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Editorial on the Research Topic
Omics applied to livestock genetics: volume II

After the first sequencing of a mammalian genome, several studies have been published
with a variety of omics datasets aiming to unravel the biological aspects that influence the
phenotypic expression of complex traits (e.g., Gallagher and Chen-Plotkin, 2018; Costa
et al., 2013; Legrain et al., 2011; Portela and Esteller, 2010; Marcobal et al., 2013; Fonseca
et al., 2018). These studies revolutionized genome translation into phenome in the last
2 decades, including the development of important tools for the livestock sector. Projects,
initiatives, and databases provide knowledge of genetic variations for the main traits of
livestock species that are economically, environmentally, and socially important. For
instance, the AnimalQTLdb project (Hu et al., 2007) has curated genomic information
of many quantitative trait loci (QTL) identified in cattle, pigs, chicken, sheep, and
other species.

The large-scale datasets generated by livestock “omics” projects have been made
publicly available to researchers aiming to generate knowledge and translation tools for
improving animal production and sustainability. For instance, the Functional Annotation
of Animal Genomes (FAANG) project has generated datasets to decipher the function of
genome segments, and it has analyzed samples from approximately 15 species, including
pigs, cattle, sheep, and salmon (Giuffra et al., 2019). Moreover, the “omics” approaches can
be holistically evaluated (Vieira et al., 2024) and applied to improve animal breeding
strategies based on biology-driven genomic predictions, in addition of contributing to a
better understanding of the genomic background of phenotypic variability in livestock
systems (Chakraborty et al., 2022).

The Research Topic titled “Omics Applied to Livestock Genetics II” presents a
collection of the latest findings in livestock genetics based on omics approaches. Studies
focusing on livestock animals, such as pigs, cattle, ducks, camels, rabbits, donkeys, and
sheep, involving omics data revealed genetic information related to various relevant traits.
In volume I of Omics Applied to Livestock Genetics, the two most used approaches were
genomics and transcriptomics applied, with cattle and pigs being the main studied species.
Now, at volume II, fish was also highlighted (Figure 1). The results presented in this
Research Topic provide significant advancements toward understanding farm
animal genetics
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The genomic knowledge of many commercially important fish
species is still incipient, as is the case with some catfish species. The study
by Ye et al. provided the first high-quality chromosomal-level reference
genome map for the Hemibagrus macropterus. Using homology-based,
de novo, and RNA-seq methods, various genes were identified and
functionally annotated through a functional database. The assembled
genome will be beneficial for exploring genome evolution and sexual
determination mechanisms as well as facilitate future comparative
genomics and conservation studies in Siluriformes. In another study
also using catfish as a model, Wang et al. analyzed different organs in
two species of catfish. The study performed RNA sequencing (RNA-
seq) experiments to establish transcriptomic resources for both species’
tissues (heart, liver, intestine, mucus, andmuscle). A variable number of
genes were identified as being expressed in each tissue, with a notable
high expression of genes in the mucus. Gene ontology (GO) analysis
revealed the functional specificity of differentially expressed genes in
each tissue, with significant enrichment inmetabolic pathways, immune
activity, and stress responses. Tissue-specific genes such as lrrc10, fabp2,
myog, pth1a, hspa9, cyp21a2, agt, and ngtb were identified. This study
demonstrates that transcriptomics may be used to support further
investigations into the molecular basis underlying environment-
dependent heterosis and advance genetic breeding efforts of
hybrid catfish

Studying camels, Abri et al. characterized the genetic diversity
and selection signatures in camels from the Oman region. Using
SNP (Single Nucleotide Polymorphism) genotyping data, genetic
differentiation was observed due to evolutionary processes for
adaptation between Muscat dromedaries and Al-Batinah and Al-
Sharqiya populations. Candidate genes such as SLC2A9, LEP, and
PTPN22 were identified, which are involved in biological processes
influencing the survival and reproduction of dromedaries in arid
environments. For instance, SLC2A9 is cited to be involved in
glucose transport and may play a role in regulating energy
metabolism. Genes associated with functional categories related
to immune response, lipid metabolism, energy expenditure,
optical and auditory functions, and long-term memory were
also identified.

In this Research Topic, bovine was the most studied species.
Rosyada et al. assessed the semen of native Indonesian bulls.
Through proteomic investigations, they found that bull fertility is
associated with many proteins involved in spermatogenesis. They
identified 15 proteins linked to metabolic pathways and the
tricarboxylic acid cycle, contributing to sperm energy production.
Proteins related to thermal stress and predictors of thermotolerance,
such as HSPA9 and HSPA2, were identified as protective agents for
sperm. Jang et al. studied Hanwoo cattle, a native breed from Korea
known for high fertility but slow growth rates. This study collected
samples from 22 different tissues of castrated males and utilized
RNA-seq technology for gene expression profiling, integrating eQTL
analysis to elucidate the genetic mechanisms influencing weight. By
integrating the results from eQTL analyses and differentially
expressed genes (DEGs), genomic regions that may regulate the
expression of candidate genes, such as TRIM31, were identified.
Reduced expression of TRIM31 was associated with weight gain,
which can be explained by cis-eQTL candidate genotypes and their
effect on differential gene expression between lower and higher
weight groups.

Also studying bovine specie, Wang et al. utilized Specific Locus
Amplified Fragment (SLAF) sequencing to examine the genetic
structure and diversity of Xinjiang Brown (XBG) cattle. Selection
signature analysis revealed differentiated patterns between XBG and
the ancestral breeds Swiss Brown (BS) and Kazakh (KZ). Besides,
candidate genes enriched with GO terms related to disease resistance
and the endocrine system were identified. This research enhances
the understanding of genetic diversity in Xinjiang Brown cattle and
provides valuable insights for future selection and genetic breeding
practices. The fourth study using bovine as a model, Nawaz et al.,
sought to identify genomic regions under selection in Hanwoo and
Angus cattle using advanced genetic analysis methods based on
imputed whole-genome sequencing variants. The study employed
allele frequency-based and haplotype-based methods, including
runs of homozygosity and extended haplotype homozygosity, to
detect selection signals within each breed and between the two
breeds. In Angus cattle, 27 genomic regions housing 360 genes were
identified. The identified genes are associated with growth,
immunity, reproductive development, feed efficiency, and
environmental adaptation, suggesting that selection processes in
this breed focused on productivity and environmental adaptability.
In contrast, Hanwoo cattle displayed 17 genomic regions containing
59 genes. Candidate genes indicated that selection in Hanwoo
prioritized traits related to meat quality and sensory perception.
This study enhances the understanding of the genetic architecture of
selection in Angus and Hanwoo cattle, highlighting breed-specific
adaptations and priorities.

Considering the studies focusing on pigs, Xiao et al. studied the
Acetyl-Coenzyme A Acyltransferase-1 (ACAA1) gene, which is
involved in fatty acid metabolism. The study assessed the mRNA
expression levels of ACAA1 in various tissues (heart, liver, spleen,
lung, kidney) from 6-month-old Xiangsu pigs. The mRNA
expression was also evaluated in the Longissimus dorsi muscle at
different growth stages (newborn, 6 months, and 12 months) using
RT-qPCR. Additionally, the relationship between single-nucleotide
polymorphisms (SNPs) of ACAA1 gene and growth traits in 6-
month-old and 12-month-old Xiangsu pigs was investigated on
184 healthy Xiangsu pigs. The expression of ACAA1 was detected in

FIGURE 1
Enrichment analysis highlighting the most omic approaches
(green nodes) used and the most livestock species (blue nodes)
studied in the Research Topic. The size of the nodes corresponds to
the Cytoscape network enrichment analysis; the bigger the
nodes, the more used and/or studied the corresponding nodes.
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multiple tissues of 6-month-old Xiangsu pigs, with the highest
expression observed in the liver. In the L. dorsi, expression
decreased as the animals grew. Significant associations between
SNPs and these growth traits suggest that the ACAA1 gene is a
potential marker for genetic selection in Xiangsu pigs. In another
study, Wang et al. investigated the correlation between
intramuscular fat content (IFC) and meat color (CIE) in pigs
using an integrative approach that combines differential gene
expression analysis, gene co-expression network analysis
(WGCNA), functional enrichment analysis, and the identification
of candidate and hub genes. The results revealed 485 and 394 DEGs
and identified 47 and 53 candidate genes affecting IFC and CIE,
respectively. Protein-protein interaction (PPI) network analysis of
the candidate genes identified 5 hub genes affecting IFC and 13 hub
genes affecting CIE value. Four crucial hub genes (MYC, SOX9,
CEBPB, and PPARGC1A) were shared between these two traits. The
authors propose that the SOX9/CEBPB/PPARGC1A axis may co-
regulate lipid metabolism and the redox response of myoglobin,
contributing to a better understanding of the molecular mechanism
underlying the co-regulation of IFC and CIE value.

Using an integrative approach, the study by Li et al. on Jianshui
yellow-brown ducks used resequencing and transcriptomic data and
revealed several SNPs and InDels, with variants identified in genes
associated with muscle development and fat metabolism. This study
used phylogenetic trees, PCA, and admixture analysis to investigate
the population genetic structure of Jianshui yellow-brown ducks by
comparing their selection signals with those of ancestral mallard
ducks andmeat-type Pekin ducks. Selection signal analysis indicated
significant selection pressure on genes related to meat traits
(ELOVL2, ELOVL3, GDF10, VSTM2A, PHOSPHO1, and
IGF2BP1) in Jianshui yellow-brown ducks and mallard ducks.
While transcriptomic analysis suggested that ELOVL3,
PHOSPHO1 and GDF10 are candidate genes influencing meat
production and quality in Jianshui yellow-brown ducks.

Another species of significant economic interest presented in
this Research Topic was the rabbit (Oryctolagus cuniculus), in which
Jia et al. obtained samples from the Longissimus dorsimuscle of male
and female rabbits and utilized Oxford Nanopore Technologies
long-read sequencing technology to investigate the association
between gene expression levels and growth traits through large-
scale transcriptome-wide association studies (TWAS). This
contributed to the improvement of rabbit genome annotation.
However, the transcriptome-wide association studies did not
identify statistically significant genes or transcripts associated
with the growth traits examined, highlighting the need for other
omics studies in this species aiming to a better understanding of
growth traits’ genetic architecture.

Aiming to investigate the transcriptomic screening of lncRNAs
and mRNA associated with skin development and collagen
organization, Wang et al. obtained skin tissue samples from
Dezhou donkeys at different stages, including the 8-month fetal
stage, and at ages of 2 and 8 years. Through enrichment analyses and
functional analyses, it was possible to identify specific lncRNAs and
interactions between mRNA and lncRNA. Specific lncRNAs,
including ENSEAST00005041187, ENSEAST00005038497 and
MSTRG.17248.1, which potentially regulate the COL1A1 gene
that is responsible for the type I collagen chain I, were identified
through interaction networks. Collagen organization and skin

development pathways were also observed, including protein
digestion and absorption, metabolic pathways,
phosphatidylinositol 3-kinase-protein kinase B signaling pathway
(PI3K-Akt signaling pathway), extracellular matrix-receptor
interaction (ECM-receptor interaction) and relaxin signaling and
biological function processes. The COL1A1, COL3A1 and LOXL2
genes were involved in the regulation of these pathways.

Finally, Liu et al. reviewed Copy Number Variants (CNVs) in
the genomes of herbivorous livestock species, including cattle, sheep,
horses, and donkeys. They presented a brief elucidation of the
fundamental concepts underlying CNVs, their mutational
mechanisms, and the diverse array of detection methods that can
be employed to identify these structural variations within genomes.
The review highlighted the role of CNVs in shaping various
phenotypic traits, including growth and reproductive traits,
pigmentation, disease resistance, etc. In conclusion, the authors
stated that CNVs represent a valuable and dynamic field of study
poised to impact the genetic improvement of herbivorous livestock
species, ultimately benefiting both human society and the global
livestock industry.

As observed in the first volume, the main livestock species have
been studied through omics approaches. However, multiomic
analyses are still scarce, and the generation and sharing of
multiomic datasets are crucial for further advancing research in
this field. Functional genomic analyses and high-throughput
phenotyping are relevant for providing a clearer picture of the
genome-to-phenome paradigm in livestock systems. Moreover,
the integration of omics technologies with phenomics into the
breeding programs, which is still lacking in this Research Topic,
may be helpful for increasing the rate of genetic progress in
sustainable breeding programs.
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Chromosome-level genome
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The largefin longbarbel catfish, Hemibagrus macropterus, is an economically
important fish species in southwestern China, with males growing faster than
females. This study presents a high-quality chromosome-level genome assembly
of the largefin longbarbel catfish, generated by integrating Illumina short reads,
PacBio HiFi long reads, and Hi-C data. The assembled genome size was 858.5 Mb,
with a contig and scaffold N50 of 5.8 Mb and 28.4 Mb, respectively. A total of
656 contigs were successfully anchored to 30 pseudochromosomes with a
BUSCO score of 97.7%, consistent with the number of chromosomes analyzed
by karyotype. The genome contained 29.5% repeat sequences, and a predicted
total of 26,613 protein-coding genes, of which 25,769 (96.8%) were functionally
annotated in different databases. Evolutionary analysis showed that H.
macropterus was most closely related to H. wyckioides, with a divergence time
of approximately 16.3 million years. Chromosomal syntenic relationships among
H. macropterus, H. wyckioides, and Pelteobagrus fulvidraco revealed a one-to-
one relationship formost chromosomes, except for break, fission, and inversion of
some chromosomes. The first high-quality reference genome will not only
provide a valuable genetic resource for the study of sex determination
mechanisms and genetic breeding of largefin longbarbel catfish, but also
contribute to comparative analyses of genome and chromosome evolution
within Siluriformes.

KEYWORDS

Hemibagrus macropterus, genome assembly, genome annotation, comparative
genomics, Hi-C, PacBio

Introduction

Catfish (order: Siluriformes) are a highly diverse and globally distributed group of
actinopterygian fish, generally characterized by the whisker-like barbels, lack scales, and
intramuscular spines (Gisbert et al., 2022). They comprise more than 4,500 species and
account for nearly 12% of teleost fish (Fricke et al., 2022). Catfish are one of the most
important aquaculture species worldwide (Gisbert et al., 2022). The number of chromosomes
in catfish ranges from 2n = 24 to 100, with mainly continuous variation from 2n = 48 to 60 (Zhu
and Pan, 2021). Consequently, catfish are considered suitable for studying genomic and
chromosomal evolution in fish. With the rapid development of sequencing technologies, the
chromosome-level genomes of more than 10 catfish species have been assembled, including
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Ictalurus punctatus (Liu et al., 2016), Pelteobagrus fulvidraco (Gong
et al., 2018), Bagarius yarrelli (Jiang et al., 2019), Silurus meridionalis
(Zheng et al., 2021), Leiocassis longirostris (He et al., 2021),Hemibagrus
wyckioides (Shao et al., 2021), Pangasianodon hypophthalmus (Gao
et al., 2021), Pseudobagrus ussuriensis (Zhu et al., 2022), Cranoglanis
bouderius (Xu et al., 2022), Ictalurus furcatus (Wang et al., 2022), and
Ancistrus triradiatus (Lemopoulos and Montoya-Burgos, 2022). These
genomic resources facilitate studies of sex determination mechanisms
(Bao et al., 2019; Gong et al., 2022), chromosomal and genome
evolution (Zhu et al., 2022), ecological adaptation, and gene
evolution and function (Liu et al., 2016; Zhou et al., 2023).

The largefin longbarbel catfish (Hemibagrus macropterus)
(Figure 1A), belonging to the Bagridae family (Siluriformes), is an
important commercial fish in southwestern China because of its high
nutritional value (Zhang et al., 2009). It is a benthic dweller naturally
distributed in the mainstream and tributaries of the Yangtze and Pearl
River Basins (Zhu et al., 2007). Largefin longbarbel catfish exhibit sexual
size dimorphism, with males growing faster than females. Two
karyotypes (2n = 56 and 60) have been reported for this species
among different populations (Hong and Zhou, 1984; Ma et al.,
2013). However, the genetic resources of largefin longbarbel catfish

are limited, which is unfavorable for understanding its genetic
characteristics and developing breeding programs.

In this study, we present the first high-quality chromosome-level
reference genome of H. macropterus. The assembled genome will be
beneficial for exploring the genome evolution, sex determination
mechanisms, and genetic breeding of largefin longbarbel catfish.
Furthermore, this contribution to the genomic resources of
Siluriformes will facilitate future comparative genomic studies
among catfish.

Data

Genome assembly

A total of 31.4 Gb Illumina clean data were used to assess
genome size and heterozygosity in H. macropterus. The predicted
genome size was approximately 873.7 Mb and the estimated
heterozygosity rate was 0.37%. For de novo genome assembly,
41.8 Gb PacBio HiFi reads were preliminarily assembled into
691 contigs with an N50 length of 5.8 Mb, covering 98.3% of the

FIGURE 1
Chromosome-level genome assembly of Hemibagrus macropterus and comparative genomics analysis. (A) Representative image of H.
macropterus. Scale bar represents 5 cm. (B) Karyotype of male H. macropterus. Scale bar represents 10 µm. (C) Heatmap of Hi-C interactions among
30 pseudochromosomes. Colour depth represents the density of the Hi-C interactions. (D) Phylogenetic relationships between H. macropterus and
16 other fish species based on 3,105 single-copy orthologous genes. (E)Chromosomal syntenic relationships amongH.macropterus,H.wyckioides,
and Pelteobagrus fulvidraco.

Frontiers in Genetics frontiersin.org02

Ye et al. 10.3389/fgene.2023.1297119

10

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1297119


estimated genome. Using the Hi-C technique, a total of 656 contigs
were successfully anchored to 30 pseudochromosomes (Figure 1C),
consistent with the number of chromosomes analyzed by karyotype
(Figure 1B) and reported in a previous study (Hong and Zhou,
1984). The assembled chromosome-level genome consisted of
35 contigs and 30 scaffolds, with a contig and scaffold
N50 length of 5.8 and 28.4 Mb, respectively (Table 1), which
represented 98.3% of the estimated genome. The guanine-
cytosine (GC) content was 40%, similar with that of other
Bagridae (Zhu et al., 2022). Benchmarking Universal Single-Copy
Orthologs (BUSCO) analysis revealed 97.7% of BUSCO genes
identified in the genome (Supplementary Table S1), indicating
high completeness for the genome assembly.

Genome annotation

The genome of H. macropterus contained 29.5% repetitive
sequences (Supplementary Table S2), with transposable element
(TE) accounting for 18.06% of the assembled genome. The largest
proportion of TE was terminal inverted repeats (9.29%), followed by
long terminal repeat retrotransposons (7.43%). Together with
homology, de novo, and RNA-seq prediction methods,
26,613 protein-coding genes were annotated (Supplementary
Table S3). The average length of gene, exon, and intron was
25,071, 171, and 2,881 bp, respectively (Table 1). BUSCO
assessments showed that 98.2% complete BUSCO genes were
predicted, including 96.1% single copy and 2.1% duplicated genes

(Supplementary Table S4). These results indicated high-quality
genome assembly and annotation of H. macropterus.

Genome evolution analysis

The evolutionary relationships between H. macropterus and
other teleosts were determined based on the analysis of
3,105 single-copy orthologous genes from of 17 fish genomes
(Supplementary Figure S1). H. wyckioides was most closely
related to H. macropterus, consistent with their taxonomic
relationship (Fricke et al., 2022), and clustered with P. fulvidraco
(Figure 1D). The nine species of Siluriformes formed a
monophyletic clade, and then together with Electrophorus
electricus (Gymnotiformes), Astyanax mexicanus (Characiformes),
and Danio rerio (Cypriniformes), formed the clade of
Ostariophysan. According to the fossil calibration times, the
estimated divergence time between H. macropterus and H.
wyckioides was approximately 16.3 Mya, and the divergence time
between M. macropterus and P. fulvidraco was around 27.7 Mya.

Through comparative genomic analysis, we identified 60 and
28 gene families, respectively, that underwent significant expansion
and contraction in H. macropterus (Supplementary Figure S2).
Enrichment analysis revealed that the expanded and contracted
genes were enriched in 18 and 7 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, respectively (Supplementary Tables
S5, S6), with most involved in the immunity, metabolism, and
hormone biosynthesis. These results provide valuable preliminary
information on the biological properties of the species.

Synteny anslysis

We compared the chromosome syntenies between H.
macropterus and two other catfish species. The karyotype of these
three species (P. fulvidraco, H. macropterus, and H. wyckioides) was
2n = 52, 2n = 60, and 2n = 59, respectively. Most of the
chromosomes between P. fulvidraco and H. macropterus
exhibited a one-to-one relationship (Figure 1E), whereas the
chromosomes (Chr) 1, 2, 7, and 9 of P. fulvidraco broke into two
chromosomes in H. macropterus. H. macropterus and H. wyckioides
displayed a strong one-to-one correspondence among their
chromosomes, except for the fission of H. wyckioides Chr6 into
Chr7 and 30, and inversion of some chromosomes (Chr6, 7, 10, 11,
14, 15, 16, 18, 21, 22, 25, and 29) in H. macropterus. It was recently
reported that the sex-determining region of P. fulvidraco and H.
wyckioideswas located on the Chr 2 and 26, respectively (Gong et al.,
2022), whereas the correspondent chromosomes in H. macropterus
were Chr14 and 15 and 24, respectively, indicating the complexity of
the sex-determining region or chromosome in catfish.

Materials and methods

Sample collection and sequencing

A male H. macropterus was collected for genome sequencing
from the Wuhan section of the Yangtze River. After anesthesia with

TABLE 1 Statistics of Hemibagrus macropterus genome assembly and
annotation.

Item Category Number

Sequencing data PacBio HiFi (Gb) 41.8

Illumina short WGS (Gb) 31.4

Hi-C(Gb) 98.4

Assembly Estimated genome size (Mb) 873.7

Assembled genome size (Gb) 858.5

Contig number 35

Contig N50 (Mb) 5.8

Scaffold number 30

Scaffold N50 (Mb) 28.4

Longest scaffold (Mb) 57.5

Annotation GC content (%) 40.0

Repeat sequences (%) 29.5

Number of protein-coding genes 26,613

Number of functional annotated genes 25,769

Average gene length (bp) 25,071.3

Average exon length (bp) 171.4

Average intron length (bp) 2,880.7

Average exon per gene 9.2
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3-aminobenzoic acid ethyl ester methanesulfonate-222 (MS-222)
(Sigma-Aldrich, St. Louis, MO, United States), muscle tissue was
collected, frozen in liquid nitrogen, and stored at −80°C, while other
tissues including brain, gills, heart, intestine, kidney, liver, spleen,
and testis were stored in RNAlater solution (Sigma-Aldrich). All
experiments involving in the handling and treatment of fish were
conducted in accordance with the Guidelines for the Care and Use of
Laboratory Animals of the Yangtze River Fisheries Research
Institute, Chinese Academy of Fishery Sciences.

Total genomic DNA was isolated from frozen muscle tissue
using a Blood & Cell Culture DNA Kit (Qiagen, Hilden, Germany).
DNA quality and purity were determined using a Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, United States) and
agarose gel electrophoresis. A 350 bp paired-end library was
constructed using an Illumina TruSeq DNA Nano Preparation
Kit (Illumina, San Diego, CA, United States) and sequenced on
an Illumina HiSeq 2500 platform (Illumina). Approximately 5 μg of
genomic DNAwas used to construct a PacBio SMRTbell library. The
library was sequenced using a PacBio Circular Consensus
Sequencing (CCS) Platform (PacBio, Menlo Park, CA,
United States). A Hi-C library was prepared using a GrandOmics
Hi-C kit according to the manufacturer’s instructions and
sequenced on an Illumina NovaSeq platform (Illumina). Total
RNA was extracted from different tissues of H. macropterus
using an RNeasy Plus Mini Kit (Qiagen). A complementary
DNA library was constructed using a TruSeq Stranded mRNA-
Seq kit on the Illumina HiSeq 2500 platform (Illumina).

Preparation of chromosome metaphases

Three male H. macropterus juveniles were injected twice with
phytohemagglutinin (PHA) at 10 μg/g body weight with a 12 h
interval, injected with colchicine at 10 μg/g body weight for 3 h, and
anaesthetised using MS-222. Kidney cells were collected by
hypotonic and fixation treatments as previously described (Zhu
and Gui, 2007) and the number of mitotic metaphase chromosomes
was counted in 100 cells.

Genome assembly and evaluation

Illumina clean short reads were used to estimate genome size
and heterozygosity based on k-mer frequency distribution analysis
using Jellyfish (Marçais and Kingsford, 2011). The PacBio long reads
were assembled de novo into contigs using Hifiasm (Cheng et al.,
2021), and then polished using Illumina short reads and NextPolish
(Hu et al., 2019). For chromosome-level assembly of the H.
macropterus genome, clean Hi-C reads were mapped to the
primary genome using Bowtie2 (Langmead and Salzberg, 2012).
HiC-Pro was used to validate interacting paired reads (Servant et al.,
2015). Primary assembly scaffolds were oriented, ordered, and
clustered on pseudochromosomes using LACHESIS (Korbel and
Lee, 2013). JuiceBox was used to adjust the placement and
orientation errors (Durand et al., 2016), and a Hi-C heat map
was constructed.

Two strategies were used to assess genome completeness. The
BUSCO completeness score of the assembled genome was evaluated

using the Actinopterygii database (Simão et al., 2015), and RNA-seq
data were mapped back to the genome using HISAT2 with default
settings (Kim et al., 2015).

Genome annotation

Repetitive elements of the H. macropterus genome were
annotated using both homology and de novo strategies.
According to the structural features, tandem and simple
sequence repeats were predicted using TRF (Benson, 1999)
and MISA (Beier et al., 2017), respectively, with default
parameters. The transposable elements were identified using
LTR_Finder (Ou and Jiang, 2019), LTRharverst (Ellinghaus
et al., 2008), and LTR_retriver (Ou and Jiang, 2017). De novo
annotation of other repeat sequences was performed using
RepeatModeler (Price et al., 2005), followed by genome-scale
detection using RepeatMasker (Chen, 2004). The combined
results of these two predictions provided the final annotation
of the non-redundant repeat elements in the genome.

We combined de novo, homology, and transcriptome-based
methods to predict protein-coding genes. For de novo prediction,
we used Augustus (Keller et al., 2011), GlimmerHMM (Majoros
et al., 2004), and Geneid (Blanco et al., 2007) with their default
parameters. Protein sequences of D. rerio, E. electricus, Esox lucius,
Gadus morhua, H. wyckioides, Silurus meridionalis, P. fulvidraco,
and Takifugu rubripeswere aligned to the genome ofH. macropterus
using TBLASTN (Camacho et al., 2009). GeneWise (Birney et al.,
2004) was used to predict the gene structure according to homology
alignments. For transcriptome-based prediction, protein-coding
regions were identified by aligning the transcripts with the
assembled genome using PASA (Haas et al., 2003). Transposons
were removed using TransposonPSI, and the final non-redundant
reference gene set was obtained using EVidenceModeler (Haas et al.,
2008).

For the functional annotation, the gene set was aligned to
proteins deposited in the SwissProt and NCBI non-redundant
protein databases using BLASTP. KEGG pathways were
annotated by the KEGG Automatic Annotation Server (Moriya
et al., 2007). Gene Ontology and protein domains were identified
using InterProScan (Jones et al., 2014) with default parameters.

Phylogenetic and comparative genomic
analyses

Orthologous gene families were identified by comparing the
predicted protein sequences of H. macropterus with those of
16 other fish using OrthoMCL (Li et al., 2003). Single-copy gene
orthogroups among these species were selected and aligned using
MAFFT V7 (Yamada et al., 2016). A maximum likelihood
phylogenetic tree was constructed using RAXML7 (Stamatakis,
2015) with 1,000 bootstrap replicates. Divergence time was
estimated using MCMCTREE in PAML4 (Yang, 2007), and
calibrated using fossil divergence times from the TimeTree
database (http://www.timetree.org/). Based on the results of
OrthoMCL, expanded and contracted gene families were
analyzed via CAFE (De Bie et al., 2006), and functional
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enrichment analysis was performed by alignment homologues
against the KEGG pathway database.

Chromosomal syntenic analysis

To investigate the chromosomal syntenic relationships among
H. macropterus, H. wyckioides, and P. fulvidraco, MCscan (Tang
et al., 2008) was applied to determine the syntenic blocks. Proteomes
were compared between the pairs of species using BLASTP with an
e-value of 1e-5, and a minimum of four genes in each block were
used for synteny calling.
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Dromedary camels (Camelus dromedarius) are members of the Camelini tribe within 
the Camelidae family. They are distributed throughout North Africa, the Arabian 
Peninsula and Southeast Asia. This domestic species is characterized by its superior 
adaptability to the harsh desert environment. In this study, whole autosomal data 
of 29 dromedary samples from the Southeast Arabian Peninsula in Oman; 10 from 
Muscat, 14 from Al-Batinah, and 5 from Al-Sharqiya, were investigated to assess 
their genetic relationship and to define candidate signatures of positive selection. 
A minimal genetic distinction that separates Muscat dromedaries from the other 
two populations was observed, with a degree of genetic admixture between them. 
Using the de-correlated composite of multiple signals (DCMS) approach, a total of 
47 candidate regions within the autosomes of these dromedary populations were 
defined with signatures of positive selection. These candidate regions harbor a total 
of 154 genes that are mainly associated with functional categories related to immune 
response, lipid metabolism and energy expenditure, optical and auditory functions, 
and long-term memory. Different functional genomic variants were called on the 
candidate regions and respective genes that warrant further investigation to find 
possible association with the different favorable phenotypes in dromedaries. The 
output of this study paves the way for further research efforts aimed at defining 
markers for use in genomic breeding programs, with the goal of conserving the 
genetic diversity of the species and enhancing its productivity.

KEYWORDS

de-correlated composite of multiple signals, environmental adaptation, signatures of 
selection, genetic diversity, dromedary camels

Introduction

Dromedary camels are considered an integral part of both Bedouin and non-Bedouin 
societies in the Arabian Peninsula. They were indispensable means of transportation, with which 
owners covered vast areas of the desert for commuting and trading. These animals are patient, 
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sturdy, able to withstand harsh environmental conditions, and can 
navigate through treacherous sand storms. Settlers utilized them for 
land plowing and transporting heavy loads over long distances. In 
both societies, camels provided meat, milk, hide, and a living asset that 
can be cashed in times of need (1). Camels still provide meat and milk 
today due to increasing demand for both products. However, as 
lifestyles and priorities in the nations of the Arabian Peninsula slowly 
changed with modernity, other uses for camels emerged (2). 
Historically, camel racing competitions have been well-known in the 
Arabian Peninsula. However, in modern times, racing and beauty 
competitions have attracted significantly more participants (3). As a 
result, camel owners have increasingly focused on selecting animals 
that excel in both racing and beauty competitions over the last 
few decades.

Oman’s weather is characterized by warm and dry conditions with 
average temperatures ranging between 16°C (in winter) and 31°C (in 
summer) but can soar up to 50°C during the summer (4). The 
exception to this weather pattern is in the southern region of Dhofar, 
which is affected by monsoon winds during the summer, locally 
known as Al-Khareef. These winds give rise to dazzle fog and 
occasional rain, resulting in lush vegetation and pastures (5). The 
Omani coastline spans over 2,000 km along the Arabian Sea and the 
Gulf of Oman, leading to an increase in relative humidity throughout 
the year in areas close to coastline (4). The average annual rainfall 
ranges from 50 mm in plain areas to over 300 mm in the southern 
region, with an overall average of about 100 mm per year (6).

Oman harbors approximately 280,000 dromedary camels, mainly 
used for milk production, racing or beauty competitions (7). As 
observed by Al Askar et al. (8), Omani camels are genetically distinct 
and have little to no admixture with other camel populations in the 
region. The majority of Omani camels, about 60%, are found in the 
southern region of Oman in the Governorate of Dhofar (9). It is 
believed that they have descended from the southern part of the 
Arabian Peninsula (10) and are highly regarded as some of the finest 
camels in the region (9), often prized for their racing abilities and 
stamina (8).

Assessing the genetic diversity and relationship of different 
dromedary camel populations was confined previously to using 
autosomal microsatellites (8, 11) and mitochondrial DNA markers 
(10, 12). Recent efforts have also utilized genotyping-by-sequencing 
(GBS) (13) and whole genome sequence data (14). A recent study by 
Almathen et al. (11) differentiated dromedary camel populations 
from the Arabian Peninsula into three groups utilizing 17 
microsatellite loci. These groups correspond to three geographical 
locations: (1) North, Central, and West, (2) Southwest, and (3) 
Southeast. Similarly, Bahbahani and Almathen (14) observed the 
same geographic genetic distinctions based on whole genome 
sequence analyses.

Signatures of selection analyses have been performed on 
different livestock species, such as cattle (15–17), sheep (18, 19) and 
goat (20, 21), to determine candidate regions and genes associated 
with different favorable traits. Recent releases of the dromedary 
draft reference genome starting with the Arabian Peninsula (22), 
followed by the North African dromedary genome draft (23), and 
recently the chromosome-level draft by Elbers et al. (24) have all 
encouraged scientists to investigate the genome of dromedary 
camels in search for natural selection footprints (13, 25, 26). 
Releasing the first draft of the dromedary camel genome in 2014 

revealed several gene ontologies to be under adaptive evolution, 
such as fat and water metabolism, response to heat stress, and salt 
metabolism (22). Bahbahani et al. (13) investigated the genome of 
dromedary racing and packing camels from Sudan for signatures of 
selection using genotyping-by-sequencing data where they found 
natural selection signals on genes associated with energy 
homeostasis, chondrogenesis, milk content, and immune response. 
Recently, a study by Khalkhali-Evrigh et  al. (26) on Iranian 
dromedary camels also defined genes related to energy metabolism, 
reproduction, and long-term memory to be  under natural 
positive selection.

Previously mentioned studies on dromedary camels relied on 
separate single statistical tests to detect signatures of selection. 
However, to improve the accuracy and resolution of detecting 
selection signatures, several composite analyses have been proposed 
that combine the signals of different statistics. These include 
Composite of Multiple Signals (CMS) (27), Meta-analysis of 
Selection Signals (28), and Composite Selection Signals (CSS) (29). 
While these approaches were successfully used to define candidate 
regions under selection in humans (27) and cattle (30), they either 
require accurate demographic models, as in the case of CMS, which 
was investigated by Fitak et al. (31), or they do not account for the 
covariance structure of the different single statistics employed. To 
address these limitations, Ma et al. (32) introduced a new approach 
called the de-correlated composite of multiple signals (DCMS). 
Compared to meta-SS and CSS, DCMS has generally shown higher 
power in detecting selection signatures. This approach has been 
previously employed to look for signatures of selection in Swedish 
cattle breeds (33), Russian cattle breeds (34), Russian sheep breeds 
(35), and Welsh sheep breeds (36).

In this study, the genetic diversity and relationship of Omani 
dromedary camels from the southeast of the Arabian Peninsula were 
assessed using whole genome sequence data. Signatures of natural 
positive selection were also investigated in the genome of Omani 
dromedary camels using the DCMS approach to defined candidate 
regions and genes under natural selection.

Materials and methods

Dromedary samples whole genome 
sequence data

Twenty hair bulbs were collected from each of 29 dromedary 
camels selected from the southeast of the Arabian Peninsula in the 
north of Oman: 10 from Muscat, 14 from Al-Batinah and 5 from 
Al-Sharqiya governorates. The samples were collected from different 
owners to avoid a close relationship. Hair bulbs genomic DNA was 
extracted using Gentra DNA purification kit as in Cook et al. (37), and 
sequenced using 150 bp paired-end libraries on an Illumina 
Hiseq 2000 platform at IGA Technology Services (Udine, Italy).

Whole genome sequence data processing 
and variants calling

The adaptor-free sequence reads were mapped against the Arabian 
dromedary camel reference genome assembly (GCF_000803125.2) 
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using the bwa-mem algorithm of Burrows-Wheeler Aligner (BWA) 
version 0.7.17 (38). Reads were sorted by coordinates using the 
SortSam algorithm and SORT_ORDER = coordinate option, and 
duplicates were marked and excluded using MarkDuplicates algorithm 
and REMOVE_DUPLICATES = true option in Picard tools version 
3.0.0.1 Summary statistics calculated for mapped reads included: the 
proportion of reference genome covered, mean depth of coverage, and 
percentage of mapped reads via the coverage and flagstat tools in 
SAMTools software version 1.13 (39).

Single Nucleotide Polymorphisms (SNPs) were called across all 
samples using the HaplotypeCaller tool in GVCF mode of GATK 
version 4.2.5.0 (40). The variants were subsequently combined and 
genotyped using the GATK CombineGVCFs and GenotypeGVCFs 
tools resulting in a total of 8,010,983 SNPs. After selecting autosomal 
SNPs, variants were hard-filtered using the VariantFiltration tool of 
GATK to exclude: (1) variants with high probability strand bias 
between reference and alternate alleles (FS > 60); (2) variants with low 
quality by depth (QD < 2); (3) variants with a low root mean square 
mapping quality (MQ < 40); (4) variants with low phred-scaled variant 
probability (QUAL < 30); (5) variants with strand bias in mapping 
quality between reads supporting reference or alternate alleles 
(MQRankSum < −12.5); and (6) variants where the position of the 
alternate allele exhibits a bias toward the ends of the reads 
(ReadPosRankSum < −8). SNPs with a depth of coverage ranging 
between two reads and three standard deviations from the mean depth 
of coverage across samples were retained to end up with a total of 
5,099,313 autosomal SNPs.

SNPs quality control pruning

The retained autosomal SNPs underwent two separate quality 
control pruning criteria using PLINK v1.9 (41) for each of the genetic 
diversity and signature of selection analyses. For the diversity analysis, 
autosomal SNPs were pruned if: (1) their call rate was <100% of the 
genotyped samples; (2) they departed from the Hardy–Weinberg 
equilibrium (p-value <1 × 10−6); or (3) they had a minor allele 
frequency (MAF) ≤5%. Linkage disequilibrium pruning was also 
implemented using the PLINK option (--indep-pairwise 50 10 0.5), as 
in Ming et al. (42), to exclude SNPs with a correlation coefficient 

1 http://broadinstitute.github.io/picard/index.html

(r2) > 0.5. Average r2 was calculated between SNP pairs using the 
PLINK option (--r2 --ld-window 1000000 --ld-window-kb 2000 
--ld-window-r2 0.09) (Supplementary Figure S1). The same quality 
control criteria were applied to SNPs for the signatures of selection 
analyses except for linkage disequilibrium, which is considered as a 
signal of selection. The final number of SNPs for the genetic diversity 
and signatures of selection analyses remaining were 208,524 and 
3,138,930, respectively (Table 1). Samples were filtered out if they had 
a genotyping call rate <100% or a maximum pairwise identity-by-state 
(IBS) ≥95%, in which case the sample with the lower call rate was 
excluded. No samples were excluded due to these criteria.

Genetic diversity analyses

Observed homozygosity and inbreeding coefficient (Fis) were 
computed for the different dromedary camel populations using the 
hom function of the GenABLE package (43) in R software version 
4.1.0 (44). Two-sample Mann–Whitney U test was used to test for 
statistically significant differences in the homozygosity and Fis values 
between different dromedary populations. One-sample Mann–
Whitney U test was used to check if the Fis values of each of the 
dromedary populations were significantly different from zero. 
Principal Component Analysis (PCA) was conducted on the filtered 
SNP data to determine the genetic relationship between the 
dromedary populations. Prcomp function implemented in R software 
was used to define the different principal components and the amount 
of variation explained by each component. The first two components 
were plotted using the ggplot2 package (45) of R software. Local 
ancestry proportions of the different dromedary samples were 
estimated using the ADMIXTURE 1.23 software (46). Ancestral 
cluster (K) values ranging from 1 to 3 were assumed to reflect the total 
number of populations in the dataset. A total of 200 bootstrap 
iterations were performed for each K analysis. The K cluster with the 
lowest cross-validation error (cv) was considered as the optimal 
number of clusters fitting the dataset.

Signatures of selection analysis

The de-correlated composite of multiple signals (DCMS) 
approach (32) was used to detect signatures of selection on the 
autosomes of the dromedary camels. This approach employed four 
statistical tests: two allele-frequency spectrum-based statistics 

TABLE 1 Quality control criteria and the number of excluded and remaining SNPs for the genetic diversity and signatures of selection analyses.

Dataset Number of SNPs

Raw autosomal SNPs 5,099,313

Quality control criteria Number of excluded SNPs

Diversity analyses Signatures of selection analyses Diversity analyses Signatures of selection analyses

Genotypic call rate < 100% Genotypic call rate < 100% 851,275 851,275

MAF ≤ 5% MAF ≤ 5% 1,039,085 1,039,085

HWE (p-value <1 × 10−6) HWE (p-value <1 × 10−6) 70,023 70,023

Linkage disequilibrium (R2 > 0.5) 2,930,406

Final number of SNPs 208,524 3,138,930
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[Tajima’s D index (47) and nucleotide diversity (pi) (48)]; and two 
intra-population haplotype-based statistics [integrated haplotype 
score (iHS)] (49) and number of segregating sites by length 
(nSL) (50).

Tajima’s D statistic was estimated in sliding 100 kb windows with 
a 25 kb step using the Tajima flag implemented in the VCF-kit tool 
version 0.2.6 (51). Nucleotide diversity (pi) was calculated for each 
chromosome separately on a per-site basis using the --site-pi 
function implemented in VCFtools version 0.1.16 (52). For 
calculating iHS and nSL scores, Beagle (53) was used in its default 
parameters for haplotype phasing to determine the individual 
haplotypes. After haplotype phasing, the iHS and nSL scores were 
obtained for every SNP using the selscan tool and default parameters 
(54). Before combining the four statistics, the nucleotide diversity, 
iHS, and nSL values were all standardized individually in sliding 
100 kb windows with a 25 kb step and yielded mean values using an 
in-house R script.

In the final step, the 100 kb windows of the four statistics were 
all processed using the MINOTAUR package (55) in R software. 
After excluding windows with less than 10 SNPs, the results of the 
four statistics were converted to p-values based on fractional ranks 
using the stat_to_pvalue function. The p-values were then 
transformed to rank-based p-values based on either the one-tailed 
test (Tajima’s D and pi - left-tailed) or two-tailed tests (iHS and 
nSL). Then, the correlation between the four statistics was calculated 
by constructing a covariance matrix using the Cov-NAMcd function 
with α = 0.75 and nsamp = 50,000. This matrix was then used to 
adjust for correlation among the statistics and obtain the DCMS 
values concurrently with the DCMS function. p-values for the 
DCMS values were calculated using the pnorm function in 
R. Windows with –log10 (p-values) ≥ 4, which is equivalent to 
p-values ≤0.0001, were defined as candidate windows with 
signatures of selection. Finally, overlapping windows were merged 
into a single candidate region under selection.

Functional annotation of the candidate 
signatures of selection regions

The coordinates of the candidate regions were cross-referenced 
against the dromedary camel reference genome assembly 
(GCF_000803125.2) genes list using the GenomicRanges package 
(56) in R. Functional profiling of the overlapping genes was 
conducted using the (g: GOSt) function of the gProfiler web server 
(57), which determined the functionally enriched terms for the 
Gene Ontology (GO), biological processes and molecular functions. 
The gprofiler (g: SCS) algorithm was used to compute multiple 
testing corrections for p-values from GO and pathway enrichment 
analyses. All the identified genes were also processed using the 
functional annotation enrichment tool implemented in DAVID 
Bioinformatics resources 6.7 (58) to determine enriched functional 
terms. An enrichment score of 1.3, which is equivalent to the Fisher 
exact test p-value of 0.05, was used as a threshold to define the 
significantly enriched functional terms in comparison to the 
dromedary reference genome background. The genes were then 
cross-referenced with literature to evaluate their biological 
functions. Genomic variants in the candidate regions were 
annotated with SnpEff software version 4.3 (59).

Results

Summary statistics of mapped sequence 
reads

The depth of coverage of the mapped sequence reads among the 
Omani dromedary samples ranged from 7.93X to 22.5X with a 
mean of 11.4X (Supplementary Table S1). On average, 99.8% of the 
sequence reads were mapped to the dromedary reference genome, 
out of which 96.2% of them were properly paired. These mapped 
reads covered an average of 94.8% of the reference genome 
(Supplementary Table S1).

Genetic diversity analyses

The mean observed homozygosity values were estimated as 0.576 
for Muscat, 0.575 for Al-Batinah, and 0.563 for Al-Sharqiya 
dromedaries, which were not significantly different from each other 
(p-value > 0.05). Negative Fis values were calculated for the different 
dromedary camels: −0.062 for Muscat, −0.062 for Al-Batinah, and 
−0.093 for Al-Sharqiya camels. The different Fis values were not 
significantly deviated from zero and did not show significant 
differences among each other (p-value > 0.05).

The principal component analysis showed a degree of genetic 
separation between the Omani camels from Muscat and the other 
Omani camels through the first principal component, which explained 
4.7% of the total variation. Along this component, the Omani camels 
from Al-Sharqiya were slightly separated from Al-Batinah camels 
(Figure 1).

The optimal number of clusters determined by the admixture 
analysis was K = 1 (Supplementary Table S2). At K = 2, a genetic 
ancestry background related to Omani camels from Muscat was 
observed. A substantial degree of genetic admixture also observed 
among the Omani dromedaries analyzed at all K values tested 
(Figure 2).

FIGURE 1

Principal Component Analysis (PCA) plot on the Muscat, Al-Batinah 
and Al-Sharqiya dromedaries.
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Signatures of selection analysis

The calculated DCMS values for the total 77,133 windows on the 
genome of the Omani dromedary camels ranged from −14.74 
(p-value = 1) to 14.67 (p-value = 4.04 × 10−8), in which a total of 87 
candidate windows passed the threshold of p-value <1 × 10−4 (Figure 3, 
Supplementary Table S3). The candidate windows were merged into 

47 regions ranging in size from 100 kb to 225 kb with a mean size of 
123.94 kb ± 32.54 kb. These regions were distributed among 20 
autosomes with chromosome 6 having the highest number of regions 
(n = 6) (Supplementary Table S4). The largest candidate regions were 
in chromosomes 20 (117.5 Mb to 119.8 Mb) and 7 (209.0 Mb to 
211.3 Mb), while the most significant candidate window was in 
chromosome 20 (118.3 Mb to 119.3 Mb) (Supplementary Table S4).

FIGURE 2

Admixture analysis plots of K  =  2 and 3 on the Muscat, Al-Batinah, and Al-Sharqiya dromedaries.

FIGURE 3

Manhattan plot of DCMS analysis on the autosomes of Omani dromedary camels. The horizontal line represents a significant p-value threshold of 
1  ×  10−4.
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Functional profiling of the candidate 
regions

A total of 154 genes were found within the 47 candidate regions 
relating to different functional categories, such as immune response, 
lipid metabolism and energy expenditure, optical function, long-term 
memory, and fertility (Table  2, Supplementary Table S5). The 
functional profiling of the defined genes indicated different 
functionally enriched molecular and biological processes relating to 
molecular adaptor activity, dopamine signaling, olfactory behavior, 
and Wnt signaling (Supplementary Table S6). Based on the DAVID 
analysis, eight functional clusters were identified, showing enrichment 
for functions relating to transcription (enrichment score = 1.04), 
diseases (enrichment score = 0.8), Wnt signaling pathway (enrichment 
score = 0.66), beta-transducing repeats (enrichment score = 0.58), 
acidic and basic amino acids (enrichment score = 0.44), extracellular 
regions (enrichment score = 0.36), immunoglobulin domains 
(enrichment score = 0.35), and transmembrane helices (enrichment 
score = 0.26) of which none were significantly enriched 
(Supplementary Table S7). A total of 12,089 variants were called on 
the defined candidate regions, which were classified into different 
types and the majority of them being intronic variants (59.5%), 
followed by intergenic region variants (16.67%), downstream gene 
variants (10.08%) and upstream gene variants (7.89%) (Table  3, 
Supplementary Table S8).

Discussion

The analyzed Omani dromedary camel populations showed a 
minimal degree of genetic distinction mainly related to their distinct 
geographical origins: Muscat, Al-Batinah, and Al-Sharqiya. Such 
genetic distinction might also be  related to the different types of 
dromedaries analyzed, as dromedary camels from Muscat are known 
as production camels while camels from Al-Batinah and Al-Sharqiya 
are non-production type, i.e., beauty and racing types. According to 

camel owners, Omani production camels are rarely interbred with 
beauty or racing camels. Conversely, limited interbreeding occurs 
between beauty and racing camels. This type-wise genetic 
differentiation needs to be  further validated by sequencing more 
dromedary samples from these different classifications.

A substantial level of genetic introgression was also observed 
among the Omani dromedary populations, which may reflect the 
historical use of dromedaries in transportation and trading linking the 
different parts of the Arabian Peninsula through the “Incense Route” 
(60). Similar genetic phenomena have also been observed in 
dromedary camels from the Arabian Peninsula based on autosomal 
microsatellite data (11), whole genome sequence data (14), and in 
African dromedary camels (13). The practice of outbreeding among 
camel owners, characterized by random breeding between different 
camel populations, could also contribute to the observed genetic 
admixture. This is supported by the mean negative Fis values 
calculated for the different dromedary populations analyzed.

Several candidate genome regions were defined with signatures of 
positive selection based on the DCMS approach on Omani dromedary 
camels. This approach has the advantage of combining the signals of 
the different signature of selection statistics and outperforms the 
power of any single statistic (32). The use of such composite statistics, 
as seen with meta-SS, CMS, and CSS, will improve the resolution of 
localizing the selection hotspot (27, 28, 32).

The defined candidate regions harbor genes mainly related to 
different signaling pathways, such as Wnt signaling and dopamine 
signaling, immunity, hematopoiesis, fat metabolism and energy 
expenditure, and thermoregulation. These biological functions might 
be  related to the adaptations of dromedary camels within their 
surrounding environment and habitat. The Wnt signaling pathway, a 
functionally enriched pathway identified among the genes in the 

TABLE 2 Examples of candidate genes and their number of variants in 
different functional categories within the candidate regions.

Functional 
category

Gene 
ID

Candidate 
region (Chr: 
start-stop)

Total 
number of 

variants

Immune response GMFG 9:64.00 Mbp-64.17 Mbp 8

IL17RD 17:23.72 Mbp-23.82 Mbp 133

SLC22A7 20:11.75 Mbp-11.97 Mbp 40

Lipid metabolism 

and energy 

expenditure

SELENOV 9:64.00 Mbp-64.17 Mbp 11

STEAP2 7:20.90 Mbp-21.12 Mbp 31

NBEAL1 5:68.40 Mbp-68.50 Mbp 109

Optical function RLBP1 27:16.52 Mbp-16.67 Mbp 47

Long-term 

memory

SYT3 9:70.90 Mbp-71.00 Mbp 64

TTBK1 20:11.75 Mbp-11.97 Mbp 142

Auditory function CRIP3 20:11.75 Mbp-11.97 Mbp 32

SLC22A7 20:11.75 Mbp-11.97 Mbp 40

Fertility CFAP69 7:20.90 Mbp-21.12 Mbp 32

SRF 20:11.75 Mbp-11.97 Mbp 32

TABLE 3 Types, counts, and percentages of genomic variants called in 
the candidate regions.

Type of variants Count Percentage

Intron variant 17,514 59.50%

Intergenic region 4,908 16.67%

Downstream gene variant 2,967 10.08%

Upstream gene variant 2,322 7.89%

Missense variant 409 1.39%

3-prime UTR variant 361 1.23%

Synonymous variant 358 1.22%

Noncoding exon variant 239 0.81%

Intergenic variant 133 0.45%

5-prime UTR variant 117 0.40%

5-prime UTR premature start codon gain 

variant

40 0.14%

Splice region variant. Intron variant 35 0.12%

Nonsense variant 16 0.05%

Missense variant. Splice region variant 7 0.02%

Splice region variant 6 0.02%

Splice acceptor variant. Intron variant 1 0.01%

Splice region variant. Noncoding exon variant 1 0.01%

Splice region variant, synonymous variant 1 0.01%
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candidate regions, has a main role in myogenesis. The canonical and 
non-canonical Wnt signaling pathways are involved in regulating the 
differentiation of muscle stem cells and the growth of skeletal muscle 
fibers, respectively, which have a significant impact on the ability of 
dromedary camels to endure long-distance transportation along the 
sandy deserts (61).

Genes with biological roles associated with immunity, such as glia 
maturation factor gamma (GMFG) interleukin 17 receptor D (IL17RD), 
and solute carrier family 22 member 7 (SLC22A7) were found within 
three candidate regions on chromosomes 9, 17, and 20, respectively. 
These biological functions are considered natural selection hotspots in 
dromedaries, as they enable them to tolerate infections and pathogen 
loads in the desert environment. The GMFG gene plays an important 
role in maintaining effective cellular immunity. The encoded protein is 
a component of T-lymphocytes pseudopodia and is hence involved in 
regulating their migration (62). Interleukin 17 receptor D is involved 
in controlling inflammation upon mediating IL-17A-induced 
proinflammatory gene expression as observed in keratinocytes and 
psoriasis-like skin inflammation (63). IL17A has also been found to 
play a role in tissue repair by enhancing cellular adaptation to chronic 
hypoxia upon activating hypoxia-inducible factor 1a (HIF1a) pathway 
in epithelial cells (64). SLC22A7 is an organic anion transporter 
involved in regulating blood uric acid level by the renal systema (65). 
Uric acid plays a role in triggering interleukin-mediated inflammation 
and induction to type 2 immune response (66).

Energy and fat metabolism, as well as visual system, were found 
to be under adaptive evolution in camelids by Wu et al. (22). Genes 
related to these functional categories have also been found in the 
defined candidate regions in this study. The Selenoprotein V 
(SELENOV) gene in the candidate region (9: 64–64.17 Mb) is an 
example of a gene involved in fat metabolism and energy expenditure. 
In a mouse knockout experiment by Chen et al. (67), high-fat mass 
accumulation and a decrease in energy release have been observed 
upon SELENOV depletion. STEAP2 gene in the candidate region (7: 
20.9–21.1 Mb) is another example of a gene related to fat metabolism. 
This gene has been found to be significantly up-regulated in myogenic 
precursors, which differentiates skeletal muscle fibers. The balance 
between myogenesis and adipogenesis during skeletal muscle 
development is related to intramuscular fat content (68). 
Neurobeachin like 1 (NBEAL1) gene in the candidate region (5: 
68.4–68.5 Mb) is involved in cholesterol metabolism. The encoded 
NBEAL1 protein regulates the expression of low-density lipoprotein 
(LDL) receptors, which are required to uptake extracellular 
cholesterol from LDL upon controlling the sterol regulatory element-
binding protein 2 (SREBP2) processing (69). NBEAL1 has also been 
involved in regulating body temperature in cattle, as highlighted in 
by Howard et al. (70). Interestingly, this gene has been considered as 
a candidate of selection pressure in locally adapted Mediterranean 
sheep (71), Ethiopian sheep (72), and Ugandan goats (73). Long-term 
ultraviolet radiation exposure is a selective force facing dromedary 
camels in the desert environment, which may target genes related to 
photoreception, such as the RLBP1 gene found in the candidate 
region (27: 16.5–16.67 Mb). This gene codes for the cellular 
retinaldehyde-binding protein (CRALBP) in the retinal pigment 
epithelial and Muller cells of the retina. CRALBP is involved in the 
visual cycle (retinoid cycle) for continued light detection by rod and 
cone photoreceptor cells (74, 75).

Dromedary camels are characterized by a long-term memory that 
was commonly used to remember the routes of long journeys, hence 

genes related to neural development and differentiation may 
be considered as targets of selection. Synaptotagmin 3 (SYT3) gene 
was found in a candidate region on chromosome 9 (9: 70.9–71 Mb). 
The synaptotagmin 3 protein is an integral membrane protein 
localized in the postsynaptic endocytic zone of neurons. This protein 
is important to promote forgetting, which is crucial to maintain an 
acquired memory in changing environments. A study conducted by 
Awasthi et al. (76) demonstrated a lack of forgetting ability in SYT3 
knock-out mice. Tau-tubulin kinase 1 (TTBK1) found in the candidate 
region (20: 11.75–11.97 Mb) is another example of a gene related to 
neural development and memory. This gene has been found to encode 
neuron-specific protein that regulates the phosphorylation of the tau 
protein. Tau protein hyperphosphorylation and aggregate formation 
are correlated to various neurodegenerative disorders, such as 
Alzhiemer’s disease, and dementia across several species (77).

The desert environment has a significant impact on the physical 
properties of sound, with factors such as humidity-related attenuation 
and sound propagation altering the way that sound travels. 
Unfortunately, these changes can also make dromedary camels 
vulnerable to abiotic noise, especially wind noise, which can disrupt 
their auditory awareness and balance (78). Genes related to hearing 
function have also been found in this study, particularly the genes 
CRIP3 and SLC22A7 both found in chromosome 20 (20: 11.75–
11.97 Mb). Variants on the genes CRIP3, which plays a role in T-cell 
proliferation and metal-ion binding, and SLC22A7, have been found 
to be associated with hearing loss in humans (79).

A major challenge facing dromedary camels is their reproductive 
fitness in such a harsh desert environment. Therefore, genes involved 
in spermatogenesis, such as the CFAP69 gene in the candidate region 
(7: 20.9–21.1 Mb), are a target of natural selection to maintain optimal 
sperm motility. This gene, which codes for cilia and flagella-associated 
proteins, has been found to be associated with multiple morphological 
abnormalities of sperm flagella (MMAF) syndrome and consequently 
male infertility. Knocking out this gene in mice revealed severe 
disruption to the sperm flagellum structure (80). The serum response 
factor (SRF) gene in the candidate region (20: 11.75–11.97 Mb) may 
also be another target of selection. This gene has been found to play a 
role in early embryonic development and its knockout leads to 
embryonic lethality by mid-gestation (81).

Several uncharacterized loci were found within the defined 
candidate regions, more specifically in chromosome 6 (6:38.57–
38.7 Mb), which is one of the most significant regions defined in this 
study. These loci need to be further investigated to determine their 
biological roles that might be related to the dromedaries’ adaptability. 
In addition to these loci, the most recent draft of the dromedary 
genome (CamDro3) contains 21,032 scaffolds unmapped to the 
autosomes or sex chromosomes and consequently were excluded from 
the analyses here. The genes on these scaffolds can be considered as 
potential targets of selection. Further sequencing efforts are required 
to map these DNA elements into their corresponding chromosome to 
be investigated for signatures of selection.

Different classes of genomic variants have been identified in the 
candidate regions, in which some of them are associated with 
functional impacts: such as amino acid changes, i.e., missense variants; 
truncated proteins, i.e., nonsense variants; or modifications in gene 
expression levels, i.e., upstream gene variants. The significance of these 
variants warrants further investigation that includes specific 
phenotypic data to find possible associations via genome-wide 
association analyses.
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Conclusion

Here, we have investigated, for the first time, the whole autosome 
of dromedary camels from southeast of the Arabian Peninsula to 
assess their genetic diversity and search for genomic signatures of 
selection. A degree of geographical-wise genetic distinction with a 
substantial level of introgression has been observed among the 
dromedary populations. Based on the de-correlated composite 
multiple signals (DCMS) approach, candidate regions and genes with 
signatures of positive selection were defined. Different environmental 
data; such as humidity, pathogens load, temperature, altitude and 
salinity, are needed to investigate possible correlations between these 
selection signatures and the dromedaries’ adaptability to their 
environment. Moreover, such discoveries need to be further validated 
by including more diverse dromedary populations from different 
geographical regions and habitats in the Arabian Peninsula. An 
improvement of the reference genome draft would serve as an 
advantage to similar analyses whereby the functionality of the 
unplaced scaffolds can be further explored. This study represents the 
first milestone in developing genomic markers that can be used in 
designing genomic-informative breeding programs to conserve the 
genetic diversity of this well-adapted species and improve 
its productivity.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found here: https://www.ebi.ac.uk/ena, PRJEB67314.

Ethics statement

Ethical approval was not required for the study involving animals 
in accordance with the local legislation and institutional requirements 
because no approval was required as the research only required hair 
samples from the animals which were collected with minimum 
discomfort and with non invasively.

Author contributions

MA: Conceptualization, Funding acquisition, Writing – original 
draft, Writing – review & editing. AA: Data curation, Formal Analysis, 
Investigation, Software, Writing – original draft. ZM: Data curation, 
Formal Analysis, Investigation, Methodology, Software, Validation, 

Visualization, Writing – review & editing. FA: Conceptualization, 
Data curation, Investigation, Project administration, Writing – 
original draft, Writing – review & editing. WA-M: Funding acquisition, 
Writing – review & editing. SA-H: Validation, Writing – review & 
editing. MA-A: Funding acquisition, Writing – review & editing. HB: 
Conceptualization, Writing – original draft, Writing – review & 
editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
funded by the Ministry of Higher Education, Research and Innovation. 
Grant code: RC/RG-AGR/ANVS/19/01.

Acknowledgments

We would like to thank the Royal Court Affairs and Royal Camel 
Corps for their support in sample collection and logistics of the 
project. We would also like to thank the camel owners for permission 
to sample their camels.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fvets.2023.1296610/
full#supplementary-material

References
 1. Al Abri MA, Faye B. Genetic improvement in dromedary damels: challenges and 

opportunities. Front Genet. (2019) 10:167. doi: 10.3389/fgene.2019.00167

 2. Khalaf S. Poetics and politics of newly invented traditions in the gulf: camel 
racing in the United  Arab  Emirates. Ethnology. (2000) 39:243–61. doi: 
10.2307/3774109

 3. Al-Shorepy SS. Identification of environmental factors affecting the racing 
performance of race camels in the United Arab Emirates. Emir J Food Agric. (2011) 
23:424–30.

