the total gray-matter volume, 
it was subdivided into K = VN micro nodes. This constraint pro-
moted uniformity in the volumes encapsulated by micro nodes. To 
subdivide an AAL node into K micro nodes, K voxels encapsulated 

Table 1 | Region-of-interest (ROI) volume (mm3) statistics as a function of parcellation scale.

	 aal84	 parc91	 parc230	 parc438	 parc890	 parc1314	 parc4320

Median 	 11800	 11200	 4536	 2372	 1156	 768	 236

Inter-quartile range	 10788	 10040	 3688	 1968	 888	 600	 176

Ratio	 0.91	 0.89	 0.81	 0.83	 0.77	 0.78	 0.75

Median represents the median volume across all ROIs in each template. Variability in ROI size was assessed using the inter-quartile range. The Ratio measure was 
calculated as the inter-quartile range normalized by the median.

1http://www-bmu.psychiatry.cam.ac.uk/software
2http://www.fil.ion.ucl.ac.uk/spm/software/spm5
3http://www.fmrib.ox.ac.uk/fsl
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Graph metrics
A number of graph analytic measures can be used to characterize 
diverse aspects of network organization (reviewed in Rubinov and 
Sporns, 2009). Here, we concentrated on those most frequently used 
in the literature, and which pertain to the most fundamental prop-
erties of the networks: network connectedness, small-worldness, 
and the degree distribution.

Network connectedness refers to how well connected the net-
work nodes are. If a path can be traced from any node in the network 
to all others, the network is connected. In thresholded data such as 
those provided by fMRI, this can be assessed by computing the size 
of the largest connected component of the graph as a function of 
cost. As the connectedness of a network increases, the size of the 
largest connected component will approach N.

Small-worldness was assessed in relation to five parameters: 
clustering coefficient, mean minimum path length, λ, γ, and σ. 
The clustering coefficient, C

i
, is the proportion of connections 

present between a node’s neighbors. High values imply that nodes 
connected to node i are also connected to each other, suggesting 
node i is situated in a cliquish neighborhood of connectivity. 
The mean minimum path length, L

i
, was computed for each 

node as the average number of edges comprising the shortest 
path between node i and all other nodes. The characteristic path 
length of the network, L

net
, was simply the average path length 

of the entire network. Low values indicate that information 
can be transferred between nodes with only a few connections, 
which is indicative of a more efficient topological organization 
(Latora and Marchiori, 2001). In cases where the largest con-
nected component of the network was <N, which typically occurs 
at low connection costs, we set the path length of disconnected 
nodes to the maximum observed for the network. This helped 
avoid computational problems associated with estimating path 
length for an isolated nodes, which is formally defined as ∞ (see 
also Zalesky et al., 2010). As such, our path length measure was 
inversely related to the global network efficiency measure pro-
posed elsewhere (Latora and Marchiori, 2001), where discon-
nected nodes are assigned an efficiency of zero. Separate analyses 
showed that path length and efficiency values were indeed highly 
negatively correlated (<−0.90 for most costs and templates), and 
the general pattern of results concerning the effects of different 
parcellation scales was consistent.

To diagnose small-worldness, L
net

 and C
net

 were normalized by 
their corresponding values in comparable random graphs (L

ran
 

and C
ran

, respectively), resulting in estimates of λ = L
net

/L
ran

 and 
γ = C

net
/C

ran
, respectively. In small-world networks, λ∼1 and γ >  1. 

Thus, small-world properties are evident when the scalar summary 
σ = γ/λ > 1 (Humphries et al., 2006). We calculated L

ran
 and C

ran
 

using two different methods. One involved using standard analytic 
approximations for equivalent Erdos–Rényi random graphs (Albert 
and Barabasi, 2002), where L

ran
 = ln(N)/ln(d) and C

ran
 = d/N and 

d represents the average nodal degree of the ith node. The second 
method involved using an algorithm that gradually rewired the 
edges of the thresholded adjacency matrix for each participant to 
generate a random topology (Maslov and Sneppen, 2002). In both 
cases, the normalization was matched for network size and mean 
degree, but the rewiring algorithm also matched for degree distri-
bution. From hereon, we will refer to the Erdos–Rényi method as 

band most commonly studied in rs-fMRI analyses and represents 
a reasonable trade-off between avoiding the physiological noise 
associated with higher frequency oscillations (Cordes et al., 2001) 
and the measurement error associated with estimating very low 
frequency correlations from limited time series (Achard et  al., 
2008). To correct for BOLD signal fluctuations of a non-neuro-
nal origin, time series extracted from seed regions placed in the 
white matter and cerebrospinal fluid were regressed against the 
wavelet-filtered regional time courses, and the residuals of these 
regressions were used for further analyses (Fox et al., 2005). We did 
not correct for global signal fluctuations as this step is known to 
introduce artifactual correlations (Fox et al., 2009; Murphy et al., 
2009), and its effects on whole-brain connectivity networks are 
as yet unclear.

Correlations between each possible pair of regions were com-
puted using the filtered, corrected regional time courses to generate 
a N × N functional connectivity matrix for each individual at each 
parcellation scale. As these connectivity matrices were populated 
using a continuous association measure (i.e., wavelet correlations), 
it was necessary to apply a threshold to remove noisy edges and 
extract an underlying network topology. As the choice of a spe-
cific threshold can be arbitrary, we examined network properties 
across a range of thresholds to test for consistency of the results. 
These thresholds were expressed as a network connection cost, 
defined as the proportion of supra-threshold connections relative 
to the total possible number of connections in the network (Achard 
and Bullmore, 2007). Thus, a network thresholded at a cost of 
10% comprised only the highest 10% of correlation values in the 
matrix. The sign of the correlations in the connectivity matrices 
was ignored, so that thresholding was based only on the absolute 
correlation values.

In our analyses, for templates ranging in resolution from 
aal84 to parc1314, we examined the full range of costs from 5 
to 40%. We chose a minimum bound of 5% to avoid excess net-
work fragmentation at sparser thresholds. The upper bound of 
40% was chosen because it represents a liberal limit on estimates 
of cerebral connectivity reported in the literature (Latora and 
Marchiori, 2003; Bassett and Bullmore, 2006), and the networks 
tended toward randomness at higher costs (i.e., estimates of σ, 
an index of small-worldness, approached those of a random 
network; see also Figure  6). (Note that this approach implic-
itly assumes that randomness is a spurious property of brain 
networks.) For parc4320, we only examined costs of 10, 20, 30, 
and 40% due to the computational time involved in generating 
network measures for such large networks. After applying each 
threshold, the matrices were binarized such that supra-threshold 
connections were assigned to one and sub-threshold connections 
to zero. These binarized adjacency matrices were then used as a 
basis for network construction and graph analysis. In total, this 
procedure resulted in the construction and analysis of 6420 net-
work graphs. A schematic overview of the processing steps using 
in graph construction is provided in Figure 1. We used binary, 
globally thresholded graphs for network characterization because 
this is the most frequently used approach in the literature. Other 
methods, such as spectral graph partitioning (see Boccaletti et al., 
2006 for an overview), may also provide useful information and 
warrant further investigation.
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associated with the binning procedures required for constructing 
frequency-degree plots (Liu et  al., 2005). We formally tested for 
scale-freeness by fitting models describing power-law (scale-free), 
exponential and exponentially truncated (broad-scale) distributions 
to the curves for each subject, and compared their goodness of fit 
using Akaike’s information criterion (AIC). The model with the 
lowest AIC value was identified as the one providing the best fit to 
the data. We used simple least squares estimation, consistent with 
prior work (e.g., Achard et al., 2006). Other methods can provide 
more accurate results when estimating power-law scaling (Bauke, 
2007; Clauset et al., 2009), but may be limited in cases where there is 
a truncation of the power-law, as in the present data (see below). All 
graph analyses were performed using Matlab 7.8.0 (MathWorks, Inc) 
using a combination of freely available tools4,5,6 and custom code.

Statistical analyses
We performed two types of analyses: one focused on mean differences, 
and the other on individual differences. To test whether there were 
any mean differences in network parameters as a function of parcel-

ER-normalization and the rewiring method as RW-normalization. 
These abbreviations will be appended as subscripts when referring 
to the normalized measures γ, λ, and σ to denote the normalization 
method used in their computation.

By definition, RW-normalization requires generation and meas-
urement of surrogate graphs, increasing computation burden rela-
tive to ER-normalization. The time difference between the two can 
be an important consideration when studying large networks over 
multiple costs. Accordingly, in the current study, we computed nor-
malized measures for costs of 10, 20, 30, and 40%. In the case of the 
RW-normalization, 20 random graphs were analyzed per subject 
per cost at each parcellation scale. Consequently, the normalized 
parameters γ, λ, and σ were only evaluated at these four costs.

To examine the degree distribution of the networks, we plotted 
nodal degree against nodal rank in log–log coordinates to diag-
nose scale-freeness. Typically, an approximately linear rank-degree 
plot is interpreted as evidence of power-law scaling in the degree 
distribution, although it does not provide conclusive evidence for 
such properties (Liu et al., 2005; Clauset et al., 2009). A power-law or 
scale-free degree distribution suggests that while most nodes possess 
a low degree, the probability of finding very highly connected nodes 
(termed network hubs) is higher than expected in a commensurate 
random network. We used rank-degree plots to avoid the artifacts 

Figure 1 | Overview of image processing steps used in generating 
graph-based representations of whole-brain connectivity network. Far left: 
seven distinct parcellation templates were generated, which divided the brain 
into (from top to bottom) 84, 91, 230, 438, 890, 1314, or 4230 regions-of-
interest. Middle-left: the templates were applied to each subject’s fMRI 
volumes and the mean time series of each region were extracted and 
decomposed into four frequency intervals using a wavelet transform. 
Middle-right: spontaneous oscillations subtended by the wavelet frequency 
interval 0.04–0.08 Hz were further corrected for physiological noise signals and 

temporal correlations between each possible pair of regional corrected time 
series were calculated to generate a functional connectivity matrix for each 
template for each participant. These matrices were then thresholded and 
binarized across a range of connection costs (examples shown are for 10, 20, 
30, and 40% costs). Far right: The thresholded, binarized adajacency matrices 
were used to generate graph-based representations of network connectivity, 
such that each region was represented as a node and each supra-threshold 
correlation as a connecting edge. These graphs were used as a basis for 
calculating graph metrics.

4http://sites.google.com/a/brain-connectivity-toolbox.net/bct/
5http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/index.html
6http://www.atmos.washington.edu/∼wmtsa/
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higher) were <0.3. This suggests that using more fine-grained 
templates can reduce the dependence of functional connectiv-
ity estimates on ROI size. In addition, Figure 3 indicates that 
inter-individual variance in the association between ROI size 
and connectivity estimates is reduced at higher spatial resolu-
tions, which may serve to increase power in statistical analyses 
of graph measures.

Parcellation scale and graph metrics
The effects of parcellation scale on network connectedness
To examine how parcellation scale affected network connectedness 
we calculated the size of the largest connected component, as a 
proportion of N, for each subject at each parcellation scale across 
the cost range 5–40%. (This analysis was not possible for parc4320, 
as only four costs were examined at this scale.) The results are 
presented in Figure 4 (left). A value of 1 on the y-axis indicates 
that the largest connected component includes all nodes – the net-
work is connected. As can be seen, increasing spatial resolution was 
associated with greater connectedness. In particular, the parc890 
and parc1314 networks were, on average, connected even when the 
networks were sparse (i.e., cost <10%). In contrast, lower resolution 
templates only achieved connectedness at higher costs.

lation scale, we ran separate repeated measures analyses of variance 
at each cost examined, using parcellation scale as the independent 
variable. This analysis was intended to determine whether mean dif-
ferences between parcellation scales were of sufficient magnitude to 
be considered statistically significant. As the analysis was intended 
to highlight parcellation scales where there may be differences, we 
adopted an exploratory threshold of α = 0.05, uncorrected.

While different parcellation scales may show mean differences in 
absolute parameter estimates, they may still preserve the pattern of 
relative differences between individuals. Such relative differences are 
generally those of primary interest in correlational or case–control 
experiments. Thus, to quantify whether relative differences were pre-
served across scales, we computed the correlation between each pair of 
scales for each measure at costs of 10, 20, 30, and 40%. Spearman rank 
correlations were used to account for non-normality of the data.

Results
Parcellation scale and functional connectivity estimates
Table 2 presents measures of average connectivity, and variability 
in connectivity, as a function of parcellation scale. There was a 
general trend for average functional connectivity, as measured by 
the median correlation in each individual’s connectivity matrix, to 
decrease with increasing spatial resolution of the template; from the 
lowest to the highest resolution, there was an approximate decrease 
of 38% in the mean correlation value. Measures of between-subject 
variability in mean connectivity, and within-subject variability in 
connectivity estimates, remained relatively consistent across par-
cellation scales. Figure 2 presents the sample averaged correlation 
histograms at each parcellation scale. The shapes of each distribu-
tion are highly similar, but their mean value is shifted toward zero 
with increasing spatial resolution.

To examine how changes in ROI size associated with each 
parcellation scale were related to regional functional connectivity 
estimates, we used the following procedure. At each parcellation 
scale, for each subject, we calculated the mean correlation value 
of each brain region. We then correlated these regional mean 
correlation values with the volume of each region to obtain a 
correlation value for each participant at each scale reflecting the 
association between average regional connectivity and ROI size. 
Figure 3 presents a boxplot of these subject-specific correlation 
values at each parcellation scale. On average, across all scales, the 
correlation between ROI size and mean regional connectivity was 
low (median <0.3), although for some subjects it exceeded 0.5 
when coarser templates (i.e., aal84 and parc91) were used. All 
correlations for more fine-grained templates (i.e., parc890 and 

Table 2 | Changes in average in functional connectivity, and variability of connectivity estimates, as a function of parcellation scale.

	 aal84	 parc91	 parc230	 parc438	 parc890	 parc1314	 parc4320

Mean functional connectivity	 0.56	 0.56	 0.50	 0.45	 0.43	 0.41	 0.35

Between-subject variability	 0.09	 0.09	 0.09	 0.08	 0.08	 0.08	 0.08

Within-subject variability	 0.17	 0.17	 0.18	 0.19	 0.19	 0.19	 0.21

The mean functional connectivity estimates were obtained by computing the average wavelet correlation coefficient for each subject’s unthresholded connectivity 
matrix, and then taking the sample average of these mean values. Between-subject variability was computed by taking the sample standard deviation of the mean 
correlation value of each subject’s matrix. Within-subject variability was computed by calculating the standard deviation of correlation values in each subject’s matrix, 
and then taking the sample mean of these standard deviation values.
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Figure 2 | Functional connectivity histograms obtained at each 
parcellation scale. Each line corresponds to the sample average histogram of 
correlation values contained in each participant’s unthresholded functional 
connectivity matrix.
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Figure 3 | Boxplots of subject-specific correlations between mean 
regional functional connectivity and regional volumes at each 
parcellation scale. Boxes represent the inter-quartile range, heavy horizontal 
lines the median. Whiskers represent the 5th and 95th percentiles. Circles 
represent values beyond these percentiles.

To further quantify the degree of similarity between parcellation 
scales with respect to network connectedness, we calculated the 
cost at which each subject’s network became connected for each 
parcellation scale. We then computed the correlation between these 
values for each pair of parcellation scales. This correlation matrix is 
presented in Figure 4 (right). Correlations were generally positive, 
and were highest for scales with similar resolution. For example, 
the correlation between parc1314 and parc890 was higher than 
that for parc1314 and aal84.

The effects of parcellation scale on network 
small‑worldness
Figure 5 plots the sample mean C

net
 and L

net 
for all parcellations 

up to parc1314 across costs 5–40%. Figure 6 plots the sample 
means for C

net,
 L

net
, λ, and γ for all parcellations at costs of 10, 20, 

30, and 40%. Figure 7 shows the same for σ. Significant mean 
differences as a function of parcellation scale were apparent for 
nearly all costs examined. In general, there was trend for net-
works defined at higher resolutions to be associated with lower 
L

net
. The dependence of C

net
 on parcellation scale varied as a 

function of cost; higher resolution networks showed increased 
clustering at costs lower than ∼25%, but this trend reversed 
for higher costs. This effect likely reflects the aforementioned 
parcellation-dependent effects on network fragmentation: at 
lower costs, coarse resolution networks were more fragmented, 
lowering estimates of C

net
.

The effects of parcellation scale on normalized measures varied 
depending on which normalization was used. In general, as parcella-
tion resolution increased λ

ER
 estimates increased and λ

RW
 decreased. 

The only exception to this trend was λ
ER

 at 10% cost, where aal84 
and parc91 showed the highest path length. Again, this effect likely 
reflects increased fragmentation in the observed networks at sparser 
thresholds. Estimates of γ

RW
 were consistently higher in high-resolu-

tion templates, whereas γ
ER

 differences also showed a dependence on 
cost: at 10%, coarser resolutions showed lower values, whereas this 
effect reversed at higher costs. Similar trends were observed for σ, 
such that higher resolutions were associated with lower σ

RW
 values 

across all costs examined, whereas σ
ER

 differences were contingent 
on cost in a manner that paralleled the pattern observed for γ

ER
.

The pair-wise correlations between different parcellation 
scales for C

net, 
L

net
, λ

RW
, γ

RW
, σ

ER,
 and σ

RW
, are quantified at costs 

of 10, 20, 30, and 40% in Figure 8. (Matrices for λ
ER

 and γ
ER

 
are not shown because they were computed by normalizing 
λ and γ with a constant value across all individuals, making 

Figure 4 | Mean values and individual differences in network connectedness as a function of parcellation scale. Left: Sample mean size of largest connected 
network component for each parcellation scale across all costs examined (*p < 0.05). Right: correlation matrix of inter-scale associations for the cost at which each 
individual’s network became connected.
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lower at sparser costs, particularly for clustering, likely reflecting 
increased fragmentation of these lower resolution networks. 
RW-normalization of C

net, 
and L

net 
largely preserved individual 

differences and led to higher inter-scale correlations. The pattern 
of inter-scale correlations for σ varied depending on whether it 

individual differences in these parameters identical to the non-
normalized measures.) In general, most measures were highly 
positively correlated across scales, suggesting preservation of 
individual differences. Inter-correlations between the two coars-
est templates – aal84 and parc91 – and all other scales were 

Figure 5 | Mean values of global network path length (left) and clustering coefficient (right) at each cost. *p < 0.05.

Figure 6 | Mean values of global network path length (top left), λER (top middle), λRW (top right), clustering (bottom left), γER (bottom middle) and γRW 
(bottom right) at costs of 10, 20, 30, and 40% for each parcellation scale. *p < 0.05.
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Figure 7 | Mean small-worldness (σ) values computing using ER- or RW-normalization (left and right respectively) for each parcellation scale at costs of 
10, 20, 30, and 40%. *p < 0.05.

was computed using ER- or RW-normalization: all scales were 
highly positively correlated (all r > 0.70) for RW-normalization, 
but only pairs of scales similar in size showed high correlations 
for ER-normalization.

The effects of parcellation scale on network degree distributions
Figure 9 plots the sample mean degree distributions for each parcel-
lation scale at costs of 10, 20, 30, and 40%. The non-linearity of the 
curves indicates the networks were not scale-free, but rather were 
characterized by an exponentially truncated power-law function. 
For all subjects, across all parcellation scales and all costs examined, 
an exponentially truncated power-law provided a better fit to the 
data than a power-law or exponential model, as determined using 
the AIC.

The exponentially truncated power-law model fit to the data 
was defined as y cd ei i

d ki= − −α 1 /  (Achard et al., 2006). The model was 
linearized by taking the logarithm of both sides and the parameters 
α, k, and c were fitted using least squares. The three model param-
eters can be interpreted as follows: α − 1 is the scaling exponent, 
k is the degree of the exponential cutoff (i.e., truncation point) 
above which the power-law becomes dominated by exponential 
scaling, and c is a normalization constant. The cutoff degree k mod-
els potential biological constraints on network size (e.g., head size) 
that preclude the formation of very rare, but highly connected 
hub nodes predicted by a pure power-law model. When plotting 
the nodal distribution function on doubly logarithmic axes, the 
scaling exponent, α − 1, represents the slope of the distribution 
over the power-law regime. However, if the cutoff degree is low, 
the exponential always bears some influence on the power-law, 
and thus the scaling exponent becomes a poor estimator of slope. 
This effect was observed in the present study, and so the power-law 
exponent should be interpreted cautiously.

As shown in Figure 10, parcellations with higher spatial reso-
lution were associated with lower values for both α − 1 and k. In 
particular, a marked discrepancy was evident in the fitted cutoff 
degree between parc4320 and all other scales. This discrepancy 

indicates the existence of highly connected hub nodes is less 
probable as the parcellation scale is made finer. This is also con-
sistent with the finding that the network tends toward a more 
random topology as the scale is made finer, where nodal degrees 
are binomially distributed (i.e., evenly dispersed about a mean 
nodal degree). One interpretational caveat is that the networks 
differed in size, and so the descriptors of the degree distribution 
may not be directly comparable. The best way of normalizing 
such values for differences in network size remains an unresolved 
issue.

Figure 11 plots the inter-scale pair-wise correlations for α − 1 
and k. The inter-correlations were all positive and generally high, 
particularly between parcellations with spatial resolution equal to 
or greater than parc230. This suggests that, despite there being 
mean differences in these parameters across scales, inter-individual 
differences are relatively conserved.

The effects of parcellation scale on regional network metrics
Quantitative comparisons of how regional properties vary as a 
function of parcellation scale are difficult, as there is no one-to-
one correspondence between ROI definitions across templates. 
To get an impression of how parcellation scale affected regional 
properties, we mapped nodal path length and clustering at each 
parcellation scale for networks defined at 10% cost (Figure 12). 
The results were broadly consistent across scales. Regions show-
ing the lowest path length were primarily localized to posterior 
medial parietal and visual cortices, as well as lateral superior 
parietal, temporal and frontal regions. Regions showing the 
highest clustering were located in somatomotor cortices, pri-
mary visual areas, and lateral temporal and prefrontal regions. 
Naturally, higher resolutions afforded greater localizing power, 
and in some cases what seem to be larger regions of homogene-
ous values split into distinct clusters. For example, the precen-
tral gyrus was one of the regions showing lowest path length at 
the aal84 scale, but higher resolutions indicated that this effect 
was mainly driven by a more focal cluster localized to superior 
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Discussion
The application of graph analytic techniques to fMRI data has 
provided researchers with a rich set of tools for characterizing brain 
network connectivity. An important step when conducting these 
analyses involves parcellating the brain into distinct regions, which 

portions of this gyrus. Thus, not surprisingly, higher resolutions 
afforded greater power for localizing focal effects. The results 
were very consistent across scales greater than parc890 however, 
suggesting there may be diminishing returns associated with fur-
ther increases in resolution.

Figure 8 | Inter-scale correlations in global network properties at costs of 10, 20, 30, and 40%. (A) Clustering; (B) γRW; (C) path length; (D) λRW; (E) σER; and (F) σRW.
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ogy, such as whether the network is small-world or scale-free, are 
robust to the parcellation strategy adopted, there is considerable 
variation in the exact values defining key parameters of network 
organization. In addition, while individual differences are generally 
preserved across parcellation scales, the method used to generate 
normalized measures such as γ, λ, and σ can have a major effect. 

serve as network nodes in graph construction. A variety of different 
parcellation strategies have been employed in the literature, but 
the effect of differences in such schemes on the findings has been 
unclear. In this study, we examined the effects of parcellation scale 
on some of the most commonly used graph analytic measures. 
We found that while simple inferences regarding network topol-

Figure 9 | Log–log nodal rank-degree plots for each parcellation scale at costs of 10, 20, 30, and 40%.

Figure 10 | Mean values of the power-law exponent (slope, left) and exponential cutoff (right) of the degree distributions at each parcellation scale for 
costs of 10, 20, 30 and 40%. *p < 0.05.

Figure 11 | Inter-scale correlations in degree distribution power-law exponents (top row) and exponential cut-off values (bottom row) for costs of 10, 20, 
30, and 40% (left to right columns).
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time series correlations, which represent a ratio of temporal cov-
ariance to variance. However, one attractive property of higher 
resolution templates was that they showed negligible correlations 
between regional variations in volume and functional connectiv-
ity. For coarser templates, although the median correlation was 
small-to-moderate ∼0.28, there was considerable inter-individual 
variability in the degree to which nodal size was correlated with 
regional connectivity; in some cases the correlations approached 
0.60. This variability can add noise to analyses of group or indi-
vidual differences, and reduce power to detect significant effects. 
In contrast, higher resolution templates were associated with both 
lower median correlations, and much lower inter-individual vari-
ability in correlation values, suggesting that inter-regional vari-
ations in size are less of a confound at these scales (particularly 
parc890 and above). These findings suggest that higher resolu-
tion templates may provide a desirable alternative to commonly 
used low-resolution anatomical parcellations, such as the AAL 
or ANIMAL templates, but these considerations need to be bal-
anced with the increased error associated with estimation of inter-
regional temporal correlations.

Inter-scale differences in global network measures
As with previous investigations (Wang et al., 2009a; Zalesky et al., 
2010), we found that gross topological inferences about brain net-
works, such as whether they are small-world or scale-free, are robust 
to the specific parcellation scheme employed. However, we observed 
significant effects of parcellation scale on the absolute values of 
all graph metrics across most of the costs studied, suggesting that 
varying network spatial resolutions are associated with sizeable 
changes in the specific values of key network parameters such as 
path length, clustering and related measures. This result is consist-
ent with a similar analysis of anatomical networks generated using 
diffusion-weighted imaging (Zalesky et al., 2010). Together, these 
findings suggest that comparisons of specific values obtained by 
different investigators using distinct parcellation schemes should 
be done cautiously.

In general, coarser networks were associated with higher path 
length. They were also associated with reduced clustering at sparse 
costs, but this trend reversed for costs >25%, likely reflecting parcel-
lation-dependent effects on network connectedness. In a fragmented 
network, disconnected nodes have C

i
 = 0, which lowers the global C

net
 

estimate. Coarser templates were associated with greater fragmenta-
tion at low costs, suggesting this may have affected C

net
 values.

The effects of parcellation scale on network small-worldness, 
as indexed by σ, depended on the normalization used to com-
pute the measure. ER-normalization showed a cost-dependent 
trend paralleling that observed for clustering: coarser resolutions 
were associated with smaller σ

ER
 at costs <20%, but larger σ

ER
 at 

higher costs. Again, this likely reflects the effects of increased net-
work fragmentation at sparse costs for coarse scales, which would 
serve to increase path length and decrease clustering, producing 
a net reduction in small-worldness. In contrast, there was a con-
sistent trend for higher resolutions to be associated with lower 
small-worldness when σ

 
was calculated using RW-normalization. 

This discrepancy may reflect the fact that RW-normalization 
matches the observed networks for degree distribution whereas 
ER-normalization is comparable to matching only for size and 

Figure 12 | Medial and lateral cortical surface renderings illustrating 
regional variations in sample mean path length (left) and clustering 
(right) at each parcellation scale. Path length values have been inverted so 
that lower values are represented by “hotter” colors.

These findings highlight the need to consider the impact that vari-
ations in parcellation strategies may have on the reproducibility of 
findings in graph analytic studies.

The influence of parcellation scale on functional connectivity
Our findings indicate that higher resolutions were associated with 
lower mean correlation values. The shape of the correlation distri-
bution was remarkably similar across scales, but each increment 
in spatial precision shifted the mean of the distribution closer 
to zero. This may reflect greater noise associated with measure-
ments taken from smaller ROIs, which reduces the likelihood of 
finding strong correlations with other regions. Indeed, second-
ary analyses indicated that while there was a ∼7% decrease in 
median covariance between regional time series when moving 
from the coarsest (aal84) to finest (parc4320) resolution, there was 
a corresponding ∼38% increase in median variance of regional 
time series. This increased temporal variability reflects noisier 
measurements at higher resolutions and will reduce any pair-wise 
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tion scale and measurement signal-to-noise. Based on our findings, 
variations between measures obtained using parc890 and greater 
were relatively small compared to those obtained using coarser 
templates and may provide a reasonable spatial scale for explora-
tion of network properties. Another attractive property of higher 
resolution templates was that they became connected at much 
lower costs, meaning that analyses of these networks will be less 
susceptible to the computational problems caused by isolated or 
disconnected nodes. Greater connectedness with increasing N may 
be a general property of most complex networks. Random graphs 
with mean degree (k) > ln(N) are almost surely connected (Albert 
and Barabasi, 2002), a threshold that is reached at much sparser 
costs in large networks. While brain networks are not equivalent to 
random graphs, a similar relationship between N and connected-
ness likely exists, as suggested by our data (see Figure 4).

The effects of parcellation scale on individual differences
Our analysis of mean differences suggested that parcellation scale 
exerted a considerable effect on the absolute values of key network 
parameters. However, most investigations are less concerned with 
estimating the absolute value of a given parameter than with assess-
ing the effects of individual differences in these parameters. For 
example, researchers may want to test whether a certain network 
property correlates with some behavioral index (van den Heuvel 
et al., 2009), or differs between some patient and control group 
(Liu et al., 2008). Thus, if individual differences across parcellation 
scales are preserved, then mean differences between them become 
less important.

To examine how parcellation scale related to individual differ-
ences in these measures, we quantified the associations between 
each pair of scales for each measure at costs of 10, 20, 30, and 40%. 
Our findings indicated that these inter-scale associations varied 
depending on the specific network property and cost being stud-
ied. Estimates of path length were positively correlated between all 
scales and across all costs, although the correlations were greater for 
more densely connected networks. The explanation for this is intui-
tive: as more connections are added to the network, the topologies 
begin to resemble each other until cost = 100%, where they yield 
identical values across individuals. Inter-correlations between scales 
parc230 and higher were all >0.75, the correlations being >0.90 
for scales greater than parc890. The two coarsest scales, aal84 and 
parc92, were highly correlated with each other, but showed lower 
correlations with the other scales, suggesting the results obtained at 
resolutions <200 regions may be less consistent with those obtained 
at higher resolutions. Raw clustering values were less correlated 
than path length, although inter-correlations between scales higher 
than parc890 remained high (i.e., >0.90). This likely reflects the 
aforementioned differences in network fragmentation. The cor-
relations increased at higher costs suggesting that the topologies 
converge as more connections are added to the network. Inter-
correlations for small-worldness were again dependent on the 
normalization method, with correlations generally being higher 
following RW-normalization. A corollary of these findings is that 
RW-normalization may lead to more reproducible findings.

Together, these data indicate that individual differences are largely 
preserved for scales greater than ∼200 regions, and are particularly 
reproducible between scales around and exceeding 1000 regions. An 

mean degree. Thus, the RW approach normalizes the observed 
parameters by surrogate measures generated from networks bet-
ter matched for connectivity properties. With the ER model, the 
probability of a path existing between a pair of nodes is always 
non-zero. In contrast, with RW-normalization, it is possible for 
no paths to exist between a pair of nodes for a particular rewiring, 
thus yielding an infinite path length. To avoid dealing with such 
infinite values, either the harmonic mean is used, the computation 
of path lengths is restricted to the largest connected component, or 
infinite path lengths are replaced with the maximum finite length. 
Neither of these three alternatives are consistent with the analytic 
expression for path length derived for the ER model. Therefore, 
ER- and RW-normalization differ in the way path length is defined, 
in addition to whether or not the degree distribution is matched 
to the observed network.

In contrast to our finding, previous studies examining parcella-
tion scale-dependent effects have reported a trend for greater small-
worldness at increasing resolutions, using both rs-fMRI (Hayasaka 
and Laurienti, 2010) and diffusion-imaging (Zalesky et al., 2010). 
Methodological inconsistencies may account for these findings. 
In their study of anatomical networks, Zalesky et al. (2010) exam-
ined relatively sparse networks unmatched for connection cost or 
connectedness across parcellation scales, making their results dif-
ficult to directly compare with ours. Hayasaka and Laurienti (2010) 
matched networks based on the lower bound for path length rather 
than connection cost. This lower bound was computed based on 
the scaling relationship observed for ER-graphs [L

ER
 = ln(N)/ln(d)], 

to avoid assuming a linear relationship between the number of 
edges and number of nodes in the network. The difficulty with this 
approach is that there is no guarantee that brain networks will scale 
similarly to random graphs, which display intrinsically different 
topological properties. We opted to use cost-based thresholding 
as it is the most straightforward and widely used method in the 
literature. However, the best method for thresholding graphs when 
comparing network parameters is an unresolved issue and requires 
further investigation.

The trend in our data towards lower values of σ at higher resolu-
tions suggests a tendency towards a more random topology. This 
trend, combined with the generally lower functional connectiv-
ity values and increased temporal variance at these scales suggests 
higher resolutions may be more susceptible to noise. This conten-
tion is also supported by comparing degree distribution parameters 
across parcellation scales, as the parc4320 template was associated 
with a lower probability of finding highly connected hubs; that is, 
connections were distributed more evenly amongst the network 
nodes, as is characteristic of random graphs.

In traditional, voxel-wise analyses the data are commonly spa-
tially smoothed to increase the signal-to-noise ratio. Smoothing 
is not a recommended option for graph analytic studies of fMRI 
data, as it will introduce spuriously high correlations between an 
index node and its immediate neighbors. Consequently, adopting 
too high a spatial resolution may be associated with a dispropor-
tionate loss in signal-to-noise. Adopting an ROI size that matches 
the size of the signal one wishes to detect may provide the best 
trade-off between spatial resolution and signal-to-noise ratio in 
graph analytic studies of fMRI data, although further work would 
be necessary to identify the precise relationship between parcella-
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in network measures generated using different parcellations at the 
same scale are very small, being <3% on average (Zalesky et al., 2010), 
suggesting our findings are generalizable to other parcellations at 
similar resolutions. In our data, this was also evident in the similar 
values obtained for all network measures calculated using the aal84 
and parc91 templates. Despite the former being defined anatomi-
cally and the latter using our random-seeding approach, and slight 
differences in the number of nodes they comprise, they showed very 
similar values for all network properties studied. Together, these 
findings indicate that our results are insensitive to the specific par-
cellation strategy used at a given parcellation scale.

Across the range of parcellation scales examined, we found con-
sistent evidence that functional brain networks are characterized by 
an exponentially truncated, so-called broad-scale degree distribu-
tion (Amaral et al., 2000), rather than a scale-free topology. While 
several authors have reported similar findings (Achard et al., 2006; 
Hagmann et al., 2007), scale-free properties have also been observed, 
particularly when networks are analyzed at voxel-wise resolution 
(Eguiluz et al., 2005; van den Heuvel et al., 2008). Hayasaka and 
Laurienti (2010) found evidence for an exponentially truncated 
degree distribution in their voxel-based analysis of rs-fMRI net-
works, suggesting this resolution will not always reveal scale-free 
properties. However, the degree distribution of their voxel-based 
network was more scale-free than that of networks studied at lower 
resolutions. They ascribed this trend to under-representation of 
low degree nodes at lower resolutions. Whether these low-degree 
nodes represent a biologically valid characteristic of functional 
brain networks, or simply reflect a limitation on signal-to-noise 
at this resolution, remains open to further investigation.

One criticism of using a priori templates for network node defi-
nition, as used in the current study, is that they may reduce one’s 
sensitivity to identifying highly connected, yet spatially focal (e.g., 
voxel-sized) hubs. This is because the topological dominance of 
such hubs may be obscured when they are grouped as part of a 
larger region with other voxels (Fraiman et al., 2009; Hayasaka and 
Laurienti, 2010), reducing sensitivity to identify power-law scaling. 
The typical ROI volume for the higher resolution templates used in 
this study was much smaller than the average volume of a typical 
cytoarchitectonic region, widely regarded as the primary parcella-
tion unit of the cortex, but we still found no evidence for scale-free 
properties. Highly connected hubs and scale-free topologies may 
emerge at the resolution of cortical columns, which may be better 
approximated by voxel-wise approaches (van den Heuvel et  al., 
2008; Hayasaka and Laurienti, 2010). However, at these resolutions, 
limitations on the signal-to-noise of current fMRI techniques must 
be considered, as discussed above. Both broad-scale and scale-free 
properties have been observed in voxel-based imaging (van den 
Heuvel et al., 2008; Hayasaka and Laurienti, 2010) and microscopic 
functional neuronal networks (Yu et al., 2008; Bonifazi et al., 2009), 
suggesting further work is required to understand the conditions 
under which scale-free topologies emerge.

A final point worth noting is that rs-fMRI networks, by virtue of 
being generated from inter-regional correlations in BOLD signal fluc-
tuations, represent a somewhat abstract basis for network definition. 
While correlated with underlying anatomical connectivity, additional 
functional connections are often present, likely reflecting the exist-
ence of polysynaptic interactions (Vincent et al., 2007; Honey et al., 

implication of the higher inter-correlations between scales higher 
than parc890 is that there may be little gain in increasing network 
resolution much beyond 1000 regions. That is, the values obtained 
at these higher scales will be highly correlated, but the time taken 
to compute them will be considerably longer.

Methodological considerations
Many different pre-processing steps are implemented to generate 
network measures in rs-fMRI analyses, each of which can affect 
the findings. One under-studied variation regards the choice of 
temporal filter to isolate the frequency band of interest. We used 
wavelets because they are well-suited to non-stationary processes 
such as BOLD signal fluctuations (Bullmore et al., 2004), whereas 
other authors have used Fourier-based approaches (Salvador et al., 
2005a; Liu et  al., 2008). We examined the consistency between 
the approaches by computing intra-subject correlations between 
frequency-specific functional connectivity values obtained by 
our approach and those obtained after using a Butterworth filter 
(cut-offs: 0.04–0.08 Hz). Across subjects and parcellation scales, 
the median correlation value was 0.95, and all correlations were 
>0.90, suggesting good agreement between the two approaches. 
Nonetheless, more detailed comparison of the effects of various 
temporal filtering approaches may be warranted in the future.

Other methodological variations that may affect the findings 
include methods for correcting regional time series for physiologi-
cal fluctuations, particularly as regards the so-called global cor-
rection procedure (see Birn et al., 2006; Fox et al., 2009; Murphy 
et al., 2009; Weissenbacher et al., 2009). An investigation of these 
methods was beyond the scope of this paper, but may be related 
to differences between ours and previous findings (Hayasaka and 
Laurienti, 2010).

We constrained all parcellation scales to fit within the grey mat-
ter mask defined by the AAL template as it promoted comparability 
between the different parcellation schemes used in this study. However, 
the AAL mask is relatively diffuse and often includes portions of white 
matter. This may have a more pronounced effect at higher spatial 
resolutions, as smaller ROIs may be entirely contained within the 
white matter for some individuals. While we corrected regional time 
series for white matter signal fluctuations, the problem posed by ROIs 
contained completely in the white matter is difficult to address with-
out their removal from the network, which would alter the parts of 
the brain sampled across parcellation scales and result in networks 
constructed from differing numbers of nodes across individuals. In 
addition, while the AAL template is widely used in the literature, dif-
ferent templates may differentially sample various parts of gray matter, 
which may affect the results. While we expect that our findings con-
cerning the effects of varying spatial resolution should be insensitive to 
the particular initial parcellation template used, this conjecture needs 
to be verified through further experimentation. Such work would also 
benefit from comparing the effects of using standard templates (e.g., 
AAL, ANIMAL) with more recently developed hierarchical parcella-
tion strategies (Thirion et al., 2006; Pohl et al., 2007).

We only generated one template for each spatial scale, as the 
primary goal of our analysis was to investigate the effects of vary-
ing spatial resolution on different network measures. A separate 
question concerns the robustness of the measures across different 
parcellations at each scale. We have previously shown that variations 
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for glutamate (Glu) reuptake from the synaptic cleft and its 
conversion to non-excitotoxic glutamine have been observed 
(Choudary et al., 2005). During the past few years, the hypoth-
esis of a complex metabolic abnormality in the ACC has been 
developed which links psychological abnormalities in MDD to 
abnormal baseline metabolism in astrocytes and neurons and 
even to disease related immunological processes in microglia 
(Dantzer et al., 2008).

Proton NMR spectroscopy (MRS) is a widely used tool to meas-
ure brain metabolites in vivo. MRS enables the detection of metabo-
lites, among them, the total concentration of Glutamate in the brain 
tissue. A continuous recycling of glutamate between neurons and 
glial cells takes place in the brain. As neurotransmission progresses, 
neuronal glutamate is released into the synaptic cleft. From there 
it is taken up by glial cells and converted to glutamine. Glutamine 
is afterwards transported back into the neurons where it is recon-
verted to glutamate (Rothman et al., 2003). Glutamate levels do not 
only reflect glutamatergic neurotransmitter activity, but also the 
synthesis of glutamate through the tricarboxylic acid (TCA) cycle. 
Total glutamate measurements as observed by MRS therefore are 
not specific to the constant flux through the glutamate–glutamine 

Introduction
Major depressive disorder (MDD) is characterized by persistent 
negative feelings of sadness, guilt, and worthlessness and further 
by ruminating thoughts, cognitive impairments, and somatic com-
plaints. These various symptoms are accompanied by abnormal 
activity in several brain regions as observed in a number of imaging 
studies. This supports the notion of a complex network underly-
ing the pathology of depression. It also questions the existence of 
a few core regions with primarily impaired brain function. Such 
specific regions, however, would be highly useful to guide regional 
invasive therapies such as deep brain stimulation (Mayberg et al., 
2005; Lozano et al., 2008) or imaging guided treatment prediction 
or monitoring (MacQueen, 2009).

The medial prefrontal cortex and the anterior cingulate cortex 
(ACC) have been identified as key structures for MDD, with 
abnormalities not only in fMRI activation but also in baseline 
metabolism or perfusion. In accordance with these in vivo find-
ings, post mortem investigations in MDD have revealed reduc-
tions in neuronal and glial cell densities, size, and arborization 
(Ongür et al., 1998; Cotter et al., 2001; Manji et al., 2001). On a 
molecular level, reduced expression of glial enzymes allowing 

Glutamatergic and resting-state functional connectivity 
correlates of severity in major depression – the role of 
pregenual anterior cingulate cortex and anterior insula
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Glutamatergic mechanisms and resting-state functional connectivity alterations have been recently 
described as factors contributing to major depressive disorder (MDD). Furthermore, the pregenual 
anterior cingulate cortex (pgACC) seems to play an important role for major depressive symptoms 
such as anhedonia and impaired emotion processing. We investigated 22 MDD patients and 22 
healthy subjects using a combined magnetic resonance spectroscopy (MRS) and resting-state 
functional magnetic resonance imaging (fMRI) approach. Severity of depression was rated using 
the 21-item Hamilton depression scale (HAMD) and patients were divided into severely and mildly 
depressed subgroups according to HAMD scores. Because of their hypothesized role in depression 
we investigated the functional connectivity between pgACC and left anterior insular cortex (AI). The 
sum of Glutamate and Glutamine (Glx) in the pgACC, but not in left AI, predicted the resting-state 
functional connectivity between the two regions exclusively in depressed patients. Furthermore, 
functional connectivity between these regions was significantly altered in the subgroup of severely 
depressed patients (HAMD > 15) compared to healthy subjects and mildly depressed patients. 
Similarly the Glx ratios, relative to Creatine, in the pgACC were lowest in severely depressed patients. 
These findings support the involvement of glutamatergic mechanisms in severe MDD which are 
related to the functional connectivity between pgACC and AI and depression severity.
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cycle. Glutamatergic alterations in several brain regions have been 
implicated in neurological or psychiatric diseases using MRS (Auer 
et al., 2000; Hasler et al., 2007).

In a previous study (Walter et al., 2009), it has been shown that 
impairments of the neuronal–glial unit can be visualized both on a 
functional and a molecular level using a combination of fMRI and 
MRS. In the pregenual portion of the ACC (pgACC) abnormally 
reduced amplitudes of negative BOLD responses were found in a 
group of unmedicated MDD patients. Reduced BOLD amplitudes 
during task were further related to abnormal glutamate concen-
trations in the same region. This finding is compatible with the 
hypothesis that the extent of functional responses that appear on 
top of baseline neuronal activity depends on the metabolic baseline 
level of the involved neuronal–astroglial unit and the degree of 
anaerobic glucose consumption (Raichle and Mintun, 2006). In this 
first combined resting-state fMRI–MRS study in MDD, we extend 
previous work (Walter et al., 2009) that relates the amplitudes of 
negative BOLD responses in pgACC to regional GABA (gamma-
amino butyric acid) ratios. Interestingly, glutamatergic modulations 
of BOLD responses were only present in depressed patients, while 
the GABAergic modulations seen in healthy controls (Northoff 
et al., 2007) disappeared. A glutamatergic but not GABAergic deficit 
in pgACC was also reported by Hasler et al. (2007).

A newly arising interrelation of functional responses with a 
metabolic marker that includes glial functioning would be well in 
accordance with converging findings in rodents, where pharmaco-
logical astroglial disruptions consequently lead to anhedonic behav-
ior such as reduced sucrose preference (Banasr and Duman, 2008). 
Additionally, agents like riluzole that manipulate the neurotrans-
mission of glutamate, prevented depression-like behavior in a rat 
model (Banasr et al., 2010). The glial hypothesis, mainly pioneered 
by researchers such as Sanacora and Raijkowska (Rajkowska et al., 
1999; Kugaya and Sanacora, 2005; Rajkowska and Miguel-Hidalgo, 
2007), thus serves as a crucial addition to other neuronal concepts of 
primarily serotonergic dysfunction. As proposed by some authors the 
complex situation in both neuronal and glial compartments, which 
forms the basis for task-related responses, can be investigated at rest 
(Raichle and Mintun, 2006; Raichle and Snyder, 2007; Shulman et al., 
2007). The concept of spontaneous resting-state fluctuations first 
described by Biswal et al. (1995) seems ideal to investigate alterations 
of this system on the functional level (Fox and Raichle, 2007).

Resting-state functional connectivity (rsFC) is defined as the cor-
relation of spontaneous low frequency BOLD signal time courses 
of distinct brain regions. In major depression, altered resting-state 
behavior in the default mode components has been shown (Greicius 
et al., 2007). Indications for a cortico-limbic dysfunction (Mayberg, 
1997) were also found during task and rest (Anand et al., 2005a,b). 
These findings are related to a large number of altered functional 
responses in emotional core regions including medial prefrontal 
cortex and limbic structures (Rigucci et al., 2009), but most of these 
remain outside the classic task-positive attention regions such as 
dorsal ACC, anterior insula (AI) or lateral prefrontal cortex. Task-
negative regions respond with a decrease in BOLD signal to atten-
tional tasks while task-positive regions are specifically activated at 
the same time. While the exact nature of functional anticorrelations 
at rest and the effects of preprocessing strategies remain unclear to 
date (Fox et al., 2009; Murphy et al., 2009), the functional separation 

of task-positive and task-negative regions using task and resting-
state studies (Fox et al., 2005; Buckner and Vincent, 2007; Uddin 
et al., 2009; Neumann et al., 2010) is well accepted. Disease severity 
related alterations of rsFC in this intrinsic organization of the brain 
were recently described for major depression (Zhou et al., 2010).

Complex impairments of emotional and self awareness underlie 
the clinical symptoms of anhedonia, rigid affect or ruminations as 
well as negative self concept and altered social interactions. Taking 
this into account it is highly important to investigate the relation-
ship of pgACC pathologies to dysfunctions in other domains 
especially those involved in the processing of emotions. Given the 
increasing evidence for the involvement of the insular cortex in the 
conscious processing of affect as well as the generation of percepts 
of self awareness in a subjective timeframe (Craig, 2009), one has 
to hypothesize functional abnormalities in the AI. In a recent study, 
Grimm et  al. (2009a,b) showed altered neural responses in the 
salience network (Seeley et al., 2007) that are related to impaired 
judgments of self-relatedness of emotional stimuli. This study fur-
ther provided evidence for left lateralized effects, which are well in 
accordance with a forebrain asymmetry of emotional valence and 
parasympathetic processing in left AI, which is also the putative 
target of vagal nerve stimulation in MDD (Craig, 2005).

The majority of depressive symptoms are present even in the 
absence of specific tasks when the patients are mainly engaged in 
exaggerated, negatively colored self-referential processing, continu-
ous negative moods, and ruminative thoughts. Therefore it seems 
important to investigate the putative neural substrates during such 
abnormal functioning, i.e. at rest. Such baseline alterations, charac-
terized by impaired rsFC between pgACC and AI, might be directly 
related to abnormal metabolite or cellular measures.

We thus aimed to investigate the relationship of altered baseline 
processes displayed in rs fMRI with the metabolic representations 
of neuronal–glial functioning seen in MRS. Pregenual ACC is a 
primary region of interest due to the vast literature on functional 
and metabolite abnormalities. It was thus tested if abnormal gluta-
matergic levels in pgACC would influence rsFC with AI/frontal 
operculum. The second region, as part of the task-positive, atten-
tion set network, was chosen because of strong direct anatomical 
connections with ACC in the macaque and human brain (Mesulam 
and Mufson, 1982; Mufson and Mesulam, 1982; Augustine, 1996) 
as well as its proposed role for the switching between anticorrelated 
networks (Sridharan et al., 2008).

Given the hypothesized primary deficit in the pgACC, we intend 
to further test if the putative abnormal anticorrelative behavior 
could be traced back to a molecular deficit in pgACC without direct 
relations to the metabolite profiles in AI. The aim was to test the spe-
cificity of glutamatergic deficiencies as symptoms of glial-neuronal 
pathology in pgACC. This would support the concept of altered 
functional network behavior outside the pgACC, at least in the 
salience network, as a consequence of a primary neuronal glial 
decline in pgACC in the case of MDD and may help to identify 
disease specific abnormalities in otherwise overlapping findings of 
abnormal resting-state behavior.

To prove the clinical relevance of such functional and metabolic 
abnormalities, we further tested their relation to markers of clini-
cal severity of depression. During treatment response or remis-
sion, as indicated by decreasing scores of the HAMD, many of the 
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closed. Functional time series of 488 time points were acquired with 
an echo-planar imaging sequence. The following acquisition param-
eters were used: echo time = 25 ms, field of view = 22 cm, acquisition 
matrix = 44 × 44, isometric voxel size = 5 × 5 × 5 mm3. Twenty-six 
contiguous axial slices covered the entire brain with a repetition time 
of 1250 ms (flip angle = 70°). The first five acquisitions were discarded 
to reach steady state and limit T1 effects. High resolution T1-weighted 
structural MRI scans of the brain were acquired for structural refer-
ence using a 3D-MPRAGE sequence (TE = 4.77 ms, TR = 2500 ms, 
T1 = 1100 ms, flip angle = 7°, bandwidth = 140 Hz/pixel, acquisition 
matrix = 256 × 256 × 192, isometric voxel size = 1.0 mm3).

Data was analyzed using the data processing assistant for 
resting-state fMRI (DPARSF1, Yan Chao-Gan, State Key Laboratory 
of Cognitive Neuroscience and Learning, Beijing Normal University, 
China) which includes resting-state fMRI data analysis toolkit 
(REST, by Song Xiao-Wei et al.1). Both toolboxes work on basis of the 
spm5 software package (Wellcome Trust Center for Neuroimaging, 
London, England). Functional data was corrected for differences 
in slice acquisition time, motion-corrected using a least squares 
approach and a six-parameter (rigid body) linear transformation, 
spatially normalized and smoothed by using a 4-mm full-width-
at-half-maximum Gaussian kernel. The data was linear detrended 
and filtered by a band pass filter (0.01–0.08 Hz) to eliminate low 
frequency fluctuations. The preprocessing steps followed the stand-
ard protocol published by Yan and Zang (2010). Accordingly, an 
additional regression of nuisance covariates was applied during 
which the functional data was corrected for the six head movement 
parameters and for global mean signal as well as for white matter 
and cerebrospinal fluid signal. This correction is discussed to elicit 
negative correlations between the time courses of normally anticor-
related resting-state network regions (Murphy et al., 2009).

By merging the individually placed spectroscopy voxel positions 
in normalized space, two regions of interest (ROI) where defined. 
The pgACC which belongs to the medial prefrontal cortex is local-
ized in the rostral part of Brodmann area 24 and was defined by the 
Montreal Neurological Institute (MNI) coordinates (x, y, z): 0, 41, 
9. The ROI for left AI was placed with the center at 39, 19, 4. Both 
ROIs had a radius of 10 mm resulting in a volume of approximately 
4 ml, which is in line with the size of the MRS voxels.

To compute the rsFC of the ROIs, the time course of every ROI was 
extracted and a correlation analysis was run to elicit the correlation 
coefficient of the different time courses. The correlation coefficient 

initially described affective symptoms disappear whereas a number 
of cognitive–attentional deficits persist. Because of this observation 
we hypothesized a primary glutamatergic deficit in an affective 
region, i.e., pgACC, which is directly related to clinical severity and 
which drives the extent of abnormal rsFC between pgACC and AI. 
We further hypothesize that Glx concentrations in AI, which has 
stronger connections to other cognitive regions, are not related 
to severity or rsFC. The primary focus on pgACC is supported by 
the fast and strong effects of the glutamate modulating NMDA 
antagonist ketamine on HAMD scores in treatment resistant MDD 
patients (Zarate et al., 2006) since ketamine leads to increases of Glu 
concentrations in exactly this region (Rowland et al., 2005).

Materials and Methods
Subjects
Twenty-two subjects with an acute MDD episode were recruited 
from the inpatient and outpatient department of psychiatry at 
the University of Magdeburg. Primarily, these patients were clini-
cally diagnosed according to the ICD-10 criteria (WHO, 1992). 
Exclusion criteria were major medical illness, history of seizures, 
medication with glutamate modulating drugs (ketamine, riluzole, 
etc.) or benzodiazepines prior electroconvulsive therapy (ECT) 
treatments and pregnancy, as well as all contraindications against 
MRI. Specific psychiatric exclusion criteria consisted of atypical 
forms of depression, any additional psychiatric disorder, and a 
history of substance abuse or dependence. For a better specifica-
tion of the depressive symptoms, all patients were rated by clini-
cal questionnaires, among them the Hamilton depression scale. 
The HAMD was first developed by Hamilton (1960) to rate the 
acute state of depressive patients. Since then it has been known to 
accurately describe the disease severity of patients with an acute 
depressive episode. Moreover, the scores reflect the effects of drug-
induced improvement in disease. We used the German version of 
the 21-item HAMD (CIPS, 1996) for clinical subgroup analysis.

Twenty-two healthy subjects without any psychiatric, neurologi-
cal, or medical illness were self-referred from study advertisements. 
All volunteers completed the mini-international neuropsychiatric 
interview (MINI) to specifically ensure the absence of any ICD-10 
psychiatric disorders (Sheehan et al., 1998). The study was approved 
by the institutional review board of the University of Magdeburg 
and all subjects gave written informed consent before inclusion. All 
subjects underwent fMRI and MRS in an identical paradigm. All 
patients were medicated using SSRI, NRI, and SNRI alone or with 
new generation antidepressants including agomelatine or lithium. 
Due to specific MRS quality criteria (see below) 19 patients were 
finally included to the analysis while for one subject rs fMRI data 
could not be used. The composition of the sex- and age-matched 
groups is described in Table 1. Neither the controls compared to all 
patients (t-test, P = 0.137) nor the subgroups of healthy controls, 
mildly and severely depressed patients (one-way ANOVA, F = 1.49, 
P = 0.238) differed significantly by age.

Resting-State fMRI Data Acquisition and Analysis
The measurements were performed on a 3 Tesla Siemens MAGNETOM 
Trio scanner (Siemens, Erlangen, Germany) with an eight-channel 
phased-array head coil. For acquisition of the resting-state fMRI 
data, the subjects were told to lie still in the scanner with their eyes 

Table 1 |  Demographic and clinical description of subjects meeting the 

quality criteria

	 Healthy	 Patients	 Patients	 All patients 

	 controls	 HAMD ≤ 15	 HAMD > 15

Number	 22	 8	 10	 18

Male/Female	 12/10	 5/3	 5/5	 10/8

Mean age	 34.14	 37.62	 40.5	 39.22 

[SD]	 [6.67]	 [12.82]	 [13.1]	 [12.67]

Mean HAMD	 0	 12.75	 20.7	 17.17 

[SD]		  [1.83]	 [2.95]	 [4.74]

1www.restfmri.net
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calculated separately for healthy controls and MDD patients. To test for 
intergroup differences, one-way ANOVA was first run followed by two-
sample t-tests. The significance threshold was also set at P = 0.05.

Results
Prediction of Resting-State Connectivity Between pgACC and 
Anterior Insula in Depression by MRS
The Glx to creatine ratio in pgACC predicted the functional connec-
tivity between this region and the left AI (Figure 2). This relation-
ship between metabolite profiles and functional connectivity was 
specific for depressed patients (r = −0.51, P = 0.031) while healthy 
controls did not show this effect (r = −0.15, P = 0.49). The same 
effect could also be observed when only Glu ratios were looked 
at for the depressed patients (r = −0.488, P = 0.04) and remained 
insignificant for the healthy controls (r = −0.111, P = 0.62).

Lower Glx ratios in pgACC predicted weaker negative correla-
tions, i.e., functional connectivity between pgACC and AI. Patients 
with the lowest Glx ratios even showed positive correlation coef-
ficients. In contrast, Glx measures in the insula failed to predict the 
connectivity between the two regions (P = 0.7). No correlations 
were found between gray matter contents of the MRS single vox-
els and functional connectivities or Glx ratios. Also, patients and 
controls did not differ in their relative gray and white matter tissue 
compositions in the two voxels.

Since age has been described to be a factor influencing functional 
connectivity (Damoiseaux et  al., 2008) its effects were explored 
specifically, but no correlation of age with connectivity values or Glx 
ratios was found in our samples of either patients or controls.

Altered Connectivities and Related Metabolite Levels with 
Relevance for Clinical Severity of Depression
Supporting the clinical relevance of the predescribed findings, a 
significant correlation between HAMD and rsFCs between AI and 
pgACC could be detected (r = −0.617, P = 0.006) (Figure 3A).

Furthermore symptom severity was predicted by relative Glu and 
Glx levels only in pgACC (Glu: r = −0.51, P = 0.031/Glx: r = −0.44, 
P = 0.068) (Figure 3B) while no such effect was seen for Glx or Glu 
values in the AI (Glu: r = 0.092, P = 0.72/Glx: r = 0.052, P = 0.84). 
To test the relevance of altered connectivities and related metabolite 
levels for clinical severity of depression directly, we divided the 
patients into a severely depressed and a mildly depressed group 
with a median split according to HAMD scores (median: 16). This 
resulted in two groups (eight and 10 patients) with no significant 
differences in age, size, or gender composition (Table 1).

As illustrated in Figures 4 and 5, one-way ANOVAs revealed 
group effects for Glx and rsFC with altered Glu and Glx ratios 
in pgACC (Glu: F = 8.35, P = 0.001/Glx: F = 6.993, P = 0.003). 
Different FCs between both regions (F = 4.64, P = 0.016) were 
detected for severely depressed patients compared to both other 
groups, while no significant effects were found for Glu or Glx ratios 
in AI (Glu: F = 0.8, P = 0.457/Glx: F = 0.91, P = 0.41).

Altered Functional Connectivity between pgACC and AI in 
Severely Depressed Patients
A direct comparison of the functional connectivities of pgACC 
and AI revealed significantly higher correlations of signal time 
courses for severely depressed patients with HAMD scores 16 or 

therefore reflects a statistical interrelation of the BOLD time courses 
in the specific ROIs but no direction or causality. Correlation coef-
ficients close to 1 hereby mean that the time courses have a high 
synchronicity. Brain morphology was assessed using the fully auto-
mated Civet pipeline of the Montreal Neurological Institute (Lerch 
and Evans, 2005; Ad-Dab’bagh et al., 2006). Following this, the tissue 
composition and cortical thickness of the whole brain and the speci-
fied MRS voxels could be included in the analysis as cofactors.

MRS Data Acquisition and Analysis
Single voxel proton MRS data was acquired at rest for each sub-
ject from a first volume of interest of 10 × 20 × 20 mm3 = 4.0 ml 
which was placed in bilateral pgACC and from a second one of 
15 × 10 × 20 mm3 = 3.0 ml which was placed in the frontal opercu-
lum of the left AI (Figure 1). The location and extent of the pgACC 
voxel was oriented on our previous findings of altered self aware-
ness, impaired BOLD responses and altered glutamatergic levels in 
depressed patients (Grimm et al., 2009a,b; Walter et al., 2009).

The measurements were performed on a 3T Siemens 
MAGNETOM Trio scanner. A PRESS (point-resolved spectros-
copy) sequence with the following acquisition parameters was used 
for both voxels: echo time = 80 ms, repetition time = 2000 ms, 
256 averages, bandwidth = 1200 Hz, acquisition time = 853 ms 
and water suppression. The echo time of 80 ms was used accord-
ing to the results of Schubert et  al. (2004). Manual shimming 
was performed to improve magnetic field homogeneity set by 
the automatic shim routine. Additionally, water reference data 
with radiofrequency pulses for water suppression switched off 
(TR = 10s, four averages) were acquired for eddy current correction. 
The acquisition time for every voxel added up to 8 min and 40 s. 
Spectra were analyzed using LCModel version 6.1.0 (Provencher, 
1993). Sixteen different metabolites (Creatine, Glutamate, myo-
Inositole, Lactate, NAA, Phosphocholine, Taurine, Aspartate, 
GABA, Glutamine, Glucose, Alanine, NAAG, Phosphocreatine, 
Guanine, and Glycerophosphocholine) were fitted using a basis 
set including all these substances. Since creatine has been described 
to be an appropriate internal reference for the measured metabolite 
concentrations in MDD (Yildiz-Yesiloglu and Ankerst, 2006), all 
metabolite values are given as creatine (Cr) ratios. Cramer-Rao 
lower bounds (Cavassila et  al., 2001), an estimate of the fitting 
error, was used as a quality criterion to exclude datasets with unreli-
able quantification results. Hence, analyses of group effects were 
restricted to subjects meeting the strict quality criteria to indicate 
reliable spectral identification (Cramer-Rao lower bounds <20%). 
We did not have to reject spectra due to a poor line width since all 
used spectra had a full-width-at-half maximum smaller than 12 Hz. 
The signal to noise ratio was larger than eight for all subjects.

Statistical Analysis
Correlation coefficients of BOLD time courses of pgACC and AI, 
metabolite levels in both of the regions and HAMD scores were cor-
related by applying Pearson correlation analysis (SPSS, version 15; 
SPSS Inc, Chicago, IL, USA). Statistical significance was set at P < 0.05. 
Significant correlations were controlled for confounding effects of age 
by partial correlation. Extreme values were defined as exceeding the 
25th or 27th percentile by more than three interquartile ranges in 
either direction and were consequently removed. All correlations were 
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Figure 1 | Positioning of the spectroscopy voxels (A: pgACC, B: AI) and a representative spectrum of pgACC (C).

Figure 2 | Correlation of functional connectivity between pgACC and AI and Glx/Cr ratios for depressed patients (A) and healthy controls (B) ratios was 
found in our samples of either patients or controls.

higher (mean FC[SD] = 0.15[0.21]) than for healthy controls (mean 
FC  =  −0.03[0.21]) (T  =  −2.26, P  =  0.03) and mildly depressed 
patients (mean FC = −0.12[0.14]) (T = −3.1, P = 0.007) (Figure 4). 
No significant differences in FCs were found between the mildly 
depressed group and healthy controls.

Depression Severity is related to the metabolite  
profile in pgACC
Similar to the functional connectivities, a direct comparison 
of the Glu and Glx levels in pgACC revealed lower ratios for 
acutely depressed patients with HAMD scores 16 or higher than 
for healthy controls (Glu: T  =  2.59, P  =  0.015/Glx: T  =  1.75, 
P = 0.09) as well when compared to mildly depressed patients 
(Glu: T  =  3.73, P  =  0.002/Glx: T  =  2.941, P  =  0.01). In con-
trast to the connectivity findings a significant difference of Glu 

and Glx levels between healthy controls and mildly depressed 
patients was observed (Glu: T = −2.42, P = 0.022/Glx: T = −2.454, 
P = 0.037).

Although we did not have a priori hypotheses for abnormal 
values of myo-Inositole, creatine or NAA, we also tested for dif-
ferences in these metabolites in one-way ANOVA’s (P > 0.22). We 
could however not find any significant alterations for the patients 
(see also Table 2).

Discussion
Our findings provide first evidence for abnormal glutamatergic modu-
lation of resting-state brain activity in depression. In severely depressed 
patients, functional connectivity between pgACC and AI was linearly 
correlated with Glx/Cr ratios in the pgACC. Such a correlation was not 
evident in healthy controls. When exploring the clinical relevance of 
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the pgACC using a 2D JPRESS MRS sequence. Functional responses 
were weaker in patients compared to healthy controls. In support 
of an effect of anhedonia on brain activity, specifically highly anhe-
donic patients showed impaired negative BOLD responses during 
a cognitive task. This is mirrored by our findings in this new study 
that showed that even the more general marker of HAMD scores 
was able to turn out subgroups differing in their baseline connectiv-
ity and metabolite levels. Correlation of rsFC and Glx/Cr ratios was 
specific to the patient group and pathologically altered rsFC were 
found to be prominent only in the severely depressed group.

Figure 3 | Correlation of clinical severity of depression with RSFC (A) as well as with Glx/Cr ratios in pgACC (B).

Figure 4 | Severely depressed patients with altered functional 
connectivity between pgACC and AI (box plot showing median, 
interquartile range, sample minimum and maximum;*P < 0.05, 
**P < 0.01, n.s.: not significant.

Figure 5 | Mean levels of the sum value of Glu and Gln (Glx), glutamate 
(Glu) and NAA relative to creatine (Cr) in pgACC (box plot showing 
median, interquartile range, sample minimum and maximum).

this metabolic impact on resting-state connectivity, a trend for linear 
correlation of HAMD with both factors was found. Consequently, 
direct comparison of Glx/Cr ratios revealed lower concentrations in 
severely depressed patients as compared to healthy controls and mildly 
depressed patients. However, this glutamatergic deficit was only present 
in pgACC and was accompanied by abnormal functional connectivi-
ties at rest. Only severely depressed patients showed weaker negative 
or even positive correlations of time courses in pgACC and AI.

The evidence of a glutamatergic deficit and its importance for 
functional alterations in ACC reported here is in line with simi-
lar findings from our group in an unmedicated highly depressed 
patient population (Walter et al., 2009). In this group of patients 
with HAMD scores of 24 or higher, we found that lower levels of 
glutamine and glutamate predicted weaker functional responses in 
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glutamatergic neurotransmission (Banasr et al., 2010). In terms of 
clinical treatment this pregenual glial-neuronal deficit would favor 
the use of glutamatergic drugs in patients showing such functional 
and neurotransmitter patterns. A previous study showed that a 
relative hypometabolism in exactly this region discerns treatment 
resistant patients from those responsive to selective serotonin 
reuptake inhibitor (SSRI) treatment (Mayberg, 1997). Our find-
ings can further explain the specific efficacy of glutamatergic drugs 
such as ketamine in severe, treatment resistant depression (Zarate 
et al., 2006) which leads to increased glutamate/glutamine levels 
in pgACC (Rowland et al., 2005).

The depicted molecular deficit in the pgACC is related to func-
tional connectivity between this region and AI. Interestingly, we did 
not find an interdependence of FCs and AI ratios of Glx or Glu to 
Cr. This is accompanied by prominent histoarchitectonic findings 
in the pgACC from a large number of postmortem studies. These 
suggest reduced glial densities and expression of enzymes allowing 
for glutamate reuptake and conversion to glutamine (Rajkowska 
et al., 1999; Cotter et al., 2001; Rajkowska and Miguel-Hidalgo, 
2007). In this context, the reversible reductions of Glx would mir-
ror a hypometabolic state with lowered glutamine cycling between 
glial cells and neurons, which by itself is highly energy demand-
ing (Raichle and Mintun, 2006). Such altered baseline metabo-
lism would thus result in altered functional connectivities, given 
that these can be regarded elementary for normal adaptive brain 
functions in healthy human beings. It has recently been reported 
that inter-individual differences in resting-state functional con-
nectivity predict task-induced BOLD activity (Mennes et  al., 
2010). While reduced anticorrelations could be regarded as signs 
of decreased flexibility of the brain to react upon external stimula-
tions, these altered connectivities could additionally be considered 
as the underlying sources of reduced functional responses upon 
explicit stimulation and consequently altered affective processing 
in MDD. Interestingly, we did not observe significant differences 
in NAA, myo-Inositole or creatine levels suggesting a specific 
relationship of glutamatergic mechanisms and abnormal rsFCs 
in depression. Stable concentrations of creatine in all groups also 
validate the approach of reporting the metabolite concentrations 
relative to creatine, since, in principle, the altered ratios could be 
a result of abnormal levels of creatine due to its involvement in 
brain metabolism.

In schizophrenia, similar mechanisms of altered connectivity 
between fronto-parietal and default mode cortical networks have 
been observed. In an independent component analysis, healthy 
subjects showed less correlation between these two networks than 

This leads to at least three main conclusions:
Firstly, we extend the observations of impaired brain function of 

pgACC in a resting-state condition: In contrast to the abnormalities 
within DMN or cortico–limbic connectivities which were previ-
ously reported (Greicius et al., 2007; Anand et al., 2009), our study 
shows altered correlations between pgACC and AI. These regions 
belong to different networks with opposing behavior upon external 
stimulation. While pgACC has strongest rsFC with the ventrome-
dial prefrontal part of the default mode network (Margulies et al., 
2007) the AI is positively correlated to the task-positive attention set 
network. The AI belongs to this network together with the dorsal 
ACC (Dosenbach et al., 2008) and both are of specific importance 
for the processing of a stimulus’ salience (Seeley et al., 2007). A 
newly proposed network model of insula function describes its 
role in saliency and switching between networks (Menon and 
Uddin, 2010). This is in line with the observation that depressive 
patients are less able to down-regulate the DMN activity during 
tasks (Sheline et al., 2009). Our results may thus help to explain 
specific MDD symptoms like ruminating thoughts and the clinical 
impression of depressed patients being “caught” in their depressed 
mood. Such hyper stable assignment of the AI to the default mode 
network may impair its flexibility in coordinating the patients’ 
attention being directed either towards the external world or the 
internal perception of self-related processes.

Secondly, we extend the previously described glutamatergic 
modulation of abnormal fMRI responses (Walter et al., 2009) to a 
baseline condition. This supports the hypothesis that altered basic 
conditions of the network architecture lead to abnormal functional 
responses, such as, for example, decreased negative BOLD responses 
during cognitive tasks in a region belonging to the DMN (Mennes 
et al., 2010). Resting-state alterations and impaired reactivity to 
external stimulations in the pgACC were thus both shown to 
depend on glutamatergic metabolite levels. Therefore we assume 
that rsFC of this region is able to directly predict the degree of 
excitability in terms of subjective reports and functional responses 
in patients during stimulation (Hampson et al., 2006). This direct 
prediction still remains to be shown for MDD and related symp-
toms in the future.

Thirdly, we substantiate the importance of altered metabolite 
and functional levels in this key region of the ACC to the severity 
of depressive symptoms, since in both rsFC and Glx/Cr ratios the 
severely depressed patients (HAMD scores of 16 or higher) showed 
the strongest alterations. In an animal model glial changes that 
where induced by chronic and unpredictable stress could be reversed 
or blocked by treating the rats with riluzole which influences the 

Table 2 | Mean levels of fitted metabolites with valid spectra (CRLB < 20 in at least 75% of the subjects).

