
Edited by  

Federico Colecchia, Eleonora Ceccaldi, Daniele Giunchi, 

Fang Wang and Rui Qin

Published in  

Frontiers in Virtual Reality 

Frontiers in Big Data 

Frontiers in Artificial Intelligence

Machine learning and 
immersive technologies 
for user-centered digital 
healthcare innovation

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/research-topics/57023/machine-learning-and-immersive-technologies-for-user-centered-digital-healthcare-innovation
https://www.frontiersin.org/research-topics/57023/machine-learning-and-immersive-technologies-for-user-centered-digital-healthcare-innovation
https://www.frontiersin.org/research-topics/57023/machine-learning-and-immersive-technologies-for-user-centered-digital-healthcare-innovation
https://www.frontiersin.org/research-topics/57023/machine-learning-and-immersive-technologies-for-user-centered-digital-healthcare-innovation
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/artificial-intelligence


June 2025

1 frontiersin.orgFrontiers in Virtual Reality

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-6431-8 
DOI 10.3389/978-2-8325-6431-8

https://www.frontiersin.org/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


June 2025

2 frontiersin.orgFrontiers in Virtual Reality

Machine learning and immersive 
technologies for user-centered 
digital healthcare innovation

Topic editors

Federico Colecchia — Brunel University London, United Kingdom

Eleonora Ceccaldi — University of Genoa, Italy

Daniele Giunchi — University College London, United Kingdom

Fang Wang — Brunel University London, United Kingdom

Rui Qin — Manchester Metropolitan University, United Kingdom

Citation

Colecchia, F., Ceccaldi, E., Giunchi, D., Wang, F., Qin, R., eds. (2025). Machine 

learning and immersive technologies for user-centered digital healthcare 

innovation. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-6431-8

https://www.frontiersin.org/
https://www.frontiersin.org/journals/virtual-reality
http://doi.org/10.3389/978-2-8325-6431-8


June 2025

3 frontiersin.orgFrontiers in Virtual Reality

05 Editorial: Machine learning and immersive technologies for 
user-centered digital healthcare innovation
Federico Colecchia, Daniele Giunchi, Rui Qin, Eleonora Ceccaldi and 
Fang Wang

09 The Agile Deployment of Machine Learning Models in 
Healthcare
Stuart Jackson, Maha Yaqub and Cheng-Xi Li

16 Interpretability of Machine Learning Solutions in Public 
Healthcare: The CRISP-ML Approach
Inna Kolyshkina and Simeon Simoff

32 HMD-Based Virtual and Augmented Reality in Medical 
Education: A Systematic Review
Xuanhui Xu, Eleni Mangina and Abraham G. Campbell

46 Application of Mixed Reality in Medical Training and Surgical 
Planning Focused on Minimally Invasive Surgery
Juan A. Sánchez-Margallo, Carlos Plaza de Miguel, 
Roberto A. Fernández Anzules and Francisco M. Sánchez-Margallo

57 Enhancing Upper Limb Rehabilitation of Stroke Patients With 
Virtual Reality: A Mini Review
Julie Bui, Jacques Luauté and Alessandro Farnè

66 Ethics of AI in Radiology: A Review of Ethical and Societal 
Implications
Melanie Goisauf and Mónica Cano Abadía

79 Use of virtual reality in oncology: From the state of the art to 
an integrative model
Hélène Buche, Aude Michel and Nathalie Blanc

95 Art as therapy in virtual reality: A scoping review
Christos Hadjipanayi, Domna Banakou and 
Despina Michael-Grigoriou

111 Technology innovation to reduce health inequality in skin 
diagnosis and to improve patient outcomes for people of 
color: a thematic literature review and future research 
agenda
Nazma Khatun, Gabriella Spinelli and Federico Colecchia

122 Toward the design of persuasive systems for a healthy 
workplace: a real-time posture detection
Grace Ataguba and Rita Orji

144 Automatic cybersickness detection by deep learning of 
augmented physiological data from off-the-shelf 
consumer-grade sensors
Murat Yalcin, Andreas Halbig, Martin Fischbach and 
Marc Erich Latoschik

Table of
contents

https://www.frontiersin.org/
https://www.frontiersin.org/journals/virtual-reality


June 2025

4 frontiersin.orgFrontiers in Virtual Reality

162 MedT5SQL: a transformers-based large language model for 
text-to-SQL conversion in the healthcare domain
Alaa Marshan, Anwar Nais Almutairi, Athina Ioannou, David Bell, 
Asmat Monaghan and Mahir Arzoky

182 Developing augmented reality filters to display visual cues on 
diverse skin tones
Jacob Stuart, Anita Stephen, Karen Aul, Michael D. Bumbach, 
Shari Huffman, Brooke Russo and Benjamin Lok

https://www.frontiersin.org/
https://www.frontiersin.org/journals/virtual-reality


TYPE Editorial

PUBLISHED 14 February 2025

DOI 10.3389/fdata.2025.1567941

OPEN ACCESS

EDITED AND REVIEWED BY

Thomas Hartung,

Johns Hopkins University, United States

*CORRESPONDENCE

Federico Colecchia

federico.colecchia@brunel.ac.uk

RECEIVED 28 January 2025

ACCEPTED 03 February 2025

PUBLISHED 14 February 2025

CITATION

Colecchia F, Giunchi D, Qin R, Ceccaldi E and

Wang F (2025) Editorial: Machine learning and

immersive technologies for user-centered

digital healthcare innovation.

Front. Big Data 8:1567941.

doi: 10.3389/fdata.2025.1567941

COPYRIGHT

© 2025 Colecchia, Giunchi, Qin, Ceccaldi and

Wang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Editorial: Machine learning and
immersive technologies for
user-centered digital healthcare
innovation

Federico Colecchia1*, Daniele Giunchi2, Rui Qin3,

Eleonora Ceccaldi4 and Fang Wang5

1Brunel Design School, Brunel University of London, Uxbridge, United Kingdom, 2Department of

Computer Science, University College London, London, United Kingdom, 3School of Computing and

Mathematical Sciences, University of Leicester, Leicester, East Midlands, United Kingdom,
4CasaPaganini - InfoMus, DIBRIS, University of Genoa, Genoa, Liguria, Italy, 5Department of Computer

Science, Brunel University of London, Uxbridge, United Kingdom

KEYWORDS

digital innovation for health and wellbeing, interdisciplinary collaboration, artificial

intelligence, immersive technologies, machine learning, virtual reality, augmented

reality, mixed reality

Editorial on the Research Topic

Machine learning and immersive technologies for user-centered digital

healthcare innovation

User-centered design for digital healthcare
innovation

Modern digital technologies such as machine learning and immersive technologies,

including virtual reality and augmented reality, hold potential for enabling disruptive

innovations to promote individuals’ health and wellbeing. However, the adoption of such

technologies, including the use of data-driven tools to support healthcare professionals’

decision-making and applications relying on consumer electronic devices for the benefit of

individuals, is often hindered by issues that do not necessarily arise from technological

limitations but rather are user-centered in nature. Whether new technologies become

successfully embedded within individuals’ daily routines and professionals’ workflows

often depends on the way in which ethical issues directly impacting on user trust have

been addressed at the design concept generation, development, and deployment stages.

There is increasing recognition of a need to facilitate further convergence between the

development of emerging technologies for promoting individuals’ health and wellbeing

and user-centered design research, with a view to achieving positive impact on individuals,

care professionals, and healthcare systems. In addressing current development trends

relating to user-centered digital innovation for health and wellbeing based on machine

learning and immersive technologies, this Research Topic across Frontiers in Artificial

Intelligence, Frontiers in Virtual Reality, and Frontiers in Big Data has attracted

13 contributions including original research articles, reviews, perspectives, as well as

theoretical and methodological contributions, thereby providing a snapshot of recent and

ongoing research and development.
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Machine learning and immersive
technologies: a case study

Whereas the Research Topic title explicitly refers to healthcare

innovation, the broader scope has turned this article collection

into an opportunity for reflection on a range of topics of

relevance to both health and wellbeing. Topics have included

the use of technologies for enhancing the provision of medical

education and training, for improving workforce wellbeing,

and for augmenting art therapy programmes with a view

to increasing therapeutic compliance. Methods employed

include Agile data science techniques, “CRoss Industry

Standard Process for Data Mining” (CRISP-SM), “Preferred

Reporting Items for Systematic reviews and Meta-Analyses”

(PRISMA), thematic literature review, mini review, primary

research (specifically, collection of data from university nursing

students and surgeons), “Simulation Effectiveness Tool –

Modified” (SET-M), established data science techniques, and

human factors engineering methods. Key research themes that

have emerged from the Research Topic are discussed below,

followed by a reflection on priorities for further research

and development.

Interdisciplinarity, ethics, and stakeholder
engagement

The articles have highlighted a need for knowledge and

expertise from across academic disciplines and professional

practice to converge and underpin the development of digital

innovations promoting individuals’ health and wellbeing. Relevant

disciplines and domains include computer science, user-centered

design, human-computer interaction, engineering, human

factors engineering, and the social sciences. Technology end

user and stakeholder values, expectations, and requirements

need to be addressed if new methods enabled by modern

digital technologies are to be sustainably employed (Kolyshkina

and Simoff; Goisauf and Cano Abadía; Khatun et al.; Buche

et al.). Interestingly, the articles have generally suggested

the importance of embedding end user and stakeholder

perspectives within technology development workflows,

although only a minority of the studies have explicitly

articulated the need for extensive involvement of human-

centered design researchers and practitioners for scaffolding

and facilitating iterative development and evaluation (Khatun

et al.). Unsurprisingly, the need to address ethical concerns

appears intertwined with the recognized desirability of

research objectives and methods to deliver deeper integration

across discipline boundaries. This is illustrated by research

advocating the adoption of intersectional social sciences

perspectives within AI development for cancer diagnostics

(Goisauf and Cano Abadía) and by studies focusing on the

representativity of machine learning training data with a view

to reducing health inequalities affecting specific ethnic groups

in relation to the provision of diagnostic services (Khatun

et al.).

Production-ready systems

The design and development of production-ready AI-based

systems designed for flexibility and maintainability over time

have received significant attention in recent years, particularly

in the information systems, human-computer interaction, and

engineering design literature. This is illustrated by Research Topic

articles focusing on the definition of architectural requirements

for healthcare cost estimation systems relying on dedicated

predictive numerical models (Jackson et al.), and by studies

delivering prototype models to enable healthcare professionals to

query different Electronic Medical Record systems using intuitive

interfaces based on natural language (Marshan et al.). Such efforts

have achieved a balance between adapting research pipelines for

production environments and identifying optimized architectural

specifications from an information systems perspective.

Medical education and training

The emphasis in recent academic and professional discourse

on opportunities afforded by immersive technologies, including

virtual reality, augmented reality, and mixed reality, for achieving

more efficient and inclusive delivery of medical educational and

training programmes is reflected in this article collection. An

interesting review study has focused on a comparison between

technology-augmented methods and established approaches (Xu

et al.). Reported benefits include enhanced student and trainee

motivation, satisfaction, and learning outcomes, although the

possible occurrence of undesired consequences of the use

of immersive technologies, including cybersickness following

prolonged exposure, has been noted. Interestingly, one study has

focused on real-time detection of cybersickness with a view to

reducing detrimental effects on user experience (Yalcin et al.).

Proposed innovations based on mixed reality to streamline urology

anatomy training and to facilitate pre-operative urology planning

have attracted positive feedback from both university nursing

students and surgeons, which encourages further research toward

more extensive clinical validation (Sánchez-Margallo et al.). An

interesting study has focused on an integration between generative

AI and immersive technologies for designing augmented reality

filters, with a view to improving medical students’ perceptions of

self-efficacy in recognizing selected disease manifestations (Stuart

et al.).

Individuals’ wellbeing

The potential of modern digital technologies for improving

individuals’ wellbeing has been the subject of recent research, which

is reflected in this article collection. The breadth of contributions

received illustrates the potential of artificial intelligence and

immersive technologies for improving individuals’ wellbeing,

particularly in clinical and workplace settings. A theoretical

model has been presented, explaining the psychological benefits

of virtual immersion for oncology patients with emphasis on
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distraction for alleviating anxiety and pain (Buche et al.).

Opportunities have been identified for artistic expression within

virtual reality environments to increase therapeutic compliance

and to improve wellbeing outcomes for individuals in relation

to psychotherapy and neurorehabilitation (Hadjipanayi et al.).

A study has identified features of immersive technologies that

hold potential for improving motor rehabilitation compliance

and efficacy with stroke patients when used in combination

with traditional approaches (Bui et al.). Such features include

those enabling real-time movement tracking and the provision of

reinforced feedback in line with established neurorehabilitation

principles. A review of modern digital technologies for estimating

individuals’ wellbeing in workplace settings has generated useful

recommendations on how real-time posture detection techniques

can best be combined with the adoption of established human

factors engineering best practices (Ataguba and Orji). This has

enabled the identification of optimized algorithms to be employed

in conjunction with physiological sensing methods toward the

design of healthier workplaces.

Promoting a design-driven
user-centered research and
development agenda

Overall, the articles published under this Research Topic

have highlighted the importance of conducting interdisciplinary

research when tackling challenges at the intersection of technology

development with human-centered design and human factors

engineering. Integrative capabilities across academic disciplines

and research methodologies—with emphasis on modern design

research and design professional practice—have been identified as

an important enabler of challenge-driven research and responsible

innovation. Such insights are relevant to the United Nations

Sustainable Development Goal number 3 (“Good health and

wellbeing”) and more broadly (Colecchia et al., 2024). A balanced

distribution has been achieved in this collection of articles between

applications of immersive technologies (Buche et al.; Xu et al.;

Yalcin et al.; Sánchez-Margallo et al.; Stuart et al.; Hadjipanayi

et al.; Bui et al.) and applications of machine learning and

artificial intelligence (Kolyshkina and Simoff; Goisauf and Cano

Abadía; Khatun et al.; Jackson et al.; Marshan et al.; Yalcin

et al.). The authors speculate that future research is likely to

reflect a convergence of immersive technologies and artificial

intelligence in relation to the promotion of individuals’ health

and wellbeing. If that is the case, it is anticipated that the

emphasis will be on human-centered design, participatory design,

and methods addressing ethical issues of privacy, transparency,

equitability, and fairness. One potential area of convergence

relates to the development of personalized immersive experiences

designed for inclusivity. It is expected that reliance on human-

centered and participatory design methods will prove useful

for scaffolding iterative design with significant involvement of

technology end users and stakeholders. This is illustrated by the

article discussing the use of artistic experiences within virtual

reality environments to increase therapeutic compliance and to

improve wellbeing outcomes (Hadjipanayi et al.). The articles have

also highlighted several limitations with the technology state of

the art, which calls for additional emphasis on interdisciplinary

research, human-centered design, and inclusive design research

moving forward. Such limitations include the following: digital

access barriers and reduced digital literacy across user groups;

the generally reduced availability of dedicated features for

visually-impaired individuals—and for individuals with specific

characteristics more broadly—compared with mainstream users;

undesired effects from the use of head-mounted immersive

displays—including cybersickness; the presence of different skill

sets within interdisciplinary AI development teams, potentially

reducing the benefits of Agile development. Moreover, although the

articles published under this Research Topic have not focused on

this aspect, future development will also need to address elements

of clinical validation of digital technologies in the context of the

relevant regulatory frameworks.

The authors argue that higher education institutions should

take the lead in promoting long-term sustainable innovation

in collaboration with research, healthcare, and commercial

organizations. Non-academic organizations are sometimes better

positioned for liaising with technology end users and practitioners,

whose involvement in participatory design activities should be

promoted wherever possible—ideally starting with the generation

of early-stage design concepts. On the other hand, higher education

institutions are ideally positioned to contribute expert knowledge

and should lead on challenge-driven interdisciplinary research and

on the promotion of postgraduate collaborative student projects.

The emphasis should be on facilitating transfer of knowledge

about modern human-centered design methods to non-academic

organizations, with a view to creating favorable conditions for the

achievement of broader and sustainable positive impact of research

on individuals, society, and the economy.
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The Agile Deployment of Machine
Learning Models in Healthcare
Stuart Jackson*, Maha Yaqub and Cheng-Xi Li
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The continuous delivery of applied machine learning models in healthcare is often

hampered by the existence of isolated product deployments with poorly developed

architectures and limited or non-existent maintenance plans. For example, actuarial

models in healthcare are often trained in total separation from the client-facing software

that implements the models in real-world settings. In practice, such systems prove

difficult to maintain, to calibrate on new populations, and to re-engineer to include newer

design features and capabilities. Here, we briefly describe our product team’s ongoing

efforts at translating an existing research pipeline into an integrated, production-ready

system for healthcare cost estimation, using an agile methodology. In doing so, we

illustrate several nearly universal implementation challenges for machine learning models

in healthcare, and provide concrete recommendations on how to proactively address

these issues.

Keywords: agile, analytics engineering, continuous delivery, health informatics, machine learning

1. INTRODUCTION

Contemporary software engineering is driven by a number of key themes, such as agile
development cycles and the continuous delivery of production software (Fowler and Highsmith,
2001; Shore and Warden, 2008). Such approaches allow for neater partition of development work
related to current and future software capabilities, and help to streamline maintenance flows,
product documentation, and development team communication. Unfortunately, the continuous
deployment of predictive analytics is often hampered by poorly thought-out maintenance plans
and non-agile methods of deployment, a phenomenon experienced across widespread industries
(Demirkan and Dal, 2014), including in health informatics settings (Reeser-Stout, 2018). In this
short Perspective, we describe our team’s ongoing efforts and the lessons learned so far in the agile
deployment of a new predictive analytics model related to healthcare cost estimation. While this
model is designed for a specific use case (i.e., predicting cost in the US Medicaid population), our
integrated deployment strategy is more general, and could transfer easily to other claims-based
models.

We begin below with a brief overview of the typical challenges and maintenance issues
experienced when deploying machine learning models in health informatics settings, using
actuarial models as an example. We then describe our use of agile methods in a new actuarial
product deployment, emphasizing the hybrid nature of agile data science, the important concepts
of iteration and experimentation, and the unique challenges faced and solutions developed to fulfill
key product requirements. Along the way, we provide a high-level description of the model that
was trained and productionized, and an illustration of how internal maintenance and client use can
occur side-by-side in the integrated production codebase. Finally, we conclude by providing some
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general recommendations for hybrid development teams to
consider when tasked with developing and deploying a new
healthcare analytics product.

In passing, note that an earlier version of the research model
we deployed was developed by a separate team at IBM, and
has been described in detail in their separate methods paper
(Ramamurthy et al., 2017). As such, we refrain from discussing
this model from a deeper research or design perspective. Our
aim in this short Perspective is to describe the challenges faced
in refining and productionizing one instantiation of a research
model, and the considerations required in sustaining continuous
delivery and internal maintenance of a new healthcare analytic.
In the spirit of continuous delivery, these efforts are necessarily
ongoing.

2. ACTUARIAL MODELS IN HEALTHCARE

Accurate healthcare cost estimation is of critical importance to
medical organizations, governments, and societies at large, with
healthcare expenditures a primary drain on public resources
worldwide. The availability of reliable cost estimates for a
population can aid insurance plan administrators and other
healthcare professionals in effective resource planning, in risk
adjustment, and in developing strategies for population health
management (Duncan, 2011). A wide variety of predictive
algorithms have been developed over the years for estimating
healthcare costs from administrative claims data, including
numerous proprietary models (Winkelman and Mehmud, 2007).
These models are often tailored for very specific patient
populations, use cases, or input data needs; yet, a common
goal of such models is the prospective identification of
future high-cost claimants, often using linear or tree-based
regression methods (Meenan et al., 2003; Bertsimas et al.,
2008).

While the development of a high-quality risk model is itself
a challenge, the successful, long-term deployment of such a
model in applied settings is equally challenging, requiring careful
consideration of the potential maintenance issues that could
arise from changing industry, client, or technical needs. For
example:

• Regular (e.g., yearly) updates might be required when new
training or scoring data become available

• Irregular updates might be required when industry reference
files (e.g., ICD diagnosis codes) change

• Minor model improvements or technical corrections and bug
fixes might be required on an ad-hoc basis

• Major model improvements or new functionalities might be
required subject to evolving client needs

• Changes to deployment hardware or other architectural
constraints may need to be accommodated

Following the completion of any such maintenance task,
an additional period of code review, model retraining, and
product testing might also be necessary. Yet, the typical research
model lacks the continuously-integrated organization necessary
to efficiently handle such commonmaintenance issues. Below, we
describe how our team adopted an agile framework in deploying

a new actuarial model into production, streamlining the model
training, and production process to support effective continuous
delivery.

3. PRINCIPLES OF AGILE DATA SCIENCE

3.1. Avoiding the “Pull of the Waterfall”
Our product team was tasked with training and deploying a
new claims-based risk model, which we approached initially
from an agile framework. Agile software development practices
are now industry standard, supporting efficient methods of
collaboration and effective ways of getting work done (Fowler
and Highsmith, 2001; Shore and Warden, 2008). As the field of
data science evolves, however, it is increasingly clear that existing
agile methods will need to adapt to successfully support this
hybrid development domain (Jurney, 2017; Reeser-Stout, 2018).
For example, the typical time allowed for a research data science
project conflicts sharply with the standard agile development
cycle. This can have the effect of forcing otherwise agile predictive
analytics projects toward more sequential development cycles–
the so-called “pull of the waterfall” (Jurney, 2017). This can
be particularly problematic in healthcare research and product
work, where additional constraints are often at play (e.g., strict
data access rules).

To avoid the sequential handover of work from one group
(e.g., analytics) to another (e.g., engineering), we established early
on a hybrid development squad (Figure 1A), which facilitated the
direct interaction between data scientists, software engineers, a
quality assurance (QA) engineer, and a product owner. We also
adopted the development and deployment terminology common
in software engineering. For example, as a given development
phase was completed, our product code was scheduled to
pass first to a QA testing phase (or “TST”), then onto user-
acceptance testing (“UAT”), and only then into production.
While such terminology is somewhat foreign to many research
data scientists, these methods prove essential in a highly
collaborative, production context. In contrast, prior attempts
at formalizing methods for predictive analytics development,
such as CRISP-DM (Shearer, 2000), are too far removed from
contemporary software engineering practices, having little to say
about code deployment or collaboration across multi-functional
(and often remotely-located) teams. That being said, there is
enormous potential for the refinement of improved hybrid
agile methodologies that more smoothly integrate with standard
research science practices. Below, we describe one such hybrid
strategy that we adopted during our product deployment.

3.2. Iteration and Experimentation
Our product team actively experienced the conflict between
research and software development worlds, learning the hard
way that specifying a final production date ahead of time is
often incompatible with doing successful, agile data science
(Jurney, 2017). To overcome this conflict, we evolved a process
that roughly centered around two key ideas–iteration and
experimentation. In the spirit of agile, our iterative process
encompassed groups of tasks completed over individual three-
week sprints, often involving extremely dynamic code changes
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FIGURE 1 | The agile deployment of machine learning models in healthcare. (A) Organization of roles in our hybrid data science development squad, (B) Synthetic

illustration of how different sets of production tasks typically warranted working with claimant dataset sizes of a particular scale, from technical debugging with smaller

input datasets, to product model training with large-scale input data, (C) Schematic depicting higher-level modularization within the core model pipeline.

that ranged across the entire product pipeline. As a rule-of-
thumb, we aimed to not only have the code running end-to-
end at key iteration milestones, but more importantly, to better
understand the data flow and model behavior at key points in
the pipeline. Only then was the model pipeline deemed worthy of
intermediate delivery to other users (e.g., QA engineer).

As iterations progressed, however, the importance of parallel
experimentation quickly became apparent, both from a technical
debugging and model training perspective (Figure 1B). For
example, when building a client-facing product that deals with
medical claims data, comprehensive edge-case handling is a
particularly challenging technical issue. In our case, smaller
input datasets often included blank or missing claims data for
time ranges that the model expected (i.e., empty months), and
revealed bugs in parts of the original pipeline dealing with
the aggregation of disease and cost information. Given the
numerous time-related, cross-dependencies in the prediction
pipeline, the development of appropriate code fixes benefited
greatly from over-and-back interactions with a QA engineer,
and trial code runs with smaller datasets of varying size (e.g.,
101 or 103 claimant records). In general, experiments with
smaller dataset sizes were essential throughout development, for
performing quick, technical debugging. As the product code was
better refined, experiments on larger datasets (e.g., 105 claimant
records) allowed for deeper code and model understanding (e.g.,
parameter exploration and tuning). Finally, as a given release
date approached, production model fits were carried out on
a formally-curated, large training dataset, with up to several
million unique claimant records (Figure 1B).

3.3. Reinforcing the “Hybrid” Nature of the
Work
How successful was this hybrid agile approach from a data
science perspective? All of the data scientists agreed that this
more foundational, agile approach to development provided
clear advantages over isolated development styles, removing
crucially the need for analytics developers to deliver code
to a separate production team in a sequential fashion. The
hybrid approach was self-reinforcing, in the sense that it
encouraged all squad members to play multiple, interacting

roles throughout development. For example, while data scientists
played the major role in finalizing the core prediction model
(described in detail later), the QA and software engineers
had numerous opportunities to examine and refine this code,
providing complementary feedback which improved the overall
quality of the data science work. Likewise, while the QA
and software engineers were primarily responsible for smooth
deployment of the end-to-end pipeline (described in detail
later), the data scientists spent substantial time facilitating this
process through proper packaging and documentation of code.
This facilitated the deployment process, and again, involved
constant cross-squad interaction and feedback. The end results
were successful, iterative deployments of the full codebase into
production.

One broader advantage of this hybrid system is the ability to
more easily organize data science projects at the level of multiple
squads, thereby maximizing resource use and collaboration
potential. For example, the hybrid squad described here (aka
Mercury), worked independently of several other “planet” squads
(e.g., Jupiter), although with some higher-level direction from
a scrum master working across multiple teams. While this
type of organization is already common in traditional software
engineering environments (e.g., tribes, chapters, etc.), we believe
it requires the creation of truly hybrid squads, involving both data
scientists and software engineers, to be successful in an analytic
development context.

4. CHALLENGES IN ANALYTIC
DEVELOPMENT

4.1. Providing Multiple Model Types in One
Platform
We now describe in detail several key requirements of the
software development product, and the associated development
and coding challenges we faced. In a following subsection, we
illustrate how we tackled these problems and gauged the success
of the improved processes.

The key requirements of our analytic product related to the
functionality to provide access to multiple model results for
a single input claims dataset. Specifically, actuarial predictions
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TABLE 1 | Parameters of the twelve model variants deployed to fulfill diverse

end-user requirements.

No. Model type No. Model type

1 Concurrent, Total Cost 7 Prospective, Total Cost

2 Concurrent, Total Cost ($100k) 8 Prospective, Total Cost ($100k)

3 Concurrent, Total Cost ($250k) 9 Prospective, Total Cost ($250k)

4 Concurrent, Medical Cost Only 10 Prospective, Medical Cost Only

5 Concurrent, Medical Cost Only

($100k)

11 Prospective, Medical Cost Only

($100k)

6 Concurrent, Medical Cost Only

($250k)

12 Prospective, Medical Cost Only

($250k)

“Concurrent” models predict annual healthcare costs for the same 12-month period as

the input data; “Prospective” models provide predictions for the subsequent 12-month

period (i.e., next year). Note that ‘Total Cost’ refers to models that predict combined

medical and pharmacy costs, and that the dollar values in brackets refer to truncation

thresholds applied to outlier claimant data. See text for further details.

for up to twelve model variants were necessary (Table 1), with
models varying in terms of the time period of prediction (e.g.,
concurrent year vs. prospective year), the cost components being
predicted (e.g., medical costs only vs. medical and pharmacy
costs), and the form of thresholding or truncation applied to
outliers (e.g., no truncation vs. $100k or $250k truncation).
These model variants were selected to support diverse risk-
adjustment use cases, from the retrospective measurement of
provider performance (e.g., using concurrent year models),
to the estimation of a population’s future healthcare costs
for resource planning purposes (e.g., using prospective year
models). While the original research model we inherited
provided some powerful functionality in this regard, there were
numerous engineering challenges to face from a production
and deployment perspective. Crucially, several of the capabilities
below had to be productionized to work identically in both
training and deployment (i.e., scoring) scenarios, thereby
supporting amore easily maintainable codebase and product. For
example:

• The product training data cohort needed to be defined,
and needed to accommodate all twelve model conditions,
in terms of the time range of claims data, pharmacy costs
availability, and the exclusion of certain data sources with
unreliable or incomplete costs (e.g., capitated health plan
data, claimants that are dual-eligible for Medicare, etc.). An
inadequetely-defined training cohort would negatively affect
the functioning of all of the data ingestion, preparation, and
scoring modules (described in detail later), and the lack of a
cohort definition module would make all future updates to the
product unnecessarily cumbersome.

• The functionality for selecting and running only a subset of
models (based on user input) needed to be developed. While
input requests to run the analytic were initially sent in one-at-
a-time, along the way it was decided that the end user should
have the ability to run multiple versions of the model in one
request (e.g., all twelve variants or only a subset). For example,
dependent on the particular risk-adjustment use case, an end
user might request results from only the concurrent year

models, or only those with a specific truncation threshold (e.g.,
$100k).

• The flexibility to change key model parameters automatically
and “online” (i.e., during actual training or scoring) was
similarly required. In some instances, these changes involved
relatively minor parameter updates (e.g., switching from
one truncation threshold to another). For others, substantial
pipeline rerouting was necessary (e.g., switching from local
directory operations during training to directory operations
which are dynamically set during deployment).

4.2. Solutions That Satisfy the Key Product
Requirements
How did we tackle these challenges, and how did we measure
the success of the resulting processes? By implementing a variety
of sustainable coding practices, we developed solutions to these
issues as follows:

• To ensure integrity of our training cohort, we first developed
a formal “cohort definition plan” (similar in spirit to a
CONSORT diagram). This plan involved several stages,
including the key steps of: (a) selecting a large random sample
of patient IDs (e.g., 5 million) covering a time range of interest
(e.g., 2013-2017); (b) excluding those subset of IDs linked to
capitated health plans or having dual-eligible for Medicare
status (as claims costs from these subgroups of patients are
often incomplete); (c) extracting the complete enrollment and
medical claims data for all remaining valid patient IDs.

• This plan was then implemented in a series of code modules,
used to extract data from internal, proprietary Medicaid
databases. To verify the success of this implementation,
we monitored the smooth running and completion of the
data extraction code, and ensured that the resulting cohort
data mapped correctly to a formal data dictionary that we
had prepared. The data dictionary in particular acts as a
fundamental reference file for all users of the production
analytic, and was a crucial milestone in our development.
With minimal modifications, the overall cohort definition
module can be used in future analytic developments (e.g., after
new training data is obtained or industry reference files are
updated).

• To ensure that the analytic had the functionality to take
specific user requests and to update parameters “on the
fly,” we began by making the decision to keep the code as
flexible as possible and not to hardcode parameters for any
of the model variants. Our team then developed a series of
input-level scripts (primarily in shell scripting languages),
as well as later module-specific templates (in Python), that
updated dependent on the specific user input. For example, if
the user requested results for models with $100k truncation
only (models 2, 5, 8, and 11; see Table 1), the analytic
proceeded to automatically update relevant parts of the code
and configuration files for each of these models in turn.

• After finalizing these cohort definition andmodel specification
techniques independently, the overall set of solutions was
tested through extensive model running at key iteration
milestones (e.g., during quality assurance and user-acceptance
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testing). The above functionalities, which served to provide
multiple model types in one platform, were successfully
deployed in each of our iterative releases.

5. DEPLOYING AN END-TO-END
SOLUTION

5.1. The Core Model Pipeline
We deployed an end-to-end healthcare cost estimation solution
that can be maintained internally with relative ease (i.e.,
recalibrated or extended in functionality), and continuously
pushed to cloud production environments where client scoring
can occur. The product we deployed was refined from a
previously developed research pipeline, described in detail
elsewhere (Ramamurthy et al., 2017), and contains a family
of cost models that we trained on Medicaid claims data. As
described earlier, models varied along a number of parameter
dimensions, including the time period of prediction (e.g.,
concurrent year vs. prospective year), the cost components being
predicted (e.g., medical costs only vs. medical and pharmacy
costs), and the form of thresholding or truncation applied to
outliers (e.g., no truncation vs. $100k or $250k truncation).
Model inputs included basic demographics (e.g., age and gender),
enrollment details (e.g., number of months enrolled), and
diagnosis information. In passing, note that while we avoid
discussing Medicaid data in detail here, focusing instead on our
general agile development framework, the interested reader can
find numerous sources discussing specific disease prevalence and
hospitalization issues in these claimant populations e.g., Trudnak
et al. (2014).

To facilitate maintenance and future development, the
pipeline utilizes a core set of code modules, which at a high-
level, perform essentially three functions (Figure 1C). First, a
sequence of data ingestion and preparation modules read in the
required input files (including enrollment, claims, and auxiliary
input files), and perform batch processing on these in order
to aggregate raw input data into intermediate database tables.
Operations such as dummy-encoding, feature enrichment, and
sparse matrix creation are also carried out at this stage, to
improve the efficiency of later data handling. In the second high-
level phase of processing, data is passed to modules that support
model training and evaluation. The data subsets required for
training or evaluation are isolated at this stage, and in the case
of internal training, a multi-stage regression model is trained
and saved. Model parameters can be configured in advance
using configuration files. Model evaluation or scoring is then
performed, either on a separate test dataset (in internal training
mode) or directly on client data (in client scoring mode). Finally,
in the report generation step, patient-level predictions (e.g., costs
and risk scores), as well as overall model performance reports, are
saved to file.

5.2. The Integrated Product Codebase
Refining a product codebase is a collaborative effort involving
multiple people contributing to the same overall product vision.
To make this happen, it is important to host the code in
proper software deployment platforms, and to use technologies

that support efficient collaboration. This helps to ensure that
maintenance tasks can be carried out easily without affecting
the core pipeline. For example, changes to industry reference
files (e.g., ICD diagnosis codes) or other evolving industry
requirements (e.g., the use of social determinants information)
can be smoothly incorporated into the product data model
and modular pipeline. The integrated product codebase and
deployment process that we refined allows for easy modification
of code components and model recalibration, without significant
effects on code integration and product delivery. Below we
describe key characteristics of this integrated product pipeline.

The integrated product codebase is defined by three key
platform characteristics–version control, containerization, and
continuous integration. First, by refining the final codebase in an
environment that supports version control (e.g., GitLab; https://
about.gitlab.com), we ensured that every team member had
access to and could modify the same codebase. This facilitated
efficient collaboration on the final product, and limited the
need for having standalone versions of the code existing in
different places. Second, to control the vast array of packages
required in code running, we adopted a containerized approach
to code delivery. Even a single faulty or missing package can
cause critical breakages in a code pipeline similar to the one
we deployed. To avoid this problem, container technologies
(e.g., Docker; https://www.docker.com) allow one to host code
in a virtual environment that has all the required software
packages pre-installed. This approach facilitated deployment on
a production server and eliminated the need for team members
to individually sift through package installation requirements,
saving a considerable amount of time. Finally, the pipeline
was integrated by software engineers into final testing and
production layers, with the aim of automating the code building
and establishing continuous integration of the product. Open-
source continuous integration tools (e.g., Jenkins; https://jenkins.
io) allowed the team tomonitor the code deployment in real-time
and quickly identify any defects.

6. CONCLUSION AND KEY
RECOMMENDATIONS

We provided here a brief overview of our attempts at refining
an agile data science methodology to support a new healthcare
analytic deployment, emphasizing the hybrid nature of agile
data science and the important roles played by team iteration
and model experimentation. There is clearly enormous potential
for the development of more formal approaches to agile data
science, both in healthcare and elsewhere, which we hope this
brief overview has illustrated. As a starting point, we provide
the following general recommendations, when faced with the
challenges of any new healthcare analytic deployment:

• Track your work: Incorporate a formal agile tracking tool into
your work from the outset, and organize each piece of your
work into a separate “user story.” Tracking systems encourage
teams to remain actively engaged and to communicate clearly,
behaviors which are particularly important in hybrid teams,
where skill sets might overlap less than in traditional software
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engineering teams. In addition, agile approaches encourage
the use of the “backlog” to keep track of upcoming tasks, as
not every feature or user story will be complete for a given
product release. We recommend using it. For example, at a
preliminary milestone in our development work, non-critical
aspects of the output file formatting were not fully finalized;
by adding appropriate notes to the backlog, the team was able
to more easily monitor the status of this and other remaining
tasks across iterations.

• Investigate and implement: For some data science issues (e.g.,
finalizing production parameter settings), it is important to
allow sufficient time for problem understanding. We have
found it beneficial in such cases to pair “investigation” and
“implementation” user stories. What do we mean by this,
and why is it important in a data science context? The
purpose of creating an investigation user story is to allow the
team sufficient scope and time to research complex model
details, and thereby more clearly define the ideal boundaries
of the prediction pipeline. The specifics of a computational
model are often more nuanced in implementation than
traditional software components, and implementation errors
often have subtle effects that are difficult to detect. In
one example, our squad investigated methods for handling
the well-known medical claims “run-out” issue (i.e., the
time lag between recent medical services and subsequent
claims payment processing, which can be several months
in duration). After detailed investigation, we developed a
plan in sync with industry standards, accommodating the
processing of relevant medical claims paid within a 3-month
run-out window after the end of a claim year. By performing
and closing out this investigation story, team flow was at
least maintained, even if production code was not necessarily
updated significantly. We then implemented this plan in
a separate user story, and measured the implementation
success on small samples of data, by comparing aggregated
claims costs from the pipeline to manually aggregated costs.
We believe this “investigate then implement” approach
to work definition is particularly useful in a hybrid
squad context, as it reinforces continual communication
and transfer of learning throughout the diversely-skilled
squad.

• Release in increments: Develop an incremental product release
strategy, and communicate this plan clearly and early to
others. This should help in ensuring that realistic deadlines
are formed, and that these are driven primarily by the team’s
estimation of the workload (not by external stakeholder
needs). More specifically, the release process should comprise
of a strategic set of deadlines which cater appropriately
to development team resources and incremental product
release goals. For example, in our development work, we

first scheduled an early or “Beta” release directed toward an
internal client. By doing this, the deployed codebase was put
through the standard release testing processes (e.g., quality
assurance and user-acceptance testing), without any changes
or biases introduced by the data science team for a defined
period of time. This allowed time for independent feedback
regarding the codebase and for completion of remaining

backlog tasks (e.g., improvements to the formatting of output
reports). It also allowed for fine-tuning and retraining of the
core prediction model on a larger training dataset, thereby
improving the overall performance and quality of a later
“Production” release.

In conclusion, we believe the hybrid squad model has many
benefits over isolated teams when doing data science software
development. In addition to improved communication and
collaboration, as well as the removal of sequential handover of
work, the hybrid squad model provides substantial opportunity
for skills transfer and innovation that would otherwise not occur.
While it is still early days for the hybrid squad system we have
described, the potential has been obvious to everyone involved,
including at the team management level. That being said, the
recommendations above illustrate some likely areas of difficulty
for new hybrid squads, which we suspect will typically arise in
setting sensible release strategies and deadlines. Yet, we firmly
believe that hybrid analytics teams are the future, and sincerely
hope that others can build on the recommendations outlined
here.
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Public healthcare has a history of cautious adoption for artificial intelligence (AI) systems.

The rapid growth of data collection and linking capabilities combined with the increasing

diversity of the data-driven AI techniques, including machine learning (ML), has brought

both ubiquitous opportunities for data analytics projects and increased demands for

the regulation and accountability of the outcomes of these projects. As a result,

the area of interpretability and explainability of ML is gaining significant research

momentum. While there has been some progress in the development of ML methods,

the methodological side has shown limited progress. This limits the practicality of using

ML in the health domain: the issues with explaining the outcomes of ML algorithms

to medical practitioners and policy makers in public health has been a recognized

obstacle to the broader adoption of data science approaches in this domain. This study

builds on the earlier work which introduced CRISP-ML, a methodology that determines

the interpretability level required by stakeholders for a successful real-world solution

and then helps in achieving it. CRISP-ML was built on the strengths of CRISP-DM,

addressing the gaps in handling interpretability. Its application in the Public Healthcare

sector follows its successful deployment in a number of recent real-world projects across

several industries and fields, including credit risk, insurance, utilities, and sport. This

study elaborates on the CRISP-ML methodology on the determination, measurement,

and achievement of the necessary level of interpretability of ML solutions in the Public

Healthcare sector. It demonstrates how CRISP-ML addressed the problems with data

diversity, the unstructured nature of data, and relatively low linkage between diverse

data sets in the healthcare domain. The characteristics of the case study, used in the

study, are typical for healthcare data, and CRISP-ML managed to deliver on these

issues, ensuring the required level of interpretability of the ML solutions discussed in the

project. The approach used ensured that interpretability requirements were met, taking

into account public healthcare specifics, regulatory requirements, project stakeholders,

project objectives, and data characteristics. The study concludes with the three main

directions for the development of the presented cross-industry standard process.

Keywords: machine learning, interpretability, public health, data sciencemethodology, CRISP-ML, necessary level

of interpretability, interpretability matrix, cross-industry standard process
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1. INTRODUCTION AND BACKGROUND
TO THE PROBLEM

Contemporary data collection and linking capabilities, combined
with the growing diversity of the data-driven artificial intelligence
(AI) techniques, including machine learning (ML) techniques,
and the broader deployment of these techniques in data science
and analytics, have had a profound impact on decision-making
across many areas of human endeavors. In this context, public
healthcare sets priority requirements toward the robustness,
security (Qayyum et al., 2021), and interpretability (Stiglic et al.,
2020) of ML solutions. We use the term solution to denote
the algorithmic decision-making scenarios involving ML and AI
algorithms (Davenport and Kalakota, 2019). While the early AI
solutions for healthcare, like expert systems, possessed limited
explanatory mechanisms (Darlington, 2011), these mechanisms
proved to have an important role in clinical decision-making
and, hence, made healthcare practitioners, clinicians, health
economists, patients, and other stakeholders aware about the
need to have such capabilities.

Healthcare domain imposes a broad spectrum of unique
challenges to contemporary ML solutions, placing much higher
demands with respect to interpretability, comprehensibility,
explainability, fidelity, and performance of ML solutions (Ahmad
et al., 2018). Among these properties of ML solutions,
interpretability is particularly important for human-centric areas
like healthcare, where it is crucial for the end users to not only
have access to an accurate model but also to trust the validity
and accuracy of the model, as well as understand how the model
works, what recommendation has been made by the model, and
why. These aspects have been emphasized by a number of recent
studies, most notably in Caruana et al. (2015) and Holzinger et al.
(2017), and summarized in the study by Ahmad et al. (2018).

Healthcare, similar to government and business digital
services, manufacturing with its industrial internet of things
and creative industries, experienced the much celebrated
manifestations of “big data,” “small data,” “rich data,” and the
increased impact of ML solutions operating with these data.
Consequently, the interpretability of such solutions and the
explainability of the impact of the judgements they assist to make
or have made and, where needed, the rationale of recommended
actions and behavior are becoming essential requirements of
contemporary analytics, especially in society-critical domains of
health, medical analysis, automation, defense, security, finance,
and planning. This shift has been further accentuated by the
growing worldwide commitment of governments, industries, and
individual organizations to address their endeavors toward the
UnitedNations Sustainable Development Goals1 and by the data-
dependent scientific and technological challenges faced by the
rapid response to the COVID-19 pandemic. The later challenges
highlight and reinforce the central role of healthcare, backed by
science, technology, lateral thinking, and innovative solutions in
societal and economic recovery.

Some state-of-the-art overviews, such as Doshi-Velez andKim
(2017) and Gilpin et al. (2019) related to interpretability, as well

1https://www.un.org/sustainabledevelopment/sustainable-development-goals/

and https://sdgs.un.org/goals.

as more method-focused papers, like Lipton (2018) and Molnar
et al. (2019), tend to use interpretability and explainability
interchangeably. They also report that the interpretability of ML
solutions and the underlying models is not well-defined. The
study related to interpretability is scattered throughout a number
of disciplines, such as AI, ML, human-computer interaction
(HCI), visualization, cognition, and social sciences (Miller, 2019),
to name a few of the areas. In addition, the current research
seems to focus on particular categories or techniques instead of
addressing the overall concept of interpretability.

Recent systematic review studies, Gilpin et al. (2018) and
Mittelstadt et al. (2019), have clarified some differences and
relationships between interpretability and explainability in the
context of ML and AI. In these domains, interpretability refers
to the degree of human interpretability of a given model,
including “black box” models (Mittelstadt et al., 2019). Machine
interpretability of the outcomes of ML algorithms is treated
separately. Explanability refers primarily to the number of
ways to communicate an ML solution to others (Hansen and
Rieger, 2019), i.e., the “ways of exchanging information about
a phenomenon, in this case the functionality of a model or the
rationale and criteria for a decision, to different stakeholders.”
Both properties of ML solutions are central to the broader
adoption of such solutions in diverse high-stake healthcare
scenarios, e.g., predicting the risk of complications to the health
condition of a patient or the impact of treatment change.

While some authors (for instance, Hansen and Rieger, 2019;
Mittelstadt et al., 2019; Samek and Müller, 2019) consider
interpretability as an important component of explainability of
ML solutions in AI, we view interpretability and explainability
as complementary to each other, with interpretability being
fundamental in ensuring trust in the results, transparency of the
approach, confidence in deploying the results, and, where needed,
quality of the maintenance of ML solutions. Further, in this
study, we used the term interpretability in a broader sense, which
subsumes communication and information exchange aspects of
explainability.

We considered two connected aspects of the development of
the overall concept of interpretability in ML solutions:

1. methods, which include the range of interpretable ML
algorithms and interpretability solutions for AI/ML
algorithms;

2. methodologies in data science, which consider explicitly the
achievement of the necessary (for the project) interpretability
of the ML solutions.

There is a wide collection of interpretable ML methods and
methods for the interpretation of ML models. Murdoch et al.
(2019) provide a compact and systematic approach toward
their categorization and evaluation. Methods are categorized
into model-based and post-hoc interpretation methods. They are
evaluated using predictive accuracy, descriptive accuracy, and
relevancy, the PDR framework (Murdoch et al., 2019), where
relevancy is evaluated against human audience. The framework
also provides common terminology for practitioners. Guidotti
et al. (2018) and Carvalho et al. (2019) provide extensive
systematic overviews with elaborate frameworks of the state-
of-the-art of interpretability methods. Mi et al. (2020) provide
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broader taxonomy and comparative experiments, which can help
practitioners in selecting suitable models with complementary
features for addressing interpretability problems inML solutions.

Model interpretability and explainability are crucial for
clinical and healthcare practice, especially, since not only non-
linear models but also inherently more interpretable ones,
like decision trees, if large and complex, become difficult to
comprehend (Ahmad et al., 2018).

On the other hand, working with data in the healthcare
domain is complex at every step, starting from establishing
and finding the relevant, typically numerous, diverse, and
heterogeneous data sources required to address the research
objective; integrating andmapping these data sources; identifying
and resolving data quality issues; pre-processing and feature
engineering without losing information or distorting it; and
finally using the resulting high-dimensional, complex, sometimes
unstructured, data to build a high-performing interpretable
model. This complexity further supports the argument for
the development of ML methodologies which explicitly embed
interpretability through the data science project life cycle and
ensure the achievement of the level of interpretability of ML
solutions that had been agreed for the project. Interpretability of
an ML solution can serve a variety of stakeholders involved in
data science projects in connection with the implementation of
their outcomes.

Interpretability of an ML solution can serve a variety of
stakeholders, involved in data science projects and related
to the implementation of their outcomes in algorithmic
decision making (Berendt and Preibusch, 2017). For instance,
the human-centric visual analytics methodology “Extract-
Explain-Generate” for interrogating biomedical data (Kennedy
et al., 2008) explicitly relates different stakeholders (molecular
biologist, clinician, analysts, and managers) with specific areas
of knowledge extraction and understanding associated with the
management of patients. This study is focused on addressing
the methodological challenges and opportunities of broad
embedding of interpretability (including the selection of methods
of interpretability that are appropriate for a project, given its
objectives and constraints).

2. CHALLENGES AND OPPORTUNITIES IN
CREATING METHODOLOGIES WHICH
CONSISTENTLY EMBED
INTERPRETABILITY

In order to progress with the adoption of ML in healthcare, a
consistent and comprehensive methodology is needed: first, to
minimize the risk of project failures, and second, to establish and
ensure the needed level of interpretability of the ML solution
while addressing the above-discussed diverse requirements to
ML solutions. The rationale supporting these needs is built on
a broader set of arguments about:

– the high proportion of data science project failures, including
those in healthcare;

– the need to support an agreed level of interpretability and
explainability of ML solutions;

– the need for consistent measurement and evaluation of
interpretability of ML solutions; and

– the emerging need for standard methodology, which explicitly
embeds mechanisms to manage the achievement of the level
of interpretability of ML solutions required by stakeholders
through the project.

Further, in this section, we use these arguments as dimensions
around which we elaborate the challenges and opportunities for
the design of cross-industry data science methodology, which is
capable of handling interpretability of ML solutions under the
complexity of the healthcare domain.

2.1. High Proportion of Data Science
Project Failures
Recent reports, which include healthcare-related organizations,
estimate that up to 85% of data science/ML/AI projects do
not achieve their stated goals. The latest NewVantage Partners
Big Data and AI Executive Survey, based on the responses
from C-Executives from 85 blue-chip companies of which 22%
are from Healthcare and Life Sciences, noted that only 39%
of companies are managing data as an asset (NewVantage
Partners LLC, 2021). Fujimaki (2020) emphasized that “the
economic downturn caused by the COVID-19 pandemic has
placed increased pressure on data science and BI teams to
deliver more with less. In this type of environment, AI/ML
project failure is simply not acceptable.” On the other hand,
the NewVantage Partners survey (NewVantage Partners LLC,
2021) emphasized that, over the 10 years of conducting
these surveys, organizations continue to struggle with their
transformation into data-driven organizations, with only 29%
achieving transformational business outcomes. Only 24% have
created a data-driven organization, a decline from 37.8%, and
only 24% have forged a data culture (NewVantage Partners LLC,
2021), a result which, to a certain extent, is counterintuitive to the
overall expectation of the impact of AI technologies to decision-
making and which projected benefits from the adoption of such
technologies.

A number of sources (e.g., vander Meulen and Thomas, 2018;
Kaggle, 2020; NewVantage Partners LLC, 2021) established that a
key reason for these failures is linked to the lack of proper process
and methodology in areas, such as requirement gathering,
realistic project timeline establishment, task coordination,
communication, and designing a suitable project management
framework (see also Goodwin, 2011; Stieglitz, 2012; Espinosa
and Armour, 2016). Earlier works have suggested (see, e.g., Saltz,
2015) that improved methodologies are needed as the existing
ones do not cover many important aspects and tasks, including
those related to interpretability (Mariscal et al., 2010). Further,
studies have shown that the biased focus on the tools and
systems has limited the ability to gain value from the effort of
organizational analytics effort (Ransbotham et al., 2015) and that
data science projects need to increase their focus on process and
task coordination (Grady et al., 2014; Gao et al., 2015; Espinosa
and Armour, 2016). A recent Gartner Consulting report also
emphasizes the role of processes and methodology (Chandler
and Oestreich, 2015) and practitioners agree with this view (for
examples and analyses from diverse practical perspectives see
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Goodson, 2016; Arcidiacono, 2017; Roberts, 2017; Violino, 2017;
Jain, 2019).

2.2. Support for the Required Level of
Interpretability and Explainability of ML
Solutions
In parallel with the above-discussed tendencies, there is pressure
on the creation of frameworks/methodologies, which can ensure
the necessary interpretability for sufficient explainability of the
output of the ML solutions. While it has been suggested, in
recent years, that it is only a matter of time before ML will
be universally used in healthcare, building ML solutions in the
health domain proves to be challenging (Ahmad et al., 2018). On
the one hand, the demands for explainability, model fidelity, and
performance in general in healthcare are much higher than in
most other domains (Ahmad et al., 2018). In order to build the
trust in ML solutions and incorporate them in routine clinical
and healthcare practice, medical professionals need to clearly
understand how and why an ML solution-driven decision has
been made (Holzinger et al., 2017; Vellido, 2020).

This is further affected by the fact that the ML algorithms
that achieve a high level of predictive performance, e.g., boosted
trees (Chen and Guestrin, 2016) or deep neural networks
(Goodfellow et al., 2016), are quite complex and usually difficult
to interpret. In fact, some researchers argue that performance
and interpretability of an algorithm are in reverse dependence
(Ahmad et al., 2018; Molnar et al., 2019). Additionally, while
there are a number of techniques aiming to explain the
output of the models that are not directly interpretable, as
many authors note (e.g., Holzinger et al., 2017; Gilpin et al.,
2019; Rudin, 2019; Gosiewska et al., 2020), current explanatory
approaches, while promising, do not seem to be sufficiently
mature. Molnar et al. (2019) found that the reliability of some
of these methods deteriorates if the number of features is
large or if the level of feature interactions is high, which is
often the case in health data. Further, Gosiewska and Biecek
(2020) showed that current popular methods for explaining the
output of ML models, like SHAP (Lundberg and Lee, 2017)
and LIME (Ribeiro et al., 2016), produce inconsistent results,
while Alvarez-Melis and Jaakkola (2018) found that the currently
popular interpretability frameworks, particularly model-agnostic
perturbation-based methods, are often not robust to small
changes of the input, which clearly is not acceptable in the health
domain.

There is a firm recognition of the impact of ML solutions in
economics, including health economics, especially in addressing
“predictive policy” problems (Athey, 2019). Many authors (e.g.,
Holzinger et al., 2017; Dawson et al., 2019; Rudin, 2019) note that
in the high-stake areas (e.g., medical field, healthcare) solutions,
in which the inner workings are not transparent (Weller, 2019),
can be unfair, unreliable, inaccurate, and even harmful. Such
views are reflected in the legislation on data-driven algorithmic
decision-making, which affects citizens across the world. The
European Union’s General Data Protection Regulation (GDPR)
(EU, 2016), which entered into force in May 2018, is an
example of such early legislation. In the context of the emerging

algorithmic economy, there are also warnings to policymakers to
be aware of the potential impact of legislations like GDPR on the
development of new AI and ML solutions (Wallace and Castro,
2018).

These developments increased the pressure on creation of
frameworks and methodologies, which can ensure sufficient
interpretability of ML solutions. In healthcare, such pressure is
amplified by the nature of the interactive processes, wherein
neither humans nor the algorithms operate with unbiased data
(Sun et al., 2020).

Major technology developers, including Google, IBM, and
Microsoft, recommend responsible interpretability practices (see,
e.g., Google, 2019), including the development of common
design principles for human-interpretable machine learning
solutions (Lage et al., 2019).

2.3. Consistent Measurement and
Evaluation of Interpretability of ML
Solutions
While there are a number of suggested approaches to measuring
interpretability (Molnar et al., 2019), a consensus on the ways
of measuring or evaluating the level of interpretability has not
been reached. For example, Gilpin et al. (2019) found that
the best type of explanation metrics is not clear. Murdoch
et al. (2019) mentioned that, currently, there is confusion about
the interpretability notion and a lack of clarity about how
the proposed interpretation approaches can be evaluated and
compared against each other and how to choose a suitable
interpretation method for a given issue and audience. The PDR
framework (Murdoch et al., 2019), mentioned earlier, is a step
in the direction of developing consistent evaluations. Murdoch
et al. (2019) further note that there is limited guidance on how
interpretability can actually be used in data science life cycles.

2.4. The Emerging Need for Standard
Methodology for Handling Interpretability
Having a good methodology is important for the success of
a data science project. To our knowledge, there is no formal
standard for methodology in the data science projects (see
Saltz and Shamshurin, 2016). Through the years, the CRISP-
DM methodology (Shearer, 2000) created in the late 1990s
has become a de-facto standard, as evidenced from a range of
works (see, e.g., Huang et al., 2014; Niño et al., 2015; Fahmy
et al., 2017; Pradeep and Kallimani, 2017; Abasova et al., 2018;
Ahmed et al., 2018). An important factor of its success is the
fact that it is industry, tool, and application agnostic (Mariscal
et al., 2010). However, the research community has emphasized
that, since its creation, CRISP-DM had not been updated to
reflect the evolution of the data science process needs (Mariscal
et al., 2010; Ahmed et al., 2018). While various extensions and
refined versions of the methodology, including IBM’s Analytics
Solutions Unified Method for Data Mining (ASUM-DM) and
Microsoft’s Team Data Science Process (TDSP), were proposed
to compensate the weaknesses of CRISP-DM, at this stage, none
of them has become the standard. In the more recent years,
variations of CRISP-DM tailored for the healthcare (Catley et al.,
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2009) and medical domain, such as CRISP-MED-DM (Niaksu,
2015), have been suggested. The majority of organisations that
apply a data analysis methodology prefers extensions of CRISP-
DM (Schäfer et al., 2018). Such extensions are fragmented
and either propose additional elements into the data analysis
process, or focus on organisational aspects without the necessary
integration of domain-related factors (Plotnikova, 2018). These
might be the reasons for the observed decline of its usage
as reported in studies by Piatetsky-Shapiro (2014), Bhardwaj
et al. (2015), and Saltz and Shamshurin (2016). Finally, while
methodologies from related fields, like the agile approach used
in software development, are being considered for use in data
science projects, there is no clear clarity on whether they are
fully suitable for the purpose, as indicated by Larson and Chang
(2016); therefore, we did not include them in the current scope.

This overall lack of consensus has provided an opportunity
to reflect on the philosophy of the CRISP-DM methodology
and create a comprehensive data science methodology, through
which interpretability is embedded consistently into an ML
solution. Such methodology faces a list of requirements:

– It has to take into account the different perspectives and
aspects of interpretability, including model and process
explainability and interpretability;

– It has to consider the desiderata of explainable AI (fidelity,
understandability, sufficiency, low construction overhead, and
efficiency) as summarized in Hansen and Rieger (2019);

– It needs to support consistent interaction of local and global
interpretability of ML solutions with other established key
factors in data science projects, including predictive accuracy,
bias, noise, sensitivity, faithfulness, and domain specifics;

In addition, healthcare researchers have indicated that the choice
of interpretable models depends on the use case (Ahmad et al.,
2018).

In order to standardize the expectations for interpretability,
some of these requirements have been addressed in the
recently proposed CRISP-ML methodology (Kolyshkina and
Simoff, 2019). In section 3, we will briefly discuss the major
concepts differentiating CRISP-ML methodology. The CRISP-
ML approach includes the concepts of necessary level of
interpretability (NLI) and interpretability matrix (IM), described
in detail by Kolyshkina and Simoff (2019), and therefore aligns
well with the view of health researchers that the choice of
interpretable models depends upon the application and use case
for which explanations are required (Ahmad et al., 2018). To
illustrate that, in section 4, we present a use case in the public
health field that illustrates the typical challenges met and the ways
CRISP-ML helped to address and resolve them.

3. CRISP-ML METHODOLOGY—TOWARD
INTERPRETABILITY-CENTRIC CREATION
OF ML SOLUTIONS

The CRISP-ML methodology (Kolyshkina and Simoff, 2019) of
building interpretability of an ML solution is based on revision
and update of CRISP-DM to address the opportunities discussed

in section 2. It follows the CRISP-DM approach in terms
of being industry-, tool-, and application-neutral. CRISP-ML
accommodates the necessary elements to work with diverse ML
techniques and create the right level of interpretability through
the whole ML solution creation process. Its seven stages are
described in Figure 1), which is an updated version of the CRISP-
ML methodology diagram in the study by Kolyshkina and Simoff
(2019).

Central to CRISP-ML is the concept of necessary level of
interpretability of an ML solution. From this view point, CRISP-
ML can be differentiated as a methodology of establishing and
building the necessary level of interpretability of a business ML
solution. In line with Google’s guidelines on the responsible
AI practices in the interpretability area (Google, 2019) and
expanding on the approach proposed by Gleicher (2016),
we have specified the concept of minimal necessary level of
interpretability of a business ML solution as the combination of
the degree of accuracy of the underlying algorithm and the extent
of understanding the inputs, inner workings, the outputs, the user
interface, and the deployment aspects of the solution, which is
required to achieve the project goals. If this level is not achieved,
the solution will be inadequate for the purpose. This level needs
to be established and documented at the initiation stage of the
project as part of requirement collection (see Stage 1 in Figure 1).

We then describe an ML solution as sufficiently interpretable
or not based on whether or not it achieved the required level of
interpretability. Obviously, this level will differ from one project
to another depending on the business goals. If individuals are
directly and strongly affected by the solution-driven decision,
e.g., in medical diagnostics or legal settings, then both the ability
to understand and trust the internal logic of the model, as well
as the ability of the solution to explain individual predictions,
are of highest priority. In other cases, when an ML solution
is used in order to inform business decisions about policy,
strategy, or interventions aimed to improve the business outcome
of interest, then it is necessary to understand and trust the
internal logic of the model that is of most value, while individual
predictions are not the focus of the stakeholders. For example, in
one of our projects, an Australian state organization wished to
establish what factors influenced the proportion of children with
developmental issues and what interventions can be undertaken
in specific areas of the state in order to reduce that proportion.
The historical, socioeconomic, and geographic data provided
for the project was aggregated at a geographic level of high
granularity.

In other cases, e.g., in the case of an online purchase
recommender solution, the overall outcome, such as increase in
sales volume, may be of higher importance than interpretability
of the model. Similar requirements of solution interpretability
were in a project where an organization owned assets that
were located in remote areas and were often damaged by
birds or animals nests. The organization wished to lower their
maintenance cost and planning by identifying as soon as possible
the assets where such nests were present instead of doing
expensive examination of each asset. This was achieved by
building a ML solution that classified Google Earth images of the
assets into those with and without nests. In this project, it was
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FIGURE 1 | Conceptual framework of CRISP-ML methodology.

important to identify a proportion of assets that were as high as
possible with nests on them, while misclassifying an individual
asset image was not of great concern.

The recently published CRISP-ML(Q) (Studer et al., 2020)
proposes an incremental extension of CRISP-DM with the
monitoring and maintenance phases. While the study mentions
“model explainability” referring to the technical aspects of the
underlying model, it does not consider interpretability and
explainability in a systematic way as CRISP-ML (Kolyshkina
and Simoff, 2019). Interpretability is now one of the most
important and quickly developing universal requirements, not
only a “best practice” requirement in some industries. It is also
a legal requirement. CRISP-ML (Kolyshkina and Simoff, 2019)
ensures that the necessary interpretability level is identified at the
requirement collection stage. The methodology then ensures that
participants establish the activities for each stakeholder group
at each process stage that are required to achieve this level.
CRISP-ML (Kolyshkina and Simoff, 2019) includes stages 3 and
4 (data predictive potential assessment and data enrichment in
Figure 1), which are not present in CRISP-ML(Q) (Studer et al.,
2020). As indicated in Kolyshkina and Simoff (2019), skipping
these important phases can result in potential scope creep and
even business project failure.

In Kolyshkina and Simoff (2019), the individual stages of the
CRISP-MLmethodology were presented in detail. Each stage was
illustrated with examples from cases from a diverse range of
domains. There, the emphasis was on the versatility of CRISP-
ML as a industry-neutral methodology, including its approach
to interpretability. In this study, we focus on a single case study
from health-related domain in order to present a comprehensive

coverage of each stage and the connections between the
stages, and provide examples of how the required level of
interpretability of the solution is achieved through carefully
crafted involvement of the stakeholders as well as decisions
made at each stage. This study does not provide comparative
evaluation of CRISP-ML methodology in comparison to CRISP-
DM (Shearer, 2000), ASUM-DM (IBM Analytics, 2015), TDSP
(Microsoft, 2020), and other methodologies discussed by
Kolyshkina and Simoff (2019). The purpose of the study is
to demonstrate, in a robust way, the mechanics of explicit
management of interpretability in ML through the project
structure and life cycle of a data science methodology. Broader
comparative evaluation of the methodology is the subject of a
separate study.

The structure of the CRISP-ML process methodology has
embedded flexibility in it, indicated by the cycles, which link
the model-centric stages back to the early data-centric stages,
as shown in Figure 1. Changes inevitably occur in any project
over the course of the project life cycle, and CRISP-ML reflects
that. Themost typical changes, related to data availability, quality,
and analysis findings, occur mostly at stages 2–4, as shown in
Figure 1. This is illustrated in our case study and was discussed
in detail in the study by Kolyshkina and Simoff (2019). Less
often changes occur at stages 5–7 in Figure 1. From experiential
observations, such changes are more likely to occur in longer
projects with a volume of work requiring more than 6–8 months
for completion. They are usually driven by amendments in
project scope and requirements including the necessary level of
interpretability (NLI), that are caused by factors external to the
analytical part of the project. These factors can be global, such

Frontiers in Big Data | www.frontiersin.org 6 May 2021 | Volume 4 | Article 66020621

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kolyshkina and Simoff Interpretability of Machine Learning in Public Healthcare

as environmental, political, or legislative factors; organization-
specific (e.g., updates in the organizational IT structure, the way
of data storage or changes in the stakeholder team), or they
could be related to the progress in ML and ML-related technical
areas (e.g., the advent of a new, better performing predictive
algorithm).

In this study, we present the stages of CRISP-ML in a
rigid manner, around the backbone of the CRISP-ML process,
represented by the solid black triangle arrows in Figure 1

to maintain the emphasis on the mechanisms for handling
interpretability in each of these steps, rather than exploring
the iterative nature of the approach. For consistency of the
demonstration, we draw all detailed examples through the study
from the specific public health case study. As a result, we are
able to illustrate in more depth how we sustain the level of
interpretability through the process structure of the project. The
study complements the study by Kolyshkina and Simoff (2019),
where, through the examples drawn from a variety of cases, we
demonstrated the versatility of CRISP-ML. The methodological
treatment of interpretability in evolving scenarios and options is
beyond the scope of this study.

4. CASE STUDY ILLUSTRATING THE
ACHIEVEMENT OF THE NLI OF MACHINE
LEARNING SOLUTION

In this study, we will describe a detailed real-world case study
in which, by going through each project stage, we illustrate
how CRISP-ML facilitates data science project stakeholders in
establishing and achieving the necessary level of interpretability
of ML solution.

We would like to emphasize that the specific analytic
techniques and tools mentioned in the respective stages of the
case study are relevant specifically to this particular study. They
illustrate the approach and the content of the interpretability
mechanisms of CRISP-ML. However, there are many other
available methods andmethod combinations that can achieve the
objectives of this and other projects.

We place a particular focus on the aspects and stages of
CRISP-ML from the perspective of demonstrating the flow and
impact of interpretability requirements and on how they have
been translated into the necessary level of interpretability of the
finalML solution. Further, the structure of this section follows the
stages of CRISP-ML process structure in Figure 1. All sensitive
data and information have been masked and altered to protect
privacy and confidentiality, without loss of the sensible aspects
relevant to this presentation.

4.1. Background. High-Level Project
Objectives and Data Description
An Australian State Workers Compensation organization sought
to predict, at an early stage of a claim, the likelihood of the claim
becoming long-term, i.e., a worker staying on income support for
1 year ormore from the date of lodgement. A further requirement
was that the prediction model should be easily interpretable by
the business.

The data that the analysis was to be based upon were identified
by the organizational experts, based on the outcomes for about
20,000 claims incurred in the recent years, and included the
following information:

– injured worker attributes, e.g., date of birth, gender,
occupation, average weekly earnings, residential address;

– injury attributes, e.g., injury date, the information on the
nature, location, mechanism, and agency of injury coded
according to the National Type of Occurrence Classification
System2;

– employer attributes (size, industry classification);
– details of all worker’s income support or similar payments.

4.2. Building the Project Interpretability
Matrix: An Overall Approach
Interpretability matrix is usually built at Stage 1 of the project
as part of the requirement collection process. Data science
practitioners recognize Stage 1 as crucial for the overall project
success (see, e.g., PMI, 2017), as well as from the solution
interpretability building perspective (Kolyshkina and Simoff,
2019).

The IM as a structure for capturing and translating
interpretability requirements into specific actions and activities
is generalized. However, the specific content of its cells depends
on the project. Kolyshkina and Simoff (2019) demonstrated the
CRISP-ML stages consistently applied to different projects across
a number of industries, data sets, and data types.

It covers the activities needed to start up the data
science project: (a) the identification of key stakeholders;
(b) documenting project objectives and scope; (c) collecting
requirements; (d) agreeing upon initial data; (e) preparing a
detailed scope statement; and (f) developing project schedule
and plan. The deliverable of this stage was a project charter
documenting the above activities.

4.2.1. Interpretability-Related Aspects of the Project

Charter: Business Objectives, Main Stakeholders,

and Interpretability Level
We will describe in more detail the aspects of the project
charter that were directly related to this study, specifically
the established business objectives, main stakeholders, and the
established necessary interpretability requirements.

4.2.1.1. Business objectives and main stakeholders.
The established objectives included:

1. Build an ML system that will explain what factors and to what
extent influence the outcome, i.e., claim duration;

2. Allow the organization to derive business insights that will
help make data-driven accurate decisions regarding what
changes can be done to improve the outcome, i.e., reduce the
likelihood of a long claim by a specified percentage;

2Type of Occurrence Classification System (3rd Edition, Revision 1), Australian

Government—Australian Safety and Compensation Council, Canberra, 2008,

https://www.safeworkaustralia.gov.au/doc/type-occurrence-classification-

system-toocs-3rd-edition-may-2008).
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3. Be accurate, robust, and work with real-world organizational
data;

4. Have easy-to-understand outputs that would make sense to
the executive team and end users (case managers) and that the
end users could trust;

5. Present the output as business rules that are easy to
understand for end users and to deploy, monitor, and update
in organizational data.

6. Ensure that the overall ML solution is easy to understand and
implement by the Information Technology (IT) team of the
organization and to monitor/update the Business Intelligence
(BI) team of the organization.

The main stakeholders were identified as follows: Executive team
(E); End Users/Domain Experts, i.e., Case management team
(DE); Information Technology team who would implement the
solution in the organizational data (IT); Business Intelligence
team who would monitor the solution performance and update
the underlying model (BI); and Modeling team (M). These
abbreviations are used further in the descriptions of the stages
of the IM.

4.2.1.2. The established necessary interpretability level.
The necessary interpretability level (Kolyshkina and Simoff,
2019) was established as follows.

– The E, IT, and DE teams needed to have a clear understanding
of all internal and external data inputs to be used: their
reliability, quality, and whether the internal inputs were
representative of the organizational data that the solution
would be deployed on.

– The E and DE teams needed to have a clear understanding of
the high-level data processing approach (e.g., missing values
treatment, aggregation level), as well as high-level modeling
approach and its proven validity.

– The outputs needed to be provided in the form of easily
understandable business rules. The E and DE teams needed to
gain a clear understanding of the rules and to be able to assess
their business validity and usefulness from the business point
of view.

– The BI team, who would monitor the solution performance
and update it as required, need to have a clear understanding
of:

– the data processing stage, as well as the modeling algorithm,
its validity, and suitability from the ML point of view;

– how to assess the solution performance and how the
solution needs to be audited, monitored, and updated, as
well as how often this should occur.

– The IT team, who would deploy the solution needed to have a
clear understanding of the format of the output and confirm
that it can be deployed in the organizational data within
the existing constraints (e.g., resources, cost) and without
disrupting the existing IT systems.

4.2.2. Creating the Project IM: An Overall Approach
The next step is to create and fill out the IM, whose rows show
CRISP-ML stages, and columns represent key stakeholders. In

each cell of the matrix, we showed what needs to be done by
each stakeholder at each project stage to ensure that the required
level of solution interpretability is achieved. Matrix cells can be
grouped horizontally when there are common requirements for
a group of stakeholders. Matrix cells can be grouped vertically
when there are common requirements for a specific stakeholder
across a number of stages in CRISP-ML. This matrix, once
completed, becomes part of the business requirements document.
The activities it outlines are integrated into the project plan and
are reviewed and updated along with the project plan.

4.2.2.1.Definition of stakeholder involvement extent.
We define the extent of involvement of a stakeholder group
needed to achieve the necessary interpretability level in a
particular project stage as follows:

– high extent of involvement—the stakeholder group needs to
be directly and actively involved in the solution development
process to ensure that the NLI is achieved at the stage;

– medium extent of involvement—the stakeholder group needs
to receive detailed regular updates on the progress of the stage
and get directly involved in the work from time to time to
ensure that the NLI is achieved at the stage. For example,
this can refer to DE and IT providing information helping to
better understand data sources and business processes of the
organization.

– low extent of involvement—the stakeholder group is kept
informed on the general progress of the stage.

In Figure 2, green color background indicates high extent
of involvement of a stakeholder group, yellow color shows
medium extent of involvement, and the cells with no color in
the background show low level of involvement. Depending on
the project, the coloring of the cells of the IM will vary. For
example, if it had not been necessary to provide knowledge
transfer (“Ongoing knowledge and skill development”) to the BI
team, then their involvement in Stage 2–5 would have been low
and the respective cells would have been left with no color in the
background.

4.2.2.2.High-level IM diagram.
Figure 2 shows a high-level interpretability matrix for the
project.

4.3. Entries to the Project Interpretability
Matrix at Each Stage of CRISP-ML
Further, we discuss entries to the project IM at each stage of
CRISP-ML.

4.3.1. Stage 1
The content of the interpretability matrix related to the
project initiation and planning stage (i.e., the first row of the
matrix) has been discussed in detail above and is summarized
in Figure 3.

4.3.2. Stages 2–4
Stages 2–4 in Figure 1 are mainly data-related and form the
data comprehension, cleansing, and enhancement mega-stage.
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FIGURE 2 | High-level interpretability matrix for the project.

Further, we consider the content of the interpretability matrix for
each of these stages, they are represented by the second, third,
and fourth rows of interpretability matrix.

4.3.2.1. Stage 2.
Data audit, exploration, and cleansing played a key role in
achieving the interpretability level needed for the project.
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Figure 4 demonstrates the content of the interpretability matrix
at this stage.

This stage established that the data contained characteristics
that significantly complicated the modeling, such as a large
degree of random variation, multicollinearity, and a highly
categorical nature of many potentially important predictors.
These findings helped guide the selection of the modeling and
data pre-processing approach.

Random variation. During workshops with E, DE, and other
industry experts, it became clear that there were certain “truths”

that pervaded the industry, and we used these to engage with
subject matter experts (SME) and promote the value of our
modeling project. One such “truth” was that claim duration
was influenced principally by nature and location of injury,
but in combination with the age of the injured worker, and
specifically, older workers tended to have longer duration claims.
Our analysis demonstrated the enormous amount of random
variation that existed in the data. For example, age, body location,
and injury type only explained 3–7% of variation in claim
duration. There was agreement among the experts that the

FIGURE 3 | Interpretability matrix content for Stage 1.

FIGURE 4 | Interpretability matrix content for Stage 2.
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industry “truths” were insufficient to accurately triage claims and
that different approaches were needed.

Our exploratory analysis revealed strong random variation
in the data, confirming the prevalent view among the workers’
compensation experts that it is the intangible factors, like the
injured worker’s mindset and relationship with the employer, that
play the key role in the speed of recovery and returning to work.
The challenge for the modeling, therefore, was to uncover the
predictors that represent these intangibles.

Sparseness. Most of the available variables were categorical
with large numbers of categories. For example, the variable
“Injury Nature” has 143 categories and “Body Location of Injury”
has 76 categories. Further, some categories had relatively few
observations which made any analysis involving them potentially
unreliable and not statistically valid. Such sparseness presented
another data challenge.

Multicollinearity. There was a high degree of multicollinearity
between numerical variables in the data.

Data pre-processing. First, we reduced the sparseness among
categories by combining some categorical levels in consultation
with SMEs to ensure that the changes made business sense.
Second, we used a combination of correlation analysis, as
well as advanced clustering and feature selection approaches,
e.g., Random Forests (see, e.g., Shi and Horvath, 2006) and
PCAMIX method using iterative relocation algorithm and
ascendant hierarchical clustering (Chavent et al., 2012) to reduce
multicollinearity and exclude any redundant variables.

4.3.2.2. Stage 3.
Figure 5 shows the content of the interpretability matrix related
to the evaluation of the predictive potential of the data (i.e., the
third row of the matrix). This stage is often either omitted or not
stated explicitly in other processes/frameworks (Kolyshkina and
Simoff, 2019); however, it is crucial for the project success because
it establishes whether the information in the data is sufficient for
achieving the project goals.

To efficiently evaluate what accuracy could be achieved
with the initially supplied data, we employed the following
different data science methods that have proven their excellence
at extracting maximum predictive power from the data: Deep
Neural Nets, Random Forests, XGBoost, and Elastic Net. The
results were consistent for all the methods used and showed that
only a small proportion of the variability of claim duration was
explained by the information available in the data. Therefore,
the predictive potential of the initially supplied data, containing
claim and worker’s data history, indicated that the data set
is insufficient for the project objectives. Data enrichment was
required.

These findings were discussed with DE who then were invited
to share their business knowledge about sources that could enrich
the initial data predictive power.

4.3.2.3. Stage 4.
Data enrichment. Figure 6 shows the content of the
interpretability matrix related to the data enrichment stage.
Based on the DE feedback and results of external research, we
enriched the data with additional variables, including:

– lag between injury occurrence and claim lodgement (claim
reporting lag);

– information on the treatment received (e.g., type of providers
visited, number of visits, provider specialty);

– information on the use of medications and, specifically, on
whether a potent opioid was used.

We assessed the predictive value of the enriched data in the
same way as before (see section 4.3.2.2), and found that there was
a significant increase in the proportion of variability explained by
the model. Of particular relevance was the incorporation of the
prior claim history of claimants, including previous claim count,
type and nature of injury, and any similarity with the current
injury.

Further, the data enrichment was a key step in building further
trust of the DE team. The fact that the model showed that the

FIGURE 5 | Interpretability matrix content for Stage 3.
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cost of a claim can be significantly dependent on the providers
a worker visited built further trust in the solution, because it
confirmed the hunch of domain experts that they previously had
not had enough evidence to prove.