 4. Yousif JH, Al-Balushi HA, Kazem HA, Chaichan MT. Analysis and forecasting of 
weather conditions in Oman for renewable energy applications. Case Stud Therm Eng. 
(2019) 13:100355. doi: 10.1016/j.csite.2018.11.006

 5. Tigani ElMahi A. Old ways in a changing space: the issue of camel pastoralism in 
Dhofar. JAMS. (2011) 16:51–64.

 6. Al-Ajmi HA, Abdel Rahman HA. Water mangement intricacies in the Sultanate of 
Oman the augmenation—conservation conundrum. Water Int. (2001) 26:68–79. doi: 
10.1080/02508060108686887

22

https://doi.org/10.3389/fvets.2023.1296610
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.ebi.ac.uk/ena
https://www.frontiersin.org/articles/10.3389/fvets.2023.1296610/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fvets.2023.1296610/full#supplementary-material
https://doi.org/10.3389/fgene.2019.00167
https://doi.org/10.2307/3774109
https://doi.org/10.1016/j.csite.2018.11.006
https://doi.org/10.1080/02508060108686887


Al Abri et al. 10.3389/fvets.2023.1296610

Frontiers in Veterinary Science 09 frontiersin.org

 7. NCSI. National Center for statistics & information (2023).

 8. AlAskar H, Alhajeri BH, Almathen F, Alhaddad H. Genetic diversity and 
population structure of dromedary camel-types. J Hered. (2020) 111:405–13. doi: 
10.1093/jhered/esaa016

 9. Shaat I, Al-Habsi R. Current status of animal genetic resources in Oman. JASFT. 
(2016) 2:139–46.

 10. Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt 
D, et al. Ancient and modern DNA reveal dynamics of domestication and cross-
continental dispersal of the dromedary. PNAS. (2016) 113:6707–12. doi: 10.1073/
pnas.1519508113

 11. Almathen F, Bahbahani H, Elbir H, Alfattah M, Sheikh A, Hanotte O. Genetic 
structure of Arabian peninsula dromedary camels revealed three geographic groups. 
Saudi J Biol Sci. (2022) 29:1422–7. doi: 10.1016/j.sjbs.2021.11.032

 12. Alaqeely R, Alhajeri BH, Almathen F, Alhaddad H. Mitochondrial sequence 
variation, haplotype diversity, and relationships among dromedary camel-types. Front 
Genet. (2021) 12:723964. doi: 10.3389/fgene.2021.723964

 13. Bahbahani H, Musa HH, Wragg D, Shuiep ES, Almathen F, Hanotte O. Genome 
diversity and signatures of selection for production and performance traits in dromedary 
camels. Front Genet. (2019) 10:893. doi: 10.3389/fgene.2019.00893

 14. Bahbahani H, Almathen F. Homogeneity of Arabian peninsula dromedary camel 
populations with signals of geographic distinction based on whole genome sequence 
data. Sci Rep. (2022) 12:130. doi: 10.1038/s41598-021-04087-w

 15. Bahbahani H, Salim B, Almathen F, Al Enezi F, Mwacharo JM, Hanotte O. 
Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS 
One. (2018) 13:e0190446. doi: 10.1371/journal.pone.0190446

 16. Tijjani A, Utsunomiya YT, Ezekwe AG, Nashiru O, Hanotte O. Genome sequence 
analysis reveals selection signatures in endangered Trypanotolerant west African 
Muturu cattle. Front Genet. (2019) 10:442. doi: 10.3389/fgene.2019.00442

 17. Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki MN, Van Tassell C, Sonstegard 
T, et al. Signatures of positive selection in east African shorthorn zebu: a genome-wide 
single nucleotide polymorphism analysis. Sci Rep. (2015) 5:11729. doi: 10.1038/
srep11729

 18. Fariello MI, Servin B, Tosser-Klopp G, Rupp R, Moreno C, San Cristobal M, et al. 
Selection signatures in worldwide sheep populations. PLoS One. (2014) 9:e103813. doi: 
10.1371/journal.pone.0103813

 19. Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Koshkina 
OA, et al. Selective footprints and genes relevant to cold adaptation and other phenotypic 
traits are unscrambled in the genomes of divergently selected chicken breeds. J Anim Sci 
Biotechnol. (2023) 14:35. doi: 10.1186/s40104-022-00813-0

 20. Bertolini F, Servin B, Talenti A, Rochat E, Kim ES, Oget C, et al. Crepaldi, and c. 
the AdaptMap, signatures of selection and environmental adaptation across the goat 
genome post-domestication. Genet Sel Evol. (2018) 50:57. doi: 10.1186/
s12711-018-0421-y

 21. Wang J-J, Zhang T, Chen Q-M, Zhang R-Q, Li L, Cheng S-F, et al. Genomic 
signatures of selection associated with litter size trait in Jining gray goat. Front Genet. 
(2020) 11:286. doi: 10.3389/fgene.2020.00286

 22. Wu H, Guang X, Al-Fageeh MB, Cao J, Pan S, Zhou H, et al. Camelid genomes 
reveal evolution and adaptation to desert environments. Nat Commun. (2014) 5:5188. 
doi: 10.1038/ncomms6188

 23. Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly 
and annotation of a female domestic dromedary of north African origin. Mol Ecol 
Resour. (2015) 16:314–24. doi: 10.1111/1755-0998.12443

 24. Elbers JP, Rogers MF, Perelman PL, Proskuryakova AA, Serdyukova NA, Johnson WE, 
et al. Improving Illumina assemblies with hi-C and long reads: an example with the north 
African dromedary. Mol Ecol Resour. (2019) 19:1015–26. doi: 10.1111/1755-0998.13020

 25. Bahbahani H, Al-Zoubi S, Ali F, Afana A, Dashti M, Al-Ateeqi A, et al. Signatures 
of purifying selection and site-specific positive selection on the mitochondrial DNA of 
dromedary camels (Camelus dromedarius). Mitochondrion. (2023) 69:36–42. doi: 
10.1016/j.mito.2023.01.004

 26. Khalkhali-Evrigh R, Hedayat N, Ming L, Jirimutu . Identification of selection 
signatures in Iranian dromedary and Bactrian camels using whole genome sequencing 
data. Sci Rep. (2022) 12:9653. doi: 10.1038/s41598-022-14376-7

 27. Grossman SR, Shlyakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, et al. 
A composite of multiple signals distinguishes causal variants in regions of positive 
selection. Science. (2010) 327:883–6. doi: 10.1126/science.1183863

 28. Utsunomiya Y.T., Perez O'Brien A.M., Sonstegard T.S., Van Tassell C.P., A.S. do 
Carmo. Meszaros J. Solkner, Garcia J.F., Detecting loci under recent positive selection 
in dairy and beef cattle by combining different genome-wide scan methods. PLoS One 
8 (2013):e64280, doi: 10.1371/journal.pone.0064280

 29. Randhawa IA, Khatkar MS, Thomson PC, Raadsma HW. Composite selection 
signals can localize the trait specific genomic regions in multi-breed populations of cattle 
and sheep. BMC Genet. (2014) 15:34. doi: 10.1186/1471-2156-15-34

 30. Bahbahani H, Tiijani A, Mukasa C, Wragg D, Almathen F, Nash O, et al. Signature 
of selection for environmental adaptation and zebu x taurine hybrid fitness in east 
African shorthorn zebu. Front Genet. (2017) 8:68. doi: 10.3389/fgene.2017.00068

 31. Fitak RR, Mohandesan E, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi 
O, et al. Genomic signatures of domestication in Old World camels. Commun Biol. 
(2020) 3:316. doi: 10.1038/s42003-020-1039-5

 32. Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. Properties of different 
selection signature statistics and a new strategy for combining them. Heredity (Edinb). 
(2015) 115:426–36. doi: 10.1038/hdy.2015.42

 33. Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-
Ahrabi S, Parna N, et al. Signatures of selection reveal candidate genes involved in 
economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol. (2020) 
52:52. doi: 10.1186/s12711-020-00571-5

 34. Yurchenko AA, Daetwyler HD, Yudin N, Schnabel RD, Vander Jagt CJ, Soloshenko 
V, et al. Scans for signatures of selection in Russian cattle breed genomes reveal new 
candidate genes for environmental adaptation and acclimation. Sci Rep. (2018) 8:12984. 
doi: 10.1038/s41598-018-31304-w

 35. Yurchenko AA, Deniskova TE, Yudin NS, Dotsev AV, Khamiruev TN, Selionova 
MI, et al. High-density genotyping reveals signatures of selection related to acclimation 
and economically important traits in 15 local sheep breeds from Russia. BMC Genomics. 
(2019) 20:294. doi: 10.1186/s12864-019-5537-0

 36. Sweet-Jones J, Lenis VP, Yurchenko AA, Yudin NS, Swain M, Larkin DM. 
Genotyping and whole-genome resequencing of welsh sheep breeds reveal candidate 
genes and variants for adaptation to local environment and socioeconomic traits. Front 
Genet. (2021) 12:612492. doi: 10.3389/fgene.2021.612492

 37. Cook D, Gallagher PC, Bailey E. Genetics of swayback in American Saddlebred 
horses. Anim Genet. (2010) 41:64–71. doi: 10.1111/j.1365-2052.2010.02108.x

 38. Li H, Durbin R. Fast and accurate long-read alignment with burrows–wheeler 
transform. Bioinformatics. (2010) 26:589–95. doi: 10.1093/bioinformatics/btp698

 39. Li H. A statistical framework for SNP calling, mutation discovery, association 
mapping and population genetical parameter estimation from sequencing data. 
Bioinformatics. (2011) 27:2987–93. doi: 10.1093/bioinformatics/btr509

 40. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 
The genome analysis toolkit: a MapReduce framework for analyzing next-generation 
DNA sequencing data. Genome Res. (2010) 20:1297–303. doi: 10.1101/gr.107524.110

 41. Purcell NB, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, et al. 
PLINK: a toolset for whole-genome association and population-based linkage analysis. 
Am J Hum Genet. (2007) 81:559–75. doi: 10.1086/519795

 42. Ming L, Yuan L, Yi L, Ding G, Hasi S, Chen G, et al. Whole-genome sequencing 
of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. 
Commun Biol. (2020) 3:1. doi: 10.1038/s42003-019-0734-6

 43. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for 
genome-wide association analysis. Bioinformatics. (2007) 23:1294–6. doi: 10.1093/
bioinformatics/btm108

 44. R-Core-Team. R: A language and environment for statistical computing. Vienna: 
R-Core-Team (2022).

 45. Wickham H. ggplot2: Elegant graphics for data analysis. New York, NY: Springer-
Verlag (2009).

 46. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in 
unrelated individuals. Genome Res. (2009) 19:1655–64. doi: 10.1101/gr.094052.109

 47. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA 
polymorphism. Genetics. (1989) 123:585–95. doi: 10.1093/genetics/123.3.585

 48. Nei M, Li WH. Mathematical model for studying genetic variation in terms of 
restriction endonucleases. Proc Natl Acad Sci U S A. (1979) 76:5269–73. doi: 10.1073/
pnas.76.10.5269

 49. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection 
in the human genome. PLoS Biol. (2006) 4:e72. doi: 10.1371/journal.pbio.0040072

 50. Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete 
soft or hard selective sweeps using haplotype structure. Mol Biol Evol. (2014) 31:1275–91. 
doi: 10.1093/molbev/msu077

 51. Cook DE, Andersen EC. VCF-kit: assorted utilities for the variant call format. 
Bioinformatics. (2017) 33:1581–2. doi: 10.1093/bioinformatics/btx011

 52. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The 
variant call format and VCFtools. Bioinformatics. (2011) 27:2156–8. doi: 10.1093/
bioinformatics/btr330

 53. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-
data inference for whole-genome association studies by use of localized haplotype 
clustering. Am J Hum Genet. (2007) 81:1084–97. doi: 10.1086/521987

 54. Szpiech ZA, Hernandez RD. Selscan: an efficient multithreaded program to 
perform EHH-based scans for positive selection. Mol Biol Evol. (2014) 31:2824–7. doi: 
10.1093/molbev/msu211

 55. Verity R, Collins C, Card DC, Schaal SM, Wang L, Lotterhos KE. Minotaur: a 
platform for the analysis and visualization of multivariate results from genome scans 
with R shiny. Mol Ecol Resour. (2017) 17:33–43. doi: 10.1111/1755-0998.12579

 56. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al. 
Software for computing and annotating genomic ranges. PLoS Comput Biol. (2013) 
9:e1003118. doi: 10.1371/journal.pcbi.1003118

23

https://doi.org/10.3389/fvets.2023.1296610
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1093/jhered/esaa016
https://doi.org/10.1073/pnas.1519508113
https://doi.org/10.1073/pnas.1519508113
https://doi.org/10.1016/j.sjbs.2021.11.032
https://doi.org/10.3389/fgene.2021.723964
https://doi.org/10.3389/fgene.2019.00893
https://doi.org/10.1038/s41598-021-04087-w
https://doi.org/10.1371/journal.pone.0190446
https://doi.org/10.3389/fgene.2019.00442
https://doi.org/10.1038/srep11729
https://doi.org/10.1038/srep11729
https://doi.org/10.1371/journal.pone.0103813
https://doi.org/10.1186/s40104-022-00813-0
https://doi.org/10.1186/s12711-018-0421-y
https://doi.org/10.1186/s12711-018-0421-y
https://doi.org/10.3389/fgene.2020.00286
https://doi.org/10.1038/ncomms6188
https://doi.org/10.1111/1755-0998.12443
https://doi.org/10.1111/1755-0998.13020
https://doi.org/10.1016/j.mito.2023.01.004
https://doi.org/10.1038/s41598-022-14376-7
https://doi.org/10.1126/science.1183863
https://doi.org/10.1371/journal.pone.0064280
https://doi.org/10.1186/1471-2156-15-34
https://doi.org/10.3389/fgene.2017.00068
https://doi.org/10.1038/s42003-020-1039-5
https://doi.org/10.1038/hdy.2015.42
https://doi.org/10.1186/s12711-020-00571-5
https://doi.org/10.1038/s41598-018-31304-w
https://doi.org/10.1186/s12864-019-5537-0
https://doi.org/10.3389/fgene.2021.612492
https://doi.org/10.1111/j.1365-2052.2010.02108.x
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1086/519795
https://doi.org/10.1038/s42003-019-0734-6
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1093/genetics/123.3.585
https://doi.org/10.1073/pnas.76.10.5269
https://doi.org/10.1073/pnas.76.10.5269
https://doi.org/10.1371/journal.pbio.0040072
https://doi.org/10.1093/molbev/msu077
https://doi.org/10.1093/bioinformatics/btx011
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1086/521987
https://doi.org/10.1093/molbev/msu211
https://doi.org/10.1111/1755-0998.12579
https://doi.org/10.1371/journal.pcbi.1003118


Al Abri et al. 10.3389/fvets.2023.1296610

Frontiers in Veterinary Science 10 frontiersin.org

 57. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:profiler: a 
web server for functional enrichment analysis and conversions of gene lists. Nucleic 
Acids Res. (2019) 47:W191–8. doi: 10.1093/nar/gkz369

 58. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web 
server for functional enrichment analysis and functional annotation of gene lists. Nucleic 
Acids Res. (2021) 50:W216–21. doi: 10.1093/nar/gkac194

 59. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for 
annotating and predicting the effects of single nucleotide polymorphisms. SnpEff Fly. 
(2012) 6:80–92. doi: 10.4161/fly.19695

 60. Epstein H, Mason IL. In evolution of domesticated animals. New York: Longman 
Inc. (1984).

 61. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in 
myogenesis. Trends Cell Biol. (2012) 22:602–9. doi: 10.1016/j.tcb.2012.07.008

 62. Lippert DND, Wilkins JA. Glia maturation factor gamma regulates the migration 
and adherence of human T lymphocytes. BMC Immunol. (2012) 13:21. doi: 
10.1186/1471-2172-13-21

 63. Girondel C, Meloche S. Interleukin-17 receptor D in physiology, inflammation and 
cancer. Front Oncol. (2021) 11:656004. doi: 10.3389/fonc.2021.656004

 64. Wang J, Ding X. IL-17 signaling in skin repair: safeguarding metabolic adaptation 
of wound epithelial cells. Signal Transduct Target Ther. (2022) 7:359. doi: 10.1038/
s41392-022-01202-9

 65. Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. Renal secretion 
of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 
(2010) 33:498–503. doi: 10.1248/bpb.33.498

 66. Ghaemi-Oskouie F, Shi Y. The role of uric acid as an endogenous danger signal in 
immunity and inflammation. Curr Rheumatol Rep. (2011) 13:160–6. doi: 10.1007/
s11926-011-0162-1

 67. Chen LL, Huang JQ, Wu YY, Chen LB, Li SP, Zhang X, et al. Loss of Selenov 
predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox 
Biol. (2021) 45:102048. doi: 10.1016/j.redox.2021.102048

 68. Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J. Protein expression landscape defines 
the differentiation potential specificity of Adipogenic and myogenic precursors in the 
skeletal muscle. J Proteome Res. (2018) 17:3853–65. doi: 10.1021/acs.jproteome.8b00530

 69. Bindesbøll C, Aas A, Ogmundsdottir MH, Pankiv S, Reine T, Zoncu R, et al. 
NBEAL1 controls SREBP2 processing and cholesterol metabolism and is a susceptibility 
locus for coronary artery disease. Sci Rep. (2020) 10:4528. doi: 10.1038/
s41598-020-61352-0

 70. Howard JT, Kachman SD, Snelling WM, Pollak EJ, Ciobanu DC, Kuehn LA, et al. 
Beef cattle body temperature during climatic stress: a genome-wide association study. 
Int J Biometeorol. (2014) 58:1665–72. doi: 10.1007/s00484-013-0773-5

 71. Serranito B, Cavalazzi M, Vidal P, Taurisson-Mouret D, Ciani E, Bal M, et al. Local 
adaptations of Mediterranean sheep and goats through an integrative approach. Sci Rep. 
(2021) 11:21363. doi: 10.1038/s41598-021-00682-z

 72. Edea Z, Dadi H, Dessie T, Kim K-S. Genomic signatures of high-altitude 
adaptation in Ethiopian sheep populations. Genes Genom. (2019) 41:973–81. doi: 
10.1007/s13258-019-00820-y

 73. Onzima RB, Upadhyay MR, Doekes HP, Brito LF, Bosse M, Kanis E, et al. Genome-
wide characterization of selection signatures and runs of homozygosity in Ugandan goat 
breeds. Front Genet. (2018) 9:318. doi: 10.3389/fgene.2018.00318

 74. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, et al. Visual 
cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice 
results in delayed dark adaptation. Neuron. (2001) 29:739–48. doi: 10.1016/
S0896-6273(01)00248-3

 75. Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, et al. CRALBP supports the 
mammalian retinal visual cycle and cone vision. J Clin Invest. (2015) 125:727–38. doi: 
10.1172/JCI79651

 76. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. 
Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, 
and forgetting. Science. (2019) 363:eaav1483. doi: 10.1126/science.aav1483

 77. Sato S, Cerny RL, Buescher JL, Ikezu T. Tau-tubulin kinase 1 (TTBK1), a neuron-
specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J 
Neurochem. (2006) 98:1573–84. doi: 10.1111/j.1471-4159.2006.04059.x

 78. Ali S, Esmat A, Erasha A, Yasuda M, Alsafy M. Morphology and morphometry of 
the inner ear of the dromedary camel and their influence on the efficiency of hearing 
and equilibrium. Zool Lett. (2022) 8:12. doi: 10.1186/s40851-022-00196-0

 79. Cornejo-Sanchez DM, Li G, Fabiha T, Wang R, Acharya A, Everard JL, et al. Rare-
variant association analysis reveals known and new age-related hearing loss genes. Eur 
J Hum Genet. (2023) 31:638–47. doi: 10.1038/s41431-023-01302-2

 80. Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, et al. Absence of 
CFAP69 causes male infertility due to multiple morphological abnormalities of the 
flagella in human and mouse. Am J Hum Genet. (2018) 102:636–48. doi: 10.1016/j.
ajhg.2018.03.007

 81. Holtz ML, Misra RP. Serum response factor is required for cell contact maintenance 
but dispensable for proliferation in visceral yolk sac endothelium. BMC Dev Biol. (2011) 
11:18. doi: 10.1186/1471-213X-11-18

24

https://doi.org/10.3389/fvets.2023.1296610
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.4161/fly.19695
https://doi.org/10.1016/j.tcb.2012.07.008
https://doi.org/10.1186/1471-2172-13-21
https://doi.org/10.3389/fonc.2021.656004
https://doi.org/10.1038/s41392-022-01202-9
https://doi.org/10.1038/s41392-022-01202-9
https://doi.org/10.1248/bpb.33.498
https://doi.org/10.1007/s11926-011-0162-1
https://doi.org/10.1007/s11926-011-0162-1
https://doi.org/10.1016/j.redox.2021.102048
https://doi.org/10.1021/acs.jproteome.8b00530
https://doi.org/10.1038/s41598-020-61352-0
https://doi.org/10.1038/s41598-020-61352-0
https://doi.org/10.1007/s00484-013-0773-5
https://doi.org/10.1038/s41598-021-00682-z
https://doi.org/10.1007/s13258-019-00820-y
https://doi.org/10.3389/fgene.2018.00318
https://doi.org/10.1016/S0896-6273(01)00248-3
https://doi.org/10.1016/S0896-6273(01)00248-3
https://doi.org/10.1172/JCI79651
https://doi.org/10.1126/science.aav1483
https://doi.org/10.1111/j.1471-4159.2006.04059.x
https://doi.org/10.1186/s40851-022-00196-0
https://doi.org/10.1038/s41431-023-01302-2
https://doi.org/10.1016/j.ajhg.2018.03.007
https://doi.org/10.1016/j.ajhg.2018.03.007
https://doi.org/10.1186/1471-213X-11-18


Frontiers in Veterinary Science 01 frontiersin.org

A proteomic approach to 
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Bogor, Indonesia

Proteins assist sperm mature, transit the female reproductive tract, and recognise 
sperm oocytes. Indigenous Indonesian bulls, Madura bulls, have not been 
studied for reproductive proteomics. As local Indonesian beef livestock, Madura 
cattle assist in achieving food security; hence, their number must be improved. 
Thus, the identification of molecular proteomics-based bull fertility biomarkers 
is needed. This study aimed to characterise the sperm fertility function of the 
superior Madura bull (Bos indicus × Bos Javanicus) spermatozoa proteome. 
Frozen semen from eight Madura superior bulls (Bos indicus × Bos javanicus) aged 
4–8 years was obtained from the artificial insemination centre (AIC) in Singosari 
and Lembang. Madura superior bulls are those that have passed the bull breeding 
soundness evaluation. Frozen sperm were thawed and centrifuged at 3000  ×  g for 
30 min. Proteins in sperm were characterised through proteomic analysis using 
liquid chromatography–tandem mass spectrometry (LC–MS/MS). The resulting 
gene symbols for each protein were then subjected to bioinformatics tools, 
including UniProt, DAVID, and STRING databases. Regarding sperm fertility, the 
analysis revealed that 15 proteins were identified in the sperm of Madura bulls. 
Amongst the identified proteins, the superior Madura bull sperm contained several 
motilities, energy-related proteins, and chaperone proteins. A substantial portion 
of characterised proteins are linked to metabolic pathways and the tricarboxylic 
acid (TCA) cycle, contributing to sperm energy production. In conclusion, the 
first in-depth proteome identification of sperm related to sperm quality and bull 
fertility of a unique indigenous Madura breed of Indonesia was performed using 
the LC–MS/MS proteomic method. These findings may serve as a reference point 
for further studies related to the functions of bovine sperm and biomarkers of 
fertility and sperm quality.

KEYWORDS

fertility, food security, LC–MS/MS, Madura bulls, sperm proteins fertility, proteomic, 
sperm proteins
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1 Introduction

Recent developments in proteomics have significantly impacted our 
understanding of how sperm become fertile (1). One of the most 
differentiated cells is the sperm head, which has a highly compacted 
chromatin structure and an enormous midpiece that contains the 
machinery required to interact and transfer paternal genetic and 
epigenetic information to the oocyte (2). Due to their high level of 
differentiation, sperm is suitable for studying proteomic sections, such as 
the sperm membrane, which is the most crucial part because of its role in 
interacting with the environment and the oocyte (3). The fusion of a 
sperm and an oocyte requires complex membrane modifications of the 
sperm (4). Spermatozoa proteins that regulate normal/abnormal sperm 
function have been identified through proteomic investigation (5).

Thus, bull fertility is linked to many proteins involved in 
spermatogenesis. The significance of specific proteins in controlling 
sperm quality and fertilization is unknown, although their availability 
and quantity may alter sperm fertility (6). According to Peddinti et al. 
(1), many bovine fertility protein markers have been reported. Major 
semen proteins, such as binding sperm protein (BSP) in Frisian 
Holstein cattle (6), zona pellucida binding protein (ZPBP) in Bali 
Polled bulls (7), A-kinase anchoring protein 3  in buffalo (8), and 
osteopontin in Limousin cattle (9), have been widely reported. The 
sperm proteome profile of mammals has been studied, including pigs 
(10), equines (11), sheep (12), and bovines (1). Nevertheless, the 
sperm proteome remains unknown in Madura bulls.

Madura cattle (Bos indicus × Bos javanicus) are native to Madura, 
Indonesia. Small-scale producers raise Madura cattle as working cattle 
to maintain the regional culture, which still values Sonok and Karapan 
cattle (13). In addition, Madura cattle are currently being developed 
as beef cattle using artificial insemination and reproduction 
technology. It also ensures food security for the Indonesian 
population. In particular, these cattle are highly valued for their 
unique reproductive traits, with regular calving even under low-input 
regimes and in dry and arid regions (14). However, it remains 
unknown whether the proteome level of Madura bull sperm affects 
sperm function and fertility. Proteomics offers various methods. 
However, complex protein analysis using LC–MS has become the 
preferred analytical technique for quantitative proteomics (15, 16).

Ultimately, acquiring knowledge about the proteome of 
spermatozoa can provide a holistic understanding of reproductive 
processes, not only specific to the Madura bull breed but also 
applicable to bovine species. This study aims to provide a 
comprehensive profiling of the sperm proteins associated with fertility 
function in the superior Madura bull (Bos indicus × Bos javanicus) 
spermatozoa proteome. Additionally, we used the literature to explain 
how Madura bull sperm proteins affect bull fertility. Further, 
proteomic approaches have made it possible to identify proteins that 
have the potential to function as indicators of male fertility, as well as 
proteins that are involved in the functional characteristics of sperm.

2 Materials and methods

2.1 Frozen semen samples

A total of 8 superior Madura bulls (Bos indicus × Bos javanicus) 
aged 4 to 8 years with spermatozoa motility >70%, based on secondary 
data from each AIC in Lembang and Singosari, Indonesia, were 

included in this study. Frozen semen from each of the eight Madura 
superior bulls was obtained from the National AIC in Singosari and 
Lembang Bank of Semen. Madura superior bulls are those that have 
passed the bull breeding soundness evaluation. The Animal Care and 
Use Committee excluded this study from its ethical review because 
artificial vaginal semen collection did not alter the physiology of 
animals. The study was directed by veterinarians from both 
institutions and followed SNI ISO 9001: 2015 No. 824 100 16072 at 
Lembang AIC and SNI ISO 9001: 2015 No. G.01-ID0139-VIII-2019 
at Singosari AIC. The ethics committees of Lembang AIC and 
Singosari AIC provided ethical guidance and sanctions for the 
responsible collection of bull sperm. Additionally, an experienced bull 
technician collected sperm using an artificial vagina.

Semen samples from Lembang AIC were processed according to the 
AIC’s standard operating procedure (SOP), which used skim milk as the 
extender. The formulation of the skimmed milk diluent in a volume of 
1000cc consisted of 100g of skimmed milk, 960cc of distilled water, and 
an antibiotic solution containing 3000000  IU of penicillin, 3g of 
streptomycin, and 30cc of distilled water. The ratio of skimmed milk 
diluent to antibiotic was 100:1. In contrast, the semen samples obtained 
from Singosari were cryopreserved utilising tris egg yolk as a 
cryoprotectant. The tris egg yolk extender was formulated using the 
following components: 20% egg yolk, 1.6% tris aminomethane, 1.4% 
lactose, 2.5% raffinose, 0.9% citric acid, and an antibiotic mixture 
consisting of 1000000 IU/L of penicillin, 1g/L of streptomycin, and 1g/L 
of distilled water. The AIC in Lembang and Singosari employ extenders 
consisting of skim milk and tris egg yolk supplemented with antibiotics. 
The extender utilised in every artificial insemination facility serves as a 
cryoprotectant, safeguarding sperm cells during the freezing process.

Additionally, it enhances semen volume, sustains sperm viability, 
and regulates sperm pH. Consequently, the inclusion of an extender 
is imperative in the manufacture of frozen semen to ensure the 
preservation of sperm quality. The cryopreserved sperm samples were 
transferred with a specialised transport container that maintained a 
temperature of −196°C through liquid nitrogen. The pieces were 
placed within the container for subsequent examination.

2.2 Sperm protein isolation

The collected semen samples of about ive straws of frozen semen 
from each of the eight bulls were washed in 2 mL of phosphate buffer 
saline and centrifuged twice (3000 × g for 10 min, 4°C) to clean and 
separate the spermatozoa, seminal plasma, and extender of frozen 
semen. The resulting sperm cell pellet was then resuspended in cell 
lysis buffer (2% SDS in 62.5 mM Tris–HCl, pH 6.8, 1.0 mM 
phenylmethanesulfonyl fluoride, and 23 mM benzidine as a protease 
inhibitor) and stored at −20°C for protein extraction. The sperm pellet 
was vortexed for 10 min before protein extraction. Next, sonication 
was used thrice for 20 s each to dissolve the protein. After centrifuging 
the cell lysates (10,000 × g, 10 min), protein lysates were isolated. The 
Bradford method (17) was used to estimate the total protein yield of 
the sperm protein lysate. The Bradford protocol was performed using 
the Coomassie protein kit instructions (Merck, Darmstadt, Germany). 
The data were processed using ThermoScan RE software version 3.2 
Multiskan Go (Thermo Fisher Scientific, Waltham, Massachusetts, 
United States). Pools of sperm protein containing equal amounts from 
three samples were frozen at −20°C for later use. A summary of the 
experimental design is shown in Figure 1.
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2.3 Fractionation by one-dimensional 
sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (1D-SDS–PAGE) and in-gel 
digestion

Following the separation of 35 μg of sperm protein (an equivalent 
quantity of protein amalgamated from three cases) by 12.5% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE), the gel 
was stained with colloidal Coomassie brilliant blue R-250 (CAS number: 
6104-59-2) from HiMedia. Subsequently, the gel bands were excised and 
digested using a previously described protocol (18). The proteins were 
reduced using 0.5 M dithiothreitol (DTT) at 55°C for 25 min, followed by 
alkylation with 14 mM iodoacetamide (IAA) for 40  min at room 
temperature without light. Gel fragments were treated with trypsin 
(Promega, Madison, Fitchburg, WI, USA) at a ratio of 1:50 (trypsin: 
protein) at 4°C for 30 min. The gel fragments were incubated for 18 h at 
37°C in a ThermoMixer shaker incubator block (Eppendorf). The 
reaction in each vial was terminated by adding 1% trifluoroacetic acid 
(TFA). An extraction buffer (2% TFA in 20% acetonitrile) was used to 
extract peptide digests from the gel pieces, followed by 70% acetonitrile. 
The obtained peptide digests were subjected to a drying process and 
subsequently purified using a C18 spin column for desalination (Thermo 
Scientific, Pierce Biotechnology, N Meridian Rd., Rockford, IL, USA) and 
then preserved at −20°C until LC–MS/MS analysis.

2.4 Liquid chromatography–tandem mass 
spectrometry (LC–MS/MS) analysis

The peptides obtained from each sample were subjected to LC–
MS/MS analysis using an Ultimate 3000 Nano LC system coupled with 
a Q-Exactive Plus Orbitrap HRMS system (Thermo Fisher Scientific, 
Bremen, Germany). The peptides were introduced onto a preanalytical 
column with dimensions of 75 μm ID, 15 cm length, and 100 pore size, 
packed with Acclaim PepMap C18 2 μm particles. The solvent used for 
loading was solvent A, consisting of 0.1% formic acid, and the flow rate 
was set at 300 nL/min. A Q-Exactive Plus Orbitrap mass analyser was 

used for subsequent analysis. The peptides were subsequently resolved 
on an analytical column (50 cm 75 m ID, Pep Map RSLC C18 2 m) at 
a flow rate of 300 nL/min for 120 min using an increasing gradient of 
5–35% solvent B (98% acetonitrile and 0.1% formic acid). Peptide 
signals were collected using an LTQ-Orbitrap mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany). The MS spectra within 
the 200–2000 m/z range were obtained using an Orbitrap analyser with 
a resolution of 30,000 (at m/z 400). Subsequently, ten precursor MS 
scans were conducted using collision-induced dissociation 
fragmentation at 35% normalised collision energy (19).

2.5 Protein database searching and 
bioinformatics analysis

Protein analysis was performed on proteins that contained at least 
one unique peptide. The exclusion of specific peptides based on the 
“minimum two-peptide rule may result in the perpetual disregard of 
genuine peptides, and proteins must have a sequence score HT > 0. 
Thus, we manually confirmed single peptide spectral match (PSM)-
identified protein MS/MS spectra. Protein data were acquired and 
analysed using the UniProt bovine protein database (http://www.
uniprot.org) and Proteome Discover version 2.2 software (Thermo 
Fisher Scientific). Furthermore, the discovered proteins from 
spermatozoa were also put into functional groups based on Gene 
Ontology (GO) using the DAVID web resource (https://david.ncifcrf.
gov/tools.jsp). The interactions between the proteins were obtained 
using STRING version 11.0 (https://string-db.org/).

3 Result

3.1 Protein characterisation of Madura bull 
spermatozoa

LC–MS/MS identified Madura bull sperm protein markers of 
fertility and environmental compatibility. All the databases contained 

FIGURE 1

Schematic workflow for the proteomic analysis of Madura bull spermatozoa. (A) Sperm protein extraction. (B) Sperm protein identification.
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in the database were only Bos taurus origin proteins since Bos indicus 
× Bos javanicus proteins are limited. This study analysis identified 15 
proteins in Madura bull (Bos indicus × Bos Javanicus) sperm using 
UniProt and DAVID software (Table  1). Fifteen proteins were 
identified that were associated with sperm function categories 
(Table 1), including adenosine triphosphate (ATP) synthesis activity, 
cellular metabolic processes, cilia/flagella, sperm motility, capacitation 
and acrosome reaction, sperm-egg fusion, spermatogenesis and 
fertilization, and chaperone proteins. Functional annotation of 
proteins from Madura bull spermatozoa was further carried out using 
DAVID software and divided into several categories: “Biological 
Process” (BP), “Cellular Component” (CC), and “Molecular Function” 
(MF) (Figure 2). Although different categories were created for each 
division, the most numerous were those involved in the generation of 
precursor metabolites and energy (16%), urine ribonucleotide 
metabolic processes (16%), ATP metabolic processes (13%), and 
pyruvate metabolic processes (10%) in the case of BP (Figure 2A); 
cytoplasm (24%), supramolecular fibre (21%), and cell surface and 
microtubule (10%) in CC (Figure  2B); and ATP-binding proteins 
(16%), ATPase activity (12%) and unfolded protein binding (8%) in 
MF (Figure 2C).

3.2 Protein interaction networks and 
pathway enrichment analysis

All proteins identified in Madura bull spermatozoa were then 
searched using STRING software (version 11.0) for protein–protein 
interaction network analysis. Light blue lines show protein nodes, 
whereas pink lines reflect experimentally established interactions. The 
expected interactions are green for the gene neighbourhood, red for 
gene fusion, and dark blue for gene co-occurrence. Other protein 
relationships are shown by light green text mining, black 
co-expression, and blue protein homologies. A coloured node shows 
the query protein, and a white node leads the second shell of the 
interaction. Proteins with unknown 3D conformations had empty 
nodes, whereas those with known conformations had full nodes. The 
interactions between the 15 identified proteins are shown in Figure 3. 
Fifteen proteins were directly or indirectly connected through one or 
more interacting proteins, indicating functional links. We categorised 
proteins using the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) pathway terminology to study Madura bull sperm pathways. 
As expected, many of the discovered proteins were involved in 
metabolic pathways. The discovered proteins were associated with the 
TCA cycle (Figure 4). The sperm head, mitochondria (mid-piece), and 
flagellum/tail expressed the majority of these proteins (Figure 5).

4 Discussion

Fifteen proteins found in the sperm of Madura bulls were found 
to be related to fertility based on LC–MS/MS analysis (Table 1). The 
utilisation of known molecular weight standards for calibration is a 
fundamental aspect of size-exclusion chromatography that provides 
insights into the distribution of molecular weights. The current study 
has demonstrated that Madura bull sperm exhibits a molecular weight 
distribution of proteins within the 40 to 180 kDa range. This study 
utilised GO annotation to ascertain the cellular localisation, biological 

processes, and molecular functions of proteins specific to the sperm 
of Madura bulls.

4.1 Protein related to sperm fertility 
function

Effect of sperm motility on semen quality Male infertility is often 
attributed to reduced sperm motility. Therefore, the motility proteins 
of the Madura bull breed must be identified. We found many of these 
proteins in the spermatozoa. SPAM1 is a transmembrane protein 
present in ejaculated bull spermatozoa. It originates from the testis 
and occupies the anterior head region, where the orientation of the 
C-terminus with the zonal-binding domain facilitates interaction with 
zona pellucida after the acrosome reaction (20). This protein has also 
been detected in male sperm (21). The roteomee analysis carried out 
in this study from the sperm of Madura Bull also revealed the 
existence of the hyaluronidase protein, also known as SPAM1, isoform 
62.4 kDa.

The flagellum of mammalian spermatozoa has intricate 
supplemental structures around the core axoneme, including the outer 
dense fibers (ODFs). ODFs protect the sperm tail against shear stress 
that may arise during epididymal transit and ejaculation. Four major 
proteins (ODF1, ODF2, ODF3, and ODF4) are amongst more than 14 
polypeptides produced by mammalian ODFs. In mice, disrupting 
ODF2 expression lowers sperm motility, which is consistent with the 
characteristics of asthenozoospermia (22). Moreover, the cervical 
midpiece junction requires the presence of ODF2, which comprises 
part of the centrosome and is separated from the flagellum (23). Our 
analysis identified ODF2 in Madura bull spermatozoa.

In addition, we found that enolase protein, previously discovered 
in the plasma membrane of sperm from Bali bulls (24), was present in 
sperm samples from Madura bulls. During glycolysis and 
gluconeogenesis, enolase reversibly converts 2-phosphoglycerate into 
phosphoenolpyruvate. This enzyme produces sperm motility energy 
(25). Xi et al. (26) found a significant positive correlation between 
ENO3 and sperm motility parameters in sturgeons. Similarly, He et al. 
(25) discovered ENO3 in the midpiece and tail of ram sperm, which 
strongly correlated with sperm motility. The presence of ENO3 
expression in Madura cattle sperm and its correlation with sperm 
function, particularly motility, can be readily explained.

The present study revealed the detectability of AKAP 4 in Madura 
bull sperm using LC–MS/MS. AKAP4, a marker involved in flagellar 
structure and motion, is associated with the equine sperm tail (27) and 
is substantially preserved in mice (28), bulls (29), and humans (30). 
AKAP4 attaches cAMP-dependent protein kinase A (PKA) to 
different subcellular locations. In the sperm fibrous sheath, AKAP4 
binds PKA and interacts with other proteins to regulate motility. 
AKAP4, a critical fibrous sheath protein, bundles glycolytic enzymes 
and phosphorylation-signalling cascade components to supply a 
localised source of ATP and govern flagellar motion, sperm motility, 
and hypermotility. Many glycolytic enzymes closely linked to the 
fibrous sheath at the primary component of the flagellum are required 
for sperm motility (27).

Tubulins were also found to be  another type of protein that 
contributes to sperm motility that was uncovered in this study. 
Tubulins are proteins found in the microtubules of sperm (30). Two 
tubulin proteins were identified as present in the sperm of the studied 
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Madura bull samples. These proteins are known as TUBA1A and 
TUBB4B. These proteins are necessary for cilia and flagella formation; 
hence, their importance cannot be overstated.

4.2 Chaperone proteins: heat shock 
proteins

Heat stress affects cattle productivity and reproduction. Heat 
stress damages developing spermatozoa. However, heat tolerance can 
be  inherited by offspring (3). According to the relevant literature, 
Madura cattle are a native breed of beef cow thought to have developed 
on the dry and barren island of Madura (3). Madura Island receives 
1600 mm of rain annually and is hot and arid (31). HSPs are linked to 
heat tolerance and reproductive performance (3, 32). In this study, 
HSPA9 and HSPA2 were found to be ubiquitously expressed. HSPA9, 
found in sperm mitochondria, significantly reduces the effects of heat 
stress in tropical cattle (33, 34). It is also known to regulate sperm 
motility through metabolic processes, ATP binding, and folding of 
mitochondrial proteins (35).

HSPA2 (also known as HSP70-2) was discovered in this study, 
which is consistent with previous findings in Australian Brahman 
bulls (Bos indicus) (36) and Zebu (37). HSP70-2 (heat shock protein 
70–2) was found to be expressed in the sperm nucleus as well as in 
various other sperm organelles, including the mitochondria and 

flagellum (Figure  5). HSP70-2 is a component of the chromatin 
structure and contributes to gene regulation, particularly in the 
folding and unfolding of proteins. This HSPA2 sperm protein may also 
be crucial in protecting the sperm of tropical acclimated bulls such as 
Madura from heat or environmental stress. HSP70 is also an excellent 
predictor of thermotolerance and thermoresistance (38). The potential 
use of HSP70 as a biomarker for animal fertility and thermotolerance 
has been suggested (39). Therefore, HSP70-2 is recognised as a dual-
functioning gene (3).

4.3 Pathway enrichment

The enriched pathways were also analysed for the identified 
proteins in the Madura bull spermatozoa. The present study revealed 
that 16% of the proteins were involved in the biosynthesis of precursor 
metabolites and energy. Only metabolic pathways were included in the 
list of the significant ways enriched by the proteins. Energy metabolism 
is essential for sperm development. Sperm require ATP, which is most 
likely to maintain morphological changes during the spermatid stage, 
for the degradation and synthesis of active proteins (40). ATP also 
serves as the molecular motor that provides the necessary energy for 
flagellar movement in all kinetics-related biochemical activities. The 
idea that mitochondria in the sperm midpiece drive mammalian 
sperm is evolving, as evidence suggests that glycolysis is the preferred 

TABLE 1 Proteins identified in Madura bull sperm associated with sperm function.

Protein 
accession

Gene 
symbol

Protein name Function Molecular 
weight (kDa)

A0A4 W2HIH5 AKAP4 A-kinase anchoring protein 4 flagellated sperm motility, motile cilium assembly 99.6

A0A4 W2BT96 ATP5F1A ATP synthase F1 subunit alpha lipid metabolic process, ATP synthase activity 63.1

A0A452DII8 ATP5F1B ATP synthase F1 subunit beta ATP synthesis activity, Hydrogen ion transport, Ion transport 62.2

A0A6P5BW43 ACO2 aconitase 2 tricarboxylic acid cycle, citrate metabolic process 85.3

A0A4 W2CUL5 COL4A2 collagen type IV alpha 2 chain cell membrane receptors, metabolic processes, spermatozoa differentiation, 179.5

A0A4 W2EVB5 C1orf56 Chromosome 1 open reading 

frame 56

Capacitated sperm and acrosome reaction 37.9

A0A3Q1M0V5 ENO3 Enolase 3 glycolytic process, pyruvate metabolism, ATP formation from ADP 62.1

A0A4 W2CEF3 GAPDHS glyceraldehyde-3-phosphate 

dehydrogenase, spermatogenic

glucose metabolism, glycolytic process, formation of ATP from ADP, 

spermatozoa energy precursor

44.1

A0A4 W2D4U4 HSPA2 heat shock protein family A 

(Hsp70) member 2

male meiosis I, spermatogenesis, spermatid development, response to heat 

and cold stress, positive regulation of G2/M transition of the mitotic cell 

cycle, cell differentiation, positive control over ATPase activity, protein 

folding mediated by chaperones that require cofactors, the reaction of cells 

to unfolded proteins, and protein refolding

69.81

A0A4 W2DHF8 HSPA9 heat shock protein family A 

(Hsp70) member 9

ATP binding, metabolic processes, mitochondrial protein folding, enzyme 

binding, stress response

73.7

A0A4 W2I3C7 SPAM1 sperm adhesion molecule 1 

(Hyaluronidase)

Sperm egg recognition, fertilization 62.4

A0A6P5CLI1 ODF2 the outer dense fiber of sperm 

tails 2

spermatogenesis, cell differentiation, cilium organisation, regulation of 

cilium assembly,

105

A0A6P5BWX7 PDHA2 pyruvate dehydrogenase E1 

subunit alpha 2

Carbohydrate metabolism, Glucose metabolism, 43.3

Q3MHM5 TUBB4B tubulin beta 4B class IVb microtubule-based process, Cytoskeleton 49.8

F6RP72 TUBB1A Tubulin alpha chain microtubule-based process, Cytoskeleton 50.9
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metabolic pathway to maintain sperm motility in many species (41). 
Thus, the current study’s results are in line with earlier research 
showing that ATP synthases are hub proteins found in the sperm of 
rams that are comparatively less fertile and may regulate how much 
ATP is used by sperm throughout the fertilization process (42). 
Existing data indicate that ATP production in sperm is facilitated by 
both glycolysis and mitochondrial respiration. These processes are 
interdependent and regulate sperm function based on the availability 
of energy substrates in the surrounding environment. An alternative 
glycolysis pathway for ATP production is also found in stallion 

spermatozoa (43). This study presents novel findings that suggest that 
Madura sperm are dependent on mitochondrial ATP synthesis, 
specifically regarding the roles of ATPF51A and ATP5B in sperm 
function and fertility.

Further, glucose utilisation is restricted during spermatogenesis, 
and lactate and pyruvate are favoured as substrates for energy 
synthesis (19). The generation of ATP in mammalian sperm is 
attributed to the energy metabolism pathway. This pathway exhibits 
subcellular compartmentalisation, with oxidative phosphorylation 
(OXPHOS) predominantly occurring in the sperm midpiece and 

FIGURE 2

Bar chart representing the gene ontology annotations of proteins identified in Madura bull spermatozoa according to biological processes (A), cellular 
components (B), and molecular functions (C).
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glycolysis in the principal piece (40). Glycolysis is a significant 
mechanism for facilitating the transport of ATP along the flagellum. 
Westhoff and Kamp (44), as well as Welch et al. (45), have reported the 
presence of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in 
significant quantities within the fibrous sheath of sperm from different 
mammalian species, including humans. GAPDH is a NAD-dependent 
glycolytic enzyme responsible for facilitating the conversion of 
glyceraldehyde 3-phosphate (GAP) to 1,3-biphosphoglycerate (1,3 
BPG). Notably, one of the isoforms of GAPDH, known as GAPDHS, 
has been identified in this study.

Moreover, Zini et  al. (46) found that an augmentation in the 
activity of pyruvate dehydrogenase complexes can increase pyruvate-
lactate usage, thus producing a more significant amount of 
NADH. NADH oxidase can utilise the NADH produced to generate 
reactive oxygen species (ROS) necessary for the capacitation process. 
NADH oxidase activity and ROS formation have also been associated 
with the motility of human spermatozoa. In this way, GAPDHS 
contributes significantly to energy metabolism. Elkina et al. (47) found 
GAPDHS in the testes of humans and rats; the enzyme is primarily 
present in the cytoplasm of all spermatogenic cells, whereas it is 
localised in the sperm tail in the epididymis. This finding provides 
support for this theory. This previous study by Kumar et al. (48) also 
established the involvement of extramitochondrial localised pyruvate 
dehydrogenase complex (PDHA) in the process of sperm capacitation, 

as well as the significance of pyruvate in the overall energy metabolism 
of mammalian sperm. The metabolic pathway encompassed the 
GAPDHS and PDHA2 proteins, both detected in the sperm of Madura 
bulls in the present study.

In agreement, energy metabolism plays a critical role in facilitating 
sperm function. The TCA cycle is the primary energy source for 
spermatids, although glycolytic and pentose phosphate pathways also 
play a role in energy synthesis in spermatozoa. The TCA cycle 
generates adenine, which is converted to ATP by the electron transport 
chain of the OXPHOS pathway. These proteins may be involved in 
creating the acrosome and activities there, both of which require 
energy provided by oxidative phosphorylation. ATP is then delivered 
to the microtubules responsible for supporting various sperm 
functions (49). In this study, two candidate proteins related to the 
tricarboxylic acid cycle pathway were PDHA2 and ACO2.

It was intriguing to discover that specific proteins are involved 
in so many energy metabolism processes, suggesting that a single 
protein may not perform glycolysis or OXPHOS as the primary 
actor in maintaining sperm functionality. The current study shows 
that proteomic methods may provide a reliable source for sperm 
protein detection and improve gene ontology comprehension. 
Therefore, we  used high-throughput LC–MS/MS to develop a 
proteomic profile of Madura bull sperm connected to reproductive 
characteristics. Preserving superior native germplasm and 

FIGURE 3

STRING protein–protein interaction network showing the interactions of the spermatozoa proteins identified in Madura bull sperm.
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preventing gene pool depletion requires studying protein differences 
in different breeds. Thus, investigating Madura bull protein 
composition can help us comprehend native Indonesian bull sperm 

biology. Finally, knowing the proteome of ejaculated spermatozoa 
can help us understand the reproductive process in Madura bull 
and bovine in general.

FIGURE 4

Pathway analysis using the KEGG pathway database identified proteins involved in the TCA cycle. The red star denotes the detected proteins.

FIGURE 5

Distribution of sperm protein of Madura bull (Bos indicus × Bos javanicus).
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5 Conclusion

We examined the sperm proteomes of Madura cows (Bos indicus 
× Bos javanicus). The use of several methods to prepare samples has 
made it easier to identify proteins in sperm. Most of the proteins 
identified in this study are essential for bull breeding. We believe that 
information about the sperm proteome of the superior Madura bull, 
a breed with good reproductive traits, will speed up future studies on 
bull fertility. Additionally, this would enable the creation of molecular 
tools for accurately selecting bulls to conserve indigenous Indonesian 
cattle breeds and bovines.
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Molecular genetic 
characterization and meat-use 
functional gene identification in 
Jianshui yellow–brown ducks 
through combined resequencing 
and transcriptome analysis
Xinpeng Li 1, Aiguo Xin 2, Li Ma 3, Xiao Gou 4, Suyun Fang 1, 
Xinxing Dong 1, Bin Ni 4, Lin Tang 1, Li Zhu 1, Dawei Yan 1* and 
Xiaoyan Kong 1*
1 Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China, 2 Poultry 
Husbandry and Disease Research Institute, Yunnan Academy of Animal Husbandry and Veterinary 
Sciences, Kunming, China, 3 Animal Husbandry and Veterinary College, Yunnan Vocational and 
Technical College of Agriculture, Kunming, China, 4 School of Life Science and Engineering, Foshan 
University, Foshan, China

The Jianshui yellow–brown duck is a unique country-specific waterfowl species 
in Yunnan Province, well known for its tender meat. However, there is a lack of 
comprehensive systematic research on the molecular genetic characteristics, 
especially germplasm resources and economic traits, of the Jianshui yellow–
brown ducks. This study investigated the molecular genetic characteristics of 
Jianshui yellow–brown ducks, compared their selection signals with those of 
ancestral mallard and meat-type Pekin ducks, and identified genes specific to 
their meat-use performance. Furthermore, this study also evaluated the breeding 
potential for its meat performance. In this study, phylogenetic trees, PCA and 
Admixture analysis were used to investigate the population genetic structure 
among local duck breeds in China; population genetic differentiation index (Fst), 
nucleotide diversity and Tajima’s D were used to detect selected loci and genes in 
the population of Jianshui yellow–brown ducks; and transcriptome technology 
was used to screen for differentially expressed genes in the liver, sebum and 
breast muscle tissues, and finally, the results of the genome selection signals 
and transcriptome data were integrated to excavate functional genes affecting 
the meat performance of the Jianshui yellow–brown ducks. The results of the 
genetic structure of the population showed that Jianshui yellow–brown ducks 
were clustered into a separate group. Selection signal analysis indicated significant 
selection pressure on certain genes related to meat characteristics (ELOVL2, 
ELOVL3, GDF10, VSTM2A, PHOSPHO1, and IGF2BP1) in both Jianshui yellow–
brown ducks and mallards. Transcriptomic data analysis suggested that ELOVL3, 
PHOSPHO1, and GDF10 are vital candidate genes influencing meat production 
and quality in Jianshui yellow–brown ducks. A comparison of selection signals 
between Jianshui yellow–brown ducks and Pekin ducks revealed only 21 
selected genes in the Jianshui yellow–brown duck population, and no significant 
genes were related to meat traits. Moreover, whole-genome resequencing data 
suggested that the Jianshui yellow–brown duck represents a unique category 
with distinct genetic mechanisms. Through selection signaling and transcriptomic 
approaches, we successfully screened and identified important candidate genes 
affecting meat traits in Jianshui yellow–brown ducks. Furthermore, the Jianshui 
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yellow–brown duck has good potential for improved meat performance, 
highlighting the need for further improvement.

KEYWORDS

Jianshui yellow–brown duck, meat-use functional gene, molecular genetics, 
resequencing, transcriptome

1 Introduction

China, has an rich extensive history of duck domestication and 
holds a rich abundance of waterfowl resources. China is home to 
nearly half of the world’s existing duck varieties (1). However, despite 
this vast array of varieties, the full potential of the abundant genetic 
resources remains untapped because of the delayed initiation of 
modernized breeding practices for domestic ducks in the country. 
One notable example is the development of Cherry Valley Peking 
ducks by the British Cherry Valley Company through systematic and 
scientific breeding of Chinese Peking ducks. In contrast to native 
Peking ducks, Cherry Valley Peking ducks stand out due to their large 
size and rapid growth rate. Upon entering the Chinese market, Cherry 
Valley Peking ducks quickly gained favor among duck farmers and 
swiftly dominated the Chinese duck meat market. This, in turn, 
resulted in a significant reduction in the population of native duck 
breeds and placed substantial pressure on their living spaces (2, 3). 
Therefore, the rational development and utilization of resources, 
guided by breed characteristics, are of paramount importance in breed 
selection and the sustainable development of related industries.

Sequencing technology has been widely used in studying species 
origin, evaluating germplasm resources, and understanding 
population genetic diversity. Feng et  al. calculated and compared 
genetic diversity in five duck varieties using genome-wide single-
nucleotide polymorphism (SNP) loci. They discovered that domestic 
duck varieties exhibited lower genetic diversity than wild duck 
varieties (4). In evolutionary tree analysis, individuals from domestic 
duck varieties were clustered into one category, while those from wild 
duck varieties were clustered into another category, suggesting a 
common wild ancestor for domestic ducks (5). Hence, assessment of 
the genetic diversity of duck varieties and accurate identification and 
evaluation of germplasm resources form an important basis for 
identifying excellent candidate genes and promoting the development, 
utilization, and innovation of germplasm resources. With the 
widespread application of high-throughput sequencing technology, 
the integration of multi-omics data enables a deeper understanding of 
the genetic basis and molecular mechanisms underlying complex 
traits (6–8). The lack of systematic breeding conservation measures 
and scientific selective breeding programs for Jianshui yellow–brown 
ducks has resulted in issues such as varietal complexity and 
degradation, thereby affecting its genetic resources adversely.

Jianshui yellow–brown ducks are native to Jianshui County, 
Yunnan Province, and have excellent traits such as tender meat, docile 
temperament and strong adaptability after selective breeding. 
However, as a local breed for meat and eggs, Jianshui yellow–brown 
ducks, which are less selectively bred, have the potential to be bred 
into specialized meat breeds (e.g., Pekin ducks for meat breeds) in the 
future. However, the molecular mechanisms influencing the meat 
production and quality of Jianshui yellow–brown ducks have not been 

investigated in depth. This study investigated the population genetic 
structure and genetic diversity of the Jianshui yellow–brown duck 
population using resequencing technology. Subsequently, based on the 
results of the population genetic structure analysis, this study 
performed a comparison between this duck population and the 
mallard population to identify candidate genes associated with meat 
production and fat deposition in Jianshui yellow–brown ducks 
through combined analysis of selection signals and transcriptomes. 
Furthermore, a selection signal analysis was performed on Jianshui 
yellow–brown ducks and meat-type Pekin ducks to explore genomic-
level genetic differences between the two varieties resulting from 
different domestication and breeding processes. Finally, the meat-trait 
breeding status in Jianshui yellow–brown ducks was evaluated.

2 Materials and methods

2.1 Sample collection

We randomly selected 18 healthy Jianshui yellow–brown ducks 
(YB), including 7 males and 11 females, at the Jianshui yellow and 
brown duck breeding farm in Jianshui County, Yunnan Province. 
During the collection process, 5 mL of blood samples were taken from 
the wing veins of these ducks using vacuum blood collection tubes 
with EDTA anticoagulant. Ice packs were cryopreserved and 
transported back to the laboratory and stored in a −20°C refrigerator 
for subsequent extraction of whole gene DNA. In addition, 6 Jianshui 
yellow–brown ducks (3 males and 3 females) were randomly selected 
for slaughter, and 6 liver, 6 sebum, and 3 breast muscle tissue samples 
were collected, immediately place the tissue into a pre-prepared 
cryopreservation tube containing RNA preservation solution (the 
RNA preservation solution is RNA solid Stable Preservation Solution, 
Wuhan Servicebio Company), place it in liquid nitrogen, take it back 
to the laboratory and store it in a −80°C ultra-low temperature 
refrigerator for subsequent extraction of total tissue RNA. For detailed 
information on the collected samples of Jianshui yellow–brown ducks, 
please refer to Supplementary Table S1. All experimental procedures 
adhered to the regulations of the Administration of Laboratory 
Animal Affairs and were approved by the Ethics Committee of Yunnan 
Agricultural University (No. 202103035).

2.2 Whole-genome resequencing and 
bioinformatics analysis

2.2.1 Population variation detection
The quality and concentration of the extracted DNA were assessed 

using 1% agarose gel electrophoresis and ultraviolet spectrophotometry. 
After passing the quality control, the samples will be  sent to 
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BerryGenomics Corporation (Beijing, China) for whole genome 
resequencing. The sequencing will be  performed on Illumina 
novaseq 6,000 sequencing platform, using paired-end sequencing, and 
the sequencing depth is 15×. Additionally, resequencing data for a few 
duck varieties were downloaded from the NCBI database (Bioproject ID: 
PRJNA450892, PRJNA599025, PRJNA645648, and PRJNA419832), 
including wild varieties (mallard, ML, n = 10; spot-billed duck, SB, 
n = 10), meat-type varieties (Pekin duck, PK, n = 16; Cherry Valley duck, 
CV, n = 10), and meat-egg-type varieties (Fenghua duck, FH, n = 10; 
Shanma duck, SM, n = 10; Shaoxing duck, SX, n = 10; Gaoyou duck, GY, 
n = 8; Jinding duck, JD, n = 8). Information on some of the Chinese local 
duck breeds included in this study is shown in Supplementary Table S2. 
The resequencing data of 18 Jianshui yellow–brown ducks (from a total 
of 10 populations and 110 individuals) obtained in this study were 
subjected to population structure and genetic diversity analyses. The raw 
data underwent quality control and filtering using FASTP (9) software 
with default parameters. After quality control, the clean data were 
compared with the Pekin duck reference genome (10) by aligning both 
sequences using bwa (11) software (version CAU_duck1.0: https://ftp.
ensembl.org/pub/release-110/fasta/anas_platyrhynchos_platyrhynchos/
dna/Anas_platyrhynchos_platyrhynchos.CAU_duck1.0.dna.toplevel.
fa.gz). The sam files were converted to bam files, and sorted using the 
“-sort” command in SAMTOOLS (12) software. The commands 
“flagstat” and “coverage” were used to count the alignment rate, coverage 
rate, and coverage depth in each sample. PICARD software was used to 
label repetitive sequences resulting from amplification through 
polymerase chain reaction during sequencing and remove them. 
Alignment in separate samples and separate chromosomes was 
conducted using the “HaplotypeCaller,” “CombineGVCFs,” 
“GenotypeGVCFs,” “MergeVcfs,” and “SelectVariants” commands in the 
GATK (13) software to obtain the individual variation detection results 
SNP loci were extracted from the individual results, and population-level 
SNP variation results were obtained. The population variation detection 
results were initially filtered using the “VariantFiltration” command with 
the following specific criteria: QD < 2.0 || MQ < 40.0 || FS > 60.0 || 
SOR > 3.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0. All SNPs 
were further filtered to improve the confidence of the results. Those SNPs 
that did not meet the requirements of deletion rate and minimum allele 
frequency in the population were further filtered using VCFTOOLS (14) 
software according to the criteria of “--geno 0.1 ---maf 0.01.” Finally, the 
high-confidence population SNP variation detection results were saved 
in the vcf format and used for subsequent downstream analysis.