	 Healthy controls	 Patients HAMD ≤ 15	 Patients HAMD > 15

	 pgACC	 AI	 pgACC	 AI	 pgACC	 AI

Creatine (Cr)	 5.64 ± 1.6	 3.88 ± 2.94	 4.9 ± 1.6	 3.62 ± 1.92	 5.65 ± 1.66	 4.79 ± 1.53

Glutamate/Cr	 1.06 ± 0.08	 0.82 ± 0.61	 1.15 ± 0.11	 1.01 ± 0.45	 0.98 ± 0.09	 1.06 ± 0.19

myo-Inositole/Cr	 0.71 ± 0.14	 0.49 ± 0.34	 0.71 ± 0.07	 0.58 ± 0.31	 0.67 ± 0.09	 0.70 ± 0.15

NAA/Cr	 1.04 ± 0.15	 0.85 ± 0.59	 1.06 ± 0.15	 1.03 ± 0.44	 1.06 ± 0.13	 1.11 ± 0.14

Glx/Cr	 1.29 ± 0.11	 0.92 ± 0.69	 1.47 ± 0.19	 1.21 ± 0.54	 1.2 ± 0.2	 1.19 ± 0.2
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as well as the salience network (Seeley et al., 2007), changes of its 
functional connectivity may be responsible for commonly observed 
negative bias in MDD (Bermpohl et al., 2009).

Salvadore et al. (2009) reported rostral ACC activity in an elabo-
rate magneto encephalography (MEG) study to be predictive of 
subsequent treatment response to ketamine. Based on our find-
ings, such predictions may in principle be possible using the more 
direct detection of altered baseline processing, which in the case 
of resting-state fMRI can be feasible within less than 10 min and 
without patients’ active contribution to a specific task.

It has to be critically acknowledged that all patients in the current 
study have been on antidepressant pharmacotherapy. Although we 
have previously reported glutamatergic abnormalities in an unmedi-
cated sample (Walter et al., 2009), potential confounds of medication 
cannot be fully ruled out. It may be of interest that glutamatergic 
abnormalities can be found in both medicated and unmedicated 
patients. But future studies, powered for adequate subgroup analyses, 
should focus on potential dose or treatment effects of serotonergic 
agents with potential downstream effects on glutamate levels.

A major limitation concerns the interpretation of MRS gluta-
mate values. Although previous studies employed 1D PRESS MRS 
sequences at field strengths of 3 Tesla or even lower reporting both Glx 
and Glu (Auer et al., 2000), the separation of Glu and Gln should be 
regarded critically given limited line separation. By using an optimal 
echo time of 80 ms the contributions of Gln or GABA to the Glu 
signal should be minimal (Schubert et al., 2004; Mullins et al., 2008). 
Although findings for Glu and Glx strongly converged in our current 
analysis and Glx levels are strongly dominated by glutamate since it 
is the most abundant metabolite in comparison to GABA, Gln, or 
NAAG, one should be aware that Glu and Glx may concern slightly dif-
ferent effects. In a recent study using 2D JPRESS sequences, it could be 
shown that Gln predicts fMRI amplitudes in pgACC for both patients 
and controls, while Glu was correlated with fMRI responses only in 
the patient group (Walter et al., 2009). Another study (Brennan et al., 
2010) reports subtle changes in the Gln/Glu ratio, which might be bur-
ied in the Glx estimates. This strongly motivates the use of sequences 
with sufficient separation of Glu and Gln. In our study the covariance 
of Glu and Gln values in the Fisher information matrix reaches a criti-
cal value of 0.3. Therefore a more conservative interpretation should 
rely only on the sum values of Glu and Gln despite the optimum echo 
time and high measurement repetitions of 256 samples. The use of 
a 2D approach that would make use of J coupling information was 
however not possible given that coverage of multiple regions plus 
additional resting-state fMRI acquisition would not be possible due 
to heavily increased acquisition times.

Although the findings of the present study are in line with predic-
tions from previous task fMRI–MRS studies, future investigations 
should directly link task responses, resting-state behavior and spe-
cific clinical symptoms for better inference. Longitudinal treatment 
studies are also of specific interest because of the observed impact 
of depression severity on the glutamatergic abnormalities. Although 
only present on a trend level, we found that rsFCs in the mildly 
depressed subgroup were lower than the levels observed in healthy 
controls. While this might be well in line with slightly increased Glx 
and Glu levels, any interpretation in the direction of overshooting 
correlates of treatment response should be carefully limited given 
the setup of our study, which did not allow for balanced longitudinal 

patients when correlations are generally positive (Jafri et al., 2008). 
At the same time they showed more negative values of connectivity 
than schizophrenic patients when global signal removal has caused 
the correlation values to be negative (Whitfield-Gabrieli et al., 2009). 
Here, we show such alterations in pgACC and AI and further provide 
a molecular dimension focusing glutamatergic mechanisms that are 
in line with existing postmortem and pharmacological evidence.

Notably, the anticorrelation between pgACC and AI is not a robust 
finding in the literature and also in our current sample, only a subset 
of healthy controls showed anticorrelations after global mean regres-
sion. Some regions belonging to the DMN like medial prefrontal and 
posterior cingulate cortex show consistently strong anticorrelations 
with task-positive regions like dorsal ACC and dorsolateral prefrontal 
cortex (DLPFC). In contrast to such regions, pgACC is variously 
correlated with the opposed networks. It shows less direct anticor-
relations, but nevertheless strong anatomical connections and closer 
anatomical vicinity to a large set of cortical regions. Similarly, AI is 
functionally connected to dorsal ACC, and to a weaker extent, to 
DLPFC. Taking their anatomical interposition between task-positive 
and task-negative networks into account, this may support pgACC 
and AI’s pivotal role in communicating the anticorrelated behavior 
(Menon and Uddin, 2010; Sridharan et al., 2008) of their associated 
networks. Such perspective might be in support of interpreting our 
results as representation of disturbed network modulation in MDD. 
The role of global mean regression in increasing observation of so 
called anticorrelations is a subject of current investigation. While 
there is evidence that these may not be present without the regression 
of global means (Murphy et al., 2009), others argue for an existence 
of these negative correlations in the absences of global mean regres-
sion if other means of physiological noise correction are considered 
(Chang and Glover, 2009; Fox et al., 2009). It is also possible to take 
a more conservative perspective and to accept that any additional 
introduction of nuisance covariates may lead to a reduction in cor-
relation values and further towards negative values (Weissenbacher 
et al., 2009). The observed interdependence of rsFCs and Glx values 
may then at best be interpreted by the different degrees of assignment 
of the AI to task positive or default mode networks.

The role of the AI cortex in the pathophysiology of depression is 
less evident in the previous literature. One study reported relative 
hypermetabolism of AI in MDD which is correlated with disease 
severity (Brody et al., 2001). The absence of extensive postmortem 
findings in the AI might also indicate that the altered rsFC between 
pgACC and AI is driven by pgACC dysfunction. This may explain 
why clinical symptoms found in major depression exceed core func-
tions of the pgACC, such as attribution of hedonic valences. Impaired 
AI–pgACC connectivity during emotional stimulation, internally or 
externally generated, may thus be responsible for reduced intensities 
or color of experienced emotions, since the AI may be crucial for the 
conscious experience of emotions (Uddin and Menon, 2009).

Another proposed role of AI is the switching between DMN and 
attentional networks (Sridharan et al., 2008). Therefore the postu-
lated impairment of anticorrelated resting-state behavior could also 
be relevant in a number of cognitive tasks. Specific tasks require 
adaptive and efficient switching and transient reassignment of 
different network modules. Such cognitive and attentional deficits 
are frequently observed in severe depression. Since the AI is part of 
the cingulo-opercular attention set system (Dosenbach et al., 2008) 
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et al., 2005); in particular the default-mode network (DMN) has 
constituted the main interest of past studies that implemented seed-
voxel techniques (Biswal et al., 1995; Raichle et al., 2001) as well as 
independent component analysis (ICA) (Greicius et al., 2004; van 
de Ven et al., 2004; Beckmann et al., 2005). Through analyses such 
as an ICA of the functional connectivity between widespread brain 
areas, several plausible functional resting state networks (RSN) can 
be inferred (Gusnard et al., 2001; Greicius et al., 2003; Van den Heuvel 
et al., 2009). One of the principal networks observable during the 
brain’s resting state is the DMN, generally thought to implicate the 
posterior cingulate cortex (PCC), the posterior lateral parietal cortices 

Introduction
Over the past 15  years, functional magnetic resonance imaging 
(fMRI) studies have devoted sustained interest in the intrinsic base-
line activity of the brain, also referred to as the brain’s resting state or 
its default-mode activity. During this resting state, the brain’s blood 
oxygen level-dependent (BOLD) signal displays spontaneous fluc-
tuations in its low or high frequencies showing a high degree of 
temporal correlation across separated cortical areas. These tempo-
ral correlations underline intrinsic functional connectivity between 
functional networks which are crucial for processes such as vision, 
auditory processing, language, (Hampson et al., 2002; Beckmann 
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The rising interest in temporally coherent brain networks during baseline adult cerebral activity 
finds convergent evidence for an identifiable set of resting state networks (RSNs). To date, 
little is know concerning the earlier developmental stages of functional connectivity in RSNs. 
This study’s main objective is to characterize the RSNs in a sample of adolescents. We further 
examine our data from a developmental psychopathology perspective of psychosis-proneness, 
by testing the hypothesis that early schizotypal symptoms are linked to disconnection in RSNs. 
In this perspective, this study examines the expression of adolescent schizotypal traits and 
their potential associations to dysfunctional RSNs. Thirty-nine adolescents aged between 12 
and 20 years old underwent an 8-min functional magnetic resonance imaging (fMRI) “resting 
state” session. In order to explore schizotypal trait manifestations, the entire population was 
assessed by the Schizotypal Personality Questionnaire (SPQ). After conventional processing of 
the fMRI data, we applied group-level independent component analysis (ICA). Twenty ICA maps 
and associated time courses were obtained, among which there were RSNs that are consistent 
with findings in the literature. We applied a regression analysis at group level between the energy 
of RSN-associated time courses in different temporal frequency bins and the clinical measures 
(3 in total). Our results highlight the engagement of six relevant RSNs; (1) a default-mode 
network (DMN); (2) a dorso-lateral attention network; (3) a visual network (VN); (4) an auditory 
network (AN); (5) a sensory motor network (SMN); (6) a self-referential network (SRN). The 
regression analysis reveals a statistically significant correlation between the clinical measures 
and some of the RSNs, specifically the visual and the AN. In particular, a positive correlation 
is obtained for the VN in the low frequency range (0.05 Hz) with SPQ measures, while the AN 
correlates negatively in the high frequency range (0.16–0.19 Hz). Trend-like significance for the 
SRN may hint to its implication in disorganized thoughts and behaviors during adolescence. 
Unlike DMN activity in schizophrenic patients, adolescent DMN was unrelated to schizotypal 
trait expression. This suggests that relationships between the DMN and schizotypy may be 
modified in later developmental stages of both functional connectivity and psychotic expression. 
These results are discussed in light of RSNs literature involving children, adults, and individuals 
with schizophrenia.
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and the medial prefrontal cortex (MPFC) (Broyd et al., 2009). Other 
networks have also been identified, including a self-referential system 
engaging the medial prefrontal regions, a posterior network involved 
in visual processing, an attention network engaging superior frontal 
and parietal cortex, a superior temporal system and a network engag-
ing precentral and postcentral cortex (Gusnard et al., 2001; Greicius 
et al., 2003; Fox and Raichle, 2007; Mantini et al., 2007).

More recently, neuroscientific investigations of RSNs examined 
the developmental characteristics of baseline cerebral activity by 
comparing functional connectivity in children and adults (Fair 
et al., 2008; Supekar et al., 2009, 2010). Although children show 
relatively immature connectivity in the DMN, cross-sectional data 
illustrates that specialized functional networks operate as early as age 
7 following a local distribution of anatomically proximal clusters of 
activity (Fair et al., 2008). Brain maturation, most notably cerebral 
pruning and myelinization during adolescence (Sowell et al., 2004), 
sustains the development of large-scale networks that cast longer 
range functional connectivity and greatly enhance cortico-cortical 
networks (Supekar et al., 2009, 2010). In parallel to these observa-
tions, studies on RSNs in children and adolescents have started to 
address the issue of functional connectivity maturation in relation 
to the development of high-level cognitive abilities occurring during 
adolescence. The main dimensions of investigation concern within-
network functional connectivity and the degree to which networks 
interfere/facilitate reciprocal interactions (Stevens et al., 2009). In 
a developmental study conducted by Kelly et al. (2009) targeting 
cingulate based intrinsic components networks, the authors report 
a significant age related shift in functional connectivity patterns by 
comparing children, adolescents and adults. While children showed 
a more dispersed pattern of correlation with seed region of inter-
est (ROI), young adults exhibited a better constrained correlation 
pattern in line with that observed in adult participants. These find-
ing are consistent with age related developmental trajectories of 
functional connectivity (Fair et al., 2008). In adolescent samples, 
studies have examined task-related modifications in neural networks 
(Stevens et al., 2007, 2009). Recently, Stevens et al. (2009) compared a 
group of 48 adolescents to a group of 52 adults and reported 13 com-
mon RSNs using ICA (Stevens et al., 2009). They further suggested 
that age is associated with greater within-network connectivity and 
increased efficiency between network influences. Together, these 
preliminary findings suggest that adolescence constitutes a crucial 
period for the deployment of functional connectivity networks that 
enhance information processing efficiency, and thus prompt further 
characterization of the RSNs during adolescence.

RSN investigations during adolescence can also lead to a deeper 
understanding in psychopathology research, especially because many 
serious psychiatric disorders emerge during late adolescence transi-
tioning into early adulthood (Paus et al., 2008). Schizophrenia is one 
of the psychiatric disorders that typically unfolds with increased mani-
festations of schizotypal traits during adolescence (such as transient 
hallucination and delusion-like symptoms), which can potentially 
progress into clinically meaningful manifestations of psychosis. While 
a number of RSN investigations have been performed with adults 
meeting the diagnostic criteria of schizophrenia (Garrity et al., 2007), 
information is lacking concerning the early expression of schizotypal 
traits and its underlying RSN correlates. The results already reported 
in schizophrenia research can guide such examinations designed to 

assess the relationships between baseline cerebral activity and early 
schizotypal trait manifestations. To date, the functional connectivity 
data on RSNs in schizophrenia show some disparity, perhaps due to 
methodological differences and extensive heterogeneity in the schizo-
phrenic samples. Nevertheless, three observations can be drawn from 
this quickly evolving literature; (1) studies showing greater DMN con-
nectivity in their schizophrenia samples suggest exaggerated allocation 
of attention to introspective activity together with increased preoc-
cupation for unexpected or novel external events; (2) in line with the 
first observations, studies finding increased anti-correlation between 
RSN networks interpret their results as representing the character-
istic rivalry between introspective and extrospective mental activity 
in schizophrenia; (3) Finally, studies find specific deactivations for 
central nodes of the DMN such as the middle frontal gyrus and pre-
cuneus, suggesting that they are associated with the positive symptom 
dimension of schizophrenia (Broyd et al., 2009). Indeed, in a recent 
study (Rotarska-Jagiela et al., 2010) investigating aberrant DMN in 
schizophrenic patients, a significant correlation was found between 
positive symptoms and deactivation of the right frontal parietal net-
work. It remains to be determined whether increased schizotypal traits 
during adolescence are associated with any one or many of the DMN 
alterations previously observed in adults with schizophrenia.

In this context, the present study carries two principal aims. 
Firstly, we wish to describe the functional organization of endog-
enous activation in adolescent baseline cerebral activity by examin-
ing functional connectivity of the putative DMN as well as other 
significant RSNs. Secondly, we wish to investigate the potential 
relationships between schizotypal trait expression and functional 
connectivity of the different RSNs in our adolescent sample. In order 
to conduct this examination, we employ an ICA to identify the 
functional connectivity of RSNs among widespread brain regions.

Materials and Methods
Participants
The study included 39 adolescents, 12–20  years old, who spoke 
French as their mother tongue (22 females, 17 males), with normal 
or corrected to normal vision. Participants were recruited through 
the Child and Adolescent outpatient Public Service (Office Médico 
Pédagogique) of Geneva member of the University of Geneva’s 
Psychiatry Department and of the Canton of Geneva Education 
Department. The motive for recruiting adolescents from the com-
munity (n = 16) in combination with those seeking psychological 
help (n = 23) was to obtain a distribution representing the wide range 
of schizotypy trait expression in our final sample. The sample mean 
age was 16.19, SD 2.201. All participants underwent an intellectual 
assessment, using the Wechsler Intelligence Scale for Children-III 
block design subtest (mean = 11.32, SD 3.5). In order to investigate 
psychotic symptoms and their dimensions, subjects completed the 
Schizotypal Personality Questionnaire (SPQ), translated into French 
and validated by Dumas et al. (2000). A clinical psychologist observed 
the questionnaire progression to guarantee that subjects understood 
all questionnaire items. The questionnaire looks at three main factor 
scores (Cognitive-Perceptual, Interpersonal, and Disorganization) 
and nine subscale scores (Ideas of Reference, Social Anxiety, Odd 
Beliefs/Magical Thinking, Unusual Perceptual Experiences, Eccentric/
Odd Behavior and Appearance, No Close Friends, Odd Speech, 
Constricted Affect, Suspiciousness/Paranoid Ideation). It has been 
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Group-level spatial ICA was conducted for all 39 participants, 
using the GIFT implementation (Calhoun et al., 2001; Calhoun and 
Adali, 2006; available at http://icatb.sourceforge.net/, version 1.3b) 
that relies on the infomax algorithm (Bell and Sejnowski, 1995). 
Spatial ICA decomposes the data into spatial components and associ-
ated time courses based on a criterion that favors spatial independ-
ence. The group-level analysis is applied on the preprocessed data. 
The spatial components were converted into z-values (Beckmann 
et al., 2005) while time courses were calibrated as signal percentage 
change. The number of components was chosen as 20, which is con-
sistent with the minimum description length estimate. Each of the 
spatial components was manually inspected for the presence of obvi-
ous artifacts that get effectively separated out by ICA (e.g., motion, 
ventricles) (Stevens et al., 2006). We retained six RSNs components 
that were consistent with the literature (Mantini et al., 2007).

ICA correlation with clinical measures
Regression analysis of the ICA findings against the clinical meas-
ures was conducted using custom scripts in Matlab 7.9 (R2009b) 
that relied upon the functionality of the GIFT implementation. In 
particular, a linear regression analysis was applied at the group level 
between the energy of the RSN-associated time courses, separated 
into 6 frequency bins (range 0.02–0.19 Hz: 0.02, 0.05, 0.09, 0.12, 
0.16, and 0.19 Hz), and 3 clinical measures (SPQ positive factor, 
SPQ negative factor, SPQ disorganized factor). The design matrices 
of the regression analyses contained the respective clinical measure 
together with a constant regressor, for which we ran a t-test for 
the clinical measure of interest with 36 degrees of freedom. We 
dealt with multiple comparisons (3 clinical measures × 6 frequency 
bins) using Bonferroni correction. Frequency-dependent behav-
ior of correlation between clinical measures and RSN temporal 
behavior is an important feature since past studies have effectively 
demonstrated the presence of low frequency oscillations in typi-
cal RSNs (0.01–0.1 Hz) (Mantini et al., 2007), while modulation 
of high frequency components has been found in schizophrenic 
patients (Keri and Janka, 2000; Garrity et al., 2007).

In what follows, we report both corrected and uncorrected p-val-
ues. We consider p < 0.05 corrected as being strongly significant 
(t > 2.95). For some correlations, we also report less significant 
values, but that could be of interest for future studies.

Results
Descriptive and clinical measures
Table 1 shows the mean scores obtained during the neuropsycho-
logical evaluation.

applied to explore the multiple dimensional analyses of schizotypy 
(Rossi and Daneluzzo, 2002), and it is valid with adolescents (Axelrod 
et al., 2001). In order to insure that our adolescent’s group distribu-
tion was normal, we tested for normality of distribution regarding 
the SPQ total score and the three subscale scores. The results indicate 
that full scale and subscale measures had normal distributions (SPQ 
total score: Kolmogorov–Smirnov Z = 0.56, p = 0.91; SPQ positive 
score: Kolmogorov–Smirnov Z = 0.97, p = 0.31; SPQ negative score: 
Kolmogorov–Smirnov Z = 0.55, p = 0.80; SPQ disorganization score: 
Kolmogorov–Smirnov Z = 0.66, p = 0.78).

Furthermore, we looked in the clinical files of the patients to 
find additional psychiatric diagnoses: four participants met CIM-10 
diagnosis (European equivalent of DSM-IV) at time of participa-
tion (one attention deficit hyperactivity disorder, one generalized 
anxiety disorder, two schizotypal personality disorder). Only the 
last two participants had higher than group average schizotypy 
scores, which would be expected from their clinical diagnosis.

Written informed consent was obtained from participants and 
their parents under protocols approved by the Institutional Review 
Board of the Department of Psychiatry of the University of Geneva 
Medical School.

Imaging acquisition and data analysis
fMRI data acquisition
Scanning was performed using a 3 Tesla Trio Tim Siemens at the 
Hôpitaux Universitaires of Geneva. High resolution 3D anatomical 
images were acquired [repetition time (TR) = 2500 ms, echo time 
(TE) = 30 ms, 192 coronal slices, slice thickness = 1.1 mm, slice 
gap = 0.5 mm, flip angle = 8°, field of view (FOV) = 220 mm2], 
followed by a resting state functional scan of 8 min, containing 200 
BOLD images (TR = 2400 ms, TE = 30 ms, 38 axial slices, slice thick-
ness = 3.20 mm, no gap, flip angle = 85°, FOV = 235 mm2). Subject’s 
head was stabilized with a vacuum cushion to minimize motion.

fMRI data analysis
Data were processed and analyzed using Statistical Parametric 
Mapping (SPM) 5, (Welcome Department of Neuroscience, 
London, UK). Functional images were at first corrected for motion 
by realigning every image with respect to the first one. Next, slice 
timing correction was performed using the middle slice as a ref-
erence, under descending acquisition. Structural images of each 
participant were coregistered to the mean of the realigned func-
tional images. Gray matter separation was established by segmen-
tation of the anatomical image. Realigned and slice-timed images 
were then spatially normalized into the Montreal Neurological 
Institute (MNI) template using 3 mm × 3 mm × 3 mm isotropic 
voxels, followed by spatial smoothing with an isotropic Gaussian 
smoothing Kernel of 10 mm full width half maximum (FWHM). 
Relevant RSNs were identified by ICA. ICA is a technique able to 
separate spatio-temporal BOLD signal into spatially statistically 
independent components (Beckmann and Smith, 2004). Each of 
the determined components is the expression of temporal wave-
form associated to specific brain network activity extracted from 
all regions. ICA allows separating out physiological artifacts and at 
the same time to identify functional active networks. Recently ICA 
has been employed for the identification of RSNs (Greicius et al., 
2004; van de Ven et al., 2004; Mantini et al., 2007).

Table 1 | Descriptive and clinical measures of age, intelligence and 

results of the self-response questionnaires (total and subscale scores).

Total sample (n = 39)	 Average	 SD	 Range

Age (years)	 16.19	 2.201	 12–19

IQ (block design)	 11.32	 3.465	 5–18

SPQ total score	 21.74	 14.545	 1–58

Positive (cognitive-perceptual)	 8.18	 6.480	 8–26

Negative (interpersonal)	 7.42	 5.898	 0–19

Disorganization	 6.45	 4.440	 0–19
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Figures 1A–F show the six identified RSNs. Tables 2–7 summa-
rize the active regions and the MNI peak coordinates, as well as 
Brodmann areas (BA) in which activation occurs. The results 
are explained on the base of past evidence of RSNs and they 

Consistent resting state networks found across 
adolescents
Peak activity were obtained by the implement of SPM 5 one 
sample t-test run for each relevant RSN. The spatial maps in 

Figure 1 | Cortical representation of the activity in the six RSNs. For each RSN (Left) Lateral and medial views of left hemisphere. (Center) Dorsal view. (Right) 
Lateral and medial views of right hemisphere. (A) Default-mode network – DMN, (B) dorso-lateral attention network – DAN. (continued)
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RSN 1
This network is represented by the DMN, which includes the bilat-
eral superior gyrus, anterior cingulate, the MPFC and the parietal 

are described by highlighting the functional system they sustain 
(Beckmann et al., 2005; De Luca et al., 2006; Mantini et al., 2007; 
Jafri et al., 2008).

Figure 1 | Cortical representation of the activity in the six RSNs. For each RSN (Left) Lateral and medial views of left hemisphere. (Center) Dorsal view. (Right) 
Lateral and medial views of right hemisphere. (C) visual network – VN, (D) auditory network – AN. (continued)
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Figure 1 | Cortical representation of the activity in the six RSNs. For each RSN (Left) Lateral and medial views of left hemisphere. (Center) Dorsal view. (Right) 
Lateral and medial views of right hemisphere. (E) sensory motor network – SMN, (F) self-referential network – SRN.

RSN 2
The dorso-lateral attention network (DAN) including the bilateral 
inferior parietal gyrus and the bilateral superior frontal sulcus; this 
system appears to be related to goal directed responses (Mantini 
et al., 2007).

cortex. Activity was also underlined in the left temporal gyrus. 
This network as been conceptualized as a “stand-alone” function 
or system (Raichle et al., 2001; Garrity et al., 2007). Briefly, this 
system is thought to hold recognition, self-projection and cogni-
tive demands.
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Table 2 | fMRI peak values for RSN 1 default-mode.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Cingulate gyrus	 R	 31	 3, −57, 30	 18.92

Inferior parietal lobule	 L	 39	 −45, −69, 39	 13.84

Superior temporal gyrus	 L	 39	 −48, −55, 27	 13.55

	 L	 21	 −55, −24, −5	 9.49

Supramarginal gyrus	 R	 40	 51, −55, 27	 17.07

Medial frontal gyrus	 R	 10	 −6, 51, −9	 11.88

	 R	 9	 3, 51, 18	 11.51

Anterior cingulate	 L	 10	 −3, 57, 0	 11.72

Middle temporal gyrus	 L	 21	 −63, −18, −18	 11.00

	 L	 21	 −57, −3, −21	 10.58

Middle temporal gyrus	 R	 21	 51, 12, −33	 6.90

Precentral gyrus	 R	 4	 60, −6, −21	 9.55

	 R	 6	 51, −9, 33	 4.40

Parahippocampal gyrus	 L	 27	 −24, −33, −12	 7.36

Lingual gyrus	 R	 18	 18, −84, −21	 7.23

Insula	 R	 13	 45, −9, 18	 4.13

Table 3 | fMRI peak values for RSN 2 dorso-lateral attention network.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Inferior parietal lobule	 R	 40	 42, −51, 48	 10.74

	 R	 40	 35, −53, 39	 10.05

	 L	 40	 −48, −51, 45	 7.73

Cuneus	 R	 7	 9, −69, 33	 9.23

Middle temporal gyrus	 R	 22	 57, −45, −6	 9.23

	 L	 20	 −57, −36, −15	 5.83

	 L	 21	 −53, −30, −12	 5.72

Middle frontal gyrus	 R	 9	 48, 27, 36	 8.95

	 R	 10	 35, 57, −3	 8.39

Middle frontal gyrus	 L	 8	 −48, 18, 45	 5.28

	 L	 8	 −42, 24, 45	 4.78

	 L	 9	 −45, 30, 33	 3.89

	 L	 10	 −33, 46, −7	 5.05

Inferior frontal gyrus	 R	 10	 42, 54, 3	 8.92

Superior frontal gyrus	 R	 8	 3, 30, 45	 5.89

	 L	 10	 −30, 57, 0	 4.38

Table 4 | fMRI peak values for RSN 3 visual network.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Middle temporal gyrus	 R	 37	 48, −60, −6	 10.60

	 R	 39	 42, −78, 6	 10.35

	 L	 21	 −51, 9, −21	 3.69

Middle occipital gyrus	 R	 19	 42, −81, −3	 10.37

Parahippocampal gyrus	 L		  −36, 15, −21	 4.00

Superior temporal gyrus	 R	 38	 51, 9, −21	 3.74

Table 5 | fMRI peak values for RSN 4 auditory network.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Superior temporal gyrus	 L	 22	 −60, −42, 15	 9.64

Inferior frontal gyrus	 R	 46	 51, 36, 6	 3.80

Insula	 L	 13	 −53, −21, 24	 8.91

Precentral gyrus	 L	 4	 −45, −18, 42	 7.53

	 R	 4	 53, −15, 27	 8.42

Postcentral gyrus	 R	 40	 63, −24, 15	 8.94

	 R	 2	 39, −39, 66	 3.80

Medial frontal gyrus	 R	 6	 3, −3, 60	 5.39

	 R	 6	 5, −5, 69	 5.28

	 R	 6	 0, −5, 69	 5.28

Parahippocampal gyrus	 L	 2	 −21, −3, −15	 4.27

Precuneus	 L	 31	 −15, −72, 24	 3.40

Table 6 | fMRI peak values for RSN 5 sensory motor network.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Paracentral gyrus	 L	 31	 −6, −12, 51	 12.41

Cingulate gyrus	 L	 24	 6, −3, 48	 11.89

Precentral gyrus	 L	 6	 −21, −21, 57	 11.75

Insula	 R		  39, −15, 3	 8.01

	 L	 40	 −51, −27, 18	 4.76

Postcentral gyrus	 R	 40	 54, −24, 15	 7.01

Posterior cingulate	 L	 29	 −9, −45, −18	 5.23

Inferior frontal gyrus	 L	 47	 −36, 21, −18	 4.37

Superior frontal gyrus	 L	 9	 0, 51, 36	 4.03

Superior temporal gyrus	 L	 22	 −54, 3, 0	 4.00

Table 7 | fMRI peak values for RSN 6 self-referential network.

Anatomical label	 Hemi	 BA	 MNI (x, y, z)	 t Value

Medial frontal gyrus	 R	 10	 3, 51, −9	 11.64

Anterior cingulate	 R	 24	 6, 36, −3	 13.53

Inferior temporal gyrus	 L	 37	 −57, −54, −12	 6.15

Superior temporal gyrus	 R	 38	 51, 9, −21	 3.74

Insula	 R	 15	 48, 9, −9	 5.78

Parahippocampal gyrus	 L	 36	 −3, −33, −21	 5.75

	 L	 36	 −3, −33, −21	 5.75

Fusiform gyrus	 R	 20	 45, −33, −21	 5.05

RSN 3
Visual network (VN) involving the occipital and bilateral tem-
poral regions; this functional system has been linked to the vis-
ual processing network and mental imagery (Ganis et al., 2004; 

Mantini et  al., 2007). Brain areas active in RSN 3 are thought 
to include the retinotopic system. Core regions of this network 
have been found to be abnormal in schizophrenic patients (Levy 
et al., 2000).

RSN 4
Auditory network (AN) including the superior temporal and infe-
rior frontal gyrus: these regions are known for being responsible 
in auditory processing and language comprehension. Studies on 
positive psychotic symptoms have found the temporal gyrus to be 
implied in auditory hallucinations (Gaser et al., 2004).
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composition that differ from the previous study. When visually 
comparing our findings to analogous results reported in an adult 
sample (Mantini et  al., 2007), we may observe a more definite 
engagement of the left superior and middle temporal gyri during 
baseline cerebral activity in our sample, although any interpretation 
would deserve caution and further empirical evidence. We may 
consider that this temporal region covers BA 21, which plays an 
important part in auditory processing and also underlies language 
processing. Interestingly, parts of BA 21 appear to be robustly impli-
cated with expression of psychotic symptoms such as hallucina-
tions and delusions in schizophrenic patients as well as in subjects 
at risk of developing psychosis (McGuire et al., 1995; Allen et al., 
2004). However our data do not indicate a clear linear correlation 
between activity in adolescent DMN and their expression of per-
ceptual aberrations as measured by the SPQ. It may be that during 
adolescent brain maturation, functional connectivity in the DMN 
is not fully constituted as to show definite links to symptomatic 
makers as in adults with schizophrenia. Another explanation may 
be that important dysfunctions in DMN functional connectivity 
sustain more serious manifestations of psychosis, which themselves 
commonly unfold during adulthood. Our finding requires fur-
ther research in children with childhood-onset schizophrenia and 
adolescents with a very high-risk for developing schizophrenia to 
further elucidate the relationship between DMN activity and clini-
cal levels of schizophrenia.

Adolescent RSNs and schizotypal trait expression
Conversely, the expression of adolescent schizotypal traits correlates 
with the VN’s functional connectivity in our sample of adolescents. 
We note that low frequency oscillations deficits for visual stimuli 
are well documented in schizophrenia (Spencer, 2008). The pos-
sible interpretations linking VN to early schizotypal trait expres-
sion merit caution, as mixed reports have implicated a variety of 
psychotic symptoms in schizophrenia (Broyd et al., 2009; Uhlhaas 
and Singer, 2010). We suggest that the positive correlation between 
VN low frequency bins and adolescent schizotypy scores could 
involve processes such as mental imagery, and more generally, social 
cognitive information processing. In the current study, both the 
positive, negative, and disorganization factors were positively cor-
related with the VN. This network included the visual cortex areas 
together with occipito-temporal areas, which comprise neuronal 
links shared by perceptual processing and mental imagery (Ganis 
et al., 2004). Indeed, the inferior temporal cortices can be activated 
by both mental imagery and visual perception (Ganis et al., 2004). 
Convergent evidence from schizophrenia research suggests that 
schizophrenic patients display increased vividness when engaged 
in mental imagery (Sack et al., 2005; Oertel et al., 2009). More gen-
erally, the occipito-temporal regions involved in this network also 
play an active role in social perception, in particular the interpreta-
tion of social intentions and actions using biological motion, facial 
expression and gaze information (Pelphrey et al., 2003). Therefore, 
the significant correlation of schizotypal trait dimensions in adoles-
cence with the posterior RSN network involving in mental imagery 
and social perception may lead us to consider how social cogni-
tive processes contribute to the disruption of social functioning 
in schizotypic youths. It is noteworthy to mention that social iso-
lation is one of the best predictive factors for psychosis onset in 

RSN 5
Sensory motor network (SMN), involving the precentral, postcen-
tral gyrus and portion of the frontal gyrus corresponding to the 
primary sensory motor cortex (Biswal et al., 1995; Fox et al., 2006) 
and the supplementary motor areas.

RSN 6
Self-referential network (SRN) including the medial prefrontal, 
the anterior cingulate cortex and the hypothalamus: this network 
it is thought to involve the self-referential system (Mantini et al., 
2007). It has been established that these areas are engaged in execu-
tive functions and they have been described as being abnormal in 
schizophrenic patients (Chan et al., 2006).

Correlations between SPQ measures and RSNs
In Figures 2A–C we show the results of the regression analyses 
between the IC time courses and the clinical measures. In particular, 
strong significant positive correlations were found between the low 
frequency bin (0.05 Hz) of the VN and the positive SPQ factor, 
p = 0.0000 corrected. Significant positive correlations were also 
revealed for the VN low frequency range (0.05 Hz) and the SPQ 
negative factor p < 0.0324 corrected. Significant positive correla-
tion was also underlined with the disorganized factor, p < 0.0018 
corrected, in the same frequency (0.05 Hz). In the high frequency 
bins (0.16 and 0.19 Hz) a strong negative correlation was uncovered 
between the AN and disorganized factor, p < 0.0054 corrected, and 
p < 0.0072 corrected respectively. A weaker correlation was also 
uncovered between the disorganized subscale and SRN, p = 0.0041 
uncorrected in the high frequency bin (0.16 Hz). Table 8 shows 
corrected, uncorrected p-values and t-values for each correlation.

Discussion
The first objective of this study was to characterize the putative 
DMN as well as other potential RSNs in a sample of adolescents. 
The ICA analyses performed upon the resting state data acquisition 
obtained through fMRI revealed a DMN network together with five 
reliable RSNs in our adolescent sample. These first results will be 
discussed in light of previous literature regarding RSNs in adult 
populations. Our second objective was to assess the relationship 
between schizotypal trait expression and the functional connectiv-
ity of reliable RSNs in our sample. Our results suggest that discrete 
dimensions of schizotypal trait expression may be selectively associ-
ated with three different RSNs, namely the SRN, the AN, and the 
VN. These results will be discussed in relation to the literature on 
RSN studies involving individuals with schizophrenia.

Resting state networks in adolescence
The identification of six reliable RSNs in our adolescent sample 
further characterizes functional connectivity during this important 
developmental period. A recent study by Stevens and collaborators 
described three networks composed of traditional DMN compo-
nents in their sample of adolescents aged between 12 and 20 years 
old (Stevens et al., 2009). One of these networks, Component 11 
described by these authors, is perhaps the closest match to the 
DMN network found in our sample. The fact that we only found 
one main DMN network may be due to methodological issues 
such as the length of the fMRI acquisition sequence and the sample 
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Figure 2 | (A) Correlation between relevant RSNs frequency bins and scores at the positive factor; the red asterisk indicates significant correlations with RSN 3 
(VN). (B) Correlation between relevant RSNs frequency bins and scores at the negative factor; the red asterisk indicates correlations with RSN 3 (VN). (Continued)

youths expressing high levels of schizotypy. Our results suggest that 
increased activity in the VN may underlie mental representation 
processes that promote schizotypal trait expression.

We may also consider that the VN and the AN identified in this 
study, both correlating with the schizotypy measure, are composed 
of anatomically proximal regions. As mentioned in the introduc-
tion, the development of functional connectivity from childhood 
to adolescence proceeds from local to more widely distributed 

networks (Supekar et al., 2009). It is thought that the segregated 
local networks in childhood tend, with maturational change pro-
moting long range functional connectivity, to distend and reorgan-
ize themselves within an integrated arrangement of interconnected 
cerebral networks (Fair et al., 2008; Supekar et al., 2010). The ado-
lescent period represents a key transitional epoch where functional 
connectivity maturation takes place. In light of these developmental 
processes, we may hypothesize that our results reflect disturbed 
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Figure 2 | (C) Correlation between relevant RSNs frequency bins and scores at the disorganized factor; the red asterisk indicates significant correlations with RSN 3 
(VN); the black asterisks indicate negative correlations with disorganized factor and hypo-connectivity of RSN 4 (AN).

Table 8 | Statistical results for correlation between SPQ measures and 

RSN frequency bins.

Clinical correlation	 p uncorrected	 p corrected	 t Values

0.05 Hz

SPQ positive × VN	 0.0000	 0.0000	 4.4713

SPQ negative × VN	 0.0018	 0.0324	 3.1102

SPQ disorg × VN	 0.0001	 0.0018	 4.0605

0.12 Hz

SPQ disorg × AN	 0.0040		  −2.8044

0.16 Hz

SPQ disorg × AN	 0.0003	 0.0054	 −3.7250

SPQ disorg × SRN	 0.0041		  −2.7901

0.19 Hz

SPQ disorg × AN	 0.0004	 0.0072	 −3.6030

maturational processes of local networks (visual, auditory) that 
still operate in segregated fashion. If complex information such 
as that involved in social exchange requires sophisticated social 
cognitive processes involving multi-network integrated functional 
connectivity, then poorly integrated local networks may set the 
stage for faulty information processing in adolescents. In this view, 
faulty local network connectivity or altered functional connectiv-
ity maturation could hypothetically constitute the developmental 
antecedents of schizotypal trait expression.

Possible implications of self-referential processing
It is possible to gain further insight into schizotypal trait expres-
sion during adolescence by looking at the SRN observed in our 
sample. The SRN involves the coordination of cerebral structures 
responsible for reality monitoring, which is the capacity to accu-
rately discriminate mental events originating from oneself from 
mental events originating from an external agent (Johnson et al., 
1993). Reality monitoring deficits have been observed in sev-
eral studies involving schizophrenic patients (Vinogradov et al., 
1997, 2008) as well as in adolescents showing schizotypal traits 
(Debbané et al., 2009). Reality monitoring deficits observed along 
the continuum of schizotypal expression, from benign to clini-
cally meaningful manifestations, lead several theorists to argue 
that such reality monitoring deficits contribute to the formation 
of psychotic symptoms (Frith and Frith, 2003). In our study, we 
observe a significant correlation (uncorrected) between dys-
functional connectivity of SRN and schizotypy trait expression. 
More precisely, the SRN functional connectivity negatively cor-
relates with the disorganization dimension, which is comprised 
of both odd speech and odd behaviors. The RSN activation in 
this study includes both parts of BA 21 discussed above as well as 
the involvement of the MPFC, which we know sustains a variety 
of self-referential processes (D’Argembeau et  al., 2005; Simons 
et al., 2008; Vinogradov et al., 2008). We may hypothesize that 
a disorganization in speech may involve inefficient connectiv-
ity between areas sustaining self-referential processes and areas 
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sustaining language functions, which can already be observed in 
the expression of the disorganization trait in adolescence. This 
may sustain the hypothesis suggesting that impaired language and 
thought functions in schizophrenia are a result of disruptions in 
the processes of higher order construction of self-relevant mean-
ing (Kuperberg et al., 2009). The finding that the AN correlates 
with the disorganization dimension in our adolescent sample fur-
ther contributes to the hypothesis that cerebral areas sustaining 
language processing can contribute to odd/disorganized speech 
manifestations and altered language processing. Furthermore, high 
frequency (0.20 Hz) oscillations have been found in schizophrenic 
patients when compared to normal controls (Garrity et al., 2007). 
Relevant RSNs have shown typical frequency oscillations below 
0.1 Hz (Cordes et al., 2001). However, significantly stronger power 
in higher frequencies has been seen in the DMN of a sample schizo-
phrenic patients, specifically between the 0.1 and 0.24 Hz (Garrity 
et al., 2007). This finding suggested less temporal synchronicity 
between the brain regions involved. In addition, Cordes and col-
leagues have highlighted that harmonic respiratory cycles do not 
arise under 0.25 Hz (to 0.5 Hz), and cardiac rate arises around 
0.9 Hz, therefore none of the physiological noise should arise into 
the low frequency bins (0.1 Hz). These oscillations may be repre-
sentative of less effective connections between brain regions which 
enable information processing (Garrity et al., 2007).

To conclude, in agreement with previous studies on adult RSNs 
(Gusnard and Raichle, 2001; Gusnard et al., 2001; Raichle et al., 
2001; Mantini et al., 2007), we report on six reliable RSNs identified 
in baseline cerebral activity in an adolescent population. Significant 
correlation with schizotypal trait expression could be observed with 

76

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 August 2010  | Volume 4  |  Article 35  | 

Lagioia et al.	 Adolescent resting state networks

synchrony in schizophrenia. Nat. Rev. 
Neurosci. 11, 100–113.

van de Ven, V. G., Formisano, E., Prvulovic, 
D., Roeder, C. H., and Linden, D. E. J. 
(2004). Functional connectivity as 
revealed by spatial independent com-
ponent analysis of fMRI measure-
ments during rest. Hum. Brain Mapp. 
22, 165–178.

Van den Heuvel, M. P., Mandl, R. C. W., 
Kahn, R. S., and Hulshoff Pol, E. H. 
(2009). Functionally linked resting-
state networks reflect the underlying 
structural connectivity architecture of 
the human brain. Hum. Brain Mapp. 
3, 3127–3141.

Vinogradov, S., Luks, T. L., Schulman, B. 
J., and Simpson, G. V. (2008). Deficit in 
a neural correlate of reality monitor-
ing in schizophrenia patients. Cereb. 
Cortex 18, 2532–2539.

Vinogradov, S., Willis-Shore, J., Poole, 
J. H., Marten, E., Ober, B. A., and 
Shenaut, G. K. (1997). Clinical and 
neurocognitive aspects of source 
monitoring errors in schizophrenia. 
Am. J. Psychiatry 154, 1530–1537.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
financial relationships that could be con-
strued as a potential conflict of interest.

Received: 05 February 2010; paper pending 
published: 25 March 2010; accepted: 02 July 
2010; published online: 05 August 2010.
Citation: Lagioia A, Van De Ville D, 
Debbané M, Lazeyras F and Eliez S (2010) 
Adolescent resting state networks and their 
associations with schizotypal trait expres-
sion. Front. Syst. Neurosci. 4:35. doi: 
10.3389/fnsys.2010.00035
Copyright © 2010 Lagioia, Van De Ville, 
Debbané, Lazeyras and Eliez. This is an 
open-access article subject to an exclusive 
license agreement between the authors and 
the Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

Linden, D. E. J. (2010). Resting-state 
functional network correlates of psy-
chotic symptoms in schizophrenia. 
Schizophr. Res. 17, 21–31.

Sack, A. T., Camprodon, J. A., Pascual-
Leone, A., and Goebel, R. (2005). 
The dynamics of interhemispheric 
compensatory processes in mental 
imagery. Science 308, 702–704.

Simons, J. S., Henson, R. N. A., Gilbert, S. 
J., and Fletcher, P. C. (2008). Separable 
forms of reality monitoring supported 
by the anterior prefrontal cortex. J. 
Cogn. Neurosci. 20, 447–457.

Sowell, E. R., Thompson, P. M., and Toga, 
A. W. (2004). Mapping changes in the 
human cortex throughout the span of 
life. Neuroscientist 10, 372–392.

Spencer, K. M. (2008). Visual gamma 
oscillations in schizophrenia: impli-
cations for understanding neural 
circuitry abnormalities. Clin. EEG 
Neurosci. 39, 65–68.

Stevens, M. C., Kiehl, K. A., Pearlson, G. D., 
and Calhoun, V. D. (2007). Functional 
neural networks underlying response 
inhibition in adolescents and adults. 
Behav. Brain Res. 181, 12–22.

Stevens, M. C., Pearlson, G. D., and 
Calhoun, V. D. (2006). Functional neu-
ral circuits for mental time keeping. 
Hum. Brain Mapp. 28, 394–408.

Stevens, M. C., Pearlson, G. D., and 
Calhoun, V. D. (2009). Changes in the 
interaction of resting-state neural net-
works from adolescence to adulthood. 
Hum. Brain Mapp. 30, 2356–2366.

Supekar, K., Musen, M., and Menon, V. 
(2009). Development of large-scale 
functional brain networks in children. 
PLoS Biol. 7, e1000157. doi: 10.1371/
journal.pbio.1000157.

Supekar, K., Uddin, L. Q., Prater, K., 
Amin, H., Greicius, M. D., and 
Menon, V. (2010). Development of 
functional and structural connectiv-
ity within the default mode network 
in young children. Neuroimage 52, 
290–301.

Uhlhaas, P. J., and Singer, W. (2010). 
Abnormal neural oscillation and 

event-related potentials tell us about 
language, and perhaps even thought, 
in schizophrenia? Int. J. Psychophysiol. 
75, 66–76.

Levy, D. L., Lajonchere, C. M., Dorogusker, 
B., Min, D., Lee, S., Tartaglini, A., 
Lieberman, J. A., and Mendell, N. R. 
(2000). Quantitative characterization 
of eye tracking dysfunction in schizo-
phrenia. Schizophr. Res. 42, 171–185.

Mantini, D., Perrucci, M. G., Del Gratta, 
D., Romani, G. L., and Corbetta, M. 
(2007). Electrophysiological signa-
tures of resting state networks in the 
human brain. Proc. Natl. Acad. Sci. 
U.S.A. 104, 13170–13175.

McGuire, P. K., Silbersweig, D. A., Wright, I., 
Murray, R. M., David, A. S., Frackowiak, 
R. S., and Frith, C. D. (1995). Abnormal 
monitoring of inner speech: a physi-
ological basis for auditory hallucina-
tions. Lancet 346, 596–600.

Oertel, V., Rotarska-Jagiela, A., van de Ven, 
V., Haenschel, C., Grube, M., Stangier, 
U., Maurer, k., and Linden, D. E. J. 
(2009). Mental imagery vividness as 
a trait marker across the schizophrenia 
spectrum. Psychiatry Res. 167, 1–11.

Paus, T., Keshavan, M., and Giedd, J. N. 
(2008). Why do many psychiatric 
disorders emerge during adolescence? 
Nat. Rev. Neurosci. 9, 947–957.

Pelphrey, K. A., Mitchell, T. V., McKeown, 
M. J., Goldstein, J., Allison, T., and 
McCarthy, G. (2003). Brain activity 
evoked by the perception of human 
walking: controlling for meaning-
ful coherent motion. J. Neurosci. 23, 
6819–6825.

Raichle, M. E., MacLeod, A. M., Snyder, A. 
Z., Powers, W. J., Gusnard, D. A., and 
Shulman, G. L. (2001). A default mode 
of brain function. Proc. Natl. Acad. Sci. 
U.S.A. 98, 676–682.

Rossi, A., and Daneluzzo, E. (2002). 
Schizotypal dimensions in normals 
and schizophrenic patients: a com-
parison with other clinical samples. 
Schizophr. Res. 54, 67–75.

Rotarska-Jagiela, A., van de Ven, V., Oertel 
Knöchel, V., Uhlhaas, P., Vogeley, K., and 

Greicius, M. D., Krasnow, B., Reiss, A. 
L., and Menon, V. (2003). Functional 
connectivity in the resting brain: a 
network analysis of the default mode 
hypothesis. Proc. Natl. Acad. Sci. U.S.A. 
100, 253–258.

Greicius, M. D., Srivastava, G., Reiss, A. 
L., and Menon, V. (2004). Default-
mode network activity distinguishes 
Alzheimer’s disease from healthy 
aging: evidence from functional 
MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 
4637–4642.

Gusnard, D. A., Akbudak, E., Shulman, G. 
L., and Raichle, M. E. (2001). Medial 
prefrontal cortex and self-referential 
mental activity: relation to a default 
mode of brain function. Proc. Natl. 
Acad. Sci. U.S.A. 98, 4259–4264.

Gusnard, D. A., and Raichle, M. E. (2001). 
Searching for a baseline: functional 
imaging and the resting human brain. 
Nat. Rev. Neurosci. 2, 685–694.

Hampson, M., Peterson, B. S., Skudlarski, 
P., Gatenby, J. C., and Gore, J. C. (2002). 
Detection of functional connectiv-
ity using temporal correlations in 
MR images. Hum. Brain Mapp. 15, 
247–262.

Jafri, M. J., Pearlson, G. D., Stevens, M., 
and Calhoun, V. D. (2008). A method 
for functional network connectivity 
among spatially independent resting-
state components in schizophrenia. 
Neuroimage 39, 1666–1681.

Johnson, M. K., Hashtroudi, S., and 
Lindsay, D. S. (1993). Source moni-
toring. Psychol. Bull. 114, 28.

Kelly, C. A. M., Di Martino, A., Uddin, L. 
Q., Shehzad, Z., Gee, D. G., Reiss, P. T., 
Margulies, S., Castellanos, F. X., and 
Milham, M. P. (2009). Development 
of anterior cingulate functional 
connectivity from late childhood to 
early adulthood. Cereb. Cortex 19, 
640–657.

Keri, S., and Janka, Z. (2000). Cognitive 
dysmetria in schizophrenia. Am. J. 
Psychiatry 157, 662–663.

Kuperberg, G. R., Kreher, D. A., and 
Ditman, T. (2009). What can 

77

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 17  | 

SYSTEMS NEUROSCIENCE
Original Research Article

published: 07 June 2010
doi: 10.3389/fnsys.2010.00017

et al., 2003; Vercauteren et al., 2008). The reduced CC integrity that 
accompanies aging (Sullivan et al., 2002; Head et al., 2004) may 
disrupt interhemispheric balance; indeed, older adults demonstrate 
reduced inhibition between hemispheres compared to young adults 
(Talelli et al., 2008a,b). As callosal connections between the two 
motor cortices appear to have a net inhibitory effect (Ferbert et al., 
1992; Netz, 1999; De Gennaro et al., 2004; Duque et al., 2007), cal-
losal degeneration with age may lead to greater activation of the 
ipsilateral M1 (due to reduced inhibition from the contralateral 
M1) during motor task performance. However, a complete section 
of the CC leads to an absence of ipsilateral activation during tactile 
stimulation (Fabri et  al., 1999), suggesting that the relationship 
between CC integrity and ipsilateral activation in sensorimotor 
tasks may be nonlinear. Therefore, while some degeneration of the 
CC may lead to less lateralized task processing (Muller-Oehring 
et al., 2007), extensive damage or complete section of the CC would 
likely abolish ipsilateral activation.

Motor task difficulty has also been shown to have an impact on 
recruitment of ipsilateral M1. More complex motor tasks result in 
greater recruitment of brain regions, particularly the ipsilateral 
M1 (Seidler et  al., 2004; Verstynen et  al., 2005). This raises the 
question of whether ipsilateral M1 activity in older adults is due 
to age differences in task difficulty. Advances in imaging analyses, 
such as resting state functional connectivity (fcMRI), provide a 
way to assess communication between cortical regions without 
incorporating a task.

Regions with similar functions and known anatomical connec-
tions have shown strong correlations in the low-frequency blood 
oxygen level dependent (BOLD) signal, commonly referred to as 

Introduction
Older adults have been shown to recruit more of the brain than 
young adults to perform a given task. The hemispheric asymme-
try reduction in older adults (HAROLD) model characterizes this 
phenomenon in cognitive tasks (Cabeza, 2001). It describes the 
finding that older adults typically have less lateralized prefrontal 
cortex recruitment than younger adults during the performance 
of cognitive tasks (cf. Reuter-Lorenz and Lustig, 2005). Similarly, 
older adults performing motor tasks tend to recruit more brain 
regions compared to young adults, particularly the primary motor 
cortex (M1) ipsilateral to the moving limb (Mattay et al., 2002; 
Ward and Frackowiak, 2003; Heuninckx et al., 2005, 2008; Riecker 
et al., 2006).

The recruitment of additional brain regions by older adults 
has been associated with enhanced performance of both cognitive 
(Reuter-Lorenz et al., 2000; Cabeza et al., 2002) and motor tasks 
(Mattay et al., 2002; Heuninckx et al., 2008), suggesting that increased 
activation in older adults serves a compensatory purpose. In contrast, 
there are examples of older adults demonstrating greater activation 
yet exhibiting diminished (Madden et al., 1999) or similar perform-
ance to young adults (Hutchinson et al., 2002). Thus, over-activation 
may also reflect nonspecific activity or dedifferentiation (Li et al., 
2001; Li and Sikstrom, 2002; for a review see Seidler et al., 2010).

Ipsilateral motor activation in older adults may be the result 
of structural decline of the corpus callosum (CC), possibly lead-
ing to recruitment of the ipsilateral cortex via interhemispheric 
motor overflow. The CC is the primary means of communica-
tion between hemispheres. Unimanual movement of the domi-
nant hand has a net inhibitory effect on the ipsilateral M1 (Sohn 
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hold the cursor in the target until the target disappeared and then 
release the spring-loaded joystick allowing the cursor to return to 
the original centered position. Real-time feedback of the joystick 
location was presented as a cursor moving on the display screen. 
A trial was defined as the time between the appearance and disap-
pearance of the target (2.5 s). The inter-trial interval was 2.5 s. In 
a single run participants performed two blocks of 12 trials (20 s 
visual fixation, block of 12 trials, 20 s visual fixation, block of 12 
trials, 22 s visual fixation). Participants practiced three runs of the 
task in the mock scanner to become familiar with the operation of 
the joystick device and visual feedback display.

The second day of testing was conducted at the University of 
Michigan Functional MRI Laboratory. A series of scans were per-
formed using a 3.0 T MRI scanner (General Electric, Waukesha, WI, 
USA). Participants’ heads were comfortably restrained to reduce 
head movement. They wore fMRI compatible mirrored glasses to 
view a screen for the visual stimuli. During the first scan, which was 
collected for resting state functional connectivity analyses (fcMRI), 
participants gazed at a fixation cross. In total, 400 images were 
acquired in a time span of 5 min using a single-shot gradient-echo 
reverse-spiral pulse sequence. The repetition time (TR) was 750 ms, 
echo time (TE) was 30 ms, flip angle (FA) was 50 and field of view 
(FOV) was 220 mm. Sixteen contiguous, 3.2-mm axial slices were 
acquired in each TR. Voxel size was 3.4-mm × 3.4 mm × 3.2 mm. 
These acquisition parameters result in lower signal to noise ratio 
than the task acquisition parameters (see below), but they allow 
us to (a) sample at a faster rate (as opposed to TR of 2), so that we 
have both increased degrees of freedom after the low-pass filter, 
and less chance of high frequency physiological noise aliasing into 
our frequency band of interest; and (b) acquire 400 samples in 
5 min, as opposed to only 150 samples with a 2 s TR. It would have 
taken over 13 min to acquire 400 samples with a 2 s TR, which was 
considered prohibitive given the older population being studied. 
Cardiac (measured with pulse oximeter) and respiratory (measured 
with chest plethysmography) signals were acquired for use in the 
data analyses.

During the motor task fMRI scans, participants performed two 
runs of the joystick task as previously described using their right 
hand. A single-shot gradient-echo reverse-spiral pulse sequence 
was also used to acquire the fMRI data. Pulse sequence parameters 
were TR/TE/FA/FOV of 2000 ms/30 ms/80/220 mm respectively. 
Forty, 3.2-mm-thick slightly oblique axial slices (no gap) were 
acquired. A total of 91 images were acquired, with each run last-
ing 182 s. High-resolution anatomical images were also acquired 
using a T1-weighted gradient-echo pulse sequence with the follow-
ing parameters: TR/TE/FA/FOV 200 ms/3.7 ms/90/220 mm and a 
voxel size of 1 mm × 1 mm × 1.2 mm.

Behavioral data analysis
Custom Labview 6.1 software (National Instruments) was used to 
analyze the joystick data offline. A dual pass Butterworth digital 
filter (Winter 1990) using a cutoff frequency of 10 Hz was used 
to filter the raw data. The resultant joystick path was calculated 
by computing the square root of the sum of the squared X and Y 
coordinate data at each time point. The tangential velocity profile 
was then calculated through differentiation. The optimal algorithm 
of Teasdale (Teasdale et al., 1993) was used to determine move-

fcMRI (Fox and Raichle, 2007; Rogers et al., 2007; Vincent et al., 
2007). Examples of functional connectivity of anatomical regions 
with structural connections between hemispheres include motor 
networks (Biswal et al., 1995; Xiong et al., 1999; De Luca et al., 
2005), visual networks (Lowe et al., 1998; Cordes et al., 2000) and 
auditory networks (Cordes et  al., 2000). Moreover, resting state 
connectivity networks exhibit stability across data sets collected 
from different participants using differing acquisition parameters, 
locations, and scanners (Biswal et al., 2010). Recently, Lowe et al. 
(2008) found that measures of callosal integrity correlate with M1 
interhemispheric resting state connectivity in patients with multiple 
sclerosis. Similarly, correlations between M1 in each hemisphere 
are greatly diminished with CC agenesis (Quigley et al., 2003) or 
callosal sectioning (Johnston et  al., 2008). Taken together these 
data support that fcMRI is a noninvasive and reliable method for 
assessing resting state interhemsipheric connectivity.

The goal of the current study was to examine the influence of 
age differences in interhemispheric connectivity upon brain acti-
vation patterns and task performance in older adults. We used a 
region of interest (ROI) approach (cf. Peltier et al., 2005; Di Martino 
et al., 2008) to compare resting state connectivity between the two 
M1s. We hypothesized that: 1. M1 task-related fMRI activation in 
older adults would be less lateralized, with increased activation 
serving a compensatory role; 2. Older adults would have smaller 
CCs and greater M1 resting interhemispheric connectivity; and 3. 
Older adults demonstrating stronger M1 resting interhemispheric 
connectivity would demonstrate less laterality in M1 task-related 
fMRI activation.

Materials and methods
Participants and procedure
Young (n = 18, 21.4 ± 2.1 years, nine males) and older (n = 18, 
71.7  ±  5.8  years, nine males) adults were recruited from the 
University of Michigan community and through the University 
of Michigan National Institutes of Health Claude D. Pepper Older 
American’s Independence Center human subjects and assessment 
core. All participants signed an internal review board approved 
consent form prior to entrance into the study. Participants were 
free of contraindications for an fMRI study as determined by a 
health questionnaire and were right handed, as verified by the 
Edinburgh Handedness Inventory (Oldfield, 1971, young adult’s 
mean = 77 ± 14, older adult’s mean = 89 ± 10, t = 2.81, df = 32, 
p  =  0.01). Cognitive status was assessed using the Mini Mental 
Status Examination (minimum inclusion score 27/30, Folstein 
et  al., 1975) and the Mattis Dementia Rating Scale (minimum 
inclusion score 124/144, Mattis, 1976). Screening occurred on the 
first of two testing days.

On day one of testing, participants were accepted into the study 
if they met the above inclusion criteria. They then practiced a motor 
task using their right (dominant) hand in a mock MRI scanner. 
Participants were comfortably positioned in the mock scanner with 
a mirror adjusted to allow visualization of a video screen. A dual 
potentiometer joystick was used to control the movement of a cur-
sor on the screen. The starting position of the cursor was centered 
on the screen. Targets would appear randomly above, below, right, 
or left of the original cursor position. Participants were instructed to 
move the cursor as quickly and accurately as possible to the target, 
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neighboring voxels. The time courses from each of the four voxels in 
the seed region were averaged together to create one representative 
time course characterizing signal changes in the seed region over the 
length of the scan. Then, a correlation analysis between this repre-
sentative time course of the seed region and all other voxels in the 
brain was performed. The degree of connectivity was quantified for 
each individual by calculating the average z score of all suprathreshold 
voxels in the resting state correlation map (p < 0.05, cluster threshold 
>9 contiguous voxels). In performing significance calculations, the 
degrees of freedom were decreased to reflect the reduced number of 
degrees of freedom in the low-pass filtered data.

The SPM toolbox WFU_Pickatlas (Maldjian et al., 2003) was 
used to define M1 and the primary somatosensory cortex. We com-
bined these two regions of interest to create a sensorimotor cortex 
mask. The sensorimotor cortex mask was refined to reflect the cor-
tex in common with all participants. Two older adults were removed 
from the analyses as their head position in the 16 slice fcMRI acqui-
sition remarkably reduced the size of the sensorimotor cortex mask. 
The sensorimotor cortex mask was used as a ROI to calculate the 
percent signal change in suprathreshold voxels (p > 0.001 uncor-
rected, cluster threshold >9 contiguous voxels) in the task related 
fMRI data for each participant. In the fcMRI data the mask deline-
ated the z scores used to calculate a metric reflecting interhemi-
spheric balance between the seed region in the left M1 and the right 
sensorimotor cortex for each participant. Figure 1 illustrates the 
time course of the seed region in the left hemisphere and the time 
course of a suprathreshold voxel in the right sensorimotor cortex 
for one representative participant. The correlation between these 
two time courses denotes functional interhemispheric connectivity. 
Correlations between the seed region and the right sensorimotor 
cortex will be referred to as sensorimotor cortex interhemispheric 
connectivity. In the group analyses using the right sensorimotor 
cortex mask the cluster threshold was >4 contiguous voxels for both 
fMRI and fcMRI data. To determine the degree of laterality in fMRI 
activation, a laterality index using the percent signal change in the 
sensorimotor cortex was calculated with the following formula: 
laterality index = (left sensorimotor cortex − right sensorimotor 

ment onset and offset. Performance on the task was measured by 
reaction time (RT), initial endpoint error (IEE), and final endpoint 
error (FEE). RT was calculated by subtracting the time of the target 
presentation from the time of the movement onset. IEE represents 
the distance from the joystick controlled cursor and the target at 
the end of the first ballistic movement. The algorithm used to cal-
culate IEE identifies a period of acceleration following a period 
of deceleration or a change in the sign of the velocity. FEE is the 
distance from the target at movement offset.

MRI data analysis
fMRI data
The first three volumes per run were discarded to allow for signal 
equilibration. High-pass filtering was used to remove low-frequency 
drift. Motion correction was performed using MCFLIRT and the 
brain extraction tool (BET) was used to strip the skull from images 
(using FSL toolboxes, http://www.fmrib.ox.ac.uk/fsl). Statistical 
Parametric Mapping version 5 (SPM5: www.fil.ion.ucl.ac.uk/spm/
software/spm5/) was used for subsequent analyses. A mean func-
tional image was created for each participant. All functional and 
structural images were aligned to this mean functional image. The 
Montreal Neurological Institute (MNI) template was used for spa-
tial normalization (Mazziotta et al., 1995). The structural image was 
normalized to MNI space first and the resulting parameters were 
applied to the functional images. Functional images were spatially 
smoothed using a full width at half-maximum 8-mm Gaussian 
smoothing kernel. Boxcar models synchronized to the effect of 
interest and convolved with an estimate of the hemodynamic 
response function were used for statistical analyses. A general linear 
model analysis was first conducted at an individual level across runs 
contrasting periods of movement with rest. The first level statistics 
were used to identify the MNI coordinates with the most significant 
activations in the hand knob region of the left primary M1 in each 
individual for the fcMRI analysis (see description below). Also at 
the first level, percent signal change for the motor task relative to 
the rest periods was calculated and averaged across runs. Second 
level random effects analyses were run for single group whole brain 
(uncorrected p = 0.0001), and ROI analyses in the right primary 
somatosensory cortex and M1 (sensorimotor cortex, uncorrected 
p = 0.005). Between group analyses were also run for whole brain 
(uncorrected p = 0.001) and ROI analyses in the right sensorimotor 
cortex (uncorrected p = 0.005).

fcMRI data
The first 10 volumes were discarded to allow the signal to reach a 
steady state. Motion correction and the use of BET were the same as 
described for fMRI. Second-order harmonics of the simultaneously 
recorded cardiac and respiratory signals were regressed out in image 
space using RETROICOR (Glover et al., 2000). Linear trends were 
removed from the data to eliminate the effect of gross signal drifts. 
Low-pass filtering was performed with a cut-off frequency of 0.08 Hz. 
No other temporal or spatial smoothing was performed on the fcMRI 
data. The hand knob region of the left M1 was identified visually for 
each subject. The hand knob has a distinct omega shape making it a 
good anatomical landmark (Yousry et al., 1997). In each individual 
the most active region in their hand knob during the fMRI task served 
as their seed for the fcMRI ROI analysis. The seed consisted of four 

Figure 1 | Connectivity data from a representative participant. The seed 
region and corresponding time course for a single participant are depicted in 
blue. Voxels having correlation strength above threshold are shown in white. 
The time course for a suprathreshold voxel and the corresponding voxel are 
shown in red.
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to the ACC–PCC line, was placed at the anteriormost point of the 
inner convexity of the anterior CC defining regions 1 (rostrum) 
and 2 (genu). All other regions are defined as a proportion of the 
CC (see Figure 2). Cross-sectional area was calculated for each of 
the seven sub-regions. Three independent raters performed all steps 
to ensure CC measurements were reliable. The mean value of the 
raters was used in the analyses.

Intracranial area was also calculated for each subject utilizing 
the same custom MATLAB programs. The same mid-sagittal slice 
was used to measure the CC area and intracranial area for each 
subject. An outline was drawn along the interior border of the 
skull with a straight line connecting the nasion and the inion. The 
cross-sectional area of each CC sub-region was normalized to 
intracranial area to control for any atrophy and/or degeneration 
that may have occurred in the brains of our older adult participants. 
Two independent raters performed intracranial area measurements 
to establish reliability. The mean value of the raters was used in 
the analyses.

Statistical analyses
Statistical analyses were conducted in SPSS. Between group differ-
ences were analyzed using independent t tests. Correlations were 
assessed between the sensorimotor cortex interhemispheric con-
nectivity, percent signal change in the right sensorimotor cortex, 
fMRI laterality index, the motor performance variables, and fMRI 
activation peaks resulting from the contrast of older adults > young 
adults. Scores that were outside 2.5 standard deviations from the 
mean for the group were excluded from the analyses. Inter-rater 
reliability for CC and intracranial area measurements was assessed 
with Krippendorff ’s alpha (Hayes and Krippendorff, 2007).

Results
Behavioral results
Older adults did not perform at the same level as young adults on 
the motor task (Table 1); they took longer to initiate movements, 
moved more slowly during the initial ballistic movement towards 
the target, and ended the movement further from the target.

Motor task-related fMRI results
The young adults and older adults recruited overlapping brain 
regions while performing the motor task, primarily in motor 
regions such as the bilateral precentral gyrus, left postcentral gyrus, 
right inferior and superior parietal lobe, and cerebellum. There 
were no regions where young adults showed greater activation 

cortex)/(left sensorimotor cortex + right sensorimotor cortex)*100. 
A score of 100 would reflect complete lateralization to the left side. 
Conversely, a score of −100 would indicate complete lateralization 
to the right side.

 Anatomical data-CC morphology
A custom Matlab program (MATLAB, MathWorks Inc. R2007b) 
was used to manually outline the CC from a mid-sagittal slice taken 
of a high-resolution T1 image. Another custom MATLAB program 
was then used to divide the CC into seven sub-regions as previously 
described by Witelson (1989). Individual variation in the size of 
these sections has been shown to relate to brain functional activity 
during sensory and motor processing (Stancak et al., 2002, 2003a,b) 
as well as correlations with the laterality of task processing in older 
adults (Muller-Oehring et al., 2007). In the Witelson scheme, the 
CC is separated into seven regions to roughly correspond to distinct 
anatomical connections of the caudal/orbital prefrontal, inferior 
premotor cortices (region 1), prefrontal cortices (2), premotor and 
supplementary motor areas (3), primary motor cortices (4), pri-
mary sensory cortices (5), superior temporal and posterior parietal 
cortices (6) and occipital, inferior temporal cortices (7) (Figure 2). 
However, it should be noted that these subdivisions were originally 
based upon anatomical work conducted in monkeys. More recent 
DTI tractography data from humans indicates that these regions, 
particularly 3–6, may be shifted posteriorly in the CC (Hofer and 
Frahm, 2006; Wahl et  al., 2007; Bartels et  al., 2008). Wahl et  al. 
(2007) suggest that this posterior shift, particularly noted in cal-
losal motor fibers, may be due to the significantly larger prefrontal 
cortex volume in humans as compared to monkeys (Eccles, 1989). 
Therefore, when considering our results, it is appropriate to con-
sider fibers passing through CC regions 3–6 as connecting pri-
mary motor (5/6), premotor (3/4), and supplementary motor (3/4) 
regions of the two hemispheres. Boundaries indicating the anteri-
ormost (ACC) and posteriormost (PCC) border define the length 
of the CC (ACC–PCC line, Figure 2). The genu line, perpendicular 

Figure 2 | The cross-sectional area of the mid-sagittal CC was parsed 
into seven regions: (1) rostrum, (2) genu, (3) rostral truncus, (4) anterior 
intermediate truncus, (5) posterior intermediate truncus, (6) isthmus, 
(7) splenium.

Table 1 | Older adults did not perform at the same level as young adults 

(all variables significantly different between the two age groups at 

p <0.01).

Variable	 YA	 OA

RT (ms)	 481 ± 100	 622 ± 154

IEE (mm)	 10.78 ± 1.06	 19.43 ± 1.43

PSMT (ms)	 484 ± 67	 599 ± 98

FEE (mm)	 6.79 ± 1.08	 12.81 ± 4.69

RT, reaction time; IEE, initial endpoint error; PSMT, primary submovement time; 
FEE, final endpoint error.
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adults demonstrated statistically greater connectivity than the older 
adults (Figure 5A). In contrast, the older adults showed greater 
connectivity than the young adults in several right hemisphere 
regions (Figure 5B). Figure 6 presents the results of the right sen-
sorimotor cortex ROI analysis. Older adults show stronger regions 

than older adults. Similar to previous studies, older adults showed 
greater activation compared to young adults in many brain regions 
(Table 2); of particular interest to the current study is the right 
(ipsilateral) sensorimotor cortex. Figure 3 illustrates regions where 
older adults had greater activation within the right sensorimotor 
cortex ROI than the young adults (see also Table 3). There were no 
regions in the right sensorimotor cortex ROI analysis where young 
adults demonstrated greater activation compared to older adults.