4.3.3. Stage 5
Figure 7 shows the content of the interpretability matrix for
the model building and evaluation stage. To achieve the right
interpretability level, it is crucial that modelers choose the right
technique that will balance the required outcome interpretability
with the required level of accuracy of the model, which is
often a challenge (see, e.g., Freitas, 2014), as well as with other
requirements/constraints (e.g., the needed functional form of the
algorithm). In our case, it was required that the model explained
at least 70% of variability.

At this stage, the ML techniques to be used for modeling
are selected, taking into account the predictive power of the
model, its suitability for the domain and the task, and the
NLI. The data is pre-processed, and modeled, and the model
performance is evaluated. The solution output was required to be
produced in the form of business rules, and therefore, the feature
engineering methods and modeling algorithms used included
rule-based techniques, e.g., decision trees, and association rules-
based methods.

4.3.4. Stage 6
Figure 8 shows how the interpretability matrix reflects the role of
interpretability in the formulation of business insights necessary
to achieve the project goals and in helping the E and DE to
understand the derived business insights and to develop trust in

FIGURE 6 | Interpretability matrix content for Stage 4.

FIGURE 7 | Interpretability matrix content for Stage 5.

Frontiers in Big Data | www.frontiersin.org 12 May 2021 | Volume 4 | Article 66020627

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kolyshkina and Simoff Interpretability of Machine Learning in Public Healthcare

them. Modelers, BI and DEs, prepared a detailed presentation for
the E, explaining not only the learnings from the solution but also
the high-level model structure and its accuracy.

4.3.5. Stage 7
The final model provided the mechanism for the organization to
allocate claims to risk segments based on the information known
at early stages. From the technical point of view, the business
rules were confirmed by the E, DE, and IT to be easy to deploy
as they are readily expressed as SQL code. Based on this success,
a modified version of claims triage was deployed into production.

Figure 9 shows the shift of responsibilities for ensuring the
achieved interpretability level is maintained during the future
use of the solution. At this stage, the deployment was being
scheduled, and the monitoring/updating process and schedule
was prepared, based on the technical report provided by the

M team that included project code, the solution manual, and
updating and monitoring recommendations.

5. CONCLUSIONS

This study contributes toward addressing the problem for
providing organizations with capabilities to ensure that the
ML solutions they develop to improve decision-making are
transparent and easy to understand and interpret. If needed, the
logic behind the decisions can be explained to any external party.
Such capability is essential in many areas, especially in health-
related fields. It allows the end users to confidently interpret the
ML output use to make successful evidence-based decisions.

In an earlier study (Kolyshkina and Simoff, 2019), we
introduced CRISP-ML, a methodology of determining

FIGURE 8 | Interpretability matrix content for Stage 6.

FIGURE 9 | Interpretability matrix content for Stage 7 includes activities ensuring the achieved interpretability level is maintained during the future utilization of the

solution.
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the interpretability level required for the successful real-
world solution and then achieving it via integration of the
interpretability aspects into its overall framework instead of just
the algorithm creation stage. CRISP-ML combines practical,
common-sense approach with statistical rigor and enables
organizations to establish shared understanding across all key
stakeholders about the solution and its use and build trust in the
solution outputs across all relevant parts of the organization.
In this study, we illustrated CRISP-ML with a detailed case
study of building an ML solution in the Public Health sector.
An Australian state workplace insurer sought to use their
data to establish clear business rules that would identify, at an
earlier stage of a claim, those with high probability of becoming
serious/long-term. We showed how the necessary level of
solution interpretability was determined and achieved. First,
we showed how it was established by working with the key
stakeholders (Executive team, end users, IT team, etc.). Then, we
described how the activities that were required to be included at
each stage of building the ML solution to ensure that this level
is achieved was determined. Finally, we described how these
activities were integrated into each stage.

The study demonstrated how CRISP-ML addressed the
problemswith data diversity, unstructured nature of the data, and
relatively low linkage between diverse data sets in the healthcare
domain (Catley et al., 2009; Niaksu, 2015). The characteristics
of the case study which we used are typical for healthcare data,
and CRISP-ML managed to deliver on these issues, ensuring the
required interpretability of the ML solutions in the project.

While we have not completed formal evaluation of CRISP-
ML, there are two aspects which indicate that the use of
this methodology improves the chances of success of data
science projects. On the one hand, CRISP-ML is built on
the strengths of CRISP-DM, which made it the preferred and
effective methodology (Piatetsky-Shapiro, 2014; Saltz et al.,
2017), addressing its identified limitations in previous works
(e.g., Mariscal et al., 2010). On the other hand, CRISP-ML has
been successfully deployed in a number of recent real-world

projects across several industries and fields, including credit
risk, insurance, utilities, and sport. It ensured on meeting the
interpretability requirements of the organizations, regardless of
industry specifics, regulatory requirements, types of stakeholders
involved, project objectives, and data characteristics, such as type
(structured as well as unstructured), size, or complexity level.

CRISP-ML is a living organism and, as such, it responds
to the rapid progress in the development of ML algorithms
and the evolution of the legislation for their adoption.
Consequently, CRISP-ML development includes three directions:
(i) the development of a richer set of quantitative measures
of interpretability features for human interpretable machine
learning, (ii) the development of the methodology and respective
protocols for machine interpretation, and (iii) the development
of formal process support. The first one is being extended in
a way to provide input to the development and evaluation of
common design principles for human interpretable ML solutions
in line with that described in the study by Lage et al. (2019). This
strategic development adds the necessary agility for the relevance
of the presented cross-industry standard process.
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HMD-Based Virtual and Augmented
Reality in Medical Education:
A Systematic Review
Xuanhui Xu*, Eleni Mangina and Abraham G. Campbell

School of Computer Science, University College Dublin, Dublin, Ireland

Background: Virtual Reality (VR) and Augmented Reality (AR) technologies provide a
novel experiential learning environment that can revolutionize medical education. These
technologies have limitless potential as they provide in effect an infinite number of
anatomical models to aid in foundational medical education. The 3D teaching models
used within these environments are generated from medical data such as magnetic
resonance imaging (MRI) or computed tomography (CT), which can be dissected and
regenerated without limitations.

Methods: A systematic review was carried out for existing articles until February 11, 2020,
in EMBASE, PubMed, Scopus, ProQuest, Cochrane Reviews, CNKI, and OneSearch
(University College Dublin Library) using the following search terms: (Virtual Reality OR
Augmented Reality OR mixed reality) AND [“head-mounted” OR “face-mounted” OR
“helmet-mounted” OR “head-worn” OR oculus OR vive OR HTC OR hololens OR “smart
glasses” OR headset AND (training OR teaching OR education)] AND (anatomy OR
anatomical OR medicine OR medical OR clinic OR clinical OR surgery OR surgeon OR
surgical) AND (trial OR experiment OR study OR randomized OR randomised OR
controlled OR control) NOT (rehabilitation OR recovery OR treatment) NOT
(“systematic review” OR “review of literature” OR “literature review”). PRISMA
guidelines were adhered to in reporting the results. All studies that examined people
who are or were medical-related (novel or expert users) were included.

Result: The electronic searches generated a total of 1,241 studies. After removing
duplicates, 848 remained. Of those, 801 studies were excluded because the studies
did not meet the criteria after reviewing the abstract. The full text of the remaining 47
studies was reviewed. After applying inclusion criteria and exclusion criteria, a total of 17
studies (1,050 participants) were identified for inclusion in the review.

Conclusion: The systematic review provides the current state of the art on head-mounted
device applications inmedical education. Moreover, the study discusses trends toward the
future and directions for further research in head-mounted VR and AR for medical
education.

Keywords: virtual reality, augmented reality, head-mounted display, surgery, medicine, systematic review,
education
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1 INTRODUCTION

Retaining knowledge in education is challenging. Medical
students learn complex structures and anatomy mainly based
on teaching material such as books or pictures traditionally, and
for some educational institutions with more resources, students
may have a chance to dissect actual cadavers. However, the paper-
based learning material might cause misunderstandings as it is
hard to imagine the 3D relationship between components based
on 2Dmaterials. Teaching resources such as real-life cadavers are
limited and critically have strict storage restrictions based on
health and safety rules.

Therefore, Virtual Reality (VR) and Augmented Reality (AR)
interventions based on simulations could offer a possible solution
or, at the very least, ease this bottleneck in medical education.
They would improve spatial awareness when compared to 2D
teaching materials and provide infinite teaching materials that
can be the foundation for advancing the accessibility of content
for medical education. VR and AR technologies provide a close-
to-reality experience for users in industry, education, and gaming.
Among all VR/AR formats, the head-mounted display (HMD)
provides the most immersive environment, tracking a user’s
motion and maintains the position of spatial information
around them. The 3D teaching models can be generated from
medical data like magnetic resonance imaging (MRI) or
computed tomography (CT), which allow them to be dissected
and regenerated without any limits.

Simulators in general are widely used in medical education
and assessment. To date, several systematic reviews have
investigated the efficacy of VR simulation training in
laparoscopy (Larsen et al., 2012; Alaker et al., 2016). The
results showed that VR laparoscopy simulation provided an
effective and ethical way to train residents’ surgical skills. VR
simulation can play an important role in addressing the issue of
low training efficiency. However, the main VR simulators used as
interventions were LapSim®1 and Simendo®2, which did not
utilize HMDs. Based on the current authors’ knowledge,
another systematic review in the usage of HMD-based VR and
AR in medical education does not exist. Previous studies have
identified some situations where HMDs are suitable for skill
acquisition (Jensen and Konradsen, 2018), including cognitive
skills related to remembering and understanding spatial
information and knowledge. As learning a kinesthetic-based
medical skill highly relies on spatial cognition, the immersion
provided by an HMD logically then becomes a natural
requirement for this review, to explore if VR and AR may
potentially benefit medical skill acquisition.

This study focuses on a systematic review to evaluate the
effectiveness of applying HMD for VR or AR applications in
medical education that can benefit medical training. To this end,
the systematic review will answer the following questions that are
proposed in the protocol (Section 1.1):

• Compared with the standard teaching method or other
types of simulators, what are the comparative
effectiveness of HMD VR or AR usage in medical
teaching? (Advantages)

• What are the disadvantages of using HMD VR or AR, and
which one has lower side effects? (Disadvantages)

• Is there a definitive advantage of HMD VR and AR when
used for increasing the efficiency of teaching in medicine?
(Proof)

• Do HMD VR and AR have the potential to be support tools
for medical education? (Support)

1.1 Protocol
A systematic review was carried out until February 11, 2020.
PRISMA guidelines were adhered to in reporting the results of
this study (Moher et al., 2009). Methods of the analysis and
inclusion criteria were specified in advance and documented in a
protocol. The protocol has been registered in PROSPERO, the
international prospective register of systematic reviews, where it
can be accessed (Registration number: CRD42020165310)3.

1.2 Search Strategy
The literature search and initial screening were conducted by XX;
abstract screening was conducted independently by three authors
(XX, EM, and AC), while the disagreement was confirmed by
discussion; full article screening and data extraction were
conducted by XX. Databases searched were EMBASE,
PubMed, Scopus, ProQuest, Cochrane Reviews, CNKI, and
OneSearch (University College Dublin Library) on title,
abstract, and keywords; searches from Google Scholar are also
acceptable. The terms used for searching were as follows: (Virtual
Reality OR Augmented Reality OR mixed reality) AND [“head-
mounted”OR “face-mounted”OR “helmet-mounted”OR “head-
worn” OR oculus OR vive OR HTC OR hololens OR “smart
glasses” OR headset AND (training OR teaching OR education)]
AND (anatomy OR anatomical OR medicine OR medical OR
clinic OR clinical OR surgery OR surgeon OR surgical) AND
(trial OR experiment OR study OR randomized OR randomised
OR controlled OR control) NOT (rehabilitation OR recovery OR
treatment) NOT (“systematic review” OR “review of literature”
OR “literature review”).

1.3 Selection Criteria
All studies examining the general adult human population or
healthy adult humans and people who are or were medical-
related (novel or experts) were included. Studies in which
individuals were selected with extreme motion sickness, other
diagnosed illness, or disability and studies in which individuals
were not medical-related are excluded. No year publication limits
were set. English and Chinese text publications were included as

1https://surgicalscience.com/systems/lapsim/
2https://www.simendo.eu/

3Xu, X, Abraham, G. C., and Eleni, M. Can the head-mounted device improve
medical education quality? Protocol for a systematic review. PROSPERO 2020
CRD42020165310 Available from https://www.crd.york.ac.uk/prospero/display_
record.php?ID�CRD42020165310
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one author was a native Chinese speaker, which allowed a unique
chance to expand the search. The search was last updated on
February 11, 2020. The titles and abstracts database searches were
screened to identify potentially relevant records for full-text
screening. The titles and abstracts of all remaining records
were screened for eligibility to identify records for full-text
screening. All records identified for full-text screening were
screened to identify records for inclusion in the review. All
data that were potentially relevant to the review were then
extracted from the studies selected for final inclusion and
collated in a spreadsheet as follows: details of publication,
participant characteristics, sample size, setting, intervention,
study design, data type, and result.

A meta-analysis was not undertaken due to the considerable
heterogeneity among the studies included in this review.
Therefore, a descriptive approach to data synthesis was
adapted, whereby summaries of included studies will be
presented. Included studies will be presented in line with the
outcomes identified from active interventions that involve HMD
VR or AR, specifically, changes in surgery or anatomy training or
outcomes related to the trainer or trainee’s experience
(satisfaction and motivation), population characteristics (study
design and study outcome measures), and methodological
approach (randomized control studies and crossover studies).

Data were extracted using a standardized template to capture
information relating to PICO: population (grade and sex),
intervention (characteristics of the HMD VR and AR tool),
comparator (traditional/other teaching methods), and
outcomes (assessment score, time, and subjective feeling).

1.4 Quality Assessment
The study’s quality information was collected using the RoB 2.0
tool (Sterne et al., 2019) for assessing the risk of bias. The risk of
bias plot was created by using the Robvis tool (McGuinness and
Higgins, 2021).

2 RESULTS

2.1 Study Selection
The electronic searches generated a total of 1,241 studies. After
removing duplicates, 848 remained. Of these, 801 studies were
excluded because the studies did not meet the criteria after
reviewing the abstract. The full text of the remaining 47
studies was reviewed. Among those, 30 studies were discarded
due to the reasons in the flowchart (Figure 1). After applying the
inclusion criteria and exclusion criteria, 17 studies were identified
for inclusion in the review (Table 1). No unpublished relevant
studies were obtained. Figure 2 shows what year the screened and
included studies were published, illustrating the increasing
interest in the topic over the last number of years.

2.2 Study Characteristics
2.2.1 Methods
Among all studies selected, 15 were randomized controlled trials
(RCTs), nine of which were published in English (Coulter et al.,
2007; Stepan et al., 2017; Pulijala et al., 2018; Alismail et al., 2019;

Logishetty et al., 2019a; Logishetty et al., 2019b; Rojas-Muñoz
et al., 2019; Frederiksen et al., 2020; Zackoff et al., 2020) and seven
of which were published in Chinese (Meng et al., 2018; Cai et al.,
2019; Chen et al., 2019; Jiang et al., 2019; Wang H. et al., 2019;
Wang P. et al., 2019). One was a randomized single-blinded
crossover study (Harrington et al., 2018) in English, and one was
a six-week pre-post comparison study (Logishetty et al., 2020) in
English.

2.2.2 Participants
The included studies involved 1,050 participants and 978 of those
participated in RCTs (Figure 3). The main inclusion criteria
entailed medical students (first-year to master students), surgical
trainees, and nursing interns.

2.2.3 Intervention
The interventions applied in the studies were VR headsets or AR
headsets. A total of 11 studies used VR HMD as interventions,
including Oculus Rift (n � 4), HTC VIVE (n � 4), Gear VR (n �
2), and customized HMD (n � 1). The rest of the six studies used
AR HMD as interventions, including HoloLens (n � 5) and
AiRScouter glasses (n � 1).

2.2.4 Outcomes
Out of 15 RCTs studies, four studies compared the VR/AR HMD
method with the traditional teaching method, such as paper
materials, 2D videos, and slides (Pulijala et al., 2018; Cai et al.,
2019; Jiang et al., 2019; Wang H. et al., 2019). Five studies
compared VR/AR HMD with other teaching methods such as
desktop and real person guide (Coulter et al., 2007; Logishetty
et al., 2019a; Logishetty et al., 2019b; Rojas-Muñoz et al., 2019;
Wang H. et al., 2019). Five studies used VR/AR HMD as
additional training to support education (Stepan et al., 2017;
Meng et al., 2018; Alismail et al., 2019; Chen et al., 2019; Zackoff
et al., 2020). One study used HMD to increase the immersive
feeling (Frederiksen et al., 2020).

2.2.4.1 Compared with Traditional Method
Four studies compared VR/AR intervention with traditional
teaching methods (Table 2). Pulijala et al. (2018) designed an
RCT (n � 91) to be able to compare immersive VR training with
traditional teaching. The study group used Oculus Rift with Leap
Motion tracker to interact with the anatomy data and viewed 360°

videos of an operating room, while the control used a standard
PowerPoint presentation and viewed 2D video of similar content.
The knowledge gained was significantly increased in scores for
both the VR group (p � 0.024) and the control group (p � 0.025);
however, the participants who used the VR headset performed
better overall, especially for the early stage (first-year and second-
year) residents. This is common in AR/VR training, where it has
been found that the nonexperts appear to benefit the most from
the experience (Pringle et al. 2018). Another example comes from
Cai et al. (2019) who conducted a similar controlled study (n �
50). The study and control groups were given theoretical training
using the virtual 3D model generated from CT and MRI scans
simultaneously. The intervention was then applied to the study
group, where they used the HTC VIVE VR headset to watch real
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operation 360° video to learn the anatomy and operation process,
while the control group learned from presentation slides,
anatomy pictures, models, and 2D videos explained by the
lecturers. The control group also entered the operation room
to observe the operation process. The results showed a significant
difference in test score between the intervention and the control
groups (p � 0.023).

Jiang et al. (2019) designed an RCT (n � 52) to evaluate the
effect of the application of mixed reality technology in teaching
spine and spinal cord injury. They developed a mixed reality
teaching model with real patient case’s MRI 3D reconstruction.
The lecturer equipping HoloLens demonstrated the operation
process to the study group, and the teaching content was
delivered through a monitor. Students in the study group used
HoloLens. They learned the process in a simulated environment
with all virtual content being synchronized on all headsets, while
the control group was taught through the traditional method,
including slides and paper teaching materials. The posttest result
did not show a significant difference in score between the two
groups (p > 0.05), but the participants in the study group had a
better understanding of the 3D structure (p < 0.01). By utilizing

the same approach, Wang P. et al. (2019) conducted an RCT
experiment (n � 120) to explore the effect of this technology in
hepatobiliary surgery. Theoretical and surgical operation
assessment showed a significant difference in score between
the study and control groups, which was different from the
previous study (p < 0.05). The study group’s error rate was
significantly lower than the control group (p < 0.05).

2.2.4.2 Compared with Nontraditional Method
Five studies compared VR/AR HMD with other teaching
methods, such as customized simulators or an expert one-to-
one guide (Table 3). The earliest randomized controlled study
(n � 25) explored HMD’s effect on medical education learning
performance was conducted back in 2007 (Coulter et al., 2007).
The study group wore a stereoscopic HMD as a fully immersed
system, while the control group used a simulation via a PC
monitor as a partially immersed system. The result showed
significant difference in the pre/posttest in overall (p < 0.001),
study group (p < 0.001), and control group (p � 0.024). The study
group showed a higher gain than the control group. Logishetty
et al. (2019a) conducted an RCT (n � 24) to determine that the

FIGURE 1 | PRISMA flowchart.
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TABLE 1 | General data of 17 included studies.

Author Sample size Intervention Study design Result

Frederiksen et al.
(2020)

First-year student n � 31,
intervention n � 16, control n � 15

Oculus Rift, 360°

video
Randomized control trial Control: not capable

Both groups’ total time (p < 0.001) and blood loss (p <
0.001); cognitive load increase (study group: 43.1%,
control group: 23%, p < 0.001); motion sickness
(p � 0.62)

Logishetty et al.
(2019a)

Postgraduate student n � 24,
intervention n � 12, control n � 12

HTC VIVE Randomized control trial Control: conventional preparation materials
Procedure-based assessment (PBA) level (study
group level 3b, control group level 2a, p < 0.001); PBA
satisfactory (p < 0.001); task-specific checklist (p <
0.001); inclination and anteversion error from target
(p < 0.001); operative time (p � 0.005)

Logishetty et al.
(2019b)

Final-year medical student n � 24,
intervention n � 12, control n � 12

MicronTracker
HoloLens

Randomized simulation trial Control: surgeon guide
Study group improvement p < 0.001; control group
improvement p < 0.001; improvement between
groups p � 0.281

Pulijala et al.
(2018)

Master student n � 91, intervention
n � 51, control n � 40

Oculus Rift with Leap
Motion

Multicentre parallel single-
blind randomized controlled
trial

Control: traditional teaching method
Self-confidence level p � 0.034; knowledge
improvement (study group performed better, p > 0.05)

Stepan et al.
(2017)

Medical students n � 66, intervention
n � 33, control n � 33

Oculus Rift Randomized controlled study Control: no VR as additional method post intervention,
or retention quizzes assessments (p > 0.05);
engaging, enjoyable, and useful (all p < 0.01);
motivation assessment (p < 0.01)

Zackoff et al.
(2020)

Third-year medical student n � 168,
intervention n � 78, control n � 90

Oculus Rift Randomized controlled
prospective study

Control: no VR as additional method
Consideration/interpretation of mental status (p <
0.01); assignment of the appropriate respiratory
status assessment (p < 0.01); recognition of a need for
escalation of care (p � 0.0004)

Rojas-Muñoz et al.
(2019)

Medical students n � 20 HoloLens, Kinect User study STAR AR HMD vs.
conventional telestrator

Control: conventional telestrator
Place error (task 1, p < 0.001; task 2, p � 0.01); time
(study group longer, task 1, p < 0.001; study group
longer, task 2, p � 0.013); focus shifts (task 1, p <
0.001; task 2, p � 0.0038)

Alismail et al.
(2019)

Healthcare medical center n � 32,
intervention n � 15, control n � 17

AiRScouter WD-
200B glasses

Randomized study Control: no AR as additional method time for
ventilation (study group longer, p � 0.005); per cent
adherence to the intubation checklist (p < 0.001)

Coulter et al.
(2007)

n � 25, fully immersive n � 13,
partially immersive n � 12

Customized HMD Randomized study Control: PC
Time (p � 0.004); both groups’ score pre-post (p <
0.001, study group: p < 0.001, control group: p �
0.024)

Jiang et al. (2019) Sophomore undergraduate n � 52,
intervention n � 26, control n � 26

HoloLens Randomized study Control: traditional teaching method
Three-dimensional construction and enhancement of
class atmosphere (p < 0.01); class satisfaction and
initiative of learning (p < 0.05)

Wang H. et al.
(2019)

Nursing student n � 125, intervention
n � 62, control n � 63

HTC VIVE Randomized study Control: intravenous injection simulator
Both groups’ posttest scores (p < 0.05); knowledge
improvement (study group performed better, p >
0.05); critical thinking and clinical reasoning and
clinical learning (p < 0.05)

Wang P. et al.
(2019)

Surgery postgraduate n � 120,
intervention n � 60, control n � 60

HoloLens Randomized study Control: traditional teaching method
Theoretical examination and surgical operation
assessment (p < 0.05); error rate (p < 0.05);
satisfaction (p < 0.05)

Cai et al. (2019) Clinical medicine student n � 50,
intervention n � 25, control n � 25

HTC VIVE Randomized study Control: traditional teaching method
Average score (p < 0.05); satisfaction (p < 0.05)

Chen et al. (2019) Neurosurgery interns n � 80,
intervention n � 40, control n � 40

HoloLens Randomized study Control: no AR as additional method
Mastery degree of lateral ventricle anatomy (p < 0.05);
proficiency in puncture procedure (p < 0.05);
confidence (p < 0.05); first-pass success rate of
puncture (p < 0.05)

Meng et al. (2019) Undergraduate intern n � 70,
intervention n � 35, control n � 35

Gear VR Randomized study Control: no AR as additional method
Number of patients (p > 0.05); theoretical exam (p <
0.05); satisfaction (p > 0.05)

(Continued on following page)

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 6921035

Xu et al. Can HMD Improve Medical Education?

36

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


training effectiveness of using a VR headset was higher than
conventional preparation for performing total hip arthroplasty
(THA). All participants received standard guidelines and
materials to ensure they had similar basic knowledge before
the experiment. The study group was enrolled in a six-week
VR training program equipped with the HTC VIVE VR headset,
while the conventional group received only given preparatory
material. The PBA component score and the task-specific
checklist score were significantly higher in the VR group than
in the control group (p < 0.001), which indicated that VR-trained
surgeons performed at a higher level than controls. Moreover, the
VR group performed faster to complete the procedure (p � 0.03)
and was more accurate in component orientation (mean error 4°

vs. 16°). Another randomized controlled trial was conducted (n �
125) by Wang P. et al. (2019). All participants were trained under
the teaching mode of “real person training + model assistance +
virtual reality.” The study group used the HTC VIVE VR headset
as an immersive VR training method, while the control group
used an intravenous injection simulator as a nonimmersive VR
training method. In the theory test, both study and control groups
significantly improved scores (p < 0.001). The study group had a
higher mean score, but there was no significant difference
between groups (p � 0.136). However, in the injection test, the
study group had significantly higher scores (p � 0.027),

demonstrating that the immersive VR training method has
similar teaching effectiveness to the customized training tool.

Logishetty et al. (2019b) developed an enhanced AR headset
capable of tracking bony anatomy in relation to an implant and
designed a randomized trial (n � 24) to assess the suitability of it
as a training tool for implant orientation. Both groups had
standard lectures before the experiment started. During the
experiment, both groups had four training sessions, between
which there was a 5- to 9-day interval. In each session, the
study group used the HoloLens AR headset, while the control
group had an expert surgeon who guided the training. The
participants in the study group had a significantly lower error
of target orientation (1° ± 1°) than those in the control group (6° ±
4°) as they confirmed the final orientation when the headset light
turned from red to green (p < 0.001). The result showed
significant improvements in both groups when compared the
final assessment score with the pretest score correspondingly.
There was no significant difference in accuracy between the two
groups in the assessment (p � 0.281) and concealed the pelvic tilt
test (p � 0.301). 11 of 12 participants stated that they would use
the AR platform as a training tool for developing visuospatial
skills and 10 of 12 for procedure-specific rehearsals. Most
participants (11 of 12) stated that a combination of an expert
trainer for learning and AR for unsupervised training would be

TABLE 1 | (Continued) General data of 17 included studies.

Author Sample size Intervention Study design Result

Harrington et al.
(2018)

Undergraduate n � 40, group A n �
20, group B n � 20

Gear VR Randomized single-blinded
crossover study

Higher engagement level (p < 0.0001); across time
periods (p < 0.0007); lower TUIT (p < 0.0001); across
time periods (p < 0.0005)

Logishetty et al.
(2020)

Orthopedic residents n � 32 HTC VIVE 6-week pre-post comparison
with expert performance

Reached expert levels 9 of 10 metrics; procedural
errors reduced by 79%; assistive prompts reduced by
70%; procedural duration reduced by 28%

FIGURE 2 | Number of screened and included studies published in the given years.
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preferred. This demonstrates an interesting result where AR
learning as a self-evaluation tool could prove useful in the future.

Rojas-Muñoz et al. (2019) investigated the benefits of an AR
HMD telementoring system when compared with a conventional
telestrator in surgical guidance by conducting a comparative
study (n � 20). The study group used the HoloLens AR HMD
to receive the instructions during the operation, while the control
group needed to watch on a nearby screen. The result showed
significant differences between the study group and the control
group in placement errors (Task 1: p < 0.001; Task 2: p � 0.01) and
focus shifts (Task 1: p < 0.001; Task 2: p � 0.0039). In general, the
study group used more time to complete each task. It was
reported in this study that the use of the HMD caused
discomfort, which can be very common with older three
degrees of freedom (3DoF) HMDs and is still an issue with
the current six degrees of freedom (6DoF) AR/VR HMDs but
appears to be steadily improving with every generation.

2.2.4.3 Supportive Usage
Five studies used VR/AR HMD as additional training to support
education (Table 4). Zackoff et al. (2020) conducted a

randomized controlled prospective study (n � 168) to
determine whether exposure to immersive VR-simulated
pediatric respiratory distress environment improves students’
emergency recognition. All participants received the standard
curriculum with a subsequent high-fidelity mannequin
simulation, while the study group underwent an additional VR
curriculum using the Oculus Rift VR headset. The result showed a
significant difference for consideration/interpretation of mental
status (p < 0.01). The study group performed significantly better
in the assignment of assessing appropriate respiratory status (p <
0.01) and recognizing a need for escalation of care. Meng et al.
(2018) conducted a similar experiment (n � 70). Two senior
lecturers taught both control and study groups by traditional
teaching methods (CT image, slides, and daily operation
observation). The study group used the Gear VR headset (only
3DoF compared to most VR HMD with 6DoF) to watch real
operation 360° videos after the course. The postintervention test
showed a significant difference between groups in the score (p <
0.05). Stepan et al. (2017) conducted a randomized controlled
study (n � 66) using the Oculus Rift VR system as an additional
training method to evaluate the effectiveness, satisfaction, and

FIGURE 3 | Participation distribution of included studies.

TABLE 2 | Compared with the traditional method.

Category Intervention Authors n Results

Theoretical assessment VR Pulijiala et al. (2018) 91 Study group p � 0.024
Control group p � 0.025
Between groups p > 0.05

Cai et al. (2019) 50 Between groups (study group performed better, p � 0.023
AR Jiang et al. (2019) 52 Between groups p > 0.05

Wang H. et al. (2019) 120 Between groups (study group performed better, p < 0.05)
Surgical operation assessment Between groups (study group performed better, p < 0.05)
Error rate Between groups (study group performed better, p < 0.05)
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motivation in teaching medical students neuroanatomy. Both
groups used the same teaching materials, while the study group
had access to a VR headset which allowed them to view virtual
brain anatomy generated from CT and MRI data. Different from
the two studies mentioned above, there was no significant
difference in preintervention (p � 0.86), postintervention (p �
0.87), or retention test (p � 0.47) between the two groups.
However, the experimental group performed significantly
better in the instructional materials motivational survey with
greater attention, relevance, confidence, and satisfaction
(p < 0.01).

Alismail et al. (2019) presented a study (n � 32) to assess the
effectiveness of using the AR headset as an assistance tool to
perform intubation simulation procedure. All participants
watched a video and then started the intubation procedure; in
the meantime, those in the study group used the AiRScouter AR
headset, from which they could see the slides as a guideline
additionally. The result showed a significant difference in
ventilation time (seconds) between the study and control
groups (280 vs. 205; p � 0.005). Moreover, the study group
had a higher percentage adherence to following the checklist
(p < 0.001). Chen et al. (2019) conducted a randomized
experiment (n � 80) to evaluate the mixed reality application
in lateral ventricle puncture training. The study group and the
control group were taught traditionally for one month, while the

study group used HoloLens AR headset to train the puncture in a
simulated environment. As a result, the study group had a
significantly higher first-pass rate than the control group (93.3
vs. 42.5%, p < 0.05). In the meantime, the study group
participants had significantly better 3D reconstruction and
more confidence (p < 0.05).

2.2.4.4 Cognition and Emotion
Frederiksen et al. (2020) conducted an RCT (n � 31) to explore
the cognitive load and performance changes after enhancing the
immersion of laparoscopic surgery simulation training by using an
HMD. The 360° videos were clipped into different stressor levels
(calm, light, and severe). The study group and the control group
used a conventional VR laparoscopic surgery simulator, while the
study group used the Oculus Rift VR headset playing 360° videos of
a real operating room in the meantime. The cognitive load was
significantly different (p < 0.001) between the study group (15.2%
in light stressor and 43.1% in severe stressor) and the control group
(23.0%). The study group reported a significantly worse
performance on most simulator metrics (time, blood loss,
damage, and hand movement). The authors stated, “However,
immersive VR offers some potential advantages over conventional
VR such as more real-life conditions but we only recommend
introducing immersive VR in surgical skills training after initial
training in conventional VR.”

TABLE 4 | Supportive usage.

Category Intervention Authors n Results

Theoretical assessment VR Zackoff et al. (2020) 168 Between groups (study group performed better, p < 0.05)
Meng et al. (2018) 70 Between groups (study group performed better, p < 0.05)
Stepan et al. (2017) 66 Between groups (study group performed better in post-test, p � 0.87)

Between groups (study group performed better in retention test, p � 0.47)
Surgical operation Assessment AR Alismail et al. (2019) 32 Between groups (study group performed better, p < 0.001)

Chen et al. (2019) 80 Study group vs. control group � 93.3 vs. 42.5%
Between groups p < 0.05 (first-pass rate)

TABLE 3 | Compared with the nontraditional method.

Category Intervention Authors n Results

Theoretical assessment VR Coulter et al. (2007) 25 Study group p < 0.001
Control group p � 0.024
Between groups p > 0.05

Wang et al. (2019) 125 Study group p < 0.05
Control group p < 0.05
Between groups p � 0.136

Surgical operation Assessment Between groups (study group performed better, p � 0.027)
Logishetty et al. (2019a) 24 Between groups (study group performed better, p < 0.001)

AR Logishett et al. (2019b) 24 Between groups (study group performed better, p � 0.301)
Error rate VR Logishetty et al. (2019a) 24 Study group mean error 4°

Control group mean error 16°

AR Logishett et al. (2019b) 24 Study group 1° ± 1°

Control group 6° ± 4°

Between groups p < 0.001
Rojas-Muñoz et al. (2019) 20 Placement errors between groups

Task 1: study group performed better, p < 0.001)
Task 2: study group performed better, p � 0.01)
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2.2.4.5 Non-RCT
Harrington et al. (2018) designed a randomized crossover study
(n � 40) to evaluate the efficiency of immersive 360° video in
surgical education when compared with traditional 2D video. The
participants were divided into two different groups randomly.
One group attended the 360° video experiment using the
Samsung Gear VR headset first and then attended the 2D
video experiment, while the other group experimented with
the same content in the opposite order. The result revealed a
significantly higher engagement level (p < 0.0001) and a higher
level of focusing (p < 0.0001) with the 360° immersive video.
There was no significant difference in information retention
between the two groups (p � 0.143).

Logishetty et al. (2020) designed a competency-based
simulation curriculum study (n � 32) using a VR HMD to
evaluate the skills measurement and visuospatial transfer
performance. All the residents attended five consecutive VR
training and assessment sessions. The outcome of each
assessment was compared with four expert hip surgeons’
performance in both a physical world assessment and a VR
one-off assessment. The result showed that the residents
progressively developed surgical skills in VR by practicing
repeatedly, and it allowed them to match expert VR levels on
nine out of the 10 metrics included in the study. In the
preparation phase, the number of errors in instrument
selection and usage errors (p < 0.001), number of prompts
required (p < 0.001), and procedural time (p < 0.001) were
reduced significantly. The performance of the residents in the
VR assessments was significantly improved as the inclination
error (p < 0.005) and anteversion error (p < 0.001) were reduced.
In the physical world–simulated assessment, the errors in femoral
osteotomy height (p � 0.044), in femoral osteotomy angle (p �
0.002), in acetabular cup inclination (p < 0.001), and in acetabular
cup anteversion (p < 0.001) were significantly reduced, which
indicated that the visuospatial skills were transferred from VR to
the physical world successfully.

2.2.4.6 Secondary and Additional
The original proposed additional outcomes in the protocol
(Section 1.1) are as follows: “side effects of applying HMD
into medical education, such as headache, motion sickness,
and claustrophobia,” and “learning motivation improvement
by HMD VR or AR.” The measures of effect are
questionnaires or interview subjective experience. Next, the
additional outcomes found in the systematic review will be
outlined in three aspects: motion sickness, limitations, and
motivations.

The motion sickness symptoms can occur after the user uses
the VR or ARHMDs, especially when the virtual space movement
does not match the user’s movement in reality or their mind,
which can be highly dependent on the content (Saredakis et al.,
2020). This is heightened if the experiences are on a device only
capable of 3DoF (e.g., roll, pitch, and yaw) and not 6DoF (e.g., X,
Y, Z, roll, pitch, and yaw). Other factors include frame lag or
screen tearing caused by low device capability or bad software
optimization, which may enhance such symptoms. Several
studies included in this systematic review reported that some

participants in the VR intervention group had motion sickness
after the experiment (Meng et al., 2018; Cai et al., 2019; Wang H.
et al., 2019). Furthermore, the limited field of view (FOV) and the
imagery of the HoloLens AR headset may produce head
discomfort and ocular fatigue (Rojas-Muñoz et al., 2019).
However, in Frederiksen et al. (2020) ’s experiment, there were
no motion sickness cases reported. The possible reason might be
“minimal head movements compared to immersive VR video
games where motion sickness has been an issue.”

Regarding the limitations of VR/AR HMDs summarized from
the included articles, their price is generally too high to deploy in
a class-scale teaching environment (Stepan et al., 2017; Pulijala
et al., 2018; Wang H. et al., 2019). However, as the technology
develops, the price of these devices are reducing (Logishetty et al.,
2019a) and are cheaper than an orthopedic simulator, open
surgical platforms, or synthetic hip models (Meng et al., 2018;
Logishetty et al., 2019b, Logishetty et al., 2020). The above
conclusions indicated the VR AR technologies are expensive to
be applied in some cases; nevertheless, they have the potential to
be a cost-effective teaching method compared with other
simulators and be an alternative teaching method in the
future. The other limitations reported are the lack of model
details and haptic feedback (Cai et al., 2019; Logishetty et al.,
2019a; Wang H. et al., 2019), the extra workload needed for the
user to get familiar with the devices (Stepan et al., 2017; Jiang
et al., 2019), and bad user experience caused by limited FOV or
the weight of the devices (Jiang et al., 2019; Rojas-Muñoz et al.,
2019; Wang H. et al., 2019). Last but not least, Wang P. et al.
(2019) mentioned that as one HMD can only support one user, it
is time-consuming to conduct an experiment or teaching mission
and has potential health problems with devices sharing, which
needs extra attention under the current COVID pandemic
situation.

As for the motivation and confidence aspect, the included
studies found that the usage of VR/AR HMDs could improve
participants’ learning motivations and self-confidence by the
immersive environment and interactive teaching process. The
more satisfied students are, the more engaging students are in the
teaching process. Compared with the traditional teaching
method, the study group participants showed significantly
higher satisfaction and motivation to the teaching method
than those in the control group (Cai et al., 2019; Jiang et al.,
2019;WangH. et al., 2019). The same effect also showed when the
VR/AR techniques were compared with other simulators (Wang
H. et al., 2019) or used as an additional teaching tool (Stepan et al.,
2017). However, in Meng et al. (2018) ’s experiment, there was no
significant difference in the mean satisfaction score. The
confidence level significantly increased in both groups in
several studies, but the participants of the study group showed
significantly higher self-confidence scores (Pulijala et al., 2018;
Chen et al., 2019).

2.3 Risk of Bias Within Studies
To reduce the bias of language, this systematic review included
English studies and Chinese studies. Among 15 RCTs, nine were
in English and six were Chinese. All RCT studies’ risk of bias was
assessed by using the RoB 2.0 tool (Figure 4). Four English
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articles had a low risk of bias, while the other five English articles
had some bias concerns. The primary concern was bias due to
deviations from the intended intervention. For instance, they did
not mention whether the participants or the data accessors were
blinded to the random assignment. Some studies did not clarify
whether the allocation sequence was random, and some did not
mention a prespecified analysis plan for analyzing the result.

Meanwhile, none of the Chinese articles had a low risk of
bias. Three studies had a high risk of bias due to deviations from

intended intervention as there was no information about
clarifying the assignment process or analysis after the
assignment. All Chinese studies lacked a prespecified analysis
plan or an experiment protocol, and the majority of them did
not specify the detail of random sequences. Three studies in
Chinese had a bias in the measurement of the reported result.
Overall, four English studies had a low risk of bias, three studies
in Chinese had a high risk of bias, and the rest studies had some
concerns.

FIGURE 4 | Risk of bias analysis.
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3 DISCUSSION

The review will first summarize the evidence for both advantages
and disadvantages of VR/AR HMD application in medical
training. These are the first two questions of this study while
the third question will be answered in the proof subsection,
demonstrating that these approaches do indeed increase the
efficiency of teaching in medical education. Finally, the use of
AR/VR as a support tool will be addressed in the final subsection.
After summarizing all the evidence, the limitations of this review
will be discussed.

3.1 Summary of Evidence
This systematic review focused on clinical educational studies
related to VR/AR HMD application in medicine. It revealed that
compared with traditional teaching media and other additional
teaching methods, the application of VR and AR HMDs
improved students’ learning curve and motivation. The
participant who used virtual HMDs had a better performance
in the theory test and the operation examination. Furthermore,
the HMDs also provided immersion for the simulated learning
environment to increase students’ cognition load, maintaining
students’ performance in the real-life study case.

3.1.1 When Compared with the Standard Teaching
Method or Other Types of Simulators, What Are the
Comparative Effectiveness of HMD VR or AR Usage in
Medical Education?
The standard teaching method refers to the case that lecturers
give out the course by using paper-based teaching materials,
slides, and videos, while other types of simulators, in this review
case, could be 3D print solid or silicon models, PC/phone
educational software, and conventional simulator without
HMD such as LapSim®4. This systematic review found three
aspects of comparative effectiveness of VR and AR HMD
application: motivation, learning efficiency, and space efficiency.

Firstly, this review has found that the immersive environment
provided by the HMDs increases student’s learning motivation
and course satisfaction. The results of studies show that students
who use HMD intervention during the study process are more
satisfied and motivated (Stepan et al., 2017; Pulijala et al., 2018;
Cai et al., 2019; Jiang et al., 2019; Wang H. et al., 2019).
Furthermore, the simulation offers the residents a chance to
experience the test or operational environment before entering
an actual one. It increases residents’ self-confidence in the
knowledge they gained (Pulijala et al., 2018; Chen et al., 2019).
With the mental status enhanced, the knowledge can be
transferred more effectively (Zackoff et al., 2020). Secondly,
the HMDs provide a stereoscopic view, which would
potentially benefit the curriculum that needs students to
reconstruct spatial information. According to the result of this
review, residents who used VR or AR HMDs performed better in
3D reconstruction (Meng et al., 2018; Cai et al., 2019; Jiang et al.,
2019) and had a better understanding of the new information

(Harrington et al., 2018). Based on those benefits, the system can
generate detailed operation replay or a high-quality 3D virtual
model to support the learning process. The student will have
unlimited chances to learn and practice without considering any
waste of cadaver resources, which maximizes learning
opportunities while cutting down the cost at the same time
(Meng et al., 2018; Cai et al., 2019; Chen et al., 2019;
Logishetty et al., 2019a). The interactive learning mode and
hands-on learning experience can benefit student’s learning
curve (Meng et al., 2018; Cai et al., 2019; Jiang et al., 2019),
because of which, the student can conduct unsupervised self-
driven learning (Logishetty et al., 2019a; Logishetty et al., 2019b)
with live feedback (Alismail et al., 2019; Logishetty et al., 2019b).
Finally, the usage of VR or AR HMDs as teaching supportive
material is space-efficient compared with actual 3D models and
simulators and causes fewer collisions during the practice when
compared with other media (Rojas-Muñoz et al., 2019).

3.1.2 What Are the Disadvantages of Using HMD VR or
AR? Which One Has a Lower Side Effect?
The results of included studies (Section 2.2.4.6) give answers to
the second question proposed in the protocol. This review
discovered two disadvantageous aspects of HMDs usage in
medical education: motion sickness and other limitations.
Motion sickness symptoms cases were reported in several
studies, while there was no specific figure to reflect the scale
(Meng et al., 2018; Cai et al., 2019; Wang H. et al., 2019). The VR
HMD motion sickness can be eased by minimizing head
movements (Frederiksen et al., 2020). According to the result,
AR HMD has a lower side effect as only one AR study reported
head discomfort and ocular fatigue (Rojas-Muñoz et al., 2019).

Except for the potential motion sickness issue, state-of-the-art
VR and AR HMDs have some other limitations. As commented
in several included articles, the cost of VR HMDs is too high to
apply in a class-scale teaching scenario (Stepan et al., 2017;
Pulijala et al., 2018; Wang H. et al., 2019); however, the price
of VR HMD is reducing when the technique is developing
(Logishetty et al., 2019a), and the price of AR HMD is lower
than an orthopedic simulator, open surgical platforms, or
synthetic hip models (Meng et al., 2018; Logishetty et al.,
2019b; Logishetty et al., 2020). The majority of studies that
mentioned price limitations are those using VR HMDs
intervention; however, this review cannot conclude that AR
HMDs are easier to deploy as HoloLens AR HMD is not a
commercial product and its price is much higher than a
commercial VR HMD. One of the other limitations reported
is the lack of model details and tactile feedback in the VR
environment (Cai et al., 2019; Logishetty et al., 2019a; Wang
H. et al., 2019). The AR devices may potentially have similar
limitations due to their lower capacity in graphics computation.
However, those limitations are not reported in the included
articles. The reason might be the different functionalities
between VR and AR applications. AR is generally used as a
reference tool that provides extra information to the real object or
person, while VR is more isolated so that the virtual environment
detail affects the learning process directly. Moreover, the HMD
design itself can lead to a bad user experience caused by limited4https://surgicalscience.com/systems/lapsim/

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 69210311

Xu et al. Can HMD Improve Medical Education?

42

https://surgicalscience.com/systems/lapsim/
https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


FOV and the extra weight on a user’s head (Jiang et al., 2019;
Rojas-Muñoz et al., 2019; Wang H. et al., 2019); this issue as
mentioned before is becoming less of an issue due to the rapid
improvements in HMD design.

3.1.3 Is There a Definitive Advantage of HMD VR and
AR When Used for Increasing the Efficiency of
Teaching in Medical Education?
The third question proposed in the protocol is addressed in the
outcome section (Section 2.2.4). Some of the VR or AR HMDs
intervention groups performed significantly better than the
control groups in the theoretical posttest (Meng et al., 2018;
Cai et al., 2019; Wang H. et al., 2019), while some studies did not
find a significant difference between the two groups in the theory
test, but both groups had significant improvements and the study
group performed better (Stepan et al., 2017; Pulijala et al., 2018;
Jiang et al., 2019).

Regarding the actual or simulated surgical exam, the included
articles’ study groups had significantly higher scores (Alismail
et al., 2019; Chen et al., 2019; Logishetty et al., 2019a; Wang H.
et al., 2019; Wang P. et al., 2019; Zackoff et al., 2020) and a lower
error rate than the control groups (Logishetty et al., 2019a;
Logishetty et al., 2019b; Rojas-Muñoz et al., 2019; Wang H.
et al., 2019). Even when the control group was guided by a
surgical expert individually, the improvement of the study group
using the AR HMD self-study system was still comparable
(Logishetty et al., 2019b), which indicates the potential of
using AR HMD in an alternative supportive teaching role.
Besides the improvements to learning outcomes, the VR HMD
intervention could aid in the development of more real-life skills
as they have been shown to increase cognitive load due to the
stress of experiencing a more realistic environment than other
teaching methods. One example of this effect is in the study by
Frederiksen et al., (2020), where the VR study group had
significantly worse performance on most simulator metrics
(time, blood loss, damage, and hand movement) due to the
extra cognitive load when compared to the control. This was
due to the real-life operational 360° video the participants were
immersed in. This indicates that the usage of VRHMD could help
guarantee the skill transfer from the simulators to a real-life case,
but basic skills should still be taught more abstractly. This
abstraction could still be taught in VR, and it is the power of
this medium that allows changes to fidelity at will. Finally, by
repeatedly practicing with the VR HMD operation simulator, the
novice surgeons could gradually build up their skills until they
performed as same as an expert level within the same VR
assessment; nevertheless, the knowledge gain could also be
transferred to the physical world–simulated assessment
(Logishetty et al., 2020).

3.1.4 Do HMD VR and AR Have the Potential to be
Support Tools for Medical Education?
The above evidence can also be used to answer the last question
proposed as although current stage VR and ARHMDs have some
limitations such as motion sickness and can still be relatively
costly if an entire class needs access to multiple HMD’s, they still
have great potential to be supportive medical education tools

(Stepan et al., 2017; Harrington et al., 2018; Logishetty et al.,
2019a; Frederiksen et al., 2020).

With ongoing hardware development, the motion sickness
issue should be eased and even completely avoided by making the
headset lighter and smaller and increasing the rendering capacity.
Looking ahead in terms of accessibility, the high-performance
hardware’s price is reducing and is getting similar to a high-end
smartphone.

Several researchers in the included studies within this review
pointed out that the VR and AR applications would never replace
the traditional teaching method but could provide supportive
teaching materials (Logishetty et al., 2019b; Wang H. et al., 2019).
As the skills and knowledge gained in the virtual world can be
successfully transferred to the physical world (Logishetty et al.,
2020; Zackoff et al., 2020), the current medical and veterinary
anatomy education challenges, such as the lack of anatomy
cadaver resources, could be eased with the introduction by
merging VR and AR technique into the teaching curriculum.

3.2 Limitations
The main limitations of this systematic review are the following
three points:

• Language bias. The search strategy includes English and
Chinese articles to reduce language bias. However, to avoid
language bias, more languages need to be added to the
search strategy.

• Risk of bias for the RCTs. According to the risk of bias
analysis chart (Figure 4), over half of the included article
has some bias concerns. Due to the publication format
difference, most Chinese articles cannot meet the
requirements of the RoB framework (Sterne et al., 2019),
which makes three included Chinese articles high risk
of bias.

• Abstracts covered. This systematic review did not include
the articles or studies that only provided abstract because it
is hard to judge whether the study meets all the inclusive
criteria. However, this fact became one of the limitations in
this review as it did not cover all the articles, including gray
publications and clinical trial protocols.

3.3 Conclusion
VR and AR HMD’s applications in medical training are moving
slowly into the mainstream as with their reduced cost and
increased availability, researchers have taken notice in their
search to improve education efficiency. Compared with
traditional teaching methods and other non-HMD VR
simulators, VR and AR HMDs stimulate students’ learning
motivation, increase their satisfaction, and improve students’
learning outcomes. The immersive VR-simulated environment
prepares students’ better mentally before dealing with
emotionally challenging real-life medical situations, which can
help guarantee the skill transferred from virtuality to reality.
Motion sickness and some hardware limitations are reported in
this review, but with every passing year, innovations in this field
mean these limitations are either being reduced or becoming not
existent.
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The future study directions can be divided into two aspects:
HMDs as tools to support students’ theoretical knowledge gain in
the curriculum and be simulators to training students’ surgical
skills. The current studies concentrate on developing theoretical
knowledge. However, in future, these studies need to be
expanded, and more extensive study groups are needed to
evaluate the training efficiency to integrate the interventions
into the traditional teaching process. In terms of skill training,
the future VR/ARHMD intervention in medical education will be
more commonly combined with actual surgical equipment to
bridge the gap between simulation and reality. Thus, future
studies can target the actual skill and knowledge transfer rate
from virtuality to reality with larger intervention groups. As the
included articles all focused on some particular scenario, more
wide-ranging and longitudinal studies are needed to validate this
type of intervention.

Due to the pandemic, remote learning, which already was on
the rise before the crisis, has accelerated. It is not just in education
as countries such as Ireland have passed laws to give the legal right
to request home working. Working from home now has become
part of society’s fabric, in conjunction with the move to requiring
continuous professional development for most professions.
Research into alternatives to the traditional physical labs could
be essential, not just for medical education but for all of
education. VR and AR intervention can potentially be a
supportive tool for lecturers’ teaching, students’ self-learning,
and professional practitioners’ self-evaluation.

Few studies evaluate remote learning using VR or AR
interventions, so this is still an ongoing research area. The
future experiment direction in this area should concentrate on
how online remote teaching could increase the teaching efficiency
in medical and veterinary education. The rise of the use of VR/AR
within academia, even allowing remote conferences (MacIntyre
2020) to be held in VR, has helped demonstrate its future. Remote
learning will still flourish after the pandemic is over, as this
natural experiment has demonstrated that these approaches can
be successful. With the increasing adoption of VR/AR within
remote learning, these successes can be built upon. This trend
complements the fact that VR/AR HMD’s are also becoming
more inexpensive, thus allowing for increasing equity and access

to education across the world with these new technologies if the
lessons from many of the experiments outlined in this review are
heeded.

At this current stage, VR and AR intervention cannot replace
actual cadaver learning material due to their lack of fidelity and
lack of tactical feedback will affect students’ cognition when faced
with actual surgical cases. However, along with ongoing HMD
development, the interventions will be more accessible and easier
to blend into medical education in the future. Furthermore, the
high-fidelity model and haptic innovations will blur the edge
between virtuality and reality; but crucially, more experiments are
needed to gauge educational efficiency gain and evaluate and
verify whether the VR and AR simulators can be a possible
replacement to cadavers, avoiding existing ethical problems and
resource limitations. Medical education, in particular, has always
suffered the problem of having more qualified applicants than
places across the world due to resource limitations. Removing
these resource limitations could significantly impact equity and
access to medical education in the future.
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Application of Mixed Reality inMedical
Training and Surgical Planning
Focused on Minimally Invasive
Surgery
Juan A. Sánchez-Margallo1*, Carlos Plaza de Miguel2, Roberto A. Fernández Anzules3 and
Francisco M. Sánchez-Margallo4
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Introduction: Medical training is a long and demanding process, in which the first stages
are usually based on two-dimensional, static, and unrealistic content. Conversely,
advances in preoperative imaging have made it an essential part of any successful
surgical procedure. However, access to this information often requires the support of
an assistant and may compromise sterility in the surgical process. Herein, we present two
solutions based onmixed reality that aim to improve both training and planning in minimally
invasive surgery.

Materials and Methods: Applications were developed for the use of the Microsoft
HoloLens device. The urology training application provided access to a variety of
anatomical and surgical training contents. Expert urological surgeons completed a
questionnaire to evaluate its use. The surgical planning solution was used during
laparoscopic renal tumorectomy in an experimental model and video-assisted right
upper lobectomy in an adult patient. Surgeons reported their experience using this
preoperative planning tool for surgery.

Results: The solution developed for medical training was considered a useful tool for
training in urological anatomy, facilitating the translation of this knowledge to clinical
practice. Regarding the solution developed for surgical planning, it allowed surgeons to
access the patient’s clinical information in real-time, such as preoperative imaging studies,
three-dimensional surgical planning models, or medical history, facilitating the surgical
approach. The surgeon’s view through the mixed reality device was shared with the rest of
the surgical team.

Conclusions: The mixed reality-based solution for medical training facilitates the transfer
of knowledge into clinical practice. The preoperative planning tool for surgery provides real-
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time access to essential patient information without losing the sterility of the surgical field.
However, further studies are needed to comprehensively validate its clinical application.

Keywords: mixed reality, medical training, surgical planning, minimally invasive surgery, laparoscopy

INTRODUCTION

Medical education is a long and demanding process that requires
extensive theoretical knowledge, along with technical and non-
technical skills. During the early stages of medical education,
training methods are often based on static and non-realistic
learning content. Currently, these methods are being replaced
by new approaches based on the use of information and
communication technologies (Langridge et al., 2018; Williams
et al., 2020). Apprenticeship models in surgical training have
rapidly evolved from traditional approaches based on an
educational philosophy following the principle of “see one, do
one, teach one” to more sophisticated surgical simulators aimed
at increasing the number of simulations following the “see one,
simulate many deliberately, do one” philosophy (Kerr and
O’Leary, 1999; Scott et al., 2008), thus allowing a dramatic
increase in the skills of medical professionals and the safety of
patients (Viglialoro et al., 2021). There are some strategies for
surgical training based on serious video games (Rosenberg et al.,
2005; Goris et al., 2014), animal models (Daly et al., 2014; DeMasi
et al., 2016), and cadavers (Jacobson et al., 2009; Zuckerman et al.,
2009; Rocha e Silva et al., 2016). However, due to the economic
and ethical issues involved in some of these solutions, surgical
training has rapidly shifted toward the use of simulation-based
systems (Forgione and Guraya, 2017).

Advances in preoperative imaging have allowed for its
extensive application in surgical planning, which has thus
become an essential part of any successful surgical procedure
(Sánchez-Margallo et al., 2015). Specifically, when facing complex
surgeries, surgical planning provides valuable information for
predicting and reducing any potential risks during surgery,
thereby improving its safety levels. However, preoperative
imaging systems are often located outside the operating room
(OR) and, thus, need to be accessed outside the surgical area, or
their operation requires the help of an assistant. In addition, the
devices available in the OR for surgical planning may entail the
loss of sterility, mainly due to the manipulation of touch screens,
keyboards, and other computer equipment. In this regard, new
technologies such as virtual reality (VR), augmented reality (AR),
and mixed reality (MR) have the potential to provide medical
students with interactive and realistic training systems;
furthermore, they can be valuable tools for surgeons to
facilitate the planning of surgical interventions (Sadeghi et al.,
2020).

Medical visualisations have already been widely exploited for
supporting diagnosis in the form of X-rays, computed
tomography (CT), and magnetic resonance imaging (MRI)
scans (Smith et al., 2020). The use of three-dimensional (3D)
representations of these data in immersive settings provides new
ways to explore the data and to further enhance the tools available
to medical professionals in several areas including medical

training, surgical planning, and intraoperative guidance. This
evolution is even more evident in the case of minimally invasive
surgery (MIS), which often lacks adequate access to the patient’s
anatomy (Sánchez-Margallo et al., 2018a). In this context,
technological advances have radically changed surgical training
and planning (Lahanas et al., 2015; Jayender et al., 2018; Li et al.,
2020; Sánchez-Margallo et al., 2021).

In surgical training, most simulation-based approaches have
focused on traditional VR and AR technologies, which offer
different degrees of immersive experience but are generally
unable to interact with 3D information combined with the
real-world environment. Recently, MR techniques have
replaced these traditional technologies intending to combine
the real working environment with virtual content so that
users can interact with both simultaneously. MR surgical
simulators and medical training applications are becoming an
important part of the training process for physicians, as they
allow for a training environment appropriate for recreating
realistic and reproducible scenarios without putting the patient
at risk (Sánchez-Margallo et al., 2018b; Sappenfield et al., 2018;
Amparore et al., 2021).

The use of 3D models to estimate the size and shape before
performing the surgical procedure has been effectively
implemented for almost a decade (Hurson et al., 2007). The
irruption of MR techniques can make an important difference in
this field. This technique can generate personalised 3Dmodels for
each patient and visualise the internal anatomy in a fully
immersive environment. This opens up new possibilities, such
as preoperative simulations, to determine optimal procedures and
to predict the final surgical outcomes. MR technology has already
been successfully applied as a planning tool in different surgical
scenarios, including urology (Li et al., 2020), thoracic surgery
(Perkins et al., 2020), neurosurgery, colorectal, and bariatric
surgery (Cartucho et al., 2020). These solutions allow for the
inclusion of elaborate information such as holographic images or
3D objects that can be placed within the surgeon’s field of view,
thus avoiding the need to use alternative displays in the OR and
facilitating a more precise alignment between virtual information
and physical objects. This would reduce the need of awkward
postures for the surgeon and provide new interactive experiences
in surgical planning (Hu et al., 2019).

In the field of surgical assistance, the use of MR wearable
devices such as the HoloLens (Microsoft; Redmond, Washington,
United States), in combination with new emerging imaging
technologies, can benefit the surgical process, especially in
complex procedures. This technology facilitates the spatial
localisation of anatomical structures and improves mental
alignment, which simplifies preoperative planning (Lee et al.,
2017). This technology has already been evaluated as an
assistance tool during endoscopic procedures (Al Janabi et al.,
2020), spine surgery (Liu et al., 2020), interventional radiology
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procedures (Deib et al., 2018; Heinrich et al., 2019), and
orthopaedic surgery (Gregory et al., 2018). In the latter, this
technology was tested using the Holoportal MR application
(TeraRecon; Durham, NC), as a proof of concept, in a real
surgical environment during the implantation of a shoulder
prosthesis (Gregory et al., 2018).

The main objective of this study was to describe and test a set
of innovative MR-based solutions for the improvement of both
training and planning in MIS. The proposed solutions will allow
the use of new and more realistic scenarios for medical training,
as well as access to different sources of preoperative patient
information, to support the planning of surgical procedures.
The software solution developed for medical training focused
on urology. Surgical planning solutions have been tested in two
different surgical scenarios, namely laparoscopic renal
tumorectomy and video-assisted lobectomy.

MATERIALS AND METHODS

Two MR-based applications for MIS training and planning
were developed and evaluated in this study. The information
was displayed through interactive holograms controlled by
hand gestures or voice commands. The view cursor (similar
to mouse pointer) was controlled by the gaze of the user and
the interactions were triggered by the gazed holograms
followed by hand gestures or voice commands. The two
main hand gestures integrated in both applications were
“air-tap” (raise the index finger in front of the field of
view and then tap by flexing the index finger down.
Similar to mouse click) to interact with user interface
buttons and “air-tap and hold gesture” (similar to holding
down the mouse button while dragging it) to scale, position
and rotate the 3D holograms. These gestures allow the
surgeon to show or hide information, interact with the 3D
models of the training application and navigate between the
different axes of the preoperative studies of the surgical
planning application, among other actions.

These applications allowed viewing the contents from the
HoloLens glasses themselves (one user) or sharing their
experiences with other devices via streaming (several
users). They fostered communication between the surgical
team and the transmission of knowledge to other people in
real-time.

The first generation of HoloLens was used as the MR device.
This wearable headset combines several types of sensors (an
inertial measurement unit, four environmental understanding
cameras, one depth camera, one high-definition video camera,
four microphones, and an ambient light sensor) along with an
Intel 32-bit architecture processor (Intel Corporation; Santa
Clara, CA, United States) and a custom-built Microsoft
holographic processing unit. The weight of the device is 579 g
and the battery durability can reach 5.5 h. HoloLens creates visual
information using the reflection of two high-definition 16:9 light
engines onto each retina of the user (offering interpupillary
automatic calibration), which does not interfere with the visual
information of the surrounding environment.

Mixed Reality Framework
Unity (Unity Technologies, San Francisco, CA, United States)
was selected as the development platform because it allows easy
interaction with visual elements (both 2D or 3D) and integrates
different plugins and libraries that greatly facilitate the
implementation, allowing for the porting of applications to
most extended platforms. Each application considered one or
more scenes, which in turn were made up of objects structured in
the form of a parent-child hierarchy. Each of the objects had a
“Transform” component, a script that controls its position,
rotation, and scale, fostering the possibility of adding many
other different components even in the form of user-
programmed scripts. Microsoft Visual Studio was adopted as
the programming environment, with C# as the programming
language, to deploy the applications on the device.

The applications were developed using the Mixed Reality
Toolkit development kit for Unity, which has become the
standard for developing any MR application with HoloLens
devices. This has been used in many medical applications for
rhinoplasty (Maasthi et al., 2020), arthroplasty training (Turini
et al., 2018), and open abdominal surgery (Galati et al., 2020).
Loading of preoperative imaging studies with Digital Imaging and
Communication on Medicine (DICOM) format was performed
using a customised version of the FellowOakDICOM toolkit (Al-
Zu’bi et al., 2017).

The two MR-based applications were implemented using
Microsoft Windows 10 operating system. The final products
were two Universal Window Platform applications (Microsoft)
implemented on Intel’s x86 architecture (Intel Corporation).

Training in Urology
Medical training applications focused on the human pelvis.
Specifically, a 3D anatomical model was developed based on
the CT study of a real patient. The model included interactive
information on the different anatomical systems of the pelvic
cavity (vascular, nervous, muscular, bone, digestive, urinary, and
reproductive systems), as shown in Figures 1A,B.

The developedMR solution allowed the visualisation of the 3D
models, manipulating them spatially (scale, rotation, and
translation), and being able to activate or deactivate them
independently (Figure 1A). In addition, the user received real-
time information about the anatomical element being pointed at
or visualised, highlighting the anatomical structure and
displaying its name and other relevant information next to it.
Voice commands were available to show the different anatomical
systems by saying “show/hide” followed by “muscular/bone/
vascular/nervous/renal/reproductive” and ended by “system”.

In addition to the interactive visualisation of the 3D anatomical
model, the application allowed the holographic visualisation of
videos about related surgical techniques (laparoscopic
nephrectomy, prostatectomy, etc.), preoperative imaging studies
with and without pathologies, and medical illustrations.

This newmedical training solutionwas tested by expert urologists
who attended a training activity at the Jesús Usón Minimally
Invasive Surgery Centre (Cáceres, Spain). At the beginning of the
session, participants received a brief explanation of the gestural and
voice interaction methods, including different voice commands for
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the MR device. Next, participants were invited to interact with the
functionalities of the interactive 3D anatomical model of the human
pelvis and all its associated systems, reference videos of related
surgical procedures, and medical illustrations. They used both
gestural interactions and voice commands. To evaluate the user
experience with the application and the use of the MR glasses, they
completed a personalised questionnaire at the end of the session
(Table 1). Each item is rated on a 5-point Likert scale. In addition,
they were provided with space to indicate any additional comments.

Surgical Planning in Minimally Invasive
Surgery
The general functionalities of this application included
visualisation and interaction with preoperative imaging

studies of the patient (CT or MRI studies), as shown in
Figure 2A, and interaction with 3D anatomical models of
the patient, generated from the preoperative studies
(Figure 2B). In addition, it allowed for the visualisation of
medical illustrations regarding the anatomical structures to be
addressed during surgery (Figure 2C) and videos/tutorials
regarding similar MIS procedures (Figure 2E), as well as
providing access to the patient’s medical history in situ
(Figure 2D). All content was displayed in the form of
holograms that the medical professional could move at will
and position at the most appropriate location in the surgical
work environment. Additionally, voice commands were
available to show or hide the different tools by saying “show/
hide” followed by “preoperative study/three-dimensional
model/clinical history/medical illustration/surgical video”.

FIGURE 1 | (A)General interface of the training application with a 3D interactive anatomical model of the human pelvis. (B)Detail of the different systems available in
the human pelvis model (from left to right): muscular, skeletal, vascular, nervous, renal, and reproductive systems.

TABLE 1 | Set of subjective parameters regarding the surgeon’s experience with the urology training application developed for HoloLens.

Item Category Description

1 Ergonomics Comfort to wear the mixed reality glasses
2 Intuitiveness The gesture control method is easy to use
3 Intuitiveness The voice control method is easy to use
4 Intuitiveness The training application based on mixed reality is intuitive to use
5 Educational usefulness The application facilitates interaction with the educational material compared to traditional methods
6 Educational usefulness The application provides a useful tool for training in urological anatomy
7 Presentation of educational information The way to visualise the 3D holographic models is clear
8 Presentation of educational information The way in which the holographic 3D models are presented is useful
9 Presentation of educational information The way in which the holographic 3D models are structured is orderly
10 Further applications Additional utility of this technology for surgical assistance
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As a first step, the application loaded preoperative imaging
studies (following the DICOM standard) from a local or remote
file location. Each image view (axial, coronal, and sagittal) was
displayed on an individual panel (Figure 2A), which allowed the
user to navigate (forward or backward) within the set of available
slices. These preoperative imaging studies have also been used to
create 3D anatomical models. For this purpose, 3D Slicer (www.
slicer.org), an open-source software package for medical image
analysis, was used. The user can adjust the position, rotation, and

scale of the 3D model to facilitate its visualisation. Interactions
with the holograms were possible using gestures or voice control.

This application was tested during laparoscopic renal
tumorectomy in a porcine model. This study was conducted in
the experimental operating rooms of the Jesús Usón Minimally
Invasive Surgery Centre in Cáceres (Spain) and was approved by
the local animal welfare and ethics committee. Prior to surgery,
an artificial renal tumour model was developed using a mixture of
alginate and saline. Subsequently, a CT scan of the animal was

FIGURE 2 | Assistance content for surgical planning: (A) views of the preoperative imaging study, (B) 3D anatomical model of the patient, (C)medical illustration of
the anatomy to be addressed during surgery, (D) medical history of the patient, and (C) reference video of the surgical procedure.
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obtained, and a 3D anatomical model from the preoperative study
was created.

Finally, the MR application was used as a tool to assist in
surgical planning during video-assisted right upper lobectomy,
including systematic lymphadenectomy for squamous cell
carcinoma in the right upper lobe. This procedure was
performed at Cáceres University Hospital (Spain).

RESULTS

Training in Urology
A group of six surgeons, experienced in urology (>100
laparoscopic procedures performed), evaluated this application.
All of them interacted with the different functionalities of the
application: a 3D anatomical model of the human pelvis and its
different anatomical systems (Figures 3A,B,D), reference videos
of related surgical procedures, and medical illustrations
(Figure 3C).

The surgeons found the MR solution to be a very useful tool
for learning and studying the human pelvic anatomy and its
application in urological surgeries, both individually and in
groups (through broadcasting on external screens). They
stated that the application facilitates the transfer of theoretical

knowledge to actual practice and that this technology can
potentially be useful for surgical planning and assistance
during MIS.

Intuitively, the interactivity with preoperative imaging studies
and the clarity and organisation of the 3D anatomical models
were the most highly rated aspects by the surgeons (Figure 4). In
contrast, the comfort of wearing the glasses obtained the
lowest score.

Surgical Planning in Minimally Invasive
Surgery
Two experienced laparoscopic surgeons (>100 laparoscopic
procedures performed) tested the MR surgical planning
application during laparoscopic renal tumorectomy in a
porcine model. They were able to interact in the experimental
OR with different views of the preoperative study (CT scan) and
thus identify the lesion to be addressed during surgery
(Figure 5A). In addition, interaction with the 3D anatomical
model of the animal made it easier for the surgeons to plan the
different phases of the surgical procedure, mainly in aspects
related to the localisation of the renal artery and the planning
of the tumour resection area. As support material for the surgical
planning, the surgeons also had access to reference videos of the

FIGURE 3 | Interaction with 3D anatomical models: the human pelvis (A,D) and uterus (B). Visualisation of reference videos of related surgical procedures (C).
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procedure to be performed and medical illustrations of the
porcine anatomy (along with the different steps to be carried
out during the renal tumorectomy).

Regarding the use of MR application for surgical planning in
video-assisted right upper lobectomy, no complications were
observed during surgery. Prior to surgery, the system allowed
the surgeon to access the patient’s medical history in situ and in
real-time and to review the patients preoperative study (CT scan).
The system also allowed the surgeon to readily visualise and
manipulate a 3D model of the lung, with its respective vascular
and bronchial elements, as well as the tumour to be addressed
(Figures 5B,C).

The surgeon’s view through the device was shared with the rest
of the surgical team (Figure 5D). The surgeon placed the
holographic models (with surgical planning information)
behind the field of view of the operating table for possible
consultation during the surgical procedure. As in the previous
case, the surgeon reported some ergonomic aspects to be
improved with regard to the MR device, such as the weight
(579 g) and heat generated in the front side during its use.

DISCUSSION

In this study, we presented two applications based on mixed MR,
oriented to surgical training and planning in MIS. The
information was displayed using interactive holograms that
were controlled by the user through hand gestures or voice
commands. The contents could be viewed from the glasses
themselves (one user) and could be shared with others via
streaming, encouraging the exchange of information. Both
applications allowed the user to choose the content to be
displayed so that, once developed, they could be fed with
specific training content or surgical planning content specific

to each type of surgery. Some of the features shown in this study
were foreseen in previous studies as promising applications of
MR for surgical assistance (Gregory et al., 2018).

An important feature to consider in MR devices is that they
overlap digital content with the real world. As a result, it is highly
important to optimise the application so that the frame rate per
second is as stable and as high as possible. Specifically, it is
advisable to have a frame rate above 30 frames per second to
avoid discomfort, nausea, or dizziness (Louis et al., 2019). These
issues are not as crucial as in VR devices, but it is recommended to
maintain these precautions for an optimal user experience when
using MR applications.

During the development of the various modules that integrate
the presented MR solutions, some aspects must be highlighted for
further applications. For the visualisation module of the three
views (axial, coronal, and sagittal) of the preoperative study, the
content to be displayed did not present a high computational cost
for the MR device. Although it internally processed the
volumetric point cloud of the DICOM file, it simply rendered
three planes, which did not increase the frame rate.

Regarding the module for generating the 3D model from the
preoperative imaging study, it allowed the scaling, rotation, and
positioning of the model to the user’s preference for a better
perception of the patient’s anatomy. The generation of this
content involved a certain computational cost depending on
the model; therefore, caution should be exercised when
segmenting the anatomical areas of interest, as well as in the
subsequent reduction of polygons of the resulting mesh. In the
cases described in this study, it was not necessary to reduce the
mesh of the 3D model obtained. However, it is suggested to use
standard materials provided by Microsoft’s Mixed Reality
ToolKit framework.

For the visualisation of reference surgical videos, it would be
possible to temporarily label them and separate their content into
chapters, thus allowing easier access to the different steps
involved in the surgery. The maximum resolution for viewing
videos on the device was 1,280 × 720 pixels. Therefore, although
the application allowed videos to be played at higher resolutions,
it was recommended to insert videos in this resolution to avoid
overloading the performance and to maintain the desired frame
rate (30 FPS).

Regarding the findings obtained from the experience of
users with the developed MR application for training in
urology, there were three surgeons who experienced a steep
learning curve regarding the interaction with the MR device.
This can be seen in items 2 and 3 of the subjective evaluation
questionnaires (Figure 4). This type of technology introduces
new concepts and methods of interaction for users that require
some familiarization time (Hurson et al., 2007; Maasthi et al.,
2020). The second generation of the HoloLens glasses
(HoloLens v2) could help solving this issue due to its
advanced features to enhance user interaction. Another
aspect of interaction that is challenging for users is the use
of voice commands (Figure 4, item 3). Since the commands
have been implemented in English language, in order to
facilitate the universality of the applications, it could lead to
some complications for non-native English users (Hurson

FIGURE 4 | Results of the subjective questionnaire regarding the
usefulness and functionalities of the application and ergonomics of the MR
device. Results are presented as mean values and standard deviations
(shaded area around the main plot).
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et al., 2007). As for the ergonomic aspects of the device, both
the users of the training application (Figure 4, item 1) and
those of the surgical planning application considered that this
is a feature that needs to be improved (Turini et al., 2018). The
mixed reality device is still relatively uncomfortable to wear,
especially when used for a prolonged period of time, mainly
due to its weight and the heat it may cause on the user’s
forehead. As future work, most surgeons proposed the
extension of training models include additional anatomical
structures such as the prostate. This would improve
anatomical training and preparation for surgeries, such as
laparoscopic prostatectomy. Some users experienced a
steeper learning curve concerning the interaction with the
MR device. The second generation of HoloLens glasses
(HoloLens v2) could help solve this issue because of its
advanced features to enhance user intuitiveness.

Few applications have been found for MIS training using MR
technology. A study by Amparore et al. compared 3D virtual
reconstruction with 3D printing of organs, such as the kidney and
prostate, to determine which method was more suitable for
visualisation and localisation of tumour lesions (Amparore
et al., 2021). They concluded that MR is the preferred choice
for surgical training and planning, with HoloLens MR glasses
being considered the most adequate technology for surgical
planning.

The MR solutions for surgical planning presented in this study
were tested during two different MIS procedures, in which
surgeons provided feedback on their experiences. This will
allow us to make necessary improvements to enhance
interaction and user experience in future applications. No
complications were reported in either surgery group. In both
cases, theMR solutions allowed navigation over the CT studies, as
well as the visualisation of real 3D models of the patient’s
anatomy. In the porcine model, the renal anatomy was shown
together with the artificial tumour to be excised. In the adult
patient, the lung anatomy was shown in combination with the
vascular system, bronchi, and the tumour to be treated. The
surgeon also had access to reference surgical videos, as well as
different documents with the patient’s clinical history and
reference anatomical illustrations. The surgeon’s vision,
together with the information in the form of holograms, was
shared on the screens of the OR via streaming. It should be noted
that this video streaming suffered a slight time delay of
approximately one second during the entire retransmission
using the Microsoft Windows Device Portal software.

The streaming option of our tool allowed all personnel inside
and outside the OR to directly see what the surgeon saw. This
feature was also reported by Gregory et al. during surgery for the
implantation of a shoulder prosthesis (Gregory et al., 2018). This
tool can also be used in videoconferences during live surgeries as a

FIGURE 5 | (A) Interaction with preoperative study views and their corresponding 3D model for planning the renal tumorectomy in the porcine model. (B) Axial,
coronal, and sagittal views of the preoperative study for planning the video-assisted lobectomy. (C) Interaction with the patient’s anatomical 3D model with information
on the vascular structures and the tumor to be addressed during the surgical procedure. The surgeon placed the model according to the patient’s position (D) An
additional screen shared the surgical planning assistance contents with the rest of the surgical team, such as the CT study and a reference video of the surgical
procedure to be performed.
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method of immersion in the surgery. Another feature to point out
is the possibility of recording the surgery from the surgeon’s
perspective. In the event of a complication during surgery, this
would allow the surgeon to access the recording and review it in
more detail.

As it has also been indicated for the training application,
surgeons have reported some ergonomic aspects of MR devices
that should be improved. Although it did not cause significant
discomfort, they stated that the device (HoloLens v1) has a weight
that can be uncomfortable if worn for several hours. The new
model of this device (HoloLens v2) already has a lighter design.
Additionally, surgeons indicated that the device generated heat in
the forehead area. This can be solved by increasing the separation.

The most complete MR-based surgical planning solution
found in scientific publications offers information in the form
of interactive holograms of both a 3D model and images of the
different MRI/CT views and even a component to display
intraoperative information (e.g., intraoperative ultrasound)
(Cartucho et al., 2020). However, this application was not used
during any actual surgery as a surgical planning tool, but only a
pilot study with a phantom was used to collect data through a
survey. Other MR solutions (with less functionality) were used
retrospectively as surgical planning tools in patients undergoing
thoracic surgery (Perkins et al., 2020). This application allowed
the visualisation of only one of the three views of the preoperative
imaging study, as well as the manipulation of 3Dmodels obtained
from it. They used a simulation of lung motion by animating the
3D model, which facilitated the estimation of the tumour
location. However, it does not allow displaying multiple views
of preoperative imaging studies or other additional information
to support surgical planning, such as the patient’s medical history,
medical illustrations, or videos of similar surgical interventions.