2.2.2 Population structure, genetic 
differentiation, and genetic diversity analyses

Based on the VCF files obtained in the previous step, the 
population was subjected to PCA analysis using PLINK software, 
followed by visualization of the PCA results using R. The vcf file of the 
population SNP variation results was converted to the phylip format 
using the run_pipeline.pl. program in TASSEL (15) software. A 
neighbor-joining (NJ) evolutionary tree was constructed using 
PHYLIP (16) software, and the phylogenetic tree was beautified using 
the iTOL online website (17). The genetic differentiation index Fst 
between two populations was calculated using VCFTOOLS software 
with a sliding window approach, utilizing a window size of 100 kb and 
a sliding step size of 10 kb. Cross-validation error rates were calculated 
using ADMIXTURE (18) software for different K values, and the 
optimal K value was determined. Stacked plots were created using the 

pophelper software package in R. Nucleotide diversity values for each 
of the 10 populations were calculated using the vcftools software 
“--window-pi 10 M” command, and boxplots were generated using 
ggplot2 for visualization and comparison [In the study of population 
genetic differentiation and comparison of population nucleotide 
diversity, we used the parameters of window size and sliding step size 
with reference to Wang et al. (19)].

2.2.3 Population selection analysis
Nucleotide diversity ratio θπ and genetic differentiation index Fst 

were calculated using Vcftools software with a sliding window size of 
“40 kb” and a sliding step size of “10 kb.” [In the study of selection 
signal analysis of populations based on population genetic 
differentiation and population nucleotide diversity, we  used the 
parameters of window size and sliding step size with reference to Zhou 
et al. (20)]. The top 1% regions of the joint region of θπ and Fst were 
identified as candidate regions for selection. Duplicate regions were 
merged using bedtools software, and the genes within the filtered 
regions were annotated using the species gene annotation file.

2.3 Transcriptome sequencing and 
bioinformatics analysis

The Tiangen Total RNA Extraction Kit was used to extract total 
RNA from the liver, sebum and breast muscle tissue according to the 
manufacturer’s instructions. The quality-controlled samples were sent 
to Berry Genomics (Beijing, China) for sequencing, which will 
be performed on the Illumina novaseq 6,000 sequencing platform 
using paired-end sequencing (Paired-end sequencing, measuring 
150 bp at each end, and the length of each read is 300 bp) with 10 G 
per sample (i.e., 1 billion base pairs per sample by transcriptome 
sequencing to ensure sufficient data for accurate gene expression 
analysis). The liver, sebum and breast muscle transcriptomic data of 
mallard and Pekin ducks used in this study were downloaded from 
public databases (NCBI and BIG Data Center, Bioproject ID: 
PRJNA645648, BIG accession codes PRJCA001307), transcriptome 
sequencing data downloaded from public databases also use 
paired-end sequencing, with 150 bp at each end and a read length of 
300 bp. The same tissues from Jianshui yellow–brown ducks, mallards, 
and Pekin ducks were compared to identify differentially expressed 
genes (DEGs). The raw data underwent filtering and quality control 
using FASTP software with default parameters. The resulting clean 
data were aligned to the Pekin duck reference genes using HISAT2 
(21) software (version: CAU_duck1.0). The parameters for mapping 
sequenced reads back to the reference genome using HISAT2 are as 
follows: --rna-strandness --new-summary -x genome −1 read1.fq.gz 
−2 reads2.fq.gz -S sample.sam. We  set the parameter 
“--rna-strandness” mainly because we adopted the strand-specific 
library construction method when we sequenced the transcriptome 
of Jianshui yellow–brown duck tissues. In this way, we were able to 
obtain the orientation information of the RNA fragments to estimate 
the gene expression level more accurately. At the same time, we used 
the “-x” parameter to specify the reference gene of the selected species. 
The aim of this study was to look for differences between species by 
performing transcriptome analyses of the same tissue from different 
species. In order to control a single variable as much as possible and 
reduce the influence of sex factors on differentially expressed genes, 
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we first removed the chromosomal information related to the sex of 
the species on the reference genome, and only aligned the reads back 
to the autosomes on the reference genome of the species. Expression 
quantification was performed on the alignment results using the 
“featurecounts” command of SUBREAD (22) software to obtain the 
raw expression matrix. Using the TPM (Transcripts Per Million) 
approach to normalize the raw expression matrix of transcriptomic 
data. TPM correction of raw counts prior to correlation analysis of 
samples is required in order to eliminate variability due to differences 
in gene length and sequencing depth. This ensures that comparisons 
of gene expression between samples are accurate and fair. Such 
standardization is essential for subsequent sample correlation analysis. 
Differential expression analysis was conducted on the raw expression 
matrix using DESEQ2 (23). We will use the raw expression matrix 
generated by featurecounts as the input file for DESEQ2. In this 
process, we  set DESEQ2’s comparison grouping information, i.e., 
grouping according to varieties. After that DESEQ2 will calculate key 
information such as log2|Foldchange|, value of p and padj for each 
gene. Significant DEGs were identified based on the criteria of |log2 
Fold Change| > 1.5 and corrected p-values (P.adj) less than 0.001. The 
correction for false-positive detection due to multiple comparison 
tests was performed using the Benjamini–Hochberg (BH) method. 
Screening for differentially expressed genes (DEGs) by adjusted 
p-values reduces the rate of false positives and enhances the reliability 
of the study results. The number of DEGs in each population was then 
counted, and volcano plots were generated using R.

Joint analysis of selection signal and transcriptome
To further narrow down the candidate gene list and increase the 

robustness of the results, a joint analysis of selection signals and 
transcriptome data was performed. First, we screened the candidate 
genes related to the target trait (i.e., meat performance) from the 
selection signal results, and intersected the candidate genes from the 
selection signal with the differentially expressed genes obtained from 
the transcriptome analysis, and the intersected portion of the results 
was the result of the joint analysis.

3 Results

3.1 Genome sequencing results and 
variation detection

Eighteen Jianshui yellow–brown ducks underwent resequencing, 
and the resequencing data of 92 ducks from nine different varieties 
were downloaded from the NCBI database, totaling 110 individuals 
from 10 populations. The quality of the sequencing data was assessed, 
and the 18 Jianshui yellow–brown ducks exhibited a base population 
quality with Q20 and Q30 values above 90%, normal CG distribution, 
an average sample alignment rate of 98.22%, an average sequencing 
depth of 18.94×, and an average sample coverage rate of 92.37% 
(Supplementary Table S3). The Q20 and Q30 values for the 92 
resequencing data from the NCBI database also exceeded 90%, with an 
average alignment rate of 97.69%, an average sequencing depth of 
8.14×, and an average coverage rate of 90.66% (Supplementary Table S4). 
Thus, the sequencing data demonstrated reliable quality and met the 
requirements for resequencing analysis. After the detection and 
filtering of population SNPs, a total of 19,795,912 high-quality SNPs 
were obtained from 110 individuals. The subsequent analysis focused 

on population structure, population genetic diversity, and population 
selection based on these population SNPs.

3.2 Population genetic structure and 
genetic differentiation

To examine the presence of outlier samples and inter-population 
genetic structure and relationships, PCA, phylogenetic tree 
construction, and population structure analysis were performed 
using whole-genome SNPs from 110 individuals representing 10 
populations (Pekin, Cherry Valley Pekin, mallard, spot-billed, 
Fenghua, Shanma, Shaoxing, Jinding, Gaoyou, and Jianshui yellow–
brown ducks). PCA results demonstrated that individuals within the 
same population tended to cluster together (Figure  1A). The 10 
populations could be categorized into four groups: Gaoyou duck, 
Jinding duck, Shanma duck, and Shaoxing duck formed one group; 
mallard, spot-billed duck, and Fenghua duck formed another group; 
Pekin duck and Cherry Valley Pekin duck clustered together; and 
Jianshui yellow–brown duck formed a distinct individual population. 
The results from the NJ evolutionary tree (Figure 1B) were consistent 
with the PCA results, with the Jianshui yellow–brown duck 
population forming a separate cluster. Structure analysis indicated 
that the cross-validation error rate was minimized when K = 4 
(Supplementary Figure S1). Figure 1C depicts the structure results 
when K = 2–4. When K = 2, the 10 populations were divided into two 
groups: one comprising domesticated varieties and the other 
consisting of wild varieties. Notably, the Fenghua duck and mallard 
populations showed signs of hybridization. When K = 3, Pekin and 
Cherry Valley Pekin ducks were separated from the domesticated 
varieties, resulting in three populations: the shelduck population 
(Shaoxing ducks, Gaoyou ducks, Jinding ducks, Shanma ducks, and 
Jianshui yellow–brown ducks), white-feathered meat-type duck 
population (Pekin ducks and Cherry Valley Pekin ducks), and wild 
duck population (mallard, spot-billed ducks, and Fenghua ducks). 
However, when K = 4, Jianshui yellow–brown ducks were further 
separated from the shelduck population. The results of genetic 
differentiation indicated that, among the 10 populations, the highest 
level of genetic differentiation was observed between Jinding ducks 
and Gaoyou ducks (Fst = 0.217), whereas the lowest level was 
observed between mallard and spot-billed ducks (Fst = 0.056; 
Supplementary Table S5). The Jianshui yellow–brown duck 
population exhibited the greatest degree of differentiation from the 
Gaoyou duck population (Fst = 0.209) and the smallest degree of 
differentiation from the Fenghua duck population (Fst = 0.139).

3.3 Population genetic diversity

Nucleotide diversity values are indicative of the genetic diversity 
within a population. Supplementary Figure S2 illustrates the genetic 
diversity levels of the 10 populations. Mallard exhibited the highest 
genetic diversity, while Gaoyou ducks displayed the lowest. The two 
wild duck populations showed relatively rich genetic diversity. The 
genetic diversity of the Jianshui yellow–brown duck population was 
lower than that of mallard, spot-billed ducks, Shaoxing ducks, and 
Fenghua ducks but higher than that of Pekin ducks, Shanma ducks, 
Jinding ducks, Cherry Valley Pekin ducks, and Gaoyou ducks. 
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Consequently, Jianshui yellow–brown ducks ranked fifth among the 
10 populations in terms of genetic diversity.

In descending order, the values of genetic diversity were as follows: 
mallard, spot-billed ducks, Shaoxing ducks, Fenghua ducks, Jianshui 
yellow–brown ducks, Pekin ducks, Shanma ducks, Jinding ducks, 
Cherry Valley Pekin ducks, Gaoyou ducks. Two wild duck populations 
showed relatively rich genetic diversity. Among the eight domesticated 
populations, Jianshui yellow–brown ducks ranked third in terms of 
genetic diversity, after Fenghua ducks and Shaoxing ducks.

3.4 Selection signals

Meat performance is a crucial economic trait in the domestication 
of ducks. To investigate the selection of functional genes related to 
meat traits in varieties under different degrees of selection, the 
selection signals of Jianshui yellow–brown ducks, which undergo low 
selection, and Pekin ducks, which experience high selection, were 
analyzed with wild mallard as the control. Fst (population fixation 
index) and π (nucleotide diversity) were calculated for the whole 
genome regions of Jianshui yellow–brown duck, Pekin duck and 
mallards using the sliding window method with VCFTOOLS software. 
The window size and step size used in the calculation were in 
accordance with the parameters set in the section “2.2.3 Population 
selection analysis.” Based on the above method, the obtained Fst 
values were converted into Z-scores, and log2θπ values were calculated 
for the compared populations. Figure  2 shows the results of the 
selection signals for Jianshui yellow–brown ducks and mallard. In 
performing the selection signal analysis, we screened genomic regions 

with ZFst and θπ values ranked in the top 1% as candidate regions that 
might be subject to selection. Specifically, we screened out regions in 
the genome of the Jianshui yellow–brown duck population that might 
be subjected to selection by setting a threshold of ZFst value >3.42 and 
log2(πMallard/πJianshui yellow–brown duck) ≥ −0.55. BEDTOOLS software was 
applied to merge the overlapping candidate regions, and in the results 
we identified 62 potential candidate genomic regions. After detailed 
annotation of genes within these regions, we identified a total of 136 
genes that were subject to selection in Jianshui yellow–brown ducks.

To identify the selected genes in the Pekin duck population (Pekin 
duck vs. mallard), by calculating the thresholds for the ZFst and log2θπ 
values, we  considered the regions with ZFst values >3.26 and 
log2(πMallard/πPekin duck) ≥ −0.37 as the regions that might be subject to 
selective action in the Pekin duck population (Figure 3), 90 selected 
genes were annotated within 63 candidate regions for Pekin ducks. 
Pekin ducks are globally recognized for their meat characteristics, 
while Jianshui yellow–brown ducks are a meat-egg-type variety with 
a lower degree of selective breeding. To compare the genomic 
differences between these two varieties, selection signal analysis was 
conducted on Jianshui yellow–brown ducks and Pekin ducks to 
identify selected genes related to meat performance in the Jianshui 
yellow–brown ducks population and evaluate the selective breeding 
of Jianshui yellow–brown ducks for meat traits. Through gene function 
query and Tajima’s D calculation, 6 genes associated with growth and 
development and lipid metabolism – ELOVL2 (ELOVL Fatty Acid 
Elongase 2), ELOVL3 (ELOVL Fatty Acid Elongase 3), GDF10 
(Growth Differentiation Factor 10), VSTM2A (V-Set And 
Transmembrane Domain Containing 2A), PHOSPHO1 
(Phosphocholine Phosphatase 1), and IGF2BP1 (Insulin Like Growth 

FIGURE 1

Population stratification of Jianshui yellow–brown duck. (A) Principal Component Analysis [Cherry Valley Pekin duck (CV), Fenghua duck (FH), Gaoyou 
duck (GY), Jinding duck (JD), Mallard (ML), Pekin duck (PK), Spot-billed duck (SB), Shanma duck (SM), Shaoxing duck (SX), Jianshui Yellow–brown duck 
(YB)]. (B) Neighbor-joining phylogenetic of eleven populations. (C) Population structure analysis.
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Factor 2 MRNA Binding Protein 1) – were subjected to significant 
selection in the genome of Jianshui yellow–brown ducks 
(Supplementary Figures S3–S8). Furthermore, compared with Pekin 
and mallard, 6 genes related to muscle growth and fat deposition – 
GDF10, IGF2BP1, SCD (Stearoyl-CoA Desaturase), MAP3K20 
(Mitogen-Activated Protein Kinase Kinase Kinase 20), TGFB3 
(Transforming Growth Factor Beta 3), and WNT8B (Wnt Family 
Member 8B) – were identified (Supplementary Figures S9–S14). 
Compared with the Pekin duck population, 21 genes subjected to 
significant selection were observed in the Jianshui yellow–brown duck 
population (Supplementary Figure S15). However, based on functional 
annotation of these genes and comparison with the previously 
screened genes related to meat traits, none of these 21 genes were 
identified as candidate genes associated with muscle development and 
fat deposition.

3.5 Quality control of transcriptome raw 
data and screening of differentially 
expressed genes

Transcriptome sequencing technology facilitates the detection of 
mRNA expression in the same tissue across different duck varieties. This 

allows for the annotation and enrichment analysis of the functions of 
Differently Expressed genes (DEGs), which facilitates the identification 
of important functional genes related to characteristic traits in various 
varieties. In this study, transcriptome sequencing analysis was 
conducted on the liver, sebum and breast muscle tissues of Jianshui 
yellow–brown ducks and mallards. Additionally, DEGs were screened 
in the liver, sebum and breast muscle tissues between Pekin ducks and 
mallards. After screening and quality control of the raw data of 
transcriptome sequencing, and then comparing the high-quality reads 
back to the reference genome of ducks (CAU_duck1.0: https://ftp.
ensembl.org/pub/release-110/fasta/anas_platyrhynchos_platyrhynchos/
dna/Anas_platyrhynchos_platyrhynchos.CAU_duck1.0.dna.toplevel.
fa.gz), the results showed that the transcriptome sequencing results of 
the tissue samples from the Jianshui yellow and brown duck population 
were of good quality, with an average Q20, Q30, and comparison rate of 
92.61, 97.11, and 78.92%, respectively (Supplementary Table S6). The 
transcriptome sequencing results of Pekin duck and mallard duck 
downloaded from public databases also showed a high quality level, 
with average Q20, Q30 and alignment rates of 94.17, 97.48, and 
81.01%, respectively (Supplementary Table S7). After quantification 
of gene expression, sample correlation analysis was performed on the 
normalized data using the TPM correction method. Subsequently, 
sequencing quality and sample data quality were preliminarily 

FIGURE 2

Distribution of Z(FST) values and log2(πMallard/Jianshui Yellow–brown duck) calculated in 40  kb sliding windows with 10  kb overlap between Jianshui 
yellow–brown duck and Mallard. Green dots represent selected regions on the genome of Jianshui yellow–brown duck, blue dots represent selected 
regions on the genome of Mallard.
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examined through analyses of sequencing base quality values, 
alignment rates, and sample correlation. Sample correlation analysis 
was performed with six sets of transcriptome data obtained from the 
same tissue among different duck varieties. The results revealed the 
presence of abnormal data (Supplementary Figures S16–S17). To 
improve the credibility of the results, sample correlation analysis was 
repeated after removing the abnormal data, and the results of this 
analysis suggested that the intra-population correlation was higher 
than the inter-population correlation, and samples from the same 
variety could be clustered together (Figures 4, 5). Samples with high 
confidence were then used to screen for DEGs, using threshold values 
of |log2FoldChange| > 1.5 and Padj < 0.001. According to the 
presentation in Supplementary Figures S18A–C, the transcriptomic 
data of Jianshui yellow–brown ducks and mallards showed that these 
two breeds exhibited different gene expression profiles in liver, sebum 
and breast muscle tissues. Specifically, there were 464 differentially 
expressed genes in liver tissues (251 up-regulated and 213 down-
regulated), 1,435 differentially expressed genes in sebum tissues (958 
up-regulated and 477 down-regulated), and 1,290 differentially 
expressed genes in breast muscle tissues (439 up-regulated and 851 
down-regulated genes). After another transcriptome analysis of Pekin 
and mallard duck tissues (Supplementary Figures S18D–F), 
we identified 2,050 differentially expressed genes in liver tissues (532 
genes were up-regulated and 1,518 genes were down-regulated), 473 
differentially expressed genes in subcutaneous adipose tissues 
(including 295 genes up-regulated and 178 genes down-regulated), 
and 475 differentially expressed genes were screened out of breast 
muscle tissues (185 genes were up-regulated and 290 genes were 

down-regulated), differentially expressed genes between groups can 
be viewed in Supplementary Tables S8–S13.

3.6 Joint analysis results

Genotypic differences between populations within the region 
under selection may trigger changes in the expression of the gene. 
Multi-omics data were utilized to identify reliable artificial 
selection loci and functional genes associated with economically 
important traits. Five functional genes (ELOVL2, ELOVL3, GDF10, 
VSTM2A, and IGF2BP1) that may affect meat production and 
quality in Jianshui yellow–brown ducks were identified from 
genome-wide signal selection analysis. Transcriptome analysis of 
DEGs revealed significant differences in PHOSPHO1 gene 
expression in the breast muscle tissues of Jianshui yellow–brown 
ducks and mallards (Figure 6). In addition, the expression levels of 
ELOVL3 and GDF10 genes also showed significant differences in 
sebum tissue (Figures 7, 8). To identify the functional genes related 
to muscle growth and fat deposition traits in Pekin ducks, and 
provide references for the selective breeding of meat-type duck 
varieties, genomic selection signal detection was performed on 
Pekin ducks and mallards. This analysis led to the identification of 
six functional genes related to meat traits (GDF10, IGF2BP1, SCD, 
MAP3K20, TGFB3, and WNT8B). Data on DEGs indicated 
significant differences in TGFB3 gene expression in the liver tissue 
and SCD gene expression in both liver and sebum tissues 
(Figures 9, 10).

FIGURE 3

Distribution of Z(FST) values and log2(πMallard/rPekin duck) calculated in 40  kb sliding windows with 10  kb overlap between Pekin duck and Mallard. 
Green dots represent selected regions on the genome of Pekin duck, blue dots represent selected regions on the genome of Mallard.
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4 Discussion

4.1 Molecular genetic characterization of 
Jianshui yellow–brown ducks

To comprehensively and accurately assess the germplasm 
resources of Jianshui yellow–brown ducks, resequencing was 
performed on 18 Jianshui yellow–brown ducks. The resequencing data 
from the ducks in the NCBI database were also used for population 
structure analysis. PCA was performed based on genome-wide SNPs. 
The results revealed that the Jianshui yellow–brown duck population 
was clustered into a single category, and individuals of the same 
species could be clustered together without any outlier samples in the 

PCA plot. In the evolutionary tree, 110 individuals from 10 
populations were categorized into four groups. Among them, 
Shaoxing ducks, Gaoyou ducks, Shanma ducks, and Jinding ducks 
were clustered into one category, and all four groups were shelduck 
varieties, originating from East China. Thus, they were implicated to 
have a closer genetic relationship than the other six populations. 
Mallards, spot-billed ducks, and Fenghua ducks were clustered into a 
single category. Although differences in body size and appearance 
existed between mallards and spot-billed ducks, the degree of genetic 
differentiation between the two varieties was small. Therefore, no 
reproductive isolation occurred after mating, and separating the two 
populations in the evolutionary tree was challenging (5, 24). In the 
relationship tree, Fenghua ducks and mallards showed a closer genetic 

FIGURE 4

Sample correlation analysis of liver, sebum, and breast muscle transcriptome data of Jianshui yellow–brown ducks and Mallards after excluding further 
outlier samples. (A) Sample correlation thermograms of liver tissues from Jianshui yellow–brown ducks and mallards. (B) Sample correlation 
thermograms of sebum tissues from Jianshui yellow–brown ducks and Mallards. (C) Sample correlation thermograms of breast muscle tissues from 
Jianshui yellow–brown ducks and Mallards.

FIGURE 5

Sample correlation analysis of liver, sebum and breast muscle transcriptome data of Pekin ducks and Mallards after excluding further outlier samples. 
(A) Sample correlation thermograms of liver tissues from Pekin ducks and Mallards. (B) Sample correlation thermograms of sebum tissues from Pekin 
ducks and Mallards. (C) Sample correlation thermograms of breast muscle tissues from Pekin ducks and Mallards.
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relationship. Fenghua ducks are directly domesticated from mallard 
ducks. Because of the short period of domestication, Fenghua ducks 
still retain some of the habits and characteristics of mallards (4, 25). 

Two white-feathered varieties, namely, Pekin duck and Cherry Valley 
Pekin duck, were clustered into a single category owing to their close 
genetic relationship. The Cherry Valley Pekin duck is a duck variety 

FIGURE 6

Combined analysis of genomic selection signal candidate genes and transcriptome differentially expressed genes in Jianshui yellow–brown duck and 
Mallard. (A) Fst Pi and Tajima’s D value of ELOVL3 between Jianshui Yellow–brown duck and Mallard. (B) Differentially expressed genes in sebum of 
Jianshui yellow–brown and Mallard. (C) Gene expression of ELOVL3 in sebum tissue of Jianshui yellow–brown ducks and Mallards.

FIGURE 7

Combined analysis of genomic selection signal candidate genes and transcriptome differentially expressed genes in Jianshui yellow–brown duck and 
Mallard. (A) Fst Pi and Tajima’s D value of GDF10 between Jianshui Yellow–brown duck and Mallard. (B) Differentially expressed genes in sebum of 
Jianshui yellow–brown and Mallard. (C) Gene expression of GDF10 in sebum tissue of Jianshui yellow–brown ducks and Mallards.
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known for its high-quality meat, and this variety was improved and 
bred on the Chinese native Pekin duck by the British Cherry Valley 
Company. Therefore, the Cherry Valley Pekin duck and the Pekin 

duck exhibited a close genetic relationship (3, 26). In addition, the 
Jianshui yellow–brown duck population was clustered into a separate 
category, a finding similar to those of the distribution of the Jianshui 

FIGURE 8

Combined analysis of genomic selection signal candidate genes and transcriptome differentially expressed genes in Jianshui yellow–brown duck and 
Mallard. (A) Fst Pi and Tajima’s D value of PHOSPHOI between Jianshui Yellow–brown duck and Mallard. (B) Differentially expressed genes in breast 
muscle of Jianshui yellow–brown and Mallard. (C) Gene expression of PHOSPHOI in breast muscle tissue of Jianshui yellow–brown ducks and 
Mallards.

FIGURE 9

Combined analysis of genomic selection signal candidate genes and transcriptome differentially expressed genes in Pekin duck and Mallard. (A) Fst Pi 
and Tajima’s D value of TGFB3 between Pekin duck and Mallard. (B) Differentially expressed genes in liver of Pekin duck and Mallard. (C) Gene 
expression of TGFB3 in liver tissue of Pekin ducks and Mallards.
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yellow–brown duck population in PCA. Compared with PCA and 
evolutionary tree analysis, structure analysis can be used to determine 
the reasonableness of grouping and gene exchange among different 
varieties. In structure analysis, when the cross-validation error rate 
was minimum (i.e., K = 4), 10 populations were categorized into four 
groups. Jianshui yellow–brown ducks were separated from the 
shelduck population, forming a distinct population. This finding 
validated the results from PCA and evolutionary tree analysis, 
highlighting the differences in molecular genetic characteristics 
between Jianshui yellow–brown ducks and wild ducks, white-
feathered meat-type ducks, and shelducks in East China. 
We  hypothesized that the Jianshui yellow–brown ducks have 
developed a unique molecular genetic mechanism owing to the 
influence of natural and artificial selection.

4.2 Selection signal analysis of Jianshui 
yellow–brown ducks, Pekin ducks, and 
mallard

Jianshui yellow–brown ducks, known for their tender meat, have 
become the key ingredient for the specialty dish “Qujiang Roast Duck” 
in Jianshui County, Yunnan Province, China. Identifying candidate 
genes that affect the traits of these varieties is crucial for understanding 
the genetic basis of their characteristics and conserving germplasm 
resources. In the selective breeding process, selection signal analysis 
was conducted on Jianshui yellow–brown ducks and mallard to 
explore the functional genes influencing meat production and meat 
quality traits. Several candidate genes related to muscle quality were 
identified, including members of the elongase of the very-long-chain 
fatty acid (ELOVL) gene family, such as ELOVL2 and ELOVL3, both 

of which were subjected to significant selection. The ELOVL family, 
as initiation and rate-limiting enzymes that catalyze fatty acid 
synthesis, plays an important role in fatty acid chain elongation (27). 
VSTM2A plays an essential role in regulating preadipocyte 
differentiation. VSTM2A overexpression increased the efficiency of fat 
synthesis, whereas VSTM2A knockdown inhibited fat formation (28, 
29). Growth-related genes, including GDF10, IGF2BP1, and 
PHOSPHO1 were also identified. Gene polymorphisms in GDF10, 
also known as bone morphogenetic protein-3b (BMP-3b), have shown 
a significant correlation with some growth traits in cattle and have a 
possible involvement in skeletal muscle formation and development. 
The GDF10 gene is also involved in lipogenesis and metabolism (30). 
Based on the results of GWAS analysis, Zhou et al. identified IGF2BP1 
as a candidate gene affecting the growth and carcass of domestic ducks 
(20). Moreover, the study by Wang et al. on domestic chickens, which 
was based on the pan-genomic data of domestic ckickens, showed that 
high expression of the IGF2BP1 gene influences the body size of 
ckickens (31). The PHOSPHO1 is a member of the phosphate 
dehydrogenase family and encodes an enzyme belonging to the acid 
phosphatase class that catalyzes the hydrolysis of inorganic phosphate 
esters. This gene is well known for its key role in bone growth and 
bone mineralization in organisms (32, 33). Recently, experimental 
results from Peng et al. have also shown that the PHOSPHO1 gene also 
plays an important role in the regulation of myogenic cell 
differentiation (34). These findings contribute to understanding the 
genetic mechanisms underlying the meat production and quality 
characteristics of Jianshui yellow–brown ducks.

Based on the analysis of population structure, it was found that 
the Jianshui yellow–brown duck and Pekin duck, two domesticated 
varieties, have significantly diverged from the wild mallard through 
domestication and selective breeding. In the selection signal analysis 

FIGURE 10

Combined analysis of genomic selection signal candidate genes and transcriptome differentially expressed genes in Pekin duck and Jianshui yellow–
brown duck. (A) Fst Pi and Tajima’s D value of SCD between Pekin duck and Mallard. (B) Differentially expressed genes in liver of Pekin duck and 
Mallard. (C) Differentially expressed genes in sebum of Pekin duck and Mallard. (D) Gene expression of SCD in liver tissue of Pekin ducks and Mallards. 
(E) Gene expression of SCD in sebum tissue of Pekin ducks and Mallards.
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between the Jianshui yellow–brown duck and mallard, candidate 
genes related to meat traits of the Jianshui yellow–brown duck were 
identified. However, as a meat-egg-type local variety, the meat 
performance of Jianshui yellow–brown ducks still requires further 
improvement. Therefore, the meat-type Pekin duck was chosen as the 
research object and the mallard as the control, and the selection 
signaling was used to identify candidate genes affecting muscle growth 
and fat deposition traits in Pekin duck. Six functional genes (GDF10, 
IGF2BP1, SCD, MAP3K20, TGFB3, and WNT8B) related to meat 
traits were identified. Among them, SCD, a key enzyme required for 
the synthesis of monounsaturated fatty acids, plays a crucial role in the 
regulation of lipogenesis. Mice with SCD1 gene knockout have 
increased energy expenditure and fat consumption and decreased 
amounts of fat deposition (35). Bioinformatics approaches have been 
used for studying meat quality in livestock, and the results have 
suggested that the SCD gene is an important functional gene affecting 
lipogenesis and fat deposition (36, 37). TGFB3, a candidate gene 
affecting variation in rib count in pigs, also plays a role in avian 
lipogenesis and lipometabolism. Based on the GWAS-derived SNP 
association results affecting abdominal fat percentage in chickens, 
TGFB3 was identified as a candidate functional gene affecting fat 
deposition (38). Wang et  al. identified TGFB3 as a target gene of 
miR-122, which is a regulator of adipose metabolism (39, 40). 
MAP3K20 and WNT8B, belonging to the MAPK and Wnt signaling 
pathways (41, 42), respectively, are involved in cellular signaling 
pathways crucial for muscle growth and development. These genes 
may have a regulatory role in the muscle growth of Pekin ducks.

Jianshui yellow–brown duck, as a meat-egg-type local variety, has 
undergone limited selective breeding for meat traits. In contrast, the Pekin 
duck is a meat-type variety undergoing extensive selective breeding. To 
explore the genetic differences between these two varieties and assess the 
selection potential of Jianshui yellow–brown duck for meat performance, 
a selection signal analysis was performed. Only 21 genes were subjected 
to selection in the Jianshui yellow–brown duck population compared with 
those in the Pekin duck. When using mallard as a control, 136 and 90 
genes were selected in the Jianshui yellow–brown duck and Pekin duck 
populations, respectively. It is worth noting that during the functional 
annotation of these 21 genes (YB vs. PK) selected from the Jianshui 
yellow–brown duck population, we also found an interesting gene, ITGA4 
(Integrin Subunit Alpha 4), which encodes the α4 integrin, which has 
been shown to play an important role in the regulation of inflammation 
and immune responses (43, 44). Jianshui yellow–brown ducks have 
always lived at relatively high altitudes and, due to their relatively short 
history of domestication, they exhibit strong environmental adaptations 
and disease resistance. Compared with the Pekin duck population, 
we observed that the ITGA4 was strongly selected for in the genome, and 
hypothesized that the ITGA4 plays an important role in both 
environmental adaptation and disease resistance in Jianshui yellow–
brown ducks.

Among these selected genes, 6 genes were associated with muscle 
growth and fat deposition in Jianshui yellow–brown ducks, and 6 
genes were related to meat traits in Pekin ducks. However, these genes 
were not detected in the Jianshui yellow–brown duck population 
when comparing selection signals between Jianshui yellow–brown 
ducks and Pekin ducks. Although the Jianshui yellow–brown duck 
variety has been bred for its meat characteristics for some time, the 
degree of its improvement in meat traits was not adequately high 
because of the short duration and low intensity of selective breeding. 

Therefore, further selective breeding efforts are needed to enhance 
meat yield and quality in Jianshui yellow–brown ducks.

4.3 Joint analysis of genomic selection 
signals and transcriptome

The selection signaling method has gained attention for 
identifying important functional genes related to economic traits in 
ducks (6, 45–47). By screening genes within regions subject to 
selection, which exhibit reduced polymorphism, higher inter-
population differentiation, and changes in allele frequency, the 
accuracy of results can be  improved (48). Combining multiple 
selection signal assays enhances the reliability of the findings. 
Additionally, the availability of upgraded reference genomes facilitates 
gene annotation within selected regions (49–51). Transcription of 
DNA into mRNA is a key event for proteins to exert their functions. 
However, gene expression during the transcription process is 
spatiotemporal specific, wherein different growth periods and feeding 
conditions affect the degree of gene expression (52, 53). Therefore, 
joint analysis of selection signals and transcriptome data provides a 
preliminary understanding of the effect of allelic changes in the 
selected region on gene expression and facilitates the identification of 
reliable selection sites and functional genes (1, 20). In this study, 
ELOVL3, GDF10, and PHOSPHO1 were identified as important 
functional genes affecting muscle growth and fat deposition in 
Jianshui yellow–brown ducks through a joint analysis of selection 
signals and transcriptome data. Moreover, the selection signal analysis 
between Jianshui yellow–brown ducks and Pekin ducks revealed that 
genes related to meat traits in the Jianshui yellow–brown duck 
population were not strongly selected, indicating the need for further 
emphasis on selective breeding for meat traits. The TGFB3 and SCD 
genes identified in Pekin ducks, associated with meat performance, 
may serve as potential markers for the molecular breeding of meat-
type Jianshui yellow–brown ducks in the future.

5 Conclusion

The analysis of genetic structure based on whole-genome 
resequencing data revealed that the Jianshui yellow–brown duck 
represents a distinct population category with unique genetic 
mechanisms, possibly attributed to natural adaptation and artificial 
breeding. The integration of selection signaling and transcriptomic 
methods led to the identification of ELOVL3, GDF10, and PHOSPHO1 as 
important functional genes influencing meat traits in Jianshui yellow–
brown ducks. Compared with the selection signals in Pekin duck, Jianshui 
yellow–brown ducks have undergone less intense selective breeding for 
meat performance, necessitating further efforts to enhance their meat 
yield and quality. These findings provide valuable insights for the 
conservation and utilization of Jianshui yellow–brown duck germplasm 
resources and guide future selective breeding endeavors.
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While genetic markers related to meat production traits have been identified in many
other cattle breeds, research on weight in Hanwoo cattle (Korean native cattle) is still
insufficient. In this study, we performed expression quantitative trait loci (eQTL)
analysis and differential gene expression analysis to detect candidate genes
influencing the weight characteristics of 32 castrated Hanwoo cattle across
22 tissues and, we identified variants that affect gene expression levels. In total,
we identified a total of 3,298 differentially expressed genes, among which we
discovered key genes such as UBD, RGS2, FASN, and SCD that have functions
related to adipogenesis, body weight, obesity, and lipid metabolism. Gene-set
enrichment analysis revealed that candidate genes in adipose tissue are involved in
metabolic pathways linked to obesity-related traits, adipose metabolism, and lipid
metabolism. Additionally, we found that decreased expression of TRIM31 contributes
to weight gain which can be explained by the associated candidate cis-eQTL
genotypes for TRIM31 and their effect on differential gene expression between the
lower and higher weight groups. Our findings revealed candidate genes associated
with the weight of Hanwoo cattle and perhaps can provide comprehensive insights
into the association of weight with various tissues beyond adipose tissue andmuscle,
indicating the potential for expanding the focus of livestock trait research.

KEYWORDS

Hanwoo, body weight, eQTL analysis, differentially expressed genes, transcriptome

Introduction

Hanwoo cattle (Korean native cattle) is a breed of cattle indigenous to Korea that was
previously used for agricultural, transportation and religious purposes but later evolved into beef
cattle and remains one of the country’s most important food sources to this day (Lee et al., 2014).
Hanwoo cattle are recognized for their high fertility, but their slow growth rate hinders their meat
production capability (Choi et al., 2019). For efficient meat production of beef cattle, it is
important to maximize their weight, which is an economic trait (Fink et al., 2017). Livestock
weight is economically important because it indicates livestock ability, a standard for determining
livestock rations and selling prices, and is also used as a trait to evaluate livestock breeding value
(Wangchuk et al., 2018). To this end, a significant amount of genetic research has focused on
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elucidating the genetic determinants of body weight and related traits in
cattle and other livestock species (Littlejohn et al., 2012).

Genetic studies have progressively shed light on the complex
underpinnings of body weight traits in cattle. For instance, Duan et al.
(2021) pinpointed several single nucleotide polymorphisms (SNPs) in
Chinese Simmental cattle that correlate with body weight, revealing genes
that govern growth and development. Similarly, Naserkheil et al. (2020)
conducted a GWAS that identified genes in Hanwoo cattle associated
withmetabolic processes and growth, highlighting the genetic complexity
of these traits. Furthermore, Liu et al. (2018) provided insight into the role
of lipid metabolism by analyzing differentially expressed genes (DEGs) in
the subcutaneous adipose tissue of Lilu cattle, underscoring the
multifaceted nature of weight regulation at the genetic level.

While these studies offer valuable information, they primarily rely
on GWAS for gene identification, and little attention has been given to
integrating transcriptomic data with expression quantitative trait loci
(eQTL)mapping to gain amore holistic understanding of weight traits.
Recognizing this gap, our study harnesses RNA-seq technology to
profile gene expression across Hanwoo cattle tissues, integrating eQTL
analysis to elucidate the genetic mechanisms influencing weight. The
eQTL analysis is crucial in elucidating the significant association
between gene expression levels and genetic polymorphisms,
providing a profile that highlights the unique biological significance
(Peng et al., 2018; Cai et al., 2023). This comprehensive approach aims
to build on the existing genetic framework, adding depth to our
understanding of how genetic variations contribute to phenotypic
expressions related to body weight in Hanwoo cattle.

In recent studies on weight and body composition traits of
Chinese Lilu cattle and common beef breeds in the United States
(such as angus, beefmaster, brahman, etc.), identified significant
candidate genes have been reported to be involved in lipid
metabolism pathways (Liu et al., 2018; Lindholm-Perry et al.,
2020). Lipid metabolism, which contributes to the characteristics of
body weight, encompasses a range of biochemical pathways including
fat synthesis, lipolysis, lipid transport, and oxidation (Muradian et al.,
2015). These processes occur not only in adipose tissue but also in
various other tissues such as the brain, liver, and muscles (Adibhatla
and Hatcher, 2008; Yang et al., 2013; Zhang et al., 2022). Therefore,
the aim of this study was to perform expression quantitative trait loci
(eQTL) analysis and differential gene expression analysis in different
tissues to detect candidate genes influencing weight in Hanwoo cattle.

Materials and methods

Experimental overview and sample
collection

To identify expression quantitative trait loci (eQTL) in Hanwoo
cattle, 32 animals from the same farm were provided by the Hanwoo
Cattle Research Institute, National Institute of Animal Science, South
Korea. The age (Mean ± Sd, 15.6 ± 5.5) and body weight (Mean ± Sd,
388.9 ± 115.6) of the 32 samples were measured at the time of slaughter
(Supplementary Table S1). The 22 tissues collected for RNA-sequencing
are as follows: abdominal fat (ABF), abomasum (ABO), back fat (BFT),
blood (BLO), cecum (CEC), colon (COL), duodenum (DUO), heart
(HEA), ileum (ILE), jejunum (JEJ), kidney (KID), kidney fat (KIF), liver
(LIV), sirloin (LOM), lung (LUN), omasum (OMA), rectum (REC),

reticulum (RET), round (RMP), rumen (RUM), spleen (SPL) and
tenderloin (TEN). Three of 32 individuals (Sample IDs: 192018,
192032, 202012) included missing tissue samples. Information about
the tissues collected per individual is provided in Supplementary Table
S2. Ethics approval was obtained from the National Institute of Animal
Science (approval no: NIAS20201979).

RNA isolation and sequencing

Tissue samples harvested from 32 castrated Hanwoo cattle were
processed for RNA preparation using two distinct methods. The first
method involved RNA extraction following the Trizol Beating RLT
Dnase column protocol, utilizing the QIAamp 96 Viral RNA Kit in
conjunction with QIAzol Lysis Reagent. The second method extracted
RNAbased on theTrizol beating isopropanol columnDNase tissueRNA
protocol, employing the QIAamp DNA Mini Kit and QIAzol Lysis
Reagent. Additionally, for the blood samples, RNA was extracted by
referencing the 900 µL Trizol Isopropanol column protocol, using a
combination of QIAzol_3X and QIAzol Lysis Reagent. RNA
concentration was checked using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, United States). RNA
extracted from tissues and blood was all subjected to RNA QC using
the TapeStation RNA Screen Tape, and the criteria were Concentrations
(total amount) > 0.5 (ug), RINs value > 6, and rRNA ratio > 1. The
quality and the integrity of the RNA was assessed using a bioanalyzer
(Agilent, Santa Clara, United States) and only samples with a RIN value
greater than 8.0 was used for cDNA library construction. Individual
libraries were generated using Illumina TruSeq™ RNA Sample
Preparation Kit (Illumina, San Diego, CA, United States). All samples
were sequenced on the Illumina NovaSeq 6000 sequencer, generating
100bp paired-end reads at a sequencing depth of 6 Gb. Sequencing for all
samples was conducted across separate lanes as per the workflow
schedule, rather than being performed on a single lane. The goal was
to produce data of at least 60 million reads for each sample. The raw
reads were freely deposited at the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database under
accession number E-MTAB-13398.

RNA-seq data production and RNA
SNP calling

We sought to obtain quantified expression values transcripts per
million (TPM) to compare gene expression levels and for use in eQTL
analysis. RNA-seq data of the 22 tissues sourced from 32 samples were
quality-checked with FastQC (version 0.11.9) (Brown et al., 2017), and
low-quality reads were filtered through the Trimmomatic (version 0.39)
process (Bolger et al., 2014). Expression levels were quantified using the
rsem-calculate-expression function of the RNA-seq by expectation
maximization (RSEM) software (version 1.3.1) (Li and Dewey, 2011),
generating TPM values for each of the 22 tissues across the 32 samples.
The ARS-UCD1.2 of cattle was used as the reference genome.

To acquire single nucleotide polymorphisms (SNP) information
requisite for principal component analysis (PCA) and eQTL analysis,
SNP data was derived from RNA-seq datasets. RNA-seq data from
32 samples of BLO tissue were subjected to SNP calling using genome
analysis toolkit (GATK) (version 4.1.4.0) (DePristo et al., 2011)
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adhering to the best practice guidelines (https://gatk.broadinstitute.org/
hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-
SNPs-Indels). First, after the previously mentioned Trimmomatic
process, we mapped the reference using the spliced transcripts
alignment to a reference (STAR) (version 0.11.9) tool (Dobin et al.,
2013) and removed duplicates using the MarkDuplicatesSpark tool in
GATK. After going through the SplitNCigarReads process of the GATK
and base quality recalibration, variant calling was performed using the
HaplotypeCaller tool. To enhance the accuracy of RNA SNP variants,
we treated genotypes with a genotype quality (GQ) less than 20 and a
read depth (DP) less than 5 as missing. SNPs exceeding a 10% missing
rate (-geno 0.1) were filtered. We then excluded the sex chromosomes
and indels, focusing our analysis solely on autosomal SNPs.

Study design

The 32 samples varied in age, as detailed in Supplementary Table
S1. For an accurate analysis, the weight phenotype was adjusted for

the effect of age (Figure 1). We adjusted the weight phenotypes for
age by simple linear regression and standardized the residuals to
z-scores by using the “lm” function in the R (version 4.2.2) software
(Ihaka and Gentleman, 1996). The heavy group consists of the top
10 samples with the highest z-scores after age fitting, while the light
group comprises the bottom 10 samples. They represent groups at
the ends of a continuum in the age-adjusted weight phenotype. For
each tissue, the transcriptomic comparison between the two defined
groups was performed to identify differentially expressed genes.

Principal component analysis for genetic
similarity and pattern identification

To ensure the independence of the samples and to detect any
potential correlations resulting from genetic or environmental
influences, we performed principal component analysis (PCA).
The PCA was executed using the genome-wide complex trait
analysis tool (GCTA64) (Yang et al., 2011), utilizing variant call

FIGURE 1
Flowchart outlining the study design and analytical approach for differential expression gene (DEG) analysis in cattle.
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format (VCF) files obtained from RNA sequencing data of BLO
(Granato et al., 2018). The VCF files were first converted to Plink
format with Plink software for compatibility with the GCTA64 tool.
Subsequent analyses were restricted to autosomal chromosomes to
avoid confounding factors associated with sex chromosomes. The
PCA was computed using the “--pca 21” option to extract the first
21 principal components. The principal components (PC1 and PC2)
were adjusted as covariates in the differential gene expression (DEG)
analysis to mitigate potential confounding effects.

Differential gene expression analysis and
inter-tissue correlation analysis

In the RNA-seq process, the number of reads of each gene was
calculated using the FeatureCount (version 2.0.1) program (Liao
et al., 2014) for the bam file generated after the STAR process (Dobin
et al., 2013). Read counts were converted to counts per million
(CPM), and genes with maximum CPM values less than 1 in the
samples were removed. When specifying the model to be fitted, the
values of PC1 and PC2 were applied as covariates to control for
external factors. Differentially expressed genes (DEGs) were
identified using the limma (version 3.52.4) -voom package (Law
et al., 2014) of R software (Ihaka and Gentleman, 1996), and
10 samples with high z-scores were grouped as cases (= heavy
group), and 10 samples with low z-scores were grouped as controls
(= light group) for comparative analysis. DEGs were identified based
on a p-value < 0.05 and | Log2FC | > 1. In the reference genome ARS-
UCD1.2 obtained with Ensembl’s BioMart tool (https://asia.
ensembl.org/index.html), overlapping analysis was performed
using the Ensembl Gene ID to identify candidate DEGs.

The comprehensive assessment of gene expression correlations
across all tissues was conducted using t-values derived from the
limma-voom package, which was employed in the DEG analysis. To
test the correlation between tissues, we utilized the Pearson
coefficient test. Using the “corrplot (version 0.92)” function in R
package, we distinguished and visualized three primary clusters
through the hierarchical clustering algorithm (hclust).

cis-eQTL analysis

Following the correlation analysis, which identified three
adipose tissues [ABF (n = 342), BFT (n = 195), KIF (n = 160)]
as significant clusters, we proceeded with an eQTL analysis aimed at
uncovering variants that influence the regulatory mechanisms of
gene expression for DEGs within these specified tissues. First, the
previously generated vcf file, which only included SNP calling, was
converted into PLINK format using VCFtools (version 0.1.13)
(Danecek et al., 2011) and PLINK (version 1.90b6.24) (Purcell
et al., 2007). The phenotypic dataset was represented by the TPM
expression levels for each sample across all identified DEGs within
the three examined tissues. Genome-wide efficient mixed model
association (GEMMA) (version 0.98.5) (Zhou and Stephens, 2012)
was utilized to perform association tests between the expression
levels of DEGs and genotypes. Our selection criteria for candidate
cis-eQTL variants entailed choosing SNPs that were not only on the
same chromosome as their corresponding gene but also within a

proximity of 500 Kb to the gene’s transcription start or
polyadenylation site, with an emphasis on those exhibiting a
p-value below 5e-05. It was run on each gene separately to
identify variants with a minimum minor allele frequency
(MAF) of 5%.

Next, we aimed to examine the linkage disequilibrium (LD)
relationships of surrounding SNPs with the candidate variant that
satisfied both the p-value and MAF criteria. To observe the LD
relationships with a larger number of SNPs, we utilized variant data
generated up to the GATK variant calling stage using RNA-seq data.
The vcf file processed through the GATK pipeline was then
converted to PLINK format using VCFtools and PLINK. We
assessed LD relationships within a 250 Kb window on both sides
of the significant SNP of interest and retrieved all reported pairs. The
results were visualized using bar plots to illustrate the LD
relationships between the candidate variant and other SNPs.

Gene set enrichment analysis and
visualization

DAVID v6.8 (https://david.ncifcrf.gov/) tool Field (Huang et al.,
2007) was used for functional annotation and enrichment analysis of
the DEG list. A p-value of 0.05 was used as the criterion for statistical
significance. The gene set of genes reported in the GWAS catalog
was identified using the GENE2FUNC process of the FUMA GWAS
(https://fuma.ctglab.nl/) Field (Watanabe et al., 2017). For both
tools, a p-value of 0.05 was used as the criterion for statistical
significance.

Results and discussion

Experimental design and data quantification

We obtained the RNA-seq data for 22 tissue samples from
32 castrated Hanwoo cattle of different ages and weights (Materials
and Methods) from the same farm managed by the Hanwoo
Research Institute. Of the 32 samples, 3 samples (Sample ID:
192018, 192031, 202012) did not have sequencing data for some
tissues, so the data were generated only with the tissues that had
complete sequencing data (Supplementary Table S2). Statistical data
regarding sequence quality and alignment information have been
compiled and summarized for three adipose tissues in
Supplementary Table S3. The 32 cattle were of different ages and
had different body weights for each age (Supplementary Table S1).
Our data show a high correlation between age and weight, and we
confirmed that age explains a significant portion of the variation in
body weight through the scatter plot (R2 = 0.9075, p-value < 2.2E-16)
(Supplementary Figure S1). Our goal was to detect differentially
expressed genes (DEGs) that affect body weight and strictly control
for other environmental factors. Body weight as a phenotype was
adjusted considering age through simple regression analysis, and
residuals were standardized as the z-score to control for the age
factor (Supplementary Table S1).

In addition, we sought to control the genetic architecture and
external influences on body weight among Hanwoo cattle. To
achieve this, we evaluated the sample independence and potential
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correlations due to genetic or extrinsic factors. The analysis revealed
that the first principal component (PC1) accounted for 7.0% of the
variance in the data, while the second principal component (PC2)
explained 5.6% (Supplementary Figure S2A). Although it seemed to
form a cluster, it was confirmed that samples of similar weight or
similar age were not grouped. We used a scatter plot to examine the
causal or correlational relationship between PC1 and PC2 and the
sample’s age, weight, and z-scores (Supplementary Figure S2B)
(Kahng et al., 1998). All scatter plots showed apparent linear
relationships, but PC1 × months, PC1 × body weights, PC1 ×
z-score, PC2 × months, and PC2 × body weights demonstrated
non-significant correlations with p-values greater than 0.05. The
scatter plot of the PC2 × z-score was considered statistically
significant with a p-value of 0.03, but it exhibited a weak

correlation with an R2 value of 0.16. These results suggest that
the formed clusters are not strongly associated with age or weight,
and there are no genetically related individuals. However, it also
demonstrates the necessity to consider PC1 and PC2 to obtain
robust evidence of genetic mechanisms underlying body weight
regulation.

Analysis of differentially expressed
candidate genes involved in body weight in
each tissue

To carefully detect differential gene expression in relation to
weight, we defined the heavy (case) and light (control) groups

TABLE 1 Differentially expressed genes (DEGs) Top 1 by tissue.

Tissue Gene Gene name Log2FC p-value Function & association

ABF NFATC1 nuclear factor of activated T cells 1 1.107661292 2.05E-04 Estimated glomerular filtration rate in diabetes,
Estimated glomerular filtration rate in diabetes,

Estimated glomerular filtration rate in non-diabetics

ABO C1H3orf52 chromosome 1 C3orf52 homolog −1.22000226 2.26E-04 -

BFT ZNF385A Zinc Finger Protein 385A 1.030168135 2.37E-04 Adipogenesis through 3′-UTR binding and translational
regulation of CEBPA mRNA, Body height, BMI-

adjusted waist circumference

BLO BTBD16 BTB Domain Containing 16 −3.192387309 1.42E-04 Bipolar disorder disease

CEC SCGB1D secretoglobin, family 1D 2.761929305 2.69E-04 -

COL REG3G Regenerating Family Member 3 Gamma 5.174855604 3.47E-04 Regenerating islet-derived protein 3-gamma levels

DUO BTNL9 Butyrophilin Like 9 1.219409464 3.32E-03 Blood protein levels

HEA EFEMP1 EGF Containing Fibulin Extracellular Matrix Protein 1 −1.19589485 1.41E-04 Body height, Body fat distribution, Body weight, Body
mass index

ILE CDCA7 Cell Division Cycle Associated 7 −1.17600901 9.35E-06 MYC-mediated cell transformation and apoptosis

JEJ IL21 Interleukin 21 −2.137673447 2.05E-04 Cytokines with immunomodulatory activity

KID TOPAZ1 Testis And Ovary Specific TOPAZ 1 1.771979303 3.66E-03 Body mass index, Sperm development and sperm cell
division

KIF CD300H CD300H Molecule (Gene/Pseudogene) 3.114638566 2.35E-04 Involved in innate immunity and autoimmune response

LIV CYP1A1 Cytochrome P450 Family 1 Subfamily A Member 1 −1.068010846 1.34E-04 Involved in the metabolism of various endogenous
substrates including fatty acids, steroid hormones and

vitamins

LOM BARX1 BARX Homeobox 1 1.52242117 2.13E-03 Body mass index, Inhibits endoderm Wnt activity

LUN FOSB FosB Proto-Oncogene, AP-1 Transcription Factor
Subunit

−1.71298643 2.74E-03 Coexistence of osteoporosis, colon cancer and obesity

OMA ADAMTSL3 ADAMTS Like 3 1.038905769 4.64E-05 Body fat distribution, Body fat percentage, Abdominal
adipose tissue volumes, Type 2 diabetes, Weight

REC UBD Ubiquitin D −1.929973168 6.09E-4 Inflammation, apoptosis and tumorigenesis,
Adipogenesis and proliferation

RET SLC6A14 Solute Carrier Family 6 Member 14 −1.243818073 9.84E-04 Mutations in this gene are associated with X-linked
obesity

RMP CASQ2 Calsequestrin 2 −1.278916229 1.55E-03 Serves as an internal calcium store in muscle

RUM SH2D1A SH2 Domain Containing 1A 1.240464379 1.13E-04 Inhibitors of transmembrane proteins

SPL OR5E1 Olfactory receptor family 5 subfamily E member 1 −2.866277868 5.28E-03 -

TEN ALB Albumin −3.212922518 1.05E-03 Control of colloidal osmotic pressure in the blood
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which correspond to the top and bottom 10 individuals according
to the age-fitted body weight z-scores, respectively. The
transcriptomic comparison between groups was performed for
each tissue independently while adjusting for the covariates
PC1 and PC2 (Supplementary Table S4). By comparing the
control and case groups in each of the 22 tissues, we found a
maximum of 602 DEGs in the ILE and a minimum of 17 DEGs in
the Tenderloin (TEN) (Supplementary Table S5) (Zhou et al.,
2019). The top 1 genes that were significantly identified in each
tissue, Zinc Finger Protein 385A (ZNF385A), EGF Containing
Fibulin Extracellular Matrix Protein (EFEMP1), Testis And
Ovary Specific TOPAZ 1 (TOPAZ1), Cytochrome P450 Family
1 Subfamily A Member 1 (CYP1A1), BARX Homeobox 1
(BARX1), FosB Proto-Oncogene (FOSB), ADAMTS like 3
(ADAMTSL3), Ubiquitin D (UBD), Solute carrier family
6 member (SLC6A14) are known to be associated with
adipogenesis, adipocyte proliferation, height, body mass index
(BMI), lipid metabolism, weight and obesity-related functions
(Table 1) (Suviolahti et al., 2003; Safran et al., 2010; DuBois
et al., 2012; Welter et al., 2014; Skrypnik et al., 2017; Zhao
et al., 2018; Rask-Andersen et al., 2019; Wang et al., 2020; Xiao
et al., 2020). The genes identified that genes contributing to weight-
related functions are not exclusively expressed in adipose tissue but
also in other tissues such as the heart (HEA), kidney (KID), liver
(LIV), sirloin (LOM), lung (LUN), omasum (OMA), rectum
(REC), and reticulum (RET). This suggests a broader biological
involvement of these genes across various tissue types in the
regulation of body weight.

In addition, 381 genes were differentially expressed in two or more
tissues (Supplementary Table S6). Notably, the RGS2 and the UBD
exhibited differential expression inmultiple tissues. TheRegulator Of G
Protein Signaling 2 (RGS2) showed significant differential expression in
9 tissues (Abomasum (ABO), BLO, Colon (COL), ILE, Sirloin (LOM),
Omasum (OMA), Rectum (REC), Spleen (SPL) and TEN), and the
UBD was differentially expressed in 7 tissues (COL, Jejunum (JEJ),
Liver (LIV), LOM, OMA, REC, Rumen (RUM)). It has been reported
that the loss of RGS2 is advantageous for glucose production but
disadvantageous for glycogen and lipid production, contributing to a
lean phenotype with a lower body weight (Nunn et al., 2011). This has
previously been demonstrated to emphasize the importance of RGS2 in
obesity control and insulin sensitivity because it is involved in
adipocyte differentiation, and impaired adipocyte differentiation can
contribute to a lower body weight phenotype. The downregulation of
the UBD has been reported in previous studies to partially inhibit
adipogenesis of subcutaneous adipocyte precursor cells within pig
muscles and to suppress cell proliferation, indicating its essential
role in the differentiation of adipocyte precursor cells (Zhao et al.,
2018). This suggests that in order to understand the mechanisms by
which differentially expressed genes (DEGs) in non-adipose tissues
influence body weight, additional analyses are also necessary.

Correlation of gene expression patterns
between tissues

To examine the overall relationship of gene expression patterns
across the entire tissue, we generated a correlation plot using the
T-values from the Limma-Voom analysis, representing the expression

differences between the case and control groups (Figure 2). We used a
hierarchical clustering algorithm (hclust) to generate correlation plots
by dividing into three major clusters to view the clustering of tissues
with similar gene expression patterns. The highest positive correlation
coefficient observed (correlation coefficient = 0.58) was between the
Abdominal Fat (ABF) and Back Fat (BFT), and the highest negative
correlation coefficient (=−0.42) was between the OMA and Cecum
(CEC). One of the three clusters was identified to consist exclusively of
adipose tissue, including ABF, BFT and kidney fat (KIF). This result
indicates a similarity in gene expression patterns among adipose
tissues, and we specifically focused on adipose tissue as the
primary tissue for further investigation.

Functional annotation of adipose
tissue DEGs

Figures 3A–C depict the differential expression patterns of all
genes in three adipose tissues (ABF, BFT and KIF) and showcase the
DEGs that were significantly selected in two or more adipose tissues.
Figure 3D depicts the differential expression profiles and related
enrichment analysis of significant DEGs in the three adipose tissues
using the Gene Ontology (GO) (Consortium, 2004), conducted
through the FUMA GWAS (Watanabe et al., 2017). The gene set
enrichment analysis mapped 40 genes to the obesity-related traits
(p-value < 0.05) among the GO terms (Figure 3D).

In the GO analysis of adipose tissue using DAVID (Huang et al.,
2007), the genes were examined separately as upregulated genes and
downregulated genes (Table 2). The downregulated genes, including
those involved in signal transduction, organ or limb morphogenesis,
bone cell differentiation or development, variousmetabolic biosynthetic
processes, and other related biological processes (BP), were enriched
with 41, 24, and 7 significant GO terms in the ABF, BFT, KIF tissues,
respectively. The upregulated genes, primarily involved in metabolism,
fatty acid metabolism, lipid metabolism, glutathione, and other
metabolic processes, were enriched with 18, 3, and 2 significant GO
terms in the ABF, BFT and KIF tissues, respectively. This indicates that
most of these are associated with metabolic processes such as fatty acid
and lipid metabolism and signal transduction.

Expression comparison of fatty acid
metabolism

We discovered through gene set enrichment analysis that many
DEGs are associated with metabolic processes such as fatty acid and
lipid metabolism in adipose tissues. We examined the expression
levels of Fatty acid synthase (FASN) and Stearoyl-CoA desaturase
(SCD), DEGs involved in well-known fatty acid metabolism according
to the literature, in all tissues (Figure 4) (Zhang et al., 2018).
We confirmed that the FASN and SCD are expressed significantly
more in the adipose tissues than in the other tissues. FASN is a
complex homodimeric enzyme that regulates the de novo synthesis of
long-chain fatty acids in mammals (Chakravarty et al., 2004). It
catalyzes the formation of fatty acids with a 16-carbon atom
length from acetyl-CoA and malonyl-CoA (Chakravarty et al.,
2004). The expression product of the FASN is involved in lipid
metabolism, and it is known to participate in fat accumulation and
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fatty acid composition in pigs and cattle (Grzes et al., 2016; Raza et al.,
2018). The SCD functions as an enzyme in mammalian adipocytes,
converting saturated fatty acids into monounsaturated fatty acids
(MUFAs) (Taniguchi et al., 2004). The conversion of saturated fatty
acids to MUFAs by the SCD enzyme has a role in signal transduction,
cell differentiation, and cell apoptosis. It can influence the
development of certain tumor mutations (Dobrzyn and Ntambi,
2004). Considering the various roles of these MUFAs, changes in
SCD activity in mammals can potentially impact key physiological
variables such as differentiation, insulin sensitivity, metabolic rate,
obesity, atherosclerosis, and cancer (Dobrzyn and Ntambi, 2004). The
SCD is an important metabolic control point in weight regulation.
One study identified it as one of the genes exerting the greatest
influence on intramuscular fat content and fatty acid composition in
Angus cattle through a Genome-wide association study (GWAS)
(Dobrzyn and Ntambi, 2004; Ros-Freixedes et al., 2016).