Only older adults demonstrated a statistically significant correla-
tion between percent signal change in the right sensorimotor cortex 
and motor behavior. Older adults that had longer RTs demonstrated 
more activation in the right sensorimotor cortex (df = 14, r = 0.57, 
p = 0.02, Figure 4). We did not find statistically significant correla-
tions between fMRI measurements and IEE or FEE. Although not 
significant, the correlation between percent signal change in the right 
sensorimotor cortex and FEE (df = 13 r = 0.41, p = 0.13) in older 
adults suggests that kinematic performance may also be negatively 
impacted by increased activation in the right sensorimotor cortex.

 Resting state fcMRI results
Young and older adults demonstrated resting state connectivity 
between the left M1 seed region and some similar brain regions 
such as the left sensorimotor cortex, supplementary motor area, and 
bilateral parietal regions. There are few regions in which the young 

Table 2 | Regions in which older adults exhibit more fMRI task-related 

activation than young adults (uncorrected p = 0.001, whole brain 

analysis).

Anatomical location	 BA	 Cluster	 Coordinates 	 z score 

		  size	 of peaks

Frontal areas

L Superior frontal gyrus	 9	 79	 −38 42 30	 3.9

L Middle frontal gyrus	 8		  −36 34 40	 3.38

L Precentral gyrus	 6	 23	 −40 −12 42	 3.62

R Medial frontal gyrus	 9	 25	 16 38 30	 3.58

R Middle frontal gyrus	 10	 27	 38 50 22	 3.36

R Middle frontal gyrus	 46	 39	 46 26 26	 3.34

L Inferior frontal gyrus	 44	 36	 −36 10 28	 3.31

L Middle frontal gyrus	 9		  −30 10 34	 3.15

Temporal areas

R Middle temporal gyrus	 21	 136	 42 0 −22	 3.85

Parietal areas

R Precuneus	 7	 805	 12 −56 46	 4.54

L Precuneus	 7		  −2 −50 52	 3.99

R Precuneus	 7		  12 −48 44	 3.97

R Cuneus	 19		  20 −84 34	 3.37

R Postcentral gyrus	 1	 34	 40 −20 46	 3.31

R Postcentral gyrus	 3		  50 −12 44	 3.22

R Fusiform gyrus	 37	 10	 34 −44 −14	 3.45

Subcortical areas

L Cerebellum (HIII)		  70	 −12 −34 −22	 4.59

L Cerebellum (Crus I)		  59	 30 −70 −30	 3.97

L Cerebellum (Crus I)		  15	 −22 −72 −36	 3.4

BA, Brodmann’s area; L, left; R, right.

Figure 3 | Regions within the sensorimtor cortex ROI in which the older 
adults exhibited more motor task related activation (fMRI) than the 
young adults.

Table 3 | Regions in which older adults exhibit more fMRI task-related 

activation than young adults within the right sensorimotor cortex ROI 

(uncorrected p = 0.005).

Anatomical location	 BA	 Cluster size	 Coordinate of peaks	 z score

Frontal areas

R precentral gyrus	 6	 115	 52 0 28	 3.16

Parietal areas

R postcentral gyrus	 3	 132	 50 −12 44	 3.05

R postcentral gyrus	 3		  42 −18 46	 2.82

BA, Brodmann’s area; R, right.

Figure 4 | Older adults (OA) demonstrate a significant positive 
correlation between reaction time and fMRI activation in the right 
sensorimotor cortex (R SMC) while young adults (YA) do not.
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index (df = 12, r = −0.55, p = 0.04 and df = 12, r = −0.57, p = 0.03 
respectively). That is, older adults that had greater mid-sagittal area 
in the anterior and posterior intermediate truncus recruited the 
right sensorimotor cortex more during the motor task. While the 
young adults demonstrated similarities to the older adults in the 
relationship between CC genu area and interhemipheric connec-
tivity, it did not reach statistical significance (df = 16, r = −0.42, 
p = 0.10). No other CC region was correlated with the fMRI lateral-
ity index in young adults (p > 0.18).

Discussion
The data supported our hypothesis that older adults would show 
decreased lateralization of M1 activity during motor task per-
formance. These findings replicate the results of previous fMRI 
studies of the aging motor system (Mattay et al., 2002; Ward and 
Frackowiak, 2003; Riecker et al., 2006). We further hypothesized 
that greater activation during the fMRI task would be associated 
with better performance. Unlike previous research (Mattay et al., 
2002), we found that OA with greater ipsilateral M1 activation 
had longer RTs.

These results demonstrate that additional activation in older 
adults is not universally compensatory. Similarly, Riecker et  al. 
(2006) found that over-activation in older adults did not scale 
with increasing task difficulty, and interpreted this as a non-
compensatory effect. The bulk of the work supporting the idea 
of compensatory over-recruitment relates to prefrontal activation 
and cognitive tasks (Reuter-Lorenz et al., 2000; Cabeza et al., 2002; 

Figure 5 | Regions in which young adults exhibited greater resting functional connectivity than older adults are presented in (A), and areas in which the 
older adults had greater connectivity than the young are in (B) (whole brain analyses).

of sensorimotor cortex interhemispheric connectivity compared 
to young adults (Figures 6A,B, Table 4). Interestingly, older adults 
that display stronger sensorimotor cortex interhemispheric con-
nectivity also demonstrate reduced percent signal change in the 
right sensorimotor cortex during the fMRI task (df = 14, r = −0.52, 
p = 0.04, Figure 7).

Corpus callosum results
Inter-rater reliability scores for both CC measurements and intrac-
ranial measurements were good (Krippendorff ’s alpha = 0.91 and 
0.89 respectively). The overall mid-sagittal cross-sectional area of 
the CC (normalized to intracranial area) was diminished in older 
adults compared to young adults (t

(32)
 = 2.28, p = 0.03). In par-

ticular, regions thought to link the premotor and supplementary 
motor cortices such as the genu (t

(32)
 = 3.61, p < 0.01), and pri-

mary motor cortices such as the intermediate truncus (t
(32)

 = 2.78, 
p = 0.01), posterior intermediate truncus (t

(32)
 = 2.23, p = 0.03), and 

isthmus (t
(32)

 = 2.17, p = 0.04) were smaller in older adults than 
young adults (Figures 8A,B). We hypothesized that older adults 
with reductions in these regions would demonstrate stronger inter-
hemispheric communication between motor cortices, greater task-
related fMRI activation in the right (ipsilateral) sensorimotor cortex 
and better performance. We found that older adults with smaller 
genu size had greater sensorimotor cortex interhemispheric con-
nectivity (Figure 9, df = 14, r = −0.49, p = 0.05). In addition, older 
adults demonstrated a negative relationship between size of the 
anterior and posterior intermediate truncus and fMRI laterality 
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stimulation (TMS) are greater in hand muscles used during a 
movement thus showing decreased inhibition. Meanwhile muscles 
that are not engaged to produce a movement show higher levels 
of inhibition (Liepert et  al., 1998; Stinear and Byblow, 2002), a 
characteristic that would reduce unintended movements. Ipsilateral 
muscles assessed by motor evoked potentials also showed increased 
inhibition following simple movements (Leocani et al., 2000). This 
pattern of interhemispheric inhibition, coupled with our findings, 
suggests that older adults that maintain the ability to inhibit the 
ipsilateral M1 during movement are able to perform unimanual 
motor tasks more efficiently. Therefore, increased activation in 
older adults may have positive or negative consequences for task 
performance, depending on the role that the brain region plays in 
the task. This view is supported by previous research (Colcombe 
et al., 2005; Wierenga et al., 2008).

As predicted, older adults demonstrated greater resting con-
nectivity compared to young adults in both the whole brain and 
right sensorimotor cortex ROI analyses. Taniwaki et al. (2007) used 
structural equation modeling to measure effective connectivity 
associated with motor task performance and also found increased 
interhemispheric connectivity between ventral premotor corti-
ces, supplementary motor areas and sensorimotor cortex in older 
adults. In contrast, others have reported age-related decreases in 
functional connectivity (Wu et  al., 2007; Taniwaki et  al., 2007), 
particularly in the basal ganglia thalamocortical motor loop dur-
ing a self initiated motor task in older adults. Combined, these 
data suggest that aging may have differential effects on subcortical–
cortical and cortico–cortical connectivity. Increased connectivity in 
cortical regions throughout the brain may influence performance 
for older adults. In a study examining speech perception under 
conditions of decreased clarity of speech, stronger functional con-
nectivity between cortical regions remote to the auditory cortex was 
associated with greater comprehension (Obleser et al., 2007). Age 
differences in connectivity throughout the brain are intriguing and 
deserve further research. However, here we focus our discussion on 
interhemispheric connectivity between sensorimotor cortices and 
the relationship to motor task-related activation and cross-sectional 
area of the CC.

Paxton et al., 2008). While over-activation of prefrontal regions 
may enhance cognitive task performance in older adults, increased 
activation in the ipsilateral M1 may be counterproductive to the 
performance of unimanual motor tasks. In young adults, move-
ment of the dominant hand has an overall inhibitory effect on the 
ipsilateral M1 (Sohn et al., 2003). Indeed, such inhibitory processes 
factor strongly into the execution of precise unimanual movements. 
Motor evoked potentials induced through transcranial magnetic 

Figure 6 | Regions in which the young exhibited greater resting 
functional connectivity than the older adults are presented in (A), and 
areas in which the older adults had greater connectivity than the young 
adults are in (B) (right sensorimotor cortex ROI analyses).

Table 4 | Young adults (YA) versus older adults (OA) R sensorimotor 

cortex fcMRI (uncorrected p = 0.01, right sensorimotor cortex ROI 

analyses).

Anatomical location	 BA	 Cluster size	 Coordinates of peaks	 z score

YA > OA

Parietal areas

  R Postcentral gyrus	 1	 9	 28 −28 72	 3.24

OA > YA

Frontal areas

  R Precentral gyrus	 6	 7	 58 2 30	 2.92

Parietal areas

  R Postcentral gyrus	 2	 7	 42 −24 34	 3.2

  R Postcentral gyrus	 2	 5	 32 −38 56	 2.66

BA, Brodmann’s area; R, right.

Figure 7 | The older adults (OA) had a negative correlation between 
resting functional connectivity strength in the right sensorimotor cortex 
(R SMC) ROI and fMRI activation in the same region, while the young 
adults (YA) did not.
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adults with greater anterior callosal fractional anisotropy, a meas-
urement of white matter integrity, activated the right prefrontal 
cortex less than young adults with lower fractional anisotropy. 
Young adults also demonstrated a negative correlation between 
encoding accuracy and right inferior prefrontal cortex activation 
(Putnam et al., 2008). Interhemispheric inhibition is believed to 
be mediated through excitatory neurons in the motor cortices that 
synapse onto local inhibitory networks (Chen, 2004). It may be 
that older adults with stronger connectivity better engage the local 
inhibitory networks, resulting in less ipsilateral activation during 
a task and better performance.

Integrity of the CC impacts movement efficacy. Prior to com-
plete myelination of the CC, children display bilateral movements 
or muscle activation during tasks intended to be unilateral. This 
is known as motor overflow or in cases where there is overt move-
ment, mirror movements (Addamo et al., 2007). On the other end 
of the age spectrum, older adults show a reduction in number 
and integrity of CC fibers (Sullivan et al., 2002; Head et al., 2004) 
potentially impacting connectivity and unimanual motor control. 
We found the size of the CC was diminished in older adults, spe-
cifically in the following regions: the genu, anterior and poste-
rior intermediate truncus, and isthmus. Older adults with smaller 
genu regions showed greater sensorimotor cortex interhemispheric 
connectivity. Based on previous studies (Ota et  al., 2006) dem-
onstrating age-related degeneration of the CC and disruption of 
interhemispheric inhibition (Talelli et al., 2008a), we had predicted 
the CC would be diminished in older adults and sensorimotor 
cortex interhemispheric connectivity would be greater. However, 
we anticipated that these traits would lead to disinhibition in the 
ipsilateral hemisphere. Surprisingly, in our results there was a nega-
tive correlation between fMRI laterality index and the size of both 
the anterior and posterior intermediate truncus. These findings all 
point toward a reduction in right sensorimotor cortex activation 
with diminished size of these CC regions.

We hypothesized that older adults who demonstrate stronger 
resting state interhemispheric connectivity would exhibit less lat-
eralized task-related motor cortical activity. Previous work suggests 
that age-related changes in the CC disrupt interhemispheric bal-
ance, resulting in disinhibition of the ipsilateral hemisphere (Talelli 
et al., 2008a,b). In the current study we found that older adults 
demonstrated both increased connectivity and decreased laterality 
of task-related motor cortical activation compared to the young 
adults. Interestingly, we found a negative correlation between sen-
sorimotor cortex interhemispheric connectivity and task-related 
fMRI activation in the right sensorimotor cortex. This pattern sug-
gests that older adults with greater interhemishperic connectivity 
more effectively inhibited the ipsilateral sensorimotor cortex. A 
study with young adults demonstrated similar findings using an 
encoding task (Putnam et  al., 2008). During a verbal encoding 
task that is typically lateralized to the left prefrontal cortex, young 

Figure 8 | (A) Normalized area of CC regions and standard error (SE) in young 
adults (YA) and older adults (OA). The CC is divided into seven regions: 
(1) rostrum, (2) genu, (3) rostral truncus, (4) anterior intermediate truncus, 

(5) posterior intermediate truncus, (6) isthmus, (7) splenium. (B) Mean 
cross‑sectional area of the entire CC and SE. Asterisk indicates significant  
group differences at p < 0.05.

Figure 9 | Older adults (OA) with smaller area in the corpus callosum 
genu demonstrated greater interhemispheric connectivity (IC). While 
young adults (YA) mimicked this pattern, the correlation did not reach 
statistical significance.
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positively correlated with activation in ipsilateral M1 during a simple 
motor task (Lenzi et al., 2007). Interestingly, the same study found a 
negative correlation between M1 ipsilateral activation and duration 
of transcollosal inhibition. Moreover, longer inhibition durations in 
individuals with multiple sclerosis have been shown to be indicative 
of greater demyelination (Hoppner et al., 1999) and greater disability 
(Schmierer et al., 2002). This would suggest that deterioration of the 
CC is associated with greater inhibition of ipsilateral M1. It is clear 
that brain function, particularly in cases of pathology, are not straight 
forward (Pantano et al., 2006) and future studies are needed.

This research may also help to provide insight into pathologies 
that typically impact older adults. Gaining a greater understanding of 
interhemispheric interactions in healthy older adults is important in 
light of the role interhemispheric communication may play following 
stroke. For example, it has been shown that interhemispheric inhibi-
tion exerted by the intact hemisphere over the lesioned hemisphere 
may hinder recovery (Murase et al., 2004; Duque et al., 2005). During 
movements of the paretic hand there is increased interhemispheric 
inhibition targeting M1 in the lesioned hemisphere. Learning what 
role sensorimotor cortex interhemispheric connectivity plays in nor-
mal movement and understanding how exercise may alter function 
in the ipsilateral and contralateral M1 (Duque et al., 2007) may serve 
an important function in stroke rehabilitation.

One potential limitation of the current study is that we did not 
incorporate DTI metrics of callosal integrity. However, we felt that 
this was beyond the scope of the current investigation, particularly 
given the desire to limit magnet time to a reasonable duration for 
our older adult participants. Instead, we evaluated and integrated 
fMRI, structural MRI, and fcMRI metrics. Future research should 
further investigate the relationships between neuroanatomy and 
function using a tool such as DTI to better reflect white matter 
connections and microstructure of axons in the CC (Hagmann 
et al., 2003; Vernooij et al., 2008).

In conclusion, we found that older adults recruited the ipsi-
lateral sensorimotor cortex to a greater extent during motor task 
performance than young adults. The cross-sectional area of the CC 
in older adults was diminished compared to young adults. Older 
adults with a smaller CC genu demonstrated stronger sensorimo-
tor cortex interhemispheric connectivity. Interestingly, older adults 
with stronger sensorimotor cortex interhemispheric connectivity 
retained the ability to inhibit the ipsilateral sensorimotor cortex 
during a motor task. Furthermore we found that older adults that 
successfully inhibited the right sensorimotor cortex performed the 
motor task more proficiently, demonstrating that increased acti-
vation is not uniformly beneficial for older adults. The function 
of the region and the role it plays in the task may determine the 
relationship between over-activation and performance.
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This pattern of more lateralized activation in combination with 
diminished CC size has been noted in other studies. For example, 
behavioral measures of laterality for dichotic word listening, line 
bisection and turning bias are negatively correlated with callosal 
size (Yazgan et al., 1995). Movement-related potentials recorded 
through electroencephalography (EEG) are stronger on the ipsi-
lateral side when the genu and intermediate truncus are larger 
(Stancak et  al., 2000). Additionally, older adults demonstrating 
strong memory performance also display stronger fractional ani-
sotropy in the CC genu and reduced activation in the right frontal 
gyrus (Persson et al., 2006). This relationship between CC size or 
integrity and interhemispheric interactions is likely to be nonlinear, 
though. While some degeneration of the CC may result in reduced 
interhemispheric inhibition and greater motor overflow, exten-
sive damage or complete section of the CC would likely abolish or 
greatly diminish interhemispheric interactions.

Our findings support that age-related resting state physiologi-
cal changes contribute to functional brain activation patterns and 
performance. This is important to note as task difficulty has been 
offered as an explanation for differences in brain activation patterns 
between older adults and young adults (Smith et al., 2001; Logan 
et  al., 2002; Tisserand and Jolles, 2003). Our data disputes task 
difficulty as the sole explanation for alterations in brain activation 
patterns in older adults, because we note changes in motor network 
connectivity at rest. We found greater resting state interhemispheric 
connectivity in older adults compared to young adults, and a nega-
tive relationship between sensorimotor cortex interhemispheric 
connectivity and activation in the right sensorimotor cortex in 
older adults. Thus task difficulty may account for some but not all 
aspects of age differences in brain recruitment patterns.

It is possible that a stronger degree of right handedness in older 
adults (Porac, 1993; Dittmar, 2002), a phenomenon also noted 
in our study, may account for some of the differences we found 
between older adults and young adults. Environmental theories 
suggest that the world around us promotes use of the right hand and 
increased practice leads to more exclusive use of the right hand with 
aging (Harris, 1990). Since there is a connection between physical 
activity and brain function (Nudo et al., 1996), greater reliance 
on the right hand in older adults may influence connectivity and 
functional brain activation. With that stated, both the young and 
older adults in our study demonstrated right handedness with mean 
scores above 75 and only 12 points separating groups on a scale 
ranging from −100 (extreme left handedness) to +100 (extreme 
right handedness). While statistically significantly different there 
may be little practical difference between groups.

Understanding the relationships between neuroanatomy, neu-
rophysiology, and behavioral function in typically aging adults is 
important as it may lead to better recommendations for healthy aging 
in this rapidly growing subpopulation. Also, by strengthening our 
knowledge of typical progression in aging there is the potential to 
better understand what goes awry in pathological conditions. This 
research may help to provide insight into pathologies that share char-
acteristics with aging adults, such as multiple sclerosis, a pathology 
in which the integrity of white matter tracts is reduced due to demy-
elination. In a study investigating middle aged adults with multiple 
sclerosis, microstructural damage in the CC [measured through 
diffusion tensor imaging (DTI) using mean diffusivity value] was 
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non-Gaussianity of the source signals. Spatial domain ICA (sICA) 
can separate BOLD signal sources that represent reactions to exter-
nally cued task-activations, background activity within functional 
brain (i.e., resting state) networks (RSN), and various physiological 
noise and artifact sources (McKeown et al., 1998; Calhoun et al., 
2001; Kiviniemi et al., 2003; Beckmann and Smith, 2004; van de 
Ven et al., 2004; Beckmann et al., 2005) ICA methodology yields 
results that are consistent with the results of other contemporary 
methods of detecting large scale temporally coherent networks 
from the BOLD signal data (Long et al., 2008).

Recently it has been shown that at least some 42 robust RSNs can 
be separated from group ICA runs when the algorithm is given the 
task to search for high model order (Kiviniemi et al., 2009; Smith 
et al., 2009). When the model order of the ICA estimation is increased, 
the separated BOLD signal sources have been shown to split into 
several functional nodes (Li et al., 2007; Ma et al., 2007; Malinen et al., 
2007; Eichele et al., 2008). Higher ICA model order (≈70) enables 
the detection of sub-networks and other independent sources not 
detected in lower model orders without overfitting the data (Ma et al., 
2007; Malinen et al., 2007; Abou-Elseoud et al., 2010)

Recently a large data collection of over 1000 subjects was able to 
show age-related differences in the brain networks (Biswal et al., 2010). 
There are few studies about the functional connectivity development 

Introduction
In the mid 1990s, Biswal and Hyde were the first to notice that func-
tionally connected regions of the brain are more synchronized in 
their activity than what could be expected from the noise in general. 
It was seen as there were modulated waves carrying information 
between different regions (Biswal et al., 1995). Since this discovery 
functional MRI measured with blood oxygen dependent (BOLD) 
contrast in the absence of intermittent tasks has become a major 
area of interest in the understanding of brain activity (Kiviniemi 
et al., 2000, 2003; Fox et al., 2007; Vincent et al., 2007). Spatially 
independent resting state networks (RSN) have been shown to 
be differentiable from noise during normal, awake resting condi-
tions, during sleep, and, during anesthesia (Kiviniemi et al., 2000; 
Fransson et al., 2009; Gao et al., 2009).

The background activity fluctuations of the brain cannot be 
modeled a priori as in task activation studies, therefore more data 
driven approaches are needed. Furthermore some of the noise 
sources in the BOLD data may be difficult to account for and their 
separation from the neuronal signal is demanding (Birn et al., 2006; 
Starck et al., 2010). Independent component analysis (ICA) offers 
an effective tool for both the separation of functional sources and 
noise in a data driven manner without strong assumptions. ICA 
separates mixtures of independent source signals by maximizing the 
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Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of 
intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of 
the brain. Group level independent component analysis (ICA) of BOLD data can separate the 
human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects 
from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy 
subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 
young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. 
High model order group probabilistic ICA components (70) were calculated and dual-regression 
analysis was used to compare 21 RSN’s spatial differences between groups. The power spectra 
were derived from individual ICA mixing matrix time series of the group analyses for frequency 
domain analysis. We show that primary sensory and motor networks tend to alter more in 
younger age groups, whereas associative and higher level cognitive networks consolidate and 
re-arrange until older adulthood. The change has a common trend: both spatial extent and the 
low frequency power of the RSN’s reduce with increasing age. We interpret these result as a 
sign of normal pruning via focusing of activity to less distributed local hubs.
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from childhood to adulthood and they are predominantly focused on 
the DMN. In the gestationally preterm and term infants, a primitive 
resting state networks have been found (Fransson, 2005; Fransson 
et al., 2007; Gao et al., 2009). The DMN connectivity might develop in 
a non-linear manner from childhood to adulthood (Gao et al., 2009). 
DMN regions are sparsely functionally connected in children at early 
school age compared to adults (Fair et al., 2008). Posterior cingulate 
cortex (PCC) and medial prefrontal cortex (mPFC) are suggested to 
be major hubs of the DMN and connections between them have been 
found to be weaker in children than in young adults (Fair et al., 2008; 
Supekar et al., 2010). There is little knowledge of the maturing of the 
non-DMN, for instance primary sensory or higher level cognitive 
resting state networks. The comparison between young and older 
adults has not previously been done to our knowledge.

In the present study, we evaluated age-related effects ranging 
from 25 independent resting state networks primary motor and sen-
sory cortices to higher level control networks in 168 subjects divided 
into three age cohorts. Both spatial and frequency domain effects 
of high model order ICA components were analyzed. We show that 
the activity within the primary cortices and higher level cognitive 
areas alters in different ages and yet has a common trend. Some of 
the networks undergo splitting into several sources at later age.

Materials and Methods
The ethical committee of Oulu University Hospital has approved 
the studies for which the subjects have been recruited, and informed 
consent has been obtained from each adult subject and from the 
parents of adolescent subjects according to the Helsinki declaration. 
The following data of Northern Finland Birth Cohorts 1986 (NFBC 
1986) and 1966 (NFBC 1966, c.f. www.kelo.oulu.fi/NFBC/ for fur-
ther information) were used: At risk mental stage (ARMS) of NFBC 
1986 focusing on ADHD and schizophrenia and a NFBC 1966 study 
on schizophrenia. From pediatric psychiatry a Childhood Autism 
Spectrum-study with 30 healthy control children and a pediat-
ric temporal lobe epilepsia study with 26 healthy control children 
were used. Both NFBC data and the childhood studies have been 
imaged with an identical resting state fMRI protocol. The healthy 
controls of all these studies represent the normal Finnish popu-
lation and therefore they were chosen for the analysis. Fifty-five 
adolescent subjects (ADO, mean 13.2 ± 2.4 years, 20 ), 59 young 
adults (YA mean 22.2 ± 0.6 years 35 ), and 54 older adults (OA, 
mean 42.7 ± 0.5, 25  OA), all with normal IQ, and verifiably free 
of psychiatric and neurological disease, were included.

Subjects were imaged on a GE 1.5 T HDX scanner equipped with 
an eight-channel head coil using parallel imaging with an accel-
eration factor of 2. The scanning was performed during January 
2007–June 2009. All subjects received identical instructions: to sim-
ply rest without motion and focus on a cross on an fMRI dedicated 
screen which they saw through the mirror system of the head coil. 
Hearing was protected using ear plugs, and motion was minimized 
using soft pads fitted over the ears.

The functional scanning was performed using an EPI GRE 
sequence. The TR used was 1800 ms and the TE was 40 ms. The 
whole brain was covered, using 28 oblique axial slices 4-mm thick 
with a 0.4 mm space between the slices. FOV was 25.6 cm × 25.6 cm 
with a 64 × 64 matrix, and a flip angle of 90°. The resting state 
scan consisted of 253 functional volumes. The first three images 

were excluded due to T1 equilibrium effects. In all three studies, 
the resting state scanning started the protocols, and lasted 7 min 
and 36 s. In addition to resting state fMRI, T1-weighted scans were 
taken with 3D FSPGR BRAVO sequence (FOV 24.0  cm, matrix 
256 × 256, slice thickness 1.0 mm, TR 12.1 ms, TE 5.2 ms, and flip 
angle 20°) in order to obtain anatomical images for co-registration 
of the fMRI data to standard space coordinates.

Pre-processing of imaging data
The pre-processing was identical to our previous study of 55 sub-
jects group PICA (Kiviniemi et al., 2009). The data collection con-
sists of some 580 subjects and healthy subjects with excess motion 
(>2 mm translational or 1° of rotation) were discarded in order 
to reduce motion artifacts. Also FSL and ICA were both used to 
reduce motion artifacts. In short, the head motion in the fMRI data 
was corrected with FSL 3.3 mcflirt-software (Jenkinson et al., 2002) 
with default settings. Brain extraction was carried out for motion 
corrected BOLD volumes with BET software (Smith, 2002) using 
threshold parameters f = 0.5 and g = 0; and for 3D FSPGR volumes, 
using parameters f = 0.25 and g = 0. The BOLD volumes were spa-
tially smoothed with a 7 mm FWHM Gaussian kernel and the voxel 
time series were de-trended using a Gaussian linear low-pass filter 
with a 125-s cutoff. Co-registration into MNI space was carried 
out using the non-linear FSL 4.14 FNIRT software. Corresponding 
fMRI volumes were co-registered with corresponding 3D FSPGR 
volumes that had been co-registered to a MNI152 brain template 
with a 2-mm voxel size included in FSL. The functional volumes 
were transferred into the MNI space but down-sampled to 4-mm 
isotropic resolution in order to reduce computational complexity.

Spatial domain analysis
The image analysis and IC identification protocols were identical 
to our previous study (Kiviniemi et al., 2009). Probabilistic inde-
pendent component analysis (PICA) (Beckmann and Smith, 2004) 
was used to analyze the data into 70 independent components. The 
analysis was carried out in two separate ICA runs, one containing 
the ADO and YA groups and the other containing the YA and OA 
groups. This was done in order to avoid the blurring of the age-
related differences by averaging of the source ICs in a large dataset. 
The YA group was used as a common marker in both analyses. Also, 
a joint three group run was performed and there the components 
indeed were averaged ICs that did not clearly show the age-related 
intricacies. It is more sensitive to perform group ICA runs to detect 
source RSN’s for dual regression from age groups closer to each 
other than from the whole age span.

In this study, the model order was chosen to be 70, in correspond-
ence with the high order sICA modeling of the resting state BOLD 
data, based on previous experience on the matter (Abou-Elseoud 
et al., 2010). Two neuroradiologists (H.L and V.K) using the same 
criteria as before, depicted the thresholded IC maps corresponding 
to the previously depicted RSNs sources (Kiviniemi et al., 2009). 
Some 30 artifactual (residual motion, mal-alignment, and other 
noise sources) were discarded initially. From the passing 42 ± 3 IC 
sources, 21 RSN sources representing primary sensory and motor 
and control networks were chosen for more detailed spatial and 
frequency domain analysis. The selection of the RSN sources was 
based on previous literature, presence of low frequency fluctuations 
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Frequency domain analysis
Power spectral analysis of the RSN sources is based on a large group 
PICA analysis with all the 168 subjects analyzed together (group

168-

PICA). This was done in order to obtain matched individual IC 
signal source time courses for further power spectral analysis. The 
time courses were extracted from the group

168
PICA mixing matrix 

as before (Kiviniemi et al., 2009). An FFT power spectrum analysis 
was performed on the IC time courses individually. Mean power 
spectra per each group for each of the analyzed IC sources was 
analyzed. The difference between frequency power of the analyzed 
RSN sources between the groups (ADO, YA, OA) was analyzed 
with Student’s t-test and the results were Bonferroni corrected for 
multiple comparisons for each spectrum (threshold p < 0.0025).

Results
There is a common trend in the age-related effects on resting state 
networks. Increasing age reduces the spatial extent of the sources 
and the network hubs consolidate. This is illustrated in Figures 1, 2, 
4, 5 and 8, and in Table 1, where the key-hubs related to functional 
networks present marked changes with age (for age-group mean 
maps, c.f. Figures S1 and S2 in Supplementary material).

and personal experience on ICA source selection (Kiviniemi et al., 
2003, 2009; Abou-Elseoud et al., 2010). After PICA, dual regression 
was performed between ADO vs. YA and YA vs. OA groups accord-
ing to a procedure described previously (Filippini et  al., 2009). 
Mean group t-score maps for each age group were obtained from 
the individual level analysis of the dual-regression program (FSL 
4.0.4). The unthresholded mean group t-score maps produced by 
dual-regression script were presented with 6  <  t  <  12 arbitrary 
thresholding. The effect of age was analyzed between the groups 
with the dual_regression software script of FSL using threshold free 
cluster enhancement (TFCE)-correction for multiple comparison 
at a p < 0.01 threshold. In the group-comparison analysis one does 
not want to rely on a fixed assumed null-hypothesis, e.g., the fact 
that in dual regression the data is used twice can easily induce 
a bias towards average non-zero regression. The non-parametric 
TFCE-test avoids any of these issues so as the threshold adapts to 
the distribution, whatever it is. Secondly we use unthresholded 
ICA maps on unthresholded data to then derive a new estimate for 
which we perform a single test. What’s more is that the test itself 
looks at differential effects, i.e., at the relation with age, which has 
not entered into any analyses before.

Figure 1 | The maps in 3D with MNI (coordinates on the right) 
background present the group mean RSN sources of ADO and YA and YA 
and OA of combined groupICA analyses with 5 < z < 10 thresholding in 
red-yellow colour. The overlaid green colour indicates statistically significant 

differences between the groups (left ADO vs. YA, on right YA vs. OA) after 
dual regression. Significant difference areas are named and pointed with 
white arrows. PCC = posterior cingulate gyrus, PreCun = precuneous, ACG = 
anterior cingulate gyrus.
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Figure 2 | The salience and executive control networks are show with identical thresholding as in Figure 1. It is notable that adolescents and younger adults 
have a salience-executive signal source which is separated into two components in the older adults. SMA, supplementary motor area; ACG, anterior cingulate gyrus.

Default mode and control sources
In this study our high model order approach suggested that the poste-
rior cingulate dominant (DMN

pcc
) default mode network node loses 

its connection to frontal areas, and, its angular gyri parts become 
more condensed from adolescence to adulthood. The occipito-me-
dial cingulate (DMN

o-mcc
) node fuses in the upper posterior cingulate 

areas in the older adult group and demonstrates bilateral increase 
in connectivity to neighboring areas in the occipital cortex. Similar 
fusion can be depicted in the anterior-cingulate node of DMN

acg
 

where the activity nodes move toward the front and fuse near the 
anterior node in the OA group. This component is also shifting back-
wards and upwards in the most powerful node. Interestingly, the most 
ventro-medial node at the prefrontal areas (DMN

vmpf
) strengthens its 

connection to the posterior cingulated, condenses and shifts some-
what backwards in the most anterior parts. These changes can be best 
viewed from the Figure S1 in Supplementary material.

Importantly these age-related changes tend to be more marked in 
the default mode network sources between the two older cohorts and 
there are less differences between the younger cohorts. This shows that 
there are changes occurring between the second and fourth decades in 
life in these control networks. Figure 1 shows how the alterations in 
the DMN occur between the younger and the older cohorts and only 
frontal areas of the ACG undergo changes in the comparison of the 

younger cohorts. Similarly, executive and salience related networks also 
tend to be altering in later years, c.f. Figure 2, although the executive 
network also undergoes marked changes already in early adulthood.

Primary sensory and motor networks
The primary sensory and motor networks shown in Figures 4 and 5 
tend to be dominated by changes occurring in early rather than late 
adulthood. The primary motor sources of hands and feet (M1

dx, 

M1
sin

, M1
feet

, respectively) and secondary somatosensory sources 
(S2) present changes in early adulthood and these networks do not 
seem to alter much later on. There were no significant alterations 
in the somatosensory area of the feet (S

sen Feet
) and primary auditory 

network (A1) between any age group, suggesting earlier functional 
maturation of the sources. The only one of the peri-rolandic sources 
that alters strongly between all groups is the primary somatosensory 
source, S1, from the postcentral gyrus.

Occipital visual sources
The sources at or near the visual cortex seem to be dominated by 
alterations occurring between all groups. Midline visual (V1

dors
 and 

V1
med

) sources and dorso-lateral (Vcran) RSN’s show differences 
between all the age groups. V1

lat
 show changes dominantly only in 

the younger age groups, c.f. Figure 5.
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Table 1 | RSN differences between the younger and the older ICA group runs.

	 Max T score 	  Center of change

Name	I C#	 Max t-score	 MNI-coordinates	 # voxels	 MNI-coordinates	 Anatomical area

			   X	 Y	 Z		  X	 Y	 Z	

ADO and YA

Exec	 6	 6.19	 30	 38	 24	 1111	 30	 42	 -8	 ACG, F.pole

DMNpcc	 11	 4.5	 −62	 −70	 28					   

S1	 13	 5.56	 −58	 2	 20	 1820	 −54	 −74	 −16	 PostCG

A1	 14	 3.98	 −70	 −18	 16					   

DMNo-mcc	 16	 6.18	 2	 −86	 48	 246	 6	 −46	 12	 PCC, Precun.

V1lat	 19	 6.88	 −42	 −70	 4	 831	 −34	 −78	 −40	 V3−4

PM–PS	 20	 5.85	 42	 −86	 24	 1707	 50	 −86	 0	

SALpCG	 23	 4.5	 −46	 34	 24	 40	 −46	 30	 −16	 Brocas area

M1sin	 26	 6.67	 −30	 −14	 80	 348	 −38	 −26	 48	 PreCG sin

V1med	 29	 6.08	 −10	 −90	 36	 635	 −14	 −66	 −24	 Ling.Gyrus V1

M1dx	 31	 4.67	 50	 −26	 64	 132	 54	 −26	 64	 PreCG dx

S2	 47	 5.27	 −2	 −34	 24	 173	 −66	 −58	 32	 SMG

M1feet	 48	 4.9	 −50	 −18	 48	 212	 −54	 −14	 4	 PreCG

DMNvmpf	 49	 5.41	 14	 2	 32	 1029	 2	 −18	 16	 ACG

DMNpcc-V1	 51	 4.36	 26	 −58	 12					   

M1 hands	 56	 5.36	 10	 −22	 64	 143	 10	 −22	 60	 PreCG

S1feet	 57	 3.37	 −2	 62	 12					   

V1 dors	 58	 5.56	 2	 −94	 36	 97	 10	 −86	 −8	 V1

DMNacg	 62	 5.26	 −10	 18	 36	 872	 6	 42	 −16	 ACG

SALrFIC	 65	 4.13	 −50	 −70	 44	 	 	 	 	     

YA and OA

Exec	 16	 4.57	 38	 42	 24	 92	 42	 42	 8	 ACG, F. pole

DMNpcc	 42	 7.4	 14	 −50	 −4	 593	 10	 −54	 −8	 PCC- Precun.

S2	 8	 5.58	 58	 −18	 32	 333	 58	 −26	 16	

A1	 62	 4.43	 −50	 −22	 −4					   

DMNo-mcc	 18	 6.07	 6	 −30	 20	 554	 2	 −42	 0	 PCC, Precun.

V1lat	 53	 5.58	 −30	 −78	 12	 114	 38	 −62	 −32	

PM–PS	 47	 4.73	 22	 −62	 −32					   

SALpCG1	 30	 5.59	 74	 −46	 −8	 1	 50	 −42	 −4	 Brocas area

SALpCG2	 35	 4.47	 38	 −66	 −4					   

M1 sin	 11	 4.12	 −38	 −42	 56					   

V1med	 66	 5.94	 14	 −62	 −20	 337	 26	 −74	 −24	 Ling.Gyrus V1

M1dx	 70	 4.52	 −62	 10	 24					   

S2	 64	 4.19	 50	 −10	 72					   

M1feet	 47	 4.73	 22	 −62	 −32					   

DMNvmpf	 61	 4.29	 −42	 −18	 −12					   

DMNpcc-vis	  									       

M1 feet	 69	 3.93	 74	 −22	 32					   

S2 feet	 20	 3.71	 −42	 −70	 −52					   

V1dors	 29	 5.46	 −10	 −90	 20	 182	 −14	 −90	 −4	 V1

DMN acg	 54	 4.4	 54	 −46	 20	 10	 6	 6	 52	 ACG

SALrFIC	 40	 4.97	 58	 6	 −8	 104	 2	 6	 36	 SMA, ACG

# voxels, number of voxels; Exec, executive; DMN, default mode network; pcc, peri-cingulate cortex; mcc, medial cingl.; rFIC, right Fronto-Insular cortex; 
S1, primary somatosensory cortex; A1, primary auditory center; V1lat; V1med; V1dors; primary lateral/medial/dorsal visual cortex, PM–PS; premotor–
postsensory area; SALpCG, Salience + posterior cingulated gyrus; M1, primary motor cortex; S2, secondary somatosensory cortex; vmpf, ventro-medial 
prefrontal cortex; acg, ACG anterior cingulate gyrus; Supramarg. gyrus, supramarginal gyrus; F. pole, Frontal pole; Ling. G., Lingual Gyrus; Precun., 
Precuneus; PreCG, Precentral Gyrus; PostCG, Postcentral gyrus; pcc, PCC, posterior cingulated cortex; SMA, supplementary motor area (i.e., juxtaposi-
tional lobule).
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Figure 3 | Mean power spectra of the DMN, salience and executive signal sources in each group. Older adults (OA, blue triangles) have less power in all their 
signal sources compared to younger adults (YA, red circle) and to adolescents (ADO, black box). Significant differences between the groups are marked with symbols 
 above the spectra.

Figure 4 | The image parameters and thresholding are the same as in Figure 1. Notably, the changes occur at a young age. The quadrate PM–PS RSN looses 
integrity in older adulthood altogether, c.f. Figure S2 in supplementary material. CG, central gyrus, premot, pre-motor cortex, post sens, dorsal to somatosensory cortex.
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Figure 6 | Mean power spectra of in peri-rolandic signal sources presented in a similar way as the power spectral results in Figure 3. The signal sources are 
visualized in Figures 4 and 5.

Figure 5 | Auditory and somatosensory results shown in the manner as Figure 1. S1 alters through life but the rest of the sources do not alter significantly 
through time. CG, central gyrus.

95

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 August 2010  | Volume 4  |  Article 32  | 

Littow et al.	 Age-related changes in brain network hubs

a pre-motor and post somatosensory (PM–PS) quadrate network 
from the adult group. The PM–PS was present in both ADO and YA 
groups as identical source (Figure S2 in Supplementary material).

Frequency Domain
The frequency power of the RSN sources reduces invariably as a 
function of age. This can be seen in Figures 3, 6 and 8, where the 
mean power spectra of the analyzed IC sources representing RSNs 
are plotted. The ADO group power spectrum is above the YA and 
OA groups’ mean power spectra almost in each source. In DMN 
sources, Sal

rFIC
 and Exec sources the power spectra of the younger 

groups (ADO and YA) is markedly similar with decrease in the 
lowest frequencies in the OA group, see also Figure 3.

The power of the primary motor cortex of the right hand (M1 
sin) shows the most clear alterations in power with significant 
changes over a wide range of frequencies. The left hand motor 
source M1dx has a similar pattern but the differences are less 

Vanishing and fusing RSN’s
Not all changes related to age are related to condensing and reduction 
in the component strength. DMN

 pcc
 has two separate sources in the 

younger cohorts that are not present in the OA cohort; one more cau-
dal is related to visual areas and one more cranial is connected more 
to posterior cingulate areas, c.f. Figure S1 in Supplementary material. 
Both of these DMN sources have bilateral connections but in the visual 
cortex these are more medial and in the other more lateral and cranial. 
Similarly V5 and Vcran seen as separate in ADO and YA groups fuse 
into unified Vcran in OA groups as shown in Figure 7.

There is also a mixed salience-executive type frontal network 
that has a dominant source in the paracingulate areas (S-E pCG in 
Figure 1) in a unified component in the earlier age ranges (ADO 
and YA). Later in adulthood (OA group) there were no components 
with similar pCG area dominance. Instead the paracingulate areas 
were connected more to (at least) two separate sources as is depicted 
in Figure 2. A unique alteration is the almost complete vanishing of 

Figure 7 | Age-related alterations in visual networks shown with identical 
thresholding as in the previous images. The younger age groups have more 
power in their signal sources in general. The difference is smaller between the two 

older age groups. V5 and Vcran fuse in the older age group into a single large source. 
IPL, inferior parietal lobule; MTG, medial temporal gyrus; Ling g, lingual gyrus; V1, 
primary; V2, secondary; V3, tertiary, and, V4, quadrature visual cortex, respectively.
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Figure 8 | Mean power spectra of Visual signal sources with identical illustration of groups and significant changes as in Figures 3 and 6. The signal 
sources are shown in Figure 7.

marked between the sources. There are some interesting excep-
tions in the Peri-Rolandic sources that can be depicted. The PM–PS 
and secondary somatosensory cortex source S2 have in common 
a nearly identical power spectra in both the ADO and YA groups 
high above the AO group spectrum with a very significant differ-
ence, c.f. Figure 6. The feet motor source M1 on the other hand 
has almost no difference in the power spectra between any of the 
groups. The primary somatosensory cortex source S1’s power in 
the ADO group seems to be higher but the adult groups have a 
relatively high power around 0.01 Hz, with a peak in the OA group. 
In the occipital visual sources a pattern of group differences prevail; 
the OA group power is below the ADO and the YA group power in 
each of the selected sources.

Notably the power decrease in the lowest frequencies also alters 
the shape of the spectrum as a function of the age; increasing 
age reduces the steepness of the power spectrum. A third aspect 
related to age is peaks in the power spectra; the OA group has 
more peaks in the spectrum in 16 spectra, YA in 9 and 7 peaks are 
in the ADO group. In other words the reducing power seems to 
reveal peaks from underneath the 1/f curve. In the control networks 
(DMN

pcc,o-mcc,acg
) there are spectral peaks with dominating frequen-

cies in occipital sources and the more frontal sources (Sal, Exec, 
DMN

vmpf
) there are no clear peaks but rather the spectra have more 

of a 1/f outline. Also the more medial visual (V1
med,dors

), auditory 
and somatosensory sources are more dominated by peaked sources 
with characteristic frequencies. Motor (M1

dx,sin
) and lateral visual 

(V1
lat

, V5) have more of a 1/f power spectral outline.

Discussion
Our study shows two general changes in resting state sources 
related to age with dual-regression analysis of high model order 
group PICA sources. First of all, spatially the sources consolidate 
and reduce in size with increasing age. This is perfectly in line 
with the observation by a previous finding by Fair et al. (2007), 
who detected reduced localized connectivity patterns as a sign 
of local segregation of brain processes. Developmental changes 
in whole brain functional connectivity have also been studied by 
Supekar et al. (2009). Children (ages 7–9 years) and young adults 
(ages 19–22 years) were scanned and rsfMRI-data was analyzed 
by using a graphic theoretical approach. Children and young 
adults’ brain had similar organization at the global level, but 
there were several differences in connectivity. It was shown that 
the dynamic process of over-connectivity followed by pruning, 
which rewires connectivity at the neuronal level, also operates 
at the systems level.

Secondly, the power of the low frequency fluctuations in the 
independent source time courses also reduces with increasing age. 
The findings are in line with some of the age-related findings of 
fractional amplitude of low frequency fluctuations (fALFF) over a 
group of 1000 subjects, where low model order PICA, seed voxel 
connectivity and the amplitude of BOLD signal power were ana-
lyzed (Biswal et al., 2010). However, the higher model order analysis 
used in this study offers a more in depth analysis of some of the 
sources due to increased sensitivity to detect subtle sub-network 
sources undetected in lower model orders (Kiviniemi et al., 2009; 
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that the default network at 1 year old became more complex and 
then its changes from 1 to 2 years were more subtle (Gao et al., 
2009). In 7–9 year-old children the DMN has been found to be 
sparsely connected compared to adults (Fair et al., 2008). In our 
results this connection between occipital and frontal parts of the 
DMN

pcc 
does still reduce as a function of age. However, the frontal 

variant DMN
vmpf

 actually does the reverse as a function of age; the 
connectivity node in the posterior cingulate cortex becomes more 
strongly connected to the source with increasing age.

Gender differences play a role in the activity of the networks (Biswal 
et al., 2010). We have not regressed the data with gender or handedness 
and this remains to be investigated in another study. We chose not to 
use physiological correction or global mean signal regression methods 
to improve BOLD data quality. We have done analyses showing that 
physiological corrections do not improve the ICA results significantly 
at least at 1.5 T (Starck et al., 2010). Also some of the regression cor-
rections may alter the data and shift the data distributions, which is 
the domain that ICA uses to define independence.

In conclusion, age-related alterations in human brain cortex net-
works are mostly reductions in the spatial extent and consolidation of 
network hubs. Some of the networks alter so much that they cannot be 
identified in the oldest 44 years age group. Primary sensory and motor 
networks change more in adolescence while higher control networks 
like default mode, salience and executive networks show alterations 
between 20 and 40 s. The spectral power of the low frequency fluctua-
tions of the networks also reduces as a function of age in all networks, 
with each having a unique change through the years. These changes can 
be interpreted as a sign of normal pruning via focusing of activity to 
less distributed local hubs. However, it remains to be seen how much 
these changes are in fact age-related decline in brain functionality.
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Abou-Elseoud et al., 2010). In addition, the subject data pool in 
this study is ethnically more homogenous and the same 1.5 T GE 
HDx scanner has been used to image the data.

Although these changes are quite general, also some specific 
alterations exist. Notably the control networks such as default 
mode, salience, and executive RSN undergo changes still between 22 
to 44 years of age, which is not so clearly the case in sensori-motor 
and visual sources, where the differences between the groups are 
predominantly between the younger age groups ADO vs. YA. Also 
previously unpresented shifting can be depicted in DMN-variant 
(DMN

o-mcc 
and

 
DMN

aCG
) sources that are connected to medial parts 

of the cingulate gyrus. There are interesting vanishing sources that 
seem to disappear from the OA group (PM–PS, DMN

pcc-caudal
). A 

salience-executive network type source Sal
pCG

 is split into several 
sources, none of which can be identified with a strong source in 
the paracingulate area. In the ADO and YA groups this map is 
clearly evident, c.f. Figure S1 in Supplementary material. Although 
the cause of the vanishing sources is unclear it may be related to 
reduced motion of the adult subjects compared to younger ones 
or simply to age-related degeneration.

Age also alters the spontaneous fluctuation of the networks. The 
reduced frequency seems to reveal characteristic low frequency power 
peaks that are not so evident in the younger age groups. Children have 
higher cerebral blood flow and metabolism than adults (Chugani 
and Phelps, 1991). The high flow is accompanied by a vasodilata-
tion and relatively large blood vessels. It is a known fact that when 
blood pressure and volume are decreased the fluctuation amplitude 
increases and frequency reduces (Jones et al., 1995; Hudetz et al., 
1998; Kannurpatti et al., 2008). Since the flow reduces as a function 
of age then the BOLD fluctuation amplitude should increase and 
not vice versa as they do. Therefore it is probable that the origin of 
the decrease of BOLD fluctuations with increasing age is related to 
non-vascular factors, such as neuronal firing or metabolism (Yang 
et al., 2007; Kiviniemi, 2008; Wu et al., 2009; Zou et al., 2009).

A study of age-related effects on causality between ICA sources 
revealed a reduction in causal density by ages between 12 and 
30 years (Stevens et al., 2009). Our results agree with these results 
since the power of the low frequency fluctuation also reduces as a 
function of age. Previously we have shown that low power on BOLD 
fluctuations was related to low connectivity, and increasing of the 
BOLD fluctuation also led to increased connectivity (Kiviniemi 
et al., 2005). Although speculative, but still causality reductions 
may also reflect reduction in amplitude of BOLD signal fluctuation 
(Stevens et al., 2009; Biswal et al., 2010).

We found alterations in DMN from childhood to older adult-
hood. There are more differences between young adults and older 
adults than between adolescents and young adults. Adult type 
DMN has not been detected in sleeping preterm and term infants 
(Fransson et al., 2007, 2009). It has been observed that neonates 
have a rather primitive, incomplete default network consisting of 
six brain regions (Gao et al., 2009). But it has to be mentioned 
that sleep, in which the young children have to be imaged, there is 
also reduced DMN activity (Horowitz et al., 2009). It is also found 
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magnetic resonance imaging (fMRI) in humans, and electrophysi-
ology in anesthetized cats – with results in each case demonstrating 
that SOA exhibits reproducible spatiotemporal patterns than can 
be linked to underlying neural circuits. Using fMRI, Biswal et al. 
(1995) demonstrated that spontaneous activity within a functional 
sensorimotor network showed strong covariation even when that 
network was completely at rest, a phenomenon they dubbed “func-
tional connectivity” based largely on previous electrophysiological 
work (Gerstein and Perkel, 1969; Gochin et al., 1991; Friston, 1994). 
In the same year, Arieli et al. (1995) used electrophysiological and 
optical techniques to show that patterns of intrinsic electrical activ-
ity in the visual cortex of anesthetized cats is coordinated at spatial 
scales up to several millimeters.

Over the next decade, fMRI studies in humans and electrophysi-
ological studies in animals elaborated the degree of organization 
of SOA signals. Functional connectivity computed from fMRI col-
lected during rest revealed multiple distinct “networks” of covary-
ing (i.e., functionally connected) areas (for a review, see Fox and 
Raichle, 2007). Early studies focused on cortical networks (Lowe 
et al., 1998; Greicius et al., 2003; Fox et al., 2005), with more recent 
ones also demonstrating subcortical networks (Di Martino et al., 
2008; Zhang et al., 2008; O’Reilly et al., 2010). Relatively few imag-
ing studies have been conducted in animal models to date, but the 
basic pattern of resting state networks appears similar in monkeys 

Introduction
There is abundant activity in the brain in the absence of explicit sen-
sory input or behavioral output, a phenomenon that is commonly 
observed in both electrophysiological and brain imaging experi-
ments. In fact, most of the brain’s enormous energy expenditure 
appears to arise from spontaneously driven, intrinsic processes, 
rather than from the interaction with the sensory environment. 
Sensory stimulation increases local energy consumption above 
this background of high metabolic activity by only a few percent 
(Clarke and Sokoloff, 1999; Shulman et  al., 2004; Raichle and 
Mintun, 2006). Yet despite its prominence, the neural processes 
associated with this spontaneous ongoing activity (SOA) have not 
been examined in detail until recently, and their significance for 
normal brain function is poorly understood. Moment-by-moment 
fluctuations in neural activity that cannot be ascribed to a stimulus 
or task event are typically treated as random “noise,” and are thus 
averaged out over multiple experimental trials.

Analyzing spontaneous neural activity poses certain experi-
mental challenges, as there are no clearly defined task events to 
serve as points about which to average. A common approach has 
therefore been to investigate the temporal covariation between pairs 
of signals simultaneously measured at different positions in the 
brain. Approximately 15 years ago, this approach was applied in 
two different branches of experimental neuroscience – functional 

Distinct superficial and deep laminar domains of activity in the 
visual cortex during rest and stimulation
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Spatial patterns of spontaneous neural activity at rest have previously been associated with 
specific networks in the brain, including those pertaining to the functional architecture of the 
primary visual cortex (V1). However, despite the prominent anatomical differences between 
cortical layers, little is known about the laminar pattern of spontaneous activity in V1. We 
address this topic by investigating the amplitude and coherence of ongoing local field potential 
(LFP) signals measured from different layers in V1 of macaque monkeys during rest and upon 
presentation of a visual stimulus. We used a linear microelectrode array to measure LFP signals 
at multiple, evenly spaced positions throughout the cortical thickness. Analyzing both the 
mean LFP amplitudes and between-contact LFP coherences, we identified two distinct zones 
of activity, roughly corresponding to superficial and deep layers, divided by a sharp transition 
near the bottom of layer 4. The LFP signals within each laminar zone were highly coherent, 
whereas those between zones were not. This functional compartmentalization was found not 
only during rest, but also when the receptive field was stimulated during a visual task. These 
results demonstrate the existence of distinct superficial and deep functional domains of coherent 
LFP activity in V1 that may reflect the intrinsic interplay of V1 microcircuitry with cortical and 
subcortical targets, respectively.
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and humans (Vincent et al., 2007; Moeller et al., 2009). While there 
remain questions as to the neural basis and functional significance 
of these covarying networks, they have been consistently observed 
under a variety of conditions, drawing considerable attention to 
the neural underpinnings of SOA (He et al., 2008; Nir et al., 2008; 
Shmuel and Leopold, 2008; Hayden et al., 2009; Schölvinck et al., 
2010). In parallel with fMRI studies, some electrophysiological 
studies applied the covariation approach to characterize spontane-
ous signals in animals. For example, Arieli and colleagues extended 
their original work to show that the spatial map of covariation 
between the firing rate of neurons and the membrane potentials 
measured optically over several millimeters closely resembled the 
functional architecture of orientation columns measured in sepa-
rate experiments from the same patch of cortex (Tsodyks et al., 
1999; Kenet et al., 2003). These findings demonstrated that SOA in 
V1 is functionally organized across the cortical surface, possibly due 
to the pattern of horizontal connections known to exist between 
orientation columns.

One of the most prominent anatomical features of the cerebral 
cortex is its laminar organization, with individual cortical layers 
differing substantially in cell types and projection patterns. This 
dimension is perpendicular to the cortical surface, and therefore 
currently inaccessible with optical imaging techniques. As a conse-
quence, spatial patterns of SOA across layers are still largely unex-
plored. One early study, coincidentally published in the same year 
as the seminal fMRI and optical imaging studies mentioned above, 
examined differences in spontaneous neural firing rate in area V1 
of the awake monkey as a function of layer (Snodderly and Gur, 
1995). Mean firing rates differed substantially across the cortical 
thickness, with cells in layers that receive thalamic input having 
higher intrinsic firing rates compared to those in other layers. In 
that study, single electrodes were used to measure activity from 
one position at a time, so the temporal covariation between layers 
could not be evaluated.

Using linear multicontact electrode arrays, it has become pos-
sible to simultaneously record neural activity at equally spaced 
intervals across all cortical layers, from the pia mater to the white 
matter. This approach is often used to study the laminar profile 
of local field potential (LFP) responses in V1 to visual stimula-
tion (Mitzdorf, 1985; Schroeder et  al., 1991), whose depth and 
timing can then be related to the underlying anatomy. However, 
to date few if any studies have examined how the SOA of field 
potentials covaries between different layers. Here we investigate 
the laminar structure of spontaneous neural signals in the primary 
visual cortex of macaque monkeys by evaluating their temporal 
correlation as a function of laminar position. Specifically, we ask 
three fundamental questions. First, how does the amplitude of the 
LFP signal vary spatially as a function of cortical depth? Second, 
between which layers do LFP signals display high degrees of tem-
poral coherence? And third, to what extent are the specific patterns 
of SOA influenced by the presentation of a visual stimulus to a 
neuron’s receptive field?

We report that spontaneous LFP activity in V1 varies signifi-
cantly as a function of cortical layer, with prominent differences 
between a superficial compartment (layers 1–4) and a deep com-
partment (layers 5 and 6). The magnitude of SOA fluctuations in 
the gamma-range (30–100 Hz) was roughly twice as large in the 

superficial compartment compared to a deep one. Moreover, the 
temporal coherence of signals within each zone was substantially 
stronger than that between zones, with an abrupt discontinuity near 
the bottom of layer 4. Finally, these laminar patterns were observed 
during both quiet rest and active stimulation during a visual task. 
We speculate that this functional compartmentalization of SOA 
into superficial and deep laminar zones reflects the interplay of V1 
with cortical and subcortical targets, respectively.

Materials and Methods
Subjects
Two healthy adult male monkeys (Macaca mulatta), 98X009 and 
CB35, were used in the study. All procedures followed US National 
Institutes of Health guidelines, were approved by the Animal Care 
and Use Committee of the US National Institute of Mental Health 
and were conducted with great care for the comfort and well being 
of the animals.

Surgery
Monkeys were implanted under sterile conditions and isoflurane 
anesthesia (1.5–2%) with custom-designed and fabricated fiber-
glass headposts, fixed to the skull using transcranial ceramic screws 
(Thomas Recording, Giessen, Germany), Copalite Varnish (Colley 
and Colley, Ltd., Houston, TX, USA), and self-curing denture acrylic 
(Lang Inc., Wheeling, IL, USA). In a subsequent surgery, a record-
ing chamber was implanted over V1 using frameless stereotaxy 
guided by high-resolution anatomical magnetic resonance images 
(Brainsight, Rogue Research), and a craniotomy was performed 
inside the chamber. Animals received antibiotics and analgesics 
post-operatively.

Experimental Paradigm
There were two conditions evaluated in the main portion of the 
study: rest and visual stimulation, as well as a third condition 
(flashing screen) used to generate the current source density (CSD) 
profile of each session (Figure S1 in Supplementary Material). 
Ambient light in the testing room was minimized, though not 
completely absent. In all cases, the three conditions were collected 
during the same session, with the electrode in the same place. 
During the rest condition, activity was recorded over a 20-min 
period during which animals sat alone in a darkened quiet room, 
with the monitors turned off. The animals were free to move their 
eyes about, and frequently closed their eyes for brief periods. The 
visual stimulation condition was intended mainly as a behavioral 
contrast to the resting condition. The monkey was required to 
maintain its gaze upon a very small dot (0.1 dva) appearing in 
the middle of a dark screen for periods lasting 5.3 s, during which 
time visual stimuli were presented away from the fixation spot. 
The stimuli consisted of a static disk in the receptive field region 
followed by a surrounding field of moving random dots, with the 
precise stimulus sequence described elsewhere (Maier et al., 2008). 
Note that during visual stimulation the monkeys were required 
to fixate within a window of up to 2 dva radius and receiving a 
juice reward upon completion of each trial. If a monkey broke 
fixation, the trial was aborted and re-initiated after a short delay 
of 100–800 ms. The animal’s eye movements were monitored and 
recorded using an infrared light sensitive camera and commercially 
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using a fast Fourier transform algorithm. Magnitude spectra were 
computed using a modified Welch’s method, with multitaper analy-
sis revealing similar results. The signal was split into Hamming 
windows of 512 ms length (and 50% overlap). The magnitude of 
each windowed segment (doubled in signal content to account 
for negative frequencies as well as normalized using a window-
dependent scale factor) was computed, and the results were time-
averaged. Power spectral density (PSD) was computed in a similar 
manner using 256 ms windows, with an additional step of squaring 
the signal magnitude to obtain the power spectrum.

Coherence estimates were computed as magnitude-squared 
coherence C

xy
(f ) using Welch’s averaged, modified periodogram 

method and the following formula:

C f
P f

P f P fxy
xy

xx yy

( )
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where P
xx

(f ) and P
yy

(f ) are the power spectral densities of each 
individual signal x(t) and y(t), and P

xy
(f ) is their cross PSD. The 

resulting functions denote the degree of signal correspondence, or 
coupling, as a function of frequency, with 1 indicating perfect cor-
respondence. All coherence measures were performed by averaging 
the results computed for overlapping 256 ms epochs and averaged 
consecutively (Welch’s method).

Band-limited power (BLP) was computed by band-pass filter-
ing the signal using a second-order, bi-directional, zero-phase 
Chebyshev type-1 band-pass filter (frequency ranges are indicated 
in the text). Power was computed by full-wave rectifying the band-
limited signals. This results in a measure of time-varying amplitude, 
or signal power (in actuality, the square root of the power), in 
each frequency band and is roughly equivalent to averaging several 
adjacent rows of a spectrogram (Leopold et al., 2003).

For approximating the layers corresponding to each session prior 
to alignment and averaging, we relied on data from the flashing 
screen condition. For each session, data from at least 100 stimulus 
presentations was averaged for each electrode contact. We applied 
CSD analysis to this data post hoc using a standard algorithm (based 
on the second spatial derivative estimate of the laminar LFP time 
series), as well as the spline-based algorithms of the iCSD tool-
box for MATLAB (Pettersen et al., 2006). This analysis revealed 
a robust short-latency current sink in the middle layers for each 
session (Figure 3A). Previous studies have shown that this sink in 
V1 corresponds most closely to layer 4Cα (Mitzdorf and Singer, 
1979; Schroeder et  al., 1991). We treated the center of this sink 
as a point of alignment (the “zero point”) for each session, and 
considered the zone ±200 μm superficial and deep to this refer-
ence to be the approximate extent of layer 4, though the results do 
not critically depend on this approximation. Note that due to this 
procedure fewer sessions contribute to the shallowest and deepest 
“adjusted relative depths,” although we limited the overall extent 
of our analysis to ±1000 μm from zero, thus restricting the analysis 
to depths where the majority of sessions contributed.

Results
The laminar properties of the LFP were evaluated during 13 ses-
sions in two monkeys while they were either at rest in a dark room 
or while they were actively performing a visual task (see Materials 

available eye tracking software (Eye Link II, RS Research, Osgoode, 
Canada). Finally, each session contained a 5–10 min testing period 
in which the monkey was repeatedly stimulated with a full screen, 
flashing stimulus. This stimulation was used post hoc to compute 
a conventional pattern of CSD responses to visual stimulation 
(see below). Once each second the screen was turned from black 
(∼0.2 cd/m2) to white (∼130 cd/m2) for 100 ms as the monkey 
fixated near its center.

All visual stimuli were generated using OpenGL-based custom 
written software (ESS/STIM, courtesy Dr. D. Sheinberg) running on 
industrial PCs (Kontron, Poway, CA, USA) with NVIDIA Quadro 
FX 3000 graphics boards. Stimuli were presented on either a single 
18″ TFT monitor placed in front of the animals (NEC MultiSync 
LCD 1860NX with a 1024 × 768 resolution) or two 27″ TFT moni-
tors (X2Gen MV2701, 1024 × 768 resolution) with a diagonal of 32″ 
(X2Gen MV2701, 1024 × 768 resolution) mounted on opposite walls 
of the test box at a viewing distance of 80 cm and a custom made mir-
ror stereoscope mounted in front of the head restrained animal.

Neurophysiological Recordings
Laminar LFP was collected during 13 recording sessions (6 in mon-
key 98X009). During each session, data were recorded under three 
different conditions (1) viewing a flashing visual screen, used to 
compute the CSD used to identify layer 4, (2) executing a simple 
fixation task while being presented visual stimuli, and (3) sitting 
quietly in a dimly lit room with no explicit task or stimulus (see 
below). Recordings were performed inside an RF-shielded booth. 
LFP (defined as extracellular voltage fluctuations in the frequency 
range between 1 and 100 Hz) were recorded from primary visual 
cortex in all animals. All recording sites were from dorsal V1, several 
millimeters posterior to the lunate sulcus, in the parafoveal region 
of the visual field (see Figure S2A in Supplementary Material).

Recordings were performed using a 24-contact microelec-
trode with an inter-contact spacing of 100 μm (Neurotrack Ltd, 
Békéscsaba, Hungary), with contact impedances varying between 
0.3 and 0.5 MΩ. The multicontact electrode was manually lowered 
into cortex using a custom designed microdrive and signals were 
amplified and recorded using the Plexon MAP system (Plexon Inc., 
Dallas, TX, USA), with the shank of the electrode serving as both 
the grounding point and the electrical reference. Coarse positioning 
of the electrode was achieved by monitoring the visually evoked 
potential during the flashing screen paradigm. Specifically, the elec-
trode position was adjusted according to the position of the polarity 
reversal of response to the flash (see Figure S3 in Supplementary 
Material for intersession accuracy of the electrode placement). 
Additional alignment, based on the CSD computed offline, was 
done prior to averaging across sessions (see below).

Data Analysis
All neurophysiological data were processed and analyzed using 
custom written code in MATLAB. The LFP was filtered between 1 
and 200 Hz, amplified by a factor of 1000 and digitized at 1 kHz for 
data collection, and subsequently down-sampled to 250 Hz after 
low-pass filtering with an eighth-order, bi-directional, zero-phase 
Chebyshev type-1 filter with a cutoff frequency of 100 Hz. This 
provided a time-varying voltage signal for each channel that served 
as the basis of further analysis. Frequency analysis was performed 
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Predominance of gamma activity in upper layers
Visual inspection of the raw LFP traces during each session (e.g., 
Figure 1) revealed that certain temporal features in the SOA were 
shared by only a subset of channels. Notably, there was a stripe 
of low amplitude, high-frequency activity superimposed on the 
signals in the more superficial channels. This can be seen clearly 
in Figure 2B, which shows the spectral analysis of a single session 
as a function of cortical depth. For reference, Figure 2A shows the 
CSD profile obtained from the flashing screen condition used for 
laminar alignment during the same session. In this example, there 
is an elevation of high-frequency LFP activity (roughly 30–100 Hz) 
in the G and deep SG layers, as established from the CSD profile.

This general pattern was observed across all sessions and V1 
sites in two monkeys (see Figure S3 in Supplementary Material 
for individual sessions). We quantified these spectral differences 
by calculating the PSD of the LFP for each of the three main 
laminar compartments. Figure 3A plots the PSD averaged across 
20 min with the monkeys at rest, on a session-by-session basis (see 
Materials and Methods). Each line represents the power spectrum 
of one session, color-coded for signal origin (red = SG; black = G; 
green = IG). For frequencies above ∼30 Hz, the infragranular LFP 
showed considerably lower power than the supragranular LFP (note 
the log scale). This pattern proved highly consistent across record-
ing sessions in both animals.

Based on the alignment of electrode contacts described above (see 
Figure S4 in Supplementary Material), data from individual sessions 
could thus be brought into correspondence, estimated to be within 
200 μm (see Figure S5 in Supplementary Material). This allowed us 
to compute the averaged laminar magnitude spectrum (Figure 3B) 
over all sessions. Figure 3C shows the resulting laminar profile of 
ongoing LFP power in the gamma (30–100 Hz) and sub-gamma 
(5–20 Hz) frequency ranges. In line with the pattern revealed by the 

and Methods). At the beginning of each session a linear multi-
contact electrode array (Figure 1) was inserted perpendicular to 
the cortical surface of V1 and advanced 2 mm with the monkey 
at rest. The LFP signal was recorded in parallel from 24 electrode 
contacts at equally spaced intervals (100 μm) spanning from the 
pia mater to the white matter. The pattern of CSD responses to 
a flashing stimulus (see Materials and Methods) collected at the 
beginning of each session was used post hoc to establish the spatial 
positions of individual electrode contacts relative to specific cortical 
laminae (see Figures S1A and S2 in Supplementary Material). To 
verify the stability of the electrode positioning, we also sometimes 
collected the CSD profile a second time, at the end of the ses-
sion (see Figure S5C in Supplementary Material). This method of 
anatomical registration is based on previous work in the primary 
visual cortex of monkeys employing a combination of CSD analysis, 
microlesions, and post mortem histology, which demonstrated that 
the initial current sink originates in layer 4C, possibly with its peak 
in layer 4Cα (Mitzdorf and Singer, 1979; Schroeder et al., 1991). 
We thus took the initial sink as the primary point of alignment, 
and used this alignment as the basis for averaging data over many 
sessions. Specifically, we aligned each day’s data by centering the 
LFP traces of the 24 electrode contacts around the initial current 
sink (see Figure S2 in Supplementary Material). This created a 
new reference frame with its zero point located in the middle of 
layer 4. Then starting from the zero point we coarsely divided the 
cortex into supragranular (SG, layers 1–3), granular (G, layer 4), 
and infragranular (IG, layers 5 and 6) zones. The boundaries of 
these zones, defined as ±250 μm (corresponding to an inclusion 
criterion of two channels above and below the one upon which we 
centered the data) are intended only as an approximate reference 
for the upper and lower bounds of layer 4 (although it did match 
the extent of the initial sink notably well; see Figure 2A).

Figure 1 | Schematic representation of laminar LFP recordings from a linear 
multicontact electrode array in the primary visual cortex. For illustrative 
purposes, the array is depicted overlying a Nissl-stained histological slice, with 
labels showing individual layers and the corresponding compartments (i.e., 
supragranular, granular, and infragranular) used in the study. On the right is a sample 

of extracellular LFP data collected in one experiment. Each trace corresponds to the 
voltage measured simultaneously as a function of time (see scale bar). In this 
example, the top contacts span an area reaching from outside the brain (top) to the 
white matter (bottom). Note the spatial non-uniformity of gamma frequency signals, 
superimposed on the signals, and restricted to the upper cortical layers.

103

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 August 2010  | Volume 4  |  Article 31  | 

Maier et al.	 Laminar LFP domains in visual cortex

Figure 2 | Current source density (CSD) and spectral profile of LFP 
magnitude as a function of laminar position for one session. (A) CSD profile 
in response to a flickering screen collected during an example session (monkey 
CB35). The center of the initial current sink, thought to correspond primarily to 
thalamic input in layer 4Cα, was used as a point of alignment throughout the 
study. Dotted lines ±250 μm correspond roughly to the extent of layer 4. (B) 
Spectral laminar profile during rest. On the left is a plot depicting mean LFP 

magnitude for a representative 20-min period following the CSD experiment 
with the monkey at rest. Signal magnitude is color-coded on a log scale, and 
plotted as a function of frequency and cortical depth. On the right is the same 
data, normalized by the mean spectrum across all layers, and expressed as 
percent deviation from this mean. Note the elevated LFP magnitude in the 
granular and deep supragranular layers (arrow). This feature proved highly 
consistent across sessions (see Figure 3A).