The largest study on the use of MR applications in assistance
during laparoscopic surgeries has been in a comparative study of
50 laparoscopic nephrectomies with MR assistance versus 50
similar surgeries without it (Li et al., 2020). The results concluded
that MR technology can improve the success rate in laparoscopic
surgeries, as well as offer added value in clinical applications such
as planning, navigation, consultation, teaching, and patient
communication.

Other solutions made use of MR as a substitute for
conventional screens in the OR, capturing the endoscopic
video directly on the device in the form of a hologram, thus
allowing the surgeon to act in a more comfortable position during
surgery (Deib et al., 2018; Al Janabi et al., 2020). SomeMR clinical
applications seek to spatially reference 3D holograms on
anatomical elements, thus being able to overlap virtual
information with reality (Heinrich et al., 2019; Liu et al., 2020).

To the best of our knowledge, the present MR-based surgical
planning solution is the first to be applied during video-assisted
lobectomy. It is important to note the novelty of the inclusion of
hologram visualisation of the volumetric point cloud of the 3D
surgical planning model. The application was iteratively refined
after its evaluation in an experimental model used by different
surgeons, optimising the interaction and usability.

This study has some limitations to be taken into account for
further research, such as the few cases in which the developed

solutions have been applied, as well as the limited number of
surgeons who have been able to test them. As reflected in the
results, the learning curve of this technology is an aspect to be
considered, as these MR devices are not common in the day-to-
day work of surgeons. Although the method of interaction is
optimal and allows the surgeon to maintain sterile conditions
(since there is no real contact with the elements), the lack of
tangible hardware devices to interact with, such as a computer
mouse, joystick, or tablet, requires a more pronounced adaptation
process.

Several future studies are required to improve the proposed
solutions. One of our main objectives is to optimise the
visualisation performance of volumetric point clouds in 3D
models. To achieve this, different possible solutions will be
analysed to improve the visualisation of the DICOM files in
real-time and the performance of the MR device itself. In
contrast, we propose the development of a customised method
for retransmission of the surgeon’s view together with
holograms via streaming to overcome the latencies
presented by the current method. This solution could be the
first step toward using MR glasses as a monitor for the
laparoscopic camera with a real-time video feed, improving
ergonomics for the surgeon during surgery. Additionally, the
solutions presented will be adapted for use with the HoloLens
v2, so that its eye-tracking system can be used for interaction
with holographic models. This allows the user to provide direct
feedback about the element he/she is looking at. Similarly,
these data can be analysed for the generation of heat maps with
the areas most consulted by medical professionals compared to
those consulted by medical students and residents. Once we
have a final version of the applications for training and surgical
planning in MIS, incorporating all the improvements and
feedback obtained in this study, several specific aspects
related to user experience could be validated. The mental
and physical workload of users with regard to the use of
these applications could be determined using a NASA-TLX
(Task Load Index) questionnaire (Turini et al., 2018).
Similarly, the ultimate system usability or user’s interest/
enjoyment could be analyzed by means of the System
Usability Scale (SUS) (Gregory et al., 2018) or the Intrinsic
Motivation Inventory (IMI) scale (Galati et al., 2020),
respectively.

CONCLUSION

The MR-based solution for surgical training presented in this
study is a useful tool for urological anatomy training, facilitating
the transfer of this knowledge to actual clinical practice. The
solution developed for assistance during surgical planning
provides real-time access to essential patient information, such
as preoperative imaging studies, the 3D surgical planning model,
or the clinical history, without losing the sterility of the surgical
act. This tool has been successfully tested during laparoscopic
tumorectomy in an experimental model and video-assisted
lobectomy. The surgeon’s view can be shared for
communication and learning purposes, as well as for a later
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review of possible surgical complications. However, further
studies are needed to validate its clinical application
comprehensively.
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Upper limb motor impairment following stroke is a common condition that impacts
significantly the independence and quality of life of stroke survivors. In recent years,
scholars have massively turned to virtual reality (VR) to develop more effective rehabilitation
approaches. VR systems are promising tools that can help patients engage in intensive,
repetitive and task-oriented practice using new technologies to promote neuroplasticity
and recovery. Multiple studies have found significant improvements in upper limb function
for patients using VR in therapy, but the heterogeneity of methods and tools employed
make the assessment of VR efficacy difficult. Here we aimed to assess the potential of VR
as a therapy tool for upper limbmotor impairment and to provide initial assessment of what
is the added value of using VR to both patients and clinicians. Our mini-review focuses the
work published since the Cochrane review (2017) and suggests that VRmay be particularly
effective when used in combination to conventional rehabilitation approaches. We also
highlight key features integrated in VR systems that appear to influence rehabilitation and
can help maximizing therapy outcomes, if exploited properly. We conclude that although
promising results have already been gathered, more focused research is needed to
determine the optimal conditions to implement VR in clinical settings in order to enhance
therapy and to better define and leverage the true potential of VR. The rapid pace of
technological development and increasing research interest toward VR-based therapy will
help providing extensive knowledge and lead to rapid advancements in the near future.

Keywords: stroke, upper limb, rehabilitation, virtual reality therapy, naturalistic

INTRODUCTION

Stroke is the second leading cause of death and the third most common cause of disability worldwide
(Feigin et al., 2017). The interruption of blood supply to the brain occurring during stroke can cause
several physical and cognitive impairments that may highly affect patients’ participation in activities
of daily living (ADL) and their quality of life. In particular, hemiplegia represents the most prevalent
impairment for stroke patients, resulting in impaired arm and hand movements, with deficits in
motor control and grip strength. Upper limb motor abilities often remain affected after a stroke and
become a chronic condition. In stroke patients with complete initial hemiplegia, longitudinal
observational studies showed a very low recovery rate for the upper-limb, and the absence of
functional recovery when the impairment remains complete after a delay of 3 weeks (Wade and |
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Hewer, 1987). Recent modeling showed that the probability to
recover upper-limb motricity remains extremely low after
12 weeks post-onset (van der Vliet et al., 2020). Upper limb
function plays a major role when performing ADL as many
activities require the coordinated use of both hands (Ekstrand
et al., 2016), and is strongly associated with the quality of life of
stroke survivors (Nichols-Larsen et al., 2005). Thus, rehabilitation
of upper limbs represents a major need and challenge in stroke
management and motor rehabilitation is recommended to be
initiated early in order to enhance the recovery process (Duncan
et al., 2005).

Given the urgent need for effective approaches, innovative
tools are currently being investigated as new treatment methods.
A number of new technologies have emerged in the recent years
and are becoming more accessible to rehabilitation clinics. In
particular, virtual reality (VR) is being regarded as a promising
treatment tool, and presents characteristics that may be beneficial
for therapists’ intervention and for the functional recovery of
stroke patients (Bohil et al., 2011; Massetti et al., 2018). VR can be
defined as “the use of interactive simulations created with
computer hardware and software to present users with
opportunities to engage in environments that appear and feel
similar to real world objects and events” (Weiss et al., 2004,
Introduction section, para. 2). Users can interact with a virtual
environment using controllers, joysticks or a computer mouse to
manipulate virtual objects. They can also be represented by an
avatar within the virtual environment, whose movements will
match those of the users by means of motion capture technology
(Bohil et al., 2011). More particularly, VR systems may help
stroke survivors engage in a virtual environment with sensory
stimulations in multiple forms such as visual, auditory or haptic
that can simulate real-life situations and help the practice of goal-
oriented tasks in environments similar to the real world (Klinger,
2008).

For these reasons, the exploration of VR usages for clinical
applications is increasing rapidly, with an ever-growing number
of publications in the past few years (Garrett et al., 2018). In
stroke rehabilitation research, the use of VR is often compared
with conventional therapy (CT) delivered by physical therapists
and occupational therapists. The updated Cochrane review by
Laver et al. concluded in 2017 that VR-based therapy was not
more beneficial than CT for improving upper limb function.
Specifically, they report that VR “may be beneficial in improving
upper limb function and activities of daily living function when
used as an adjunct to usual care (to increase overall therapy
time).” (Laver et al., 2017, p. 2). Nowadays, VR is indeed used in
clinical settings for rehabilitation purposes alongside CT and
associated technologies have become more and more accessible
and widespread.

These factors lead to frequent updates in rehabilitation
research regarding the use of VR, its efficacy in motor
recovery, and how it may be implemented in clinical settings.
The aims of this mini-review are thus to 1) assess the current
results regarding efficacy of VR therapy in upper limb
rehabilitation following stroke and 2) start identifying
potential characteristics of VR-based therapy that can be
beneficial for upper limb rehabilitation for both clinicians and

patients. As VR-based therapy is being extensively investigated,
we aim to specifically provide a brief update on the growing state
of research for upper limb rehabilitation, in order to inform on
the recent developments on VR in rehabilitation but also to
provide insights on how this field may progress in the future.

Current Evidence Regarding the Efficacy of
Virtual Reality-Based Therapy
Traditional methods for the rehabilitation of the upper limb in
clinical centers are usually provided by physical and occupational
therapists, including ADL training. Recent studies have reached
the same conclusions as the Cochrane systematic review (Laver
et al., 2017). Investigating a VR system specifically designed for
upper limb rehabilitation and VR as a stand-alone therapy,
Schuster-Amft et al. (2018) found that chronic stroke patients
in both the experimental group and the control group improved
their hand dexterity, arm function and independence in ADL
after a 4-week treatment, with no between-group differences after
the same amount of therapy. In line with the results of Laver
et al.s’ review, Hung et al. (2019) observed that a VR-based
training combined with CT also did not lead to different results
when compared with CT only, for the same amount of therapy
and with similar training contents. Brunner et al. (2017)
compared improvements in upper limb motor function after
additional VR training with additional conventional
rehabilitation, both provided as an adjunct to standard
therapy, but did not observe significant differences between
the two modalities, although they both led to significant
improvement of all outcomes for subacute stroke patients,
further suggesting that VR training is simply as effective as CT
in upper limb rehabilitation.

However, several authors recently found conflicting results.
Significantly greater improvements in upper limb motor recovery
and gross manual dexterity were observed in several studies in
either subacute or chronic stroke patients who benefited from VR
training in addition to conventional treatments, as compared to
patients who only had CT (Aşkın et al., 2018; Ikbali Afsar et al.,
2018; Lee et al., 2018; Rogers et al., 2019). These improvements
could at least in part result from the increased therapy time, as
observed in Aşkın et al.‘s study where patients in the experimental
group had one more hour of therapy every day than the control
group, but these studies may also suggest that VR-based therapy
is an effective tool, especially when combined with CT.
Importantly, Wang et al. (2017) and Kiper et al. (2018)
compared stroke patients undergoing VR training along with
CT with patients who had CT only, for the same amount of
therapy in both groups. They observed a significantly greater
improvement on motor function in the experimental group
where VR training was added to canonical therapy. The recent
work of Ain et al. (2021) also indicate improvements on upper
extremity function in favor of the experimental group who
underwent Xbox Kinect-based training and CT for the same
duration.

The conflicting results observed in these recent studies could
result from differences in their experimental protocols, which
differ in number and frequency of the training sessions. We note
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that in studies where no difference was observed between VR and
CT groups, patients received two to five rehabilitation sessions a
week. In studies where a greater improvement was observed for
VR groups, all patients received a more intensive therapy with
sessions on 5 days a week. The various training frequencies thus
resulted in different training time. For example, patients in
Schuster-Amft et al.‘s study (2018) received a total of 12 h of
VR-based training during 4 weeks, with no between-groups
differences observed, while patients in Wang et al.‘s study
(2017) received a total of 45 h of therapy during 4 weeks, with
greater improvements for the VR group. These results may
indicate a dose-effect relationship in VR therapy that needs
further investigation to determine more precisely how many
hours of VR per week are needed to make VR-based therapy
effective in upper limb rehabilitation and how the dose impacts
the outcomes.

Besides differing in intensity, different VR systems were also
used in the studies, possibly concurring to explain part of the
reported outcome differences. In addition to hand movement
tracking, some of the systems presented distinct features, such as
enhanced feedback and enriched virtual environment (Kiper
et al., 2018; Rogers et al., 2019), the use of a sensorized real
object (Kiper et al., 2018), hand-held objects (Rogers et al., 2019),
the use of a controller (Lee et al., 2018), or an avatar hand of the
patient’s movements appearing on the screen (Wang et al., 2017).
Thus, groups of patients interacted differently with the virtual
environments during their training depending on the system they
used. Along with the development of VR technologies and
features, we deem important that future studies will investigate
if and what specific features of VR, such as augmented feedback,
or the use of physical objects that patients grasp, may favour
rehabilitation outcomes.

We additionally note that the studies included patients in the
subacute phase, or in the chronic phase of stroke. Considering the
delay since stroke, no stringent difference was noted between
studies showing an additional beneficial effect of VR as compared
to CT vs studies showing no additional effect of VR compared to
CT. Interestingly four out of seven studies showing an additional
effect of VR concerned patients in the sub-acute phase (Ikbali
Afsar et al., 2018; Lee et al., 2018; Rogers et al., 2019; Wang et al.,
2017), two studies concerned chronic patients (delay since stroke
above 6 months) (Ain et al., 2021; Aşkın et al., 2018), and one
concerned both subacute and chronic patients (Kiper et al., 2018).
These results suggest that the likelihood to observe an additional
gain provided by VR is increased at the sub-acute phase but a
further improvement induced by VR therapy may also occur at
the chronic phase.

Despite conflicting observations, these recent results
contribute increasing evidence that VR therapy is not to be
overlooked in upper limb rehabilitation as it may be
concretely beneficial to patients’ recovery. The more
consolidate findings so far suggest that VR could enhance
CT and increase the rehabilitation potential. Rather than
relying on one method, multiplying therapeutic approaches
to include VR therapy in existing rehabilitation programs
appears to be an effective way to further advance stroke
rehabilitation outcome.

Effects of neuroplasticity as a direct result of VR therapy is also
being investigated, but evidence is still modest (Laver et al., 2017).
In their study on the combined use of VR and CT, compared with
CT alone, Wang et al. (2017) evaluated the neural reorganization
in sub-acute stroke patients with fMRI before and after training
with a Leap-Motion based VR system. Patients were asked to
perform movements where they had to use the thumb of their
impaired hand to touch their opposite palm. They observed a
shift in the sensorimotor cortex activation from ipsilateral to
contralateral regions and an increased activation in the
contralateral cortex in both the experimental and control
group. Yet, this change was significantly greater in the
experimental VR group. In addition, the experimental VR
group also displayed larger improvement in the experimental
group using theWolf motor function test (WMFT), used to assess
patients’ upper limb motor function. These findings suggest that
repeated exercises with the affected limb and task-oriented
practice in a virtual environment can facilitate neural
reorganization to a larger extent compared to CT alone,
promoting motor recovery of the affected upper limbs. Future
neuroimaging studies will hopefully help better characterizing VR
training dependent effects and thus guiding the development of
VR as a therapy tool.

Benefits of Integrating Virtual Reality as a
Therapy Tool for Therapists
VR systems developed in the recent years display features that
therapists can exploit for their expert intervention. The large
number of studies conducted help provide more insights on
which among those characteristics may come into play in VR-
based rehabilitation, and how they may influence rehabilitation
outcomes and/or the therapeutic protocols that can be conducted.

It has been widely documented that VR systems offer the
ability to provide an intensive training with a high number of
movement repetitions per session (Perez-Marcos et al., 2017). It is
suggested repetition of movement and duration of training are
factors that may optimize motor rehabilitation outcome and
ability to perform ADL, although dose-response effects and
difficulty level of each task should be assessed to ensure an
optimal therapy dosing (Baniña et al., 2020; Dromerick et al.,
2009; Kleim & Jones, 2008). VR systems are believed to help
increasing the rehabilitation dosage and to provide significant
amounts of therapy to patients thus enabling simulated practice
of functional tasks (Laver et al., 2017). Perez-Marcos et al. (2017)
and Baniña et al. (2020) reported that training with a VR-based
motor rehabilitation system was indeed feasible and could
provide high rehabilitation doses, with a high number of
repetitions per session and active training time for more
efficient training sessions. In Perez-Marcos et al.’s study
(2017), various shoulder, arm and wrist exercises were
proposed and integrated into functional tasks, like grasping or
pointing at virtual objects, and led to significant improvements in
upper limb function of chronic stroke patients.

It is also suggested that VR systems can help increase the dosage
of therapy without needing to increase staffing levels (Laver et al.,
2017). VR systems can be equipped with a tracking functionality,
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allowing therapists to monitor their patients’ progression without
the need for physical supervision at all time. Using the VR system
and following an exercise program predefined by their therapist,
patients can then participate in a more intensive and frequent
training without increasing staffing and achieve positive results in
their upper limb recovery (Norouzi-Gheidari et al., 2019). If
successfully implemented, VR could then become a cost-
effective rehabilitation tool.

In particular, these apparent benefits of VR technologies open
new perspectives and opportunities for tele-rehabilitation, an
emerging solution which allows patients to have access to a
home-based therapy following discharge from the stroke and
rehabilitation units and to extend patients’ therapy duration, with
remote monitoring from therapists (Allegue et al., 2020; Laver
et al., 2020). Self-administered treatment at home, through
technology-based training and conventional exercises, has been
previously found to be accepted by chronic stroke patients
(Nijenhuis et al., 2017). A few VR systems have been
specifically designed for home-based use like the Neurofenix
platform (Kilbride et al., 2018), aiming to encourage stroke
patients to exercise independently at home, in their
environment, and with minimal therapist supervision.
Feasibility studies reported that patients, trained at their own
home during 4 weeks, have gained significant improvements in
bilateral upper limb function, grasp strength and motor control
(Burdea et al., 2019; Thielbar et al., 2020). Findings from a recent
study also suggest that VR-based training taking place at home
can induce cortical reorganization and is associated with upper
limb functional gains (Ballester et al., 2017). All these recent
developments add to suggest VR is a technology of interest to
spread the development of tele-rehabilitation for patients
suffering from upper limb impairment and these positive
results strongly encourage to conduct further studies on the
use of VR at home, to determine the effectiveness of the
intervention but also help guide therapists on how to
effectively conduct their intervention remotely using these
technologies. We argue that facilitating access to therapy in a
remote location and an increased treatment period may turn out
to be major arguments in favor of the use of VR in rehabilitation.

Potential Ingredients That Render Virtual
Reality-Based Therapy Effective
The above reviewed recent studies revealed several factors inherent
to VR therapy that may highly enhance neurorehabilitation and
participate in the significant improvement observed so far in upper
limb function. We advance that it would be particularly interesting
to accurately identify what those factors are, to help optimizing VR
systems developed in the future for rehabilitation purposes.

It has been highlighted that the distinction between specialized
or non-specialized VR systems might be an important factor in
regards to efficacy (Aminov et al., 2018). Specialized systems are
VR systems that were specifically developed for upper limb
rehabilitation. Examples of specialized systems include SaeboVR,
MindMotion Pro or Bi-Manu Trainer. Non-specialized systems
refer to off-the-shelf systems and commercial gaming systems,
such as the Nintendo Wii or Microsoft Xbox 360 consoles, often

designed originally for recreational purposes. Thus far, both types
of VR systems have been exploited in different studies investigating
the efficacy of VR in upper limb rehabilitation (Subramanian et al.,
2020). Some studies have also adapted commercial gaming systems
and specifically added games that were designed for rehabilitation
of stroke patients (Aşkın et al., 2018). In this respect, it has recently
been suggested that the type of systems used may greatly influence
the results of motor recovery. In their meta-analysis, Maier et al.
(2019) concluded that therapy with specialized VR systems leads to
a higher beneficial impact on recovery, body function and on
activity than CT, whereas non-specialized systems do not render
the same outcome. Tailor-made systems designed to be used by
patients with upper limb impairments appear to be a more viable
tool to deliver effective motor rehabilitation, compared to off-the-
shelf systems that were designed for healthy users.

The literature also suggests that VR systems, in particular
specialized ones, can integrate multiple principles of
neurorehabilitation in the therapeutic protocols and help
manipulating practice conditions, in order to optimize motor
learning and neuroplasticity processes. More specifically, task-
specific practice, increase of difficulty level, variety of tasks with
different goals, avatar representation or promoted use of the affected
limb are key principles that can be particularly exploited for VR
therapy (Maier et al., 2019). They can also contribute to the
development of novel techniques for upper limb rehabilitation
like the Reinforcement-Induced Movement Therapy that includes
a VR-based training and aims to promote the use of the paretic limb
for motor recovery (Ballester et al., 2016).

One major feature of VR systems is that they can typically
deliver explicit and implicit feedback during therapeutic training,
to a larger extent than in CT (Maier et al., 2019). Feedbacks can be
delivered in different forms and provide information to patients on
their movements, their performance and their results in real time,
while they interact with the virtual environment during
entrainment. Examples of multisensory feedbacks include: an
on-screen avatar representing the patient’s arms and hands,
display of scores and records attained, or acoustic signals to
provide information on the correct execution of a movement
(Kiper et al., 2018; Rogers et al., 2019). As an example, a virtual
environment with reinforced and frequent feedback was reported
to have an added therapeutic effect as compared to CT, with a
better motor recovery outcome in stroke patients (Kiper et al.,
2018). Recent VR systems developed for rehabilitation purposes,
such as the Elements system, were designed to specifically provide
augmented feedback. Rogers et al. (2019) observed that patients
receiving therapy with the Elements system experienced greater
improvements in upper limb function than controls. Providing
more feedbacks in order for patients to have more knowledge on
their results and their performance during a single session, in real
time, may help promoting motor learning in upper limb
rehabilitation. As feedback can be provided simultaneously
when using VR, it may also induce a more active participation
from patients, associated with an increased motivation to succeed
in the activities (Kiper et al., 2018; Rogers et al., 2019).

Increased participants’ motivation is a recurring observation
in studies. VR-based therapy appears to be more appealing to
stroke patients. Several studies have included safety and
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technology acceptance evaluations in their protocols and found
positive assessments in regards to acceptance and motivation,
with patients reporting augmented motivation and willingness to
pursue VR training at hospital, or at home (Burdea et al., 2019;
Perez-Marcos et al., 2017; Warland et al., 2019). The qualitative
substudy conducted by Pallesen et al. (2018) highlighted multiple
factors that influenced patients’ motivation in Brunner et al.
(2017) clinical trial: the playful nature of the activities, the ability
to progress in the games depending on their abilities, as well as the
reward and feedback systems integrated in the VR solution. These
factors may contribute to patients’ motivation as they make
therapy sessions more challenging and the perception of their
improvements is facilitated throughout the treatment duration.

Patients’ satisfaction is also often reported as very high after
VR sessions (Demers et al., 2019; Lee et al., 2020). More precisely,
the variety of activities in virtual environments, performing
exercises in the form of games and the possibility of training
in an enriched environment make VR-based therapy enjoyable to
patients and possibly more engaging than CT (Wang et al., 2017;
Hung et al., 2019; Rogers et al., 2019). Importantly, motivation
and engagement in rehabilitation are related to compliance and
adherence to therapy (Perez-Marcos et al., 2017). As a result,
higher levels of motivation induced by VR-based therapy are
likely to positively influence rehabilitation outcomes and lead to
significant improvements in upper limb function. Also, therapists
can establish a rehabilitation program that matches their patients’
needs and preferences using VR systems settings (Kim et al., 2018;
Hung et al., 2019). We conclude that since VR-based therapy has
been established to be motivating to patients and associated with
high adherence to therapy, it constitutes a viable tool to strongly
encourage patients to exercise independently and frequently in
the hospital and upon discharge, at home.

Virtual Reality: A Patient-Centered Tool
VR systems are now often equipped with motion capture
technologies such as the Leap Motion hand tracking device
(Wang et al., 2017) or the Microsoft Kinect (Aşkın et al.,
2018), which can track patients’ movements and be used to
gather data in regards to performance, kinematics and help
provide an analysis of movement quality (Perez-Marcos et al.,
2017). While this allows for clinicians to be able to track their
patient’s performance throughout entrainment, which is
particularly advantageous if we consider a home-based
rehabilitation, motion tracking solution also offers the
opportunity to further individualize the clinician’s intervention.
Data can be used by therapists for a better assessment of each
patient’s abilities, to track their progression andmore importantly,
to adapt their intervention at every step of the rehabilitation
process to ensure it matches the patient’s needs and their goals.
Adjusting the difficulty level of exercises is possible within
multiple VR systems, making it possible to offer an
intervention that is tailored to each patient’s abilities,
preferences and motor function level when training with VR
(Hung et al., 2019; Kim et al., 2018). Using an artificial
intelligence (AI) module, the novel BrightBrainer VR system
used in Burdea et al.’s study (2019) changed game difficulties
based on a patient’s prior performance during tele-rehabilitation.

Depending on the system used, therapists can specifically choose
the focus of the exercises. Manipulation, hand grasping, whole-
arm movement, pronation-supination or bimanual coordination
are among the movements that can be selected by therapists to
tailor each patient’s exercise program (Brunner et al., 2017; Kiper
et al., 2018; Schuster-Amft et al., 2018). VR systems designed for
rehabilitation can also integrate modules that automatically adjust
the difficulty of a task according to a patient’s performance, as in
the Rehabilitation Gaming System (RGS) (Cameirão et al., 2011).
By capturing specific features of a user’s upper limb, the system
can adapt a task’s parameters to an individual’s abilities, allowing
for further individualization of the therapy (Cameirão et al., 2010).

When focusing more particularly on how rehabilitation is
conducted, VR therapy could also prove to be a safe tool for
patients. The practice of ADL is possible in virtual environments,
with a wide range of ADL proposed such as grocery shopping or
crossing a street (Adams et al., 2018). Thus, VR systems allow
therapists to propose tasks that would possibly be unsafe if
performed in the real world (Laver et al., 2017). For example,
practicing a cooking activity in a virtual environment would
remove the risk of burns.

Ecological Validity of Virtual Reality in
Therapy
In VR-based therapy, patients interact within a virtual
environment that can simulate daily life situations and
reproduce, to different levels of realism, the real world. As a
result, VR-based training may offer an almost naturalistic,
ecologically-valid environment. Owing to these features, VR
systems may facilitate accessibility to the practice of ADLs
during patients’ stay at the hospital, as it is not always feasible
within a hospital facility. The effectiveness of ADL-focused
therapy is already established in upper limb rehabilitation but
VR may add advantages to ADL-focused interventions (Legg
et al., 2007). Specific VR systems enable task-oriented practice in
virtual worlds in order to reacquire functional skills through
different activities such as cooking, gardening or grocery
shopping in a virtual world (Adams et al., 2018; Aşkın et al.,
2018). As an example, practicing virtual ADL with the SaeboVR
system designed for upper limb rehabilitation was associated with
significant improvements in motor function measures of chronic
stroke patients in Adams et al.’s study (2018). In addition, the
practice of ADL that are particularly meaningful and relatable to
the patient can contribute to an increased adherence to the
treatment and increased motivation to pursue rehabilitation
(Adams et al., 2018).

However, even if the practice of ADL in a virtual environment
is now feasible, with significant improvements observed, it has yet
to be determined if gains of VR training do translate to improved
performance of real-life activities in the long term. Evidence of
the transfer of VR training effects to ADL for patients who
suffered a stroke is still limited (Aminov et al., 2018). Long-
term follow-up studies are necessary to assess more carefully the
effect of VR-based therapy on independence in ADL following
discharge. Effects of VR-based tele-rehabilitation on ADL also
remain to be evaluated.
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Limits of Using Virtual Reality in
Rehabilitation
There are some limitations that have been noted concerning VR.
Using VR as a rehabilitation tool may be accompanied by some
relatively minor adverse effects that may stem from the
equipment used and prolonged exposure to a screen while
doing different exercises and movements. A few cases of
motion sickness, headaches or soreness have been reported by
patients in studies (Hung et al., 2019; Perez-Marcos et al., 2017).
However, these are rare, and most patients who participated were
not subject to any major adverse event over the course of their
treatment (Aşkın et al., 2018; Norouzi-Gheidari et al., 2019;Wang
et al., 2017), even when using a head-mounted display for a fully
immersive VR experience during multiple sessions (Lee et al.,
2020).

VR-based therapy is also very dependent on the proper
functioning of the equipment. Frequent device malfunctions
such as screen freezing, inaccuracy of movement tracking or
communication problems can occur in the middle of an activity
and be associated with frustration or decrease in motivation,
which may reduce the benefits of the treatment (Burdea et al.,
2019; Pallesen et al., 2018).

Suggestions Regarding the Use of Virtual
Reality in Clinical Settings
Following this review, we suggest some recommendations can be
made regarding the use of VR for the rehabilitation of the upper
limb for stroke patients. While VR appears to be a suitable tool for
rehabilitation, using VR as an adjunct, combined with
conventional occupational and physical therapy, may be more
beneficial for the recovery of upper limb function rather than
relying on VR alone (Kiper et al., 2018; Wang et al., 2017). In
addition, therapists should exploit specific VR systems features
such as augmented feedback, gamified and motivating activities,
movement tracking, practice of virtual ADLs and the possibility
of training in an environment similar to the real world as they
may help enhancing functional outcomes in upper limb
rehabilitation and optimize their intervention (Adams et al.,
2018; Maier et al., 2019; Pallesen et al., 2018; Rogers et al.,
2019). Also, current evidence comfort us in suggesting that
specialized VR systems, specifically designed for upper limb
rehabilitation, are to be preferred (Aminov et al., 2018; Maier
et al., 2019). Specialized VR systems are indeedmore effective and
offer flexible patient-based tailoring to therapists. But specialized
VR equipment is not yet widely available in clinical settings and
its expensive cost may, in some circumstances, constitute a
barrier to the development of its use in rehabilitation clinics.

Perspectives on the Future of Virtual Reality
in Clinical Settings and Research
One major development regarding the use of VR in the recent
years is the immersive feature of some VR systems. Immersion
refers to the sensorimotor coupling between the user and the
virtual environment provided by the system, and determines the

potential of a VR system to effectively isolate a user from the real
world (Mestre, 2015). Fully immersive systems place users in an
environment that integrates 3D images and objects, where they
have no access to the real world and are only exposed to sensory
feedbacks coming from the system itself. In contrast, non-
immersive VR systems generally display a virtual environment
on a screen that users interact with using devices such as
keyboards, controllers or joysticks, letting users experience
both the real and virtual world at the same time (Huang et al.,
2019; Kilbride et al., 2018). Non-immersive systems are more
common in rehabilitation settings and have been predominant in
VR studies until recently. However, with head-mounted display
technologies becoming more and more popular, immersive VR
can now become more widespread. It is suggested the level of
immersion of a given VR system might play a role in motor
recovery, although it is still unclear how exactly (Adams et al.,
2018). Fully immersive VR therapy may enhance the feeling of
immersion, enabling an even more engaging experience and
facilitating patients’ performance when executing movements
with their impaired upper limb, especially as they can provide
more realistic virtual environments. More specifically, immersive
properties of virtual environments are associated with the notion
of presence, that refers to the feeling of being inside the virtual
world. The feeling of presence enables participants to behave in
the virtual environment as if it was the real world (Mestre, 2015).
Only few studies have investigated fully immersive VR with the
use of head-mounted displays such as the HTC Vive, whose
spatiotemporal resolutions complies with this sort of behavioral
applications (Verdelet et al., 2019). They have reported significant
improvements in upper limb function and performance in ADL
after multiple therapy sessions (Ögün et al., 2019; Lee et al., 2020;
Mekbib et al., 2020). More studies are nevertheless needed to
assess the effectiveness of immersive VR-based therapy for the
recovery of upper limb motor function, to determine if fully-
immersive systems are more effective than non-immersive ones
at short- and long-term. Future studies on immersive VR systems
may provide better insights into how the level of immersion
influences neuroplasticity and cortical reorganization in stroke
patients, what mechanisms are at work, and how to better
integrate VR in upper limb rehabilitation for stroke patients
(Ahmed et al., 2020). As this technology is becoming more
widespread, it is likely that immersive VR systems will take on
an important part in future rehabilitation.

When considering research on VR as a rehabilitation tool
more globally, additional clinical studies are needed with larger
samples of patients in order to gather stronger evidence of VR
efficacy. It is also necessary to further investigate effects of VR-
based therapy in the longer term. Results of follow-up studies will
give a better understanding on the retention of the motor learning
acquired during treatment with VR.

For VR to become a viable therapy tool, it is also important
that research focuses on identifying what the “ingredients” for
effective VR are, as well as the conditions whereby VR can be best
used, to maximize its potential. Studies investigating effectiveness
of VR have applied different experimental designs in terms of
frequency (ranging from two to five sessions a week), duration of
training sessions (30–60 min) and length of treatment (from 4 to
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12 weeks). Since it has been suggested that a higher dose of
training volume is preferable, with more than 15 h of total
intervention time (Laver et al., 2017), future studies are
needed to determine if the dose of VR-therapy does have a
significant effect on motor rehabilitation outcomes and if so,
which dosage has to be applied when implementing VR in
therapy. Future studies will also help specify the effects of
timing of VR interventions on functional outcomes and thus,
may help determine the optimal timing during which VR
interventions can lead to significant improvements in stroke
rehabilitation (Merians et al., 2020).

There are also several open questions concerning the patients
who can use and benefit from VR therapy, regarding factors such
as the severity of the motor impairment or the lesion topography.
Kiper et al. (2018) observed that a VR intervention was effective
after both hemorrhagic and ischemic stroke, suggesting that
stroke etiology does not influence therapy outcomes
differently. But further studies are still necessary to determine
the population that can best benefit fromVR therapy. In addition,
active rehabilitation is recommended early, in the subacute phase
of stroke recovery, in order to maximize motor recovery gains. In
VR research, few studies have been conducted with patients in
subacute stage and chronic stage although improvements have
been observed in both populations (Aminov et al., 2018), hence it
is still necessary to identify the time window for applying VR
therapy.

Not last, stroke patients can suffer from cognitive impairments
on top of their motor deficits. Patients with severe cognitive
impairment were often excluded from previous studies (Aşkın
et al., 2018; Brunner et al., 2017; Kiper et al., 2018; Norouzi-
Gheidari et al., 2019; Perez-Marcos et al., 2017; Schuster-Amft
et al., 2018). However, there are now VR systems intended for
rehabilitation of both cognitive and motor functions for stroke
patients (Rogers et al., 2019), which broaden the target population
and illustrate further the potential of VR for the treatment of
major stroke sequelae.

CONCLUSION

Severity of upper limb impairment following stroke is a predictor of
poor functional hand ability (Wade et al., 1983; Lai et al., 2002) and a
predictor of poor quality of life (Nichols-Larsen et al., 2005).

Effective rehabilitation approaches are needed to enhance
motor and functional recovery. Since VR has emerged as a
suitable rehabilitation tool, VR interventions have shown to
offer patients with intensive, repetitive and task-specific
entrainment tools in naturalistic virtual environments.
Recent evidence show that VR-based therapy combined with
CT produce significant improvements in upper limb motor
function in stroke patients. Beyond evidence of efficacy, VR
systems appear to offer highly engaging and motivating
activities to patients, in virtual environments that may be
similar to the real world. They also present peculiar features
such as movement tracking and the integration of key principles
of neurorehabilitation including reinforced feedback. These
elements may be advantageous to patients and clinicians, in
order to enhance rehabilitation treatments but also to improve
therapists’ intervention and optimize single patient’s tailored
care, in the hospital and at a patient’s home. Further studies are
needed to maximize the potential offered by VR and to ensure it
is used effectively as a therapy tool.
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Artificial intelligence (AI) is being applied in medicine to improve healthcare and advance

health equity. The application of AI-based technologies in radiology is expected to

improve diagnostic performance by increasing accuracy and simplifying personalized

decision-making. While this technology has the potential to improve health services,

many ethical and societal implications need to be carefully considered to avoid harmful

consequences for individuals and groups, especially for the most vulnerable populations.

Therefore, several questions are raised, including (1) what types of ethical issues are

raised by the use of AI in medicine and biomedical research, and (2) how are these

issues being tackled in radiology, especially in the case of breast cancer? To answer

these questions, a systematic review of the academic literature was conducted. Searches

were performed in five electronic databases to identify peer-reviewed articles published

since 2017 on the topic of the ethics of AI in radiology. The review results show that the

discourse has mainly addressed expectations and challenges associated with medical

AI, and in particular bias and black box issues, and that various guiding principles

have been suggested to ensure ethical AI. We found that several ethical and societal

implications of AI use remain underexplored, and more attention needs to be paid to

addressing potential discriminatory effects and injustices. We conclude with a critical

reflection on these issues and the identified gaps in the discourse from a philosophical

and STS perspective, underlining the need to integrate a social science perspective in AI

developments in radiology in the future.

Keywords: artificial intelligence, ethics, radiology, explainability, trustworthiness, bias

INTRODUCTION

Artificial Intelligence (AI) is seen as a promising innovation in the medical field. The term
AI encompasses the ability of a machine to imitate intelligent human behavior (Tang et al.,
2018). Machine learning (ML) is a subfield of AI which is widely applied to medical imaging
(Pesapane et al., 2018a) and includes deep learning (DL), which produces data with multiple
levels of abstraction (LeCun et al., 2015). These technologies have been developed to help improve
predictive analytics and diagnostic performance, and specifically to improve their accuracy and
ability to support personalized decision-making, as researchers have demonstrated that they can
“outperform humans” when conducting medical image analysis (McKinney et al., 2020). Many
researchers have also expressed the hope that they can help improve the provision of healthcare, and
especially by enabling more rapid diagnosis, in coping with the workload resulting from an increase
in screening (Mudgal and Das, 2020, 6), and in advancing health equity. Overall, AI systems are
expected to have a significant impact in radiology.
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“Artificial Intelligence (AI) is the talk of the town” (Ferretti
et al., 2018, 320). Developments in AI are progressing rapidly in
the medical field. This is reflected, for instance, in the enormous
increase in publications on the development of AI systems in
radiology, i.e., from about 100–150 per year in 2007–2008 to 700–
800 per year in 2016–2017 (Pesapane et al., 2018a). However, the
progress in development of the discourse on these technologies
has not corresponded with the progress in the implementation
of these technologies in healthcare. In other words, “The state
of AI hype has far exceeded the state of AI science, especially
when it pertains to validation and readiness for implementation
in patient care” (Topol, 2019, 51). For example, few radiological
AI systems have been implemented in the NHS, but several are
awaiting approval (Mudgal and Das, 2020).

In the evolving field of Ethics of AI, investigations are carried
out on the far-reaching consequences of AI in several areas of
society. AI is steadily gaining importance in the medical field; as
a result, researchers and practitioners are carefully considering
the ethical and societal implications of AI use in order to avoid
harmful consequences for individuals and groups, and especially
those for the most vulnerable populations. Without a doubt, AI
will have a profound impact in the field of radiology: It will affect
end users and will introduce far-reaching challenges into clinical
practice. While the introduction of AI is changing the role of the
"radiologists-in-the-loop,” patients and other societal groups are
being confronted with complex questions concerning the scope
of informed consent, biases that may result in inequality, and
risks associated with data privacy and protection, as well as open
questions regarding responsibility and liability. These questions
are accompanied by concerns that AI systems could perpetuate
or even amplify ethical and societal injustices. Based on key
ethical values such as respect, autonomy, beneficence, and justice
(Beauchamp and Childress, 2001), several guiding principles and
recommendations have been formulated to tackle these issues
(Currie et al., 2020; Ryan and Stahl, 2020)—Such principles and
recommendations have also been communicated on EU level
(High-Level Expert Group on Artificial Intelligence, 2019), and
initiatives such as FUTURE-AI (Lekadir et al., 2021) have been
started, which have been developed to ensure that advances in AI
systems and advances in AI ethics do not contradict one another.

In this paper, we contribute to the discourse on ethics of
AI in radiology by reviewing the state-of-the-art literature and
discussing the findings from a philosophical and social science
perspective. We consider the comment made by (Mittelstadt
and Floridi, 2016, 468), namely, that “reviewing literature is
a first step to conduct ethical foresight, in the sense that it
allows one to distinguish between issues and implications that
are currently under consideration, and those that are not yet
acknowledged or require further attention.” In our review, we
highlight underexplored ethical and societal aspects and point
out the necessary future research directions in the field. Our
analysis was guided by two key research questions: (1) What
types of ethical issues are raised by the use of AI in medicine
and biomedical research, and (2) how are these issues being
tackled in radiology, especially in the case of breast cancer? In the
next section of this article, we describe the methods used, then
present the outcomes of the review. We conclude the article with

a critical discussion of the findings, highlight the identified gaps
and indicate future directions.

METHODS

Search and Eligibility Criteria
We performed a comprehensive review of ethical and societal
issues that have already been identified and discussed, as well
as how these issues have been addressed in the context of AI.
To do so, we carried out a systematic review of state-of-the
art academic literature between July and December 2021. Five
search engines were used (Google Scholar, Microsoft Academic,
PubMed, Scopus, and Web of Science) to identify relevant
articles on these issues. Twelve search strings were created that
included terms relevant to the research questions (e.g., “AI,”
“ethics,” “radiology,” “imaging,” “oncology,” “cancer,” “predictive
medicine,” “trustworthy,” “explainable,” “black box,” and “breast
cancer”). Hence, the selection of the search terms aimed at
including both key aspects in the general discussion of AI in
medicine and biomedical research, as well as specific approaches
for radiology and oncology. In addition, breast cancer was
included in the search as a specific case to analyze in-depth
the societal implications associated with social categories such
as gender, race, and socioeconomic background. The different
levels were expected to allow us to better situate the topic in the
broader Ethics of AI discourse. “IT” was defined as an exclusion
criterion to refine the search and limit it to the ethical and societal
aspects related to AI. All search strings were applied to the five
search engines using the “Publish or Perish” app, introducing
some minor differences in punctuation to adapt to the internal
logic of different search engines. The search was limited to articles
written in English language and to papers published after 2017.
Outputs consisted mainly of peer-reviewed journal articles, but
also included literature in the form of commentaries, reports, and
book chapters. These sources were not excluded from the sample,
as they are also seen as contributing to the discourse on the ethics
of AI use in radiology.

Data Analysis
All identified records were imported into Microsoft Excel
spreadsheets for further analysis. The subsequent screening
procedure was conducted in two major steps. First, we scanned
paper titles and abstracts to identify papers that included
discussions on ethical and societal aspects of AI. Duplicates and
papers that did not match the inclusion criteria were removed
from the sample, as well as articles that were identified by
the search engines because they contained an ethics statement.
Second, the full texts of the resulting sample items (n= 56) were
analyzed using thematic analysis (Terry et al., 2017).

Guided by our research questions, we coded each article in
the final sample to develop overarching themes or patterns.
Semantic codes were generated, on the one hand, to deductively
assign terms also used in the search strings to the material
(i.e., terms that are commonly used in the AI ethics discourse,
such as “explainability,” “trustworthy,” and “black box”) and, on
the other hand, inductively developed from the data. Reviewers
coded independently on paper and by using the Atlas.ti software

Frontiers in Big Data | www.frontiersin.org 2 July 2022 | Volume 5 | Article 85038367

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Goisauf and Cano Abadía Ethics of AI in Radiology

package. In the next analytical phase, the codes and coded text
segments were collated to identify themes across the sample. Each
theme and the corresponding text segments were analyzed to
determine their specific content and depth, but also scrutinized
to identify conceptual gaps.

RESULTS

The results of the systematic literature review are included in an
adapted PRISMA flow diagram (Figure 1) (Page et al., 2021).

After screening the records identified by the search engines to
determine their eligibility for inclusion, the full texts of a final
sample of 56 papers were reviewed. We observed that sources
that placed an explicit focus on the ethical issues of AI and
breast cancer were rare in the sample (two); some papers on
breast cancer identified in the search were excluded, as these
placed a primary focus on technical issues, were determined to be
irrelevant for the aim of this study or were identified due to the
presence of an ethics statement in the article. In terms of content,

we concluded that no article in the sample placed an explicit focus
on the ethics of AI use in radiology and breast cancer.

The review results show that the application of medical and
radiological AI systems is widely discussed in the scientific
discourse. As mentioned in the introduction, these technologies
are accompanied by hypes and hopes regarding their potential
to improve predictive analytics, diagnostic performance, and
eventually patient outcomes, as well as challenges that arise due
to the (potential) real-world application. During the analysis,
certain topics were identified as especially important, which are
mainly organized around approaches and principles. Guided by
our research questions (i.e., what types of ethical issues are raised
by medical AI and how these are tackled in radiology and the
case of breast cancer in particular), we analyzed the key themes
regarding their claims about ethical and societal implications.

In the next sections, we organize the key themes identified in
the literature review as follows: First, we map the expectations
regarding the application of AI systems in the medical field,
as these are important indicators of their imagined innovative
potential and how the discourse is framed, and then enumerate

FIGURE 1 | PRISMA flow diagram showing the results of the systematic literature review.
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the key challenges. Second, we describe the ethical principles
addressed in the literature, such as explainability, interpretability,
trust/trustworthiness, responsibility and accountability, justice,
and fairness. These sections are followed by a critical discussion
of the ethical and societal implications of the results.

Expectations
The analysis of the literature shows that the application of
AI systems in healthcare has been welcomed, according to
the expectations associated with this application. Thereby, we
identified three main areas in which changes are expected, and
especially areas in which improvements are expected: better
analytical performance, benefits for patients, clinicians and
society, and a change in the professional role of radiologists.

The expectation that AI will significantly improve diagnostics
and patient care is a key assumption that is expressed throughout
the sample. Choy et al. (2018) describe current AI applications
to help with case triage, maximize image quality, detect and
interpret findings automatically, perform automated processes
related to treatment (e.g., in radiotherapy) and points out that
these applications can support the personalization of treatment
via predictive analytics by making scheduling easier. Hosny
et al. (2018) identify three radiological tasks in which AI can
play a significant role: in the detection of abnormalities, their
characterization, and in monitoring changes. Other authors note
that further applications of AI are expected to increase analytical
power (i.e., to perform analyses more rapidly than humans
and to minimize human error) and to identify as-yet unknown
relationships (Pesapane et al., 2018a; Brady and Neri, 2020).
Eventually, such applications can be used to detect diseases
earlier and to provide proper treatment with fewer unnecessary
procedures, better cost efficiency, and lower inter- and intra-
reader variability (Mazurowski, 2020).

These advances in medical diagnostics are also expected
to benefit the end users. For instance, Kelly et al. (2019)
identify a quadruple aim for the application of AI systems in
healthcare: improving experience of care, improving the health
of populations, reducing per capita costs of healthcare, and
improving the work life of healthcare providers. Ryan and
Stahl (2020) highlight the ethical principle of beneficence and
emphasize the supposition that AI should benefit societies and
support the social as well as the common good.

The expectations regarding radiologists are ambiguous, with
some scholars highlighting the fact that AI will outperform
clinicians and be able to diagnose more rapidly and accurately.
Bjerring and Busch (2021, 350) state “We can at least with some
warrant adopt the assumption that AI systems will eventually
outperform human practitioners in terms of speed, accuracy,
and reliability when it comes to predicting and diagnosing
central disease types such as cancer, cardiovascular diseases,
and diseases in the nervous system.” On the other hand, some
scholars consider that AI will not be able to perform all
tasks that health practitioners currently do without any human
intervention. Naqa et al. (2020) propose what they consider to
be a realistic vision that keeps “humans-in-the-loop.” According
to this perspective, AI systems will serve as physicians’ partners,
enabling them to deliver improved healthcare by combining

AI/ML software with the best human clinician knowledge.
This partnership would allow the delivery of healthcare that
outperforms what either can deliver alone, thus improving both
credibility and performance.

Challenges
Despite the hype surrounding AI implementation in healthcare
and radiology, numerous authors highlight the challenges this
can raise. One key challenge concerns the data that are used to
train AI, such as the lack of labeled (i.e., annotated) data. Massive
amounts of data are needed to train algorithms (Matsuzaki,
2018) and training images must be annotated manually. This
challenge is accompanied by a secondary challenge: the fact that
the amount of radiological imaging data continues to grow at a
disproportionate rate as compared to the number of available,
trained readers (Hosny et al., 2018). While some authors propose
using a model that has been developed to keep “humans-in-the
loop,” others consider that the availability of human validation
will limit the promises of AI. Tizhoosh and Pantanowitz (2018)
comment that “The pathologist is the ultimate evaluation if
AI solutions are deployed into clinical workflow. Thus, full
automation is neither possible, it seems, nor wise as the Turing
test postulates.”

The affordability of required computational expenses poses
another challenge (Tizhoosh and Pantanowitz, 2018). Geis et al.
(2019: 330) point out that AI could increase imbalances in the
distribution of resources, creating a gap between institutions that
have more and less “‘radiology decision-making’ capabilities.”
Small or resource-poor institutions may find it difficult to
allocate the necessary resources to manage complex AI systems,
especially those that are proprietary. These authors (Geis et al.,
2019, 332) emphasize that “Almost certainly some radiology
AI will be proprietary, developed by large academic or private
health care entities, insurance companies, or large companies
with data science expertise but little historical radiology
domain knowledge. This may exacerbate disparities in access to
radiology AI.”

The scarcity of resources is also closely connected to or
could result in some form of bias, and in particular automation
bias, which is the “tendency for humans to favor machine-
generated decision, ignoring contrary data or conflicting human
decisions” (Neri et al., 2020, 519). Geis et al. (2019, 332) argue
that automation bias can lead to errors of omission, i.e., humans
might fail to notice or might disregard the failure of AI tools.
This could clash with the need identified in the literature to take
a “human-in-the-loop” approach, as “risks may be magnified in
resource-poor populations because there is no local radiologist to
veto the results.” (Geis et al., 2019, 332).

Some doubts have been voiced in the literature regarding the
possibility of implementing AI into daily clinical practice, as
real-world deployments are still rare, and only a few algorithms
have been clinically tested or implemented (Kelly et al., 2019;
Mudgal and Das, 2020). In this regard, it is questioned if this
implementation is a realistic goal and that it is not clear how
to effectively integrate AI systems with human decision-makers
(Tizhoosh and Pantanowitz, 2018). Other authors (Gaube et al.,
2021) noted that, in the few cases where systems have been
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implemented, no proof of improved clinical outcomes has been
provided, while Kelly et al. (2019) mention different challenges
associated with the use of such systems, including logistical
difficulties, quality control, human barriers, and algorithmic
interpretability claims.

The challenges outlined so far highlight specific institutional
and resource-related issues that may influence the further
development of radiological AI; however, these issues also
determine how ethical and social implications are reflected upon
and manifested in addressing these challenges. This becomes
tangible when examining the two major recurring themes
identified in the reviewed sample: black box and bias.

Black Box

Many ML algorithms, and especially DL algorithms, are often
referred to as operating in a “black box.” This black box is
defined in the literature as “an apparatus whose inner-workings
remain opaque to the outside observer” (Quinn et al., 2021,
2), as “oracular inference engines that render verdicts without
any accompanying justification” (Watson et al., 2019, 2), or as
“systems [that] are often unable to provide an audit trail for
how a conclusion or recommendation is reached because of
its convolutional nature” (Smith and Bean, 2019, 25). While
some authors only indicate that black boxes generate challenges
without going into further detail (Choy et al., 2018; Tizhoosh and
Pantanowitz, 2018; Naqa et al., 2020; Kim et al., 2021), others
have taken a more specific approach to address the consequences
of applying black boxes in medicine. For instance, Bjerring
and Busch (2021) apply Price’s (2018) concept of black-box
medicine: a subtype of AI-informed medicine where opaque or
transparent AI systems play an essential role in decision-making.
These definitions imply that opacity, intelligible justifications,
and recommendations are key issues that need to be discussed
when considering ethical requirements and the practitioner-
patient relationship.

Ferretti et al. (2018) frame the problem of black boxes in
medicine by applying the concept of opacity, which can be
differentiated into three types: (1) lack of disclosure, (2) epistemic
opacity, and (3) explanatory opacity. The (1) lack of disclosure
is defined as a lack of transparency regarding the use of data.
The patients’ privacy and awareness of the use of their data,
their consent (Mudgal and Das, 2020), and ownership of the
data (Krupinski, 2020) appear as associated concerns. Larson
et al. (2020) also address this issue, providing examples of
partnerships between hospitals and data science companies that
raised concerns about whether these companies are profiting
from the use of patient data, often without their consent. Mudgal
and Das (2020) also warn against the risks of defining the value
of data on the basis of its face value. To mitigate this risk,
“radiology’s goal should be to derive as much value as possible
from the ethical use of AI, yet resist the lure of extra monetary
gain from unethical uses of radiology data and AI” (Geis et al.,
2019, 330). To ensure the ethical use of data and to address a
lack of disclosure, “patients should know who has access to their
data and whether (and to what degree) their data has been de-
identified. From an ethical perspective, a patient should be aware
of the potential for their data to be used for financial benefit

to others and whether potential changes in legislation increase
data vulnerability in the future, especially if there is any risk that
the data could be used in a way that is harmful to the patient”
(Currie et al., 2020, 749). In this sense, regulations for safety,
privacy protection, and ethical use of sensitive information are
needed (Pesapane et al., 2018b). (2) Epistemic opacity is the lack
of understanding of how the AI system works and, for Ferretti
et al. (2018) it is caused by procedural darkness (the rules that the
AI system is following are not available) or procedural ignorance
(the rules are available, but it is impossible to understand them).
(3) Explanatory opacity, on the other hand, is the lack of a clinical
explanation: A system might find patterns that do not have a
clinical explanation with the current medical knowledge.

Deep learning conflicts with ethical requirements: The lack
of understanding and transparency regarding how an AI system
reaches a decision presents a major ethical concern. However,
a more explainable system diminishes the power of DL (Brady
and Neri, 2020; Currie et al., 2020; Quinn et al., 2021). This
conflict is related to the question of whether “high stakes”
institutions, such as healthcare, should use black-box AI (Brady
and Neri, 2020; Bjerring and Busch, 2021; Quinn et al., 2021).
Bjerring and Busch (2021) note that AI introduces some obvious
differences, but also point out that black boxes do not present
a fundamentally new epistemic challenge, as opaque decision-
making is already common in non-AI-based medicine. By
keeping the “practitioner-in-the-loop,” however, at least some
knowledge available to support informed decision-making. In
the case of black-box medicine, “there exists no expert who
can provide practitioners with useful causal or mechanistic
explanations of the systems’ internal decision procedures”
(Bjerring and Busch, 2021, 17). Furthermore, some of the
consequences of black-box medicine are epistemic in nature:
Black-box medicine may lead to a loss of knowledge, and
specifically to a loss of medical understanding and explanation
and, thus, medical advances.

These challenges are associated with considerations about
the impact of black-box AI on validity and the potential harm
it presents patients. An opaque system makes it difficult to
keep humans in the loop and enable them to detect errors
and to identify biases. Such a system can have negative effects
on underrepresented or marginalized groups and can also fail
in clinical settings (Quinn et al., 2021). In addition, it can
pose certain risks for radiologists, who are expected to validate
something that they cannot understand (Neri et al., 2020), open
them to adversarial attacks (Tizhoosh and Pantanowitz, 2018;
Geis et al., 2019), or intensify the clash between black-box
medicine and the duty of care, presuming that the radiologists
have the ability to understand the technology, its benefits, and
potential risks (Geis et al., 2019; Currie et al., 2020). The latter
is also associated with depriving the patients of the ability to
make decisions based on sufficient information and justifications,
which contradicts the ethical requirement for the patients to
exercise autonomy by giving their informed consent (Quinn
et al., 2021). This type of medicine cannot be described as
“patient-centeredmedicine” (Bjerring and Busch, 2021), andmay
have negative effects on the relationship of trust that is established
between the patient and clinician.
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Bias

The lack of transparency inherent in black-box AI tools is
also a problem associated with bias. This lack is difficult to
detect, measure, or correct unless the person using the tool
has transparent access to the reasoning of the algorithm or
the epistemic tools to understand this reasoning (Quinn et al.,
2021). Radiology AI may also be biased by clinically confounding
attributes such as comorbidities and by technical factors such
as data set shifts and covariate shifts due to subtle differences
in the raw and post-processed data that arise from the use of
different scanning techniques (Geis et al., 2019), AI systems
used in healthcare might have both a racial and a gender bias
(Rasheed et al., 2021), but the reviewed literature discusses
mainly racial bias. Many algorithms in medicine have been
shown to encode, reinforce, and even exacerbate inequalities
within the healthcare system (Owens and Walker, 2020) and
can worsen the outcomes for vulnerable patients (Quinn et al.,
2021). Such biases are introduced due to the data used to train
an algorithm and the labels given to these data, which may be
laden with human values, preferences, and beliefs (Geis et al.,
2019). The generated outputs will thus eventually reflect social
and political structures, including injustices and inequalities.
Consequently, AI systems cannot provide entirely unbiased or
objective outcomes based on incomplete or unrepresentative
data; instead, they mirror the implicit human biases in decision-
making (Balthazar et al., 2018; Pesapane et al., 2018b; Ware,
2018; Abràmoff et al., 2020). This has effects that extend
beyond training, an aspect underlined by Quinn et al. (2021, 4),
who point out that “most training data are imperfect because
learning is done with the data one has, not the sufficiently
representative, rich, and accurately labeled data one wants. [. . . ]
even a theoretically fair model can be biased in practice due to
how it interacts with the larger healthcare system.” According
to Abràmoff et al. (2020) this “algorithmic unfairness” stems
from model bias, model variance, or outcome noise. Model bias
arises when models are selected to best represent the majority
but not the unrepresented groups; model variance is caused by
insufficient data from minorities, while outcome noise is caused
by interference between unobserved variables and the model
predictions. The latter can be avoided by broadening the scope
of data to include underrepresented groups and minimize the
possibility of unobserved variables interfering.

Common sources of bias that potentially promote or harm
group level subsets are based on gender, sexual orientation,
ethnic, social, environmental, or economic factors, as well as
on unequal access to healthcare facilities and geographical bias.
Referring to existing research, Owens and Walker (2020) and
Quinn et al. (2021) point out racial bias that stems from the
seemingly effective proxies for health needs (such as health costs)
in algorithms that do not use race as a predictor for the models.
Health costs are not a race-neutral proxies for health needs;
this implies a need for a concerted and deep understanding of
the social mechanisms of structural discrimination. Furthermore,
biases in AI tools have a strong tendency to affect groups
more strongly that are already suffering from discrimination
based on these factors. Furthermore, AI biases have a strong

tendency to affect groups more that are already suffering from
discrimination based on these factors: “Blind spots in ML can
reflect the worst societal biases, with a risk of unintended
or unknown accuracies in minority subgroups, and there is
fear over the potential for amplifying biases present in the
historical data.” Kelly et al. (2019, 4) note that “Blind spots
in ML can reflect the worst societal biases, with a risk of
unintended or unknown accuracies in minority subgroups, and
there is fear over the potential for amplifying biases present
in the historical data.” The authors clearly illustrate this by
providing the example of underperformance regarding the
classification of images of benign and malignant moles on
dark-skinned patients, because the algorithms are trained with
data from predominantly fair-skinned patients. AI systems are
often developed by companies in western countries and tested
on Caucasian data, generating imbalances of representation
in the datasets. “When the algorithm is trained on data that
inherit biases or do not include under-represented population
characteristics, existing disparities can be reinforced” (Akinci
D’Antonoli, 2020, 504).

“Fairness and equality are not AI concepts” (Geis et al., 2019,
331). This statement indicates that AI tools cannot correct this
type of bias on their own, but researchers developing such tools
and companies providing such tools can. One solution described
in the literature is to ensure diversity when collecting data
and to address bias in the design, validation, and deployment
of AI systems. Algorithms should be designed with the global
community in mind, and clinical validation should be performed
using a representative population of the intended deployment
population. Careful performance analyses should be performed
on the basis of population subgroups, including age, ethnicity,
sex, sociodemographic stratum, and location. Understanding the
impact of a new algorithm is particularly important; this means
that, if the disease spectrum detected using the AI system differs
from that identified using current clinical practice, then the
benefits and harms of detecting this different disease spectrum
must be evaluated (Kelly et al., 2019, 4–5). Owens and Walker
(2020) emphasize the fact that making analyses “race neutral”
is not enough and advocate taking a proactive, explicitly anti-
racist approach; they even suggest that failing to recognize and
anticipate structural bias in datasets or the social implications of
AI systems should be considered as scientific misconduct. They
urge readers to introduce a culture shift that would contribute
to alleviating inequities stemming from unreflective algorithmic
design. For this purpose, education on racial justice is needed
at all levels, as researchers and providers often do not have the
expertise to identify or address structural factors. Balthazar et al.
(2018) suggest that active engagement with small population
data sets is needed to consider social determinants of health
and to promote access to data from underprivileged populations.
Learning to identify these biases can promote “algorithmic
fairness,” and ML approaches might be used to correct them
(Abràmoff et al., 2020). Geis et al. (2019, 331) propose certain
questions that can be asked to identify bias to advance toward
algorithmic fairness: How and by whom are labels generated?
What kinds of bias may exist in the datasets? What are the
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possible risks that might arise from those biases?What steps have
we taken to mitigate these risks?

Guiding Principles
Approaches that can be taken to meet the expectations described
and to tackle the challenges are often formulated as principles
in the literature. This reflects an understanding of “bioethics as
a scholarly discipline and its methodological approaches, with
focus on the so-called “principlism” and the widely known four
principles, namely beneficence, non-maleficence, autonomy, and
justice” (Rasheed et al., 2021, 15). The proliferation of guidelines
and recommendations makes it difficult for developers and
users of AI systems to decide which ethical issues to address
(Ryan and Stahl, 2020). These principles are often developed to
provide guidance for many different stakeholder groups and lack
specificity, presenting concepts that are often too abstract and
broad and are difficult to adopt to address practical issues (Ryan
and Stahl, 2020).

Explainability and Interpretability

To manage the risks inherent in the use of medical black boxes
and the resulting bias, the requirement is often posed that the
way an AI system arrives at its decision must be transparent
and sufficiently understandable for the “human-in-the-loop” to
improve patient safety and to gain the patient’s trust. For that
reason, “explainability” has become a key principle in the area
of AI ethics, and especially in the context of healthcare.

The discourse has developed such that explainability and
interpretability have become two closely associated concepts,
and these concepts are often used synonymously by different
authors of the reviewed literature. However, these concepts
express two different directions of thought: Interpretability
refers to how well one can understand how an AI system
works, while explainability refers to how well one can explain
what happens in AI decision-making in understandable terms
(Brady and Neri, 2020; Rasheed et al., 2021). The conceptual
constellation revealed in the review of the literature overlaps,
often without clarity, with the concepts of interpretability,
explainability, intelligibility, understandability, transparency,
trustworthiness, agency, accountability, reliability, explicability,
communication, and disclosure. And some authors define one
term by using another. For example, explainability is defined
as “AI’s capacity for transparency and interpretability” and
“designing explainability into AI tools is essential if they are to
be trusted and if their users are to be able to exercise agency
whenmaking decisions, whether they be professional or lay users.
In other words, AI must be accountable to users for the ways
in which they behave” (Procter et al., 2020, 2). In other papers,
explainability is associated with transparency, as in the comment
“if an algorithm fails or contributes to an adverse clinical event,
one needs to be able to understand why it produced the result
that it did and how it reached a decision. For a model to be
transparent, it should be both visible and comprehensible to
outside viewers. How transparent a model should be is debatable”
(Geis et al., 2019, 331). And transparency is then related, in turn,
to accountability, as illustrated by Akinci D’Antonoli’s comment
(2020, 509) that “Transparency and accountability principles

can be brought under the explicability principle. Artificial
Intelligence systems should be auditable, comprehensible and
intelligible by “natural” intelligence at every level of expertise,
and the intention of developers and implementers or AI systems
should be explicitly shared.”

Overall, transparency is one of the most widely discussed
principles in the AI ethics debate and is becoming one of
the defining characteristics. Nevertheless, some scholars still
question how much transparency AI systems should have
without leaving them open to malicious attacks or intellectual
property breaches (Ryan and Stahl, 2020) or enabling their
misuse for harmful purposes outside the clinical context (Watson
et al., 2019). Brady and Neri (2020) point out that the more
explainable an AI model is, the less it can utilize the power of DL.
Thus, some authors consider that transparency and explainability
should be placed in a human context, as humans are often
also unable to fully explain their decisions and the outcomes of
their reasoning. Watson et al. (2019, 3) specifically mention that
“clinicians are not always able to perfectly account for their own
inferences, whichmay be basedmore on experience and intuition
than explicit medical criteria.” Even without the intervention
of AI, complex diagnoses can be difficult to explain to other
professionals or to patients. Even without the intervention of
AI, complex diagnosis can be difficult to explain to other
professionals or to patients. If this perspective is taken, the
expectation for AI should be that “AI can explain itself at least as
well as human explain their own actions and reasonings, systems
would demonstrate transparency and honesty” (Ware, 2018, 21).

The issue of interpretability and explainability has interesting
ramifications with reference to contestability, which is
understood as the capacity of individuals (patients or medical
staff) to contest and counter medical decisions (Sand et al.,
2021). In line with this, the European General Data Protection
Regulation (GDPR) has emphasized the patient’s right to receive
an explanation as a top priority in ML research. The right to
an explanation encompasses the right to receive an explanation
about the outputs of the algorithm, especially when decisions
need to be made that significantly affect an individual. Ferretti
et al. (2018, 321) explain that “the idea of a right to explanation
stems from the value of transparency in data processing and
it is intended to counterbalance the opacity of automated
systems.” Individuals have a right to protect themselves against
discrimination; to do so, they have a right to know how decisions
that affect them are made. In the case of AI applications in
healthcare, individuals should have a right to contest (suspected)
bias in the diagnostic process or the treatment selection process.

Trust and Trustworthiness

“Trust is such a fundamental principle for interpersonal
interactions and is a foundational precept for society to function”
(Ryan and Stahl, 2020, 74) and, thus, it is a key requirement
for the ethical use of AI. As such, it has been chosen as one
of the guiding principles by the High-Level Expert Group of
the European Commission (2019) and identified as the defining
paradigm for their ethics guidelines.

The review enabled us to find some consensus in the literature
that black boxes and the lack of interpretability and explainability
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can lead to a lack of trust (worthiness) in and acceptance of
AI systems by clinicians and patients (Ware, 2018; Quinn et al.,
2021). This aspect requires special consideration, as AI involves
an element of uncertainty and risk for the vulnerable patient.
Therefore, explainability is key to encouraging trust in an AI
system, i.e., because people trust what they can understand
(Larasati and DeLiddo, 2020). Similarly, (Spiegelhalter, 2020, 8)
connects trust with explainability when proposing a series of
questions about trustworthiness that include “Could I explain
how it works (in general) to anyone who is interested? Could I
explain to an individual how it reached its conclusion in their
particular case?” Transparency becomes a fundamental factor:
AI systems should be transparent enough that those using them
can have access to the processes that govern them and be able to
explain them. This requires access to accessible, intelligible, and
usable information that can be effectively evaluated. In turn, a
lack of explainability, lack of transparency, and lack of human
understanding of how AI systems work will inevitably result in
clinicians failing to trust decisions made by AI, as well as failing
to trust the reliability and accuracy of such systems (Larasati and
DeLiddo, 2020; Bjerring and Busch, 2021).

Given the fact that trust is repeatedly emphasized in the
literature as a key ethical principle and mentioned as a
prerequisite for the successful implementation of AI systems in
medical practice, it is surprising that the authors of the reviewed
papers preserve a relative silence regarding the need for an in-
depth analytical approach with trust as a concept, although they
echo the value of such trust. However, Quinn et al. (2021, 3)
note that “the medical profession is built on various forms of
trust”—and these forms of trust, its conditions, and social and
institutional contexts would require a deeper analysis.

Responsibility and Accountability

AI’s lack of transparency also has an impact on matters of
responsibility and accountability. Ryan and Stahl (2020, 74)
specifically point out that “End users should be able to justly
trust AI organizations to fulfill their promises and to ensure
that their systems function as intended [. . . ]. Building trust
should be encouraged by ensuring accountability, transparency
and safety of AI.” In that sense, “criminal liability, the tort of
negligence, and breach of warranty must be discussed before
utilizing AI in medicine” (Matsuzaki, 2018, 268). Neri et al.
(2020) pose the question of who is responsible for benefits and
harms resulting from the use of AI in radiology, and, like Akinci
D’Antonoli (2020), claim that radiologists remain responsible for
the diagnosis when using AI, even if they might be validating
something unknown that is based on black boxes and possible
automation bias. Therefore, radiologists should be taught how
to use AI tools appropriately and familiarized with the guiding
principles for increasing trust in AI. (Geis et al., 2019, 333)
underlined this point effectively by stating that “Radiologists
will remain ultimately responsible for patient care and will need
to acquire new skills to do their best for patients in the new
AI ecosystem.”

Sand et al. (2021) argue that the kind of accountability and
responsibility that is being pursued in medical AI is connected to

liability and blame. As an alternative, they propose a “forward-
looking responsibility,” which “can be understood as a safeguard
to decrease the risk of harm in cases of cognitive misalignment
between the physicians and the AI system—when an AI output
cannot be confirmed (verified or falsified)” (Sand et al., 2021,
3). Accordingly, the authors list the following responsibilities of
clinicians: the duty to report uncertainty (sensitivity/specificity
rates) to the patients; to understand and critically assess whether
AI outputs are reasonable given a certain diagnostic procedure;
to know and understand the input data and its quality; to have an
awareness of their own experience and decline in skills; to have an
awareness and understanding of the specificity of the task; and to
assess, monitor, and report the output development over time.

One of the challenges of AI application in healthcare is
the role of private companies who own the AI systems. Ryan
and Stahl (2020, 71) mention the risk that companies try to
“obfuscate blame and responsibility.” This lack of transparency
regarding who is truly responsible and accountable further
complicates issues of liability and undermines the ability of
clinicians to act with integrity. Mudgal and Das (2020, 7) note
that this lack of transparency and the subsequent problems that
arise could be solved by maintaining a “human-in-the-loop”
perspective, keeping the liability and responsibility within the
field of responsibility of the radiologist and their employer.

Justice and Fairness

Justice is one of the four principles of bioethics: autonomy,
beneficence, non-maleficence, and justice (Beauchamp and
Childress, 2001). Some of the reviewed sources refer to some
extent to which these four principles apply to AI (Akinci
D’Antonoli, 2020; Currie et al., 2020; Rasheed et al., 2021). Justice
is also one of the three principles proposed in the Belmont
Report (United States National Commission for the Protection of
Human Subjects of Biomedical Behavioral Research, 1978), one
of the most widely recognized standards for biomedical ethics. In
this report, justice refers to the idea that the benefits and costs
of research and medical care should be distributed fairly (Larson
et al., 2020).

Along with trust, transparency, accountability, and other
principles, “diversity, non-discrimination and fairness” are
principles that were proposed by the High-Level Experts Group
on Artificial Intelligence of the European Commission in 2018.
As Neri et al. (2020, 519) state, “the group recommended that the
development, deployment and use of AI systems should adhere to
the ethical principles of respect for human autonomy, prevention
of harm, fairness/equity and explicability.” The principle of
justice often appears to be associated with beneficence and
non-maleficence, as the unfair distribution of resources leads
to discrimination and can cause harm. (Geis et al., 2019, 330)
pointed out that it is necessary to “inspire radiology AI’s builders
and users to enhance radiology’s intelligence in humane ways to
promote just and beneficial outcomes while avoiding harm to
those who expect the radiology community to do right by them.”
The association between injustice, discrimination, and unfair
decisions made by AI systems has been also linked to bias in
the reviewed literature, as “discrimination and unfair outcomes
stemming from algorithms has become a hot topic within the
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media and academic circles” (Ryan and Stahl, 2020, 67). Biased
AI systems lead to unfair, discriminatory behavior or mistaken
decisions (Morley et al., 2020) and to the aforementioned
“algorithmic unfairness” (Abràmoff et al., 2020).

Integrating AI systems in medicine incurs the risk of
replicating discriminations that already exist in society;
therefore, “the development of AI should promote justice while
eliminating unfair discriminations, ensuring shareable benefits,
and preventing the infliction of new harm that can arise from
implicit bias” (Akinci D’Antonoli, 2020, 508–509). AI tools
can decide in favor of one group of patients due to implicit
biases rather than prioritizing a real emergency in radiology,
underlining the necessity for everybody involved in the process
to adhere to ethical guidelines that promote justice.

DISCUSSION

This literature review was carried out to identify ethical issues
discussed in the recent academic literature associated with the
use of AI in healthcare and to determine how these are being
tackled in view of biomedical research, and especially in radiology
and oncology imaging. This review enabled us to identify key
themes which place a focus on expectations about medical AI,
challenges posed by the use of this technology, and approaches
that can be taken to ensure ethical AI use. Most of these themes
are formulated by the authors as principles. In this section of
this article, we critically discuss our findings from an ethical and
social science perspective.

Several expectations are expressed in the literature regarding
the potential for medical AI use to improve diagnostic
performance and patient outcomes, but the socio-technological
conditions under which these expectations can be met, and,
at the same time, challenges can be managed are not clearly
defined. We previously quoted that “the state of AI hype
has far exceeded the state of AI science, especially when it
pertains to validation and readiness for implementation in
patient care” (Topol, 2019, 51). This statement illustrates an
important gap: The contexts in which medical AI tools are being
implemented have not been thoroughly explored. Considering
the results of our review, this holds particularly true regarding the
close connection between AI algorithms and societal structures.
Although some scholars have discussed the fact that AI use
“can increase systemic risks of harm, raise the possibility of
errors with high consequences, and amplify complex ethical
and societal issues” (Geis et al., 2019, 330), few studies have
clearly defined exactly how AI tools interact with pre-existing
systemic harm, how they can contribute to this harm, or how
complex ethical and societal issues might be amplified through
the use of such tools. In the reviewed literature, we identified a
need for profound, specific, and interdisciplinary conversations
about how firmly AI is embedded in systemic structures and
power relations that intersect with identity traits (e.g., gender,
race, class, ability, education) and about the implications of
private ownership and the role of corporations, profit-making,
and geopolitical structures.

Bias
In that sense, we have observed that bias has not been framed
in the context of power relations and societal conditions, nor
has it been referenced to the existing body of research on,
e.g., how gender and race shapes and affects biomedicine and
healthcare practice (Roberts, 2008; Schiebinger and Schraudner,
2011; Oertelt-Prigione, 2012; Kaufman, 2013) or how gender
and racial bias in algorithms could have a negative impact in
certain areas of society (e.g., O’Neil, 2016; Noble, 2018). Bias
has been shown to affect every stage of data processing (i.e., in
generating, collecting, and labeling data that are used to train AI
tools) and to affect the variables and rules used by the algorithms.
Hence, AI tools can be taught to discriminate, reproduce social
stereotypes, and underperform in minority groups, an especially
risky proposition in the context of healthcare (Char et al., 2018;
Wiens et al., 2019).

In the analyzed sample, little attention was given to sex
and gender bias in AI systems used in healthcare. Nonetheless,
research has already been done to analyze in detail how sex
and gender bias is generated, how it affects patients and society,
and how its effects can be mitigated. Using sex- and gender-
imbalanced datasets to train deep-learning-based systems may
affect the performance of pathology classification with minority
groups (Larrazabal et al., 2020). Other authors also show that
these social categories could influence the diagnosis although
there is no direct link to the disease, and that potentially
missed detection of breast cancer at mammography screening
was greater among socioeconomically disadvantaged groups
(Rauscher et al., 2013). Unfortunately, most of the currently used
biomedical AI technologies do not account for bias detection,
and most algorithms ignore the sex and gender dimensions
and how these contribute to health and disease. In addition,
few studies have been performed on intersex, transgender, or
non-binary individuals due to narrow and binary background
assumptions regarding sex and gender (Cirillo et al., 2020).
Ignoring how certain identity traits affect the application of AI
systems in healthcare can lead to the production of skewed
datasets and harm certain minority people and groups. Applying
feminist standpoint theory (Haraway, 1988; Hekman, 1997),
some authors argue that all knowledge is socially situated and that
the perspectives of oppressed groups are systematically excluded
from general knowledge and practices that ignore the specific
identity traits of certain individuals. Based on this argument,
knowledge must be presented in a way that enables people
to be aware of intersecting power relations that influence its
production. The results of our literature review indicate that,
rather than ignoring sex, gender, or race dimensions, close
attention must be paid to these dimensions in datasets (Zou and
Schiebinger, 2018; Larrazabal et al., 2020), even to the extent of
introducing an amount of desirable bias to counteract the effects
of undesirable biases that result in unintended or unnecessary
discrimination (Cirillo et al., 2020; Pot et al., 2021).

Diversity in the datasets becomes an increasingly important
point that is being addressed by researchers to counteract bias
that can be potentially harmful (Leavy, 2018). Nonetheless,
ensuring diversity in and of itself is not enough (Li et al.,
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2022); more research is needed to understand how discrimination
intersects with socioeconomic factors to keep bias from
being introduced into healthcare algorithms through structural
inequalities in society (Quinn et al., 2021). Anticipating structural
bias in datasets and understanding the social implications of
using AI systems before their implementation is considered best
practice; some authors in the sample even propose that failing
to do so should be qualified as scientific misconduct (Owens
and Walker, 2020). This will require reflecting on how social
categories are constructed in big data-driven research and on how
the underlying social classification and categorization systems are
incorporated into and reproduced in the knowledge produced
from analyzing the existing datasets (Goisauf et al., 2020).