The candidate cis-eQTL variant regulating
the expression level of TRIM31

In the adipose tissues of ABF, BFT, and KIF, expression
quantitative trait loci (eQTL) analysis was conducted on
697 genes identified as differentially expressed, which yielded
three SNPs meeting the significance threshold of p-value < 5e-05
and possessing a minor allele frequency (MAF) greater than 5%
(Supplementary Table S7). The three SNPs that met both the p-value
and MAF criteria were exclusively discovered in the ABF tissue; no
SNPs in the BFT and KIF tissues satisfied these conditions. One SNP
was located within the UBD and emerged as a significant variant
influencing the expression levels of Tripartite Motif Containing 31
(TRIM31) (chr23:29119138, p-value = 8.86e-06, MAF = 19.4%). The
other two SNPs were positioned near theAdenosine Deaminase RNA
Specific (ADAR) and identified as significant variants affecting

FIGURE 2
Correlations and hierarchical clustering between tissues based on the t value representing the difference in expression between the case group
(sample with a high z-score) and the control group (sample with a low z-score). The closer the correlation value is to 1, the higher the correlation.
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the expression of the Tudor Domain Containing 10 (TDRD10) (chr3:
15995172, p-value = 1.31e-05, MAF = 5%; chr3:15995183, p-value =
1.31e-05, MAF = 5%). TRIM31 has been identified as a “Janus-faced”
regulator of innate immune responses, facilitating signal
transduction through target substrate degradation or ubiquitin
modification (Xu et al., 2022). Furthermore, in some studies,

functional impairment (knockout) of TRIM31 has been shown to
significantly increase body weight, fasting blood glucose levels, and
fasting insulin levels induced by a high-fat diet (HFD), suggesting that
reduced expression of TRIM31 can contribute to weight gain (Xu
et al., 2022). Due to the lack of literature supporting the involvement
of TDRD10 in weight regulation, the SNP (chr23:29119138) within

FIGURE 3
Volcano plot of DEGs in adipose tissue [(A) ABF, (B) BFT, (C) KIF]. The X-axis is Log2FC, the Y-axis is -Log10p- value, and the cutoff criterion is
p-value < 0.05, |Log2FC| > 1. Black dots are points that do not satisfy both the p-value and the Log2FC FC criterion, pink dots are points that satisfy only the
Log2FC criterion, purple dots are points that satisfy only the p-value criterion, and red dots are differentially expressed genes (DEGs) that satisfy both
p-value and Log2FC criteria. We displayed the genes associated with obesity-related traits based on the results of (D). (D) Table showing the gene set
reported in the GWAS Catalog based on the results of FUMA GWAS using candidate genes from the three tissues.
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TABLE 2 Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

ABF Downregulated GO-Biological Pathways Positive regulation of mesenchymal cell proliferation 3.07E-05

Mesenchyme migration 1.19E-03

Animal organ morphogenesis 1.62E-03

Proximal/distal pattern formation 2.00E-03

Positive regulation of gene expression 2.29E-03

Embryonic limb morphogenesis 2.86E-03

Positive regulation of canonical Wnt signaling pathway 3.54E-03

Embryonic forelimb morphogenesis 3.93E-03

Positive regulation of smoothened signaling pathway 4.33E-03

Extracellular matrix organization 5.15E-03

Osteoblast differentiation 5.18E-03

Lymphangiogenesis 6.26E-03

Regulation of heart contraction 6.26E-03

Cartilage development 7.25E-03

Chondrocyte differentiation 8.43E-03

Embryonic digestive tract development 8.75E-03

Positive regulation of endothelial cell migration 1.04E-02

Inner ear morphogenesis 1.11E-02

Negative regulation of osteoblast differentiation 1.19E-02

Collagen fibril organization 1.26E-02

Positive regulation of protein kinase B signaling 1.29E-02

Intermediate filament cytoskeleton organization 1.48E-02

Intermediate filament organization 1.84E-02

Oogenesis 1.84E-02

Positive regulation of cell proliferation 2.52E-02

Wnt signaling pathway 2.57E-02

Positive regulation of MAPK cascade 2.74E-02

Lung development 2.87E-02

Positive regulation of vascular endothelial growth factor production 3.08E-02

Ureter maturation 3.28E-02

Vascular smooth muscle contraction 3.28E-02

Signal transduction 3.29E-02

Positive regulation of axonogenesis 3.32E-02

Eye development 4.32E-02

Zymogen activation 4.32E-02

Regulation of Ras protein signal transduction 4.35E-02

Negative regulation of inflammatory response 4.55E-02

Inner ear development 4.58E-02

(Continued on following page)
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TABLE 2 (Continued) Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

Negative regulation of Wnt signaling pathway 4.58E-02

Brain development 4.76E-02

Regulation of heart rate by cardiac conduction 4.85E-02

Upregulated GO-Biological Pathways Glutathione metabolic process 1.80E-05

ATP synthesis coupled electron transport 6.75E-04

Mitochondrial electron transport, NADH to ubiquinone 8.85E-04

Fatty acid biosynthetic process 2.01E-03

Phospholipid biosynthetic process 3.40E-03

Unsaturated fatty acid biosynthetic process 4.54E-03

Mitochondrial respiratory chain complex I assembly 8.27E-03

Response to stilbenoid 1.35E-02

Regulation of phospholipid biosynthetic process 1.35E-02

Response to glucose 1.87E-02

Tryptophan transport 2.03E-02

Proteolysis 3.04E-02

Regulation of cytokine production 3.16E-02

Protein homotetramerization 3.90E-02

Negative regulation by host of viral process 4.01E-02

Glycerol-3-phosphate metabolic process 4.01E-02

Fatty acid elongation, polyunsaturated fatty acid 4.66E-02

Lung lobe morphogenesis 4.66E-02

BFT Downregulated GO-Biological Pathways Protein urmylation 2.25E-02

tRNA wobble position uridine thiolation 2.80E-02

Lung vasculature development 2.80E-02

Axon guidance 4.23E-02

Extracellular matrix organization 4.78E-02

Tyrosine phosphorylation of STAT protein 4.99E-02

Digestive tract morphogenesis 4.99E-02

Upregulated Glutathione metabolic process 3.00E-05

CDP-diacylglycerol biosynthetic process 2.94E-02

Axonemal dynein complex assembly 4.73E-02

KIF Downregulated GO-Biological Pathways Superoxide anion generation 1.93E-06

Extracellular matrix assembly 1.59E-03

Thyroid hormone generation 2.24E-03

Stabilization of membrane potential 3.85E-03

Negative regulation of osteoclast differentiation 4.81E-03

Positive regulation of apoptotic cell clearance 1.10E-02

Regulation of thyroid hormone generation 1.10E-02

(Continued on following page)
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UBD that regulates the expression of TRIM31was selected as the most
prominent candidate cis-eQTL variant associated with weight control.

We sought to determine whether the genotype of the candidate cis-
eQTL variant (chr23:29119138) is associated with the regulation of
TRIM31 expression and body weight control. Samples with the GG
genotype at chr23:29119138 showed lower expression levels of TRIM31
compared to samples carrying the alternative allele A (p-value = 8.86e-
06) (Figure 5A). Upon comparing TRIM31 expression levels between
the heavy and light groups, the light group exhibited a significantly
higher level of TRIM31 expression than the heavy group (Figure 5B).
Although the p-value did not reach statistical significance, visualization
of the raw body weight differences based on the genotypes at chr23:
29119138 showed a trendwhere individuals carrying allele A exhibited a
lower weight distribution (Supplementary Figure S3). These research
findings, while not statistically significant, support the directionality of
weight regulation associated with TRIM31 expression previously
reported in the literature (Luo et al., 2022; Xu et al., 2022). This
suggests that a reduction in TRIM31 expression may contribute to
an increase in body weight, and the variant at chr23:29119138 could
potentially regulate the expression of TRIM31.

However, the candidate cis-eQTL variant is located within the exon
of the UBD gene, which has been reported in mice to be a gene
upregulated by an HFD, and the deficiency ofUBD has been associated
with a reduction in body fat due to increased energy expenditure (Choi
et al., 2015). Given that the TRIM31 gene (but not theUBD) showed the
differential expression between weight groups, the significant
association of the SNP within the UBD gene and the expression

level of TRIM31 may have been attributable to strong linkage
disequilibrium (LD) within this region. To examine this further, an
LD pattern analysis was conducted within a 250 Kb range on either side
of the candidate variant to assess the LD relationship with neighboring
SNPs. The LD analysis revealed a high level of linkage around the
candidate cis-eQTL variant and also confirmed a strong LD (R2 = 1)
with SNPs within the TRIM31 (Figure 5C; Supplementary Figure S4).
These findings suggest that the neighboring SNPs may be co-inherited
with the candidate cis-eQTL variant and could be implicated in gene
expression regulation, even if they are not the direct causative variants.
Moreover, the candidate variant could be correlated with the causal
variant due to close genetic linkage. Consequently, the candidate cis-
eQTL variant may be closely linked to the actual causative variant or
contribute to the modulation of TRIM31 expression. This underscores
the need for further investigation to elucidate the fundamental genetic
mechanisms.

Limitation

The current study’s outcomes are subject to several limitations.
Weight gain over time serves as an important indicator of feed
efficiency and would likely yield better performance in research
outcomes. Additionally, the absence of information on
environmental factors presents a limitation in completely
controlling for external influences. Nevertheless, it is acknowledged
that body weight is significantly influenced by both environmental

TABLE 2 (Continued) Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

Defense response to Gram-positive bacterium 1.38E-02

Proteolysis 1.52E-02

Melatonin biosynthetic process 1.64E-02

Extracellular polysaccharide biosynthetic process 1.64E-02

Positive regulation of hydrogen peroxide biosynthetic process 1.64E-02

Negative regulation of BMP signaling pathway 2.13E-02

Cell adhesion 2.21E-02

Hyaluronan biosynthetic process 2.72E-02

Hydrogen peroxide metabolic process 2.72E-02

Ossification 2.86E-02

Hydrogen peroxide biosynthetic process 3.25E-02

Positive regulation of platelet aggregation 3.25E-02

Response to light stimulus 3.78E-02

Bone trabecula formation 3.78E-02

Respiratory burst 4.31E-02

Positive regulation of phosphatidylinositol 3-kinase signaling 4.70E-02

Embryonic eye morphogenesis 4.84E-02

Upregulated GO-Biological Pathways Regulation of potassium ion transmembrane transport 1.40E-04

Regulation of membrane potential 1.29E-02
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and genetic factors. Particularly in humans, the heritability estimate
for body weight has been reported to be between 0.7 and 0.81, while in
cattle, heritability estimates vary but have been reported to range from
approximately 0.3 to 0.6 (Toshniwal et al., 2008; Russo et al., 2010;
Polizel et al., 2018; Rezende et al., 2022). Recognizing the weight of
genetic contributions, this study meticulously incorporated principal
components (PC1 and PC2) as covariates in the DEG analysis to
mitigate environmental biases, thus sharpening the focus on genetic
correlations with body weight.

The sample size, comprising 32 individuals, is relatively small,
which restricts the ability to detect trans-eQTLs that typically exhibit
smaller effect sizes compared to cis-eQTLs. In both DEG and eQTL
analyses, the p-value significance threshold did not meet the
stringent standards set by FDR adjustment, posing challenges in
identifying influential genes and SNPs. This raises concerns
regarding the incidence of Type I errors. The imperative for
subsequent analyses with augmented datasets is clear, to yield
more precise and dependable outcomes.

FIGURE 4
Boxplot to confirm the expression level of representative genes (FASN, SCD) related to fat metabolism. (A) The expression pattern of the FASN across
all tissues. (B) Boxplot showing the differential expression pattern of FASN in ABF tissue based on groups (z-scores of top and bottom 10 samples). (C)
Expression pattern of the SCD across all tissues. (D) Boxplot showing the differential expression pattern of the SCD gene in ABF tissue based on groups.
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Despite these issues, the study leverages the convergence of DEG
and eQTL analyses to enhance the reliability of the genetic associations
identified. The utilization of RNA-seq data for eQTL analysis is a novel
approach for Hanwoo cattle research, marking a significant
contribution that paves the way for future inquiry. This research
underscores the importance of continuous investigation, bolstered
by broader datasets, to reinforce the preliminary findings presented.

Conclusion

We analyzed the gene expression data from multiple tissues to
identify genes and biological mechanisms at the transcriptome level
that influence the weight of Hanwoo cattle. Our study has uncovered
transcriptional changes associated with weight in previously
overlooked tissues. We have confirmed that the candidate genes
we discovered are associated with biological pathways involving
various metabolic processes, such as lipid metabolism,
adipogenesis, and adipocyte proliferation. Using RNA-seq data in
expression quantitative trait loci (eQTL) studies enabled us to identify
allele-specific gene expression easily. By integrating eQTL and
differentially expressed genes (DEGs) analysis results, we have
identified genomic regions that may regulate the expression of
candidate genes, such as TRIM31 and provided insights into their
association with the expression levels. Of particular interest, we found
that the variant regulating the expression of TRIM31 is located within
the UBD, which is known to regulate adipogenesis. The findings
suggest that further analysis is necessary to fine-map causal cis-eQTL
variants regulating TRIM31. Moreover, it emphasizes the necessity to
broaden the focus and understanding of research on various tissues
that can influence the weight of Hanwoo cattle and other livestock.
Our study may represent a comprehensive genomic and
transcriptomic portrait of livestock body weight by utilizing the
RNA-seq data of many tissues and progress toward understanding
the role of eQTLs in determining livestock phenotypic diversity.
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Copy number variations (CNVs) have garnered increasing attention within

the realm of genetics due to their prevalence in human, animal, and plant

genomes. These structural genetic variations have demonstrated associations

with a broad spectrum of phenotypic diversity, economic traits, environmental

adaptations, epidemics, and other essential aspects of both plants and animals.

Furthermore, CNVs exhibit extensive sequence variability and encompass a wide

array of genomes. The advancement and maturity of microarray and sequencing

technologies have catalyzed a surge in research endeavors pertaining to CNVs.

This is particularly prominent in the context of livestock breeding, where

molecular markers have gained prominence as a valuable tool in comparison

to traditional breeding methods. In light of these developments, a contemporary

and comprehensive review of existing studies on CNVs becomes imperative. This

review serves the purpose of providing a brief elucidation of the fundamental

concepts underlying CNVs, their mutational mechanisms, and the diverse

array of detection methods employed to identify these structural variations

within genomes. Furthermore, it seeks to systematically analyze the recent

advancements and findings within the field of CNV research, specifically within

the genomes of herbivorous livestock species, including cattle, sheep, horses,

and donkeys. The review also highlighted the role of CNVs in shaping various

phenotypic traits including growth traits, reproductive traits, pigmentation and

disease resistance etc., in herbivorous livestock. The main goal of this review

is to furnish readers with an up-to-date compilation of knowledge regarding

CNVs in herbivorous livestock genomes. By integrating the latest research

findings and insights, it is anticipated that this review will not only o�er pertinent

information but also stimulate future investigations into the realm of CNVs in

livestock. In doing so, it endeavors to contribute to the enhancement of breeding

strategies, genomic selection, and the overall improvement of herbivorous

livestock production and resistance to diseases.

KEYWORDS

copy number variation, herbivorous livestock, phenotypes, genome, molecular markers

Frontiers in Veterinary Science 01 frontiersin.org64

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2023.1334434
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2023.1334434&domain=pdf&date_stamp=2024-01-11
mailto:zahoorkhattak91@yahoo.com
mailto:wangchangfa@lcu.edu.cn
https://doi.org/10.3389/fvets.2023.1334434
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2023.1334434/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2023.1334434

1 Introduction

China, renowned as one of the earliest nations to engage
in livestock domestication (1), has a rich history of nurturing
herbivorous livestock, including cattle, sheep, horses, and donkeys.
This ancient practice has played a pivotal role in fulfilling diverse
human needs, ranging from the procurement of essential animal-
derived products such as meat, eggs, milk, and leather to harnessing
domesticated animals for laborious tasks (2). Over time, the scope
of domestication has expanded to encompass a multitude of
applications. Throughout this evolutionary process, natural and
artificial selection mechanisms have yielded an array of domestic
animal breeds characterized by varying traits (3), including
phenotypic attributes, economic characteristics, environmental
adaptability, and resistance to diseases. Nonetheless, the intricate
genetic underpinnings responsible for these disparities remain
incompletely elucidated.

In recent years, the exploration of genomic variation has
emerged as a central focus of scientific inquiry in the fields of animal
production and health regulation, as evidenced by numerous
studies (4–10). This emphasis on genetic variation holds significant
significance in our quest to comprehend the intricate interplay
between genetic diversity and a wide array of phenotypic and
economic traits exhibited by animals (11–13). Furthermore, it
serves as a robust theoretical foundation for elucidating genetic
mechanisms and advancing the field of molecular breeding.
Since the introduction of genomic selection, a range of livestock
species, including sheep, goats, cattle, and horses, have undergone
genotyping to assess their suitability for important economic traits,
as demonstrated by previous studies (14–16). Up to this point,
single nucleotide polymorphisms (SNPs) have been the primary
focus of genomic research within the animal breeding community
(17, 18). Significant strides have been made in establishing a solid
genetic foundation for enhancing production and disease resistance
in animals (18, 19). However, it is worth noting that despite
these advancements, ∼25% of the identified copy number variants
(CNVs) exhibit no significant linkage disequilibrium with any SNP,
leading to the conclusion that CNVs harbor genetic information
that cannot be solely elucidated through SNP analysis (20).

CNVs are heritable chromosomal structural variations,
characterized by deletions or insertions exceeding 50 base pairs
(21). Notably, CNVs encompass a larger proportion of the genome
compared to SNPs (22, 23). Consequently, CNVs are being
proposed as an additional reservoir of information to elucidate the
genetic variance underlying complex traits that may not be fully
accounted for by SNPs alone (20). To date, several methodologies
have been commonly employed for CNV detection, including
comparative genome hybridization, extracting CNV data from
SNP arrays, and whole-genome sequencing (WGS) approaches
(24–26). Notably, recent research endeavors have delved into the
investigation of the association between CNV in specific genes
and a variety of phenotypic traits in animals, including growth
characteristics in cattle (27, 28), goats (29–31), sheep (32) and
horses (33–38). These studies have also extended their focus to
examine the link between CNVs and other vital phenotypes, such
as reproduction traits (39, 40) and disease resistance (7, 41). These
studies have unveiled CNV as a key player linked to diverse facets
of phenotypic diversity and economic traits in animal realms.

The confluence of two pivotal trends, the rising prevalence
of molecular markers in livestock breeding and the maturation
of microarray and sequencing technologies, necessitates a
contemporary and comprehensive review of the burgeoning
body of research on CNVs. This review paper seeks to illuminate
the intrinsic value and biological ramifications of CNV in the
landscape of genetic variation, with a particular focus on its
potential as a potent molecular marker in the realm of livestock
breeding. Through this approach, our review aims to introduce
fresh viewpoints regarding genetic diversity and molecular
breeding. Thus, in current review, we have focused on the
progress of CNV screening methods in genomes of various
herbivorous livestock including cattle, horses, donkeys, sheep
and goat. In addition, we have briefly evaluated the association of
CNVs in genes with different phenotypic traits including growth
traits, reproductive traits, pigmentation, disease resistance, and
environmental adaptability, etc., in cattle, horses, sheep and goat.
The overall progress in screening CNVs within livestock genomes
is summarized in Figure 1 (32–35, 37, 42–70).

2 Overview of CNV biology

2.1 CNV definition

A CNV, typically resulting from genome rearrangement, refers
to the amplification or reduction in the copy number of a
large genome segment of 1 kb or greater in length, primarily
demonstrated via sub-microscopic deletions and duplications
(50, 71). The common variant forms of CNV are illustrated in
Figure 2 (72).

Several nearby CNVs and partially overlapping CNVs in the
same genomic region can be merged into a single CNV segment
(73). CNVs play a vital role in genomic structural variation (SV)
(74). The number of base pairs regulated by CNVs is over five times
greater than the number regulated by single nucleotide variants
(SNVs) in each individual. Each CNV is correlated more than
three times with one genome-wide association signal and fifty
times with expression quantitative trait loci (eQTL) compared
to SNVs (75). Furthermore, CNVs have been recognized for its
significant influence on the evolution of phenotypic diversity,
disease resistance, and evolutionary processes in organisms (76,
77).

It is widely recognized that CNVs are common in the
genomes of plants, animals, and humans (78), but there is no
final conclusion on the mechanism of CNV formation. According
to existing studies, three primary formation mechanisms may
be involved: (1) Non-allelic homologous Recombination, NAHR:
Rearrangements occurring between homologous chromosomes
of an individual’s genomic DNA during meiosis can lead to
duplications, deletions, inversions, and translocations (79, 80). (2)
Non-homologous end-joining, NHEJ: A mechanism of genomic
rearrangement that occurs during the period of DNA double-
strand break repair and that can result in numerous simple CNVs
(79, 80). (3) Replication fork smiling and template Switching,
FoSTeS: Refers to the stalling of DNA replication forks which
causes the lagging strand to break away from the DNA template
and switch to other replication forks to continue DNA replication
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FIGURE 1

Graphical presentation of the research progress on CNV screening in herbivorous livestock and humans.

FIGURE 2

Common types of CNV.

synthesis. This can lead to DNA duplications or deletions and the
emergence of a significant number of CNVs. Consequently, the
formation of complex structural CNVs may be attributed to this
phenomenon (80, 81).

2.2 CNV detection methods

2.2.1 Chip technology
Array comparative genomic hybridization (aCGH) has proven

to be an efficient technique for the identification of CNVs at a
genome-wide level (82–84). The fundamental principle of CGH

involves labeling the DNA under analysis and control DNA with
distinct fluorescent dyes. Subsequently, these treated DNAs are
hybridized to standard chromosomes, and a digital fluorescence
imaging system is employed to scan them, with a priority on
fluorescence intensity ratios (85, 86). The aCGH is a microarray
technology that utilizes two types of microarrays depending on the
probes used during fabrication: Bacterial Artificial Chromosome
CGH microarrays and Oligonucleotide Probe CGH microarrays.
These aCGH microarray probes cover the entire genome and
exhibit exceptional sensitivity, accuracy, and resolution, facilitating
high-throughput screening. Previous research has provided robust
support for the credibility of the experimental data generated by
CGH (87, 88).
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TABLE 1 Summary of CNVs and identification methods performed in cattle.

References Methods Species Samples CNV number CNVR number

Matukumalli et al. (51) BovineSNP50 BeadChip 6 576 79 -

Liu et al. (52) Bovine aCGH arrays 3 90 1041 229

Bae et al. (98) BovineSNP50 BeadChip 1 265 885 368

Fadista et al. (22) Bovine aCGH arrays 4 20 - 304

Stothard et al. (23) Resequencing 2 2 790 -

Bickhart et al. (99) Resequencing 3 6 1265 -

Zhang et al. (100) Bovine aCGH arrays 15 29 - 605

Da Silva et al. (101) Bovine HD Genotyping Bead Chip, Resequencing 1 1717 68007 7319

Zhou et al. (102) BovineHD Genotyping BeadChip 1 528 191 -

Liu et al. (60) Resequencing 1 14 - 1344

Mei et al. (63) Resequencing 8 75 - 11486

Butty et al. (26) BovineHD Beadchip, Genome Profiler Bovine 150K,
Genome Profiler Bovine HD, BovineSNP50 Beadchip

1 96 - 52/36

Butty et al. (24) BovineHD Beadchip, Genome Profiler Bovine 150K,
Genome Profiler Bovine HD, BovineSNP50 Beadchip,
Genome Profiler Bovine 50K

1 5845 23256 1645

Zhou et al. (67) Bovine 150K SNP BeadChip 1 403 - 38/33

Kooverjee et al. (103) Resequencing 3 5 - 355

Kumar et al. (69) BovineSNP50 BeadChip 1 72 693 447

Sun et al. (104) Resequencing 1 30 - 2944

Single nucleotide polymorphism (SNP) microarray technology
represents another effective method for detecting CNVs. SNP
microarray technology requires only a single hybridization, thus
obviating the need for the simultaneous double hybridization
of two DNA samples with probes. It determines the genomic
copy equivalents of each locus by comparing variations in
signal intensities between the samples being tested (89). A
SNP microarray demonstrates remarkable stability and high
resolution, enabling the detection of diverse forms of CNVs,
including sub-microscopic deletions, duplications, and more (90).
In comparison to Comparative Genomic Hybridization, SNP
microarrays offer the advantage of simultaneously detecting CNVs
while determining their genotypes and revealing heterozygous
deletions. This approach is not only more cost-effective but
also facilitates large-scale CNV testing (91). Several software and
programs are currently available for CNV detection using chip
technology, including CNVPartition, PennCNV, and QuantiSNP.
A study revealed through genome sequencing of horses that
the optimal order of performance for the three assays was
CNVPartition, PennCNV, and QuantiSNP (92). Furthermore, the
combination of PennCNV and QuantiSNP exhibited improved
accuracy in CNV detection.

2.2.2 Sequencing technology
As gene sequencing technology has matured, numerous tools

and software have been developed to enhance the efficiency and
precision of copy number variant detection. Next-generation
sequencing (NGS) has emerged as the most commonly used

method for detecting CNVs in recent years (93), with Illumina’s
Solexa/HiSeq technology being a prominent representative.
Second-generation sequencing technology aims to synthesize and
sequence DNA simultaneously. Fluorescent signals are excited
by lasers and recorded using optical equipment. These recorded
signals are then converted into bases using computer technology.
Second-generation sequencing methods are not limited to target
sequences hybridized with primer probes and can identify
genome-wide CNVs, structural variants, and other variations (94).
In the current landscape, four primary strategies and methods are
employed for detecting variants in NGS data: paired-end mapping
(PEM), split-read (SR), read depth (RD), and de novo assembly
(AS), in addition to a combined approach based on the above
four methods. Compared to microarray-based methods, next-
generation sequencing technology offers advantages in terms of
speed, resolution, cost-effectiveness, and reproducibility (95–97).
Furthermore, widely used sequencing technologies for identifying
CNVs, software including CNVnator, CNVpytor, CNVcaller, and
ERDS have been documented.

3 Overview of screening methods for
CNVs in herbivorous livestock
genomes

3.1 Cattle genome

Cattle ranching represent a promising industry with substantial
economic, ecological, and social implications. The diversity of
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cattle breeds, including Holstein for dairy production, Charolais
for beef, and regionally adapted yaks and buffaloes, caters to a
wide range of human needs. CNVs assume significant importance
in the exploration of phenotypic traits and adaptation to various
environments, shedding light on the domestication origins of these
animals. As dietary preferences evolve toward beef with higher
protein and lower fat content, copy number variation regions
(CNVRs) have been found to be associated with cattle carcass
traits, offering theoretical support for future breeding endeavors.
In recent years, numerous investigations have identified CNVs
within the bovine genome. Table 1 provides a comprehensive
summary of some of these studies. Consistently, a study identified
a total of 79 CNV loci across six distinct cattle breeds, employing
the BovineSNP50 BeadChip (51). Notably, 10 CNVs were found
to overlap with those previously identified through aCGH data.
Similarly another study conducted an extensive genome-wide
analysis of CNVs in 90 modern domesticated cattle, uncovering
over 200 potential CNVRs (52). In addition, this high-quality
bovine CNV map fills critical gaps in current genome-wide
association and selection studies based on SNP genotyping.
Previous studies generated genome-wide CNV maps for cattle
using the BovineSNP50 BeadChip and aCGH arrays, respectively
(22, 98). Similarly, Kumar et al. (69) pioneered CNV detection
in Indian Tharparkar cattle, identifying a total of 8881 CNVs,
which were subsequently filtered down to 693 CNVs and
merged into 447 CNVRs, representing ∼2.17% of the cattle
genome. Utilizing a purebred Angus cow as a reference, a
study documented 605 CNVRs through a genome-wide analysis
of CNVs in comparative genomic crossbreeding arrays of 29
Chinese domestic bulls (100). Detailed distribution maps of
these CNVRs were constructed on their respective genomes.
In a consistent manner, Kooverjee et al. (103) conducted a
comprehensive investigation, wherein they successfully identified
a total of 355 CNVRs in a cohort of five crossbred cows.
This identification was accomplished through the utilization of
the Panelcn.MOPS software. Notably, these CNVRs exhibited
an average length of 9318 base pairs, collectively representing
∼0.15% coverage of the bovine genome. Previous studies employed
different platforms for genotyping Holstein cattle, followed by
CNV analysis, to investigate the impact of genotype array density
on CNV detection, thereby contributing to our understanding
of genetic variation in Holstein cattle (24, 26). Accordingly,
Sun et al. (104) harnessed sequencing technology to sequence
the entire genome of Simmental bulls, detecting 2944 CNVRs,
which were subsequently subject to genetic analysis, revealing
associations with reproduction, immunity, and fertility. These
findings constitute a valuable molecular breeding resource for
cattle. A study analyzed common CNV regions in Xinjiang brown
cattle and compared differences between the ARS and UMD
reference genomes, suggesting the ARS reference genome’s superior
effectiveness in CNV detection (102). Likewise, previously studies
conducted on CNVs in the bovine genome utilizing the BovineHD
Genotyping BeadChip (38, 102). Conversely, studies undertook
an analysis of CNVs in the bovine genome through sequencing
technologies (23, 63, 99, 105).

3.2 Sheep and goat genomes

Sheep products, encompassing mutton meat, milk, wool,
and cashmere, are of considerable significance within the sheep
industry. They not only enhance the quality of life for individuals
but also contribute substantially to industrial development,
augment the incomes of farmers and herdsmen, and provide high-
quality fertilizers for farmland, among other advantages. Genomic
selection technology has emerged as a pivotal approach in sheep
breeding. Current research has unveiled associations between
CNVs and various traits in sheep, including growth characteristics,
wool color, cashmere quality, disease resistance, and reproduction.

Numerous studies focused on mapping CNVs within the
sheep genome have significantly enriched our understanding of
genomic variations in sheep. Table 2 provides a comprehensive
summary of research pertaining to CNVs in the sheep genome.
A study identified a total of 238 CNVRs and establishing a CNV
map in the genomes of three distinct sheep breeds using the
sheep SNP50K microarray (54). Consequently, Ma et al. (106)
investigated CNVs in the genomes of eight sheep breeds using
the sheep SNP50K microarray, identifying 111 CNV regions
from 160 sheep and mapping the distribution of CNVRs across
autosomal chromosomes. Consistently, total of 13,347 CNVs based
on sequencing data from six domesticated goats and two wild goats
were detected (56). While another experimental trial employed
high-density sheep SNP microarrays to identify 371, 301, and 66
autosomal CNVRs within the genomes of big-tailed frigid sheep,
Altai sheep, and Tibetan sheep, respectively (107). This endeavor
resulted in the creation of the first high-resolution sheep CNVmap,
offering a valuable resource for comprehending genomic variation
in sheep. In continuity, Yang et al. (108) identified 24,558 CNVs
from 2,254 sheep across various geographic regions worldwide,
culminating in 619 CNV regions with a combined length of 197
megabases (Mb). This encompasses 6.9% of the sheep genome
and establishes a comprehensive CNV map that can assist in
genome annotation for sheep. In addition, Igoshin et al. (111)
detected 4,527 CNVs among 354 sheep representing 16 Russian
indigenous breeds. Gene function enrichment analysis revealed
significant impacts of CNVs on olfactory perception and immunity
within 12 of the breeds. In line, Taghizadeh et al. (68) identified
328 and 187 CNVRs in fat-tailed and thin-tailed sheep breeds,
respectively. These CNVRs were found to be located within or
overlapping with 790 known sheep genes, covering ∼73.85Mb
of the sheep genome. Previous report conducted a genome-wide
analysis on 48 beach sheep, documented 1,296 CNV regions and
constructed a CNVs map of the Tan sheep genome, thereby
complemented the data on CNVs in the Chinese sheep genome
(59). While another study identified 6,286 CNVs in a total of 1,023
sheep representing 50 different breeds worldwide, employing the
pennCNV tool. The results unveiled differences in CNVs among
populations across different geographic regions (60). Furthermore,
a study reported 42 CNVs from 120 samples representing five
dairy goat breeds and established significant associations between
two CNVs (CNV5 and CNV25) and two milk production traits
(109). Consequently, Guan et al. (62) detected 1,461 regions of
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CNV within the Spanish dairy goat genome, with an average
length of 196.89 kilobases (kb). The total length of all CNV
regions accounted for 3.9% of the autosomal genome, leading to
the creation of a CNV map. Previous study has identified 127
CNVRs in four breeds of goats, covering ∼11.39Mb of the bovine
genome, thereby establishing the first CNVR map for goats (70).
In addition, a study reported 1,217 CNVRs in 67 sheep breeds
worldwide (66). Furthermore, a study identified 4,769 high-quality
CNVRs in 47 sheep breeds globally, subsequently generating
CNV maps. Additionally, they investigated the influence of solar
radiation on CNVs within sheep genomes (66). Consistently, a
study employed resequencing to detect CNVs in two Tibetan sheep
breeds, ultimately identifying 368 distinct CNVRs, which may
contribute to determining population disparities (32). Yuan and co-
authors were the first to utilize resequencing technology to establish
a CNV map of Chinese fine-wool sheep and analyzed the overlap
of CNVRs with several quantitative trait loci related to economic
traits, providing vital insights for the future improvement of
fine-wool sheep (110). Consistently previous studies employed
resequencing to analyze the genomic CNVs of Mile red-boned
goats and African goats, respectively (64, 65). These findings
facilitated a deeper understanding of the genetic traits of these
animals. Consequently, another study identified a total of 702
CNVs in 120 dairy goats, resulting in the creation of a CNVR
map, which promises to be beneficial for further research on the
association between CNVs and phenotypic variations (13).

3.3 Horses genome

China’s horse industry has experienced remarkable growth
owing to the country’s rapid social and economic development,
coupled with continuous improvements in living standards.
Consequently, equestrian sports have gained significant popularity
as leisure and recreational activities within the nation. The
maturation of microarray and sequencing technologies has played
a pivotal role in the identification of equine CNVs. These CNVs are
of paramount importance for the study of equine trait variations,
disease prevention and treatment, exploration of genetic diversity,
tracing the origins of domestication, and the development of new
equine breeds.

In recent years, the substantial progress in microarray and
sequencing technologies has facilitated the detection of CNVs.
Researchers from both domestic and international institutions
have undertaken extensive investigations into equine genome CNV
identification, with select research findings summarized in Table 3.
Doan et al. (53) were the pioneers in reporting CNVs within
equine genomes. They identified 775 CNV regions in 16 horses
using an aCGH microarray, demonstrating the significant impact
of CNVs on biological phenotypic diversity. Subsequently, in an
effort to detect CNVs in both normal horses and Przewalski
horses, Ghosh et al. (55) prepared an aCGH microarray that also
included a Y chromosome probe. They successfully detected 258
CNVRs in autosomes, chrX, and chrUn, but none were found
in chrY. Notably, the majority of these CNVRs were associated
with genes related to sensory perception, the immune system,
and reproduction (55). Previous study meticulously described

the mapping of CNVs in Chinese horses using high-resolution
array Comparative Genomic Hybridization (aCGH), a highly
effective method for genome-wide CNV detection in animals (114).
Consequently, Kader et al. (57) through whole-genome analysis
of CNVs in 96 horses representing three Chinese breeds: Debo
Shorthorn,Mongolian horse, and Yili horse. Their work identified a
total of 287 CNVs, which were combined to form 122 CNV regions
(CNVRs) with sizes ranging from 199 base pairs to 2,344 kilobases.
Consistently, a study reported 15,041 CNVs and 5,350 CNVRs in
222 Friesian horses, creating a distribution map of CNVRs within
the equine genome (115). Similarly, a recent study performed an
analysis of CNV in 469 horses from four Korean breeds, uncovering
843 CNVRs that overlapped with 7.2% of the reference genome
for horses (33). Furthermore, they constructed an autosomal map
of CNVRs in horses. In addition, Laseca et al. (34) analyzed high-
density SNP genotyping data from 654 horses, identifying a total of
19,902 CNV segments and 1,007 CNV regions, with CNVs covering
4.4% of the equine genome.

A study utilized gene chips to identify CNVs in 1,755
horses representing eight breeds. Their findings revealed
that the size of CNV regions varied from 1 kilobase to 21.3
megabases (116). Consequently a study revealed an average total
of 1,540 CNVs per horse through whole-genome resequencing
of six horses representing six different breeds. Their results
suggested that a reduction in the number of LATH copies
might be linked to the development of endurance in horses
(61). While a recent study by Choudhury et al. (37) leveraged
resequencing data for Debao (DB), Baise (BS), and Warmblood
(WB) horses to identify CNVs and create a CNVR map of
the equine genome. Their research indicated that differential
CNVRs may influence the phenotypic characteristics of
different breeds.

3.4 Donkey genome

The donkey industry has emerged as a significant contributor
to the growth of the livestock sector in recent years. However,
the detection of CNVs within the genetic variations of the
donkey genome, both in China and internationally, remains
a relatively understudied area. In a study conducted by Han,
a cohort comprising 263 native Chinese donkeys representing
13 breeds from eight provinces and regions was employed to
identify CNVs in five Y chromosome genes of donkeys (CUL4BY,
ETSTY1, ETSTY4, ETSTY5, and SRY) through quantitative
Polymerase Chain Reaction (qPCR) analysis (58). While studies
related to Single Nucleotide Polymorphisms (SNPs) have been
reported, studies focusing on CNVs in donkeys are limited.
Consistently, another study detected ∼7 million SNPs in 126
domestic donkeys and made a noteworthy discovery that
black or chestnut coat color was attributed to a 1 base pair
deletion downstream of the TBX3 gene (117). This deletion
led to reduced gene expression and its inhibitory effect on
pigmentation. In addition to SNPs, CNVs represent crucial
genetic resources. They possess distinct advantages, including
their ubiquitous presence in the genome, extensive coverage,
and relative ease of detection compared to SNPs (50, 118).
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TABLE 2 Summary of CNVs and identification methods performed in sheep and goat.

References Methods Species Samples CNV number CNVR number

Fontanesi et al. (70) aCGH 4 9 161 127

Liu et al. (54) Ovine SNP50 BeadChip 3 50 3624 238

Ma et al. (106) Ovine SNP50 BeadChip 8 160 173 111

Dong et al. (56) Resequencing 2 8 13347 -

Zhu et al. (107) Ovine HD 600K SNP arrays 3 110 - 738

Ma et al. (59) Ovine SNP600K BeadChip 1 48 5190 1296

Yang et al. (108) Ovine SNP50 BeadChip 68 2111 24588 619

Liu et al. (105) CaprineSNP50 BeadChip 50 1023 6286 978

Kang et al. (109) CaprineSNP50 BeadChip 5 120 42 -

Guan et al. (62) Goat SNP50 BeadChip 1 1036 - 1461

Di Gerlando et al. (13) GoatSNP50 BeadChip 4 120 702 75

Yuan et al. (110) Resequencing 3 32 1747604 7228

Salehian-Dehkordi et al. (66) Ovine SNP600K BeadChip 67 2059 18152 1217

He et al. (64) Resequencing 2 72 5862 -

Nandolo et al. (65) Resequencing 34 82 253553 6231

Igoshin et al. (111) Ovine Infinium HD SNP BeadChip 16 354 4527 1450

Taghizadeh et al. (68) OvineSNP50 Beadchip 3 192 815 515

Salehian-Dehkordi et al. (112) Ovine SNP600K BeadChip 47 695 39145 4769

Shi et al. (32) Resequencing 2 20 60429 4927

The continued advancement of sequencing technology promises
to greatly facilitate the identification of CNVs within the
donkey genome.

The subsequent section offers insights into potential reasons

why CNVs have been relatively overlooked in donkey research:

1. Donkeys predominantly serve as working animals in many

parts of the world. Consequently, researchers may prioritize
the study of genetic markers associated with phenotype traits
in species other than donkeys.

2. Initially, copy number variation was primarily detected

using gene chips, which were less readily available for
donkeys compared to other livestock species such as cattle,
sheep, and horses. In recent years, the development of
sequencing technology and the completion of whole-

genome sequencing for donkeys have created favorable
conditions for the detection of CNVs within the
donkey genome.

3. Funding for research pertaining to donkeys may be

comparatively constrained when compared to other livestock
species like cattle and sheep. Consequently, researchers may
face challenges in securing adequate resources for the study of

CNVs in donkeys.
4. In many parts of the world, the commercial value of donkeys

is primarily linked to their performance as working animals,
rather than their utility for products such as milk or meat.
As a result, there may be limited commercial interest in
investigating CNVs in donkeys.

4 Gene ontology analysis for genes
overlapping CNVRs

To identify genes that may be influenced by CNVRs within the
genome, an annotation analysis of genes associated with CNVRs
revealed that olfactory-related functions, specifically olfactory
transduction and olfactory receptor activity, were frequently
affected. This observation aligns with previous findings in various
species, including cattle (119), sheep (62, 111), horses (34, 115, 120)
and humans (121–123), where genes affected by copy number
variation have shown enrichment for olfactory-related functions.
In the case of humans, the sense of smell is considered a
minor aspect of overall health and may not be closely linked
with adaptation. Consequently, human olfactory receptor (OR)
genes tend to evolve neutrally (121). However, in the animal
kingdom, the sense of smell holds paramount importance as it
plays a vital role in locating food, identifying harmful substances,
avoiding predators, selecting mates, and ensuring long and healthy
survival and reproduction (124). Consistently, a study proposed
that olfactory receptors also play a role in appetite regulation and
feeding efficiency inmammals. Hence, alterations in these receptors
may lead to individual differences in feed intake, body weight,
and body composition (125). Additionally, CNVRs have been
found to intersect with Quantitative Trait Loci (QTL) associated
with various factors such as morphology, disease resistance, and
more. This intersection serves as a fundamental foundation for
the examination of phenotypic diversity. Variations in CNVR
frequency among different breeds have been identified in CNVR
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TABLE 3 Summary of CNVs and identification methods performed in horses.

References Methods Species Samples CNVs CNVRs

Doan et al. (53) aCGH arrays 15 16 2368 775

Dupuis et al. (113) Equine SNP50 bead-chip array 4 477 2797 478

Metzger et al. (92) Equine SNP50 bead-chip array 17 717 50 -

Ghosh et al. (55) aCGH arrays 16 38 - 258

Wang et al. (114) aCGH arrays 6 6 700 353

Kader et al. (57) Equine SNP70 bead-chip array 3 96 287 122

Schurink et al. (115) Equine genotyping array 1 222 15041 5350

Solé et al. (116) Equine genotyping array 8 1755 18800 939

Al Abri et al. (61) Resequencing 6 6 1540 -

Kim et al. (33) Equine SNP70 bead-chip array 4 469 - 843

Laseca et al. (34) Equine high-density 670K 1 654 19902 1007

Wang et al. (35) Equine SNP70 bead-chip array 10 70 577 239

Choudhury et al. (37) Resequencing 3 26 18974 4279

tests involving animals from various regions (52, 111, 126).
These variations can be attributed to breed domestication and
environmental adaptation.

5 CNVs and their association with
phenotypic traits in herbivorous
livestock

It has been well-established that genomic CNVs exert an
impact on an organism’s phenotype through various mechanisms,
including changes in gene dosage, modulation of gene expression,
modulation of gene transcriptional regulators, and positional
effects (127). The association of CNVs in genes and their
association with various phenotypic traits (growth traits,
reproductive traits, pigmentation, and diseases resistance) in
herbivorous livestock (cattle, sheep, goat, and horses) have been
summarized in Table 4.

5.1 CNVs associated with growth and
reproductive traits in herbivorous livestock

CNVs have been extensively studied in various livestock
species, including cattle, sheep, donkey and horses, and its
association with important growth, reproduction, and fertility traits
has been documented. This comprehensive review discusses key
findings and contributions from various research studies in these
livestock species. In cattle, Yang et al. (131) identified CNV in the
cytochrome P-450 4A11 (CYP4A11) gene, which was associated
with increased growth. Multiple copies of CYP4A11 were found
to promote the differentiation of 3T3-L1 cells into adipocytes,
potentially leading to increased fat deposition. Previous studies
investigated SERPINA3-1 and GAL3ST1 gene CNVs in different
Chinese cattle breeds, revealed associations with growth traits such
as body height, body weight, and rump width (146, 180). These

genes hold promise as candidate genes for Chinese cattle breeding.
Correspondingly, Hu et al. (139) analyzed CCDC39 gene CNVs
and their impact on body length and hip width, noting significant
effects, particularly in the Pinan (PN) breed. Additionally, Shi et al.
(128) found a correlation between leptin gene CNV and various
phenotypic traits, including body weight, body height, body length,
and brisket circumference, in multiple cattle breeds.

In sheep, Zhu et al. (107) identified adiposity-related genes,

including PPARA, RXRA, KLF11, ADD1, FASN, PPP1CA, and
PDGFA, in CNV regions of fat-tailed sheep. These genes were
associated with fat deposition, with individuals carrying copy
number deletions exhibiting higher body weight. Similarly, a recent

study by Wang et al. (155) documented a significant correlation
between CNV in the KAT6A gene and body height and hip
width in Hu sheep (HU). They also found that CNV3 duplicates

were associated with higher body height and weight. Yang et al.
(153) highlighted the BAG4 gene’s role in regulating body height
in sheep and its potential as a molecular marker for molecular

breeding. Feng et al. (156) discovered that CNVs of the PIGY gene
significantly impacted body weight, chest circumference, and tube
circumference in sheep. Additionally, Xu et al. (29) found that CNV

types of the CCSER1 gene were correlated with body weight and
heart girth traits in Guizhou white goats (GZW).

Horses were also subject to CNV studies. Consistently, Metzger
et al. (92) conducted a genome-wide analysis of CNVs and their
association with equine body height traits. They identified deleted

regions in ECA1, ECA8, and ECA9, which were significantly linked
to equine body height. While Kim et al. (33) reported CNVRs with
overlapping quantitative trait loci (QTLs) associated with equine
body height in Jeju riding horses and Hanra horses. These findings
provided valuable insights into the genetic factors influencing
equine body height.

In the context of fertility, CNVs have also been explored.
Consistently, a deletion in the intronic region of the SPAG16
gene has been identified in bulls with poor sperm motility (PSM),
suggesting its potential role in bull fertility (104). A comprehensive
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TABLE 4 Summary of CNVs in genes and their association with phenotypic traits in herbivorous livestock.

Genes (CNVs) Phenotypes Biological e�ect Species References

Changes in the CNV region within the LEPR
intron 3

Growth traits Body weight, body height, body length, and brisket
circumference

Cattle (128)

Myosin heavy chain 3 (MYH3)-CNV Skeletal muscle development (129)

Mitogen-activated protein kinase 10
(MAPK10)-CNV

Body weight (P < 0.05), body height and chest girth (130)

CYP4A11-CNV Lipid deposition (131)

Guanylate binding protein 2 (GBP2)-CNV Body height, body length, heart girth, hip width, rump
length

(132)

Insulin-like growth factor 1 receptor
(IGF1R)-CNV

Associated with body weight and body height of Jinnan
cattle and was significantly linked with body height and
hucklebone width of Qinchuan cattle

(133)

Kupple like factor 3 (KLF3)-CNV Body mass and heart girth (134)

Potassium inwardly-rectifying channel, subfamily
J 12 (KCNJ12)-CNV (1&2)

Significant association with the body length, chest
circumference, body weight, rump length

(135)

MLLT10-CNV Hip width, rump length, hucklebone width, and
cannon bone circumference

(136)

Uanylate-binding protein 6 (GBP6)-CNV Associated with body weight, cannon circumference
and chest circumference

(137)

(CNV1: 3600 bp, including exon 2–11; CNV2:
4800 bp, including exon 21–22) of the CLCN2
gene

Cannon circumference, body slanting length, chest
girth, and body weight

(138)

CCDC39- CNV (Normal, deletion, duplication) body length, hip width, heart girth and cannon bone,
and circumference

(139)

PLA2G2A-CNV (Normal, Deletion) Height at sacrum, heart girth and body height, chest
depth

(140)

SYT11-CNV Significantly correlated with body length, cannon
circumference, chest depth, rump length, and forehead
size of Yunling cattle, and was significantly correlated
with the bodyweight of Xianan cattle

(141)

Mitochondrial fusion protein (MFN1)-CNV Significant correlation with hucklebone width, hip
width, height at sacrum, chest width and rump length

(142)

DYNC1I2-CNV (Duplication and deletion) Associated with height at hip cross, body length, chest
width and hucklebone width, chest depth

(143)

WW domain binding protein 1-like (WBP1L)-
CNV

Associated with heart girth, rump length and body
weight (Pinan cattle), withers height, rump length,
body length, chest depth and BW of (Jiaxian cattle)

(144)

MUC19-CNV Correlated with hip width, height at hip cross and
withers height, body length, and huckle bone width

(145)

SERPINA3-1-CNV Body height (12)

GAL3ST1- CNV (deletion) Body weight (146)

VAMP7-Duplication Body growth trait (height at the hip cross) (147)

ZNF679-CNV Body size and length (148)

CNVRs harbored genes (PPARA, RXRA, KLF11,
ADD1, FASN, PPP1CA, PDGFA, and PEX6)

Fat deposition Sheep (107)

Src homology 2 domain containing E (SHE)-CNV Correlated to body length, circumference of cannon
bone, heart girth, chest width and high at the cross

(149)

ORMDL sphingolipid biosynthesis regulator 1
(ORMDL1)-CNV

Body weight, body height, body length, chest depth,
and height of hip cross

(150)

KMT2D-CNV Body length, withers height, hip width (151)

TOP2B-CNV Body length, chest circumference, canon circumference
and height of hip cross

(152)

(Continued)
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TABLE 4 (Continued)

Genes (CNVs) Phenotypes Biological e�ect Species References

BAG4 -CNV Body height, body slanting length, body height and hip
cross height

(153)

TOP2B-CNV Body length, chest circumference, canon circumference
and height of hip cross

(152)

LRRFIP1-CNV Chest width, rump breadth and circumference of
cannon, larger heart girth

(154)

KAT6A-(CNV1, CNV2, CNV3) Body height and body length (155)

PIGY- CNV Body weight, chest circumference, and tube
circumference

(156)

Myosin light chain kinase-4(MYLK)-CNV Body weight, body length and body height Goat (157)

Opn4-CNV Body weight in Guizhou white goat
Body length in Guizhou black goat

(158)

SNX29 gene-CNV
ADCY1-CNV

Meat production traits (159)

CADM2-CNV (Deletion) Withers height and body length (160)

Sorting nexin 29 (SNX29)-CNV Body length, body height, heart girth, chest width,
canon circumference

(161)

Myogenic differentiation 1 (MyoD1)-CNV Body weight, height at hip cross, heart girth and hip
width

(30)

A-kinase-anchoring protein 13 (AKAP13)-CNV Body height and body length, chest depth, chest
circumference, and cannon circumference

(162)

Pleomorphic adenoma gene 1 (PLAG1)-CNV Body weight, heart girth, height at hip cross, and hip
width

(163)

CCSER1-CNV (deletion) Body weight and heart girth traits (29)

Deleted regions on ECA1, ECA8 and ECA9. Body height Horses (92)

23 CNVRs with overlapping QTLs associated with
equine body height

Body height (33)

A deletion in the intronic region of the SPAG16
gene

Reproductive
traits

Bull-fertility traits (sperm motility) Cattle (104)

CNV of ZNF280BY Negative correlation with the percentage of normal
sperm and sperm concentration

(164)

CNVs of the bovine HSFY and ZNF280BY Correlated negatively with testis size, while positively
with sire conception rate.

(165)

CNV of ZNF280BY Negatively correlated with testis size Hu sheep (166)

SMAD2 Litter size and semen quality Goat (40)

Sorting nexin 29 (SNX29)-CNV (Indel) Litter size and fertility (167)

Protein phosphatase 3 catalytic subunit alpha
(PPP3CA)-CNV

Litter size and semen quality (168)

PRP1 and PRP6 have CNV mutations in the HF
group

Litter size (169)

CNVs in regions of the Y chromosome Male development and equine fertility Horses (170)

An 1155 bp deletion in the ASIP gene Coat color darkening (171)

2,809 bp LINE-1 insertion in ASIP gene White coat color (172)

ASIP-CNV (Duplication) Light coat color Goat (56)

ASIP- CNV White coat colounr (173)

1Mb CNV affect EDNRA gene White coat color (174)

13.42kb duplication upstream of ASIP Non-classic swiss markings (175)

(Continued)
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TABLE 4 (Continued)

Genes (CNVs) Phenotypes Biological e�ect Species References

A 4.6 kb duplication in intron 6 of STX17 Gray phenotype Horses (176)

A deletion including exon 3 of the ED1 gene Disease resistance Anhidrotic Ectodermal Dysplasia Cattle (177)

Low relative expression levels of KIF2A and
PHKG2

Disease resistance Sheep (106)

CNVS in CCL1, CCL2, CCL8, CCL11, NOS2,
TNF, CSF3, and STAT3 genes

Resistance to natural Haemonchus contortus infections (41)

CNVR33, CNVR65, and CNVR7 overlap with
immune system-related genes

Strong resistance to infectious diseases Goat (13)

CNVRs located in the MHC region of ECA20 Insect bite hypersensitivity Horses (115)

A pure deletion of the AKR1C gene Disorders of sexual development (55)

CNV in GRIK4, IFNLR1, and LOC102275985 Environmental
adaptability

High-altitude adaptation Cattle (178)

CNV in LDHB and ME1 Cold and low oxygen environments (179)

CNV changes affect in ALKBH5, NARFL genes Plateau acclimatization Sheep (107)

CNVR is significantly correlated with solar
radiation

Solar radiation (112)

Genes associated with hemoglobin binding located
on CNVRs

Harsh plateau environment Horses (114)

Changes in NFKBIA, SOCS4, HSPA1A, and IL6
genes located in the CNVR

High temperatures and humidity (35)

analysis documented CNVs in Laoshan dairy goat populations
with differing fertility levels and showed that CNV mutations in
PRP1 and PRP6 genes, which affect mammalian fertility (169). A
study investigated CNVs in Y chromosome-specific regions in male
horses, identifying potential genes linked to stallion fertility and
contributing to our understanding of equinemale development and
fertility (170). These studies collectively underscore the significance
of CNVs in shaping various traits in cattle, sheep, and horses, from
growth and fat deposition to fertility. The identification of specific
genes and regions associated with these traits holds promise for
selective breeding programs and further genetic research in these
livestock species.

5.2 Pigmentation

The role of CNVs in determining coat color and disease
resistance in cattle, horses, and sheep has been the subject of
extensive scientific investigation. In this discussion, we will delve
into various studies that have shed light on the influence of CNVs
on these traits in these livestock species. A study reported two
sequence translocations between chromosomes 6 and 29 in Belgian
Blue and Swiss Brown cattle, affecting the KIT gene, leading
to color-sidedness (181). Similarly another study reported that a
deletion of 1155 bp within the ASIP gene in Nellore cattle results in
dark hair color in specific regions by elevating melanin production
(171). Furthermore, a 2,809 bp LINE-1 insertion in the ASIP
gene icausing a white coat color phenotype by impeding melanin
production has been identified in buffalo (172). Consequently a
study postulated that a 4.6 kb duplication within intron 6 of the

STX17 gene leads to a pronounced upregulation of both STX17 and
NR4A3 gene expression (176). This heightened gene expression
subsequently instigates the proliferation of melanocytes, ultimately
culminating in the manifestation of a gray coat phenotype in
affected horses. Furthermore, it is noteworthy that horses harboring
this mutant phenotype exhibit a gradual transition in hair color
from gray to white as they advance in age. In a similar vein,
previous investigations encompassed genomic analyses of feral
and domestic goat populations, which unveiled the intriguing
revelation that 13 genes situated within CNV regions overlap
with the comprehensive roster of cloned color genes provided
by the European Society for Pigment Cell Research (ESPCR)
(56). Moreover, these investigations substantiated the substantial

impact of CNVs within the ASIP gene on the lightening of coat

color in domestic goat breeds, employing rigorous resequencing

analyses. A subsequent inquiry brought to light the potential

influence of CNVs on the ASIP gene, which may, in turn,

lead to the emergence of a white coat color phenotype in the

Girgentana and Saanen goat breeds, as corroborated by Fontanesi

et al. (173). A recent report presented compelling evidence

demonstrating the significant association between a 13.42 kb repeat
sequence located upstream of the ASIP gene and non-classic
Swiss markings in goats, utilizing CNV assays and quantitative
Polymerase Chain Reaction (qPCR) techniques (175). This finding
further underscores the pivotal role of CNVs in shaping coat color
patterns in goats. Furthermore, Menzi et al. (174) unraveled the
involvement of the EDNRA gene, situated within a 1Mb CNV
region on chromosome 17, in potentially attenuating melanism
among Boer goats. Notably, an elevation in the copy number
within this CNV region could potentially lead to a reduction
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in skin pigmentation, thereby culminating in the manifestation
of a white-spotted phenotype. In summary, these comprehensive
investigations collectively shed light on the intricate interplay
between CNVs and the genetic determinants of coat color diversity
in horses and goats, providing valuable insights into the underlying
genetic mechanisms governing these phenotypic variations.

5.3 Disease resistance

The CNVs hold significant potential to influence disease
resistance in livestock species, including cattle, sheep, and horses.
Notably, Liu et al. (52) conducted an exhaustive investigation
in cattle, uncovering multiple CNVs that play pivotal roles in
crucial biological processes such as drug detoxification, innate and
adaptive immunity, as well as receptor and signal recognition. In
the context of cattle, it is worth highlighting the association between
CNVs and disease susceptibility. For instance, Drögemüller et al.
(177) reported that a deletion encompassing exon 3 of the ED1 gene
has been linked to anhidrotic ectodermal dysplasia, underscoring
the critical role of CNVs in disease vulnerability. Furthermore,
a study reported CNVs in 18 candidate genes (TERT, NOTCH1,
SLC6A3, CLPTM1L, PPARα, BCL-2, ABO, VAV2, CACNA1S,
TRAF2, RELA, ELF3, DBH, CDK5, NF2, FASN, EWSR1 and
MAP3K11) which were associated with milk somatic cells count
and mastitis resistance in dairy cattle (182). Consistently, another
study reported that CNVs in ZNF496 andNLRP3 were significantly
associated with resistance to gastrointestinal nematodes in Angus
cattle (129).

Shifting our focus to small ruminants, Di Gerlando et al.
(13) embarked on an exploration of Sicilian goat breeds. Their
study unveiled intriguing findings, as CNVR33, CNVR65, and
CNVR7 were found to overlap with genes closely associated
with the immune system. This discovery offers a potential
explanation for the remarkable resistance of these goat breeds
against infectious diseases. In the case of Florida Native sheep,
Estrada-Reyes et al. (41) delved into the genetic underpinnings
of resistance against gastrointestinal nematodes. Their meticulous
investigation revealed that 14 CNVs exhibited overlaps with QTLs
associated with gastrointestinal nematode resistance. Moreover,
these CNVs demonstrated significant correlations with fecal egg
count (FEC), suggesting a potential influence of CNVs on parasite
resistance in these sheep. Ma et al. (106) conducted an extensive
study encompassing 160 Chinese sheep breeds, leading to the
identification of 111 CNV regions. Their functional analysis
highlighted an enrichment of CNV regions with genes closely
linked to environmental responses. Notably, 17 candidates genes
emerged from this analysis, primarily associated with specific
diseases, metabolic processes, and development. Particularly
intriguing was the observation of lower relative expression levels
of KIF2A and PHKG2 in domestic sheep breeds compared to
introduce sheep breeds, implying enhanced disease resistance
within modern Gansu sheep breeding populations.

In the equine domain, Schurink et al. (115) undertook a
thorough investigation into CNVs within Friesian horses. Their
research unveiled a staggering 15,041 CNVs identified across
222 individuals. Importantly, this study integrated genome-wide

association study (GWAS) leveraging both SNPs and CNVs data.
A significant finding was the association between CNV regions
situated in the major histocompatibility complex (MHC) region
of ECA20 and insect bite hypersensitivity (IBH) in Friesian
horses. Notably, approximately half of the horses included in the
study were afflicted by this condition. Consistently, Ghosh et al.
(55) conducted a comprehensive genomic analysis encompassing
healthy horses representing 16 distinct breeds. Their investigation
identified 258 CNV regions. Notably, the study extended its
inquiry to horses exhibiting sexual developmental impairments,
wherein they identified a pure deletion of the AKR1C gene
in two male pseudohermaphrodites. This discovery suggests
a potential association between this gene deletion and the
observed abnormalities.