Figure 3 | Intersession average following CSD-based realignment. (A) 
Laminar differences as a function of frequency over all sessions. (B) The mean 
LFP magnitude during resting state over all sessions following alignment, 
expressed as a function of frequency. The dashed white line represents the 
“zero point,” with the dotted black lines showing rough boundaries of layer 4. 

The elevated high-frequency activity in the middle and upper layers is clearly 
visible. The colored bars indicate the frequency range used to compute mean 
LFP magnitude in (C). (C) Laminar distribution of LFP amplitude in gamma and 
sub-gamma-ranges during rest. Note that the mean gamma-range amplitude is 
highest in the middle and upper layers.
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electrode contact, a spatial profile of coherence can be determined 
by computing the magnitude-squared coherence between its time 
course and the time course of the contacts at the other spatial posi-
tions. An example of this approach from one session in the resting 
condition is shown in Figure 4A, with coherence pertaining to LFP 
frequencies in the gamma-range (30–100 Hz). In this figure, two 
spatial profiles were computed, one for a contact in the G layer, and 
one for a contact in the IG layers. Note that the contact in the G layer 
(E

0
, red) showed strong coherence with the other G positions and 

most of the SG positions, but the coherence level fell abruptly in 
the IG layers. In contrast, the IG contact (E

0
, green), situated a mere 

200 μm deeper, showed the opposite pattern. Its highest coherence 
was with the deeper electrodes, whereas it showed minimal coher-
ence with the superficial electrodes. This analysis is expanded in 
the same session in Figure 4B, which shows the laminar coherence 
profile for 10 different contacts. Pairs of electrodes in the G and 
SG layers show high coherence in the gamma-range, as do pairs of 
IG electrodes. However coherence between compartments is much 
lower, suggesting distinct processes in the upper and lower layers 
in the gamma-range.

This pattern of laminar coherence was consistent across record-
ing sessions and animals. The population pair-wise coherence in 
the (30–100 Hz) gamma-range is depicted in Figure 5B, adjacent to 
the mean aligned CSD response for all sessions (Figure 5A). Each 

session-by-session comparison discussed above, we found that, on 
average, gamma power was roughly 50% higher in the G and SG zone 
than in the IG zone across the population (red curve). This difference 
was not present in the sub-gamma-range (black curve).

What might be the basis of the laminar differences in gamma-
range power? One possibility is that superficial and deep layers 
participate in different aspects of the brain’s intrinsic activity dur-
ing the resting state. This conjecture is consistent with the known 
anatomical segregation of neural afferents, differences in cell types, 
projection targets, and other aspects of the laminar anatomy (see 
Discussion). To address whether superficial and deep layers differ 
in their pattern of functional interactions, we next investigated the 
laminar covariation of SOA by computing the temporal coherence 
between all pairs of electrodes.

Superficial and deep zones of LFP coherence
To assess the interdependence of the LFP time course in differ-
ent cortical layers, we computed the magnitude-squared coher-
ence between signals measured from different electrode contacts. 
Coherence is a measure of similarity in the temporal structure of 
two signals that quantifies the extent to which two signals are lin-
early related. A coherence value equal to zero indicates that there 
is no consistent relationship between the two signals, whereas a 
value of 1 indicates there is a perfectly linear relationship. For each 

Figure 4 | (A) Inter-contact coherence for reference contacts taken from two 
different laminar compartments. Magnitude-squared coherence in the 
gamma-range (30–100 Hz) is plotted between each reference electrode and all 
other electrodes in the array (including contacts located in the white matter at 
the bottom of the array and outside the brain at the top, respectively). The 
electrode from the granular zone (green) showed strong correlation with 
granular and supragranular sites, but weaker coherence with infragranular sites. 
In contrast, the infragranular contact (red) showed strong coherence with the 
infragranular contacts, but very low coherence with other sites. Note that the 

two electrodes chosen for this example (E0, red and green) are separated by only 
200 μm. (B) Laminar pattern of inter-contact coherence for 10 different E0 
contact positions, shown in the same format as in (A). The E0 positions in the 
infragranular layers elicit a pattern of high coherence only in those layers, 
suggesting that the gamma-range activity in those layers is highly synchronous, 
but asynchronous to that in other layers. Conversely, E0 positions in the 
supragranular layers are coherent only with signals measured in supragranular 
contacts. A single contact lying just below the zero point appears to be a 
transition between supra- and infragranular coherence.
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sistency of these main findings. Figure 6 shows the same analysis 
for other frequency ranges. In contrast to LFP amplitude, which 
showed significant laminar differences in the gamma-range only, 
LFP coherence of almost all frequencies segregated significantly 
between laminar compartments.

Effects of visual stimulation
In the experiments described above, the monkeys were at rest, sit-
ting drowsily in a dark room. We next asked whether a similar 
pattern of laminar coherence would be observed in the presence 

square in the matrix corresponds to the mean gamma-range coher-
ence value over all sessions, relative to the zero-point alignment 
contact. The large, red squares reflect the strong similarity of signals 
measured within the same laminar compartment, whereas the blue 
background reflects the fact that the between-compartment coher-
ence is weak. Note that due to the alignment, the transition between 
the two compartments is abrupt, even when averaged over all ses-
sions, indicating a sharp discontinuity between zones of coherent 
activity. The data from each session, shown separately in Figure 
S3 in Supplementary Material, demonstrates the day-to-day con-

Figure 5 | Pair-wise coherence of all sessions in the gamma-range. (A) 
Average CSD to flashing screen following alignment to initial sink. (B) Mean 
gamma-range coherence, computed between all pairs of laminar positions over 

all sessions, during rest (see Figure 7 for effects of visual stimulation). The 
square regions reveal the high inter-compartmental coherence, with the 
adjacent blue regions revealing the lack of coherence between compartments.

Figure 6 | Laminar coherence as a function of frequency (n = 13, session; 
both monkeys). Inter-compartmental coherence for the classic EEG frequency 
bands (delta = 1–4 Hz, theta = 5–8 Hz, alpha = 9–14 Hz, beta = 15–30 Hz, low 

gamma = 30–50 HZ, high gamma = 50–100 Hz) is plotted individually using the 
same format as Figure 7. Note that despite differences in the overall coherence, 
the basic pattern between upper and lower layers remained.
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of a visual stimulus. To this end, we compared coherence before, 
during, and after the presentation of a luminance patch onto the 
receptive field of the recorded site. In contrast to the resting data, 
in this case the monkey was actively engaged in the task, and was 
required to fixate a small point in the middle of a display screen 
throughout each trial (see Materials and Methods and Figure S1B 
in Supplementary Material). The population pair-wise coherence 
in the gamma-range for each of these epochs is depicted in Figure 7 
(all conventions are the same as in Figure 5B). We chose time win-
dows for this analysis that minimized stimulus-related transients 
(i.e., >900  ms following stimulus onset and >600  ms following 
stimulus offset). Note that neither the task nor the stimulus sig-
nificantly altered the spatial pattern of interlaminar correlation, 
although the overall level of LFP coherence was lower for all three 
conditions than during rest. The functional division into two main 
laminar compartments thus seems to be a fundamental principle of 
organization in the visual cortex, which is not disrupted by sensory 
activation and processing.

Slow power fluctuations
The above analysis focuses on LFP fluctuations that vary on the 
time scale of milliseconds (in our case, filtered between 1 and 
100 Hz). Another relevant signal that can be computed from the 
same LFP data pertains to changes that are much slower (<0.1 Hz). 
This signal, which we term the BLP, corresponds to magnitude of 
the envelope of the LFP signal filtered in a particular frequency 
band (Leopold et al., 2003; see Materials and Methods). The BLP 
signal exhibits properties that are very different from the LFP. For 
instance, whereas coherence in the LFP in the gamma-range falls 
to near zero between cortical sites separated by 2.5 mm the slow 
BLP shows robust coherence between recording sites separated 
by up to 10.6 mm (Leopold and Logothetis, 2003; Leopold et al., 
2003). Based on those findings, it might be expected that the very 
low frequency fluctuations in the gamma BLP would be highly 
synchronous between all electrode contacts in the present study 

Figure 8 | Pair-wise coherence of the slow fluctuations in gamma power 
computed for all sessions (lasting 20 min each). Data presented in same 
format as Figure 7, but now pertaining to 0.01–0.1 Hz fluctuations in the 
magnitude of the gamma-range LFP activity. Note these fluctuations show 
moderate background coherence (i.e., the blue in the plot is roughly 0.5). 
However, as with the voltage coherence shown above, the power coherence 
is highest within the same laminar compartment.

since they are spaced within few hundreds of microns of each other. 
Surprisingly, we found that, like raw LFP described above, the BLP 
coherence was confined to superficial and deep compartments, with 
much lower coherence between compartments (Figure 8). The slow 
BLP changes have been shown to correlate strongly with resting 
state fMRI fluctuations (Shmuel and Leopold, 2008; Schölvinck 
et al., 2010). Thus the present findings raise the question whether 
slow fluctuations in the upper and lower laminar zones bear a dif-
ferent relationship to the fMRI signal, which is a topic for future 
investigation.

Figure 7 | Interlaminar coherence during visual stimulation (n = 13 sessions, 
both monkeys). All conventions are the same as in Figure 5B. (A) Coherence 
pattern during fixation before stimulus onset (−300 to 0 ms before stimulus onset). 
(B) Coherence pattern during sustained presentation of a luminance stimulus onto 

the receptive field (900–1200 ms after stimulus onset). (C) Coherence pattern 
following the removal of the stimulus (600–900 after stimulus offset). Note that 
despite differences in the overall coherence level compared to the resting condition 
(Figure 5), the spatial pattern between upper and lower layers was similar.
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Discussion
Here we report a pronounced segregation in the time course of spon-
taneous LFP signals in the primary visual cortex of awake macaque 
monkeys at rest. The compartmentalization into superficial and 
deep layers, with the transition at or near the bottom of layer 4, may 
reflect known functional differences between laminae. Specifically, it 
is possible that the LFP activity in the superficial compartment, from 
which efferent projections are mainly directed to extrastriate visual 
areas (Felleman and Van, 1991), is primarily related to corticocorti-
cal processing. In contrast, LFP activity in the deep compartment, 
where efferent projections are largely directed to the lateral genicu-
late nucleus, pulvinar, and superior colliculus, may then be primarily 
related to interactions with subcortical structures. This simplified 
interpretation, is unlikely to be perfectly accurate, however, since the 
apical dendrites of infragranular neurons have abundant synapses in 
the supragranular layers and would therefore likely contribute to the 
supragranular LFP. Nonetheless, the cortical–subcortical hypothesis 
is a candidate that warrants further investigation.

The within- and between-compartment coherence levels dif-
fered substantially for a wide range of frequencies, from an average 
coherence close to 1 within compartments to close to 0 between 
compartments (see Figure 6). This segregation has not been previ-
ously reported, probably because the laminar distribution of SOA 
coherence has not been investigated in this way. A few experiments 
have characterized the laminar distribution of spontaneous LFP 
activity using other approaches. For example, a previous study 
focused on spontaneous alpha-rhythm oscillations in several visual 
areas of the monkey, and found a pronounced alpha-range peak in 
the coherence between the CSD and multiunit signal in the infra-
granular and granular, but not supragranular layers (Bollimunta 
et al., 2008). A different study focused on “neuronal avalanches,” 
which are spatiotemporal patterns of spontaneous LFP activity 
thought to reflect a critical state of network excitability, and found 
them to exist only in the superficial layers of the macaque somato-
sensory and motor cortex (Plenz and Thiagarajan, 2007; Petermann 
et al., 2009; Thiagarajan et al., 2010). Like this previous work, our 
findings demonstrate clear differences between LFP activity in the 
superficial and deep cortical layers.

Focus on the gamma-range
We analyzed the gamma-range separately primarily because this 
range showed pronounced amplitude differences between superfi-
cial and deep layers. This frequency range is also of interest because 
of its relevance for cognitive function (Engel and Singer, 2001; Fries 
et al., 2007; Fries, 2009; Schroeder and Lakatos, 2009), and because it 
is thought to reflect distinct and local neural processes (Bartos et al., 
2007). Note, however, that the term “gamma” denotes only a range of 
frequencies rather than any particular mechanism. Importantly, there 
was no evidence in our study that activity in the gamma-range was 
oscillatory or even restricted to a narrow range of frequencies.

We observed higher gamma power in the superficial layers than 
in the deep layers. Several anatomical correlates offer potential 
explanations this difference. For example, the density of synapses 
in macaque V1 is highest SG and G layers (O’Kusky and Colonnier, 
1982). Also, the relative density of certain receptor subtypes (e.g., 
AMPA and GABA) in humans (Eickhoff et al., 2007) and the density 
of interneurons in macaques (Fitzpatrick et al., 1987) are skewed 

toward the SG and G layers. Since synapses, interneurons and GABA 
receptors are all believed to be important for the local generation of 
gamma (Fries et al., 2007), this anatomy may well explain the power 
distributions we observed. Furthermore, in vivo measurements have 
shown that the laminar density of so-called fast rhythmic bursting 
neurons, which have been identified as generators of persistent 
gamma activity in vitro (Cunningham et al., 2004), drop sharply 
in layer 5 compared to the more superficial layers (although there 
is also an increase in layer 6) (Cardin et al., 2005).

Local field potential coherence
The coherence measurement in the present study is sensitive to the 
LFP synchrony between channels. Although coherence is typically 
expressed as a function of frequency, it does not isolate signals that 
are oscillatory in nature, but is instead influenced by any type of 
synchrony including shared, discrete events. In fact, a wide range 
of neural processes could account for the distinct superficial and 
deep zones of coherence we measured. For one, it is interesting to 
speculate that neuronal avalanches mentioned above, which have 
been observed in the superficial, but not deep, layers of cortex 
(Petermann et al., 2009; Thiagarajan et al., 2010), could be a source 
the within-compartment coherence we measured.

It is important to note that the LFP is a differential measure, 
and its voltage fluctuations depend to some degree on the posi-
tion of the electrical reference relative to the active electrodes. The 
proximity of the electrical reference affects the degree of shared 
temporal structure between different active electrodes, which, in 
turn, affects any measure of coherence. In the present study the 
electrode shank served as the reference, and this shank also served to 
electrically ground the monkey. This shank surrounded each of the 
active contacts and was therefore distributed throughout the corti-
cal thickness, minimizing far-field contributions to the measured 
LFP, and thereby enhancing local differences. Ultimately, it would be 
desirable to avoid referencing issues altogether by computing either 
the local electric field (approximated as the first spatial derivative 
of the voltage along the linear array) or the CSD (approximated 
as the second spatial derivative of the voltage multiplied by the 
tissue conductivity). The CSD is thought to reflect synchronous 
synaptic currents transferred between extracellular and intracel-
lular compartments, and is thereby a step closer than the LFP to 
the generative neural processes. However, the low SNR of the CSD 
signal poses a challenge for the type of analysis used in this study, 
in which signals cannot averaged over many trials.

Relationship to anatomical architecture
The results described in this study may ultimately shed light on 
structure-function relationships in the visual cortex. The primary 
visual cortex differs from other visual and non-visual areas in several 
key aspects of its cytoarchitecture, including its laminar makeup, 
including prominent extent of layer 4 compared to other visual areas 
(Lund, 1988), along with its idiosyncratic microvasculature (Weber 
et al., 2008). Recent reports find LFP differences between V1 and 
higher visual areas including laminar differences in the gamma fre-
quency range during cognitive tasks (Buffalo et al., 2004; Chalk et al., 
2010). V1 has a laminar distribution of neurotransmitter receptors 
that distinguish it from other areas (Eickhoff et al., 2007), including 
cholinergic receptors (Disney and Aoki, 2008), which are thought to 
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play a role in shaping activity in the gamma frequency band of the 
LFP (Munk et al., 1996; Fisahn et al., 1998). In the future, a wider 
sampling of cortical areas using the techniques described here may 
be useful to gain a deeper understanding of the link between cortical 
laminar structure and neurophysiological function.
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et al., 1995; Greicius et al., 2003; Fox et al., 2005) and data-driven 
analyses (e.g., independent component analysis; McKeown et al., 
1998; Kiviniemi et al., 2003; Beckmann et al., 2005). These patterns 
have been variously termed ‘intrinsic connectivity networks’ (Seeley 
et al., 2007), or ‘resting-state networks’ (RSNs; Greicius et al., 2003; 
Beckmann et al., 2005; De Luca et al., 2006). They are purported to 
refl ect the intrinsic energy demands of neuron populations that, 
via fi ring together with a common functional purpose, have subse-
quently wired together through synaptic plasticity (e.g., Saini et al., 
2004; Lewis et al., 2009). RSNs can be reliably and reproducibly 
detected at individual subject and group levels across a range of 
analysis techniques (Greicius et al., 2004; Damoiseaux et al., 2006; 
Shehzad et al., 2009; Zuo et al., 2010b).

A characteristic set of co-activating functional systems is found 
consistently across subjects (Beckmann et al., 2005; Damoiseaux 
et al., 2006; De Luca et al., 2006; Fox and Raichle, 2007; Smith et al., 
2009), stages of cognitive development (Fair et al., 2007; Fransson 
et al., 2007), degrees of consciousness (Boly et al., 2008; Greicius 
et al., 2008) and even (to some extent) across species (Vincent et al., 
2007). Moreover, individual networks have been shown to be herit-
able (Glahn et al., 2010) and altered resting (and stimulus-guided) 
functioning of large-scale networks has been found in correlation 
with individual differences in behavioural performance (Fox et al., 
2007; Kelly et al., 2008), as well as in disease (Greicius et al., 2004; 
Castellanos et al., 2008; Di Martino et al., 2009; Seeley et al., 2009) 
and under pharmacological manipulation (Anand et al., 2005; Hong 
et al., 2009; Kelly et al., 2009). Therefore there is compelling evi-
dence for RSNs as core functional networks in the mammalian brain. 

INTRODUCTION
Spontaneous, or ‘resting-state’, fl uctuations in the blood  oxygenation 
level-dependent (BOLD) signal, as measured by functional mag-
netic resonance imaging (FMRI), may present a valuable data 
resource for delineating the human neural functional architec-
ture. Consistent, large-scale spatial patterns of coherent signal have 
been identifi ed in the human brain using both FMRI (Biswal et al., 
1995; Lowe et al., 1998) and positron emission tomography (PET; 
Shulman et al., 1997; Raichle et al., 2001). Techniques assessing 
functional connectivity, originally applied to BOLD FMRI data 
alongside studies of model-driven, task-evoked activation, have also 
proven useful for resting-state research and have greatly supported 
and contributed to increasing scientifi c interest in the spontane-
ous, or ‘default’ neural activity of the brain at baseline (Gusnard 
and Raichle, 2001; Raichle et al., 2001; Fox and Raichle, 2007). As 
outlined in this article, these methods provide useful conceptual 
complements to the inferences made from task-FMRI data, and 
hence are increasingly being applied across multiple fi elds of neu-
roscience, to further inform our understanding of the fundamental 
organisation of processing systems in the human brain.

The majority of approaches to analysing resting-state FMRI 
data have thus far been spatially model-driven, with strong a priori 
hypotheses regarding the functional connectivity of a small number 
of brain regions of interest (ROIs) or individual voxel locations 
of interest. Recently, however, a great deal of attention has been 
focused on the patterns of connectivity between multiple ROIs 
within spatially distributed, large-scale networks, characterised via 
both model-driven (e.g., seed-based correlation analysis; Biswal 
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Accordingly, the increase in resting-state research has resulted in the 
development of a rich array of signal processing techniques. The fol-
lowing is a summary and review of the most widely applied methods, 
focussing primarily, but not exclusively, on seed-based correlation 
analysis (SCA) and independent component analysis (ICA). We 
discuss the commonalities, differences and potential interpretative 
pitfalls of these and other techniques, but begin by recapitulating the 
key characteristics and pre-processing requirements of the data.

RESTING-STATE NETWORK ACTIVITY
SPATIOTEMPORAL CHARACTERISTICS
RSNs are localised to grey matter regions (Beckmann et al., 2005; De 
Luca et al., 2006), and it is now accepted by many that they refl ect 
functional systems supporting core perceptual and cognitive proc-
esses. Figure 1 (reproduced from Beckmann et al., 2005) displays 
eight RSN maps commonly identifi ed using ICA. These patterns of 
intrinsic functional connectivity are consistent with stimulus-evoked 
co-activation patterns in e.g., sensory and motor cortices, language 
and memory systems and higher cognitive  control networks (Biswal 

et al., 1995; Lowe et al., 1998; Cordes et al., 2000; Hampson et al., 
2002; Beckmann et al., 2005; Seeley et al., 2007; Smith et al., 2009). 
Indeed, in some instances, subsets of RSNs appear to be either up-
regulated or down-regulated during specifi c cognitive tasks. Thus 
they may be described as either ‘task-positive’ or (in the case of 
the DMN) ‘task-negative,’ in terms of the direction of correlation 
between the mean network activity and the event timings during 
the task (Shulman et al., 1997; Gusnard and Raichle, 2001; Greicius 
et al., 2003; Fox et al., 2005; Kelly et al., 2008).

RSNs display reliable and consistent functional connectivity 
patterns with specifi c thalamic (Zhang et al., 2008) and cerebellar 
nuclei (Habas et al., 2009; Krienen and Buckner, 2009; O’Reilly et al., 
2009). Studies of RSNs may therefore enable investigations of both 
cortico-cerebellar and cortico-subcortical connectivity associations, 
potentially in greater detail than previously achieved with structural 
connectivity measures. In particular, due to anatomical constraints 
(resolution limitations), the relationship of the cerebellum with the 
rest of the brain is currently more measurable with functional con-
nectivity parcellation approaches than, for example, diffusion tensor 

FIGURE 1 | Eight of the most common and consistent RSNs identifi ed by 

ICA. (A) RSN located in primary visual cortex; (B) extrastriate visual cortex; 
(C) auditory and other sensory association cortices; (D) the somatomotor 
cortex; (E) the ‘default mode’ network (DMN), deactivated during demanding 
cognitive tasks and involved in episodic memory processes and self-referential 

mental representations; (F) a network implicated in executive control and 
salience processing; and (G,H) two right- and left-lateralised fronto-parietal RSNs 
spatially similar to the bilateral dorsal attention network and implicated in 
working memory and cognitive attentional processes (for further details, see 
Beckmann et al., 2005).
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relevant, spontaneous BOLD oscillations in the lower frequency 
ranges (0.01–0.08 Hz), separable from respiratory (0.1–0.5 Hz) 
and cardiovascular (0.6–1.2 Hz) signal frequencies. Additionally, 
more recent FMRI evidence suggests that, while it is true that the 
predominant spectral power of RSNs appears in practice at low fre-
quencies, the signal contributions that extend into higher frequen-
cies do so with equal consistency (Niazy et al., 2008). Specifi cally, 
it has been shown that fi ltering RSN signals to account for the 
frequency content of their haemodynamic response function ‘fl at-
tens’ their power distribution from 0.01 Hz up to 0.15 Hz, instead 
of being biased towards the lower-frequency end of the spectrum 
(Smith et al., 2008). This suggests that the low peak power char-
acteristics of BOLD FMRI-derived RSNs are largely induced by 
the haemodynamics and that underlying RSN ‘neural’ dynamics 
may be more ‘broadband’ than previously thought. Note that many 
artefactual signals have spectral peaks that are either truly within 
similar low frequency ranges seen with RSNs, or are aliased by the 
FMRI temporal sampling into these ranges (e.g., Birn et al., 2008); 
however it has also been shown that some methods such as ICA and 
RETROICOR can be used to signifi cantly reduce or even remove 
these confounds (see below).

RSNs AND ELECTROPHYSIOLOGICAL RECORDINGS
Some groups have acquired simultaneous FMRI and electroen-
cephalography (EEG) resting data, and report evidence of associa-
tions between RSN network activity and specifi c power profi les 

imaging. Functional connectivity FMRI measures also provide com-
plementary information to that gained from other imaging modalities 
and structural connectivity metrics, helping to further map and quan-
tify the neural substrates of systems-level function and dysfunction 
(e.g., Buckner et al., 2005; Greicius et al., 2009; Seeley et al., 2009).

Importantly, the occurrence of these various observations and 
the networks involved depend on the nature of neural processes 
being evoked or induced by the paradigm in question, or even 
the surrounding context of the resting-state scan. Furthermore, 
subtle changes in analytic approach to resting data, for example 
using slightly different spatial seeds in SCA (see Figure 2 and also 
Buckner et al., 2008; Hayasaka and Laurienti, 2009), or altering the 
model order dimensionality estimation in ICA (Kiviniemi et al., 
2009; Smith et al., 2009), can have a signifi cant impact on the spatial 
characteristics of the RSNs identifi ed. For both biological and statis-
tical reasons, sub-regions or ‘nodes’ of a given RSN may share ‘non-
 stationary’ (i.e., time-varying) connectivity relationships within that 
network or with other identifi ed RSNs (Chang and Glover, 2010; 
Cole et al., under review). Inferred characteristic RSN patterns can 
thereby be affected by multiple factors, in terms of the resultant 
connectivity relationships within and between networks.

SPECTRAL CHARACTERISTICS
RSNs are consistently referred to in the literature as ‘low-frequency,’ 
in terms of their spectral power distributions. Early frequency 
characterisation (Cordes et al., 2000, 2001) localised functionally 

FIGURE 2 | Comparison of SCA-derived versions of the DMN using three 

different seed voxel locations proposed in the literature (A: Fox et al., 2005 in 
red; B: Singh and Fawcett, 2008 in green; C: Greicius et al., 2003, in dark blue). 
The results of SCA analysis using these seeds are displayed (i) as maximum 
intensity projections (searching up to 12 voxels below the surface or slice on 3-D 
renderings of a single subject’s high-resolution MRI; RH = right hemisphere, 
mid = midline, LH = left hemisphere), and (ii) as binarised thresholded Z-statistic 

images on selected slices in the space of the subject’s high resolution MRI 
(cluster-corrected z = 2.3, p < 0.05). It is clear from the extent of primary 
(non-overlapping) colours visible (largely red and green), particularly in prefrontal, 
occipital lobes and subcortical regions, that variations inherent in the seed-
selection process can result in a large amount of variability into SCA analysis and 
subsequent interpretations. (iii) ICA-derived DMN map (Colour bar shows 
Z-statistic values).
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within broader EEG frequency spectra (e.g., Laufs et al., 2003; 
Mantini et al., 2007). With respect to questions regarding the 
 frequency-specifi city of resting FMRI data, and their somewhat 
indirect relationship with broadband EEG spectra, it remains 
unclear if low-frequency BOLD oscillations can be interpreted as 
relating directly to the oscillatory activity of neuronal assemblies. 
Valuable multimodal research with BOLD FMRI and direct elec-
trophysiological recordings, for example in the primary sensory 
cortices of non-human primates (Logothetis et al., 2001; Goense 
and Logothetis, 2008), encourages inferred associations between 
activity in these two data types, despite their characteristic dif-
ferences in terms of temporal resolution and underlying neuro-
physiological causes. Indeed, it may be the case that straightforward 
comparisons can be made across imaging modalities, providing 
representations of basic sensory or perceptual processes that can 
validly be interpreted as being analogous. However, given that neu-
ral activity across a broad range of oscillatory frequencies is believed 
to contribute to multi-faceted cognitive functioning (Varela et al., 
2001; Buzsaki and Draguhn, 2004), drawing similar conclusions 
about possible interactions between low-frequency oscillations 
measured by FMRI and higher frequency neuronal oscillatory 
activity, for example measurable via EEG, is considerably more 
complex (e.g., Laufs, 2008).

ACQUISITION AND PRE-PROCESSING OF RESTING-STATE 
BOLD FMRI DATA
It has been shown that a wide range of sampling rates and a rela-
tively small number of datapoints, compared to the rate and number 
of samples acquired during the majority of task-FMRI studies, can 
be used to measure suffi cient BOLD activity for identifying RSNs. 
Typical resting experiments therefore are of the order of 5–10 min, 
though the identifi cation of an optimal duration of a resting FMRI 
session (and the possible need for multiple sessions) is an open issue. 
Van Dijk et al. (2010) suggest that 5 min of recording time is near-
asymptotic with regard to correlation map stability. It is unlikely, 
however, that this generalises to cases where a more detailed parcel-
lation of functional connectivity patterns is sought, e.g., by means 
of a higher-dimensional ICA decomposition (Kiviniemi et al., 2009; 
Smith et al., 2009), as in these cases the degree of partial tempo-
ral correlation between sub-systems increases, reducing the abil-
ity to easily delineate them. Additionally, no consensus exists as to 
whether there is a signifi cant impact of the precise experimental 
setting, e.g., whether data is taken while subjects are asleep or awake 
(Horovitz et al., 2008), and with eyes open or closed (Marx et al., 
2004; Bianciardi et al., 2009a). Several recent studies of the stability 
of RSN patterns through various sleep states (Fukunaga et al., 2006; 
Horovitz et al., 2009) indicate that the correlation patterns are rela-
tively stable, except for weakening in deep sleep.

Resting BOLD data benefi t from the majority of pre-processing 
steps routinely applied to ‘traditional’ task-related BOLD FMRI 
data (Beckmann et al., 2005; Birn et al., 2006). However, there are 
a number of subtle differences worth noting. For example, high 
pass temporal fi ltering applied to task-FMRI data may be overly 
aggressive with respect to removing some of the relevant RSN 
frequency information (though see Spectral characteristics), and a 
more conservative approach is required in order to preserve pow-
ers at low frequency.

Importantly, a substantial portion of the FMRI signal  obtainable 
during rest can be attributed to spontaneous BOLD activity, com-
pared to that attributable to scanner and phsyiological artefacts, 
even at high fi eld strengths (Bianciardi et al., 2009b); a fi nding 
which is presumably replicable in tasks with low cognitive load. 
However, it has been shown that non-neuronal physiological 
signals may interfere with end interpretations of resting BOLD 
data (Birn et al., 2006). Removal of confounding signals, such as 
respiratory, pulsatile or cardiovascular noise is shown to improve 
the quality of data attributed to neural activity (Birn et al., 2006, 
2008; Van Dijk et al., 2010). It has therefore become common prac-
tice in FMRI research (particularly resting-state) to monitor such 
signals, with specifi c software packages accordingly developed, to 
retrospectively correct for their confounding effects post-acquisi-
tion (e.g., RETROICOR; Glover et al., 2000) and it can be argued 
that such noise removal is of particular importance for functional 
connectivity studies, given the data-driven nature of the analysis, 
where spurious correlations induced by the presence of structured 
noise may severely increase the number of false-positive detections. 
Similarly, other sources of regionally-specifi c noise such as white-
matter and cerebrospinal fl uid signals should be accounted for 
in the analysis (e.g., Fox et al., 2005), as optimal BOLD signal to 
noise ratio in these regions is far more susceptible to artefact than 
in cortical grey matter (Tohka et al., 2008). A range of approaches 
can be employed here, either by (i) restricting the functional data 
analysis with binary grey matter masks thresholded at an arbitrary 
level (ii) by including time series from these tissues as nuisance 
covariates (as in Figure 2), or (iii) by employing probabilistic grey 
matter covariates in inferential analysis stages; i.e., by using addi-
tional confound regressors at the between-subject analysis stage 
which, for any given voxel, encode the relative proportion of grey 
matter for each subject.

Although concerns about the confounding infl uence of physi-
ological noise and other structured artefacts in FMRI datasets are 
clearly warranted, in most cases it has been shown that session-level 
ICA methods can reliably identify and account for the artefactual 
infl uence of non-grey matter, respiratory and cardiovascular signal 
fl uctuation on RSNs (Kiviniemi et al., 2003, 2009; Beckmann et al., 
2005; De Luca et al., 2006; Birn et al., 2008). Note, however, that 
potential diffi culties arise when attempting to separate physiologi-
cal noise components from ‘true’ neural components using ICA 
[see Independent component analysis (ICA)]. Attempts to create 
automated artefact classifi cation algorithms for components identi-
fi ed by ICA have generated mixed results, often with relatively high 
levels of misclassifi cation (e.g., rates of between 0.2 and 0.3; Tohka 
et al., 2008). At the group level (see Group-ICA), ICA methods can 
potentially lose some of the power of single-session data cleanup, 
so group-ICA approaches may benefi t from further (ICA-based 
or other) cleanup at the pre-processing stage (Biswal et al., 2010). 
Additionally, it is apparent that some artefactual components share 
a large degree of spatial and spectral overlap with RSNs, and at low 
dimensionalities even ‘mix’ and form parts of the same component 
in the end decomposition (Birn et al., 2008). However, in most 
cases the spatial overlap of, for example, the ‘default mode net-
work’ (DMN; Figures 1E and 2) and artefactual respiratory com-
ponents is relatively minimal, both in the majority of single-subject 
cases and at the group-ICA level, with peak DMN  parietal nodes 
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many possible ‘networks’ to be derived as there are possible seeds, so 
discussing and interpreting one resulting spatial map as a distinct 
and meaningful neurobiological system is an under-representation 
of the data, as all but one possible ‘network’ in the data are being 
ignored. Biologically, the choice of seed may bias connectivity fi nd-
ings towards specifi c, smaller or overlapping sub-systems, rather 
than larger, distinct networks (e.g., Buckner et al., 2008). Finally, 
these issues are all contingent on investigator-specifi c (seed size or 
location) and subject-specifi c (spatial normalisation or functional 
localisation) choices potentially resulting from the method of a pri-
ori seed-selection employed (see Figure 2). As a caveat, however, we 
must not underplay the importance to the current fi eld of subjective 
expertise in carefully selecting seed regions, as well as in identifying 
and classifying RSNs, both of which have played a major role in 
shaping our current understanding of these effects.

To illustrate the issue of potential biases attached to seed-
 selection in SCA, Figure 2 presents a number of SCA-derived 
versions of the DMN, alongside the same RSN estimated by ICA 
(also see Buckner et al., 2008). The DMN seed locations in MNI 
standard space were selected from three papers in the resting-state 
FMRI literature: A: Fox et al. (2005, red); B: Singh and Fawcett 
(2008, green) and C: Greicius et al. (2003, dark blue). Results of 
SCA using these seeds were calculated using white-matter, CSF 
and motion confounds, and are displayed as maximum intensity 
projections (Figure 2i), and as binarised statistical maps on selected 
slices in the space of the subject’s high resolution structural MRI 
(Figure 2ii, cluster-corrected z = 2.3, p < 0.05). Though there is sig-
nifi cant overlap in the extent of the inferred networks independent 
of the seed voxel location (white), it is clear from the extent of 
primary (non-overlapping) colours visible (largely red and green), 
particularly in prefrontal, occipital lobes and subcortical regions, 
that biases inherent in the seed- selection process can result in a large 
amount of variability into the results and subsequent interpreta-
tions. In order to validly discuss SCA results in terms of networks, 
some form of consensus mapping is required, where the different 
versions of a network are combined in order to generate a single 
consistent representation (e.g., using information theoretic prin-
ciples such as clustering or principal component analysis (PCA) 
across the different maps). Figure 2iii, for comparison, shows the 
ICA-derived DMN map from the same data (where the model 
order, i.e., the number of components, was estimated from the 
data; see Beckmann and Smith, 2004, for details). Amongst the set 
of four spatial maps this component map has highest mean spatial 
correlation with the other three estimates of the DMN. The ICA 
approach, more fully discussed in the next section, therefore can 
be viewed as one possible way of generating such consensus maps, 
eliminating the need to specify explicit seed locations, though at 
the expense of losing specifi city in relation to a single well-defi ned 
seed of interest. Note, however, that other aspects of the analysis 
(such as the choice of the model order in ICA, see below, or the 
number and nature of confound regressors in a SCA) are likely to 
introduce other types of variability in the fi nal outputs.

It is important to note here that ‘validating’ network connectiv-
ity maps by simply highlighting visual similarities with a network 
identifi ed by ICA, a practice adopted increasingly frequently in 
SCA studies, is not necessarily optimal for comparator selection 
or useful in terms of inference, without detailed quantifi cation of 

being markedly distant from occipital regions strongly affected 
by  respiratory fl uctuation (Birn et al., 2008). Additionally, it has 
recently been demonstrated that separating these signals post-
acquisition by manually increasing the dimensionality of the ICA 
model order, rather than having to collect and utilise physiological 
data, may more easily account for these confounding effects (Starck 
et al., 2010). Finally, of topical importance and discussed in detail 
below, recent evidence suggests that one specifi c pre-processing 
procedure commonly applied in connectivity analyses, that of 
subtracting the global mean signal, may induce spurious negative 
correlations between RSNs and thereby may do more harm than 
good (Murphy et al., 2009).

METHODS OF RSN IDENTIFICATION
SEED-BASED CORRELATION ANALYSIS (SCA)
Biswal and colleagues fi rst identifi ed low-frequency coherent, spon-
taneous BOLD fl uctuations bilaterally in the somatomotor cortical 
regions using a seed-based approach to derive time course models of 
functional connectivity (Biswal et al., 1995). This method requires 
the a priori selection of a voxel, cluster or atlas region –  perhaps 
based on previous literature or functional activation maps from a 
localiser experiment – from which to extract time series data. These 
data are then used as a regressor in a linear correlation analysis or 
– when augmenting the model with confound regressors of no 
interest – in a general linear model (GLM) analysis, in order to cal-
culate whole-brain, voxel-wise functional connectivity maps of co-
variance with the seed region. This is termed univariate because the 
data in each voxel is regressed against the ‘model’ separately from 
every other voxel. The SCA technique has proven useful in reveal-
ing the connectivity properties of many seed areas, and has been 
applied in the literature by many groups (e.g., Greicius et al., 2003; 
Fox et al., 2005; Margulies et al., 2007). The primary advantage of 
SCA over other methods is that the approach provides a direct 
answer to a direct question – it shows the network of regions most 
strongly functionally connected with the seed voxel or ROI). This 
straightforward interpretability, relative to other methods, makes 
SCA an attractive approach for many researchers. Recent assess-
ment of the test-retest reliability of these methods has indicated 
that RSN connectivity relationships can be identifi ed by SCA with 
moderate to high reliability (Shehzad et al., 2009).

One potential weakness of SCA methods concerns the infl u-
ence of structured spatial confounds, such as other RSNs (than the 
one under consideration) or structured noise, e.g., residual head 
motion effects or scanner-induced artefacts. Some of these effects 
may be partially removed by incorporating specifi c pre-processing 
such as temporal fi ltering, but the presence of residual confounds 
in the SCA reference time course can negatively infl uence SCA 
correlation maps in that estimated ‘networks’ also include voxels 
which describe the spatial extent of the artefact. More generally, 
the univariate approach of correlating the time series of a single 
voxel with those of each other voxel in a brain image disregards 
the richness of information available within the statistical relation-
ships between multiple data points. Prior selection of the time 
series of one sub-region to correlate with and inform the activity 
of the network as a whole imposes anatomical restrictions on the 
measurement of network connectivity, and consequently on inter-
pretations of systems-level hypotheses. Fundamentally there are as 
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this similarity. Importantly, for the above-demonstrated reasons, 
a large number of researchers are beginning to additionally adopt 
multivariate methods such as ICA in their standard approaches to 
analysing spontaneous BOLD fl uctuations. Such approaches avoid 
many of these problems and thereby have complementary advan-
tages to those of SCA methods. Finally, we should re-emphasise the 
main advantage, with SCA, of being able to ask a straightforward 
question about connectivity, and receiving a direct answer (within 
the limit of being able to formulate the original question by means 
of a well-defi ned seed).

INDEPENDENT COMPONENT ANALYSIS (ICA)
Initially recognised within neuroscience as a valuable method of 
separating multiple, uncorrelated signal waveforms in EEG data, 
ICA was fi rst applied to FMRI data collected during an experimen-
tal task (McKeown et al., 1998). Later the same techniques were 
applied to resting-state FMRI data (Kiviniemi et al., 2003). ICA 
works by decomposing a two-dimensional data matrix into the 
time courses and associated spatial maps of the underlying ‘hid-
den’ signal sources. Although a number of differing approaches to 
ICA are used in neuroimaging (implemented as separate software 
packages), common concepts and core methods underlie their 
application. One common approach is to estimate maximally sta-
tistically independent, non-Gaussian components from FMRI data, 
by optimising a measure of non-Gaussianity in the estimated maps. 
Although ICA estimates component maps of maximal spatial inde-
pendence (from each other), this does not preclude spatial overlap 
between components (see Beckmann et al., 2005 for details) The 
ICA method of exploratory FMRI analysis is regarded as prefer-
able to that of PCA, as the spatial independence enforced upon 
components by (spatial) ICA dictates only that their time courses 
not be highly co-linear, resulting in a more biologically plausi-
ble systems model than that obtained from a PCA decomposition 
where the analysis enforces orthogonality between time courses, 
precluding the detection of signals which partially correlate in the 
temporal domain. Note that while temporal ICA can be carried 
out as an alternative to spatial ICA (component time courses are 
orthogonalised but spatial maps are not), it suffers from the same 
orthogonality issue as PCA and is more susceptible to noise due 
to the typically smaller number of observations available to drive 
the estimation.

Importantly, as with SCA, use of the ICA approach has identi-
fi ed networks of spontaneous coherence comparable to known 
sensory and cognitive processing systems (e.g., Figure 1). 
Persuasively, these include the somatomotor cortical connectiv-
ity network found in the fi rst resting connectivity experiments 
(Biswal et al., 1995), sensory systems in visual and auditory 
cortices, and, of particular interest to those applying imaging 
to neuropsychiatric populations, networks apparently refl ecting 
higher-level cognitive processes (e.g., the DMN). In this compara-
tively unrestricted way, ICA has been used to generate a ‘complete’ 
(if simple) picture of the functional hierarchy of integrative and 
dissociative relationships making up the spontaneous and evoked 
activity of the human brain (Kiviniemi et al., 2009; Smith et al., 
2009). RSNs identifi ed by ICA can be less prone to artefactual 
effects from noise (including fl uctuations in the mean global sig-
nal) than those from SCA (see Acquisition and pre-processing 

of resting-state BOLD FMRI data; also Birn et al., 2008; Murphy 
et al., 2009), due to the ability of the method to account for the 
existence of such structured noise effects within additional (non-
RSN) ICA components.

Despite some advantages over SCA approaches in terms of 
avoiding prior spatial assumptions and noise attached to the seed, 
and the ability to simultaneously compare the coherence of activity 
in multiple distributed voxels, ICA is not without its challenges. 
First, unlike PCA, an ICA decomposition is obtained by means of 
iterative optimisation. This stochastic nature induces a degree of 
run-to-run variability, so results obtained from such an analysis 
can differ between analysis runs on even the same data. This type 
of variability can be reduced when selecting more stringent con-
vergence criteria and software now exists that enables ICA repeat-
ability testing (e.g., ICASSO; Himberg et al., 2004), which can be 
used to investigate the degree of variability, and estimate ‘average’ 
decompositions from across multiple ICA repeats.

Secondly, the processes of dimensionality reduction and model 
order selection are somewhat arbitrary (i.e., one has to tell ICA 
how many components to estimate). While approaches exist to 
optimally select the number of independent components for a given 
dataset according to statistical criteria (for recent reliability testing 
of multiple models see Zuo et al., 2010b), it must be recognised 
that there can be no single, ‘best’ dimensionality or model order for 
the underlying neurophysiology of multiple distributed systems. 
There will always be multiple valid solutions for characterising 
the hierarchical complexity of RSN functional neurobiology. This 
level of ambiguity simply mirrors the general ambiguity in char-
acterising the brain’s functional organisation: while we may validly 
conceptualise the existence of a visual, auditory, sensory-motor 
or language system, a more fi ne-grained characterisation might 
separate this into specifi c areas such as the hand knob, visual word 
form area, fusiform face area etc. Each one of these different types 
of characterisation is valid at a particular level of complexity. In the 
case of ICA decompositions, higher dimensionalities of the model 
have recently been advocated (Kiviniemi et al., 2009; Smith et al., 
2009), although the robustness of a given level of decomposition 
relies on being supported by data quality (e.g. one cannot expect a 
robust 100-dimensional ICA decomposition from a typical 5-min 
single FMRI session).

Finally, whereas SCA guarantees a result in terms of iden-
tifying the brain regions most associated, or functionally con-
nected, with the selected seed (presumed to closely correspond 
to the associated RSN), ICA results may be ‘split’ into a number 
of sub-networks, depending on the parameters of the analysis 
(e.g., at high model order dimensionalities). This can result in 
the estimation of a large number of components, which may be 
diffi cult to identify and classify (Tohka et al., 2008). Further, one 
ICA decomposition of a given dataset may hide the fact that any 
given brain region may, over time, share varying connectivity 
patterns with multiple networks. This variability, or ambiguity, of 
regional co- activations between network nodes can be referred to 
as the ‘nonstationarity’ of a given area in terms of its connectiv-
ity with one or more RSNs, and equally affects multiple analy-
sis approaches (for specifi c investigation of this, see Chang and 
Glover, 2010, and, with respect to nonstationarity at the neural 
level, see Popa et al., 2009).
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FREQUENCY-DOMAIN ANALYSES
Since Cordes and colleagues originally characterised a number of 
functional networks of interest as low-frequency BOLD fl uctua-
tions, interest in understanding the frequency-specifi c charac-
teristics of RSNs has developed in parallel to correlation-based 
methods (Cordes et al., 2000). Specifi c techniques that have 
emerged to investigate these aspects of RSN phenomena include 
‘amplitude of low frequency fl uctuations’ (ALFF) indices (Zang 
et al., 2007). The ALFF index is calculated by averaging the square 
root of the power spectrum of a given low-frequency BOLD time 
course across the frequencies fi ltered, then standardising the value 
relative to the global mean ALFF value. The assumption that all 
relevant neuronal information contributing to resting-state BOLD 
fl uctuations can be represented by a single fi gure, calculated only 
from information inherent in the frequency domain, runs into 
problems when considering the argument for a greater level of 
broadband content in neural RSN oscillations than previously 
thought. This raises the possibility that potentially interesting 
information is being removed from the analysis by these math-
ematical procedures. Additionally, some work has suggested that 
low-frequency measures of resting data may be rather susceptible 
to cerebral vascular and respiratory artefacts (Zuo et al., 2010a). 
Indeed, some aspects of the spatial maps derived from these 
techniques can appear, at least under qualitative examination, to 
resemble patterns queried as artefactual by experimenters using 
other techniques, particularly in midline brain regions (e.g., Birn 
et al., 2006, 2008).

With these issues in mind the ALFF approach has been more 
recently refi ned to account for ‘fractional’ inclusion of informa-
tion in frequencies outside of the normal range (fALFF; Zou et al., 
2008). This is accomplished by calculating ‘the ratio of the power 
at each frequency to the integrated power of the entire frequency 
range’ (i.e., summing the oscillatory amplitudes across the ‘typical’ 
0.01–0.08 Hz range, then dividing by the amplitude sum across a 
more inclusive range of 0–0.25 Hz). Additionally and optimally, 
this amended approach involves no bandpass fi ltering. Although 
questions may remain over the susceptibility of these techniques to 
physiological noise, recent independent testing reveals both ALFF 
and fALFF to have moderate to high levels of reliability and consist-
ency in terms of the (primarily midline) spatial patterns generated 
(Zuo et al., 2010a). Furthermore, useful diagnostic information 
about neural processes may be present in the oscillatory amplitude 
envelopes (e.g., Zang et al., 2007; Zuo et al., 2010a). Such techniques 
may thereby provide a useful complement to approaches such as 
SCA and ICA investigating, for example, inter-regional coheren-
cies between multiple BOLD signals (e.g., as applied by Anand 
et al., 2005).

A number of other frequency-dependent and time-series 
statistical approaches exist that can be applied to the analysis of 
spontaneous oscillatory activity in BOLD data. These include 
linear or nonlinear comparison of fractal dynamics (Wink 
et al., 2008), measures of frequency-specifi c mutual information 
(Salvador et al., 2007), and graph theoretic investigation of such 
networks in the context of their ‘small-world’ characteristics by 
multivariate partial correlation of spectral information from pre-
defi ned ROIs (Salvador et al., 2005; Achard et al., 2006; Stam and 
Reijneveld, 2007).

REGIONAL HOMOGENEITY
The regional homogeneity (ReHo) method (Zang et al., 2004) is 
based on ‘Kendall’s coeffi cient of concordance’. This technique is 
sensitive to the ‘purity’ of clusters identifi ed as expressing high 
functional connectivity with a model time series within a given 
cluster. By virtue of the assumption that neighbouring voxels are 
temporally similar, clusters identifi ed as strongly connected during 
task or rest can be tested for their inner homogeneity and the degree 
to which this is modulated by a given paradigm or differs between 
groups (e.g., Liu et al., 2006; Paakki et al., 2010). The temporal 
variability within a cluster is refl ected in the assigned homogeneity 
score. Advantages of the ReHo technique over, e.g., SCA, include 
its relative insensitivity to possible region-to-region and/or trial-
to-trial variability of the haemodynamic response function. Also, 
unlike with ICA, no assumptions are made regarding the spatial 
independence of identifi ed maps, and extensions to group analy-
sis are relatively straightforward (Zang et al., 2004). However, this 
approach is fundamentally local in nature and therefore exhibits 
a high degree of sensitivity to different levels of spatial smooth-
ing. Also, the insensitivity to shape differences between clusters 
does preclude drawing inferences on the degree of correspondence 
between spatially remote regions, making it diffi cult to characterise 
the distributed nature of RSNs (Zang et al., 2004).

GROUP ANALYSIS OF RSNs
The majority of techniques for multi-subject analysis of resting-
state functional connectivity are not yet as well developed as at the 
single-subject level. Hence we here discuss only the fundamental 
principles, and recent advances relating to the two methodologies 
applied most widely: SCA and ICA. Most of the above-outlined pros 
and cons of both of these approaches still apply at the group level, 
along with additional caveats common to all attempts to combine 
functional neuroimaging datasets in this way, e.g., issues related to 
co-registration of data into a common space. The gross variabil-
ity in cortical thickness, folding and, often, functional localisation 
between separate individuals or subject populations may cause 
problems for group level inferences. Such variability may instil 
a registration bias in the location of group analysis inputs (seed-
ROIs) or outputs (one or more functionally connected nodes) 
towards one group or other, or towards a specifi c subjective char-
acteristic. Similarly, the potential for mis-registration of individual 
session FMRI data following spatial normalisation may result in 
functionally segregated, but proximal, regions being assigned the 
same neuroanatomical label across subjects, marring valid infer-
ence. These sources of variability are local in nature and therefore 
their impact on inferred connectivity patterns is more prominent 
in voxel-based SCA. In cases of a region-based SCA or ICA such 
variability typically results in blurring of the estimated spatial pat-
terns (see e.g., Figure 1).

One recent study suggests that the network properties of systems, 
in terms of ‘small-world’ characteristics inherent in connectivity 
relationships between nodes, are better approximated by using 
single voxel seeds rather than larger ROI seeds (Hayasaka and 
Laurienti, 2009). However, it seems possible that this may be true 
of a-priori ROIs (such as derived from a standard space template), 
but that data-derived ROIs (in analogy to ICA spatial maps) would 
result in seed regions with better performance.
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The caveats listed above must inform any assumptions made 
when extending these fi ndings to robust, effi cient and unambiguous 
group-level interpretations of alterations in biologically plausible 
networks and their relevance to behaviour.

GROUP-LEVEL SCA
Approaches to SCA, while widely applied and sharing common basic 
principles, are not universally standardised in terms of group analysis 
methods. Specifi cally, methodologies can vary in terms of the precise 
information brought forward from single-subject analyses to the 
higher level. In practice, most SCA group studies carry forward voxel-
wise regression coeffi cients (e.g., Greicius et al., 2003) or correlation 
coeffi cients (e.g., Fox et al., 2005). These values are identifi ed from 
an initial, whole-brain analysis of the functional connectivity with 
the time series extracted from a given seed region. At the higher level, 
these values are then converted to Z-statistics and averaged across 
subjects in a standard GLM, followed by standard hypothesis testing. 
The latter may or may not take into account between-subject variabil-
ity, i.e., be a mixed-effects or fi xed-effects cross-subject analysis).

GROUP-ICA
Although interest in RSN analysis has grown heavily over the past 
few years, it is only fairly recently that coherent methods have been 
proposed and validated for comparing such broad, systems-level 
activity patterns across subjects and/or sessions within an ICA-based 
framework. One immediate problem when running separate ICA 
decompositions in separate subjects is that of having to identify the 
correspondence between estimated spatial components, i.e., select-
ing which components to carry up to a between-subject analysis. 
Considering the possible existence of multiple different solutions 
even within the same subject’s data, there might not be any con-
sistent one-to-one mapping between estimated sets of component 
maps when compared across different subjects. Early efforts advo-
cated running single-session ICA, separately for each subject, then 
attempting to fi nd the ‘best-fi t’ component to an a priori RSN tem-
plate at the individual level, to carry forward to group comparison 
stages (e.g., Greicius et al., 2003; Esposito et al., 2005; De Luca et al., 
2006). The self-organising, hierarchical clustering of independent 
components method (Esposito et al., 2005), for example, involves 
carrying out single-session ICA prior to group analysis with multiple 
runs (for repeatability testing). However, these approaches are sus-
ceptible to the effects of multiple sources of gross variability inherent 
to unconstrained resting-state FMRI data. Although we know RSNs 
to be largely consistent across healthy individuals (Damoiseaux et al., 
2006), there are no guarantees of exact correspondence of identifi ed 
component maps, including RSNs, across subjects. As mentioned 
above, at a given ICA dimensionality, one RSN could be poten-
tially split into two sub-networks in some subjects, and appear as 
a single component in others. Such problems may even be driven 
purely by a difference in the amount of structured noise in certain 
subjects. This can lead to misinterpretation of apparent subject 
differences. Similarly, some researchers have advocated the use of 
separate ‘group-ICA’ runs per group or experimental condition to 
be compared prior to further GLM comparison (e.g., Harrison et al., 
2008a,b). However, this approach may also be sub-optimal, as it 
biases towards false-positive fi ndings of group or between-session 
differences (Calhoun et al., 2001; Beckmann and Smith, 2005).

Further, single-subject ICA followed by group-level matching 
of components across subjects fails to take advantage of the addi-
tional effective signal-to-noise present when all subjects are analysed 
simultaneously (for example, by the group-ICA methods described 
below). It is for this reason that group-level ICA can generally support 
a much higher-dimensional (and therefore more fi nely-detailed) 
decomposition than single-session ICA. On the other hand, single-
subject ICA has much greater power to model/ignore session-level 
structured noise than group-level ICA approaches.

Working from the ‘top down’ by starting with a group-level ICA, 
and generating subject-specifi c versions of the resulting group maps 
solves the problem of between-subject RSN correspondence inher-
ent in the process of combining single-session ICA data.

The fi rst group-ICA model to emerge for FMRI was applied to 
task data (Calhoun et al., 2001). In the fi rst step of this procedure, 
data from all subjects are spatially normalised and dimensionality-
reduced via PCA (separately for each subject). These reduced datasets 
are then assumed to contain the most important source signals that 
have been ‘mixed’ into the measurements. All reduced datasets are 
temporally concatenated prior to the application of group-ICA. This 
identifi es voxels that share common temporal patterns of response 
within and between subjects. By means of temporal concatenation of 
multiple datasets (Figure 3; also see Calhoun et al., 2001), group-ICA 
can thereby estimate group-level independent components, includ-
ing RSNs (Beckmann et al., 2005). Due to the unconstrained nature 
of original BOLD signals in resting data across sessions and subjects 
such a concatenation approach is more suitable than an alternative 
tensor ICA method (Beckmann and Smith, 2005).

In order to enable voxel-wise between-subject comparisons 
Calhoun and colleagues propose to create individual subject com-
ponents from the group-decomposition via PCA back- projection/
reconstruction (Calhoun et al., 2001). Further extensions of this 
approach enable the testing of within-network (Calhoun et al., 2004a) 
and between-network (Jafri et al., 2008) connectivity relationships 
across different task conditions or subject groups. The back-pro-
jection method estimates, at the subject level, temporal and spatial 
information associated with each group component, by projecting 
the original single-subject data onto projection matrices which com-
bine the group-level unmixing matrix and the subject-level PCA-
derived matrices used for dimensionality reduction. Because these 
PCA matrices are calculated separately for each subject there is no 
guarantee that, in the reduced data space, consistent (across sub-
jects) information is retained. Hence this approach can suffer from 
similar issues to those described above as problematic for combining 
single-session ICA datasets prior to group analysis. The dependence 
on subject-specifi c PCA reduction raises the probability of session-
 specifi c noise contributions sub-optimally infl uencing further analy-
ses, thereby confounding any fi nal cross-subject RSN comparisons.

A more recent approach (Beckmann et al., 2009; Filippini et al., 
2009) estimates subject-specifi c RSNs from information contained 
within the original functional data via a ‘dual regression’ technique. 
This approach differs from back-reconstruction by using regres-
sion of the group-ICA spatial maps against the original, individual 
session, functional datasets. The spatial maps from a group-ICA 
decomposition are fi rst used as a set of GLM (spatial) regressors in 
a multiple regression analysis. This process generates individualised, 
session-specifi c time courses for each independent component in 
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each subject’s functional dataset (also see Calhoun et al., 2004b). 
These time courses, rather than matrices calculated as part of back-
projection, are then normalised and used as GLM (temporal) regres-
sors in a second multiple linear regression against the functional 
datasets. This generates individualised spatial maps for each original 
group-level component. The analysis is carried out in a standard 
coordinate space, so that cross-subject voxel-wise non-parametric 
statistical testing of RSNs can be carried out. Estimated time series 
and spatial maps form unbiased least-squares approximations to 
the original ICA maps at the individual subject level. Note, however, 
that because the original ICA maps (as well as the subject-specifi c 
dual regression estimates) are derived in a data-driven fashion we 
can not use simple parametric tests in the between-subject analysis 
and therefore need to resort to non-parametric statistical assess-
ments. This approach has been validated in terms of its ability to 
estimate session-level RSNs from group-level ICA spatial maps, con-
sistently and more reliably than single-session template-matching 
approaches (Zuo et al., 2010b).

CONTROVERSIES
It is of course interesting to discuss the most cutting-edge meth-
odological and conceptual advances in current and future  resting-
state FMRI research. However, it is equally important to note 
some methodological and conceptual limitations, which it is 
necessary to be mindful of when conducting and interpreting 
such research.

ANTI-CORRELATED NETWORKS
A number of studies identifying inverse temporal relationships 
between systems referred to, for example, as task-positive and 
task-negative networks, in both the presence and absence of overt 
cognitive stimulation, have proposed that this coupling may be 
functionally relevant (Fox et al., 2005; Fransson, 2005; Castellanos 
et al., 2008; Kelly et al., 2008; Zuo et al., 2010b). Specifi cally, this 
phenomenon is thought to hold functional signifi cance in domains 
of attention, higher cognitive control and even consciousness, by 

refl ecting the effi ciency of neural resource allocation between 
competing and interacting systems, and ultimately the effi ciency 
of global cognitive processing (Fox et al., 2005; Kelly et al., 2008). 
Similarly this issue may be central to disorders associated with 
cognitive impairment (Wang et al., 2007; Castellanos et al., 2008). 
However, there has been vigorous debate about the true ‘negativity’ 
of such between-network relationships. Principally, it is apparent 
that global mean signal regression, a pre-processing procedure 
routinely carried out in many SCA studies in order to correct for 
the infl uence of global, non-neuronal physiological noise, will bias 
towards fi nding such an effect of negative coupling, or ‘anti-correla-
tion,’ between RSN time series (Murphy et al., 2009). This fi nding 
may have important implications regarding the validity of a large 
portion of prior interpretations, primarily between the so-called 
task-negative DMN and task-positive attentional/cognitive control 
RSNs. However, whether these procedures actually create such an 
effect, or rather artifi cially enhance ‘true’ negative relationships 
existing between cognitive control RSNs, remains contentious, as 
multiple studies have not reached identical conclusions on this issue 
(Chang and Glover, 2009; Fox et al., 2009; Weissenbacher et al., 
2009; Van Dijk et al., 2010).

An illustration of the simple mathematical steps underlying 
the removal of the global mean signal from any given data pool 
is given in Figure 4. The removal of the global mean signal inevi-
tably maps existing correlations into the full correlation range 
-1 to 1. This does indeed maximise the ability to delineate RSNs 
from each other, but at the expense of rendering the numerical 
value (and sign) of the correlation uninterpretable. Note that 
pair-wise correlations are altered systematically and dramati-
cally without changes to the existence, structure or consistency 
of individual networks.

Despite outstanding questions regarding the methodological 
implications of artifi cially induced negative correlations between 
time series, their potential relevance to function should not be 
categorically disregarded (see e.g., Popa et al., 2009). Indeed, the 
one critical fi nding on this issue may be precisely that of the great 

FIGURE 3 | Schematic for temporal concatenation group-ICA.
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variability in the degree (and direction) of observed correlations 
between the DMN and multiple, inconsistently identifi ed task-
positive networks at rest. This seems to hold true in comparisons 
across individuals, and even over time within the same subject; 
whether between different scanning sessions or within a single ses-
sion (Chang and Glover, 2010). Based on this, it is important to 
investigate which factors (e.g., see Applications and extensions) 
contribute to changing the nature or strength of this relationship, 
as measured by correlations, with external expressions of  behaviour 
or experimental manipulations. For example, in a recent study test-
ing subjects across different conditions of pharmacotherapy, we 
overcame these methodological issues in two ways (Cole et al., 
under review). First, we employed multivariate, probabilistic ICA 
methods that do not involve global mean signal regression as a pre-
processing step, and can account for non-neuronal physiological 
noise, thereby allowing the independent assessment of correlative 
relationships between RSNs previously identifi ed as anti-corre-
lated in the literature. Second, we characterise network relationships 
by means of examining the dynamic changes in the correlation 
between networks, identifi ed by repeat measures between con-

ditions within-subjects (see Figure 5). As a method of assessing 
changes in the correlation between RSNs, such an approach may be 
complementary, even preferable, to between-group comparisons of 
RSN spatial maps generated by ICA or a priori seed region correla-
tion. By focussing not just on differences between assumed ‘static’ 
RSN spatial maps, but also the time-varying, condition-specifi c 
characteristics of dynamically fl uctuating systems, we avoid making 
restrictive anatomical assumptions that could limit the interpret-
ability of between-network functional connectivity fi ndings.

NETWORKS WITHIN-NETWORKS
Further to inconsistencies in connectivity relationships identi-
fi ed between networks, it is evident that such relationships can 
also vary within RSNs. For example, prior studies have proposed 
that distinct patterns of functional connectivity exist, which share 
some spatial overlap in their foci, but underlie different aspects 
of cognitive control (Dosenbach et al., 2007; Seeley et al., 2007). 
With an ICA-based approach one relevant point to consider here is 
the potential for ‘splitting’ of networks identifi ed by increasing the 
number of components. Seeley et al. (2007) identifi ed such a split in 

FIGURE 4 | The vector-space illustration of global mean regression. (A) The 
characteristic time series for network A can be described as a single point in a 
high-dimensional vector space. Relative to 0 (the zero time series, black dot) the 
orthogonal plane (dotted line in this example) separates the vector space into an 
area of positive correlation (rA > 0) and a subspace of time series negatively 
correlated with A. The correlation between A and any other point is defi ned by 
the (cosine of) the inner angle: all points within ± 90° are positively correlated 
with A, whereas all other points are negatively correlated with A; 
(B) when regressing out the mean of two network-specifi c time series A and B, 
the 0 reference point is moved half-way between the two points and the original 
time series get projected onto the subspace perpendicular to this mean, thereby 
inducing perfect anti-correlation between A and B as the new characteristic 
vectors are now aligned at 180°; (C) in the more general case of multiple 

networks (grey dots) the range of possible differences in pair-wise correlations is 
again determined by the maximum range of the inner angles α: if α is small, pair-
wise correlations differ by only a small amount and delineation of different 
networks becomes diffi cult, in this example all pair-wise correlations are 
positive; (D) the global mean necessarily lies within the convex hull spanned by 
all the individual characteristic time series. Global time-series regression moves 
the 0 reference point somewhere into the convex hull, thereby inevitably 
inducing spurious negative correlations between the characteristic time series 
associated with different RSNs. Global mean regression does increase the 
maximum inner angle between pairs of time courses and therefore facilitates 
delineation of networks from each other; the resulting correlation scores (and 
signs thereof), however, are no longer interpretable and reference to these 
should be avoided.
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or fi ne-tuning of, cognitive performance (Singh and Fawcett, 2008). 
Further study is required to establish fully the range and nature of 
such relationships over varying periods of time.

CORRELATION AND CAUSALITY
As is typically the case in task-FMRI studies, the majority of applied 
resting-state research also presents the results of statistical analy-
ses (of spatiotemporal, neurophysiological information assumed 
to refl ect neuronal processes), in conjunction with interpretations 
suggestive of cognitive and behavioural meaning. While strong cor-
relations (e.g., between strength of a network such as the DMN at 
rest, and a behaviour measure such as reaction time or accuracy in a 
task) encourage conclusions of said RSNs being relevant to cognitive 
function, clinical presentation or treatment responsiveness, we can 
only speculate about the precise order of events and causal relation-
ships between the nodes in this dynamic processing stream.

Dynamical Causal Modelling (DCM, Friston et al., 2003), a 
popular approach for estimating effective connectivity between 
brain regions, relies on bilinear neural state equations where sys-
tem dynamics are induced by external driving inputs, representing 
experimental manipulations or changes in experimental condi-
tions. As such, DCM is currently ill-suited for the investigation of 
effective connectivity in resting FMRI data. In other work, attempts 
to estimate causal relationships between brain regions using lag-
based methods such as Granger Causality Analysis (GCA, Goebel 
et al., 2003) are also problematic. Haemodynamic “blurring” of the 
neural processes underlying the FMRI signal swamps any causal 
lag in the neural dynamics (typically of the order of a few mil-
liseconds), and, further, variations in haemodynamic delay across 
brain regions (potentially of the order of seconds) will cause over-
whelming bias in any attempt to estimate causality, thus render-
ing any causal inference unsafe (David, 2008). Even the original 
proponents of GCA for FMRI state that “...one should rule out the 
possibility that infl uence found from one area to another based 
on temporal difference in signal variation is due to a systematic 
difference in the hemodynamic lag at the two areas.’’ (Roebroeck 
et al., 2005). Unfortunately, in FMRI, we have in general no con-
trol over haemodynamic variabilities, and so cannot expect to use 
such analysis methodologies to estimate causality. Finally, how-
ever, there is the potential for more sophisticated network analysis 
methodology (such as Bayesian Network modelling) to infer causal 
connections, at least for networks with a limited numbers of nodes, 
but much work remains to be done to develop and validate these 
approaches for resting FMRI data; see Ramsey et al. (2010) for 
pioneering work in this direction.

When analysing the relationship between different networks, 
questions that remain include whether or not specifi c RSNs of 
interest have an optimal degree of coupling with others. It could, 
for example, be that the activity in the DMN is suppressing activ-
ity and/or synchronicity in one or more task-positive networks 
during rest, and vice versa during task performance. Is this due 
to incidental network-specifi c over- or under-activity, or due to 
‘true’ between-network dependencies? Are non-stationary shifts 
in between-network dynamics interpretable in terms of causal 
factors? Further study is required in order to address such ques-
tions, and that of which specifi c RSN nodes are involved in main-
taining optimal relationships of within- and between-network 

a network suggested to be involved in executive function, revealing 
separate purported ‘control’ and ‘salience’ networks, an effect which 
has since been replicated (Sridharan et al., 2008; Kiviniemi et al., 
2009) and further bolstered by functional and structural evidence 
from multiple neurological disorders (Seeley et al., 2009). In stud-
ies attempting to fully parcellate the complex functional hierarchy 
of neural sub-systems, the use of high-dimensionality ICA is an 
important and useful tool (Abou-Elseoud et al., 2010). However, it 
is important to distinguish between the value of varying the model 
order to prove a technical methodological point (i.e., demonstrate 
that systems can be made to split into sub-systems, potentially unre-
lated to the ability to assign biologically meaningful interpretations 
to such splits), and the value of concentrating on interpreting the 
results of a testable systems-level hypothesis in larger networks 
identifi ed at lower model orders.

RECIPROCAL TASK-REST INTERACTIONS
Many authors, including those of the current article, are guilty of 
referring to the signals identifi ed by various methods as RSNs (or 
similar terminology), when measurements have not per se been 
collected in the ‘resting-state’. Studies incorporating passive visual 
stimulation, instructed or self-initiated changes in mental state or 
focus, or occurring immediately following some other experimen-
tal manipulation, cannot be described as occurring during true, 
 stimulus-unguided rest. However, a mass of novel data is rapidly 
rendering such dichotomous distinctions between experimental 
and resting-states as conceptually unhelpful (Fox and Raichle, 2007; 
Poldrack et al., 2009; Van Dijk et al., 2010). Firstly, it has been estab-
lished that the same functional networks are cohesively active during 
a multitude of tasks as well as at rest (Smith et al., 2009). Secondly, 
several recent studies have demonstrated direct evidence of the infl u-
ence exerted by task-related activity and performance over network 
activity in resting periods, and vice versa. The existence and strength 
of two-way interactions between task and ‘RSN’ activity has been 
linked to adaptive learning (Albert et al., 2009; Lewis et al., 2009), 
response to or recovery from high cognitive load (Pyka et al., 2009; 
Van Dijk et al., 2010), and individual differences in (Fox et al., 2007; 
Hesselmann et al., 2008; Hasson et al., 2009; Sadaghiani et al., 2009), 

FIGURE 5 | Variability in the strength of inverse coupling between two 

RSNs (the DMN and a putative executive control network sharing spatial 

similarity with a combination of regions overlapping with RSN maps from 

Figures 1F,G,H) associated with individual differences in therapeutic 

behavioural changes following nicotine pharmacotherapy, compared to 

placebo. These data are taken from a single subject within a group of smokers 
tested using resting-state FMRI with repeat measures in a double-blind, placebo-
controlled, crossover design (reproduced from Cole et al., under review).
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Beckmann, C. F., DeLuca, M., Devlin, J. T., 
and Smith, S. M. (2005). Investigations 
into resting-state connectivity using 
independent component analysis. 
Philos. Trans. R. Soc. Lond., B, Biol. 
Sci. 360, 1001–1013.

Beckmann, C. F., Mackay, C. E., Filippini, 
N., and Smith, S. M. (2009). Group 
comparison of resting-state FMRI 
data using multi-subject ICA and dual 

changes in neurophysiology or behaviour are already apparent, for 
example in fi elds of learning (Albert et al., 2009; Lewis et al., 2009) 
and pharmacological intervention (Figure 5; Anand et al., 2005). 
Additionally, preliminary evidence exists for RSN-related metrics 
as potential screening devices, for example in Alzheimer’s disease 
(Rombouts et al., 2005; Fleisher et al., 2009).

The study of RSNs has revealed, and will continue to reveal, many 
interesting observations of the way in which spontaneous connectiv-
ity patterns alter under different conditions, though the concrete 
meaning of these inherent processes, seemingly fundamental to the 
human neural functional architecture, remains elusive. Task-based 
FMRI studies have provided the opportunity to test strict hypotheses 
regarding the discrete activity of a small number of regions in a 
given derived task model, albeit without necessarily explaining the 
true distributed nature and complexity of human brain function. 
One is led to expect that RSN activity measured with the exclusion 
of artifi cial, experimentally guided regional BOLD changes may 
provide a better approximation to the ‘baseline’ of brain function. 
However, the unrestricted nature of this data obviously engenders 
something of an interpretative minefi eld.