Lack of Analytic Accuracy
We observed that explainability and interpretability were often
used interchangeably with other terms such as understandability
and even transparency in our sample, as clear definitions of
and analytic distinction between the terms are lacking. The
lack of analytical precision that can be observed in the ethics
of AI literature often leads to a lack of specificity and vague
assumptions that do not enable scholars to reach the core of
certain issues that are associated with epistemic justice (Fricker,
2007). The GDPR, for instance, states that subjects have a right
to understand their lived experiences, especially experiences of
injustice. Although research addresses the problem of how this
right to an explanation is outlined in the legislation (Edwards
and Veale, 2017), we argue that the lack of knowledge about why
and how certain decisions that impact (negatively) our lives are
made constitutes a specific wrongful act, i.e., epistemic injustice
(Fricker, 2007). This injustice results in someone being wronged
specifically in their capacity as a possessor of knowledge; they
are wronged, therefore, in a capacity essential to human value.
The opacity of AI and the implications of the use of AI tools
makes it difficult for patients to exercise their autonomy. This
inability is consequently also reflected in their practical limitation
to give their informed consent and affects their capacity to contest
decisions. To address epistemic injustices, knowledge must be
made available to people affected by the decisions made by
AI technology.

In our sample literature, the possibility of making information
available and understandable is often treated as a technical
feature of AI. It may then seem as though these issues are
technical problems that can be solved by applying technical
solution that deal with black boxes. Again, we have observed
a need to take a social sciences perspective and to achieve a
broader understanding of how our epistemic capabilities are also
intertwined with power relations. In “AI ethics, technical artifacts
are primarily seen as isolated entities that can be optimized by
experts so as to find technical solutions for technical problems.
What is often lacking is a consideration of the wider contexts
and the comprehensive relationship networks in which technical
systems are embedded” (Hagendorff, 2020, 103). It will be
necessary to carefully consider the structures that surround the
production and distribution of knowledge by performing further
analyses of the ethics of AI in healthcare.

Trust
Trust was oftenmentioned as an important factor in the reviewed
literature, and trustworthiness has become a key principle
regarding ethical AI. As we have shown, a clear definition
and deeper understanding of the complexities of trust in AI
are lacking. In the reviewed literature, for example, we found
that trustworthiness is conflated with acceptance (Gaube et al.,
2021) or explainability (Larasati and DeLiddo, 2020). Some
authors have mentioned that “a possible imbalance in the data
should be considered when developing the model to ensure the
trustworthiness of the model” (Alabi et al., 2020, 7). However,
for a model to be considered worthy of trust, more than simple
technical solutions that even out technical “imbalances” in the
training phase are needed, and especially when a risk of gender
or racial bias exists. This is a more complex issue that will need
to be addressed. Also, while it is important to encourage trust in
technology, trust is built on the foundation of social relations.
Healthcare practitioner-patient relationships are based on trust
and empathy (Morley et al., 2020), and decision-making in the
medical context, and especially in connection to technology, is
often based on “gut feelings” (Goisauf and Durnová, 2018).

Previous research has shown that trust cannot be understood
as unidirectional. Instead, trust needs to be understood as a
complex, situated, context-dependent, and relational concept
that involves several trustor/trustee relationships, such as trust
in persons (e.g., scientists who trust each other, patients who
trust scientists and clinicians), technology, and institutions
(Wyatt et al., 2013; Bijker et al., 2016). Trust involves “the
willingness to accept vulnerability based on positive expectations
about another’s intentions or behaviors [. . . ] Trust makes
decision making more efficient by simplifying the acquisition
and interpretation of information. Trust also guides action by
suggesting behaviors and routines that are most viable and
beneficial under the assumption that the trusted counterpart
will not exploit one’s vulnerability” (McEvily et al., 2003, 92–
93). In building trust, embodied experience matters, and this
experience occurs as an emotional reaction, e.g., in the form of
the aforementioned “gut feelings” (Goisauf and Durnová, 2018).
Trust or more precisely trusting relationships are fragile and
require continuous work, which means that they need to be
actively established and sustained. This includes trustworthiness
(i.e., the idea that a person or object is worthy of being trusted),
which is a key requisite for the sustainability of a trusting
relationship (McEvily et al., 2003). To ensure trustworthiness,
researchers must understand how trusting relationships are
constituted via the social process, how trust in technologies is
established and sustained, and under what conditions AI can be
deemed trustworthy.

This discussion places an emphasis on trusting relationships
between a practitioner and patient regarding medical AI use,
the expectations and brings the needs of these actors into
focus. Unfortunately, this is rarely the case in the reviewed
literature, as relatively little attention is paid to the patients’
and radiologists’ perspectives, with only a few exceptions (e.g.,
Balthazar et al., 2018). However, (Ferretti et al., 2018, 331)
stated that “more research is needed to understand patients’
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and physicians’ attitudes toward opacity in AI systems.” Patients
clearly want to be informed about how their health data are
used (also a requirement of the GDPR), and the engagement
of members of the public, patients, practitioners, and those
developing the technology will be crucial to build trust and ensure
both public and professional support.

CONCLUSIONS AND FUTURE
DIRECTIONS

Performing this literature review, we have looked back at how
current discourses revolve around the ethical and societal issues
related to AI use in radiology. We have identified imaginaries
of science and technology as aspects that are neutral, universal,
and detached from societal structures, imaginaries that have
already been described in the philosophy of science and STS fields
(Haraway, 1988; Longino, 1990; Fox Keller, 1996).

We have observed that the current literature discourse
does not delve into the broader origins and implications
of bias, especially when bias is treated only as a technical
problem with a technical solution. We believe that integrating
a social science perspective into the analysis of ethical and
societal issues associated with AI use in radiology is crucial
to understanding the scope of these issues. To thoroughly
address the topic of ethical AI use in radiology, a perspective
must be taken to analyze how science is situated in a certain
socioeconomic context and to understand the application of
AI systems in medicine as a situated practice. Understanding
the socioeconomic context is a fundamental step that will
enable scholars to gain this perspective. In the future, inter-
and trans-disciplinary research should be carried out to help
situate knowledge production and its ethical and societal
implications. In this sense, it will be necessary to shift
from DL about to a deep understanding of the societal
implications, and in particular to an understanding of the
interactions of social values and categories with scientific
knowledge production, of the relations between knowledge and
societal trust that affects how science functions in society, and
especially of how new technologies are perceived and accepted
in society.

This review and the ensuing discussion also enabled us to
identify a lack of precision regarding the use of terms for
principles that have been proposed to apply AI technology
more ethically in the future. Terms such as trustworthiness,
transparency, or trust are extensively used in the literature, often
without clearly defining specifically how they are meant or used.

Researchers working in the field of ethics of AI in medicine

will need to strive for accuracy and precision by providing clear
definitions for these concepts in this specific context and by
situating them within a broader context. In order to do this,
interdisciplinary research with social scientists but also with
clinicians in order to incorporate clinical concepts (Lekadir et al.,
2021, 31) will be crucial.

More interdisciplinary and concrete research will deepen our
understanding of biases in radiology. Adopting an intersectional
perspective that takes into consideration how different traits of
our identity intersect will be crucial, especially in the case of
breast cancer. As previous research has shown, other factors
that intersect with gender contribute to the formation of bias,
such as ethnicity, skin color, socioeconomics, geography or breast
density (Lekadir et al., 2021). In this regard, the issue of gender
bias in female-only datasets requires a more detailed analysis.
Considering breast cancer in connection to gender can lead to the
abridged conclusion that gender bias could not have a significant
impact. However, this reflects a one-dimensional understanding
of gender as a social category, since gender is never isolated,
but occurs at the intersection with other categories. Therefore,
women cannot be assumed to be a homogeneous group, but
are differentiated along other categories such as age, race, and
socioeconomic background, which, as has been shown, could
have an influence on breast cancer diagnosis.

In conclusion, the value of AI for radiology would increase
by integrating a more precise and interdisciplinary consideration
of the societal context in which AI is being developed to generate
more just outcomes and allow all members of society equal access
to the benefits of these promising applications.
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Use of virtual reality in oncology:
From the state of the art to an
integrative model

Hélène Buche1*, Aude Michel1,2* and Nathalie Blanc1

1Univ Paul Valéry Montpellier 3, Epsylon Ea 4556, Montpellier, France, 2Montpellier Institut Du Sein,
Clinique Clémentville, Montpellier, France

Over the past 20 years, virtual reality (VR) has been the subject of growing

interest in oncology. More and more researchers are studying the effects of

virtual environments to contribute to current thinking on technologies likely to

support patients undergoing oncological treatment. Recent research highlights

how VR can divert attention while reducing anxiety in stressful healthcare

situations through its multisensory and participative nature. VR appears to be

a promising tool capable of reducing cancer-related anxiety symptoms,

improving treatment adherence, and increasing satisfaction with oncology

care. While the literature reports these positive effects in the therapeutic

management of cancer, few studies have focused on theoretical models

capable of explaining the psychological benefits of virtual immersion. This

literature review provides a theoretical framework combining results from all

relevant empirical work in oncology. The review can help researchers identify

the optimal conditions for using VR in oncology and bridge the gap between

divergent devices, modalities, and practices (e.g., headmounted displays,

environments, interactivity, immersion time).

KEYWORDS

cancer, anxiety, pain, immersion, presence, interaction, equipment

1 Introduction

For the past 30 years, the number of new cancer cases has been steadily increasing.

The National Cancer Institute (Institut National du Cancer, 2019) reported

328,000 diagnoses in metropolitan France in 2018 compared to 320,000 in 2005. The

most common cancers in men were prostate cancer (48,427 new cases in 2013), followed

by lung (32,500 cases) and colorectal (24,000 cases). In women, breast cancer was themost

frequent (59,000 cases), followed by colon-rectal cancer (21,000 cases) and lung cancer

(17,000 cases) (Defossez et al., 2019). Many stress factors have been identified at different

times in cancer management, including diagnosis, treatment, and long-termmanagement

of the disease (Chirico et al., 2015). Among patients treated for cancer, 55% met clinical

criteria for an anxiety disorder (O’Connor et al., 2010), with an increase to 77% in patients

who received chemotherapy (Nikbakhsh et al., 2014). In addition, the prevalence of

cancer-related pain was 39.3% in patients who received curative treatment, increasing to

55% in patients undergoing cancer treatment and reaching 71% in advanced or metastatic
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cancer (Van den Beuken-van Everdingen et al., 2016; Alawneh

et al., 2017). Many stress agents and physical symptoms can cause

increased emotional distress (Arrieta et al., 2013).

In this context, virtual reality (VR) is the object of interest

and curiosity in cancerology. More and more researchers are

studying the effects of VR to improve the conditions of

oncological treatments (Pittara et al., 2020). Most studies have

highlighted the benefits of VR, which, thanks to its distraction

power, can divert attention while reducing the anxiety and pain

of patients facing particularly distressing care situations (Chirico

et al., 2016; Ahmad et al., 2020). Although the literature focuses

on the positive effects of this tool in the context of cancer

treatment, few studies have focused on the theoretical models

of cognitive science that explain and try to understand the

benefits of VR. Rather than viewing it as a technical medium,

in-depth research based on an appropriate theoretical framework

is needed to explore the complexity of virtual environments (de

Loor and Tisseau, 2011). Only these foundations can give

scientific legitimacy to this technological revolution (de Loor

and Tisseau, 2011) and provide us with elements of knowledge

on the mechanisms that promote patients’ emotional wellbeing.

Let us note that beyond understanding the mechanisms, these

foundations could be used as support to design specialized

interfaces adapted to different clinical situations.

VR became more accessible for consumer use after 2016

(Tsaï, 2016). It is “the application that allows the user to navigate

and interact in real-time with a three-dimensional environment

generated by a computer” (Pratt et al., 1995). This artificial

environment is usually made possible using a computer screen

that responds to the individual’s head movements by providing

synthetic sensory stimuli such as images of real or imaginary

landscapes, spatialized sounds, and sometimes tactile or olfactory

feedback (Chirico et al., 2016; Chirico et al., 2019). VR equipment

also includes devices that allow action in the virtual world, such

as a mouse, keyboard, or more sophisticated game controllers

(Pittara et al., 2020; Indovina et al., 2018). In other words,

different systems offer users different sensations and levels of

involvement.

The development of high-performance virtual reality devices

accelerates innovation focused on health to facilitate the

realization of cancer care by offering a quality immersive

device allowing patients to escape from their distress and

painful medical situations (Pittara et al., 2020; Ahmad et al.,

2020). Immersion in a virtual environment is considered both as

a distractor (reducing anxiety and pain) (Chirico et al., 2019; Bani

Mohammad and Ahmad, 2018; Ahmadpour et al., 2020) and as a

tool for emotional regulation (reducing negative emotions,

inducing positive emotions), allowing improvement in care

tolerance (Pizzoli et al., 2019).

The benefits of VR were first observed in oncology during

chemotherapy sessions. The results were encouraging (Oyama

et al., 1999; Schneider and Workman, 1999), promoting a

decrease in anxiety, an improvement in mood as well as an

underestimation of care time (Schneider and Workman, 1999;

Schneider et al., 2003), (Schneider et al., 2004; Schneider and

Hood, 2007). Today, the distractive power of VR is of interest in a

range of oncology situations ranging from palliative care (Niki

et al., 2019; Johnson et al., 2020) to the support of hospitalized

patients during various medical procedures (Pittara et al., 2020;

Ahmad et al., 2020; Zeng et al., 2019).

Although several studies have emphasized the effectiveness

of VR distraction in oncology, the virtual reality devices used are

wildly divergent in terms of content, intervention strategies, and

technological qualities. It is thus necessary to go beyond the

wonder and attractiveness that VR arouses to resist this

technological hype toward rethinking and resituating its use

within our knowledge of the human. This literature review

aims to take stock of the benefits of using VR as a distraction

tool for anxiety and pain management in oncology. To this end,

the results known to date are listed, and their analysis is

considered according to the methodology used. This literature

review aims to bring out the points of consensus and the

methodological divergences in the research while emphasizing

that few interventional studies are theoretically anchored. Based

on this review of the available literature, recommendations will

be made to enable the research community to move towards

common methodological choices and thus improve clinical

practice. Another aim of this literature review is to leverage

the theoretical foundations identified toward a theoretical model

that will allow us to think about the contributions of VR in

oncology, especially the cognitive and emotional processes

involved.

2 Method

2.1 Data source and search method

Based on the PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) method, we

proceeded stepwise using six computerized databases: Google

Scholar, PubMed, PsychInfo, Academic Search Premier, Ebsco,

and Sciencedirect to search for relevant studies. We limited the

search to 10 years (2011–2021). In each database, we used the

same search terms: virtual reality and cancer, virtual reality and

oncology, virtual reality and anxiety, virtual reality and cancer

and anxiety, virtual reality and pain, virtual reality and cancer

and pain. We also manually searched bibliographic references of

included studies and previously published systematic reviews.

2.2 Study selection

Our inclusion criteria incorporated studies explicitly

examining the effectiveness of VR as a distraction tool in

oncology. In this sense, we excluded all studies that were
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unrelated to cancer and all research conducted with cancer

populations whose purpose was not associated with

distraction to improve emotional state and decrease pain.

2.3 Data collection

To collect the data, we extracted all relevant information

from the selected articles into an Excel file: characteristics of the

study population sample, type of cancer, psychological variables,

VR equipment, environments, immersive tasks, methodology,

objectives of the studies, medical context, stated theoretical

frameworks and main results, as well as current limitations of

VR and its future direction.

2.4 Data analysis

The selected articles were subjected to a literature review

to exploit and classify the results according to recurrent

characteristics that allowed the different studies to be

compared. The selected characteristics included VR

equipment, immersive modalities, environments,

effectiveness of VR in oncology, theoretical basis for the

benefits of VR, limitations, and future direction of VR

distraction to decrease pain intensity and anxiety in clinical

situations.

3 Results

3.1 State of the art presentation

3.1.1 Characteristics of the studies
3.1.1.1 Population

Nearly three-quarters of the selected studies evaluating the

intervention of VR during the management of cancer patients

(1,153 participants aged 6–85 years) were conducted with adults

(72, 73%, 16/22 studies) (Chirico et al., 2019; Bani Mohammad

and Ahmad, 2018; Pizzoli et al., 2019; Niki et al., 2019; Johnson

et al., 2020; Schneider et al., 2011; Espinoza et al., 2012; Baños

et al., 2013; Li et al., 2016; Glennon et al., 2018; Gupta and Hande,

2019; Higgins et al., 2019; Garrett et al., 2020; Gerçeker et al.,

2020; Scates et al., 2020; Buche et al., 2021). The remaining

studies were conducted in pediatric oncology (27, 27%, 6/

22 studies) (Li et al., 2011; Atzori et al., 2018; Birnie et al.,

2018; Semerci et al., 2020; Sharifpour et al., 2020; Tennant et al.,

2020).

3.1.1.2 Type of cancer in which virtual reality has been

proposed

The qualitative analysis of these studies reveals a clear

diversity in the medical context for evaluating the effects of

VR according to the type of cancer. As shown in Figure 1, more

than a third of the studies were performed during the treatment

of breast cancer (36.36%) (Chirico et al., 2019; Bani Mohammad

FIGURE 1
Type of cancer in which VR has been proposed.
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and Ahmad, 2018; Pizzoli et al., 2019; Schneider et al., 2011;

Espinoza et al., 2012; Gupta and Hande, 2019; Garrett et al., 2020;

Buche et al., 2021) and almost a third during the management of

blood cancer (e.g., leukemia) and/or lymphatic system (e.g.,

lymphoma) (27.27%) (Glennon et al., 2018; Garrett et al.,

2020; Li et al., 2011; Atzori et al., 2018; Birnie et al., 2018;

Tennant et al., 2020). A few studies have examined the effects of

VR during treatment of lung cancer (Niki et al., 2019; Schneider

et al., 2011; Espinoza et al., 2012; Garrett et al., 2020), bone cancer

and brain tumors (Li et al., 2011; Birnie et al., 2018; Sharifpour

et al., 2020; Tennant et al., 2020) (18.18% each). Few studies

included patients with germ cell tumors (13.64%) (Li et al., 2011;

Sharifpour et al., 2020; Tennant et al., 2020), skin cancer (9.09%)

(Higgins et al., 2019; Tennant et al., 2020), or kidney cancer

(9.09%) (Niki et al., 2019; Garrett et al., 2020), while some types

of cancer were invoked only once in VR applicability (4.55%

each) (see Figure 1: Type of cancer in which VR has been

proposed) (Niki et al., 2019; Schneider et al., 2011; Espinoza

et al., 2012; Baños et al., 2013; Garrett et al., 2020; Sharifpour

et al., 2020).

3.1.2 Context of virtual reality intervention in
oncology

In addition to the types of cancer, studies have evaluated the

benefits of VR according to the context of VR use (see Figure 2:

Contexts of Use). In the context of long-term hospitalization, VR

is used as a distraction tool to promote emotional and physical

well-being (31.81%, 7/22 studies) (Bani Mohammad and Ahmad,

2018; Espinoza et al., 2012; Baños et al., 2013; Gupta and Hande,

2019; Higgins et al., 2019; Li et al., 2011; Tennant et al., 2020). In

the context of day hospitalization, it is proposed in particular

when patients have to undergo a painful medical procedure

(i.e., catheter port placement, venipuncture, IV station, bone

marrow aspiration and biopsy) to reduce acute pain (27.27%, 6/

22 studies) (Glennon et al., 2018; Gerçeker et al., 2020; Scates

et al., 2020; Atzori et al., 2018; Birnie et al., 2018; Semerci et al.,

2020). Its application in oncology is no longer limited to

chemotherapy sessions (13.64%, 3/22 studies) (Chirico et al.,

2019; Schneider et al., 2011; Sharifpour et al., 2020). Distraction

under VR is now used in palliative care (9.09%, 2/22 studies) to

relieve symptoms in terminally ill patients (Niki et al., 2019;

Johnson et al., 2020) and at home (9.09%, 2/22 studies) to

manage patients’ chronic pain (Garrett et al., 2020), alleviate

symptoms of psychological distress and promote patient

empowerment (Li et al., 2016). In physiotherapy, this

distraction strategy has recently been proposed during post-

mastectomy scar massage sessions by comparing participative

and contemplative distraction (4.55%, 1/22 studies) (Buche et al.,

2021). Finally, only one study went outside themedical context to

test the first virtual laboratory experiment measuring the effects

of VR associated with two different relaxation techniques

(i.e., breath control vs. Body Scanning Procedure) on breast

cancer patients (4.55%, 1/22 studies) (Pizzoli et al., 2019).

3.1.3 Benefits of virtual reality in oncology
Distraction is a non-pharmacological technique increasingly

used by healthcare professionals to alleviate anxiety and pain

related to medical procedures (Bani Mohammad and Ahmad,

2018; Gold et al., 2007). The underlying mechanism of the power

of distraction relies on the limited cognitive resources of an

individual’s attention (Arane et al., 2017). An engaging and

attractive distractor diverts the patients’ attention and hinders

their ability to process external negative stimuli, decreasing

anxiety, and pain (Gold et al., 2007; Kleiber and McCarthy,

2006). Two forms of distraction can be distinguished: a passive

form (e.g., watching television, listening to music) and an active

form (e.g., electronic games) (Arane et al., 2017; Koller and

Goldman, 2012). Thus, using a distractor is a cognitive strategy

that can passively redirect the patients’ attention or actively

involve them in a task (Gold et al., 2007; Kleiber and Harper,

1999). VR is a powerful distractor as it can offer several degrees of

involvement by immersing the patient in a contemplative or

participative environment that mobilizes several senses (Chirico

et al., 2019; Ahmadpour et al., 2020; Buche et al., 2021). The

multimodal aspect of VR induces a subjective feeling of being

present in the environment (Chirico et al., 2019).

On the one hand, the effectiveness of VR lies in the intensity

of this multisensory immersion called the sense of presence

(Tennant et al., 2020), that is, the subjective experience of

being in another place than the one where the individual is

physically located (Witmer and Singer, 1998). On the other hand,

its effectiveness depends on the patients’ sensory, cognitive, and

emotional involvement as well as the level of acceptability of this

tool (Garrett et al., 2020). The degree of engagement and

interactivity are closely related to the sense of presence and

increased attention to distraction, leading to an increase in the

positive effects of VR (Birnie et al., 2018).

FIGURE 2
Context of VR intervention in oncology.
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3.1.3.1 Anxiety/stress

The benefits of VR have been shown to affect anxiety in

cancer patients (Chirico et al., 2019; Bani Mohammad and

Ahmad, 2018; Pizzoli et al., 2019; Niki et al., 2019; Espinoza

et al., 2012; Baños et al., 2013; Gupta and Hande, 2019; Higgins

et al., 2019; Garrett et al., 2020; Gerçeker et al., 2020; Scates et al.,

2020; Li et al., 2011; Tennant et al., 2020; Buche et al., 2021). Two-

thirds of the selected studies focused on anxiety relief (14/

22 studies, see Figure 3: Percentage of studies evaluating the

effects of VR in oncology) (Chirico et al., 2019; Bani Mohammad

and Ahmad, 2018; Niki et al., 2019; Johnson et al., 2020;

Schneider et al., 2011; Li et al., 2016; Glennon et al., 2018;

Gupta and Hande, 2019; Higgins et al., 2019; Gerçeker et al.,

2020; Scates et al., 2020; Li et al., 2011; Tennant et al., 2020; Buche

et al., 2021). In most cases, the application of VR as a distraction

tool promotes a significant decrease in anxiety during

chemotherapy sessions (Chirico et al., 2019), during

hospitalization (Bani Mohammad and Ahmad, 2018; Niki

et al., 2019; Gupta and Hande, 2019; Higgins et al., 2019;

Tennant et al., 2020), during painful procedures (Gerçeker

et al., 2020; Scates et al., 2020) and physiotherapy

rehabilitation (Buche et al., 2021). Participative VR seems to

be a more effective distractive strategy than music for improving

emotional wellbeing (Chirico et al., 2019). Distraction is defined

by Lazarus and Folkman’s (1984) stress and coping model

(Lazarus et al., 1984) as a coping strategy, namely the set of

cognitive and behavioral efforts intended to control, reduce, or

tolerate an aversive situation (Chirico et al., 2019). Distraction

under VR regulates patients’ emotional responses related to

distressing medical procedures through selective attention that

focuses attention on pleasant stimuli in the virtual environment.

Thus, using participative VR is an active “vigilant” strategy, while

listening to music is a distractive strategy that requires only

passive attentional engagement on the part of patients.

Moreover, immersion in a natural environment significantly

enhances the power of distraction by, among other things,

leading to increased feelings of peace and relaxation in

patients (Scates et al., 2020). Scates et al. (2020) support

Kaplan and Kaplan’s (1989) (Kaplan and Kaplan, 1989)

attention restoration theory that natural environments can

refocus attention but also Ulrich et al.’s (1991)

psychophysiological stress recovery theory (Ulrich et al., 1991)

where positive distractions involving natural elements (e.g., trees,

flowers, streams, etc.) help individuals combat stress. Beyond

natural content, (Niki et al., 2019) speculate that retrieval of

episodic memories involving the medial temporal lobe may

promote decreased anxiety and depression (Ramirez et al.,

2015). Thus, they suggest that the hippocampal region is

particularly involved in the biological mechanisms by which a

VR simulating a pleasant place already visited by the individual in

the real world would alleviate anxiety and depression.

3.1.3.2 Mood improvement

As for the studies focused on mood improvement (8/

22 studies), they generally show that VR can promote the

emotional wellbeing of patients (Pizzoli et al., 2019; Niki

et al., 2019; Buche et al., 2021; Li et al., 2011) by increasing

positive emotions such as joy or happiness and decreasing

negative emotions such as fear (Gerçeker et al., 2020), sadness

(Espinoza et al., 2012; Baños et al., 2013) and anger (Tennant

et al., 2020). Baños et al. (2013) refer to the broaden-and-build

theory proposed by Fredrickson et al. (2001), which is based on

positive psychology. According to this theory, the promotion and

experience of positive emotions expand individuals’ momentary

repertoires of thought-action. The ability to experience positive

emotions can create and strengthen lasting personal resources

that are useful for coping with difficult times during cancer

management.

3.1.3.3 Perception of pain

Half of the studies presented in Table 1 focused on the

reduction of pain intensity in oncology (11/22 studies) (Bani

Mohammad and Ahmad, 2018; Niki et al., 2019; Johnson et al.,

2020; Glennon et al., 2018; Garrett et al., 2020; Gerçeker et al.,

2020; Atzori et al., 2018; Birnie et al., 2018; Semerci et al., 2020;

Sharifpour et al., 2020; Tennant et al., 2020). The different

FIGURE 3
Percentage of studies evaluating the effects of VR in oncology.
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TABLE 1 Studies on the benefits of virtual reality.

Study Objectives Procedure Theoretical framework Results

Schneider et al.
(2011)

To decrease anxiety and reduce
perceived treatment time

Chemotherapy The pacemaker– accumulator cognitive
model of time perception Burle and Casini,
(2001); Wittmann and Paulus, (2008);
Droit-Volet and Gil, (2009)

Reduction of the perceived time
during the intervention

Li et al. (2011) To evaluate the benefits of therapeutic
VR games to help children cope with
hospital anxiety and depression

Hospitalization Decrease in depression

Espinoza et al.
(2012)

To induce positive emotions and
improve emotional wellbeing

Hospitalization Improvement of distress and
happiness level; Increase of positive
emotions (joy, relaxation); Decrease
of negative emotions (sadness,
anxiety)

Baños et al.
(2013)

To induce positive emotions and
improve the emotional wellbeing of
patients with metastatic cancer

Hospitalization Fredrickson’s theory (2001) broaden-and-
build theory; Fredrickson, (2001)

Increase in positive emotions (joy,
relaxation); Decrease in negative
emotions (sadness, anxiety)

Li et al. (2016) To alleviate symptoms of psychological
distress and promote patient autonomy
through low-cost VR distraction

At home Relaxing environment for most
participants

Atzori et al.
(2018)

To control pain in young patients
during venipuncture with VR
distraction

Painful procedure
Venipuncture

The Eccleston and Crombez’s (1999)
Attention Pain Theory; Eccleston and
Crombez, (1999)

Decrease in pain

Birnie et al.
(2018)

To manage pain (pain management) in
young patients using distraction in VR

Painful procedure:
Implantable Venous
Access (IVAD)

Fun and enjoyable pain
management; Interactivity,
engagement, and pleasure influence
the sense of presence resulting in a
decrease in the intensity of acute
pain

Glennon et al.
(2018)

To determine the effects of VR on pain
and anxiety

Painful procedure:
Bone marrow
aspiration and biopsy

No significant effects on pain and
anxiety

Bani Mohammad
and Ahmad,
(2018)

To decrease pain intensity and anxiety Hospitalization Improvement of morphine
analgesia; Decreased anxiety

Chirico et al.
(2019)

To relieve psychological distress
through distraction and improve
treatment tolerance

Chemotherapy The Lazarus and Folkman’s stress and
coping model (1984)
Lazarus et al. (1984)

Decreased anxiety after VR and
music therapy; More effective than
music therapy in decreasing anxiety
(NS), depression and fatigue

Gupta and
Hande, (2019)

To decrease hospital anxiety Hospitalization after
surgery (mastectomy)

Decreased anxiety and depression

Higgins et al.
(2019)

To minimize feelings of anxiety or pain Ambulatory surgery Significant improvement in patient
anxiety and satisfaction with VR, no
decrease in pain intensity

Niki et al. (2019) To improve the various symptoms of
terminal cancer patients

Palliative Decreased all cancer-related
symptoms in both conditions, but
NS for the “Places desired to visit but
never visited” group

Pizzoli et al.
(2019)

To promote emotional wellbeing
through two relaxation exercises in VR

Laboratory Soothing and pleasant state after
each relaxation exercise under VR,
but more relaxation after the body
scan

Sharifpour et al.
(2020)

To evaluate the effect of VR therapy on
chemotherapy-related pain

Chemotherapy The gate control theory of pain, Reduction
of attentional bias related to pain; Melzack
and Wall, (1996)

Improvement in pain intensity,
anxiety, catastrophizing and self-
efficacy; The positive effect of VR
remained constant in the 1st and 2nd
follow-up period

Garrett et al.
(2020)

To manage chronic pain (chronic pain
management) through daily VR
therapy

At home Immersive VR distraction facilitated
a sense of presence, drawing
attention away from pain; Improved
sleep quality and emotional state

Gerçeker et al.
(2020)

Distraction under VR: to decrease pain
intensity, fear and anxiety related to
Huber’s needle

Painful procedure Port
access

Decreased pain intensity, fear, and
needle anxiety in pediatric
hematology-oncology patients

(Continued on following page)
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results show that immersion in an artificial world is associated

with an analgesic effect (Bani Mohammad and Ahmad, 2018;

Niki et al., 2019; Garrett et al., 2020; Gerçeker et al., 2020; Atzori

et al., 2018; Birnie et al., 2018; Semerci et al., 2020; Sharifpour

et al., 2020; Tennant et al., 2020). VR is a pleasant and effective

distraction strategy used to reduce pain during medical

procedures that can be painful for patients, such as

venipuncture (Atzori et al., 2018) or veinous port access

(Gerçeker et al., 2020; Birnie et al., 2018; Semerci et al.,

2020). The immersive and participative experience can

significantly reduce the acute pain associated with treatments

(Bani Mohammad and Ahmad, 2018; Birnie et al., 2018;

Sharifpour et al., 2020; Tennant et al., 2020) and reduce

chronic pain (Niki et al., 2019; Garrett et al., 2020).

According to Eccleston and Crombez’s (1999) Attention

Pain Theory (Eccleston and Crombez, 1999), the illusion of

being in an artificial world and the patients’ interaction with

objects in the virtual environment may reduce the amount of

attention available to deal with painful stimuli, thus decreasing

the perception of conscious pain (Atzori et al., 2018). Within

the theory of Melzack and Wall (1960) (Melzack and Wall,

1996) entitled “Gate Control Theory of Pain,” the nervous

system contains a neurological gateway controlled by the

cortex that could either block the ascending and descending

pain signals or allow their transmission to the brain to continue

(Sharifpour et al., 2020). For example, attention and negative

emotions such as fear and sadness can open this gateway,

increasing pain perception. In contrast, distraction and

positive emotions such as joy and calmness can close this

gateway, decreasing pain perception. When the gateway is

open, nociceptive messages are allowed to reach the brain;

when it is closed, nociceptive messages are inhibited. Based

on this model, distraction under VR can alleviate pain by

decreasing negative emotions and favoring positive emotions,

thus inducing a decrease in pain perception. In other words,

virtual reality generates a slower reaction to pain reporting by

acting on attention, emotion, and in a broader sense, cognition

(Gold et al., 2007), (Arane et al., 2017).

3.1.3.4 Temporal perception

In the past 10 years, few studies have addressed the issue of

time perception in oncology (Schneider et al., 2003; Schneider

et al., 2004), (Schneider and Hood, 2007). One study (Schneider

et al., 2011), based on the simulation-accumulation cognitive

model (Burle and Casini, 2001; Wittmann and Paulus, 2008;

Droit-Volet and Gil, 2009), explains the effects of distraction

intervention on the perception of time. It seems that time spent

under virtual immersion passes more quickly due to the decrease

in heart rate and negative stimuli of the stressful context, thus

diverting attention from processing temporal information.

3.1.4 Technological diversity
Although the literature has identified the advantages of

distraction under VR in oncology (Michel et al., 2019a), the

TABLE 1 (Continued) Studies on the benefits of virtual reality.

Study Objectives Procedure Theoretical framework Results

Johnson et al.
(2020)

To examine the utility of VR for
terminal cancer patients

Palliative Pleasant, useful and globally well
tolerated; Tendency to improve pain,
fatigue, drowsiness, depression and
anxiety (NS)

Scates et al.
(2020)

To determine if distraction by
immersion in a natural virtual
environment can decrease pain
intensity and anxiety

Painful procedure: port
access, venipuncture,
IV station

Kaplan and Kaplan’s (1989) attention
restoration theory; Kaplan and Kaplan,
(1989), psychophysiological stress recovery
theory Ulrich et al. (1991)

Increased relaxation and feelings of
peace, considerable distraction,
reduced frustration

Semerci et al.
(2020)

To decrease pain intensity with VR
distraction

Painful procedure:
Port access

Decrease in pain intensity; Can be
considered as a complementary
intervention

Tennant et al.
(2020)

To determine the effects of VR on
psychophysiological symptoms by
comparing them to the effects of the
iPad

Hospitalization Decrease in negative symptoms
more important with VR; Positive
mood regardless of content;
Decrease in pain more important
with natural content; Decrease in
anger more important after high
immersion

Buche et al.
(2021)

To compare two immersive modalities
(participatory vs. contemplative) to
listening to music and the presence of a
practitioner to improve emotional state
after breast surgery

Physiotherapy Increase in positive emotions
(i.e., joy and happiness) and decrease
in anxiety regardless of the proposed
accompaniment; More intense
spatial presence with participatory
VR; Reduction in perceived time
with VR

Note. NS, Non-Significant.
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variety of the tools and methods used should be highlighted to

define the optimal conditions for using VR and propose

interfaces adapted to support cancer patients.

3.1.4.1 Hardware used

The vast majority of studies examined in this literature

review take advantage of fully immersive devices through an

HMD headset (86.36%, 19/22 studies) (Chirico et al., 2019; Bani

Mohammad and Ahmad, 2018; Pizzoli et al., 2019; Niki et al.,

2019; Johnson et al., 2020; Schneider et al., 2011; Li et al., 2016;

Glennon et al., 2018; Gupta and Hande, 2019; Higgins et al., 2019;

Garrett et al., 2020; Gerçeker et al., 2020; Scates et al., 2020; Buche

et al., 2021; Atzori et al., 2018; Birnie et al., 2018; Semerci et al.,

2020; Sharifpour et al., 2020; Tennant et al., 2020), while a

minority (9.09%, 2/22 studies) use a device that researchers

describe as “non-immersive” virtual reality for clinical

purposes in oncology via a 32-inch LCD television screen

connected to a computer, keyboard, mouse, and headset

(Espinoza et al., 2012; Baños et al., 2013). Overall, the

immersive devices used are smartphone VR headsets with the

distinction of being low-cost systems (68.42%, 13/19 studies)

(Chirico et al., 2019; Bani Mohammad and Ahmad, 2018; Pizzoli

et al., 2019; Johnson et al., 2020; Li et al., 2016; Gupta and Hande,

2019; Higgins et al., 2019; Gerçeker et al., 2020; Scates et al., 2020;

Buche et al., 2021; Semerci et al., 2020; Sharifpour et al., 2020;

Tennant et al., 2020). In some cases, smartphones VR headsets

are accompanied by headphone (Bani Mohammad and Ahmad,

2018; Birnie et al., 2018), or earphones (Pizzoli et al., 2019; Atzori

et al., 2018), and joysticks (hand controllers) (Li et al., 2016;

Birnie et al., 2018). Few researchers opt for systems as high-tech

as the HCT VIVE headset (Niki et al., 2019; Higgins et al., 2019;

Garrett et al., 2020), ez Vision X4 (Gupta and Hande, 2019) or

Oculus Go (Buche et al., 2021) (26.31%, 5/19 studies). One study

exploited a particular VR system (PlayMotion) (4.55%, 1/

22 studies) in a playroom of a pediatric oncology department.

This system has the particularity of increasing the immersive

space by transforming the room into a totally intuitive and

participative virtual environment since it does not require a

headset or a controller. The software responds to patients’

actions by analyzing the shadows of moving limbs projected

on the walls thanks to sensors.

3.1.4.2 Immersive environments

Regarding the content of virtual environments, a consensus

emerges around natural relaxing environments (90.91% or 20/

22 studies) (Chirico et al., 2019; Bani Mohammad and Ahmad,

2018; Pizzoli et al., 2019; Niki et al., 2019; Johnson et al., 2020;

Schneider et al., 2011; Espinoza et al., 2012; Baños et al., 2013; Li

et al., 2016; Glennon et al., 2018; Higgins et al., 2019; Garrett

et al., 2020; Gerçeker et al., 2020; Scates et al., 2020; Atzori et al.,

2018; Birnie et al., 2018; Semerci et al., 2020; Sharifpour et al.,

2020; Tennant et al., 2020; Buche et al., 2021) rather than urban

ones (13.64%, or 3/22 studies) (Espinoza et al., 2012; Baños et al.,

2013), (Li et al., 2011). Thanks to the extent of research, we now

have a range of natural environments that correspond to the

demand of patients (Michel et al., 2019b). On the one hand, the

environments are built with synthetic images such as sea worlds

(Schneider et al., 2011; Glennon et al., 2018; Higgins et al., 2019;

Gerçeker et al., 2020; Buche et al., 2021; Birnie et al., 2018;

Sharifpour et al., 2020), forests (Pizzoli et al., 2019; Espinoza

et al., 2012; Baños et al., 2013; Garrett et al., 2020; Gerçeker et al.,

2020; Buche et al., 2021) paradise islands (Chirico et al., 2019;

Bani Mohammad and Ahmad, 2018; Sharifpour et al., 2020;

Buche et al., 2021) and mountains (Chirico et al., 2019) with

waterfalls (Pizzoli et al., 2019), and on the other hand, the

environments are created with images captured in 360° of real

world destinations (Niki et al., 2019; Johnson et al., 2020;

Gerçeker et al., 2020; Tennant et al., 2020). For some of them,

this natural component is complemented by playful content

(50%, 11/22 studies) which includes, for example, roller

coaster simulations (Johnson et al., 2020; Gerçeker et al.,

2020; Semerci et al., 2020) or space travel (Johnson et al.,

2020; Garrett et al., 2020). Some studies include educational

(Bani Mohammad and Ahmad, 2018; Gerçeker et al., 2020),

enigmatic (Schneider et al., 2011; Garrett et al., 2020), creative

(Higgins et al., 2019; Li et al., 2011), cultural (Schneider et al.,

2011; Tennant et al., 2020), musical (Garrett et al., 2020), or

sports games (Li et al., 2011) environments. Some studies are not

standardized and vary accordingly to content by integrating

mixed environments (i.e., playful and relaxing) (18.18%, 4/

22 studies) (Johnson et al., 2020; Higgins et al., 2019; Garrett

et al., 2020; Gerçeker et al., 2020) with still images while others

involve videos (Johnson et al., 2020).

3.1.4.3 Interactivity

The diversity of the devices also concerns the levels of

sensorimotor interactivity. Contemplative VR inviting patients

to observe the virtual environment (45.45%, 10/22 studies)

(Pizzoli et al., 2019; Niki et al., 2019; Espinoza et al., 2012;

Baños et al., 2013; Glennon et al., 2018; Garrett et al., 2020; Buche

et al., 2021; Semerci et al., 2020; Sharifpour et al., 2020; Tennant

et al., 2020), is opposed to participative VR, called participative

VR, which offers patients the possibility to act as an actor in the

virtual world (27.27%, 6/22 studies) (Chirico et al., 2019; Li et al.,

2016; Buche et al., 2021; Li et al., 2011; Atzori et al., 2018; Birnie

et al., 2018). Almost a third of the studies do not control for this

participative variable that involves patients to different degrees in

immersive experiences (27.27%, 6/22 studies) (Bani Mohammad

and Ahmad, 2018; Johnson et al., 2020; Schneider et al., 2011;

Higgins et al., 2019; Garrett et al., 2020; Gerçeker et al., 2020) or

do not report on the sensorimotor interaction between patients

and the virtual device (4.55%, 1/22 studies) (Gupta and Hande,

2019). Contemplative immersions consist of passive observation

of virtual environments (Bani Mohammad and Ahmad, 2018;

Glennon et al., 2018) with sometimes the possibility of navigating

(Espinoza et al., 2012; Baños et al., 2013; Buche et al., 2021;
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Tennant et al., 2020) or performing meditation (Johnson et al.,

2020; Garrett et al., 2020) and relaxation exercises such as the

control of breathing frequencies (Espinoza et al., 2012; Baños

et al., 2013) or the focusing of attention on physical sensations to

improve emotional wellbeing (Pizzoli et al., 2019). Participatory

immersions offer multiple possibilities of actions such as

participative explorations by body limb movements (Chirico

et al., 2019; Bani Mohammad and Ahmad, 2018; Gerçeker

et al., 2020; Buche et al., 2021; Li et al., 2011) or educational

ones by information retrieval (Bani Mohammad and Ahmad,

2018; Li et al., 2011). Explorations require solving mysteries by

strategically choosing different options to advance in the scenario

(Schneider et al., 2011; Garrett et al., 2020). Others consist in

modifying objects in the environment (Li et al., 2016; Buche et al.,

2021) or in painting one’s environment in three dimensions

(Higgins et al., 2019; Li et al., 2011). Finally, target games allow

the patient to aim at characters or objects present in the

environment by pointing with the use of game controllers

(Johnson et al., 2020; Birnie et al., 2018) or a computer mouse

and keyboard (Atzori et al., 2018).

3.1.4.4 Audio and sound

Apart from the visual contents and their participative

potentialities, there is a form of consensus on the need to

solicit the auditory sensory modality (Bani Mohammad and

Ahmad, 2018; Pizzoli et al., 2019; Johnson et al., 2020; Espinoza

et al., 2012; Baños et al., 2013; Li et al., 2016; Glennon et al., 2018;

Garrett et al., 2020; Gerçeker et al., 2020; Scates et al., 2020; Buche

et al., 2021; Semerci et al., 2020; Sharifpour et al., 2020). This

auditory component is thought to favor the immersive experience

that increases the intensity of the sense of presence in the virtual

world. However, we notice a certain heterogeneity regarding the

aural characteristics of the proposed devices. Some immersions are

enhanced by a background sound related to the virtual

environment (e.g., nature sounds, sound feedback, educational

narration) (Bani Mohammad and Ahmad, 2018; Gerçeker et al.,

2020; Scates et al., 2020; Buche et al., 2021; Sharifpour et al., 2020),

whereas others are accompanied by soothing musical stimuli (Li

et al., 2016; Glennon et al., 2018; Garrett et al., 2020; Buche et al.,

2021; Semerci et al., 2020) associated with guided relaxation

(Johnson et al., 2020; Espinoza et al., 2012; Baños et al., 2013)

with the help of a qualified yoga and mindfulness instructor

(Pizzoli et al., 2019).

3.1.5 Methodological diversity
3.1.5.1 Experimental design

Beyond the technological diversity, there are differences in the

scientific methodologies used. These differences can be observed in

terms of the comparison of experimental methods. Almost half of

the studies do not compare distraction under VR to a control group

or to another formof distraction (40.91%, 9/22 studies) (Pizzoli et al.,

2019; Niki et al., 2019; Johnson et al., 2020; Espinoza et al., 2012;

Baños et al., 2013; Li et al., 2016; Gupta and Hande, 2019; Higgins

et al., 2019; Birnie et al., 2018). As for the control groups, they consist

of apprehending the medical act without distraction (50%) (Chirico

et al., 2019; Bani Mohammad and Ahmad, 2018; Niki et al., 2019;

Schneider et al., 2011; Glennon et al., 2018; Gerçeker et al., 2020;

Scates et al., 2020; Buche et al., 2021; Atzori et al., 2018; Semerci et al.,

2020; Sharifpour et al., 2020). Thus, the difference between the

groups could be due to using a distractive device rather than the

specific use of VR. Only 22.73% of the research (5/22 studies)

compared the virtual device to another distractive mode, either by

presenting the same content through another medium

(i.e., computer, television, or tablet: 13.64%) (Glennon et al.,

2018; Garrett et al., 2020; Tennant et al., 2020) or by comparing

VR to music (9.09%) (Chirico et al., 2019; Buche et al., 2021).

According to the reported results, VR was more conducive to

reducing negative symptoms with a greater decrease in anger

levels after more intense immersion (Tennant et al., 2020). A

gender effect was found with a higher increase in positive mood

with VR than with iPad in young females (Tennant et al., 2020).

Therefore, VR may be a more powerful form of distraction than

tablet games by facilitating a sense of presence in a new environment

diverting attention from pain (Garrett et al., 2020). Similarly, VR has

been shown to be more effective than music therapy in relieving

depression and fatigue (Chirico et al., 2019). VR was also more

effective than listening to classical music in reducing estimated care

time regardless of whether the immersion was participative or

passive (Buche et al., 2021).

3.1.5.2 Familiarization

Only six out of twenty-two studies implemented a

familiarization phase before starting the real immersive

experience (27.27%), (Chirico et al., 2019; Johnson et al.,

2020; Gupta and Hande, 2019; Gerçeker et al., 2020; Atzori

et al., 2018; Scates et al., 2020). The studies that implemented

this familiarization phase in their research protocol showed

significant results in reducing anger, pain, and anxiety

(83.33%, 5/6 studies). This step might be necessary to

decrease the surprise effect and the naive attractiveness of the

patients to obtain a more accurate measure of their emotional

states associated with the virtual immersion (Buche et al., 2021).

These familiarization phases nevertheless present

methodological differences. The most frequent method

consists of the experimenter accompanying the patients to

guide them during their first manipulations (50%, 3/

6 studies), (Chirico et al., 2019; Johnson et al., 2020; Atzori

et al., 2018). In comparison, others consist in viewing a

handholding video during which the patient can practice

(16.66%, 1/6 studies) (Tennant et al., 2020) or start the

immersion a few minutes before the medical procedure

(16.66%, 1/6 studies) (Gerçeker et al., 2020). In daily VR

exposures, this familiarization phase can result in a short

immersion of 10 min on the first day of experimentation with

a progressive increase in immersion time going up to 30 min per

day (16.66%, 1/6 studies) (Gupta and Hande, 2019).
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TABLE 2 Nature of measure and instruments in studies evaluating the effects of virtual reality in oncology.

Study Nature of
measure

Instruments

Schneider et al. (2011) Anxiety State Anxiety Inventory (STAI)
Fatigue Piper Fatigue Scale (PFS)
Temporality Oral questions

Li et al. (2011) Anxiety Chinese Version of the State Anxiety Scale for Children (CSAS-C)
Mood state Center for Epidemiologic Studies Depression Scale for Children (CES-DC)

Espinoza et al. (2012) Anxiety - Depression Hospital Anxiety and Depression Scale (HADS)
Mood state Fordyce Questionnaire, Visual Analogical Scales (VAS) Mood
Pain - Fatigue VAS Physical Discomfort

Baños et al. (2013) Mood state VAS Mood
Pain - Fatigue VAS Physical Discomfort
Cyber Sickness Open-ended questions about side effects
Virtual experience VAS Satisfaction, Open ended questions on the level of engagement, the difficulties encountered, the immersive

experience

Li et al. (2016) Anxiety Semi-structured interview
Cyber Sickness Motion Sickness Susceptibility Questionnaire (MSSQ Short Version)
Virtual experience Semi-structured interview for the VR interface

Atzori et al. (2018) Pain VAS Pain
Cyber Sickness VAS Nausea
Virtual experience VAS quality and pleasure of the VR experience

Birnie et al. (2018) Anxiety Numerical Rating Scale (NPS) anxiety
Pain Numerical Pain Scale (NRS)
Cyber Sickness NRS Nausea
Virtual experience Semi-structured interview on the immersive experience, acceptability, feelings

Glennon et al. (2018) Anxiety Likert-type scale: anxiety
Pain NPS
Physiology Blood pressure, pulse rate, respiration, temperature, oxygen saturation percentage in oxygen

Bani Mohammad and Ahmad,
(2018)

Anxiety STAI
Pain VAS Pain
Cognitive function Mini-Mental State Examination (MMSE)

Chirico et al. (2019) Anxiety STAI
Mood state Short Version of Profile of Mood States (SV-POM)
Cyber Sickness Mood stateCyber Sickness Questionnaire (VRSQ)

Gupta and Hande, (2019) Anxiety - Depression HADS

Higgins et al. (2019) Anxiety Beck Anxiety Inventory (BAI)
Pain 10-point scale
Virtual experience 10-point scale

Niki et al. (2019) Palliative symptoms Edmonton Symptom Assessment System (ESAS) Japanese version
Cyber Sickness NRS in 11 points: Dizziness and headaches
Virtual experience NRS in 11 points: Pleasure of the experience

Pizzoli et al. (2019) Mood state Self-Assessment Manikin (SAM), VAS relaxation
Sense of presence VAS sense of presence

Sharifpour et al. (2020) Pain Pain Anxiety Symptoms Scale (PASS), Pain Catastrophizing Scale (PCS), Pain Self-Efficacy Questionnaire
(PSEQ), McGill Pain Questionnaire (MPQ)

Garrett et al. (2020) Chronic pain Focus group and semi-structured interview
Virtual experience Focus group and semi-structured interview: effectiveness of VR, mode of action, usability, technical aspects

Gerçeker et al. (2020) Anxiety The Children’s Anxiety Meter-State (CAM-S)
Pain Wong-Baker Faces (WBS) Pain Rating Scale
Fear The Child Fear Scale (CFS)

Johnson et al. (2020) Palliative symptoms Revised Edmonton Symptom Assessment Scale (ESAS-r)

Scates et al. (2020) Anxiety Likert-type scale
Pain Likert-type scalle
Virtual experience Open ended questions about the feeling and the immersive experience

Semerci et al. (2020) Pain WBS Pain Rating Scale

(Continued on following page)
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3.1.5.3 Duration of immersion

The duration varies mainly according to the duration of the

medical act. For short painful procedures such as catheter

insertion or venipuncture, immersion varies from 3 to

18 min (Glennon et al., 2018; Buche et al., 2021; Scates et al.,

2020; Atzori et al., 2018; Birnie et al., 2018; Semerci et al., 2020).

When the context allows for a longer immersion, as is the case

in chemotherapy, during long-term hospitalization or on return

home, VR is proposed between 10 and 63 min (Schneider et al.,

2011; Higgins et al., 2019; Tennant et al., 2020; Buche et al.,

2021), although in 60% of cases (i.e., 9/15 studies), the

immersion time mainly applied by the experimenters

corresponds to 30 min (Niki et al., 2019; Johnson et al.,

2020; Espinoza et al., 2012; Baños et al., 2013; Li et al., 2016;

Gupta and Hande, 2019; Garrett et al., 2020; Li et al., 2011;

Sharifpour et al., 2020). Most virtual immersions lasting 30 min

reported positive effects (88.88%, 8/9 studies) (Niki et al., 2019;

Espinoza et al., 2012; Baños et al., 2013; Li et al., 2016; Gupta

and Hande, 2019; Garrett et al., 2020; Li et al., 2011; Sharifpour

et al., 2020). According to the diversity of the medical act in

which VR is proposed, there is no strong consensus on the most

favorable duration of immersion.

In terms of measurement tools (See Table 2: Nature of

measures and instruments in studies evaluating the effects of

VR in oncology), most studies collected quantitative data (21/22,

95.45%). Only one study used a qualitative inductive approach

using the interpretive description method to explore participants’

experiences (Garrett et al., 2020). Seven studies collected

qualitative data (31.82%) (Baños et al., 2013; Li et al., 2016;

Higgins et al., 2019; Scates et al., 2020; Buche et al., 2021; Birnie

et al., 2018; Sharifpour et al., 2020). Only two studies (9.09%)

collected physiological data such as blood pressure, pulse rate,

respiration, temperature, and percent oxygen saturation using an

oximeter (Glennon et al., 2018; Tennant et al., 2020).

Regarding measures reflecting emotional state, anxiety was

mainly measured using the State Anxiety Inventory (STAI)

(Chirico et al., 2019; Bani Mohammad and Ahmad, 2018;

Schneider et al., 2011; Buche et al., 2021) and depression

using the Hospital Anxiety Depression Scales (HADS). Mood

states were most often assessed using the Visual Analogical Scales

(VAS) (Pizzoli et al., 2019; Espinoza et al., 2012; Baños et al.,

2013; Tennant et al., 2020) and the Self-Assessment Manikin

(SAM) (Pizzoli et al., 2019; Buche et al., 2021). Concerning pain,

most researchers have opted for scales (see Table 2: Nature and

measurement tools in studies evaluating the effects of VR in

oncology) (Bani Mohammad and Ahmad, 2018; Espinoza et al.,

2012; Baños et al., 2013; Glennon et al., 2018; Higgins et al., 2019;

Scates et al., 2020; Atzori et al., 2018; Birnie et al., 2018; Semerci

et al., 2020; Tennant et al., 2020), while others have used specific

questionnaires to measure several components of pain such as

pain anxiety, catastrophizing, self-efficacy and intensity

(Sharifpour et al., 2020). In addition, the Edmonton Symptom

Assessment System (ESAS) questionnaire has been used to assess

the various symptoms of palliative cancer (Niki et al., 2019;

Johnson et al., 2020). The question of temporality was asked

orally (Schneider et al., 2011) or by using a VAS from 0 to 40 min

with a 5-min interval (Buche et al., 2021).

Semi-structured interviews (Li et al., 2016; Garrett et al., 2020;

Birnie et al., 2018) accompanied by various scales (Higgins et al.,

2019) (Baños et al., 2013) and supplemented by open-ended (Baños

et al., 2013; Scates et al., 2020) or multiple-choice questions (Buche

et al., 2021) were conducted to examine the virtual experience with

patients. Discomfort that could be caused by the virtual device was

monitored through different questionnaires (Chirico et al., 2019; Li

et al., 2016; Tennant et al., 2020; Buche et al., 2021), scales (Niki et al.,

2019; Birnie et al., 2018; Atzori et al., 2018) and open-ended

questions (Baños et al., 2013). Only three studies (13.64%)

assessed the subjective feeling of presence in the virtual world

using questionnaires (Tennant et al., 2020; Buche et al., 2021) or

a VAS (Pizzoli et al., 2019).

In addition, uncommon measures in VR in oncology were

collected: one study assessed cognitive function to screen for

cognitive impairment in hospitalized adults and determine

patients’ ability to manipulate the virtual device (Bani

TABLE 2 (Continued) Nature of measure and instruments in studies evaluating the effects of virtual reality in oncology.

Study Nature of
measure

Instruments

Tennant et al. (2020) Anxiety VAS, Child-report Spence Children’s Anxiety Scale (SCAS) short form
Mood state VAS
Pain VAS
Sense of presence Child-report Adapted version of the Total Immersion subscale of the Augmented Reality Immersion (ARI)

questionnaire
Cyber sickness Child Simulation Sickness Questionnaire (CSSQ)
Physiology Puls
Quality of life Parent-proxy report Pediatric Quality of Life Inventory™ Cancer Module (PedsQL)

Buche et al. (2021) Anxiety STAI
Mood state SAM
Temporality VAS
Sense of presence Independent Television Commision – Sens of Presence Inventory (ITC-SOPI)
Cyber sickness Questionnaire on Cyber sickness (CQ)
Virtual experience Multiple choice questions
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Mohammad and Ahmad, 2018). Another assessed quality of life

in young patients (Tennant et al., 2020).

3.2 Research recommendations

Based on the twenty-two studies selected, this third part aims

to optimize the methodological choices made in the studies by

encouraging the use of practices that are comparable from one

study to another for a more rigorous comparison of the reported

effects. From a strictly methodological point of view, it seems

promising to continue the reflection already initiated at several

levels: the degree of interactivity of the devices to be proposed to

the patients; the contents to be preferred; the duration of the

distractive session; the context of use.

Given the literature, it seems that having access to dynamic

feedback from our actions in the virtual environment is a primary

criterion for giving patients the feeling of being immersed inside this

environment (Chirico et al., 2019; Buche et al., 2021). Participatory

immersion can provide better experiential quality than

contemplative immersion by actively engaging patients (Garrett

et al., 2020). Future studies should evaluate the links between

immersive quality and distraction power benefits under VR to

leverage this finding. It is worth noting that the auditory

component contributes to the immersion of patients in the

virtual world (Michel et al., 2019b) as this is notably the case of

natural environments enhanced with background sound, relaxing

music, or guided relaxation. These results aremore convincingwhen

the technology allows a qualitative VR experience. Devices with high

technological quality promote the feeling of presence (Cummings

and Bailenson, 2016) and the quality of the distraction. In summary,

the better the technical quality, the more intense the transport into

the virtual environment.

If there is a consensus on the need to present patientswith natural

and high-definition sound content, developing new and constantly

renewed content is essential to overcome the phenomenon of

habituation. A regularly updated system could preserve the awe of

this innovative device and continue to captivate patients even after

repeated immersions. The exploitation of future software should

further engage the patient in the immersive task mobilizing his

cognitive resources at different levels ranging from distraction to

concentration or skill reinforcement (Ahmadpour et al., 2020).

Although VR is a promising technology, there are still some

limitations to applying this distractive tool in oncology. To date,

it is difficult to recommend an immersive duration most

conducive to patients’ emotional comfort. It would be

interesting to evaluate the differential effects of time immersed

in the virtual environment (Tennant et al., 2020). Immersion

time seems to be determined by the nature and duration of

medical procedures and not by the relaxation/distraction needs

of the patient. Thus, devices that adapt the duration of immersion

to individual patient needs and preferences would be a

considerable asset to enhance the benefits of distraction.

The context of VR use essentially conditions the duration of

immersion. However, specific methodological recommendations

can be retained. Given the observed results, an extended

hospitalization allows a progressive increase in immersion time,

allowing the patients to become a little more familiar with the

virtual device each day (Gupta and Hande, 2019). To ensure the

benefits of VR, it would be preferable that the virtual experience

not exceed 30 min per day during a long-term hospitalization

(Niki et al., 2019; Johnson et al., 2020; Espinoza et al., 2012; Baños

et al., 2013; Gupta and Hande, 2019; Li et al., 2011). During an

outpatient hospitalization involving short, painful procedures such

as port access or venipuncture, it would seem appropriate that the

immersion starts 2–5 min before the medical act (familiarization

phase) and continues until the end of the procedure (experimental

phase) (Buche et al., 2021; Atzori et al., 2018). In chemotherapy,

following Chirico et al. (2019), a familiarization phase of 5–10 min

could be introduced to optimize the effects of the virtual

experience. As for the duration of the immersive experience

during the administration of chemotherapy, there is currently

no consensus in the literature to propose a recommendation

(Chirico et al., 2019; Schneider et al., 2011; Sharifpour et al., 2020).

When examining the benefits using VR in oncology, it is

regrettable to note the absence of a control condition in nearly

half of the studies (Pizzoli et al., 2019; Niki et al., 2019; Johnson et al.,

2020; Espinoza et al., 2012; Baños et al., 2013; Li et al., 2016; Gupta

and Hande, 2019; Higgins et al., 2019; Birnie et al., 2018). In the

future, researchers should design randomized controlled studies that

compare medical care using VR for distraction with the same care

without using distraction (i.e., a control condition) as well as this

same care using other distractive strategies (i.e., different conditions)

to reveal in amore rigorous comparison setting the true effectiveness

of virtual immersion in oncology.

In addition, somemeasurement tools are not systematically used.

Assessing the risk of side effects from virtual devices is helpful to

ensure that VR is well tolerated by patients. This also allows us to

distinguish between the physical discomfort of treatment and those

that VR may cause. Future studies evaluating the effects of VR

through physiological variables such as heart rate, oxygenation

rate, or skin conductance could refine the assessment of patients’

emotional states (Chirico et al., 2019). The measurement of the

subjective sense of presence in the virtual environment should be

systematized in oncology, knowing that this feeling is closely linked to

the sensation of escape (Tennant et al., 2020; Witmer and Singer,

1998).

Furthermore, the effectiveness of VR depends on personal

acceptance (Garrett et al., 2020) and patient interest in the device

(Lessiter et al., 2001). It may be that the positive results reported in

the literature are partly a result of the acceptance rate at recruitment

and the predisposition of patients to the virtual experience. Patients

who prefer to maintain control and observe the routine of care may

bemore likely to decline the experience, while patients who aremore

open to the device may already be in a favorable emotional state to

use VR. Future research should not neglect to assess patient
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enjoyment andmotivation to engage in the immersive experience to

consider their level of involvement in the immersion. Like (Bani

Mohammad and Ahmad, 2018), future studies would benefit from

considering the patient’s ability to process sensorimotor information

from VR through the measurement of cognitive impairments to

ensure an optimal relaxing experience.

Finally, this device is considered an effective distractive

strategy when it fulfills certain conditions according to the

medical context, but even more so according to the patient’s

needs at the time. As we have seen in the study by Buche et al.

(2021), VR can be used not only to distract from anxiety-

provoking or painful experiences during treatment but also to

compensate for the monotonous nature of the treatments. It can

also be used when the practitioners are unavailable, for

instance, if they have other things to manage than the

patient relationship.

3.3 Theoretical model

The richness of the available scientific literature and the

exploitation of the state of the art allow us to think of an

integrative theoretical model that considers the effects of VR on

both the cognitive and emotional levels. Articulating the cognitive

and emotional sides will enable us to envisage a valid and robust

schematic representation aligned with the benefits reported in

oncology and the theories mentioned (see Table 1: Studies of the

Benefits of VR). Based on this careful exploitation of the current state

of knowledge and the methodological and theoretical choices made

by the community, we propose an explanatory model of the effects

of exposure to VR (see Figure 4: Model of the mechanisms involved

in VR distractive experience and underlying its benefits) to

contribute to the understanding of the processes leading to the

emergence of the positive effects of virtual immersion with cancer

patients during medical interventions. This model is based on an

ideal situation where the use of VR as a distractive tool has been

preceded by a familiarization phase (i.e., when the handling of the

device is no longer likely to hinder the relaxing experience).

The theoretical basis of our model is mainly based on the

allocation of attentional resources related to the limited cognitive

capacities of human beings (Arane et al., 2017). As stated above, we

consider that VR can offer several levels of immersion involving

different senses simultaneously (Chirico et al., 2019). The immersive

technologies employed can mobilize active or passive cognitive

strategies that aim to reduce attention to the physical

environment. The first effect of multimodal immersion is to

spontaneously draw attention to pleasurable VR stimuli by

passively or actively engaging the patient in the virtual experience.

FIGURE 4
Model of the mechanisms involved in VR distractive experience and underlying its benefits.

Frontiers in Virtual Reality frontiersin.org13

Buche et al. 10.3389/frvir.2022.894162

91

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.894162


Engagement or involvement is a state of strong concentration in

which the patient no longer directs their conscious attention towards

external negative stimuli and forgets the medical context in which

they are situated. This results in a feeling of presence, that is, the

impression that the patient is escaping into a world other than their

real-world (Witmer and Singer, 1998). According to the presence

model (Lessiter et al., 2001), the immersive task depends mainly on

the individual’s interest in the experience. However, these authors

underline that the device’s immersive qualities and participative

potentialities are likely to awaken or hinder the interest in VR.

It should be noted that the immersive qualities determine the

credibility of the experience by recreating the perceptive attributes

(e.g., tracking level, stereoscopy, and field of view) that a person can

find in physical reality (Cummings and Bailenson, 2016). Thus, the

level of engagement, interactivity, and plausible environment

influence the prevalence of presence which focuses attention on

immersion. Since fantasy environments can also benefit patients

(Pourmand et al., 2018), most oncology studies used believable

natural environments. In addition to inducing a sense of presence,

the cognitive resources mobilized modify the perception of

temporality by giving the impression that time is passing more

rapidly within the virtual environment. Furthermore, the attentional

engagement in the immersive task affects the cognitive evaluation of

pain by reducing the amount of attention available to process the

painful information, thus attenuating the pain felt (Eccleston and

Crombez, 1999; Atzori et al., 2018).

Moreover, the cognitive effects maintain a virtuous circle with the

emotional effects generated by this distractive strategy. VR is a

medium capable of increasing positive emotions and decreasing

negative emotions thanks to immersion in a natural environment

(Scates et al., 2020), which carries positive emotions (Baños et al.,

2013). Riva et al. (2007) have demonstrated the bidirectional

relationship between emotions and presence: A relaxing

environment generates a higher sense of presence than a neutral

environment, and once the sense of presence is established, positive

emotions are felt more intensely (Bouvier, 2009). This emotional

induction not only decreases anxiety and improvesmood by inducing

joy and calmness but also influences pain perception. Attention

focused on positive emotions inhibits the nociceptive message

conveyed by the nervous system, which leads to a decrease in the

intensity of the pain felt (Sharifpour et al., 2020; Melzack and Wall,

1996).

4 Discussion

Based on the accumulated results, which primarily convey a

positive image of VR, there is no doubt today that the use of this

technology is of major interest. However, the beneficial effects

regularly reported must be understood in terms of the

characteristics of the technology used and according to the

particularities of the patients and their immersion preferences.

The objective of this article is twofold, given the converging and

diverging points highlighted in this literature review. The first is

identifying avenues for harmonizing the procedures and tools used

in future research. This analysis of the current state of practice in

measuring the effects of VR in oncology synthesizes the data

accumulated over the past decade on the distractive power of VR

in oncology. Based on this analysis, the scientific community has the

means to move towards a more substantial consensus to encourage

more rigorous reflection by clarifying methodological regularities.

Secondly, this article invites the scientific community to consider

more systematically the need for a theoretical foundation that

contributes to consolidating the understanding of the processes at

work in the results reported in the scientific literature used in this

article. While some authors have attempted to explain the

psychological phenomena that underlie the benefits of VR, few of

them have articulated their approach to theoretical models of

reference. The theoretical model proposed in this article

considers the available knowledge and provides a promising

framework for future studies that aim to deepen the cognitive

and emotional processes at stake during the use of VR. Our

framework describes the broader impact of VR benefits

concerning cognitive and emotional regulation. The medical

context (cancer) from which our theoretical model has emerged

could be applied broadly where pain and anxiety reduction are

critical (e.g., child dental care (Du et al., 2022), wound care and

rehabilitation after burns (Czech et al., 20221028), skin prick testing

(Stassart and Giebels, 2022). Also, other sectors beyond healthcare

can substantially contribute to testing the validity of our theoretical

framework. Indeed, there is no doubt that the potentialities offered

by our framework would benefit from being considered outside the

medical context to ensure the robustness and generalizability of its

articulation between emotion and cognition.
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This scoping review focuses on therapeutic interventions, which involve the creation
of artworks in virtual reality. The purpose of this research is to survey possible
directions that traditional practices of art therapy and therapeutic artmaking could
take in the age of new media, with emphasis on fully immersive virtual reality. After
the collection of papers from online databases, data from the included papers were
extracted and analyzed using thematic analysis. The results reveal that virtual reality
introduces novel opportunities for artistic expression, self-improvement, and
motivation for psychotherapy and neurorehabilitation. Evidence that artmaking in
virtual reality could be highly beneficial in therapeutic settings can be found in many
aspects of virtual reality, such as its virtuality, ludicity, telepresence capacity,
controlled environments, utility of user data, and popularity with digital natives.
However, deficiencies in digital literacy, technical limitations of the current virtual
reality devices, the lack of tactility in virtual environments, difficulties in the
maintenance of the technology, interdisciplinary concerns, as well as aspects of
inclusivity should be taken into consideration by therapy practitioners, researchers,
and software developers alike. Finally, the reported results reveal implications for
future practice.

KEYWORDS

virtual reality, art, psychotherapy, therapy, rehabilitation, wellbeing, new media

1 Introduction

Given the rapid technological advancements, the steady decrease in prices of technological
apparatus, and the continuous permeation of information technology in various disciplines,
Adams et al. (2008) predict that, during the current millennium, digital art will be transcending
its aesthetic role by adapting in multiple applications as a transdisciplinary medium. The
present review touches upon the ubiquity of digital art and focuses on the fields of mental and
physical healthcare. In this regard, of special interest is Virtual Reality (VR), a multipurpose
communication medium (Biocca and Levy, 2013) that intersects with the domains of both
artistic expression (Kim and Lee, 2021) and wellbeing (Alqahtani et al., 2017; Montana et al.,
2020). During the introductory part of this review, key concepts, which later contribute to a
holistic understanding of the topic, are introduced. The present review approaches the
integration of VR in practices relevant to art and therapy by presenting the state of the art,
gaps in current knowledge, and potential future directions.

A VR system is characterized by its level of immersion, also referred to as sensory
immersion, that has been described in the literature as the degree to which natural
sensorimotor contingencies can be supported and engaged by the virtual simulation (Kim
and Biocca, 2018; Slater, 2018; Berkman and Akan, 2019). Immersion depends on the
characteristics of the apparatus and optimizing immersion levels is supported by various
VR studies, which conclude that high immersion is an antecedent of the sensation of “being
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present” in a Virtual Environment (VE) (Slater et al., 2009; Slater and
Sanchez-Vives, 2016).Eliciting presence is a crucial element of a VR
experience as it indicates how natural sensorimotor contingencies
ostensibly are and therefore how likely it is for the user to act in the VR
environment as if in real life (Slater and Sanchez-Vives, 2016), so that
the experience becomes “organic, user-driven, and different for
everyone” (Bailenson, 2018, p. 223) An example relevant to
drawing/writing would be the visual stimuli of a pen matching the
motor action of grasping it in the perceivably proper way (Farmer
et al., 2018) The naturalness in which the user’s body is perceived to be
moving in order to form the action of grasping that pen, also
contributes to the sensorimotor contingencies. Here, when the user
embodies a virtual whole body or a body part, which they experience
from a first-person perspective and onto which movements are
mapped in real-time and in synchrony with the user’s real
movements, this gives rise to the illusion of body ownership
(Maselli and Slater, 2013; Christofi et al., 2020). In VR storytelling,
presence and embodiment together have been previously described as
“narrative storyliving” (Vallance and Towndrow, 2022).

Interestingly, the virtual bodies (or avatars) that act as surrogate
bodies during VR embodiment are found to have capabilities which go
beyond their technical capabilities. In cases when immersive VR
applications allow for bodily customization, a psychosocial layer is
added to VR embodiment, which may enhance the sense of body
ownership by enabling role-play and the free expression of various
behaviors and attitudes (Bertrand et al., 2021). This influence on
behaviors and attitudes which stems from the dispositional
characteristics of the embodied avatar, is known as the “Proteus
Effect” (Yee and Bailenson, 2007) and it has been shown to even
lead to higher cognitive changes, such as, for example, embodying a
child body causing adult VR users to overestimate the size of virtual
objects (Banakou et al., 2013), embodiment in a different race body
leading to changes in implicit racial attitudes (Maister et al., 2015;
Banakou et al., 2020), or embodying a stereotypically empathic woman
instigating empathy (Hadjipanayi and Michael-Grigoriou, 2022).
Embodying avatars in fully immersive VR can also lead to the
acquirement of soft-skills, where for instance, embodying the
avatar of Sigmund Freud was found to help VR users offer more
sound counselling advice compared to embodying the avatar of a
therapy client (Osimo et al., 2015; Slater et al., 2019).

Contrary to fully immersive VR, non-immersive VR systems
only offer a window on the virtual world, without this essentially
being a disadvantage (Alqahtani et al., 2017). A Window on World
(WoW) type of VR is commonly projected through regular monitor
screens. Non-immersive VR systems are less expensive and easier to
use than immersive VR systems (Bamodu and Ye, 2013). Desktop
video games that include procedurally generated environments are
classic examples of non-immersive VR (Alqahtani et al., 2017). Semi-
immersive VR systems are hybrid systems that aim to maintain the
simplicity and low cost of non-immersive VR systems while
emulating the advantages in sensorimotor contingencies that are
successfully achieved by fully immersive VR systems (Bamodu and
Ye, 2013). This type of system occupies a portion of the physical
environment and virtually transforms it to serve a specific purpose.
For example, the therapeutic system for motor and cognitive
rehabilitation that is introduced by Maggio et al. (2022)
transforms an empty room into a virtual playground that can
extend to the floor and the walls of the room to match the
preferred design of specific rehabilitation exercises.

VR is a transdisciplinary medium that intertwines with subject
areas relevant to both artistic creation and healthcare. However,
artistic creation in VR is more commonly associated with aspects
of creativity, entertainment, and culture rather than wellbeing (Rubio-
Tamayo et al., 2017; Pissini, 2020). This scoping review relies on
gathering literature pieces for which all the relevant subject areas of
“VR,” “art,” and “therapy” intersect. This is particularly challenging
due to the broad terminology surrounding “art”, which is colloquially
defined as any form of self-expression. For this reason, it is imperative
that art-related aspects are further contextualized, while also keeping
in mind that in this scoping review art is viewed through the lens of
therapy and healing. in other words, the population included in this
review is “VR users,” the concept is “the creation of visual artworks in
immersive VR,” and the context is “therapy.” Notably, this review
focuses on the visual aspect of artmaking, as it is favored by VR
technology, and to-date there is a gap in the VR literature regarding
non-visual therapeutic artmaking projects. In order to address the
multi-dimensional role of art as a therapeutic practice, it is essential to
first address the differences between 1) expressive arts therapy and art
therapy and 2) therapeutic artmaking and art therapy.

Four distinct categories (disciplines) of expressive arts therapy are
widely recognized among practitioners and are known as 1) art
therapy, 2) music therapy, 3) dramatherapy, and 4) dance
movement therapy (Song et al., 2019). Disciplines of expressive arts
therapy can sometimes be used adjunct to other affective, cognitive, or
psychomotor approaches, forming tailored therapeutic interventions
that meet the diverse needs of each cohort group (Malchiodi, 2020). As
an example, Mishina et al. (2017) introduced a set of playground
activities into an expressive arts therapy intervention with troubled
adolescents whose emotional states improved after the intervention.
These playground activities included rhythmic movements and image
creation, among other activities, that formed a multimodal expressive
arts therapy approach. In the cognitive domain, art therapy elements
are commonly combined with cognitive-behavioral therapy (CBT) to
provide trauma-based treatment. In many cases, drawing or
symbolically reenacting a traumatic memory under the guidance of
a therapist helped clients come to terms with themselves regarding
their feelings of anger, helplessness, and self-blame (Pifalo, 2007; Sarid
and Huss, 2010). Regarding the psychomotor domain, an
improvement of psychomotor development in children with speech
pathologies was observed after introducing a finger puppet theater
approach (including the creation of puppets) in their correctional
pedagogy training (Arkhipova and Lazutkina, 2022). It is apparent
that psychomotor therapy is well complemented by expressive arts
therapy, as they share the element of active participation into activities
that promote kinesthetic abilities, cognitive processes, and personal
development (Haeyen et al., 2021b; Arkhipova and Lazutkina, 2022).
In order to limit the scope of this review on the healing qualities of
creating a visual artwork, this review focuses solely on art therapy. Art
therapy includes practices such as drawing, coloring, painting,
collaging, sculpting, and allows the use of any media and materials
that can be utilized to create visual artworks of symbolic value (Moon,
2011).

There are various definitions of art therapy as different schools of
thought in psychology attribute different definitions and sometimes
different psychotherapeutic goals to it. Three of the most notable
approaches to art therapy are: humanistic, psychodynamic, and
cognitive-behavioral. Humanistic art therapy is founded on the
active participation of the client and the facilitation of the therapist
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in the exploration of the client’s artwork and its underlying narratives
(Farokhi, 2011). The psychodynamic approach in art therapy focuses
on the unconscious of the human mind and borrows concepts from
analytical and archetypal psychology which is associated with
symbolic images (Malchiodi, 2011). Cognitive-behavioral art
therapy focuses on the attitude change of the client through
visually externalizing problematic situations and identifying coping
strategies (Rosal, 2018). Overall, art therapy, as an expressive arts
therapy discipline, most commonly refers to a triangular
psychotherapeutic relationship between therapist, client, and
artwork. Schaverien (2000) proposes that what is referred to as “art
therapy” per se in the field of psychology, encompasses two other
distinct forms of therapy, namely “art psychotherapy” and “analytical
art psychotherapy.” The differences between these forms lie in the
dynamic within the triangular psychotherapeutic
relationship. Schaverien (2000) distinguishes “art therapy” as a
process, in which the relationship between client and artwork is
the main focus, whereas in “art psychotherapy” it is the
relationship between client and therapist that is most emphasized,
and in “analytical art psychotherapy” all three components of the
relationship constellate equally.

Therapeutic artmaking, which can also be found in literature as
“Art as Therapy,” contrary to art therapy, is a low-intensity
intervention for which the involvement of a therapist is considered
a non-prerequisite. The inherently beneficial properties of artmaking
and the inclination of patients to turn artmaking into a coping
mechanism against illness have been evident for centuries but
scientific research on the healing aspects of art is fairly recent
(Farokhi, 2011). Immersive engagement with artmaking stimulates
the senses, directs the artist’s mind to the present time, and employs
multiple cognitive processes, such as problem-solving, differentiation,
and decision-making (Rosal, 2018). Also, contrary to art therapy,
therapeutic artmaking can be characterized as a recreational
experimentation with art materials, in which the overarching goal
for the client is the creation of visually appealing artworks (Angheluta
and Lee, 2011; Worden, 2020).