5.4 Environmental adaptability

A comparative examination of CNVs in herbivorous livestock
originating from diverse regional breeds has illuminated the
potential influence of CNVs on their environmental adaptability.
A performed a comprehensive investigation into the differential
distribution of CNVs within yak populations hailing from the Tibet
and Gansu regions (178). Their study identified seven candidate
CNVs, specifically annotating three genes (GRIK4, IFNLR1,
and LOC102275985) enriched in five well-established signaling
pathways that play pivotal roles in the animals’ acclimatization
to their environments and various physiological functions. Of
particular note is the regulation of physiological processes in
hypoxic environments. This research significantly contributes to
our understanding of the molecular mechanisms underlying the
high-altitude environmental adaptability of yaks. Qaidam cattle,
known for their adaptation to cold and low-oxygen environments,
underwent genomic analysis by Guo et al. (179). This study
identified LDHB and ME1 as potential key genes influencing the
cattle’s remarkable adaptability to such harsh conditions.

Tibetan sheep, native to high-altitude plateaus, were
investigated by Zhu et al. (107), who identified 66 CNVRs
associated with their plateau acclimatization. Notably, α-
ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5)
and nuclear prelamin A recognition factor-like (NARFL) were
found to be associated with plateau adaptation within the identified
CNVRs. A study performed by Salehian-Dehkordi et al. (112)
documented CNVs in 47 sheep breeds. Their research revealed 155
CNVs highly significantly correlated with various environmental
parameters, with 35 CNVRs showing significant correlations
with solar radiation. Moreover, genes overlapping with CNVs,
such as B3GNTL1, UBE2L3, TRAF2, GTF2F1, and IGFALS, were
significantly correlated with climatic variables, further emphasizing
the role of CNVs in environmental adaptation.

In the equine domain, Wang et al. (114) utilized aCGH to
identify CNVs in six horse breeds, uncovering a total of 700 CNVs.
These CNVs were classified into 353 CNVRs, and their genetic
examination revealed specific genes associated with hemoglobin
binding, suggesting a potential influence on horses’ adaptability
to the challenging plateau environment. The Jinjiang horse, an
indigenous breed exclusive to the southeastern coast of China and
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adapted to high temperatures and humidity, was the focus of a
study byWang et al. (35). They identified 229 genes that overlapped
with CNVRs, with four specific candidate genes (NFKBIA, SOCS4,
HSPA1A, and IL6) highlighted due to their strong correlation with
cellular thermal acclimatization.

6 Conclusions

Common herbivorous livestock, like cattle and sheep, are
vital to human daily life due to their significant contributions
to meat and dairy production, playing crucial roles in animal
husbandry. Recently, China has seen remarkable growth in
its equine and donkey industries, driven by advancements in
science, technology, and societal progress, establishing themselves
as emerging specialties within the livestock sector. Therefore,
investigating CNVs within the genomes of these animals
holds profound importance. Advancements in microarray and
sequencing technologies, along with decreasing sequencing costs,
have provided a robust foundation for identifying and studying
CNVs. These CNVs, characterized by extended mutant fragment
lengths and their substantial impact on genes, represent a
formidable genetic resource for exploring genetic variations in
livestock and poultry. Extensive research focusing on CNVs in
herbivore genomes has unequivocally demonstrated the pivotal
role CNVs play in shaping phenotypic diversity, influencing
economic traits, enhancing disease resistance, and facilitating
environmental adaptation. Researchers worldwide have dedicated
their efforts to elucidating the connection between CNVs and
phenotypic differences as well as diseases in livestock and
poultry. These findings offer compelling support for exploring the
potential applications of CNVs as genetic markers in regulation
of various productive and disease resistance traits. Consequently,
CNVs emerge as a promising avenue for augmenting genetic
diversity and expediting molecular breeding strategies in common
herbivorous livestock, including cattle, sheep, horses, and donkeys.
In conclusion, CNVs represent a valuable and dynamic field of
study poised to make a lasting impact on the genetic improvement
of herbivorous livestock species, ultimately benefiting both human
society and the global livestock industry.
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170. Janečka JE, Davis BW, Ghosh S, Paria N, Das PJ, Orlando L, et al. Horse
y chromosome assembly displays unique evolutionary features and putative stallion
fertility genes. Nat Commun. (2018) 9:2945. doi: 10.1038/s41467-018-05290-6

171. Trigo BB, Utsunomiya ATH, Fortunato AAAD, Milanesi M, Torrecilha RBP,
Lamb H, et al. Variants at the asip locus contribute to coat color darkening in nellore
cattle. Genet Sel E. (2021) 53:40. doi: 10.1186/s12711-021-00633-2

172. Liang D, Zhao P, Si J, Fang L, Pairo-Castineira E, Hu X, et al. Genomic analysis
revealed a convergent evolution of line-1 in coat color: a case study in water buffaloes
(bubalus bubalis).Mol Biol E38. (2021) 1122–36. doi: 10.1093/molbev/msaa279

173. Fontanesi L, Beretti F, Riggio V, Gómez González E, Dall Olio S, Davoli R,
et al. Copy number variation and missense mutations of the agouti signaling protein
(asip) gene in goat breeds with different coat colors. Cytogenet Genome Res. (2010)
126:333–47. doi: 10.1159/000268089

174. Menzi F, Keller I, Reber I, Beck J, Brenig B, Schütz E, et al. Genomic
amplification of the caprine ednra locus might lead to a dose dependent loss of
pigmentation. Sci Rep. (2016) 6:28438. doi: 10.1038/srep28438

175. Guo J, Sun X, Mao A, Liu H, Zhan S, Li L, et al. 13 42-kb tandem
duplication at the ASIP locus is strongly associated with the depigmentation
phenotype of non-classic Swiss markings in goats. BMC Genomics. (2022)
23:437. doi: 10.1186/s12864-022-08672-9

176. Rosengren Pielberg G, Golovko A, Sundström E, Curik I, Lennartsson J,
Seltenhammer MH, et al. A cis-acting regulatory mutation causes premature hair
graying and susceptibility to melanoma in the horse. Nature Genet. (2008) 40:1004–
9. doi: 10.1038/ng.185

177. Drögemüller C, Distl O, Leeb T. Partial deletion of the bovine ed1 gene
causes anhidrotic ectodermal dysplasia in cattle. Genome Res. (2001) 11:1699–705.
doi: 10.1101/gr.182501

178. Guang-Xin E, Yang BG, Zhu YB, Duang XH, Basang WD, Luo XL, et al.
Genome-wide selective sweep analysis of the high-altitude adaptability of yaks by using
the copy number variant. Biotech. (2020) 10:1–6. doi: 10.1007/s13205-020-02254-w

179. Guo S, Wu X, Pei J, Wang X, Bao P, Xiong L, et al. Genome-wide cnv analysis
reveals variants associated with high-altitude adaptation and meat traits in qaidam
cattle. Electron J Biotechnol. (2021) 54:8–16. doi: 10.1016/j.ejbt.2021.07.006

180. Huang Y, Shi QT, Shi S, Yang P, Zhang Z, Lyu S, et al. Association between
copy number variation of serpina3-1 gene and growth traits in chinese cattle. Anim
Biotechnol. (2023) 34:1524–31. doi: 10.1080/10495398.2022.2038183

181. Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N, Druet T, et
al. Serial translocation by means of circular intermediates underlies colour sidedness in
cattle. Nature. (2012) 482:81–4. doi: 10.1038/nature10757

182. Durán Aguilar M, Román Ponce SI, Ruiz López FJ, González Padilla E, Vásquez
Peláez CG, Bagnato A, et al. Genome-wide association study for milk somatic cell score
in holstein cattle using copy number variation as markers. J Anim Breeding Genetics.
(2017) 134:49–59. doi: 10.1111/jbg.12238

Frontiers in Veterinary Science 17 frontiersin.org80

https://doi.org/10.3389/fvets.2023.1334434
https://doi.org/10.1017/S0021859622000387
https://doi.org/10.1016/j.gene.2022.147010
https://doi.org/10.1080/10495398.2021.1996385
https://doi.org/10.1080/10495398.2021.2011741
https://doi.org/10.1080/10495398.2023.2185628
https://doi.org/10.3390/ani9080531
https://doi.org/10.5194/aab-62-571-2019
https://doi.org/10.1016/j.gene.2020.144799
https://doi.org/10.1080/10495398.2020.1773490
https://doi.org/10.1080/10495398.2020.1719124
https://doi.org/10.1080/10495398.2022.2126981
https://doi.org/10.1080/10495398.2021.2005616
https://doi.org/10.3390/ani10040688
https://doi.org/10.1080/10495398.2019.1635137
https://doi.org/10.3390/ani10030441
https://doi.org/10.1016/j.ygeno.2019.08.018
https://doi.org/10.1016/j.gene.2020.144519
https://doi.org/10.3390/ani13122023
https://doi.org/10.3390/ani13172746
https://doi.org/10.3389/fvets.2023.1132833
https://doi.org/10.3168/jds.2018-16063
https://doi.org/10.1186/1471-2164-15-113
https://doi.org/10.1093/jas/skac232
https://doi.org/10.3389/fvets.2022.981315
https://doi.org/10.3390/ani12040445
https://doi.org/10.1016/j.gene.2019.02.027
https://doi.org/10.1038/s41467-018-05290-6
https://doi.org/10.1186/s12711-021-00633-2
https://doi.org/10.1093/molbev/msaa279
https://doi.org/10.1159/000268089
https://doi.org/10.1038/srep28438
https://doi.org/10.1186/s12864-022-08672-9
https://doi.org/10.1038/ng.185
https://doi.org/10.1101/gr.182501
https://doi.org/10.1007/s13205-020-02254-w
https://doi.org/10.1016/j.ejbt.2021.07.006
https://doi.org/10.1080/10495398.2022.2038183
https://doi.org/10.1038/nature10757
https://doi.org/10.1111/jbg.12238
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Genome-wide survey reveals the
genetic background of Xinjiang
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Introduction: Xinjiang Brown cattle are a famous dual-purpose (dairy-beef)
cultivated breed in China that occupy a pivotal position within the cattle
breeding industry in Xinjiang, China. However, little information is available on
the genetic background of this breed. To fill this research gap, we conducted a
whole-genome screen using specific-locus amplified fragment sequencing to
examine the genetic structure and diversity of 130 Xinjiang Brown cattle-grazing
type (XBG, traditional type) cattle.

Methods: A subsequent joint analysis incorporating two ancestral breeds,
specifically 19 Brown Swiss (BS) foreign and nine Kazakh (KZ) Chinese cattle,
as well as 20 Xinjiang Brown cattle-housing type (XBH) cattle, was used to explore
the genetic background of the Xinjiang Brown cattle.

Results: The results showed that, after nearly a century of crossbreeding, XBG
cattle formed a single population with a stable genetic performance. The genetic
structure, genetic diversity, and selection signature analysis of the two ancestral
types showed highly different results compared to that of XBH cattle. Local
ancestry inference showed that the average proportions of XGB cattle within the
BS and KZ cattle lineages were 37.22% and 62.78%, respectively, whereas the
average proportions of XBH cattle within the BS and KZ cattle lineages were
95.14% and 4.86%, respectively. Thus, XGB cattle are more representative of all
Xinjiang Brown cattle, in line with their breeding history, which involves
crossbreeding. Two complementary approaches, fixation index and mean
nucleotide diversity, were used to detect selection signals in the four
aforementioned cattle breeds. Finally, the analysis of 26 candidate genes in
Xinjiang Brown cattle revealed significant enrichment in 19 Gene Ontology
terms, and seven candidate genes were enriched in three pathways related to
disease resistance (CDH4, SIRPB1, and SIRPα) and the endocrine system (ADCY5,
ABCC8, KCNJ11, and KCNMA1). Finally, development of the core SNPs in XBG
cattle yielded 8,379 loci.

Conclusion: The results of this study detail the evolutionary process of
crossbreeding in Xinjiang Brown cattle and provide guidance for selecting and
breeding new strains of this species.

KEYWORDS

Xinjiang Brown cattle, specific-locus amplified fragment-sequencing, genetic structure,
genetic diversity, candidate genes, ancestry proportion
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1 Introduction

Xinjiang Brown cattle is a dual-purpose (dairy-beef) cultivated
breed bred independently in China. These cattle exhibit strong
adaptability, superior grazing, and production performance
within the extreme arid, cold, and barren environment of
northern Xinjiang (Zhou et al., 2019) (Figures 1A, B). These
qualities make them an important cattle breed for local breeders,
farmers, and herders. By 2022, the stock of purebred Xinjiang Brown
cattle amounted to approximately 1,169 thousand heads.
Specifically, 27 thousand heads were in feedlots, whereas
1,142 thousand of them were in pastures. In addition, there were
specifically 760 thousand and 14 thousand fertile cows and bulls,
respectively. Overall, this stock accounted for approximately 1/5th
of all types of cattle stock in Xinjiang. Xinjiang Brown cattle were
selectively bred during the early 20th century, in which the Kazakh
(KZ) cow was the female parent and underwent three-stage
hybridization with the Brown Swiss (BS) bull or the Kostroma or
Ala-Tau bulls, two breeds of Brown Swiss cattle origin (Yurchenko
et al., 2017). As a result, the Ministry of Agriculture of China
certified the Xinjiang Brown as a novel dual-purpose (dairy-beef)
cattle breed in 1983 (Zhang et al., 2022). In the following 40 years,
this breed has also transitioned into the expansion phase of selection
and improvement (1987–2006), followed by a breeding phase of
specialized strains (2007 to present). With the introduction of frozen
semen from BS bulls primarily from Germany, the United States of
America, and Canada, Xinjiang Brown cattle have been further
improved and various new strains have been bred to meet the

demands of the market and socio-economic development. Nearly
97% of Xinjiang Brown cattle are reared under semi-herding and
grazing conditions and are referred to in this study as the Xinjiang
Brown cattle-grazing type (XBG) cattle (Figure 1C). The XBG
population is large and has been less affected by frozen sperm
from BS cattle since 2007, which has helped the genetic preservation
of the original makeup of Xinjiang Brown cattle. However, the
genetic background of XBG cattle characteristics remains mostly
unknown at the genomic level and the extent to which their breed
contribution is influenced by Chinese KZ or foreign BS breeds
is uncertain.

In recent years, developments in genomic technology have
facilitated genomic analyses that have enabled access to
individual DNA information via whole-genome sequencing
(WGS) (Yin et al., 2019) and genotype-by-sequencing (GBS)
(Elshire et al., 2011). Research on Xinjiang Brown cattle has also
entered the omics era, as evidenced by genome-wide association
studies for milk production and reproductive traits (Zhou et al.,
2019), genome-wide identification and analysis of long non-coding
RNAs in the longest dorsal muscle tissue (Yan et al., 2021), and
genomic selection for milk production traits (Zhang et al., 2022). A
WGS analysis was also performed to study the genetic evolution of
Xinjiang Brown cattle, which more comprehensively revealed their
genetic background, genetic diversity, and adaptive mechanisms
(Chen et al., 2022a); however, the samples used in this study were
not genuinely representative, as all 50 samples were collected from
Xinjiang Brown cattle-housing type (XBH) cattle (Figure 1D) at the
Urumqi breeding farm, XBH accounts for less than 3 percent of the

FIGURE 1
Xinjiang Brown cattle photos. (A) Xinjiang Brown cattle breeding bull in Yili-Tacheng region. (B) Xinjiang Brown cattle breeding cow in Yili-Nilka
County. (C) Xinjiang Brown cattle-grazing type (XBG) cow in Yili-Tacheng region. (D) Xinjiang Brown cattle-housing type (XBH) cow in the Urumqi
breeding farm.
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total number of Xinjiang Brown cattle. Additionally, the XBH
contains a disproportionately high percentage of BS genetic
lineage and has low genetic diversity and closely related
individuals as confirmed by trial results. Hence, gathering an
extensive and more inclusive group of XBG cattle to obtain fresh
test outcomes from is imperative. Additionally, the findings of the
previous samples from XBH cattle should be blended with new
results to reflect the genetic background of Xinjiang Brown cattle
more precisely and impartially.

To this end, in this study, we used specific-locus amplified
fragment (SLAF) sequencing (SLAF-seq) (Zhou and Pan, 2023)
techniques to obtain individual DNA information from 130 XBG
cattle. The published data for KZ, BS, and XBH cattle from 48 WGS
analyses were downloaded from NCBI and combined with the
SLAF-seq data of 129 XBG cattle for joint analysis; the proven
feasibility of merging two types of data has previously confirmed the
findings of an exploration of olive diversity in plants (Friel et al.,
2021) and an assessment of the adaptation of Nigerian cattle in
animals (Mauki et al., 2022). This study focused on analyzing the
genetic structure, genetic diversity, and selection signatures of the
XBG population and aimed to establish a molecular basis that could
assist in the conservation, scientific introduction, and selection of
breeding resources for Xinjiang Brown cattle.

2 Materials and methods

2.1 Sample collection

The study team visited the primary production area of XBG in
the Yili Tacheng region in 2021. We collected blood samples from
130 XBG cattle on a large private ranch, despite difficulties in
sampling resulting from grazing conditions. Whole-blood
samples (10 mL) from 130 XBG cattle (all females) were divided
into four groups depending on the color of the cow’s coat (group A =
40, B = 76, C = 10, and D = 4). The coat color of group A was a
normal brown, that of B was dark brown, with fawn for C, and light
brown for D. Genomic DNA extractions were performed using the
phenol–chloroform method (Sambrook and Russell, 2006) at the
Xinjiang Academy of Animal Science. The DNA purity of the
extracted samples was determined via quantification using a
Thermo Scientific™ NanoDrop 2000 spectrophotometer (Thermo
Scientific, United States). Furthermore, the quality of the DNA
extracts was assessed by subjecting them to electrophoresis on a
2% agarose gel against a 2 kilobase (kb) DNA ladder marker. The
130 samples were then subjected to sequencing on the
SLAF platform.

2.2 SLAF library construction and
sequencing

The SLAF library was created as described previously with
minor adjustments (Aerts et al., 2013). To ensure the anticipated
SLAF output, we avoided repetitive SLAFs and selected a relatively
uniform distribution of restriction fragments in the genome. Next,
we conducted a simulated restriction enzyme digestion on the
existing B. taurus genome (UMD 3.1) (Zimin et al., 2009). The

genomic DNA from each sample was digested using a combination
of RsaI and HaeIII restriction enzymes. This was followed by adding
a single nucleotide (A) overhang to the 3′ end of the SLAF tags. To
ensure ligation of dual-index sequencing adapters to A-tailed tags,
we carried out restriction-ligation reactions using T4 DNA ligase
(New England Biolabs). Subsequently, DNA amplification was
performed using PCR and the resulting products were purified
using the E. Z.N.A.H Cycle Pure Kit (Omega). The purified
samples were combined and incubated with two specified
restriction enzymes, RsaI and HaeIII. After being ligated with
ATP and a Solexa adapter at the paired-end, the reaction was
purified using a Quick Spin column (Qiagen, Venlo,
Netherlands) and segregated on a 2% agarose gel. Fragments
between 450 and 480 bp were extracted using a Gel Extraction
Kit (Tiangen, China). These SLAFs were then subjected to PCR
for barcode addition. The amplified DNA samples underwent re-
purification before being prepared for 150-base paired-end
sequencing using an Illumina NovaSeq6000 sequencing platform
(Illumina, San Diego, CA, United States) at Biomarker Technologies
Corporation (Beijing, China).

2.3 WGS library construction and
sequencing

Forty-eight publicly available WGS genome datasets were
acquired from previous studies (Chen et al., 2018; Chen et al.,
2022a). Raw sequencing data of XBH (n = 20), KZ (n = 9), and
BS (n = 19) cattle are available at NCBI BioProject ID:
PRJNA833533, PRJNA379859, and PRJEB28191, respectively
(Supplementary Table S1).

2.4 Processing, mapping, filtering, and
single-nucleotide polymorphism calling of
SLAF reads

All indexed sequenced reads with clear information were
clustered based on sequence similarity. Similarity clustering was
used to group the sequenced reads from the same locus (Jones et al.,
2013) and aligned to a reference genome (UMD 3.1) (Zimin et al.,
2009) using BWA v0.7.17 software (Li and Durbin, 2009a). Single-
nucleotide polymorphism (SNP) calling was performed using
GATK v3.8 software (McKenna et al., 2010) and SAMtools
v1.3.1 software (Li et al., 2009b). In addition, the filtered high-
quality SNPs were used to annotate the SNP detection results using
SnpEff software (Cingolani et al., 2012), which can provide the
region of the genome where the variant locus occurs (intergenic
region, gene region, or CDS region, etc.) and the effect of the variant
(synonymous non-synonymous mutation, etc.).

2.5 Population genetic structure and genetic
diversity analysis of SLAF datasets

The high-confidence SNPs produced via the above procedures
were used to infer the genetic structure of the 130 XBG cattle. We
constructed an unrooted phylogenetic tree using the neighbor-
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joining method with the Kimura 2-parameter/p-distance model in
MEGA-CC (MEGAX) software (Kumar et al., 2018), with
1,000 bootstrap replicates. Principal components analysis (PCA)
was performed using the smartPCA module of EIGENSOFT
v7.2.0 software, using the default parameters (Price et al., 2006).
Estimation of the genetic relationships from SNPs using one of the
five main functions of GCTA v1.91.7 software (Yang et al., 2011) to
estimate the kinship between two individuals of a natural population
is possible. The population structure within the 130 XBG cattle was
inferred using ADMIXTURE v1.3.0 software (Alexander et al.,
2009), with K values (the putative number of populations)
ranging from 1 to 10. The optimal number of clusters K (best
taxa) was determined as the one with the minimum cross-validation
error rate. The Q matrix for each K value within stacked assignment
bar plots was generated using the R package “Pophelpers” (Francis,
2017). Pi values were calculated using VCFtools v0.1.16 software
based on the high-confidence filtered SNPs and a 100 kb window
with a step size of 10 kb for each sub-population (Danecek
et al., 2011).

2.6 Processing, mapping, filtering, SNP
calling, and data merging of SLAF and
published WGS reads

Raw paired-end reads of the 129 XBG SLAF-seq genome
datasets and 48 publicly available WGS genome datasets were
mapped to the B. taurus reference genome (ARS-UCD 1.2)
(Rosen et al., 2020) using BWA v0.7.17 software (parameters:
mem -t 4 -k 32 -M) (Li and Durbin, 2009a). SNP calling was
performed using both GATK v3.8 software (McKenna et al., 2010)
and SAMtools v1.3.1 software (Li et al., 2009b) (WGS parameter:
rmdup; SLAF parameter: sort) analyses, and a locus was defined as a
SNP if it was simultaneously called from these two packages. The
“mpileup” command was used to identify SNPs with the parameters
“-q 1 -C 50 -S -D -m 2 -F 0.002 -u”. Then, to exclude SNP calling
errors caused by incorrect mapping, only high-quality SNPs
[coverage depth ≥ 4, RMS mapping quality ≥ 20, minor allele
frequency (MAF) ≥ 0.01, miss ≤ 0.3] were retained for
subsequent analysis. BCFtools v1.7 software was used to merge
overlapping genomic regions between the SLAF and WGS datasets
(Li et al., 2009b).

2.7 Population genetic structure and genetic
diversity analysis of the merged SLAF and
published WGS datasets

An individual-based neighbor-joining tree was constructed for
the 177 evaluated cattle based on the p-distance, with one outgroup
(i.e., Bos mutus) (Supplementary Table S1), using TreeBest
v1.9.2 software (Vilella et al., 2009) with 1,000 bootstrap
replicates. We further conducted PCA to evaluate genetic
structures using GCTA v1.91.7 software (Yang et al., 2011). The
population genetic structure was examined using ADMIXTURE
v1.3.0 software (Alexander et al., 2009), and the number of assumed
genetic clusters K ranged from 2 to 8, with 10,000 iterations for each
run. In addition, RFMix v2.03 software (Maples et al., 2013) was

used for Local-Ancestry inferencing. The indicators of observed
heterozygosity (Ho), expected heterozygosity (He), polymorphism
information content (Pic), and Nei’s genetic diversity index (Nei)
analysis were counted using the Stacks v1.45 populations program
(Catchen et al., 2013).

2.8 Genome-wide selective sweep test,
Gene Ontology annotation, and Kyoto
Encyclopedia of genes and genomes
functional enrichment

We used VCFtools v0.1.16 software (Danecek et al., 2011) to
calculate Pi and the fixation index (FST) with the window size set to
50 k and sliding window 10 k. The genome-wide distribution of FST
values and mean Pi (θπ) ratios for the indicated group pairs were
computed to discover genome-wide selection sweeps linked to cattle
adaptability. The FST values were Z-transformed as Z (FST) =
(FST—µFST)/σFST, where σFST represents the FST standard
deviation and µFST is the FST mean. Log2-transformed θπ ratios
were obtained. The empirical percentiles of Z (FST) and log2 (θπ
ratio) in each window were then computed and ranked. Under
strong selective sweeps, we looked at the windows that
simultaneously had the top 5% Z (FST) and log2 (π ratio) values
as potential outliers. Every outlier window had a corresponding SNP
and gene assigned to it (the selection method of the candidate
window was modified according to the actual situation).

Protein-coding genes were functionally annotated through the
utilization of BLASTp (with an E-value of <10–5) (Gish and States,
1993), with protein sequence databases sourced from SwissProt.
Gene Ontology (GO) (Ashburner et al., 2000) enrichment analysis of
differentially expressed genes was implemented via the GOseq R
package (Young et al., 2010), in which gene length bias was
corrected. GO terms with a corrected p-value less than 0.05 were
considered significantly enriched by differentially expressed genes.
We used KOBAS (Mao et al., 2005) to test the statistical enrichment
of differentially expressed genes in Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. Pathways with a q-value < 0.05 were
considered significantly enriched.

2.9 Core SNP development

The SNP markers of the 129 XBG cattle were screened for core
markers. The first step of this screening process was depth filtering,
during which SNP loci with a depth of at least ×4 were retained in this
project and the low depth loci were filtered out. The second step was
completeness filtering for markers with poor genotypic integrity
coverage; markers with a genotypic coverage of at least 70% of all
individuals in the population were retained (Tian et al., 2015; Gao et al.,
2016). The third step was MAF filtering, which filtered out loci with
MAF values below 0.01. The fourth stepwas to filter by Pic value; the Pic
value was calculated as Pic = 1–∑fir, where fi is the gene frequency of
locus I. Loci with Pic values less than 0.4 were filtered out. Finally, loci
located in the intergenic region based on the functional annotation of
the SNP loci were filtered out, retaining only loci located in the
upstream and downstream areas of the gene and within the gene
SNP loci (Zhang et al., 2013; Graebner et al., 2015).
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3 Results

3.1 SLAF tag development

Following quality control and data filtering, a total of
130 libraries were constructed for the cattle genomic DNA
samples. These libraries yielded 657.79 Mb clean reads from
SLAF-seq. The total number of reads obtained from each sample
ranged from 1,661,853 to 10,777,757. The GC content was 42.70%–

49.16%, with an average of 46.02%, and the 3 M quality score of the
sequenced bases was 87.97%–94.21%, with an average of 92.85%
(Supplementary Table S2). A total of 984,712 SLAF tags were
designed, with an average sequencing depth of 12.36X
(Supplementary Figure S2; Supplementary Table S3). There were
28,208 polymorphic SLAF tags with a total of 4,839,549 SNP
markers. SNP integrity was 22.52%–45.90%, and heterozygosity
was 4.86%–11.04% (Supplementary Figures S2, S3;
Supplementary Tables S4, S5). Further analysis of SNP
distribution in the genome revealed that 55.90% were in
intergenic regions, with 0.04% in intragenic regions, 36.20% in
introns, and 2.70% and 2.89% in the 5 kb regions upstream and
downstream, respectively (Figure 2, Supplementary Table S6). These
potential functional SNPs provide valuable genetic resources for
exploring the genetic background of the Xinjiang Brown cattle.

3.2 Population genetic structure and genetic
diversity of XBG

According to phylogenetic analyses, the four-colored groups of
XBG exhibit heterogeneity (i.e., no apparent clustering) (Figure 3A).
Hree-dimensional PCA showed that the first, second, and third axis

captured 1.19%, 1.14%, and 1.03% of the overall variance,
respectively, and that the four-colored groups of XBG cattle are
mostly clustered, a trend that is congruent with the PCA results
(Figure 3B). The genetic structures of the four-colored groups of
XBG were analyzed across different clusters (K from 1 to 10) using
the cross-validation error rate (Figure 3C; Supplementary Figure
S4). The cross-validation error rate was lowest when K = 1
(Supplementary Figure S5), confirming the lack of genetic
differentiation among the four-colored groups; this finding is
congruent with that obtained via the PCA and phylogenetic
analyses. The heat map of kinship values is uniformly blue,
indicative of the 130 XBG individuals being distantly related to
each other (Figure 3D).

The observed heterozygosity (Ho), expected heterozygosity
(He), polymorphism information content (Pic), and minor allele
frequency (MAF) were calculated for the four XBG color groups
based on SNP loci used to characterize the genetic diversity of the
different cattle populations (Pan et al., 2016). The average Ho, He,
Pic, and MAF of the four XBG groups were 0.2364, 0.2718, 0.2216,
and 0.2241, respectively (Table 1).

3.3 Merged SLAF and published WGS
datasets for population genetics analyses

The 48 publicly available genomes were downloaded from the
NCBI database. Following quality control, the resultant high-
quality (Q20 ≥ 90%, Q30 ≥ 85%) data (clean data) amounted to
165,561 gigabytes (Gb). Furthermore, the GC distribution of the
resultant sequence data was normal, and none of the 48 samples
were contaminated, allowing for their use in subsequent analyses
(Supplementary Table S7). The reads were then aligned to the

FIGURE 2
The position of the SNPs in gene structures and annotations of the SNPs in the exons.
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FIGURE 3
Phylogenetic relationship, population structure, and individual kinship of the Xinjiang Brown cattle-grazing type (XBG) cattle among the four cow
coat color groups in this study. (A)Neighbor-joining phylogenetic tree constructed from single-nucleotide variant data among the four color groups. (B)
Principal component analysis for the first two PCs of the 130 XBG cattle. (C) ADMIXTURE analysis with five presumed ancestral groups to one presumed
ancestral group (K = from 1 to 5). (D) Heat map of kinship values for the 130 individual XBG cattle.

TABLE 1 Genetic diversity of the grazing type of Xinjiang Brown cattle among the four cow coat color groups.

Group Ho He Pic MAF

A 0.2371 0.2872 0.2355 0.2047

B 0.2270 0.2878 0.2364 0.2040

C 0.2297 0.2691 0.2191 0.2228

D 0.2519 0.2431 0.1956 0.2651

Average 0.2364 0.2718 0.2216 0.2241

Abbreviations: He, expected heterozygosity; Ho, observed heterozygosity; MAF, minor allele frequency; Pic, polymorphism information content.
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taurine reference genome (B. taurus ARS-UCD 1.2) (Rosen et al.,
2020) and merged with 129 SLAF genomes for genotyping. A
total of 22,708,388 raw SNPs were detected in 177 samples; the
data were then filtered using Dp4-miss0.3-maf0.01 for the WGS
and SLAF samples respectively, resulting in 17,201,439 SNPs
from the former and 167,936 from the latter. The two SNP
datasets were then merged to yield 104,163 common loci,
which were once again filtered using the Dp4-miss0.3-
maf0.01 condition. Ultimately, 99,933 high-quality SNP loci
were obtained for subsequent analysis.

3.4 Population genetic structures of Xinjiang
Brown cattle and their ancestor species

Phylogenetic trees yielded clear genetic structure, with XBG shown
to bemost closely related to KZ. In contrast, XBH and BS were found to
be genetically indistinguishable. The closest relatives of the XBG were a
mixture of KZ and BS cattle (Figure 4A). PCA alsomainly distinguished
the two clusters along PC1 (i.e., with two clusters being brought forth:
XBG & KZ and XBH & BS). KZ were further separated from XBG
populations along PC2, but the separation was incomplete (Figure 4B).

FIGURE 4
Phylogenetic relationship and population structure of the Xinjiang Brown cattle-grazing type (XBG) cattle and the other three breeds evaluated in
this study. (A) Neighbor-joining phylogenetic tree constructed from single-nucleotide variant data among four populations. (B) Principal component
analysis for the first two PCs of the 177 studied cattle. (C) ADMIXTURE analysis with four presumed ancestral groups to two presumed ancestral groups
(K = from 2 to 4).
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Furthermore, ADMIXTURE analysis assuming ancestral number K
from 2 to 8 was performed (Figure 4C; Supplementary Figure S6), and
we found that the cross-validation error rate was lowest when K = 2
(Supplementary Figure S7), allowing for an inference of the genetic
structure and admixture specifically for the two cattle clusters.

3.5 Global and local ancestry proportion

We determined the global ancestry proportions of the cattle
using ADMIXTURE analysis for XBG, XBH, and their parents based
on the breeding procedure. The findings revealed that when K = 2,
ancestor 1 and ancestor 2 were used, the average proportions in XBG
were 19.05% and 80.95%, in XBH they were 97.96% and 2.04%, in BS
they were 99.97% and 0.03%, and in KZ they were 10.21% and
89.78% (Figure 4C).

Additionally, a rapid and reliable forward-backward technique
in RFMix was used to perform local ancestry inference in the context
of XBG and XBH. Thus, in the context of BS and KZ lineages, the
average proportions of XBG were 37.22% and 62.78%, respectively.
In addition, these two bloodlines had average XBH proportions of
95.14% and 4.86%, respectively (Figure 5).

3.6 Population genetic diversity of Xinjiang
Brown cattle and their ancestor species

The KZ cattle had the highest Ho, He, Nei’s genetic diversity
index (Nei), and Pic values, indicating that this population had the
highest genetic diversity. The XBH population had the lowest Ho,
He, Nei, and Pic values, indicating that this population had the
lowest genetic diversity (Table 2).

3.7 Identification and functional annotation
of candidate genes using a selective
sweep test

Pairwise comparisons of the four cattle breeds were calculated
using selective sweep approaches. The calculated FST

(Supplementary Figure S9) and θπ (Supplementary Figure S8)
values were used to detect the selective sweep signals. The
intersection of selected parts of the FST and θπ is presented in
Figure 6; Supplementary Figure S10. In total, 846 genes were
identified in candidate intervals within the SNP corresponding to
the gene (Supplementary Table S8). Gene annotation and pathway
analysis showed that enrichment of GO terms was significantly
concentrated between XBH and XBG cattle, with the three novel
genes selected for XBG cattle being enriched in the 18 GO terms with
Q < 0.05 (adjusted p-value) and concentrated between BS and XBH
cattle, with the 23 genes selected for XBH being enriched in the 1 GO
term (adjusted p-value) (Figure 7; Supplementary Table S9). KEGG
analysis showed that nine genes were enriched in five pathways with
Q < 0.05 (adjusted p-value). Most of the highly enriched pathways
included cell adhesion molecules (bta04514), osteoclast
differentiation (bta04380), and the insulin secretion pathway
(bta04911) (Table 3; Supplementary Table S10).

3.8 Core SNP marker information statistics

Regarding the core loci of the resulting 8379 SNPs, further
analysis of SNP distribution in the genome revealed that 88.24% and
1.86% were located in intronic and exonic regions, respectively, and
3.58% and 0.33% were located in intronic and exonic non-coding
RNA, respectively; 2.03% and 2.49% were observed in the 5 kb
regions upstream and downstream of the transcription start site,
respectively, with 0.30% and 1.05% in the 5′ and 3′ UTRs,
respectively, and 0.02% in the splice junctions (Supplementary
Table S11). Specific information has been provided for these SNP
core loci (Supplementary Table S12).

4 Discussion

The GBS method is simple, quick, extremely specific, highly
reproducible, and may reach important regions of the genome that
are inaccessible to sequence capture approaches. GBS libraries based
on reducing genome complexity with restriction enzymes (REs),
making it feasible for species with high genetic diversity and large

FIGURE 5
Ancestry proportion of the 129 XBG and 20 XBH individuals inferred using RFMix, as based on the reference panels of Kazakh and Brown Swiss cattle.
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TABLE 2 Genetic diversity in the four studied cattle breeds.

Population (breed) Ho He Nei Pic

Kazakh 0.2496 0.2368 0.2368 0.2512

Xinjiang_Brown_Grazing 0.2066 0.2204 0.2204 0.2214

Brown_Swiss 0.1919 0.1810 0.1810 0.1861

Xinjiang_Brown_Housing 0.1812 0.1745 0.1754 0.1831

Abbreviations: He, expected heterozygosity; Ho, observed heterozygosity; Nei, Nei’s diversity index; Pic, polymorphism information content.

FIGURE 6
Schematic diagrams of selection signals. (A) Xinjiang Brown cattle-grazing type vs. Kazakh cattle. (B) Xinjiang Brown cattle-grazing type vs. Brown
Swiss cattle. (C) Xinjiang Brown cattle-grazing type vs. Xinjiang Brown cattle-housing type. (D) Xinjiang Brown cattle-housing type vs. Kazakh cattle.

Frontiers in Genetics frontiersin.org09

Wang et al. 10.3389/fgene.2023.1348329

89

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1348329


genomes (Elshire et al., 2011). SLAF-seq techniques share
similarities with GBS in their principles and methods in that they
are both part of reduced-representation genome sequencing. SLAF-
seq methods, however, are not the same as GBS methods in a few
respects. For example, one tag is identified by SLAF-seq roughly
every 10 K, the uniform distribution of SLAF tags guarantees that
significant chromosomal segments are not overlooked, and SLAF-
seq is a cost-effective method since it avoids repeating sequences

(Chen et al., 2022b). While both SLAF-seq and WGS can identify
SNPs, they greatly differ in terms of cost-effectiveness and missing
data. Although SLAF-seq is speedy and inexpensive, its DNA
fragmentation stage causes a significant amount of missed data.
WGS may be better for small sample sizes since it can yield more
information; however, most labs find that a large-scale genotyping
project quickly becomes unnecessarily expensive. In contrast, SLAF-
seq is an affordable substitute that can yield the same outcomes and

FIGURE 7
Bar chart of the distribution of candidate genes in different GO categories. (A) The most enriched GO terms of a Xinjiang Brown cattle-grazing type
(XBG) selected gene in Xinjiang Brown cattle-housing type (XGH) vs. XBG. (B) The most enriched GO terms of an XBH selected gene in Brown Swiss (BS)
cattle vs. XBG.

TABLE 3 Pathways significantly enriched between breeds and candidate genes within those pathways.

XBH vs. XBG, XBG selected gene

Pathway ID Pathway name Pathway candidate gene entry ID/KO p-valuea Q-valueb

bta04514 Cell adhesion molecules bta:525796/KO6797 0.006352 0.006352

KZ vs. XBH, XBH selected gene

Pathway ID Pathway name Pathway candidate gene entry ID/KO p-valuea Q-valueb

bta04380 Osteoclast differentiation bta:536097/KO6551, bta:529990/KO6551 0.000289 0.018238

bta04911 Insulin secretion bta:282573/KO4946, bta:505740/KO8045 0.000486 0.018238

bta:538996/KO5032, bta:532060/KO5004

XBH vs. KZ, KZ selected gene

Pathway ID Pathway name Pathway candidate gene entry ID/KO p-valuea Q-valueb

bta04340 Hedgehog signaling pathway bta:522467/KO0312 0.002477 0.036980

bta05217 Basal cell carcinoma bta:511308/KO0312 0.002958 0.036980

aStatistical test method: hypergeometric test/Fisher’s exact test.
bFDR, correction method: Benjamini and Hochberg.

Abbreviations: KZ, Kazakh; XBG, Xinjiang Brown cattle-grazing type; XBH, Xinjiang Brown cattle-housing type.
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detect the same genetic links for a significantly smaller price (Friel
et al., 2021). As we gathered a sizable sample size of 130 XBG cattle,
the SLAF-seq approach was selected to make the distinction between
XBG and XBH cattle clear.

The results show that the four groups of 130 XBG we collected
were not clustered in the phylogenetic tree nor the PCA and
ADMIXTURE analyses, which is a strong indication that the
XBG formed a single population with stable genetic performance
after nearly a century of cross breeding. The results also show that
the 130 individual cattle are distantly related, indicating that the
sample size was both large and representative. These findings
represent a strong basis for obtaining reliable genetic analysis
results through future analyses.

The ancestors of the Xinjiang Brown cattle, BS and KZ cattle,
have been clearly delineated in the global classification of cattle
breeds. The world’s cattle breeds are divided into five main
categories: European, Eurasian, and East Asian taurines and
Chinese and Indian indicines. The BS and KZ breeds are both
Eurasian taurines, and their offspring, Xinjiang Brown cattle, also
fall within this category (Chen et al., 2018). Our research focused on
clarifying the similarities and differences between the two different
types of Xinjiang Brown cattle and the genetic relationships of the
ancestral species, so no other cattle breeds were included. In utilizing
new methods of data merging from the past 2 years, we successfully
combined the power of SLAF-seq and WGS methods to exploit a
wider range of data sources for research purposes in a cost-effective
manner. The results show that XBG and XBH cattle are two different
cattle that can be divided into separate groups as per the
phylogenetic tree as well as PCA and ADMIXTURE analyses.
Furthermore, regarding XBG cattle, the percentage of KZ
ancestry was greater than that of BS ancestry; for XBH cattle, the
opposite was noted. Software unsuited for unequal sampling
(Puechmaille, 2016) and close ancestral populations (Liu et al.,
2013; Uren et al., 2020) may have produced less rigorous results,
even though the global ancestry proportion was inferred using
classical ADMIXTURE. Thus, the local ancestry proportions were
estimated by utilizing the fitting software RFMix. One of the two
ancestors of the KZ accounts for 10.21% of the inferred
ADMIXTURE ancestry. This is most likely because KZ and BS
cattle are of the same Eurasian taurine breed or that KZ cattle were
inadvertently contaminated with BS genes during the breeding
process of the Xinjiang Brown cattle. It was deduced by
ADMIXTURE and RFMix that over 95% of the blood in XBH
cattle comes from one of the two ancestors and BS. This outcome is
in line with the findings of earlier WGS research (Chen et al., 2022a)
and indicates that the inferred genetic structure results remained
accurate after merging with SLAF-seq data, despite the high loss of
SNP loci. However, XBG cattle have a BS genetic lineage of no higher
than 40% and a more than 60% KZ genetic ancestry. Having a
greater KZ genetic ancestry could explain the better adaptability and
grazing abilities of XBG cattle with regards to the local environment
compared to XBH cattle. This is consistent with frequent crosses
with frozen semen of BS cattle having been performed in the last
20 years, as these crosses were used to improve the productive
performance of the minority of XBH. Under housing conditions,
XBH cattle are significantly more productive than XBG cattle, but
the former’s grazing adaptability is significantly reduced. The
majority of XBG cattle are not inseminated using frozen semen

from BS because of the grazing conditions and nonetheless maintain
a strong grazing performance. Therefore, the XBG breed is more
representative of the overall Xinjiang Brown cattle breed in terms of
genetic background, genetic diversity, adaptability, and population
size. As such, the XBG breed should be protected; otherwise, like the
XBH breed, it will eventually lose its uniqueness.

The GO terms identified in this study are mainly related to the
biosynthetic and metabolic processes of the molybdenum cofactor.
Cattle that consumed fodder high in molybdenum during the 1930s
developed a crippling illness. Since molybdate is a common trace
element, inducing a dietary molybdenum shortage in plants or
animals is difficult. For some animals, particularly sheep and
cattle, large molybdenum intakes can produce secondary copper
insufficiency, making molybdenum extremely hazardous (López-
Alonso andMiranda, 2020). Most of the world’s molybdenummines
are in China, with Xinjiang’s molybdenum resources mainly located
in Yining, Bole, and Tacheng (Li et al., 2023). These locations
overlap closely with the distribution and grazing pastures of XBG
cattle. As such, we hypothesize that XBG cattle may be better
adapted to high molybdenum environments than XBH cattle.

When comparing differentially expressed genes between XBH
and XBG cattle, cadherin 4 (CDH4) was enriched in cell adhesion
molecules pathways for the selective sweep in XBG cattle. Cell
adhesion molecules are (glyco-) proteins expressed on the cell
surface that critically influence a wide array of biological
processes that include hemostasis, immune responses,
inflammation, embryogenesis, and neuronal tissue development
(Montoya et al., 2002; Muller, 2003). The transcriptional level of
CDH4 may serve as an effective diagnostic and prognostic
biomarker for renal cell carcinoma patients (Zhou et al., 2020),
as it is a novel determinant of osteosarcoma tumorigenesis and
metastasis (Tang et al., 2018). This level can downregulate
impairments through in vivo infiltration and malignancies in
patient-derived glioblastoma cells (Ceresa et al., 2019). Moreover,
CDH4 may function as a potential tumor suppressor gene in lung
cancer (Li et al., 2017). In conclusion, CDH4 helps confer disease
resistance and may explain the higher level of disease resistance in
XBG cattle.

When comparing KZ and XBH cattle, the differentially
expressed genes adenylate cyclase 5 (ADCY5), ATP binding
cassette subfamily C member 8 (ABCC8), potassium inwardly
rectifying channel subfamily J member 11 (KCNJ11), and
potassium calcium-activated channel subfamily M alpha 1
(KCNMA1) were enriched in insulin secretion pathways for the
selective sweep in XBH cattle. Regarding insulin secretion,
pancreatic beta cells are specialized endocrine cells that
continuously sense the levels of blood sugar and other substrates
and, in response, secrete insulin to maintain normal metabolic
homeostasis. Glucose-induced insulin secretion and its
potentiation constitute the principal mechanism of insulin release
(Seino et al., 2010; Rorsman and Braun, 2013). A functional
regulatory variant associated with type 2 diabetes is located at the
ADCY5 locus in a pancreatic islet enhancer (Roman et al., 2017). The
most frequent genetic cause of hyperinsulinism and neonatal
diabetes is pathogenic mutations in KCNJ11 and ABCC8; the
subunits of the β-cell ATP-sensitive potassium channel, a crucial
element of the glucose-stimulated insulin secretion pathway, are
encoded by these genes. Dysregulated insulin secretion results from
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mutations in these two genes (De Franco et al., 2020; Timmers et al.,
2021). Exercise and diet influence insulin sensitivity and secretion
(Ding et al., 2019) in XBH cattle with low exercise and high feed
energy levels; this may reflect genetic alterations that have occurred
to adapt to housing management. In addition, the osteoclast
differentiation pathways associated with were also enriched;
differential genes included signal regulatory protein β1 (SIRPB1),
signal-regulatory protein alpha (SIRPα), and signal-regulator
protein gamma (SIRPG). Osteoclasts, multinucleated cells
originating from the hematopoietic monocyte-macrophage
lineage, are responsible for bone resorption (Nakashima and
Takayanagi, 2009; Takayanagi, 2010). A member of the
immunoglobulin superfamily, SIRPB1 is a signal regulatory
protein that can control receptor tyrosine kinase-coupled
signaling. SIRPB1 is a potential oncogene capable of activating
Akt signaling to stimulate prostate cancer proliferation (Song
et al., 2020), and the SIRPB1 gene confers susceptibility to
Crohn’s disease (Tang et al., 2023). The tumor micro-
environment features a marked expression of SIRPα, an
inhibitory receptor present on myeloid cells, as well as its widely
distributed counter-receptor CD47 (De Vlaminck et al., 2021).
Genetically, both SIRPB1 and SIRPα are associated with disease
resistance and immunity.

Ultimately, the development of core SNPs for XBG cattle
provides a basis for the next step of customizing a solid-phase or
liquid-phase gene microarray dedicated to Xinjiang brown cattle for
germplasm resource identification, genome-wide association studies
research, and genomic selection.

Overall, we comprehensively evaluated the genetic relationship
and diversity of XBG cattle compared with two ancestral breeds and
another type of the same breed (XBH). Our findings provide new
insights into the historical contribution of foreign BS and Chinese
KZ breeds to Xinjiang Brown cattle. These findings will help develop
a reliable and sustainable strategy for the conservation and
improvement of Xinjiang Brown cattle. This study’s results
convey that SLAF-seq initially provides very few loci and even
fewer loci following data merging, resulting in few enriched GO
terms and KEGG pathways. After determining the
representativeness and breed significance of XBG cattle, WGS
was required to obtain additional loci and information to detail
germplasm characteristics.
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A Corrigendum on
Genome-wide survey reveals the genetic background of Xinjiang Brown
cattle in China

by Wang X, Ma Z, Gao L, Yuan L, Ye Z, Cui F, Guo X, Liu W and Yan X (2024). Front. Genet. 14:
1348329. doi: 10.3389/fgene.2023.1348329

In the published article, there was an error in the legend for Figure 4 as published. In the
phrase “(B) Principal component analysis for the first two PCs of the 178 studied cattle”,
178 needs to be replaced with 177 in order to be consistent with the numbers in the text. The
corrected legend appears below.

“Figure 4. Phylogenetic relationship and population structure of the Xinjiang Brown
cattle-grazing type (XBG) cattle and the other three breeds evaluated in this study. (A)
Neighbor-joining phylogenetic tree constructed from single-nucleotide variant data among
four populations. (B) Principal component analysis for the first two PCs of the 177 studied
cattle. (C) ADMIXTURE analysis with four presumed ancestral groups to two presumed
ancestral groups (K = from 2 to 4).”

In the published article, there was an error in the legend for Figure 5 as published. In the
phrase “Ancestry proportion of the 130 XBG and 20 XBH individuals inferred using RFMix,
as based on the reference panels of Kazakh and Brown Swiss cattle”, 130 needs to be
replaced with 129, in order to be consistent with the numbers in the text. The corrected
legend appears below.

“Figure 5. Ancestry proportion of the 129 XBG and 20 XBH individuals inferred using
RFMix, as based on the reference panels of Kazakh and Brown Swiss cattle.”

In the published article, there was an error in the Funding. “National Agricultural
Science and Technology Special Project of China (No. NK2022130302)” is a secret item and
its number needs to be deleted. The correct Funding statement appears below.

“The author(s) declare financial support was received for the research, authorship, and/
or publication of this article. This research was funded by the Xinjiang Uygur Autonomous
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FIGURE 4
Phylogenetic relationship and population structure of the Xinjiang Brown cattle-grazing type (XBG) cattle and the other three breeds evaluated in
this study. (A) Neighbor-joining phylogenetic tree constructed from single-nucleotide variant data among four populations. (B) Principal component
analysis for the first two PCs of the 177 studied cattle. (C) ADMIXTURE analysis with four presumed ancestral groups to two presumed ancestral groups
(K = from 2 to 4).
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FIGURE 5
Ancestry proportion of the 129 XBG and 20 XBH individuals inferred using RFMix, as based on the reference panels of Kazakh and Brown Swiss cattle.
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Long-read sequencing-based 
transcriptomic landscape in 
longissimus dorsi and 
transcriptome-wide association 
studies for growth traits of meat 
rabbits
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Xiangchao Fu 2, Congyan Li 3, Songjia Lai 1 and Shi-Yi Chen 1*
1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, 
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China, 3 Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science 
Academy, Chengdu, China

Rabbits are an attractive meat livestock species that can efficiently convert 
human-indigestible plant biomass, and have been commonly used in biological 
and medical researches. Yet, transcriptomic landscape in muscle tissue and 
association between gene expression level and growth traits have not been 
specially studied in meat rabbits. In this study Oxford Nanopore Technologies 
(ONT) long-read sequencing technology was used for comprehensively 
exploring transcriptomic landscape in Longissimus dorsi for 115 rabbits at 
84  days of age, and transcriptome-wide association studies (TWAS) were 
performed for growth traits, including body weight at 84  days of age and 
average daily gain during three growth periods. The statistical analysis of TWAS 
was performed using a mixed linear model, in which polygenic effect was fitted 
as a random effect according to gene expression level-based relationships. A 
total of 18,842 genes and 42,010 transcripts were detected, among which 35% 
of genes and 47% of transcripts were novel in comparison with the reference 
genome annotation. Furthermore, 45% of genes were widely expressed among 
more than 90% of individuals. The proportions (±SE) of phenotype variance 
explained by genome-wide gene expression level ranged from 0.501  ±  0.216 to 
0.956  ±  0.209, and the similar results were obtained when explained by transcript 
expression level. In contrast, neither gene nor transcript was detected by TWAS 
to be statistically significantly associated with these growth traits. In conclusion, 
these novel genes and transcripts that have been extensively profiled in a single 
muscle tissue using long-read sequencing technology will greatly improve our 
understanding on transcriptional diversity in rabbits. Our results with a relatively 
small sample size further revealed the important contribution of global gene 
expression to phenotypic variation on growth performance, but it seemed that 
no single gene has an outstanding effect; this knowledge is helpful to include 
intermediate omics data for implementing genetic evaluation of growth traits in 
meat rabbits.
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Introduction

Domestic rabbits (Oryctolagus cuniculus) are a very prolific and 
small herbivorous livestock with a global population of ~600 million 
(1). Rabbits are mainly raised in China, North Korea, and some 
European countries for providing meat, wool, fur, as well as the 
laboratory animal. Rabbit meat is characterized by excellent 
nutritional characteristics, such as high protein content, high 
percentage of unsaturated fatty acids, high content of essential amino 
acids, low fat content, and low cholesterol and sodium level (2, 3). On 
the other hand, rabbits, as well as other herbivorous livestock, can 
efficiently utilize plant fiber fractions that are indigestible to human 
(4). In this context, it is economically necessary to improve growth 
performance of meat rabbits through genetic selection approaches, 
especially in the era of genomics (5). Of course, reproductive 
performance is another important contribution to lifetime 
productivity in rabbits (6, 7). In comparison with other common 
livestock species, however, we  remain less-known about genomic 
architecture and transcriptomic landscape underlying phenotypic 
variation on economically important traits in meat rabbits.

The live body weight (BW) at various ages and average daily gain 
of BW (ADG) post-weaning are two main types of traits that have 
been commonly used for measuring individual growth performance 
in rabbits. In Gabali rabbits, the estimates of heritability ranged from 
0.06 to 0.26 for individual BW at 28 to 84 days of age, with the highest 
estimate at 56 days of age (8). Through divergent selection on 
individual BW, the estimate of heritability was 0.22 for BW at 63 days 
of age (9). Overall, moderate heritabilities of BW at various ages have 
been reported in meat rabbits (10). Like BW, the heritability estimates 
were generally moderate for post-weaning ADG. In two rabbit lines, 
the estimates of heritability were 0.19 and 0.22 for ADG under ad 
libitum and restricted feeding systems, respectively (11). Piles and 
Tusell (12) estimated the genetic correlation between growth and 
fertility in rabbits, and reported the heritability of 0.15 for 
ADG. Therefore, the moderate heritabilities of measured traits in 
relation to growth performance in meat rabbits could facilitate the 
genetic selection and improvement, for which García and Argente (13) 
provided a comprehensive review on the advances of genetic 
improvements achieved in meat rabbits.

In human and livestock, genome-wide association studies 
(GWAS) have been widely used for identifying quantitative trait loci 
(QTL) and causal genes/variants significantly affecting complex traits 
(14). Using 320 K genome-wide single-nucleotide polymorphisms 
(SNPs), Yang et al. (15) performed GWAS of BW at seven different 
ages in meat rabbits and suggested the significant candidate QTL and 
genes. Instead of using independent BW records measured at a specific 
age, GWAS was alternatively performed in meat rabbits via combining 
the fitting of growth curve based on multiple BW measurements and 
estimation of SNP effects into a single-step nonlinear mixed model 
(16). In rabbits, GWAS have been also applied to other production 
traits, such as feed efficiency (17), number of teats (18), and coat 
colour (19). Because of the relatively low SNP density used in these 
studies, however, it is difficult to identify causal genes and variants 
within the large genomic regions revealed by significant 
association signals.

Instead of genetic variant-trait association, transcriptome-wide 
association studies (TWAS) have been increasingly used during the 
past years to identify the association between gene expression levels 

and complex traits, which may effectively improve the power for 
identifying causal genes (20). TWAS also could fill up the gaps 
between significant variants and finally manifest phenotype that are 
mediated by transcriptional regulation. Because of the high cost and 
technological limitations, gene expression data involved in TWAS 
have been commonly obtained via computational imputation 
approaches based on both a small reference set of gene expression data 
and a large number of genotyped individuals (21). Due to the 
increasing throughput and decreasing cost, single-molecule long-read 
sequencing technologies, such as Oxford Nanopore Technologies 
(ONT) and Pacific Biosciences (PacBio), are becoming increasingly 
routine approaches for transcriptome profiling (22, 23). In rabbits, a 
transcriptome atlas was successfully revealed using PacBio sequencing 
technology (24). In the present study, we aimed to: (1) comprehensively 
profile transcriptomic landscape in the muscle tissue using ONT RNA 
sequencing technology, (2) estimate the phenotypic variance of 
growth traits explained by genome-wide gene expression levels, and 
(3) perform TWAS with these traits in meat rabbits.

Materials and methods

Animals and phenotypes

A crossbred population of Zika rabbits and Sichuan White rabbits 
was used in this study, and all of them were F1 offspring of four males 
and 14 females. After weaning at 35 days of age, all rabbits were fed a 
routine commercial pellet diet (labelled as: digestible energy = 10.5 MJ, 
protein = 15.5%, and crude fiber = 16.5%) and housed in cages of 
50 × 40 × 40 cm in size until 84 days of age (two and one rabbits per 
cage before and after 70 days of age, respectively). The air conditioning 
control system was used when indoor temperature was higher than 
25°C. The individual BW was measured at 35 (BW35), 56 (BW56), 70 
(BW70), and 84 (BW84) days of age, respectively; and 119 rabbits were 
successfully collected for BW records at the four time points. These 
BW records were quality controlled by removing the outliers that 
reside outside the median ± 3 × median absolute deviation (MAD) at 
each time point (25), after which a total of 115 rabbits were finally 
retained. Based on these BW records, individual ADG for three 
growth periods were derived as between BW70 and BW84 (ADG70), 
between BW56 and BW84 (ADG56), and between BW35 and BW84 
(ADG35), respectively.

Samples and transcriptome sequencing

All rabbits at 84 days of age were slaughtered by electrical shock 
after fasting for 24 h, and Longissimus dorsi tissue was collected and 
snap-frozen in liquid nitrogen for total RNA extraction and ONT 
transcriptome sequencing for each individual. Total RNA was 
extracted using RNASimple Total RNA Kit (Tiangen Biotech, Beijing, 
China) following the manufacturer’s instruction. RNA concentration 
and RNA integrity number (RIN) were analyzed using 
Nanodrop 2000C (Thermo Fisher Scientific, Waltham, United States) 
and Agilent 2,100 Bioanalyzer (Agilent Technologies, Santa Clara, 
United States), respectively (Supplementary Table S1). The sequencing 
libraries were prepared using ~1 μg of quantified RNA sample and 
cDNA-PCR Sequencing Kit (SQK-PCS109, Oxford Nanopore 
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Technologies). In brief, the full-length cDNAs were enriched using 
template switching activity of reverse transcriptase. PCR adapters were 
directly added to both ends of the first-strand cDNAs. After 14 rounds 
of PCR amplification using LongAmp Tag (NEB), ONT sequencing 
adaptors were ligated to PCR products using T4 DNA ligase (NEB). 
DNA purification was performed using Agencourt AMPure XP beads 
(Beckman, CA, United States). The final cDNA libraries were added 
to FLO-MIN109 flowcells and run on PromethION platform at 
Biomarker Technology Company (Beijing, China).

Assembly and quantification of transcripts

The raw sequencing reads were first subjected to quality controls 
(QC) for identifying, orienting, and reusing full-length Nanopore 
cDNA reads using Pychopper software with default parameters.1 
During this QC process, we  discarded the short (<50 bp) or low 
quality (mean base quality <7.0) reads that accounted for 2.3% of raw 
sequencing reads on average. These qualified reads were aligned to 
rabbit reference genome sequences (UM_NZW_1.0, with only the 
autosome sequences) using minimap2 software with parameters of 
“-ax splice-p 0.9-N 1” (26). Herein, both reconstruction of transcripts 
and quantitation of gene/isoform expression levels were 
simultaneously performed for all individuals using IsoQuant software 
with the default parameters (23), which employs the intron graphs for 
reconstructing transcripts with reference genome annotation. The 
novel mono-exonic transcripts were not used.

Regarding the novel transcripts that have not been annotated yet, 
protein-coding potential was predicted using CPC2 software with the 
default parameters (27). The gene expression was quantified by 
directly counting the uniquely aligned reads but not requiring the 
necessary consistency with its isoform(s), while the preset parameters 
specifically regarding ONT long reads was used for matching read-to-
isoform relationship (23). After the raw read counts were normalized 
using TMM method (28), both gene and transcript expression levels 
were finally measured as counts per million reads (CPM) using edgeR 
R package (29).