In order to use RSNs to generate a comprehensive neurocogni-
tive functional ontology, it may therefore be benefi cial to adopt an 
approach combining both task- and resting-FMRI. Whereas the 
majority of resting-state FMRI research has progressed with a view 
to the potential for results to ‘complement’ the fi ndings of task-
FMRI, one way of addressing questions of functional specialisations 
and interactions with RSNs may be to turn the system on its head, 
and adapt task-based approaches in order to complement and bolster 
the interpretations garnered from studies of spontaneous activity 
patterns, or RSNs. Due to the historic tendency for prior FMRI 
studies to avoid reporting or discussing task-related deactivations, 
this approach may particularly complement existing meta-analytic 
research comparing resting-state and task-activation studies. Hints 
at how such a groundbreaking approach might progress are start-
ing to emerge in the literature, either via meta-analytic approaches 
(Smith et al., 2009) or augmentation of the experimental method 
(Poldrack et al., 2009). Future extensions should enable a more 
direct comparison of ‘mental state’ and resting-state network activ-
ity, enabling more defi nitive classifi cation and diagnostic application 
of the latter, and thereby ultimately contributing to the thorough 
characterisation of the human neural functional architecture.
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 connectivity (e.g., Sridharan et al., 2008). Indeed, FMRI alone 
may be unsuitable for attributing causality in this way (Ramsey 
et al., 2010), so multimodal approaches are required to provide 
further insight into such questions, for example via combining 
resting-state and task-FMRI with EEG or transcranial magnetic 
stimulation methods.

APPLICATIONS AND EXTENSIONS
The methods presented here are now being widely applied by many 
imaging researchers worldwide, to probe specifi c questions relevant 
to brain function. Notable applications include those investigating 
individual differences, disease, development, neuroplasticity and 
treatment effi cacy.

In the fi eld of genetics, for example, specifi c allele variants 
implicated in neurodegeneration (Filippini et al., 2009), neurode-
velopment (Thomason et al., 2009) and cognitive function (Liu 
et al., 2010) have been associated with RSN functional connectivity 
phenotypes. Further, identifi cation of these neural connectivity pat-
terns extends into domains of actual clinical presentation, for exam-
ple in Alzheimer’s disease (Greicius et al., 2004; Wang et al., 2007) 
and other neurodegenerative diseases (Seeley et al., 2009), normal 
aging (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008), as 
well as multiple neuropsychiatric (Liu et al., 2006; Greicius et al., 
2007; Salvador et al., 2007; Jafri et al., 2008) and neurodevelopmen-
tal disorders (Zang et al., 2007; Castellanos et al., 2008; Di Martino 
et al., 2009; Paakki et al., 2010). Of particular importance is the fact 
that, relative to task-FMRI, such resting-state investigations require 
minimal task compliance and therefore allow for the study of dif-
ferences in brain dynamics in non-normal populations, such as 
infants, sedated subjects or subjects with severe cognitive or physical 
impairments. Functional connectivity within and between distinct 
RSNs can be implicated in a very diverse range of behaviours and 
neuropsychiatric disorders. In particular,  studies have identifi ed a 
plethora of such relationships involving the DMN (for reviews see 
Buckner et al., 2008; Greicius, 2008; Broyd et al., 2009). Existing 
results are promising, suggesting RSNs may be used to character-
ise patterns of neural activity and coherence approximating func-
tional variability across multiple application domains. However, 
large ‘proof-of-concept’ studies with high statistical power (see e.g., 
Biswal et al., 2010), as well as ongoing meta-analytic research, will 
make a valuable contribution to the fi eld in years to come.

As noted before (Greicius, 2008), applications of these correla-
tive relationships (typically derived and signifi cance-tested for 
proof of concept at the group level) to providing clinical diagnos-
tics at the single-subject level are currently far from fully realised. 
Despite such concerns, pseudo-diagnostic information associating 
RSN function with within-subject dynamic, intervention-related 
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2008; Cao et al., 2006; Fox and Raichle, 2007; Zang et al., 2007; 
Biswal et  al., 2010), analysis of these spontaneous fluctuations 
usually involves the identification of correlations between remote 
brain areas, commonly referred to as functional connectivity. The 
term “functional connectivity” has been used in both resting-state 
and task-state studies and can refer to correlations across subjects, 
runs, blocks, trials, or individual BOLD time points, an ambiguity 
which can become confusing (Friston et al., 1993; Horwitz, 2003; 
Fox and Raichle, 2007; Rogers et al., 2007). We will therefore use the 
term resting state functional connectivity MRI (fcMRI) for added 
specificity, and this will be the focus of the present article. The 
two most popular techniques for performing resting state fcMRI 
are seed-based correlations and independent components analy-
sis (ICA). In the seed-based technique signal is extracted from a 
specific region of interest, and a map is created by computing the 
correlation between this extracted signal and all other brain voxels 
(Biswal et al., 1995; Fox and Raichle, 2007). In contrast, ICA consid-
ers all voxels at once and uses a mathematical algorithm to separate 
a dataset into distinct systems or networks that are correlated in 
their spontaneous fluctuations but also maximally independent, 
usually in the spatial domain (Kiviniemi et al., 2003; Bartels and 
Zeki, 2004; Beckmann et al., 2005).

Regardless of the technique, a consistent observation is that 
regions with similar functional properties, such as the left and 
right somatomotor cortices, exhibit coherent BOLD fluctuations 
even in the absence of movement under resting conditions (Biswal 
et al., 1995; Lowe et al., 1998; Cordes et al., 2000; De Luca et al., 
2005; Fox et al., 2006b). Similar results have been found in multiple 
other networks including visual (Lowe et al., 1998; Cordes et al., 
2000), auditory (Cordes et al., 2000), language (Cordes et al., 2000; 
Hampson et al., 2002), dorsal and ventral attention systems (Fox 
et al., 2006a), corticothalamic circuits (Zhang et al., 2008), and a 
frontal opercular network that has been related to stimulus salience 

Introduction
Functional magnetic resonance imaging (fMRI) is a non-invasive 
technique for examining brain function that utilizes changes in 
blood oxygen level-dependent (BOLD) signal to identify areas of 
increased or decreased neuronal activity (Logothetis, 2003; Raichle 
and Mintun, 2006). This technique has proven extremely valuable 
in the laboratory environment, allowing researchers to identify 
brain areas associated with the processing of different stimuli or 
the performance of various cognitive tasks (Raichle, 2000). Further, 
fMRI has been used extensively to identify abnormalities in these 
activation patterns in populations of patients with neurological 
or psychiatric disease.

Despite its success and popularity as a research tool, fMRI has 
seen relatively little translation into the clinical realm. In gen-
eral, the fMRI abnormalities seen in clinical research populations 
have not translated into the ability to obtain useful diagnostic or 
prognostic information in individual patients (Matthews et al., 
2006). While pre-operative fMRI is being used in individual 
patients to guide neurosurgical intervention, its use has not yet 
been shown to improve patient outcomes. Although progress is 
certainly being made, the clinical utility of fMRI has yet to be 
firmly established.

A recent advance that offers tremendous promise for improving 
the clinical applicability of fMRI involves focusing on spontaneous 
modulations in the BOLD signal that occur during resting condi-
tions (for recent review see Fox and Raichle, 2007). In contrast to 
the traditional task-based approach, resting state studies observe 
the brain in the absence of overt task performance or stimula-
tion. In these studies, subjects are generally asked to lie quietly 
under “resting” conditions such as eyes closed or while fixating 
on a crosshair. Spontaneous modulations in the BOLD signal in 
the absence of any explicit input or output are then recorded and 
analyzed. Although alternative approaches exist (Zhu et al., 2005, 
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(Seeley et al., 2007b). One of the most robustly identified and exten-
sively investigated resting state networks involves a set of regions 
that routinely decrease their activity during attention demand-
ing tasks, often referred to as the default mode network (Raichle 
et al., 2001; Greicius et al., 2003; Fox et al., 2005; Fransson, 2005) 
(Figure 1). Interestingly, this network has also been found to be 
negatively or anti-correlated with regions that tend to increase their 
activity during attention demanding tasks (Greicius et al., 2003; 
Fox et al., 2005, 2009; Fransson, 2005; Chang and Glover, 2010). 
Resting state correlation patterns across various networks have been 
shown to predict the task-response properties of brain regions (De 
Luca et al., 2005; Vincent et al., 2006), identify subjects’ aptitude 
for different cognitive tasks (Hampson et al., 2006; Seeley et al., 
2007b), and help constrain and refine neuro-anatomical models 
developed on the basis of task-activation studies (Fox et al., 2006a; 
Dosenbach et al., 2007).

Given the success of resting state functional connectivity for 
probing the brain’s functional architecture in normal subjects, it is 
only natural to apply the technique towards understanding brain 
disease. Two recent reviews detail the large number of studies that 
have utilized resting state fcMRI to study various neurological and 
psychiatric conditions (Greicius, 2008; Zhang and Raichle, 2010). 
Although this list continues to grow on a daily basis, the goal of the 
present article is not to review the findings from each individual 
study and the insight each provides towards understanding spe-
cific diseases. The field has expanded to the point that resting state 
reviews focused on each specific disease are rapidly becoming appro-
priate. Instead, we take a more global perspective on the application 
of resting state fcMRI in the clinical realm. We detail the theoretical 
and practical motivations for using resting state fcMRI for clinical 
applications, describe the different types of clinical applications to 

which resting state may be applied, provide guidelines for using 
resting state fcMRI as a clinical tool, and identify barriers to full 
translation of resting state fcMRI into the clinical realm.

Why use resting state fcMRI for clinical 
applications?
Cerebral Energetics
There are several motivations, both theoretical and practical for 
using resting state fcMRI for clinical applications. The first of these 
motivations comes from an understanding of brain energy metabo-
lism. The resting human brain represents only 2% of total body 
mass but consumes 20% of the body’s energy, most of which is used 
to support of ongoing neuronal signaling (Ames, 2000; Attwell and 
Laughlin, 2001; Lennie, 2003; Shulman et al., 2004; Raichle and 
Mintun, 2006). Task-related increases in neuronal metabolism are 
usually small (<5%) when compared to this large resting energy 
consumption (Raichle and Mintun, 2006). Differences in these task-
related changes between normal and pathological populations are 
smaller still, often less than 1%. When attempting to study disease 
or diagnose patients based on task-related changes, one is therefore 
focusing on only a very small fraction of the brain’s overall activ-
ity. Ongoing spontaneous activity may provide a window onto the 
neural processing that appears to consume the vast majority of 
the brain’s resources and so may prove a richer source of disease-
related signal changes.

Signal to Noise
Resting state studies may offer a better signal to noise ratio than 
conventional task-based approaches. To demonstrate this princi-
ple, BOLD modulations recorded from the somatomotor cortex 
are shown during a simple task in which subjects were asked to 
press a button with their right hand (Figure 2) (Fox et al., 2006b). 
In this case, the subject pressed the button only once during the 
scanning session. Examining the tracing from the left somatomotor 
cortex alone (Figure 2A), it is impossible to identify when during 
the session that button press occurred. The signal, or task-related 
modulation, is very small relative to the tremendous amount of 
ongoing noise. Even if one focuses only on the time of the but-
ton press itself, when task-related BOLD modulation is maximal, 
the task-related modulation accounts for only 20% of the total 
BOLD variance (Fox et al., 2006b, 2007b). This means that during 
a standard fMRI task session over 80% of the BOLD modulation 
may be discarded as noise. This is why task-related BOLD studies 
require a large number of trials and extensive averaging to obtain 
a signal or activation map, and this may be part of the reason 
why task-based fMRI has found only limited application in the 
clinical realm.

A critical observation that forms the basis of resting state 
fcMRI was the finding that much of this “noise” that is so prob-
lematic for task-based studies is actually ongoing spontaneous 
fluctuations that are correlated within distinct cortical networks. 
This becomes apparent in our button press example when one 
adds the tracing from the right somatomotor cortex, which is 
only minimally involved in the right-handed task, to the tracing 
already shown for the left somatomotor cortex (Figure 2B). Much 
of the “noise” in the left somatomotor cortex is also present on the 
right. It is important to note that this shared variance is specific 

Figure 1 | Resting state functional connectivity reveals correlations and 
anticorrelations with the default mode network. Correlations between a 
seed region in the posterior cingulate/precuneus (PCC) and all other voxels in 
the brain for a single subject during resting fixation. Both correlations (positive 
values) and anticorrelations (negative values) are shown, thresholded at 
R = 0.3. The time course for a single run is shown for the seed region (PCC, 
yellow), a region positively correlated with this seed region in the medial 
prefrontal cortex (MPF, orange), and a region negatively correlated with the 
seed region in the intraparietal sulcus (IPS, blue). Reproduced with permission 
from (Fox et al., 2005).
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Task-activation studies have a poor signal to noise ratio because 
the signal (task-related modulation) is often small relative to the 
sea of ongoing noise (including spontaneous activity). In contrast, 
resting state fcMRI focuses on this ongoing spontaneous activity 
and uses it as the signal rather than discarding it as noise. System-
specific correlation values can be as high as 0.7–0.9 (accounting for 
50–80% of the variance) (Fox et al., 2006b, 2007b) (see Figure 1). 
Compared to the 20% signal to noise ratio seen in task-based activa-
tion studies, resting state fcMRI studies may enjoy approximately 
three times the signal to noise ratio. Although additional signal 
to noise considerations exist (see final section), a 3 to 1 improve-
ment in signal to noise has obvious advantages when attempting 
to identify imaging abnormalities in individual patients.

Multi-Purpose Data Sets
In addition to the above signal to noise considerations, resting state 
fcMRI data sets can be used to study multiple cortical systems. This 
is in contrast to task-activation analyses which require dedicated 
data acquisitions for each function one is attempting to localize. 
For example, if one wants to identify both motor and language 
systems for pre-operative mapping one would need to perform one 
acquisition of a motor task and another acquisition of a language 
task. In fcMRI the same data can be used to examine both systems, 
effectively doubling the amount of data (or alternatively reducing 
the acquisition time by half).

Expanded patient populations
One of the most frequently cited motivations for using resting state 
fcMRI in clinical studies is that it allows for a broader sampling 
of patient populations. Due to cognitive dysfunction or physical 
impairment many patients are simply not capable of performing 
tasks accurately in the fMRI scanner. When studying disease, this 
often means that we are sampling the least impaired subjects in a 
patient group as opposed to the most impaired subjects likely to 
show the largest signal abnormalities. In addition to limiting our 
sensitivity for detecting disease related changes, this introduces 
the problem of whether observed abnormalities can be general-
ized to the average (and often sicker) disease population. Resting 
state fcMRI requires no task and places only minimal demands 
on the patient. Further, spontaneous activity continues when 
subjects are asleep (Fukunaga et al., 2006; Horovitz et al., 2006) 
and sedated (Kiviniemi et  al., 2003; Peltier et  al., 2005; Vincent 
et al., 2007; Greicius et al., 2008b) opening up the possibility of 
obtaining resting state activity in any patient population. Of note, 
it remains unclear if individual differences observed during the 
awake state persist during sleep or sedation and is an important 
area for future research.

Circumventing task-related confounds
One important advantage of resting state fcMRI is that it may 
circumvent confounds that can complicate interpretation of task-
based studies. For example, working memory tasks have been 
used extensively to study patients with schizophrenia. However, 
a difference in activation between patients and control subjects 
observed during the task could represent differences in task per-
formance, effort, task strategy, or an underlying disease-specific 
brain abnormality. A second example involves longitudinal studies 

to the somatomotor system and can be directly tied to variability 
in motor function (Fox et al., 2006b, 2007b). Even if one focuses 
only on the button press epoch, spontaneous ongoing activity can 
account for around 60% of the BOLD “noise” (Fox et al., 2006b, 
2007b). In fact, one can subtract the ongoing spontaneous activ-
ity from the left somatomotor cortex and the single button press 
response becomes evident (Figure 2C).

Figure 2 | Signal to noise features of spontaneous and task evoked 
activity. (A) fMRI time course from the left somatomotor cortex (LMC) during 
a single run when the subject pressed the button once with his right hand. 
Due to poor signal to noise, it is impossible to identify the task-related activity. 
(B) Comparison of the LMC with the right somatomotor cortex (RMC) shows 
that much of the noise is ongoing spontaneous activity correlated within the 
somatomotor system. (C) After subtracting the RMC from the LMC, the 
task-related modulation from the individual button press is evident (orange 
arrow). The LMC and RMC regions of interest are displayed for convenience 
on the inset map. Data taken from (Fox et al., 2006b).
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abnormalities to a relevant clinical variable speaks directly to 
the potential clinical relevance of a given finding and greatly 
increases confidence that the reported resting state abnormality 
will be reproducible.

Another important advance towards identifying prognostic or 
diagnostic markers on individual patients is to calculate the ability 
of observed resting state abnormalities to segregate healthy from 
disease states. Not surprisingly, the vast majority of this work has 
focused on the disease state with the most reproducible resting state 
abnormalities, Alzheimers, (Li et  al., 2002; Greicius et  al., 2004; 
Wang et al., 2006a; Supekar et al., 2008) (Figure 3) and the poten-
tially associated condition of PIB positivity (Hedden et al., 2009; 
Sheline et al., 2010). By looking at different resting state fcMRI 
measures and setting a threshold, one can calculate the sensitivity 
and specificity of that marker for segregating healthy and disease 
states (Figure 3A). In Alzheimers, sensitivity ranges from 72–85% 
and specificity from 77–80% (Li et al., 2002; Greicius et al., 2004; 
Wang et al., 2006a; Supekar et al., 2008). Instead of picking just one 
threshold, receiver operating characteristic (ROC) curves can show 
the sensitivity and specificity at several different thresholds and 
have been usefully applied in Alzheimers (Li et al., 2002; Supekar 
et al., 2008) (Figures 3B,C). Although not yet applied to Alzheimers, 
techniques such as machine vector learning and advanced pat-
tern recognition may further improve the utility of resting state 
fcMRI abnormalities as brain disease biomarkers (Haynes and 
Rees, 2006; Norman et al., 2006). Thus far, these segregation stud-
ies have been retrospective and the criteria for identifying a disease 
has been optimized for a specific data set. Future work applying 
these criteria prospectively towards new datasets will serve as an 
important test of their potential clinical relevance as a diagnostic 
or prognostic marker.

Longitudinal studies and treatment effects
One area for which resting state fcMRI is extremely well suited is 
longitudinal studies and monitoring treatment effects. For exam-
ple, much may be learned by following disease progression in 
neuro-degenerative disorders such as Alzheimer’s or amyotrophic 
lateral sclerosis (ALS). Similarly, one can examine the effect of 
clinical intervention by studying subjects before and after treat-
ment. Normalization of resting state brain abnormalities with drug 
therapy may prove to be a useful surrogate outcome in clinical trials 
or help pharmaceutical companies decide which drugs to bring to 
large-scale clinical trials in the first place. Along these lines, rest-
ing state fcMRI abnormalities in depression have been shown to 
dissipate with drug treatment (Anand et al., 2005b), and improve-
ment in regional correlations has been shown to match functional 
recovery in spatial neglect following stroke (He et al., 2007).

Clustering in heterogeneous disease states
To date segregation has focused largely on differentiating healthy 
from disease states. However one important role for resting state 
connectivity analyses may be segregating patients within a dis-
ease category. For example, schizophrenia is widely regarded as 
a very heterogeneous disorder, and this heterogeneity can greatly 
hinder the sensitivity of clinical trials. One could imagine placing 
the resting state patterns of hundreds of patients with schizophre-
nia into an algorithm that would cluster the patients into groups 

which utilize repeated task-based scanning sessions to examine 
drug effects or disease progression. These repeated task sessions 
can be confounded by practice effects or adaptation to the task. By 
eliminating the task, resting state fcMRI can circumvent some of 
these interpretative ambiguities and may allow for identification 
of more fundamental abnormalities underlying disease.

Types of clinical applications
Identifying group differences in brain disease
Although there are several ways in which resting state fcMRI may 
be applied to clinical populations, by far the largest application has 
been comparing resting state correlation patterns between groups 
of normal subjects and those with neurological or psychiatric dis-
ease (for recent reviews see Fox and Raichle, 2007; Greicius, 2008; 
Zhang and Raichle, 2010). The goal is that through identifica-
tion of group differences one may begin to better understand the 
functional abnormalities underlying different disease states leading 
ultimately to a reliable resting state fcMRI marker that can be inter-
preted at the single subject level. This knowledge could in turn lead 
to identification of new treatments or drug targets. Disturbances 
in the correlation structure of spontaneous activity have now been 
reported for a significant number of disease states (see Table 1).

The goal of the current review is not to detail the individual 
findings of over 60 publications across 20 disease states. As men-
tioned in the introduction, we are rapidly approaching the point 
where reviews of resting state abnormalities for each particular 
disease state are becoming appropriate. However, tabulating the 
studies in this manner does lead to a few important observations. 
First, resting state fcMRI studies have been published on almost 
all major neurological and psychiatric diseases as well as a number 
of related conditions. While replication plays a role, the novelty 
of simply comparing correlation patterns between two groups is 
subsiding, and the route is paved for more advanced analyses (see 
next section). Second, the consistency of resting state abnormalities 
various greatly by disease state, from excellent consistency across 
Alzheimer’s, MCI, and PIB-positive patients to inconsistent and 
occasionally opposing findings in schizophrenia. There may be 
several reasons for this heterogeneity, and some mechanism to 
reconcile disparate findings is needed. Third, a seemingly dispro-
portionate number of studies seem to focus on the default mode 
network as opposed to other resting state networks. While this 
may be appropriate in diseases like Alzheimer’s with known or 
theoretical pathology in these regions, some of this focus may stem 
from a misconception that the default mode network is somehow 
special in showing large-amplitude coherent BOLD fluctuations 
at rest (for additional discussion see Fox and Raichle, 2007; Zhang 
and Raichle, 2010).

Obtaining diagnostic and prognostic information
Given the substantial group comparison literature now avail-
able (Table 1), the route is paved for more advanced analyses of 
resting state abnormalities. One important advance is to relate 
the resting state differences seen between two groups to a rel-
evant clinical variable. For example, pathological disturbances 
in intrinsic activity have been correlated with the severity of dis-
ease in depression (Greicius et al., 2007), schizophrenia (Bluhm 
et al., 2007), and neglect (He et al., 2007). Relating resting state 
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Pre-operative mapping and targeting intervention
The area in which traditional task-based fMRI has shown the great-
est promise for clinical translation is in pre-operative functional 

with similar resting state abnormalities. Similarly, retrospective 
analysis of drug effects could identify subgroups that benefited 
from a particular therapy.

Table 1 | Group differences in resting state fcMRI patterns observed in various brain diseases or conditions.

Disease/condition	 References	 Findings

Alzheimer’s	 (Li et al., 2002; Greicius et al., 2004; 	 Decreased correlations within the DMN including hippocampi,  

	 Wang et al., 2006a,b, 2007; Allen et al., 	 decreased anticorrelations with the DMN, and reduced local 

	 2007; Supekar et al., 2008)	 connectivity as reflected in clustering coefficients

PIB positive	 (Hedden et al., 2009; Sheline et al., 2010)	 Decreased correlations within the DMN

Mild cognitive impairment	 (Li et al., 2002; Sorg et al., 2007)	 Decreased correlations within the DMN and decreased  

		  anticorrelations with the DMN.

Fronto-temporal dementia	 (Seeley et al., 2007a, 2008)	 Decreased correlations within the salience network 

Healthy aging	 (Andrews-Hanna et al., 2007; 	 Decreased correlations within the DMN 

	 Damoiseaux et al., 2008)

Multiple sclerosis	 (Lowe et al., 2002; De Luca et al., 2005)	 Decreased correlations within the somatomotor network

ALS	 (Mohammadi et al., 2009)	 Decreased connectivity within the DMN and within the  

		  somatomotor network (esp. premotor cortex)

Depression	 (Anand et al., 2005a,b, 2009; 	 Variable: Decreased corticolimbic connectivity (esp. with dorsal 

	 Greicius et al., 2007; Bluhm et al., 2009a)	 anterior cingulate), increased connectivity within the DMN (esp.  

		  subgenual prefrontal cortex), decreased connectivity between  

		  DMN and caudate

Bipolar	 (Anand et al., 2009)	 Decreased corticolimbic connectivity

PTSD	 (Bluhm et al., 2009c)	 Decreased connectivity within the DMN

Schizophrenia	 (Liang et al., 2006; Liu et al., 2006, 2008; 	 Variable: Decreased or increased correlations within the DMN.  

`	 Bluhm et al., 2007, 2009b; Salvador et al., 	 Decreased, increased or unchanged correlations and 

	 2007; Zhou et al., 2007; Jafri et al., 2008; 	 anticorrelations between the DMN and other systems. 

	 Whitfield-Gabrieli et al., 2009)

Schizophrenia 1° relatives	 (Whitfield-Gabrieli et al., 2009)	 Increased connectivity within the DMN

ADHD	 (Zhu et al., 2005, 2008; Cao et al., 2006; 	 Variable: reduced connectivity within the DMN, reduced 

	 Tian et al., 2006; Zang et al., 2007; 	 anticorrelations with the DMN, increased connectivity in the 

	 Castellanos et al., 2008; Wang et al., 2009)	 salience network

Autism	 (Cherkassky et al., 2006; Kennedy and	 Decreased connectivity within the DMN (although hippocampus 

	 Courchesne, 2008; Monk et al., 2009; 	 is variable and connectivity may be increased in younger patients) 

	 Weng et al., 2010)

Tourette syndrome	 (Church et al., 2009)	 Delayed maturation of task-control and cingulo-opercular networks

Epilepsy	 (Waites et al., 2006; Lui et al., 2008; 	 Variable: decreased connectivity in multiple networks including 

	 Bettus et al., 2009; Zhang et al., 2009b,c)	 the medial temporal lobe, decreased connectivity within the 

		  DMN (esp. in patients with generalized seizures)

Blindness	 (Liu et al., 2007; Yu et al., 2008)	 Decreased connectivity within the visual cortices and between 

		  visual cortices and other sensory and multimodal regions

Chronic pain	 (Greicius et al., 2008a; Cauda et al., 	 Variable: Increased/decreased connectivity within the salience 

	 2009a,c,d)	 network, decreased connectivity in attention networks

Neglect	 (He et al., 2007)	 Decreased connectivity within the dorsal and ventral  

		  attention networks

Coma/vegetative state	 (Boly et al., 2009; Cauda et al., 2009b; 	 Progressively decreased DMN connectivity with progressive 

	 Vanhaudenhuyse et al., 2010)	 states of impaired consciousness

Generalized anxiety disorder	 (Etkin et al., 2009)	 increased connectivity between amygdala and frontoparietal  

		  control network and decreased connectivity between amygdala  

		  and salience network

DMN = default mode network including regions in the posterior cingulate/precuneus, lateral parietal cortex, medial temporal lobes, and medial prefrontal cortex 
(see Figure 1). Salience network: includes regions in the dorsal anterior cingulate and bilateral fronto/insular cortices; dACC = dorsal anterior cingulated cortex; 
PIB = Pittsburg compound B, a marker of amyloid plaque accumulation in the brain. PTSD = post-traumatic stress disorder; ALS = amyotrophic lateral sclerosis; 
ADHD = attention deficit hyperactivity disorder. Note: some references (Greicius et al., 2004; He et al., 2007) reflect “near-rest” conditions in which task-related 
variance has been minimized and other references (Zhu et al., 2005, 2008; Cao et al., 2006; Zang et al., 2007) reflect local changes in spontaneous BOLD fluctuations 
as opposed to correlations in these fluctuations between separate regions.
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results across studies. When studies are relatively consistent, as in 
Alzheimers, it is easy to build on these results and move towards 
using resting state fcMRI for diagnostic and prognostic purposes. 
However, when studies are inconsistent as in schizophrenia, one is 
left wondering which result, if any, is most likely to be reproducible 
and therefore clinically relevant. Different study designs, processing 
techniques, analysis approaches, and regions or systems of interest 
make comparing studies very difficult.

One of the first steps towards improving translation is to 
begin to improve our ability to replicate and compare results 
from different resting state studies. While individual labs will 
always differ in their analytical approach (and this is a good 
thing) there are certain standards or guidelines that may help 
improve reproducibility and strengthen the conclusions that can 
be made (Table 2). Some of these guidelines may appear generic 
and obvious, however resting state fcMRI presents a unique set 
of challenges in study design and analysis that may benefit from 
explicit delineation.

brain mapping to help guide neurosurgical planning (Haberg et al., 
2004; Vlieger et al., 2004; Matthews et al., 2006). This is used most 
often to identify brain areas used in movement and language so 
that these areas can be avoided during surgical resection, but it has 
also been combined with EEG to identify foci of epileptic activity 
(Lemieux, 2004). fMRI defined brain regions correlate with intra-
operative electrophysiology (Vlieger et  al., 2004), Wada testing 
(Binder et al., 1996; Adcock et al., 2003), loss-of-function post-
operatively (Haberg et al., 2004), and are frequently mentioned 
in neurosurgery notes (Haberg et  al., 2004). However, patients 
frequently lack the ability to perform tasks well (Pujol et al., 1998) 
and patient movement during tasks can be a significant problem 
(Lee et al., 1999).

As mentioned earlier, the advantages of resting state fMRI may 
circumvent many of the current limitations hindering task-based 
pre-operative mapping. Indeed several articles have recently been 
published showing strong proof of concept for resting state fcMRI 
as a pre-operative mapping tool in patients with neurosurgical con-
ditions (Kokkonen et al., 2009; Liu et al., 2009; Shimony et al., 2009; 
Zhang et al., 2009a). These articles have shown good correlation 
between resting state fcMRI results, task-based mapping, and intra-
operative cortical stimulation in these patients (Figure 4).

Just as resting state fcMRI may guide surgeons in their opera-
tive approach, it may also be used to guide several other clinical 
interventions where localization of a functional region is critical. 
Examples include placement of EEG recording grids, deep brain 
stimulators, and transcranial magnetic stimulation (TMS).

Barriers to clinical applicability/future work
Guidelines for studying clinical populations with fcMRI
Despite the promise of resting state fcMRI for improving the 
translation of functional imaging into the clinical realm, sev-
eral challenges remain. One of the largest barriers is inconsistent 

Figure 3 | Moving towards resting state abnormalities as a diagnostic 
marker in Alzheimers: Using parameters derived from resting state 
functional connectivity and choosing an appropriate threshold one can 
show good segregation between patients with Alzheimers disease 
(AD) and healthy elderly (A). Instead of picking just one threshold, receiver 

operating characteristic (ROC) curves can show the sensitivity and specificity at 
several different thresholds (B,C). Below each figure are the sensitivity and 
specificity values obtained by choosing the ideal threshold to segregate the 
populations in each study. Adapted with permission from (Li et al., 2002; 
Greicius et al., 2004; Supekar et al., 2008).

Table 2 | Guidelines for studies of clinical populations with resting state 

fcMRI.

(1)   A priori hypotheses regarding a region or network with abnormal fcMRI 

    and clear criteria for selecting this region or network

(2)   A priori hypothesis and demonstration of a region or network with 

    normal fcMRI to serve as a control

(3)   Correlation with clinical variables whenever possible

(4)   Stringent correction for multiple comparisons

(5)   An analysis of movement in patients and control subjects

(6)   An analysis of the differential impact of pre-processing in patients and 

    control subjects

(7)   A discussion of how current findings relate to prior fcMRI findings
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Figure 4 | Resting state fcMRI in pre-operative brain mapping: 
(A) Structural MRI scan showing a mass in the right frontal cortex. Green circle 
represents the location of ipsilateral hand response to intra-operative cortical 
stimulation. (B) Task-related mapping showing activity within the sensorimotor 
network but also small responses in parietal cortex that are seemingly 

unrelated to motor function or sensation. (C) Resting-state correlation 
mapping showing that the sensorimotor network is largely unaffected by the 
tumor anterior to the central sulcus. Seed region is shown (blue circle). All 
images are displayed left-on-left. Adapted with permission from (Zhang 
et al., 2009a).

(1) The first guideline concerns a priori identification of either 
a region (seed-based analysis) or network (ICA) that one 
expects may be abnormal. This hypothesis can be based on 
prior imaging data (either task-based or resting state), patho-
logy, or simply the clinical features of the disease combined 

with theory suggesting localization of the relevant impaired 
functions. If the a priori motivation for the study is clearly 
presented in the introduction, then even a well-powered, 
negative finding can represent an advance. Analyses of a large 
number of seed regions or components can be an effective 
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be an elevated index of suspicion. Note that identification 
of control networks that are not different between the two 
groups will also help in this regard (see point #2).

(6) Similar to the above movement analysis, one should examine 
the impact of pre-processing on the two groups of subjects 
to insure that they do not differ. For example, much has been 
written on the pronounced effect of global signal regression 
on resting state correlations and anticorrelations (Chang 
and Glover, 2009, 2010; Fox et al., 2009; Murphy et al., 2009; 
Weissenbacher et al., 2009). Although there is benefit to this 
pre-processing maneuver including improved correspondence 
with anatomical connectivity (Fox et  al., 2009), one must 
ensure that the effect of the pre-processing was not different 
in the two groups. In this example, one could examine the 
variance removed by global regression and show that it is not 
significantly different between patients and controls. If there 
is a group difference then one may want to repeat the analysis 
without removing the global signal and determine if the effect 
of interest remains. Similarly in ICA, there is a large impact 
on results based on the number of components one chooses. 
Due to a difference in variance in a patient population from 
movement or any other confounding factor, a certain compo-
nent could be split at a different point in patients and controls. 
Repeating a finding with a slightly higher or lower number of 
components (such as plus and minus 25% of the initial num-
ber of components) could increase confidence in the result.

(7) The final guideline concerns reconciling findings with previou-
sly published work. Although this point may seem obvious and 
is certainly not specific to resting state fcMRI, its importance 
makes it worth mentioning. If the current resting state fcMRI 
findings conflict with prior fcMRI work, it is crucial to explore 
possible etiologies of the conflict. It should not be sufficient to 
simply mention that other work has been done with differing 
conclusions. Resolving the discrepancy may involve additional 
analyses to directly explore differences in processing methodo-
logy, but such analyses are critical for accelerating consensus in 
the field and clinical applicability.

The case for collaboration
Despite the increasing number of papers being published on a 
daily basis by individual labs, clinical applicability of fcMRI is not 
likely to move forward without enhanced collaboration and data 
sharing between labs. Different processing techniques for analyz-
ing resting state data make comparison across studies difficult. 
The majority of resting state articles focus on a few seed regions 
or a single network, leaving unexplored the vast majority of the 
brain’s functional architecture. Finally, almost all studies focus on 
normal subjects or a single disease population making it difficult 
to assess reproducibility or determine the sensitivity or specificity 
of an identified abnormality for a specific disease.

In this review we explored several factors that make resting 
state fcMRI well-suited for translation into the clinical realm. 
However there are also several features that make it well-suited 
for databasing, data sharing, and collaboration. Due to the nature 
of spontaneous BOLD data, a single dataset can be used for multiple 
analyses and can address a wide variety of neuroscience questions. 
Furthermore, the paradigms used to study spontaneous BOLD 

means of generating hypotheses, but such exploratory work 
must be followed by targeted analyses that are powered to 
disconfirm spurious findings. Similar to choosing which 
region or network one is interested in, one must also clearly 
identify a priori how that network will be identified. If one 
is using a seed region, the coordinates for that seed region 
should be justified, for example as a focus of activation from 
a previously published study. Similarly, if one is studying a 
network in the form of an ICA component, one needs to spe-
cify an objective approach for identifying that system such 
as spatial correlation to an a priori template (Greicius et al., 
2004, 2007), however see also (Zuo et al., 2009) for possible 
limitations of this approach.

(2) Perhaps as important as the first guideline, the second gui-
deline involves a priori identification of regions or networks 
that one expects NOT to vary between the disease and heal-
thy state. A good choice for many diseases may be primary 
sensory systems such as visual, somatomotor, or auditory. Of 
course, it is theoretically possible that a disease state exists 
which impacts every brain system and region such that a nor-
mal control is not possible. However in these cases alternative 
control strategies should be pursued to show that the findings 
are not artifactual.

(3) As mentioned in an earlier section, any study which can show 
a relationship between identified resting state fcMRI abnor-
malities and clinical variables such as disease severity incre-
ases the confidence that a finding will be clinically relevant 
and reproducible.

(4) The fourth guideline concerns correction for multiple compa-
risons. This becomes especially pertinent if one is looking for 
differences across a large number of seed regions or compo-
nents or if one is attempting to correlate resting state abnor-
malities with several different clinical variables. The probability 
of finding a significant relationship increases as the number 
of variables one is trying to relate increases. Several methods 
to correct for these multiple comparisons exist, the simplest 
and most stringent being Bonferroni correction (Abdi, 2007). 
Clearly there are cases where one doesn’t know a priori which 
clinical variable or component may be of interest, and an effect 
that does not pass Bonferroni does not mean the effect is not 
interesting, it simply means that the relationship would benefit 
from repeat and targeted testing.

(5) The fifth guideline concerns movement correction and 
comes from the recognition that patient populations are 
often going to be less cooperative lying in the scanner than 
control populations, especially when they are required to 
do nothing but stare at a fixation cross for 10  min. While 
task-based studies can partially compensate for movement 
by averaging across a large number of trials, the nature of the 
signal used in resting state makes it particularly susceptible 
to movement confounds. Movement parameters are often 
used as co-regressors in resting state fMRI to try to minimize 
artificial correlations, however if large group differences in 
movement are present this remains a confounding variable. 
In such instances, one could look to see if movement correla-
ted on a subject to subject basis with the finding of interest. If 
the patients that moved the most also showed the largest dif-
ference in resting state correlation values then there should 
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Conclusions
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may improve the reproducibility of findings and facilitate clini-
cal translation. Finally, improvement in processing techniques of 
the fMRI signal as well moving beyond the fMRI signal to other 
modalities that can also assess low-frequency fluctuations are likely 
to be important as we begin to realize the potential of resting state 
fluctuations in the clinical realm.

activity are relatively simple compared to task-based imaging 
studies with multiple stimuli presented at varying intervals. These 
factors make spontaneous BOLD data ideally suited for reanalysis 
and inclusion in a database.

The above factors have motivated the creation of two online 
databases focused on resting state fcMRI data. The first is both an 
analysis package and database termed BrainSCAPE (Spontaneous 
Correlation Analysis Processing Engine)1 (Fox et al., 2007a). This 
tool allows users to upload, analyze, and share their spontaneous 
BOLD data as well as analyze freely shared data from other labs. 
More recently a second database has been launched termed the 
NITRIC 1000 connectome project2 and includes a large number 
of functional connectivity datasets freely available for download 
(Biswal et al., 2010). By providing access to multiple datasets, effects 
in one study can easily be confirmed and compared with results 
from multiple other datasets. We anticipate that collaborative 
projects such as these will accelerate advances in the field and may 
prove valuable in assessing the sensitivity and specificity of intrinsic 
abnormalities underlying human disease.

Technique development
Finally, an improvement in clinical utility is likely to come from fur-
ther technique development. One area that is likely to be essential as 
we move from studies of groups of patients to obtaining prognostic 
and diagnostic information on a single patient is improving signal to 
noise. As mentioned at the beginning of this article, studies of resting 
state fluctuations do enjoy a potential signal to noise advantage over 
task-based studies. However, in task-based studies one can improve 
the signal to noise by simply increasing the number of trials and the 
amount of averaging. The technique for improving signal to noise in 
resting state studies is less straight forward. It is important to recognize 
that not all spontaneous BOLD fluctuations are due to underlying 
neuronal fluctuations in distinct cortical systems but may also come 
from non-neuronal sources. Although the quantitative impact of 
these noise sources is likely small relative to neuronal fluctuations, 
spontaneous BOLD modulation can be measured in a water phantom 
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respiratory activity can account for a significant fraction of spontane-
ous BOLD variance in human data (Glover et al., 2000; Wise et al., 
2004; Birn et al., 2006; Lund et al., 2006; Chang and Glover, 2009). 
Improvements in signal to noise could therefore come from reducing 
the contribution of these non-neuronal fluctuations.

One strategy to account for non-neuronal noise is to employ 
a high sampling rate which prevents aliasing of higher frequency 
cardiac or respiratory activity (Biswal et  al., 1995; Lowe et  al., 
1998; Cordes et al., 2001; De Luca et al., 2006); however this comes 

1www.brainscape.org
2www.nitrc.org/projects/fcon_1000
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brain and functional MRI. The latter has been informative due to 
its superb localizing power and its exquisite capability to record the 
dynamics of neuronal population activity across the entire brain 
and to hence capture large-scale functional connectivity patterns. 
Yet, for instance when addressing temporal properties as below, 
limitations of hemodynamic signals will lead us to also discuss elec-
trophysiological findings as well as observations relying on invasive 
procedures that cannot usually be applied in human subjects.

The temporal structure of ongoing brain activity
One of the most prominent features of ongoing activity is the fact 
that it fluctuates over time. This in itself can give rise to interest-
ing speculations regarding function. If one thinks of a car engine, 
where such behavior would be functionally deleterious, one might 
wonder whether, and if so how, such fluctuations can be associated 
with a functional benefit (McDonnell and Abbott, 2009). Let us first 
consider the formal properties of these temporal fluctuations.

Ongoing human brain activity recorded by local electrocorti-
cography (Freeman et al., 2000) shows a power law scaling but also 
an embedding of discrete peaks reflecting band-limited oscillatory 
activity. Interestingly, power in these distinct frequency bands is in 
turn also modulated over time with a predominance of very slow 

Introduction
Our review is based on the premise that – just as man-made architec-
tures (and probably even more so) – the nature of biological systems 
is best understood by jointly considering their form and function. 
We will attempt to apply this view to ongoing brain activity. Our 
review of the form of ongoing or “spontaneous” brain activity will 
cover its temporal and spatial structure. Instead of attempting to 
be exhaustive in this respect, we will selectively emphasize some 
aspects mainly for two reasons; first, because we feel they may be 
under-represented in a field that is currently dominated by the 
notion of “resting state networks”; second, because we feel that 
these aspects are helpful when pondering the function of ongoing 
activity. In the second part of our review, function will then be the 
theme developed in more detail. We will focus on cognitive conse-
quences of ongoing activity fluctuations, for the simple reason that 
they permit the most direct probes of functional significance for 
a phenomenon that is no longer fully “spontaneous” when bound 
into a context so as to measure function. Across this analysis of form 
and function we will then discuss how one theoretical framework, 
that of “free energy” introduced by one of us (Friston, 2005), may 
provide important clues for understanding the nature of ongoing 
brain activity. Our review will mainly concentrate on the human 
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Ongoing brain activity has been observed since the earliest neurophysiological recordings and 
is found over a wide range of temporal and spatial scales. It is characterized by remarkably large 
spontaneous modulations. Here, we review evidence for the functional role of these ongoing 
activity fluctuations and argue that they constitute an essential property of the neural architecture 
underlying cognition. The role of spontaneous activity fluctuations is probably best understood 
when considering both their spatiotemporal structure and their functional impact on cognition. 
We first briefly argue against a “segregationist” view on ongoing activity, both in time and space, 
which would selectively associate certain frequency bands or levels of spatial organization with 
specific functional roles. Instead, we emphasize the functional importance of the full range, from 
differentiation to integration, of intrinsic activity within a hierarchical spatiotemporal structure. 
We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that 
suggest its involvement in functionally relevant information processing. This role in information 
processing is pursued by reviewing how ongoing brain activity interacts with afferent and 
efferent information exchange of the brain with its environment. We focus on the relationship 
between the variability of ongoing and evoked brain activity, and review recent reports that tie 
ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these 
observations are discussed within the framework of the free-energy principle which – applied to 
human brain function – provides a theoretical account for a non-random, coordinated interaction 
of ongoing and evoked activity in perception and behavior.
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also focused on the only paradigm which permits an apparently 
unambiguous assignment of signal variations to ongoing brain activ-
ity; namely, the “resting state”. Despite concerns about contributions 
from technical and physiological noise, the rationale of these so-
called resting-state functional connectivity studies has been validated 
by concurrent electrophysiological recordings. In particular, it has 
been established that slow fluctuations in power of band-limited 
oscillations can be directly linked to the ongoing activity fluctuations 
observed with fMRI (Shmuel and Leopold, 2008) and involve similar 
distributed spatial structures (Laufs et al., 2003).

With this functional imaging approach, it is now well established 
that spontaneous brain activity fluctuations are spatially organized 
into a largely reproducible structure. The emphasis in a (large) lit-
erature, whose review is beyond the scope of this article, has been 
to define anatomically such resting-state or intrinsic functional 
connectivity networks (ICNs). We will adopt the latter terminology 
because there is reason to believe that similar correlational structures 
persist even when subjects are exposed to vivid sensory stimulation 
(Golland et al., 2007). The definition of ICNs revolves essentially 
around two issues, that of constituent regions and that of boundaries. 
And this definition has relied on two approaches, one hypothesis-
driven as exemplified in analysis of functional connectivity with a 
so-called seed region (e.g., Biswal et al., 1997; Greicius et al., 2003), 
the other data-driven as exemplified by independent component 
analyses (e.g., Beckmann et al., 2005). The ultimate goal of these 
analyses is to derive an anatomical segregation from the recordings of 
ongoing brain activity fluctuations. Notwithstanding a great degree 
of convergence and robustness across many different laboratories, 
both of these approaches have proven to be heavily influenced by 
user-dependent settings. What such settings usually express is the 
user’s expectation regarding the degree of modularity in ongoing 
brain activity. While some laboratories emphasize big dichotomies 
(e.g., Fox et al., 2006b; Golland et al., 2008), others seek to establish 
a fine-grained differentiation (e.g., Margulies et al., 2007).

In this context, we would like to emphasize that the actual data 
structure does not suggest clear-cut modularity but only a gradual 
differentiation. The reason for such graded modularity is that the 
correlational structure of ongoing activity is bound together in a 
hierarchy. This structure is probably best thought of as a tree with 
the underlying activity correlations displaying a hierarchy from glo-
bal to local levels (Ferrarini et al., 2009). These levels of organization 
range from the entirety of gray matter as the trunk, over systems 
of regions as the branches to within-region correlations as the foli-
age (Marrelec et al., 2008; Meunier et al., 2009). In fact, the strong 
presence of variance shared across all local levels and reflected in 
global gray matter (Schölvinck et al., 2010) correlation has led to 
considerable confusion regarding the degree of diversification or 
antagonism that can be observed across different ICNs (Fox et al., 
2009; Murphy et al., 2009). ICNs can be considered a mid-level 
cross-section of this hierarchical tree where regions within an ICN 
share a lot of variance and where this variance is sufficiently distinct 
from that expressed in other ICNs to draw a separating line. As 
a function of whether one emphasizes similarity or distinctness 
of local variations in ongoing activity, data-driven analyses will 
produce quite different numbers of ICNs (e.g., Varoquaux et al., 
2010). In our metaphor, this corresponds to the distance of the 
cross-section from the ground.

frequencies (Leopold et al., 2003; Nir et al., 2008). Descriptively, it 
has been shown that there is a coupling or nesting of the higher-
frequency electrical activity into the infra-slow (usually defined as 
<0.1 Hz) fluctuations (Vanhatalo et al., 2004; He et al., 2010) but 
the mechanisms and directionality of this relation are not yet fully 
understood. Studies comparing invasive electrophysiological record-
ings with functional neuroimaging results have obtained evidence 
of coupling between hemodynamic signals and both slow cortical 
potentials (He et al., 2008) as well as power of high-frequency band-
limited activity, both evoked and spontaneous (Nir et al., 2007; Shmuel 
and Leopold, 2008).

We conclude from these observations that the temporal proper-
ties of ongoing activity can serve to warn us against a preoccupa-
tion with the “millisecond range” when studying brain function. 
Yet, assuming a conservative stance, we also conclude that there 
is currently no reason for a rebound into a view where infra-slow 
fluctuations in a specific frequency range could be considered a 
distinct entity of neural processes, other than those active in the 
processing of, for instance, sensory events. Studies using fMRI 
have established an apparent predominance of slow fluctuations 
in ongoing brain activity but there are several caveats to be borne in 
mind. First, the issue of whether the actual neural activity reflected 
in the hemodynamic signals shows power law scaling as in electri-
cal recordings is still being debated (Cole et al., 2010). It is certain 
that the low pass filter characteristics of hemodynamic signals only 
permit tracking of slow neural activity modulations, cutting off 
little above the range of the infra-slow frequencies. And there are 
additional concerns related to the fact that – in spite of quantitative 
differences – even “BOLD signal” variations from a water phantom 
can readily manifest power law scaling due to properties of the 
MRI scanner (Zarahn et al., 1997; but see also Fox et al., 2007). It 
has also not been established that the spatial pattern of functional 
connectivity depends on the temporal scale under consideration, 
other than obvious effects related to signal power.

Together, we suggest thinking of the presently available evidence 
as an indication that brain activity over time may display at least 
partially scale-invariant characteristics. Such pink noise or power 
law scaling is not a privilege of the brain or even of biological systems 
but a feature of many if not all complex systems (Mandelbrot, 1998). 
Its ubiquitous presence does not denigrate its importance though. 
Regarding the brain, several researchers have emphasized the impor-
tance of this temporal structure for endowing neural processes with 
an inherent long-term memory (Linkenkaer-Hansen et al., 2001; 
Buzsáki, 2006). The memory function in this view does not reside in 
a specific frequency range but merely has a holistic pattern. However, 
for an alternative opinion and a more differentiated discussion of 
these issues we refer readers to a recent review by Raichle (2010).

The spatial structure of ongoing brain activity
Our main point in the previous section was to review the literature 
that safeguards us against a temporal “segregationist” view. We believe 
that there is a similar danger in the spatial domain. The reason why 
many laboratories have focused on infra-slow fluctuations is that 
due to their power and their at least partial distinctness from other, 
namely “noise” signal sources in functional neuroimaging, these 
fluctuations have proven useful for studying the spatial structure 
of ongoing brain activity. Such functional connectivity studies have 
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similar to what we emphasized in the temporal domain, ongoing 
activity variations also show a nested structure in the spatial domain 
that expresses an embedding of modularity into a hierarchy.

The function of ongoing brain activity
Functional connectivity, structural connectivity and 
cognitive context
The difficulties in adequately capturing the spatiotemporal form 
of intrinsic brain activity that we have discussed in the previous 
section should not be thought of as mere empty battles of nomen-
clature. This form is important when pondering the function of 
intrinsic activity, and any proposal with respect to this function 
will be benchmarked against its potential for accounting for this 
spatiotemporal structure. The perspective that we have proposed 
in the previous section for functional connectivity is reminiscent 
of descriptions of structural brain connectivity and we have already 
appealed to these similarities in the tree metaphor (Bullmore and 
Sporns, 2009). A hypothesis about what determines the form of 
ongoing brain activity that ensues is that intrinsic functional con-
nectivity simply reflects some neural “noise” that plays out on a 
non-random structural connectivity; and therefore takes on the 
shape of a limited set of spatial patterns (i.e., dynamics on struc-
ture). Indeed, computational simulations of functional connec-
tivity using noisy input generate functional covariance patterns 
that reflect underlying structural circuitry (Sporns et al., 2000). 
And empirical evidence has been reported showing strong cor-
respondence of intrinsic functional and anatomical connectivity 
(Skudlarski et al., 2008; Greicius et al., 2009). In more comprehen-
sive investigations, at the level of the entire brain, this match has 
been confirmed but systematic quantitative analysis also revealed 
that it is not perfect. In other words, structural connectivity permit-
ted only a partial prediction of the empirically observed functional 
connectivity (Honey et al., 2009). Of course, the imperfection in 
predicting functional from structural connectivity could simply 
reflect limitations in the methods applied for data acquisition and 
analysis. Yet, an important alternative hypothesis is that with under-
lying structural connectivity as a backbone functional connectivity 
is shaped by additional context-dependent modulation.

At first glance, this hypothesis seems to be at odds with the per-
sistence of spatial ICN patterns across different levels of context and 
consciousness, from task- and stimulus-induced active states (Fair 
et al., 2007; Golland et al., 2007; Eckert et al., 2008), over resting wake-
fulness (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005), light 
and deep sleep (Horovitz et al., 2007, 2009; Nir et al., 2008), light seda-
tion (Greicius et al., 2008), to deep anesthesia in monkeys (Vincent 
et al., 2007) and severe disorders of consciousness as in vegetative state 
patients (Boly et al., 2009). Furthermore, the finding of robust intrinsic 
activity patterns in the absence of consciousness also suggests that 
intrinsic activity fluctuations cannot be considered merely or entirely 
the neural correlates of conscious, mentation or mind-wandering that 
in the absence of an explicit task paradigm simply remains experi-
mentally uncontrolled (Buckner and Vincent, 2007).

However, evidence in favor of the hypothesis that ongoing brain 
activity is in fact context-sensitive has now been accumulated by a 
range of studies. Although functional connectivity patterns persist 
qualitatively across wide ranges of different functional contexts, 
as mentioned above, they do nonetheless express quantitative 

As a consequence of the hierarchical organization of ongoing 
activity, raising the level of cross-section higher from the ground 
will yield more fine-grained subdivisions of networks both at 
anatomical and functional connectivity levels. As an example, 
the postero-medial part of the most extensively studied ICN, the 
default-mode network, has recently been subdivided into three pre-
cuneus parts and a posterior cingulate part on the basis of distinct 
large-scale intrinsic connectivity patterns, each of which suggest 
different functional roles (Margulies et al., 2009). Another example 
involves the difficulty in anatomical and functional definition of 
the so-called “task-positive” system. An initially useful step was 
to distinguish the “task-negative” default-mode ICN from “task-
positive” regions, the latter referring to a large set of regions showing 
activation in most types of cognitive paradigms (Fox et al., 2005). 
Using seed regions in the dorsal attention network, the resulting 
intrinsic connectivity system was not confined to the dorsal atten-
tion system as defined in paradigm-based studies (Corbetta and 
Shulman, 2002) but due to shared variance also included anterior 
insula/frontal operculum, anterior prefrontal cortex, and infero-
lateral parietal and frontal areas. These additional areas partially 
overlap with an added ICN, termed the fronto-parietal control 
system conceptualized to serve cognitive control (Vincent et al., 
2008). Conversely, other studies dissected cognitive control func-
tions into two distinct ICNs, a cingulo-insular-thalamic and a lat-
eral parieto-frontal network for sustained vs. adaptive/executive 
cognitive control, respectively (Dosenbach et al., 2006, 2007; Seeley 
et al., 2007). These findings clarify that the hierarchically embedded 
levels of spatial structure in intrinsic connectivity range down to 
sub-network and ultimately sub-region correlations. In fact, albeit 
on a different temporal scale, such patterns can even be recovered 
within single areas, and align with their mesoscopic functional 
architecture (Kenet et al., 2003).

Over and above the issue of modularity, defining ICNs in terms 
of anatomical boundaries has also proven difficult. This difficulty 
is largely due to the fact that “networks” are not clear-cut and rigid 
sets of constituent regions. Rather, the term “network” should be 
thought of as a gradual clustering according to a similar activity 
profile. As such, this term can of course help to interpret, commu-
nicate and compare experimental results but should not mislead 
to consider networks as strictly segregated. The spatial patterns 
are susceptible to precise positioning of seed regions and it has for 
instance been demonstrated that there are fairly smooth transi-
tional zones between ICNs (Cohen et al., 2008). Even though some 
of these difficulties may be due to the intrinsic spatial smoothness 
of hemodynamic signals rather than underlying neural architecture, 
such observations may account for observed discrepancies. With 
respect to the task-positive regions however, these difficulties also 
stem from the existence of an ensemble of several interconnected 
task-positive ICNs. Accordingly, the labeling issue becomes most 
critical for connection hubs such as the anterior insula (Sterzer and 
Kleinschmidt, 2010) which has been suggested to orchestrate activ-
ity across different ICNs (Sridharan et al., 2008). In addition to the 
ICNs discussed above, the anterior insula has also been character-
ized as a major node in a right-lateralized ventral attention system 
(Eckert et al., 2008). This latter system (Fox et al., 2006b) in turn 
widely overlaps with the aforementioned control systems, especially 
the lateral fronto-parietal subsystem. Together, we conclude that 
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in ongoing activity can account for behavioral variability. From the 
previous sections we can derive the following predictions for such 
an account: (1) ongoing activity should affect behavior with a time 
constant that is sufficiently slow to be captured by hemodynamic 
signals. (2) The spatial pattern within which ongoing activity affects 
behavior should be context-dependent and should be detectable 
precisely at that position within a hierarchical structure that best 
matches the functional demands of a given context. In the fol-
lowing, we review evidence for both predictions from recent neu-
roimaging studies.

Two lines of earlier research suggested that there might indeed 
be a link between ongoing activity fluctuations and behavioral vari-
ability. One is that behavioral performance when repeating the same 
task over and over again shows fluctuations with a qualitatively 
similar temporal profile as ongoing activity, i.e., high power at 
low frequencies (Gilden, 2001). The other is that neural responses 
evoked by identical stimuli fluctuate over time. The latter effect 
has been very explicitly tied to ongoing activity fluctuations by 
examining the dependence of evoked response variations on trial-
by-trial fluctuations of pre-stimulus activity levels. In an influential 
study, Arieli et al. (1996) investigated ongoing and stimulus-evoked 
activity with concurrent optical and electrophysiological methods 
in anesthetized cats. They found that variability of evoked responses 
could be largely accounted for by the initial level of ongoing activ-
ity just prior to stimulus onset. Their data show a linear relation-
ship between ongoing activity immediately before stimulation 
and evoked activity levels. Simply adding the averaged stimulus-
related activity increment to the pattern of ongoing activity in an 
individual trial provided an excellent prediction of the actually 
measured activity level during the evoked response in that trial. 
Recently, several functional neuroimaging studies have not only 
revisited this issue but also established links between neural and 
behavioral variability.

Functional imaging findings
At a very different spatial and temporal resolution than Arieli 
et al., Fox et al. (2006a) made a similar observation using fMRI. 
They found that trial-to-trial variability of finger movement-
related activity in motor cortex could be largely accounted for 
by ongoing activity fluctuations measured in the contralateral 
motor cortex, the one ipsilateral to the finger that was moved 
(Figure 1). Their clever approach tackled the problem that the 
relative contribution of ongoing and task-related activity can-
not be separated by analyzing activity in the task-relevant region 
during the evoked response. By removing trial by trial the simul-
taneously recorded activity level in a region that belongs to the 
same ICN but was not engaged by the task from the signal in the 
task-relevant region they “cleaned away” the ongoing and retained 
the evoked component.

From the perspective of data analysis in functional imaging, 
this procedure is very attractive. It suggests that averaging across 
trials provides a good way for estimating a veridical evoked activity 
change, the response, and that the latter shows little if any variability. 
And removing the variability related to ongoing activity and hence 
tightening the residual variability of the evoked response estimate 
yields a clear-cut gain in statistical sensitivity. Yet, the same group 
established in a subsequent study that the trial-by-trial variability 

changes. They differ for instance quantitatively between the healthy 
awake brain and the brain in a state of pathological unconscious-
ness, where functional connectivity within the so-called default-
mode network decreases with the degree of consciousness; across 
minimally conscious state, vegetative state and ultimately coma 
(Vanhaudenhuyse et al., 2010). They also differ quantitatively in 
the healthy brain between wakefulness and deep (slow-wave) sleep, 
a state of physiological unconsciousness (Horovitz et al., 2009). It 
is noteworthy that the reduction in connectivity between posterior 
and frontal areas of the default-mode network during sleep is ana-
tomically selective, and that fluctuation amplitudes within regions 
remain unchanged. This result makes it unlikely that modulations 
in intrinsic connectivity simply reflect a change of noise levels 
propagating through an anatomically connected system.

And even during the state of wakefulness (and on a shorter time 
scale) intrinsic connectivity patterns express differences that can 
be related to recent cognitive experience. Over the course of one 
scanning session, i.e., a time span that in all likelihood does not 
involve gross structural connectivity changes, adaptive modulation 
of intrinsic functional connectivity has been reported after visuo-
motor learning (Albert et al., 2009), episodic memory (Tambini 
et al., 2010) and language tasks (Waites et al., 2005; Hasson et al., 
2009). These findings show that functional context interacts 
with the expression of intrinsic activity and thus motivates fur-
ther experimental investigation of the functional significance of 
intrinsic activity.

A common critique of these latter studies is that they might 
collapse “true intrinsic” activity with reverberating traces of previ-
ous cognitive experience. Of course, the same critique holds for 
“pure” resting-state studies during wakefulness, because they at 
least include task-unrelated mind-wandering that constitutes an 
ongoing cognitive content (Mason et  al., 2007; Christoff et  al., 
2009) and by its very nature cannot be considered to lack context. 
The only way to dissociate “true intrinsic” activity from more spe-
cifically context-related neural processes would be if there were 
spatiotemporal hallmarks selectively tagging intrinsic activity. Our 
review of its temporal and spatial form, however, suggests, at least 
to us, that no such properties can currently be identified with 
confidence. Alternatively, one may question whether such disso-
ciation is inevitably justified and necessary and this leads one to 
consider the actual function of ongoing activity. We propose that 
its function is intimately related to cognition, and this relation is 
inherent to the brain, be it in a “resting” or active state. This pro-
posal could seem at odds with the studies that we have discussed 
above and that show qualitative spatial correspondence between 
ICNs across very different functional brain states. But it is as true 
that ICNs strongly resemble spatial patterns with sets of regions 
that typically co-activate (or deactivate) in cognitive activation 
studies as a function of the paradigm (Smith et  al., 2009). We 
therefore argue that function cannot be assigned purely on the 
basis of spatial patterns.

Cognitive consequences of spontaneous activity 
fluctuations
In this section, we review a different way of addressing the function 
of ongoing activity. In this approach, the functional consequences 
of ongoing activity are assessed by studying whether fluctuations 
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“task-positive” behavior in a wide range of cognitive task settings 
(Corbetta et  al., 2002; Smith et  al., 2009). Conversely, on trials 
where subjects missed the threshold stimulus, pre-stimulus activity 
levels were higher in posterior cingulate (PCC), parahippocampal 
and lateral parietal components of the default-mode network. This 
latter network is known to show deactivation or “task-negative” 
behavior in most task settings (Gusnard and Raichle, 2001).

Taken together, these observations could further support a sim-
ple dichotomy in which higher ongoing activity in “task-positive” 
brain networks would facilitate perceptual performance whereas 
higher activity levels in the default-mode network would degrade 
performance. A recent study speaks against the generality of this 
scenario by showing that functional context determines in which 
brain regions ongoing activity will affect perceptual perform-
ance and whether this will be a facilitating or detrimental effect 
(Sadaghiani et al., 2009). In a free-response, auditory detection task, 
we presented broad-band noise stimuli in unpredictable intervals 
of 20–40 s and at individual detection threshold. Subjects pressed a 
button whenever they perceived the target sound. Successful detec-
tion as compared to misses was preceded by significantly higher 
pre-stimulus activity in early auditory cortex (Figure 3A) as well 
as in two ICNs. Perceptual performance was better with higher 
pre-stimulus activity in a network comprising thalamus, anterior 
insula and dACC, which suggests a role for this ICN in maintain-
ing alertness and task-set (Figure  2A). Conversely, and counter 
to common intuition, higher baseline activity in the dorsal atten-
tion system of parietal and frontal areas biased towards misses 
(Figure 2B) presumably expressing the lack of spatial connotation 
in our stimulus and task. The observation of opposite effects in 
these two task-positive ICNs shows that in spite of shared variance, 
the networks are sufficiently segregated to exert independent influ-
ences on perceptual outcome. And finally, higher baseline activity in 

in task-related motor cortex activation was functionally meaningful 
and translated into behavioral variability as measured by the force 
that subjects applied in different trials when pressing a response 
button (Fox et  al., 2007). In other words, the aforementioned 
procedure of removing inter-trial variability, albeit attractive from 
a signal processing perspective, is far less tempting for that line of 
research which seeks to establish neural correlates of behavior.

From a methodological point of view, a limitation of the afore-
mentioned approach is that it is grounded in the assumption that 
motor cortex ipsilateral to the moving finger is silent in this para-
digm. Indeed, distal upper limb movements are represented almost 
exclusively contralaterally but with greater force they involve co-
innervation of more proximal musculature, which in turn is repre-
sented more bilaterally in motor cortex (reviewed in Kleinschmidt 
and Toni, 2004). Other groups have therefore explored alternative 
approaches to the issue of whether ongoing activity fluctuations 
are functionally relevant. Instead of using simultaneously recorded 
signal in a region that belongs to the same ICN but is silent in a 
task context, several groups have taken pre-stimulus signal in the 
same region that will subsequently respond to a given stimulus as a 
measure of ongoing activity. This approach is hence similar to the 
one adopted by Arieli et al. (1996) but on a different time scale.

Boly et  al. (2007) investigated the perceptual impact of pre-
stimulus activity fluctuations in a somatosensory detection task. For 
somatosensory stimuli close to perceptual threshold pre-stimulus 
activity levels in large distributed systems resembling ICNs indicated 
whether or not a stimulus was perceived on a given trial. The system 
biasing towards perceiving the stimulus comprised the thalamus, 
dorsal anterior cingulate cortex (dACC) and anterior insula/infe-
rior frontal gyrus, as well as parieto-frontal areas including intra-
parietal sulcus and dorso-lateral prefrontal cortex. As discussed 
in the previous section, these areas commonly show activation or 

Figure 1 | Ongoing activity fluctuations account for variability in 
trial-to-trial evoked responses. Subjects pressed a response button with their 
right hand at long intervals (>14 s) in response to visual indication. (A) Left, i.e., 
task-invoked motor cortex; (B) right motor cortex; (C) left motor cortex after 
removal of activity from right motor cortex. Each curve corresponds to the raw 
time course of one trial for the same individual subject. The thick orange line 

represents the respective best-fit gamma function. The event-related activity in 
left motor cortex showed high trial-to-trial variability. Strong variability was 
likewise observed in the spontaneous activity in the other, i.e., right hemisphere 
and could account for a major portion of variance of the left hemispheric evoked 
responses on a trial-by-trial basis. Reprinted from Fox et al. (2006a) with 
permission from Nature Publishing Group.
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between two closely matched alternatives, generic contributions 
from ICNs become less important and that a pre-stimulus effect 
might only be detectable in a single task-relevant region (rather 
than throughout the entire network to which this region belongs). 
In this case, it would be purely local variations in activity and not 
those throughout a distributed system that would exert an influence 
(cf. previous section on hierarchical structure of ongoing activity). 
Such a mechanism would make it mandatory to estimate ongoing 
activity from pre-stimulus signal in the task-relevant region instead 
of from simultaneous signal in a reference region of the same ICN. 
Evidence for such a scenario has been provided by two separate but 
closely related experiments.

In a perceptual decision task on Rubin’s ambiguous vase-faces 
figure, subjects had to report on each trial whether they perceived 
the vase or the two faces in profile. The presentation of the stimuli 
was sparse at long and variable intervals (range 20–50 s), and the 
stimuli were presented only briefly (Hesselmann et  al., 2008b). 
Subjects reported face percepts on approximately half of the trials 
and vase percepts on the other trials. Higher pre-stimulus activ-
ity levels in the right fusiform face area (FFA), a region special-
ized for face processing, were found to bias towards the percept 
of faces rather than a vase (Figure 3B). This finding was later rep-
licated in the domain of visual motion perception (Hesselmann 
et al., 2008a). In this study, short events of random dot motion 
with near-threshold coherence levels were presented, and subjects 
indicated on each trial whether they perceived coherent or ran-
dom motion. Here, subjects’ perceptual decisions were biased by 

the precuneus/PCC region of the default-mode network preceded 
hits, which in turn yielded a biphasic response with a “task-positive” 
activation component preceding the typical but delayed deactiva-
tion (Figure 2C). At first glance, this finding might appear at odds 
with the existing literature but it probably reflects the importance 
of retrieving a memory template of the target for successful per-
formance on the continuous sensory input (Shannon and Buckner, 
2004; Daselaar et al., 2009).

Thus, in the context of a non-localized and non-semantic 
auditory stimulus and a task that depends on recognition mem-
ory but not spatial attention, the usual effects from activity in 
default-mode and dorsal spatial attention systems were reversed. 
Of note, the time courses of pre-stimulus effects in these two 
networks were very distinct, making it unlikely that signal change 
in one was simply (epiphenomenally) mirrored by that in the 
other. In other words, these opposite effects were presumably 
independent of one another rather than reflecting a hard-wired 
antagonism between these two ICNs that others have claimed 
based on the observation of intrinsic anticorrelation (Fox et al., 
2005). These findings highlight that context determines the influ-
ence ongoing fluctuations exert on stimulus processing and ulti-
mately perception.

It seems fair to posit that where and how ongoing activity fluc-
tuations impact on perceptual decisions depends on which sen-
sory features and cognitive faculties are relevant in a given context. 
Accordingly, one might expect that in perceptual decisions, which 
do not involve an all-or-none success of detection but a choice 

Figure 2 | Distributed ongoing activity fluctuations in large-scale ICNs 
impact perceptual performance. (A–C) Subjects performed a free-response 
auditory detection task (cf. Figure 3A). The pre-stimulus BOLD signal (dotted 
vertical line marking stimulus onset) from three ICNs (rendered on a canonical 
inflated cortical surface) was examined as a function of perceptual outcome. Hits 
were preceded by significantly higher pre-stimulus activity in the tonic alertness 

ICN (A) as well as the default-mode ICN (C) while higher pre-stimulus activity in 
the dorsal attention ICN (B) foreshadowed misses. Error bars represent standard 
error across subjects. Adapted with permission from Sadaghiani et al. (2009). For 
comparison with a somatosensory threshold detection task please cf. Figure 2 in 
Boly et al. (2008). This figure was not reprinted here due to fees requested by the 
publisher John Wiley and Sons for reprint permission.
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ing such observations in EEG frequency bands to the infra-slow 
frequency range covered by imaging studies comes from work by 
Palva and colleagues. They investigated pre-stimulus power fluc-
tuations using full-band EEG sensitive to infra-slow fluctuations 
(<0.1 Hz) in a somatosensory threshold detection task within a 
free-response setting. They found highest detection rates and short-
est reaction times to be associated with intermediate power levels 
(inverse u-shaped relation) of α, β and γ band oscillations over 
sensorimotor cortices, and with highest power of these bands over 
parietal electrodes (Linkenkaer-Hansen et al., 2004). Interestingly, 
in this task setting the phase of infra-slow fluctuations was found to 
be strongly correlated to the power of higher frequencies (1–40 Hz) 
and to be highly predictive of hits and misses on a trial-by-trial basis 
(Monto et  al., 2008). Recently, electrophysiological studies have 
not only shown power but also phase of band-limited oscillatory 
activity to affect perceptual performance. For example, trial-to-trial 
variability in perceptual outcome has been related to the phase of 
EEG α and θ band oscillations in visual threshold detection tasks 
(Busch et al., 2009; Mathewson et al., 2009).

The relation of ongoing and evoked neural activity
The above findings are important because they show that across many 
temporal scales variability in ongoing activity – which is commonly 
obscured by normalization to pre-stimulus baseline – contributes to 
the way in which the brain (and ultimately, the observer) responds 
to sensory stimuli. The imaging studies show that the topography of 

pre-stimulus activity levels in right middle temporal cortex (V5/
hMT+), a region crucially involved in the analysis and perception 
of wide-field coherent motion. Specifically, perception of coherent 
motion was preceded by significantly higher ongoing activity in 
V5/hMT+ (Figure 3C). In both experiments, no other task-related 
cortical regions showed a significant link between pre-stimulus 
activity and perceptual outcome.