Some argue that therapeutic artmaking is a form of art therapy in
which the psychoanalytic value of creating art is attenuated in favor of
focusing on the inherent healing qualities of creating art (Czamanski-
Cohen, et al., 2014). Others believe that art therapy and therapeutic
artmaking should be considered as two completely different practices
because of ethical considerations, as art therapy in contrast to
therapeutic artmaking, requires the guidance and expertise of
healthcare professionals (Angheluta and Lee, 2011). Despite the
differences between the two therapeutic approaches, therapeutic
artmaking and art therapy share a similar therapeutic intent. As
Worden (2020) elucidates, self-expression in art therapy opts for
making an individual able to work through past traumas among
other psychological issues, whereas therapeutic artmaking opts for
evoking a feeling of catharsis, encouraging socialization, honing
technical skills that cater to visual self-expression, and increasing
self-esteem. All the above are positive outcomes that affect wellbeing.
Admittedly, therapeutic artmaking and artistic expression as a
psychotherapy, rehabilitation, or counseling intervention, are used
complementary to each other to various degrees (Farokhi, 2011;
Malchiodi, 2020). Despite the main focus of the present scoping
review being VR and therapeutic artmaking, the discipline of art
therapy in this context cannot be omitted, because of the indicated
interweaving between therapeutic artmaking and art therapy.

The topics of VR in therapeutic artmaking and art therapy remain
vastly understudied, even though the groundwork that underscores
potential uses of VR in different forms of psychotherapy has been laid
during previous decades (Riva, 2005). For instance, virtual reality
exposure therapy (VRET), which refers to the systematic habituation
of patients to stimuli reminiscent of traumatic memories through VR,
is the most studied form of psychological VR intervention and is
widely endorsed as a valid alternative to traditional psychotherapy
(Deng et al., 2019). The efficacy of VRET was evident since the infancy
of VR (Hodges et al., 1995), despite the low quality of graphics or level
of human-computer interaction. Nowadays VRET is deemed as an
equally effective treatment to in vivo interventions for a variety of
disorders, such as specific phobias and anxiety disorders (Carl et al.,
2019; Mozgai et al., 2020) among others. With the exception of VRET,
the number of studies addressing VR in psychotherapy is still limited
(Frewen et al., 2020) and considering the continuous changes in the
technological landscape, definitive conclusions about the efficacy of art
therapy interventions in VR cannot yet be drawn.

Furthermore, multiple commercial applications for wellbeing can
be found across platforms and devices, but their efficacy is under
scrutiny. Wagener et al. (2021), after conducting a systematic
application review, raised some critical points about the mismatch
between the well-grounded theoretical background behind VR
wellbeing applications and their subpar outcomes when it comes to
practice. As they point out, most VR wellbeing applications
unilaterally focus on specific wellbeing aspects and lack the
flexibility of customization as well as opportunities for individual
expression. Additionally, VR applications support users in identifying
and reflecting upon their affective states, but they do so to a minimal
degree. This reveals the need for further discourse on the potential and
current limitations of practices about VR for wellbeing, which should
derive insight from multiple disciplines for better understanding the
intricacies of VR wellbeing. To this end, a scoping review is the most
appropriate type of knowledge synthesis because it is most efficient in
conveying the breadth of a variety of practices in a particular research
area (Brien et al., 2010) and can help clarifykey interdisciplinary
concepts and definitions, as well as identify types of evidence and
knowledge gaps in the literature.

Presently, and to the best of our knowledge, no literature reviews
specifically focusing on the subject of immersive VR and art as a
therapeutic practice exist. Pissini (2020), who focuses on VR as a
medium for artmaking, acknowledges the importance of studying VR
practices in relation to the healthcare field, even though Pissini’s
indicated work is deliberately directed towards other interesting
aspects of immersive VR artmaking, such as embodied creativity.
One literature review most relevant to the present paper titled
“Technology use in art therapy practice: 2004 and
2011 comparison” by Orr (2012), reviewed art therapy practice to
every available technology at the time (between 2004 and 2011), and
the author concluded that there was a gap between technological
advancements and art therapy training, which further bred ethical
limitations to the use of advanced technology in art therapy. Aspects of
the ever-changing technology should be taken into account for the
effective renewal of therapeutic practice, as old models of practice
show signs of eventually becoming obsolete (Salles et al., 2020).
Especially after the COVID-19 pandemic and the mobility
restrictions imposed on therapists and clients alike, therapists were
forced to reevaluate their methods and find ways to best utilize
technology to mitigate the negative effects of the pandemic on the
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normality of treatment procedures (Feniger-Schaal et al., 2022). Long-
distance VR interventions are deemed as suitable alternatives to face-
to-face interventions in the case of treatments that require more
“acting” instead of “talking,” such as psychomotor therapy, because
of the experiential nature of using VR (Haeyen et al., 2021b). This
scoping review revisits the technological gap indicated by Orr but
purely focusing on VR, with the objective to assess the therapeutic
utility of art-related practices in VR and provide guidelines for future
research.

The question sought to be answered is twofold: 1) how has VR
been integrated into practices relevant to art therapy and therapeutic
artmaking? This review seeks to analyze how relevant studies define
and juxtapose VR and artmaking in the context of therapy. Answering
this first inquiry, while bearing in mind the overarching goals that each
relevant study implies, can shed some light on the different forms in
which advancing technology and artistic expression can manifest in a
therapeutic setting; 2) how applicable are VR interventions for
achieving therapeutic goals in relation to traditional art therapy
and therapeutic artmaking practices? Through this inquiry, VR art-
related interventions are being explored and contrasted to the well-
established interventions that are traditionally used in art therapy and
therapeutic artmaking. This inquiry is viewed from both the
perspective of the client/user and the therapist/researcher to
identify possible limitations and challenges.

2 Research methodology

2.1 Eligibility criteria

2.1.1 Inclusion criteria
The inclusion criteria were 1) academic manuscripts published

between 2011 and the end of the data collection process, which ended
in November 2022. VR and computer graphics have changed
drastically during the last decade hence academic articles published
before 2011 were omitted. The reason for this drastic change in the
past decade is the sudden introduction of cost-effective VR head-
mounted displays (Harley, 2020). 2) Academic manuscripts on the
topic of VR, wellbeing, art therapy and therapeutic artmaking. Out of
the four disciplines of expressive arts therapy mentioned above, the
present scoping review focuses only on the discipline of art therapy, as
defined in the introduction. Concepts that are universal to all
expressive arts disciplines are also considered to be relevant. Under
the scope of the present review, both art therapy and artmaking are
accepted as relevant interventions. The relevance of the interventions
is appraised based on the inclusion of artistic expression that results in
the creation of visual artworks via visuomotor integration. 3) Peer-
reviewed academic manuscripts (research articles, quantitative and
qualitative studies, opinion pieces, and essays).

2.1.2 Exclusion criteria
The exclusion criteria were 1) Manuscripts which focus solely on

VR therapy techniques. One of the prime examples of VR therapy that
is distinctively different from VR art therapy is VRET. 2) VR-related
manuscripts that focus on the sensory aspect of art when the virtual
experience allows only a passive participation of virtual reality users
(i.e., watching or observing a VE). Being exposed to a VR simulation
that is purposefully designed for inducing wellbeing outcomes is a

method that is typically employed for psychological healing through
aestheticism (Moller et al., 2020) and spirituality (Pendse et al., 2016).
Therefore, the combination of animated images, ambient sounds, and
other stimuli, which is used to provide a therapeutic experience
without involving psychomotor activity, is more related to VR
therapy than the practices of art therapy or artmaking. 3) VR-
related manuscripts which refer to VR as its non-immersive
counterpart (WoW) only, or demonstrate digital applications with
the premise of exocentric navigation only. Non-immersive VR
interventions are excluded due to technical qualities that result in
differences in the overall experience compared to fully immersive VR
systems (Rubio-Tamayo et al., 2017; Slater, 2018). 4) VR-related
manuscripts which include art therapy or therapeutic art-making
practices but do not draw any associations between VR and art
therapy or VR and therapeutic artmaking other than being parts of
a holistic therapeutic approach.

2.2 Information sources

The searching process was carried out mainly through 4 databases,
namely Scopus (138), Web Of Science (80 in the topic of “virtual
reality and art therapy”), PubMed (67), ScienceDirect (263 in the
subject areas of psychology, social sciences, computer science,
neuroscience, and nursing and health professions). All 548 papers
were sorted and then a second search from Google Scholar was carried
out. From Google Scholar, 7 additional papers were found that were
identified as potentially relevant. Within the first 6 search result pages
of Google Scholar, only 4 potentially relevant papers were found, as
most relevant articles had already been detected by previous search
engines and had already been included for screening. Therefore, the
total number of publications that potentially met the required criteria
was finalized at 555. No additional articles were retrieved afterwards
using incremental searching.

2.3 Search methods

The keywords used for the search engines to retrieve the
555 publications were “virtual reality art therapy.” In the stage of
the publication retrieval and screening process, the usage of the
keyword “art” required additional caution. From the first few
searching sessions, it was apparent that the keyword “art” was
inviting a multitude of irrelevant publications in the search
results. The main reason for this outcome was that “art” in
scientific literature is an excessively used term, with its most
common usage found in the phrase “state of the art.” Therefore,
the exclusion of the phrase “state of the art” from the search engines
has significantly increased the quality and decreased the load of
search results. For example, the search strategy for the Google
Scholar search engine that was performed on 09 November
2022 included the search query: ((virtual reality AND art* AND
therapy) -“state of the art”). Another issue caused by the keyword
“art” is that the acronym “ART” is also found to be excessively used
in areas of healthcare and science, technology, engineering, arts,
mathematics education (STEAM). This issue has been resolved
through the screening process, where the relevance of the
retrieved publications has been appraised.
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2.4 Selection of sources of evidence

All 555 papers were screened by title and abstract. The screening
and selection of the manuscripts was carried out on Rayyan (www.
rayyan.ai), a web tool designed to help researchers carry out
knowledge synthesis projects (Ouzzani et al., 2016). After all the
sources were uploaded to the web tool, the 555 publications were
manually categorized as duplicates (76), irrelevant (446), and
relevant (33) according to the criteria and processes discussed.
Some aspects of the inclusion and exclusion criteria were easier to
pinpoint with precision once the authors were familiarized with the
33 selected papers. After a thorough examination of the theoretical

background and if applicable the employed apparatus and
methodology of the 33 papers, it became apparent that the
relevance of 7 papers should be reconsidered. In 3 out of the
7 papers the human-computer interaction involved a 2D virtual
interface instead of a VE, but their intervention was labelled as
“virtual reality” regardless that VEs are integral components of
immersive VR. In 2 out of 7 papers, the references to VR and the
technology used during interventions were too vague and could be
exclusively concerning a WoW approach or even be irrelevant to VR
as defined in this review. In another paper, the study intervention
involved solely mixed reality (MR) technology. The remaining 1 out
of 7 papers describes a human-computer interaction model that

FIGURE 1
Flow diagram of the article retrieval process according to the PRISMA statement methodology.
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generates artworks solely based on the user’s affective state, without
any psychomotor activity being evidently required. With these
7 papers abiding to the exclusion criteria, the 26 remaining
papers consisted of mixed methods (5), qualitative (17), and

quantitative (4) research publications (Figure 1); 15 of the
26 included publications consist of empirical studies (Table 1).
The rest of the papers consist of academic articles that have aims
other than the production of novel empirical knowledge (Table 2).

TABLE 1 Empirical studies included for analysis.

Author N Participants Research Field Research Design

Brahnam (2014) N/A Drama students and professional actors Psychotherapy Qualitative (Descriptive study)

Marks et al. (2017) 20 Clients from an art-based ethnographic framework Psychotherapy Qualitative (Pilot study)

Ying-Chun and Chwen-Liang (2018) 8 Art-therapists with clinical treatment experience Psychotherapy Qualitative (Pilot study)

Kaimal et al. (2020a) 20 Healthy, college-educated adults, aged 18-65 Psychotherapy Qualitative (Pilot study)

Frewen et al. (2020) 36 University Students Psychotherapy Mixed Methods (Experimental
Study)

Kaimal et al. (2020b) 24 Healthy adults aged 18-54 Psychotherapy Mixed Methods (Pilot Study)

Baron et al. (2021) 16 Non-clinical volunteers Rehabilitation Mixed Methods (Experimental
Study)

Richesin et al. (2021) 44 Undergraduate students, over 18 years old Psychotherapy Quantitative (Experimental Study)

Alex et al. (2021) 14 Stroke survivors aged 55–84 Rehabilitation Mixed Methods (Field Study)

Haeyen et al. (2021a) 7 Art and psychomotor therapists aged 23–63 Psychotherapy Mixed Methods (Action Research)

Iosa et al. (2021) 4 Stroke Survivors (time of acute event longer than 3 months ago) Rehabilitation Quantitative (Experimental
Research)

Hacmun et al. (2021) 7 Expert female art therapists, aged 42-75 Psychotherapy Qualitative (Action Research)

Shamri Zeevi (2021) 2 A boy, aged 16, and a girl, aged 13, who suffered from anxiety Psychotherapy Qualitative (Case Study)

Zhang et al. (2021) 10 Healthy subjects Rehabilitation Quantitative (Experimental
Research)

Kaimal et al. (2022) 24 Healthy subjects aged 18–54 Psychotherapy Quantitative (Experimental
Research)

TABLE 2 Academic articles that synthesize empirical evidence and are included for analysis.

Author Research field Description

Carlton (2014) Psychotherapy Draws attention to the digital divide among art therapy practitioners and proposes ways to bridge the gap

Brahnam & Brooks
(2014)

Psychotherapy Proposes innovative practices in healthcare and encourages the investigation of the proposed ideas across
disciplines

Hacmun et al. (2018) Psychotherapy Explores the potential clinical applications of VR, as a medium, under the framework of art therapy

Song et al. (2019) Psychotherapy Demonstrates the BioFlockVR bioresponsive system and its initial setup

Salles et al. (2020) Psychotherapy Addresses the issues that come with the digitization of art therapy and discusses possible solutions

Gatto et al. (2020) Psychotherapy Sets goals for developing an art therapy XR application for combating health hazards associated with
social isolation

Jin et al. (2020) Rehabilitation Describes current tests used for the screening of various neurocognitive disorders and the possible
applications of VR

Cheng et al. (2021) Psychotherapy Offers a perspective on the development of art therapy

Liu et al. (2021) Psychotherapy, Communication, Computer
Science

Summarizes the theme category and research hotspots as well as the application of art therapy aided
health and wellbeing based on a bibliometric analysis

Li & Shen (2022) Psychotherapy Summarizes the clinical psychology research of expressive art therapy based on VR and reviews the
current state of the art

Baldursson et al. (2022) Psychotherapy A brief demonstration of the Nebula VR application that seeks to expand the notion of somaesthetic
appreciation through artistic creation

Frontiers in Virtual Reality frontiersin.org06

Hadjipanayi et al. 10.3389/frvir.2023.1065863

100

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1065863


2.5 Data charting process

After familiarization with the texts and the transcription process, the
extracted transcriptions were recorded in a table format based on the
content of the papers and more specifically, the advantages and
disadvantages of VR over traditional media in the context of
therapeutic artmaking and art therapy. Whenever applicable, the
primary results, main conclusion, as well as methodological approaches,
including apparatus, study purpose, data collection and analysis were also
collected. The tables were tested by the reviewer team for refinements and
to ensure that all relevant data were gathered. Therefore, data pertaining to
the different approaches towards art andVR technologywere also included.
An inductive thematic analysis was used for the collected data to define the
most common recurring themes. The data charting process was manually
carried out while two reviewers were permitted to simultaneously edit the
transcribed data on the shared tables. The emergent themes became
apparent after one of the reviewers used color coding on the
transcribed data that helped in discerning patterns and aggregating the
data into meaningful categories.

2.6 Data items

The generated codes regarding the methodological approach of
studies revealed that there are two main treatment categories, namely
psychological and neurorehabilitation treatments. The generated
codes regarding advantages and disadvantages of VR over

traditional media in the context of therapeutic artmaking and art
therapy revealed 6 main themes for each. The occurred themes
regarding advantages were recognized as:

A.i. “Expanding the current limitations of artistic ability and
expression in clinical settings through VR”

A.ii. “Gaining novel insights of therapeutic value through VR.”
A.iii. “Overcoming the restraints of physical space”
A.iv. “Ludicity and motivation”
A.v. “Digital natives in the therapeutic setting”
A.vi. “Facilitating client data management”
The occurred themes regarding disadvantages were recognized as:
D.i. “Tactility”,
D.ii. “Digital literacy”
D.iii. “Inclusivity”
D.iv. “Interdisciplinary concerns”
D.v. “Technical limitations”
D.vi. “Affordability and maintenance.”

2.7 Synthesis of results

Thematic synthesis was used to formulate a descriptive analysis of
the findings. In the results, reports on study logistics and the identified
approaches regarding the use of art therapy and therapeutic artmaking
in VR can be found. Also, advantages and disadvantages, limitations,
and challenges of digitizing art therapy with the use of VR are
presented in both narrative and table format (Table 3). This

TABLE 3 Summary of the advantages and disadvantages, challenges, and limitations in digitizing art therapy and therapeutic artmaking by using the VR medium.

Advantages of VR over traditional media

Expanding the
current limitations
of artistic ability

Gaining novel
insights of
therapeutic value

Overcoming the
restraints of physical
space

Ludicity and
Motivation

Digital natives in
the therapeutic
setting

Facilitating client
data management

VE customization Increased attention to
the present time

Comfortability and freedom
of physical transportation

Enhanced psychological
support for completing
treatments

Digital natives tend to be
drawn to technology

Body movement tracking

Creation of “safe spaces” Attitude change
through presence and
embodiment

Illusion of being transported
to another world

Source of inspiration More likely to foster trust
towards therapist when
digital natives are involved

High accuracy in
physiological
measurements

Manipulation of virtual
physics

Perspective change and
Replay Value

Space- efficient storage of
artworks

Disadvantages of VR over traditional media

Tactility Digital Literacy Inclusivity Interdisciplinary
concerns

Technical Issues Affordability and
Maintenance

Lack of valid tactile input
can lead to less emotional
engagement

Lack of guidance
regarding newmedia for
therapists

Favors tech-nologically
savvy teenagers and adults,
who suffer from mild
disorders

Cooperation between software
developers and art therapists is
essential

Less tools and materials for
creating artworks

Relatively less affordable,
renewable, and accessible
to clients and therapists

Lack of evaluation
regarding VR
approaches

Some experience
cybersickness

VR artmaking sometimes
feels alienating

Technophobia Some experience escapist
tendencies

Impeded physical
movement and
communication cues

Confidentiality
concerns

Non-friendly VR
applications for therapists
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scoping review was synthesized based on the PRISMA ScR checklist
guidelines (Tricco et al., 2018).

3 Results

An overview of the 26 publications indicates that the concept of
using VR as an artmaking tool in therapy context has been nascent in
the past decade (2011–2022 included) and it has recently grown in
trend, with 73.07% (n = 19) of the included papers being published
between 2020 and 2022. A bibliometric analysis, which is conducted
by Liu et al. (2021) and is spanning over a period of 75 years, confirms-
through the co-occurrence of keywords used in the context of art
therapy-that VR technology is becoming increasingly relevant with art
therapy aided health and wellbeing research. Also, 57.69% (n = 15) of
the included papers involve experimental research with human
participants, with the remaining 42.30% (n = 11) consisting of
opinion pieces, demos, and essays. All studies made use of a VR
apparatus, most commonly mentioned being the Oculus, the HTC
VIVE, and the Windows Mixed-Reality VR/MR headsets.
Additionally, some of these studies included hardware
complementary to VR, such as motion capture devices (MOCAP)
for body tracking. Regarding the software, both custom and
commercial VR drawing applications were used, with the most
widely used one being the commercial application Google Tilt
Brush. Participants fell under the category of either “patient” who
suffers from psychological or physical conditions, “therapist,”
“university student,” or “healthy subject,” and the research
objectives suggest high heterogeneity among studies.

3.1 Approaches to art therapy and therapeutic
artmaking

This subsection constitutes general observations drawn from the
reviewed papers, which do not necessarily conform to the acceptable
definitions of “art therapy” or “therapeutic artmaking” as presented in
the introductory section. The presentation of these observations
provides a brief overview of the therapeutic approaches and the
state of the art. In the reviewed papers, the terms of art therapy
and therapeutic artmaking, sometimes clearly distinguished and other
times used interchangeably, are used to describe a wide variety of
treatments. In general, all the reviewed treatments operate on the basis
that creative endeavors can generate emotions and incentives for both
mental and physical wellbeing. Art, and more specifically art materials
and media, are viewed as intermediaries between the realms of ideas
and reality, which are experienced through the individual’s senses.
Specifically for VR, therapeutic activities such as painting, drawing,
coloring, collaging, and sculpting, take a different form in the 3D
environments, which could also vary (e.g., digital twins of an art
therapy room or ostensibly infinite 3D canvases).

The authors identify two main categories, namely psychological
and neurorehabilitation treatments, in which theoretical approaches
to art diverge.

3.1.1 Psychological treatment approach
Most of the reviewed papers that are relevant to the field of

psychology define their psychotherapeutic treatments in terms of
art therapy, as a mental health profession and, more specifically, an

expressive arts discipline. Art therapy is applied as a dynamic
emotional therapy where art materials, the creative process, and the
produced artwork serve as means of self-exploration and self-
expression, in order to create personal change. In this context, the
most widely mentioned theoretical influence is the psychodynamic
perspective (Jungian psychology). This is often put in practice as depth
psychology-based psychotherapy, in which the unconscious is brought
to the surface thanks to the symbolic potential of artistic self-
expression and, as a result, suppressed feelings are being revealed
(Song et al., 2019). During this process, creating art and the
psychotherapeutic relationship are elements of higher
psychotherapeutic value than the final product of artistic creation.
In analytical art psychotherapy, the patient’s artwork is examined by
the therapist to better understand the unconscious mind (Schaverien,
2000; Cheng et al., 2021).

Principles from other schools of thought are also adapted to the
theoretical framework of the reviewed papers. Through the lens of
CBT, art facilitates the communication of the individual’s conceptual
structures in a different way than verbal communication does, thus
often providing alternative and illuminating perspectives to both the
individual and the therapist. Within the triangular psychotherapeutic
relationship, the artwork represents a subjective experience that is
externalized by the client, in a way that the visualized mental relations
of the client become more explorable and often reveal conflicting
perspectives (Hacmun et al., 2021). The “open studio approach” to art
therapy is an approach that many of the reviewed papers find befitting
of VR art therapy because of the ludic nature of current VR art-related
applications. The creation of the “safe space” is a prominent practice in
art therapy. Drawing the “self,” the “problem,” and “coping
mechanisms,” such as a “sanctuary,” is found to significantly
alleviate psychological trauma (Frewen et al., 2020).

A strong implication that is pointed out is that artistic expression,
even without being accompanied by verbal reflection or any
psychotherapeutic intervention, could still be a source of
psychological healing. Artmaking is viewed as an innate human
characteristic and one of the most primitive forms of self-
expression, which is continuously evolving as a result of
technological advancement by encompassing new expressive
capabilities (Hacmun et al., 2018). Art is deployed as a source of
solidarity, inspiration, and a sensation of security during times of crisis
(Gatto et al., 2020).

3.1.2 Neurorehabilitation treatment approach
Regarding rehabilitation treatments, it is revealed that VR drawing

applications are often used by patients who suffer from post-stroke
motor impairments or minor neurocognitive disorders. Under this
framework, digital artmaking works as an effective treatment for
rehabilitation because it values the enjoyability of the treatment, as
it activates reward pathways of the brain, while supporting physical,
cognitive, and emotional healing (Kaimal et al., 2020a). It also allows
patients (e.g., stroke survivors) who encounter difficulties with
speaking to express themselves non-verbally (Alex et al., 2021;
Zhang et al., 2021). The most recent findings in the field of VR
artmaking suggest that different approaches to artmaking activate
different brain regions (Kaimal et al., 2022). Comparisons of
prefrontal cortex activations between a visual tracing task of a
drawing and creative self-expressive artmaking indicated significant
differences. Distinctively, the implication is that creative self-
expression, contrary to the tracing task, induces transient
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hypofrontality, a state of the brain that is associated with relaxation
and the inhibition of self-reflective processes. This suggests that
different artmaking approaches could be used for achieving specific
treatment goals.

From the perspective of neuroaesthetics, the field which engages
with the perceptual, cognitive, and emotional aspects involved during
an aesthetic experience, the element of the artwork is an apt addition
in the neurorehabilitation practice. A reason for this is that creation, or
even mere observation, of artworks and the practice of rehabilitation
are both tightly associated with sensorimotor activity, which is found
to be cognitively concomitant to the emotive expressions of painted
figures (e.g., the figures in “The Creation of Adam” by Michelangelo)
(Iosa et al., 2021). Artworks are found to neurobiologically induce
motivation and affective arousal, which are fundamental aspects of
neurorehabilitation, along with active participation and treatment
intensity.

3.2 Advantages of VR over traditional media in
therapeutic artmaking and art therapy

3.2.1 Expanding the current limitations of artistic
ability and expression in clinical settings through VR

The authors of the reviewed papers appear to advocate for a
potential revolutionization in the field of art therapy, because of the
advent of VR. Especially in psychotherapy, VR’s increasing repertoire
of tools for creative self-expression enables clients to better convey
their conceptual structures to therapists and researchers by
transforming and customizing the virtual environments where the
therapeutic process takes place. The ability to tailor virtual
environments according to the client’s psychological disorder and
the psychotherapeutic approach of the therapist could more easily
provide both clients and therapists or researchers a common ground of
communication (Hacmun et al., 2018).

The most notable contributions of artistic expression in VR
psychotherapy are found to be the evocation of familiarity and
safety in clients, as well as enhanced self-reflection and meditation.
A common practice that is observed is the creation of a “safe space,”
which is created by the client according to the client’s personal
preference to serve as an emotional refuge. Safe spaces, which are
usually in the form of houses or caves, have been used in
psychotherapy practice long before VR but the ability to step into
your artworks, which is exclusive to VR technology, expands the
frontiers of this practice (Frewen et al., 2020). VR safe spaces are most
beneficial for people suffering with trauma and post-traumatic stress,
as safe spaces allow them to gather and sort their thoughts and feelings
out while being at one with themselves (Brahnam, 2014). However, the
creative ways the clients can express themselves through VR could go
far beyond the concept of safe spaces and drastically vary, as clients
continue to experiment with VR as a creative outlet.

In VR neurorehabilitation practices that involve artistic creation,
as derived from the reviewed papers, artistic technique with emphasis
on precision of movement seems to have an equally prominent, if not
more prominent role, to that of artistic expression. Rehabilitation
practices through VR technology are applicable because VR
technology has evolved to allow a sufficiently high precision of
movement, compared to the physical world. VR has the capacity of
allowing patients who suffer from impaired mobility to make bold and
expansive brush strokes in the virtual world by making simple gestures

in the physical world (Baron et al., 2021). This result can be achieved
by accordingly adjusting the movement translation of the virtual
avatar to the patient’s range of motion. In similar ways, the laws of
physics in VR environments can be “adjusted” to the needs and
comfort of the patients. In this sense, the VR medium offers a high
level of independence to the user (Alex et al., 2021).

3.2.2 Gaining novel insights of therapeutic value
through VR

Throughout the reviewed papers, the concept of experiential
discovery through VR is prevalent. From the client’s perspective,
VR is a medium that is assumed to be effective in inducing
emotional responses and stimulating cognition. Exposure in
immersive VEs is found to decrease distracting thoughts (mind
wandering) and increase properties required for eliciting attention,
awareness, and self-reflectiveness. Some of these properties are
presence and embodiment, which are important factors for
changing implicit attitudes (Hacmun et al., 2018; Gatto et al.,
2020). From the therapist’s perspective as well as that of the
researcher, VR enables the exploration of the client’s mind as an
equivalent of exploring virtual worlds (Marks et al., 2017). During the
analysis, two of the most notable VR qualities that were indicated as
salient contributors in gaining novel insights of therapeutic value in
VR are enhanced perspective change and replay value (or playback).

The affordance of perspective change encompasses the user’s
perspective but also the ability of virtual object manipulation. In
this instance, “virtual objects” refers to the clients’ artistic creations,
which play the role of externalized concepts. VR offers the ability of
viewing objects from any angle, including from within the artwork,
and the ability of scaling the size of objects (Hacmun et al., 2018; Li and
Shen, 2022). The viewing of such objects from different vantage points
is a practice that is already employed in psychotherapy and VR can
drastically enhance this practice. Through coming across these
different perspectives, clients are given the opportunity to
deconstruct and reconstruct their conceptual structures, such as the
concept of the self (Hacmun et al., 2018).

The ability to replay a recorded psychotherapy session and
attempt to reassess the client’s behavior within the virtual
environment allow the psychotherapist or researcher and the client
to have a more accurate and clearer understanding of the client’s
therapy progress (Brahnam, 2014). In other words, the digital
affordance of replaying each digital brushstroke during art therapy
in VR can enhance reflection. Replay value is one of the many VR
qualities that require ongoing study (Carlton, 2014).

3.2.3 Overcoming the restraints of physical space
The reviewed papers often focus on the use of VR headsets that can

be used in a patient’s daily life, even outside of the care services. The
portability of VR allows the patients to engage in therapy in the
comfort of their home, where no time or transportation restrictions
apply (Baron et al., 2021). However, even when it is mandatory for
patients to either visit a clinical facility or remain hospitalized, VEs of
immersive VR have the ability to transfer patients outside of the sterile
physical environment of a clinical setting and “place” them somewhere
more idyllic, thus providing inspiration and positive emotions.
Furthermore, VEs are designed for the exploration of imaginal
worlds and their design is in accordance with the central tenets of
the creative processes in art therapy (Gatto et al., 2020). This
transportability through immersive VR allows the stimulation of
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the proprioceptive and vestibular senses without the need of a sizeable
physical space and thus distinguishes immersive VR from other digital
media. Equally important is the fact that VR artworks can be efficiently
stored and retrieved for further editing without occupying physical
space, unlike materials and artworks produced by traditional art
therapy practices (Baron et al., 2021).

3.2.4 Ludicity and motivation
The reviewed papers support the idea that ludic play and

gamification models, which are compatible with VR technology,
assist in establishing therapeutic interventions that drive the
patient’s engagement while maintaining autonomy. Physical
therapy requires time commitment while the therapeutic process is
often arduous for the patient. Even so, the inherent qualities of VR
applications motivate patients to keep exercising and instill in them
the willingness to gainmastery over the newmedia (Baron et al., 2021).
As no hard-and-fast rules for artmaking exist, VR artmaking is often
viewed as an activity for relaxation and recuperation with no
substantial impact on the physical world and free from the fear of
failure or committing mistakes (Li and Shen 2022). A study that
focused on the physiological measures of VR users during artmaking
in a 3D virtual space, found a reduction in anxiety and negative affect
(Richesin et al., 2021). Also, the same study suggests that the aspect of
having an end goal during a VR simulation, such as completing an
artwork, plays an important role when aiming for specific wellbeing
related outcomes. Another aspect worth mentioning is the element of
inspiration. Guided imagery, as an art therapy practice, requires
imagination, which patients sometimes lack. VR immersive
environments may be able to provide the inspiration necessary for
unimaginative patients to evoke concrete ideas and possibilities more
easily while sparking the interest in further exploring these ideas
(Kaimal et al., 2020a; Li and Shen, 2022).

3.2.5 Digital natives in the therapeutic setting
As technology has permeated every facet of current society, the

group of digital natives is continuously increasing due to the
succession of generations. Therapists and researchers from the
reviewed papers suggest that most digital natives are accustomed to
interacting with technology, including VR, and interaction with
technology is intuitive and enjoyable to them. As digital natives
grow up in a technologically abundant environment, their minds
become wired towards best utilizing the technological resources at
their disposal (Marks et al., 2017). This is the main reason digital
natives are often alienated by traditional media (i.e., art materials),
which they often find too messy or even obsolete. In a
psychotherapeutic setting, digital natives tend to feel more
comfortable expressing themselves through means other than a
conversation or a paper-and-pencil drawing. VR interventions are
found to be great alternative options of therapy in cases of clients
rejecting traditional therapeutic methods. Therefore, VR assists in
building rapport between clients, especially younger ones, and their
therapists, by enriching the psychotherapeutic relationship (Shamri
Zeevi, 2021; Li and Shen, 2022). The use of new media, such as VR, in
art therapy paves the way for further cultural exploration of digital
natives and their interaction with technology (Carlton, 2014).

3.2.6 Facilitating client data management
The suitability and assistance of VR technology in data collection

and data representation is occasionally mentioned in the reviewed

papers. VR is widely portrayed as a technology that allows easier
tracking of body movements, which on one hand is necessary for
creating art and at the same time constitutes a crucial element of art
therapy (Ying-Chun and Chwen-Liang, 2018). Additionally, body
movement is often viewed as a form of expression in and of itself.
Especially for VR neurocognitive tests, the high ecological validity that
is provided by VR, in comparison to their paper-and-pencil
counterparts, makes the data collected through VR arguably more
valid. This is because VR provides the possibility of safely reenacting
activities of daily living in VR as if in real life (Jin et al., 2020). Also,
digital technologies can reach a large audience of patients and gather
patient data that could lead to more informed decisions by both
healthcare professionals and researchers. Data frommultiple VR trials
can be easily gathered and compiled, leading to reassessment and
optimization of VR tests (Jin et al., 2020; Salles et al., 2020).

3.3 Disadvantages of VR over traditional
media in therapeutic artmaking and art
therapy

3.3.1 Tactility
With the field of VR haptics still evolving, the reviewed papers

point out that VR is insufficient in providing a similar level of sensory
stimulation and tactility as traditional media in art therapy. VR
technology replaces tangible art materials with virtual ones, which
could be characterized as orderly and often unfamiliar, and this is
especially true for clients who perceive traditional art therapy
materials as more intuitive and easier to use (Alex et al., 2021).
The joy of “holding my completed artwork in my hands,” is a
quality that seems to be exclusive to physical artworks (Hacmun
et al., 2018). The deprivation of sensory cues through the absence of
sufficient tactility stimulation in digital media often brought up in the
reviewed papers, is one of the main factors that prevent some art
therapists from considering the adoption of not only VR but also other
digital media in their psychotherapeutic treatments (Haeyen et al.,
2021a).

3.3.2 Digital literacy
Most art therapy practitioners lack training in VR technology and

their resources for employing VR are sparse. In addition, art therapy
practitioners tend to consider traditional media in art therapy as more
therapeutic than new media, even though there is no clear evidence of
this belief (Carlton, 2014). According to the reviewed papers that
addressed these issues, the lack of systematic training in newmedia for
art therapists discourages the use of VR technology in art therapy
practice. Specifically, art therapists are hesitant about the use of VR
technology, as they acknowledge the lack of technological expertise in
the field and have no clear direction in how to incorporate digital
materials in their psychotherapeutic treatments, which are often
highly experiential and active by nature (Brahnam, 2014; Haeyen
et al., 2021a). Consequently, the lack of technological expertise results
in a lack of evaluation regarding the psychotherapeutic efficiency of
the digital tools available andmany practitioners arrive to the arbitrary
conclusion that new media are inefficient compared to traditional
media (Salles et al., 2020). Some of the authors use the term
“technophobia” to describe this phenomenon of repulsion towards
new media. Technophobia is observed in practitioners and clients
alike, as many of them admittedly perceive digital media and digital art
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as lesser than their traditional counterparts (Jin et al., 2020). An
important factor that caters to technophobia in clients is the
uncertainty regarding confidentiality and privacy of the client’s
data accumulated during VR sessions (Marks et al., 2017). All
things considered, and especially the obscurity of new media in art
therapy graduate programs, there is also the issue that art therapy
practitioners who are unfamiliar with new media may never come
across the possibility of adopting VR in their psychotherapeutic
practice. However, even when practitioners overcome any possible
bias and consider the possibility of adopting VR, they are often
intimidated by the steep learning curve and other limitations.

3.3.3 Inclusivity
From the analysis of the reviewed papers, it can be concluded that

art therapy in VR is less inclusive than traditional art therapy. First and
foremost, there is a digital divide among art therapy clients and those
who are technology-savvy are more likely to find benefit in VR
interventions (Shamri Zeevi, 2021). Secondly, the use of VR by
children who are below the age of twelve or thirteen is not
recommended for safety reasons, according to policies of VR
headset manufacturers (Ying-Chun and Chwen-Liang, 2018). This
age restriction specifically applies to VR gaming, so children younger
than twelve could potentially make a healthy use of VR headsets when
supervised by adults. Even so, this age restriction implies that VR
usage requires the user to have a level of cognitive development that is
higher than the one required for the usage of traditional art therapy
media. Also, VR interventions are unsuited for people with major
neurocognitive disorders, acute motor and vestibular issues, and those
who are prone to headache and nausea, as the phenomenon of
cybersickness seems to be a glaring problem. In addition, VR
interventions are unsuited for people who suffer from
hallucinations and those who struggle to distinguish between
reality and fantasy (Kaimal et al., 2020a; Jin et al., 2020). The
restrictions mentioned so far do not apply to traditional art
therapy and even when clients seem to qualify for the use of VR,
the opposite could be proven during therapy. For example, the client
could be prone to distraction by the VR intervention. In this case, the
client could easily diverge from the course of therapeutic practice,
especially if the art therapy facilitator is negligent or unfamiliar with
new media (Carlton, 2014). It is difficult to predict a client’s response
to a VR intervention before the beginning of the intervention as VR
qualities are experienced differently by each user. Some users do not
experience the illusion of presence–being in a different place than the
physical one when using VR—but others experience this illusion too
intensely. Regarding the latter case, patients may use VR interventions
for unhealthy escapism instead of coping with real life problems
(Kaimal et al., 2020a). This adds an extra layer of complexity in
deciding whether VR interventions are benefactory to all clients. Issues
with inclusivity can be encountered from the side of the art therapy
practitioner too. This view stems from the observation that most
applications of VR in psychotherapy are used in the context of CBT,
while other approaches, such as the humanistic approach and their
practitioners are obscured. Similarly, VR could be considered as
impractical for some groups of art therapy practitioners who
endorse art therapy practices other than the ones offered by most
of the available VR applications (Brahnam, 2014). It should be
mentioned that practitioners often develop VR-applicable
techniques based on various concepts and strategies (e.g., technical
eclecticism, Ludic Engagement Designs for All) that could potentially

cater to both the expertise of each practitioner and the unique needs of
each client (Brahnam and Brooks, 2014; Frewen et al., 2020).

3.3.4 Interdisciplinary concerns
Despite the attempts to digitize art therapy and therapeutic

artmaking, more research is needed to ensure the satisfaction of
therapists and clients alike regarding the efficacy of digital
interventions. This seems to be true for both psychological and
rehabilitation treatments in VR, according to the reviewed papers.
Physical rehabilitation in its traditional form has long been proven as
an effective method of regaining functionality, whereas more studies
are needed to determine the extent to which VR rehabilitation is
efficient (Baron et al., 2021). Digital applications are notorious for
widespread misinformation and, with applications in the healthcare
industry being no exception, clinicians point out the significant risk of
applications dictating therapy through digital means (Salles et al.,
2020). Clinicians stipulate that digital applications relevant to therapy
should be flexible enough to be customized for each client instead of
being adapted to the developers’ process of working. For example, art
therapy is often misunderstood as the notion of simply making art for
psychological healing or the notion that the completed artwork of the
patient is a solid projection of the patient’s psychopathology. When
these misconceptions are transferred to the digital realm, there is the
danger of excluding the framework that makes art therapy therapeutic,
such as aspects of the triangular psychotherapeutic relationship and
the subtle expressions during the construction of an artwork (Salles
et al., 2020).

3.3.5 Technical limitations
Admittedly, the current state-of-the-art VR software for

artmaking offers less sophisticated artistic capabilities for creative
expression than traditional art therapy media. The range of tools and
materials, which are available for drawing, painting, sculpting, and
collage in VR, is comparatively more limited than the physical gamut
of art tools and materials (Kaimal et al., 2020a).). Also, it can prove
difficult for the client to convey some of the intentional or
unintentional messages to the therapist or researcher due to the
physical form of VR technology. By drawing examples from the
reviewed papers, a common problem is that VR head-mounted
displays hide the facial characteristics of the client and disallow
eye-contact between the client and the physical environment,
including the therapist (Shamri Zeevi, 2021). In the case of
physical rehabilitation, the rigidity, agelessness, and multi-
perspective angles of 3D digital strokes often alienate patients,
whose location tends to remain constant, due to them being inert
(Alex et al., 2021). A common issue for therapists and researchers is
that they can only have a glimpse of the therapeutic process through a
2D projection of a computer screen, which makes monitoring the VR
user (Shamri Zeevi, 2021). Overall, the reviewed papers suggest that it
is easier to evaluate social cues and initiate social interactions during
traditional methods rather than VR interventions.

3.3.6 Affordability and maintenance
According to Carlton (2014), there is a lack of affordability,

renewability, and accessibility to new media compared to
traditional media in art therapy. The issue of high cost in VR
equipment and the development of specialized software
applications, compared to traditional art therapy media and
materials, is found in many of the reviewed papers. Specialized VR
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systems are usually available to psychotherapists only if provided by
healthcare organizations that have their own IT departments where
limitations, such as cost and maintenance, are most viably mitigated
(Brahnam, 2014).

4 Discussion

The findings indicate that the progress of VR technology is
facilitating the use of VR in therapeutic practices relevant to the
creation of artworks to a degree that allows a plethora of possibilities
for innovation. In the field of psychotherapy, 3D digital brush strokes
are employed to facilitate communication between client and therapist
or researcher but also to act as building blocks for “safe spaces,” work
as colorful mood regulators for reducing anxiety, and unravel
empirical insight for self-improvement. The 3D digital strokes of
Tilt Brush were only an instance of how therapeutic artmaking and
art therapy manifest in VR. New forms of artistic expression are
beginning to emerge through VR, such as generating graphics using
biomarkers or simple gestures (Song et al., 2019; Baldursson et al.,
2022). Some of these art forms are made available thanks to the
combination of VR with other technologies, such as the Brain-
Computer Interfaces (BCI), where brain activity data can be easily
collected and decoded to create control signals for virtual objects
(Coogan and He, 2018). One of the least expected findings was the
emergence of digital drawing techniques in the field of
neurorehabilitation. Rehabilitation strategies that involved the
creation of traditional artworks were proposed by Skinner and
Nagel (1996), however the literature on the subject has been scarce
for over 2 decades. Recent studies suggest that new media alleviate
physical constraints from in-therapy motor-impaired patients to the
point of allowing them to paint digital artworks and even “recreate”
classical masterpieces in the form of a simulation (Iosa et al., 2021;
Zhang et al., 2021). For example, researchers used VR technology to
simulate the illusion of painting classical art masterpieces, designed for
the neuroaesthetic stimulation of patients with an affected upper limb,
and found a “Michelangelo effect” arising (Iosa et al., 2021). These
imitations are neurologically comparable to performing the observed
activity, akin to a virtual simulation, hence the term “embodied
simulation” could be used (Buk, 2009; Finisguerra et al., 2021). It is
argued that the capabilities of computer simulations in inducing
neuroplasticity are best utilized by the technology of VR, which
provides patients with interactive, stimulatory and ecologically valid
VEs (Cheung et al., 2014). The sense of presence, which is induced
within an immersive VR simulation, accounts for a bountiful
allocation of cognitive resources that are relevant to motor control
and is estimated to be one of the main factors that make VR
technology especially suitable for rehabilitation (Slobounov et al.,
2015).

VR art therapy and therapeutic artmaking seem to be promising
future interventions for wellbeing. Artmaking in immersive VR was
found to lessen the participants’ insecurities about their skill in
artmaking, allowing them to be more creative and focused on their
therapeutic goals (Kaimal et al., 2020a). The malleability of VEs and
their ability to adapt to the needs of clients as well as the illusion of
presence are found to be some of the main contributors in facilitating
healing. The symbolic, explorative, and controlled nature of VR art
therapy allows personalized experiences that can be observed through
different distances and points of view. These qualities allow

individuals to create order from the fragmentary aspects of life and
make sense of their emotions (Malchiodi, 2002). VR could induce
motivation and inspiration in clients, especially in those who are
receptive towards new media, such as digital natives, whose life
typically operates in both the physical and the digital world. Some
digital natives choose to allocate their energy resources more in the
digital world than the physical one and this phenomenon seems
relevant to sociobiological factors and data ubiquity. Taking into
consideration the above findings and the conclusions of the
systematic review by Wagener et al. (2021), it could be argued that
the lack of applicability of holistic wellbeing approaches,
customization, and self-expression in VR is prominent possibly
because substantial steps to elevate the state of the art in the
direction of art therapy and therapeutic artmaking have yet to
be made.

The reviewed papers often indicate disadvantages of VR over
traditional art media while implying that, nowadays, most of the
highlighted issues are surmountable enough. Most of the explored
issues, such as interdisciplinary concerns and the lack of digital
literacy, are likely to move towards resolution the more they
become adequately addressed. Other issues, such as the lack of
cost-effective solutions for VR ownership and development, as well
as tactility absence in VR during artmaking, can be more nuanced. The
lack of tactility experienced through digital art therapy initially used to
be one of the main sources of skepticism in art therapists regarding the
adoption of digital art therapy practices. However, it has been
observed that the lack of tactility could be an uncanny feeling for
some but also a trivial matter for others, whose modalities combine
inside the VR environment to create an illusion of tactility (Hacmun
et al., 2021). Currently, electrostimulation-based techniques are
employed to tackle both the issue of tactility absence and
cybersickness in VR (Li et al., 2020; Vizcay et al., 2021).

All the reviewed papers are unanimous regarding the
appropriateness of VR in art-based therapeutic practices, even
though some researchers from the reviewed papers but also from
the broader literature challenge the notion that fully immersive VR
favors interventions for which the connection between client and
therapist is deliberately distant (Gatto et al., 2020; Hacmun et al.,
2021). Xiong et al. (2022) argue that Augmented Reality (AR) could be
a more suitable technology for art-based rehabilitation interventions
than fully immersive VR because of the increased possibilities for
social interaction in AR, among other reasons. As Alex et al. (2021)
argue, sociability in VR applications, even though it exists, needs to be
a more prominent feature. The accessibility increase of
psychotherapeutic practices to collaborative VR spaces through
telepresence could mitigate some of the interdisciplinary and
technical problems which VR psychotherapy sustains, such as the
limited accommodation of the triangular psychotherapeutic
relationship to the VE. Importantly, the role of the therapist or the
researcher, who is cut off from observing the implicit actions of the
client/user during an artistic fully immersive VR intervention, is
bound to be degraded due to the observer’s constrained ability to
derive accurate conclusions. This implies that current VR technology
favors the forms of art therapy in which the role of the therapist is
peripheral to the psychotherapeutic relationship and this limitation is
arguably detrimental to the overall usability of fully immersive VR as a
therapeutic tool.

However, the authors by no means suggest that fully immersive
VR is deleterious to the role of the therapist. Despite the drawbacks
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that fully immersive VR has in store regarding the therapist’s role, VR
is also found to be especially useful for building trust between client
and therapist, which is an important aspect of the psychotherapeutic
relationship (Frewen et al., 2020; Shamri Zeevi, 2021). The term
“collaborative VR” refers to social VR platforms that allow user-
generated content and synchronous communication in 3D virtual
spaces via telepresence (Saffo et al., 2021). Collaborative VR platforms
where both client(s) and therapist(s) can simultaneously occupy the
same virtual space through telepresence exist in a nascent stage (i. e.,
VRChat and the “Metaverse”), which are likely to become more of the
norm in the years to come and prominent therapeutic spaces
(Rzeszewski and Evans, 2020; Hacmun et al., 2021). These
platforms can employ eye tracking and real-time facial expression
mapping techniques for avatars, which could be a solution to the
problem of communicating emotional cues through VR (Joachimczak
et al., 2022). Nevertheless, a challenge that needs to be addressed
regarding real-time facial expressionmapping is that facial expressions
of avatars need to mitigate their levels of perceived uncanniness and
this challenge mostly concerns photorealistic avatars (Kumarapeli
et al., 2022). As fully immersive VR is progressively becoming
more geared towards commercial use, the development of
collaborative VR is more likely to gain momentum and
subsequently elevate the role of the therapist and the possibilities
offered regarding art-based therapy treatments.

5 Future directions

Despite the topic of VR in therapy being relatively new and the
challenges being many, there is promising evidence regarding the
therapeutic use of art-based VR interventions. The variables that
constitute an effective digital application for art therapy are already
evident (Marks et al., 2017) but the transformation of theoretical
knowledge into effective therapeutic practices, especially in the case of
new media, needs further experimentation. As suggested by the
reviewed papers, future research could pertain to the transfer and
optimization of neurocognitive tests in VR with emphasis on drawing
and visuospatial reasoning (Jin et al., 2020). VR also poses an
opportunity for studying the impact of artmaking on the
Autonomic Nervous System (ANS) from a theoretical standpoint
that derives from pieces of research focusing on artmaking and
anxiety disorders (Sandmire et al., 2012; Sandmire et al., 2016). It
is already known that artmaking practices help in reducing stress and
anxiety, but VR technology could elevate our understanding of
artmaking even further, thanks to the facilitation of data
management and the ecological validity offered by VR
interventions (Richesin et al., 2021).

Even though many novel approaches to therapy have been
described in this review, the full potential of immersive VR
technology in therapeutic treatments seems to remain underutilized
(Geraets et al., 2021) and art-based treatments are no exception. One
of the most underutilized affordances of VR in art therapy and
therapeutic artmaking is that of the embodied expression via
virtual avatars. The concepts of embodied cognition, virtual
avatars, and embodiment are commonly found in the literature of
fully immersive VR (Kyrlitsias and Michael-Grigoriou, 2022), but the
role of the avatars in the reviewed papers was given little to no
attention. Reviewed studies that deployed fully immersive VR were
found to be limited to the obligatory motion capture of the hands,

provided by the controllers or other motion-capture techniques, which
tend to make the VR user feel like a body-less ghost with visible hands.
Arguably, the embodiment of virtual avatars, and its subsequent
sensations of body ownership and body agency, should be
considered as crucial elements of art-based therapeutic treatments
in VR because of the indispensable role of kinesthetic and
sensorimotor activity, as well as spatial awareness, during art
therapy interventions. As Malchiodi (2020) notes, the most
compelling reason for using any expressive arts therapy
intervention is probably the sensory nature of the arts themselves,
which cultivate cognitive and emotional awareness but also the
awareness of somatic sensations that contributes to body-
kinesthetic intelligence. Given that the facilitation of the
communication between mind and body is one of the tenets of art
therapy, when the VR user has no visual affirmation of having and
controlling a body, the possibility that the lack of the expected visuo-
proprioceptive stimuli downplays the efficacy of art therapy becomes
prevalent. On a psychosocial level, embodied expression via avatars in
VR could organically integrate into art-based therapeutic practices and
enhance therapeutic experiences because of the possible influence of
VR embodiment and presence in changing implicit attitudes.
Adopting methods such as, the “Proteus Effect” could prove to be
useful in the context of art therapy in numerous creative ways, for
example using avatar-based emotional priming interventions (e.g., for
attitude change) or aiming for avatar-assisted cultivation of
psychomotor skills.

Continuing in the lines of embodied cognition, another area of
interest for future research could be that of embodied simulation. The
Michelangelo effect is a good example of the utilization of the mirror
neuron system in motor-impaired individuals for neurorehabilitation.
An inference from the study, in which the term “Michelangelo effect”
hails (Iosa et al., 2021), could be that artmaking, even if subconsciously
practiced via embodied simulation, activates visual-motor mirror
neurons to the degree of facilitating neurorehabilitation. More
research is needed to assess the level of significance of the
association between VR artmaking (combined with shared body
states of virtual humans) and neurorehabilitation.

Finally, psychotherapy interventions should go beyond “building
safe spaces” when it comes to externalizations of mental
representations in VR. Creative work in VR could often lead to
creating a bridge between the physical world and emotions (Shamri
Zeevi, 2021). Externalizations help in understanding where the person
stands in relation to a problem, and what they might need in order to
gain control over it, but it also provides understanding of the nature
and the scale of the problem as it is already evident through enhanced
perspective change and replay value (Marks et al., 2017). Intrusive
mental images of distinct shapes and forms could also become
available for constructive interaction through externalization. The
case study of Walker et al. (2016) corroborates that bringing
tormenting intrusive images to “the light of day” through
artmaking allowed a sufferer to deconstruct and ultimately
vanquish these reoccurring images. However, the efficacy of
externalizations for the treatment of intrusive images on a large
population with diverse experiences and levels of severity is still in
question, since the exact underlying mechanisms of this treatment are
unclear. VR technology, through its ecological validity, controllability
of environments, and creative applications, provides an adequate
opportunity for experimentation on externalizations of mental
representations and intrusive mental imagery, while making it
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possible to generalize results in a larger population. Rosal (2018)
points out the necessity of clinical psychology research to focus on the
study of intrusive mental images because they are related to many
disorders for which our knowledge on their treatment is still
insufficient.

6 Conclusion

The aim of this scoping review was to provide comprehensive
information for therapy practitioners, application developers, and
researchers, who could make use of the presented information to
update current practices, and help elevate the state of the art in
psychotherapy and rehabilitation. Knowledge regarding VR
artmaking and art therapy in the area of wellbeing is already
reported in various papers in a fragmented fashion and the scope
of the present review was to congregate all the relevant information in
a cohesive manner. The unique properties of VR and their significance
to the area of art therapy and therapeutic artmaking were detailed and
contrasted with traditional therapeutic practices. Further, this review
provided the opportunity to focus on underexplored areas of VR
practice in psychotherapy and rehabilitation, identify knowledge gaps
in the literature and discuss potential future directions in the field
of VR.
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Technology innovation to reduce 
health inequality in skin diagnosis 
and to improve patient outcomes 
for people of color: a thematic 
literature review and future 
research agenda
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The health inequalities experienced by ethnic minorities have been a persistent 
and global phenomenon. The diagnosis of different types of skin conditions, 
e.g., melanoma, among people of color is one of such health domains 
where misdiagnosis can take place, potentially leading to life-threatening 
consequences. Although Caucasians are more likely to be  diagnosed with 
melanoma, African Americans are four times more likely to present stage IV 
melanoma due to delayed diagnosis. It is essential to recognize that additional 
factors such as socioeconomic status and limited access to healthcare services 
can be contributing factors. African Americans are also 1.5 times more likely 
to die from melanoma than Caucasians, with 5-year survival rates for African 
Americans significantly lower than for Caucasians (72.2% vs. 89.6%). This 
is a complex problem compounded by several factors: ill-prepared medical 
practitioners, lack of awareness of melanoma and other skin conditions among 
people of color, lack of information and medical resources for practitioners’ 
continuous development, under-representation of people of color in research, 
people of color being a notoriously hard to reach group, and ‘whitewashed’ 
medical school curricula. Whilst digital technology can bring new hope for 
the reduction of health inequality, the deployment of artificial intelligence in 
healthcare carries risks that may amplify the health disparities experienced 
by people of color, whilst digital technology may provide a false sense of 
participation. For instance, Derm Assist, a skin diagnosis phone application 
which is under development, has already been criticized for relying on data 
from a limited number of people of color. This paper focuses on understanding 
the problem of misdiagnosing skin conditions in people of color and exploring 
the progress and innovations that have been experimented with, to pave the 
way to the possible application of big data analytics, artificial intelligence, and 
user-centred technology to reduce health inequalities among people of color.
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1 Introduction

Healthcare inequalities have been persistent throughout healthcare 
globally (Stuart and Soulsby, 2011). These imbalances are present in 
healthcare access, treatments, and outcomes among minority 
communities (WHO, 2018) and can lead to detrimental health 
consequences. Disparity in health outcomes can be based on several 
factors such as gender, age, ethnicity, access to support and care services, 
and familiarity with digital technology. Digital technology, including 
artificial intelligence (AI), has been implemented into several areas of 
healthcare to combat inequalities. Despite targeted approaches, challenges 
associated with resource constraints and unintentional biases pose threats 
to successful execution and development, predominantly for people of 
color (POC).

Studies have illustrated the use of AI within dermatological 
settings for skin diagnostics of lesions including melanoma. Melanoma 
is a common type of skin cancer that originates from melanocyte skin 
cells (Cancer Council, 2023). Recognising signs of melanoma is 
crucial for early detection: lesions often appear as moles undergoing 
changes in color, growth patterns, shape irregularities, or being 
elevated and itchy (Cancer Council, 2023). Unfortunately, POC are at 
a greater disadvantage in melanoma mortality rates for reasons 
including late diagnosis or incorrect treatment (Mahendraraj et al., 
2017), the integration of AI could address these issues by benefiting 
both healthcare workers and POC, considering internal medicine and 
physician trainees were less likely to refer POC to specialists for 
further management, with only 25% of trainees referring a drug rash 
for POC compared to 40% for Caucasian patients (Hutchison 
et al., 2023).

This paper explores the role of digital technology and AI to reduce 
health inequality, while also evaluating the benefits and challenges of 
AI adoption. The use of AI in diagnosing skin conditions, especially 
among POC, has the potential to magnify existing health inequalities 
for POC. This paper is concerned with diagnostic accuracy, equity in 
healthcare, potential biases in the technology, and the use of 
appropriate terminology to enable a more considerable adoption of 
digital health technologies.

2 Methodology

For this literature review, an opportunistic search was carried out 
through Google and Google Scholar. The interconnection of health 
inequality, dermatology, and AI was investigated in several fields of 
research including engineering, computing, medicine, and healthcare 
by selecting relevant keywords. Only published academic literature 
and grey literature from reputable sources (e.g., American Journal of 
Clinical Dermatology and International Journal of Equity in Health) 
were selected. A total of 94 relevant papers were shortlisted based on 
the matching between keywords and the papers’ title. A further 
selection took place following the review of the abstracts. This led to 
45 publications (42 academic papers and 3 conferences) that were 
determined appropriate and relevant for this review. Other research 
databases, including PubMed, Science Direct and IEEE Xplore, have 
also been searched using the same selection criteria to ensure all 
recent, and key literature has been identified and included. From this 
cross-check, no new additional papers have been identified. 
Geographical locations or date of publication were not restricting 
factors. This was to ensure that all potential AI advancements in skin 

lesion recognition and approaches to mitigating health inequality 
were explored. Papers were selected regardless of whether the studies 
had POC representation; if a paper had information on skin tone or 
ethnicity, it was considered. This was to ensure a comprehensive 
understanding of the problem was identified, to remove chances of 
biases, and for a clear and transparent comparative analysis of skin 
color representation within AI. Literature not written in English was 
not considered to avoid the chances of misinterpreting any findings. 
Biases have also been mitigated by defining and using consistently 
certain keywords, which collectively establish the objective criteria 
for papers’ selection at the title screening level (see Figure 1). This 
method ensured that the selection process was based on specific, 
predefined criteria rather than subjective judgment, resulting in 
reduced chances of potential bias. Papers were screened by all three 
authors, and any discrepancies were resolved through discussions. 
Taking this approach allowed for a transparent review process. 
Figure  1 shows a flowchart of the selection process to identify 
target papers.

The following combination of keywords was used to identify 
relevant papers: ‘artificial intelligence within dermatology,” ‘people of 
color and skin diagnosis accuracy in artificial intelligence’, ‘clinical 
pathway and artificial intelligence use’, ‘skin diagnosis tools for people 
of color’, ‘AI skin diagnosis in people of color’, ‘Artificial intelligence 
use within healthcare’, ‘digital technology to reduce healthcare 
inequalities’, ‘artificial intelligence’, ‘overfitting in artificial intelligence 
and skin diagnosis’, ‘data augmentation in artificial intelligence and 
skin diagnosis’, ‘image selection for artificial intelligence and skin 
diagnosis’, ‘people of color representation within artificial intelligence’, 
‘artificial intelligence vs. experts diagnosis accuracy of skin disease’, 
‘health inequality’, and ‘language barriers’. The search for relevant 
literature stopped upon reaching saturation, where no additional 
literature matching the keywords could be found. The search end date 
was March 2024, to ensure the most recent publications 
were considered.

The initial search on Google Scholar was undertaken using the 
keywords previously listed. This search identified 94 papers. A comparison 
with searches on other scientific databases did not identify additional 
papers. The initial search identified 6 duplicate papers that were removed 
from the set prior to reaching title screening. 88 papers reached the title 
screening level and 15 were excluded at this stage. 73 papers reached the 
abstract screening level and 28 were excluded. 45 were considered eligible 
for full review. At this stage, no papers were excluded. The final set of 
papers considered in this review was 45.

3 Results

3.1 Digital technologies to reduce health 
inequality

Digital technology plays an important role in addressing and 
presenting opportunities to overcome several barriers within health 
inequality. Deployment of technology can be  through virtual health 
services, telemedicine consultations, or educational initiatives. Technologies 
as such benefit marginalized communities that may be constrained by 
geographical locations, financial situations, or inadequacies in equal access 
to healthcare resources and services for all (Table 1).

The Core20PLUS5 is a national NHS strategy to reduce health 
inequalities on a system and national level. The approach identifies 
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target populations among adults, young people and children, and 
clinical areas that need improvement (NHS, 2021a). Core20PLUS5 has 
three components: Core20 refers to the 20% of the most deprived 
national population, identified by the Index of Multiple Deprivation 
(IMD), PLUS relates to individuals including ethnic minorities or 
groups defined by the Equality Act 2010, and 5 stands for the five 
clinical areas which need improvement including severe mental illness 

or early diagnosis of cancer (NHS, 2021a). The strategy provides 
platforms, builds networks, and creates opportunities for sharing best 
practices. The targeted approach of Core20PLUS5 demonstrates 
clinical priority areas being addressed to attain health equality and 
inclusivity. However, the success of the recently developed approach 
relies on robust monitoring and evaluation to ensure the program is 
continuously relevant and appropriate.

FIGURE 1

Flowchart of the selection process to identify target papers.
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The clinical pathway within the UK and globally has shown 
that a choice of language matters when describing medical 
conditions (Chauhan et  al., 2020; NHS, 2022). This can be  for 
reasons including the reoccurrence of negative biases (Goddu 
et al., 2018; Raney et al., 2021), difficulty in understanding the 
choice of terminology (Kelly and Haidet, 2007; Kenison et  al., 
2017) or irrelevancy for minority groups through descriptions of 
medical conditions and images (NHS, 2022). The issue of language 
is evident within the NHS, particularly in the implementation of 
the comprehensive digital tool, Health A-Z (NHS, 2022). Health 
A-Z is designed to provide information on conditions, symptoms, 
and treatments for the public; however, at times, it fails to provide 
relevant symptom descriptions for all groups of people. When 
addressing skin conditions, the language used tends to focus on 
physical appearances and is often tailored to Caucasian skin types. 
While beneficial for some, it often leads to confusion among 
minority groups including POC or the visually impaired. 
Descriptions like “becoming pale” or “lips turning blue” may 
be relevant for Caucasians but may be challenging for minority 
groups to interpret (St. George’s University, 2020). Smith (2021), a 
content designer for the NHS website, revealed patients want 
inclusive language such as “there are approximately ten spots that 
vary in size from about 1 mm to 1 cm, some spots are close 
together” to describe chickenpox which offers a neutral description 
that is independent from color reference. The implementation of a 
more neutral and objective language is underway, but the lack of 

medical sources detailing symptoms on Brown and Black skin 
poses a challenge to accurately describe how symptoms appear on 
diverse skin tones, slowing down the creation of inclusive material 
and the adoption of a neutral language.

Inadequate resources and knowledge for skin lesion diagnosis in 
POC is a persistent issue. Malone Mukwende, a medical student, 
developed Mind the Gap (Mukwende, 2020) after identifying a gap in the 
representation of POC in medical textbooks. Mind the Gap is a free 
online photographic repository with and without supporting text 
descriptions of various skin conditions with Fitzpatrick scale (FST) V and 
VI (DermNet, 2012). This tool is used worldwide in educational and 
professional settings (St. George’s University, 2020) and relies on the 
public information sharing of skin conditions. The initiative addresses the 
representation gap and enhances global accessibility to a valuable 
resource, but the reliance on external contribution can stagnate the 
growth of the digital tool. There is also a risk of individuals self-
misdiagnosing skin conditions if there is a lack of professional follow-up.

3.2 Artificial intelligence to reduce health 
inequality

AI describes the ability of machines to learn, communicate, 
reason, conduct different tasks simultaneously, or operate 
independently in different scenarios similarly to humans (Hogarty 
et al., 2019; Du-Harpur et al., 2020). Within the realm of AI, machine 

TABLE 1 Literature sourced organized by theme. Some references fit into multiple categories due to their overlapping relevance.

Category Reference No. of papers

Understanding of the healthcare 

system, dermatology, and skin 

conditions

DermNet (2012), Eedy (2015), Mahendraraj et al. (2017), Chuchu et al., (2018), Goddu et al. (2018), Johnson 

et al. (2022), Al-Janabi et al. (2023), Cancer Council (2023), Heldreth et al. (2024), and Department of 

Health and Social Care, (2024)

8

Exploration of health inequality 

faced by POC

Hutchison et al. (2023), Kelly and Haidet (2007), Kenison et al. (2017), Stuart and Soulsby (2011),  WHO 

(2018), Lester et al. (2019), Chauhan et al. (2020) and Raney et al. (2021)

8

Solutions to address skin diagnosis 

inequality faced by POC

Mukwende (2020), St. George’s University (2020), Smith (2021), NHS (2021a), and NHS (2022) 5

Understanding of AI Mitrani (2019) and Du-Harpur et al. (2020) 2

Current uses of AI in healthcare and 

skin diagnosis

Hakim (2023), Healthy.io (2024), Lacobucci, 2023, NHS (2021a), Obermeyer et al. (2019), Schakermann 

et al. (2024), Shore et al. (2019) and While (2023)

8

Understanding of AI in Skin 

diagnosis

Nasr-Esfahani et al. (2016), Aggarwal (2019), Brinker et al. (2019), Mitrani (2019), Khosla and Saini (2020), 

and Nahm (2022)

6

Understanding of data 

augmentation in AI

Perez et al. (2018), Aggarwal (2019), Chlap et al. (2021), Wen et al., 2022, Abayomi-Alli et al. (2021), 

Rezk et al. (2022) and Saeed et al. (2023)

7

Understanding of image selection in 

AI

Ribeiro et al. (2016), Koziarski and Cyganek, 2018, Aggarwal (2019), Brinker et al. (2019), Hogarty et al. 

(2019), Winkler et al., 2019 and Liopyris et al. (2022)

7

AI performance compared to 

Dermatologists

Brinker et al. (2019), Han et al. (2020), Philips et al. (2020) 3

AI performance with POC 

representation

Chen et al. (2016), Jinnai et al. (2020), Liu et al. (2020), and Liu and Primiero (2023) 4

Data augmentation to increase POC 

data

Aggarwal (2019) and Abhari and Ashok (2023) 2

Assessment of Skin Image Search Zaar et al. (2020), Kamulegeya et al. (2023), and (2021) 3

Google AI development Bui and Liu (2021) and Liu et al. (2020) 2
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learning can be supervised, semi-supervised or unsupervised 
(Hogarty et al., 2019), depending on the level of human intervention 
in correcting and directing the machine learning process.

Numerous instances of AI implementations within the clinical 
process have demonstrated promising outcomes in addressing health 
inequalities but have drawn attention to underlying issues. Examples 
of AI integration are Healthy.io and mobile applications such as 
Mindful Kidney (Healthy.io, 2024). The self-testing urine kit produces 
real-time clinical results through colorimetric analysis, computer 
vision, AI, and a smartphone camera that transforms into a clinical-
grade medical device (NHS, 2021b; Healthy.io, 2024). This 
AI-powered digital technology reduces health inequality through 
accessibility to remote testing which may be challenging for some due 
to cost, transportation, or geographical locations. Findings show that 
patients favor the use of Healthy.io over taking a urine sample at their 
GP, possibly due to the comfort of their home and the ability to 
conduct the test at a convenient time (Shore et al., 2019). Considering 
user requirements can contribute to the success of AI integration; 
however ethical concerns have risen from a pilot study at a GP based 
in Oxford, where patient data were shared with a third party. This 
consequently led to the GP withdrawing from the study (Lacobucci, 
2023) because the study became perceived as one with high risks for 
patients’ privacy.

The Virtual AI Ward treating remote patients hosted by the 
NHS Croydon Primary Care Trust demonstrated the potential of 
AI. All users reported positive outcomes, especially regarding the 
ease of learning and understanding of the provided medical kits; 
the overall experience led to an improvement in participants’ 
quality of life (Hakim, 2023). Success of the Virtual AI Ward was 
attributed to being run by community services with pathways to 
emergency treatment, when needed, upskilled staff, knowing 
when to choose continuous monitoring over spot monitoring, and 
having access to a cross-system multi-disciplinary team (Hakim, 
2023; While, 2023). Challenges within the NHS including 
underfunding, understaffing, and overworked staff (Johnson 
et al., 2022; Al-Janabi et al., 2023), could adversely impact the 
success rates of implementing Virtual Wards across the NHS.

The US-based study by Obermeyer et al. (2019) explores the 
integration of AI into a medical system used within hospitals that 
raised ethical concerns. The AI program aims to predict complex 
health needs for the purpose of developing an intervention that 
manages those in need (Obermeyer et  al., 2019). Patients are 
enrolled in the AI system through their insurance program if their 
risk score falls above the 97th percentile. The metadata gathered 
for the AI program includes demographic, insurance type, 
diagnoses, medications, and detailed costs, but specifically 
excludes race. Obermeyer et al. (2019) suggest that the algorithm’s 
prediction on health needs is based on costing. Black and 
Caucasian patients have roughly the same costs per year, with 
Black patients generating an average of $1,801 less than Caucasians 
annually, despite having 26.3% more ongoing health issues. This 
suggests that the AI program failed to highlight health needs by 
predicting an equal level of risk for both groups. Identifying this, 
Obermeyer et  al. (2019) adjusted the labels used within the 
algorithm, inevitably showing an increase in the percentage of 
additional help received by Black patients from 17.7 to 46.5%. 
This study is a distinct example of biases and ethical concerns that 

arise inversely through label choices, affecting predictive 
performance and creating racial biases, and exhibits why AI needs 
close monitoring.

3.3 Artificial intelligence in skin diagnosis

The integration of AI in dermatological settings has been 
investigated on multiple occasions and has proven to achieve the 
desired results in identifying skin conditions at varying levels 
(Nasr-Esfahani et al., 2016; Brinker et al., 2019). Considering the 
limited number of Dermatologists available, within the UK and 
globally (Eedy, 2015), it would benefit patients, GPs, and 
Dermatologists for AI to be successfully integrated into the clinical 
pathway. The current clinical pathway of checking the health of the 
skin and diagnosing possible conditions, within the UK, is shown 
in Figure  2. This flowchart has been adapted from the figure 
presented by Chuchu et al. (2018), illustrating the clinical pathway 
for skin lesions. The revised version incorporates the UK 
Government’s guidelines on promoting the Pharmacy First Scheme 
(Department of Health and Social Care, 2024), which aims to 
alleviate the burden on GPs by encouraging patients to seek advice 
or treatment at a pharmacy as an initial step first, or they may 
choose to consult a GP directly. At the primary care level, skin 
concerns are categorized as melanoma, high risk, low risk, or 
benign. High-risk cases and melanoma are referred to 
Dermatologists, while low or benign cases are treated by GPs, and 
if no concern is confirmed, patients are discharged. AI integration 
can occur at various points in the clinical process (Points A, B, C, 
and D in Figure 2). An AI skin recognition tool at these decision 
points may assist in diagnosing skin concerns, collecting relevant 
images and descriptions, and expanding data sets that serve to 
improve future diagnostic accuracy. Implementing AI at these 
points could potentially alleviate the workload for primary care 
providers, whilst providing better outcomes for patients.

AI success consists of these factors:

 - Sensitivity: This assesses a model’s ability to predict true positive 
values of each available category (Mitrani, 2019).

 - Specificity: This evaluates a model’s ability to predict true negative 
values (Mitrani, 2019).

 - Area under the receiver operating characteristic curve (AUROC): 
This is used to measure accuracy on classification tasks, the closer 
the receiver operating characteristic curve is to the upper left 
corner of the graph, the higher the accuracy of the test as the 
upper left corner is where the sensitivity = 1 and the false positive 
rate = 0 (specificity = 1).

 - Receiver operating characteristic (ROC): This is used to 
evaluate the overall diagnostic performance of a test and to 
compare the performance of two or more tests (Nahm, 2022). 
The ideal ROC curve has an AUC = 1.0. However, when the 
coordinates of the x-axis (1 – specificity) and the y-axis 
correspond to 1: 1, a graph is drawn on the 45° diagonal (y = x) 
of the ROC curve (AUC = 0.5). An AUC greater than 0.5 is 
essential for any diagnostic technique to be meaningful, and it 
is often required to exceed 0.8 to be considered acceptable 
(Nahm, 2022).
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There are several factors to take into consideration during the 
development of AI for dermatological use and the impact they can 
have on its outcome. Overfitting is a significant challenge in supervised 
machine learning, where models exhibit high accuracy on training 
data but perform poorly on new data (Aggarwal, 2019). This can 
be problematic in skin lesion diagnostics due to the variability in data 
such as, size of skin lesions and variation in the angle images are taken 
(Aggarwal, 2019). To mitigate overfitting, steps such as data 
augmentation which help increase diversity and number of images, 
are taken (Khosla and Saini, 2020).

Data augmentation is the practice of artificially modifying images 
to account for a variability that exists in image taking (Aggarwal, 

2019) and helps to expand training sets. This may be beneficial when 
limited images of skin conditions are available (Aggarwal, 2019; Chlap 
et al., 2021; Wen et al., 2022). Supervised machine learning typically 
relies on substantial amounts of training data to reduce the risk of 
overfitting; however obtaining well-annotated medical data is 
challenging, expensive and time-consuming, making data 
augmentation valuable in such situations. Chlap et  al. (2021) 
categorize data augmentation into three main types:

 - Basic augmentation (involving geometric transformations, 
cropping, occlusion, intensity operations, noise injection, 
filtering, and combinations)

FIGURE 2

Clinical pathway of skin diagnosis within the UK (Adapted from Chuchu et al., 2018).
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 - Deformable augmentation (utilising random displacement, 
spline interpolation, deformable image registration, and 
statistical shape models)

 - Deep learning augmentation techniques (including Generative 
Adversarial Networks (GAN)-based augmentation methods).

Studies (Perez et al., 2018; Abayomi-Alli et al., 2021; Rezk et al., 
2022; Saeed et al., 2023) highlight the positive impact of using data 
augmentation techniques to expand training sets on skin conditions 
and classification models, including increasing the number of images 
for POC, which is already very sparse. Although augmentation 
enhances data diversity, it introduces the risk of generating synthetic 
patterns that may not accurately represent real data, potentially 
affecting the model’s performance.

Image selection is a fundamental aspect of AI development for 
skin diagnosis (Aggarwal, 2019; Brinker et al., 2019; Hogarty et al., 
2019). Excluding inadequate low-quality images is essential to 
maintain a high level of sensitivity and specificity, consequently 
limiting the amount of usable training data. Low image quality refers 
to images affected by low resolution, presence of noise or small 
dynamic range where detail in an image may be lost due to dark or 
bright areas (Koziarski and Cyganek, 2018). Factors including hair, 
background skin issues, sun damage, rulers, blurry images, or dark 
corners of lenses contribute to poor image quality, causing confusion 
and miscalculation in results (Winkler et al., 2019; Liopyris et al., 
2022). Ribeiro et  al. (2016) conducted a study looking at AI 
distinguishing between photos of wolves and huskies. Results 
indicated that the AI predominantly relied on the entire image to 
differentiate between a wolve and huskie. Images which contained a 
light background or snow at the bottom were identified as wolves, if 
not they were identified as huskies, this is mainly due to images of 
wolves being taken in the snow. This is an example of overestimating 
the validity of AI models accuracy and would be  problematic, 
especially for use within healthcare. In the application of AI to skin 
diagnosis, if a program is familiar with seeing melanoma on 
Caucasian skin, it may struggle considerably to identify the 
same on POC.

The study of Nasr-Esfahani et al. (2016) was one of the first to 
introduce AI into Dermatology; it was used to detect melanoma and 
benign cases using convolutional neural networks (CNN). CNN 
refers to a type of neural network where layers apply filters for 
specific features to areas within an image (Du-Harpur et al., 2020). 
The dataset for this study comprised of original images and 
augmented images subjected to cropping, scaled, and rotated and 
produced promising specificity and sensitivity results (Nasr-Esfahani 
et  al., 2016). The success of the AI being able to distinguish 
melanoma from benign cases heavily relied on dataset illumination 
corrections which increased its ability to differentiate between the 
two conditions.

Brinker et al. (2019) investigated the performance of CNN-based 
classification of clinical images compared to dermatologists in 
sensitivity, specificity, and ROC. Dermatologists collectively 
achieved a mean sensitivity and specificity of 89% and 64%, 
respectively. In comparison, the CNN demonstrated a mean 
specificity of 68% and achieved the same sensitivity levels as the 
dermatologists (Brinker et al., 2019). Similar results are reported in 
a study by Han et al. (2020): clinicians’ results indicated a sensitivity 
and specificity of 70% and 96%, respectively, while the CNN 

achieved 63% and 90%, respectively. Comparable outcomes are 
presented in Philips et al. (2020) with the AI program achieving 85% 
for both sensitivity and specificity and dermatologists achieving 
87%, and 81%, respectively. The studies highlight promising AI 
performance and show good prospects of AI integration within 
dermatological workflows for skin diagnostics. Despite this, each 
study’s drawback consists of the underrepresentation of POC in its 
dataset affecting the generalisability of results.