Transcriptome-wide association studies

To avoid the bias resulting from lowly expressed genes in 
association studies, we only retained genes that had been effectively 
expressed (raw read count ≥2) within more than 30% of individuals. 
The associations between gene/transcript expression level and the trait 
of interest were analyzed using OSCA software (30) and mixed linear 
model (MLM) as:

 y w Xb Zu e� � � �i ib ,

where y is an n×1 vector of each trait (i.e., BW84, ADG70, ADG56, 
and ADG35) with n being the sample size; bi is the estimated effect of 
gene i on the trait with its expression level vector wi; X  is an n× 2  
incidence matrix for the two covariates of sex (two levels) and birth 

1 www.github.com/epi2me-labs/pychopper

season (three levels) with the effect vector b ; Z is an n m×  matrix 
containing the normalized expression levels of m  genes; u  is the an 
m×1 vector of joint effect of all genes (also termed the polygenic 
effect) on the trait with u N ,A~ 0

2�o� �, in which A is the expression 

level-based relationship matrix (ORM) and σo
2 is the proportion of 

phenotype variance explained by all genes; e is an n×1 vector of 
residuals with e N ,I~ 0

2�e� � . The element of A  matrix between 
individual j  and k  was computed as (30):

 
A

m
x xjk

i
ij i ik i i� �� � �� ��1 2� � �/ / ,

where xij and xik  are the normalized expression level of gene i in 
the individual j  and k , respectively; µi  and σ i

2 are the mean and 
variance of expression level for gene i across all individuals, 
respectively. To avoid the double fitting problem of one target gene 
simultaneously considered as both fixed and random effects in the 
MLM, the MOMENT (multi-component MLM-based omic 
association excluding the target) module implemented in OSCA 
software (30) was used with the default parameters. The variance 
components of σo

2 and σe
2 were estimated using Restricted 

Maximum Likelihood (REML) algorithm in OSCA software (30). 
The multiple comparison adjustment was performed using 
Bonferroni approach (31), therefore, the P threshold of 0.05 
divided by total number of genes/transcripts was used for defining 
the genome-wide significant gene/transcript. If no genome-wide 
significant gene/transcript was found, we alternatively listed the 
top 20 protein-coding genes that have the lowest p values as the 
suggestive candidates. The genomic inflation factor (λ) and 95% 
confidence interval were further computed for checking if there 
was potential population stratification problem (32).

Functional analyses of candidate genes

For the candidate genes proposed, functional enrichment analyses 
were conducted using the g:GOSt function of the g:Profiler web server 
(33), including the target data sets of the GO terms (34) and KEGG 
pathways (35). The default parameters and methods for adjusting for 
multiple hypotheses testing (i.e., the build-in g:SCS method) were 
used, targeting an adjusted 5% level of significance.

Results

Transcriptome profiling in longissimus 
dorsi

An average of 6.6 million raw ONT long reads per individual  
were initially obtained with the mean length of 1,138 bp 
(Supplementary Table S1). During our QC process, the autotuned 
parameter of q value that determines the stringency of primer alignment 
was 0.1724 (Supplementary Figure S1), by which up to 97.7% of raw 
reads passed the QC steps. These qualified reads were aligned against 
all 21 autosomes with the average mapping ratio of 83.55%, ranging 
from 75.72 to 88.20% (Supplementary Table S1).
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A total of 18,842 genes and 42,010 transcripts were detected 
among all the studied individuals, and 6,531 genes (35%) and 19,949 
transcripts (47%) of them were novel in comparison with the 
reference genome annotation. On average there were 2.85 and 1.07 
transcripts per gene for the known and novel genes identified, 
respectively (Figure 1A); therefore, most of these novel genes (97%) 
were single-transcript genes. The average number of exons was 9.17 
and 4.42 for the known and novel transcripts, and the median 
sequence length was 2,546 bp and 1,229 bp, respectively (Figure 1B). 
Among the novel transcripts, 7,535 transcripts (38%) were predicted 
to be  protein-coding. The mean and median lengths of the first 
exons of transcripts were 889.9 bp and 359.0 bp, respectively 
(Figure 1C). Based on the raw counts of mapped reads, 45% of genes 
were widely expressed among more than 90% of individuals studied, 
while 21% of genes were restrictively expressed among less than 10% 
of individuals (Figure 1D).

Transcriptome-wide association studies

The descriptive statistics of all four traits are shown in Table 1. The 
average BW84 was 1982 g and had the higher variability among 
individuals than other three traits. The average ADG decreased from 
25.59 g/day between 35 and 84 days of age (ADG35) to 19.84 g/day 
between 70 and 84 days of age (ADG70), and the decreased variability 
was also observed. The phenotypic correlations of BW84 with ADG35, 

ADG56, and ADG70 were 0.780, 0.644, and 0.447, respectively. 
Among the three ADG traits, the phenotypic correlations ranged from 
0.578 between ADG35 and ADG70 to 0.743 between ADG35 and 
ADG56 (Supplementary Figure S2).

After removing the lowly expressed genes, 10,290 genes were 
remained for the association analyses; and there was no obvious 
population stratification according to the global gene expression level 
(Figure 2). The estimates of variance components of MLM are shown 
in Table 2. Beside ADG70 that was not converged successfully, the 
phenotype variances explained by gene expression level (± standard 
error, SE) were 0.659 ± 0.198 for BW84, 0.956 ± 0.209 for ADG35, and 
0.501 ± 0.216 for ADG56, respectively. The association analyses are 
shown in Figure 3, for which the genomic inflation factors (95% CI) 
were 0.947 (1.133–0.761) for BW84, 0.942 (1.123–0.760) for ADG35, 
and 1.005 (1.190–0.821) for ADG56. As no genome-wide significant 
gene was found by the association analyses, the top 20 protein-coding 
genes with the lowest p values are shown in Table 3. Among them, 
three genes were overlapped among three traits (TAR RNA binding 
protein 1, TARBP1) or between two traits (Kelch repeat and BTB 
domain containing 12, KBTBD12 and Leukotriene A4 hydrolase, 
LTA4H). Regarding these candidate genes, functional enrichment 
analysis revealed a significant GO term of “non-membrane spanning 
protein tyrosine kinase activity” (the adjusted p value = 0.0071), in 
which three genes of LYN (LYN proto-oncogene), PKDCC (protein 
kinase domain containing cytoplasmic), JAK1 (Janus kinase 1) were 
involved. No significant KEGG was found.

FIGURE 1

Transcript assembly and gene expression quantification. The numbers of transcripts per gene and numbers of exons per transcript are shown in (A) and 
(B), respectively. Length distribution of the first exon of transcripts (C) and the cumulative proportions of genes expressed among individuals (D) are 
further shown.
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The transcript expression level-based association studies were 
further conducted for a total of 16,601 transcripts. As shown in 
Table 2, the phenotype variances explained by transcript expression 
levels (±SE) were 0.510 ± 0.142 for BW84 and 0.658 ± 0.223 for 
ADG56, respectively (MLM failed to converge for the other two 
traits). Like the gene-based association results, there was no transcript 
that showed the statistically significant association with these growth 
traits (Supplementary Figure S3). Based on the top 20 suggestive genes 
and transcripts with the lowest p values, no gene was overlapped 
between them.

Discussion

The phenotypic variation of complex traits in human and livestock 
has been determined significantly by gene transcriptional regulation 
(36, 37). Transcriptional diversity may be  referred to the varied 
expression level and spatio-temporal transcription. However, both 
genomic architecture and transcriptomic landscape underlying 
economically important traits have not been extensively explored in 
rabbits in comparison with other livestock species, such as cattle, pigs, 
and chicken (5). In this study, therefore, we  established an 
experimental cross population between Zika rabbit and Sichuan 
White rabbit, both of them are raised for producing meat. To 
investigate the transcriptional diversity extensively and accurately, 
we focused on a single muscle tissue among 115 individuals and also 

employed the more robust long-read sequencing technology. 
We  further investigated the proportion of phenotypic variance of 
growth traits explained by global gene expression variation, and 
performed association analyses between gene expression levels and 
growth traits using MLM approach (38). However, we acknowledge 
that the sample size involved in this study is relatively small in the 
context of TWAS (20).

In the past decade, the comprehensive profiling of transcriptome 
has been largely facilitated by the enormous advances of short-read 
high-throughput sequencing of RNA molecules (39). The accuracies 
of transcript assembly and expression quantification have been further 
improved due to the later single-molecule long-read RNA sequencing 
technologies (40). Therefore, long-read sequencing technologies are 
expecting to be increasingly used in transcriptome studies (41), such 
as in cattle (42), pigs (43), and chicken (44). In rabbit, Chen et al. (24) 
first used PacBio long-read sequencing technology for exploring 
transcriptomic landscape and revealed a large proportion of novel 
genes and transcripts using a pooling sample of multiple organ tissues 
sampled at different ages. In the present study, ONT long-read 
sequencing technology was similarly used for investigating 
transcriptomic landscape in meat rabbits for a single muscle tissue and 
in a large set of individuals, by which considerable numbers of genes 
and transcripts were revealed to be  novel. Hence, these findings 
indicate that current reference genome of rabbit has not been well 
annotated yet, whereas a comprehensive annotation is required for 
biomedical researches when using rabbit as animal model (45).

As a monogastric herbivore, rabbit can efficiently utilize plant 
fiber fractions that are indigestible to human, which means that 
raising rabbits for meat, fur and wool can be considered as an 
effective contribution to achieving global food security (46). In 
context of meat rabbits, the improved growth appearance is 
economically significant and could be achieved through genetic 
selection approaches. Recently, García and Argente (13) provided 
a good review on the estimated genetic parameters for various 
growth traits that have traditionally been used as selection criteria 
in meat rabbits, and the moderate to high heritabilities were 
reported regarding these traits. In livestock, the genome-wide 
SNPs, as an alternative to pedigree records, have been increasingly 
used for estimating heritabilities, genetic correlations, and 
individual breeding values for various production traits of interest 
(5). However, there are obvious gaps between significant genetic 

TABLE 1 Descriptive statistics of the growth traits.

Traits Mean SD Min Max CV

BW84 (g) 1981.61 289.84 1.120 2.689 6.84

ADG35 (g/day) 25.59 4.51 13.97 36.98 5.67

ADG56 (g/day) 24.35 7.12 9.08 44.84 3.42

ADG70 (g/day) 19.84 7.01 5.91 40.91 2.83

BW84, body weight at 84 days of age; ADG35, average daily gain between 35 and 84 days of 
age; ADG56, average daily gain between 56 and 84 days of age; ADG70, average daily gain 
between 70 and 84 days of age; SD, standard deviation; Min, minimum value; Max, 
maximum value; CV, coefficient of variation.

FIGURE 2

Sample clustering based on the principal component (PC) analyses 
of genome-wide gene expression level.

TABLE 2 Estimates of variance components (±standard error).

Items Traits σo2 σe2 ρ2

Genes

BW84 45,263 ± 29,635 23,354 ± 11,277 0.659 ± 0.198

ADG35 25.41 ± 16.22 1.16 ± 5.41 0.956 ± 0.209

ADG56 18.19 ± 17.43 18.09 ± 5.53 0.501 ± 0.216

ADG70 Not converged

Transcripts

BW84 33,838 ± 21,398 32,478 ± 7,235 0.510 ± 0.142

ADG35 Not converged

ADG56 25.65 ± 19.99 13.33 ± 7.19 0.658 ± 0.223

ADG70 Not converged

BW84, body weight at 84 days of age; ADG35, average daily gain between 35 and 84 days of 
age; ADG56, average daily gain between 56 and 84 days of age; ADG70, average daily gain 
between 70 and 84 days of age.

102

https://doi.org/10.3389/fvets.2024.1320484
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Jia et al. 10.3389/fvets.2024.1320484

Frontiers in Veterinary Science 06 frontiersin.org

variants identified and the finally manifested phenotype, mainly 
caused by the transcriptional and post-transcriptional variability 
(47). Therefore, genome-wide gene expression profile has been 
alternatively used for explaining the complex diseases in human 
and production traits in livestock (36, 48). In this context, 
we obtained transcriptome profile using long-read sequencing 
technology in a single population, by which individual 
relationships were measured and hence used in MLM for 
estimating different variance components of growth traits in meat 
rabbits (30). We  first found that more than half of phenotypic 
variances could be explained by the genome-wide gene expression 
variation, which are higher than the traditional pedigree-based 
estimation of heritability (13). These results suggest that there is 
considerable contribution of gene expression level to inter-
individual variation on growth performance. However, our 
estimates had some large SE mainly because of the relatively 
smaller sample size than that of pedigree- or SNP-based 
estimation. Using GTEx data, more recently, the proportion of 
phenotypic variance explained by gene expression level was 
estimated to be 0.68 (SE = 0.06) for body mass index in human, 
but the varied transcriptomic variances were observed across 

different tissues (49). To our best knowledge, few studies have 
been reported for partitioning phenotypic variance by the 
transcriptomic expression data regarding these economically 
important traits in livestock.

In addition to partitioning phenotypic variance by genome-wide 
gene expression level, it is possible and necessary to identify the 
potential causal genes that significantly affect individual phenotype 
using TWAS approach (20). Because of difficulty in sampling of 
appropriate biological issues and high cost of RNA sequencing for a 
large set of samples, the gene expression data used in TWAS are always 
imputed indirectly from a small reference data set of gene expression 
data (21, 48). Unfortunately, high-quality reference transcriptome data 
sets are not routinely available in livestock until the recent releases of 
FarmGTEx project for cattle and pig.2 In Huaxi cattle, the gene 
expression levels in Longissimus dorsi were imputed using a reference 
transcriptome data set containing 120 individual RNA sequencing 
data, and the TWAS successfully revealed some genes significantly 

2 www.farmgtex.org

FIGURE 3

Manhattan plots for the gene expression level-based association analyses. BW84, body weight at 84  days of age; ADG35, average daily gain between 
35 and 84  days of age; ADG56, average daily gain between 56 and 84  days of age.
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TABLE 3 The suggestive candidate genes by transcriptome-wide association studies.

Gene name Chr Start End p value Description

BW84

TAF15 19 22,434,285 22,471,504 2.88E-4 TATA-box binding protein associated factor 15

LOC100356444 7 29,654,685 29,720,143 3.90E-4 Cytochrome P450 20A1

VAMP4 13 21,381,832 21,426,615 6.08E-4 Vesicle associated membrane protein 4

PFKFB3 16 74,850,845 74,874,653 6.17E-4 6-phosphofructo-2-kinase/fructose-2

LOC127484429 19 4,468,701 4,473,178 7.14E-4 DNA-directed RNA polymerase III subunit RPC10-like

CNPY4 6 27,597,738 27,603,097 7.64E-4 Canopy FGF signaling regulator 4

LTA4H 4 82,722,807 82,762,965 8.30E-4 Leukotriene A4 hydrolase

LOC100348955 1 63,804,078 63,804,605 1.38E-3 40S ribosomal protein S20

LOC100346443 4 46,872,687 46,880,703 2.04E-3 Retinol dehydrogenase 5

CSNK2A2 5 14,124,537 14,163,573 2.04E-3 Casein kinase 2 alpha 2

TARBP1 16 51,620,152 51,697,033 2.22E-3 TAR (HIV-1) RNA binding protein 1

OXNAD1 14 3,497,868 3,560,799 2.25E-3 Oxidoreductase NAD binding domain containing 1

KBTBD12 9 109,057,898 109,122,809 2.29E-3 Kelch repeat and BTB domain containing 12

MYF6 4 67,515,503 67,517,420 2.57E-3 Myogenic factor 6

LOC103345082 21 6,413,652 6,454,720 2.58E-3 Transmembrane protein 120B

LYN 3 71,263,078 71,404,233 2.60E-3 LYN proto-oncogene

CC2D2A 2 6,505,464 6,657,081 2.72E-3 Coiled-coil and C2 domain containing 2A

PACRGL 2 11,836,569 11,876,015 2.77E-3 Parkin coregulated like

GPN2 13 138,518,582 138,528,748 3.00E-3 GPN-loop gtpase 2

TESK2 13 121,249,440 121,412,510 3.16E-3 Testis associated actin remodelling kinase 2

ADG35

ATRIP 9 99,898,363 99,916,757 2.84E-4 ATR interacting protein

TARBP1 16 51,620,152 51,697,033 3.52E-4 TAR (HIV-1) RNA binding protein 1

HIVEP2 12 22,386,395 22,601,396 5.22E-4 HIVEP zinc finger 2

MED17 1 137,049,828 137,074,367 7.93E-4 Mediator complex subunit 17

LOC100339309 8 108,875,028 108,890,309 8.05E-4 Thioredoxin-dependent peroxide reductase

LTA4H 4 82,722,807 82,762,965 8.31E-4 Leukotriene A4 hydrolase

IMMP1L 1 184,529,319 184,628,501 1.21E-3 Inner mitochondrial membrane peptidase subunit 1

HSPA12B 4 18,241,628 18,260,505 1.29E-3 Heat shock protein family A (Hsp70) member 12B

MAPRE3 2 159,296,622 159,346,159 1.67E-3 Microtubule associated protein RP/EB family member 3

PTPRR 4 57,205,791 57,492,990 1.73E-3 Protein tyrosine phosphatase receptor type R

LOC100352320 4 47,568,888 47,570,921 1.96E-3 SPRY domain-containing protein 4

EIF3M 1 185,772,686 185,792,687 2.18E-3 Eukaryotic translation initiation factor 3 subunit M

LRRTM3 18 16,304,216 16,475,497 2.44E-3 Leucine rich repeat transmembrane neuronal 3

LOC100355489 21 2,089,119 2,090,689 2.51E-3 CCHC-type zinc finger nucleic acid binding protein

PCSK6 17 85,347,007 85,515,126 2.55E-3 Proprotein convertase subtilisin/kexin type 6

KIAA0408 12 38,832,741 38,863,007 2.74E-3 KIAA0408 ortholog

TRIM33 13 49,949,922 50,093,346 2.83E-3 Tripartite motif containing 33

ALAD 1 14,134,039 14,144,172 3.02E-3 Aminolevulinate dehydratase

NASP 13 121,088,515 121,121,163 3.02E-3 Nuclear autoantigenic sperm protein

FAR1 1 169,240,935 169,311,723 3.02E-3 Fatty acyl-coa reductase 1

ADG56

PKDCC 2 144,389,511 144,406,466 1.18E-4 Protein kinase domain containing

(Continued)
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associated with productive ability (50). In the present study, we did 
not detect gene or transcript that is significantly associated with 
growth traits in meat rabbits by TWAS approach, despite it was 
observed that the large proportions of phenotypic variance could 
be explained by genome-wide gene expression level. There are two 
likely explanations for the observed negative results in our 
TWAS. First, the growth of meat rabbits is controlled by an extremely 
polygenic architecture and, more importantly, no gene has an 
outstanding effect on the phenotype in the sense of gene expression 
level. Second, the relatively small sample size involved in the present 
study, which is expected to be increased in future studies due to a 
significant decrease in long-read sequencing cost, might compromise 
the statistical detection power of TWAS. Alternatively, we analyzed 
some top candidate genes with the lowest p values and found that they 
were significantly enriched into the health-related pathway. Among 
them, TARBP1 was suggested to be involved in multiple cancers in 
human by regulating immune function (51); the significantly 
differential expression was observed in human Colorectal adenoma 
for the gene of KBTBD12 (52); it was reported that LTA4H can 
modulate the susceptibility to Mycobacterial infection in zebrafish and 
humans (53). Furthermore, the significantly enriched GO term of 
“non-membrane spanning protein tyrosine kinase activity” in this 
study was previously reported to be involved in regulation of tumor 
immune microenvironment in glioma (54). These findings may 
be  reasonably explained as a healthy rabbit will have the greater 
growth performance.

There are three practical implications of results obtained in this 
study. First, the comprehensively explored transcripts and their 
expression levels in the muscle tissue have enhanced our 

understanding on transcriptomic landscape associated with growth 
performance in meat rabbits. Second, our observation that the high 
proportion of phenotypic variance could be explained by global 
gene expression variation suggests the possibility to predict the 
complex and hard-to-measured production traits, such as meat 
quality, using transcriptomic expression data. Third, the genetic 
effect of single gene expression level on complex traits may 
be  smaller than we  have expected, which suggest that a large 
enough sample size is required for successfully identifying the 
significant genes. On the other hand, we  acknowledged some 
limitations of this study. The most obvious limitation is the 
relatively small sample size used in TWAS, which limited the 
detection power for identifying the significantly associated genes. 
Another limitation is the absence of genome-wide SNPs that could 
be used for analyzing QTL affecting gene expression level.

Conclusion

In this study, many novel genes and transcripts have been 
comprehensively explored in longissimus dorsi of meat rabbits 
using long-read RNA sequencing technology, which hence 
contributed to the improved annotation of rabbit genome. We also 
revealed that the large proportions of phenotypic variance on 
growth performance in meat rabbits could be  explained by 
variation of genome-wide gene expression levels, whereas the 
transcriptome-wide association studies did not find gene or 
transcript that is statistically significantly associated with the 
growth traits studied.

TABLE 3 (Continued)

Gene name Chr Start End p value Description

MITF 9 78,687,674 78,933,570 1.43E-4 Melanocyte inducing transcription factor

OSBPL10 14 20,072,024 20,374,605 1.74E-4 Oxysterol binding protein like 10

KBTBD12 9 109,057,898 109,122,809 2.18E-4 Kelch repeat and BTB domain containing 12

ECRG4 2 86,711,966 86,728,075 8.53E-4 ECRG4 augurin precursor

GSDME 10 6,653,179 6,714,011 8.70E-4 Gasdermin E

TARBP1 16 51,620,152 51,697,033 1.33E-3 TAR (HIV-1) RNA binding protein 1

TAF6 6 27,603,174 27,609,994 1.47E-3 TATA-box binding protein associated factor 6

UGDH 2 29,316,754 29,343,983 1.60E-3 UDP-glucose 6-dehydrogenase

MAF 5 33,701,831 34,050,433 1.86E-3 MAF bzip transcription factor

LOC103350727 15 36,973,168 37,042,794 2.25E-3 Rho gtpase-activating protein 20

JAK1 13 101,582,720 101,723,625 2.46E-3 Janus kinase 1

LOC100346455 9 72,727,244 72,728,366 2.57E-3 Non-histone chromosomal protein HMG-14-like

GLIPR1 4 61,890,236 61,906,387 2.66E-3 GLI pathogenesis related 1

BCKDHB 12 88,528,385 88,800,448 2.74E-3 Branched chain keto acid dehydrogenase E1 subunit beta

MRPL42 4 80,285,035 80,324,028 2.97E-3 Mitochondrial ribosomal protein L42

OMD 1 84,305,301 84,316,047 3.00E-3 Osteomodulin

ZDHHC14 12 8,041,888 8,299,592 3.11E-3 Zinc finger DHHC-type palmitoyltransferase 14

BLTP2 19 17,099,589 17,135,496 3.16E-3 Bridge-like lipid transfer protein family member 2

PTMS 8 78,854,643 78,859,308 3.19E-3 Parathymosin

BW84, body weight at 84 days of age; ADG35, average daily gain between 35 and 84 days of age; ADG56, average daily gain between 56 and 84 days of age; Chr, chromosome.
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Comprehensive transcriptomic
analysis unveils the interplay of
mRNA and LncRNA expression in
shaping collagen organization
and skin development in
Dezhou donkeys

Xinrui Wang, Yongdong Peng, Huili Liang,
Muhammad Zahoor Khan, Wei Ren, Bingjian Huang,
Yinghui Chen, Shishuai Xing, Yandong Zhan* and ChangfaWang*

Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University,
Liaocheng, China

The primary focus of donkey hide gelatin processing lies in the dermal layer of
donkey hide due to its abundant collagen content. However, the molecular
mechanism involved in collagen organization and skin development in donkey
skin tissue across various developmental stages remains incomplete. The current
study aims to investigate the transcriptomic screening of lncRNAs and mRNA
associated with skin development and collagen organization across different
ages in Dezhou donkeys’ skin. In the pursuit of this objective, we used nine skin
tissue samples obtained fromDezhou donkeys at various ages including 8-month
fetal stage, followed by 2 and 8 years. RNA-seq analysis was performed for the
transcriptomic profiling of differentially expressed genes (DEGs) and lncRNAs
associated with skin development in different age groups. Our investigation
revealed the presence of 6,582, 6,455, and 405 differentially expressed genes
and 654, 789, and 29 differentially expressed LncRNAs within the skin tissues of
Dezhou donkeys when comparing young donkeys (YD) vs. middle-aged donkeys
(MD), YD vs. old donkeys (OD), and MD vs. OD, respectively. Furthermore, we
identifiedCollagen Type I Alpha 1 Chain (COL1A1),Collagen Type III Alpha 1 Chain
(COL3A1), and Collagen Type VI Alpha 5 Chain (COL6A5) as key genes involved in
collagen synthesis, with COL1A1 being subject to cis-regulation by several
differentially expressed LncRNAs, including ENSEAST00005041187,
ENSEAST00005038497, and MSTRG.17248.1, among others. Interestingly,
collagen organizational and skin development linked pathways including
Protein digestion and absorption, metabolic pathways, Phosphatidylinositol 3-
Kinase-Protein Kinase B signaling pathway (PI3K-Akt signaling pathway),
Extracellular Matrix-Receptor Interaction (ECM-receptor interaction), and
Relaxin signaling were also reported across different age groups in Dezhou
donkey skin. These findings enhance our comprehension of the molecular
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mechanisms underlying Dezhou donkey skin development and collagen
biosynthesis and organization, thus furnishing a solid theoretical foundation for
future research endeavors in this domain.

KEYWORDS

Dezhou donkey, hide gelatin, collagen, RNA-seq, lncRNA, mRNA, KEGG, genetic markers

1 Introduction

In the context of modern agriculture and the evolving role of
donkeys in agricultural production, this discourse delves into the
increasing utilization of donkey products, with particular
emphasis on the medicinal value attributed to ejiao, derived
from donkey hide (Maigari et al., 2020; Goodrum et al., 2022; Yan
et al., 2023). It is of particular note that the dermal layer of
donkey hide, enriched with collagen, assumes a pivotal role in the
preparation of ejiao. The popularity of ejiao in China and among
practitioners of traditional Chinese medicine has led to a surge in
demand, subsequently causing a substantial decline in the
donkey population within China and the consequential need
to import raw materials from other regions such as Africa, South
America, and Australia (Maigari et al., 2020; Goodrum et al.,
2022). Given the growing demand for ejiao and the diminishing
supply of donkey hides, it becomes imperative to explore
strategies to address this supply gap. To this end, the
identification of candidate genes associated with collagen
deposition in donkey skin emerges as a pivotal avenue of
investigation. By cultivating new strains of Dezhou donkeys
with enhanced skin performance through selective breeding, it
may be possible to mitigate the scarcity of donkey hides and
sustain the production of ejiao.

With the rapid development of molecular biology and related
disciplines, animal breeding has moved from conventional breeding
to molecular breeding. Marker-assisted selection and genomic
selection have become mainstream practices in molecular
breeding of livestock (Yang et al., 2017). Complex traits such as
diseases, production parameters and skin development in animals
are controlled by several genes. While RNA-seq is considered an
emerging molecular technique utilizing for screening genes
associated with complex traits (Wickramasinghe et al., 2014;
Song et al., 2019). Consistently, by utilizing RNA-seq as a tool,
several studies have been conducted in donkeys to screened key
genes associated with skin thickness (Wang et al., 2022), skeletal
muscles development (Li et al., 2022; Chai et al., 2023), and skin coat
color (Wang et al., 2020).

So far very little information is available regarding the molecular
mechanisms involve in the development of skin and collagen
organization in Dezhou Donkeys. Thus, the current study
endeavors to bridge this knowledge gap by employing RNA-Seq
technology to analyze lncRNAs and mRNAs in the skin of Dezhou
donkeys across different age groups. Furthermore, this study
documented some key pathways like Protein digestion and
absorption, PI3K-Akt signaling pathway, ECM-receptor
interaction, and Relaxin signaling which have strong association
with collagen restructuring and skin development in Dezhou
donkey. Interestingly, our findings documented genes like
COL1A1 and COL3A1 that were involved in the regulation of

above mentioned pathways. Moreover, the role of LncRNAs
(ENSEAST00005041187 and ENSEAST00005038497) showed a
key role in regulation of COL1A1 gene. Overall, our findings
provided the foundational model for skin biology and collagen
synthesis and organization in Dezhou donkeys’ skin.

2 Materials and methods

2.1 Ethical statement

The research conducted in this study adhered to stringent ethical
guidelines and received the necessary approvals from the Animal
Welfare and Ethics Committee of the Institute of Animal Sciences,
Liaocheng University (Approval No. LC 2019-1). All aspects of the
experimental procedures, including the use of experimental animals,
were conducted in full compliance with local animal welfare laws,
guidelines, and ethical codes. Our foremost commitment was to
minimize any potential suffering experienced by the experimental
animals throughout the study.

2.2 Experimental animals and sample
collection

In this investigation, a cohort of nine male donkeys sourced
from a reputable donkey farm located in Dezhou City, Shandong
Province, was the subject of our study. To ensure a
comprehensive analysis, the donkeys were stratified into three
distinct age groups: 8-month-old fetuses, 2-year-olds, and 8-
year-olds. Each age group was represented by three biological
replicates. The 8-month-old fetuses were selected due to
miscarriages resulting from external pressure, and skin
samples were promptly collected within 1 h following
miscarriage. In contrast, minimally invasive skin sampling
techniques were employed for the 2-year-old and 8-year-old
donkeys. All sampling locations were carefully chosen at the
midpoint of the left dorsal region, situated between the sixth and
seventh thoracic vertebrae. Before sampling, rigorous
preparation of the sampling sites was conducted using a
specialized skin preparatory instrument. Furthermore, to
alleviate any potential pain, procaine was administered at the
designated sampling points. Subsequently, a 5 mm skin sampler
(Acuderm, United States) was employed to procure skin tissue
samples, which were meticulously washed with phosphate-
buffered saline (PBS) and then stored in cryotubes before
rapid freezing in liquid nitrogen. These tissue samples were
subsequently preserved at −80°C, awaiting RNA-Seq analysis.
Following the sampling process, sterile gauze was applied to
staunch any bleeding, and anti-inflammatory drugs, in
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conjunction with iodine, were administered for treatment
purposes. It is essential to emphasize that all the donkeys
included in this study were in a healthy condition and
exhibited favorable prognoses.

2.3 RNA extraction and sequencing

To initiate the molecular analysis, the skin tissue samples were
initially ground to a fine powder in liquid nitrogen. Total RNA
extraction was then carried out using the Trizol reagent kit
(Invitrogen, Carlsbad, CA, United States) as per the
manufacturer’s guidelines. The quality of extracted RNA was
assessed using the Agilent 2,100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States), with RNase-free
agarose gel electrophoresis employed for additional quality
evaluation. Subsequent to total RNA extraction, eukaryotic
mRNA was selectively enriched through the use of Oligo (dT)
beads. The construction of cDNA libraries was accomplished by
Gene Denovo Biotechnology Co. (Guangzhou, China), and Illumina
Novaseq6000 was the chosen platform for sequencing.

2.4 Sequencing data quality control and
read mapping

The overall RNA-seq protocol adopted for this study has been
summarized in Figure 1. To ensure the reliability of our data, a series
of rigorous quality control measures were instituted. Initial filtering

of raw reads was accomplished using fastp (Chen et al., 2018)
(version 0.18.0). Reads containing adapters, those with more than
10% unknown nucleotides (N), and those characterized by low
quality, defined as having more than 50% bases with a quality
score (q-value) of ≤20, were systematically removed from the
dataset. Furthermore, Bowtie2 (Langmead and Salzberg, 2012)
(version 2.2.8) was deployed to eliminate reads marked as rRNA,
thereby resulting in a collection of high-quality clean reads ready for
subsequent assembly and analysis. HISAT2.2.4 (Kim et al., 2015)
was subsequently employed to align the paired-end clean reads with
the reference genome of the Dezhou donkey (ASM1607732v2). The
assembled reads from each sample were consolidated using
StringTie v1.3.1 (Pertea et al., 2015; Pertea et al., 2016). The
calculation of FPKM (fragment per kilobase of transcript per
million mapped reads) values to quantify gene expression levels
was facilitated by RSEM (Li and Dewey, 2011). Correlation analysis
was executed using R, while principal component analysis (PCA)
was carried out utilizing the gmodels package (http://www.rproject.
org/). Differential expression analysis was undertaken using DESeq2
(Love et al., 2014) software, which was employed to identify
differentially expressed genes (DEGs) meeting the criteria of a
fold change ≥2.00 and an adjusted p-value of 0.05.

2.5 Identification and prediction of
differentially expressed LncRNAs

Identification of potential lncRNAs was accomplished
through a comprehensive multi-step process. Firstly,

FIGURE 1
Graphical presentation of methodology adopted for screening candidate genetic markers associated with skin development and collagen
deposition.
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Gffcompare was employed to retain transcripts classified as class
“u,” signifying intergenic transcripts (Shi et al., 2019a).
Subsequently, based on the merged GTF file, only transcripts
exhibiting characteristics such as more than one exon and a
length exceeding 200bp were retained (Chen et al., 2019a; Mishra
and Wang, 2021). Coding potential assessment of non-coding
transcripts was executed using CPC2, CNCI, LGC, and PLEK,
with the intersection of predictions being designated as novel
lncRNAs (Chen et al., 2019; Mishra and Wang, 2021). To further
enhance specificity, transcripts translated in all six possible
frames were subjected to scrutiny using HMMER. Any
transcripts displaying homology with known protein family
domains in the Pfam database were excluded. Furthermore,
the BLASTX program was harnessed to filter out transcripts
bearing similarity to known proteins present in the NCBI nr
and UniRef90 databases (E Value < 1e-5). Finally, transcripts
with FPKM values exceeding zero in at least one sample
were retained.

2.6 Potential target gene prediction and
network construction

The identification of potential target genes was facilitated through
the utilization of BEDTools (version 2.17.0) (Quinlan and Hall, 2010).
Adjacent protein-coding genes situated within a 100 kb radius of each
lncRNA locus were selected. Additionally, protein-coding genes
exhibiting a Pearson correlation coefficient exceeding 0.95 with
differentially expressed lncRNAs were considered as potential target
genes. These target genes were subsequently integrated with the DEGs
dataset. For a more comprehensive understanding of the interactions
between DEGs and various groups, a protein-protein interaction (PPI)
network was constructed employing the STRING database (https://
string-db.org/) (Szklarczyk et al., 2015). Furthermore, an lncRNA-
mRNA network was formulated based on targeting relationships,
with visualization achieved through the Cytoscape software (V3.9.0)
(The Cytoscape Consortium, United States), employing default
parameters and the “layout = attribute circle layout” setting (Saito
et al., 2012).

2.7 Functional enrichment analysis of DEGs
and DELs

Functional enrichment analysis was conducted to gain insights
into the biological relevance of DEGs and DELs. The GO database
(Ashburner et al., 2000) was employed to predict molecular
functions, cellular components, and biological processes
associated with DEGs and DELs. Comparison with the Gene
Ontology database (http://www.geneontology.org/) enabled
mapping of all DEGs and DELs to their respective GO terms.
Additionally, KEGG annotation (http://www.genome.jp/kegg)
(Kanehisa and Goto, 2000) was used to subject DEGs and
DELs to KEGG enrichment analysis. False discovery rate (FDR)
correction, specifically employing the Benjamini–Hochberg
adjustment method, was applied. GO and KEGG terms
boasting p values below 0.05 were identified as
significantly enriched.

3 Results

3.1 Overview of sequencing data in Dezhou
donkey skin

A total of nine cDNA libraries were constructed, each
representing a distinct time point or developmental stage. The
raw data obtained from these libraries yielded an average of
approximately 46,860,812 reads per sample. These raw reads
were subjected to rigorous quality control measures, resulting in
an average of 46,637,055 clean reads per sample. Notably, the clean
reads constituted approximately 99.37% of the raw data,
underscoring the high quality of the sequencing data.
Furthermore, the quality assessment revealed that the clean reads
possessed exceptional accuracy, with Q20 and Q30 percentages
exceeding 97.15% and 92.26%, respectively (Supplementary Table
S1). These metrics are indicative of the reliability and precision of
the sequencing process. Subsequently, a critical step in the analysis
involved mapping the clean reads to the reference genome of the
Dezhou donkey (ASM1607732v2). Impressively, over 92.86% of the
clean reads were successfully mapped to the reference genome.
Among these mapped reads, approximately 76.11% aligned to the
exon regions, approximately 12.75% to the intron regions, and
approximately 11.14% to the intergenic regions. These mapping
results provided essential information regarding the distribution of
sequenced reads across different genomic regions (Table 1). To
further elucidate the transcriptome profile, we employed StringTie
to assemble transcripts for each library. Subsequently, all assembled
transcripts were synthesized into a nonredundant transcript dataset
using StringTie-Merge. This comprehensive transcriptome dataset
served as a foundation for downstream analyses. Additionally, the
study identified a subset of 539 putative long non-coding RNAs
(lncRNAs) based on the criteria illustrated in Figure 2.

3.2 Identification of differentially expressed
mRNAs (DEMs) and long non-coding RNAs
(DELs) in the Dezhou donkey

The overall data has been provided in Supplementary Table S2.
In this section, we delve into the analysis of differentially expressed
mRNAs (DEMs) and long non-coding RNAs (DELs) in the skin
tissues of Dezhou donkeys across various comparative groups. Our
approach involved stringent criteria for identifying these differential
expressions based on fold change and statistical significance. Based
on the criteria of |log2FC(fold change)| > 1 and
q-value <0.05 normalized expression, total of 6,582, 6,455, and
405 differentially expressed mRNAs (DEMs) (Figures 3C–E)
respectively. In addition, 654, 789, and 29 differentially expressed
lncRNAs (DELs) were presented in the skin tissues of Dezhou
donkeys among YD vs. MD, YD vs. OD, and MD vs. OD,
respectively (Figures 3F–H). Furthermore, Venn diagram analysis
reveals 182 differential genes were commonly shared among the
three groups (YD vs. MD, YD vs. OD, and MD vs. OD)
(Figures 3A, B).

To provide a comprehensive visualization of the differential
expression patterns in both mRNAs and lncRNAs, clustered
heatmaps were constructed. These heatmaps offer a clear
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representation of the distinct expression profiles among the
identified DEMs and DELs. The clustering methodology utilized
here groups genes with comparable expression patterns, as visually
depicted in Figure 3I (mRNAs) and Figure 3J (lncRNAs).

3.3 GO and KEGG enrichment analysis
of DEGs

The overall data obtained for pathways and functional processes
[(Biological Processes (BP), Molecular Functions (MF), and Cellular
Components (CC)] has been presented in Supplementary Table S3.
To investigate the functions and pathways of DEGs, we conducted
separate analyses using GO terms and KEGG pathways. According
to the analysis of GO terms for the DEMs, we identified a total of

182 DEMs that were significantly enriched in 36 GO terms. These
terms were further categorized into 24 Biological Processes (BP),
10 Molecular Functions (MF), and 2 Cellular Components (CC).
Notably, the Biological Processes were primarily associated with
cellular processes, metabolic processes, and biological regulation. In
the Molecular Functions category, the top terms included binding,
catalytic activity, and molecular function regulation. Our GO
analysis of Cellular Components indicated that the DEMs were
enriched in two specific GO terms, namely, cellular anatomical
entity and protein-containing complex (Figure 4A). Furthermore,
the KEGG pathway analysis unveiled a total of 168 pathways.
Among these, 45 pathways demonstrated significant enrichment
(p-value <0.05) (Figure 4B). In addition, based on bioinformatics
analysis, we selected the pathways and biological function processes
associated with protein metabolism and skin development.

TABLE 1 Quality assessment of sequencing data.

Sample RawDatas CleanData (%) Q20 (%) Q30 (%) Total_Mapped (%) exon (%) intron (%) intergenic (%)

YD-1 45633838 99.46 97.59 93.20 96.34 74.81 14.34 10.85

YD-2 44955666 99.37 97.15 92.26 95.72 74.22 14.71 11.07

YD-3 48310130 99.48 97.49 92.98 96.17 75.90 13.48 10.62

MD-1 45978156 99.57 97.76 93.61 93.15 79.82 9.94 10.24

MD-2 50951222 99.56 97.66 93.37 92.85 76.79 12.10 11.11

MD-3 47430242 99.57 97.87 93.86 93.20 77.35 11.55 11.10

OD-1 43964952 99.62 97.42 92.75 92.63 75.48 13.24 11.28

OD-2 46192542 99.50 97.66 93.31 92.83 76.06 12.23 11.71

OD-3 48330560 99.56 97.73 93.45 92.97 74.59 13.16 12.24

FIGURE 2
The pipeline for the identification of putative lncRNAs in this study, while the frames in the direction of the arrow show the filtering process and the
number of screened transcripts.
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In order to effectively address the limitations of traditional
enrichment analysis in mining relevant information for low-
effect genes, we conducted Gene Set Enrichment Analysis

(GSEA) analysis on three groups of differentially expressed
genes that were co-expressed (Figure 5). Through this
analysis, we identified significant enrichment of GO terms

FIGURE 3
Analysis of DEMs and DELs expression profiles in the Dezhou donkey. (A, B) are the Venn diagrams of differentially expressed mRNAs and lncRNAs,
respectively. (C–H) are the volcano plots of mRNAs and lncRNAs, respectively. (I, J) are the heatmaps of differentially expressed mRNAs and lncRNAs,
respectively.
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related to protein synthesis (Supplementary Table S4). At the
same time, a trend analysis was performed on the target gene
group (Figure 6; Supplementary Table S5), which was classified
into six profiles (excluding profile 3 and 4). Enrichment analysis
was conducted on these profiles, and the results indicated a
significant association between the expression of numerous
genes and pathways such as Cell growth and death, Signal
transduction, metabolic process, immune system, and signal
molecules and interaction.

3.4 PPI analysis of the DEMs related to
protein deposition in the Dezhou
donkey skin

In order to gain comprehensive insights of the biological
processes associated with protein synthesis candidate genes, we
concentrated on the posttranslational protein levels of the
candidate genes. Therefore, we constructed protein-protein
interaction networks (PPIs) by the STRING (https://string-db.

FIGURE 4
Functional analysis of differentially expressedmRNAs. (A) is the bar graph showing the enrichment of GO terms and the number of genes involved in
differentially expressed mRNAs. (B) represents the top 20 enriched KEGG pathways for differentially expressed mRNAs.

FIGURE 5
Enrichment Analysis (GSEA) analysis on three groups of 182 differentially expressed genes. (A–H): The significantly enriched GO terms related to
protein synthesis during the MD vs. OD period (nominal p-value<0.05). (I, J): The significantly enriched GO terms related to protein synthesis during the
YD vs. OD period (nominal p-value<0.05).
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FIGURE 6
The trend analysis was performed on the target gene group. (A) Actual trend of gene mutations. (B) Trend graph fitted based on the predetermined
number of trends and the genetic change trend. (C) KEGG functional analysis of profile 6 genes reveals the top 10 significantly enriched pathways. (D)
KEGG functional analysis of profile 1 genes reveals the top 10 significantly enriched pathways. By conducting the aforementioned analysis on the DEMs,
several candidate genes (ELAPOR1, FOSL1, MEP1B, PAX9, PPP1R1B, SIX4, ZEP36, CD14, COL1A1, COL3A1, COL6A5, EGFL6, PGLYRP4, SERPINB13,
and Spink6) associated with protein synthesis in the skin were identified.

FIGURE 7
Protein-protein interactin (PPI)network. (A) PPI network was constructed by the STRING database using the protein synthesis candidate genes. (B)
GO terms association map of protein synthesis candidate genes.
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org/STRING, accessed on 10 April 2022). There were 14 nodes and
15 edges in the PPI network (Figure 7). According to the results of
the PPI network analysis, COL3A1 was the hup gene (degree = 14).
In addition, PPI network analysis of candidate genes was
significantly enriched in GO terms, including fibrillar collagen
trimer and collagen-containing extracellular matrix. FOSL1,
PGLYRP4, and SIX4 were the key degrees of the PPI network
with other proteins.

3.5 Analysis of the targeting relationship
between lncRNAs and mRNAs

The DEMs and DELs with Pearson correlation coefficients
above 0.95 were selected to construct the lncRNA-mRNA co-
expression network using Cytoscape v.3.10.1. In this network, a
total of 739 nodes and 2,428 lncRNA-mRNA pairs were identified
based on the results (Supplementary Table S6). There were
75 lncRNAs corresponding to 14 target gene in Figure 8.
Enrichment analysis using GO terms was conducted to

understand the functional implications of these lncRNAs and
their associated target genes. From Figure 8, it could be observed
that the target genes were mainly enriched in protein synthesis and
metabolic, such as binding, protein-containing complex, biological
regulation, and metabolic process. This indicated that lncRNAs
could interfere with target genes, thereby regulating protein
synthesis function in donkey skin. LncRNAs played a crucial role
in regulating the functions of some genes in different pathways. We
observed that 15 target genes (ELAPOR1, FOSL1, MEP1B, PAX9,
PPP1R1B, SIX4, ZEP36, CD14, COL1A1, COL3A1, COL6A5, EGFL6,
PGLYRP4, SERPINB13, and Spink6.) were regulated by lncRNAs to
function in protein synthesis and metabolic, although these DEMs
participated in other pathways. The collagen proteins encoded by
COL1A1 and COL3A1 were involved in the synthesis and repair
processes of the extracellular matrix in the extracellular matrix
remodeling pathway. Enrichment analysis of lncRNA-related
mRNAs was performed through GO terms to understand the
functions of these lncRNAs and target genes. It can be seen from
Figure 8, the target genes are mainly enriched in protein synthesis
and metabolic. This indicates that lncRNA can interfere with target

FIGURE 8
The interaction networks of “pathways-differentially expressed lncRNAs-target genes”. The triangle is for lncRNA, the “V” represents the target gene,
and the ellipse is for the GO terms of the target gene, respectively. A total of 93 DELs were regulated with 14 mRNAs in the interactive network.
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genes, thereby regulating the protein synthesis function in
donkey skin.

4 Discussion

In this study we have considered rigorous exploration of the
transcriptome expression profiles, encompassing both mRNA and
lncRNA, within Dezhou donkey skin, with a particular focus on
collagen deposition at distinct developmental stages. The
employment of RNA-seq technology has facilitated this
comprehensive investigation. This rigorous inquiry has
culminated in the identification of a total of 182 differentially
expressed genes that were commonly altered across the three
experimental groups. Some of these identified genes are
postulated to wield substantial influence in governing the process
of skin collagen deposition and development. Collagen, being a
ubiquitous protein constituent across mammalian species, assumes a
multifaceted role, being deposited within diverse organs and tissues,
while simultaneously playing a pivotal role in both structural and
functional aspects (Franchi et al., 2007; Devos et al., 2023).
Consistently, it has been well-established that the process of
collagen deposition is orchestrated through a complex interplay
of gene regulatory networks (Reilly and Lozano, 2021).

In this study, we also observed that the 182 DEMs exhibit
significant enrichment across 168 distinct pathways. Notably, several
of these pathways hold direct relevance to the intricate process of skin
collagen deposition and development. Of these, Protein digestion and
absorption, Metabolic pathways, PI3K-Akt signaling pathway, ECM-
receptor interaction, and Relaxin signaling showed their pivotal roles in
orchestrating collagen deposition within the dermal matrix, skin
development, extracellular matrix and collagen fibril organization of
Dezhou donkey skin (Table 2). Interestingly, a recent study found
several important signaling pathways related to wool growth and
bending, such as ECM-receptor interaction, PI3K-Akt signaling

pathway, Relaxin signaling pathway, protein digestion and
absorption, and metabolic pathways in Zhongwei goats (He et al.,
2020; Liu et al., 2022). In addition, a recent experimental trial has shown
that PI3K-Akt signaling pathway, Protein digestion and absorption and
ECM−receptor interaction signaling pathways were associated with
regulation of actin filament-based process, regulation of actin
cytoskeleton organization, cell-matrix adhesion and collagen fibril

TABLE 2 Selected Pathways/Biological processes associated with metabolism, collagen organization and skin development.

Pathways Genes count p-value Genes name

Protein digestion and absorption 4 1.72E-04 COL1A1, COL3A1, MEP1B, COL6A5

Relaxin signaling pathway 3 0.008505048 COL1A1, COL3A1, RXFP1

Metabolic pathways 6 0.018227888 B3GALT2, CTH, FMO2, FUT2, LOC106840130, GLUL

Glycosphingolipid biosynthesis - lacto and neolacto series 2 0.032318823 B3GALT2, FUT2

Alanine, aspartate and glutamate metabolism 2 0.034689964 LOC106840130, GLUL

Cysteine and methionine metabolism 2 0.038261718 CTH, LOC106840130

Biosynthesis of amino acids 2 0.048155606 CTH, GLUL

ECM-receptor interaction 2 0.043557123 COL1A1, COL6A5

Biological Processes

skin development 2 0.005881289 COL1A1, COL3A1

collagen fibril organization 2 0.007658935 COL1A1, COL3A1

cellular response to amino acid stimulus 2 0.007658935 COL1A1, COL3A1

extracellular matrix organization 2 0.025318973 COL1A1, COL3A1

FIGURE 9
Collagen Alpha family genes regulate protein digestion and
absorption signaling pathway. Furthermore, the protein digestion and
absorption signaling pathway showed their association with skin
development and collagen organization in Dezhou skin. The
figure has generated via Figdraw.
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organization (Wang andGu, 2021). Furthermore, they assumed that the
aging of skin might be associated with extracellular matrices depletion,
which plays a key role in many cellular processes including migration,
differentiation, and survival (Bonnans et al., 2014). Combined with
published article data and our current findings it was proved that these
pathways may exert vital roles in skin development, collagen and
extracellular matrix organization.

In this investigation, we have delved into the intricate landscape
of collagen synthesis and its associated genetic regulators.
Specifically, COL1A1, COL3A1, COL6A5 and LOC106840130 have
been identified as pivotal players in regulation of important
pathways including ECM-receptor interaction, Relaxin signaling
pathway, and protein digestion and absorption and biological
function processes (skin development, extracellular matrix and
collagen fibril organization) as shown in Figure 9. Collagen, a
prominent member of the extracellular matrix (ECM), is
characterized by its triple-helix structure (Devos et al., 2023).
Extensive research has showcased the widespread presence of
collagen I, collagen II, and collagen III across various anatomical
domains in numerous animal species, encompassing skin, skeletal
structures, blood vessels, tendons, and internal organs (Rahkonen
et al., 2004; Ben Amor et al., 2013; Wang et al., 2017). Notably, prior
investigations have unveiled the profound impact of collagen
peptide and vitamin C derivative co-treatment on upregulating
COL1A1 and Has2 expression, thereby averting skin thinning
(Shibuya et al., 2014). Furthermore, single nucleotide
polymorphisms within the COL3A1 and COL6A5 genes have
been associated with atopic dermatitis, revealing distinct
genotype-phenotype relationships (Szalus et al., 2023). These
genetic variations within these collagen-related genes may exert
substantial influence on collagen expression, structure, and function,
thereby modulating the pathogenesis and clinical manifestations of
atopic dermatitis (Söderhäll et al., 2007). Consistently, it has been
revealed that collagen alpha family genes play a key role in skin aging
in human (Wang and Gu, 2021), and hair follicular stem cell
development in goat (Reilly and Lozano, 2021) by regulating
extracellular matrix and collagen organization respectively.

Concurrently, our study has unveiled the role of the LOXL2 gene
among the differentially expressed genes, shedding light on its
involvement in collagen synthesis and modification. The
multifaceted functions of LOXL2 encompass gene transcription,
cell motility, migration, adhesion, angiogenesis, and
differentiation (Fujimoto and Tajima, 2009). Intriguingly, the
present investigation has observed a significant downregulation of
COL1A1, COL3A1, and LOXL2 genes with increasing age, signifying
the potential involvement of myriad molecular mechanisms,
including epigenetic regulation, alterations in intracellular
signaling pathways, and fluctuations in hormone levels (Wang
et al., 2021; Wang and Gu, 2021). However, the precise
mechanistic underpinnings necessitate further comprehensive
research to validate and elucidate.

It is imperative to acknowledge that previous studies have
elucidated the regulatory influence of lncRNAs in a cis manner,
directly impacting gene expression (Zou et al., 2017; Shi et al., 2019b;
Chen et al., 2019c; Zhu et al., 2020). In this study, DEL
ENSEAST00005067788 was observed to exert an influence on
COL1A1 and COL3A1 genes, with significantly higher expression
levels in the YD period, consistent with the observed expression

trends. This implies that lncRNA may modulate target gene
expression by interfering with regulatory regions on the same
chromosome. Particularly noteworthy is the involvement of other
DELs, including ENSEAST00005041187, ENSEAST00005038497,
MSTRG.17248.1, and other lncRNAs, in the cis-regulation of
COL1A1 gene expression, emphasizing their potential roles in
protein binding or the regulation of protein-containing
complexes (Liu et al., 2016). Furthermore, the LOXL2 gene,
highly expressed in the YD period, was similarly cis-regulated by
lncRNAs such as MSTRG.7943.1 and ENSEAST00005067788.
Mutations within the LOXL2 gene locus have been linked to
decreased elastin renewal, underscoring its pivotal role in skin
physiology (Gambichler et al., 2019). Moreover,
hypermethylation of the LOXL2 gene promoter region has been
associated with elastolytic conditions, further highlighting its
significance (Gambichler et al., 2016).

In summary, this research has elucidated the regulatory
interplay between DELs and DEMs in the context of skin
biology, with potential implications for collagen deposition in
donkey skin. The identified genetic and epigenetic factors,
including COL1A1, COL3A1, LOXL2, and various lncRNAs, may
serve as key orchestrators in modulating the intricate processes
underpinning collagen synthesis and deposition. This
comprehensive investigation not only enhances our
understanding of the molecular mechanisms governing collagen
homeostasis but also paves the way for further research into
therapeutic interventions and clinical applications in the field of
dermatology and tissue engineering. Although our study provides
important insights into the candidate genes related to collagen
deposition in the skin of Dezhou donkeys, our study still has
some limitations. First, our study mainly focuses on the analysis
at the gene level, and we have not been able to deeply explore how
these genes affect the deposition of collagen at the protein level.
Secondly, our study was only conducted in Dezhou donkeys and did
not consider other breeds of donkeys. For future research, we suggest
further studying the role of these candidate genes at the protein level
and their role in other donkey breeds.

5 Conclusion

In conclusion, the investigation into the transcriptome of
Dezhou donkey skin during the Young Donkey (YD), Middle
Donkey (MD), and Old Donkey (OD) periods has unveiled
notable variations in the regulation of both mRNAs and
lncRNAs specifically associated with collagen deposition. Our
analysis, guided by GO annotations and KEGG, has highlighted a
substantial proportion of DEGs such as coolagen alpha family genes
COL1A1, COL3A1) and LOXL2 are intricately linked to important
signaling pathways (Protein digestion and absorption, PI3K-Akt
signaling pathway, ECM-receptor interaction, and Relaxin
pathways) and biological function processes (skin development,
extracellular matrix and collagen fibril organization). In addition,
Furthermore, the construction of an interaction network
encompassing lncRNA genes has illuminated the potential roles
of certain lncRNAs (ENSEAST00005041187,
ENSEAST00005038497, MSTRG.17248.1) in modulating target
genes (COL1A), thereby contributing to the intricate process of
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collagen deposition within the skin. The findings presented herein
not only expand our comprehension of the regulatory networks
governing collagen organization and skin development but also
furnish a foundational framework upon which further research
endeavors in this domain can be grounded. This research, thus,
plays a vital cornerstone for future explorations aimed at advancing
our knowledge of skin biology and collagen synthesis and
organization in Dezhou donkeys.
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Construction of a co-expression
network affecting intramuscular
fat content and meat color
redness based on
transcriptome analysis

Binbin Wang1, Liming Hou2, Wen Yang2, Xiaoming Men1,
Keke Qi1, Ziwei Xu1* and Wangjun Wu2*
1Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou,
China, 2College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China

Introduction: Intramuscular fat content (IFC) and meat color are vital indicators
of pork quality.

Methods: A significant positive correlation between IFC and redness of meat
color (CIE a* value) indicates that these two traits are likely to be regulated by
sharedmolecular pathways.To identify candidate genes, hub genes, and signaling
pathways that regulate these two traits, we measured the IFC and CIE a* value in
147 hybrid pigs, and selected individuls with extreme phenotypes for
transcriptome analysis.

Results: The results revealed 485 and 394 overlapping differentially expressed
genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC
and CIE a* value, respectively. Weighted gene co-expression network analysis
(WGCNA) identified four modules significantly correlated with the IFC and CIE a*
value. Moreover, we integrated functional enrichment analysis results based on
DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified
47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The
protein protein interaction (PPI) network analysis of candidate genes showed that
5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes
mainly participate in various pathways related to lipid metabolism and redox
reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A)
were shared for these two traits.

Discussion and conclusion: After functional annotation of these four hub genes,
we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid
metabolism and the myoglobin redox response. Further research on these hub
genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the
molecular mechanism of the co-regulation of the IFC and CIE a* value, which will
provide a theoretical basis for improving pork quality.
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1 Introduction

Pork is a significant and extensively utilized animal resource that
has emerged as a principal protein source within human diets. In
recent years, China’s yearly pork production has surpassed 50 million
tons. Duroc × (Landrace ×Yorkshire) (DLY) pigs account for over 90%
of the pork market due to their rapid growth and high lean meat rate
(Duan et al., 2023). With improved living standards, high-quality pork
has become more popular among consumers. Meat quality is a crucial
indicator for assessing pork production and quality. Essential
indicators of meat quality include intramuscular fat content (IFC),
meat color, tenderness, and drip loss, which can directly impact pork
quality and market competitiveness (Moeller et al., 2010). Consumers
favor snowflake meat (a reflection of high IFC or marbling), and IFC
deposition is the main cause of snowflake meat (Liu et al., 2020). Meat
color is also one of themost direct sensory indicators of pork quality for
consumers and directly affects their consumption behavior. In the food
industry, the most popular numerical colour space system is the L*
(lightness), b* (yellowness) and a* (redness), which is also referred as
the CIELAB system, originally defined by the CIE (CIE, 1986). The
subjective color scores of the meat showed a stronger correlation with
the CIE a* value (R = 0.80) in one study (Sun et al., 2016). Hence, the
quality of pork color could be directly assessed based on the CIE a*
value. Despite DLY pork effectively meeting the quantitative demand,
its muscle quality falls short of eliciting satisfaction. Both the IFC and
CIE a* value are traits with relatively high heritability (Cabling et al.,
2015; Wang et al., 2022) and are the most intuitive indicators of high-
quality pork. Consequently, increasing the IFC and CIE a* value
through genetic improvement is a major research focal point for
pig breeding enterprises.

IFC refers to the amount of fat that accumulates between muscle
fibers or within muscle cells, mainly composed of phospholipids and
triglycerides (Shi-Zheng and Su-Mei, 2009). It is widely accepted that
changes in meat color in muscles are due to changes in myoglobin
levels. This may be due to higher myoglobin levels in slow/oxidative
myofibers (red muscle fibers) than in fast/glycolytic myofibers (white
muscle fibers). When there is a high proportion of red muscle fibers in
muscle tissue, its muscle color exhibits a more distinct red
characteristic (Kim et al., 2010). This phenomenon is closely
related to the biochemical markers of meat, such as the oxidation
state, cytochrome content, and redox forms. Previous studies have
shown a significant correlation (R = 0.260–0.323) between IFC and
CIE a* (Mortimer et al., 2014; Zhang et al., 2022). Therefore, we
speculated that these two traits might have similar genetic
backgrounds, but the underlying genetic basis was largely unknown.

Differences in phenotype are caused by a variety of factors,
among which changes in gene expression are crucial. Therefore, the
variations in the IFC and CIE a* value within a population might be
driven by differences in the expression levels of critical genes
involved in regulating these two traits. With the development of
next-generation sequencing technologies, the emergence of
transcriptome sequencing (RNA-seq) allowed us to detect the
expression levels of all genes across the entire genome.
Researchers usually use individuals with extreme phenotypes of
the IFC and a * value to perform RNA-seq, allowing them to obtain
many candidate genes and signaling pathways related to the IFC and
CIE a* value (Cardoso et al., 2017; Xing et al., 2021; Fernndez-
Barroso et al., 2022).

However, organisms are complex systemswith interconnected genes
regulating biological activities, forming intricate network systems.
Therefore, it is crucial to consider the interrelationships between
thousands of genes when studying phenotypic variation. Differential
expression analysis may not capture critical biological pathways or gene-
gene interactions relevant to target traits, as it focuses on the impact of
individual genes rather than the influence of gene networks (Xing et al.,
2021). Coexpressed genes often form densely connected subgraphs in
networks, representing functionally related gene groups or signaling
pathways, and exhibit specific biological functions by developing local
substructure modules (Barabasi and Oltvai, 2004). These modules reveal
interactions among genes at a systems level, aiding researchers in further
understanding the mechanisms underlying gene interactions and
identifying regulatory hubs of coexpressed genes (Talukdar et al.,
2016). Weighted gene co-expression network analysis (WGCNA) is
an efficient and accuratemethod for describing the correlation among all
genes or modules within the whole genome with traits. It is particularly
advantageous for simultaneously identifying key genes of multiple
complex traits (Zhang and Horvath, 2005), such as fat deposition
(Xing et al., 2021), meat quality (Zhao et al., 2020), and reproductive
performance (Wu et al., 2022).

Based on transcriptomic data, the present study aimed to gain
molecular insights into the hub genes and metabolic pathways that
coregulate the variations in the IFC and CIE a* value. We collected
individuals with divergent IFC and CIE a* values for RNA-seq.
Subsequently, we identified the differentially expressed genes (DEGs),
and performed gene set enrichment analysis (GSEA), WGCNA, and
protein protein interaction (PPI) analysis. We identified the candidate
genes and modules significantly related to these two traits. Through
systematic integration of the above results, we identified the hub genes
and pathways that could co-regulate the changes in the IFC and CIE a*
values. These findings contribute to understanding the genetic
mechanisms of co-regulation changes in the IFC and CIE a* value.
Moreover, the identified hub genes may serve as potential biomarkers
for the synergistic improvement of IFC and meat color in pigs.