Electro- and magnetoencephalographic findings
Electro- (EEG) and magnetoencephalography (MEG) studies 
have also established links between ongoing activity and behav-
ior. While less informative in terms of spatial localization, these 
studies have identified distinct oscillation bands that carry signals, 
which predict perceptual performance. Using MEG, Jensen and col-
leagues observed that visual discriminability of a threshold stimu-
lus decreased with an increase in pre-stimulus occipito-parietal α 
band power (van Dijk et al., 2008). Likewise, they reported that 
in a go no-go task false alarms were preceded by higher levels of 
α band power in the occipital cortex and bilateral somatosensory 
cortices (μ rhythm) as compared to correct withholds on no-go 
trials (Mazaheri et al., 2009). Not only responses to natural stimuli 
but also to artificial direct cortical stimulation are influenced by the 
power of ongoing oscillations: Using transcranial magnetic stimu-
lation, phosphene-perception was only induced following lower 
pre-stimulation α amplitudes (Romei et al., 2008), suggesting that 
occipital alpha power indexes cortical excitability. Evidence link-

Figure 3 | Local spontaneous variations in ongoing activity of specialized 
sensory regions impact perception. The upper part illustrates the paradigm: 
(A) auditory detection experiment: in a free-response setting subjects detected 
an auditory target stimulus presented at perceptual threshold. (B) Perceptual 
decision on an ambiguous figure: subjects reported either faces or vase 
perception in response to flashes of the faces-vase ambiguous figure.  
(C) Motion decision experiment: random dot motion was presented at motion 
coherence threshold and subjects decided trial by trial whether motion was 
coherent or random. In all experiments, trials followed at long and unpredictable 

intervals. In each experiment, the pre-stimulus BOLD signal (dotted vertical line 
marking stimulus onset) was examined as a function of perceptual outcome and 
sampled from accordingly specialized sensory areas. The corresponding regions 
of interest (early auditory cortex, FFA and hMT+, respectively) are presented on 
a canonical inflated cortical surface of the right hemisphere. In all experiments, 
higher pre-stimulus time course in the respective sensory region biased towards 
perceiving stimulus properties for which these regions are particularly sensitive. 
Error bars represent standard error across subjects. For more details see 
Hesselmann et al. (2008a,b); Sadaghiani et al. (2009).
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variability of evoked neural and perceptual responses to a single 
stimulus (or a group of equivalent stimuli) (Super et al., 2003; Sapir 
et  al., 2005; Thut et  al., 2006; Wyart and Tallon-Baudry, 2009). 
Typically, in these paradigms, a cue will appear that can indicate a 
task-relevant location or feature for a stimulus that will be presented 
after a brief but often variable delay. These studies in general try 
to understand which neural mechanisms underpin selective atten-
tion. As behavior and evoked responses are modulated by atten-
tion, variability in a cue-induced anticipatory signal that correlates 
with perceptual performance on the subsequent stimulus can be 
considered a neural signature of preparatory attention. Of course, 
this interpretation does not speak to the mechanism that generates 
this variability in the first place but only suggests that attentional 
preparation is subject to a variability of an unknown origin that is 
behaviorally relevant. The similarity of this conclusion with that 
from the aforementioned studies on spontaneous fluctuations sug-
gests a need for closer examination and comparison.

From our perspective, variability in cortical activity following 
an orientating cue presents a special case and currently remains 
ambiguous. One interpretation could be that this variability is the 
same as that seen in ongoing activity and that the cue will hence be 
more or less efficient, both neurally and perceptually, as a function of 
the state of the system prior to cueing. Another view could be that the 
neural response elicited by the cue could in itself be variable and that 
this variability translates into perceptual performance. As we have 
discussed previously, simply removing the effects of pre-cue baseline 
would not permit arbitrating between these two scenarios, since the 
amplitude of the cue response may be subject to interactions with 
pre-cue activity levels. However, analyses as those reviewed above 
that preserve pre-cue “baseline” signal fluctuations could be used 
to disambiguate the functional nature of cued settings.

Another line of comparison regards the interpretation of 
the cortical signal. If the pre-stimulus signal expresses a level of 
preparatory attention in studies using cues, does this permit the 
conclusion that in studies without cues fluctuations of ongoing 
activity can be thought of as fluctuations in attention? If one were 
to make this claim it would have to survive a couple of benchmark 
checks. The most important one is that evoked responses to tar-
get stimuli should be enhanced by attention. This enhancement 
could reflect anything between a true response gain as implied in 
earlier studies (Chawla et al., 1999) and a simple additive effect of 
fixed stimulus-driven increment in the presence of an increased 
background activity (Sylvester et  al., 2009). In both our studies 
addressing signal variations in the absence of cues, however, the 
opposite behavior was found. The higher pre-stimulus signal was, 
the smaller the actual incremental evoked response amplitude in 
regions that were critical to the percept on those trials, i.e., V5/
hMT+ for motion coherence detection (Figures  4A,B) and the 
FFA for face perception (Figures 4C,D).

Predictive coding and free-energy formulations
So how can these observations about intrinsic fluctuations be under-
stood functionally? We will address this under a predictive coding 
account of neuronal activity, given that cues furnish exogenous and 
explicit predictions. In what follows, it is important to realize that 
optimal predictions or expectations rest on two distinct processes. 
The first is predicting the content of a percept (e.g., what caused 

these effects is compatible with a hierarchical view on intrinsic brain 
activity and depends on context. In the two experiments discussed 
above, which involve fairly subtle perceptual decisions, we targeted 
areas that we considered likely to respond more strongly during 
one of the two possible perceptual interpretations of the ambigu-
ous stimuli used. Despite identical sensory input in each experi-
ment, we indeed confirmed that face-percept trials using the Rubin 
stimulus yielded higher evoked FFA responses and coherent-percept 
trials using the dot motion stimulus higher evoked hMT+ responses 
(Figures 3B,C). Together with the aforementioned effects observed 
in pre-stimulus signal these findings could be believed to confirm 
a behavior equivalent to the one in the study by Arieli et al. (1996) 
that we discussed above. In other words, a single stimulus would, 
on each trial, evoke a fixed activity increment which would add to 
the level of ongoing activity encountered on that trial. Variations in 
ongoing activity would then determine perceptual outcome by yield-
ing variations in peak activity that would, or not, pass a threshold 
required for a perceptual decision. By such a mechanism, even a 
simple additive relationship between ongoing and evoked activity 
could become functionally significant (note that we have to call on a 
threshold mechanism – which is by definition non-linear – to make 
a linear effect of ongoing activity functionally interesting).

The important consequence from such a mechanism – that also 
provides an easily testable hypothesis – would be that the relation 
between ongoing and evoked activity should not depend on per-
ceptual outcome because the latter would be determined solely by 
the peak activity of the response. We could reject this hypothesis 
in both experiments by showing a significant interaction between 
evoked and ongoing activity when predicting perceptual outcome. 
Specifically, peak and pre-stimulus activity levels in hMT+ correlated 
less when dot motion was perceived as coherent rather than random 
(Figures 4A,B). Likewise, peak activity levels in FFA were signifi-
cantly less correlated with pre-stimulus signal when subjects per-
ceived faces than when they reported a vase (Figures 4C,D). These 
observations show that the mechanism by which ongoing activity 
affects subsequent perception is independent from the one that can 
be observed during stimulus processing. In other words, the latter 
does not result from a mere passive propagation of effects preceding 
stimulus presentation. The theoretical implications of these findings 
for models of perceptual decision-making have been discussed in 
the respective publications (Hesselmann et al., 2008a,b). Yet, there is 
reason to believe that both linear (e.g., under anesthesia, Arieli et al., 
1996, or in passive viewing, Bianciardi et al., 2009) and non-linear 
interactions can be observed and future work will need to clarify 
which parameters determine the regime under which ongoing and 
evoked activity interact (see Kisley and Gerstein, 1999, for a study 
on changes in linearity as a function of depth of anesthesia).

The nature of ongoing brain activity
Comparing spontaneous fluctuations and variability after cueing
We have argued above that ongoing activity is modulated by cog-
nitive context and that spontaneous activity fluctuations can be 
thought of as fluctuations of an internal and predictive contextual 
representation. It therefore appears sensible to compare results from 
such studies with those where context has been explicitly modu-
lated by introducing cues that prepare for an upcoming cognitive 
challenge. Several studies have employed such cues to study the 

146

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 20  | 

Sadaghiani et al.	 Intrinsic activity and behavioral variability

Figure 4 | Percept-dependent and non-linear interaction of evoked 
responses with pre-stimulus baseline activity. Percept-dependent linear 
regression was performed between trial-by-trial pre-stimulus activity at −1.5 s 
and peak activity at 6 s relative to stimulus onset. For two independent 
experiments, the regression is illustrated for one representative single subject 
and the regression coefficient is given for the group. (A,B) The motion decision 
experiment (for stimuli cf. Figure 3C): coefficients were significantly larger than 
0 when motion was perceived as coherent (t11 = 3.55, p < 0.01) but not when it 

was perceived as random (t11 = 1.7, n.s.) and significantly different between the 
two perceptual outcomes (t11 = 3.24, p < 0.01, paired). Adapted with permission 
from Hesselmann et al. (2008a). (C,D) The face-vase decision experiment (cf. 
Figure 3B): likewise, coefficients showed a trend >0 when faces were 
perceived (t11 = 1.88, p = 0.087) but not when the vase was perceived 
(t11 = –1.06, n.s.). Importantly, they were significantly different between the two 
perceptual outcomes (t11 = 2.31, p < 0.05, paired). Dataset from Hesselmann et 
al. (2008b). All tests are two-sided t statistics.

the stimulus) and the second is properly inferring the uncertainty 
or precision of that prediction (e.g., the probabilistic context in 
which a stimulus appears). This difference is illustrated nicely by 
the difference between the effects of cueing and priming.

Cues are usually employed in attentional paradigms to guide 
predictions about task-relevant locations or features (context) but 
not about the actual target (content). In other words, knowing that 
a target will appear at a given location within the next couple of 

seconds does not provide any information about the content of 
the target’s features; e.g., whether a grating will be slanted to the 
left or right. Cues call for allocation of attentional resources to the 
appropriate sensory channels, without biasing to one outcome in 
these channels, or another. In what follows, we consider this in 
terms of optimizing the synaptic gain of selected channels. This may 
also help understand the electrophysiological correlates of non-
spatial attentional or perceptual processes; e.g., related to the feature 
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intrinsic fluctuations have been proposed as mathematical models 
of short-term memory (Bick and Rabinovich, 2009) and have been 
discussed explicitly in terms of free-energy minimization (Kiebel 
et al., 2009b).

It is important to realize that this interpretation does not restrict 
the role of ongoing activity to brain states that are accessible to 
introspection. The most basic version of this mechanism might be 
seen during the perception of music and speech, where, mathemati-
cally, the itinerant dynamics conform to stable heteroclinic channels 
that show winner-less competition (Seliger et al., 2003; Kiebel et al., 
2009a). However, these dynamics also manifest in the absence of 
sensory information – just because sensory inputs are not currently 
available does not mean that the brain models the world as having 
stopped. Important examples here include optimization (consoli-
dation) of synaptic strengths during sleep (Vyazovskiy et al., 2008; 
Diekelmann and Born, 2010). Another example is optimization or 
selection of competing internal models, using itinerant searches 
over different hypotheses (models) about the world. This view links 
itinerant (wandering) dynamics to “mind wandering” often invoked 
to explain resting-state fluctuations. This link provides a formal and 
precise role for ongoing itinerant activity that has been exploited in 
perception (e.g., Kiebel et al., 2009a) and planning (e.g., Namikawa 
and Tani, 2010). In machine learning and robotics, the itinerancy 
mandated by sensitivity to initial conditions and some forms of 
chaotic dynamics is now one of the main candidates for explaining 
how trajectories into the future are explored and selected. This fits 
comfortably with the notion that brain activity can be formulated 
in terms of itinerant dynamics (e.g., Tsuda, 2001). One important 
feature of itinerancy is that it enables ongoing activity to express 
fluctuations that ensure transitions between different (meta)stable 
neuronal states (Deco et al., 2009). Itinerant fluctuations of this 
activity reflect the dynamic nature of the underlying internal model 
that does not remain locked in a stationary mode but remains 
malleable by continuously exploring hypotheses regarding future 
experience and action. It is for this reason that functional connectiv-
ity measures, which describe the extent of wandering activity (and 
not stationary activity levels), provide such an informative descrip-
tion. Similar neural population behavior has also been observed 
on shorter temporal and smaller spatial scales (Wackermann et al., 
1993; Kenet et al., 2003).

Ongoing activity and precision
In free-energy formulations of predictive coding, a major contribu-
tor to measured neuronal activity is precision-weighted prediction 
error. This precision weighting is implemented by increases in syn-
aptic gain (cf. attentional modulation) so that prediction errors are 
boosted selectively according to the context established by predictions 
or cues). This means that fluctuating activity levels may reflect not 
just itinerant optimization of predictions but fluctuations in their 
precision. Evidence for this interpretation of ongoing activity fluc-
tuations (as a modulation in precision or gain afforded to afferent 
information) comes from investigations of false vs. correct perceptual 
inference. Intrinsic brain activity (as indexed by fMRI signal) could be 
interpreted as a correlate of sensory evidence in random walk or race 
models (in essence an extension of signal detection theory over time 
Smith and Ratcliff, 2004; Gold and Shadlen, 2007) or as a proxy for 
precision in free-energy formulations of predictive coding (Friston, 

class, in contrast to spatial attention (Wyart and Tallon-Baudry, 
2009). Conversely, sensory priming induces expectations about 
the content of sensory input, which we will assume is mediated by 
priming–dependent changes in synaptic activity and efficacy. In 
accord with this view, priming effects are associated with reduced 
evoked response amplitudes and are, of course, readily embraced 
by predictive coding accounts (Henson, 2003).

Recently, it has been proposed that a single fundamental prin-
ciple might govern brain activity underlying action, perception, 
attention and learning (Friston, 2005, 2009, 2010). In its most 
simple form, the free-energy principle states that the brain seeks 
to minimize surprise (more formally, the negative log-probability 
of a sensory outcome). This is achieved by continuously updating 
an internal model that generates top-down predictions of sensory 
input. Unexpected sensory inputs that cannot be “explained away” 
by an internal model of the current states of the world emerge 
as bottom-up prediction errors (hence predictive coding). These 
prediction errors are accumulated or assimilated by higher cortical 
areas to update the model and optimize its predictions. Perception 
rests on the optimization of top-down predictions (or, model) to 
best explain away the bottom-up prediction error caused by incom-
ing sensory information, a notion embraced by Bayesian formu-
lations (Kersten et al., 2004; Hohwy et al., 2008). In the present 
context, the free-energy formulation is of interest because it covers 
many observations about evoked responses but it is not confined to 
them. When applied to the specific issue of ongoing cortical activity 
and its relation to evoked responses (and subsequent perception), 
the free-energy principle can account for many reported empirical 
findings and yields further testable predictions.

The free-energy formulation (Friston, 2009) requires the brain 
to represent the causes of sensory input (by optimizing synaptic 
activity; i.e., perceptual inference), and its internal model of con-
textual and causal regularities (by optimizing short and long-term 
changes in synaptic gain and efficacy; i.e, attention and peceptual 
learning). Crucially, all changes in synaptic activity, gain and effi-
cacy minimize the same thing; namely free energy, which under 
some simplifying assumptions is just the amount of prediction 
error. In line with this view, Lewis et al. (2009) observed that inten-
sive training shapes intrinsic connectivity between visual areas and 
higher order frontal and parietal regions that presumably gener-
ate visuospatial top-down predictions. In terms of the distinction 
above, synaptic (neuronal) activity encodes the content percepts, 
while synaptic gain encodes contextual precision (cf. attentional 
gain). In what follows, we will consider ongoing activity as reflect-
ing neuronal activity that predicts the causes of sensory inputs 
and then turn to interpretations that cover fluctuations in synaptic 
gain or precision.

Ongoing activity and predictions
Perceptual inference and learning speaks to a general principle, 
according to which past experiences inform predictions of the 
future to optimize behavior. The idea that ongoing activity patterns 
reflect a historically informed internal model of causal dynamics 
in the world (that serves to generate predictions of future sen-
sory input) fits nicely with the role of neural “replay” in memory 
formation (Jeffery, 2004; Foster and Wilson, 2006). Indeed, the 
itinerant (wandering or searching) dynamics that characterize 
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attractive theoretical framework for a unified approach to a diver-
sity of neurophysiological observations, including those related to 
ongoing activity fluctuations.

Summary
In the recent years, intrinsic brain activity has become a new and entic-
ing focus of interest and research into brain function (Fox and Raichle, 
2007). In spite of conceptual concerns about studying unconstrained 
brain activity (Morcom and Fletcher, 2007a,b) studies of intrinsic 
brain activity during rest as well as in paradigm settings have proven 
very fruitful in understanding the functional role of ongoing activity 
and its relation to cognitive processes (Buckner et al., 2008; Greicius, 
2008; Hesselmann et al., 2008b; Sadaghiani et al., 2009).

Ongoing activity is organized in a functional architecture at 
various temporal and spatial scales (Kenet et  al., 2003; Bassett 
et  al., 2006; Meunier et  al., 2009). It has been established that 
evoked neural responses are embedded into this underlying 
functional architecture (Tsodyks et al., 1999) and cannot be fully 
understood in isolation from the context established by ongoing 
activity. Therefore, trial-to-trial variability in evoked responses is 
not just noise but a non-random function of network fluctuations 
(Fontanini and Katz, 2008). For this reason the current review of 
ongoing activity considered its spatiotemporal structure in relation 
to moment-to-moment variability in cognition.

2008). Crucially, these two accounts can be tested against findings in 
threshold detection paradigms discussed above (Hesselmann et al., 
2008a; Sadaghiani et al., 2009). The former (evidence accumulation) 
framework suggests high pre-stimulus activity (i.e., a high starting 
level for the random walk) will bias towards subsequent stimulus 
detection (true hits or false alarms). Conversely, the latter (predictive 
coding) framework suggests that high ongoing activity (i.e., precise 
prediction errors) will bias towards subsequently correct inference 
(hits or correct rejections). In two independent datasets, we recently 
found that pre-stimulus activity levels were associated with the lat-
ter perceptual outcome and hence support the interpretation of 
ongoing activity as reflecting the precision of perceptual inference 
(Hesselmann et al., 2010) (Figure 5).

The implementation of precision in the predictive coding frame-
work is necessitated by the presence of noise in environmental states 
or sensory input and plays a key role in regulating the reliability or 
relative weighting of bottom-up prediction errors against top-down 
predictions. Thus, this gain could represent a mechanism that is 
very suitable for mediating selective attention (Friston, 2009). Of 
note however, a shared final common neural pathway does not 
imply that fluctuations in ongoing activity necessarily reflect fluc-
tuations in attention (cf. the discussion of cueing paradigms in the 
previous section and itinerant optimization of neuronal activity 
above). In conclusion, the free-energy formulation presents an 

Figure 5 | Baseline activity levels in false vs. correct inferences are 
captured by the predictive coding framework. (A) Peristimulus fMRI signal 
time courses from the motion decision experiment: for stimuli and region of 
interest cf. Figure 3C. Hits and misses correspond to trials at threshold motion 
coherence level (on average 13%), while correct rejections and false alarms 
correspond to occasional trails with a quasi-random coherence level (1%). 
Pre-stimulus activity showed a main effect of accuracy, correct vs. incorrect 
(consistent with predictive coding), but no main effect of percept, coherent vs. 
incoherent (predicted by evidence accumulation). Pre-stimulus activity prior to 
hits was significantly greater than misses; and pre-stimulus activity in false 
alarms were significantly less than in correct rejects. (B) Peristimulus time 
courses from the auditory detection experiment: for stimuli and region of 

interest cf. Figure 3A. False alarms occurred occasionally when subjects 
reported to hear the target stimulus in the absence of stimulation. As assumed 
by predictive coding, false inference (false alarms and misses) were each 
preceded by significantly lower levels of activity in auditory cortex than 
veridical hits. Note that this free-response paradigm does not furnish correct 
rejection trials (i.e., subjects are not required to indicate the stimulus is 
absent). The gray ellipse covers the pre-stimulus period submitted to statistical 
testing. The time courses for hits and misses correspond to the respective 
time courses in Figure 3. However, note that only a subset of subjects that 
had a sufficient number of wrong inferences was included in this analysis. 
Error bars represent standard error across subjects. Adapted with permission 
from Hesselmann et al. (2010).
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With respect to structure, we emphasized that behaviorally 
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not seem restricted to clear-cut temporal or spatial scales. The 
spatial patterns of ICNs and the membership of constituent 
regions are gradual and display a global-to-local connectivity, 
reminiscent of small-world topologies (Bullmore and Sporns, 
2009). We further discussed that the strength of these correla-
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dynamics on structure).
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In general, functional brain maturation is much more  diffi cult 
to study than structural maturation because differences in observed 
brain activation can arise from differences in cognitive effort, expe-
rience, and strategy (Casey et al., 2005). This presents a signifi cant 
challenge for understanding the development of functional brain 
networks. The existing literature suggests that brain activation 
during a particular cognitive task tends to progress from more 
diffuse to more focal with age. Durston et al. (2006) were the 
fi rst to describe this notion of diffuse-to-focal changes in activa-
tion patterns in a longitudinal study of cognitive control. They 
demonstrated that over time, participants revealed an increase 
of magnitude of activation in key frontal areas with concomitant 
attenuation of activation in more widespread, nonspecifi c brain 
regions. They interpreted this to refl ect development of more 
effi cient processing. There is also evidence to suggest that with 
development, there are decreased demands on prefrontal cortex, 
with increased reliance on posterior brain regions (Rivera et al., 
2005). However, there is often a complex relationship between 
changes in brain activation related to performance differences ver-
sus those related to brain maturation, and it is often diffi cult to 
match children on performance (Tamm et al., 2002). Even in cases 
where children, adolescents and adults are matched on accuracy, 

INTRODUCTION
Over the past several decades, refi nements in neuroimaging meth-
ods have enabled signifi cant insights into human brain develop-
ment. It is now known that the human brain undergoes a protracted 
period of development during which changes occur at both the 
structural and functional levels. Structural neuroimaging studies 
have shown that while gray matter volume follows a regionally 
specifi c inverted U-shaped trajectory, white matter volume shows 
protracted increases with development (Lenroot and Giedd, 2006). 
This general principle affects sensorimotor and higher-order asso-
ciation cortices at different time points in development (Gogtay 
et al., 2004). These regressive (gray matter loss) and progressive 
(white matter increases) changes are related to cognitive develop-
ment (Casey et al., 2005). Age-related changes in cortical thickness 
have also been reported to show regional specifi city (Sowell et al., 
2004). Exactly how these structural changes impact functional brain 
maturation is less well understood.
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The fi rst study to use rsfMRI to study brain development was 
conducted in 2000. Curiously, subsequent rsfMRI studies in chil-
dren did not appear until 2006. The use of rsfMRI in developmental 
studies is clearly still in its infancy, and our review of the emerg-
ing literature is necessarily constrained by this limitation. Table 1 
summarizes current studies that have used rsfMRI to examine the 
typical and atypical development of functional brain networks. We 
begin with summaries of major fi ndings regarding brain matu-
ration from rsfMRI studies in neurotypical infants, children and 
adolescents. Within each section of the review, studies are grouped 
by analysis method employed, as the specifi c methods can have 
important implications for the interpretation of fi ndings. We next 
review contributions of rsfMRI to the study of neurodevelopmental 
disorders, focusing primarily on ADHD and ASD. Next, methodo-
logical issues related to the acquisition and analyses of rsfMRI data 
for developmental studies are discussed. We conclude by highlight-
ing outstanding issues in the fi eld and suggesting avenues for future 
research.

TYPICAL DEVELOPMENT: STUDIES IN INFANTS AND 
YOUNG CHILDREN
ROI SEED-BASED ANALYSIS
Region-of-interest (ROI) seed-based analysis is one of the two most 
widely used methods in analysis of rsfMRI data. The method is a 
hypothesis-driven approach that typically involves choosing one or 
more ROIs and examining their whole-brain functional connectiv-
ity, often using a regression or correlation model. Kiviniemi et al. 
(2000) used this method in the fi rst reported study of developing 
functional networks using rsfMRI. The authors studied children 
between 3 months and 10 years of age. During the scan partici-
pants were sedated with thiopental. Using one representative voxel 
time course from primary visual cortex, the authors demonstrated 
correlated activity within striate and extrastriate cortex as well as 
occipital cortices adjacent to primary visual cortex. This study dem-
onstrated that children as young as 3 months of age have stable 
visual networks, and that they can be detected in rsfMRI data.

Ethical concerns preclude the use of sedation in studies of typical 
development. The fi rst study to take advantage of natural sleep as a 
method to study brain function in young children was conducted 
by Redcay et al. (2007). The authors used an ROI-based approach 
and reported functional connectivity between superior temporal 
gyrus and medial and lateral prefrontal regions, as well as between 
occipital and parietal regions, in 2- to 4-year-old typically develop-
ing children during low-level auditory and visual stimulation. The 
extent to which these results refl ect task-related versus intrinsic 
functional connectivity is at present unclear. Nonetheless, this study 
highlights the utility of imaging during natural sleep to obtain high 
quality fMRI data from very young children, which would otherwise 
be impossible to collect in this age range.

Lin et al. (2008) took advantage of rsfMRI during natural sleep to 
study functional connectivity of primary motor, sensory, and visual 
areas in children between 2 weeks and 2 years of age while they 
were asleep. This study found that the percentage of brain volume 
exhibiting resting functional connectivity, and the strength of resting 
functional connectivity, increased non-uniformly from 2 weeks to 
2 years of age. The percentage of brain volume that showed resting 
functional connectivity in sensorimotor cortices was larger than that 

it is often impossible to control for  differences in reaction time 
(Kwon et al., 2002). Thus, while researchers typically attempt to 
control for performance-related issues in their studies, this is not 
always readily accomplished. The complex relationships between 
learning, experience, and development therefore make it diffi cult 
to uncover principles governing functional brain development, 
and complicate the interpretation of reported differences in brain 
activation between children and adults.

Resting-state fMRI (rsfMRI) offers a novel framework for 
studying the development of functional brain circuits, and in 
particular for better understanding the large-scale organization 
of the developing brain. This method is now increasingly used to 
complement traditional task-based fMRI. rsfMRI involves col-
lecting functional imaging data from participants as they lay in 
the MRI scanner, typically fi xating gaze on a cross-hair or with 
eyes closed, and refraining from engaging in any specifi c cognitive 
task. Since initial reports of coherent spontaneous low-frequency 
fl uctuations in BOLD signal within the somatomotor system in the 
absence of a specifi c task (Biswal et al., 1995), it has been widely 
demonstrated that brain networks that are engaged during cogni-
tive tasks can also be reliably identifi ed during resting states (Smith 
et al., 2009, see Fox and Raichle, 2007 for review). Resting-state 
functional connectivity uses spontaneous synchronized fl uctua-
tions in BOLD signal to determine tightly coupled functional 
brain networks independent of task-induced correlations. These 
spontaneous fl uctuations are posited to act to organize, coordi-
nate, and maintain functional brain systems (Fox and Raichle, 
2007; Raichle, 2010), and bias information processing (Greicius 
and Menon, 2004). The advantages of using rsfMRI in pediatric 
and clinical populations are that functional brain organization 
can be examined independent of task performance, and a full 
dataset can be collected in as little as 5 min (Van Dijk et al., 2009). 
Functional connectivity measures derived from rsfMRI data are 
particularly useful in studying age-related changes in the wiring 
of neural networks (Stevens, 2009; Supekar et al., 2009). Within- 
and between-subject measures computed from rsfMRI are quite 
consistent and reproducible (Damoiseaux et al., 2006; Shehzad 
et al., 2009). Because the resting-state scanning procedure places 
a minimal cognitive burden on the participant, and requires rela-
tively little time in the scanner compared to task fMRI studies, data 
can be collected from low-functioning and very young popula-
tions. A recent study of the fMRI success rate of children and 
adolescents reports that the success rate for completing an entire 
battery of experimental fMRI runs varied between 50 and 59% in 
patient populations such as attention-defi cit/hyperactivity disor-
der (ADHD) and autism spectrum disorder (ASD), and 69% for 
typically developing children (Yerys et al., 2009). As every pediatric 
neuroimaging researcher knows, excessive motion and fl oor task 
performance are issues that hinder successful scanning of young 
children, and account for signifi cant data loss. The use of rsfMRI 
data obviates the need for long scan sessions as well as concerns 
regarding task performance, thus is particularly well suited for 
studies of typical and atypical brain development. In addition, 
certain widely adopted methodological approaches to analyzing 
rsfMRI data [e.g., independent component analysis (ICA), dis-
cussed below] are quite successful at removing motion artifacts, 
resulting in signifi cantly less data loss.
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Table 1 | Summary of resting-state fMRI studies in infants, children and adolescents, including neurodevelopmental disorders.

Ages studied Authors Population Analyses Brain regions examined

4.29 ± 2.56 years Kiviniemi et al. (2000) Typically developing ROI-based FC Visual cortex

Neonates 2–4 weeks of age, 1-year-

olds, 2-year-olds

Lin et al. (2008) Typically developing ROI-based FC Motor, sensory, and visual networks

Visual experiment: 46.4 ± 6.7 

months; Auditory experiment: 

46.9 ± 9.7 months

Redcay et al. (2007) Typically developing ROI-based FC Superior temporal gyrus, occipital cortex

Range: 39 weeks and 1 day to 

44 weeks and 2 days (gestational 

age at MRI: 41 weeks)

Fransson et al. (2007) Typically developing ICA Somatosensory and motor cortices, 

temporal/inferior parietal cortex, posterior 

lateral and midline parietal cortex/lateral 

aspects of the cerebellum, medial and 

lateral sections of anterior prefrontal cortex

12.8 months Liu et al. (2008) Typically developing ICA Sensorimotor network

Neonates (24 ± 12 days); 1-year-olds 

(13 ± 1 month); 2-year-olds (25 ± 1 

month)

Gao et al. (2009) Typically developing ICA, graph 

theory

Default mode network

7–9 years; 10–15 years; 19–31 years Fair et al. (2008) Typically developing ROI-based FC, 

graph theory

Default mode network

Children: 10.6 ± 1.5 years; 

Adolescents: 15.4 ± 1.2 years; 

Adults: 22.4 ± 1.2 years

Kelly et al. (2009) Typically developing ROI-based FC Cingulate-based networks

12–30 years Stevens et al. (2009) Typically developing ICA, causality 

estimates

Whole-brain

Working memory: 7–11 years; Rest: 

9–12 years

Thomason et al. (2008) Typically developing ICA Default mode network

Children: 7–9 years, mean 8.6; 

Adolescents: 10–15 years, mean 

11.9; Adults: 20–31 years, mean 

24.1

Fair et al. (2007) Typically developing Graph theory Thirty-nine putative task-control regions 

within fronto-parietal and cingulo-opercular 

networks

Children: 7–9 years; Adult: 19–22 

years

Supekar et al. (2009) Typically developing Graph theory, 

white matter 

fi ber tracking

Whole-brain

7–31 years Fair et al. (2009) Typically developing Graph theory Cingulo-opercular, fronto-parietal, cerebellar, 

and default mode networks

Children: 7–9 years; Adult: 19–22 

years

Supekar et al. (2010) Typically developing ICA, white 

matter fi ber 

tracking

Default mode network

ADHD: 13.91 ± 0.35 years; Control: 

13.20 ± 0.56 years

Tian et al. (2006) ADHD ROI-based FC Dorsal anterior cingulate cortex

ADHD: 13.37 ± 1.49 years; Control: 

13.32 ± 0.95 years

Cao et al. (2006) ADHD ReHo Whole-brain

ADHD: 13.34 ± 1.44 years; Control: 

age-matched within 0.5 year

Zhu et al. (2008) ADHD ReHo, Fisher 

discriminative 

analysis

Whole-brain

ADHD: 13.0 ± 1.4 years; Control: 

13.1 ± 0.6 years

Zang et al. (2007) ADHD ALFF Whole-brain

ADHD: 13.48 ± 1.11 years; Control: 

13.19 ± 0.49 years

Tian et al. (2008) ADHD RSAI Whole-brain

ADHD: 13.3 ± 1.4 years; Control: 

13.2 ± 1.0 years

Cao et al. (2009) ADHD ROI-based FC Putamen

ADHD: 34.9 ± 9.9 years; Control: 

31.2 ± 9.0 years

Castellanos et al. 

(2008)

ADHD ROI-based FC Cingulate-based networks
(Continued)
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in the visual cortex for subjects 2 weeks of age and for 1-year-olds, 
but not for the 2-year-olds, suggesting that functional connectivity 
in sensorimotor networks precedes that in the visual networks. This 
study highlights the utility of rsfMRI for examining development of 
specifi c functional systems in infants and very young children. The 
fi ndings shed light on different developmental trajectories of distinct 
cortical networks underlying sensorimotor and visual processing.

ICA-BASED ANALYSIS
ICA, unlike ROI-based analysis, is a model-free, data-driven 
approach whereby four-dimensional fMRI data is decomposed 
into a set of independent one-dimensional time series and associ-
ated three-dimensional spatial maps which describe the temporal 
and spatial characteristics of the underlying signals or components 
(Beckmann et al., 2005). ICA is currently a widely used method for 
analyzing rsfMRI data (Calhoun et al., 2008).

In 2007, Fransson et al. studied resting-state activity in the brains 
of sedated sleeping infants under 1 year of age. Using ICA, fi ve 
distinct networks were identifi ed in the infant brain. These con-
sistent networks comprised (1) primary visual areas, (2) bilateral 
somatosensory and motor cortices, (3) bilateral temporal/infe-
rior parietal cortex including primary auditory cortex, (4) pos-
terior lateral and midline parts of the parietal cortex and lateral 
aspects of the cerebellum, and (5) medial and lateral sections of 
anterior prefrontal cortex. Intriguingly, these networks represent a 

 subset of those previously demonstrated to exist in the adult brain 
(Damoiseaux et al., 2006; De Luca et al., 2006), with the notable 
exception that the infant brain appeared to lack a component along 
the  anterior–posterior direction, despite the fact that transcallosal 
functional connectivity was intact at this very young age. The 
authors specifi cally noted that they did not detect an equivalent 
of the default mode network (DMN) in infants (Fransson et al., 
2007). The DMN is so named due to its uniquely high metabolic 
resting activity (Raichle et al., 2001) and characteristic deactivation 
during challenging cognitive tasks (Shulman et al., 1997). The net-
work includes posterior cingulate cortex (PCC), medial prefrontal 
cortex (MPFC), and bilateral inferior parietal lobule (IPL, Raichle 
et al., 2001). While the functions of this network are widely debated, 
there is growing evidence that it is involved in high level self-related 
(e.g., autobiographical and prospective memory) (Buckner and 
Carroll, 2007) or social cognitive (e.g., theory of mind and moral 
cognition) processes (Harrison et al., 2008). Fransson et al. (2007) 
suggest that the absence of this network in infants may be related to 
both immature anterior–posterior white matter connectivity and 
immature development of these cognitive processes.

In another study, Liu et al. (2008) studied functional connectivity 
of somatomotor areas in 1-year-old infants. They used ICA to detect 
a sensorimotor network, and reported greater intrahemispheric 
connectivity than interhemispheric connectivity within sensori-
motor areas. This fi nding is in line with the Fransson et al. (2007) 

ADHD: 34.9 ± 9.9 years; Control: 

31.2 ± 9.0 years

Uddin et al. (2008) ADHD NetHo Default mode network

ASD: 24 ± 10.6 years; control: 

24 ± 9.0 years

Cherkassky et al. 

(2006)

ASD ROI-based FC Posterior cingulate cortex, ventral anterior 

cingulate cortex, precuneus, paracentral 

lobule, bilateral medial/middle prefrontal 

cortex, bilateral inferior parietal cortex, 

bilateral parahippocampal gyrus, bilateral 

inferolateral temporal cortex (insula)

ASD: 26.5 ± 12.8 years; Control: 

27.5 ± 10.9 years

Kennedy et al. (2008) ASD ROI-based FC Task-positive (dorsal attention) network, 

task-negative (default mode) network

ASD: 26 ± 5.93 years; TD: 27 ± 6.1 

years

Monk et al. (2009) ASD ROI-based FC Default mode network

ASD: 15 ± 1.45 years; TD: 16 ± 1.44 

years

Weng et al. (2010) ASD ROI-based FC Default mode network

8 years Paakki et al. (2010) ASD ReHo Whole-brain

TS: 12.70 years (9.92–15.83); TD: 

12.69 years (10.42–15.75)

Church et al. (2009) Tourette syndrome ROI-based FC Thirty-nine putative task control regions 

within fronto-parietal and cingulo-opercular 

networks

MDD: 16.5 ± 0.95 years; TD: 

16.8 ± 1.5 years

Cullen et al. (2009) Depression ROI-based FC Subgenual ACC, amygdala, supragenual 

ACC

12.2 ± 2.1 years Thomason et al. (2009) BDNF met-allele 

carriers

ROI-based FC Default mode network, executive control 

network, salience network

ADHD, attention-defi cit/hyperactivity disorder; ALFF, amplitude of low-frequency fl uctuation; ASD, autism spectrum disorder; FC, functional connectivity; ICA, 
independent component analysis; MDD, major depressive disorder; NetHo, network homogeneity; ReHo, regional homogeneity; ROI, region-of-interest; RSAI, 
resting-state activity index; TD, typically developing.

Table 1 | (Continued)

Ages studied Authors Population Analyses Brain regions examined

156

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience www.frontiersin.org May 2010 | Volume 4 | Article 21 | 

Uddin et al. Development of functional brain networks

adults. Children showed marked decreases in connectivity along the 
anterior–posterior dimension, between the vmPFC and PCC, com-
pared to adults. To further examine differences in brain network 
structure between children and adults, the time series associated 
with 13 nodes within the DMN (such as left and right lateral parietal 
cortex, left and right parahippocampal gyrus, MPFC, and retrosple-
nial cortex) were correlated with each other. Comparison of correla-
tion matrices generated from child and adult rsfMRI data revealed 
that nodes within the DMN were sparsely connected in children, 
and strongly functionally connected in adults. Interestingly, in this 
age range, interhemispheric functional connections between homo-
topic regions were reported to be strong in children, as in adults.

In addition to providing detailed information about the connec-
tivity profi les of individual nodes, ROI-based analyses have aided 
in delineating regionally specifi c developmental changes within 
functionally heterogeneous brain regions. In a recent study, Kelly 
et al. (2009) examined the development of fi ve functionally distinct 
cingulate-based networks in children (age 11 years), adolescents 
(age 15) and young-adults (age 22). These networks have been 
previously characterized in adults (Margulies et al., 2007), and 
underscore the heterogeneous connectivity of subregions within 
the cingulate cortex. This study found that children demonstrated 
a more diffuse pattern of correlation with voxels proximal to the 
seed ROI, whereas adults exhibited more focal patterns of func-
tional connectivity, as well as a greater number of correlated voxels 
at long distances from the seed ROI. Adolescents exhibited inter-
mediate patterns of connectivity between the children and adults. 
Interestingly, connectivity of networks associated with social and 
emotional functions [based in subgenual anterior cingulate cortex 
(ACC) and vmPFC] exhibited the greatest developmental effects, 
while connectivity of networks associated with motor control and 
confl ict monitoring (dorsal ACC) did not differ greatly between 
the three groups (Kelly et al., 2009). This study demonstrates that 
rsfMRI data recapitulates two organizational principles of develop-
ment that have previously been proposed, namely the shift from 
diffuse to focal activity with age (Durston et al., 2006), and the 
development of motor systems preceding the development of sys-
tems underlying higher cognition (Chugani et al., 1987).

ICA-BASED ANALYSIS
Using an ICA analysis in conjunction with “causal density” esti-
mates, Stevens et al. (2009) characterized functional networks in 
100 participants ranging in age from 12 to 30 years. The authors 
identifi ed 13 components of interest and used Granger causality 
estimates to examine interactions between these networks. They 
report that mutual infl uences among networks decreased with age, 
and speculate that this refl ects stronger within-network connectiv-
ity and more effi cient between-network infl uences with develop-
ment. Interestingly, they also found age-related reductions in the 
strength of interaction between lateral prefrontal-parietal (execu-
tive control) circuits and networks identifi ed as resembling the 
DMN. They suggest that more segregated functioning of these sets 
of networks may allow greater processing fl exibility.

Thomason et al. (2008) identifi ed the DMN in 7- to 12-year-old 
children using both rsfMRI and examination of task-induced deac-
tivations. They report overlap between brain regions comprising 
the DMN as identifi ed by ICA applied to rsfMRI data, and regions 

study. This suggests a universal principle guiding  development of 
large-scale brain systems, namely that the development of intra-
hemispheric connectivity within local functional circuits precedes 
the development of interhemispheric connectivity.

GRAPH THEORETICAL AND NETWORK ANALYSIS
Graphs are data structures which have nodes and edges between 
the nodes (Bondy and Murty, 1976). Graph theoretical metrics 
such as clustering coeffi cient, path length, degree, and centrality 
provide quantitative measures to characterize large-scale networks 
represented as a graph (see Bullmore and Sporns, 2009 for a detailed 
review of various graph metrics and their interpretation). In a 
graphical representation of a brain network, a node corresponds 
to a brain region while an edge corresponds to the functional 
interactions between two brain regions. In recent years, there has 
been increasing interest in the use and application of graph metrics 
to characterize large-scale brain networks. This is in part due to 
the emergence and availability of rsfMRI data. In addition to the 
advantages described above, resting-state data allow, for the fi rst 
time, simultaneous in vivo examination of all brain regions and the 
intrinsic interactions among them. More importantly, patterns of 
resting-state correlations are thought to refl ect functional archi-
tecture of the brain (Hagmann et al., 2008; Margulies et al., 2009; 
van den Heuvel et al., 2009). Several studies have used graph theo-
retical approaches to characterize large-scale brain networks using 
rsfMRI. In adults, converging evidence from studies suggests that 
the adult brain has a robust and effi cient small-world architecture 
comprised of hubs with a high degree connectivity and a modu-
lar structure (see Bullmore and Sporns, 2009 for a comprehensive 
review). Developmental studies are beginning to examine how these 
network metrics change with age and cognitive skill.

In a developmental context, Gao et al. (2009) used a combination 
of graph theoretical analyses and ICA to examine a large-scale brain 
network (DMN) in healthy 2-week to 2-year-old sleeping children. 
They found a primitive and incomplete DMN in 2-week-olds, fol-
lowed by an increase in the number of brain regions exhibiting 
connectivity at 1 year of age. The DMN at 2 years of age began to 
resemble that observed in adults, in that it included MPFC, PCC/
retrosplenial (PCC/Rsp), IPL, lateral temporal cortex, and hippoc-
ampus. As previously discussed, this network is thought to subserve 
self-related and social cognitive processes (Uddin et al., 2007; Spreng 
et al., 2009). The authors then used a measure called “betweenness” 
centrality, a graph theoretical measure of node importance, to show 
that the PCC/Rsp nodes showed the most elevated centrality meas-
ure for all age groups. The PCC/Rsp node was consistently observed 
in both age groups, suggesting that this region may form a “hub” 
even at the earliest developmental stage. They also found that the 
MPFC showed elevated centrality measures, though not as high as 
the PCC/Rsp. They suggest that the MPFC emerges as a potential 
secondary hub starting at the age of 1.

TYPICAL DEVELOPMENT: STUDIES IN OLDER CHILDREN, 
ADOLESCENTS AND YOUNG-ADULTS
ROI SEED-BASED ANALYSIS
Fair et al. (2008) used ROI-based analyses to examine differential 
connectivity of the ventromedial prefrontal cortex (vmPFC) in a 
group of 7- to 9-year-old children compared to 21- to 31-year-old 
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connectivity patterns between children and adults. Notably, in chil-
dren, subcortical areas were more strongly connected with primary 
sensory, association, and paralimbic areas, whereas adults showed 
greater cortico-cortical connectivity between paralimbic, limbic, 
and association areas (Figure 1). This fi nding is in line with previ-
ous work demonstrating greater reliance on subcortical structures 
in children during cognitive tasks (Luna et al., 2001; Thomas et al., 
2004). Taken together these studies indicate that while the global 
functional organization of the human brain is similar in 7- to 9-
year-old children and adults, at the sub-network level, brain con-
nectivity undergoes signifi cant reorganization with development.

In summary, studies examining functional brain organization in 
infants, children, and adolescents have revealed consistent fi ndings 
with respect to the development of long distance connectivity and 
regional functional specialization. The ability to study very young 
children at critical developmental milestones is an advantage of 
the rsfMRI approach, which allows for the in vivo examination of 
intrinsic functional architecture across the entire brain. However, 
most of these studies have been conducted in older children, adoles-
cents and adults, and thus to date there is little known regarding how 
global or local network organization changes during the important 
developmental period from infancy to young childhood.

NEURODEVELOPMENTAL DISORDERS: STUDIES IN CHILDREN 
AND ADULTS
OVERVIEW
In addition to enabling unique insights into typical brain develop-
ment, rsfMRI has been used to explore potentially altered func-
tional connectivity associated with neurodevelopmental disorders. 
Unfortunately, the majority of these studies have not focused on 
infants and young children, an issue that is particularly pressing 
in early impact disorders such as ASD. Nonetheless, the theoreti-
cal and methodological progress that has resulted from studies of 
older children and adults is paving the way for similar studies in 
younger populations.

ATTENTION-DEFICIT/HYPERACTIVITY DISORDER
Several recent studies have focused on ADHD, although few consist-
ent fi ndings have emerged. An early study in adolescents found that 
patients with ADHD showed more signifi cant resting-state func-
tional connectivity between dorsal ACC and thalamus, cerebellum, 
insula, and brainstem (Tian et al., 2006). Using an approach termed 
“regional homogeneity” (ReHo), which measures the similarity of 
a voxel’s time series to its neighbors, it was reported that children 
with ADHD showed decreased ReHo in frontal–striatal– cerebellar 
circuits and increased ReHo in the occipital cortex (Cao et al., 
2006), suggesting disordered functional organization in circuits 
previously implicated in structural brain imaging studies of ADHD 
(Giedd et al., 2001). Classifi ers based on ReHo measures have been 
used to discriminate children with ADHD from controls with 85% 
accuracy (Zhu et al., 2008). Zang et al. (2007) showed that children 
with ADHD had decreased amplitude of low-frequency fl uctua-
tions (ALFF: 0.01–0.08 Hz) in the right inferior frontal cortex, left 
sensorimotor cortex, and bilateral cerebellum, and increased ALFF 
in the right ACC, left sensorimotor cortex, and bilateral brainstem. 
Using a measure incorporating ReHo and variance of LFF, Tian 
et al. (2008) found that adolescents with ADHD showed greater 

comprising the DMN as identifi ed by load-dependent deactivation 
during a working memory task. These DMN regions identifi ed by 
two methods overlapped with the regions previously reported in 
adults. They also found that cognitive measures collected outside 
the scanner correlated with BOLD decreases during the working 
memory tasks.

GRAPH THEORETICAL AND NETWORK ANALYSIS
In order to understand functional brain development, it is critical 
to investigate and characterize the underlying developmental proc-
esses that produce systematic changes in functional brain organiza-
tion. Fair et al. (2008) were the fi rst to examine this developmental 
process using rsfMRI. In a related study, they focused on a larger 
network comprised of 39 cortical regions involved in task-control 
(Fair et al., 2007a). This study reported a developmental proc-
ess trend towards “segregation” (general decrease in connectivity 
strength) between regions close in anatomical space and “integra-
tion” (increased connectivity strength) between specifi c regions 
distant in Euclidean space, within the 39-node network. More 
generally, the authors of these two studies argue that the organi-
zation of large-scale functional brain networks shifts from a local 
anatomical emphasis in children to a more distributed architecture 
in young-adults (Fair et al., 2009).

In contrast to examining developmental process within circum-
scribed network nodes, Supekar et al. (2009) investigated age-related 
functional connectivity changes across 90 cortical and subcorti-
cal regions that spanned the entire brain. More specifi cally, they 
analyzed inter-regional functional connectivity changes within this 
90-node whole-brain network in relation to distance between the 
regions. The inter-regional distance was measured using quantitative 
diffusion tensor imaging-based white matter tractography, rather 
than Euclidean distance between regions as used in the studies by 
Fair et al. (2007a). Additional analyses further revealed that adults 
have weaker short-range functional connectivity and stronger long-
range functional connectivity than do children. Taken together, the 
studies by Fair et al. (2007a, 2009), Kelly et al. (2009), and Supekar 
et al. (2009) suggest a developmental process of greater functional 
segregation in children and greater functional integration in adults 
at the whole-brain level, as well as in specifi c networks such as the 
attentional control network and the DMN.

Understanding how the functional organization of the human 
brain matures and evolves from childhood to adolescence to adult-
hood is fundamentally important for gaining insights into the mat-
uration of brain function. As described earlier, the graph theoretical 
approach is well suited for characterizing functional organization 
of the brain at multiple levels of granularity. At the global “whole-
brain” level, Supekar et al. (2009) reported that both 7- to 9-year-old 
children and 19- to 22-year-old adults exhibit small-world archi-
tecture characterized by high clustering and short path lengths. 
A small-world architecture was also revealed in a study of multiple 
functional networks involving distributed nodes conducted by Fair 
et al. (2009). These studies indicate that at the global level, the 
human brain is comprised of sub-networks of densely connected 
nodes, mostly connected by short path lengths. More importantly, 
these studies indicate that this robust organization is conserved from 
early childhood to adulthood. At the sub-network level, however, 
Supekar et al. (2009) found signifi cant differences in inter-regional 
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the precuneus and other DMN regions (Uddin et al., 2008). These 
fi ndings are in line with a theory positing that spontaneous patterns 
of very low frequency coherence within the DMN may intrude 
into periods of active task-specifi c processing, producing periodic 
fl uctuations in attention that compete with goal-directed activity 
in ADHD (Sonuga-Barke and Castellanos, 2007).

AUTISM SPECTRUM DISORDERS
Autism is another major neurodevelopmental disorder that has long 
been associated with disruptions in brain connectivity (Frith, 2004). 
Surprisingly, to date there have been no published reports of rsfMRI 
studies in children with ASD. However, a few studies have used this 
method to study adolescents and adults with ASD. Cherkassky et al. 
(2006) used an ROI-based approach to demonstrate functional 
underconnectivity in anterior–posterior connections in ASD. ASD is 
associated with altered socioemotional responses, which have been 
linked to the DMN. Kennedy and Courchesne (2008) showed, in a 
mixed group of adolescents and adults, disrupted intrinsic connec-
tivity in the DMN, but not the executive control network. Another 

resting-state activity than controls in basic sensory areas (bilateral 
BA 17/18/19, left BA 3, left BA 22, and bilateral thalamus). Yet 
another study reported putamen-specifi c functional connectiv-
ity abnormalities in ADHD, with group differences in putamen 
and cortical–striatal–thalamic circuits (Cao et al., 2009). Though 
intriguing, very few replicable fi ndings have emerged from these 
studies, perhaps due to the relatively small sample sizes and het-
erogeneity of symptomatology in the patients examined.

ADHD is known to be associated with attentional lapses 
(Castellanos et al., 2005), thus recent studies have begun to focus 
on understanding how circuitry within the ACC may contribute 
to the symptoms of the disorder. A study of 20 adults with ADHD 
and 20 matched controls found decreases in negative correlations 
between the anterior cingulate and precuneus/ PCC regions as well 
as decreases in connectivity between precuneus and other default 
mode network components, including vmPFC (Castellanos et al., 
2008). This fi nding was bolstered by similar results utilizing a dif-
ferent measure on the same dataset, which found reduced “network 
homogeneity” within the DMN in ADHD, particularly between 

FIGURE 1 | Graphical representation of developmental changes in 

functional connectivity along the posterior–anterior and ventral–dorsal 

axes, highlighting higher subcortical connectivity (subcortical nodes are 

shown in green) and lower paralimbic connectivity (paralimbic nodes are 

shown in gold) in children, compared to young-adults. Brain regions are 
plotted using the y and z coordinates of their centroids (in millimeter) in the MNI 

space. Four hundred and thirty pairs of anatomical regions showed signifi cantly 
higher correlations in children and 321 pairs showed signifi cantly higher 
correlations in young-adults (p < 0.005, FDR corrected). For illustration purposes, 
the plot shows differential connectivity that was most signifi cant, 105 pairs 
higher in children (indicated in red) and 53 higher in young-adults (indicated in 
blue) (p < 0.0001, FDR corrected). Adapted from Supekar et al. (2009).
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met- carriers, within the paralimbic network. Thus, genetic dif-
ferences can  contribute to functional connectivity differences at 
the systems-level. How these differences in functional connectivity 
infl uence memory function remains to be investigated.

METHODOLOGICAL ISSUES AND CHALLENGES
One of the primary challenges in pediatric neuroimaging is the 
fact that the procedure requires participants to remain motionless 
for an extended period of time. As this is particularly diffi cult for 
young children, especially for clinical populations such as children 
with ADHD or ASD, fMRI data often contains signifi cant motion 
artifacts, resulting in up to 50% data loss in some cases (Yerys 
et al., 2009). Two main solutions to this problem are currently 
implemented, one at the data collection level and one at the data 
processing level. Data acquisition protocols often include a “mock 
scanner” training session, during which children practice lying still 
in a scanner-like mockup. Post data acquisition, artifact correc-
tion algorithms can also be implemented to remove motion-related 
spikes in the data (Mazaika et al., 2007, 2009). Currently, these 
procedures are not universally utilized, and considerable variability 
exists between research centers with respect to criteria for inclusion 
of data containing motion artifacts. As previously discussed, one 
advantage of rsfMRI is that it requires very little time in the scanner, 
and thus can be more easily collected from young participants. In 
addition, resting-state data is often analyzed using ICA, as sum-
marized in the studies reviewed above. This analysis method may 
be helpful in effectively isolating motion-related artifacts as distinct 
independent components (Beckmann et al., 2005).

A second issue concerns the use of varied instructions to the 
participant during acquisition of rsfMRI data. By defi nition, 
 resting-state signal refl ects activity during a task-free (“rest”) state. 
Accordingly, most of the developmental studies reviewed here have 
used data collected while the participants were not performing any 
task. Although these data indeed refl ect resting conditions, a closer 
look indicates that participants were either instructed to fi xate on a 
cross-hair, or keep their eyes open while viewing a blank screen, or 
keep their eyes closed for the duration of the scan. A recent study, 
however, indicated that resting-state connectivity within the DMN 
and attention network was signifi cantly diminished in participants 
with eyes closed, compared to eyes open or a fi xation condition 
(Van Dijk et al., 2009).

An important related issue is the use of “rest blocks” within task 
data to conduct analyses typically performed on pure  resting-state 
data. Fair et al. (2007b) used rest blocks extracted from interleaved 
experimental task data in studies investigating developmental 
changes in intrinsic functional connectivity. Cherkassky et al. 
(2006) used a similar approach to investigate resting-state func-
tional connectivity in autism, as reviewed. Another group used 
residual signal obtained by regressing out task-evoked effects 
from an event-related task to study functional connectivity within 
fronto-parietal resting-state networks (He et al., 2007). Given the 
inherent resting-state connectivity differences even within various 
resting states, it is more than of academic interest to investigate how 
well these datasets relate to pure rsfMRI data. Fair et al. (2007b) 
investigated this issue by comparing resting-state functional con-
nectivity measures from data obtained from (1) residual data from 
event-related designs, (2) continuous resting-state data, (3) resting 

recent study replicated this fi nding of reduced DMN  connectivity, 
and further demonstrated that restricted and repetitive behaviors 
in ASD were correlated with the degree of connectivity between 
the PCC and right parahippocampal gyrus (Monk et al., 2009). 
This group went on to examine DMN connectivity in adolescents 
with ASD. They also found that relative to controls, adolescents 
with ASD showed weaker connectivity in nine of the eleven areas 
of the DMN that were analyzed. Additionally, poorer social skills 
and increases in restricted and repetitive behaviors and interests 
correlated with weaker connectivity, whereas poorer verbal and 
non-verbal communication correlated with stronger connectivity 
in multiple areas of the DMN. Compared to their study of adults 
with ASD, these fi ndings indicate that adolescents with ASD show 
even weaker connectivity in the DMN (Weng et al., 2010). Paakki 
et al. (2010) used the ReHo approach to study adolescents with 
ASD, and found that compared with the controls, the subjects with 
ASD had signifi cantly decreased ReHo in right superior temporal 
sulcus region, right inferior and middle frontal gyri, right insula and 
right postcentral gyrus. Signifi cantly increased ReHo was shown 
in left inferior frontal and anterior subcallosal gyrus (Paakki et al., 
2010). A study in neurotypical adults found that functional con-
nectivity between the anterior insula and ACC was related to social 
responsiveness (Di Martino et al., 2009). Future research is needed 
to examine how reduced functional connectivity between specifi c 
brain regions impacts symptom severity in young children and 
adolescents with ASD, and how these reductions infl uence defi cits 
in performance on tasks involving social information processing.

While rsfMRI studies relevant to understanding the neural 
basis of ASD are still in their infancy, they highlight the utility and 
value of this approach. In addition, these studies have identifi ed 
previously understudied candidate brain regions and large-scale 
networks of interest. In particular, we believe that the study of 
relationships between networks involved in self-related and social 
cognition (DMN), externally oriented attention (executive control) 
and switching between them should be particularly prioritized in 
future studies of ASD (Uddin and Menon, 2009).

OTHER NEURODEVELOPMENTAL DISORDERS AND GENETIC EFFECTS
Tourette syndrome (TS) is another pediatric disorder that has 
recently been studied using rsfMRI methods. Church et al. (2009) 
found that a fronto-parietal network involved in rapid, adaptive 
online control was weaker in adolescents with TS. Adolescents with 
major depressive disorder have decreased functional connectiv-
ity in a subgenual ACC-based neural network that includes the 
supragenual ACC, right medial frontal cortex, the left inferior and 
superior frontal cortex, superior temporal gyrus, and the insular 
cortex, areas involved in mediating emotion processing (Cullen 
et al., 2009).

Intriguingly, specifi c genetic polymorphisms have also been 
shown to affect resting-state functional connectivity measures in 
children (Thomason et al., 2009). BDNF gene variants, associated 
with alterations in brain anatomy and memory, appear to affect 
functional connectivity. Thomason et al. (2009) found a reduc-
tion in hippocampal and parahippocampal to cortical connec-
tivity in met-allele carriers within each of three resting networks 
(the default mode, executive, and paralimbic networks), as well as 
increased connectivity to amygdala, insula and striatal regions in 
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some concerns regarding the interpretation of the preprocessed 
data. For example, regressing out whole-brain signal has shown to 
introduce negative correlations (Murphy et al., 2009; Smith et al., 
2009; Van Dijk et al., 2009), though there is no reason to believe that 
all reported negative correlations are artifactual (Fox et al., 2009). 
Preprocessing including global signal correction has been shown 
to increase connection specifi city. However, as negative correla-
tions can be induced by this procedure, there is reason to interpret 
the directionality of these relations with caution especially when 
global regression is used (Weissenbacher et al., 2009). While these 
issues are a concern for all rsfMRI studies, not just those exploring 
developmental issues, the fi eld has not yet reached a consensus as 
to how to best minimize the effects of noise on these analyses.

SUMMARY AND FUTURE DIRECTIONS
In this review, we have summarized the current status of research 
utilizing rsfMRI to examine the typical and atypical development 
of functional brain circuits. Several key principles of human brain 
development are beginning to emerge from this literature. In partic-
ular, these studies suggest that intrahemispheric connectivity devel-
ops before interhemispheric connectivity (Fransson et al., 2007; Liu 
et al., 2008), and that anterior–posterior connectivity is slowest to 
develop (Kelly et al., 2009). Sensorimotor networks emerge early in 
infancy and appear to develop well before visual networks (Lin et al., 
2008). Whether this applies to other sensory systems remains to be 
investigated. Such investigations may provide important insights 
and have implications for cognitive development, specifi cally with 
respect to an infant’s early exploration of the world.

Beyond infancy, there is converging evidence from multiple 
studies suggesting that by age 7–9 children manifest a similar 
“small world” type of functional architecture at the whole-brain 
level as adults (Fair et al., 2009; Supekar et al., 2009). However, 
the organization of individual functional sub-networks as well as 
their interactions have a protracted developmental time course. 
This process is characterized by a number of developmental fea-
tures. First, children have stronger and more abundant connections 
between subcortical and cortical regions, while in young-adults, 
connections among cortical regions were more prominent. Second, 
the brains of young-adults are more hierarchically organized, with 
more regions involved in larger and longer-distance clusters of 
activity. Third, the development of large-scale brain networks is 
characterized by weakening of short-range functional connectivity 
and strengthening of long-range functional connectivity. Taken 
together, these fi ndings suggest that the dynamic process of over-
connectivity followed by pruning, which rewires connectivity at the 
neuronal level, also operates at the systems level and helps recon-
fi gure and rebalance cortical and subcortical connectivity in the 
developing brain (Supekar et al., 2009).

Several methodological issues remain to be addressed before 
the fi eld can move forward. These are thoroughly discussed and 
reviewed in another contribution to this Special Issue (Cole 
et al., 2010). It is our belief that the two main methodological 
approaches discussed here (ICA and seed-ROI based correla-
tion) each make important contributions to the study of intrinsic 
brain architecture, and can be used in a complementary fash-
ion to understand global and local functional properties of the 
developing brain.

data that was interleaved between task blocks, and (4) simulated 
interleaved resting data that was created using the continuous rest-
ing data set. They reported that the residual data set, the interleaved 
dataset, and the simulated interleaved dataset were mostly similar 
to the continuous resting state dataset, with some differences. The 
greatest caveats on interpretation of functional connectivity results 
were placed on the use of event-related data residuals (Fair et al., 
2007b).

Another issue concerns the current lack of studies examining 
test–retest reliability of resting-state data collected for developmen-
tal studies. While the patterns of resting-state functional connectiv-
ity have been shown to be reproducible across adult participants 
and scans (van de Ven et al., 2004; Damoiseaux et al., 2006), there 
is limited evidence about their test–retest reliability, particularly for 
the pediatric populations. In adults, Shehzad et al. (2009) reported 
that the test–retest reliability of resting-state functional connec-
tivity was high for signifi cant positive correlations and relatively 
low for non-signifi cant and negative correlations. Furthermore, 
they showed that the reliability for DMN connectivity was higher 
compared to task positive networks. Meindl et al. (2009) reported 
similar reproducibility results. They observed, across three scan 
sessions, higher reliability for DMN correlations and lower for 
non-DMN correlations. These results were further confi rmed by 
Zuo et al. (2010a,b). Although the results of these studies appear 
promising, Honey et al. (2009) recently raised concerns about the 
test–retest reliability of rsfMRI data. For individual participants, 
they observed overall low reproducibility across scans for resting-
state correlations between 998 ROIs. All of these previous studies 
have been conducted in adults, therefore it is not at all known to 
what extent this issue affects studies of development.

Yet another issue pertains to statistical power or lack thereof 
in pediatric resting-state studies. Most studies to date have had 
included relatively small numbers of participants. Although analy-
ses of power and sample sizes have been reported for conventional 
task-based functional neuroimaging studies (Desmond and Glover, 
2002), similar power analyses have not yet been applied to rsfMRI. 
This is particularly important for studies of typical and atypical 
pediatric populations, which are inherently highly heterogeneous. 
Ideally, along with statistical power analyses, a clinical pediatric 
resting-state study should be comprised of a relatively homogenous 
group, as well as a homogenous well-matched control group for 
meaningful interpretations and better comparability of fi ndings 
across studies.

Finally, it is now well documented that raw rsfMRI data is con-
taminated by motion artifacts, scanner artifacts, and physiological 
noise (Biswal et al., 1995; Lowe et al., 1998; Cordes et al., 2000, 2001). 
To remove this noise, researchers have used a gamut of techniques 
including, but not limited to, spatial smoothing (to improve signal-
to-noise ratio), temporal fi ltering (to remove signal contributed by 
physiological sources such as cardiac and respiratory cycles) (De 
Luca et al., 2006; Supekar et al., 2009), whole-brain signal regression 
(to account for noise sources such as motion, cardiac, and respira-
tory signals that globally infl uence the signal) (Desjardins et al., 
2001), and regressing out cardiac and respiratory signals acquired in 
the scanner (to minimize unwanted physiological variations) (Birn 
et al., 2008; Chang and Glover, 2009; Chang et al., 2009). Although 
these techniques are fairly effective in removing noise, they raise 
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within individuals. Mapping the developmental trajectory of func-
tional brain organization will be greatly facilitated by a longitudinal 
approach. Lastly, elucidating brain organization related to neurode-
velopmental disorders is perhaps the arena in which rsfMRI can make 
the greatest contributions. Very young and low-functioning children 
who might not otherwise be able to tolerate the scanner environment 
may be able to participate in a resting-state scan with a 5-min dura-
tion. Such data can be used to derive brain-based biomarkers that 
may in the future lead to early diagnosis and thus the development 
of more effi cient and targeted treatments and therapies.

The use of rsfMRI for studying typical and atypical brain devel-
opment is still in its infancy. Critically, its potential for synthesis and 
uncovering general organizational principles underlying functional 
brain development remain largely untapped. Current efforts to pool 
resources and data across multiple sites will in the future result in 
larger sample sizes, which are particularly critical for addressing 
clinical developmental questions. These data- sharing efforts have 
already produced interesting insights into brain organization in 
typically developing adults (Biswal et al., 2010). With rapid meth-
odological improvements in rsfMRI, and the use of larger, more 
refi ned samples, we can expect to see rapid progress in the use of 
rsfMRI for addressing important research questions in develop-
mental systems neuroscience.
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At present, it is unknown how and to what extent changes in 
functional connectivity are related to structural brain maturation. 
Directions for future research include integrating rsfMRI with dif-
fusion tensor imaging (DTI) to investigate how the maturity of spe-
cifi c fi ber tracts relates to the maturation of cognitive function and 
skill acquisition. A recent study examined developmental changes 
in DMN connectivity using a multimodal imaging approach by 
combining rsfMRI, voxel-based morphometry and diffusion ten-
sor imaging-based tractography. The authors found that the DMN 
undergoes signifi cant developmental changes in functional and 
structural connectivity, but these changes are not uniform across all 
DMN nodes. Critically, this study found that functional connectiv-
ity in children can reach adult-like levels despite weak structural 
connectivity (Supekar et al., 2010). Improved multimodal analysis 
of anatomy and connectivity will allow us to better characterize the 
heterogeneous development and maturation of functional brain 
networks.

It has recently been demonstrated that one possible function of 
resting-state functional connectivity is to support the consolida-
tion of previous experience. Lewis et al. (2009) showed that visual 
perceptual learning, an example of adult neural plasticity, modifi ed 
the resting covariance structure of spontaneous activity between 
networks engaged by the task, and that the observed changes corre-
lated with the degree of perceptual learning. The complex relation-
ships between cognitive performance and integrity of resting-state 
networks is only beginning to be explored, and future work in this 
area will have particular signifi cance for developmental psycholo-
gists and neuroscientists.

Additional future directions include incorporating knowledge 
of genetics into rsfMRI studies, as well as continued investigations 
into relationships between functional connectivity and cognition 
and behavior. The fi eld would particularly benefi t from longitudinal 
studies that would allow tracking of development of connectivity 
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(Zang et  al., 2004), network homogeneity (Uddin et  al., 2008), 
amplitude of low-frequency fluctuations (ALFF) (Zang et  al., 
2007), fractional ALFF (Zou et al., 2008) and fractal complexity 
(Wink et al., 2006). In contrast, the other measures the relationship 
between different brain units (i.e., highly coherent spontaneous 
fluctuations or functional connectivity), such as seed-based func-
tional connectivity analysis (Biswal et al., 1995), clustering (Cordes 
et al., 2002) and independent component analysis (ICA) (van de 
Ven et al., 2004). Connectivity-based methods have been widely 
used to detect functionally connected brain networks, including 
motor (Biswal et al., 1995), auditory (Cordes et al., 2001), visual 
(Lowe et al., 1998), language (Hampson et al., 2002), default-mode 
(Greicius et al., 2003), and attention systems (Fox et al., 2006). These 
brain networks have demonstrated high consistency and reproduc-
ibility across subjects and sessions (Damoiseaux et al., 2006; Chen 
et al., 2008a; Meindl et al., 2009; Zuo et al., 2010a), high test–retest 
reliability (Shehzad et al., 2009; Zuo et al., 2010a), high reproduc-
ibility across different analytic approaches (Long et al., 2008; Franco 
et al., 2009) and a striking correspondence to task activation maps 
(Smith et al., 2009). More recently, using novel graph theory-based 
approaches, these identified biologically plausible brain networks 
were found to topologically organize in a non-trivial manner (e.g., 
small-world architecture and modular structure) that support effi-
cient information processing of the brain.

Graph theory-based approaches model the brain as a complex 
network represented graphically by a collection of nodes and 
edges. In the virtual graph, nodes indicate anatomical elements 

Introduction
As a novel, non-invasive way to measure spontaneous neural 
activity in the human brain, resting-state functional magnetic 
resonance imaging (R-fMRI) has attracted considerable atten-
tion (Biswal et al., 1995; Fox and Raichle, 2007). R-fMRI measures 
the endogenous or spontaneous brain activity as low-frequency 
fluctuations in blood oxygen level-dependent (BOLD) signals. 
This low-frequency fluctuation phenomenon is vital for a better 
understanding of human brain function because extremely dis-
proportionate energy consumption appears within the regions 
showing high resting metabolisms (Raichle et al., 2001; Raichle, 
2006). Beginning with a seminal demonstration of highly coherent 
low-frequency fluctuations within the brain motor system (Biswal 
et al., 1995), R-fMRI has been extensively used to investigate nor-
mal brain function (Greicius et al., 2003; Beckmann et al., 2005; 
Fox et al., 2005; Margulies et al., 2007; Di Martino et al., 2008; Roy 
et al., 2009; Smith et al., 2009; Yan et al., 2009b), trait variability 
and behavioral characteristics (Hampson et al., 2006; Fox et al., 
2007; Hesselmann et al., 2008; Kelly et al., 2008; Di Martino et al., 
2009; Yan et al., 2009a), as well as various clinical populations (for 
reviews, see Greicius, 2008; Broyd et al., 2009; Zhang and Raichle, 
2010). To date, many R-fMRI methods have been developed to 
explore the nature of resting-state brain.