There is a growing body of literature that acknowledges the 
gravity of POC underrepresentation in AI training datasets. Jinnai 
et al. (2020) used images of only Black and Brown pigmented skin 
lesions on a faster region-based convolutional neural network 
(FRCNN) program. This produced a specificity and sensitivity of 
94% and 83%, while board certified Dermatologists produced results 
of 86% for both sensitivity and specificity (Jinnai et al., 2020). Similar 
results are seen in Chen et al. (2016) study using images of different 
ethnicities to assess AI performance in identifying melanoma; 
sensitivity, and specificity results of 90% and 91% were reported. Liu 
et  al. (2020) study for Google Health produced results of ‘top-1 
accuracy’ of 71% and ‘top-1 sensitivity’ of 58% when diagnosing a 
range of contrasting skin conditions across different skin tones 
varying from FST I  – V. Furthermore, Liu and Primiero (2023) 
systematic review presented evidence of accurate AI programs for 
POC within multiple studies showing accuracy levels from 70% to 
almost 100%.

Despite the observed high levels of accuracy reported in these 
studies, a comprehensive analysis of the dataset used shows little to 
no representation of POC data. Liu et al. (2020) study had 2.7% of 
participants with FST V and 0% of participants with FST VI. Chen 
et al. (2016) study had a range of ethnic participants but were not in 
a balanced ratio to Caucasian participants (American Indian or 
Alaska Native 2%, Asian or Pacific Islander 13.9%, Black or African 
American 4.3%, White, or Caucasian 30%). Jinnai et al. (2020) study 
did not provide a breakdown in the number of Brown and Black 
participants from each FST group, which is key as a limited number 
of FST VI and a higher number of IV will affect its validity. 
Additionally, Liu and Primiero (2023) systematic review 
predominantly consisted of papers with participants of East Asian 
origin with some studies containing only 10% of participants with 
FST type IV–VI. Schakermann et al. (2024) study developed the 
Health Equity Assessment of machine Learning (HEAL) framework 
to assess the performance of health AI in a case study. While 
Schakermann et al. (2024) case was carefully sampled to create a 
balance in demographics, there was still a poor representation of 
FST V-VI and American Indian/Alaska Natives. These studies’ 
results are skewed due to poor representation of POC affecting the 
results generalisability or show the struggle in trying to work with 
balanced data sets due to limited resources.

Aggarwal (2019) study proves AIs ability to correctly diagnose 
melanoma through CNN programs. Augmentation of data was 
carried out by artificially darkening light skin toned images to input 
into the program. Results produced higher sensitivity (0.82) and 
specificity (0.76) rates for darker skin images compared to lighter 
skin tones (0.63 and 0.60). However, the ‘darkening’ of the images 
was only able to create data belonging to FST II, still excluding FST 
III – VI groups. This is a result of wanting to preserve the 
characteristics of the skin lesion on the original light skin toned 
images. Despite the potential misinterpretation of the study, it still 
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shows the capability of AI accuracy in melanoma diagnosis when 
training with minimal inclusive data sets. Similarly, Abhari and 
Ashok (2023) investigation used data augmentation techniques to 
increase the POC data set to improve the studies accuracy. However, 
the study generalized darker skin tones and failed to present 
information on skin tone categories (such as FST), making it difficult 
to comprehend the breadth of skin tones explored.

AI powered digital tools for skin diagnosis’s have been made 
publicly accessible. Skin Image Search, developed by First Derm, was 
established to increase the availability of expert skin information. 
The application works by uploading two pictures of a skin lesion (an 
overview and close-up) to produce a diagnosis. The app has been 
used globally, in countries such as Sweden, Chile, China, Australia, 
and Ghana. Zaar et al. (2020) assessed the diagnostic accuracy of 
Skin Image Search developing interesting insights. The dataset 
consisted of all skin phototypes but low levels of FST type IV (4.2%), 
V (0.9%) and VI (1.4%) (type I 16.7%, II 59.5%, III 17.2%) were 
included. Evaluation results also indicated high and low levels of 
accuracy across varying skin conditions; and a top-5 accuracy rate 
of 56.4, and 22.8% accuracy for the most probable diagnosis. The 
poor accuracy rates, with a high FST I, II, and III and low FST IV, V, 
and VI test images, suggest that the program needs further 
refinement and development. Kamulegeya et al. (2023) tested Skin 
Image Search’s diagnostic performance using predominantly FST VI 
images extracted from The Medical Concierge Group in Uganda. 
Data sets were anonymised and filtered to ensure a quality dataset 
was used. Skin Image Search was able to correctly diagnose 17% of 
images compared to the 69.9% performance reported from the AI 
training results. The subpar results could indicate that First Derm 
was heavily trained on images with FST I and II. FirstDerm has 
stated in a blog that Skin Image Search has an accuracy rate of 80% 
(Börve, 2021) with no supporting data for the claim. Such 
disinformation can increase the problems already caused by the 
underrepresentation of POC by creating a false sense of security 
among those who take information at face value, further increasing 
the health inequality gap.

Some AI tools are under development for skin diagnostics. Google 
has recognized that consumers conduct 10 billion searches annually 
related to skin, nail, and hair conditions and is now developing Derm 
Assis (Bui and Liu, 2021). This program operates by users capturing 
three images of the skin condition, answering questions about their 
skin type and the duration of symptoms, and then presenting possible 
diagnosis to the users. Google emphasises that this tool serves as an 
ancillary support, providing users with information before deciding on 
their next steps. Google’s Health study for the development of the deep 
learning system, revealed a top differential diagnosis in validation with 
an acceptable accuracy and sensitivity rate when given the option to 
provide one diagnosis (Liu et al., 2020). When given the chance to 
provide three diagnoses, accuracy and sensitivity levels were 
significantly better across all 26 skin conditions (Liu et al., 2020). While 
there are promising results, Google’s identification of consumer need 
with the current response of a dermatological level tool, fails in its 
generalization ability. This is a consequence of using a dataset that is 
not representative of all ethnic groups; groups with skin tones in 
categories FST V were represented by 2.7% of participants and 0% for 
FST VI. This action formulates potential misdiagnoses and biases, 
especially among ethnic groups.

4 Discussion

Health inequalities have been tackled in multiple ways through 
strategies and digital technological approaches. The NHS 
Core20PLUS5 strategy presents a targeted approach to reducing 
health inequalities with a focus on specific communities and groups. 
The future success of this strategy could also serve as a foundation for 
tackling inequalities in health globally, considering the impact on 
population composition that economic and political migration are 
generating. Other approaches including Healthy.io, NHS Croydon 
Primary Care Trust Virtual AI Ward, and the USA medical system 
present the case of successful AI capabilities in addressing health 
inequalities through ease and appropriate access to medical care, 
treatment, and results with the condition that it is supervised correctly 
suggesting that unsupervised AI would not be  appropriate, and 
possibly detrimental, in medical settings.

Achieving success in tackling health inequalities through AI 
usage in complex areas such as dermatological settings is possible. 
However, for such success to occur some foundational issues must 
be resolved first to create the conditions for an effective and rigorous 
application of AI. The NHS (2022) approach to the expansion of the 
Health A-Z free public website and Malone Mukwandes’ Mind the 
Gap initiative (https://www.blackandbrownskin.co.uk/mindthegap) 
emphasise the limited representation of POC in current data sets, and 
the possibilities of false-positive reassurance in self-diagnoses when 
primary care follow ups are not carried out. The inadequate 
representation of skin tones is commonly seen within research and 
educational settings as a reoccurring issue (Lester et al., 2019). This is 
a barrier faced by many researchers and has consistently been a failure 
in AI development, despite the attempts made through data 
augmentation. Whilst data augmentation creates the potential to 
expand the dataset of POC through various techniques, it creates the 
possibility of generating synthetic patterns that are unrepresentative 
of the real population. This could be  detrimental not only to a 
particular study’s reliability, but generally to public trust in AI usage 
in healthcare.

Within dermatology, it is evident that the capability of AI to match 
or surpass dermatologists’ performance is achievable. Addressing 
challenges such as overfitting and implementing effective data 
augmentation is important for the development and accuracy of AI in 
the diagnosis of skin lesions. Ensuring diversity in image datasets is 
equally crucial to prevent biases, as highlighted by multiple studies 
that demonstrated poor diagnostic performance when AI was 
predominantly trained on lighter skin tones. Some studies claim to 
include POC in training datasets or in the testing of AI programs, 
suggesting insightful findings; however, looking specifically at the 
number of POC data used, it is clear that statistical representation has 
yet to be achieved. Not only are more patients of color needed within 
studies, but transparency and clarity from researchers on participant 
skin tones need to be shared to avoid misleading interpretations. The 
consistent use of the FST scale throughout clinical studies could 
be considered a contributing factor to the lack of POC representation. 
The scale is currently inclusive of non-marginalized and ethnoracial 
minorities alike (Heldreth et al., 2024), compressing under type IV-VI 
a plethora of diverse skin tones that are therefore unfairly represented 
in the scale. This creates poor dermatological learning resources and, 
consequently, AI studies in dermatology.
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Before AI can be used, within clinical studies, for skin diagnostic 
purposes several interventions need to take place to reduce biases and 
to show the potential and reliability of AI. This can be achieved in 
many ways, including:

 • An increased database of expert confirmed diagnoses across a 
variety of skin tones.

 • Targeted campaigns for hard-to-reach groups. This will result in 
higher participation of POC in clinical studies.

 • An improvement in learning resources providing accurate and 
diverse clinical representation of POC through detailed 
supportive text and images.

 • Continuous professional development (CPD) for GPs to create a 
better understanding of unintentional biases and awareness of 
skin lesions among POC.

 • An appropriate skin color categorization technique, which 
encapsulates different skin color variations, and can also be used 
within clinical and educational settings.

Without these interventions in place, the systemic issue of the 
under representation of POC in AI cannot be solved and will only 
continue to amplify the disparities and exclusion POC face.

The limitation of this study includes the lack of full details in the 
reviewed literature about skin tones used for training data, making it 
difficult to understand if the findings are generalisable. Additionally, 
it is unclear whether the literature on AI being reviewed used the same 
AI programming system. For instance, Brinker et al. (2019) and Han 
et al. (2020) highlight, in their methodology, the use of CNN, while 
Jinnai et al. (2020) study uses FRCNN, but Abhari and Ashok (2023), 
Liu et al. (2020) and Philips et al. (2020) AI programming systems are 
not clarified. The lack of clear parameters can make it harder to 
compare the performance of different AI approaches. A clinical 
validation of the findings highlighted in this review could have also 
been beneficial.

5 Conclusion

Evidence demonstrates a notable disadvantage for POC in various 
aspects of healthcare. This is seen for skin diagnostics within clinical 
studies at both primary and secondary care levels. These situations 
result in lower survival rates, poorer quality of life for POC in 
comparison to Caucasians, and a disproportionate underrepresentation 
of POC in medical advancements.

Digital technologies, including the integration of AI, in 
dermatology have shown promise within healthcare, particularly 
in addressing the scarcity of dermatologists globally and in 
providing accurate diagnoses of skin conditions when executed 
efficiently, as shown through the NHS Croydon Primary Care Trust 
Virtual AI ward (Hakim, 2023). However, challenges have 
unexpectedly emerged in AI development that require attention 
and upstream interventions to improve the lack of diverse 
representation impacting the reliability and generalisability of AI 
models. This has also inadvertently highlighted ongoing issues 
faced by POC within healthcare, such as unintentional biases made 
by healthcare professionals or incorrect diagnoses of skin 
conditions. While interesting techniques, such as data 
augmentation, show potential in overcoming problems, such as the 

number of limited imagery available on POC, they do not address 
the unintentional biases shown within healthcare and show the 
need for more care to be placed in ensuring POC are being cared 
for at the same pace and level as Caucasians.

To ensure technology advancements continue and to prevent 
the widening of pre-existing racial disparities, the inclusion of 
POC in studies needs to be a priority and can be achieved through 
targeted campaigns to include hard to reach participants. A more 
effective approach to categorising POC to ensure a comprehensive 
representation of skin tones is also needed. The current use of the 
FST scale to represent POC fails to encompass the full diversity of 
human skin tones. Relevant participant data, such as ethnicity and 
skin tone, also needs to be  transparently shared within clinical 
studies for a clearer understanding on whether studies are 
truly generalisable.

Digital tools including Healthy.io and the NHS Croydon Primary 
Care Trust Virtual AI Ward are successful in their execution, which 
could be due to the user-centred approach applied. Many studies have 
taken a technical approach to address skin diagnosis among POC 
through AI. Comparatively fewer studies have adopted a user-centred 
approach throughout their development process. Whilst 
AI-augmented skin diagnosis is technically promising, caution, 
additional research, measures and regulations are needed. The 
fundamental issue of the lack of balanced data set representation of all 
skin types and transparency in research is a gap that needs addressing 
for both traditional clinical diagnosis and AI-assisted 
diagnostic pathways.
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Toward the design of persuasive
systems for a healthy workplace:
a real-time posture detection

Grace Ataguba* and Rita Orji

Department of Computer Science, Dalhousie University, Halifax, NS, Canada

Persuasive technologies, in connection with human factor engineering

requirements for healthy workplaces, have played a significant role in ensuring a

change in human behavior. Healthy workplaces suggest di�erent best practices

applicable to body posture, proximity to the computer system, movement,

lighting conditions, computer system layout, and other significant psychological

and cognitive aspects. Most importantly, body posture suggests how users

should sit or stand in workplaces in line with best and healthy practices. In this

study, we developed two study phases (pilot and main) using two deep learning

models: convolutional neural networks (CNN) and Yolo-V3. To train the two

models, we collected posture datasets from creative common license YouTube

videos and Kaggle. We classified the dataset into comfortable and uncomfortable

postures. Results show that our YOLO-V3model outperformed CNNmodel with

a mean average precision of 92%. Based on this finding, we recommend that

YOLO-V3 model be integrated in the design of persuasive technologies for a

healthy workplace. Additionally, we provide future implications for integrating

proximity detection taking into consideration the ideal number of centimeters

users should maintain in a healthy workplace.

KEYWORDS

persuasive technology, healthy workplace, posture, machine learning, YOLO-V3,

convolutional neural networks

1 Introduction

The importance of persuasive technologies in influencing changes in human behavior

is significant and cannot be overemphasized. Persuasive technologies have an impact on

users’ behavior and the choices they make (Rapoport, 2017; Orji et al., 2018; Darioshi

and Lahav, 2021; Wang et al., 2023). As a result, persuasive technologies prioritize user-

centered design, and they can assist users in leading a healthy lifestyle. Considering this,

research has demonstrated the valuable roles these technologies play in preventing and

aiding the management of illnesses (Schnall et al., 2015; Karppinen et al., 2016; Sonntag,

2016; Bartlett et al., 2017; Faddoul and Chatterjee, 2019; Fukuoka et al., 2019; Kim M. T.

et al., 2019; Oyibo and Morita, 2021), promoting fitness and exercise (Bartlett et al., 2017;

Schooley et al., 2021), and other significant ones (Jafarinaimi et al., 2005; Anagnostopoulou

et al., 2019; Beheshtian et al., 2020).

The workplace, a location, setting, or environment where people engage in work,

have recorded significant unhealthy practices, including bad posture, over the years

(Nanthavanij et al., 2008; Ko Ko et al., 2020; Roy, 2020; van de Wijdeven et al., 2023).

In the context of this study, we consider work-from-home (WFH) contexts, offices, and

other spaces where computers are employed to be workplaces. Best workplace practices

are significant for a healthy working style. These practices cover the need to ensure that

computer users maintain the right posture, follow the right movement practices, take
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regular breaks from computer systems, ensure they have proper

lighting conditions, adhere to computer system layout, and other

significant psychological and cognitive aspects. Poor workplace

practices can lead to various health issues, such as repetitive strain

injuries, eyestrain, and postural problems (Ofori-Manteaw et al.,

2015; Workineh and Yamaura, 2016; Alaydrus and Nusraningrum,

2019). Research has shown that over 70% of stress, neck injuries,

other types of sprains and pains (for example, arm sprains and

back pain), and stress are work-related (Tang, 2022). This study

presents the design of a persuasive system based on the best

posture practices. In addition, this study presents implications for

designing persuasive systems based on their proximity to computer

system requirements.

Machine learning, a subfield of artificial intelligence (AI), deals

with developing models. These models assist computers in learning

and detecting patterns of objects in the real world (Mahesh,

2020; Sarker, 2021). Hence, machine learning has contributed to

several studies that have significantly detected patterns in human

behaviors (Cheng et al., 2017; Krishna et al., 2018; Xu et al., 2019;

Chandra et al., 2021; Jupalle et al., 2022; Cob-Parro et al., 2023),

human emotions (Jaiswal and Nandi, 2020; Gill and Singh, 2021),

and health-related behaviors (Reddy et al., 2018; Mujumdar and

Vaidehi, 2019; Ahmad et al., 2021). In this study, we leverage the

opportunity of machine learning algorithms to design a persuasive

system for detecting patterns of unhealthy postures and proximity

to computers in workplaces.

As part of persuasive technology’s goal to provide users with

real-time feedback on their actions (which, in turn, influences

their behavior), we report on our experiment comparing the

convolutional neural networks (CNN) and Yolo-V3 models.

Research has shown the success of these models in real-time

object detection (Tan et al., 2021; Alsanad et al., 2022). One of

the significant drawbacks of CNN compared with Yolo-V3 from

research is its requirement for a large number of training sets (Han

et al., 2018). On the other hand, the Yolo-V3 model generates

regions or boxes around objects and returns its accuracy values

within these boxes. This implies that several boxes are marked

within an object, and its performance can be implied from the

confidence of predictions (Figure 1). For example, in Figure 1, the

YOLO-V3model predicted the hardhat with 95% confidence. Yolo-

V3 and CNN work in real time by analyzing images extracted

from frames per second and providing a consistent update as these

images change.

Though we found significant studies in the application of

persuasive systems to encourage computer users to take regular

breaks from workplaces (Jafarinaimi et al., 2005; Reeder et al., 2010;

Ludden and Meekhof, 2016; Ren et al., 2019), little is yet known

about how they maintain the right posture before these regular

breaks. Based on this limitation, the overarching goal of our study is

to explore how people can be conscious of their unhealthy posture

practices in workplaces (while sitting or standing). This connects

with the main research question we seek to answer (RQ): RQ:

Can we design persuasive computers to detect unhealthy posture

practices (such as sitting and standing) in workplaces?

People in workplaces have two types of posture positions:

sitting and standing (Botter et al., 2016). The sitting position

affords the computer user space to relax the back correctly on

a chair (Figure 2, L). This, compared with the standing position,

FIGURE 1

A YOLO-V3 detection on a sample image. Reproduced from

“YOLOv3 on custom dataset,” YouTube, uploaded by “Aman Jain,” 22

July 2021, https://www.youtube.com/watch?v=D4RQ7Rkrass,

Permissions: YouTube Terms of Service.

allows computer users to stand while using the computer system

(Figure 3). It is significant to recall that before COVID-19, these

workplaces were office spaces. However, most recently, after

COVID-19, workplaces have extended to home spaces (Abdullah

et al., 2020; Javad Koohsari et al., 2021). People now work

from home, and the posture practices in these spaces have not

been evaluated.

The scientific contributions of this research are in 4-folds:

1. Provision of ground truth posture datasets:

We are contributing ground-truth posture datasets for

the research community to explore related concepts in the

future. These datasets can be increased in future work to

enhance the accuracy and effectiveness of future technological

interventions. Hence, this contribution will support researchers

and designers in developing more robust and context-aware

persuasive technologies.

2. Implementation of deep learning models for

posture detection:

We present the development and implementation of deep

learning models for detecting the posture practices of computer

users. These models leverage advanced techniques to interpret

and classify diverse body positions, contributing to the evolving

landscape of human–computer interaction. The models offer

a technological solution to the challenge of real-time posture

detection in the workplace. This contribution aligns with the

forefront of research in machine learning and computer vision.

3. Real-time persuasive design for healthy workplace behavior:
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FIGURE 2

Correct ergonomics (L) and incorrect ergonomics (R) in a sitting workstation. Reproduced from “Computer Ergonomics,” YouTube, uploaded by

“Pearls Classroom,” 5 October 2021, https://www.youtube.com/watch?v=XQTQ578wLzo, Permissions: YouTube Terms of Service.

FIGURE 3

Edited scenes. Reproduced from “Libertyville IL neck pain—prevent bad posture with the right workstation,” YouTube, uploaded by “Functional Pain

Relief,” 22 August 2018, https://www.youtube.com/watch?v=0M5C1BJdVsA, Permissions: YouTube Terms of Service.

We present a real-time persuasive design based on posture

practices, thereby introducing a novel approach to promoting

healthy workplace behavior. This contribution has practical

implications for addressing issues related to sedentary work

habits, discomfort, and potential health impacts associated with

poor posture.

4. Integrating real-time feedback and persuasive elements:

Our design presents the potential and feasibility of

persuasive technology to positively influence user behavior,

fostering increased awareness and conscious efforts toward

maintaining proper posture. This interdisciplinary contribution

merges insights from computer science, psychology, and

workplace health.

Collectively, these scientific contributions play a significant role

in the advancement of knowledge in the fields of human–computer

interaction, machine learning, and persuasive technology, with

direct applications for improving workplace wellbeing and

behavior. The rest of the study is structured as follows: First,

we reviewed significant scholarly works on workplace practices,

user health, and productivity; persuasive technologies and the

workplace; machine learning and workplace practices; and

accessibility technologies and healthy practices. Second, we present

the methodology based on data collection and deep learning model

deployment for the pilot study and the main study. Third, we

report on the results of the pilot and main studies. In addition,

we compare outcomes for deploying CNN and Yolo-V3 models

toward persuasive, healthy workplace designs. Fourth, we present

a discussion on the results from the pilot and main studies. Fifth,

we report on the limitations of the study and present design

recommendations to guide future research. Sixth, we conclude by

summarizing the study and drawing an inference based on the

results, limitations, and recommendations for future studies.

2 Related work

This section provides an in-depth exploration of related

work comparing the relationship between workplace practices,

user health and productivity, and other significant ones such

as persuasive technologies and workplace practices, machine
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TABLE 1 Relationship between the human head anatomy and exerted

force leading to spine damage.a

S/N Degrees Force (lb) Spine damage risk level

1. 0 10–12 Low or no risk

2. 15 27 Medium

3. 30 40 High

4. 60 50 Very high

ahttps://www.youtube.com/watch?v=0M5C1BJdVsA.

learning andworkplace practices, and accessibility technologies and

healthy practices.

2.1 Workplace practices, user health, and
productivity

Workplace practices cover significant areas such as the proper

chair and desk height, appropriate monitor placement, ergonomic

keyboard and mouse usage, reduction of glare and reflection,

importance of regular breaks, and promoting movement through

sit-stand workstations (Dainoff et al., 2012; , 2023). Research

has established a relationship between failing to adhere to good

workplace practices and the consequences for computer users’

health. These include the potential for musculoskeletal disorders,

eye strain, and other common health issues related to prolonged

computer use (Dainoff et al., 2012; Woo et al., 2016; Boadi-Kusi

et al., 2022). According to Nimbarte et al. (2013), Shahidi et al.

(2015), and Barrett et al. (2020), the force on the neck increases

proportionately as the head angle tilts at a higher degree. The long-

term impact of this, as shown in Table 1, is a spine damage risk.

In addition, computer users’ health is typically at risk due to

repetitive stress injuries (Borhany et al., 2018; Mowatt et al., 2018;

Iyengar et al., 2020; Roy, 2020; Steiger et al., 2021). Repetitive strain

injury (RSI) is defined as “a chronic condition that develops because

of repetitive, forceful, or awkward hand movements for prolonged

periods leading to damage to muscles, tendons, and nerves of the

neck, shoulder, forearm, and hand, which can cause pain, weakness,

numbness, or impairment of motor control” (Sarla, 2019). This

implies that computer use involving extended periods of typing

and mouse use without proper ergonomics can increase the risk

of RSIs. In addition, maintaining poor posture and not adhering

to ergonomic requirements when setting up workstations can

contribute to this risk. For example, Borhany et al. (2018) carried

out a study to examine common musculoskeletal problems arising

from the repetitive use of computers. They conducted a survey

with 150 office workers and found that 67 of these workers suffer

from repetitive stress injuries on the low back, neck, shoulder, and

wrist/hand. In addition, they found that these injuries were caused

by continuous use of computers without breaks, bad lighting, bad

posture, and poorly designed ergonomics in offices. While it is

typical that workplace tasks are characterized by repetitive tasks and

actions, it has become imperative to design workplace technologies

to support users in carrying out repetitive tasks without straining

any part of the body (Moore, 2019; Johnson et al., 2020).

It is important to state that research has found the impact of

computer users’ health due to repetitive stress injuries and other

related health issues on the productivity of users in workplaces.

In other words, a well-designed workplace not only improves the

user’s comfort but also enhances work efficiency and overall job

satisfaction (Pereira et al., 2019; Baba et al., 2021; Franke and

Nadler, 2021). Pereira et al. (2019) examined 763 office workers in

a 12-week study. They interpreted office productivity to be relative

to absenteeism from work due to neck pain. The results from this

study show that those exposed to healthy workplace practices and

neck-specific exercise training had limited records of absenteeism.

Pereira at al. reported that individuals with unhealthy workplace

practices and limited access to health promotion information were

more likely to be less productive, i.e., absent from work. Baba et al.

(2021) conducted a study involving 50 newly employed staff in an

organization. The staff was divided into experimental groups (with

healthy workplace practices, e.g., comfortable computer desks) and

control groups (with unhealthy workplace practices, such as less

comfortable furniture). The study revealed a significant impact on

the work productivity of the experimental group compared with the

control groups (based on a t-test showing that t.cal = 0.08; t.tab =

1.71, where t.cal is the calculated t-test value and t.tab is the value

of t in the distribution table).

While many organizations focus on employee training

and sensitization programs for healthy workplace practices,

limited research has been reported on workplace culture,

employee training, computer workstation assessment, and

the benefits of posture assessment tools. This study explores

the potential of persuasive technologies for enhancing

effective workplace posture practices. These technologies

can serve as posture assessment tools, providing valuable

feedback to organizations on the best ways to support

their employees.

2.2 Persuasive technologies and the
workplace

Persuasive technologies and workplace practices are two

distinct areas of study and practice, but they intersect in

designing user interfaces and technology systems that promote

healthy workplace practices for technology users. Overall, this will

enhance technology users’ wellbeing and productivity. Research

has explored persuasive technologies in relation to best workplace

practices. This includes taking regular breaks (Jafarinaimi et al.,

2005; Ludden and Meekhof, 2016; Ren et al., 2019), fitness apps

(Mohadis et al., 2016; Ahtinen et al., 2017; Paay et al., 2022),

feedback systems and wearable devices (Bootsman et al., 2019; Jiang

et al., 2021), workstation movement (Min et al., 2015; Damen et al.,

2020a,b), chair, desk, and monitor height adjustments (Kronenberg

and Kuflik, 2019; Kronenberg et al., 2022), posture correction

(Min et al., 2015; Bootsman et al., 2019; Kim M. T. et al., 2019),

mouse/keyboard use and reduction of glare and reflection (Bailly

et al., 2016), and other healthy work behaviors (Berque et al., 2011;

Mateevitsi et al., 2014; Gomez-Carmona and Casado-Mansilla,

2017; Jiang et al., 2021; Brombacher et al., 2023; Haliburton et al.,

2023; Robledo Yamamoto et al., 2023).
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Table 2 summarizes closely related work on persuasive

technologies with respect to workplace practices. We present

discussions based on instances of workplace practices we listed

previously. This includes taking regular breaks, fitness apps,

feedback systems, workstation movement, chair, desk, monitor

height adjustments, posture correction, mouse/keyboard use,

reduction of glare and reflection, and other healthy practices.

Jafarinaimi et al. (2005) developed sensor-based office chairs that

encourage users to break away from their computers. Every 2min,

the chair slouches its position from upright to backward bend,

signifying the need for computer users to take a break. In view of

this, they experimented with a single user (55-year-old university

staff). The results from the study showed how the sensor-based

office chair greatly influenced the user’s attitude to break away from

their computer.

Mohadis et al. (2016) developed a low-fidelity web-based

prototype to encourage physical activity among older office

workers. They considered 23 persuasive principles as they relate

to physical activity. These include reduction, tunneling, tailoring,

personalization, self-monitoring, simulation, rehearsal, dialogue

support, praise, rewards, reminders, suggestions, similarity, social

role, credibility support expertise, real-world feel, third-party

endorsements verifiability, social support/social learning, social

comparison, normative influence, social facilitation, competition,

and recognition. Reduction was targeted at making complex

tasks simple to complete. Tunneling was driven by using the

system to guide users while persuading them to change their

behavior. Self-monitoring ensures that users can keep track

of their behavior. Simulation covers demonstrating aspects of

behaviors to interpret cause-and-effect relationships. Rehearsal

provides an opportunity to continue to practice behavior toward

change. In addition, the other persuasive principles (dialogue

support praise, rewards, reminders, suggestions, similarity, social

role, credibility support expertise, real-world feel, third-party

endorsements verifiability, social support/social learning, social

comparison, normative influence, social facilitation, competition,

and recognition) were driven toward enhancing a change in the

user’s physical activity behaviors. The authors experimented with

10 participants and found that only two (2) persuasive principles

were perceived positively. This includes dialogue support and

credibility support.

Bootsman et al. (2019) explored wearable posture monitoring

systems for nurses in workplaces. Nurses were considered to carry

out repetitive bending throughout their work shifts. The systemwas

designed to track their lower back posture. The system is connected

to a mobile application that provides feedback on the different

posture positions of users and tips for changing bad postures.

The system was evaluated with six (6) nurses (aged between

20 and 65 years) for 4 days during work hours. Based on the

intrinsic motivation inventory, the results show interest, perceived

competence, usefulness, relatedness, and effort/importance scored

more points. In addition, the results from the qualitative analysis

show that participants appreciated the comfortability of the

wearable system, though they were not in support of the frequency

of beeps as it caused some distractions.

Haque et al. (2020) explored computer workstation movements

similar to regular breaks. Unlike the regular break, computer

users are encouraged to walk around and keep track of their

physical activity level. The authors conducted an experiment

with 220 office workers from the United Kingdom, Ireland,

Finland, and Bangladesh for 4 weeks while evaluating their “IGO

mHealth app.” The app monitors office workers’ meal intake and

work periods to send a 10-min interval walk-around reminder.

The app tracks this movement while setting a target limit of

1,000 steps every 10min. The app incorporates the leaderboard

gaming element, encouraging competition through persuasion.

The results from this study show a trend in weight loss, and a

follow-up interview revealed three (3) persuasive principles that

were perceived positively: (1) autonomy, (2) competence, and (3)

relatedness. Autonomy shows how the app helped them achieve

their set goals. Competence reflects how confident they were

about their capability to use the app to perform different tasks.

Relatedness shows how they were able to use the app to establish

social connections.

Kronenberg et al. (2022) developed robotic arms that can be

used to automatically adjust computer system screens. The robot

detects the distance between the screen and the user’s seating

position. Then, the robot calculates the new screen orientation

and adjusts to keep a healthy distance between the users and their

computer screens. The authors conducted an experiment with 35

participants (25–68 years old) in their workspaces. The results of

one-sample Wilcoxon Signed Rank Test show that participants

could effectively complete the tasks and scenarios using this system

at (p < 0.001), the screen did not move at the right pace when

it moved (given that p = 0.189 was not significant that it moved

at the right pace), the screen did not move at the appropriate

moment (given that p = 0.904 was not significant that it moved

at the appropriate moment), the screen was not well-adjusted to

users’ pose (given that p = 0.163 was not significant that it was

well-adjusted to users pose), and the users felt distracted by the

movement of the screen (given that p = 0.028 was not significant

that users felt less distracted by the movement of the screen).

Kim M. T. et al. (2019) conducted experiments with a robot

to support posture corrections during object lifting with 10 adults

(30–34 years old). They considered five (5) different joints in the

human body: (1) hips, (2) knees, (3) ankles, (4) shoulders, and (5)

elbows. The results of their t-test analysis showed that the robot

significantly lowered the overloading effect in all joints: shoulder (p

< 0.001), elbow (p < 0.001), hip (p < 0.001), knee (p < 0.001), and

ankle (p < 0.001). This implies that the robot can promote better

posture practices in workplaces.

Bailly et al. (2016) developed a “LivingDesktop” that supports

users to reduce reflection from the monitor screen. In addition,

the system allows users to adjust the mouse and keyboard positions

to improve ergonomics. The authors evaluated the system with 36

desktop users (22–40 years old). The results from this study show

that users liked adjustable features because they fit their needs for

video conferencing, tidying their workspace, and maintaining the

right posture. On the other hand, some users criticized the system

for its distractions in workspaces.

Jiang et al. (2021) developed a smart t-shirt wearable

application for depression management in workplaces. They

considered emotion regulation for depression management based

on the movement of the shoulders and arms. The smart t-shirt
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TABLE 2 Summary of research on persuasive technologies and workplace practices.

S/N References Technology Workplace practices covered

Chair and
desk height

Monitor
placement

Keyboard
and mouse
use

Reduction of
glare and
reflection

Regular
breaks

Workstation
movement

Posture
correction

Other
healthy
practices

1. Haque et al. (2020) Mobile App �

2. Damen et al. (2020a) Tangible �

3. Damen et al. (2020b) Phones, Tablets and

Notebooks

�

4. Min et al. (2015) Sensors � �

5. Ludden and Meekhof

(2016)

Tangible �

6. Jafarinaimi et al. (2005) Tangible �

7 Kronenberg and Kuflik

(2019)

Robot �

8. Jiang et al. (2021) Tangible �

9. Mohadis et al. (2016) Web App �

10. Gomez-Carmona and

Casado-Mansilla (2017)

Tangible �

11. Bootsman et al. (2019) Tangible and

Mobile App

�

12. Kronenberg et al. (2022) Robot �

13. KimW. et al. (2019) Robot �

14. Bailly et al. (2016) Actuators � �
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changes resistance based on users’ emotions. The fabric maintains

a resistance of 180 k� while relaxed (positive emotion) and 400 k�

when stretched (negative emotion). In view of this, they tested the

smart t-shirt with six (6) healthcare workers for 5 days and found

that the smart t-shirts regulated healthcare workers’ emotions

positively at work.

While most of these persuasive technologies have explored user

interface design and user experience evaluation, we found other

state-of-the-art practices employing machine learning techniques.

Machine learning designs present more intelligent and data-

oriented systems. This makes them more flexible to learn new

patterns while users continue to interact with them. We present

the extent to which machine learning has been tailored to enhance

workplace practices in the next Section 2.3.

2.3 Machine learning and workplace
practices

Machine learning can significantly impact the design of

products for healthy workplaces. It interprets a wide range of data

types, including sensor data, motion, eye movements, and human

body movement. Machine learning models can be embedded into

wearable devices, phones, and computers, enabling the detection

of patterns in data and the optimization of communication with

humans based on the diverse data they were trained on. For

instance, facial recognition models, as supported in self-service

photo booths (Kember, 2014), can detect specified height, width,

and head position orientations (Chen et al., 2016).

Some significant research studies have delved into the

application ofmachine learning in the realm of workplace practices.

These studies have particularly focused on classifying healthy and

active work styles (Rabbi et al., 2015) and automatic adjustments

of chair and desk heights (Kronenberg and Kuflik, 2019). In their

study, Kronenberg and Kuflik (2019) proposed a deep learning

design for robotic arms that are capable of adjusting chair and

desk heights based on body positions. Although the system was

still in the implementation stage, initial results demonstrated the

potential of embedding a camera in a robotic arm. This camera

would interact with their proposed deep learning model.

Despite extensive research within this domain, limited study

has been conducted on camera posture positions on the face, head,

neck, and arms. While Min et al. (2015) explored body positions

such as the back and spine using sensors, there is still a need

to explore additional body positions captured by cameras. In a

related study, Mudiyanselage et al. (2021) evaluated a workplace

that involved lifting work-related materials using wearable sensors

and various machine learning models (Decision Tree, Support

Vector Machine, K-Nearest Neighbor, and Random Forest). The

results indicated that the decision tree models outperformed others

with a precision accuracy of 99.35%. Although these results were

significant and focused on back body positions, there are still gaps

within the context of computer workstations.

In another relevant study by Nath et al. (2018), significant work

on lifting arm and wrist positions was considered using wearable

sensors and the support vector machine (SVM) model. The study

results demonstrated that SVM recognized over 80% of the risky

positioning of the arm and wrist.

Hence, based on the persuasive and machine learning

perspectives of workplace system design, different body positions

are captured, and feedback is provided to support users.

Nevertheless, there is a need to understand the extent to which

research has supported making these technologies more accessible

to diverse users. In the next section, we covered related work

done with respect to making workplace posture technologies

more accessible.

2.4 Accessibility technologies and healthy
practices

Most accessibility technologies focus on providing feedback

based on machine learning detection to address the needs of

disabled individuals (Kulyukin and Gharpure, 2006). Brik et al.

(2021) developed an IoT-machine learning system designed to

detect the thermal comfort of a room for disabled persons, offering

feedback on the room’s thermal condition. The machine learning

system was trained on artificial neural networks (ANNs). The

performance of ANNs was compared with other algorithms such as

logistic regression classifiers (LRC), decision tree classifiers (DTC),

and gaussian naïve bayes classifiers (NBC). ANN performed better,

achieving 94% accuracy compared with the other algorithms.

In a related study, Ahmetovic et al. (2019) investigated

navigation-based assistive technologies for the blind and visually

impaired. They identified rotation errors and utilized a multi-

layer perceptronmachine learningmodel to correct rotation angles,

providing positive feedback. The multi-layer perceptron achieved

lower rotation errors (18.8◦ on average) when tested with 11 blind

and visually impaired individuals in real-world settings.

Overall, we found that though related studies have explored

healthy practices in workplace settings based on different

persuasive technologies ranging frommobile to tangible, little work

has covered real-time posture detection for important areas of

the body such as the back, neck, hands, and head. These parts of

the body have been associated with a lot of repetitive workplace

stress injuries based on bad postures (Anderson andOakman, 2016;

Catanzarite et al., 2018; Krajnak, 2018). The study by Min et al.

(2015) and Mudiyanselage et al. (2021) presents closely related

concepts. Though these studies explored parts of the body such as

the back, spine, arm, and wrists, they used sensors, which might

not be comfortable for users of systems. Considering that laptop

cameras can detect these parts of the body in an unobstructive way,

we explored this in our current study.

3 Materials and methods

We outline the materials and methods employed in the study.

This aligns with the overarching goal of our research to investigate

how individuals can become aware of their unhealthy posture

practices in workplaces (both while sitting and standing) and

the main research question (RQ: Can persuasive computers be

designed to detect unhealthy posture practices in workplaces?). We

provide details on the experimental materials used for developing
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FIGURE 4

Samples of bad practices. (A) Reproduced from “Center for Musculoskeletal Function: Workspace Ergonomics and MicroBreak Exercises,” YouTube,

uploaded by “Dr. Daniel Yinh DC MS,” 10 Apr 2017, https://www.youtube.com/watch?v=HS2KrPmKySc, Permissions: YouTube Terms of Service. (B)

Reproduced from “Correct Ergonomic Workstation Set-up | Daily Rehab #23 | Feat. Tim Keeley | No.112 | Physio REHAB,” YouTube, uploaded by

“Physio REHAB,” 13 December 2017, https://www.youtube.com/watch?v=FgW-9_28N8E&t=314s, Permissions: YouTube Terms of Service.

FIGURE 5

Samples of the good practices. (A) Reproduced from “Working from home—how to set up your laptop (correctly!) | Tim Keeley | Physio REHAB,”

YouTube, uploaded by “Physio REHAB,” 19 March 2020, https://www.youtube.com/watch?v=6GlkoFnZpFk, Permissions: YouTube Terms of Service.

(B) Reproduced from “How to set up workstation at home,” YouTube, uploaded by “Sundial Clinics,” 12 April 2021, https://www.youtube.com/watch?

v=wN-Ww1sCWNY, Permissions: YouTube Terms of Service.

deep learning models, specifically convolutional neural networks

and Yolo-V3.

3.1 Data collection and preprocessing

We conducted data collection in three phases (phase

1, phase 2, and phase 3). In the first phase, we gathered

data by extracting Creative Commons image datasets

from YouTube using the search terms ({bad} OR {good}

AND {ergonomic posture}). Utilizing the Snip and Sketch

tools, we extracted key frames depicting instances of

both good and bad ergonomics. In total, we amassed

269 image datasets, comprising 157 examples of bad

practices and 112 examples of good practices. The

datasets from this initial phase were utilized for the pilot

study, which aimed to assess the feasibility of employing

machine learning for the detection of posture practices.

Figures 4, 5 provide a cross-section of the datasets collected

from YouTube.

In addition, we gatheredmore image datasets from Pexels using

the Snip and Sketch tools. Pexels offers royalty-free images that

match both the good and bad workplace practices of computer

users. Utilizing related search terms such as “people AND {using

the computer}” OR “{looking head straight}” OR “{sitting in the

office},” we extracted key frames, resulting in 618 instances of bad
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FIGURE 6

Samples of bad posture. Reproduced from Pexels.

FIGURE 7

Samples of good posture. Reproduced from Pexels.

FIGURE 8

Samples of the good practices. Reproduced from Kaggle.

practices and 90 instances of good practices. These datasets were

combined with those from Phase 1 to conduct the main study

for YOLO-V3.

Recognizing the limitations of convolutional neural networks

(CNN) with small datasets (Han et al., 2018), we addressed this

concern in Phase 3 by collecting additional datasets. To enhance the

dataset, we collected both zoomed-in and zoomed-out resolution

images from Pexels. Research has shown that zooming, as one of the

techniques of data augmentation, increases the number of datasets

(Shorten and Khoshgoftaar, 2019). Figures 6, 7 offer a cross-section

of the datasets collected from Pexels.

For the Phase 3 data collection task, we explored the posture

dataset available on Kaggle. Kaggle, known for its extensive

repository of public datasets for machine learning (Tauchert

et al., 2020), provided a valuable resource. We added 311 images

depicting good practices to the datasets from Phases 1 and 2.
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TABLE 3 Summary of datasets distribution by source.

S/N Source Comfortable Uncomfortable

1. YouTube 112 157

2. Pexels 90 618

3. Kaggle 311 -

Total 513 775

The combined datasets from this phase were used to conduct the

main study experiment for convolutional neural networks (CNN).

Figure 8 showcases a cross-section of sample images collected from

Kaggle9. Though Kaggle had a couple of images for bad postures,

we considered using the good ones to balance our datasets (we

initially had more bad postures compared with good postures).

Additionally, we defined the two classes as “comfortable” and

“uncomfortable.” All the image datasets depicting good practices

were assigned to the “comfortable” class, while those depicting bad

practices were assigned to the “uncomfortable” class. Table 3 offers

a summary of all the datasets collected for the study. We employed

static image datasets as they are applicable to existing real-time

detection studies (Huang et al., 2019; Lu et al., 2019), and a video

is a sequence of moving images in frames (Lienhart et al., 1997;

Perazzi et al., 2017). Hence, the computer vision library provides

functionality to help capture this image frame per second and parse

them to the machine learning model to quickly predict the class in

real time.

3.2 Study description

We covered two significant steps, namely, the pilot and main

studies. We explored the feasibility of designing with a few datasets

in a pilot study. We present this pilot study to guide the research

community on the impact of dataset size in this area. In the main

study, we extended the number of datasets to show improvements

in the accuracy of models. The datasets collected from YouTube

during Phase 1 data collection were pre-processed and used to train

the two models for the pilot study (CNN-pilot and Yolo-V3-pilot).

We evaluated their performance through loss graphs and in real-

time (mean average precision). The mean average precision is a

metric for evaluating the accuracy of object detection, especially in

real time (Padilla et al., 2021). Furthermore, we combined datasets

from YouTube and Pexels to train the YOLO-V3-main model.

Additionally, we combined datasets from YouTube, Pexels, and

Kaggle to train the CNN-main model. Both the YOLO-V3-main

and CNN-main models were developed for the main study.

3.2.1 Pilot study
We conducted two experiments for the pilot study. The first

experiment involved the development of the Yolo-V3model (Yolo-

V3-pilot).We performed an automatic data annotation task1 on the

1 https://github.com/iwinardhyas/auto_annotation/tree/master/

auto_annotatation

entire datasets collected from YouTube. Subsequently, we trained

our datasets on the Yolo-V3model implementation of keras-yolo32

on the CPU and we tested this implementation on Google Colab.

The second experiment was implemented on the CNN model of

Abhishekjl.3 Our selection of Abhishekjl’s framework was based on

its relevance in the application of the cv2 python library which

is applicable in the recent study by Singh and Agarwal (2022). In

addition, the keras-yolo3 implementation has been recently applied

to the current state-of-the-art pedestrian detection system by Jin

et al. (2021) and other systems (Chen and Yeo, 2019; Silva and Jung,

2021). Hence, datasets collected from YouTube were trained on the

CNN model (CNN-pilot). The CNN-pilot model was trained and

tested on Google Colab.

3.2.2 Main study
We conducted two experiments for the main study. In the first

experiment, we combined datasets from YouTube and Pexels (from

phases 1 and 2 of data collection). We performed automatic data

annotation exclusively for datasets from Pexels. The annotation

data were then added to pre-existing annotations from the pilot

study to train a new Yolo-V3 model (Yolo-V3-main) for the main

study, utilizing CPU resources. In the second experiment, we

combined datasets from YouTube, Pexels, and Kaggle (from phases

1–3) and trained them using Google Colab on the CNN model

(CNN-main). Like the pilot study, both Yolo-V3 and CNN models

were implemented based on the architectures of Keras-Yolo3 and

Abhishekjl. In addition, we tested Yolo-V3-main and CNN-main

in Google Colab.

3.3 Overview of the CNN model

The CNN model (Figure 9) consists of 2 convolutional 2D

layers, 2 max_pooling 2D layers, one flatten, and twi dense

layers. Furthermore, the hyperparameters for the model include

3 activation functions (rectified linear unit, RELU) for the

convolutional 2D layers and one of the dense layers, one sigmoid

activation function added to the last dense layer, Adam optimizer,

a learning rate of 1e-3, a batch size of 5, and 10 epochs. The

loss of the CNN-pilot model was set to binary_crossentropy. The

convolutional 2D layers combine the 2D input after filtering,

computing the weights, and adding a bias term (Li et al., 2019).

The max_pooling2d layers reduce the input dimensions, leading

to a reduction in outputs (Keras4). The flatten layer combines

all the layers into a flattened 2-D array that fits into the neural

network classifier (Christa et al., 2021). The dense layers are regular,

deeply connected neural network layers that are used to return

outputs from the model (Keras5). We employed the rectified linear

unit (RELU) activation function as it is one of the most widely

used functions because of its improved performance (Dubey et al.,

2022). The sigmoid function was selected because it is suitable for

2 https://github.com/qqwweee/keras-yolo3

3 https://github.com/Abhishekjl/Facial-Emotion-detection-webcam-

4 https://keras.io/api/layers/pooling_layers/max_pooling2d/

5 https://keras.io/api/layers/core_layers/dense/
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FIGURE 9

CNN model architecture.

binary classification tasks (Keras6) as we employed in our study.

We employed the Adam optimizer because it is memory efficient

and requires limited processing resources (Ogundokun et al., 2022).

We set the learning rate of 1 e-3 and batch size 5 as we considered

the sensitivity of CNNmodels to small datasets (Brigato and Iocchi,

2021).

3.4 Overview of the Yolo-V3 model

The Yolo-V3 model (Figure 10) consists of 74 convolutional

2D layers, 71 batch normalization layers, 70 leaky rectified linear

unit (RELU) activation layers, two UpSampling2D layers, and

one ZeroPadding2D layer. We set the hyperparameters for the

model as follows: Adam optimizer, learning rate of 1e-4, and batch

size of 16. We consider Adam Optimizer to be appropriate as

it is memory efficient and requires limited processing resources

6 https://keras.io/api/layers/activations/

(Ogundokun et al., 2022). In addition, we considered a reduced

learning rate and batch size because of the number of datasets

we have. This will help the model learn efficiently. Unlike

CNN, YOLO-V3 yielded more annotated datasets with different

dimensions. This is typical with YOLO-V3 data annotations

(Diwate et al., 2022). Furthermore, we varied the number of epochs

for both the pilot and main studies. We used four epochs for

the pilot study (Section 4.12) and a maximum of 40 epochs for

the main study (Section 4.2.2). We used the default loss function

(binary_crossentropy) for the YOLO model. The convolutional 2D

layers combine the 2D input after filtering, computing the weights,

and adding a bias term (Li et al., 2019). The batch normalization

layer normalizes inputs to ensure that they fit the model as

their weights continue to change with each batch that the model

processes (Arani et al., 2022; Keras7). The leaky RELU activation

layer is a leaky version of a rectified linear unit activation layer

(Keras8). It introduces non-linearity among the outputs between

layers of a neural network (Xu et al., 2020). The UpSampling2D

layer is used to repeat the dimensions of the input to improve

its quality (Liu et al., 2022; Keras9). The ZeroPadding2D layer

adds extra rows and columns of zeros around images to preserve

their aspect ratio while being processed by the model (Dang et al.,

2020; Keras10).

4 Results

In this section, we present our findings from the pilot and main

studies. This section covers reports from our experiments with

Yolo-V3 and CNN models using datasets collected from YouTube,

Pexels, and Kaggle.

4.1 The pilot study

To visualize the feasibility of the study, we developed two

models for detecting workplace practices in real time: CNN and

Yolo-V3. We chose these models based on their proven capabilities

for supporting real-time object detection in previous research (Tan

et al., 2021; Alsanad et al., 2022). For the CNN model, we divided

the datasets into 75% training and 25% validation datasets (refer

to Table 4). We used 75% training to 25% validation set split for

the CNN model considering how similar tasks employed this ratio

(Azimjonov andÖzmen, 2021; Bavankumar et al., 2021; Akter et al.,

2022). Programmatically, we split the datasets into 90% training

and 10% validation datasets for the Yolo-V3 model. The reason

for the difference in this split ratio was based on previous studies

employing similar ratios, especially for Yolo models (Akut, 2019;

Setyadi et al., 2023; Wong et al., 2023).

4.1.1 CNN pilot study posture detection
We trained the CNN-pilot model for 10 epochs, employing

hyperparameter tuning variables such as the stochastic gradient

7 https://keras.io/api/layers/normalization_layers/batch_normalization/

8 https://keras.io/api/layers/activation_layers/leaky_relu/

9 https://keras.io/api/layers/reshaping_layers/up_sampling2d/

10 https://keras.io/api/layers/reshaping_layers/zero_padding2d/
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FIGURE 10

Cross-section of the YOLO-V3 model architecture (full architecture is available at Appendix A1).

TABLE 4 Summary of dataset distribution for the pilot study.

S/N Model Comfortable Uncomfortable Total

Training Validation Training Validation Training Validation

1. CNN 84 28 118 39 202 67

2. Yolo-V3 101 11 141 16 242 27

Total 185 39 259 55 444 94
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FIGURE 11

CNN-pilot model’s training vs. validation loss.

descent optimizer with a learning rate of 1e-3. The results

of our CNN training indicate a significant decrease in both

training and validation loss values, approaching the 10th epoch

(see Figure 11). The validation loss was minimal at epoch 10

compared with the training loss, suggesting a slight underfitting of

the model.

We deployed the model in real-time using the computer vision

Python library. Running the model on six real-time test instances, it

achieved a mean average precision of 52%. In most instances, better

precision values were observed for “comfortable” compared with

“uncomfortable” (see Figure 12).

4.1.2 Yolo-V3 pilot study posture detection
The Yolo-V3-pilot model was trained with two layers,

employing a strategy of frozen layers to stabilize the loss and

unfrozen layers to further reduce the loss, over four epochs. These

layers were configured to train with hyper-tuning parameters,

including the Adam optimizer with a learning rate of 1e-4 and a

batch size of 16. The results of our YOLO-V3 layers 1 and 2 training

reveal a decrease in the training loss toward epoch 4 compared with

the validation loss (refer to Figure 13). However, it is typical for

YOLO-V3 to return a high level of loss values below epoch 10 (Li

et al., 2020).

We deployed the Yolo-V3-pilot model in real time for the

classes “comfortable” and “uncomfortable.” For exceptional cases,

we included a “neutral” class. This addition allows Yolo-V3 to

handle instances where the detections do not match the expected

classes. Figures 14, 15 showcase instances where the Yolo-V3-pilot

model segmented areas of comfort compared with discomfort.

In other cases, the model returned “neutral” while one of the

researchers tested it in real time using the computer vision Python

library. Themodel achieved amean average precision of 64% across

six real-time test instances.

From the results of both models (CNN-pilot and Yolo-V3-

pilot), the Yolo-V3-pilot model’s boxes extended beyond the face,

capturing other significant areas of comfort or discomfort such as

the eyes, neck, and back (see Figures 14, 15).

4.2 The main study

To enhance the performance of both models (CNN-main and

Yolo-V3-main) in the main study, we trained these models on

additional datasets collected from Pexels and Kaggle. For the Yolo-

V3-main model, we combined YouTube datasets with those from

Pexels, while the CNN-main model was trained on a combination

of datasets from YouTube, Pexels, and Kaggle. In the case of the

CNN-main model, we split the datasets into 75% training and 25%

validation sets (refer to Table 5). We maintained the 90% training

and 10% validation set split for the Yolo-V3-main model.

4.2.1 CNN main study posture detection
We maintained the hyper-tuning parameters from the pilot

study for CNN, and the model was trained for 10 epochs. The

results of our CNN training indicate a significant decrease in

both training and validation loss values, approaching the 10th

epoch (see Figure 16). The training loss was minimal at epoch 10

compared with the validation loss, indicating better convergence

of the training and validation losses compared with those reported

earlier in the pilot study (see Figure 11).

In real time, the CNN-main model predicts uncomfortable

classes better (Figure 17: 89.6, 98.7, 93.5, and 93.0%). The CNN-

main model attained a mean average precision of 91% on 19

real-time test data points.

4.2.2 Yolo-V3 main study posture detection
Like the pilot study, the Yolo-V3-main model was trained with

two layers, incorporating frozen layers for a stable loss and unfrozen

layers to further reduce the loss. The first layer was set to train for 10

epochs, and the second layer started at the 11th epoch (continuing

from the first layer) and concluded at the 39th epoch. These layers

were trained with hyper-tuning parameters, including the Adam

optimizer with a learning rate of 1e-4 and a batch size of 16. The

results for both layers 1 and 2 of the Yolo-V3-main model show

that the training and validation loss curves converged at epoch 10

for the first layer and diverged slightly upward at epoch 39 for the

second layer (see Figure 18). This implies slight overfitting of our

Yolo-V3-main model.

We deployed the Yolo-V3-main model in real time, and the

results indicate that the model performed significantly better

in detecting both classes, “comfortable” and “uncomfortable”

(refer to Figure 19). The Yolo-V3-main model achieved

a mean average precision of 92% across 11 real-time

test instances.

5 Discussion

The study explored design opportunities for persuasive

systems based on real-time posture detection. We conducted two

experiments, namely, the pilot and main studies, utilizing two
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FIGURE 12

CNN-pilot model’s detection of posture.

FIGURE 13

L-R: Yolo-V3-pilot model’s training vs. validation loss (L: Layer 1 and R: Layer 2).

deep learning algorithms: CNN and Yolo-V3. In this section, we

discuss the results and propose design recommendations aligned

with the overarching goal of the study, addressing how people

can become conscious of their unhealthy posture practices in

workplaces, whether sitting or standing. Furthermore, we relate

these findings to answering themain research question: RQ: Canwe

design persuasive computers to detect unhealthy posture practices,

such as sitting and standing, in workplaces?

From the pilot study, we observed that the CNN-pilot

model tends to generalize its detection based on facial regions,

occasionally extending to the neck regions. Additionally, for the

CNN-pilot model, we reported on the detection of comfortable and

uncomfortable postures with similar precision accuracy values. The

lack of generalizability in the model raises concerns, particularly

given our overarching goal of ensuring that persuasive technologies

encourage people to maintain the right posture practices. It would
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FIGURE 14

L-R: Yolo-V3-pilot model’s posture detection: comfortable; uncomfortable; neutral. L: showing areas of discomfort around the eyes and

where the hand intercepts the eyes. R: showing discomfort from the eye to the neck regions.

FIGURE 15

L-R: Yolo-V3-pilot model’s posture detection: comfortable; uncomfortable; neutral. L: showing areas of discomfort around the eyes, neck,

and back regions. R: showing discomfort from the eye to the neck regions.

be more suitable for individuals to be prompted to change their

uncomfortable postures more frequently.

In contrast, the Yolo-V3-pilot model, with its anchor boxes,

provided more comprehensive coverage and detection of postures.

While it is common for Yolo models to generate multiple anchor

boxes when detecting objects (Zhang et al., 2022), we observed

trends of it detecting various body positions and regions associated

with the required postures.

The main study results demonstrated a significant

improvement in the CNN-main model compared with the

CNN-pilot model. The convergence and drop of the loss values

toward epoch 10 were notably pronounced, and the achieved mean

average precision of 91% aligns well with the overarching goal of

the study. The enhanced recognition of uncomfortable posture

positions by the CNN-main model suggests that users of persuasive

technologies would be more conscious.

Furthermore, there was a substantial improvement in the

performance of the Yolo-V3-main model compared with the

Yolo-V3-pilot model. The increased precision around both

comfortable and uncomfortable body positions resulted in a

mean average precision of 92%. Considering these results,

we address the main research question by recommending

the following.

D1. Persuasive systems can be customized to detect the posture

positions of users. While there are promising prospects with the

CNN model, particularly with additional training datasets, the

Yolo-V3 model stands out in addressing crucial body positions

such as the eyes, face, head, neck, and arms. The successes

of Yolo-V3 models have been reported in real-time workplace

monitoring, showcasing its capability to report multiple and

significant positions (Saumya et al., 2020).

D2. Persuasive systems based on the Yolo-V3 model can

be trained to recognize various environmental conditions, such

as the lighting conditions of the room, desk height, and leg

position of users. While previous study by Min et al. (2015)

demonstrated the potential of using sensor reading based on

back and arm movements, expanding to recognize more positions

would necessitate multimodal datasets, sensors, and strategically

positioned cameras to provide users with comprehensive feedback.

It is important to note that this approach may require privacy

permissions. The importance of aligning such feedback with users’

privacy expectations, both in private and social spaces, has been

emphasized in the study by Brombacher et al. (2023). Additionally,

a study by Bootsman et al. (2019) was limited to reading lumbar

(back) posture data, overlooking other key postures that directly

impact the back, as we have reported (eyes, head, neck, and arms).
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TABLE 5 Summary of dataset distribution for the main study.

S/N Model Comfortable Uncomfortable Total

Training Validation Training Validation Training Validation

1. CNN 384 129 581 194 965 323

2 Yolo-V3 182 20 698 77 880 97

Total 566 149 1,279 271 1,845 420

D3. Persuasive systems based on the Yolo-V3 model can

be trained to provide auditory feedback to users, particularly

benefiting individuals with visual impairments. This customization

could involve real-world feedback systems, such as a single

beep sound for correct posture positions and a buzzer sound

for incorrect posture positions. To enhance usability, additional

concepts may be implemented, such as helping users locate body

positions through a screen reader. Feedback systems, as reported

in the study by Brombacher et al. (2023), have been recognized

as effective in capturing users’ attention, especially when working

behind a desk and receiving posture-related feedback.

5.1 The present study vs. related studies

We present our methodology and results compared with

existing studies. Deep learning models, compared with SVM and

other algorithms used in existing studies (Tang et al., 2015; Nath

et al., 2018; Mudiyanselage et al., 2021; Zhang and Callaghan,

2021), capture the variability of highly complex patterns in datasets.

Hence, while SVMperforms significantly better with small datasets,

deep learning models require a substantial number of datasets. In

a related study (Mudiyanselage et al., 2021), SVM yielded 99.5%

with 54 datasets for five weightlifting classes (10, 15, 20, 30, and

35 lbs.). The results from this study showed significant overfitting

of the SVM model. In addition, in a related study conducted

by Nath et al. (2018) with 9,069 datasets for three classes of

ergonomic weightlifting risks (low, moderate, and high), SVM

achieved∼80% accuracy.

We employed deep learning models (CNN and Yolo-v3) in

this study, considering the variability of good and bad posture

patterns that SVM and other non-deep learning models might not

significantly capture. While deep learning requires large datasets,

we report on our findings (Yolo-v3: 92% and CNN: 91% accuracy

values using 2,265 posture images for two classes, good and bad)

to propose future work with additional datasets. In another related

real-time study by Zhang and Callaghan (2021) with different

human postures (sitting, walking, standing, running, and lying)

using deep learning multi-layer perceptron (MLP), the authors

reported accuracy up to 82% with few datasets (30 training and

19 testing samples). Nevertheless, results from the study by Tang

et al. (2015) revealed a significant number of misclassifications.

Deep neural networks (DNN) in a similar task of human gesture

recognition achieved an accuracy of 98.12%. This level of accuracy

was attained using a dataset comprising 21,600 images across 10

distinct classes of hand gestures. While Yolo-v3 compared with

CNN has not been explored in previous study, our results present

the baseline performance of both models to guide future work.

FIGURE 16

CNN-main model’s training vs. validation loss.

5.2 Limitation of the study

While we report these significant findings of our study, we

present the following limitations to improve future work. Though

we found significant posture practices such as leg position and

lying position, our findings are limited to the areas captured

by the camera for sitting and standing body postures. Exploring

these contexts further in future studies could inform the design

of more wearable persuasive devices. In addition, our datasets are

limited in size because there are a few instances of them publicly

available. In the future, we will explore running experiments to

collect additional ground truth datasets to enhance our model.

In addition, to comprehensively assess the effectiveness of this

technology in different workplaces (work-from-home, offices, and

other spaces), a future study should include an evaluation of users’

perceptions, considering both the advantages and disadvantages.

We propose this framework as a valuable posture assessment

tool which is applicable to any workplace setting, whether at

home or in an office. Evaluating both contexts in future studies

would contribute to a more comprehensive understanding of the

applicability of technology. Finally, we had variations in the design

of both models (YOLO-V3 and CNN); our comparisons might

have favored YOLO-V3, especially with the dataset split ratio of

90% training and 10% validation sets. This is inconclusive at this

point. We recommend that future studies explore setting the same

standards for testing both models.
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FIGURE 17

CNN-main model’s posture detection.

FIGURE 18

L-R: Yolo-V3-main model’s training vs. validation loss (L: Layer 1 and R: Layer 2).

5.3 Implication of future design on system
proximity detection and posture

Considering the prospects of posture evaluation based on

proximity detection, we designed a system to integrate with

our proposed Yolo-V3 and CNN models in the future. It is

recommended that a computer user maintain 40 cm from the

computer (Woo et al., 2016). To meet this requirement, we

modified the proximity detection program by Harsh Jaggi11 and

presented the preliminary results, as shown in Figure 20.

11 https://www.linkedin.com/pulse/face-distance-measurement-

python-haar-cascade-unlocking-harsh-jaggi
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FIGURE 19

L-R: Yolo-V3-main model’s posture detection: comfortable; uncomfortable; neutral.

FIGURE 20

Proximity detection of uncomfortable and comfortable posture.
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6 Conclusion and future work

We explored potential designs for persuasive systems based

on real-time posture detection. Given how significant persuasive

systems and human factor engineering contribute to changing

human behavior in workplaces, we conducted experiments using

two deep learning models: convolutional neural networks (CNN)

and Yolo-V3. These models have proven valuable in real-

time detection of emotions, human activities, and behavior

in previous research (Tan et al., 2021; Alsanad et al., 2022).

Despite their effectiveness in various domains, little attention

has been given to designing persuasive systems specifically for

promoting proper postures in workplaces. Our overarching goal

was to investigate how individuals can become more conscious

of their posture practices while sitting and standing with a

computer system. Additionally, we aimed to address the main

research question: RQ: Can we design persuasive computers to

detect unhealthy posture practices (such as sitting and standing)

in workplaces?

Hence, based on the results of this study, we conclude with the

following key insights:

1. Posture detection based on deep learning models would

require a lot of datasets to implement.

2. Persuasive systems based on real-time posture detection

should be tailored to capture more body positions. Overall,

this helps to address more workplace requirements for

behavioral changes.

3. There are prospects around eye strains, pupil

datasets, and other contexts linked with stress. Hence,

the framework of this study can be extended in

the future.

In conclusion, our study highlights the potential for developing

persuasive technologies that are specifically designed to support

users in adhering to proper posture practices. The significance

of this study prompts consideration for future exploration into

themes such as more in-depth studies with large datasets, proximity

detection, support for individuals with visual impairments

in adopting optimal posture practices, eye strain detection,

addressing various workplace requirements, and comparing

outcomes of user studies with our technology from different

workplaces such as work-from-home contexts, offices, and

other ones.
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Automatic cybersickness
detection by deep learning of
augmented physiological data
from off-the-shelf
consumer-grade sensors

Murat Yalcin*, Andreas Halbig, Martin Fischbach and
Marc Erich Latoschik

Human-Computer Interaction (HCI) Group, University of Würzburg, Würzburg, Germany

Cybersickness is still a prominent risk factor potentially affecting the usability of
virtual reality applications. Automated real-time detection of cybersickness
promises to support a better general understanding of the phenomena and to
avoid and counteract its occurrence. It could be used to facilitate application
optimization, that is, to systematically link potential causes (technical
development and conceptual design decisions) to cybersickness in closed-
loop user-centered development cycles. In addition, it could be used to
monitor, warn, and hence safeguard users against any onset of cybersickness
during a virtual reality exposure, especially in healthcare applications. This article
presents a novel real-time-capable cybersickness detection method by deep
learning of augmented physiological data. In contrast to related preliminary work,
we are exploring a unique combination of mid-immersion ground truth
elicitation, an unobtrusive wireless setup, and moderate training performance
requirements. We developed a proof-of-concept prototype to compare
(combinations of) convolutional neural networks, long short-term memory,
and support vector machines with respect to detection performance. We
demonstrate that the use of a conditional generative adversarial network-
based data augmentation technique increases detection performance
significantly and showcase the feasibility of real-time cybersickness detection
in a genuine application example. Finally, a comprehensive performance analysis
demonstrates that a four-layered bidirectional long short-termmemory network
with the developed data augmentation delivers superior performance (91.1% F1-
score) for real-time cybersickness detection. To encourage replicability and
reuse in future cybersickness studies, we released the code and the dataset as
publicly available.
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virtual reality, cybersickness detection, deep learning, data augmentation, CGAN,
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1 Introduction

Today, virtual reality (VR) is used in many different application
areas. VR has shown its potential for gaming (Pallavicini et al.,
2019), teaching and learning (Oberdörfer et al., 2017; Checa and
Bustillo, 2020), tourism and hospitality (Huang et al., 2016), and
marketing and advertising (Alcañiz et al., 2019; Loureiro et al.,
2019). The power and benefits of VR are particularly prominent in
the field of therapy. For example, VR can be used in psychology to
treat fear of heights (Abdullah and Shaikh, 2018; Bălan et al., 2020),
of spiders Hildebrandt et al. (2016); Miloff et al. (2016); Lindner et al.
(2020), of speaking in front of an audience (Barreda-Ángeles et al.,
2020; Glémarec et al., 2022), or of disorders of body perception by
leveraging personalized photorealistic avatars (Wolf et al., 2021;
2020). It is also used to treat neurological disorders, for example, gait
impairments as a result of Parkinson’s disease or strokes
(Hamzeheinejad et al., 2019; Kern et al., 2019), as well as in
orthopedics for the physical recovery after surgery (Gianola et al.,
2020; Bartl et al., 2022; Gazendam et al., 2022).

While the areas of application for the utilization of VR
technology constantly increase, immersive VR applications, in
particular, still face the risk of potentially inducing cybersickness
(CS). CS is a prominent risk factor potentially affecting the usability
of VR applications (Chang et al., 2020; Stauffert et al., 2020), which is
exceptionally critical for medical applications. Hence, to avoid and/
or counteract potential occurrences of CS, we first need reliable
methods to measure and detect CS. Measuring the occurrence and
severity of CS is often done with subjective self-reports (Kennedy
et al., 1993; Keshavarz and Hecht, 2011). Using such questionnaire
tools, however, has notable drawbacks. Most prominently, it
requires active user feedback, potentially inducing distraction and
additional workload or breaking the current immersion and flow.

Here, alternative approaches to measuring CS use physiological
and behavioral data, for example, using heart rate, skin conductance,
electroencephalography (EEG), or eye-tracking data (Nakagawa,
2015; Dennison et al., 2016; Garcia-Agundez et al., 2019; Kim
et al., 2019; Islam et al., 2020b; Tauscher et al., 2020). However,
many of the existing solutions need an extensive setup (Jeong et al.,
2018; Garcia-Agundez et al., 2019; Kim et al., 2019; Lee et al., 2019;
Tauscher et al., 2020). Such elaborated setups and expensive devices
render a widespread adaptation of objective CS detection unlikely
for many use-cases. With this work, we address these problems and
show how a CS detection that is based on a very simple setup can be
realized. In our approach, we use wearable of-the-shelf sensors and
the data provided by a standalone VR headset to achieve a reliable
detection of CS. We apply a deep-learning-based data augmentation
technique to achieve a significant improvement in CS detection even
for smaller and imbalanced datasets.

1.1 Contribution

We first conducted a data-collection process with 20 participants
who rode a VR rollercoaster while giving feedback about possible
onsets of CS using a controller. We collected several types of
physiological data using three different easy-to-use wearable
sensors. We analyzed and compared the resulting data with
different deep learning algorithms, aiming for automatic real-

time detection of CS. Specifically, we used standard and
bidirectional long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997), a combination
of convolutional neural networks (CNN) and LSTM, and a support
vector machine (SVM) (Cortes and Vapnik, 1995) model for CS
detection. Comprehensive performance analysis showed the highest
accuracy for a four-layered bidirectional LSTM model, achieving
84.2% accuracy for our original dataset. To enhance detection
performance, we pioneered the application of conditional
generative adversarial networks (cGAN) to augment physiological
time-series data in CS detection. The results increased to 91.7%
accuracy and show that it is possible to detect the onset of CS with a
fairly simple, unobtrusive setup based on wearable devices without
the need for more complex electrode-based sensors and without a
large dataset. The detection quality is higher than that in the
previous works (Martin et al., 2020; Islam et al., 2021). However,
we also propose that a mere accuracy metric is insufficient to
evaluate a model’s robustness and feasibility. Accordingly, we
computed more detailed metrics that further confirmed the
excellent performance of our developed method for detecting CS.

2 Related work

2.1 Phenomenology, causes, theories, and
prevention of cybersickness

Cybersickness refers to symptoms accompanying VR
applications, ranging from headache, dizziness, eyestrain, and
blurred vision to nausea and vomiting (LaViola Jr, 2000; Sharples
et al., 2008). CS is closely related to simulator sickness as they share
many symptoms (Rebenitsch and Owen, 2016). However, Stanney
et al. (1997) argue that the tow conditions have different profiles.
While the sickness that occurs in simulators is mainly determined by
oculomotor symptoms, the main symptom of CS is disorientation.
Additionally, the symptoms of CS are approximately three times
more severe than those of simulator sickness (Stanney et al., 1997).

CS and simulator sickness share not only a set of symptoms but
also common origin theories because many of the theories that apply
to simulators could be transferred relatively easily to head-mounted
displays (HMDs) (see (Rebenitsch and Owen, 2016) for an
overview). The sensory mismatch theory suggests that people
experiencing VR receive input on different modalities that might
be incongruent or conflicting, for example, visual and vestibular
input (Oman, 1990). Because such incongruencies could have been
triggered by toxins in the evolutionary history of humans, CS and
simulator sickness could also be protective survival mechanisms of
the body, deployed in the wrong context (Treisman, 1977). Another
common theory references postural instability. It is similar to the
sensory conflict theory and suggests that sickness symptoms occur
in situations where humans do not have an effective strategy to
maintain postural stability (Riccio and Stoffregen, 1991). When a
person is using immersive technology, they may not receive the
usual sensory input that helps them maintain their balance and
posture (Chen Y.-C. et al., 2011). Possible triggers and causes for CS
are also very diverse.

On the content level, one of the biggest factors is the optical flow.
It is more likely for people to show sickness symptoms when they see
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moving visual content instead of static content (ChenW. et al., 2011;
Lubeck et al., 2015). As the movement becomes faster, the severity of
symptoms can increase (Chardonnet et al., 2015; Liu and Uang,
2012). Human factors such as age (Saredakis et al., 2020), gender
Freitag et al., 2016), or motion sickness susceptibility (Llorach et al.,
2014) can also play a role.

Moreover, some hardware-specific factors can increase the
probability of the occurrence of CS. Decisive factors include
tracking accuracy (Chang et al., 2016), motion-to-photon latency
(the time that elapses between the movement of a tracked object and
the graphical representation of the associated movement in the
virtual environment) (Stauffert et al., 2020), or latency jitter
(Stauffert et al., 2018). Too-high latency or too-inaccurate
tracking also causes a mismatch between input modalities.

Through continuous advances in hardware manufacturing and
tailored software solutions, for example, asynchronous timewarp
(Oculus) or asynchronous reprojection (Valve), modern HMDs
significantly reduce the risk for CS. Nevertheless, some symptoms
occur regularly and as intensely in contemporary applications
Caserman et al., 2021; Cobb et al., 1999). CS must be given
particular importance in healthcare applications. Supervisors
leading a therapy session, for example, have a special duty of
care toward the health of their patients. People working in the
healthcare sector who want to integrate VR into their work
routines need support in averting potential hazards to their
patients Halbig et al., 2022). One possible solution to assist
supervisors in protecting their clients from negative effects
would be to use a warning system that detects possible signs of
CS and warns the supervisor.

Over the years, different techniques that prevent CS were
developed and tested, for example, having a virtual nose as a rest
frame (Wienrich et al., 2018) or a dynamic restriction of the field of
view (Groth et al., 2021). Nevertheless, CS symptoms are still
widespread when it comes to the usage of HMDs, as it was
shown by a survey among gamers (Rangelova et al., 2020).

2.2 Cybersickness measurement
and detection

There are several options for measuring CS. The most widely
used technique is the self-report questionnaire (Davis et al., 2014;
Chang et al., 2016). Typical examples are the Simulator Sickness
Questionnaire (SSQ) (Kennedy et al., 1993) and the Fast Motion
Sickness Scale (FMS) (Keshavarz and Hecht, 2011). In addition to
the advantages, such as the easy implementation and simple
evaluation, these subjective methods also have drawbacks. For
example, they only allow a discrete evaluation of the user state.
In addition, longer self-reports usually take place after exposure to
the VR stimulus and are, therefore, based on the active
recapitulation of the experience by the user. Shorter mid-
immersion assessments avoid these problems and closely link
feedback to experience. However, they require active
participation, potentially inducing unwanted breaks (especially
immersion) and additional work load.

Alternative approaches to subjective self-reports measure CS
via (objective) physiological and behavioral data, for example,
using heart rate, skin conductance, electroencephalography

(EEG), or eye-tracking data (Nakagawa, 2015; Dennison et al.,
2016; Garcia-Agundez et al., 2019; Kim et al., 2019; Islam et al.,
2020b; Tauscher et al., 2020). The analysis of the physiological data
usually happens with the help of machine learning (ML), deep
learning, or similar techniques (Halbig and Latoschik, 2021; Yang
et al., 2022). These techniques can overcome many of the
drawbacks of subjective methods. They could be used in a
continuous online monitoring system that can warn the user or
a supervisor in case the user/client felt sick or could even apply
automatic counter-measures.

Many existing solutions for classifying CS based on
physiological and behavioral measures need an extensive
setup. For example, many setups are based on EEG, which often
requires the application and preparation of many (up to 128)
individual electrodes (Jeong et al., 2018; Garcia-Agundez et al.,
2019; Kim et al., 2019; Lee et al., 2019; Tauscher et al., 2020).
Even the examples without EEG data are often based on elaborate
setups with different single electrodes (Islam et al., 2020a). It is hard
to imagine that physical therapists, psychologists, or physicians
would be willing to integrate such setups in their daily working
routines. In contrast to EEG systems, the sensors used in this study
are easy to attach to a person’s body and non-disruptive to their
behavior in the VR environment.

Several prominent ML algorithms have been applied to the CS
detection task in the past (Yang et al., 2022), including the multilayer
perceptron (MLP), SVM, linear discriminant analysis (LDA), and
k-nearest neighbors (kNN) methods. However, these algorithms are
not tailored to interpret time-series data and did not lead to
satisfying results (Garcia-Agundez et al., 2019; Recenti et al.,
2021). In recent years, deep learning has shown great
performance for many classification and detection tasks.
However, a limited number of works used deep learning for CS
detection. Because deep learning models need very large amounts of
data to train the models, they cannot be implemented if only a
limited number of participants are available.

Some studies used wearable sensors and deep learning together.
Islam et al. (2020a) used changes in physiological signals (heart rate,
heart rate variability, galvanic skin response, and breathing rate) as
CS predictors. They used an LSTM deep learning model with
complicated electrode-based skin conductance and heart rate
sensors. The hands were not moving freely, and the subjective
feedback from SSQ was not consistently correlated with the
physiological output. One of the recent works from Islam et al.
(2021) used CNN + LSTM models and stereoscopic video data
combined with eye-tracking (ET) and movement data. They
achieved 52% accuracy using only video data, which is far from
practical to be used as a CS detector. The same study used a
physiological sensory setup with PPG EDA data and achieved
87% accuracy. Although they had an imbalanced dataset, they
did not attempt to augment and balance it to get better results.
Garcia-Agundez et al. (2019) proposed an electrode-based setup
with ECG, EOG (electrooculographic), skin conductance, and
respiratory data. They used SVM, kNN, and neural networks for
binary CS detection and acquired 82% accuracy. Another interesting
study Wang et al. (2023) used in-game characters’ movement and
users’ eye motion data during gameplay in VR games. They trained
an LSTM model to predict CS in real-time and acquired
83.4% accuracy.
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2.3 Data augmentation

Collecting a huge amount of data for studies is often time-
consuming, costly, and difficult. This becomes even harder if deep
learning algorithms are used for classification or detection tasks.
Because deep learning algorithms are data-hungry models, the size
of the data should increase drastically to enhance the generalization
capability of the models and to hinder overfitting issues. In some VR
scenarios, physiological events that correspond to specific stimuli
like CS, fear, or anxiety rarely occur, and this leads to imbalanced
and skewed datasets. Recently, machine-learning approaches have
been used for data augmentation, specifically for image classification
tasks where images can be rotated, flipped, cropped, sheared, etc.
(Shorten and Khoshgoftaar, 2019). However, unlike image data,
physiological signals have a complex structure and dynamics that
can be easily disrupted by transformations such as rotation
or warping.