2 Materials and methods

2.1 Animals, sample collection, and
phenotype measurement

A total of 147 commercial DLY pigs, consisting of 70 castrated
boars and 77 females, were selected for this study. The experimental
pigs were reared under standardized indoor conditions and provided
ad libitum access to feed and water at Jiangsu Kangle Pig Breeding
Farm (Changzhou, China). All experimental protocols involving
animals were approved by the Nanjing Agricultural University
Animal Care and Use Committee (Certification No.: SYXK (Su)
2022–0031). These pigs were slaughtered in six batches at the same
slaughterhouse within a month, with 20–30 pigs slaughtered in each
batch, with an average live weight of 122.49 ± 16.54 kg (mean ±
standard deviation). Following slaughter, LDmuscle from the last third
and fourth thoracic vertebrae was collected for each pig.
Approximately 0.5 g of LD muscle was placed into a 1.5 mL tube
and frozen at −80 °C for RNA extraction. Another portion of LD
muscle was trimmed to 1 cm × 1 cm × 2 cm along the fiber direction
and fixed in 4% paraformaldehyde solution. The meat color redness
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value of the LD muscle was assessed three times at 24 h post-mortem
using a CR-410 hand-held colorimeter (Kinica Minolta Sensing Inc.,
Shanghai, China). The mean of the three measurements was the final
CIE a* value. Approximately 300 g of LD muscle was utilized for
determining IFC using the Soxhlet extractionmethod (Supakankul and
Mekchay, 2016).

2.2 Sample selection

In order to avoid the influence of sex and carcass weight on the
selected samples, a general linear model in SAS software was used to
analyze the factors affecting the IFC and redness values in 147 DLY
pigs. The results showed that sex and carcass weight did not affect IFC
and CIE a* values. Therefore, based on the extreme values of IFC and
CIE a* values, we selected the high IFC group (H_IFC, n = 6), low IFC
group (L_IFC, n = 6), highCIE a* group (H_a*, n = 6), and lowCIE a*
group (L_a*, n = 6), respectively. During the selection process, we
found that there were 2 samples overlapping between the H_IFC
group and the H_a* group, and 3 samples overlapping between the L_
IFC group and the L_a* group. So, 19 unique samples were used for
transcriptome analysis in this study. The means of the IFC and CIE a*
value in the high and low groups were calculated using the two-tailed
Student’s t-test. Besides, we also calculated the differences of the
samples in the H_IFC and H_a* value groups (H_group, n = 10) and
the samples in the L_IFC and L_a* groups (L_group, n = 9) using the
two-tailed Student’s t-test. All analyses were conducted using SPSS
(v22.0) software (SPSS Inc., Chicago, IL, United States).

2.3 Haematoxylin–eosin staining

Selected LD samples were fixed in 4% paraformaldehyde for 24 h
at room temperature. Muscle tissue was dehydrated using ethanol,
transparently treated with xylene, embedded in paraffin, and cut into
3–4 μm samples for further haematoxylin–eosin (H&E) staining.
Sections were deparaffinized in xylene, rehydrated in ethanol and
stained with hematoxylin for 10 min. The sections were then rinsed in
tap water and stained with eosin for 1 min, dehydrated, transparently
treated with xylene and finally sectioned using neutral gum. The
prepared sections were observed under the microscope, in which the
nuclei and cytoplasm of the muscle cells appeared blue and light red,
respectively, and the adipocytes appeared white.

2.4 RNA extraction, library construction, and
sequencing

Total RNA was extracted from 100 mg of frozen LDmuscle using
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). The total
RNA was quantified and quality controlled using Qubit 2.0 and
Agilent 2,100. RNA with an RNA integrity number (RIN)
of >7 and RNA quality rating of “A” was used for RNA library
construction. RNA libraries were constructed using the VAHTS®
universal V8 RNA-seq Library Prep Kit for Illumina (Vazyme,
China) according to the manufacturer’s instructions. The Illumina
NovaSeq 6,000 platform (Illumina, San Diego, CA, United States) was
used for transcriptome sequencing based on the high-quality RNA

library, and the sequencing read length was paired-end 150 bp. The
obtained raw data were filtered to clean data with FastQC (v0.11.5)
and Trimmomatic (v0.38) software (Bolger et al., 2014) by removing
reads containing adapters, low-quality reads, and reads with an N
content of >5%. The sequencing depth of transcriptome data in this
study exceeded 40 million reads per sample. The average sequencing
depth of the clean reads used for subsequent analysis was
42.91 million reads. The alignment analysis results showed that the
average unique mapping rate was 87.53%. The clustering heatmaps
between samples showed significant stratification between high and
low groups (Supplementary Figure S1). Overall, the sequencing data
exhibited high quality, rendering it suitable for subsequent analyses.

2.5 Identification of DEGs

The obtained clean reads were mapped to the Sus scrofa
11.1 genome from Ensembl 101 using STAR (v2.7.2) software
(Dobin et al., 2013) with settings (–sjdbOverhang 135). Finally, a
transcriptome gene expression count file was converted using
featureCounts (v2.0.0) software (Liao et al., 2014). The DESeq2
(v1.25.9) (Love et al., 2014), limma (Ritchie et al., 2015), and edgeR
packages in R (v4.1) (Robinson et al., 2010) software were used to
identify DEGs between the groups. DEGs were defined as those with
a false discovery rate (FDR) of <0.05 and |log2FoldChange| ≥ 1.
Furthermore, overlapping DEGs detected by the DESeq2, limma,
and edgeR packages were considered true DEGs, and used for
subsequent functional enrichment analysis.

2.6 Functional annotation and
enrichment analysis

To better understand the functions of overlapping DEGs, the R
package BioMart (Haider et al., 2009) was used to annotate genes
using the reference genome Sus scrofa 11.1. The Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways of overlapping DEGs were subjected to functional
enrichment analysis using the R package clusterProfiler (v4.6.2)
(Wu et al., 2021) with the following default parameters: ont =
“ALL”, nPerm = 1,000, pAdjustMethod = “BH”, minGSSize = 10,
maxGSSize = 500. In addition, we removed redundancy from the GO
terms using the ‘simplify’ function in the clusterProfiler package, with
the following default parameters: cutoff = 0.7, by = “p.adjust”, select_
fun = min. The overlapping DEGs were visualized as a heatmap plot
using the R function heatmap. Additionally, considering that GSEA
does not require an arbitrary cutoff for differential gene expression
and has a more extensive functional range, we also used GSEA on our
datasets based on whole genes of the IFC and CIE a* groups, using the
clusterProfiler package (v4.6.2) (Wu et al., 2021) with the above
default parameters. The threshold of significantly enriched GO
terms and KEGG pathways was a q value of <0.10.

2.7 WGCNA

To construct a co-expression network, we used WGCNA, a
package from R (1.72.1) (Langfelder and Horvath, 2008), with RNA-

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2024.1351429

123

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1351429


seq data (n = 19), with their counts normalized by transcript per
million (TPM). After the expression matrix input, genes with TPM
values of >1 in more than 10 individuals were selected for a
coexpression network setting. The clean expression matrix
underwent hierarchical clustering using the group average
method to identify outliers, which were samples deviating
significantly from the others. There were no outliers in this
study, and the final expression matrix contained 10,512 genes
and 19 individuals for establishing an unsigned coexpression
network based on the step-by-step method.

This study selected a power value of 18 based on the scale-free
topology criterion, resulting in a scale-free topology index (R2) of
0.90. The hybrid dynamic tree-cutting approach employs a
minimum module size of 30 as the default and commonly used
value. To characterize the module expression, module eigengenes
(MEs) were calculated as the first principal component of the
expression matrix. The WGCNA approach facilitates the
identification of biologically significant modules and potential
critical modules for further analysis by defining the module trait
relationships (MTRs) and gene significance (GS) of each module.
The mean value of GS for the genes within a module represented the
module significance (MS). To select candidate modules for
functional enrichment analysis, modules with MTRs greater than
0.35 and MS exceeding 0.25 were considered based on the criteria
reported in previous studies. The GO and KEGG pathway terms of
all genes within the critical module were subjected to functional
enrichment analysis using the clusterProfiler package (v4.6.2) (Wu
et al., 2021) with the above default parameters.

2.8 Identification of candidate and hub
genes related to the IFC and CIE a* value

To further identify candidate genes affecting the IFC and CIE a*
value, we performed overlap analysis of significantly enriched GO
terms and KEGG pathways in Omicshare platform (https://www.

omicshare.com/) derived from overlapping DEGs, GESA, and
WGCNA, respectively. The results of the overlap analysis are
presented in the Venn network diagram. The selected GO terms
and KEGG pathways had a q value of <0.1 in all three methods and
less than 0.05 in at least two methods. DEGs located in the
overlapping GO terms and KEGG pathways were considered
candidate genes and used for subsequent PPI analysis.

The construction of a PPI network was employed to analyze the
interactions between genes encoding proteins in candidate genes
based on the Search Tool for the Retrieval of Interacting Genes
(STRING) database (v11.5) (Szklarczyk et al., 2015). Cytoscape
software (v3.8.0) (Shannon et al., 2003) was employed to
visualize the entire PPI network. This analysis allowed the
connection patterns between genes in PPI networks to be
explored and visualized. Highly connected genes, also known as
hub genes, may play an essential role in influencing the target traits
of these candidate genes. The criterion for selecting the hub gene was
that the degree of connectivity was greater than 10.

3 Results

3.1 Phenotypes and sequencing data

The phenotypes of the IFC and CIE a* value in 147 DLY pigs are
shown in Figure 1A. The mean and standard error of the IFC and
CIE a* value were 3.20% ± 0.10% and 2.86% ± 0.13%, respectively.
The IFC and CIE a* value showed a significant positive correlation
in 147 DLY pigs (R = 0.309, p < 0.001) (Figure 1B).

Based on the IFC and CIE a* value, the LD muscle samples were
divided into the high IFC (H_IFC, n = 6), low IFC (L_IFC, n = 6),
high CIE a* value (H_a*, n = 6), and low CIE a* value (L_a*, n = 6)
groups. The phenotypic values of selected individuals are shown in
Figure 2 and Supplementary Table S1. The mean IFCs of the high
and low groups were 5.92% and 1.45%, respectively. The mean CIE
a* values of the high and low groups were 4.30 and 1.72, respectively.

FIGURE 1
Statistical analysis of intramuscular fat content (IFC) and meat color redness (CIE a*) values. (A) Phenotypic values of the IFC and CIE a* value. (B)
Correlation analysis of the IFC and CIE a* value.
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The IFC and CIE a* value in the high groups (H_IFC and H_a*)
were significantly higher than in the low groups (L_IFC and L_a*)
(Figures 2C, D). Moreover, the phenotypic information of the
samples in the H_IFC and H_a* groups (H_group, n = 10) and
the samples in the L_IFC and L_a* groups (L_group, n = 9) was
counted, and the results showed that the IFC and CIE a* values in
the H_group were 5.30% ± 0.91% and 4.85 ± 1.27, respectively, and
were 1.75% ± 0.61% and 1.37 ± 1.37, respectively, in the L_
group. The IFC and CIE a* values were significantly higher in
the H_group than in the L-group (Figure 2E). In addition, the results
of general linear model analysis indicated that sex and carcass weight
had no significant impact on the IFC and CIE a* values (Table 1).

Concerning the RNA-Seq data, 37.48–50.63 million raw reads
per sample were generated. After filtering approximately 1.39% of
the raw reads, an average of 42.91 million clean reads were used for
the following analysis. The mean Q30 and GC percentage values of
these clean data were 95.19% and 52.53%, respectively. After
alignment using STAR software, 87.53% of the clean reads were
uniquely mapped to the Sus scrofa 11.1 genome (Supplementary
Table S1). Before DEG detection, low expression levels or non-
expressed genes were removed based on gene expression counts. The
remaining 16,453 genes for IFC and 16,249 for CIE a* were analyzed
in the differential expression analysis.

3.2 DEGs

The present study identified 723, 569, and 608 DEGs between
the H_IFC and L_IFC groups using DESeq2, limma, and edgeR,
respectively (Figure 3A). A total of 485 overlapping DEGs were
detected, including 190 upregulated and 295 downregulated DEGs
in the H_IFC group, respectively. For the CIE a* value, 590, 481, and
455 DEGs were identified using DESeq2, limma, and edgeR,
respectively (Figure 3C). Three hundred and ninety-four DEGs
were shared among the three methods, including 153 upregulated
and 241 downregulated DEGs in the H_CIE a* group. Figures 3B,D
exhibit the heatmap of these overlapping DEGs, fromwhich it can be
seen that the expression patterns of overlapping DEGs were
consistent within groups and different between groups.
Moreover, 201 DEGs were shared between these two traits.

3.3 Functional enrichment analysis

There were 106 significantly enriched GO (GO_DEGs) terms
(Supplementary Table S4; Figure 4A) and 20 significantly enriched
KEGG (KEGG_DEGs) pathways (Supplementary Table S5;
Figure 4B) based on overlapping DEGs between the H_IFC and
L_IFC groups. Among these 106 enriched GO_DEGs terms, most
belonged to the biological process (BP) category, and only 1 and
6 terms belonged to the cellular component (CC) and molecular
function (MF) categories, respectively. In terms of KEGG_DEGs
pathways, more than half of the 20 significantly enriched pathways
were closely associated with lipid metabolism and lipolysis, such as
the adipocytokine signaling pathway (ssc04920), MAPK signaling
pathway (ssc04010), PI3K-Akt signaling pathway (ssc04151) and
regulation of lipolysis in adipocytes (ssc04923). For the CIE a* value,
138 significantly enriched GO_DEGs terms (Supplementary Table

S6; Figure 4C) and 22 significantly enriched KEGG_DEGs pathways
(Supplementary Table S7; Figure 4D) were detected. Similarly, most
of these enriched GO_DEGs terms belonged to the BP category.
KEGG_DEGs enrichment analysis revealed that 9 of 12 significant
pathways were strongly associated with redox and antioxidant
responses, such as the insulin signaling pathway (ssc04910),
AMPK signaling pathway (ssc04152), FoxO signaling pathway
(ssc04068), adipocytokine signaling pathway (ssc04920), and
MAPK signaling pathway (ssc04010). Furthermore, 12 of these
22 significantly enriched pathways were shared with the
significantly enriched pathways found in the IFC group. This
suggests that there was some similarity in the genetic background
between the IFC and CIE a* value.

To further understand the mechanisms of genetic differences
between the high and low groups, GSEA was used. The results
showed that 168 significantly enriched GO_GSEA terms
(Supplementary Table S8) and 61 significantly enriched KEGG_
GSEA pathways (Supplementary Table S9) were identified between
the H_IFC and L_IFC groups. Among these enriched GO_GSEA
terms, the top five were related to mitochondrial metabolism and
organismal oxidoreductase activity. In terms of KEGG_GSEA,
several significant pathways associated with lipid and fatty acid
metabolism were enriched, such as oxidative phosphorylation
(ssc00190), fatty acid metabolism (ssc01212), the adipocytokine
signaling pathway (ssc04920), and ether lipid metabolism
(ssc00565). For the CIE a* value, 390 significantly enriched GO_
GSEA terms Supplementary Table S10) and 76 significantly
enriched KEGG_GSEA pathways (Supplementary Table S11)
were identified between the H_a* and L_a* groups. Redox
reactions are an essential factor influencing the CIE a* value; the
top five significantly enriched GO_GSEA terms were mainly related
to the cellular response to an organic substance, oxidoreductase
activity, and positive regulation of the developmental process.
KEGG_GSEA results showed that more than 60% of the
significantly enriched pathways in the H_a* and L_a* groups
were consistent with those significantly enriched in the high and
low IFC groups. These overlapping pathways included the above-
mentioned lipid metabolic pathways, such as ssc00190, ssc01212,
and ssc00565. These results suggested that lipid and fatty acid
metabolism are essential factors influencing changes in the CIE
a* value.

3.4 Co-expressed gene modules associated
with the IFC and CIE a* value

The expression matrix containing 10,512 genes from
19 individuals was used for WGCNA. Hierarchical cluster
analysis revealed no outliers among the19 samples
(Supplementary Figure S2A). To build a scale-free network, we
chose a soft threshold of = 18, with a scale-free topology fitting index
R2 of >0.90 (Supplementary Figure S2B). In this study, nine gene
coexpression modules were identified (Figure 5A). The module with
the minimum number of genes among these modules was the dark
orange module, containing 82 genes, while the maximum number of
genes was in the dark red module, including 4,367 genes (Figure 5B).
Correlation analysis between module eigengene and the IFC or CIE
a* value was performed, and four modules, including purple, dark
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grey, dark red, and black, were significantly correlated with the IFC
and CIE a* value (Figure 5C; Supplementary Figure S3;
Supplementary Figure S4). Among these four significant modules,
the purple module positively correlated with both the IFC and CIE
a* value. In contrast, the dark grey, dark red, and black modules
exhibited negative correlations with the IFC and CIE a* value. These
four modules contained a total of 6,045 genes encoding proteins.
Subsequently, we focused on 6,045 genes for subsequent functional

enrichment analysis. Details of the 6,045 genes are shown in
Supplementary Table S12.

3.5 Functional enrichment analysis for the
four key modules

The significant GO_WGCNA terms and KEGG_WGCNA
pathways are presented in Supplementary Tables S13 and S14.
The GO_WGCNA results showed that genes in the black red
module were significantly enriched in 35 GO terms, which were
mainly related to IFC and CIE a*, such as regulation of the catabolic
process (GO:0009894), RNA binding (GO:0003723), negative
regulation of lipid localization (GO:1905953), and
oxidoreduction-driven active transmembrane transporter activity
(GO:0015453). From the KEGG_WGCNA analysis results,
156 pathways were significantly enriched, and most of the

FIGURE 2
IFC and CIE CIE a* value comparison between the high and low groups. (A) Representative plots of latissimus dorsi (LD) tissue and H&E staining of
shared samples from the low IFC group and low CIE a* group, scale bar = 100 μm. (B) Representative plots of LD tissue and H&E staining of shared
samples from the high IFC group and high CIE a* group, scale bar = 100 μm. (C–E) Comparasion of the IFC and CIE a* value in different groups. The H_
group represents the sample combination of H_IFC and H_a*, n = 10; The L_group represents the sample combination of the L_IFC and L_a* value
group, n = 9. Error bars represent the standard deviation (SD), where yellow bars represent the IFC and blue bars represent the CIE a* value. *p < 0.05,
**p < 0.01, ***p < 0.001, two-tailed Student’s t-test.

TABLE 1 Influencing factors of intramuscular fat content (IFC) and redness
value in 147 DLY pigs.

Trait IFC CIE a* value

Sex NS NS

Carcass weight NS NS

NS, not significant.
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significant pathways were related to lipid deposition, decomposition,
and oxidation-reduction reactions. These pathways are critical in the
regulation of both IFC and CIE a*, such as the adipocytokine
signaling pathway (ssc04920), FoxO signaling pathway
(ssc04068), MAPK signaling pathway (ssc04010), and oxidative
phosphorylation (ssc00190).

In the black module, the functional enrichment results showed
that 41 GO_WGCNA terms and 86 pathways were significantly
enriched. These significant GO_WGCNA terms were mainly
involved in phosphorylation (GO:0016310), response to oxygen-
containing compounds (GO:1901700), the actin cytoskeleton (GO:
0015629), and calcium ion binding (GO:0005509). The significant
pathways related to lipid metabolism and oxidative reactions mainly
included regulation of lipolysis in adipocytes (ssc04923),
glycerolipid metabolism (ssc00561), the PI3K-Akt signaling
pathway (ssc04151), the MAPK signaling pathway (ssc04010),
and the Wnt signaling pathway (ssc04310).

Genes in the purple module were significantly enriched with
6 GO_WGCNA terms and 14 KEGG_WGCNA pathways. These

GO terms were mainly involved in extracellular matrix organization
(GO:0030198) and collagen binding (GO:0005518). Among the
significant KEGG_WGCNA pathways, four were associated with
IFC, such as fatty acid metabolism (ssc01212), insulin resistance
(ssc04931), calcium signaling pathway (ssc04020), and fatty acid
degradation (ssc00071). Genes in the black grey modules were not
significantly enriched in GO terms and KEGG pathways, which
might have been due to the limited number of genes in this module.

3.6 Identification of candidate genes related
to the IFC and CIE a* value

To determine the candidate genes affecting the IFC and CIE a*
value, we first screened the overlapping GO terms and KEGG
pathways for each trait based on the functional enrichment
analysis results of overlapping DEGs, GSEA, and WGCNA. The
DEGs in the overlapping GO terms and KEGG pathways were
selected as candidate genes. Finally, hub genes with a connectivity

FIGURE 3
Identification of differentially expressed genes (DEGs). (A) Venn diagram of DEGs identified using the DESeq2, limma, and edgeR packages for the
IFC. (B) Heatmap of overlapping DEGs between the H_IFC and L_IFC groups. (C) Venn diagram of DEGs identified using the DESeq2, limma, and edgeR
packages for the CIE a* value. (D) Heatmap of overlapping DEGs between the H_a* and L_a* groups.
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value exceeding ten were obtained by constructinga PPI network of
candidate genes. For IFC, 2 overlapping GO terms and
11 overlapping pathways were identified (Figures 6A, B). Most of
these overlapping GO terms and pathways were involved in lipid
metabolism, such as response to oxygen-containing compounds
(GO:1901700), DNA-binding transcription factor activity (GO:
0003700), insulin resistance (ssc04931), the MAPK signaling

pathway (ssc04010), adipocytokine signaling pathway (ssc04920),
the HIF-1 signaling pathway (ssc04066), and the FoxO signaling
pathway (ssc04068). For the CIE a* value, 6 overlapping GO terms,
and 10 overlapping pathways were identified (Figures 6C, D). Most
of these overlapping GO terms, and pathways were involved in
oxidative phosphorylation, system development, and lipid
metabolism, such as response to oxygen-containing compounds

FIGURE 4
GO and KEGG enrichment analysis of overlapping DEGs. (A) Top five GO terms of overlapping DEGs for the IFC in the BP, CC, and MF categories. (B)
Significantly enriched KEGG pathways of overlapping DEGs for IFC. (C) Top five GO terms of overlapping DEGs for CIE a* value in the BP, CC, and MF
categories. (D) Significantly enriched KEGG pathways of overlapping DEGs for the CIE a* value. The size of the dot represents the number of overlapping
DEGs enriched to this GO termor pathway. The colour of the dot represents the significance of the enrichment, where a redder dot indicates greater
significance.
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(GO:1901700), negative regulation of signaling (GO:0023057),
response to wounding (GO:0009611), circulatory system
development (GO:0072359), the FoxO signaling pathway
(ssc04068), the adipocytokine signaling pathway (ssc04920), the
MAPK signaling pathway (ssc04010), and the HIF-1 signaling
pathway (ssc04066).

We selected terms and pathways associated with lipid
metabolism and redox in overlapping GO terms and KEGG
pathways, and DEGs located in these terms and pathways were
considered candidate genes. The selected GO terms and KEGG
pathways for the IFC and CIE a* value are shown in Table 2 and
Table 3. The results showed that 47 and 53 genes can be considered
candidate genes for the IFC and CIE a* value, respectively. These
candidate genes were used for subsequent PPI network
construction. It was worth noting that among these two traits,
there was one GO term (response to oxygenated compounds) and
three KEGG pathways (adipocyte cytokine signaling pathway,
MAPK signaling pathway, and HIF-1 signaling pathway) that
were consistent, and these two traits shared 18 candidate genes
(Supplementary Table S15).

3.7 Hub genes

The interaction relationships of candidate genes affecting the IFC
and CIE a* value were obtained by constructing PPI networks
(Figure 7). According to the degree of connectivity, five hub genes
(ATF3, SOX9, PPARGC1A, CEBPB, and MYC) with a connectivity
value greater than ten were identified as hub genes for IFC trait.
Functional enrichment analysis showed that CEBPB, SOX9, and
PPARGC1A were mainly involved in the transcriptional regulation
of white adipocyte differentiation and the regulation of fatty acid
oxidation. For the CIE a* value, 13 hub genes (IL6, MYC, EGR1,
CEBPB, JUNB, THBS1, SERPINE1, SOCS3, DUSP1, SOX9,
PPARGC1A, CCL2, and FOXO1) were identified as hub genes.
Functional enrichment analysis showed that SOCS3, IL6, FOXO1,
CEBPB, SOX9, and PPARGC1A were mainly involved in the
adipocytokine signaling pathway, insulin resistance, FoxO signaling
pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway.
Notably, MYC, CEBPB, SOX9, and PPARGC1A were considered hub
genes (transcription factors) affecting both traits, and their expression
levels were significantly higher in the low group than in the high group.

FIGURE 5
Weighted gene co-expression network analysis (WGCNA). (A) The gene dendrogram was obtained by clustering the dissimilarity based on
consensus Topological Overlap with the corresponding module colors indicated by the color row. (B) Matrix with module trait relationships (MTRs) and
corresponding p values between the detected modules on the y-axis and traits (IFC and CIE a* value) on the x-axis, where blue represents a negative
correlation, red represents a positive correlation, and white represents no correlation. (C) The number of genes contained in each module.
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4 Discussion

DLY pork is dominant in the pork industry; however, its IFC is
low, and the meat has a paler color, resulting in limited
competitiveness within the premium pork market segment (Chen
et al., 2018; Wang et al., 2020). As a result, breeders are eager to
undertake genetic improvements in both IFC and redness (CIE a*)
meat color concurrently to cater to consumer market demands. In
this study, a highly significant positive correlation (R = 0.309, p <
0.001) between the IFC and the CIE a* value was observed, similar to
previous reports by Mortimer et al. (Mortimer et al., 2014) and
Zhang et al. (Zhang et al., 2022), in which they discovered the
correlation coefficients of the IFC and CIE a* value was 0.260 and
0.323, respectively. The interaction between IFC and meat color is
intricate. Several studies have shown that muscles with a higher
percentage of red muscle fibers (higher CIE a* values) tend to have a
higher IFC (Karlsson et al., 1999; Guo et al., 2011). On the one hand,

this is because red muscle fibers contain more neutral fat. On the
other hand, the red muscle fiber contains more mitochondria, which
are the prominent organelles for fatty acid β-oxidation. Therefore,
more lipids may accumulate around the red muscle fibers (internally
and externally) to ensure β-oxidation and provide energy to the
body. However, the relationship between IFC and muscle redness
has not been fully demonstrated. Numerous studies have found
significant correlations between IFC and CIE a*, suggesting that
there might be similarities in the genetic background regulating
changes in both the IFC and redness value. Consequently,
transcriptome analysis was conducted using individuls with
extreme IFC and CIE a* values to identify hub genes and
metabolic pathways co-regulating IFC and the redness of pork.

Conducting transcriptomic analysis based on extreme
phenotypes is a commonly employed method to identify key
genes influencing target traits. For instance, Wang et al. (2023) in
the Anqing Six-end-white pigs, employed RNA-seq on high and low

FIGURE 6
Venn network diagrams of enrichment analysis. (A) Venn network diagram of significantly enriched GO terms under three conditions for IFC. (B)
Venn network diagram of significantly enriched KEGG pathways under three conditions for IFC. (C) Venn network diagram of significantly enriched GO
terms under three conditions for the CIE a* value. (D) Venn network diagram of significantly enriched KEGG pathways under three conditions for CIE
a* value.
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IFC groups to discern critical genes affecting intramuscular fat
deposition. Ninety-seven DEGs obtained in their study
overlapped with those identified in our high and low IFC groups,
including MYC, ATF3, and LEP, which have been reported as
candidate genes related to lipid metabolism. Furthermore,
Fernández-Barroso et al. (2022) conducted RNA-seq in the LD
muscle of Iberian pigs based on extreme phenotypes of myoglobin
(CIE a* value). Among the 57 DEGs they obtained, three genes, such

as CCL2, VSTM1, and ACKR2, were consistent with our results, and
these genes might participate in metabolic pathways linked to redox
reactions. Thus, we can conclude that conducting RNA-seq based on
extreme phenotypes is an effective strategy.

In this study, WGCNA was used to detect the vital genes and
modules associated with the IFC and CIE a* values using
transcriptome data from 19 samples. The results of the WGCNA
showed that the purple module demonstrated a positive correlation

TABLE 2 Overlapping significantly enriched GO terms based on GO enrichment of DEGs, GSEA, and WGCNA.

Trait GO ID Description GO_DEGs
q value

GO_GSEA
q value

GO_WGCNA
q value

Overlapping DEGs

IFC GO:
1901700

response to oxygen-
containing compound

0.069 0.047 0.005 APOD, INHBB, CEBPB, NR4A3, SOX9, MYOD1,
CYP26B1, BGLAP, PANX1, THBS1, PCK1

GO:
0003700

DNA-binding
transcription factor
activity

0.078 0.001 0.050 TGIF1, RUNX1, FOSL2, KLF10, MAFK, SMAD1, MAFF,
CSRNP1, CEBPB, NR4A3, SIM1, ATF3, SOX9, MYOD1,
CREM, ZSCAN20, KLF5, FOSL1

CIE a* GO:
1901700

response to oxygen-
containing compound

0.023 <0.001 0.005 THBS1, INHBB, FOXO1, EGR1, PLSCR4, PLK3, CEBPB,
SOCS1, SOX9, GJA1, SLC25A33, SLC11A1, NOCT, CCL2,
SLC1A1, APOD

GO:
0023057

negative regulation of
signaling

0.034 0.004 0.012 ADRB2, THBS1, SLC25A5, ADM, SIAH2, SPRY1, SOCS3,
INHBB, EGR1, ARRDC3, DUSP5, SOCS1, SOX9, GJA1,
APOD

GO:
0009611

response to wounding 0.043 0.001 0.035 CCN1, PPL, SERPINE1, THBS1, F3, INHBB, SLC1A1,
ITGA5, APOD

GO:
0072359

circulatory system
development

0.043 <0.001 <0.001 CCN1, SERPINE1, JUNB, THBS1, ADM, VEGFA,
TIPARP, ITGA5, ANGPTL4, F3, EGR2, SOX9, GJA1,
SLC1A1

TABLE 3 Overlapping significantly enriched KEGG pathways based on KEGG enrichment of DEGs, GSEA, and WGCNA.

Trait KEGG
ID

Description KEGG_DEGs q
value

KEGG_GSEA q
value

KEGG_WGCNA q
value

Overlapping DEGs

IFC ssc04931 Insulin resistance <0.001 0.07 <0.001 INSR, PPARGC1A, PTPN1, TRIB3,
IRS2, PRKAG2, SOCS3, GFPT2

ssc04010 MAPK signaling
pathway

0.002 0.052 <0.001 MAP2K3, FLNC, VEGFA, GADD45A,
INSR, HSPB1, MAP3K8, GADD45G,
MYC, IL1RAP

ssc04920 Adipocytokine
signaling pathway

0.002 0.071 <0.001 PPARGC1A, IRS2, PRKAG2, SOCS3

ssc04066 HIF-1 signaling
pathway

0.006 0.021 <0.001 VEGFA, INSR, IL6R, SERPINE1, HK3,
TIMP1

ssc04068 FoxO signaling
pathway

0.02 0.029 <0.001 GADD45A, INSR, GABARAPL1, IRS2,
PRKAG2, GADD45G

CIE a* ssc04068 FoxO signaling
pathway

0.002 <0.001 <0.001 GADD45A, GABARAPL1, IRS2,
PRKAG2, GADD45B, FOXO1, IL6,
PLK3, FBXO32

ssc04920 Adipocytokine
signaling pathway

0.005 0.097 <0.001 PPARGC1A, IRS2, PRKAG2, CPT1A,
SOCS3

ssc04010 MAPK signaling
pathway

0.043 0.013 <0.001 GADD45A, FLNC, GADD45B, VEGFA,
FGF6, DUSP1, IL1RAP, DUSP4, MYC,
DUSP5, DUSP2

ssc04066 HIF-1 signaling
pathway

0.074 0.021 <0.001 SERPINE1, VEGFA, TIMP1, IL6, HK2
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with both th1e IFC and CIE a* value. In contrast, the dark grey, dark
red, and black modules exhibited negative correlations with the IFC
and CIE a* value. These four modules contained a total of
6,045 genes encoding proteins. Based on the overlap analysis
between the DEGs (DEGs of the IFC and DEGs of the CIE a*
value) and the WGCNA results, more than 70% of the DEGs could
be detected byWGCNA, indicating the similarity between these two
analysis methods and further proving the reliability of the results of
this study. However, some genes associated with the IFC and CIE a*
value identified by WGCNA did not exhibit differential expression
in the high and low groups. This observation suggests that WGCNA
recognized additional information by establishing interconnected
networks between genes, aligning well with the foundational
principles of WGCNA. This was consistent with the findings of
Xing et al. (2021).

The IFC and CIE a* groups shared four significantly enriched
pathways: the FoxO signaling pathway (ssc04068), adipocytokine
signaling pathway (ssc04920), MAPK signaling pathway (ssc04010),
and HIF-1 signaling pathway (ssc04066) (Table 3). The FoxO
signaling pathway governs glucose and lipid metabolism by
controlling genes associated with gluconeogenesis, glycogenolysis,
and lipid metabolism (Lee andDong, 2017). It also impacts fatty acid
oxidation and storage across diverse tissues (Chen et al., 2023a).
Although the direct connection between the FoxO pathway and
myoglobin oxidation has not been extensively documented, it is
conceivable that this pathway may indirectly influence oxidative
processes by regulating energy metabolism and responses to
oxidative stress (Egan and Zierath, 2013). The adipocytokine
signaling pathway is linked with adipocyte-related functions and
metabolism. It modulates insulin sensitivity, glucose uptake, and

lipid metabolism, affecting the release of adipokines that influence
lipid homeostasis and inflammation (Gu et al., 2019). This pathway
likely indirectly affects myoglobin oxidation by influencing factors
connected to metabolism and inflammation, thus potentially
impacting oxidative processes in muscle tissues (Jorge et al.,
2011). The MAPK signaling pathway is integral to various
cellular processes, encompassing cell growth, differentiation, and
metabolism. It can impact lipid metabolism by regulating genes
related to lipogenesis, lipolysis, and fatty acid oxidation (Chen et al.,
2023b; Wang et al., 2023). This pathway may contribute to muscle
oxidative processes by mediating cellular reactions to stress, lipid
peroxidation, and growth cues, thereby influencing myoglobin
oxidation under specific conditions (Xu et al., 2018). Activated in
response to low oxygen levels, the HIF-1 signaling pathway
orchestrates adaptive responses to hypoxia. It influences
glycolysis, lipid, and energy metabolism when oxygen levels are
low (Zhang et al., 2023). The HIF-1 pathway can affect myoglobin
oxidation by regulating the response to hypoxia, potentially
influencing oxidative metabolism and the role of myoglobin in
oxygen transport and storage (Elkholi et al., 2022). In summary,
these pathways may play pivotal roles in both fatty acid metabolism
and myoglobin oxidation.

The DEGs in Table 2 and Table 3 were considered candidate
genes influencing the IFC and CIE a* values, and the PPI network
was constructed based on them (Figure 7). Based on the degree of
connectivity, 5 hub genes (ATF3, SOX9, PPARGC1A, CEBPB, and
MYC) with a connectivity value exceeding ten were regarded as hub
genes potentially influencing IFC. Similarly, 13 hub genes impacting
the CIE a* value were identified, including IL6,MYC, EGR1, CEBPB,
JUNB, THBS1, SERPINE1, SOCS3, DUSP1, SOX9, PPARGC1A,

FIGURE 7
Protein protein interaction (PPI) network for the candidate genes affecting the IFC and CIE a* value. Edges (gray lines) between nodes indicate the
interaction of genes in the network. Green circles represent candidate DEGs for IFC, and blue circles represent candidate DEGs for CIE a*. Brown hexagos
represent overlapping candidate DEGs for IFC and CIE a*. Red circles and V-shapes represent DEGs with connectivity greater than 10 and are considered
hub genes. Hub genes shared by the IFC and CIE a* value are represented by V-shapes.
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CCL2, and FOXO1. ATF3 (activating transcription factor 3), a
member of the CREB family of basic leucine zipper transcription
factors (TFs). It has been found that the deletion of ATF3 results in
increased lipid body accumulation, and ATF3 directly regulates
transcription of the gene encoding cholesterol 25-hydroxylase
(Gold et al., 2012).

IL6 (interleukin-6) is a pivotal regulatory factor for lipolysis and
beta-oxidation. Numerous in vitro studies have substantiated that
treatment with IL6 enhances lipolysis and beta-oxidation in both
myotubes and adipocytes (Bae et al., 2023; Jackson et al., 2023).
EGR1 (Early growth response 1) is a transcription factor. Mohtar
et al. found that insulin/mTORC1-inducible EGR1 binds to the
leptin promoter and activates leptin expression in 3T3-L1
adipocytes, regulating lipid metabolism (Mohtar et al., 2019).
The results of Yan et al. suggested that inhibition of JUNB
might be a key indicator of the regulation of the APOA2-
associated PPARα pathway (Yan et al., 2020). APOA2 is a well-
known member of the apolipoprotein family (Ballester et al., 2016),
and the PPARα pathway is also a key pathway in regulating lipid
metabolism (Cao et al., 2023). THBS1 (thrombospondin-1) is a
prototypical matricellular protein. THBS1-null mice exhibited
elevated free fatty acids and triglycerides compared to wild-type
mice, suggesting impaired fatty acid uptake (Kong et al., 2013).
SERPINE1 (Serpin Family E Member 1), also known as
plasminogen activator inhibitor type 1 (PAI-1), is a member of
the serine proteinase inhibitor (serpin) superfamily. Several
findings have shown that PAI-1 might promote the
differentiation of mesenchymal stem cells toward adipogenesis,
and PAI-1 deficiency attenuates changes in the levels of adipogenic
genes such as PPARγ and aP2 (Tamura et al., 2013; Hu et al., 2019).
SOCS3 (suppressor of cytokine signaling 3) plays an important role
in regulating energy metabolism processes. In recent years,
researchers have found that SOCS3 is involved in the AMPK
signaling pathway, insulin resistance, adipocytokine signaling
pathway, and JAK/STAT pathway, is activated/triggered by
leptin signals, and plays important roles in lipid metabolism
processes (Liu et al., 2014; Fang et al., 2020; Yang et al., 2020).
DUSPs (dual-specificity phosphatases) are the key phosphatases in
the MAPK pathway. Recently, DUSP1 was suggested to play a
critical role in the switch from oxidative to glycolytic myofibers
(Flach et al., 2011), and can regulate fatty acid oxidation (Roth et al.,
2009). CCL2 (chemokine ligand 2) is a member of the C–C motif
family of chemokines. Kang et al. found that after CCL2 binds to its
receptor CCR2, it can reduce lipid peroxidation by inhibiting CCR2,
indicating its important regulatory role in lipid oxidation
metabolism (Roth et al., 2009). Current studies suggest that the
transcription factor FOXO1 (forkhead box protein O1) is involved
in lipid metabolism and lipolysis in adipocytes (Chakrabarti and
Kandror, 2009; Chakrabarti et al., 2011). Song et al. found that
interfering with FOXO1 negatively regulated the expression of
adipogenic differentiation marker genes and lipid anabolism
marker genes, thus reducing triglyceride content and inhibiting
the generation of lipid droplets in bovine adipocytes (Song
et al., 2023).

It is worth noting that these two traits share four hub genes:
MYC, CEBPB, SOX9, and PPARGC1A. MYC is a transcription
factor that regulates cell proliferation and differentiation in
healthy cellular processes. Hall et al. revealed that the

activation of MYC led to the accumulation of cholesteryl esters
stored in lipid droplets (Hall et al., 2020). A previous study found
thatMYC is involved in the MAPK signaling pathway, promoting
the glycolysis process in fish T cells (Wei et al., 2020). In addition,
MYC is involved in the WNT signaling pathway and serves as a
target gene/transcriptome factor for WNT, regulating myogenesis
(Karczewska-Kupczewska et al., 2016). CEBPB (CCAAT/
enhancer binding protein β) is a member of the transcription
factor family of CEBP. Several studies have reported that
PPARGC1A (PPAR coactivator-1α, also known as PGC1α), a
transcriptional co-activator of PPARγ, can bind to CEBPB and
form a transcription complex. This complex may promote the
transcription of CPT1A (carnitine palmitoyl transferase 1 A) and
activate fatty acid β-oxidation (Du et al., 2019; Wu et al., 2020).
SOX9 (Sex-determining region Y-type box-9) is a member of the
Sox supergene family and has been proven to be an essential
transcription factor in cartilage formation during chondrocyte
proliferation (Akiyama, 2008). Wang et al. confirmed that SOX9
can directly bind to the promoters of CEBPB and CEBPD, inhibit
their promoter activity, and prevent adipocyte differentiation
(Wang and Sul, 2009). This evidence indicated that the SOX9/
CEBPB/PPARGC1A axis might play an essential regulatory role in
fatty acid β-oxidation. Myoglobin is an oxygen-binding
hemeprotein generally localized to oxidative muscle and
functions as an oxygen store and reactive oxygen species
scavenger (Gödecke, 2010). Schlater et al. confirmed that an
increase in lipids could stimulated an increase in myoglobin
content in muscle cells of C2C12 mice, which was closely
related to fatty acid beta oxidation (Schlater et al., 2014). In
summary, we speculated that the SOX9/CEBPB/PPARGC1A axis
plays a vital role in the co-regulation of IFC deposition and
changes in the redness of meat color. The expression levels of the
upstream gene STAT3 (signal transducer and activator of
transcription 3) and downstream CPT1A genes (log2FC =
1.17) in the SOX9/CEBPB/PPARGC1A axis were also
significantly different in the high and low groups in this study,
further supporting the importance of this pathway in the
synergistic regulation of lipid and myoglobin metabolism.
Thererore, it will be particularly interesting to investigate the
co-regulatory mechanism of the SOX9/CEBPB/PPARGC1A axis
in IFC and CIE a* value traits in further studies.

5 Conclusion

In this study, we identified 5 hub genes influencing the IFC
and 13 hub genes affecting the CIE a* value through integrating
differential gene expression analysis, WGCNA, functional
enrichment under various conditions, and PPI network
analysis. These genes maninly participate in multiple lipid
and myoglobin metabolism pathways. Moreover, we
discovered that the SOX9/CEBPB/PPARGC1A axis is the
potential pathway co-regulating lipid deposition and the
myoglobin redox reaction. These hub genes and the SOX9/
CEBPB/PPARGC1A axis may be critical for the IFC and CIE
a* value; however, the functions and regulatory mechanism of
these hub genes, particularly the SOX9/CEBPB/PPARGC1A axis,
still need to be further elucidated.
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Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two
economically important freshwater aquaculture species in the United States, with
channel catfish contributing to nearly half of the country’s aquaculture
production. While differences in economic traits such as growth rate and
disease resistance have been noted, the extent of transcriptomic variance
across various tissues between these species remains largely unexplored. The
hybridization of female channel catfish with male blue catfish has led to the
development of superior hybrid catfish breeds that exhibit enhanced growth rates
and improved disease resistance, which dominate more than half of the total US
catfish production. While hybrid catfish have significant growth advantages in
earthen ponds, channel catfish were reported to grow faster in tank culture
environments. In this study, we confirmed channel fish’s superiority in growth
over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this
study, respectively; p < 0.001). In addition, we conducted RNA sequencing
experiments and established transcriptomic resources for the heart, liver,
intestine, mucus, and muscle of both species. The number of expressed
genes varied across tissues, ranging from 5,036 in the muscle to over
20,000 in the mucus. Gene Ontology analysis has revealed the functional
specificity of differentially expressed genes within their respective tissues, with
significant pathway enrichment in metabolic pathways, immune activity, and
stress responses. Noteworthy tissue-specific marker genes, including lrrc10,
fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This
transcriptome resource is poised to support future investigations into the
molecular mechanisms underlying environment-dependent heterosis and
advance genetic breeding efforts of hybrid catfish.
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Introduction

Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus
furcatus) are two native North American catfish species. Blue catfish
are the largest catfish in the US and reach sexual maturity at older
ages than channel catfish (Graham, 1999). Blue catfish grow slower
than channel catfish during the first 2 years. As a result, channel
catfish reach market size before blue catfish. Channel catfish is
traditionally considered the most important and popular species for
catfish farmers and producers in the US. However, channel catfish is
not as resistant as blue catfish to enteric septicemia of catfish (ESC),
which causes an annual economic loss of 50 million dollars (Wolters
and Johnson, 1994; Yeh et al., 2005).

To combat pathogenic infections in channel catfish, genetic
enhancement of catfish was achieved through interspecific
hybridization. The hybrid between female channel catfish and male
blue catfish (I. punctatus × I. furcatus) constitutes more than 50% of the
total US catfish production (Torrans and Ott, 2018), and the hybrid
catfish grow 20%–100% faster than commonly cultured strains of
channel catfish, depending upon the environment (Dunham et al.,
1990; Dunham et al., 2008). The hybrid catfish combines many of the
best traits of their parental species and is a highly desirable fish in
commercial pond culture. It offers improved feed conversion efficiency
(Dunham et al., 2008; Brown et al., 2011), increased carcass yield
(Bosworth, 2012), better low oxygen tolerance (Dunham et al., 1983),
disease resistance (Arias et al., 2012), and enhanced harvestability
(Dunham and Masser, 2012). However, heterosis in growth is
environment-dependent. Catfish fry are typically reared in indoor
tanks, and juvenile catfish will be transferred from indoor tanks to
earthen ponds for aquaculture. Previous studies on the growth trait have
shown that hybrid catfish are not superior in the tank culture
environment, whereas channel catfish had a growth advantage
instead (Dunham et al., 1990). The molecular mechanism of growth
advantage in channel catfish is still poorly understood. Gene expression
research sheds light on the physiology of a set of cells or tissues at a
certain period, including cellular adaptations to different environments
(Singh et al., 2018). Although organism cells carry out similar processes
for key biological functions in their own tissue environment, they
display unique functions that support the definition of their phenotype
(Sonawane et al., 2017). Characterizing gene expression differences
between the two catfish species across various tissues will provide
valuable insights into understanding the phenotypic variations in
growth and disease resistance and serve as the first pass to
investigate molecular mechanisms underlying environment-
dependent heterosis.

RNA sequencing is a transcriptome-wide approach used to
characterize gene expression profiles in various catfish species.
Several studies have recently been conducted to analyze differentially
expressed genes (DEGs) and functional pathways in blue catfish,
channel catfish, and their hybrids. For instance, in the liver
transcriptome, a group of genes associated with fatty acid
metabolism was discovered to be significantly upregulated in
channel catfish compared to blue catfish and hybrids (Wang et al.,
2022a). In another study, a set of DEGs involved in the formation of the
swim bladder were identified between channel catfish and other catfish.
These genes were enriched in the Wnt signaling pathway and the
hedgehog signaling pathway (Yang et al., 2018). Taking advantage of
RNA sequencing, these findings shed light on the distinctive genetic

characteristics and potential functional differences between these catfish
species and their hybrids. However, a broader organ selection is still
needed to better understand the transcriptomes in channel catfish and
blue catfish.

In this study, five organs (heart, liver, muscle, mucus, and intestine)
were selected from channel catfish and blue catfish transcriptome
characterization at the 10.8-month juvenile fish stage. Muscle
development and muscle growth are directly relevant to the overall
quality of fishmeat (Fuentes et al., 2013; Xu et al., 2019). The heart plays
a crucial role in pumping oxygen and nutrients and dealing with
environmental stress (Saetan et al., 2021). The liver is involved in
various metabolic processes that support fish growth, including but not
limited to metabolism, nutrient storage, energy production, and
detoxification (Zhang et al., 2021). Mucus serves as a protective
layer against pathogens, parasites, and environmental toxins, as well
as a barrier to fight infection through its immune-related functions
(Lange et al., 2018). The intestine also has an immune function to
defend against harmful microbes and interact with the gut microbiota.
In addition, it is themajor organ for digestion and nutrient assimilation,
which promotes growth. The comparative transcriptomic analyses
provide insights into gene function differences between the two
species and the molecular basis of the channel catfish’s growth
advantage in the tank culture environment.

Materials and methods

Fish maintenance and tissue sample
collection

The experimental animal protocols regarding animal care and
tissue collections were approved by the Auburn University
Institutional Animal Care and Use Committee (AU-IACUC) with
the approval number PRN-2019-3520. Blue catfish (BB) and
channel catfish (CC) were cultured at the Auburn University Fish
Genetics Research Unit in Auburn, Alabama, United States. Both
catfish species were maintained in the indoor recirculatory
aquaculture system with separate 60-L rectangular tanks (60 cm ×
23 cm × 43.5 cm) at an initial density of 1,000 fry per tank. The fry were
fed with Purina® AquaMax® Fry Starter 100 for the first 3 months. At
2 months old, fry density was adjusted to 100 fry per tank and then to
50 fish per tank at 4 months old. Starting at 4 months, the fry were fed
with Purina® AquaMax® Fry Starter 200 for 3 months and then with
Purina® AquaMax® Fry Starter 300 three times a day. Dissolved oxygen
was maintained above 5 mg/L, with pH levels between 7.0 and 7.5. At
10.8 months of age, three randomly selected fish from each species were
euthanized with 300 ppm tricaine methanesulfonate (MS-222, Syndel
Inc., Ferndale, WA, United States). Muscle, liver, intestine, mucus, and
heart tissues were dissected immediately after euthanasia. All tissue
samples were flash-frozen in liquid nitrogen and stored in a −80°C
freezer until RNA extraction.

RNA extraction, library preparation, and
sequencing

Three replicates were performed for each tissue of the two catfish
species at 10.8 months of age. The total RNA was extracted using the
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Quick RNA Microprep Kit (Zymo Research, Irvine, CA,
United States) following the manufacturer’s protocol. RNA
concentrations were measured using a NanoDrop OneC

Microvolume UV-Vis Spectrophotometer (Thermo Scientific,
Waltham, MA, United States). The library for each tissue sample
was constructed using the NEBNext® Poly(A) mRNA Magnetic
Isolation Module and NEBNext® Ultra™ II RNA Library Prep
Kit (New England BioLabs, Ipswich, MA, United States) with
1 µg of total RNA input. The library PCR amplifications were
conducted using 18 cycles. The concentration of sequencing
libraries was quantified using a Qubit 3.0 Fluorometer (Thermo
Scientific, Waltham, MA, United States), and the average size of
cDNA libraries was evaluated with the D1000 ScreenTape assay
using the TapeStation 4,200 System (Agilent Technologies, Santa
Clara, CA, United States). The libraries were sequenced on an
Illumina NovoSeq6000 sequencer to generate 2 × 150-bp paired-
end reads at Novogene (Novogene Corporation Inc., Sacramento,
CA, United States).

RNA sequencing analysis

The quality of the raw reads was assessed by FastQC (version
0.11.6) (Andrews, 2010). Low-quality bases and adapter sequences were
trimmed using Trimmomatic (version 0.39), and sequencing reads
shorter than 36 bp in length were excluded from subsequent analysis
(Bolger et al., 2014). RNA-seq reads were aligned to the blue catfish (I.
furcatus) reference genome (Wang et al., 2022b) using STAR aligner
version 2.7.5c (Dobin et al., 2013). The gene read counts of each sample
were quantified and summarized usingHTseq version 1.0 (Anders et al.,
2015). Genes with extremely low expression values in all tissues were
excluded, and genes with counts >1 in at least three samples were
retained for subsequent analysis.

Identification of differentially
expressed genes

To determine gene expression levels for each sample, read
counts were normalized using the edgeR package in R (version
3.6.4) (Robinson et al., 2010). The differentially expressed genes
(DEGs) between CC and BB for each tissue sample were identified
using the cutoff of |log2 (fold change)| > 1.5 and a false discovery
rate (FDR) < 0.05. The Benjamini–Hochberg method was used to
determine the adjusted p-values.

Gene ontology and functional
enrichment analysis

For functional enrichment analysis, blue catfish genes were
mapped to the zebrafish (Danio rerio) assembly GRCz11 (Howe
et al., 2013) using DIAMOND version 2.0.0 (Buchfink et al., 2021) to
determine the gene names. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway (Kanehisa
and Goto, 2000) analyses were performed using Metascape (Zhou
et al., 2019) with default parameters. The DEG gene symbols were
used as the input gene list. The optional parameters of “input as

species” and “analysis as species” were selected as “any species” and
“zebrafish,” respectively. The GO terms analysis was conducted for
biological processes, cellular components, and molecular functions.

Analysis of tissue-specific gene expression

The τ index was used to determine the tissue specificity (Yanai
et al., 2005) in gene expression, which ranges from 0 (non-specific,
expressed equally in all tissues) to 1 (highly specific, only expressed
in one tissue). For each gene, τ is computed according to the formula
τ index = ΣN

i (1−xi)
N−1 , i � 1 , where N is the number of tissues, and xi is

the normalized expression value. A cutoff of τ > 0.9 was used to
detect tissue-specific genes (Yanai et al., 2005).

Quantitative reverse transcription PCR
validation of tissue-specific genes

Quantitative reverse transcription PCR (qRT-PCR) experiments
were performed to validate the tissue-specific genes identified from
RNA-seq data. One candidate gene from each group (channel catfish
only, blue catfish only, and both species) was selected, including fabp2,
cyp21a2, and pth1a. A housekeeping gene, gapdh, was included as a
reference. The relative gene expression levels of these genes were
quantified in the heart, intestine, liver, mucus, and muscle of
channel catfish and blue catfish, with three replicates for each tissue.
Primer sequences used for qRT-PCR validation are listed in
Supplementary Table S4. The first-strand cDNA synthesis was
conducted using the LunaScript® RT SuperMix Kit (New England
BioLabs, Ipswich, MA, United States) with 1 μg of total RNA, following
themanufacturer’s protocol. The same total RNA samples for the RNA-
seq experiments were used for validation. Quantitative reverse
transcription PCR was performed on a Bio-Rad C1000 Touch
Thermal Cycler with CFX96 Real-Time PCR Detection Systems
(Bio-Rad Laboratories, Hercules, CA, United States) in a 20 μL final
reaction volume. The reactionmixture included 10 μL of Luna universal
qPCR Master Mix, 0.5 μL of each primer, 6 μL of nuclease-free water,
and 3 μL of cDNA template. The standard amplification protocol was
95°C for 60 s, followed by 40 cycles at 95°C for 15 s and 60°C for 30 s
with two technical replicates. The relative gene expression value was
computed using the 2−ΔΔCT method.

Results

Channel catfish exhibit superior growth
during the early life stages of tank culture

Although heterosis has been reported in pond culture, channel
catfish (CC, channel catfish × channel catfish) exhibit superior
growth compared to blue catfish (BB, blue catfish × blue catfish)
and their reciprocal hybrids (CB, channel catfish female × blue
catfish male, and BC, blue catfish female × channel catfish male) in
tanks and other smaller culturing units (Figure 1A) (Dunham et al.,
1987; Dunham et al., 1990; Argue et al., 2014; Wang et al., 2022a). In
this study, we measured the body weight at 3 weeks and 10.8 months
of age for N = 20 fish of each of the four genetic types (CC, BB, CB,
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and BC). No significant difference was observed between channel
catfish and blue catfish at 3 weeks (p > 0.05; Figure 1B), but channel
catfish were significantly heavier at 10.8 months than blue catfish
(30.3 g vs 11.6g, p < 0.001; Figure 1C and Data S1). The difference in
body weight suggests that the growth rate of channel catfish is
approximately three times higher than that of blue catfish, which is
consistent with previous studies (Wang et al., 2022c).

Transcriptome-wide expression profiling
revealed significant differences in gene
expression in the liver, mucus, and intestine
between channel catfish and blue catfish

To investigate gene expression differences in important organs
between channel catfish and blue catfish, the heart, liver, intestine,
mucus, and muscle were selected for transcriptome analysis at
10.8 months of age (Figure 1D and Supplementary Table S1). In
total, 697 million 150-bp reads (209.2 Gbp of sequences) were

generated (Supplementary Table S2). On average, 73% of RNA-seq
reads were uniquely mapped to the blue catfish reference genome
(Wang et al., 2022b). To investigate the tissue-specific gene
expression profiles in both species, a multi-dimensional scaling
(MDS) plot was generated using normalized gene counts and the
transcriptomic profiles clustered together by tissue in the first two
dimensions (Figure 1E). Overall, tissues exhibit a higher degree of
resemblance than species, reflecting functional similarities among
individual tissues. Dimension 1 separated skeletal muscle and
heart from the remaining tissues, which is consistent with the
fact that they are derived from mesoderm (Figure 1E). The skeletal
muscle and heart tissues from BB and CC are intermingled,
whereas liver, intestine, and skin mucus samples from the two
species are well separated (Figure 1E). The results suggest that
skeletal muscle and heart muscle are more functionally conserved
than other tissues. Notably, skin mucus and intestine
transcriptomic profiles are more similar within species. Mucus-
secreting cells are also present in the intestine, and both organs are
in contact with the microbiota (gut and skin microbiota).

FIGURE 1
Body weight measurements and multi-dimensional scaling (MDS) plot of transcriptome quantification from five tissues of channel catfish and blue
catfish. (A) Four genetic types of channel catfish Ictalurus punctatus (CC), blue catfish Ictalurus furcatus (BB), and their reciprocal hybrids (BC and CB). (B)
Barplot of body weight for four genetic types at 3 weeks of age. (C) Barplot of body weight for four genetic types at 10.8 months of age. Statistical
significancewas assessed by the nonparametric Mann–WhitneyU test (**, p < 0.01; ***, p < 0.001). (D)MDS plot of five tissues in blue catfish (BB) and
channel catfish (CC). The expressed gene counts were used as input. The x-axis and y-axis represent the first two dimensions.To graphics: This image
should be moved to figure 1
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Detection of differentially expressed genes
between channel catfish and blue catfish in
five organs

The expression levels of each gene were determined using the reads
per kilobase of transcript per million mapped reads (RPKM). To
identify DEGs, a pairwise analysis of differential gene expression was
conducted between channel catfish and blue catfish (Data S2). Among
these five organs, themucus exhibited the largest number of DEGs, with
2,324 upregulated and 3,509 downregulated DEGs in channel catfish
compared to blue catfish (Figure 2A). The intestine and heart also had
more than 2,000 DEGs between channel catfish and blue catfish
(Figures 2B,C). In contrast, muscle displayed the lowest number of
DEGs, with only 125 upregulated DEGs and 228 downregulated DEGs
(Figure 2D), suggesting functional conservation between species. There
were ~1,400 DEGs identified in the liver samples (Figure 2E).

To compare the overall expression profiles among five organs,
the numbers of expressed genes (RPKM >2) in each organ were
investigated (Figure 2F). The mucus transcriptome had the largest
number of expressed genes (>20,000 genes), whereas the muscle had
only 5,036 genes detected, indicating considerable variation among
organs. A total of 4,644 genes were found to be shared among all five
organs (Figure 2F), accounting for ~90% of the muscle
transcriptome or ~25% of the mucus transcriptome. The liver,
heart, intestine, and mucus exhibited the largest overlapping gene
set, with 7,113 expressed genes common to these organs. More than
4,000 genes were expressed exclusively in the mucus and intestine,
which is consistent with the similar gene expression profiles depicted
in the MDS plot (Figure 1E). Regarding genes that were only
expressed within an individual organ, mucus had the largest
number of organ-specific genes (1,173), while muscle tissue had
the lowest number, with only 24 such genes identified (Figure 2F).

FIGURE 2
Transcriptome-wide differentially expressed genes (DEGs) in five organs between channel catfish and blue catfish. Volcano plots of pairwise
comparisons in the mucus (A), intestine (B), heart (C), muscle (D), and liver (E). DEGs with a false discovery rate (FDR) < 0.05 are highlighted. The x-axis
stands for log2 (fold change), and the y-axis represents −log10(FDR). The vertical lines indicate |log2FoldChange| = 1.5. (F) Upset plot showing the
intersection of expressed gene sets across five organs between channel catfish and blue catfish.
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Stress response, immune activity, and
metabolic pathways are enriched
among DEGs

To identify the biological function of DEGs in each tissue, gene
ontology (GO) enrichment analyses were performed comparing blue
catfish and channel catfish. The upregulated DEGs were defined as
genes with higher expression levels in channel catfish than those in blue
catfish. In the heart, upregulated DEGs were significantly enriched in
the lipid metabolic process (p < 10−5), while downregulated DEGs
clustered in immunity-related terms such as regulation of neutrophil
migration and complement activation (Figure 3A). In the intestine, the
most significant function term was “cytosolic ribosome” in the
upregulated DEGs (p < 10−40; Figure 3B). In contrast, the

downregulated DEGs were mainly enriched in response to
temperature stimulus (p < 10−4), which is associated with the stress
response process (Figure 3B). In the liver, upregulated DEGs were
primarily enriched in the cellular lipid metabolic process (p < 0.001;
Figure 3C). Interestingly, downregulated DEGs were also clustered in
metabolic terms such as carboxylic acid metabolic process, NADP
metabolic process, and cellular lipid metabolic process (Figure 3C). In
mucus, the enrichment analysis revealed that upregulated DEGs were
significantly associated with the structural constituents of ribosomes
(p < 10−17), creatine kinase activity, cytokine receptor activity, and
response to wounding (Figure 3D). For muscle tissues, the top three
most enriched terms among upregulated DEGs were carbohydrate
catabolic process, muscle contraction, and cellular response to
stress (Figure 3E).