Currently, there are two main types of R-fMRI methods used 
to characterize spontaneous brain activity. One measures specific 
regional characteristics of R-fMRI signals within a brain region 
(e.g., voxels or parcellation units), such as regional homogeneity 
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(e.g., brain regions), and edges represent the relationships between 
nodes (e.g., connectivity). After the network modeling procedure, 
various graph theoretical metrics can be used to investigate the 
organizational mechanism underlying the relevant networks. In 
contrast to those widely used R-fMRI analytic methods (e.g., 
ALFF, seed-based functional connectivity and ICA), the graph-
based network analyses allow us not only to visualize the overall 
connectivity pattern among all the elements of the brain (e.g., 
brain regions) but also to quantitatively characterize the global 
organization. In addition, this approach also gives insight into the 
topological reconfiguration of the brain in response to external 
task modulation (Eguiluz et al., 2005; Pachou et al., 2008; Bassett 
et  al., 2009; Micheloyannis et  al., 2009; Wang et  al., 2010) or 
pathological attacks (for reviews, see Bassett and Bullmore, 2009 
and He et al., 2009a). Moreover, it provides a vital framework 
to elucidate the relationship between brain structure and func-
tion (Honey et al., 2010). Both structural and functional brain 
networks have been demonstrated to organize intrinsically as 
highly modular small-world architectures capable of efficiently 
transferring information at a low wiring cost as well as formatting 
highly connected hub regions (Salvador et al., 2005; Achard et al., 
2007; He et al., 2007, 2009b; Chen et al., 2008b; Hagmann et al., 
2008; Gong et al., 2009a). Furthermore, the utility of graph-based 
techniques has been proven by an increasing number of studies 
to probe potential mechanisms involved in normal development 
(Fair et al., 2007, 2008, 2009; Supekar et al., 2009), aging (Achard 
and Bullmore, 2007; Gong et al., 2009b; Meunier et al., 2009a; 
Micheloyannis et al., 2009; Wang et al., 2010), and various brain 
disorders (Stam et  al., 2007; He et  al., 2008, 2009c; Liu et  al., 
2008; Supekar et  al., 2009; Wang et  al., 2009b; Buckner et  al., 
2009). Given the lack of relevant reviews that focus exclusively on 
graph-based brain network research using R-fMRI, the purpose 
of the present review is to increase multi-discipline apprecia-
tion and cooperation on this burgeoning field. In addition, this 
work provides the opportunity to revolutionize our view of brain 
organization and function by re-examining the progress made 
in this field.

In this review, we will summarize the recent progress made in 
the study of functional brain networks constructed by intrinsic 
brain activity measured by R-fMRI. The paper is organized to three 
main sections. First, some basic concepts regarding brain connectiv-
ity and graph theoretical approaches are introduced, along with a 
review of recent graph-based work on revealing the normal topo-
logical architecture and underlying organization of functional brain 
networks. Then, we survey various R-fMRI applications of graph-
based approaches to uncover changes in the network properties of 
brain development, aging and disorders. Finally, we highlight some 
technical challenges and future directions in this rapidly emerging 
research area.

Basic conceptions
Brain connectivity networks
A network is a collection of nodes and edges, where nodes indi-
cate basic elements within the system of interest and edges indi-
cate the associations among those elements. An accurate method 
for defining the most essential elements of a network (i.e., nodes 
and edges) is vital for network construction. Specifically, for brain 

networks, they can be described at different spatial levels, such as 
microscale, mesoscale, and macroscale or large-scale (Sporns et al., 
2005). Given technical limitations and computational demand, 
most current studies focus on the macroscale or large-scale brain 
networks. In this review, we will also concentrate on the macroscale 
brain networks.

In a macroscale brain network, nodes can be defined as EEG 
electrodes, MEG channels, or regions of interest (ROI) derived 
from anatomical atlases in MRI. After the definition of nodes, the 
edges among nodes can be defined by the functional or structural 
associations among different neuronal elements of the brain. To 
date, functional associations are measured by either the temporal 
correlation between spatially remote neurophysiological events, 
often referred to as the functional connectivity, or the influence 
that one neural system exerts over another, also termed effective 
connectivity (Friston et al., 1993). Structural associations can be 
measured by examining either direct diffusion-based anatomical 
connectivity or indirect morphology-based statistical interdepend-
encies across populations (Bullmore and Sporns, 2009; He and 
Evans, 2010). Once these two basic elements of a network, nodes 
and edges, are extracted from the dataset, the constructed brain 
connectivity network can be further characterized using graph 
theoretical approaches. Figure 1 illustrates the schematic repre-
sentation of network constructions using R-fMRI.

Graph theoretical approaches
Graph theory is the natural framework for the exact mathe-
matical representation of complex networks. Formally, a com-
plex network can be represented as a graph by G(N, K), with 
N denoting the number of nodes and K the number of edges 
in graph G. Graphs can be classified as directed or undirected 
based on whether the edges have sense of direction information. 
Likewise, graphs can also be divided into unweighted (binary) 
graphs if every edge in the graph has an equal weight of 1 or 
weighted graphs if its edges are assigned with different strengths. 
In this review, we will only focus on undirected and unweighted 
graphs. The descriptions for other types of graphs can be found 
in previous literature (Boccaletti et al., 2006; Bang-Jensen and 
Gutin, 2008).

For an undirected and unweighted graph G(N, K), the con-
nectivity pattern can be completely described by an N × N sym-
metric square matrix named adjacency matrix A whose entry a

ij 

(i,j = 1,…,N) is 1 if there exists an edge between node i and j or 0 
if one does not. Now we will list some important metrics that are 
frequently used in the field of neuroscience.

Degree and degree distribution
In a graph G(N, K), the degree of node i is the number of edges 
linked to it and is calculated as k a

i
j G

ij= ∑
∈

, where a
ij
 is the ith row 

and jth column element of adjacency matrix A. Degree is a simple 
measurement for the connectivity of a node with the rest of the 
nodes in a network. The mean of degrees over all the nodes in G, 
referred to as the average degree, measures the extent to which 
the graph is connected. The degree distribution P(k) is defined 
as the probability that a node chosen uniformly at random has 
degree k or, equivalently, as the fraction of nodes in the graph 
having degree k. In terms of the form of degree distribution, 
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Small-world
The small-world (Watts and Strogatz, 1998) is an important model 
to characterize the organization principles that govern a remark-
able variety of social, economic, and biological complex networks. 
A small-world network can be described by high local clustering, 
characterized by a high clustering coefficient, C

p
, and low mini-

mum path length between any pair of nodes, characterized by a low 
characteristic path length, L

p
 (Watts and Strogatz, 1998). The C

p
 

of a network is defined as the average of the clustering coefficients 

networks can be classified into different categories (e.g., power 
law or scale-free networks where nodal degrees are extremely 
heterogeneous) that possess distinct resilience to the removal of 
nodes. For example, networks of exponentially truncated power 
law degree were demonstrated to be equally resilient to random 
failures (random removal of nodes) but more resilient to targeted 
attacks (selective removal of nodes, such as those with the highest 
degrees) compared with the scale-free network in spontaneous 
human brain functional networks (Achard et al., 2006).

Figure 1 | A flowchart for the construction of functional brain network in 
the human brain by R-fMRI. (1) Extraction of the time course (C) from 
R-fMRI data (B) within each anatomical unit (i.e., network node).  
(B) Anatomical units are obtained according to a prior brain atlas (A) or voxels; 

(2) Calculation of a functional connectivity (i.e., network edge) correlation 
matrix (D) between any pairs of nodes; (3) Thresholding the correlation matrix 
into a binary connectivity matrix (i.e., association matrix, E); (4) Visualization of 
the association matrix as a graph (F).
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Nodal centrality
Nodal centrality quantifies how important a node is within a net-
work. Several different metrics exist for measuring nodal centrality, 
such as degree centrality, nodal efficiency (Achard and Bullmore, 
2007), closeness centrality (Freeman, 1979), and betweenness cen-
trality (Freeman, 1977). For a node i in a network G(N,K), the 
degree is defined as the number of edges linked directly to it. The 
nodal efficiency of node i is computed as E Ni j i G dij

= − ≠ ∈1 1 1/ Σ . Nodal 
efficiency measures the ability of a node to propagate information 
with the other nodes in a network. The closeness centrality of node 
i is computed as Ci

N
dj i G ij

= −
≠ ∈

1
Σ , and it reflects the average distance 

from a node to all the other nodes in a network. The betweenness 
centrality captures the influence that one node has over the flow 
of information between all other nodes in the network and can be 
calculated as Bi m i n G

imn

mn
= ≠ ≠ ∈Σ σ

σ
( ) , where σmn is the total number of 

shortest paths from node m to node n and σmn i( ) is the number 
of shortest paths from node m to node n that pass through node 
i. A node with high centrality is considered a hub in the network 
(Sporns et al., 2007; He et al., 2008; Buckner et al., 2009).

Modularity
Modularity reflects the degree to which a network is organized 
into a modular or community structure. Modules refer to a set of 
nodes with denser links among them but sparser links with the rest 
of the network (Newman, 2006). Detection and characterization 
of modular structure in the brain system can help us to identify 
groups of anatomically and/or functionally associated components 
that perform specific biological functions. Several optimization 
algorithms are currently available, each with different advantages 
(Clauset et al., 2004). Based on the identified modular structure, 
hubs can be further subdivided in terms of their roles in maintain-
ing intra- or inter-module connectivity. Provincial hubs are con-
nected mainly to nodes in their own modules, whereas connector 
hubs are connected to nodes in other modules (Guimera et al., 
2005; Chen et al., 2008; He et al., 2009b).

Hierarchy
Hierarchical structure is a fundamental characteristic of many 
social and biological networks (Ravasz et al., 2002; Ravasz and 
Barabasi, 2003; Sales-Pardo et al., 2007). In a hierarchical net-
work, highly connected nodes (hubs) are connected predomi-
nantly to nodes that are not otherwise connected to each other. 
That is, the larger the degree, the lower the clustering coefficient. 
Such a hierarchical organization favors top-down relationships 
between nodes and minimizes wiring costs, but it is vulnerable to 
attacks on hubs (Ravasz and Barabasi, 2003; Sakata et al., 2005). 
Mathematically, this phenomenon can be quantified by the β 
value, an exponent of the power law relationship between clus-
tering coefficient, C

i
, and degree, k

i
, of the nodes in the network: 

C ≈ k−β. A large positive value of β signifies a typical hierarchical 
structure. Such a hierarchy has been found to exist in both struc-
tural (Bassett et al., 2008) and functional (Supekar et al., 2009) 
human brain networks.

For more details regarding the construction of brain networks, 
frequently used graph-based metrics in brain networks, and the 
final interpretations of results, see (Bullmore and Sporns, 2009; 
He et al., 2009a; Rubinov and Sporns, 2009).

over all nodes in the network where the clustering coefficient C
i
 of 

a node i is calculated as C i E k ki i( ) / ( )= × −2 1 , with E denoting the 
number of existing connections among the node i’s neighbors and 
k

i
 representing the degree of node i. C

p
 quantifies the extent of local 

interconnectivity or cliquishness of a network. The L
p
 is defined as 

the average of the shortest path lengths (minimum number of edges 
needed to link one node to another) between any pair of nodes in the 
network. L

p
 measures the distance (i.e., number of edges) between 

any pair of nodes in a network or the extent of overall communica-
tion efficiency of a network. A shorter distance means higher routing 
efficiency because information is exchanged via fewer steps. Notably, 
this original definition of L

p
 is problematic in networks with multiple 

components where there exist nodal pairs that have no connecting 
path. The shortest path lengths for such disconnected node pairs 
are infinite. To avoid this problem, L

p
 can be measured by using a 

“harmonic mean” distance between any pairs of network nodes as 
proposed by Newman (2003), that is, the reciprocal of the average of 
the reciprocals. Notably, L

p
 calculated by “harmonic mean” distance is 

numerically the inverse of global efficiency (see below for the defini-
tion of global efficiency). Mathematically, a real network would be 
considered as small-world if it meets the following two conditions: 
γ = C

p
/C

p−rand
 > 1 and λ = L

p
/L

p−rand
 ≈ 1, where C

p−rand
 and L

p−rand
 are 

the mean clustering coefficient and characteristic path length of the 
matched random networks (random networks have low C

p
 and short 

L
p
), respectively. These two conditions can also be summarized into 

a simple quantitative measurement, small-worldness, σ = γ/λ > 1 
(Humphries et al., 2005). Small-world is an attractive model for the 
description of complex brain networks because it not only supports 
both specialized/modularized and integrated/distributed informa-
tion processing but also maximizes the efficiency of information 
transfer at a relatively low wiring cost (Sporns et al., 2004; Bassett 
and Bullmore, 2006). Using these measurements, small-world topol-
ogy has been recently demonstrated in many complex brain net-
works across multiple species in both healthy and diseased states 
(for reviews, see Stam and Reijneveld, 2007; Bassett and Bullmore, 
2009; Bullmore and Sporns, 2009; He et al., 2009a).

Network efficiency
Efficiency is a more biologically relevant metric to describe brain 
networks from the perspective of information flow, which can deal 
with the disconnected graphs, nonsparse graphs or both (Latora and 
Marchiori, 2001; Bassett and Bullmore, 2006). For a graph G(N,K), 
the global efficiency is defined as E G N N i j G dijglob( ) / ( )= − ≠ ∈1 1 1Σ , 
where d

ij
 is the shortest path length between node i and node j in 

G. The local efficiency of G is measured as E G E GN i G iloc glob( ) ( )= ∈
1 Σ , 

where E
glob

(G
i
) is the global efficiency of Gi , the sub-graph composed 

of the neighbors of node i. Global efficiency and local efficiency 
measure the ability of a network to transmit information at the glo-
bal and local level, respectively (Latora and Marchiori, 2001, 2003). 
An important metric that concisely couples with network efficiency 
is network cost, which measures how expensive it is to build a net-
work. For an unweighted and undirected network, network cost 
can be defined as the ratio of the existing number of edges to the 
number of all possible edges in the network. Using these measure-
ments, networks with high efficiency, both local and global, and low 
cost are said to be economic small-world networks (Achard et al., 
2007; Wang et al., 2009b).
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demonstrated that the network included several major functional 
clusters corresponding to four neocortical lobes (frontal, tempo-
ral, parietal-(pre)motor, and occipital), the medial temporal lobe 
and subcortical nuclei. In a following study that also utilized the 
AAL atlas, Achard et al. (2006) investigated frequency-dependent 
spontaneous brain networks in five healthy volunteers. They found 
that the small-world topology was most salient in the low-frequency 
(0.03–0.06  Hz) brain network. Furthermore, several heteromo-
dal association cortex regions were found to act as hubs in the 
brain network. The authors also found that the network obeys 
an exponentially truncated power law degree distribution, which 
appears to confer a distinctive tolerance against random failures 
and target attacks compared with scale-free or power law distri-
bution. Recently, Wang et  al. (2009a) investigated the topologi-
cal organization of functional brain networks constructed from 
two different brain atlases [AAL atlas (90 parcellation units) and 
Automatic Nonlinear Imaging Matching and Anatomical Labeling 
(ANIMAL) atlas (70 parcellation units)]. They found that the spon-
taneous functional brain networks exhibited robust small-world 
topology and a common form of exponentially truncated power 
law degree distribution regardless of parcellation strategies. This 
suggests a stable intrinsic architecture in the resting human brain. 

Resting-state functional brain networks
Spontaneous neural activity can be recorded by multiple imaging 
techniques, such as EEG, MEG, and R-fMRI, each with different 
advantages. Several studies have successfully used EEG or MEG to 
construct intrinsic brain connectivity networks and further investi-
gated state-dependent alterations in network topological properties 
(Stam and Reijneveld, 2007; Bassett and Bullmore, 2009). More 
recently, R-fMRI-based network analysis has gained popularity 
because of its high spatial and temporal resolution. This review 
will primarily focus on graph-based brain network studies using 
R-fMRI. Table 1 presents the relevant literature reviewed here.

Normal population
Region-based resting-state brain networks
Salvador et al. (2005) were the first to utilize R-fMRI to investigate 
the whole brain functional network. Based on a prior Automated 
Anatomical Labeling (AAL) atlas, a 90-node group-level network 
generated from 12 healthy volunteers was constructed. Graph 
theoretical methods revealed that the brain functional network 
showed a small-world topology characterized by high local cluster-
ing and short path lengths linking different brain regions. Further 
hierarchical clustering and multidimensional scaling analyses 

Table 1 | Graph-based brain functional network studies by R-fMRI.

Study	 Clinical state	 Node definition	 N	 Correlation metrics	 Network type

Salvador et al. (2005)	 Normal	 Regions (AAL)	 90	 Partial correlation	 B

Achard et al. (2006)	 Normal	 Regions (AAL)	 90	 Wavelet correlation	 B, W

Wang et al. (2009a)	 Normal	 Regions (AAL, ANIMAL)	 90, 70	 Pearson correlation	 B

He et al. (2009b)	 Normal	 Regions (AAL)	 90	 Pearson correlation	 B

Meunier et al. (2009b)	 Normal	 Regions (AAL-based)	 1808	 Wavelet correlation	 B

Ferrarini et al. (2009)	 Normal	 Regions (AAL)	 90	 Partial correlation	 B

Dosenbach et al. (2007)	 Normal	 ROIs	 39	 Pearson correlation	 B

Van den Heuvel et al. (2008a)	 Normal	 Voxels	 ∼10000	 Pearson correlation	 B

Van den Heuvel et al. (2008b)	 Normal	 Voxels	 8500∼9500	 Pearson correlation	 W

Valencia et al. (2009)	 Normal	 Voxels	 20898	 Pearson correlation	 B, W

Laurienti et al. (2009)	 Normal	 Voxels	 ∼20000	 Pearson correlation	 B

Hayasaka and Laurienti (2009)	 Normal	 Regions (AAL), voxels	 90∼16000	 Pearson correlation	 B

van den Heuvel et al. (2009b)	 Normal (IQ)	 Voxels	 ∼9500	 Pearson correlation	 B

Park et al. (2008)	 Normal	 Regions (AAL)	 73	 Pearson correlation	 B

Fair et al. (2007)	 Development	 ROIs	 39	 Pearson correlation	 B

Fair et al. (2008)	 Development	 ROIs	 13	 Pearson correlation	 B

Fair et al. (2009)	 Development	 ROIs	 34	 Pearson correlation	 B

Supekar et al. (2009)	 Development	 Regions (AAL)	 90	 Wavelet correlation	 B

Achard et al. (2007)	 Aging	 Regions (AAL)	 90	 Wavelet correlation	 B, W

Meunier et al. (2009a)	 Aging	 Regions (AAL)	 90	 Wavelet correlation	 B

Supekar et al. (2008)	 AD	 Regions (AAL)	 90	 Wavelet correlation	 B

Buckner et al. (2009)	 AD	 Voxels	 None	 Pearson correlation	 B

Liu et al. (2008)	 Schizophrenia	 Regions (AAL)	 90	 Partial correlation	 B

Wang et al. (2009b)	 ADHD	 Regions (AAL)	 90	 Pearson correlation	 B

Liao et al. (2010)	 Epilepsy	 Regions (AAL)	 90	 Pearson correlation	 B

Nakamura et al. (2009)	 TBI	 None	 112	 Partial correlation	 B, W

Liu et al. (2009)	 Drug (heroin)	 Regions (AAL)	 90	 Partial correlation	 B

AD, Alzheimer’s disease; ADHD, attention-deficit hyperactivity disorder; TBI, traumatic brain injury; AAL, Automated Anatomical Labeling; ANIMAL, Automatic 
Nonlinear Imaging Matching and Anatomical Labeling; ROI, region of interest; N, the number of network nodes; B, binarized; W, weighted.
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lead to a possible blurring out of some local specific informa-
tion, particularly for those functionally heterogeneous parcella-
tion units. The high spatial resolution (e.g., 4 mm) provided by 
R-fMRI allows investigation of the topological properties of brain 
networks at a finer-grained voxel-level, which is beneficial to our 
understanding of brain organization at a more refined level (e.g., 
20,000 nodes). The next section will be devoted to reviewing some 
work in this area.

Voxel-based resting-state brain networks
Eguiluz et al. (2005) conducted the first study of human brain func-
tional networks constructed at the voxel-level and found general 
scale-free small-world architecture under multiple task conditions. 
Focusing on the same features, van den Heuvel et al. (2008a) first 
examined the resting-state functional network of the human brain 
at voxel-level. After constructing individual brain networks for 28 
participants, the graph theoretical analysis confirmed the small-
world organization in spontaneous brain network consistent with 
previous region-level network analyses. This finding suggests that 
small-world topology is a robust organizational principle governing 
the global pattern of coherent fluctuations in spontaneous neural 
activity across multiple spatial scales (i.e., region-level and voxel-
level). However, in contrast to the exponentially truncated power 
law degree distribution observed frequently in region-level brain 
networks, the voxel-level brain network exhibited a scale-free or 
power law form. This discrepancy implies that intrinsic functional 
networks of the human brain may organize differently at different 
spatial scales, at least in some features, therefore pointing out the 
need to elucidate how the organization of brain networks depends 
on the scale in which they are constructed.

Instead of global small-world architecture, several groups have 
focused on the identification of intrinsic modular/community 
structure in resting-state brain networks at voxel-level. Using a 
normalized cut graph clustering algorithm, van den Heuvel et al. 
(2008b) found seven resting-state networks, such as default-mode 
network, parietal-frontal network and motor and visual network, 
resembling those sub-networks or components revealed by ICA 
studies on R-fMRI datasets. This consistency of modularity struc-
ture or sub-systems in intrinsic functional brain networks across 
analytical methods was also validated by more recent voxel-level 
network studies (Laurienti et al., 2009; Valencia et al., 2009). Valencia 
et al. (2009) constructed voxel-level functional brain networks for 
seven healthy subjects and then investigated the modular archi-
tecture of these networks using a random-walk-based method. It 
is not surprising that all individuals exhibited significant modular 
structure with moderate stability. Refreshingly, the authors com-
pared the spatial distribution of retrieved modules with a prior 
anatomical AAL atlas and found that some modules aligned well 
with certain brain systems. For example, 75% of the primary visual 
area, V1, was gathered into one module. More importantly, some 
modules included functionally related but spatially distant regions. 
These results imply that the modular organization has an underly-
ing basis of neural functions, rather than being a consequence of 
vascular processes or local physiological activities. Another notable 
finding from this work is the exponentially truncated power law 
model of degree distribution for intrinsic brain networks, which 
contrasts with the observation of power law form by van den Heuvel 

More importantly, they observed significant parcellation-related 
differences in multiple network topological parameters (e.g., 
small-worldness and network efficiency) between the two sets of 
networks. For example, the global efficiency of networks based 
on the AAL atlas was higher than those based on the ANIMAL 
atlas. Given that most current studies construct the brain networks 
using prior brain templates, this work has important implications 
for the consideration of parcellation-related effects in future brain 
network studies.

Using R-fMRI, He et al. (2009b) demonstrated modular struc-
tures of intrinsic functional brain networks (Figure 2). A group-level 
brain connectivity network was obtained and fed into a simulated 
annealing algorithm to detect the modular structure. The results 
showed that the resting-state brain network was modularly config-
ured and optimally organized into five modules: somatosensory/
motor and auditory, vision, attention, default-mode, and limbic/
paralimbic and sub-cortical systems. Interestingly, when the modu-
larity detection algorithm was iteratively applied to those identi-
fied modules, several more segregated sub-modules were observed, 
suggesting a hierarchical modularity. Furthermore, they demon-
strated significant differences in the network structure between 
modules and the whole brain network, suggesting module-specific 
organization patterns. In a more detailed exploration, specific sets 
of connector nodes and bridge edges that were involved in different 
modules were shown to be important for maintaining the con-
nectivity and stability of the functional brain networks. Another 
similar study from Meunier et al. (2009b) also demonstrated the 
hierarchical modularity in resting-state functional networks of the 
human brain. In this case, a larger brain network, consisting of 1808 
regional nodes, was constructed for each of the 18 right-handed 
healthy volunteers and was fed into a multi-level method for detect-
ing the hierarchical modularity. The results indicated a significant 
hierarchical modularity of the resting-state brain functional net-
work, with the five largest modules observed at the highest level of 
the hierarchy: medial occipital, lateral occipital, central, parieto-
frontal, and fronto-temporal systems. Intriguingly, the occipital 
modules showed less sub-modular organization in comparison 
with other modules, implying that distinctive organizational prin-
ciples exist in function-specific sub-systems, which is consistent 
with previous findings (He et al., 2009b). Additionally, the nodal 
roles analysis indicated that connector nodes and inter-modular 
connections were largely concentrated in posterior modules that 
contain regions of association cortex. In addition to the studies 
mentioned above, Ferrarini et al. (2009) also validated small-world 
properties and hierarchical modularity by focusing on revising a 
clustering algorithm to detect the modularity of resting-state func-
tional networks of the human brain.

Beyond the region-level explorations of the intrinsic topology 
mentioned above, brain network analyses have been done at the 
voxel-level. Although some intriguing results were demonstrated 
in intrinsic large-scale (region-level) functional brain networks, 
these findings may be biased by the fact that all of the analyses 
were restricted to predefined anatomical structures. Specifically, at 
the region-level, inter-regional connectivity was routinely evalu-
ated in terms of representative time courses obtained by averaging 
the signals within predefined parcellation structures. However, 
despite the simplicity, the averaging process may simultaneously 

170

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 16  | 

Wang et al.	 Graph theoretical analysis of resting fMRI

Figure 2 | The modular architecture of resting-state functional brain 
network (He et al., 2009b). (A) Five modules were identified in a functional 
network of the human brain, represented by five different colors. The geometric 
distance between brain regions on the drawing space approximates the shortest 
path length between them. The network is visualized with Pajek (http://vlado.fmf.
uni-lj.si/pub/networks/pajek/). The intra-module and inter-module connections are 
shown in gray and dark lines, respectively. For the abbreviations of the regions, 

see He et al. (2009b). (B) Surface representation of modular architecture of a 
functional brain network. All 90 brain regions are marked by using different colored 
spheres (different colors represent distinct network modules) and further mapped 
onto the cortical surfaces in the lateral and medial views, respectively. Notably, the 
regions are located according to their centroid stereotaxic coordinates. For 
visualization purposes, the subcortical regions are projected to the medial cortical 
surface according to their y and z centroid stereotaxic coordinates.
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covering different ages were generated: 49 children (7–9  years; 
mean 8.6), 43 adolescents (10–15 years; mean 11.9), and 47 adults 
(20–31  years; mean 24.1). Visualization analysis showed a clear 
dynamic reorganization of brain network structure over the course 
of development. For example, the interconnected fronto-parietal 
and cingulo-opercular components in children gradually became 
two disconnected networks in adults. Using similar methods, the 
authors also demonstrated a more densely connected network 
structure in the adult default-mode network when compared 
with children, implying an increased functional integration during 
development (Fair et al., 2008). Moving beyond a single functional 
network, the authors expanded their interests to a wide system that 
included four functional networks: cingulo-opercular, fronto-pari-
etal, default-mode and cerebellar. Based on large R-fMRI datasets 
(210 subjects: 66 aged 7–9; 53 aged 10–15; 91 aged 19–31), they 
studied the dynamic developmental trajectory of functional brain 
network organization using a sliding boxcar grouping method (Fair 
et al., 2009). The most important finding was the observation of 
concurrent segregation and integration in brain networks during 
development, which was revealed by both qualitative and quantita-
tive analyses. This dichotomy of development was further found 
to be related to a general decrease in short-range connections and 
an increase in long-range connections. Another interesting result 
in this study was the comparable small-world topology observed 
across the entire range of ages examined, from 8 to 25 years old, 
as indicated by very little changes in path lengths and clustering 
coefficients. This suggests a largely conserved architecture over age. 
All the aforementioned studies focused on some specific brain func-
tional systems, such as the default network or control network, 
leaving development effects on whole brain network organization 
unclear. Filling this gap, Supekar et al. (2009) assessed develop-
ment-related alterations in brain functional networks in great detail 
using R-fMRI and graph theoretical techniques. After the construc-
tion of brain networks for each of 23 children (7–9 years) and 22 
IQ-matched young-adult subjects (19–22 years), obvious differ-
ences were found in both global and local properties of functional 
brain networks between children and young adults. For example, 
children showed a globally lower level of hierarchical organization 
in the whole network and locally higher efficiency in sub-cortical 
division. Of particular importance, combining with DTI-based fiber 
tracking, the authors found a pattern of simultaneous emergence 
of decreased functional segregation and increased functional inte-
gration with development, characterized by lower short-range and 
higher long-range functional connectivity in young adults when 
compared with children. Taken together, these results show that 
development is strongly related to a weakening of short-range func-
tional segregation and a strengthening of long-range functional 
integration, which suggests a general developmental principle for 
intrinsic functional brain architecture.

In addition to development-related changes, some groups have 
also investigated the effects of normal aging on the functional organi-
zation of large-scale brain networks during rest (Achard et al., 2007; 
Meunier et al., 2009a). Using graph theoretical approaches, Achard 
et al. (2007) tested the hypothesis that resting-state functional brain 
networks have economical small-world properties and that their 
performance would be disrupted by normal aging. R-fMRI data 
were collected from 11 old and 15 young healthy volunteers, and 

et al. (2008b). This discrepancy may be attributed to the different 
network construction methods (i.e., network nodes were abstracted 
from gray matter voxels by van den Heuvel et al. vs. whole brain by 
Valencia et al.) given the findings of tissue specific organization that 
networks constructed from white matter and cerebral spinal fluid 
voxels did not exhibited typical power law degree distribution (van 
den Heuvel et al., 2008b). Almost simultaneously, Laurienti et al. 
(2009) combined R-fMRI and graph theory to explore the modular 
structure of resting-state brain networks derived from six normal 
young adults. Modular architecture was again uncovered in spite 
of the use of a different module detection algorithm of QCut. It 
is noteworthy that the default-mode network was separated into 
three primary modules: the module of the medial frontal cortex, 
the module of sections from the parietal lobe and parahippoc-
ampal gyrus and the module of portions from the cuneus gyrus, 
parietal cortex and middle frontal gyrus. This was consistent with 
the finding of functional brain networks (He et al., 2009b). The 
split of the default-mode network into multiple sub-networks is 
also observed in previous ICA studies (Zuo et al., 2010a) and could 
imply functional segregation or heterogeneity within the default-
mode network (Buckner et al., 2008; Harrison et al., 2008; Kiviniemi 
et al., 2009; Uddin et al., 2009). Given the high sensitivity of the 
default-mode network to numerous mental disorders (Broyd et al., 
2009), studies that focus on the pattern within and between these 
sub-modules may lead to new insights into the pathophysiology 
of these disorders.

Rather than work with whole brain network studies, Dosenbach 
et al. (2007) concentrated exclusively on a putative task-control net-
work. Thirty-nine ROIs associated with task-control were selected as 
the network nodes, and a group-level network from 74 young adults 
was formed. Analogous to the whole brain network, the sub-network 
of task-control system also exhibited small-world features. Further 
visualization of the network connectivity pattern revealed eight dis-
connected components, including the fronto-parietal component and 
cingulo-opercular component, which were clearly associated with 
task control. More importantly, the authors found that the wiring 
patterns of the fronto-parietal and cingulo-opercular components to 
other parts of the brain were obviously different. The fronto-parietal 
component preferentially connected with cerebellar regions, whereas 
the cingulo-opercular component tended to connect firstly with puta-
tive downstream sensory regions in the occipital cortex. Inspired by 
this phenomenon, the authors proposed a ‘‘dual-network’’ hypothesis 
to model task control, in which the fronto-parietal network supports 
adaptive control function and the cingulo-opercular network handles 
stable set-maintenance function.

Development/aging
The mature human brain has been optimally organized into a col-
lection of specialized functional networks that flexibly interact in 
rapid response to various cognitive demands. Studying the forma-
tion of the architecture in a maturing brain from a global level may 
provide more insights into the organizing principle that guides the 
maturation process. In this topic, Fair and colleagues carried out a 
series of experiments to explore the mechanisms of development 
using R-fMRI and modern network techniques. They first stud-
ied a task control related network (Fair et al., 2007), containing 
39 nodes (i.e., task control regions). Three group-level networks 
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can distinguish the AD participants from the controls with a sensitiv-
ity of 72% and a specificity of 78%, suggesting that these network 
measures could serve as an imaging-based biomarker in AD diag-
nosis. These findings suggested that AD is associated with disrupted 
functional integrity in the intrinsic spontaneous neuronal activity 
of the brain functional system. In a relevant large- and multiple-
datasets study, Buckner et al. (2009) performed another AD-related 
study using graph theoretical approaches and R-fMRI to address the 
spatial distribution and stability of hub regions in intrinsic functional 
brain networks of human. They also assessed whether the identified 
hubs had a preferential vulnerability to AD pathology. One hundred 
twenty-seven healthy young adults participated in MRI sessions, and 
39 older adults (29 controls and 10 AD patients) participated in 
PET sessions. The results showed that hub regions were dominated 
mainly by heteromodal areas of the association cortex, such as the 
posterior cingulate and medial/lateral prefrontal cortices, consistent 
with previous studies (Achard et al., 2006). Of more importance, the 
pattern of hubs was highly consistent between datasets and activity 
states (passive fixation vs. semantic classification task), suggesting 
that this is a stable property of cortical network architecture. Finally, 
the authors demonstrated a striking overlap and strong correlation 
(r = 0.68) between the pattern of cortical hubs derived from young 
subjects and the Aβ deposition map in AD patients. The results imply 
a dual role for hubs in brain networks. On one hand, they act as 
critical stations for information processing, and on the other hand, 
they are preferential candidates of pathology.

Schizophrenia
Using R-fMRI, Liu et al. (2008) utilized graph-based network analy-
sis to characterize networks in schizophrenia patients. Individual 
brain networks were built for 31 schizophrenia patients and 31 age- 
and gender-matched healthy subjects. Subsequent graph theoretical 
analysis revealed that schizophrenia patients showed abnormalities 
in multiple network attributes, including lower absolute clustering 
coefficients, normalized clustering coefficient, small-worldness and 
network efficiency, as well as longer absolute path length. In addi-
tion, multiple nodal characteristics were altered in several specific 
regions predominately located in prefrontal, parietal and temporal 
lobes in schizophrenia patients. Collectively, these abnormalities 
suggest a dysfunctional organization of the intrinsic functional 
brain network in schizophrenia. It is worth noting that multiple 
network metrics, such as the absolute clustering coefficient and 
local network efficiency, were found to have a significant negative 
correlation with the duration of illness and the dose of medication, 
suggesting a potential use of the graph theoretical tool in monitor-
ing the progression and therapy evaluation of schizophrenia.

Attention-deficit hyperactivity disorder
Wang et  al. (2009b) were the first to apply graph theoretical 
approaches to explore the spontaneous brain networks in patients 
with attention-deficit hyperactivity disorder (ADHD). Based upon 
R-fMRI datasets from 29 ADHD and 27 control boys, the authors 
found that the functional brain networks in both groups exhib-
ited economic small-world behaviors. However, the ADHD group 
exhibited significant increases in local efficiency but statistically 
unchanged global efficiency in comparison with the control subjects, 
suggesting a shift toward regular networks in ADHD children. In 

individual brain networks were constructed using the methods 
from Achard et  al. (2006). The results confirmed the economic 
small-world configuration hypothesis of intrinsic functional brain 
networks in both young and old people. However, normal aging 
significantly reduced the global and local efficiency of parallel 
information processing. Furthermore, regional efficiency analysis 
found that the detrimental effects of aging were mainly localized 
to frontal and temporal cortical and sub-cortical regions. Notably, 
in this study the authors also successfully detected alterations in 
the overall performance of economical small-world properties in 
intrinsic functional brain networks associated with the pharma-
cological blockade of dopamine neurotransmission. This finding 
highlights the potential value of graph theoretical tools for char-
acterizing the mechanisms involved in different pathophysiologi-
cal processes, such as the role of dopamine transmission system. 
In another study of normal aging, Meunier et  al. (2009a) stud-
ied aging-related changes in the module or community structure 
of resting-state brain functional networks from two groups: 17 
younger participants (18–33 years, mean age = 24.3 years) and 13 
older participants (62–76 years, mean age = 67.3 years). The module 
structure analyses showed that both age groups exhibited signifi-
cant, non-random, and robust modularity. However, both module 
size and composition differed between the age groups. For instance, 
five modules were detected in young brain functional networks, 
whereas six were seen in the older group. Interestingly, the authors 
found a trend for modules to segregate into multiple components 
in the brain networks of older people compared with younger peo-
ple. For example, the dorsal fronto-cingulo-parietal module in the 
young brain network was segregated into two smaller and more 
local modules in the old brain network, a dorsal prefronto-striato-
thalamic module and a medial posterior module. Thereby, tracing 
the profile of modular architecture throughout both development 
and aging will be an important topic.

Overall, the use of R-fMRI and graph theoretical approaches has 
demonstrated that normal development and aging are associated 
with alterations of brain organization, particularly in the modular 
architecture. The reconfiguration of network structure may allow 
for more flexibility to meet the demands during different states of 
life, such as high plasticity and fast learning at young ages. Future 
longitudinal studies could help address this question.

Applications in clinical population
To date, the combination of R-fMRI and graph theory-based net-
work approaches has proven to be a powerful tool to investigate 
the abnormalities in the organization of intrinsic brain networks 
under different pathological conditions (Bassett and Bullmore, 
2009; Bullmore and Sporns, 2009; He et al., 2009a).

Alzheimer’s disease
Supekar et al. (2008) were the first to study Alzheimer’s disease (AD)-
related changes in the coordination of large-scale brain functional 
networks using R-fMRI. After constructing functional brain net-
works for each of 21 AD patients and 18 age-matched controls, they 
found that AD patients showed deterioration of the small-world 
network properties, characterized by a significantly lower normalized 
clustering coefficient, implying disrupted local network connectivity. 
Furthermore, the differences in the normalized clustering coefficient 
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Technical challenge and future perspectives
In this review, we summarized the recent advances in the applica-
tion of modern graph theory-based network analysis techniques to 
study the intrinsic or spontaneous human brain functional networks 
derived from R-fMRI. Several consistent characteristics are dem-
onstrated in the normal population, such as small-world topology, 
modular structure, and core regions, some of which are sensitive 
to normal development, aging and neuropsychiatric disease. These 
findings provide novel insights into the functional architecture of 
the human brain and its adaptive reconfiguration in brain maturing, 
aging and against pathological attacks. However, we should acknowl-
edge that the studies of complex brain networks formed by spontane-
ous activity, even in normal subjects, are still in the early stages. There 
are still a number of unanswered questions in this research field.

First, given that the human brain is a complex network at multi-
ple spatial and time scales, how to appropriately represent the brain 
as a network that can precisely reflect the natural state of the brain 
is a considerable task. For instance, what are the nodes and edges 
in a brain network? Which time scale is best suited for the brain 
network? As Butts (2009) stated, the inappropriate representation 
of nodes and edges in a network and failure to consider the dynam-
ics of the system of interest will lead to misleading conclusions 
and generally poor results. Recent evidence has demonstrated the 
meaningful influence of node choice on the properties of resulting 
networks (Hayasaka and Laurienti, 2009; Wang et al., 2009a; Zalesky 
et al., 2009). For example, Hayasaka and Laurienti constructed func-
tional brain networks at multiple resolutions (90∼160,000 nodes) 
using the same R-fMRI dataset from 10 normal subjects and found 
more prominent small-worldness and robustness against network 
fragmentation in networks at the voxel-level compared with the 
region-level. In parallel with the definition of nodes, how to deter-
mine the functional connectivity-based edges in functional brain 
networks is another important issue. Multiple choices are currently 
available for estimating the functional connectivity between brain 
areas, such as partial correlation, Pearson correlation and mutual 
information that depict the functional associations from different 
angles. Our recent work (not published) demonstrates significant 
connectivity-related differences in the architecture of resting brain 
networks, implying that different organization patterns can be gen-
erated using different functional connectivity measures. Therefore, 
a combined analysis of multiple connectivity metrics could be more 
fruitful for brain network studies. In addition to intuitively conceiv-
able nodes and edges, the human brain is a dynamic system over 
multiple time scales with ongoing and adaptive functional activities 
(Honey et al., 2009). Therefore, capturing the dynamic network 
behaviors at different time scales is an important topic in future.

Second, although graph theoretical brain network analysis based 
on R-fMRI attracts a great deal of attention, the reliability and 
reproducibility of network measurements, both across subjects and 
over time, needs to be addressed. R-fMRI has shown reliability in 
local low-frequency fluctuations (Zuo et al., 2010b), ROI-based 
functional connectivity (Shehzad et al., 2009) and ICA components 
(Zuo et al., 2010a). However, the reliability of topological structures 
has not yet been validated in R-fMRI brain networks. Nonetheless, 
a recent magnetoencephalography study has shown that graph met-
rics exhibited sufficient reliability both in resting-state and during 
performance of the n-back working memory task, though greater 

addition, the authors also tested regional nodal efficiency and found 
decreased nodal efficiency in the medial prefrontal, temporal, and 
occipital cortex regions and increased nodal efficiency in the infe-
rior frontal cortex and sub-cortical regions. These differences imply 
a loss of the optimal organization pattern in ADHD children.

Epilepsy
The first study of mesial temporal lobe epilepsy (mTLE) to use graph 
theoretical approaches was performed by Liao et al. (2010). They 
constructed endogenous brain connectivity networks for 18 mTLE 
patients and 27 healthy controls using R-fMRI signals. A direct 
between-group comparison in functional connectivity revealed sig-
nificantly increased connectivity within the medial temporal lobes 
but decreased connectivity within the frontal and parietal lobes 
and between frontal and parietal lobes in mTLE patients relative to 
controls. Subsequent graph theoretical analyses demonstrated that 
regions showing a significantly decreased number of connections 
were mainly from components of default-mode networks in mTLE 
patients. In addition, normalized path length was also found to be 
significantly lower in mTLE patients. These alterations in functional 
connectivity and topological properties may be used to define tenta-
tive disease markers for mTLE after the validation of repeatability.

Others
In addition to the application of this approach to neuropsycho-
pathic diseases, graph theoretical approaches have also been used to 
explore the changes in intrinsic functional brain networks during 
recovery from traumatic brain injury (Nakamura et al., 2009) and 
in drug addicts (Liu et al., 2009). Nakamura et al. (2009) studied 
the changes of intrinsic coordinated brain connectivity networks 
in six subjects in recovery from severe traumatic brain injury. They 
found that high-value functional connections decreased with recov-
ery but the overall number of connections maintained relatively 
stable. Further analyses revealed multiple altered topological indi-
ces during the recovery timeline, such as a significant reduction 
of global and local efficiency in brain networks at 6 months post 
injury compared with those at 3 months post injury. These results 
suggest that graph-based network techniques could be useful in 
evaluating the adaptation of intrinsic brain networks to neural dis-
ruption during recovery. Liu et al. (2009) concentrated on a specific 
population of chronic heroin users and evaluated the impairments 
of their brain functions from a functional integration perspective. 
The results demonstrated a typical small-world configuration in the 
brain networks constructed from 12 chronic heroin users; however, 
the extent of small-worldness (i.e., σ) was much smaller than that 
of non-drug users. Furthermore, some regions in the prefrontal 
cortex, ventral striatum, and limbic/paralimbic area were found to 
have dysfunctional connectivity, which may be responsible for the 
decreased self-control, impaired inhibitory function and deficits 
in stress regulation observed in chronic heroin users.

Taken together, these results demonstrate the utility of the com-
bination of R-fMRI and graph theoretical techniques in capturing 
the abnormal alterations in topological organization of spontane-
ous brain networks caused by different brain disorders. Further 
studies are needed to ascertain whether this kind of topology-based 
approach could be used as a novel way to identify biomarkers for 
the diagnosis and monitoring of these diseases.
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the small-world attributes and network hubs but specific features 
for each modality such as network modules (Hagmann et al., 2008; 
Chen et al., 2009; He et al., 2009b). Moreover, several studies have 
directly compared DTI-based structural connectivity and R-fMRI 
based functional connectivity, and largely convergent results were 
found that the strength of resting-state functional connectivity 
correlated positively with structural connectivity strength (for 
a review, see Damoiseaux and Greicius, 2009). This implies that 
functionally linked resting brain networks likely reflect underly-
ing structural connectivity (Greicius et al., 2009; van den Heuvel 
et al., 2009a; Teipel et al., 2010). In particular, by focusing on the 
whole brain connectivity pattern, previous studies have demon-
strated overall, though imperfect, agreement between functional 
and structural connectivity at different spatial levels (Skudlarski 
et al., 2008; Honey et al., 2009). In spite of these efforts, the exact 
nature of the bi-directional interaction between brain structure 
and function, especially in the global topological organization 
remains unclear. Concentrating on this point, Park et al. (2008) 
demonstrated significantly distinct topological features between 
structural and functional brain networks. For example, structural 
brain networks showed higher efficiency than the functional brain 
networks. Collectively, by combining multiple imaging modali-
ties (e.g., fMRI, sMRI, and DTI), direct comparisons of the net-
work properties using large-sample neuroimaging data would be 
vital to address these issues. Specifically, we need to point out that 
the public release of the “1000 Functional Connectomes Project” 
dataset (1200+ resting-state R-fMRI and structural MRI datasets 
independently collected at 35 sites, http://www.nitrc.org/projects/
fcon_1000/) (Biswal et al., 2010) will be extremely important for 
the exploration and refinement of topological organization and 
relevant approaches to structural and functional networks in the 
human brain.

Conclusion
Through the combination of R-fMRI and graph theory-based 
network analysis techniques, intrinsic functional networks of 
the human brain have been generated and demonstrate converg-
ing and highly conserved topological organization over different 
scales and types of measurement, such as small-world and modu-
lar structures. More importantly, some of these features exhibit 
specific changes associated with normal development, aging and 
various pathological attacks, which indicates the potential value of 
these approaches in capturing and monitoring the brain organi-
zation under different mental states. With the advances in brain 
imaging techniques (e.g., higher spatiotemporal resolution) and 
the maturity and perfection of multiple analytical approaches on 
complex system in parallel, we can expect important progress in 
our understanding of how the brain works and how it interacts 
with other systems of the body.
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reliability was seen in the performance of the n-back task compared 
with resting-state (Deuker et al., 2009). We speculate that graph-
based metrics in R-fMRI may also have acceptable reliability and 
reproducibility, but this hypothesis needs to be tested directly by 
multi-center and longitudinal datasets.

Third, how do resting-state functional brain networks relate to 
individual traits and genetic factors? The answer to these questions 
may provide new insights into brain function. Smit et al. (2008) 
demonstrated that individual differences in the topological proper-
ties of resting-state functional brain networks constructed using 
EEG signals are heritable. van den Heuvel et al. (2009b) found that 
the overall organization of spontaneous functional brain networks 
had a strong association with intelligence quotient (IQ) as char-
acterized by a negative correlation between the normalized char-
acteristic path length and IQ, consistent with the findings from a 
recent structural brain network study (Li et al., 2009). Accordingly, 
it is of great interest to further investigate the relationship between 
network organization and individual characteristics, such as geno-
type and education level.

Fourth, only a few articles concentrate on the topological archi-
tecture of neuronal networks during the performance of tasks. 
Eguiluz et  al. demonstrated scale-free small-world topology in 
human brain networks across different task conditions. Bassett 
et al. (2006) indicated that behavioral state in a finger-tapping task 
did not strongly influence the global topology of the human brain 
network derived from MEG signals during rest but was associated 
with emergence of some long-range connections. Their subsequent 
work (Bassett et al., 2009) further demonstrated that the superior 
task performance of work memory was positively correlated with 
the cost-efficiency (the difference between the global efficiency and 
cost of a network) of the β-band brain networks. More recently, 
Wang et al. (2010) investigated the age-related changes of functional 
brain networks during memory encoding and recognition, and 
they found longer path length in older adults due to the loss of 
long-range connections. Consequently, studying the brain networks 
under both resting and task conditions as well as the transition 
between these states may offer new insights into the rapid adaptive 
reconfiguration of neuronal assemblies that underlie the change 
between cognitive states.

Finally, the relationship between brain structure and function, 
both how brain function emerges from its structural substrate and 
inversely how experience-related functional plasticity reshapes 
brain structure, is an important future topic. The current review 
mainly focused on recent studies of R-fMRI based brain networks. It 
has been demonstrated that brain networks can also be constructed 
by using other imaging modalities (e.g., structural MRI, diffusion 
MRI, and EEG/MEG). For instance, researchers have been capa-
ble of constructing structural brain networks by measuring inter-
regional correlations of cortical thickness or gray matter volume 
across populations (He et al., 2007, 2008, 2009c; Bassett et al., 2008), 
and found that the resultant networks had small-world properties. 
Several diffusion MRI studies have utilized deterministic or proba-
bilistic white-matter tractography approaches to build structural 
brain networks, and also showed small-world topology and high 
connected hubs in the medial parietal and frontal regions. Of note, 
the brain networks derived from different imaging modalities have 
been found to show many common topological properties such as 
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the underlying connectivity of the brain (Smith et al., 2009). There 
have been a number of model-free methods suggested for this type 
of fMRI data analysis, where we distinguish between three different 
classes of methods below.

First, independent component analysis (ICA) is commonly 
used in fMRI data analysis and it assumes a predefined number 
of components of the activity patterns to be linearly statistically 
independent (McKeown et al., 1998). Also, to cope with the compu-
tational complexity the dimensionality of the input data is typically 
reduced by PCA (Beckmann et al., 2005). Second, in various partial 
correlation whole-brain analysis methods and seed voxel-based 
methods (Salvador et al., 2005), a number of areas of the brain are 
specified and correlations between these are calculated. Clustering 
can then be performed on the correlation relations between these 
small numbers of areas. Third, in clustering techniques, a prede-
fined number of clusters are adapted to the data according to some 
statistical distance metric (Chuang et al., 1999), either directly on 
the input data (Golland et al., 2008) or on the frequency spectra 
(Mezer et al., 2009).

The method presented here uses a general statistical dependency 
measure, mutual information, to create distance relations between 
voxels. Contrary to a covariance measure it also takes higher-order 
statistics into account, which is important in certain applications 

Introduction
Conventional methodology of fMRI analysis has favored model-based 
approaches, where the fMRI signal is correlated with an estimated 
functional response model or where a statistical comparison between 
the control and activated states is performed (Chuang et al., 1999). 
The prime example is the general linear model used in the popu-
lar software packages SPM (Friston et  al., 1995) and FSL (Smith 
et al., 2004). The construction and parametric fitting of a model 
inevitably involves limitations stemming from the adopted assump-
tions. Consequently, the analysis and its outcomes are restricted with 
respect to feasible experimental conditions and the complexity of the 
estimated response signals (Chuang et al., 1999).

On the other hand, the model-free approach provides scope 
for unsupervised, purely data-driven, and bias-free ways of inves-
tigating neuroimaging data. Its potential lies in the concept of 
exploratory multivariate search for specific signal features without 
imposing rigid limitations on their spatio-temporal form. Thus, 
since no assumed model of functional response is needed, more 
complex experimental paradigms and non-standard fMRI activa-
tion patterns can be studied.

One such non-standard fMRI experiment is the study of so-
called resting-state networks. These originate from the fluctuations 
in brain activity when the subject is at rest and are thought to reflect 
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(Hinrichs et al., 2006). Using multidimensional scaling (MDS), the 
voxels can be put in a lower-dimensional space, with their posi-
tions based on the distance relations. Clustering in this space can 
find the strong statistical regularities in the data. As seen in Section 
“Results”, on resting-state data this will turn out to be the resting-
state networks.

We do not assume a predefined number of clusters, or compo-
nents. Similarly to the partial correlation methods, the clustering 
is performed after the statistics have been calculated. But instead of 
reducing the computational complexity by specifying a number of 
areas and thus decreasing the dimensions to perform the correla-
tion analysis over, the whole-brain analysis is over all input voxels. 
This is similar to approaches where graphs are constructed from 
region of interest (ROI)-activities (Salvador et al., 2007). But where 
these are typically built up from a small number of regions, in our 
case each voxel is one region. A reduction of the data dimension is 
done by the MDS step after all statistical dependencies have been 
calculated; when the data clearly shows what statistical relations 
are strong. The resulting reduced matrix allows for rapid decom-
position and exploration of the statistics of the dataset on multiple 
spatial scales.

The computational demands from using all voxels are coped 
with by a parallel implementation, which allows us to handle large 
data sizes and datasets. The parallelization of a run on a database, 
e.g., a collection of datasets, can be viewed on two different lev-
els. Firstly, all parts of the algorithm have been parallelized. In 
this way, to handle a dataset with greater resolution or more time 
steps will only need more memory and compute power, such as a 
larger computer cluster. No additional changes to the underlying 
algorithm are needed. Secondly, the statistics for each individual 
dataset in a database can be run independently and then combined 
with other datasets via the generated distance matrices. Depending 
on the data source and what we are interested in, we may com-
bine them in different ways. Since we for multiple datasets are 

combining the relations between the voxels, the individual datasets 
can come from different data sources, such as different studies or 
even different domains. This is contrary to methods that work on 
the absolute values.

In this paper, the proposed method is evaluated on a previously 
published functional MRI dataset acquired during rest in 10 sub-
jects (Fransson, 2006). A large number of decompositions are cre-
ated; one is selected, visualized, and compared to other resting-state 
studies. We show how the method also finds other dependencies in 
the data and how it can be applied to study hierarchical topology 
of resting-state networks in the human brain.

Method
Algorithm
We start by giving a step-by-step account for the mutual-information 
based clustering algorithm on fMRI data, illustrated in Figure 1. The 
distances between all voxels according to a distance measure deter-
mined by the mutual information is calculated from the input data. 
Multidimensional scaling is used to create a map from the distances, 
reflecting how different voxels are related in a mutual information-
determined space. Clusters in this space correspond to high statisti-
cal regularities. To derive the positions of all voxels in this space is a 
computationally expensive operation, while the exploration of the 
structure of the space is computationally inexpensive. This opens 
up for rapid visualization of the statistics on different spatial scales. 
For multiple datasets from different subjects or/and from different 
domains, the distance matrices can be combined.

Distance matrix
Mutual information is used as a general dependence measure 
between input voxels i and j,

I p
p

p pij kl
l jk i

kl

k l

=
∈∈
∑∑ log .	 (1)

Figure 1 | Illustration of the algorithm for one dataset. In this study (Section “Results”), the total number of voxels in each timestep N = 121247 and M was set 
to 50. The distance matrices from 10 different datasets are combined using an average operation.
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convergence: The difference in a Euclidean distance measure 
between a pair of voxels in the distance matrix and in their cor-
responding lower-dimensional space, the stress, was used as a 
target function to minimize.

Figure 3 shows the average stress for all voxel pairs after conver-
gence for different selections of dimensions for the 60-bin distance 
matrix from one subject in the previous subsection. A low number 
of dimensions may have difficulties maintaining the distances in the 
new space, resulting in a high final stress. If a high enough dimen-
sionality is selected little is gained by adding an additional dimen-
sion, seen by the low decrease in stress after 20 dimensions.

Clustering
The voxel positions in the M-dimensional space created from mul-
tidimensional scaling reflects the statistical regularities as described 
by the mutual information. Clustering in this space will join the 
voxels showing strong statistical dependency as they will have a 
short distance. We built a parallel implementation of the vector 

The values of the voxels are discretized by an interval code. The 
binning used for the interval code can be determined from a vec-
tor quantization run using the values of the dataset (as in Section 
“Clustering”). This will result in intervals adapted to the data, with 
more intervals where the distribution of values is dense and fewer 
where it is sparse.

The probabilities of certain values for a single voxel are 
estimated from the V image volumes as p Yk v

V
k
V= ∑ =1 1/P  and 

p P Y Ykl v
V

k
V

l
V= ∑ =1 1/ . Y k

V  is set as a binary value in the interval k, 
but it could also have a continuous distribution. For value u

i
 of voxel 

i and value u
j
 of voxel j, p

k
 is the probability of u

i
 in the interval k, 

p
l
 is the probability of u

j 
in the interval l and p

kl
 is the probability 

of u
i
 in interval k and u

j
 in the interval l.

A distance measure in [0,1] is created from the mutual informa-
tion (Kraskov and Grassberger, 2009) as

D I Jij ij ij= −1 / , where the joint entropy is used, 
J p pij k i l j kl kl= − ∑ ∑∈ ∈ log .

The number of bins selected will have an effect on the resolution 
of the final result as visualized in Figure 2. A representative part of 
the distance matrix is shown for four different chosen numbers of 
intervals for the first subject in the dataset described in the Section 
“Experimental”. The values have been thresholded at a distance of 
0.9. A lower number of intervals will result in lower resolution of 
the distance matrix. The voxels with the strongest relations will still 
maintain a low distance between each other. A risk in using many 
bins is that the probabilities in the mutual information calculation 
are not calculated correctly because the sample size is small. The 
adaptive bin sizes used should handle this to some degree since it 
will result in few bins where the sample size is small.

Multidimensional scaling
The high-dimensional space given by the mutual information 
over all voxel values is reduced using metric multidimensional 
scaling (Young, 1985), where the statistical distance relations 
between the voxels from the distance matrix are used to build 
up a new, and lower-dimensional space still preserving the dis-
tance relations. Here, each voxel is represented by a point, ini-
tialized at a random position, and the optimization procedure 
aims to find a suitable set of positions by iteratively adjusting 
according to the distance relations by gradient descent until 

Figure 2 | A region of a distance matrix where 30, 40, 50, and 60 discretization intervals, or bins, in the mutual information calculation have been used. 
The number of bins changes the resolution of the result. A small number of bins still allow the strong relations to be captured.

Figure 3 | The average stress for different number of dimensions. Here a 
selected dimensionality over 20 will only give small differences in how well 
the voxels in the created space are positioned.
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with a FWHM = 12 mm. As a final pre-processing step, a rough 
cropping of the data was performed, for which the non-brain voxels 
were excluded from further analysis, removing 21% of the data and 
resulting in a total of 121247 brain voxels.

MR data analysis
For each of the 10 resting-state fMRI datasets the original voxel val-
ues were interval coded using vector quantization into 60 intervals 
based on the 1/3 first time steps. Separate distance matrices were 
calculated for all of the 10 subjects and combined by an average 
operation, where the mean was taken for each matrix element over 
all distance matrices. This resulted in a combined distance matrix 
of dimensions 121247 × 121247. Multidimensional scaling used the 
distance matrix to create a lower-dimensional map reflecting the 
statistical relations. In accordance with the discussion in Section 
“Multidimensional scaling” and Figure 3, the map dimension was 
set to a number that would clearly be able to maintain the distances 
in the new space, 50. This gave a total matrix size of 12147 × 50. The 
clustering algorithm was used to create all possible decompositions 
between 5 and 115 components. The distance determining which 
voxels should belong to a group when visualizing the results was 
specified by a threshold parameter set to 0.4. A voxel can belong 
to multiple components given the high-dimensional space. For 
instance, in some dimensions it could be close to one cluster and 
in others another.

Results
Figure  4 shows the main results from applying the mutual-
information based algorithm to the 10 resting-state fMRI datasets 
for 60 components. Apart from components that showed a very 
strong spatial resemblance to the patterns typically caused by car-
dio/respiratory pulsations, susceptibility-movement related effects, 
subject movements as well as components that were mainly located 
in cerebro-spinal fluid and white matter areas, 12 components 
showed connectivity patterns that were located in gray matter. 
Figures 4A,B show the resting-state networks typically associated 
with the left and right dorso-lateral parietal-frontal attention net-
work, respectively. Further, Figure 4C shows a bilateral connectiv-
ity pattern that encloses the left and right auditory cortex whereas 
Figure 4D shows a resting-state network that includes the medial 
and lateral aspects of the sensorimotor cortex. The precuneus/pos-
terior cingulate cortex together with the lateral parietal cortex and 
a small portion of the medial prefrontal cortex is included in the 
network shown in Figure 4E. The most anterior part of the medial 
prefrontal cortex is depicted in Figure 4F. The occipital cortex is 
by the algorithm divided into three sub-networks that encom-
passes the anterior/inferior (Figure 4G), posterior (Figure 4H) 
as well the primary visual cortex (Figure 4K). Figure 4I shows a 
network that includes the precuneus/posterior cingulate cortex, 
lateral parietal cortex as well as the medial prefrontal cortex. The 
network depicted in Figure 4J involves the bilateral temporal pole/
insula region. Finally, the cerebellum was included in the network 
shown in Figure 4L.

Networks and sub-networks
The distortion derived from the clustering algorithm can be 
used as a measure of how well various decompositions into 
resting-state networks suit the data. Figure 5A shows the mean 

quantization technique competitive selective learning (CSL) (Ueda 
and Nakano, 1994) both for the clustering into cluster components 
reflecting the strong statistical regularities and the interval cod-
ing division mentioned previously. However, any other clustering 
algorithm could have been used.

In the same way as traditional competitive learning, CSL uses 
voxel position x

i
 to update the position of the closest, by a Euclidean 

measure, cluster center y by

y y x yi= + −ε( ). 	 (2)

Here, ε determines the amount of change for the cluster center posi-
tion in each iteration, and is typically gradually decreased during 
the training phase. In addition, CSL reinitializes cluster centers in 
order to avoid local minima using a selection mechanism according 
to the equidistortion principle (Ueda and Nakano, 1994).

The distortion measure gives an estimate of how well the cluster 
centers describe the original data. Using Euclidean distances, the 
distortion from one cluster center can be defined over all data points 
belonging to cluster center m as

D x ym v
v m

= −
∈
∑|| || . 	 (3)

A measure of the average distortion over all C cluster centers in the 
M-dimensional space, D M Dm

C
m= ∑ =1 1/  (Ueda and Nakano, 1994), 

can be used to describe how suitable a given number of clusters are 
for the data distribution, as seen in the Section “Results”.

Integrating multiple datasets
The distance matrix is independent from the value distribution of 
the original data and the source of the data. Contrary to methods 
that work with the absolute values, using the relations allows us 
to combine distance matrices that could be from different data-
sets or even different data sources. Depending on what we want 
to evaluate, we can combine the individual distance matrices in 
various ways. For the multiple subject resting-state data in the 
Section “Results”, we want to add together the individual results 
to get a more reliable averaged result. To this end, each distance 
matrix element was set to the average value over all the indi-
vidual distance matrices. That is, each dataset was weighted the 
same. In other applications, where the individual datasets may 
have different sources, they could be weighted differently. Other 
operations could also be considered, i.e., a comparison between 
datasets could be implemented by a subtraction operation between 
distance matrices.

Experimental
MR data acquisition and data pre-processing
Input to the algorithm consisted of 300 MR echo-planar image 
volumes sensitized to blood oxygenation level dependent (BOLD) 
signal changes acquired during 10 min of continuous rest (fixat-
ing on a cross-hair) in 10 subjects (Fransson, 2006). Functional 
MR images were acquired on a Signa Horizon Echospeed 1.5 Tesla 
General Electric MR scanner (FOV = 220 × 220 mm, 64 × 64 matrix 
size, TR/TE = 2000/40 ms, flip = 80°; number of slices = 29). Further 
details can be found in a previous paper by Fransson (2006). All 
images were realigned, normalized to the MNI template within 
SPM (Statistical Parametrical Mapping, Welcome Trust Center for 
Neuroimaging, London, Friston et al., 1995) and spatially smoothed 
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For the resting-state data where the number of voxels was 121247, 
each distance matrix, one for each subject, took about 30 min to cal-
culate on 512 nodes on a Blue Gene/L machine. However, they could 
have been run in parallel as each distance matrix is independent from 
the others. The iterative implementation of multidimensional scaling 
was run for about 4 h, until convergence. The MDS scales only with 
the number of voxels and dimensions of the resulting matrix, not 
with the number of datasets or time steps. These times could most 
likely be reduced significantly; both by optimizing the code and by 
considering alternative implementations of the algorithm steps.

The decomposition into different components or clusters is 
entirely separated from the calculation of the statistics, and since the 
matrix produced by the MDS is quite small, this is computationally an 
inexpensive step. All decompositions between 5 and 115 took about 
1 h to create on 128 nodes. This is an advantage in certain applications 
over methods where the number of components to decompose the 
statistics into has to be manually predetermined. Computationally 
inexpensive decomposition allows for rapid visualization of the sta-
tistics on different spatial scales. Depending on what one is interested 
in, different decompositions may be of interest.

Discussion
We have described a novel data-driven fMRI cluster analysis 
method based on multidimensional scaling and mutual informa-
tion based clustering and shown its applicability for analysis of 

distortion as defined in Section “Clustering” for each network 
in all decompositions between 5 and 115. The rapid decline for 
a small number of decompositions tells us that each addition of 
another cluster will explain the data better. The mean distortion 
is not changed as much after 30–40 clusters. Additional clustering 
will result in splitting of the statistically strong networks into their 
corresponding sub-networks.

Examples of this can be seen in Figure 5B. The left and right 
fronto-parietal attention networks are grouped together in the 40 
clusters decomposition. At 60 they are separated into their left and 
right part. Increasing the number of clusters will result in further 
decomposition into their sub-networks as in the 80 decomposition. 
A similar splitting is seen for the default network.

Computational costs
The calculation of the distance matrices is the computationally 
most expensive operation in the algorithm – when run on the entire 
dataset it scales with the number of voxels as N2 and linearly with 
the number of time steps and individual datasets. The memory 
usage can be kept low also on much larger datasets than used here 
by treating the distance matrix as a sparse matrix in the parallel 
implementation. The calculation of a distance matrix is trivially 
parallelizable and involves no expensive communication between 
the nodes involved in the computation, contrary to parallel imple-
mentations of ICA (Keith et al., 2006).

Figure 4 | Resting-state networks from a 60-part decomposition: (A, B) 
Left/right fronto-parietal attention network, (C) primary auditory cortex, 
(D) lateral and medial sensorimotor cortex, (E) posterior cingulate cortex/
precuneus, (F) medial prefrontal cortex, (G) anterior/inferior visual cortex, 

(H) lateral/posterior visual cortex, (I) default network, (J) temporal pole/
insula, (K) primary visual cortex (L), and the cerebellum. The color coding 
shows how far from the cluster center a given voxel is where brighter 
red-yellowness indicates a shorter distance to the cluster center.
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with the sensorimotor network in the van den Heuvel study (however, 
an additional explorative analysis revealed separate visual and motor 
networks, see van den Heuvel et al., 2008 for further information). 
The network that included the ventro-medial part of prefrontal cor-
tex (Figure 4F) was apparent in all previous studies except the De 
Luca study. Further, the split of the occipital cortex into a lateral/
posterior part (Figure 4H) and an inferior/anterior part (Figure 4G) 
was also detected by the recent Smith study, but the two networks 
were merged in a single network in the De Luca study. The network 
that involves the bilateral temporal pole/insula region (Figure 4J) was 
similarly detected in the Damoiseaux as well as in the van den Heuvel 
study. The cerebellar network (Figure 4L) was also found in the Smith 
study whereas the default mode network (DMN) (Figure 4I) has 
been reported by all four previous investigations. Finally, the network 
depicted in Figure 4E that encloses the posterior part of the default 
network was also found in the van den Heuvel study.

An important aspect of our methodology to cluster the data into 
resting-state networks and noise-related components is the distor-
tion quantity that provides a measure of how well a specific cluster 
decomposition fits the data. By examining the degree of distortion 
as a function of the number of decompositions chosen, information 
regarding the topological hierarchy of resting-state networks in the 

multi-subject resting-state fMRI data sets. It is relevant to compare 
the present findings of resting-state networks driven by intrinsic 
BOLD signal changes during rest with previous investigations that 
have used other data-driven approaches. The studies of Beckmann 
et al. (2005), De Luca et al. (2006), and Damoiseaux et al. (2006) as 
well as the recent study by Smith et al. (2009) all used ICA based 
approaches to study resting-state functional connectivity, whereas 
the study by van den Heuvel et al. (2008) used an approach based 
on a normalized cut graph clustering technique.

On a general level, our results are in good agreement with the find-
ings reported by all four previous investigations. The networks that 
covered the left and right fronto-parietal cortex (Figures 4A,B) were 
also detected by all previous investigations, although the left and right 
network was merged into a single network in the Beckmann et al.’s 
study (2005) (see also discussion below regarding merging/division 
of networks and its potential significance). Similarly, the networks 
that encompassed the auditory cortex (Figure 4C) and the sensori-
motor areas (Figure 4D) showed a good spatial congruence with all 
four previously reported investigations. The network that foremost 
targeted the primary visual cortex (Figure 4G) shows a large degree 
of similarity to the networks shown by the De Luca, Damoiseaux, and 
Smith studies, whereas the primary visual cortex network was merged 

Figure 5 | (A) Mean distortion for various decompositions. The distortion 
measure can be used to predict a suitable number of clusters. (B) Example of 
the decomposition depending on the total number of clusters chosen. Left: The 

fronto-parietal attention networks shown in a 40, 60, and 80 decomposition. 
Right: A splitting of the default network occurs between the 20 and 
60 decomposition.
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hierarchical clustering algorithms may be used to further char-
acterize the statistical relationships between clusters of different 
spatial scales (Meunier et al., 2009). The resulting MDS matrix 
could also be studied by other means than clustering algorithms, 
such as using PCA. Measurements other than mutual informa-
tion could be used to study other aspects of the data, such as 
causal relations as determined by Granger causality (Roebroeck 
et al., 2005). A change of statistical expression to evaluate would 
generally involve no more changes than replacing the calculation 
determining an element value in the distance matrix. The method 
described here was partly based on a cortical information process-
ing model (Lansner et al., 2009) which also included a classifica-
tion step. Incorporating classification as a final step in the method 
would make it a good candidate for applications such as “brain 
reading” (Eger et al., 2009).

Conclusion
The generic method proposed brings a number of new properties to 
a model-free analysis of fMRI data: The separation of the computa-
tionally demanding calculation of the statistics and the decomposi-
tion step, which is computationally inexpensive, allows for rapid 
visualization and exploration of the statistics on multiple spatial 
scales. Input data can be handled independently and weighted 
together in various ways depending on the application, both for 
data from different subjects and data from different sources. The 
algorithm has been implemented completely in parallel code; this 
means that we can calculate the statistics over all of the input data, 
without any dimensionality reduction, which allows for whole-
brain analysis on a voxel level. It can handle datasets with large input 
sizes as well as large collections of datasets in databases. Some of its 
properties for exploratory data analysis and its applicability to fMRI 
have been demonstrated on resting-state data and shown to be in 
agreement with findings from studies using other methods.

Our method is generic and does not use any specific properties 
of fMRI data. It may therefore also be applicable to completely 
different kinds of data. We are currently exploring its use in, e.g., 
PET data analysis. It further remains to optimize the method, pos-
sibly taking advantage of GPU implementation of certain steps in 
the algorithm.
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The previous ReHo method uses Kendall’s coefficient of con-
cordance (KCC) (Kendall and Gibbons, 1990) (KCC-ReHo) to 
measure the local synchronization of timeseries. KCC is based on 
temporal information (particularly rank information) of time-
series. However, the KCC value of timeseries will be reduced if there 
is time lag among the timeseries even though they share similar 
shapes. Coherence is a method for measuring synchronization 
in frequency domain. One characteristic of coherence is that it 
is insensitive to phase variability across measured timeseries. In 
an event-related study (Sun et al., 2004), coherence was used to 
measure the functional connectivity between remote brain regions. 
They proposed that coherence was more suitable when phase dif-
ference varied largely across brain regions (Miezin et al., 2000; 
Saad et al., 2001), as coherence should be less sensitive to such 
variability. To the best of our knowledge, coherence has not been 
used to measure local synchronization of BOLD signal. The aim 
of the current study was to use coherence-based ReHo (Cohe-
ReHo) to measure the local synchronization of RS-fMRI signal. We 
investigated the consistency between Cohe-ReHo and KCC-ReHo 
from the following aspects:

(1)	 It has been reliably shown that the KCC-ReHo was higher in 
the major regions of DMN than in other brain areas (Long 
et  al., 2008). We predicted that Cohe-ReHo value in these 
regions was also higher than other brain regions;

(2)	 Since both Cohe-ReHo and KCC-ReHo measure local syn-
chronization, the two measurements would be highly corre-
lated in most brain areas across participants;

Introduction
Biswal et al. (1995) found that during rest, low-frequency (0.01–
0.08 Hz) fluctuations in blood oxygenation level-dependent (BOLD) 
signal are highly synchronous throughout the sensorimotor cortex. 
Since then, resting-state fMRI (RS-fMRI) has gained increasing pop-
ularity, particularly in recent years. In addition to the motor net-
work, a multitude of functional systems have been examined using 
RS-fMRI approaches, including visual (Lowe et al., 1998), auditory 
(Cordes et al., 2001), emotional (Lowe et al., 1998), attentional (Fox 
et al., 2006), language (Hampson et al., 2002), reading (Koyama 
et al., 2010) and default mode (Greicius et al., 2003) networks.