Especially in the medical and healthcare domains, when
classifying time series physiological data, we often encounter
imbalanced, skewed datasets in the literature. Some data
augmentation techniques have already been proposed to tackle
this problem (Iwana and Uchida, 2020; Wen et al., 2021). For
example, Um et al. (2017) propose cropping, rotating, and
wrapping the sensory data as a solution for this problem, but it
also includes the risk of changing the respective data labels. In recent
years, it can be seen that deep learning methods have increasingly
been used for data augmentation on small and skewed datasets, and
GAN, especially, increases classification performance. Harada et al.
(2018) showed that using GAN to augment physiological data can
improve the performance of the data classifier on imbalanced
datasets. Specifically, conditioning GAN by target class labels
offers two key advantages: it enhances GAN performance and
facilitates the generation of samples belonging to a specific target
class. Ehrhart et al. (2022) leveraged a cGAN to detect moments of
stress. Nikolaidis et al. (2019) used cGAN for apnea detection tasks.

We address these limitations by using unobtrusive wearable
devices with mid-immersion ground truth elicitation and proven
deep learning models with the help of the cGAN data augmentation.
Furthermore, to promote replicability and facilitate future research
in cybersickness detection, we made our code and dataset publicly
available.1

3 System description

Our end-to-end system mainly consists of sensory devices,
virtual environment data acquisition, and data processing.

3.1 Sensory devices

We used three different devices to measure the participants’
physiological signals during their VR experience. Because wearable
sensors offer superior practicability with respect to cost, ease of use,

and portability, we selected a Polar H10 (Polar Electro Oy, Finland)
sensory device, which is an electrode-based chest strap, and an
Empatica E4 (Empatica Inc., United States) device, which is a
medical-grade wristband. Both of these devices transmit the data to
the computer via Bluetooth communication. The Pico Neo 2 Eye VR
headset (Pico Interactive, China) HMD, with a resolution of 3,840 ×
2,160 px per eye and a total field of view of 101° running at a refresh rate
of 75 Hz, was provided to participants. The eye movements were
captured by the HMD’s built-in eye tracker running at 90 Hz with a
0.5° accuracy. These sensors are easy to deploy and can, therefore, be
used in a wide variety of scenarios without requiring too much effort.
Figure 1 illustrates these sensory devices.

3.2 Virtual environment

The rollercoaster experience in VR is a well-known experiment
when investigating CS in VR due to abundant motion that can elicit
certain related symptoms of CS (Cebeci et al., 2019; Islam et al., 2020a).
We implemented such a virtual environment for our study by adapting
a rollercoaster that has many up-and-down bends, loopings, and sharp
turns. It was initially obtained from the Unity Asset Store (2023) as a
development environment. Then, we made adjustments to the
rollercoaster to have a slightly lower speed and acceleration in the
first 30 s. To get the exact time interval when a participant felt cybersick
during the rollercoaster ride, we added functionality to collect the
timestamps when the participant pressed the trigger button of the right
controller and while hold the trigger during the CS symptoms
continued. The system was implemented using Unity
2020.3.11f1 LTS (Unity Technologies, 2020). A screenshot of the
scenario and the participant with sensory devices is shown in Figure 1.

3.3 Study and data acquisition

We conducted an experiment to acquire physiological data for
the development of our CS detection approach. The experiments
were completed with 20 participants aged between 18 and 57 years.
Twelve participants were men, and eight were women. All
participants provided their written informed consent to
participate in this study. Before the study, the participants were
debriefed about the study’s purpose and noticeable effects of CS. In
addition, they were informed and agreed to continue the study if the
effects occurred during the study in terms of ethical considerations.
During the study, no serious effects were observed or reported by the
participants. At the start of the procedure, the participant filled out
the pre-SSQ questionnaire to assess the level of CS before the VR
exposure. Then, the participant put on the sensor devices and the
connections between the sensors and the measurement engine
(Viavr_Measurement_Engine, 2022) of the VIA-VR project
(Viavr_Project, 2019) were established. Data streaming started
simultaneously for every sensor. The participants started to have
the rollercoaster experience. Whenever they felt symptoms, they
reported CS occurrences by pressing the trigger button of the right
controller and holding it as long as the symptoms were noticeable.
Respective timesteps were stored in a *.CSV file, and all sensory data
were stored in *.JSON files at the end of the experiments. The
experiment and the data collection were stopped after one1 https://github.com/m1237/automatic-cybersickness-detection
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rollercoaster cycle that lasted 80 s. The participant filled out a post-
SSQ questionnaire to assess the level of CS after the experiment.

The recorded data types are summed-up in Table 1:
electrocardiography (ECG) and acceleration (ACC) data
collected using the Polar H10 chest strap;
photoplethysmography (PPG), ACC, electrodermal activity

(EDA), inter-beat interval (IBI) and peripheral body
temperature (TEMP) data collected using the Empatica
E4 wristband; and eye-tracking (ET) data collected using the
Pico Neo 2 Eye HMD. Table 1 shows the overview of the data
types, sampling rates, and number of features that we extracted
from the physiological data.

FIGURE 1
The overview of the CS detection setup. (A) Screenshot of the virtual roller coaster environment used to intentionally induce CS. (B) An equipped
participant (center) and the respective sensors used during the experiments in detail.
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3.4 Data processing and feature extraction

After raw data acquisition, the collected data were preprocessed
to apply deep learning algorithms. Instead of using only raw data, we
calculated pre-features as input to the models. First, the data were
normalized. Z-score normalization (Dz) was used for the ET (pupil
diameters and gaze directions) and ACC (x, y, and z-axes) data.
Here, for each data sample Di, the Z-score normalization can be
calculated with the mean of the training samples Du and the
standard deviation of the training samples Ds in Eq. 1:

Dz � Di −Du

Ds
(1)

The new data sample value Dz replaces the old sample i. This
standard technique guarantees that the model will learn more
smoothly on the data because it is standard and normally

distributed (Islam et al., 2020b). The normalization of the BVP,
EDA, IBI, TEMP, and ECG data was done using a min–max scaler
(Dminmax) as stated in Eq. 2 that sets the values in relation to their
max and min values, which can vary for each person. Here,Dmin and
Dmax refer to the minimum and maximum of the data samples per
person, respectively:

Dminmax � Di −Dmin

Dmax −Dmin
(2)

The features were extracted from the normalized data collected
by Empatica and H10 sensors by using a rolling moving average
(Drma) in Eq. 3. This technique smooths the data by taking the
average value over the last n samples instead of the raw signal. Given
a fixed sampling rate, n corresponds to a time window. According to
Courtney et al. (2010), an appropriate time for recognizing a change
in physiological signals is 3 s. Depending on the sampling rate, this

TABLE 1 The features extracted and preprocessed from the raw sensor data to train the cybersickness classifier.

Device type S. Rate (Hz) Data type Features

Eye tracker 90 Hz Pupil diameter (left, right eye) 2

90 Hz Gaze direction (left, right eye; x, y, z values) 6

Empatica 32 ACC (x, y, z values, rma, pc, max, min) 12

64 BVP (rma, pc, max, min) 4

4 EDA (rma, pc, max, min) 4

64 IBI (rma, pc, max, min) 4

4 TEMP (rma, pc, max, min) 4

Polar H10 200 Hz ACC (x, y, z values; rma, pc, max, min) 12

130 Hz ECG (rma, pc, max, min) 4

1 HR (rma, pc, max, min) 4

FIGURE 2
The architecture of the CNN + LSTM model with the respective input/output tensor shapes. (The red rectangle shows the whole CNN + LSTM
model, and the black-colored rectangle shows the LSTM model used by itself as LSTM and bidirectional-LSTM models).
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value defines the final choice for the parameter n. Hence, n = 3 ×
sampling rate.

Drma � 1
n
∑n
z�0

Dz (3)

For another feature class, the percentage of change (Dpc) was
calculated from the normalized values using Eq. 4. It indicates how

much the value has proportionally changed in the number of n
timesteps rather than computing a nominal difference:

Dpc � Dz −Dz−n
Dz−n

(4)

The last two features that were constructed from the normalized
data are the maximum (max) and the minimum (min) in the last n

FIGURE 3
The overall cGAN data augmentation model with physiological data.

FIGURE 4
Data sample (timestep) distribution per class for the original dataset (blue), after the first data augmentation (orange) and after the second data
augmentation (green).
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timesteps. As an additional data source, the heart rate data were
calculated from ECG data by using the algorithm in Christov (2004).
This technique detects the current beat by leveraging specified
thresholds and R-R interval analysis. The aforementioned four

features (rolling moving average (rma), percent of change (pc),
min, and max) were also calculated for the HR data.

Instead of utilizing HR data obtained from Empatica, we
deliberately derived it from ECG data collected by the Polar

FIGURE 5
Two pairs of synthetic ECG (red) and EDA (green) data samples whichwere created using cGANmodel for CS label. Here, time window for each data
is 15 s.
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H10 device due to its superior data quality. The Empatica wristband
may be susceptible to motion artifacts, potentially leading to
inaccuracies in heart rate readings compared to the Polar
H10 chest strap, which is situated on a less-mobile body part.
For instance, although Hadadi et al. (2022) gathered HR data
using Empatica, they excluded it from their analysis due to its
lower precision, reduced stability, and a notable increase in
standard deviation.

4 Deep learning models for detection

After the feature extraction steps, the processed data contains
56 features (see Table 1) from the three different sensor devices for
each sample to train the SVM and deep learning algorithms.

4.1 SVM

For the SVM model, we used a linear kernel and a class weight
ratio of 1:8. Here, the class weight ratio automatically compensates
for the data imbalance by increasing the weights of the
minority class.

4.2 LSTM

To implement the LSTMmodel, we used the LSTM architecture
described in Islam et al. (2020b). The model consists of four layers:
an LSTM layer, a dropout layer, and two dense layers. The input for
the LSTM layer is a tensor of shape (batch size, timesteps, and
features). The LSTM module produces a tensor of shape (batch size
and LSTM hidden size) as output, which contains the final hidden
states of the input sequence after the last timesteps. After applying
dropout, this output tensor is fed into the two dense layers, which
both reduce the feature dimension. A ReLU activation function
(Nair and Hinton, 2010) was used for the first dense layer, and no
activation function was used for the second dense layer.

In addition to the four-layered LSTM network, we also used a
bidirectional LSTM network (Schuster and Paliwal, 1997) with the
same LSTM architecture for the detection task. Standard LSTM

networks have restrictions as future input information cannot be
reached from the current state. In contrast, bidirectional LSTM
networks do not require input data to be in the same dimension.
Moreover, their future input information can be reached from the
current state. The main idea of bidirectional LSTM is to connect two
hidden layers of opposite directions to the same output. By this
structure, the output layer can access information from past and
future states and interpret them better. The model can be seen
in Figure 2.

4.3 CNN + LSTM

To improve the classification performance, we also deployed
from-scratch CNN + LSTM architecture to acquire the spatial
features and time-invariant patterns. Figure 2 shows a visual
representation of the CNN + LSTM model architecture. This
model consists of seven layers: two 1D convolution layers
(Conv1D), and a pooling layer, followed by the four layers that
were also present in the LSTM model (an LSTM layer, a dropout
layer, and two dense layers). The input tensor for the first Conv1D
layer is of shape (batch size, timestep, and features). Then, two 1D
convolutions are applied. For both Conv1D layers, the number of
filters is equal to the input size for the LSTM layer. The kernel size is
4, and ReLU is applied as an activation function. After the Conv1D
layers, max pooling is used in the pooling layer, with a pool size of
2 and a stride of 2. After the max pooling function, the output tensor
is of shape (batch size, reduced timesteps, and LSTM input size) and
can be used as an input for the LSTM layer. The following LSTM and
dense layers are set up in a similar way to the LSTMmodel described
previously.

4.4 Hyperparameter optimization and
model training

After preprocessing and merging, the dataset was divided into a
training set and a testing set in a ratio of approximately 0.80/0.20,
resulting in the training set containing data from 16 participants and
the testing set containing data from the other four participants. We
consciously selected different persons for the testing set to

FIGURE 6
The final workflow scheme of the model for real-time CS detection.
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investigate the generalization capability of each model on never-seen
participants. Afterward, we randomly divided the training set into
10-fold subsets and separated one set as a validation set to check the
optimization performance of the training model. This technique is
known as k-fold cross-validation in the literature (Hastie et al.,
2001), and it minimizes the bias effect of one validation set. 10-fold
cross-validation then iterates through the folds and uses one of the
10 folds as the validation set while using all remaining folds as the
training set at each iteration. This process is repeated until every fold
has been used as a validation set.

We investigated the best hyperparameters by deploying the grid-
search technique throughout the implementation of all methods.We

specified the deep learning model dependent variables are hidden
layer size, dense layer size, timesteps, dropout, and learning rate.

4.5 Merging data

To merge the data from different sensors that have different
sampling rates, we specified a different variable as a hyperparameter
called sensor buffer with 0.1 s and 0.5 s time windows to have a mean
value for each buffer size of data from different sensors. As a result,
each data source is prepared as input for the models without
depending on sampling rates.

FIGURE 7
The measurement engine (viavr_measurement_engine) used in the study for data collection and real-time CS detection. (A) The GUI of the
measurement engine shows the three connected sensors (Empatica, Polar H10, and Engine, which is the Unity application). (B) The GUI of the
measurement engine shows the CS classifier and the detection result.
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Additionally, we used a timespan of 0 s, 1 s, and 2 s around a CS
occurrence as a CS buffer. The aim is to include the before and after
effects of physiological responses that participants felt. We combined
these parameters with the hyperparameters of the learning algorithm and
did a grid search to determine the best hyperparameters for training the
data. During the SVM training, the binary cross-entropy (BCE) (Good,
1952) loss is calculated. After that, predictions and loss calculations are
repeated using the testing set. The LSTM and CNN + LSTMmodels are
trained with a 256 batch size for 30 epochs on the training set. For LSTM
and CNN + LSTM training, the training loss is calculated using binary
cross-entropy in each batch. We used Adam (Kingma and Ba, 2014) as
the optimization algorithm, with a learning rate of 0.001 or 0.005,
respectively. Every five epochs, the model’s current performance is
evaluated on the validation set by calculating the validation loss. Each
model was trained on a machine with an Intel Core i7 9700K CPU and
32 GB ofmemorywithNVIDIARTX 2070 SuperGPU. Allmodels were
trained by using the PyTorch 1.10 deep learning library.

5 Data augmentation using cGAN

To tackle the problems of small and imbalanced datasets, we
deployed cGAN (Mirza and Osindero, 2014) to augment the original
dataset. cGAN is the conditionally extended version of the GAN
model (Goodfellow et al., 2014).

A GAN model architecture consists of two networks. One
network generates candidate data (generator), and the other
evaluates them (discriminator). Typically, the generative network
learns to map from a latent space (sampled from Gaussian
distribution) to a particular data distribution of interest, in our
case, physiological data, while the discriminative network
discriminates between instances from the true data distribution
and candidates produced by the generator. The objective of the
generator G) is to fool the discriminator D) such that it classifies
generated data as real. Through the training, the generator learns to

produce realistic-looking synthetic data. Consequently, the
generated data distribution converges to the real data
distribution. The generator Gθg is a directed latent variable model
that deterministically generates samples x from latent space z.
Because discriminator D) wants to classify real or fake samples,
V (D, G) is considered an objective function as an aspect of the
classification problem. The general form of the objective function
can be written as Eq. 5 follows:

minθgmaxθdV D,G( ) � Ex~pdata logDθd x( ) + Ez~p z( ) log 1 −Dθd Gθg z( )( )( )[ ]
(5)

Here, the main difference between the cGAN and the two player
minimax game objective function of the GAN is that cGAN includes
labels as auxiliary information indicated as y. Hence, the objective
function can be written as Eq. (6)

minθgmaxθdV D, G( ) � Ex~pdata logDθd x|y( ) + Ez~p z( ) log 1 −Dθd Gθg z|y( )( )( )[ ]
(6)

During the training process, Eq. (6) often results in mode
collapse, which means that many samples out of the latent space
map to the same generated sample. This results in a dataset with less
diversity. To counteract this problem, the diversity term was
introduced by Yang et al. (2019) to simply regularize and
penalize the generator for producing the same samples. The
diversity term is defined as Eq. 7

max
θd

f G( ) � Ez1 ,z1

‖G z1, y( ) − G z2, y( )
‖z1 − z2‖[ ] (7)

The logic in this approach is if two samples are different, but the
generated sequences are the same, the term is 0. This results in the
following new objective function in Eq. 8

min
θg

max
θd

f D,G( ) − λf G( ) (8)

where λ is a hyperparameter that describes the importance of the
term in Eq. (8), and ‖ denotes a norm.

5.1 The cGAN architecture

5.1.1 Generator
The generator takes latent space and class labels as input. Sixteen

hidden units per layer of stacked LSTM are used to generate the

TABLE 2 The variables and their values that were used in the grid search to optimize the models’ hyperparameters and best-performing values for the
respective model type.

H.Params Values SVM LSTM Bid-LSTM LSTM + CNN

Timesteps 30, 50 30 30 30 50

CS buffer (seconds) 0, 1, 2 1.0 1.0 1.0 1.0

Sensor buffer (seconds) 0.1, 0.5 0.5 0.5 0.5 0.1

LSTM hidden 32, 64 - 64 64 64

Dense hidden 8, 16 - 8 8 16

Learning rate 0.001, 0.005 - 0.005 0.005 0.001

Dropout 0.5, 0.7 - 0.5 0.5 0.7

TABLE 3 Results of the CTST evaluation method using CNN + LSTM and
bidirectional LSTM models.

Accuracy

Method CNN + LSTM Bid-LSTM

CTST (cGAN) 0.604 0.573
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physiological signals. The mapping from the random space is
performed via a dense layer using a Leaky ReLU (Xu et al., 2015)
activation function. Then, the LSTM layer group was applied. The
output was fed through a linear activation. The final output of the
generator has the shape of the matrix, which is batch size times time
window. Here, the time window for created data is 15 s. After
training, we can apply random Gaussian noise N (0, 1) and
labels to create the physiological data.

5.1.2 Discriminator
In our architecture, the temporal convolutional layers are used

to extract features from the time series signal. The convolutional
layer for the discriminator is chosen because in our experiments,
we saw that the fully convolutional network (FCN) discriminator

outperformed the recurrent discriminator. This indicates that the
convolutional network, especially the FCN, provides the generator
with better gradients during training. Therefore, 1D filters were
applied to capture the changes in the signal according to the
different classes of physiological signals. The filters per layer are
32, 64, and 32, and the kernel size per layer was set to 8, 5, and 3,
respectively. After the three convolutional blocks, the resulting
feature maps are followed by a pooling layer and a sigmoid
activation function, which outputs a scalar value in the range
of 0 to 1 for the sequence, indicating whether it is real or fake. For
the optimization process, the Adam optimizer (Kingma and Ba,
2014), with a learning rate of 0.0002 and a beta value of 0.5
(Christopoulos et al., 2019), was used and trained for
1,650 epochs. A batch size of 32 was used to ensure stable

TABLE 4 First table shows the detection evaluation results (accuracy, precision, recall, and F1-score) for the best-performingmodels in eachmodel type on
the original, first augmented, and second augmented training sets (with 10-fold cross-validation). The second table shows the detection evaluation results
for the testing set. The model name and the numbers in bold indicate the highest value of the experimental results.

10-Fold cross-validation

Model type Original dataset First data augmentation Second data augmentation

acc Pr Rec F1 acc Pr Rec F1 acc Pr Rec F1

(Naive Model) 0.133 0.133 1 0.235 0.5 0.5 1 0.667 0.5 0.5 1 0.667

SVM 0.66 0.310 0.911 0.463 0.843 0.675 0.883 0.766 0.874 0.752 0.902 0.820

CNN + LSTM 0.88 0.575 0.919 0.707 0.88 0.915 0.919 0.917 0.905 0.889 0.920 0.905

LSTM 0.86 0.555 0.871 0.678 0.912 0.914 0.882 0.898 0.925 0.932 0.906 0.919

Bid-LSTM 0.87 0.568 0.882 0.691 0.919 0.921 0.909 0.915 0.939 0.945 0.912 0.928

Testing Set

Model Type acc pr rec F1 acc pr rec F1 acc pr rec F1

(Naive Model) 0.156 0.156 1 0.27 0.156 0.156 1 0.27 0.156 0.156 1 0.27

SVM 0.652 0.207 0.660 0.316 0.825 0.650 0.854 0.738 0.857 0.869 0.841 0.855

CNN + LSTM 0.773 0.361 0.641 0.465 0.871 0.892 0.911 0.901 0.893 0.902 0.881 0.891

LSTM 0.836 0.421 0.673 0.473 0.901 0.886 0.921 0.903 0.910 0.929 0.889 0.908

Bid-LSTM 0.842 0.452 0.742 0.471 0.907 0.913 0.902 0.908 0.917 0.936 0.885 0.911

FIGURE 8
The confusion matrices which show the test results of the second augmented dataset. The matrices belong to the SVM, CNN + LSTM, LSTM, and
bidirectional LSTM models, respectively.
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training. Figure 3 depicts the overall cGAN algorithm with
physiological data.

5.2 cGAN implementation

The original dataset that we collected during experiments is
quite skewed and unbalanced. The data samples consist of
2539 CS labeled and 388 not-CS labeled timesteps (with a
0.5 s CS buffer). Because we have already split the dataset
into testing and training sets, only the training set was used
for the data augmentation process. After training our cGAN, we
created 2,151 synthetic CS timesteps data as the first data
augmentation and made the data equally distributed. In the
second data augmentation, we wanted to investigate the result
with the equally enriched synthetic data for both classes. After
this process, we augmented the data, which includes

6,384 timesteps for each class. The data distribution per class
can be seen in Figure 4 for the original dataset and the first and
second augmented datasets.

5.2.1 Evaluation of the cGAN model
Synthetic data samples produced by the cGAN model are of good

quality if real data and synthetic data are indistinguishable from each other.
To measure the similarity, we used the classifier two-sample test (CTST)
proposed by Lopez-Paz and Oquab (2017). In this approach, a binary
classifier is trained to distinguish data samples belonging to the synthetic
dataset from the real (original) dataset. For the training set, we randomly
selected 214 synthetic and real timesteps data samples for CS and
528 synthetic and real timesteps data samples for non-CS sequences.
For the training set, we randomly selected 87 synthetic and real timesteps
data elements for CS and 161 synthetic and real timesteps data samples for
non-CS sequences.We trained ourCNN+LSTMandbidirectional LSTM
model with the best hyperparameters (see Section 5.1). As can be observed

FIGURE 9
A comparison of the pre- and post-SSQ difference results of two participants who have min and max scores and the average differences of all
participants per question.

TABLE 5 Cybersickness detection accuracy results from the literature and comparison with our result.

Work Setup Physio. Data Methods Best Acc. (%)

Hadadi et al. (2022) HMD, Empatica EDA,TEMP,BVP,ACC SVM + TDA 71

Garcia-Agundez et al. (2019) HMD, Electrode-based ECG, EOG, EDA, RESP SVM, KNN, NN 82

Islam et al. (2021) HMD, Electrode-based Video, Eye-Track., Head-Track LSTM + CNN 87

Pane et al. (2018) EEG Setup EEG SVM, CNN 88.9

Kim et al. (2019) EEG Setup Video, EEG CNN-RNN 90.4

Our work HMD, Polar H10, Empatica ECG, ACC, EDA, BVP, TEMP Bid-LSTM, CNN 91.7
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in Table 3 the accuracy result is close to the chance level. Figure 5 depicts
two synthetic ECG and EDA data samples for the CS label.

5.3 Real-time CS detection

5.3.1 Data Capture
To start data streaming, all sensors must establish a connection

to the measurement engine (viavr_measurement_engine). Here,
socket programming (Socket, 2022) was used for the Empatica
connection, and the Bleak library (Bleak, 2022) was used for the
Polar H10 connection. The Pico Neo 2 includes a built-in eye tracker
(Tobii Ocumen AB, 2021) that can collect raw eye-tracking data
(binocular gaze, pupil size, and blink status) using the advanced API.
The measurement engine starts recording the data when the
“Streaming On” button is clicked. We implemented the data
streaming via the threading method. The streaming of each data
source is independent of each other and could be started or stopped
separately. In the case of a connection breakdown related to the
sensors, the engine log screen informs the user about the current
state. To prevent the data drifting, we used the same data acquisition
architecture for the real-time classification. Additionally, the sensor
buffer was used to prevent a lack of data in the streaming. The sensor
buffer gets the mean of the data for a specified period of time, and
then one value for each data element can be calculated. Hence, we
prevent potential missing data and system performance decrease.

5.3.2 Real-time data processing
After finding the best model for the detection task, we also

implemented the whole procedure as a real-time CS detection
system. All sensory devices are connected to the measurement
engine, which was written in Python. Data are feed-forwarded to
the four-layered bidirectional LSTM model. Each feed-forward data
processing time is around 60 m. In every 5 s period of time, the
measurement engine produces detection results by using already
trained model parameters. Because the sensor buffer is 0.5 s for the
best model, depending on the output of the last layer’s sigmoid
function, the engine produces 10 different results in 5 s. If the mean
value of the results is higher than 0.5, the engine detects CS;
otherwise, it detects not CS. This period of time can easily be
selected to be higher or lower because we selected 5 s as an
example. Figure 6 shows the overview of the real-time detection
system. Figure 7 shows the real-time Python GUI implementation of
the measurement engine. The result of the classification is shown
using the labels “high” and “low” on the GUI.

The system is ready to use in real-time VR applications. It
demonstrates an average latency of 60 ms between classifying the
data and providing feedback to the user, ensuring a seamless and
responsive experience. The prototype achieves a high accuracy (91.7%
with the testing set), indicating a high level of accuracy in detecting CS
symptoms. Although we used a Pico Neo 2 in our study, any VR
headset that included eye-tracking could be used in future studies.

6 Results

To find the best hyperparameters for the respective model type,
we conducted a grid search covering 584 different model

configurations with 10-fold cross-validation, resulting in
5,840 total model trainings. The best hyperparameters that led to
the best classification results are shown in Table 2.

After the training, we assessed each model’s performance based
on the performance metrics accuracy, precision, recall, and F1-score
on the testing set, and we also calculated these metrics for the
validation set (10-fold cross-validation) to get a better insight into
the model’s learning behavior. We also calculated a naive classifier to
compare the results of the given classifier model with a baseline (for
example, accuracy is the random occurrence of the CS label in this
case). In addition to these metrics, the confusion matrix was also
calculated to assess the ratio between true/false positives/negatives
for a second augmented dataset.

All performance metrics are based on the true and false results
and their real values. They are called true negative (TN), true
positive (P), false negative (FN), and false positive (FP). TP is an
outcome where the model correctly predicts the positive class (in our
case, CS), while TN is an outcome where the model correctly
predicts the negative class (in our case, not CS). FP is an
outcome where the model incorrectly predicts the positive class,
and FN is an outcome where the model incorrectly predicts the
negative class. We can formulate these metrics as Eqs. 9–12, follows:

Accuracy � TP + TN
TP + TN + FP + FN

(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

f1 � 2 ×
Precision × Recall

Precision + Recall
(12)

The results of the best-performing models are shown in Table 4 on
the original, first, and second augmented training datasets. All model
types achieved higher F1-scores on the training datasets with 10-fold
cross-validation than on the testing set. To tackle the imbalanced dataset
problem and increase the classifier performance, we augmented the
dataset with the previously explained methods (see Section 5.2). After
data augmentation and training with the new dataset, the results for all
models increased significantly. The confusion matrices of the second
data augmentation test results can be seen in Figure 8. We acquired the
best result with a four-layered bidirectional LSTM model with 91.7%
accuracy and a 91.1% F1-score. We also evaluated the cGAN
performance using the CTST (see Section 5.2) method. As we can
see in Table 3, after testing, accuracy is close to the chance level, which
means that our cGAN model created synthetic data that are almost
similar to real data.

Because SSQ results cannot provide actual data labels during the
experiments, we only used the SSQ results for validation. Each
participant answered 16 different questions with four options
standing for 1–4 score scales as pre- and post-SSQ: “None,”
“Rather not applicable,” “Rather applicable,” or “Often or a lot.”
We calculated the SSQ scores for each participant and evaluated the
SSQ results. We showed the average difference of pre- and post-SSQ
scores per question in Figure 9. In SSQ results, the participant scores
for questions 1 (general discomfort), 3 (headache), 5 (difficulty
focusing), 6 (salivation increase), 7 (sweating), and 8 (nausea) were
slightly higher than other questions. The average score of the
difference of all the symptoms was 1.1, which indicates that the
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participants felt a bit worse after the experiment than before. This
validates that the experiment resulted in a cybersick feeling for most
participants, although it might be rather small. Hence, it justifies the
correlation with physiological data.

7 Discussion

We have demonstrated that the utilization of unobtrusive
wearable devices in a simple setup, combined with appropriate
deep learning algorithms and a supportive data augmentation
technique, yields excellent results in detecting CS. Our proposed
approach involves the use of a bidirectional LSTM model in
conjunction with conditional GAN data augmentation, achieving
an accuracy of 91.7% and an F1-score of 91.1%. This outperforms
previous works employing similar physiological sensory setups,
including more complex ones such as EEG.

A comparison with recent literature is presented in Table 5 Hadadi
et al. (2022) incorporated physiological data from an Empatica
wristband and topological point cloud data from HMD. This
combination was not sufficient to capture CS responses properly,
using their (TDA + SVM) model. Garcia-Agundez et al. (2019)
additionally used game parameters with electrode-based data using
machine learning models (SVM, KNN, and NN) but could not reach
satisfying classification performance. (Pane et al. (2018) and Kim et al.
(2019) used EEG setups for their studies. However, EEG setups are not
easy to deploy for studies because they have complex, error-prone, and
time-consuming features. Although some studies worked onCS severity
classification (Islam et al., 2021), the F1-scores of these works are not as
high as the accuracy results because they also have imbalanced datasets.
Furthermore, none of these works attempted:

• to implement data augmentation to overcome lower
generalization capability issues for imbalanced datasets.

• to implement a real-time mid-immersion ground truth
elicitation method.

In our work, we mainly pioneered to address these issues, hence
improving the detection performance.

Upon evaluating the test results, we observed that the four-layered
bidirectional LSTMmodel outperformed the CNN + LSTM and SVM
models and slightly outperformed the standard LSTM model.
Incorporating hidden layers in opposite directions, enabling access
to past and future states, played a significant role in capturing
sequential data patterns through the bidirectional LSTM. Notably,
the recall scores for all models surpassed the precision scores in the
original dataset, mainly due to the class imbalance issue. While the
models correctly classified a substantial quantity of CS labels, they
exhibited a high number of FPs, indicating a compromise in the
quality of the classification. Additionally, both the training and testing
sets on the original dataset showed a higher number of FPs than FNs.

One significant finding that we wish to emphasize is that our
models with data augmentation exhibit remarkable generalization
capability on a testing set comprising participants who differ from
those used in the training set. Unlike previous research in the
literature (see Table 5), our models effectively generalize their
learning to new participants. With data augmentation, precision
scores increased significantly by decreasing FPs, which is strong

proof that the models gained enhanced detection capabilities for CS
labels. Additionally, we successfully implemented a real-time CS
detection system using our best model, which is a four-layered
bidirectional LSTM. This system can be readily deployed in various
VR scenarios, including medical and therapy applications.

During our experiments, we found that instructing participants
to press the controller button when experiencing the rollercoaster
simulation provided reliable ground truth data. However, this
procedure resulted in an imbalanced dataset, as there were fewer
instances of participants experiencing CS during the rollercoaster
scenario than instances when they did not experience CS. This was
particularly the case during the first 40 s of the experiment because it
took time to elicit the CS effects. To capture the before and after
effects on participants, we deployed a CS buffer as a hyperparameter
during the optimization process. By labeling the data one second
before and after CS occurrences, we observed an improvement in the
classification performance. This can be attributed to the time
required for participants to make decisions, such as pressing and
releasing the button, and the continuation of physiological responses
during the label transition phase. This hyperparameter also
increased the number of CS-labeled data by approximately 5%.

Our data augmentation technique generates synthetic data that
closely align with the data distribution of the original dataset. We
evaluated the similarity between the synthetic and real data, and our
results indicate that the bidirectional LSTMmodel achieves classification
performance close to the chance level with 57.3% accuracy (see Table 3),
which is evidence of an indistinguishable synthetic dataset.Moreover, we
successfully addressed the issue of data imbalance through the
implementation of the cGAN data augmentation model. Following
the first round of data augmentation, the dataset achieved equal
distribution per class, and the testing results revealed significant
improvements not only in accuracy but also in other evaluation
metrics. The recall and precision scores approached each other,
indicating robust and accurate detection of both classes by the
models. Performance evaluation of the second augmented
dataset also indicated similar results across different metrics. Notably,
precision and F1 scores surpassed those obtained from the original
dataset, signifying improved accuracy in classifying instances of CS.

7.1 Limitations

We showed that the augmented physiological data can increase
classifier performance significantly. However, the cGAN model is
difficult to train in a stable way. We tried to overcome this problem
with a diversity term. This could also improve the generalization
capability of the learning models. In addition, the choice of the
virtual scenario highly influences the responses from the
participants. Even though many past experiments, for example, by
Islam et al. (2020a) or Nalivaiko et al. (2015), chose to expose
participants to a rollercoaster ride in VR, it might have influenced
the resulting data negatively. A person might feel sick or nauseous
during the experiment, not due to CS, but because a rollercoaster ride
might have made them feel exactly the same way in real life. Because
these borders are hard to define, another choice of virtual scenario
might be an improvement. The rollercoaster ride might not be the
perfect virtual scenario, but it can efficiently provoke CS symptoms. On
the other hand, the measurement engine that we will provide can be
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used for data collection as well as a real-time detection system with the
same sensory device setup.Hence, the system can be used by researchers
in validation studies.

We used a relatively small data set in our study and enhanced the
result with data augmentation to acquire generalization capability.
However, more data can be collected in the future to acquire more
robust results in different studies. A wider range of experimental
scenarios would provide more variability and enable better model
training and validation. Larger datasets that can be collected from a
more extensive and diverse user population can help improve the
model’s performance by reducing bias and overfitting and help
ensure that the model is robust across different contexts.

8 Conclusion

In this work, we used a VR environment that includes a
rollercoaster to elicit cybersickness and used a simple setup with
sensory devices to collect physiological responses. We deployed three
different deep learning models and one classical machine learning
model to detect CS. In addition, we realized a completely real-time
system using our best model. We demonstrated that a four-layered
bidirectional LSTM with data augmentation gives superior results
(91.7% accuracy; 91.1% F1-score), and this combination is the best
solution for sensor-based CS detection in real-time applications,
particularly for wearable devices. Furthermore, we showed that
small, skewed, and imbalanced datasets can be augmented with
our pioneered cGAN approach to increase the classifier
performance significantly. In future works, we plan to investigate
different VR scenarios for cybersickness elicitation and state-of-the-
art models to enable multi-level CS classification.
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Introduction: In response to the increasing prevalence of electronic medical

records (EMRs) stored in databases, healthcare sta� are encountering di�culties

retrieving these records due to their limited technical expertise in database

operations. As these records are crucial for delivering appropriate medical care,

there is a need for an accessible method for healthcare sta� to access EMRs.

Methods: To address this, natural language processing (NLP) for Text-to-SQL has

emerged as a solution, enabling non-technical users to generate SQL queries

using natural language text. This research assesses existing work on Text-to-

SQL conversion and proposes the MedT5SQL model specifically designed for

EMR retrieval. The proposedmodel utilizes the Text-to-Text Transfer Transformer

(T5) model, a Large Language Model (LLM) commonly used in various text-

based NLP tasks. The model is fine-tuned on the MIMICSQL dataset, the first

Text-to-SQL dataset for the healthcare domain. Performance evaluation involves

benchmarking the MedT5SQL model on two optimizers, varying numbers of

training epochs, and using two datasets, MIMICSQL and WikiSQL.

Results: For MIMICSQL dataset, the model demonstrates considerable

e�ectiveness in generating question-SQL pairs achieving accuracy of 80.63%,

98.937%, and 90% for exact match accuracy matrix, approximate string-

matching, andmanual evaluation, respectively. When testing the performance of

the model on WikiSQL dataset, the model demonstrates e�ciency in generating

SQL queries, with an accuracy of 44.2% on WikiSQL and 94.26% for approximate

string-matching.

Discussion: Results indicate improved performance with increased training

epochs. This work highlights the potential of fine-tuned T5 model to convert

medical-related questions written in natural language to Structured Query

Language (SQL) in healthcare domain, providing a foundation for future research

in this area.

KEYWORDS

text-to-SQL conversion, large languagemodel, transformers, T5model, NLP, MIMICSQL

dataset, healthcare domain
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1 Introduction

Large businesses, government departments, healthcare

providers, financial services and many others store their vast

amounts of data in large relational databases or [data centers. To

handle, manage and retrieve information from these databases, it is

required to know the necessary technical background which non-

technical people lack. For example, Structured Query Language

(SQL), a standardized programming language that performs a

variety of data operations to manage databases, provides special

communication with databases typically required for efficient data

management, including retrieval, deletion and updating records

(Groff et al., 2002). One prominent use of relational databases is in

today’s healthcare domain, where patients’ health information is

stored in databases as electronic medical records (EMRs), designed

to ensure that every patient receives the correct medical care,

based on their entire health history. EMRs also help researchers

gather the statistics required for clinical trials, in turn helping the

study of diseases and the provision of suitable cures. To carry out

their duties, healthcare professionals must be able to access EMRs,

however, while they are considered experts in their medical fields,

they often lack formal training in database query languages like

SQL. This can result in significant inefficiencies when attempting

to extract relevant patient information from Electronic Medical

Records (EMRs). Studies have shown that clinicians spend a

considerable amount of their time on documentation and data

entry tasks, often leading to frustration and burnout (Shanafelt

et al., 2012; Sinsky et al., 2016). A survey of over 4,000 physicians

revealed that 49% reported spending more than half their workday

interacting with EHRs (American Medical Association, 2018).

Moreover, the complexity of EMR databases, with their intricate

schemas and vast amounts of data, can further exacerbate these

challenges. This difficulty in accessing data can hinder clinical

decision-making, delay patient care, and impede research efforts.

For instance, a study found that difficulties in retrieving relevant

information from EMRs contributed to diagnostic errors in 25%

of cases (Singh et al., 2013). Therefore, an intermediate system is

therefore needed that can assist end-users, such as the healthcare

staff, to handle database records smoothly without needing to

learn SQL.

Responding to this need, researchers started to explore

the possibility of employing automated Text-to-SQL conversion,

using machine learning (ML) and natural language processing

(NLP) to convert questions written in natural language to

SQL queries; the principle is shown in Figure 1 (Iyer et al.,

2017; Kate et al., 2018; Kim et al., 2020). NLP is a pervasive

artificial intelligence (AI) technology in which computers simulate

human intelligence through machine learning. Without explicit

programming, machine learning automates the learning of

computers using a collected data based on the required task. In

this way, computers are given the ability to understand human

language and turn it into machine language to perform required

tasks, such as text summarization and translation. Text-to-SQL

conversion facilitates the development of flexible, highly interactive

communication with databases to handle the records without the

need for end-users to know SQL.

Previous research papers have analyzed the creation of SQL

through NLP and proposed Text-to-SQL conversion models such

as SQLNet, proposed by Xu et al. (2017), Seq2SQL, developed

by Zhong et al. (2017) and MedTS, created by Pan et al.

(2021). Recently, the NLP technology has progressed with the

development of Transformer, a deep neural network architecture

capable of multiple NLP tasks, such as automatic summarization

and translation (Vaswani et al., 2017). This architecture became

the baseline for various language models trained on large data to

perform NLP tasks, such as Bidirectional Encoder Representations

from Transformers (BERT), proposed by Devlin et al. (2019)

and Multi-Task Deep Neural Networks (MT-DNN) for Natural

Language, proposed by Liu X. et al. (2019). Transfer learning these

pre-trained models, in which they are fine-tuned on a downstream

task such as translation, has become an effective approach in

NLP research. In Text-to-SQL conversion, fine-tunning pre-trained

models has raised the performance of Text-to-SQL models to near

human performance levels (Guo et al., 2019; Wang et al., 2019;

Pan et al., 2021). Subsequently, Raffel et al. (2020) proposed their

model, namely Text-to-Text Transfer Transformer (T5) as a unified

model for various NLP tasks and is considered one of the first

Large language Models (LLMs). The T5 model transforms text-

based language problems, such as translation, into a text-to-text

format and has become the state-of-the-art for various NLP tasks,

such as summarization, question answering and text classification

(Raffel et al., 2020; Xie et al., 2022). Using the T5 model for Text-

to-SQL conversion resulted in a significant improvement in the

performance of such task (Scholak et al., 2021; Xie et al., 2022).

While many researchers have proposed Text-to-SQL

conversion models, few have focused explicitly on the healthcare

domain to assist healthcare staff in managing and retrieving

information from EMRs (Wang et al., 2020; Pan et al., 2021).

This relative scarcity can be attributed to several factors. First,

healthcare data presents unique challenges, including complex

medical terminologies, diverse data formats across different

EMR systems, and stringent privacy and security requirements.

These challenges necessitate the development of specialized

Text-to-SQL models that can accurately understand medical

language and comply with healthcare-specific regulations. Second,

the integration of Text-to-SQL systems with existing EMR

systems can be complex and time-consuming. The heterogeneity

of EMR systems across different healthcare institutions, with

varying data structures and terminologies, poses a significant

barrier to generalizability. Developing a Text-to-SQL model that

seamlessly integrates with diverse EMR systems requires extensive

customization and validation, which may deter researchers and

practitioners from focusing on this domain.

Despite these challenges, the need for efficient and user-

friendly access to EMR data remains critical for healthcare

professionals. Therefore, this work aims to develop a T5-based

model, namely MedT5SQL, which is a transformers-based fine-

tuned large language model to perform Text (questions)-to-

SQL conversion specifically within the healthcare domain. The

objective of the MedT5SQL model is to empower medical staff by

enabling them to express their data requests in natural language,

thereby overcoming the barriers associated with traditional SQL

query formulation.

In achieving the above, this paper is structured as follows.

First, a theoretical background of the work related to text-to-SQL

conversion is discussed. The following section clarifies the research
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FIGURE 1

Text-to-SQL conversion model.

methodology, namely CRoss Industry Standard Process for Data

mining (CRISP-DM), that is followed to pre-process the data and

develop and validate MedT5SQL model. Third, the evaluation

results are discussed in detail and compared to past research.

Finally, the conclusion section concludes this work and offers some

suggestions for future research.

2 Theoretical background

Nowadays, patients’ health information is stored in a digital

format in electronic medical records (EMRs) that are used by

healthcare staff to retrieve patients’ historical health details or

to use for clinical trials. At the beginning of 2020, the world

experienced a global pandemic of coronavirus known as COVID-

19. This pandemic has left hospitals overloaded with patients,

causing enormous stress on healthcare workers due to shortages

of medical staff in relation to the number of patients (Birkmeyer

et al., 2020; Kruizinga et al., 2021; Iness et al., 2022). The pandemic

highlighted the importance of EMRs and revealed the need for a

faster communication method to handle it (Dagliati et al., 2021). It

is essential to have an interface that provides easy user-to-database

interactions; in particular, a system that generates an SQL query

in response to a question in human language. This section reviews

the state-of-the-art in natural language processing for Text-to-SQL

conversion to facilitate interactions between users and databases.

2.1 Rule-based systems

Converting natural language to SQL is a subtask of semantic

parsing, in which natural language is converted into a machine-

understandable logical form (Zettlemoyer and Collins, 2005).

Semantic parsing seeks to understand the meaning of natural

language and map it to logical forms such as SQL. Rule-

based systems were used to support non-technical users in

communicating with databases through a set of predefined rules

mapping natural language words with SQL keywords and database

schemas (Androutsopoulos et al., 1995; Popescu et al., 2004; Li and

Jagadish, 2014; Saha et al., 2016). An expert programmer constructs

these rules to translate users’ requirements into SQL queries (Masri

et al., 2019). However, it is required for non-technical users to train

before using them and are domain-specific, since each system is

built for a specific schema. These systems have limited intelligence,

as they only operate based on the rules created by humans and do

not learn, change or update on their own (Kamath and Das, 2018).

This limits the ability of non-technical users to manage their data

without relying on expert programmers.

2.2 Deep learning models for text-to-SQL

To increase usability and generalize Text-to-SQL conversion,

researchers began using deep learning (DL) by training neural

networks to generate executable SQL queries. Training neural

networks means performing supervised learning, in which the

network is provided with natural language questions and their

corresponding SQL queries so it can learn the conversion. The

trained neural networks is called a DL model that generates a query

from a given question. This has led to the release of several Text-

to-SQL datasets that boost the accuracy of the models by delivering

sufficient data for supervised learning: GeoQuery, created by Zelle

(1996) for US geography and updated later by Iyer et al. (2017) to

include SQL; ATIS, created by Price (1990) for flight bookings and

updated by Iyer et al. (2017) to include SQL; Scolar, created by Iyer

et al. (2017) for academic publications; WikiSQL, created by Zhong

et al. (2017) fromWikipedia; and Spider, created by Yu et al. (2018a)

and representing a cross-domain dataset.

Due to their large sizes and multiple domain coverage, Spider

and WikiSQL are the most used datasets among researchers.

WikiSQL is a corpus of 80,654 hand-annotated pairs of questions

and corresponding SQL queries for 24,241 tables covering multiple

domains. However, each question-SQL pair is related to a single

table in which the SQL only has SELECT and WHERE clauses,

as presented in Figure 2. The Spider dataset was introduced to

overcome WikiSQL’s simple SQL structure and to present the

first cross-domain dataset. It includes 200 complex databases with

multiple tables, 10,181 questions, and 5,693 corresponding complex

SQL queries with nested queries. Table 1 presents a comparison of

existing datasets for text-to-SQL translation.

2.2.1 Deep learning models architecture
Deep learning models for Text-to-SQL conversion are

built as neural networks in an encoder-decoder architecture

that was initially embraced by Sutskever et al. (2014) for
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FIGURE 2

Sample of WikiSQL question-SQL pairs (Xu et al., 2017).

TABLE 1 Comparison of existing text-to-SQL benchmarking databases.

Dataset #Databases #Tables per database #Question-SQL pairs SQL query level

ATIS 1 32 5,280 Complex (no HAVING and

ORDER BY)

GeoQuery 1 6 877 Complex

Scolar 1 7 817 Simple

Spider 200 On average 5 10,181 Complex

WikiSQL 24241 1 80,654 Simple

translation purposes. Given a natural language question (NLQ)

and its corresponding SQL as source sequences, models operate

as follows:

• The source sequences are always tokenized into tokens before

encoding, and each token represents a word in the sequence

(Webster and Kit, 1992).

• As deep learning models only take numbers as inputs, each

token is embedded into a vector representation, called word

embedding, using embedding algorithms such as Glove or

Word2vec (Mikolov et al., 2013; Pennington et al., 2014). This

process reveals the relationship between tokens and reduces

input dimensionality as tokens with similar meanings have

similar vector representation.

• The encoder takes the NLQ tokens’ embeddings and

encodes their information/features into a vector named

“hidden states.”

• For training purposes, the decoder takes the encoder’s hidden

states and the word embedding of the SQL tokens for the

supervised training. The decoder is built and trained as a

classifier to decode the hidden states into a target SQL query.

• For generalization to an unseen schema, the database schema

is usually considered as an input to the models.

To provide an accurate conversion, models must develop

an understanding of source sequences by understanding words’

dependencies and memorizing previously gathered information.

To meet this need, researchers have built encoders and decoders

with recurrent neural networks (RNNs), particularly long short-

termmemory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTM

can remember long-term information and capture dependencies

between sequence tokens. The understanding and encoding of each

token depends on the previously seen token. Therefore, it can

improve natural language understanding and help with translation

tasks (Graves, 2013; Yin et al., 2017).

Encoders built using LSTM take input tokens sequentially

and produce their hidden states one at a time. At the end, it

outputs a single hidden states vector compressing all the tokens’

hidden states. The decoder alone needs to interpret the information

compressed in this vector into a complex target sequence, leading

to the risk of information loss. To circumvent this risk, an attention

mechanism was proposed to allow the decoder to look at all tokens’

hidden states when predicting the final output (Bahdanau et al.,

2014; Galassi et al., 2021). This is accomplished by passing the

weighted sum of the hidden states to the decoder, allowing it

to focus on the required information to generate the next target

token. This simplifies the encoder task by avoiding encoding the

entire source sequence into a single vector. The architecture of the

encoder-decoder with and without attention mechanism can be

seen in Figure 3 where ‘h’ corresponding to hidden states vectors.

2.2.2 Deep learning approaches
In Text-to-SQL tasks, this sub-section outlines the approaches

used as (1) sequence-to-sequence (2) sequence-to-set (3) fine-

tuning a pre-trained language model (transfer learning).

Sequence-to-sequence (Seq2Seq), introduced by Sutskever et al.

(2014), is an LSTM-based machine translation that operates

by sequentially taking source tokens and translating them into

sequence target tokens. Seq2Seq relies on a single ground truth

query as the optimal correct query. This raises the issue of “order

matter” because in SQL, the order in the WHERE clause does not

matter, making it a challenge when using this approach. Seq2Seq
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FIGURE 3

Various encode-decoder architectures. (A) Encoder-Decoder architecture and (B) Encoder-Decoder architecture with attention.

does not require the attention mechanism; however, it is possible to

combine the two for better results.

Sequence-to-set was first introduced by Xu et al. (2017). It is

similar to Seq2Seq, apart from its ability to overcome the order

matter by producing an unordered set of sequences after dividing

the prediction into sections. The decoder prediction is performed

based on the dependency between the predicted tokens, which is

captured using the attention mechanism. Sequence-to-set usually

uses an approach of sketch matching and slot filling, where each

slot has its own decoder. The slots present parts of the SQL, such

as the column name or the aggregation operator, in the SELECT

clause. Using a sketch structure presenting the dependencies of

the query slots, the decoding of each slot in the query is based

only on the decoding of other slots it depends on. For example,

decoding the aggregation operator in the SELECT clause depends

on the decoding of the column name and is independent of the

WHERE clause.

Pre-trained language models are transformer-based neural

networks for word embedding that learn contextual relations

between tokens without recurrent connections (Peters et al., 2018;

Yang et al., 2019). The Transformer is an encoder-decoder-based

neural network proposed by Vaswani et al. (2017). It is built and

trained to work on multiple NLP tasks, such as summarization and

translation. The transformer has three main functioning concepts.

The first is positional encoding, in which transformers are fed

with all the tokens at once, with each token appended with its

order, unlike the recurrent neural network of sequential input of

token. Second, through learning from training data, transformers

use the attention mechanism and consider each input token in the

source before any translation prediction is generated. Third, both

the encoder and decoder use a self-attention mechanism in which

a word is understood based on the context of the words around it

(Vaswani et al., 2017).

Although transformers are encoder-decoder neural networks,

pre-trained language models only use the encoding mechanism,

as they aim to learn representations of a language. The most

commonly used language model in text-to-SQL conversion is

bidirectional encoder representation from transformers (BERT),

introduced by Devlin et al. (2019). The term “bidirectional”

means positional encoding and the term “representation” refers

to the attention mechanisms. BERT is a multi-layer bidirectional

transformer encoder for contextual-bidirectional embeddings that

can be finetuned for specific NLP tasks. It was trained by two

learning mechanisms—masked learning mechanism (MLM) and
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next sentence prediction (NSP)—to increase its accuracy and

minimize the loss values. In MLM, 15% of input tokens are

placed with masked tokens (MASK) before being given to BERT.

Therefore, through contextual relations between tokens, BERT

learns to predict the original token. In NSP, BERT is given pairs of

sentences and trained to predict whether the pairs are subsequent

to each other in the source text. It is fed by 50% subsequent pairs

during training, where sentences are separated by special tokens at

the start of the first sentence in each pair and at the end of each

sentence. Most pre-trained models were built later, based on BERT

(Sanh et al., 2019; Liu X. et al., 2019).

To apply transfer learning with pre-trained models, researchers

must perform fine-tuning by re-training the model using one of

the Text-to-SQL datasets. In GloVe and Word2Vec, each token

is embedded into one static vector representation. However, as

a result of the attention mechanism in BERT, a token appearing

in multiple locations in the source is treated as different tokens,

thus embedded into multiple word embeddings/vectors based on

its context.

Most of the text-to-SQL models were evaluated using:

Execution accuracy: this metric compares the results of

executing the ground truth query (gold standard) with the results

of executing the model-generated query. While intuitive, it can be

misleading, especially in situations where multiple queries produce

the same result. For instance, consider a query to find the average

age of patients. Both SELECT AVG(age) FROM patients and

SELECT AVG(age), COUNT(∗) FROM patients would yield the

same average age, but only the first query accurately captures the

intent of the natural language question.

Logical form accuracy (exact match): This metric compares

the structure of the ground truth query with the generated query

using an accuracy matrix. It addresses the limitation of execution

accuracy by focusing on structural correctness. However, it can

be overly strict, as minor variations in query formulation (e.g.,

different ordering of clauses) can lead to incorrect results even if

the queries are functionally equivalent.

Manual matching: In this approach, human evaluators

manually compare the structure of the ground truth query with the

generated query, often using a set of predefined criteria. Manual

matching offers a nuanced assessment of query correctness, but it

can be time-consuming and subjective.

Combination of metrics: Given the limitations of individual

metrics, using a combination of execution accuracy, logical form

accuracy, and manual matching provides a more comprehensive

evaluation. Execution accuracy verifies the functional correctness

of the query, while logical form accuracy and manual matching

assess its structural correctness and alignment with the natural

language question’s intent.

2.2.3 Text-to-SQL in single domain dataset
WikiSQL is considered the biggest single dimension dataset

used for Text-to-SQL, where each SQL is related to a single database

table. Seq2SQL, created by Zhong et al. (2017), was the first model

trained with WikiSQL. It uses a Seq2Seq approach designed to

leverage the structure of SQL commands with three decoders for

the SELECT column clause, aggregation operator and WHERE

FIGURE 4

SQLNet SQL sketch.

clause separately. It uses two encoders, one for the question tokens

and another for the column name, to train the model to generate

the SQL query given the question and column. The decoder

was designed as an LSTM-augmented pointer network created by

Vinyals et al. (2015). It augments the encoder’s output along with

an SQL vocabulary of required SQL operations to produce the SQL

query with tokens taken exclusively from this augmentation. To

minimize the effect of the order matter problem, Seq2SQL uses

reinforcement learning with policy gradients presented by Sutton

et al. (1999), allowing the decoder to evaluate the predicted query

based on whether it is well formed or not. The model achieved

an execution accuracy of 59.4% and a logical form of 48.3%.

Even though it presented a state-of-the-art model for WikiSQL, an

accuracy below 50% is considered insufficient.

SQLNet is a sequence-to-set sketch-based approach developed

by Xu et al. (2017) to avoid the order matter. The dependency

between the slots is based on the SQL sketch shown in Figure 4,

where five decoders were used. Tokens between “< >” are the

slots to be filled, while (∗) indicates zero or more conditions. The

aggregator options are NULL, MAX, MIN, COUNT, SUM and

AVG, while the operator options are =, > and <. Additionally,

SQLNet uses a column-attention mechanism in which one LSTM

encoder is used over each column name and another is used to

encode the NLQ conditional in each column. In this way, the model

reflects the most relevant word in the question when predicting the

column name. SQLNet structure allowed it to achieve around 10%

improvement in the execution accuracy compared to Seq2SQL.

TYPESQL, developed by Yu et al. (2018c), is an improved version

of SQLNet with a 5.5% increase in accuracy. TYPESQL achieves

2% higher accuracy by concatenating each NLQ token with a

type before encoding to assist the decoder in filling the slots. For

example, the model uses INTEGER, FLOAT, DATE or YEAR for

number tokens, COLUMN for column name tokens and PERSON,

PLACE, COUNTRY, ORGANIZATION and SPORT for named

entities. TYPESQL achieves the other 3.5% by grouping related slots

together, resulting in three decoders. All models use GloVe word

embedding for the encoder embedding layer.

Due to their functionality, pre-trained models are effective in

revealing the connections between source sequences as well as

portraying the meaning of the question. Therefore, researchers

began using them to connect questions with table schema to

produce accurate SQL queries. Hwang et al. (2019) developed

SQLova, the first model to utilize BERT in text-to-SQL tasks for

word embedding on WikiSQL. SQLova was created following a

sequence-to-set approach with LSTM. It has two separate encoders:

one for the question and one for the column names. BERT is used

on top of the encoders to performword embedding for the question

and column names. This allows the model to capture a larger
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context of the input with any possible different pronunciations

of the question. Inspired by SQLNet, SQLova follows the same

decoding process as well as a sixth decoder for “where-number,”

indicating the number of conditions. SQLova uses the execution

guided (EG) decoding proposed by Wang et al. (2018) to exclude

non-executable generated queries from the decoder output. By

using BERT, SQLova achieves 80.7% logical form accuracy and

86.2% execution accuracy without EG and 83.6% and 89.6% with

EG. Therefore, using a pre-trained model increased the accuracy of

this task.

X-SQL, created by He et al. (2019), was built based on the

SQLova structure. Similar to SQLova, X-SQL uses two encoders for

the question and table schema. However, the question encoder is

built using the multi-task deep neural network (MT-DNN), a pre-

trained model proposed by Liu X. et al. (2019) based on BERT.

With and without EG, X-SQL outperforms SQLova by 2–4%. This

implies that using a pre-trained model as an encoder rather than

a word embedder results in better performance. Lyu et al. (2020)

argued that neither SQLova nor X-SQL benefit correctly from using

a pre-trained language model and added complexity to the models.

They proposed Hydranet, employing BERT alone as its encoder

without using any other encoders. Instead of pairing the question

with all table schemas, Hydranet pairs the question with each

column one at a time before encoding. Hydranet was able to achieve

state-of-the-art on WikiSQL by reaching 91.8% execution accuracy

using EG and 92.2% when replacing BERT with RoBERTa (Liu Y.

et al., 2019). Even though those models keep increasing accuracy

for text-to-SQL, they are trained on WikiSQL, which means they

can manage simple SQL structures.

2.2.4 Text-to-SQL in cross domain dataset
To develop text-to-SQL tasks for complex SQL queries, the

Spider dataset was proposed, motivating researchers to develop

models for more realistic SQL tasks. Yu et al. (2018c) evaluated

SQLNet and TYPESQL on Spider to study their functionality for

complex queries. It was found that both models failed to manage

nested queries because they limited the query to a defined sketch

structure. Motivated by SQLNet, they proposed SyntaxSQLNet

(Yu et al., 2018b). As Spider question-SQL pairs can relate to

multiple tables, SyntaxSQLNet encoding considers both tables and

column names for column embeddings. They employed grammar-

based decoding, in which a series of grammar rules are applied

sequentially to generate the SQL query. By recursively calling nine

independent sequence-to-set decoders, they obtained their SQL

syntax tree to generate the SQL. In SyntaxSQLNet, decoders share

their decoding history to facilitate the prediction of nested queries;

thus, given the current training sample’s SQL tokens and the history

of previous decoded SQL, the relevant decoder is invoked. Even

though its performance was better than SQLNet and TYPESQL on

Spider, it achieved an accuracy below 30% due to the complexity of

Spider’s SQL.

Lee (2019) presented RCSQL, a clause-wise SQL decoding

model, to predict syntactically correct SQL. Each clause decoder

consists of sub-models matching its clause syntax and implied

history sharing. For further improvement, they conducted a self-

attention mechanism on database schema encoding. RCSQL’s

exact matching accuracy was 28.8%, indicating that improvement

is still needed. IRNet, created by Guo et al. (2019), adopted

the grammar-based model of SyntaxSQLNet. It focused on

addressing the challenge of out-of-domain words affecting column

prediction. They proposed the use of schema linking, where

the model identifies the dataset’s columns, tables and conditions

appearances in the question. This enhanced the question and

schema representations, aiding in their understanding. The model

achieved around 20% improvement over SyntaxSQLNet. Inspired

by SQLova, Guo et al. (2019) augmented BERT with both

SyntaxSQLNet and IRNet. As a result, the performance of both

models increased by around 5%. Choi et al. (2021) proposed a

complete sketch to synthesize nested queries in the SELECT clause.

They also proposed statement position code (SPC) to transform

nested SQL queries into non-nested SELECT clauses and to apply

sketch-based slot-filling decoding recursively on each statement.

With BERT as an encoder, their model RYANSQL achieved 58.2%

exact match accuracy on the Spider benchmark.

Unlike models built on WikiSQL, which deals with table

schema, Spider models need to handle table schema relations or

database schemas since the question-SQL pair represents multi-

table relations. Accordingly, the researchers began contextualizing

the dataset schema with the question to boost performance. As seen

in IRNet, th performance improved with schema linking. RAT-

SQL is a grammar-based model presented by Wang et al. (2019)

with an encoder that contextualizes the schema and the question

using a relation-aware self-attention mechanism. According to

their alignment and schema relations, RAT-SQL explicitly links

columns with corresponding question tokens, achieving logical

form accuracy of 57.2% on Spider and 65.6% when augmenting

with BERT. In BRIDGE, created by Lin et al. (2020), the relational

DB schema is represented as a tagged sequence concatenated to the

question. Using the database content, the model accesses the values

of the columns identified in the question and appends them to their

column names in the question. As a result, the input is a hybrid

question-schema serialization containing the question, followed by

the table name, column names, and column values. BRIDGE uses

BERT to shape dependencies in the serialization and two single-

layer LSTM encoders with a single LSTM-based pointer-generator

with attention for decoding. This allowed the model to exceed the

RAT-SQL by 1.9%.When applied toWikiSQL, BRIDGE was able to

achieve 86.5% with EG.

2.2.5 Text-to-SQL in healthcare domain
Despite WikiSQL and Spider being multi-domain benchmarks,

they lack sufficient suitable medical records. Therefore, Wang

et al. (2020) proposed the first dataset for healthcare named

MIMICSQL. It consists of five tables and 10,000 question-SQL

pairs of real-world medical information. The syntax for SQL

does not include nested queries, but includes multiple tables

connected by the JOIN operation. The pairs are divided into

template questions and natural language questions based on the

collection method: machine-generated (template questions) or

human-annotated. Along with the database, they released TREQS,

a translate-edit model operating in two stages. Stage one involves

translating a natural language question into SQL using a Seq2Seq
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TABLE 2 Summary of T5 model sizes.

T5 Model Model Size

Small 60 million parameters

Base 220 million parameters

Large 770 million parameters

3b 3 billion parameters

11b 11 billion parameters

model with attention, while stage two performs editing to the

generated SQL using a look-up table. The look-up table contains

the table’s names, columns and keywords of each column to recover

the exact information between the question and the schema. They

also proposed a technique to ensure query execution by retrieving

the condition values of the predicted SQL and matching them

against the dataset. As they introduced the model with their

dataset, their accuracy measurements were broken down based on

the question-SQL pairs. They achieved 85.3% and 92.4% logical

form accuracy and execution accuracy, respectively, for template

questions and 55.6% and 65.4% for human-annotated questions.

Pan et al. (2021) claimed that because TREQS is based on Seq2Seq,

it did not consider SQL’s intrinsic structure. To incorporate the

results of IRNET, they proposed a model named MedTS, which

applied schema linking and BERT as an encoder. MedTS adopts

a grammar-based LSTM decoding strategy with designed grammar

rules based on the MIMICSQL dataset. A logical form of 78.4% and

execution accuracies of 89.9% were obtained by MedTS.

2.3 Text-to-text transfer transformer (T5)

Raffel et al. (2020) conducted a large-scale survey on existing

transfer learning techniques in natural language processing, such

as ELMO created by Peters et al. (2018) and BERT created by

Devlin et al. (2019). After testing and refining several models

in NLP, they created a Text-to-Text Transfer Transformer (T5)

model built on insights from the survey. The T5 model is a pre-

trained language model that uses the complete encoder-decoder

architecture of the transformer (Vaswani et al., 2017). In addition,

T5 uses layer normalization to stabilize the hidden state and reduce

training time (Ba et al., 2016). It is a very large neural network

that takes the source sequence tokens all at once and relies on

self-attention alone to compute its source input and target output.

The T5 model was created as a unified framework covering all

NLP tasks, such as summarization and translation, by converting

every language problem into a text-to-text format. Unlike other

pre-trained models, this model takes the source sequence as input

and produces a target text string rather than word embedding.

The T5 model has various sizes depending on the number of

parameters used for building and training it, as summarized in

Table 2. The model was trained with two learning methodologies,

as follows:

• Unsupervised training, in which T5was trained on the colossal

clean crawled corpus (C4) created by Raffel et al. (2020). C4 is

a huge clean dataset of English text collected from the web for

pre-training the T5 model.

• Supervised training, in which T5 was fine-tuned for several

NLP tasks by training it with labeled data for each task. T5 was

pre-trained using the Adafactor optimizer created by Shazeer

and Stern (2018) and cross-entropy loss function. The loss

function is used to evaluate the model performance during

training by comparing the generated result with the expected

result to produce a loss value (Demirkaya et al., 2020). The

optimizer is an algorithm used to update themodel parameters

to reduce the loss value, such as inputs’ weight presenting the

impact of an input on the model output.

In Raffel et al.’s (2020) evaluation, the T5 model achieved

promising results on many NLP benchmarks and was shown to be

flexible for fine-tuning a variety of NLP problems. Its development

has shown that deep learning approaches are moving toward

reaching human-level accuracy in performing NLP tasks. Xie et al.

(2022) proposed a large-scale multi-task learning framework using

T5 and studied its performance in 21 NLP tasks, including Text-

to-SQL. On many SQL benchmarks, such as Spider and WikiSQL,

their study showed that the T5 model achieved near and above the

state-of-the-art performance of these benchmarks.

Inspired by Raffel et al. (2020), researchers have started

considering the T5 model to directly convert NLQ into SQL with

simpler architecture. Shaw et al. (2020) showed by experiment

that the T5 model without modification achieved promising results

compared to previous models on Spider. They proposed NQG-T5,

a hybrid model combining a grammar-based approach with the

T5 model, achieving competitive results with the state-of-the-art

model on the Spider dataset with a 70% exact match accuracy using

the T5-3b. In a study conducted by Scholak et al. (2021), the T5

model was fine-tuned on Spider and augmented with an additional

method called PICARD at decoding. PICARD was implemented to

guarantee semantically correct SQL by rejecting invalid tokens at

each decoding step. To match the generated SQL with the question,

PICARD uses the table schema when evaluating SQL tokens. They

concluded that the conversion was accelerated, and performance

was improved using the T5 model. Their T5+PICARD model

became the state-of-the-art on Spider with 71% exact match and

75% execution accuracy.

2.4 Summary

In summary, for improved accuracy, Text-to-SQL conversion

models are developed by deep learning with encoder-decoder

architecture. As pre-trained models were introduced, researchers

began focusing on employing transfer learning for Text-to-

SQL conversion, which led to near-human performance level.

Furthermore, using pre-trained models instead of building models

from scratch simplified the process of model development. Upon its

introduction, the Text-to-Text transfer transformer (T5) captured

the attention of researchers due to its encoder-decoder transformer

architecture and its multi-task training covering various NLP

tasks, such as summarization and question answering. Researchers

started fine-tuning the T5 model for Text-to-SQL conversion,
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which significantly improved the performance, making it state-

of-the-art. Table 3 presents a summary of the Text-to-SQL

models discussed in this review where ACCLF, ACCEX and EG

indicate logical form accuracy, execution accuracy, and execution-

guided, respectively.

Existing text-to-SQL models have not been fully embraced in

the healthcare domain. Wang et al. (2020) stated that Text-to-SQL

for EMRs was still under-explored. Based on literature review, only

MedTS and TRESQ were introduced to assist medical staff with

databases. Encouraged by previous success in the improvements of

Text-to-SQL with transfer learning of the T5 model, this research

aims to utilize transfer learning by fine-tuning the T5 model to

develop a Text-to-SQL conversion model on EMRs and evaluate its

performance. To the best of our knowledge, no existing work has

fine-tuned the T5 model in Text-to-SQL for the healthcare domain.

Furthermore, this study uses the WikiSQL dataset to benchmark

the intended model against other models, in which WikiSQL was

used, for performance comparison.

3 Research methodology

This research leverages the MIMICSQL dataset (Wang et al.,

2020), the first publicly available dataset designed for Text-to-

SQL tasks in the healthcare sector, to train and evaluate the

MedT5SQL model.

We adopted the Cross-Industry Standard Process for Data

Mining (CRISP-DM) methodology (Ncr and Clinton, 1999) to

guide our research process. CRISP-DM is a widely used, structured

approach for data mining projects, encompassing six key stages:

business understanding, data understanding, data preparation,

modeling, evaluation, and deployment (Marbán et al., 2009). This

methodology has been successfully applied in various domains,

including healthcare (Martínez-Plumed et al., 2021; Marshan et al.,

2021).

To implement the MedT5SQL model, we utilized the Python

programming language along with the PyTorch and HuggingFace

Transformers libraries (Paszke et al., 2019; Huggingface.co, 2022)

on the Google Colaboratory platform. Google Colab’s provided

GPU resources accelerated the computationally intensive deep

learning processes involved in model training and evaluation.

4 Data analysis and results

4.1 Clinical objectives definition (business
understanding)

The primary aim of this work is to generate an SQL query

from written questions in the healthcare domain by utilizing

natural language processing (NLP) through deep learning. The

review of the relevant literature has revealed that the current

state-of-the-art for Text-to-SQL conversion is to employ deep

learning approaches with encoder-decoder architecture to achieve

the required conversion.With the rise of the transformer’s encoder-

decoder architecture, various language conversion models were

developed to improve NLP tasks using the transformer’s encoder.

They present large neural networks operating under a pre-train-fine

tune paradigm where they are pre-trained over a large text corpus

for a generic task, such as understanding a language, and then

fine-tune on specific downstream tasks, such as summarization.

Pre-training and fine-tuning these models facilitate leveraging

transfer learning to improve the accuracy of various NLP tasks,

including Text-to-SQL.

Throughout the literature review, it was observed that with the

growth of transfer learning through pre-trained language models,

deep learning has achieved promising results in this field (Guo et al.,

2019; Hwang et al., 2019; Lyu et al., 2020; Choi et al., 2021; Pan et al.,

2021). To get the most out of the transformer’s encoder-decoder

architecture and explore the limits of transfer learning, Raffel et al.

(2020) built the Text-to-Text transfer transformer (T5) model as

a unified large language model for all NLP tasks. The T5 model

operates as an encoder-decoder with position encoding, attention

mechanism, and self-attention for modeling all source tokens at

once while understanding each token based on the context of the

words around it. In Text-to-SQL conversion, Shaw et al. (2020)

showed that the T5 model is able to learn Text-to-SQL conversion

and operate with promising results. Encouraged by this work,

research has been conducted presenting significant improvements

in both WikiSQL and Spider benchmarks (Scholak et al., 2021; Xie

et al., 2022). Despite the wealth of research in the field of Text-

to-SQL, however, only two studies have been conducted focusing

on the healthcare domain, proposing TREQS and MedTS models

(Wang et al., 2020; Pan et al., 2021). TREQS is an original model

developed entirely by Wang, Shi and Reddy, and MedTS benefits

from transfer learning using a pre-trained model encoder, allowing

it to outperform TREQS.

Considering the findings from the literature review, this study

utilizes deep learning for Text-to-SQL conversion in the healthcare

domain to develop a Text-to-SQL model named MedT5SQL

employing transfer learning of the T5 transformer model. To

the best of our knowledge, this work establishes the first model

employing T5 in the healthcare Text-to-SQL conversion. This work

focuses on using supervised deep learning to train the model on

a healthcare-related dataset to achieve high conversion accuracy.

Furthermore, MedT5SQL is benchmarked on WikiSQL dataset to

evaluate its performance between the two datasets.

4.2 EMR data exploration (data
understanding)

In this research we use MIMICSQL dataset that is created by

Wang et al. (2020), to train and evaluate the MedT5SQL model.

MIMICSQL is the first dataset created for Text-to-SQL tasks in the

healthcare field. It is a large-scale dataset with 10,000 question-

SQL pairs collected based on the Medical Information Mart for

Intensive Care III (MIMIC III) dataset (Johnson et al., 2016).

The medical information from MIMIC III was grouped into five

tables for MIMICSQL as: demographics (Demo), laboratory tests

(Lab), diagnosis (Diag), procedures (Pro) and prescriptions (Pres)

(See Table 4 for information regarding MIMICSQL dataset). The

question-SQL pairs were carefully constructed based on these
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TABLE 3 Summary of text-to-SQL model.

Research Model specs

DL approach Domain Performance Transfer learning
(Yes/No)

Opportunity

Seq2SQL

(Zhong et al., 2017)

Seq2Seq Single ACCLF: 48.3%

ACCEX: 59.4%

No The first model on WikiSQL

SQLNet

(Xu et al., 2017)

Sequence-to-set sketch-based Single ACCEX: 68.0% No Avoid the “Order-Matter

TYPESQL

(Yu et al., 2018c)

Sequence-to-set sketch-based Single ACCEX: 73.5% No Improving SQLNet

SQLova

(Hwang et al., 2019)

Sequence-to-set Single ACCLF: 80.7%

ACCEX: 86.2%

–with EG—

ACCLF: 83.6%

ACCEX: 89.6%

Yes

(BERT)

Utilize BERT in Text-to-SQL

X-SQL

(He et al., 2019)

Sequence-to-set Single ACCLF: 83.3%

ACCEX: 88.7%

–with EG—

ACCLF: 86.0%

ACCEX: 91.8%

Yes

(MT-DNN)

Utilize MT-DNN in

Text-to-SQL

Hydranet

(Lyu et al., 2020)

Pre-trained language model Single –with EG–

ACCLF: 86.0%

ACCEX: 91.8%

Yes

(BERT)

BERT alone as encoder

–with EG–

ACCLF: 86.5%

ACCEX: 92.2%

Yes

(RoBERTa)

RoBERTa alone as encoder

SyntaxSQLNet

(Yu et al., 2018b)

Sequence-to-set

grammar-based

Cross-domain ACCLF: 27.2% No First Model on Spider

RCSQL

Lee (2019)

Sequence-to-set self-attention

mechanism

Cross-domain ACCLF: 28.8% No clause-wise SQL decoding

with attention mechanism

IRNet

(Guo et al., 2019)

Sequence-to-setgrammar-

based

Cross-domain –without BERT—

ACCLF: 46.7%

–with BERT—

ACCLF: 54.7%

Yes

(BERT)

Handle out-of-domain words

in columns prediction+

schema linking

RYANSQL

(Choi et al., 2021)

Pre-trained language model Cross-domain ACCLF: 58.2% Yes

(BERT)

Handle nested SELECT clause

+BERT as encoder

RAT-SQL

(Wang et al., 2019)

Grammar-based with

Pre-trained language model

Cross-domain –without BERT—

ACCLF: 57.2%

–with BERT—

ACCLF: 65.6%

Yes

(BERT)

propose relation-aware

self-attention mechanism

BRIDGE

(Lin et al., 2020)

Pre-trained language model Single+

cross-domain

–on Spider–

ACCLF: 67.5%

–on WikiSQL–

ACCLF: 91.9%

Yes

(BERT)

hybrid question-schema

serialization

TREQS

(Wang et al., 2020)

Seq2Seq healthcare ACCLF: 55.6%

ACCEX: 65.4%

No First Healthcare Domain

Text-to-SQL model

MedTS

(Pan et al., 2021)

Grammar-based with

pre-trained language model

healthcare ACCLF: 78.4%

ACCEX: 89.9%

Yes

(BERT)

Introduce transfer learning to

healthcare domain

NQG-T5

(Shaw et al., 2020)

Transformer Cross-domain

(In this work, the

focus is on Spider)

On Spider

development set:

-Using T5-base-

ACCLF: 57.1%

-Using T5-3b-

ACCLF: 70%

Yes

(T5)

First grammar-based

approach with T5 on Spider

PICARD

(Scholak et al., 2021)

Transformer Cross-domain ACCLF: 71%

ACCEX: 75%

Yes

(T5)

Fine-tune T5 on Spider and

introduce PICARD for

semantically correct SQL

UnifiedSKG

(Xie et al., 2022)

Transformer Single

(In this work, the

focus is on

WikiSQL)

-Using T5-base-

ACCLF: 82.63%

-Using T5-3b-

ACCLF: 85.96%

Yes

(T5)

Benchmarking T5 on

Text-to-SQL

ACCLF, ACCEX, and ACCASM indicate the logical form accuracy, the execution accuracy, and approximate string-matching respectively.

EG stands for Execution guided.
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TABLE 4 Statistical summary of MIMICSQL dataset.

Data Stats

Number of patients 46,520

Number of tables 5

Number of columns per table Demo: 23, Diag: 5, Pro: 5, Pres: 7, and

Lab: 9

Number of question-SQL pairs 10,000

Average template question length

(in words)

18.39

Average natural language question

length (in words)

16.45

Average SQL query length 21.14

tables. The pairs include questions to retrieve patient information

directly from the database and reasoning questions to collect

patient information from multiple tables. The pairs are divided

into template questions (machine-generated) and natural language

questions (human-annotated).

The general structure of the SQL queries adopted in

MIMICSQL is shown in Figure 5 and described as following:

• The SELECT clause allows multiple columns.

• The aggregation operators (AGG_OP) vary between NULL,

MAX, MIN, COUNT and AVG.

• The column headers in the tables represent the question

topic; therefore, AGG_COLUMN holds the question topic to

retrieve the required information.

• The queries either retrieve the data from a single table or a new

table generated from joining multiple tables through INNER

JOIN by a condition.

• WHERE clause allows for one or multiple conditions.

• Only five condition operations (COND_OP) are considered in

MIMICSQL, including=, >, <, >= and <=.

The WikiSQL dataset is used to benchmark MedT5SQL against

other models that have usedWikiSQL. This dataset contains 80,654

question-SQL pairs and it is larger than MIMICSQL with similar

SQL structure.

4.3 Data acquisition and pre-processing

4.3.1 Data acquisition
MIMICSQL was downloaded from Wang and Shi’s (2020)

repository onGitHub. They uploadedMIMICSQL in three separate

files as data partitioning of the dataset, in the ratio of 0.8:0.1:0.1

for training, validation and test sets, respectively. In this work, we

adopt the same data partitioning, using 8,000 pairs for training,

1,000 pairs for validation, and 1,000 pairs for testing theMedT5SQL

model. The sets were stored on GitHub in the form of JSON

files, and we extracted them into Pandas dataframes for easier

manipulation. Similarly, WikiSQL is partitioned into three sets

collected from the Hugging Face dataset library.

4.3.2 Feature selection
The features relevant to this research in MIMICSQL dataset

are (question_refine) and (sql), which represent the question-SQL

pairs. Therefore, they were extracted for the training, validation

and test datasets used in this research. The (question_refine)

presents the (source_text) for the model, while (sql) presents

the (target_text). In WikiSQL dataset, the question-SQL pairs are

presented by (question) and (sql) features, renamed (source_text)

and (target_text). However, this (target_text) was found to be a

dictionary object where its entry (human_readable) presents the

text form of the SQL, and thus, the SQL was extracted to form

the (target_text).

4.3.3 Handling missing and duplicate records
The datasets are inspected for missing data or duplicate pairs.

In addition, the structure of the question-SQL pairs was inspected

by checking random records to detect irrelevant records. No

issues were identified in MIMICSQL, while WikiSQL had 189

duplicate pairs in the training set, 42 in the test set, and 29 in the

validation set. These pairs were deleted before feeding the model

with the data for the purpose of maintaining accuracy and avoiding

biased performance.

4.3.4 Tokenization
Prior to fine-tuning the T5 model, the source and target

sequences were tokenized by splitting each text into its list of

tokens (words) to understand the context. For the testing process,

only the source text was tokenized before using it to generate

the equivalent SQL query for model evaluation. A pre-trained

T5Tokenizer from the T5ForConditionalGeneration module in

the Hugging Face transformer package was used in this step.

After number of experiments, the maximum number of tokens

we were able to use for the source and target texts and train

the MedT5SQL model are 150 tokens (original question) and 256

tokens (SQL Query), respectively. The pre-trained tokenizer not

only splits the text into tokens but also converts the tokens into

numeric representations to prepare the data before feeding it to

the transformer-based deep neural model (Marshan et al., 2023).

The tokenizer also adds padding tokens, which are used to fill the

source and target text with extra tokens to standardize the number

of tokens in each as required by deep neural models. Padding

tokens also include guidance tokens that indicate the start and end

of each text. As a result, the tokenizer results in “input_ids” and

“attention_masks” fields, where the “input_ids” presents the list of

tokens’ IDs given to the model and “attention_masks” is a value of

0 or 1 mapped to each token, enabling the model to ignore padding

tokens: 0=masked/ignore and 1= not masked.

4.3.5 Data loader
In order to accelerate the training, validation and testing

processes, PyTorch DataLoader was used to create data loaders for

the tokenized datasets. Data loaders make it easier to manage the

data and simplify the deep learning pipeline. They navigate the

dataset by synchronously loading multiple batches of data using

background processes called workers. Batches present the number
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FIGURE 5

MIMICSQL SQL query structure.

of data samples run by the model in each training, validation, or

test epoch. An epoch presents a complete pass of the whole dataset

through the model. Following the work done by Pan et al. (2021)

on MIMICSQL dataset, we used eight data samples per batch. The

number of workers is set to four to allow faster data loading. To

make the model more robust and avoid overfitting, shuffling was

enabled for the training data loader to shuffle the data in every

training epoch.

4.4 Modeling: developing the MedT5SQL
model

Shaw et al. (2020) and Scholak et al. (2021) have showed that

a pre-trained T5 model, especially the T5-base and T5-3b models

have shown promising results as the current state-of-the-art for

Text-to-SQL conversion. Motivated by these papers, this study

developed the MedT5SQL model as a fine-tuned T5 model for

text-to-SQL conversion in the healthcare domain. The MedT5SQL

model went through several iterations until the successful model

was achieved, as explained below. However, they all used the same

model configurations.

4.4.1 Model configuration and development
environment

This study uses the T5ForConditionalGenerationmodule in the

huggingface package to load the pre-trained T5-base model with its

weights and operative configurations for fine-tuning. A list of the

most important configurations related to the T5 architecture can

be found in Table 5.

MedT5SQL is trained on the Tesla P100 GPU from NVIDIA

Corp offered by Google Colab and we used the parameters settings

presented in Table 6. MedT5SQL sets the training and validation

batch sizes to 8, similar to Pan et al. (2021) on MIMICSQL and the

learning rate to 1e-4 as used by Shaw et al. (2020) and Scholak et al.

(2021) for fine-tuning T5. TheMedT5SQLmodel was trained using

three different Epochs numbers 10, 15, 20, 50 and 100 to study its

effect on the model performance. The validation was done using 15

epochs. The remaining parameters follow Pytorch-lightning (2022).

4.4.2 MedT5SQL model
Initially, we attempted to fine-tune the Hugging Face T5-

base model directly using PyTorch. However, despite successful

training, the model failed to generalize to the Text-to-SQL task

during testing, simply reproducing the input question instead of

generating the corresponding SQL query. This indicated that the

TABLE 5 T5-base configurations from hugging face transformers

package.

Configuration Description Value

vocab_size The number of different

tokens represented by

‘inputs_ids’ passed to the

model

32,128

d_model Encoder layers and the pooler

layer size

768

num_layers Number of encoder’s hidden

layers

12

feed_forward_proj The activation function in the

encoder

Relu

num_decoder_layers Number of decoder’s hidden

layers

12

dropout_rate Dropout rate for

regularization

0.1

transformers_version The version of transformers

package

4.20.1

num_beams Transformers use greedy

decoding to select tokens with

the highest probability

4

early_stopping Use early stopping for

regularization

True

model had not adequately learned the translation task, likely due to

insufficient task-specific guidance during fine-tuning.

To address this, we incorporated a task-specific prefix

(“translate English to SQL”) into the input sequence. This prefix acts

as an explicit instruction to the model, prompting it to interpret

the input as a Text-to-SQL translation problem. Additionally,

we modified the T5-base model’s configuration file to include

parameters that reinforce the desired task (see Figure 6). These

modifications guided the model’s learning process and significantly

improved its ability to generate correct SQL queries in response to

natural language questions.

Nonetheless, training the T5 model with the new configuration

file prevented it from using the weights of the pre-trained T5-

base, and thus, the model functioned as a new model and not as

a transfer learning of the T5 model, and with 8,000 training data,

it achieved poor accuracy of <1% despite changing parameters,

including training epochs, the optimizer, and the learning rate.

Thus, as alluded to by Raffel et al. (2020) it is concluded that the

T5 model should be able to understand the translation task without

specifying the prefix.

To ensure that all the proper fine-tuning steps are performed,

we developed the MedT5SQL model by utilizing the PyTorch
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TABLE 6 MedT5SQL model configurations.

Parameter Value

MODEL t5-3b

TRAIN_BATCH_SIZE 8

VALID_BATCH_SIZE 8

TRAIN_EPOCHS 10, 15, 20, 50 and 100

VAL_EPOCHS 15

LEARNING_RATE 1e-4

MAX_SOURCE_TEXT_LENGTH 150

MAX_TARGET_TEXT_LENGTH 256

SEED 42

adam_epsilon 1e-8

weight_decay 0.0

n_gpu 1

gradient_accumulation_steps 16

warmup_steps 0

fp_16 False

output_dir “/content/drive/MyDrive/MedT5SQL”

opt_level apex

max_grad_norm 1.0

FIGURE 6

Modification on T5-base configuration model.

Lightning framework (Lightning, 2022), which organizes and

facilitates the process of building a model by abstracting the details

of the training. It has a good Graphics Processing Unit (GPU)

utilization and makes deep learning models flexible and easier to

reproduce (Sawarkar, 2022). Using the Lightning Framework to

build and train deep learning models requires the configuration

of a LightningModule and Trainer parameters. LightningModule

is used to structure the intended module to specify its behavior

with each batch of training and validation data. Trainer uses the

LightningModule with a specified dataset to automate the training

and validation processes for the intended module.

4.4.3 Lightning module configuration
In more details, to fine-tune the T5-base model using

the Lightning Framework, MedT5SQL uses LightningModule to

structure its implementation into four sections: initialization,

training loop, validation loop and optimizer configuration

(Pytorch-lightning, 2022). The LightningModule contains a

function for each section to easily adopt any deep learning model

to automate the training and validation loops with all the required

components, such as epochs and optimizers. Overriding each of

its functions allows MedT5SQL to specify its behavior in the

training and validation to fine-tune the T5 model as required. The

LightningModule for MedT5SQL was created and initialized given

the model parameters listed in Table 6 and shown in Figure A1 in

the Supplementary material.

4.4.4 Training loop configuration
To activate the training loop of Lightning Framework

for the fine-tuned T5-base model, MedT5SQL overrides the

training functions of the LightningModule: training_step

and training_epoch_end, as shown in Figure A2 in the

Supplementary material. This loop is performed on the training

dataset, loaded as batches by the data loader, to fine-tune the T5

model and obtains the training loss value using the training_step

and _step functions as displayed in Figures A2, A3 in the

Supplementary material. In T5 training, the T5 model’s encoder

uses the source tokens’ IDs and masked values as input, while

the decoder takes the encoder’s output along with the target

tokens’ IDs (labels) to compute the training loss. The T5 model

uses the cross-entropy loss function to compute the loss value

required to modify the model’s parameters during training (Raffel

et al., 2020). The function training_epoch_end returns the average

loss value of each training epoch. Lower loss values indicate a

well-trained model.

4.4.5 Validation loop configuration
To activate the validation loop of the Lightning Framework,

MedT5SQL overrides the validation functions of LightningModule,

as presented in Figure A4 in the Supplementary material. This

loop uses the validation dataset, loaded as batches by the data

loader, in the method _step to validate the model and obtain the

validation loss (see Figure A3 in the Supplementary material). The

_step method allows the model to generate the target text using

the source text and evaluate the performance by comparing the

generated query against the expected query and calculate the loss

value. The function validation_epoch_end returns the average loss

value of each validation epoch.

4.4.6 Optimizer configuration
MedT5SQL is trained using Adafactor optimizer, the same

optimizer used to pre-train the T5 model by Raffel et al. (2020)
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and other Text-to-SQL models built using the T5 model (Shaw

et al., 2020; Scholak et al., 2021). The optimizer configuration is

shown in Figure A5 in the Supplementary material. Moreover, we

used AdamW optimizer, created by Loshchilov and Hutter (2017)

to compare its performance against that of Adafactor (see Figure A6

in the Supplementary material).

4.4.7 Trainer configuration
To develop MedT5SQL, PyTorch Lightning Trainer we

automate the training and validation loops as presented in

Figure A7 in the Supplementary material. The trainer was first

created with the required arguments for the training process,

such as the number of epochs, and was then given an object

of MedT5SQL LightningModule class that contained the training

and validation DataLoaders and loops. The developed MedT5SQL

model presents a structured version of the first model we have

developed using the Lightning framework, yet, without the use of

a task-specific prefix, since the fine-tuning process was performed

and organized successfully by the Lightning Framework.

4.5 Evaluation

To evaluate MedT5SQL model performance, the test dataset

was used to assess the model on unseen data. The source text was

tokenized and loaded in a DataLoader to feed MedT5SQL with

natural language questions to generate equivalent SQL queries,

as seen in Figure A8 in the Supplementary material. To generate

the target text given the source text, the function “generate()”

from the module T5ForConditionalGeneration is used. At the

end, the tokenizer decodes the generated tokens into string

form to output the SQL query sequence. This generated query

was evaluated against the test dataset’s target text to measure

MedT5SQL performance.

MedT5SQL’s performance was evaluated using logical form

accuracy, known as exact match, and manual evaluation, in line

with previous papers (Hwang et al., 2019; Wang et al., 2020; Pan

et al., 2021). Additionally, we used approximate string matching

to evaluate how close the MedT5SQL predicted query is to the

expected query. The performance evaluation for MedT5SQL is

presented in Figure A9 in the Supplementary material.

The manual evaluation was conducted by an independent

reviewer with expertise in the medical domain. The reviewer was

presented with a random sample of generated SQL queries paired

with their corresponding expected queries from the test dataset.

They assessed each generated query’s correctness based on the

following criteria:

• Correctness: Does the generated query accurately reflect the

intended meaning and structure of the expected query?

• Completeness:Does the generated query include all necessary

clauses and conditions?

• Syntax: Is the generated query syntactically valid?

• Functional Equivalence: If there are minor differences, does

the generated query produce the same result as the expected

query when executed on the database?

The reviewer assigned a score of “correct,” “partially correct,” or

“incorrect” to each query. The manual evaluation score reported in

our results represents the percentage of queries deemed “correct.”

A breakdown of logical form accuracy was performed on

each SQL clause for further inspection. Figure A10 in the

Supplementary material presents the evaluation process for the

SELECT clause. MedT5SQL performance was evaluated in terms of

the number of training epochs, as well as the optimizers, AdamW

and Adafactor. It was also benchmarked against MIMICSQL and

WikiSQL to examine its performance on different datasets.

5 Results and discussion

In this research, a Text-to-SQL conversion model named

MedT5SQL was developed as the first fine-tuned T5-base model

in the healthcare domain. The model was developed using

MIMICSQL, a healthcare Text-to-SQL dataset. This section

discusses the results of model evaluation and outlines its findings.

5.1 Performance evaluation on di�erent
training epochs and di�erent optimizers

To understand the contribution of the number of training

epochs to the performance of the model, MedT5SQL was trained

on three different numbers of epochs: 10, 15, 20, 50 and 100.

The performance was evaluated through accuracy measurement

by comparing the generated SQL query against the expected SQL

query using the test dataset (Hwang et al., 2019; Wang et al.,

2020; Pan et al., 2021). The results are presented in Table 7, which

shows that the accuracy measurements of MedT5SQL performance

increased with the increasing number of training epochs.

To select the most efficient optimizer, the MedT5SQL model

was developed using two different optimizers, Adafactor and

AdamW, one at a time, and their performance was compared,

as presented in Table 7. According to the analysis, Adafactor was

more efficient for MedT5SQL, since it allowed the model to achieve

higher accuracy compared to AdamW. Only when trained on 10

epochs did the model achieve 97.455% ACCASM with AdamW,

compared to 97.369% with Adafactor. Nevertheless, it is worth

noting that ACCLF dropped by 0.2% when trained with AdamW

on 20 epochs, compared to 15 epochs which could be a result of

overfitting. ACCLF rose by 0.5 under the same conditions using

Adafactor. In general, Adafactor elevated MedT5SQL performance

by 0.1–2% ACCLF, 0.3% ACCASM and 5% ACCmanual, compared

to AdamW. MedT5SQL achieved its highest accuracy of 80.1%

ACCLF, 98.937% ACCASM, and 90% ACCmanual when trained using

Adafactor on 100 epochs. The values of ACCASM were extremely

high, indicating the high similarities between the generated and

the expected queries. Therefore, a breakdown evaluation was

conducted on the SQL clauses to understand the reasons behind

the differences between the ACCLF and ACCASM values.

5.2 Performance on each SQL clause

To further analyse the generated SQL and investigate ACCASM

values, we calculate the logical form accuracy (ACCLF) for each
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TABLE 7 MedT5SQL performance evaluation using di�erent parameter.

# Training Epoc AdamW Optimizer Adafactor Optimizer

ACCLF ACCASM ACCManual ACCLF ACCASM ACCManual

10 epochs 57.9 % 97.455% 60%, 12 out of 20 58% 97.369% 65%, 13 out of 20

15 epochs 61.3% 97.716% 65%, 13 out of 20 62.6% 98.054% 75%, 15 out of 20

20 epochs 61.1% 97.81% 75%, 15 out of 20 63.1% 98.1% 80%, 16 out of 20

50 epochs 63.2% 97.926% 80%, 16 out of 20 68.9% 98.572% 85%, 17 out of 20

100 epochs 66.7% 98.016% 90%, 18 out of 20 80.63% 98.937% 90%, 18 out of 20

ACCLF , logical form accuracy by exact string matching; ACCASM , approximate string-matching accuracy. ACCmanual , manual evaluation derived by randomly examining 20 generated

SQL queries.

clause and shows the results in Table 8. The results confirm that

Adafactor is more efficient for the MedT5SQL model. On the

best performance, the exact match between the generated and

expected queries was 96.8% and 97.01% for the SELECT and FROM

clauses, respectively, while achieving 68.6% on theWHERE clause,

which indicates that the model suffers mostly when generating the

WHERE clause.

As shown in Table 9, the reason for this is related to the

condition’s value and operator as found by the manual evaluation.

This was also demonstrated by Pan et al.’s (2021) evaluation of

the accuracy of each component of the SQL query using multiple

models, which confirmed that the condition’s operation and values

had lower accuracy than other components.

Furthermore, the manual evaluation showed that the reasons

behind the failed 3.2% ACC(SELECT) and 2.9% ACC(FROM) are

related to column names and aggregators in the SELECT clause and

the INNER JOIN or table names in the FROM clause as it can be

noticed in Table 10. It was noted that a false INNER JOIN results in

incorrectWHERE conditions.

5.3 Benchmarking MedT5SQL on two
datasets

Based on findings from past research, MedT5SQL on

MIMICSQL was developed using the Adafactor optimizer.

MedT5SQL was benchmarked on the WikiSQL dataset, explained

in Section 2.1, to compare the performance on different

types of questions. Table 11 presents a performance comparison

between MedT5SQL developed using WikiSQL and MedT5SQL

developed using MIMICSQL. It was found that the MedT5SQL

model performed better when fine-tuned on MIMICSQL. Using

MIMICSQL, ACCLF achieved 58% and 62.6% when trained on

10 and 15 epochs, respectively, compared to 43.63% and 44.2%

when using WikiSQL on the same number of epochs. Similarly, the

ACCASM values obtained using MIMICSQL were 3.2–3.7% higher

than those attained using WikiSQL.

The difference in size between the datasets could be a

contributing factor to this difference in performance. MIMICSQL

has 8,000 question-SQL pairs for training and 1000 pairs for

validation, while WikiSQL has 56,166 pairs for training and 8,392

for validation. Therefore, WikiSQL may need more training epochs

to achieve better accuracies. However, benchmarking MedT5SQL

on WikiSQL required longer execution time due to its enormous

size, as shown in Table 11. For 20, 50 and 100 training epochs,

the MedT5SQL did not run when it is trained on WikiSQL

due to resource limitations, as Google Colab kept crashing when

using the WikiSQL dataset on more than 15 epochs due to GPU

memory shortage.

OnWikiSQL, Xie et al.’s (2022) logical form accuracy evaluation

of the UnifiedSKG model, baselined on T5-base, was shown

to be 82.63% when trained on epochs between 50 and 200.

In this work, WikiSQL achieved 43.63% on 10 epochs and

44.2% on 15 epochs. With sufficient resources, MedT5SQL may

achieve equivalent results to UnifiedSKG. OnMIMICSQL, Table 12

presents a comparison of the logical form accuracy between the

developed model MedT5SQL and MedTS, the state-of-the-art

model of MIMICSQL proposed by Pan et al. (2021). MedT5SQL

outperforms MedTS knowing that it relies entirely on transfer

learning, which offers a simpler architecture. According to Scholak

et al. (2021) and Shaw et al. (2020), however, using T5-3b

instead of T5-base, which we used in this research, can further

improve the performance by around 13.5%. In this project, our

attempt to create MedT5SQL by refining the T5-3b model was

unsuccessful. The experiment faced challenges due to limitations

in resources, specifically when the GPU exhausted its memory

while processing the T5-3b model. This setback can be attributed

to the substantial size of the T5-3b model, which comprises 3

billion parameters, in contrast to the 220 million parameters in the

T5-base model.

Recent advancements in Text-to-SQL models have shown

significant promise in improving the accuracy and efficiency of

natural language interfaces for databases. In particular, models like

ChatGPT (Liu et al., 2023), RASAT (Qi et al., 2022), and RESDSQL

(Li et al., 2023) have reported impressive performance on various

benchmark datasets. These models leverage large-scale pre-training

and fine-tuning techniques, often employing transformers-based

architectures, to achieve state-of-the-art results. However, their

performance on healthcare-specific tasks and datasets remains

less explored.

In the context of healthcare Text-to-SQL, the TREQS method

proposed by Wang et al. (2020) stands out due to its reported 85%

accuracy on the MIMICSQL dataset. While this accuracy is higher

than that achieved by ourMedT5SQLmodel, it is important to note

that TREQS employs a rule-based approach with domain-specific

templates, which may limit its generalizability to new datasets or

query types. In contrast, our MedT5SQL model, based on the T5

Frontiers in BigData 15 frontiersin.org176

https://doi.org/10.3389/fdata.2024.1371680
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Marshan et al. 10.3389/fdata.2024.1371680

TABLE 8 Break down logical form accuracy (ACCLF) of MedT5SQL.

# Training Epoc AdamW Optimizer Adafactor Optimizer

ACC
(SELECT)

ACC
(FROM)

ACC
(WHERE)

ACC
(SELECT)

ACC
(FROM)

ACC
(WHERE)

10 epochs 93.6 % 95.1% 63.2% 90.2% 95.9% 64.2%

15 epochs 95.4% 95.4% 64.9% 95% 96.2% 66.4%

20 epochs 93.1% 96.1% 65.5% 95.4% 96.6% 66.2%

50 epochs 93.9% 97.03% 67.9% 96.1% 96.8% 67.6%

100 epochs 94.8% 97.53% 72.1% 96.8% 97.01% 68.6%

Bold values highlight the best performance of the model.

TABLE 9 Manual evaluation of MedT5SQL with Adafactor on 20 Epoch.

Generated SQL query Expected SQL query

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”) FROM DEMOGRAPHIC

INNER JOIN LAB on DEMOGRAPHIC.HADM_ID=

LAB.HADM_ID

WHERE DEMOGRAPHIC.”AGE“ ”30“ AND LAB.”FLAG“=

”abnormal“

SELECT COUNT (DISTINCT

DEMOGRAPHIC.”SUBJECT_ID”) FROM DEMOGRAPHIC

INNER JOIN LAB on DEMOGRAPHIC.HADM_ID

= LAB.HADM_IDWHERE DEMOGRAPHIC.“AGE” < “30”

AND LAB.“FLAG”= “abnormal”

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”)

FROM DEMOGRAPHIC INNER JOIN PRESCRIPTIONS on

DEMOGRAPHIC.HADM_ID= PRESCRIPTIONS.HADM_ID

WHERE PRESCRIPTIONS.”DRUG“= ”Capso Fungin“

SELECT COUNT

(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHIC INNER JOIN PRESCRIPTIONS on

DEMOGRAPHIC.HADM_ID= PRESCRIPTIONS.HADM_ID

WHERE PRESCRIPTIONS.“DRUG”= “Caspofungin”

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”)

FROM DEMOGRAPHIC INNER JOIN LAB on

DEMOGRAPHIC.HADM_ID= LAB.HADM_ID

WHERE DEMOGRAPHIC.”DOB_YEAR“ ”2170“ AND

LAB.”LABEL“= ”Other Cells“

SELECT COUNT

(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHIC INNER JOIN LAB on

DEMOGRAPHIC.HADM_ID= LAB.HADM_IDWHERE

DEMOGRAPHIC.“DOB_YEAR” < “2170” AND LAB.“LABEL”

= “Other Cells”

large language model, offers greater flexibility and potential for

adaptation to different healthcare contexts.

5.4 Limitations and future work

An accurate Text-to-SQL conversion model (MedT5SQL) is

successfully developed for the healthcare domain, with a promising

performance of 80.63% using transfer learning of the T5-base

model. We argue that employing a larger T5 variant such as T5-

3B model may yield improved performance due to their increased

capacity. Also, using higher number of epochs would result in

superior performance compared to existing models. In this study,

we opted for the T5-base model due to resource constraints. Also,

our research aimed to establish the feasibility and effectiveness of

fine-tuning the T5 architecture for the specific task of Text-to-SQL

conversion in the healthcare domain.We viewed the T5-basemodel

as a suitable starting point for this initial exploration, allowing us

to assess the potential of this approach before committing to the

resource-intensive fine-tuning of the T5-3B model. Additionally,

leveraging transfer learning by pre-training themodel on larger and

more diverse datasets beyond MIMICSQL could further enhance

its ability to generalize to a wider range of healthcare queries.

In addition, incorporating domain-specific knowledge into the

model’s architecture or training process could be a promising

direction. This could involve incorporating medical ontologies,

semantic representations, or rules-based components to guide the

model’s understanding and generation of healthcare-related SQL

queries. Furthermore, while we focused on question-SQL pairs in

this study, future work could explore the model’s ability to handle

a wider range of SQL queries, including complex queries with

multiple clauses and conditions. Expanding the scope of supported

queries would make the MedT5SQLmodel even more versatile and

valuable for real-world healthcare applications.

Our research acknowledges the dynamic nature of large

language model (LLM) development. While the T5model served as

an effective foundation for our study, we recognize that its relative

performance may have evolved since our initial experiments,

potentially impacting its standing among other state-of-the-art

models. In this work, our primary objective was to investigate

the potential of fine-tuning the T5 model for the specific domain

of healthcare. This targeted approach allowed us to thoroughly

explore the unique challenges and opportunities presented by this

domain, revealing insights that may not be as readily apparent in

broader, comparative studies. We believe that this deep dive into

domain-specific fine-tuning holds considerable value, regardless of

the T5 model’s shifting position in the broader LLM landscape.

While a direct comparison of our fine-tuned T5 model with

other state-of-the-art, fine-tuned LLMs would undoubtedly offer

valuable insights, such an undertaking was beyond the scope of this
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TABLE 10 Evaluation of the SELECT and FROM clauses for MedT5SQL with Adafactor on 20 Epoch.

Generated SQL query Expected SQL query Argument

SELECT MAX (DEMOGRAPHIC.“AGE”)

FROM DEMOGRAPHICWHERE

DEMOGRAPHIC.”MARITAL_STATUS“ =

”MARRIED“ AND

DEMOGRAPHIC.”DOB_YEAR“ > ”2064“

SELECT COUNT (DISTINCT

DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHICWHERE

DEMOGRAPHIC.“MARITAL_STATUS” = “MARRIED”

AND DEMOGRAPHIC.“DOB_YEAR” < “2064”

Failed SELECT clause:

Incorrect aggregator and column name

Failed WHERE clause:

Incorrect operator

SELECT AVG (DEMOGRAPHIC.“AGE”)

FROM DEMOGRAPHIC

WHERE DEMOGRAPHIC.”ETHNICITY“=

”WHITE“ AND DEMOGRAPHIC.”DIAGNOSIS“

= ”BRADYCARDIA“

SELECT COUNT (DISTINCT

DEMOGRAPHIC.”SUBJECT_ID”)

FROM DEMOGRAPHICWHERE

DEMOGRAPHIC.“ETHNICITY”= “WHITE” AND

DEMOGRAPHIC.“DIAGNOSIS”= “BRADYCARDIA”

Failed SELECT clause:

Incorrect aggregator and column name

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”)

FROM DEMOGRAPHIC

WHERE DEMOGRAPHIC.”DIAGNOSIS“=

”ACIDOSIS“ AND

DEMOGRAPHIC.”DAYS_STAY“ > ”7“

SELECT COUNT

(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHIC INNER JOIN DIAGNOSES on

DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID

WHERE DEMOGRAPHIC.“DAYS_STAY” > “7” AND

DIAGNOSES.“SHORT_TITLE”= “Acidosis”

Failed FROM clause:

Unidentified INNER JOIN

Failed WHERE clause:

Incorrect WHERE condition

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”)

FROM DEMOGRAPHIC

WHERE DEMOGRAPHIC.”DIAGNOSIS“=

”SYNCOPE; COLLABORATION“ AND

DEMOGRAPHIC.”ADMITYEAR“ ”2145“

SELECT COUNT

(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHIC INNER JOIN DIAGNOSES on

DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID

WHERE DEMOGRAPHIC.“ADMITYEAR” < “2145” AND

DIAGNOSES.“SHORT_TITLE”= “Syncope and collapse”

Failed FROM clause:

Unidentified INNER JOIN

Failed WHERE clause:

Incorrect WHERE condition and

operator

SELECT DEMOGRAPHIC.“DIAGNOSIS”,

PROCEDURES.”SHORT_TITLE“

FROM DEMOGRAPHIC INNER JOIN

PROCEDURES on DEMOGRAPHIC.HADM_ID

= PROCEDURES.HADM_ID

WHERE DEMOGRAPHIC.”NAME“= ”Bruce

Harris“

SELECT

DEMOGRAPHIC.”DIAGNOSIS”, DIAGNOSES.“ICD9_CODE”

FROM DEMOGRAPHIC INNER JOIN DIAGNOSES on

DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID

WHERE DEMOGRAPHIC.“NAME”= “Bruce Harris”

Failed FROM clause:

Incorrect table name resulting in

incorrect INNER JOIN condition

SELECT COUNT (DISTINCT

DEMOGRAPHIC.“SUBJECT_ID”)

FROM DEMOGRAPHIC INNER JOIN

PROCEDURES on DEMOGRAPHIC.HADM_ID

= PROCEDURES.HADM_ID

WHERE DEMOGRAPHIC.”AGE“ ”54“ AND

PROCEDURES.”LONG_TITLE“= ”Squamous

cell carcinoma of oral tongue/sda“

SELECT COUNT

(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM

DEMOGRAPHICWHERE

DEMOGRAPHIC.“DIAGNOSIS”= “SQUAMOUS CELL

CARCINOMA ORAL TONGUE/SDA” AND

DEMOGRAPHIC.“AGE” < “54”

Failed FROM clause:

Incorrectly generating INNER JOIN

Failed WHERE clause:

Incorrect WHERE condition

TABLE 11 Accuracy evaluation of benchmarking MedT5SQL on two datasets.

# Training Epoc WikiSQL MIMICSQL

ACCLF ACCASM Time
consumed

ACCLF ACCASM Time
consumed

10 epochs 43.63% 94.1% 13 h 58% 97.369% 1 h 20 min

15 epochs 44.2% 94.26% 17 h 62.6% 98.054% 2 h

20 epochs Model did not run 63.1% 98.1% 3 h

50 epochs Model did not run 68.9% 98.572% 7 h 25 min

100 epochs Model did not run 80.63% 98.937% 13 h 40 min

initial study due to limitations on time and resources. However, we

acknowledge the importance of such a comparison and consider

it a crucial direction for future research. In our ongoing work,

we aim to broaden our investigation by conducting comparative

analyses that include other fine-tuned LLMs, further elucidating

the strengths and weaknesses of various approaches in the context

of healthcare.

We also acknowledge that the MIMICSQL dataset, while

valuable, may not fully represent the diversity of EMR data and

clinical queries encountered in real-world healthcare settings.

This could lead to the model underperforming or exhibiting

biases when applied to different patient populations or healthcare

institutions. Additionally, the T5 model, like other large language

models, can inadvertently learn and perpetuate biases present

in its vast pre-training corpus. These biases could manifest as

discriminatory or inequitable behavior in generated SQL queries.

To deal with these biases, expanding and diversifying the training

data to include a wider range of EMR types and clinical scenarios

can help mitigate data bias. Model bias, on the other hand,

can be addressed by developing evaluation metrics specifically
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TABLE 12 MedT5SQL and MedTS performance comparison.

Model ACCLF

MedTS, trained on 100 epochs 78.4%

MedT5SQL, trained on 100 epochs 80.63%

for assessing bias in generated SQL queries and continuously

monitoring the model’s performance for potential biases. Finally,

we argue that exploring techniques for fine-tuning the model to

explicitly reduce biases, such as incorporating fairness constraints

or re-weighting training examples should be an important direction

of future research.

6 Conclusion

In recent times, patient health data is stored digitally in

electronic medical records (EMRs), which healthcare professionals

use to access patients’ historical health information or for clinical

trials. The onset of the global COVID-19 pandemic in early 2020

overwhelmed hospitals with patients, straining healthcare workers

due to a shortage of medical staff relative to the patient load

(Birkmeyer et al., 2020; Kruizinga et al., 2021; Iness et al., 2022).

This crisis underscored the significance of EMRs and underscored

the necessity for a more efficient communication method (Dagliati

et al., 2021). The critical need is for an interface that facilitates

seamless interactions between end users and databases, specifically

a system capable of generating SQL queries in response to human

language inquiries.

To meet this requirement, natural language processing (NLP)

for Text-to-SQL, which allows non-technical users to generate SQL

queries to communicate with databases using natural language

text conversion has emerged as a suitable solution. This research

reviews existing research on Text-to-SQL conversion and proposes

a Text-to-SQL conversion model for EMRs retrieval. In this

work we employ Large Language Model (LLM), namely Text-

to-Text Transfer Transformer (T5) model, a transformer-based

pre-trained model for all text-based NLP tasks, to develop the

Text-to-SQL model.

The proposed model was developed by fine-tunning the

T5 model on MIMICSQL dataset, the first Text-to-SQL dataset

for healthcare domain. The model was benchmarked on two

optimizers, different training epochs, and two datasets to compare

the performance: WikiSQL and MIMICSQL datasets. The model’s

performance was evaluated by comparing the generated query,

in which the model was given a text, against the expected query

of the text. The experiments showed that the model was able to

achieve high accuracy in generating SQL queries from natural

language questions, particularly for medical question-SQL pairs.

Further, evaluations of the performance on each SQL clause have

shown the model’s efficiency in generating these specific query

types. This research demonstrates the potential of fine-tuning the

T5 model to achieve state-of-the-art results for generating SQL

queries from natural language questions in the healthcare domain.

While the model’s current scope is focused on question-SQL pairs,

it provides a solid foundation for future research to expand into

more comprehensive SQL generation tasks.

This research demonstrates the potential of fine-tuning the

T5 model to achieve state-of-the-art results for generating SQL

queries from natural language questions in the healthcare domain.

While the model’s current scope is focused on question-SQL

pairs, it provides a solid foundation for future research to expand

into more comprehensive SQL generation tasks. The MedT5SQL

model, while promising, represents a significant step toward

empowering healthcare professionals with efficient and intuitive

access to EMR data. Its potential real-world deployment in clinical

settings could revolutionize how medical staff interact with patient

information, enabling them to quickly retrieve relevant data

for informed decision-making. However, practical considerations

such as seamless integration with existing Electronic Health

Record (EHR) systems, development of user-friendly interfaces,

and ensuring data security and privacy are crucial for successful

implementation. Additionally, addressing potential limitations of

the model, such as its current focus on question-SQL pairs and

the need to adapt to varying EMR schemas, will be essential to

maximize its impact.

Moving forward, further research should focus on expanding

the model’s capabilities to encompass a broader range of SQL

queries, thoroughly evaluating its performance in real-world

clinical environments, and exploring its potential applications in

areas such as clinical decision support and medical research. By

addressing these challenges and opportunities, MedT5SQL has the

potential to transform the way healthcare professionals leverage

EMR data, ultimately improving patient care and clinical outcomes.
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Introduction: Variations in skin tone can significantly alter the appearance of
symptoms such as rashes or bruises. Unfortunately, previous works utilizing
Augmented Reality (AR) in simulating visual symptoms have often failed to
consider this critical aspect, potentially leading to inadequate training and
education. This study seeks to address this gap by integrating generative
artificial intelligence (AI) into the AR filter design process.

Methods:We conducted a 2 × 5 within-subjects study with second-year nursing
students (N = 117) from the University of Florida. The study manipulated two
factors: symptom generation style and skin tone. Symptom generation style was
manipulated using a filter based on a real symptom image or a filter based on a
computer-generated symptom image. Skin tone variations were created by
applying AR filters to computer-generated images of faces with five skin tones
ranging from light to dark. To control for factors like lighting or 3D tracking,
101 pre-generated images were created for each condition, representing a range
of filter transparency levels (0–100). Participants used visual analog scales on a
computer screen to adjust the symptom transparency in the images until they
observed image changes and distinct symptom patterns. Participants also rated
the realism of each condition and provided feedback on how the symptom style
and skin tone impacted their perceptions.

Results: Students rated the symptoms displayed by the computer-generated AR
filters asmarginallymore realistic than those displayed by the real image AR filters.
However, students identified symptoms earlier with the real-image filters.
Additionally, SET-M and Theory of Planned Behavior questions indicate that
the activity increased students’ feelings of confidence and self-efficacy. Finally,
we found that similar to the real world, where symptoms on dark skin tones are
identified at later stages of development, students identified symptoms at later
stages as skin tone darkened regardless of cue type.

Conclusion: This work implemented a novel approach to develop AR filters that
display time-based visual cues on diverse skin tones. Additionally, this work
provides evidence-based recommendations on how and when generative AI-
based AR filters can be effectively used in healthcare education.
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augmented reality, visual cue training, healthcare, simulation, symptoms,
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1 Introduction

In healthcare simulations, the accurate representation of
diverse skin tones is not merely an ethical imperative, but a
medical necessity. Patients with skin of color are more likely to
experience misdiagnosis or be diagnosed later in their disease’s
development (Narla et al., 2022). A major contributor to these
disparities is the lack of adequate training for skin of color in
medical education. For example, multiple works have researched
the inclusion of images containing dark skin tones in medical
textbooks and resources and found that dark skin tones are only
represented in 4%–18% of images (Ebede and Papier, 2006;
Kaundinya and Kundu, 2021; Harp et al., 2022). Further, a
previous study found that only 19.5% of program directors
and 25.4% chief residents reported having lectures on skin of
color from an acknowledged expert (Nijhawan et al., 2008).
Given the scarcity of resources for skin of color, it is
unsurprising that previous research found that healthcare
providers reported significantly less confidence assessing
lupus-related rashes in people with skin of color than in
patients with fair skin (Kannuthurai et al., 2021). However,
this issue is not isolated to just Lupus as another work reports
that 47% of dermatologists believed their medical training was
inadequate in teaching them how to identify skin conditions for
people with darker skin tones (Buster et al., 2012). Those who felt
their training was inadequate stated the need for more exposure
to training materials and patients with skin of color (Buster
et al., 2012).

The logical approach to addressing this disparity would involve
educating learners on recognizing symptoms across a broad
spectrum of skin tones. Yet, the aforementioned shortage of
medical imagery showcasing dark skin tones complicates this
solution. However, Augmented reality (AR) filters, which
digitally overlay graphics or effects onto real-world images or
videos (Fribourg et al., 2021), are a promising solution to
display symptoms during healthcare training. Previous works
have used AR to depict a variety of medical conditions. Some
examples include Noll et al. using AR based tracking to overlay
melanoma onto users (Noll et al., 2017), Liang et al. overlaying a
virtual head depicting stroke symptoms onto a manikin (Liang
et al., 2021), Stuart et al. using AR filters to overlay allergic reaction
symptoms onto a conversational agent (Stuart et al., 2022), and
Stuart et al. using AR filters to develop a system that allowed
students to manipulate Lupus symptoms in real-time (Stuart et al.,
2023). Unfortunately, current explorations into using AR for
simulating visual symptoms are still in early stages. As such,
they were mainly focused on making the symptoms visible for
just one person/manikin and did not investigate how AR
application/development would need to differ to be applied to
multiple skin tones (Noll et al., 2017; Liang et al., 2021; Stuart et al.,
2022; 2023). AR filters particularly need to be tailored to skin tone
for diseases like lupus and melanoma which can manifest
differently depending on skin color (Gloster and Neal, 2006;
Nelson, 2020; Lee et al., 2023). For example, what appears as a
red rash on lighter skin may appear dark brown on darker skin
(Ludmann, 2022).

To work towards a solution for having AR filters depict
symptoms on a range of diverse skin tones, this work builds

upon that of Stuart et al. by introducing the use of generative
artificial intelligence (AI) within the AR filter design process
(Stuart et al., 2023). Generative AI has been defined as the use
of models, such as generative adversarial networks or encoder-
decoder networks, to generate various resources (García-Peñalvo
and Vázquez-Ingelmo, 2023). Specifically, this work examines
using a commercial diffusion model training system (Scenario,
2023) to create an image generator that can take in a face image
and output a similar face with a Malar rash, a distinct butterfly
shaped (i.e., mainly covers the cheeks and nose) face rash that can
develop over time by those with Systemic Lupus Erythematosus
(Ludmann, 2022). This new image can then be used to produce an
AR filter. This AR filter creation method is evaluated for five
different skin tones using a similar web-based evaluation system
to Stuart et al. (Stuart et al., 2023) gathering information on when
users could identify symptoms when increasing the alpha
(transparency) value of the AR filter and how realistic users
thought the symptoms appeared.

This work focuses on the process of using generative AI in
the design process to allow designers to create AR filters that
better represent time-based visual symptoms across a broad
spectrum of skin tones. By doing so, this research can help
identify potential biases, address disparities in perception, and
inform ethical development/deployment of AR experiences.
Ultimately, these findings can contribute to industry best
practices, promote diversity, equity, and inclusion in
technology development, and ensure that AR technology is
accessible and enjoyable for all users, regardless of their skin
tone or background.

2 Materials

Five different skin tones were examined in this study. We will
refer to these as light, medium-light, medium-dark, dark-light, and
dark. For each skin tone, participants saw visual cues based on real
images and visual cues based on generated images. Thus,
participants were asked to complete visual analog scale
questions for a total of 10 conditions (Skin tone X Cue type):
Light-Real, Light-Generated, Medium-Light-Real, Medium-Light-
Generated, Medium-Dark-Real, Medium-Dark-Generated, Dark-
Light-Real, Dark-Light-Generated, Dark-Real, and Dark-
Generated (Figure 1).

To create the real-image skin conditions, we selected computer-
generated faces from generated. photos, a company focused on
producing photorealistic images of people, with skin tones
ranging from light to dark (Generated, 2023). Once images were
selected, a similar process to (Stuart et al., 2023) was used to overlay
the symptoms on to the faces (Section 2.2). The five faces depicted
were chosen as they were good skin tone matches to existing medical
imagery that could be used for the real conditions.

To create the generated conditions, image generators were
trained using images depicting malar rash symptoms for each
skin tone (Section 2.1). The objective of the image generator is to
take an input image of an individual and output a new image. This
output image depicts a new person with a similar skin tone and
shows the signs of malar rash symptoms. Output images are used to
develop the computer-generated AR filter conditions (Figure 2).
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2.1 Image generator

We utilized Scenario, a commercial platform specializing in
generative image models, to create our image generator (Scenario,
2023). This platform provides pre-trained models capable of
generating human figures and avatars. Users can fine-tune these
pre-trained models by uploading their unique set of images. This
flexibility is highly advantageous as the pre-trained model already
understands human facial features, allowing the additional data to
focus on the appearance of individuals with malar rash symptoms.
This approach reduces the necessity for an extensive training set that
portrays people exhibiting malar rash symptoms.

An iterative design process was used to create the training sets
for each model. The first model included all (n = 66) images that
could be found from reputable online sources of systemic lupus
erythematosus patients depicting malar rash. This initial model

often lightened the skin tone around the nose and cheeks,
contained visual artifacts that harmed the visual quality of the
malar rash visual cue, and generally lightened darker skin tones,
which interfered with the visual accuracy of the malar
rash (Figure 3).

After creating this initial model, several steps were taken to
enhance the image quality for subsequent models, in line with
established best practices (Shorten and Khoshgoftaar, 2019;
Larrazabal et al., 2020; Wang et al., 2020; Maluleke et al., 2022):

1. Images suffering from poor or low-lighting conditions were
eliminated as they often resulted in output images with lighter
skin tones in the rash pattern area, largely due to significant
specular reflections in these images.

2. Low-resolution images were removed to minimize output
image artifacts.

FIGURE 1
Chart showing skin tone X cue type variables. The real row shows faces with AR filters that are made using real images of people with malar rash
symptoms. The generated row shows faces with AR filters that are made using images created using the generative AI platform Scenario.

FIGURE 2
An input image is given to the model to generate a picture of a person with a similar skin tone with malar rash symptoms. The output image is then
used to produce the AR filter which can be applied to the original input image.
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3. The original dataset was divided into subsets representing
different skin tones to counter the lightening
(whitewashing) of darker skin tones caused by an
overrepresentation of lighter skin tone examples.

This dataset division resulted in smaller training sets for each
skin tone. While feasible in this case, such an approach might not be
viable in scenarios with limited diverse images or when the visual
cue is not as clearly defined.

Future improvements can be made to the dataset division and
output image selection processes, which were manually executed in
this project. A system that measures skin tone similarity, perhaps
referencing Fitzpatrick Phototypes, might allow a more rigorous
division of training sets and selection of final output images.
However, designing an accurate skin tone comparison system
would necessitate further research, as factors like shadows,
lighting, and reflections would need to be considered. For the
current iteration of this process, once the generated images
passed the author’s approval (i.e., did not have obvious visual
artifacts or racial bias), they were reviewed by nursing
collaborators for face validity before being used to create the AR
filters (Figure 1).

2.2 AR filter creation and application

To create the ten AR filters, the real symptom images, the
generated symptom images, and the face images from Generated.
photos were uploaded to Lens Studio, a program for AR filter
creation for the Snapchat platform (Snap Inc, 2021). Once
uploaded, a face mask was created for each condition. Facial
details that are not relevant to the Malar rash symptoms (e.g.,
areas of the forehead) are removed from the face mask using an
opacity texture. This would result in an AR Filter that would overlay
areas of the face that present Malar rash symptoms. The face images
from Generated. photos could then be set as the camera source and
the real and generated symptom images could be applied to a face
using the face mask. The face mask would automatically track to the
face in the camera source.

For each of the ten conditions, we used an AR filter to create
101 images, with the alpha (i.e., transparency) level of the Malar rash
face mask ranging from 0 to 100. The images were then uploaded to
Qualtrics to create visual analog questions.

2.3 Visual analog question design

Similar to Stuart et al., this work uses visual analog scales to
depict patient deterioration over time by manipulating the alpha
level of the AR visual cue (Stuart et al., 2023). These scales enabled
students to manipulate the Malar rash symptoms in real-time.
This method let us use the created AR filters while managing
variables introduced by AR, such as tracking, lighting, or
hardware issues.

The visual analog scales use modified versions of Qualtrics’
visual analog scale question. Each question utilized 101 images
(Section 2.2) with alpha levels ranging from 0% (full
transparency) to 100% (full visibility). This allowed for the use of
a 0–100 scale. Other benefits of this method include allowing
students to provide precise points at which they noticed
symptom developments, allowing students to easily control the
state of the symptom that was being displayed, and go back to a
previous state if they accidentally passed where they believe they
noticed changes, and it helped to reduce the total time needed to
complete the survey (which is vital with the limited class time
allowed to complete the study).

Other options for displaying symptoms were considered. These
included 1) applying the AR filters in real-time using Snap’s Camera
Kit an SDK that allows developers to implement Snap’s AR
technology into websites, and 2) creating short videos that
automatically had the symptoms develop over time with students
clicking when they noticed the desire stages. The slider method was
chosen over the real-time application because it was unclear if all
student’s laptops would be capable of running Camera Kit.
Additionally, the slider method was chosen instead of showing
students a video of the symptom developing over time and
getting an actual time amount for several reasons. Most
importantly, rash symptoms vary in the severity they can reach,
and the time it takes to develop (Brown, 2003). Therefore, it is more
important to identify stages of symptom development, such as initial
changes and pattern identification, by the variable being
manipulated (alpha level) rather than the time the variables are
changed over. Time as a variable can be manipulated in future works
to investigate different symptom development speeds.

In addition to reviewing the output images discussed in section
2.1, the five nursing faculty also separately reviewed the visual analog
questions for all conditions. The nursing collaborators were asked to
evaluate the face validity of the rash and its development using the

FIGURE 3
This figure shows examples of images generated using the first model. Note that many of the images are significantly lighter than the input image.
Additionally, these may end up exhibiting features that are more representative of those with lighter skin tones (e.g., different facial features).
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visual analog questions (i.e., does this look like an accurate
representation of Malar rash symptoms on each of the skin
tones?) and the visibility of the symptoms. Visibility was assessed
because faculty wanted to see if the images would provide

educational value to students. If the symptoms displayed in the
images were too difficult for students to acknowledge and assess with
different skin tones the educational value provided by the images
would be low.

FIGURE 4
Procedure followed by participants in the study.
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3 Methods

3.1 Participants

Second-year nursing students (N = 117) were recruited from a
nursing course (Principals of Personalized Nursing Care 2) taught at
the University of Florida in the Spring of 2023. Six students reported
not having normal or corrected-to-normal vision and a
colorblindness test determined that 13 students experienced some
level of color blindness. These participants are excluded from
analysis in this paper due to potential differences in visual
perception of the conditions. This led to a remaining population
of 98 nursing students.

Of the 98 remaining students, all were 18–24 years old. Students’
self-reported genders were: 9 Males and 88 Females, and one non-
binary. Students’ self-reported races were: 8 Asian, 1 Asian/Other,
3 Black or African American, 1 Black or African American/Asian,
2 Other, 79 White or Caucasian, 2 White or Caucasian/Asian,
1 White or Caucasian/Other, and one preferred not to say. As
for their familiarity with the malar rash symptoms presented: five
were slightly familiar, one was somewhat familiar, and 92 were not
familiar at all.

3.2 Study procedure

During class, participants were provided a link to the Qualtrics
study in their course management software to follow the study flow
shown in Figure 4. Participants began by reading and signing the
informed consent. Then participants completed a pre-survey that
included demographics, screen brightness, and color blindness
questions. Following the pre-survey, a pre-brief section informed
participants about malar rash symptoms and explained the
questions they would answer regarding the malar rash visual
cues. After the pre-brief, participants completed two visual
analog scale questions and a semantic differential scale for each
of the 10 conditions. Finally, participants completed a post-survey
and ended the study.

3.3 Metrics

3.3.1 Pre-survey metrics
The pre-survey questionnaire asked seven demographics

questions regarding participants’ age, race, gender, vision status,
malar rash familiarity, screen brightness, and color blindness.

In addition to the demographics questions, students were also
asked to answer eight theory of planned behavior (TPB) intention
questions before and after the intervention. These questions
adapted from Ajzen et al. were used to gather changes in user
perceptions regarding their intention to take patient skin
characteristics into consideration the next time they perform a
skin assessment (Ajzen, 2006). This survey measures three
variables that influence a users intentions to perform a behavior
as well as their overall perception of their own intentions. The
three variables measured are behavioral beliefs, normative beliefs,
and control beliefs. Each of these variables is measured using two
seven-point semantic scale questions.

Behavioral beliefs are “beliefs about the likely outcomes of the
behavior and the evaluations of these outcomes” (Ajzen, 2006). The
two questions in the results that correspond to this belief are labeled
AttitudeGood and AttitudeBeneficial. These questions are “Taking
patient skin characteristics into consideration the next time I
perform a skin assessment would be X for the patient’s health
outcome” where X was a rating from bad to good, and “Taking
patient skin characteristics into consideration the next time I
perform a skin assessment would be X″ where X was a rating
from not beneficial to beneficial.

Normative beliefs are “beliefs about the normative expectations
of others and motivation to comply with these expectations” (Ajzen,
2006). The two questions in the results that correspond to this belief
are labeled NormLikeMe and NormApprove. These questions are
“Most people like me take patient skin characteristics into
consideration every time they perform a skin assessment” rated
from unlikely to likely, and “Most people who are important to me
approve of taking patient skin characteristics into consideration
every time I perform a skin assessment” rated from disagree to agree.

Control beliefs are “beliefs about the presence of factors that may
facilitate or impede performance of the behavior and the perceived
power of these factors” (Ajzen, 2006). The two questions in the
results that correspond to this belief are labeled ControlUpToMe
and ControlEfficacy. These questions are “Taking patient skin
characteristics into consideration the next time I perform a skin
assessment is up to me” rated from disagree to agree, and “I am
confident that I can take patient skin characteristics into
consideration every time I perform a skin assessment” rated from
true to false.

This questionnaire ends with a direct measure of user intentions
with the question “I intend to take patient skin characteristics into
consideration the next time I participate in a skin assessment to have
a good patient health outcome” with a rating from false to true.

In addition to following the theory of planned behavior
framework, these questions were also reviewed by nursing
collaborators to verify that they would be coherent to those in
the nursing domain.

3.3.2 Intervention metrics
Following the TPB intention questions, participants were asked

to complete visual analog scale questions and the semantic
differential scale for each condition, a total of 30 questions
(Figure 4). The visual analog scale questions are used to measure
at what point users identified different stages of patient deterioration
(initial changes in appearance and the butterfly pattern appearance).
The semantic differential scale question was used to measure users
perceptions of symptom realism rated from 0 to 100 with 0 labeled as
“Not Very Realistic” and 100 labeled as “Very Realistic”. We asked
users to assess the realism of the stages they identified (just
noticeable and a clear butterfly pattern), to understand whether
they perceive these symptoms as realistic before full development.
This differs from Stuart et al. which asked about realism when the
symptoms were fully developed (fully opaque symptoms) Stuart
et al. (2023). Our approach in this study aimed to understand
whether using transparency as a manipulative variable maintains
the realism of symptoms during critical stages of their development.
If realism was rated low overall or if realism was much lower for a
specific skin tone, then it would have been reasonable to assume that
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alpha level was not a feasible variable to manipulate when looking at
symptom development over time for diverse skin tones.

3.3.3 Post-survey metrics
The study concluded with a post-survey gathering user

intentions again (TPB), a subset of four questions related to
confidence and self-efficacy from the simulation-effectiveness tool
(SET-M) which is used to evaluate perceptions of the effectiveness of
learning in the simulation environment (Leighton et al., 2015), and
two questions gathering open-ended qualitative responses from
participants regarding their perceptions of the visual cues and
how they believe their perceptions were affected by the
differences in filter and object fidelity.

4 Results

4.1 Data analysis

Descriptive and inferential statistics are reported for participants
first noticing changes, noticing themalar rash pattern, and the perceived
realism of the malar rash. Similar to (Stuart et al., 2022), we utilized the
filter alpha level to determine when students first identified changes and
noticed the malar rash pattern. In these sections, a lower score signifies
students identifying changes and patterns sooner. Additionally, the
units of measurement for realism is similar to the previous work and
refers to the students’ self-reported perceptions on a 0–100 visual analog
scale. A lower score for this is interpreted as students perceiving the
visual cue as less realistic.

For each visual analog scale question and the semantic differential
scale, a two-way repeated measures ANOVA was performed. All
questions were assessed for normality using Q-Q plots and
Kolmogorov-Smirnov tests and all were found to follow normal
distributions. A Mauchly test of sphericity was performed to check
for sphericity assumptions. For tests that violated sphericity, the
Greenhouse-Geisser and the Huynh-Feldt epsilon values are greater
than 0.75. Therefore the repeated measures ANOVA results for these
measures are reported based on the Huynh-Feldt corrections. When
repeated measures ANOVA indicated significant differences, post hoc
tests were performed using the Holm correction. The post hocs allowed

for the analysis of the perceptual differences between skin tones and
cue types.

For the Simulation Effectiveness Tool Modified (SET-M),
frequencies of student responses are reported since there are no
comparisons to pre-intervention data or other conditions to be made.

For the theory of planned behavior questions, a wilcoxon signed-
rank test was conducted to compare the ordinal data from the pre-
post responses. Additionally, the frequencies of each response
are reported.

For the qualitative questions, we analyzed the responses to
identify if students believed the symptom style affected their
perception of realism of the symptoms and their ability to
identify the symptoms. There were 89 and 86 responses for these
questions respectively. A first pass of the responses was completed
for each question to determine categories. During this first pass, it
was determined that the majority of user responses were comparing
the conditions. From this finding, it was decided to categorize the
responses for the realism question as either stating the symptom
realism was similar for both cue styles, more realistic for the AR-
filter based on the computer-generated image, or more realistic for
the AR filter based on the real symptom image. The ability to identify
symptoms categories were similarly created. Responses were only
counted towards categories if answers were clear and unambiguous,
so no discussion between coders was necessary.

4.2 Quantitative

4.2.1 First noticing changes
A Mauchly’s test of sphericity was significant for skin tones for

this measure, therefore the Huynh-Feldt correction was used. A two-
way repeated measures ANOVA showed that first changes ratings
differed significantly between skin tone levels, F (3.23, 313.68) =
105.02, p < 0.001, ω2 = 0.236. Additionally, first changes ratings
differed significantly between cue types, F (1.00, 97.00) = 26.86, p <
0.001, ω2 = 0.016.

Post hoc testing using the Holm correction revealed that the light
skin tone condition was rated significantly lower in regards to first
noticing changes when compared to all other skin tones, the medium-
light skin tone condition was rated significantly lower in regards to first

TABLE 1 Post Hoc results for skin tone in regards to first noticing changes.

Mean difference SE t Cohen’s d pholm

Light Medium Light −4.510 1.082 −4.168 −0.327 < 0.001

Medium Dark −5.117 1.082 −4.729 −0.371 < 0.001

Dark Light −17.485 1.082 −16.156 −1.269 < 0.001

Dark −16.622 1.082 −15.359 −1.206 < 0.001

Medium Light Medium Dark −0.607 1.082 −0.561 −0.044 0.852

Dark Light −12.974 1.082 −11.989 −0.942 < 0.001

Dark −12.112 1.082 −11.192 −0.879 < 0.001

Medium Dark Dark Light −12.367 1.082 −11.428 −0.897 < 0.001

Dark −11.505 1.082 −10.631 −0.835 < 0.001

Dark Light Dark 0.862 1.082 0.797 0.063 0.852
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noticing changes when compared to the dark-light and dark skin tones,
and the medium-dark skin tone condition was rated significantly lower
in regards to first noticing changes when compared to the dark-light
and dark skin tone conditions (Table 1). Overall these results along with
descriptive statistics results suggest that ratings on the first changes
slider increased as skin tone darkened (Figure 5).

As for cue type, post hoc testing revealed that ratings on the first
changes slider were lower for the cues based on real images (mean
difference = −2.84, p < 0.001) (Table 2). This finding suggests that
cues based on real images were noticed at earlier stages of
development compared to the computer generated images.
Descriptive statistics are shown in Table 3.

4.2.2 Noticing pattern
A Mauchly’s test of sphericity was significant for skin tones for

this measure, therefore the Huynh-Feldt correction was used. A two-
way repeated measures ANOVA showed that noticing pattern
ratings differed significantly between skin tone levels, F (3.84,
372.54) = 176.95, p < 0.001, ω2 = 0.253. Additionally, noticing
pattern ratings differed significantly between cue types, F (1.00,
97.00) = 96.73, p < 0.001, ω2 = 0.025.

Post hoc testing using the Holm correction revealed that the
light skin tone condition was rated significantly lower in regards to
noticing pattern changes when compared to all other skin tones, the
medium-light skin tone condition was rated significantly lower
when compared to all other skin tones except for the light skin
tone, and the medium-dark skin tone condition was rated
significantly lower when compared to the dark-light and dark
skin tone conditions (Table 4. Overall these results along with
descriptive statistics results suggest that ratings on the noticing
pattern slider increased as skin tone darkened (Figure 6).

As for cue type, post hoc testing revealed that ratings on the
noticing pattern slider were lower for the cues based on real images
(mean difference = −4.44, p < 0.001) (Table 5). This finding
suggests that butterfly pattern for the cues based on real images
were noticed at earlier stages of development compared to the
computer generated images (Table 6).

4.2.3 Realism
A Mauchly’s test of sphericity was significant for skin tones for

this measure, therefore the Huynh-Feldt correction was used. A two-
way repeated measures ANOVA showed that realism ratings
differed significantly between skin tone levels, F (3.73, 361.66) =

FIGURE 5
Visual depiction of means showing how as skin tone darkened, it took users longer to notice initial changes occurring with the visual cue.

TABLE 2 Post Hoc results for cue type in regards to first noticing changes.

Mean difference SE t Cohen’s d pholm

Real Generated −2.843 0.549 −5.182 −0.206 < 0.001

TABLE 3 Descriptive Statistics for first noticing changes.

Skin-tone Cue type Mean SD N

Light Real 29.449 9.212 98

Generated 34.133 11.536 98

Medium Light Real 34.745 10.112 98

Generated 37.857 11.182 98

Medium Dark Real 35.143 11.295 98

Generated 38.673 12.523 98

Dark Light Real 47.245 16.935 98

Generated 51.306 17.637 98

Dark Real 49.000 17.719 98

Generated 47.827 16.046 98
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4.71, p < � 0.001, ω2 = 0.003. Additionally, realism ratings differed
significantly between cue types, F (1.0, 97.0) = 4.82, p =
0.031, ω2 = 0.002.

Post hoc testing using the Holm correction revealed that ratings
on the realism slider were significantly lower for the dark skin tone
condition when compared to the light skin tone condition (mean
difference = 2.95, p = 0.002) and the medium-dark skin tone
condition (mean difference = 2.70, p = 0.005) (Table 7). As for
the cue type, the results suggest that learners viewed the cues based
on the real images as less realistic than the computer generated cues
(mean difference = −1.47, p = 0.031) (Table 8). Descriptive statistics
are shown in Table 9, Figure 7.

4.2.4 Simulation effectiveness tool modified
questions (SET-M)

Analyzing the results from the SET-M questions, we focused on the
frequencies of student responses rather than a pre-post comparison or
contrasting against other conditions, eliminating the need for statistical

inference. The data gathered suggests a positive learner reception
towards the slider interface intervention. A majority of the students
reported feeling more prepared, more understanding of the
pathophysiology, and more confident in their assessment and
teaching skills upon completing the study (Table 10). This
perception of benefit gives a strong indication that the intervention
was effective in enhancing student readiness and understanding.

4.2.5 Theory of planned behavior questions
A Wilcoxon’s signed-rank test showed that completing the

visual cue activity significantly increased ratings for the
AttitudeGood (W = 0.00, p< 0.001), NormativeApprove
(W = 61.50, p< 0.001), ControlUpToMe (W = 24.00, p< 0.001),
and ControlEfficacy (W = 188.00, p< 0.001) questions. These results
indicate improved perceptions of feelings towards the perceptions of
the behavior by themselves and others (AttitudeGood,
NormativeApprove) and increased perceptions of self-efficacy
(ControlUpToMe, ControlEfficacy) (Tables 11, 12).

TABLE 4 Post Hoc results for skin tone in regards to noticing pattern.

Mean difference SE t Cohen’s d pholm

Light Medium Light −2.852 1.049 −2.719 −0.177 0.021

Medium Dark −5.327 1.049 −5.078 −0.330 < 0.001

Dark Light −20.490 1.049 −19.533 −1.268 < 0.001

Dark −20.327 1.049 −19.378 −1.258 < 0.001

Medium Light Medium Dark −2.474 1.049 −2.359 −0.153 0.038

Dark Light −17.638 1.049 −16.814 −1.092 < 0.001

Dark −17.474 1.049 −16.659 −1.082 < 0.001

Medium Dark Dark Light −15.163 1.049 −14.455 −0.939 < 0.001

Dark −15.000 1.049 −14.300 −0.928 < 0.001

Dark Light Dark 0.163 1.049 0.156 0.010 0.876

FIGURE 6
Visual depiction of means showing how as skin tone darkened, it took users longer to notice the butterfly pattern that occurs with the visual cue.
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4.3 Qualitative

4.3.1 Please describe how the symptom style
(computer-generated vs. real symptom image)
affected your perception of symptom realism?

There were 89 total responses for this question though not all
responses were relevant so are not counted in the following data
description. 31 stated that the symptom realism was similar or not
affected by the symptom style, five stated that the symptoms
appeared more realistic when the AR filter based on the

computer-generated image was used, and two stated the
symptoms appeared more realistic when the AR filter based on
the real image was used. These responses align with the realism
results which found that students perceived the computer generated
images as marginally more realistic compared to the AR filter based
on the real image.

4.3.2 Please describe how the symptom style
(computer-generated vs. real symptom image)
affected your ability to identify the symptoms?

There were 86 total responses for this question though not all
responses were relevant so are not counted in the following data
description. 24 stated that their ability to identify the symptoms was
similar or not affected by the symptom style, eight stated that it was
easier to identify the symptoms when the AR filter based on the
computer-generated image was used, and 14 stated it was easier to
identify the symptoms when the AR filter based on the real image was
used. These responses align with the change and pattern identification
results which found that students identified changes and patterns
marginally sooner when the AR filter based on the real image was used.

5 Discussion

5.1 Summary of key results

In this work, we found that students rated the symptoms displayed
by the computer-generated AR filters as marginally more realistic than
the symptoms displayed by the real image AR filters. However, students

TABLE 5 Post Hoc results for cue type in regards to noticing pattern.

Mean difference SE t Cohen’s d pholm

Real Generated −4.441 0.452 −9.835 −0.275 < 0.001

TABLE 6 Descriptive Statistics for noticing pattern.

Skin-tone Cue type Mean SD N

Light Real 41.388 16.651 98

Generated 47.990 15.288 98

Medium Light Real 44.122 12.764 98

Generated 50.959 14.542 98

Medium Dark Real 46.847 14.467 98

Generated 53.184 16.195 98

Dark Light Real 64.255 17.890 98

Generated 66.102 16.970 98

Dark Real 64.724 18.508 98

Generated 65.306 17.404 98

FIGURE 7
Visual depiction of user rating of realism.
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identified symptoms earlier with the real-image filters. Additionally,
SET-M and theory of planned behavior questions indicate that the
activity increased students feelings of confidence and self-efficacy.
Finally, we found that similar to the real world, where symptoms on
dark skin tones are identified at later stages of development, students
identified symptoms at later stages of development as skin tone
darkened regardless of cue type (Schwartz et al., 2003; Hu et al.,
2006; Khan and Mian, 2020; Nelson, 2020).

5.2 Developing inclusive AR filters that
display visual cues on diverse skin tones

Overall, the results indicate that this method of using AR filters
to depict time-based visual cues is effective at improving student

self-efficacy and confidence regarding their abilities to identify malar
rash symptoms on different skin tones. This is supported by the
SET-M results, which indicate that the majority of students found
the activity to improve their perceptions of self-efficacy and self-
confidence, and the results of the theory of planned behavior
questions which indicate that the activity led to improvements in
students’ perceptions of using skin characteristics while performing
a skin assessment and their perceived self-efficacy in their ability to
use skin characteristics the next time they perform a skin
assessment.

Additionally, the findings indicate that AR filters based on
computer-generated images perform similarly to AR filters based
on real images. This conclusion is supported by the realism and both
identification ratings. The realism ratings reveal that students
generally perceived the computer-generated symptoms as slightly
more realistic than the real-image symptoms with a mean difference
of 1.47 on a 101 point scale. The initial changes and pattern
identification ratings show that students noticed the initial
changes and butterfly pattern in real-image symptoms marginally
sooner than in the computer-generated symptoms with mean
differences of 2.84 and 4.44 on 101 point scales.

We believe the differences that are observed between the
symptom styles are connected with the salience of symptoms. It
appears that the computer-generated images blended better with the
skin and had less specular reflections because they were taken using
cameras with photographic flashes. This led to a reduced salience of
the symptoms, which seemed to render the symptoms more realistic
in appearance.

We also found that the real images were identified at earlier
stages of development. We believe this was due to the nature of real
image AR filters. Unlike the computer-generated images, they do not
perfectly blend with the skin and often demonstrate specular
reflections from the lighting conditions the source images were

TABLE 7 Post Hoc results for cue skin tone in regards to realism.

Mean difference SE t Cohen’s d pholm

Light Medium Light 0.909 0.778 1.168 0.050 0.974

Medium Dark 0.254 0.778 0.327 0.014 0.984

Dark Light 1.670 0.778 2.147 0.092 0.227

Dark 2.951 0.778 3.793 0.163 0.002p

Medium Light Medium Dark −0.655 0.778 −0.842 −0.036 0.984

Dark Light 0.762 0.778 0.979 0.042 0.984

Dark 2.042 0.778 2.625 0.113 0.072

Medium Dark Dark Light 1.416 0.778 1.821 0.078 0.416

Dark 2.696 0.778 3.466 0.149 0.005p

Dark Light Dark 1.280 0.778 1.646 0.071 0.503

TABLE 8 Post Hoc results for cue type in regards to realism.

Mean difference SE t Cohen’s d pholm

Real Generated −1.469 0.669 −2.194 −0.081 0.031

TABLE 9 Descriptive statistics for realism ratings.

Skin-tone Cue type Mean SD N

Light Real 81.635 18.436 98

Generated 82.292 16.533 98

Medium Light Real 80.019 19.206 98

Generated 82.090 17.720 98

Medium Dark Real 81.142 17.618 98

Generated 82.277 16.406 98

Dark Light Real 80.721 17.301 98

Generated 79.864 19.261 98

Dark Real 76.844 19.601 98

Generated 81.182 18.274 98
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taken in. These characteristics resulted in filters that did not blend as
well and thus, exhibited higher salience.

Both observations underscore the role of symptom salience in
the perceived authenticity of images. The blending property of
computer-generated images lent a realism to the symptoms,
whereas the pronounced salience in real images made the
symptoms more readily noticeable at the early stages of the disease.

Overall though, it appears that both methods used to generate the
AR filters are effective when used to develop training opportunities that
depict visual cues on a range of diverse skin tones, indicating the
computer-generated images are a viable alternative to provide source
images for AR filters. This contributes to addressing persistent
disparities in healthcare education, such as the insufficient diversity
and quality of medical images.

However, while these methods have shown promise, ensuring
their continued accuracy and effectiveness in representing diverse skin
tones is critical. Machine-generated images can lead to bias if an
expert is not included in future design processes. For instance, the
machine learning model may generate symptoms on minority skin
tones in a way that mirrors their depiction on light skin tones, which
might not be an accurate representation of the symptoms (Figure 3).
To prevent such potential inaccuracies, we recommend maintaining
an ‘expert-in-the-loop’ model for the cue design process. This would
require the active participation of a specialist in the development of
stimuli, ensuring that the medical images produced accurately and
appropriately represent symptoms on different skin tones (Girardi
et al., 2015; Guo et al., 2016; Li et al., 2020).

5.3 Design guidelines

Based on our findings, we provide the following design
guidelines.

• Generative AI for visual cue training: Generative AI might be
a preferable alternative for developing visual cue training
using AR filters compared to medical illustrations or real
images. While the computer-generated images took learners
slightly longer to identify (Sections 4.2.1 and 4.2.2), the
learners also perceived the computer-generated images as
more realistic (Section 4.2.3). The slight delay in
identification time may be an acceptable trade-off for
ensuring that training can accommodate a variety of skin
tones and adapt to different lighting conditions.
Additionally, the use of computer-generated images helps
to alleviate potential privacy concerns with overlaying
portions of real patient faces onto training stimuli.
Overall, we recommend future work to explore generative
AI as an alternative for developing visual cue training when
real medical imagery is scarce. However, the validity of the
generated images should be verified by experts to ensure their
suitability for training.

• Iterative Evaluation of AI-generated Images: To avoid
potential inconsistencies or inaccuracies in AI-generated
images, it is recommended to implement an iterative
evaluation process. This process should involve experts in
the field who can verify the validity of the images produced. If
needed, the machine learning models used can be refined
based on their feedback.

• Diversity in Training: AR visual cue training should
accurately represent a diverse range of skin tones. The
results of this work highlighted that learners took longer
to identify the visual cues as skin tone darkened (Sections
4.2.1Sections .1 and 4.2.2). This phenomena exists in the
real-world as nurses and physicians diagnose individuals
with darker skin tones at a later stages than light skin
tone counterparts (Schwartz et al., 2003; Hu et al., 2006;
Khan and Mian, 2020; Nelson, 2020). Our solution provides
an avenue to provide opportunities for practice that may not
otherwise be possible due to a lack of existing resources. We
recommend continuing to provide learners with stimuli
depicting a variety of skin tones to help increase the
number of diverse training opportunities and potentially
reduce this disparity gap.

• Need for Better Metrics: While our results suggest that this
intervention increased learners’ feelings of self-efficacy and
confidence (Sections 4.2.4Sections .4 and 4.2.5), it is unclear
how this may actually improve their future performance. We
recommend future work should aim to improve the metrics
used to measure if learners are identifying visual cues. Ideally,
future training can identify a learners current level, provide

TABLE 10 Frequencies: SET-M questions.

Do not agree Somewhat agree Strongly agree

I am better prepared to respond to changes in my patient’s condition 1 (1.02%) 50 (51.02%) 47 (47.96%)

I developed a better understanding of the pathophysiology 18 (18.37%) 42 (42.86%) 38 (38.78%)

I am more confident of my assessment skills 7 (7.14%) 51 (52.04%) 40 (40.82%)

I am more confident in my ability to teach patients about their illness and interventions 17 (17.35%) 50 (51.02%) 31 (31.63%)

TABLE 11 Theory of Planned Behavior: Wilcoxon signed-rank test.

Measure 1 Measure 2 W p

Pre - AttitudeGood - Post - AttitudeGood 0.000 < 0.001

Pre - AttitudeBeneficial - Post - AttitudeBeneficial 0.000 0.004

Pre - NormLikeMe - Post - NormLikeMe 276.500 0.005

Pre - NormApprove - Post - NormApprove 61.500 < 0.001

Pre - ControlUpToMe - Post - ControlUpToMe 24.000 < 0.001

Pre - ControlEfficacy - Post - ControlEfficacy 188.000 < 0.001

Pre - Intention - Post - Intention 25.500 0.005
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feedback on potential disparities they may contribute to, and
the measure their improvement at identifying symptoms in
multipart training simulations.

6 Limitations and future directions

This study faces several limitations, such as not using an AR
device, varying screen brightness and color calibrations among
users, using transparency as an indicator of symptom
progression, and limited symptom types. These issues are
discussed briefly:

1) This study does not use an AR device to display filters.
This prevents the inclusion of variables like tracking,
viewing angle, and device calibration. Despite some
persistent screen differences (like brightness and color),
our approach, alongside measures to regulate screen
brightness, ensures a more controlled design. Future
research can apply these findings in simulations to
explore how AR display variables and tracking influence
user perceptions of symptoms.

2) The alpha level slider, scaling linearly from 0 to 100, is used to
approximate symptom development, but symptom
progression is not necessarily linear. Symptoms may
initially change rapidly before slowly reaching peak
severity and can vary among patients, even for the same
symptom (Brown, 2003). Future studies should explore more
methods to more accurately represent symptom
developments, enhancing healthcare education.

3) This study focuses solely on the malar rash due to its
distinctiveness and prevalence in various conditions. It is
an additive symptom, adding redness to the face, which may

differ from subtractive symptoms like paleness, where color
is removed. Further research is required to understand the
nuances of different symptom types.

7 Conclusion

This study demonstrates the potential of utilizing generative
AI in the AR filter design process. Using the evaluation tool
developed by Stuart et al. (Stuart et al., 2023), our results indicate
that AR filters designed using generative AI can be effective
teaching tools for healthcare students to enhance their self-
efficacy and confidence in identifying malar rash symptoms
across a range of diverse skin tones. The positive outcomes
observed in both SET-M scores and theory of planned
behavior questions highlight the effectiveness of this approach
in improving students’ perceptions of their clinical assessment
skills. Most importantly, our findings suggest that computer-
generated images can be a viable alternative to real images in the
development of AR filters, as they were found to be comparable in
terms of realism and pattern identification, providing a potential
avenue to reduce healthcare disparities. Together, the findings of
this research indicate that using generative AI in the AR filter
design process is a promising direction to help improve the
inclusivity of healthcare training.

Data availability statement

The raw data supporting the conclusion of this article
will be made available by the authors, without undue
reservation.

TABLE 12 Theory of planned behavior frequencies table.

1 2 3 4 5 6 7

Pre - AttitudeGood 0 0 1 (1.02%) 4 (4.08%) 4 (4.08%) 9 (9.18%) 80 (81.63%)

Post - AttitudeGood 0 0 0 1 (1.02%) 2 (2.04%) 4 (4.08%) 91 (92.86%)

Pre - AttitudeBeneficial 0 0 0 3 (3.06%) 4 (4.08%) 5 (5.10%) 86 (87.76%)

Post - AttitudeBeneficial 0 0 0 1 (1.02%) 2 (2.04%) 3 (3.06%) 92 (93.88%)

Pre - NormLikeMe 0 2 (2.04%) 7 (7.14%) 17 (17.35%) 26 (26.53%) 19 (19.39%) 27 (27.55%)

Post - NormLikeMe 0 3 (3.06%) 4 (4.08%) 10 (10.20%) 25 (25.10%) 16 (16.33%) 40 (40.82%)

Pre - NormApprove 1 (1.02%) 0 1 (1.02%) 11 (11.24% 14 (14.29%) 21 (21.43%) 50 (51.02%)

Post - NormApprove 1 (1.02%) 0 1 (1.02%) 2 (2.04%) 8 (8.16%) 18 (18.37%) 68 (69.39%)

Pre - ControlUpToMe 7 (7.14%) 5 (5.10%) 6 (6.12%) 5 (5.10%) 6 (6.12%) 14 (14.29%) 55 (56.12%)

Post - ControlUpToMe 7 (7.14%) 1 (1.02%) 2 (2.04%) 2 (2.04%) 4 (4.08%) 7 (7.14%) 75 (76.53%)

Pre - ControlEfficacy 0 2 (2.04%) 5 (5.10%) 10 (10.20%) 21 (21.43%) 28 (28.57%) 32 (32.65%)

Post - ControlEfficacy 1 (1.02%) 0 5 (5.10%) 0 16 (16.33%) 21 (21.43%) 55 (56.12%)

Pre - Intention 0 0 0 2 (2.04%) 4 (4.08%) 12 (12.25%) 80 (81.63%)

Post - Intention 0 0 0 0 2 (2.04%) 7 (7.14%) 89 (90.82%)
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