The vast majority of RS-fMRI studies have adopted functional 
connectivity to examine their data, i.e. investigating temporal rela-
tionships between fluctuations observed in spatially distinct brain 
regions. However, functional connectivity provides little informa-
tion about local features of spontaneous brain activity observed in 
individual regions, as the methods employed are typically relational. 
Several existing local measurements are complementary to func-
tional connectivity approaches. For example, regional homogeneity 
(ReHo) (Zang et al., 2004) measures the similarity or synchroniza-
tion of timeseries of nearest neighboring voxels (usually 27 voxels). 
It has been shown that the major regions of DMN have higher ReHo 
than other brain regions during resting state (Long et al., 2008). In 
addition, ReHo method has been applied to the detection of local 
abnormality in some brain disorders, e.g., attention deficit hyper-
activity disorder (ADHD) (Cao et al., 2006), Alzheimer’s disease 
(He et al., 2007), depression (Yuan et al., 2008), Parkinson disease 
(Wu et al., 2009), and autism (Paakki et al., 2010).
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was approved by the Institutional Review Board of Beijing Normal 
University Imaging Center for Brain Research. The participants lay 
supine with the head snugly fixed by straps and foam pads to minimize 
head movement. During resting-state scanning, participants were 
instructed to keep as motionless as possible with eyes closed for EC 
condition or open (with no fixation) for EO condition, not to think 
of anything in particular and not to fall asleep. The parameters for 
functional images and structural images were the same as Dataset-1 
and Dataset-2 (Also see Zou et al., 2009 for detailed parameters).

Dataset-4
Dataset-4 was from a study of between-group design (Cao et al., 2009). 
Participants included 23 stimulant-naïve boys diagnosed with ADHD 
and 25 age-matched healthy boys. The participants were 11- to-16-
years old. There were 19 participants in the ADHD group and 23 in the 
control group after excluding those who had excessive head motion 
(See Data Preprocessing). During resting-state scanning, participants 
were instructed to keep as motionless as possible with eyes closed, not 
to think of anything in particular and not to fall asleep. Images were 
acquired using a SIEMENS TRIO 3-Tesla scanner in the Institute of 
Biophysics, Chinese Academy of Sciences. The resting-state functional 
data was acquired using an echo-planar imaging sequence with the 
following parameters: 30 axial slices, TR = 2000 ms, TE = 30 ms, flip 
angle = 90°, thickness/skip = 4.5/0.0 mm, FOV = 220 × 220 mm2, 
in-plane resolution  =  64  ×  64, 240 volumes. A high resolution 
T1-weighted anatomical image was acquired in a sagittal orienta-
tion using a spoiled gradient-recalled sequence covering the whole 
brain (See Cao et al., 2009 for detailed parameters).

Data processing
Data preprocessing
The first 10 volumes of each session was discarded to make the 
longitudinal magnetization reach a steady state and for participants 
to get used to the scanning environment. Then slice timing, head 
motion correction, and spatial normalization were performed by 
statistical parametric mapping (SPM5)2. Linear trend removing 
and band-pass (0.01–0.08  Hz) filtering were performed by our 
built-in-lab software REST3.

Algorithms
Cohe-ReHo analysis. The algorithm for calculating Cohe-ReHo 
included the following three steps:
Step 1: Power spectrum and cross spectrum estimation

For any two timeseries [e.g. x(t) and y(t)] in a given cluster, we 
used Welch’s modified periodogram averaging methods to estimate 
their power spectrums and cross spectrum: we divided each time-
series into N (here N = 8) segments of length T (here T = 51 time 
points, with 50% overlapping for neighboring segments) to make 
each segment approximately stationary. Because we focused on 
the low-frequency (0.01–0.08 Hz) components, the length of each 
segment should be more than 100s (0.01 Hz) to make the frequency 
resolution of power spectrum is high enough. To reduce the vari-
ance of power estimation, timeseries should be divided into as many 
segments as possible. Therefore we set the number of segments 
to be eight. Each resulting segment was then mean-centered and 

(3)	 However, correlation analysis is not effective enough to cha-
racterize the difference between these two methods. Paired 
t-test was performed between these two measurements to 
reveal their difference (Zuo et al., 2010);

(4)	 Eyes open (EO) and eyes closed (EC) are two resting con-
ditions. A few studies have reported differences between 
EO and EC in some brain regions including the visual area 
(Marx et  al., 2003; Yang et  al., 2007), the auditory cortex 
(Marx et al., 2003), and DMN (Yan et al., 2009). Therefore, 
we are interested in which of the two measurements is more 
sensitive to the differences between EO and EC.

(5)	 To examine which of the two measurements is more sensitive 
to abnormal local activity, we applied KCC-ReHo and Cohe-
ReHo to detect differences between ADHD patients and nor-
mal controls.

Materials and Methods
Participants and data acquisition
Dataset-1 and Dataset-2
From our previous large resting-state fMRI dataset1 (See also Biswal 
et al., 2010), we chose 80 right-handed healthy participants (aged 
18–26 years, 40 females). Participants with head motion larger than 
3 mm or 3º in any of the 6 parameters were not included (See Data 
preprocessing). Written informed consent was obtained from each 
participant. This study was approved by the Institutional Review 
Board of Beijing Normal University Imaging Center for Brain 
Research. For validation purpose in the correlation analysis and 
paired t-test between methods, the 80 participants were randomly 
divided into two groups (Dataset-1 and Dataset-2), each contain-
ing 40 (20 females) participants, matched for their age and IQ. 
The participants lay supine with the head snugly fixed by straps 
and foam pads to minimize head movement. A SIEMENS 3T Trio 
scanner was used. Functional images were obtained using an echo-
planar imaging sequence with the following parameters: 33 axial 
slices, thickness/gap = 3.0/0.6 mm, in-plane resolution = 64 × 64, 
TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 200 × 200 mm2. 
During RS-fMRI scanning, participants were instructed to keep as 
motionless as possible, to keep their eyes closed, not to think of any-
thing in particular, and not to fall asleep. In addition, a T1-weighted 
sagittal three-dimensional magnetization-prepared rapid gradient 
echo (MP-RAGE) sequence was acquired, covering the entire brain: 
128 slices, TR = 2530 ms, TE = 3.39 ms, slice thickness = 1.33 mm, 
flip angle = 7°, inversion time = 1100 ms, FOV = 256 × 256 mm2, 
and in-plane resolution = 256 × 192.

Dataset-3
Dataset-3 was from a study of within-group design (Zou et al., 2009). 
Twenty healthy right-handed participants (10 males and 10 females, 
18- to 24-years old) underwent two RS-fMRI conditions, eyes open 
(EO) and eyes closed (EC). The order of the two conditions was coun-
terbalanced across participants (See details in Zou et al., 2009). Written 
informed consent was obtained from each participant. This study 

1http://www.nitrc.org/projects/fcon_1000
2http://www.fil.ion.ucl.ac.uk/spm 3http://www.restfmri.net
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Statistical analysis
Before statistical analysis, an intersection brain mask was made 
for each dataset by using all individual spatially normalized EPI 
images of each dataset and an intracranial mask in REST. These 
intersection masks would be used for standardization purpose 
(See below) because the 33 axial slices do not cover the whole 
brain for some of the adult participants. The individual ReHo 
maps were smoothed with a Gaussian kernel of 6 mm full width 
at half-maximum (FWHM). In previous studies (e.g., Long et al., 
2008), the KCC-ReHo value was standardized by being divided 
by the global mean. This procedure was the same as that in PET 
studies (Raichle et al., 2001). However, it has been recently sug-
gested that transformation into standard Z value (subtracting 
the global mean, then being divided by standard deviation. 
See Zuo et  al., 2010) improved the normality of distribution. 
Accordingly, we transformed Cohe-ReHo and KCC-ReHo value 
into Z value for each dataset by using its own intersection mask. 
The term “global” in the following text will be constrained in each 
intersection mask. For multiple comparison correction, Monte 
Carlo simulation was performed by AlphaSim command in AFNI 
(Cox, 1996).

One-sample t-tests
To test which brain areas have significantly higher Cohe-ReHo 
or KCC-ReHo value than global mean, one-sided one-sam-
ple t-tests were performed on the Z maps in Dataset-1 and 
Dataset-2 separately. Voxels with p value less than 1.0 × 10−12 were 
considered significant.

Correlation analysis between Cohe-ReHo and KCC-ReHo
To test the similarity of Cohe-ReHo and KCC-ReHo maps, linear 
correlation analysis was performed in a voxel-wise way across 
participants. Considering that Z transformation might bias the 
correlation results, the linear correlation was performed on the 
original Cohe-ReHo and KCC-ReHo maps in Dataset-1 and 
Dataset-2.

Paired t-test: Cohe-ReHo vs. KCC-ReHo
Linear correlation can only measure the similarity between these 
two measurements. For a voxel, whether its Cohe-ReHo and 
KCC-ReHo values are highly correlated or not, the two measure-
ments may have different proportion to their own global mean 
value. Hence, paired t-test was performed between Z score of 
Cohe-ReHo and KCC-ReHo maps for Dataset-1 and Dataset-2, 
respectively. 

Paired t-tests: eyes open (EO) vs. eyes closed (EC)
Paired t-tests were performed on the Z maps to reveal the differences 
between EO and EC. The clusters with single voxel’s p value less 
than 0.01 and cluster size greater than 1080 mm3 were considered 
significantly different between conditions (p < 0.05, corrected). By 
visual inspection, we could find both consistency and discrepancy 
between the results of Cohe-ReHo and KCC-ReHo (See Results). To 
test if there is statistically significant difference in the sensitivity of 
the two measurements, we calculated the ratio of the two measure-
ments for each participant. Then, paired t-test was performed on 
the ratio. Multiple comparison correction was constrained within 

weighted by a Hanning window of the same length to reduce spec-
trum leakage caused by segmentation (Welch, 1967). We estimated 
cross spectrum of timeseries x(t) and y(t):
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Step 2: Estimation of coherence across low-frequency band
For timeseries x(t) and y(t) in Step 1, we estimated their coher-

ence across the low-frequency (0.01–0.08 Hz) band with their band-
averaged estimates of the cross spectrum and power spectrums 
(Andrew and Pfurtscheller, 1996):
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Step 3: Calculation of the Cohe-ReHo within the given cluster
To assess the overall synchronization within that cluster, we aver-

aged the C ohxy

∧
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where K is the number of voxels within a cluster (here K = 27, one 
center voxel plus the number of its neighbors), and C ohxy

∧
( )λ  is 

the band-averaged coherence estimated in Step 2. We assigned the 
averaged coherence coefficient Coh

_

 of the cluster to its center voxel 
to represent Cohe-ReHo of the cluster.

An individual Cohe-ReHo map was obtained in a voxel-wise way. 
The Cohe-ReHo program was coded in MATLAB (The MathWorks, 
Inc., Natick, MA, USA).

KCC-ReHo analysis. Kendall’s coefficient of concordance (KCC) 
was calculated to measure the KCC-based ReHo of timeseries of 
voxels within a cluster,
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where W is KCC among timeseries of given voxels, ranging from 
0 to 1; R

i
 is the sum rank of the i

th
 time point; R

_

 is the mean 
of the R

i
s; K is number of voxels within measured cluster (here 

K = 27, one center voxel plus the number of its neighbors); n is 
the number of ranks (here n = 230 time points). The KCC value 
was assigned to the center voxel of this cluster. The individual 
KCC-ReHo map was obtained in a voxel-wise way for all dataset 
groups. The procedures for KCC-ReHo analysis were performed 
by REST.
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Cohe-ReHo as well as KCC-ReHo than the global mean (Figure 1). 
The pattern of one-sample t-test results is highly consistent with 
our previous findings (Long et al., 2008). The results of Dataset-1 
and Dataset-2 are quite similar.

The DMN is of particular interest because it was found that 
regions in DMN have significantly higher glucose metabolism 
than other brain regions (Raichle et al., 2001) and these regions 
show task-independent or task-unspecific deactivation in the goal 
directed tasks (Shulman et al., 1997; Binder et al., 1999; Mazoyer 
et al., 2001; McKiernan et al., 2003), suggesting these regions may 
have important function during resting state. The current results 
suggest that the higher metabolism in the major regions of DMN 
during resting state is associated with higher local synchronization 
of spontaneous activity.

Correlation analysis
The correlation coefficients between Cohe-ReHo and KCC-ReHo 
were quite high in most part of brain regions, suggesting that the 
two indices were very similar there (Figure 2). In the suprasellar 
cistern and ventricles, their correlation coefficients were relatively 
low compared with other brain areas. The two measurements of 
some voxels in the supersellar cistern even showed negative cor-
relation. The lower correlation between the two measurements 
indicates that the physiological noise has different effects on dif-
ferent measurements.

Paired t-test between Cohe-ReHo and KCC-ReHo
Paired t-test between Cohe-ReHo and KCC-ReHo demonstrated 
that the Z score of Cohe-ReHo was significantly greater than that of 
KCC-ReHo in some cisterns and ventricles, as well as a few regions 

brain areas showing significant differences between EO and EC 
by either Cohe-ReHo or KCC-ReHo (i.e., conjunction map). For 
one voxel in the conjunction map, if (1) there was no significant 
difference in the ratio and (2) both methods detected between-
conditions differences, we considered the two measurements were 
equally sensitive to the between-condition differences in this voxel. 
However, if the difference was significant, then we further compared 
the absolute value of t value for the two measurements, particularly, 
we considered the measurement whose absolute value of t value 
was larger was more sensitive than the other measurement at the 
given voxel.

Two-sample t-tests: ADHD vs. control participants
This procedure is almost the same as the between-condition paired 
t-tests mentioned above, except that two-sample t-tests between 
ADHD and control groups rather than paired t-tests between two 
conditions were performed. The clusters with single voxel’s p value 
less than 0.05 and cluster size greater than 6075 mm3 were consid-
ered significantly different between groups (p < 0.05, corrected). 
Accordingly, two-sample t-test on the ratio of Cohe-ReHo to KCC-
ReHo was performed. The corresponding multiple comparison cor-
rection was constrained within the brain areas showing significant 
difference between ADHD and control groups by either Cohe-ReHo 
or KCC-ReHo (i.e., conjunction map).

Results and Discussion
One-sample t-tests
Results of one-sample t-tests showed that the major regions of 
DMN (including posterior cingulate cortex/precuneus, medial 
prefrontal cortex and bilateral inferior parietal lobule) had higher 

Figure 1 | One-sample t-test results of two methods on Dataset-1 showed that major regions of DMN had higher KCC-ReHo (A) and Cohe-ReHo (B) than 
the global mean. The left side of the image corresponds to the right side of brain.
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Figure 2 | Correlation map between Cohe-ReHo and KCC-ReHo of Dataset-1 (A) and Dataset-2 (B), respectively. The left side of the image corresponds to the 
right side of brain.

Figure 3 | Results of paired t-tests between Z maps of Cohe-ReHo and KCC-ReHo for Dataset-1 (A) and Dataset-2 (B). The left side of the image corresponds 
to the right side of brain.

in the white matter (Figure 3, p < 0.05, corrected). The Z score of 
Cohe-ReHo was significantly smaller than that of KCC-ReHo in a 
few regions in the white matter and gray matter. The results were 
very similar for the two datasets.

In the supersellar cisterns and ventricles, both linear correla-
tion (See Section Correlation analysis) and paired t-test showed 
that Cohe-ReHo and KCC-ReHo were different from each other. 
All these results indicated that the physiological noise may have 
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p  <  0.05, corrected). Paired t-test on KCC-ReHo maps yielded 
similar between-condition differences as on the Cohe-ReHo maps 
by visual inspection.

The brain areas showing significant between-condition dif-
ferences by either Cohe-ReHo or KCC-ReHo were taken as a 
mask (i.e., conjunction mask). Then paired t-test was performed 
within this mask to reveal the differences of the ratio of Cohe-
ReHo to KCC-ReHo between EO and EC resting states. Some of 
the brain areas in the conjunction mask showed significant dif-
ference on the ratio (p < 0.05, corrected) (See yellow and green 
color in Figure 5), indicating that the two measurements have 
significantly different sensitivity in detecting between-conditions 
differences. Taking paired t-test results by Cohe-ReHo (Figure 
4A) and KCC-ReHo (Figure 4B) into account, it could be found 
that most of the areas showing significant difference on the ratio 
were significantly contributed by Cohe-ReHo (Yellow color in 
Figure 5). It means that, in these areas, the between-condition 
difference is significantly higher in Cohe-ReHo than in KCC-
ReHo. Only a very small proportion was significantly contributed 
by KCC-ReHo (Green color in Figure 5). It could be concluded 
that Cohe-ReHo may be more sensitive to differences between 
EO and EC. One possible interpretation is that physiological 
noise may result in phase delay across time courses of the neigh-
boring voxels in these brain areas. This phase delay may give 
rise to additional variance or “random noise”, and hence reduce 

different effects on the measurements. However, paired t-test 
showed that the two measurements were also significantly dif-
ferent in a few gray matter regions. It should be noted that, for 
the purpose of direct comparison between two measurements, 
we performed Z transformation to the two measurements previ-
ous to paired t-test. The Z score is a standardized value across 
brain. The difference shown by paired t-test is difference of the 
relative value against the global mean. Therefore, the difference 
found by paired t-test in the gray matter may be due to the fact 
that Z score is partially biased by the standardization procedure. 
Nevertheless, from different aspects, linear correlation and paired 
t-test revealed both similarity and discrepancy between the Cohe-
ReHo and KCC-ReHo.

Comparison of sensitivity between Cohe-ReHo and KCC-ReHo
Paired t-test results for Dataset-3
Paired t-test revealed that the Cohe-ReHo was significantly higher 
in the right middle occipital gyrus, anterior cingulate cortex (ACC), 
bilateral precuneus, bilateral middle frontal gyrus, bilateral infe-
rior frontal gyrus, bilateral inferior parietal lobule, right superior 
frontal gyrus, and right caudate in EO resting state than in EC. It 
also revealed that Cohe-ReHo was significantly lower in the bilat-
eral sensorimotor cortex, bilateral supplementary motor cortex, 
bilateral superior temporal gyrus, bilateral middle temporal gyrus, 
and bilateral thalamus in EO resting-state than in EC (Figure 4, 

Figure 4 | Brain regions showing significantly different Cohe-ReHo (A) and KCC-ReHo (B) between EO and EC resting states. The left side of the image 
corresponds to the right side of brain.
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Figure 5 | Cohe-ReHo and KCC-ReHo have different sensitivity to the 
difference of local synchronization between EO and EC resting states. 
Yellow color means Cohe-ReHo is more sensitive than KCC-ReHo. The green 
color means the opposite. The blue color means that the two measurements 
have no significant differences in their sensitivity in detecting differences 
between EC and EO. The left side of the image corresponds to the right side 
of brain.

Figure 6 | Brain regions showing significantly different Cohe-ReHo (A) and KCC-ReHo (B) between ADHD group and control group (p < 0.05, corrected). 
The left side of the image corresponds to the right side of brain.

the possibility of difference between EO and EC resting states. 
However, this interpretation remains speculative and needs fur-
ther investigation.

Two-sample t-test results for Dataset-4
In comparison with normal controls, the ADHD patients displayed 
significantly increased Cohe-ReHo in the bilateral lingual gyrus and 
decreased Cohe-ReHo in bilateral cerebellum and ventral ACC. 
Significantly increased KCC-ReHo was discovered in bilateral lingual 
gyrus and dorsal ACC and significantly decreased KCC-ReHo was 
found in bilateral cerebellum (Figure 6, p < 0.05, corrected). The pat-
tern looks similar for the two measurements by visual inspection.

As did in the above section, to reveal the statistical difference 
between the sensitivity of these methods in detecting abnormal 
local synchronization of spontaneous activity, we performed 
two-sample t-test on the ratio map of Cohe-ReHo to KCC-ReHo. 
Multiple comparison correction was constrained in the conjunc-
tion map where significant differences between ADHD and control 
groups were found by either Cohe-ReHo or KCC-ReHo. In the 
right lingual gyrus and ventral ACC, Cohe-ReHo yielded more 
prominently between-group difference than KCC-ReHo (See yel-
low color in Figure 7). KCC-ReHo yielded almost no higher sensi-
tivity than Cohe-ReHo. Although KCC-ReHo detected significantly 
between-group difference in the dorsal ACC but not Cohe-ReHo, 
their sensitivity in detecting abnormal local synchronization was 
not different enough to reach a significant level.
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Summary
We applied coherence to measure the regional homogeneity or local 
synchronization of resting-state fMRI BOLD signal. Cohe-ReHo 
detected similar pattern of DMN as KCC-ReHo did. Results of cor-
relation analysis and paired t-test between the two measurements 
indicated that physiological noise might have different effects on 
them. The results of between-condition paired t-test (EO vs. EC in 
Dataset 3) and between-group two-sample t-test (ADHD group vs. 
control group in Dataset 4) showed that Cohe-ReHo and KCC-ReHo 
yielded similar patterns. However, in-depth statistical comparison 
on the ratio of Cohe-ReHo to KCC-ReHo indicated that Cohe-ReHo 
is more sensitive to the differences of spontaneous activity between 
different conditions (EO vs. EC) and between different groups. One 
putative interpretation is that Cohe-ReHo is less susceptible to con-
founds from phase delay among time courses. However, we have not 
found an index to compare their specificity. Further investigation is 
necessary to elucidate their sensitivity and specificity.
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suming and may increase the possibility of inadvertent mistakes. 
Hence, user-friendly toolbox for “pipeline” data analysis of resting-
state fMRI would be very necessary.

Here, we have developed a MATLAB toolbox called Data 
Processing Assistant for Resting-State fMRI (DPARSF) for “pipe-
line” data analysis of resting-state fMRI. DPARSF is based on some 
functions in SPM and REST. After the user arranges the Digital 
Imaging and Communications in Medicine (DICOM) fi les and 
click a few buttons to set parameters, DPARSF will then give all the 
preprocessed (slice timing, realign, normalize, smooth) data and 
results for FC, ReHo, ALFF, and fALFF. DPARSF can also create a 
report for excluding subjects with excessive head motion and gener-
ate a set of pictures for easily checking the effect of normalization. 
In addition, users also can use DPARSF to extract time courses 
from regions of interest.

PROCEDURE OF DPARSF
DPARSF is a user-friendly software. Popup tips tell users what 
will be done when clicking on the buttons (Figure 1). It was 
developed in MATLAB (MathWorks, Inc.). It is an open source 
package and designed to use existing routines in the MATLAB 
distribution with freely available toolbox SPM and our REST 
toolkit. Here, we will introduce the data analysis procedures of 
DPARSF in details.

CONVERT DICOM FILES TO NIfTI IMAGES
Most scanners produce data in DICOM format. Before data analy-
sis, the DICOM format is usually transformed into other formats, 
e.g., Neuroimaging Informatics Technology Initiative (NIfTI) fi le 
format (Cox et al., 2004). NIfTI fi les contain affi ne coordinate 
defi nitions relating voxel index to spatial location, especially the 

INTRODUCTION
Resting-state functional magnetic resonance imaging (fMRI) has 
been more and more widely used since Biswal et al. (1995) fi rstly 
reported the presence of spatially coherent activity in the resting-state 
blood oxygen level-dependent (BOLD) fMRI signal. Resting-state 
fMRI is considered as a powerful tool for investigating the sponta-
neous neuronal activity which consumes most of the brain’s energy 
(Fox and Raichle, 2007). In addition, resting-state fMRI is also a con-
venient way for clinical studies since it has advantages of reasonable 
spatial and temporal resolution and non- invasiveness, as well as its 
simplicity that does not need to set complicated cognitive tasks.

Functional connectivity (FC) is widely used in resting-state 
fMRI studies (Biswal et al., 1995; Lowe et al., 1998; Xiong et al., 
1999; Cordes et al., 2000; Greicius et al., 2003; Fox et al., 2005, 2006; 
Fransson, 2005; Vincent et al., 2006). While FC measures the signal 
synchrony among remote brain areas, the regional spontaneous 
activity could be examined by several metrics, such as the regional 
homogeneity (ReHo, Zang et al., 2004), the amplitude of low-fre-
quency fl uctuation (ALFF, Zang et al., 2007) and the fractional 
ALFF (fALFF, Zou et al., 2008). All the aforementioned methods 
could be calculated by a toolbox Resting-State fMRI Data Analysis 
Toolkit1 (REST). As an easy-to-use MATLAB toolbox, REST is com-
patible with Statistical Parametric Mapping2 (SPM). The data could 
be preprocessed by SPM and then entered into REST’s analysis. 
Although SPM is a powerful tool, lots of complicated and time-
consuming operations are needed when analyzing large sample 
data set. In SPM, the parameters need to be set step-by-step and 
subject-by- subject. These manual procedures may be time-con-
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important information of left hemisphere and right hemisphere. 
If this converting option is checked, DPARSF will convert the data 
by calling dcm2nii in MRIcroN software3. If users have converted 
the data previously, this option is not needed.

REMOVE FIRST 10 (MORE OR LESS) TIME POINTS
The fi rst few volumes of the functional images are often discarded 
for signal equilibrium and to allow the participants’ adaptation to 
the scanning noise. If this option is checked, DPARSF will delete 
the specifi ed number of time points for each participant.

SLICE TIMING
Most fMRI data are acquired using two-dimensional pulse 
sequences that acquire images one slice at a time, thus all slices 
are acquired at different time within a repeat time (TR). Timing 
differences are especially problematic for longer TR. Hence the 
differences in image acquisition time between slices need to be 
corrected. The number of slices, slice order and reference slice 
need to be specifi ed, then DPARSF will do slice timing by calling 
functions in SPM.

HEAD MOTION CORRECTION
The goal of motion correction is to adjust the time series of images 
so that the brain is in the same position in every image (Huettel 
et al., 2004). If this option is checked, the time-series of images 
will be motion-corrected by calling functions in SPM. Since exces-
sive head motion may induce large artifact in fMRI time-series, 
participants with excessive head motion need to be excluded from 
further analysis. DPARSF will create a report of head motion 
based on the realign parameters estimated by SPM (as shown in 
“ExcludeSubjects.txt” in the “RealignParameter” directory).

NORMALIZATION
The brain size, shape, orientation, and gyral anatomy vary largely 
across participants. For inter-subject comparison to be feasible, 
the individual brain is usually transformed or spatially normalized 
into a standardized template. SPM provides two optional ways to 
normalize the functional images into the Montreal Neurological 
Institute (MNI) space: (1) using echo-planar imaging (EPI) tem-
plate (Ashburner and Friston, 1999) and (2) using unifi ed segmen-
tation on T1 image (Ashburner and Friston, 2005). The latter way 
could improve the accuracy of spatial normalization (Ashburner 
and Friston, 2005) but is a little complicated in SPM. It contains 
three steps – coregistration, segmentation and writing normali-
zation parameters. DPARSF has integrated these three steps into 
one. It’s important to check the effect of normalization of each 
individual since some data may meet problem in normalization. 
DPARSF can generate a set of pictures (Figure 2) for easily check-
ing the effect of normalization. It should be noted that DPARSF 
provides a very simple way for visual inspection. Users should check 
the effect of spatial normalization carefully.

SMOOTHING
Smoothing is used as a preprocessing step to suppress noise and 
effects due to residual differences in functional and gyral anatomy 
during inter-subject averaging. The most common smoothing tech-
nique is the Gaussian fi lter which has the shape of a normal distri-
bution. DPARSF will smooth the data with the specifi ed width at 
half of the maximum value (full-width-half-maximum, or FWHM) 
by calling functions in SPM.

REMOVE LINEAR TREAD
Long-term physiological shifts, movement related noise remaining 
after realignment or instrumental instability may contribute to a 
systematic increase or decrease in the signal with time (Turner et al., 
1997; Lowe and Russell, 1999). The exact cause for the drift of the 
baseline signal is not completely understood (Smith et al., 1999), 
and how this structured trend affect further analysis is an interesting 
issue. If this option is checked, DPARSF will remove the systematic 
drift or trend using linear model as does in Analysis of Functional 
Neuroimage (AFNI) (Cox, 1996) by calling functions in REST.

FILTERING
Low frequency (0.01–0.08 Hz) fl uctuations (LFFs) of the resting-
state fMRI signal were reported to be of physiological importance 
(Biswal et al., 1995) and also were suggested to refl ect spontaneous 
neuronal activity (Lu et al., 2007). Zuo et al. (2010) also reported 
low frequency oscillations (0.01–0.073 Hz) were primarily detected 

FIGURE 1 | Graphical user interface of DPARSF.

3http://www.mricro.com
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within gray matter. In contrast, relatively high frequency oscilla-
tions (0.073–0.25) were primarily restricted to white matter. It’s 
reported that respiratory and aliased cardiac signals fall in the range 
of relatively high frequency band (Cordes et al., 2001). Thus, the 
data is usually bandpass (e.g., 0.01–0.08 Hz) fi ltered to reduce the 
effect of very low frequency and high frequency physiological noise. 
Of note, the data should not to be fi ltered when calculating fALFF, 
because fALFF is a ratio of low frequency amplitude to full band 
amplitude. If this option is checked, DPARSF will fi lter the data 
by calling ideal fi lter functions in REST (which is in accordance 
with AFNI).

REGIONAL HOMOGENEITY
While FC analysis measures the signal synchrony of LFF activ-
ity among different brain areas, it does not provide information 
of regional spontaneous activity. The ReHo method (Zang et al., 
2004), unlike the connectivity-based methods typically used in 
most resting-state fMRI studies, is suitable for exploring regional 
brain activity by examining the degree of regional synchronization 
of fMRI time courses. This is accomplished on a voxel-by-voxel 
basis by calculating Kendall’s coeffi cient of concordance (KCC, 
Kendall and Gibbons, 1990) of time series of a given voxel with 
those of its nearest neighbors. A larger value of ReHo indicates 
a higher regional synchronization. In order to reduce the global 
effects of variability across participants, as did in PET studies 
(Raichle et al., 2001), the ReHo of each voxel was divided by the 
global mean ReHo value within the whole-brain mask (default 
brain mask provided in REST which was thresholded at 50% on the 

SPM5’s a priori brain mask). It needs to be noted that, smoothing 
before ReHo  calculation will largely increase the regional similarity. 
We recommend that the smoothing procedure is performed after 
ReHo calculation. However, it is still an open issue. If this option is 
checked, DPARSF will calculate ReHo and then smooth the ReHo 
results by calling functions in REST and SPM.

ALFF AND fALFF
The regional spontaneous activities can be examined by the ALFF. 
Biswal et al. (1995) found that the root mean square of the LFF in 
the white matter was reduced by about 60% relative to the gray 
matter. The power spectrum of the LFF (equivalent to the square 
of the ALFF) has been used to indicate the magnitude of neural 
activity (Kiviniemi et al., 2000; He et al., 2007; Hoptman et al., 2010; 
Zhang et al., in press). However, it has been shown that ALFF is 
signifi cantly higher than the global mean ALFF in cisterns and 
vicinity of large blood vessels (Zang et al., 2007). That was appar-
ently induced by the large fl uctuations of high frequency physi-
ological noise. Thus an improved measure fALFF (Zou et al., 2008) 
is defi ned as the ratio of total amplitude within the low-frequency 
range (0.01–0.08 Hz) to the total amplitude of the entire detect-
able frequency range. It was found that fALFF can better reveal the 
default mode network (DMN) within groups (i.e., by one-sample 
t-test). However, which of the two measures (ALFF vs. fALFF) is 
better for between-groups studies is still unknown. Of note, ALFF 
measures have higher test–retest reliability in gray matter regions 
than fALFF, while more susceptible to possible artifactual fi ndings 
in the vicinity of blood vessels and the cerebral ventricles (Zuo et al., 
2010). Similar to standardization procedure of ReHo analysis, the 
ALFF or fALFF of each voxel was divided by the global mean ALFF 
or fALFF value within the whole-brain mask.

In addition, different frequency bands are considered to be 
generated by distinct oscillators, each with specifi c properties 
and physiological functions, as the neuronal oscillation classes 
are arrayed linearly when plotted on the natural logarithmic scale 
(Penttonen and Buzsáki, 2003; Buzsáki and Draguhn, 2004). Thus, 
ALFF or fALFF of different frequency bands could also be inves-
tigated. For example, ALFF and fALFF of four frequency bands, 
namely slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 
(0.073–0.198 Hz), and slow-2 (0.198–0.25 Hz), were examined, and 
the results showed that fALFF in the slow-4 (0.027–0.073 Hz) band 
is relatively specifi c to the basal ganglia (Zuo et al., 2010). If these 
options are checked, DPARSF will calculate ALFF and/or fALFF of 
the specifi ed frequency band by calling functions in REST.

REMOVE EFFECT OF NUISANCE COVARIATES
In the past few years, there has been increased attention to the 
anti-correlation phenomenon of resting-state fMRI. A typical 
case is that, while the global (whole-brain) signal was removed, 
many researchers consistently observed that there were signifi cant 
anti-correlations between the components of the default-mode 
and attention networks (Greicius et al., 2003; Fox et al., 2005; 
Fransson, 2005). Recently, the global signal has been found to be 
associated with respiration-induced fMRI signal (Birn et al., 2006). 
To reduce the effect of the physiological artifacts, the whole-brain 
signal would be removed by a regression analysis before FC analysis 
(Greicius et al., 2003; Fox et al., 2005; Fransson, 2005). Of note, it 

FIGURE 2 | Pictures for checking normalization. The normalized functional 
image was overlaid on a high resolution 3D anatomical image (the opaque one 
with skull. From “Colin Holmes,” http://imaging.mrc-cbu.cam.ac.uk/
downloads/Colin/, also distributed with MRIcroN as ch2) in the MNI space. 
Users can easily check the accuracy of spatial normalization by visual 
inspection.
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is still an ongoing controversy since removal of the global brain 
signal causes the re-distribution of correlation coeffi cients and the 
interpretation of biological mechanisms of negative correlations is 
ambiguous (Murphy et al., 2009). In addition to the global mean 
signal, six motion parameters, the cerebrospinal fl uid (CSF), and 
the white matter signals would also be removed as nuisance vari-
ables to reduce the effects of head motion and non-neuronal BOLD 
fl uctuations (Fox et al., 2005; Kelly et al., 2008). It is still an open 
issue that where the ROIs should be located to represent the white 
matter and CSF. REST provided a few default masks made from 
SPM5’s a priori masks, i.e., the whole brain mask (brainmask.nii) 
thresholded at 50%, the white matter mask (white.nii) thresholded 
at 90%, and the CSF mask (csf.nii) thresholded at 70%. It should 
be noted that the removal of nuisance covariates is not for ReHo 
and ALFF analysis. It is not clear yet how the nuisance covariates 
affect the ReHo or ALFF results.

FUNCTIONAL CONNECTIVITY
FC is widely used in resting-state fMRI (Biswal et al., 1995; Lowe 
et al., 1998; Xiong et al., 1999; Cordes et al., 2000; Greicius et al., 
2003; Fox et al., 2005, 2006; Fransson, 2005; Vincent et al., 2006). 
The correlations in spontaneous BOLD fl uctuations may refl ect the 
inter-regional correlations in neuronal variability (Friston et al., 
1993; Horwitz, 2003). If this option is checked, the averaged time 
course will be obtained from a specifi ed seed region and the cor-
relation analysis will be performed in a voxel-wise way to generate 
the FC map. The correlation coeffi cient map will be converted into z 
map by Fisher’s r-to-z transform to improve the normality (Rosner, 
2006) by calling functions in REST.

ILLUSTRATIONS
To validate and illustrate the usage of DPARSF, we performed the 
ReHo, ALFF, fALFF and FC analyses.

DATA
Data were selected from a large sample resting-state fMRI data-
set of our group, which has been publicly released in the “1000 
Functional Connectomes” Project4. We selected 86 young healthy 
volunteers (48 females: 20.8 ± 1.6 years old, range 18–25; and 38 
males: 20.7 ± 1.7 years old, range 17–25) with head motion less than 
2.0 mm displacement in any of the x, y, or z directions or 2.0° of 
any angular motion throughout the resting-state scan. All are right-
handed and had no history of neurological and psychiatric disor-
ders. Written informed consent was obtained from each participant, 
and the study was approved by the Institutional Review Board of 
Beijing Normal University Imaging Center for Brain Research.

MRI data were acquired using a SIEMENS TRIO 3-Tesla scan-
ner in the Beijing Normal University Imaging Center for Brain 
Research. The participants lay supine with the head snugly fi xed 
by straps and foam pads to minimize head movement. During the 
resting-state session, the participants were instructed to keep as 
motionless as possible and not to think systematically. The func-
tional images were obtained using an EPI sequence with the follow-
ing parameters: 33 axial slices, thickness/gap = 3/0.6 mm, in-plane 
resolution = 64 × 64, TR = 2000 ms, TE = 30 ms, fl ip angle = 90°, 

FOV = 200 × 200 mm. In addition, a T1-weighted sagittal 
three-dimensional magnetization-prepared rapid gradient echo 
(MPRAGE) sequence was acquired, covering the entire brain: 128 
slices, TR = 2530 ms, TE = 3.39 ms, slice thickness = 1.33 mm, fl ip 
angle = 7°, inversion time = 1100 ms, FOV = 256 mm × 256 mm, 
and in-plane resolution = 256 × 192.

PREPROCESSING
Data were processed by using DPARSF pipeline analysis as intro-
duced in the last section. Briefl y, after converting DICOM fi les to 
NIFTI images, the fi rst 10 time points were discarded. Then slice 
timing and head motion correction were performed. The data were 
then normalized to MNI space by using unifi ed segmentation of T1 
image and re-sampled to 3-mm isotropic voxels. After smoothing 
with a 4 mm FWHM Gaussian kernel (for ALFF, fALFF, FC except 
for ReHo), the linear trend of time courses were removed and then 
temporally band-pass fi ltering (0.01–0.08 Hz) (with an exception 
of fALFF) was performed.

ReHo, ALFF, fALFF AND FC
As indicated in the corresponding sections, spatial smoothing was 
performed after ReHo calculation, but for the other three (ALFF, 
fALFF and FC) methods, spatial smoothing was performed before 
their calculation. fALFF was calculated based on preprocessed data 
without fi ltering since fALFF is the value divided by the total power 
in the entire detectable frequency range. The ReHo, ALFF or fALFF 
of each voxel was divided by the global mean value within the 
whole-brain mask.

Before FC calculation, nine nuisance covariates including six 
head motion parameters, the global signal, the white matter signal 
and the CSF signal were removed from the preprocessed data. A 
sphere (radius = 6 mm) in the posterior cingulate cortex (PCC) 
(−5, −49, 40) were defi ned as the seed region for each participant 
in line with a previous study (Fox et al., 2005). The averaged time 
course was then obtained from the sphere ROI and the correlation 
analysis was performed in a voxel-wise way to generate the FC of 
the PCC, called the PCC-FC map. Finally, the correlation coeffi -
cient map was converted into z maps by Fisher’s r-to-z transform 
to improve the normality (Rosner, 2006).

STATISTICAL ANALYSIS
To explore the within-group patterns, one-sample t-tests were per-
formed on the ReHo, ALFF, fALFF, and FC maps, respectively, in a 
voxel-wise way by using SPM. For ReHo, ALFF and fALFF maps, the 
one-sample t-tests were to fi nd regions showing signifi cantly higher 
ReHo, ALFF and fALFF, respectively, than the global mean value. 
After being divided by the global mean value, each individual ReHo, 
ALFF and fALFF map has a “new” global mean of “1”. Thus the one-
sample t-tests were performed against “1” other than “0”. Since the 
module for one-sample t test in SPM just can compare values with 
base “0”, we subtracted “1” from the ReHo, ALFF and fALFF maps 
which had been divided by global mean value of the whole brain, 
and then perform one-tailed one-sample t-tests on the subtracted 
maps in SPM. For FC maps, two-tailed one sample t-test was per-
formed on the z maps to show both the DMN and its anti-correlated 
network patterns. The within-condition statistical threshold was set 
at t > 3.89 (P < 0.0001) for one-tailed t-tests (for ReHo, ALFF and 4http://www.nitrc.org/projects/fcon_1000/
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fALFF) and |t| > 4.08 (P < 0.0001) for two-tailed t-test (for FC) and 
cluster size >135 mm3, which corresponds to a corrected P < 0.0001. 
This correction was confi ned within the whole-brain mask (size: 
1912437 mm3) and was determined by Monte Carlo simulations 
(Ledberg et al., 1998) that were performed by the program REST 
AlphaSim (which is based on AlphaSim in AFNI5).

RESULTS AND DISCUSSION
One-sample t-tests showed that the DMN which included PCC/pre-
cuneus, medial prefrontal cortex and bilateral inferior parietal lob-
ule, exhibited signifi cantly higher ReHo, ALFF and fALFF than the 
global mean (Figures 3A–C). This pattern was consistent with that 
in previous studies which showed high ReHo (Long et al., 2008), 
ALFF and fALFF (Zang et al., 2007; Zou et al., 2008; Zuo et al., 2010) 
within the DMN. Previous studies have consistently demonstrated 
that the DMN regions show task-independent  deactivation across 

a wide range of cognitive tasks compared with the resting-state 
(Shulman et al., 1997; Binder et al., 1999; Mazoyer et al., 2001), 
and these areas had signifi cantly higher blood fl ow and oxygen 
consumption than the global mean value (Raichle et al., 2001). 
The current results that DMN showed high activity is consistent 
with the conclusion that these regions represent the functional core 
underlying resting brain dynamics (Ghosh et al., 2008; Honey et al., 
2009; Zuo et al., 2010). In line with previous studies (Zou et al., 
2008; Zuo et al., 2010), we also found ALFF measure may be more 
susceptible to possible artifactual effect in the vicinity of blood 
vessels and the cerebral ventricles than fALFF. However, which of 
the two measures, ALFF vs. fALFF, is better for between-groups 
studies or sensitive to abnormal spontaneous brain activity needs 
to be further investigated.

FC analysis showed that the medial prefrontal cortex and bilateral 
inferior parietal lobule had signifi cantly positive correlation with 
PCC (Figure 3D). The dorsal anterior cingulate cortex, bilateral 
insula, bilateral middle temporal cortex and bilateral  dorsolateral 

FIGURE 3 | Within-condition patterns of ReHo (A), ALFF (B), fALFF 

(C) and PCC-FC (D). All these methods revealed the pattern of the default 
mode network. The numbers below the images refer to the MNI z 
coordinates. The statistical threshold was set at t > 3.89 (P < 0.0001) for 

one-tailed t-tests (for ReHo, ALFF and fALFF) and |t| > 4.08 (P < 0.0001) 
for two-tailed t-test (for FC) and cluster size >135 mm3, which 
corresponds to a corrected P < 0.0001. LH, left hemisphere; RH, 
right hemisphere.

5http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
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prefrontal cortex showed negative correlation with PCC. These 
results are consistent with previous studies that suggested a com-
petitive relationship between the DMN and the anti-correlated 
network (Fox et al., 2005; Fransson, 2005; Long et al., 2008; Yan 
et al., 2009).

The illustrations of ReHo, ALFF, fALFF and FC analyses by using 
DPARSF pipeline analysis validated its correctness and demon-
strated its effectiveness.

CONCLUSIONS
Based on some functions in SPM and REST, DPARSF is a user-
friendly toolbox for “pipeline” data analysis of resting-state fMRI. It 
can help the users to save time for data processing and reduce errors 

in cumbersome setting of parameters. DPARSF can also create a 
report for excluding subjects with excessive head motion and gener-
ate a set of pictures for easily checking the effect of normalization. 
This toolbox is freely available at http://www.restfmri.net. We hope 
this user-friendly toolbox could make the relatively novel technique 
of resting-state fMRI easier to study, especially for clinical studies.
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quest to fully elucidate the function of intrinsic brain networks also 
requires a solid understanding of the link between neuroimaging 
findings and their electrophysiological underpinnings.

In this paper we provide perspectives on the necessity, feasibil-
ity, and limitations of tackling the electrophysiological properties 
of DMN dynamics. We will discuss the utility and limitations of 
non-invasive electrophysiological techniques such as electroen-
cephalography (EEG) and magnetoencephalography (MEG) in 
this endeavor. Most importantly, we will focus on the potential of 
direct electrophysiological recordings in humans to unravel the 
spectral and temporal properties of task-related changes of popula-
tion activity in DMN structures.

A parallel stream of research in humans has revealed that blood-
oxygenation level-dependent (BOLD) signal increases are tightly 
coupled with task-related power increases in the high-frequency 
range (broad-band gamma, 50–150 Hz) of the intracranial EEG sig-
nal (Mukamel et al., 2005; Lachaux et al., 2007a; Nir et al., 2007). It is 
therefore tempting to ask whether task-related BOLD deactivations, 
typical for DMN areas, are in turn associated with suppressions of 
high gamma power. While human studies of gamma power increases 
are abundant (e.g., Lachaux et al., 2005; Crone et al., 2006; Jensen 
et al., 2007; Jerbi et al., 2009a), little is known about task-related 
gamma power suppression. Intracerebral studies from our group 
were the first to provide direct evidence in humans for task-related 
decreases of broad-band gamma (>50 Hz) power during perform-
ance of attention-demanding cognitive tasks (Lachaux et al., 2005, 
2008). More recent studies (Mainy et al., 2008; Miller et al., 2009; 
Jung et al., 2010) provide further evidence for the co-occurrence of 

Introduction
The fact that parts of our brain are active even when we are not 
overtly engaged with the external world may not appear to be that 
much of a surprise per se. The fact that thoughts and inner mental 
processes are ongoing, and that they are certainly more promi-
nent when we are not processing stimuli from the outside world, 
makes the concept of ongoing brain activity not only plausible but 
crucial. By contrast, what is definitely striking is the significant 
discrepancy between how much we have learned about the spatial 
characteristics of the so-called “default-mode” of brain function 
(Raichle et  al., 2001) and how little we know about the precise 
neural mechanisms underlying its modulations and the fine-scale 
temporal dynamics thereof.

Over recent years, the default-mode network (DMN) (Gusnard 
and Raichle, 2001; Raichle et al., 2001) has been examined in the 
light of its putative relationship to self-cognition (Gusnard et al., 
2001) and mind wandering (Mason et al., 2007). Deactivation of 
the DMN has been implicated in attention and task-engagement 
(Corbetta and Shulman, 2002) and its dysfunction has been linked 
to various mental disorders (Greicius, 2008; Broyd et al., 2009). A 
steady flow of seminal findings advancing our understanding of 
intrinsic brain activity continues to emerge from neuroimaging 
studies. Current important topics include the use of functional 
magnetic resonance imaging (fMRI) to investigate intrinsic net-
work dynamics and connectivity patterns (Greicius et al., 2003; Fox 
et al., 2005; Uddin et al., 2009) and the putative relationship between 
DMN deactivations and behavioral performance (Weissman et al., 
2006; Shulman et al., 2007; Anticevic et al., 2010). Nevertheless, the 
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task-related increases and decreases of broad-band gamma activity 
in distinct brain areas during goal-directed behavior. As a matter of 
fact, because direct recordings from the cortex are not affected by 
physiological noise (e.g., breathing or cardiac changes), such studies 
are critical to refute claims that DMN observations constitute an 
epiphenomenon not of neuronal origin (Birn et al., 2008). Besides, 
we argue that depth recordings in humans will be key to probing 
the temporal properties of DMN deactivation and to unraveling 
the role of gamma activity therein. To further support this claim, 
we present rare human intracerebral stereotactic-EEG (SEEG) data 
recorded directly from two prominent DMN areas, namely the 
posterior cingulate cortex (PCC) and the medial prefrontal cortex 
(MPFC). Using time-frequency analysis we computed temporal and 
spectral profiles of population-level activity depicting task-related 
gamma-band deactivation in these areas during performance of 
attention-demanding tasks. Finally, we discuss some implications 
of our findings and we outline directions for future research in this 
challenging and rapidly growing field.

Investigating DMN with animal electrophysiology
Unfortunately, our knowledge of the neural correlates of DMN 
remains elusive. This is in part due to the fact that investigating 
the electrophysiological correlates of the BOLD signal is a tech-
nically challenging endeavor and acquiring electrophysiological 
signals from human DMN structures faces multiple challenges. 
So what have electrophysiological approaches taught us about the 
neural correlates of DMN and what are their current limitations? 
Let us address this question first of all from the perspective of 
animal studies. A highly interesting study by Hayden et al. (2009) 
has reported significant task-related suppression of neuronal fir-
ing rate in macaque PCC a region considered to be a prominent 
component of DMN. As in previous reports of task-related BOLD 
deactivation, the reduction in neuronal firing in macaque PCC 
occurred during task performance and was followed by a return to 
higher baseline levels between trials. Most importantly, the firing-
rate suppression reported by Hayden et al. (2009) was predictive 
of performance (errors and reaction times). Despite the fact that 
the BOLD signal was not recorded in this study, the authors argue 
that the relationship to fMRI findings is strengthened by the fact 
that the activity of lateral intraparietal (LIP) neurons was enhanced 
during the task, i.e., LIP showed the inverse effect observed in PCC. 
Such non-human primate studies hold the potential to advance our 
understanding of the neural correlates of the DMN. The degree to 
which animal data can be generalized to humans may be restricted 
by the limits of anatomo-functional cross-species comparison. 
However, a more serious limitation to the study of DMN function 
with animal recordings arises if we want to test specific hypoth-
eses about its putative role in mediating internally oriented mental 
processes (e.g., self-cognition, episodic and prospective memory, 
covert speech, etc.). Nevertheless, by contrast to electrophysiology, 
imaging studies in anesthetized animal can provide insights into 
the large-scale functional architecture of the DMN. As a matter of 
fact, the detection of spontaneous BOLD correlations (typical of 
resting state networks) in anesthetized monkeys (Vincent et al., 
2007) has direct implications on the ongoing debate on the cor-
relations between DMN connectivity and levels of consciousness 
(Greicius et al., 2008).

Non-invasive investigation of DMN with EEG
Non-invasive electrophysiological techniques such as EEG or MEG 
provide whole-head coverage at a high temporal (millisecond-range) 
resolution and thus carry the potential to unravel the fine-temporal 
dynamics of the brain’s intrinsic activity. Several EEG studies suggest 
various relationships between resting state networks and multiple 
spatial and spectral properties of the EEG. In particular, combin-
ing EEG and fMRI recordings provides a powerful framework for 
the comparison between various electrophysiological components 
and the BOLD responses during resting states (Laufs et al., 2003; 
Debener et al., 2005; Mantini et al., 2007; Laufs, 2008; Scheeringa 
et al., 2008; Jann et al., 2009). A first step toward assessing the EEG 
correlates of DMN is to decipher the way non-invasive surface 
measurements relate to the BOLD response. This question has 
been addressed by correlating BOLD with EEG power in various 
frequency bands. For instance, the BOLD signal has been shown to 
correlate negatively with EEG power in the alpha band (Goldman 
et al., 2002; Moosmann et al., 2003) and a recent study found positive 
correlations between BOLD and MEG high gamma power (Zumer 
et al., 2010). Numerous studies found correlations between DMN 
activity patterns and the power in traditional EEG frequency bands 
including theta (4–7 Hz), alpha (8–12 Hz), beta (13–30Hz), and 
low-gamma (30–50 Hz) bands (Laufs et al., 2003; Mantini et al., 
2007; Chen et al., 2008; Scheeringa et al., 2008; Jann et al., 2009). In 
contrast, putative links between BOLD responses and components 
in the lower end of the EEG frequency spectrum, namely delta oscil-
lations (1–4 Hz), slow cortical potentials (SCPs), and infra-slow 
fluctuations (0.01–0.1 Hz) have proven harder to establish (Khader 
et al., 2008). Infra-slow EEG fluctuations (e.g., Monto et al., 2008) 
and SCPs have been proposed to reflect slow fluctuations in fMRI 
spontaneous activity (He and Raichle, 2009).

More generally, attempts to use non-invasive electrophysiological 
methods such as EEG or MEG to elucidate the neural mechanisms 
of intrinsic brain networks are challenged by two main limitations: 
the poor spatial resolution of MEG/EEG and the relatively lim-
ited signal-to-noise ratio of surface measurements especially with 
regards to detecting higher frequency components of the signal, 
namely the high gamma-band (∼60–200 Hz). Advanced MEG/EEG 
source reconstruction techniques yield cortical activation maps 
that are physiologically easier to interpret than sensor-level topog-
raphies (e.g., Baillet et al., 2001; Dalal et al., 2008). Nevertheless, 
the estimation of deeper sources in MEG/EEG is less reliable than 
the localization of activity from sources close to the sensors. This 
could be a severe limitation when it comes to detecting activity 
from deep regions of the default-mode such as the PCC. Moreover, 
the fact that high-frequency activity in the gamma-range is less 
easily detected with surface recordings (Pfurtscheller and Cooper, 
1975; Jerbi et al., 2009a) might also be considered a further obsta-
cle in this endeavor. As mentioned earlier, high gamma activity is 
an important target signal for DMN investigations because of its 
putative coupling with the BOLD signal (Logothetis et al., 2001; 
Niessing et al., 2005; Nir et al., 2007; Lachaux et al., 2008). Recently 
a number of studies have shown that MEG and EEG can, under 
certain circumstances, be used to detect task-related activity above 
60 Hz (e.g., Ball et al., 2008; Cheyne et al., 2008; Dalal et al., 2008, 
2009; Tecchio et al., 2008; Waldert et al., 2008; Van Der Werf et al., 
2010; Zumer et al., 2010).
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Figure 1A). This represents a major advantage when it comes to 
the investigation of DMN structures such as PCC, MPFC that are 
rarely probed by other electrophysiological techniques. Nevertheless, 
ECoG does occasionally involve placement of electrode strips on 
the surface of the medial wall and could in these cases be used for 
DMN investigations. Previous ECoG findings point toward SCP 
and gamma-range power as two types of electrical signals that dis-
play correlation patterns that mirror those observed in spontaneous 
fMRI BOLD signals (He et al., 2008; He and Raichle, 2009).

Detection of Task-related Neural Deactivation  
with SEEG
Given that a defining property of DMN is its task-related deactiva-
tion (i.e., negative BOLD response) during exteroceptive goal-di-
rected behavior, the natural question that comes to mind is whether 
the DMN also displays task-related deactivations detectable in the 
electrophysiological signal. Robust SEEG deactivations in such 
regions may represent a putative neural correlate of task-related 
BOLD deactivations.

In the following, we further make the case for SEEG recordings 
as a particularly promising approach to study DMN deactivation, 
by providing samples of direct recordings from two regions of the 

Intracerebral recordings: Clinical setting and 
technical features
Fortunately, access to high resolution spatial and temporal signals 
through direct recordings from the human brain is sometimes pos-
sible in some clinical settings. Various types of invasive recordings 
from cortical and subcortical structures are used in conjunction with 
several clinical conditions (Engel et al., 2005). The surgical treatment 
of drug-resistant epilepsy requires intracranial recordings in multi-
ple brain areas in order to localize the epileptic tissue (Kahane et al., 
2004, 2006). During this pre-surgical evaluation period, electrical 
cortical stimulation and task-related functional mapping (Crone 
et al., 2006; Jerbi et al., 2009a) are used to map out healthy and 
eloquent cortex that should be spared during surgery. The two main 
invasive recording techniques used in the field of epilepsy consist 
of grid electrode placement over the cortex, a procedure known as 
Electrocorticography (ECoG) and of multi-lead depth electrode 
implantation known as SEEG (reviewed in Jerbi et al., 2009a). From 
the point of view of functional mapping, a major advantage of the 
multi-lead depth electrode implantation used in SEEG is the fact 
that the recordings are not limited to the cortical surface. An SEEG 
electrode consists of upto 15 contacts that probe multiple sites from 
lateral structures all the way through to medial wall regions (see 

Figure 1 | Intracerebral stereotactic-EEG (SEEG) setting and cognitive 
paradigms. (A) SEEG recording procedure showing a typical implantation 
sketch based on a post-implantation X-ray scan (left panel) and a typical SEEG 
depth electrode array (right panel). See Materials and Methods in 
Supplementary Material for a detailed description of SEEG data acquisition. 
(B) Reading task (left panel): subjects were presented with stimuli that 
consisted of words and pseudowords. To ensure both categories were read, the 
subjects had to indicate whether the word represented a living or non-living item 
and, in the case of a pseudoword, whether it was made up of two syllables or 

not. Navon task (right panel): subjects were presented with a large letter (“global 
letter”), which was itself composed of repeated smaller letters (“local letter”). 
The global and local letters could be either the letter “H” or the letter “S,” leading 
to four types of global-to-local stimulus configurations. At the beginning of a trial 
the subjects were cued to focus either on the global or the local level of the 
upcoming stimulus. The task consisted in identifying, as fast as possible, the 
stimulus letter at the level indicated by the cue. In both experiments the stimuli 
were presented for a maximum of 3 s and disappeared as soon as the 
subject responded.
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participated in routine localizer experiments including a series of 
attention-demanding tasks such as a classical “global versus local” 
attention task (Navon, 1977) and a “word versus pseudoword” read-
ing task (Figure 1B). Subsequent data analysis was strictly restricted 
to recording sites that showed no pathological activity. Figures 2 
and 3 show results obtained with data recorded directly in PCC 
and MPFC respectively. Using time-frequency analysis of bipolar 

human DMN: the posterior cingulate cortex (PCC) and the MPFC. 
We then report, for the sake of comparison, electrode data acquired 
in the same subjects but from sites not assumed to be part of the 
DMN. The data presented here were acquired from subjects with 
SEEG depth electrodes implanted at multiple locations of the brain 
as part of their pre-surgical evaluation period (see supplementary 
material for details of the experimental procedures). The subjects 

Figure 2 | Task-related gamma-band power suppressions in posterior 
cingulate cortex (PCC). (A) Anatomical location of the SEEG recording site in 
PCC of subject 1 (Talairach coordinates: x = 10, y = −38, z = 35). (B) Time-
frequency representations of PCC activity for the reading (left panel) and Navon 
(right panel) tasks. Values represent task-related power modulations across time 
and frequency, compared with average baseline activity during fixation 
(Wilcoxon test). In both tasks strong decreases in PCC gamma power were 

found (indicated by negative Z values). (C) Time profile of percent power 
decreases (below baseline levels) at this electrode site for the conditions of each 
task (Left: Reading, Right: Navon). All conditions show significant gamma 
suppression in this region of DMN. The red/blue horizontal lines indicate 
statistical significance (p < 0.05) based on a Wilcoxon signed rank test and 
confidence intervals represent ± s.e.m. (See Materials and Methods in 
Supplementary Material for more details).
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ditions in both tasks. In addition to this task non-specificity, the 
fact that these intracranially recorded gamma suppressions occur 
in two regions known to be part of the DMN is in agreement with a 
putative link between SEEG gamma power deactivation and BOLD 
deactivation reported in the human fMRI DMN literature (Raichle 
et al., 2001). Importantly, this view is further supported by the fact 
that task-related gamma suppressions were not ubiquitous across 
recording sites. Applying the same spectral analysis to the data 
acquired in the same subjects but at other recording sites which 

recordings in these areas we derive task-related maps that depict 
modulations of power across time and frequency, as compared to 
baseline levels (methods as in Jerbi et al., 2009a). Strikingly, com-
pared to pre-stimulus baseline levels (during which subject simply 
fixate a cross), the Reading and the Navon tasks were associated with 
strong suppressions of power in the high gamma (∼50–150 Hz) 
observed in both PCC and MPFC sites (Figures 2B and 3B). Most 
importantly, as shown in Figures  2C and 3C, the gamma-band 
deactivations were systematically present for all experimental con-

Figure 3 | Task-related gamma-band power suppressions in Medial 
Prefrontal Cortex (MPFC). (A) Anatomical location of the SEEG recording site 
in MPFC of subject 2 (Talairach coordinates: x = −4, y = −46, z = −3). 
(B) Time‑frequency representations of MPFC activity for the reading (left panel) 
and Navon (right panel) tasks. Strong decreases in MPFC gamma power were 

found in both tasks. (C) Time profile of percent power decreases (below 
baseline levels) at this electrode site for the conditions of each task (Left: 
Reading, Right: Navon). As for PCC (Figure 2), gamma activity in MPFC is 
significantly suppressed for all conditions. Display conventions and methods 
used are identical to those of Figure.2.
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key primary visual area (V1) (Shmuel et al., 2006). Task-related 
decreases in high gamma power have also been reported with 
intracerebral recordings in human V1 during processing of complex 
visual stimuli (Lachaux et al., 2005). More generally, it is tempting to 
ask whether the so-called task-positive networks and task-negative 
networks revealed by the fMRI literature (Fox et  al., 2005), are 
spatially coincident with task-related gamma power enhancement 
networks and task-related gamma power suppression networks 
respectively. This view implies that DMN areas would exhibit less 
gamma power during execution of attention-demanding tasks than 
during resting baseline periods. Support for this hypothesis has 
been reported in monkey PCC (Hayden et al., 2009). However, so 
far, equivalent findings in humans have been scarce. The frequency 
range of the high gamma-band (∼40–160 Hz) falls beyond the reach 
of most EEG studies that have been performed so far with the aim 
to assess the neural correlates of the DMN (e.g., Laufs et al., 2003; 
Mantini et al., 2007). This limitation, as well as source localization 
uncertainty (i.e., limited spatial resolution), can be in part overcome 
by the high signal-to-noise ratio and spatio-temporal resolution of 
intracerebral recordings. Although there have been a few reports of 
task-related gamma deactivations in some specific components of 

are not part of DMN shows the inverse effect, i.e., task-related 
increases in the gamma-range and in both experiments (Figure 4). 
This was the case for recording sites in the fusiform gyrus (S1) 
and in the insula (S2). Moreover, it is noteworthy that the time 
course of gamma power suppression (Figures 2C and 3C) sug-
gests that significant gamma-band deactivation starts on average 
around 250 ms in the PCC and then around 500 ms in MPFC. 
The deactivations are sustained in time lasting beyond 1000 ms 
post stimulus presentation. However, the data presented here are 
based only on two subjects. Clearly, more subjects will be needed 
to reliably estimate the temporal dynamics of gamma suppression 
and its relationship to behavior.

Discussion and Perspectives
A number of studies have established a tight relationship between 
BOLD activations and task-related increases in the gamma-range of 
the LFP signal in the same areas (Logothetis et al., 2001; Mukamel 
et al., 2005; Niessing et al., 2005; Lachaux et al., 2007a; Nir et al., 
2007). Such observations lead to the corollary prediction that nega-
tive BOLD activity may also be correlated with gamma-band power 
suppressions. This has been shown to be indeed the case in mon-

Figure 4 | Task-related gamma-band power increases. (A) Subject 1: 
time-frequency representations during Reading (condition: pseudoword) (left 
panel) and Navon (condition: local) (central panel) tasks for an electrode located 
in the fusiform gyrus (right panel, Tailarach coordinates: x = 46, y = −43, z = −13). 
Strong increases in gamma power were found in both tasks, in contrast to the 
decreases found for the same subject in PCC (see Figure 2). (B) Subject 2: 
time-frequency representations during Reading (condition: pseudoword) (left 

panel) and Navon (condition: local) (central panel) tasks for an electrode located 
in the fusiform gyrus (right panel, Tailarach coordinates: x = −26, y = 16, z = 8). 
The task-related enhancement of gamma power found here in both tasks is 
concurrent with task-related suppression in MPFC in the same subject (see 
Figure 3). Note that the full temporal profile of task-related gamma increases for 
the two conditions of each task for both subjects is provided in Figure S1 in 
Supplementary Material.
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networks (Debener et al., 2005; Mantini et al., 2007; Scheeringa 
et al., 2008). The advent of simultaneous fMRI and intracranial 
EEG in the near future will move the multimodal investigations in 
this field a major step forward (Carmichael et al., 2010). However, 
the important impact that intracerebral recordings are expected 
to have on the study of the electrophysiological correlates of the 
DMN does not lessen the need for non-invasive electrophysiologi-
cal approaches for this endeavor. Indeed, the precision of EEG and 
MEG will continue to improve thanks to the use of advanced source 
localization techniques (e.g., Baillet et al., 2001; Gross et al., 2001; 
Dalal et al., 2008) and signal decomposition tools such as independ-
ent component analysis (Mantini et al., 2007). Besides, given the 
putatively prominent role of high-frequency activity, improving the 
sensitivity of surface recordings to high gamma activity will be a 
critical issue (Jerbi et al., 2009a). Results of our recent study using 
simultaneously acquired MEG and intracerebral EEG data suggest 
that source imaging can indeed enhance our ability to detect the 
cortical generator of gamma activity with MEG (Dalal et al., 2009). 
In addition, several studies have shown that EEG signals can be 
contaminated by signals in the gamma-range that originate from 
eye muscles rather than cortical tissue (Reva and Aftanas, 2004; 
Trujillo et al., 2005; Yuval-Greenberg et al., 2008). Therefore, ruling 
out the effect of such saccade-related artifacts is a prerequisite for 
a reliable assessment of cortical gamma-band power using non-
invasive techniques and constitutes an important topic for future 
research. As a matter of fact, we have recently shown that gamma-
range saccadic artifacts might, in some cases, even contaminate 
intracranial EEG recordings (Jerbi et al., 2009b).

Investigating the connectivity properties of intrinsic brain net-
works is clearly a topic where the input from electrophysiological 
recordings will be critical. Correlation and anti-correlation phe-
nomena appear to be fundamental concepts surrounding resting 
state networks (Fox et al., 2005). Much still needs to be learned 
about how connectivity properties revealed with fMRI relate to 
brain-wide neural interactions revealed by MEG, EEG, and iEEG. 
Slow fluctuations in baseline activity observed with fMRI may 
be indirectly linked to higher frequency amplitude modulations 
via slow-to-fast cross-frequency interactions (Jensen and Colgin, 
2007). Previous studies have shown that SCP can modulate higher 
frequency EEG activity (Vanhatalo et al., 2004), but also behavio-
ral performance (Birbaumer et al., 1990; He et al., 2008; He and 
Raichle, 2009). Interestingly, in a recent study, Monto et al. (2008) 
used infra-slow EEG to provide evidence for very slow EEG fluctua-
tions (∼0.01 Hz) that were correlated with slow perceptual perform-
ance modulations. The authors reported phase-amplitude coupling 
between these slow fluctuations and patterns of faster cortical oscil-
lations. The use of within and cross-frequency coupling measures 
to assess local and long-range interactions in scalp-EEG, MEG, and 
intracranial EEG data is a rapidly growing field of research, yet its 
potential contribution to understanding the mechanisms of DMN 
is still largely underexploited.

Real-time monitoring of the electrophysiological activity within 
the DMN may open up the exciting perspective of performing 
online monitoring of vigilance or attention. What’s more, real-
time monitoring of DMN neuronal populations may allow for 
novel experimental designs with stimulation parameters that 
adapt online to the subjects state. While several challenges still 

human DMN using intracerebral recordings (Lachaux et al., 2008; 
Miller et al., 2009; Jung et al., 2010), an exhaustive investigation of 
all DMN structures and their fine-temporal dynamics using such 
techniques is hard to achieve and is still lacking.

The SEEG data presented here provides evidence for suppres-
sion of high-frequency activity in the human PCC and MPFC dur-
ing task-engagement. This gamma-band deactivation (40–150 Hz) 
was task-related and occurred systematically across all experimental 
conditions. It is noteworthy that the Navon task we implemented 
(local versus global visual processing) induced significant gamma 
power suppressions in PCC, a region that has previously been 
shown to display negative BOLD in responses to the same para-
digm performed with fMRI (Weissman et al., 2006). Remarkably, 
the high gamma suppression, found in the DMN, co-occurred with 
task-related enhancement outside the DMN (Figure 4). Elevated 
gamma power in the fusiform gyrus and in the anterior insula may 
reflect visual processing of the stimulus and intrinsic alertness activ-
ity respectively. Interestingly, increases in anterior insular gamma 
activity could be related to its role as part of the putative core task-
set system (Dosenbach et al., 2006). Our observation of concurrent 
positive and negative high gamma responses, outside and inside the 
DMN respectively, is in line with the hypothesis that gamma modu-
lations represent an electrical correlate of BOLD signal modulations. 
Critically, the population-level deactivation presented here extends 
a number of electrophysiological studies of DMN deactivation (e.g., 
Hayden et al., 2009; Miller et al., 2009) and strongly argues against 
the DMN being an epiphenomenon (Birn et al., 2008). Further stud-
ies across large populations of implanted patients are needed to 
strengthen and fine-tune these physiological interpretations. The 
illustrative data we report in PCC and MPFC highlight the potential 
of SEEG recordings as a tool to investigate the neurophysiology of 
DMN, and more generally speaking, of the resting state networks. 
Our group is actively pursuing the detection of brain-wide spatial 
distributions of gamma power decreases and increases in attention-
demanding tasks as well as the investigation of correlation patterns 
within the involved networks (Ossandon et al., 2009).

More generally, if we assume that broad-band gamma power sup-
pressions observed in the default-mode areas reflect de facto neural 
disengagement, then we should also expect a concurrent reduction 
in local neuronal firing. An assessment of this hypothesis in the light 
of the tight relationship between spiking activity and broad-band 
gamma (Mukamel et al., 2005; Niessing et al., 2005; Manning et al., 
2009; Whittingstall and Logothetis, 2009), leads to the hypothesis 
that default-mode areas may be characterized by task-related sup-
pression of neuronal firing during attentive states. Although there is 
some recent evidence for this in monkey PCC (Hayden et al., 2009), 
little is known about task-related modulations of spiking activity 
specifically in default-mode structures of the human brain. This 
is primarily due to the rarity of unit recordings in human cortex 
and may change in the future if microelectrode recordings are used 
more often in clinical settings to probe DMN structures. Until then, 
various hypotheses about spike firing-rate modulations in human 
DMN may be inferred indirectly from the analysis of the broad-band 
gamma-range component of the EEG.

Furthermore, combining fMRI and EEG in simultaneous record-
ings will undoubtedly continue to provide unique insights into the 
links between electrophysiological and BOLD signals in resting state 
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need to be dealt with in order to achieve this with non-invasive 
measurements, real-time monitoring of high gamma activity in 
humans is readily achieved using depth SEEG recordings. We have 
implemented an online system for the estimation and visualization 
of power modulations in various frequency bands (including the 
high gamma-band) in conjunction with depth recording in epilepsy 
patients (Lachaux et al., 2007b). In addition to performing online 
functional mapping, this interface (dubbed Brain TV) could be 
seen as a window to the patient’s ongoing and spontaneous brain 
activity. Therefore, with electrodes implanted in DMN areas, the 
Brain TV set-up could be used to monitor real-time modulations 
of power across the EEG spectrum during various states such as 
mind wandering or focused attention. Besides, the online monitor-
ing of DMN activity could be beneficial to investigations into the 
functional role of DMN. For example, it may be possible to define 
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correspond to specific states of the DMN. Ultimately, performing 
attention monitoring in real-time and non-invasively could have 
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of the neural underpinnings and correlation dynamics within the 
DMN and, more globally, within resting state networks could have 
strong implications on the development of novel diagnostic and 
rehabilitation solutions for numerous neurological impairments.
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