FIGURE 3
Gene ontology enrichment analysis of differentially expressed genes between channel catfish and blue catfish. Enrichment scores (x-axis) were
determined by −log10(p-value) for significantly enriched terms of upregulated and downregulated genes in channel catfish in the heart (A), intestine (B),
liver (C), mucus (D), and muscle (E).
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Tissue-specific genes in channel catfish and
blue catfish

To examine the diversity of expression patterns among
tissues, we utilized a tissue specificity index (τ value) to
quantify the specificity of the gene profile (Data S3). In this
study, a gene with a τ value greater than 0.9 was classified as a
tissue-specific gene (TSG). Thus, TSGs were identified across the
five tissues in two species. Among the different tissues in channel
catfish, the number of TSGs ranged from 33 in muscle tissue to
1,872 in mucus tissue (Supplementary Table S3 and
Supplementary Data S4). The distribution of TSG across
tissues in blue catfish followed a similar pattern. Among the
tissue-specific genes, three highly expressed genes, irrc10, fabp2,
and agt, were exclusively detected in channel catfish (Figure 4A).
Three different genes, hspa9, cyp21a2, and myog, were identified
only in blue catfish. It is worth noting that some tissue-specific

genes were expressed in both species, including ngfb, pth1a, and
isl1 (Figure 4C).

To confirm tissue-specific expression identified from RNA-seq
data using an independent approach, qRT-PCR was performed to
determine the relative expression levels of selected genes (see
Materials and Methods). The relative expression value of fabp2
was significantly higher in the intestine of channel catfish than in
other tissues (p < 0.05; Supplementary Figure S1). No fabp2
expression was detected in blue catfish, indicating that fabp2 is
intestine-biased in channel catfish only. Cyp21a2 was highly
expressed in both the intestine and mucus of blue catfish, while
little to no expression was detected in channel catfish (Supplementary
Figure S2). Pth1a was exclusively expressed in the heart in both
species, but its expression level in the blue catfish was over 100 times
higher than in the channel catfish (Supplementary Figure S3). The
relative expression values of all three genes are consistent with the
expression pattern identified from RNA-seq data.

FIGURE 4
Tissue-specific and species-specific gene candidates in channel catfish and blue catfish at 10.8 months of age. Barplots of RNA-seq reads per
kilobase of transcript per million mapped reads (RPKM) values. (A) Tissue-specific genes (lrrc10, fabp2, and agt) found only in channel catfish. (B) Tissue-
specific genes (hspa9, cyp21a2, and myog) found only in blue catfish. (C) Tissue-specific genes (ngfb, pth1a, and isl1) found in channel catfish and blue
catfish.To graphics: This image should be moved to figure 4

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2024.1341555

143

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1341555


Discussion

Tissue-specific transcriptomes in blue
catfish and channel catfish

In this study, transcriptomes from fivemajor tissues/organs provide
a genomic resource for investigating the transcriptomic differences
between two economically important catfish species. Given the
variations observed in growth performance and disease resistance
between blue catfish and channel catfish, there is a strong interest in
understanding local adaptation, genome evolution, and the genetic basis
underlying these traits. Over the past decade, expressed sequence tag
(EST) sequencing (Li et al., 2007), single nucleotide polymorphisms
(SNPs) information (Liu et al., 2011), and full-length cDNAs
identification (Chen et al., 2010) have been characterized in blue
catfish and channel catfish. Although swimbladder RNA-seq data
were reported to investigate the differences in chamber formation
between blue catfish and channel catfish (Yang et al., 2018), the
transcriptomic divergence study across multiple tissues between
these two species is still limited.

Transcriptomes are most commonly used in fish to characterize
molecular physiology and identify genes that respond to or
ameliorate environmental stresses (Basu et al., 2002; Cossins and
Crawford, 2005). Gene expression regulation shows considerable
variation among different organs, individuals, and species (Hsieh
et al., 2003). All tissue-specific transcriptomes used in this study
were from peripheral tissues, including the heart, intestine, liver,
mucus, and muscle. Overall, the peripheral tissue transcriptomes
separated into distinct clusters on the MDS plot, suggesting a
divergence of gene expression patterns. The utilization of
peripheral tissue transcriptomes in catfish research can contribute
to the understanding of catfish biology and create opportunities for
further investigations in various fields, including metabolism,
immune responses, development, stress response, and physiology.

The growth advantage in channel catfish
may be associatedwithmetabolic regulation
and tissue development

Cardiac tissue plays a vital role in fish physiology as it is responsible
for pumping oxygenated blood throughout the fish’s body and
delivering essential nutrients and hormones to various organs and
tissues. Cardiac transcriptome analyses have been very effective in
discovering candidate genes in studies of cardiac toxicity, response
to hypoxia, and cardiac disease in various fish species (Shih et al., 2015;
Saetan et al., 2021; Xiao et al., 2021). Although no treatment was
administered in the present study, two heart tissue-specific genes were
identified through a comparison of gene profiles among tissues,
including lrrc10 and pth1a (Figure 3). Irrc10, a highly conserved
gene unique to the heart, is implicated in embryonic development
and tissue differentiation processes. Lrrc10 was reported as a cardiac-
specific factor (Serdin1) in mice that is essential for heart development
(Adameyko et al., 2005; Manuylov et al., 2008). In zebrafish, the Lrrc10
morphants exhibited cardiac functional defects, as evidenced by a
decrease in ejection fraction and cardiac output (Kim et al., 2007).
The pth1a gene encodes a protein called parathyroid hormone receptor
1 (PTH1 receptor), which plays a crucial role in the regulation of

calcium and phosphate homeostasis. This is consistent with the
downregulated DEGs enriched in response to peptide hormones
(Figure 3A). It was also shown to play a role in bone remodeling,
which involves the continuous breakdown and formation of bone
tissue, in zebrafish (Aceto et al., 2015).

Fish intestine serves several important functions related to
digestion, nutrient absorption, body fluid balance, and immune
defense, which are critical for growth and disease-resistance
phenotypes. A dramatically upregulated intestine-specific gene in
channel catfish, fabp2 (fatty acid-binding protein 2; Figure 4A),
encodes an intestinal fatty acid-binding protein (I-FABP). Fatty acid-
binding proteins (FABPs) play a crucial role in the transcriptional
regulation of genes associated with lipid metabolism, which can
significantly impact fat deposition in animals (Venkatachalam et al.,
2018). Fabp2 was initially identified in mammals and is expressed
exclusively in the intestine (Gajda and Storch, 2015). It has also been
reported in fish species with variable expression patterns (Sharma et al.,
2004; Venkatachalam et al., 2017). Numerous studies have provided
evidence that the expression of FABP in fish is regulated by nutritional
factors (Venold et al., 2013; Xu et al., 2017). Starvation stress affects the
expression level of FABP in various fish species, typically leading to
downregulation in response to prolonged periods of starvation
(Kaitetzidou et al., 2015; Ölmez et al., 2015). Therefore, alterations
in FABP levels and gene expression can serve as indicators of lipid
accumulation. During the dissection process in the present study, a
substantial presence of white adipose tissues was notably observed in
channel catfish, indicating that channel catfish tend to accumulate a
greater amount of energy sources than blue catfish at the 10.8-month
developmental stage.

Skeletal muscle constitutes the major portion of the fish trunk,
comprising approximately 40%–60% of the total body weight (Xu
et al., 2019). Fish muscle performs a variety of physiological
functions associated with locomotion, movement, and
metabolism. The regulation of muscle fiber development and
growth is maintained by myogenic regulatory factor (MRF)
genes, including myod, myf5, myog, and mrf4. Among these
genes, myog is a crucial member of the myogenic regulator
family, responsible for governing the differentiation of
mesodermal cells into myoblasts, which subsequently form the
muscle fibers. Notably, myog is the only gene among the MRFs
expressed in all skeletal muscle cell lines (Hasty et al., 1993). It was
also reported that the MRF genes are regulated by the GH-insulin-
like growth factor (IGF) axis (Fuentes et al., 2013). Gene silencing
and knockout of the myostatin gene have been found to promote
somatic growth in many fish species, such as zebrafish (Gao et al.,
2016), medaka (Chiang et al., 2016), and channel catfish (Khalil
et al., 2017). In the present study, the highly expressed myog gene in
the muscle of channel catfish may contribute to the difference in
growth performance between blue catfish and channel catfish in a
tank environment (Figure 4B).

Difference in stress response and immune
activity between blue catfish and
channel catfish

Mucus provides the mucosal barrier as the first line of defense
against pathogens. The secretion patterns of mucus not only
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influence the rates of bacterial shedding but also play important
roles in the production of enzymes, antimicrobial peptides, and
secreted immunoglobulins (Xu et al., 2013). Comparing the mucus
transcriptome between blue catfish and channel catfish revealed a
significant number of DEGs, indicating potential differences in
immune response mechanisms. Specifically, the upregulated
DEGs in mucus were enriched with gene ontology terms related
to cytokine receptor activity (GO: 0004896) and response to
wounding (GO: 0009611), suggesting unique immune patterns in
channel catfish (Figure 3D). Blue catfish also have their own set of
GO terms for stress response. For example, a mucus-specific gene,
cyp21a2 was highly expressed in blue catfish compared to channel
catfish (Figure 4B). It encodes the cytochrome P450 enzyme 21-
hydroxylase, which plays a crucial role in catalyzing a key step in the
biosynthesis of glucocorticoids (such as cortisol) and
mineralocorticoids (Miller and Auchus, 2011). In fish, cortisol
serves as the primary circulating glucocorticoid, with effects
mediated through the glucocorticoid receptor (GR) (Faught and
Vijayan, 2016). The primary function of cyp21a2 is to facilitate the
production of cortisol, which is involved in regulating metabolism,
immune responses, stress response, and maintaining homeostasis in
the body. In zebrafish, cyp21a2 knockout induced a reduction in
cortisol levels (Eachus et al., 2017). As a common stress indicator,
the higher cortisol levels in blue catfish may indicate that this species
is more sensitive to environmental and psychological stress. Further
study needs to be conducted at the physiological level to confirm
this. In addition to glucocorticoids, cyp21a2 is also responsible for
the production of mineralocorticoids, primarily aldosterone.
Aldosterone is involved in regulating sodium and potassium
balance, blood pressure, and fluid balance in the body.

The liver plays an important role in the metabolism,
detoxification, nutrient storage, synthesis of blood proteins, and
immune function of fish. The agt gene, also known as
angiotensinogen, encodes the angiotensinogen protein.
Angiotensinogen is a precursor protein that plays a significant
role in the renin-angiotensin system (RAS) (Nishimura, 2004), a
hormonal cascade involved in regulating blood pressure, fluid
balance, and sodium homeostasis. The agt gene is also likely to
be involved in the immune response, as a previous study indicated
that the expression level of agt significantly increased after bacterial
infection in ayu (Chen et al., 2008).

Heat tolerance is a critical trait in aquaculture species (Tan et al.,
2019). Heat shock proteins (HSPs) belong to a superfamily of
proteins that are triggered by various stressors, including
physical, chemical, and biological factors, such as high
temperature, hypoxia, infection, and toxins (Kregel, 2002).
HSP70 is a widely recognized stress protein in aquatic organisms,
playing a crucial role in stress responses, including thermotolerance
(Bertotto et al., 2011), and also participating in the regulation of the
immune system (Tsan and Gao, 2009). In the present study, hspa9,
as a member of the heat shock protein 70 (HSP70) family, was found
to be highly expressed in blue catfish intestine tissue compared to
channel catfish (Figure 4B), indicating potential stress susceptibility
in blue catfish. In Japanese flounder, the hspa9 was identified with a
high level of expression in the transcriptome after infection with
Edwardsiella tarda.

The sensory and neural systems enable fish species to perceive
the world around them and respond appropriately to the

environment (Borghezan et al., 2021). The ngfb gene encodes the
nerve growth factor beta (NGFβ) protein, which plays a vital role in
the development and survival of nerve cells, particularly sensory
neurons responsible for transmitting pain, temperature, and touch
sensations. A significant difference in ngfb expression levels was
observed in this study between channel catfish and blue catfish
(Figure 4C), which may impact their function. It was found that ngfb
was downregulated in the hippocampal neurons induced by
lipopolysaccharides (LPS) (Fang et al., 2020). Collectively,
divergence in multiple organs may contribute to the differences
in stress response and immune activity between channel catfish and
blue catfish.
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Association analysis between
Acetyl-Coenzyme A
Acyltransferase-1 gene
polymorphism and growth traits
in Xiangsu pigs
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Ministry of Education, Guizhou University, Guiyang, China, 2Guizhou Provincial Key Laboratory of Animal
Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China, 3College of Animal Science,
Guizhou University, Guiyang, China

Introduction: Acetyl-Coenzyme A Acyltransferase-1 (ACAA1) is a peroxisomal
acyltransferase involved in fatty acid metabolism. Current evidence does not
precisely reveal the effect of the ACAA1 gene on pig growth performance.

Methods: The present study assessed the mRNA expression levels of the ACAA1
gene in the heart, liver, spleen, lung, kidney of 6-month-old Xiangsu pigs and in
the longissimus dorsi muscle at different growth stages (newborn, 6 months and
12 months of age) using RT-qPCR. The relationship between single-nucleotide
polymorphisms (SNPs) of ACAA1 gene and growth traits in 6-month-old and 12-
month-old Xiangsu pigs was investigated on 184 healthy Xiangsu pigs using
Sanger sequencing.

Results: The ACAA1 gene was expressed in heart, liver, spleen, lung, kidney, and
longissimus dorsi muscle of 6-month-old pigs, with the highest level of
expression in the liver. ACAA1 gene expression in the longissimus dorsi muscle
decreased with age (p < 0.01). In addition, four SNPs were identified in the ACAA1
gene, including exon g.48810 A>G (rs343060194), intron g.51546 T>C
(rs319197012), exon g.55035 T>C (rs333279910), and exon g.55088 C>T
(rs322138947). Hardy-Weinberg equilibrium (p > 0.05) was found for the four
SNPs, and linkage disequilibrium (LD) analysis revealed a strong LD between
g.55035 T>C (rs333279910) and g.55088 C>T (rs322138947) (r2 = 1.000).
Association analysis showed that g.48810 A>G (rs343060194), g.51546 T>C
(rs319197012), g.55035 T>C (rs333279910), and g.55088 C>T (rs322138947)
varied in body weight, body length, body height, abdominal circumference,
leg and hip circumference and living backfat thickness between 6-month-old
and 12-month-old Xiangsu pigs.

Conclusion: These findings strongly demonstrate that the ACAA1 gene can be
exploited for marker-assisted selection to improve growth-related phenotypes in
Xiangsu pigs and present new candidate genes for molecular pig breeding.
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Xiangsu pigs, ACAA1, single-nucleotide polymorphism, fat deposition, growth traits
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1 Introduction

Pork is one of the important sources of animal protein for
humans. Improving the growth traits of pigs is an ongoing goal in
the field of animal husbandry. Growth traits such as living backfat
thickness (LBT), body length (BL), body height (BH), chest
circumference (CC), chest depth (CD), and rump circumference
(RC) are directly related to the economic efficiency of pigs (Liu et al.,
2021; Zhang et al., 2021).Growth traits are quantitative traits that are
regulated by a few major genes and a large number of minor genes
(Boyle et al., 2017). With the rapid development of molecular
breeding and sequencing technologies, many genes that regulate
pig growth traits have been identified and confirmed (Shi
et al., 2022).

Acetyl-Coenzyme A Acyltransferase-1 (ACAA1) cleaves 3-
ketoacyl-CoA to acetyl-CoA and acyl-CoA by catalyzing the β-
oxidation of fatty acids in peroxisomes, driving the synthesis and
secretion of fatty acids (Wanders et al., 2001;Wang et al., 2021). This
enzyme is also key in regulating fatty acid oxidation and lipid
metabolism (Luo et al., 2018). The ACAA1 gene is downstream
in the peroxisome proliferator–activated receptor (PPAR) signaling
pathway. The PPAR enzyme critically regulates fatty acid synthesis
and transport, catalyzes the synthesis of esterified cholesterol from
free cholesterol and long-chain fatty acids, and plays a crucial role in
fatty acid metabolism (Li et al., 2017). Recent research on the
ACAA1 gene has primarily focused on human cancer and
metabolic diseases. Emerging evidence indicates that ACAA1
gene expression is downregulated in hepatocellular carcinoma
and renal clear cell carcinoma (Li et al., 2017; Liu et al., 2015;
Nwosu et al., 2018; Yan et al., 2017; Zhang et al., 2019). The ACAA1
gene was revealed to be highly expressed in triple-negative breast
cancer cells, and inhibiting the ACAA1 gene decreased the
proliferation of triple-negative breast cancer cells (Peng et al.,
2023). ACAA1 is a type 2 diabetes (T2D) biomarker that can
predict the metabolic characteristics of pre-diabetes in mouse
models (Kumar et al., 2015). Research on the ACAA1 gene in
animal husbandry has linked ACAA1 mutation to milk
production traits of buffalo. Analysis of the liver transcriptomes
and the microarray dataset of Hereford (beef breed) and Holstein-
Friesian (dairy breed) bulls with different genetic backgrounds
revealed that Hereford bulls were highly involved in fatty acid
biosynthesis and lipid metabolism by up-regulating ACAA1 gene
expression as compared to Holstein-Friesian (Lisowski et al., 2014).

Single Nucleotide Polymorphism (SNP) refers to the DNA
sequence polymorphism caused by single nucleotide variation at
the chromosome genomic level, and the frequency of this variation is
more than 1% in at least one population (Taylor et al., 2001; Vignal
et al., 2002). Five SNPs (g.-681 A>T, g.-24348 G>T, g.-806 C>T, g.-
1868 C>T and g.-23117 C>T) were identified in the buffalo ACAA1
gene, among which g.-681 A>T, g.-24348 G>T, and g.-23117 C>T
are significantly associated with milk production traits in buffaloes.
In addition, the g.-681 A>T mutation in the promoter region
significantly changed the transcriptional activity (Deng et al.,
2023). A missense variant rs117916664 of the ACAA1 gene was
identified in a Han Chinese early-onset familial Alzheimer’s disease
(AD) family and found to be associated with early-onset familial AD
(Luo et al., 2021). A genetic polymorphism in the ACAA1 gene alters
the association between endotoxin exposure and asthma (Sordillo

et al., 2011). However, data on the polymorphism of the ACAA1
gene in pigs is scarce.

Xiangsu pig is a novel breeding strain that utilizes Sutai pig and
Congjiang Xiang pig as parents and repeatedly backcrossed with
Congjiang Xiang pig as male parent. Congjiang Xiang pig has early
sexual maturity, strong fat deposition capacity, and strong disease
resistance but slow growth (Liu et al., 2018; Tang et al., 2018; Xu
et al., 2022). The SuTai pig is a breed characterized by its high
reproductive rate and strong adaptability (Bao et al., 2012). The
Congjiang xiang pig accounts for 87.5% of the genetic lineage within
the Xiangsu pig population, allowing for the full inheritance of its
genetic traits in subsequent generations (Xu et al., 2022). Therefore,
we selected ACAA1 gene as a candidate gene for the growth traits of
the Xiangsu pig and evaluated the relationship betweenACAA1 gene
polymorphism and the growth traits of the Xiangsu pig, which is
valuable for Xiangsu pig breeding in the future.

2 Materials and methods

2.1 Experimental animals

The animal experiments fully adhered to the guidelines of the
Animal Welfare Committee of Guizhou University (EAE-GZU-
2022-E031). The production cycle (farrowing to growing-
finishing) of Xiangsu pig is 12 months. A total of 184 healthy
Xiangsu pigs under the same feeding level were selected to track
and record the growth traits (body weight, body length, body height,
chest circumference, abdominal circumference, tube circumference,
leg and hip circumference and living backfat thickness) of 6-month-
old and 12-month-old Xiangsu pigs. The measurement method of
body weight, body length, body height, chest circumference,
abdominal circumference, tube circumference, leg and hip
circumference was referred to as NY/T2894-2016. The probe of
the handheld veterinary ultrasound diagnostic device (KX5200) had
been positioned vertically on the 10th and 11th thoracic vertebrae of
pigs to measure the living backfat thickness of 6-month-old and 12-
month-old pigs.

2.2 Primer design

The upstream and downstream primers were designed by
Primer Premier 5.0 software using the pig ACAA1 gene
(accession number: NC_010455.5) and mRNA sequence
(accession number: XM_003132103.4); GADPH gene (accession
number: NC_010447.5) and mRNA sequence (accession number:
NM_001206359.1) available in NCBI GeneBank. The primers were
synthesized by Beijing Qingke Biotechnology Co., Ltd., (Table 1).

2.3 Collection of blood and tissue samples

The blood (5 mL) of 184 3-month-old Xiangsu pigs was drawn
through the jugular vein using an EDTA anticoagulant tube, labeled
with the number and date, and stored in a refrigerator at −20°C for
DNA extraction. Three 6-month-old Xiangsu pigs were randomly
selected from Xiangsu pigs for slaughter. The heart, liver, spleen,
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lung, kidney and longissimus dorsi muscle were collected in 2 mL
cryopreservation tubes and stored in a refrigerator at −80°C for RNA
extraction in order to compare the expression of ACAA1 gene in
different tissues of 6-month-old pigs. Three pigs are selected for
slaughter from each age group (newborn and 12 months old) at each
stage, and the longissimus dorsi muscle was collected and preserved
in 2 mL cryopreservation tubes in a refrigerator at −80°C for RNA
extraction in order to compare the expression of ACAA1 at
different ages.

2.4 DNA and RNA extraction

DNA was extracted from 184 blood samples of Xiangsu pigs using
the whole blood DNA extraction kit (D3392-01, Omega). Total RNA of
heart, liver, spleen, lung and kidney of Xiangsu pigs at 6 months of age
and total RNA of longissimus dorsi muscle at newborn, 6 months and
12 months of age was extracted using the TRIzol Extraction Kit
(15,596,026; Thermo Fisher). The concentration and purity of DNA
and RNA were determined using an ultra-micro spectrophotometer
(Thermo Mano Drop 2000), followed DNA by storage at −20°C and
RNA by storage at −80°C (Supplementary Table S1).

2.5 cDNA synthesis

cDNAwas synthesized using the RNAReverse Transcription Kit
(A234-10; GenStar). By this kit 1 μg RNA, 1 μL Primer Mix, 10 μL
2× StarScript III Buffer, 1 μL StarScript III Enzyme Mix, and then
supplemented with Nuclease-free Water to a final volume of 20 μL.
The mixture was incubated at 50°C for 15 min, followed at 85°C for
5 min. The resulting cDNA was stored at −20°C for subsequent
experiments.

2.6 Amplification

A 30 μL system was used for PCR amplification. The PCR
reaction mixture was prepared as follows: 15 μL 2×Taq PCR

Starmix, 10.5 μL ddH2O, 1.5 μL DNA template (40 ng/μL),
forward and reverse primers, 1.5 μL each. The PCR amplification
procedure included a pre-denaturation at 94°C for 3 min; after
35 cycles, 94°C denaturation for 30 s (Tm see Table 1), annealing
for 30 s, 72°C extension for 1 min; 72°C final extension for 5 min;
infinite hold at 4°C. The PCR products (184) were visualized with 1%
agarose gel electrophoresis and sent to Qingke Biological Co., Ltd.
for sequencing.

2.7 Real-time fluorescent quantitative PCR

The total RNA concentration was standardized (1000 ng/μL),
and 1 μg total RNA, 2 μL 5 × gDNA Eraser Buffer gDNA Eraser, and
RNase-Free water were added to the enzyme-free PCR tube to obtain
a 10 μL reaction volume. The samples were incubated at 37°C for
5 min to remove gDNA. In addition, a 10 μL Master Mix (including
1 μL PrimeScript RT Enzyme Mix I, 1 μL RT Primer Mix, 4 μL 5×
PrimeScript Buffer 2, and 4 μL RNase-Free ddH2O) was prepared on
ice. Total RNA (without gDNA) and Master Mix were mixed in an
enzyme-free PCR tube, incubated at 42°C for 15 min, then at 85°C
for 5 min, and the resultant cDNA was stored at −20°C.

A 10 μL real-time fluorescence quantitative PCR reaction
mixture was constituted as follows: 5 μL 2× PowerUp SYBP
Green Master Mix (A25742; Thermo Fisher), 0.5 μL cDNA
template, 0.4 μL (10 μmol/L) forward and reverse primers, and
3.7 μL ddH2O. The quantitative real-time PCR amplification
steps were set as follows: 50°C UDG enzyme activation 2 min;
pre-denaturation at 95°C for 2 min; 95°C denaturation 15 s, 55°C
annealing 30 s, 72°C extension 30 s, 40 cycles; from 72°C to 95°C, a
temperature increase step by 1.6°C per second for 15 s, and then a
temperature decrease step by 1.6°C per second from 95°C to 60°C.
Each sample had 3 replicates.

2.8 Statistical analysis

The presence of SNPs in ACAA1 sequence was determined via
peak plotting against the PCR sequencing reads using the

TABLE 1 Primer information of ACAA1 gene sequence.

Primer names Primer sequences (5′→3′) Product size/bp Annealing temperature/°C

ACAA1-Exon7 F:GACTCTTCAGAGGAAGAGAGAGGAG 649 57

R:CAGCAGACGATGACTCTGCTGAT

ACAA1-Exon9 F:TTGTTAGATGTGTCCTTCACTGTGG 675 63

R:TCAACTTTCTAGGCCTCCAGAGTT

ACAA1-Exon15 F:TGAGGTCTGGCATCTTCTGTGC 615 63

R:CTCAGAGGTGGAGCAGTACAAAGAG

ACAA1-qPCR F:ATGGGGATAACCTCAGAGAACGT 175 55

R:TCTCATTGCCCTTGTCATCGTAG

GADPH F:GGTCGGAGTGAACGGATTT 247 60

R:CCATTTGATGTTGGCGGGA

Note: F denotes the upstream primer, and R denotes the downstream primer. bp: base pair.
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SeqMan software. The genotype, allele frequency, and Hardy-
Weinberg equilibrium (HWE) of each mutation site were
computed directly, and whether the genotype conformed to
HWE was analyzed using the χ2 test and p-value. Nei’s
method was employed to analyze the genetic indexes of the
population, including gene heterozygosity (He), gene
homozygosity (Ho), and polymorphism information content
(PIC) (Nei and Roychoudhury, 1974). The effective number of
alleles (Ae) is related to the distribution of gene frequency in the
population, and the markers were calculated with GenAlEx 6.5
(New Brunswick, NJ, United States) (Peakall and Smouse, 2012).
PIC refers to a measure used to assess the ability to detect
polymorphism among individuals in a population. The range
of polymorphic information content is between 0 and 1, with
higher values indicating greater information content and
polymorphism in genetic markers (Serrote et al., 2020). The
SHEsis platform (http://analysis.bio-x.cn) was used for linkage
disequilibrium (LD) analysis and haplotype analysis of single-
nucleotide polymorphisms (SNPs) in the ACAA1 gene (Li et al.,
2009; Shi and He, 2005). Squared allele-frequency correlations
(r2) and Standardized disequilibrium coefficients (D′) were used
to estimate the level of LD (Du et al., 2007). The r2 value is
commonly used to evaluate the degree of linkage disequilibrium.
When r2 > 0.33, it is a strong linkage disequilibrium state (Ardlie
et al., 2002). D′ is the normalized coefficient of linkage
disequilibrium (LD) divided by the theoretical maximum
difference between the observed and expected allele
frequencies (Bozorgmehr et al., 2020). Haplotype and
diplotypes analyses were performed based on SNPs.

ACAA1 genotype association analysis was performed using IBM
SPSS 22.0 (IBM, New York, NY, United States). The least square
method was applied to the general linear model (GLM) to examine
the association between genotypes and growth traits of 184 Xiangsu
pigs. A statistical model, Yij = μ+Gi + Sj + eij, was developed where
Yij denotes the observed growth trait; μ denotes the overall
population means; Gi represents the fixed effect of the genotype,
Sj represents the random effect of sire, and eij denotes the random
error (Naicy et al., 2017).

The relative expression of the ACAA1 gene was calculated using
the 2−ΔΔCt method (Saitou and Nei, 1987), with glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) gene as the endogenous
reference gene, where Δ Ct = Ct (target gene)-Ct (GADPH), and
2−ΔΔCt represents the differetial expression multiple relative to
GADPH expression A one-way analysis of variance (ANOVA)
was conducted to compare the differences among the heart, liver,
spleen, lung, kidney, and longissimus dorsi muscle of 6-month-old
pigs. Additionally, ANOVA was performed to assess the differences
in the longissimus dorsi muscle of newborns, 6-month-old, and 12-
month-old pigs.

3 Results

3.1 Expression level of ACAA1 gene in
Xiangsu pig tissues

The ACAA1 gene was expressed in the heart, liver,
spleen, lung, kidney, and longissimus dorsi muscle of

6-month-old Xiangsu pigs, with higher levels in the liver and
kidney and lower levels in the spleen and longissimus
dorsi muscle (p < 0.01) (Figure 1). Newborn piglets exhibited
the highest expression of the ACAA1 gene (p < 0.01) in
the longissimus dorsi muscle, and it decreased with
age (Figure 2).

FIGURE 1
Analysis of the differential expression of the ACAA1 gene in
various tissues at 6 months of age. Note: Relative mRNA expression
levels were calculated by 2−ΔΔCt method. “A, B, C” indicate extremely
significant differences among different tissues of six-month-old
Xiangsu pigs (p < 0.01); the same uppercase letters indicate no
significant difference.

FIGURE 2
Analysis of the differential expression of the ACAA1 gene in dorsal
longest muscle at newborn, 6 months, and 12 months of age. Note:
Relative mRNA expression levels were calculated by 2−ΔΔCt method. “A,
B, C” denotes extremely significant differences in dorsal longest
muscle at birth, 6 months and 12 months of age (p < 0.01).
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3.2 Analysis of the ACAA1 gene
polymorphism

The presence of SNPs in ACAA1 gene sequence was determined
via peak plotting against the PCR sequencing reads using the
SeqMan. Four SNPs were detected in the ACAA1 gene of
Xiangsu pigs, including exon 7 g.48810 A>G (rs343060194),
intron 9 g.51546 T>C (rs319197012), exon 15 g.55035 T>C
(rs333279910), and exon 15 g.55088 C>T (rs322138947)
(Figure 3). Using DNA Star software to compare the sequences
of three exon mutation sites g.48810 A>G (rs343060194),
g.55035 T>C (rs333279910), g.55088 C>T (rs322138947) with
the NCBI amino acid reference sequence of the ACAA1 (XP_
003132151.1). Three exon mutation sites indicated no changes in
the amino acid sequence, therefore they are synonymous mutations.

3.3 Genetic polymorphism analysis of the
ACAA1 gene

Each mutation site had three genotypes. The chi-square test (χ2)
revealed that the four SNPs loci g.48810 A>G (rs343060194),
g.51546 T>C (rs319197012), g.55035 T>C (rs333279910) and
g.55088 C>T (rs322138947) were in HWE (p > 0.05) (Table 2).

The homozygosity (Ho) of the four SNPs of theACAA1 gene was
0.5151–0.5605, and the heterozygosity (He) was 0.4395–0.4849
(Table 3). The homozygosity (Ho) was higher than the
heterozygosity (He), demonstrating that the four loci in this
population showed a low degree of variation; effective number of
alleles (Ae) was 1.7841–1.9413. The polymorphism information
content ranged from 0.3429 to 0.3673, indicating a moderate
polymorphism level (0.25<PIC < 0.5).

3.4 Linkage disequilibrium and haplotype
analysis of SNPs in the ACAA1 gene

Linkage disequilibrium (LD) analysis was performed on the four
SNPs in the ACAA1 gene (Figure 4). The D’ values of the four SNPs
ranged between 0.414 and 1.000, and the r2 values ranged between
0.058 and 1.000. The r2 for g.55035 T>C (rs333279910) and
g.55088 C>T (rs322138947) was 1.000, indicating a strong LD.

Table 4 displays the findings of the ACAA1 gene haplotype
analysis. The population had six haplotypes with a frequency greater
than 5.00%, and less than 5.00% were excluded from statistical
analysis. Among the six haplotypes, Hap 1 (-GCCT-) had the highest
frequency (25.00%), while Hap 6 (-ATCT-) had the lowest frequency
(5.70%). Based on the paired combinations of six haplotypes, five
diplotypes combinations with frequencies greater than 5.00% were
obtained, including Hap1/3, -GCCT/ATTC-; Hap2/2, -GTTC/
GTTC-; Hap2/5, -GTTC/GCTC-; Hap2/4, -GTTC/GTCT-; Hap1/
1, -GCCT/GCCT- (Table 5).

3.5 Association analysis between ACAA1
gene and growth performance

The association between 4 SNP loci g.48810 A>G
(rs343060194), g.51546 T>C (rs319197012), g.55035 T>C
(rs333279910) and g.55088 C>T (rs322138947)) and 8 growth
traits at 6 months (Table 6) was examined using the SPSS
22 software. The results showed that in the 6-month-old pigs,
there was a significant difference in body weight between the AG
genotype and the GG genotype at the exon g.48810 A>G
(rs343060194) locus (p < 0.05). The leg and hip circumference of
the CC genotype at the intron g.51546 T>C (rs319197012) locus

FIGURE 3
Sequencing peaks of four SNPs in the ACAA1 gene. (A) g.48810 A>G (rs343060194), (B) g.51546 T>C (rs319197012), (C) g.55035 T>C (rs333279910),
(D) g.55088 C>T (rs322138947).
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were significantly different from that of the TC genotype (p < 0.05).
Furthermore, the body weight of the TC genotype at the exon
g.55035 T>C (rs333279910) locus was significantly different from
that of the TT genotype (p < 0.05), while the living backfat thickness
of the TT genotype was significantly different from that of the CC
genotype (p < 0.01). In addition, at the g.55088 C>T (rs322138947)
locus, the body weight of the CT genotype was significantly different
from that of the CC genotype (p < 0.05), and the living backfat

thickness of the CC genotype was significantly different from that of
the TT genotype (p < 0.01).

The association between 4 SNP loci g.48810 A>G
(rs343060194), g.51546 T>C (rs319197012), g.55035 T>C
(rs333279910), and g.55088 C>T (rs322138947)) and 8 growth
traits at 12 months (Table 7) was examined using the SPSS
22 software. The results showed that the body length of pigs
with the GG genotype at the g.48810 A>G (rs343060194) locus

TABLE 2 Genotype frequencies and allele frequencies of ACAA1 gene in Xiangsu pigs.

SNPs rs number Genotypic frequency Allele frequency χ2 p

g.48810 A>G rs343060194 AA AG GG A G 3.32 0.19

0.14 (25) 0.38 (70) 0.48 (89) 0.33 0.67

g.51546 T>C rs319197012 TT TC CC T C 1.87 0.39

0.39 (72) 0.43 (79) 0.18 (33) 0.61 0.39

g.55035 T>C rs333279910 TT TC CC T C 1.20 0.55

0.36 (67) 0.45 (82) 0.19 (35) 0.59 0.41

g.55088 C>T rs322138947 CC CT TT C T 1.20 0.55

0.36 (67) 0.45 (82) 0.19 (35) 0.59 0.41

Note: p > 0.05 indicates that the gene frequency in the population is at Hardy-Weinberg equilibrium. The number of samples is indicated in brackets.

TABLE 3 Genetic information of ACAA1 gene population.

SNPs rs
number

Effective allele
number (Ae)

Homozygosity
(Ho)

Heterozygosity
(He)

Polymorphism information
content (PIC)

g.48810 A>G rs343060194 1.7841 0.5605 0.4395 0.3429

g.51546 T>C rs319197012 1.8918 0.5225 0.4775 0.3635

g.55035 T>C rs333279910 1.9413 0.5151 0.4849 0.3673

g.55088 C>T rs322138947 1.9413 0.5151 0.4849 0.3673

Note: PIC < 0.25 is low polymorphism, 0.25<PIC < 0.5 is medium polymorphism, and PIC > 0.5 is high polymorphism.

FIGURE 4
r2 and D’ values in linkage disequilibrium analysis of ACAA1 gene SNPs.
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was significantly different from that of the AG genotype (p <
0.01). The abdominal circumference of pigs with the AG genotype
was significantly different from that of the GG genotype (p <
0.05). The body weight and abdominal circumference of pigs with
the TC genotype at the g.51546 T>C (rs319197012) intron locus

were significantly different from that of the TT genotype (p <
0.05), and the same was observed for the leg and hip
circumference and living backfat thickness with the TC
genotype from that of the TT genotype (p < 0.01). The body
weight of pigs with the TC genotype at the g.55035 T>C

TABLE 4 Haplotype frequencies of 4 SNPs in Xiangsu pig.

Haplotype g.48810 A>G
(rs343060194)

g.51546 T>C
(rs319197012)

g.55035 T>C
(rs333279910)

g.55088 C>T
(rs322138947)

Frequency
(%)

Hap1 G C C T 25.00

Hap2 G T T C 24.20

Hap3 A T T C 21.30

Hap4 G T C T 9.40

Hap5 G C T C 8.80

Hap6 A T C T 5.70

Note: Haplotypes with frequencies <5.00% were excluded from the analysis.

TABLE 5 Diplotypes and frequency of ACAA1 gene.

Diplotypes g.48810 A>G
(rs343060194)

g.51546 T>C
(rs319197012)

g.55035 T>C
(rs333279910)

g.55088 C>T
(rs322138947)

Frequency
(%)

Hap1/3 GA CT CT TC 19.02

Hap2/2 GG TT TT CC 11.96

Hap2/5 GG TC TT CC 7.61

Hap2/4 GG TT TC CT 5.98

Hap1/1 GG CC CC TT 5.43

Note: Diplotypes with frequencies <5.00% were excluded from the analysis.

TABLE 6 Association analysis between ACAA1 gene and growth traits of 6-month-old Xiangsu pigs.

SNPS Genotypes B W (kg) B L (cm) B H
(cm)

C C
(cm)

A C
(cm)

T C
(cm)

L H
C (cm)

L B
T (mm)

g.48810 A>G
(rs343060194)

AA 70.56 ± 1.76ab 95.56 ± 3.11 63.76 ± 3.02 95.72 ± 3.73 96.88 ± 3.28 17.96 ± 0.79 62.88 ± 2.01 10.88 ± 0.89

AG 70.97 ± 1.83a 94.97 ± 4.49 64.84 ± 4.63 95.47 ± 2.86 97.17 ± 2.86 18.00 ± 0.92 62.20 ± 2.04 10.88 ± 1.01

GG 70.29 ± 2.19b 94.91 ± 3.16 63.79 ± 3.28 94.93 ± 3.32 97.06 ± 3.71 17.94 ± 0.94 62.20 ± 1.83 10.60 ± 1.51

g.51546 T>C
(rs319197012)

TT 70.28 ± 2.04 95.15 ± 3.22 63.54 ± 3.19 95.08 ± 3.12 96.88 ± 3.05 17.83 ± 0.95 62.23 ± 1.80ab 10.65 ± 1.61

TC 70.70 ± 1.97 94.65 ± 4.34 64.53 ± 4.54 95.13 ± 3.17 97.05 ± 3.59 17.95 ± 0.93 62.09 ± 2.02b 10.89 ± 1.01

CC 71.00 ± 2.03 95.63 ± 2.97 64.76 ± 3.10 95.88 ± 3.52 97.58 ± 3.35 18.15 ± 0.91 62.91 ± 1.97a 10.59 ± 0.93

g.55035 T>C
(rs333279910)

TT 70.13 ± 1.99b 94.72 ± 2.74 63.66 ± 3.05 94.90 ± 3.08 96.45 ± 3.22 17.78 ± 0.95 62.03 ± 1.65 10.99 ± 0.97A

TC 70.93 ± 1.98a 95.04 ± 4.52 64.52 ± 4.39 95.27 ± 3.10 97.41 ± 3.47 18.05 ± 0.94 62.30 ± 2.12 10.75 ± 0.98AB

CC 70.66 ± 2.02ab 95.57 ± 3.19 64.40 ± 3.78 95.86 ± 3.70 97.49 ± 3.15 18.00 ± 0.87 62.77 ± 1.97 10.26 ± 2.01B

g.55088 C>T
(rs322138947)

CC 70.13 ± 1.99b 94.72 ± 2.74 63.66 ± 3.05 94.90 ± 3.08 96.45 ± 3.22 17.78 ± 0.95 62.03 ± 1.65 10.99 ± 0.97A

CT 70.93 ± 1.98a 95.03 ± 4.52 64.52 ± 4.39 95.27 ± 3.10 97.41 ± 3.47 18.05 ± 0.94 62.30 ± 2.12 10.75 ± 0.98AB

TT 70.6 ± 2.04ab 95.57 ± 3.19 64.40 ± 3.78 95.86 ± 3.70 97.49 ± 3.15 18.00 ± 0.87 62.77 ± 1.97 10.26 ± 2.01B

Note: BW, Body weight/kg; BL, Body length/cm; BH, Body height/cm; CC, Chest circumference/cm, AC, Abdominal circumference/cm; TC, Tube circumference/cm; LHC, Leg and hip

circumference/cm; LBT, Living backfat thickness/mm. The data are expressed as mean ± standard deviation. Different lowercase letters represent significant differences at 0.05 level (p < 0.05),

different uppercase letters indicate significant differences at 0.01 level (p < 0.01), and the same letters (case-insensitive) show no significant difference (p > 0.05).
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(rs333279910) exon locus was significantly different from that of
the TT genotype (p < 0.05), and the same was observed for the
living backfat thickness with the TC genotype from that of the TT
genotype (p < 0.01). The body height of pigs with the CC genotype
was significantly different from that of the TC and TT genotypes
(p < 0.05). The leg and hip circumference of pigs with the TC and
CC genotypes were significantly different from that of the TT
genotype (p < 0.05). The body weight of pigs with the CT
genotype at the g.55088 C>T (rs322138947) locus was
significantly different from that of the CC genotype (p < 0.05);
and the same was observed for the living backfat thickness with
the CT genotype from that of the CC genotype (p < 0.01). The
body height of pigs with the TT genotype was significantly
different from that of the CC and CT genotypes (p < 0.05); the
leg and hip circumference of pigs with the CT and TT genotypes
were significantly different from that of the CC genotype (p <
0.05); there were no significant differences in other
indicators (p > 0.05).

3.6 Association analysis between ACAA1
gene diplotypes and growth performance

Association analysis was performed between five diploid
combinations and the growth traits of 6-month-old of

Xiangsu pigs. Hap1/3, -GCCT/ATTC- outperformed Hap2/2,
-GTTC/GTTC- in terms of body weight. Hap1/1, -GCCT/
GCCT-was superior to Hap2/2, -GTTC/GTTC- in chest
circumference, Hap2/5, -GTTC/GCTC- outperformed Hap2/2,
-GTTC/GTTC- in terms of tube circumference, Hap1/1,
-GCCT/GCCT-outperformed Hap1/3, -GCCT/ATTC- Hap2/5,
-GTTC/GCTC-, Hap2/4, -GTTC/GTCT-in terms of leg and hip
circumference (Table 8). The association analysis between five
diplotypes and growth traits of 12-month-old Xiangsu pigs
revealed that Hap1/1, -GCCT/GCCT-was superior to Hap2/2,
-GTTC/GTTC- in body weight and leg and hip circumference.
Hap2/4, -GTTC/GTCT-was superior Hap1/3, -GCCT/ATTC- in
body length, Hap2/5, -GTTC/GCTC- outperformed Hap2/2,
-GTTC/GTTC in terms of body height and tube
circumference (Table 9). In a nutshell, Hap1/1, -GCCT/
GCCT-can be employed as an advantageous genotype
combination for subsequent breeding.

4 Discussion

This study investigated and analyzed the expression levels of
the ACAA1 gene in different tissues (heart, liver, spleen, lung,
kidney, and longissimus dorsi muscle) of Xiangsu pigs at
6 months of age The results revealed that the ACAA1 gene

TABLE 7 Association analysis between ACAA1 gene and growth traits of 12-month-old Xiangsu pigs.

SNPS Genotypes B W (kg) B L (cm) B H
(cm)

C C
(cm)

A C (cm) T C
(cm)

L H C
(cm)

L B T
(mm)

g.48810 A>G
(rs343060194)

AA 137.72 ± 4.77 130.44 ±
1.39AB

72.20 ± 1.29 119.52 ±
1.94

126.88 ±
3.77ab

19.64 ±
0.86

87.16 ± 3.08 13.88 ± 1.22

AG 138.17 ± 4.10 130.04 ±
1.26B

71.57 ± 1.48 119.83 ±
1.98

128.14 ±
3.52a

19.76 ±
0.79

87.96 ± 2.52 14.18 ± 1.13

GG 137.12 ± 4.06 130.56 ±
1.17A

71.92 ± 1.60 119.91 ±
2.20

126.69 ±
3.43b

19.69 ±
1.35

87.19 ± 2.73 14.02 ± 1.04

g.51546 T>C
(rs319197012)

TT 136.76 ±
4.38b

130.49 ± 1.30 71.72 ± 1.62 119.71 ±
2.11

126.71 ±
3.46b

19.60 ±
0.76

86.86 ± 2.88B 13.71 ± 1.22B

TC 138.25 ±
3.86a

130.20 ± 1.19 71.89 ± 1.51 119.77 ±
1.98

127.87 ±
3.46a

19.82 ±
1.40

88.02 ± 2.42A 14.37 ± 0.90A

CC 137.88 ±
4.29ab

130.39 ± 1.27 71.91 ± 1.35 120.21 ±
2.26

127.03 ±
3.86ab

19.67 ±
0.85

87.52 ± 2.80AB 14.08 ±
1.04AB

g.55035 T>C
(rs333279910)

TT 136.66 ±
4.32b

130.43 ± 1.26 71.70 ±
1.56b

119.94 ±
2.04

126.72 ± 3.60 19.75 ±
1.50

86.78 ± 2.89b 13.74 ± 1.19B

TC 138.27 ±
3.97a

130.21 ± 1.23 71.68 ±
1.52b

119.71 ±
1.98

127.62 ± 3.48 19.73 ±
0.80

87.83 ± 2.50a 14.30 ± 0.99A

CC 137.86 ±
4.20ab

130.51 ± 1.27 72.40 ±
1.35a

119.89 ±
2.39

127.49 ± 3.62 19.57 ±
0.74

88.00 ± 2.66a 14.11 ±
1.05AB

g.55088 C>T
(rs322138947)

CC 136.66 ±
4.32b

130.43 ± 1.26 71.70 ±
1.56b

119.94 ±
2.04

126.72 ± 3.60 19.75 ±
1.50

86.78 ± 2.89b 13.74 ± 1.19B

CT 138.27 ±
3.97a

130.21 ± 1.23 71.68 ±
1.52b

119.71 ±
1.98

127.62 ± 3.48 19.73 ±
0.80

87.83 ± 2.50a 14.30 ± 0.99A

TT 137.86 ±
4.20ab

130.51 ± 1.27 72.40 ±
1.35a

119.89 ±
2.39

127.49 ± 3.62 19.57 ±
0.74

88.00 ± 2.66a 14.11 ±
1.05AB

Note: BW, Body weight/kg; BL, Body Length/cm; BH, Body height/cm; CC, Chest circumference/cm; AC, Abdominal circumference/cm; TC, Tube circumference/cm; LHC, Leg and hip

circumference/cm; LBT, Living backfat thickness/mm. The data are expressed as mean ± standard deviation. Different lowercase letters represent significant differences at 0.05 level (p < 0.05),

different uppercase letters indicate significant differences at 0.01 level (p < 0.01), and the same letters (case-insensitive) show no significant difference (p > 0.05).
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was expressed in all examined tissues, including the heart, liver,
spleen, lung, kidney, and longissimus dorsi muscle of Xiangsu
pigs. Among them, the expression of ACAA1 gene in liver was
significantly different from that in other tissues (p < 0.01).
ACAA1 regulates fatty acid oxidation and lipid metabolism by
catalyzing peroxisomal fatty acid β-oxidation (Luo et al., 2018).
Lipid metabolism is tightly linked to fat deposition in muscle,
which directly influences the meat taste of pork products. Liver
and muscle are the main metabolic organs involved in the
regulation of lipid metabolism, and investigation of the
expression level and spatial and temporal changes of the
ACAA1 gene in critical visceral organs, and longissimus dorsi
muscle of Xiangsu pigs is highly imperative.

We further examined the expression trend of ACAA1 mRNA
in longissimus dorsi muscle of Xiangsu pigs at different ages
(newborn, 6-month-old and 12-month-old). Interestingly, the
expression level of the ACAA1 gene in the longissimus dorsi
muscle decreased with age. Previous studies have shown that gene
expression in tissues varies during different growth stages. The
intramuscular fat content in the longissimus thoracis muscle of
Tibetan sheep shows an increasing trend from 4 months to

1.5 years old (p < 0.05), while the MYH4 gene exhibits
differential expression between the longissimus thoracis
muscles at 4 months and 1.5 years old (Wen et al., 2022).
Transcriptional analysis was conducted on the longissimus
dorsi muscle of pigs at different growth stages, identifying
many differentially expressed genes (DEGs) related to lipid
metabolism and muscle development, the majority of which
are involved in intramuscular fat (IMF) deposition (Li et al.,
2023). Knockdown of the ACAA1 gene promoted lipid droplet
formation and lipid accumulation in sheep preadipocytes (Wang
et al., 2021), inhibiting the ACAA1 gene expression promoted
intramuscular fat deposition in chicken (Li et al., 2019; Xie et al.,
2014). In another investigation, upregulated expression of the
ACAA1 gene in mice was revealed to inhibit abdominal fat and
liver lipid accumulation in high-fat diet mice (Xie et al., 2014).
Therefore, the ACAA1 gene could influence fat deposition in the
longissimus dorsi muscle of Xiangsu pigs at different ages by
regulating lipid metabolism.

In the present investigation, we analyzed blood DNA extracted
from 184 Xiangsu pigs to determine the effect of ACAA1 gene
polymorphism on fat deposition in the longissimus dorsi muscle of

TABLE 8 Relationship between diploid types and growth traits at 6 months of age in Xinagsu pigs.

Diplotype Frequency
(%)

B W (kg) B L (cm) B H (cm) C C (cm) A C (cm) T C (cm) L H C (cm) L B T (mm)

Hap1/3 19.0 71.20 ± 1.69a 94.54 ± 5.6 65.34 ± 5.66 95.23 ±
2.49ab

97.00 ± 2.73 18.03 ±
0.89ab

62.06 ± 2.10b 10.82 ± 1.08

Hap2/2 12.0 69.55 ± 2.20b 94.22 ± 3.2 63.18 ± 3.29 94.00 ± 2.64b 95.77 ± 2.81 17.50 ± 0.91b 62.13 ± 1.46ab 10.65 ± 1.12

Hap2/5 7.6 70.79 ±
1.85ab

95.50 ± 2.9 64.71 ± 2.95 95.93 ±
3.08ab

98.21 ± 4.04 18.29 ± 1.07a 61.86 ± 1.17b 11.27 ± 0.86

Hap2/4 6.0 70.91 ±
2.12ab

95.45 ± 3.7 64.45 ± 2.66 95.09 ±
3.14ab

97.63 ± 4.06 17.91 ±
1.14ab

61.91 ± 1.81b 10.59 ± 0.92

Hap1/1 5.4 70.80 ±
2.25ab

95.50 ± 3.8 65.60 ± 3.17 96.30 ± 2.50a 97.30 ± 3.13 17.90 ±
0.88ab

63.40 ± 1.51a 10.47 ± 1.07

Note: BW, Body weight/kg; B L, Body length/cm; BH: Body height/cm; CC, Chest circumference/cm; AC, Abdominal circumference/cm; TC, Tube circumference/cm; LHC, Leg and hip

circumference/cm; LBT, Living backfat thickness/mm. The data are expressed as mean ± standard deviation.Different lowercase letters represent significant differences at 0.05 level (p < 0.05),

different uppercase letters indicate significant differences at 0.01 level (p < 0.01), and the same letters (case-insensitive) show no significant difference (p > 0.05).

TABLE 9 Relationship between diploid types and growth traits at 12 months of age in Xinagsu pigs.

Diplotype Frequency
(%)

B W (kg) B L (cm) B H (cm) CC (cm) A C (cm) T C (cm) L H C
(cm)

L B T
(mm)

Hap1/3 19.0 138.37 ±
3.88ab

129.80 ± 1.21b 71.60 ±
1.50ab

119.77 ±
1.85

128.57 ±
3.08

19.71 ±
0.83ab

88.29 ± 2.23ab 14.38 ± 0.97

Hap2/2 12.0 135.86 ± 3.91b 130.63 ±
1.18ab

71.09 ± 1.60b 120.45 ±
2.06

126.68 ±
3.26

19.41 ± 0.67b 86.41 ± 2.79b 13.61 ± 1.08

Hap2/5 7.6 138.00 ±
3.80ab

130.43 ±
1.28ab

72.50 ± 1.40a 120.00 ±
2.04

126.07 ±
3.67

20.50 ± 2.85a 87.71 ± 2.55ab 14.23 ± 0.98

Hap2/4 6.0 136.91 ±
3.91ab

131.18 ± 0.87a 72.18 ±
1.66ab

119.45 ±
2.25

127.27 ±
3.32

19.73 ±
0.79ab

86.73 ± 2.33ab 13.90 ± 1.28

Hap1/1 5.4 139.10 ± 3.78a 130.60 ±
1.35ab

72.30 ±
1.57ab

120.40 ±
2.37

128.20 ±
3.58

19.70 ±
0.82ab

88.40 ± 2.22a 14.40 ± 0.94

Note: BW, Body weight/kg; BL, Body length/cm; BH, Body height/cm; CC, Chest circumference/cm; AC, Abdominal circumference/cm; TC, Tube circumference/cm; LHC, Leg and hip

circumference/cm; LBT, Living backfat thickness/mm. The data are expressed as mean ± standard deviation.Different lowercase letters represent significant differences at 0.05 level (p < 0.05),

different uppercase letters indicate significant differences at 0.01 level (p < 0.01), and the same letters (case-insensitive) show no significant difference (p > 0.05).
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Xiangsu pigs. Amplification of the ACAA1 gene sequence yielded
four SNP loci: g.48810 A>G (rs343060194), g.51546 T>C
(rs319197012), g.55035 T>C (rs333279910), and g.55088 C>T
(rs322138947). g.51546 T>C (rs319197012) is an intron
mutation, g.48810 A>G (rs343060194), g.55035 T>C
(rs333279910), and g.55088 C>T (rs322138947) are exon
synonymous mutations identified using gene polymorphism
parameter evaluation. The four mutation sites were consistent
with HWE (p > 0.05) and had moderate polymorphism
(0.25<PIC < 0.50). At the same time, synonymous mutations
have been shown to alter mRNA splicing and secondary
structure, as well as amino acid co-translation and post-
translational folding pathways (Sharma et al., 2019; Supek et al.,
2014). Human cancer research has also demonstrated that
synonymous mutations potentially change RNA binding proteins
andmiRNA binding sites (Teng et al., 2020). In this view, it is critical
to investigate the association between SNPs in introns and exons of
the ACAA1 gene and backfat deposition in Xiangsu pigs.

LD analysis of the four SNPs revealed that the g.55035 T>C
(rs333279910) and g.55088 C>T (rs322138947) had the strongest
linkage and belonged to a strong LD (r2 = 1.000) (Guryev et al.,
2006; Slatkin, 2008). Furthermore, previous studies revealed a
strong LD between gene exon mutations, which exert a potential
synergistic effect on animal phenotypes (Zhao et al., 2021).
Therefore, we hypothesize that the strong linkage mutation
sites of g.55035 T>C (rs333279910) and g.55088 C>T
(rs322138947) in the ACAA1 gene may influence pig
growth traits.

The relationship between four SNPs of the ACAA1 gene and
the growth traits of Xiangsu pigs revealed that the strong linkage
imbalance sites g.55035 T>C (rs333279910) and g.55088 C>T
(rs322138947) significantly differed from the body weight (p <
0.05) and the living backfat thickness of Xiangsu pigs (p < 0.01).
Moreover, the heterozygous genotypes of the two loci revealed a
dominant genotype in the body weight and living backfat
thickness of 12-month-old Xiangsu pigs. These data provided
more evidence that these two sites may have a synergistic effect
on pig growth and backfat deposition. The g.48810 A>G
(rs343060194) locus may primarily influence pig body weight,
body length and abdominal circumference, while the
g.51546 T>C (rs319197012) locus may influence the growth
and backfat deposition of pigs in the later stages of fattening.
Emerging evidence indicates that genes related to adipogenesis
(Martinez-Montes et al., 2018; Shi et al., 2019) and fatty acid
metabolism (Chen et al., 2019; Guo et al., 2017) signaling
pathways play a role in pig backfat development (Gozalo-
Marcilla et al., 2021) and that pig backfat thickness and body
weight are moderately positively correlated (r = 0.632) (Hoa et al.,
2021). Diplotypes analysis revealed that Hap1/1, -GCCT/GCCT-
were beneficial to growth traits at 6 months of age. Hap1/1,
-GCCT/GCCT-, Hap2/5, -GTTC/GCTC- were favorable for
growth traits at 12 months of age and could be utilized as
advantageous genotype combinations for breeding. The
ACAA1 gene mutations g.55035 T>C (rs333279910) and
g.55088 C>T (rs322138947) may be linked to the body weight
and living backfat thickness of Xiangsu pigs. Therefore, the
ACAA1 gene is a promising candidate gene for pig growth and
development and backfat deposition.

5 Conclusion

This study investigated the tissue-specific expression of the
ACAA1 gene in Xiangsu pigs. The results showed that the
expression level of ACAA1 gene mRNA was highest in the liver
of 6-month-old pigs. The expression level of ACAA1 gene mRNA in
the longissimus dorsi muscle of Xiangsu pigs decreased with age. In
addition, this study conducted an association analysis of ACAA1
gene SNPs with the growth traits of Xiangsu pigs. The results showed
that there are four SNPs in the ACAA1 gene of Xiangsu pigs;
g.55035 T>C (rs333279910) and g.55088 C>T (rs322138947)
were strongly linked (r2 = 1.000). The strong linkage loci
exhibited significant differences in body weight and body height
and living backfat thickness. These SNPs potentially influence the
growth traits of Xiangsu pigs and are valuable SNP markers for
improving the growth performance of Xiangsu pigs.
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It is critical in sheep farming to accurately estimate ram fertility for maintaining

reproductive e�ectiveness and for production profitability. However, there is

currently a lack of reliable biomarkers to estimate semen quality and ram fertility,

which is hindering advances in animal science and technology. The objective of

this study was to uncover long non-coding RNAs (lncRNAs) in sperm from rams

with distinct fertility phenotypes. Mature rams were allocated into two groups:

high and low fertility (HF; n= 31; 94.5± 2.8%, LF; n= 25; 83.1± 5.73%; P= 0.028)

according to the pregnancy rates sired by the rams (average pregnancy rate; 89.4

± 7.2%). Total RNAs were isolated from sperm of the highest- and lowest-fertility

rams (n= 4, pregnancy rate; 99.2± 1.6%, and 73.6± 4.4%, respectively) followed

by next-generation sequencing of the transcripts. We uncovered 11,209 lncRNAs

from the sperm of rams with HF and LF. In comparison to each other, there

were 93 di�erentially expressed (DE) lncRNAs in sperm from the two distinct

fertility phenotypes. Of these, 141 mRNAs were upregulated and 134 were

downregulated between HF and LF, respectively. Genes commonly enriched for

9 + 2 motile cilium and sperm flagellum were ABHD2, AK1, CABS1, ROPN1,

SEPTIN2, SLIRP, and TEKT3. Moreover, CABS1, CCDC39, CFAP97D1, ROPN1,

SLIRP, TEKT3, and TTC12 were commonly enriched in flagellated sperm motility

and sperm motility. Di�erentially expressed mRNAs were enriched in the top

16 KEGG pathways. Targets of the di�erentially expressed lncRNAs elucidate

functions in cis and transmanner using the genetic context of the lncRNA locus,

and lncRNA sequences revealed 471 mRNAs targets of 10 lncRNAs. This study

illustrates the existence of potential lncRNA biomarkers that can be implemented

in analyzing the quality of ram sperm and determining the sperm fertility and is

used in breeding soundness exams for precision livestock farming to ensure food

security on a global scale.

KEYWORDS

ram, sperm, fertility, long non-coding RNAs, gene expression

1 Introduction

Male fertility is crucial for animal reproduction as it encompasses the successful
fertilization of an egg with a viable spermatozoon, subsequently leading to embryonic and
fetal development, ensuring the species’ continued existence. Fertility is an economically
important trait, and ram flock represents more than 50% of the genetics of every
sheep farmer’s flock (1). Thus, proper management of rams for maximum performance
and longevity is vital to the success and reproductive efficiency of sheep farming
(2). Accordingly, advancing ram fertility in the livestock system is imperative to
provide animal-based food demands to feed the ever-increasing human population on a
global scale.
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In addition to genetic evaluation and testing, rams have been
selected according to breeding soundness exam (BSE), which
requires a series of examinations, including physical exam, scrotal
measurement, sperm morphology, and motility. Despite massive
attempts to evaluate ram fertility using the BSE, the predictability
of ram fertility still awaits improvement. Non-compensable factors,
such as DNA damage, RNA molecules (3), and protein markers (4,
5) in sperm fertility, are attributed to minute sperm abnormalities
that cannot be determined using conventional procedures (6).
Advanced omics approaches have paved the way for underlying
molecular mechanisms related to spermatogenesis, fertilization,
and embryogenesis (7, 8). Such methods may be used more widely
in the future for producing farm animals in combination with
the evaluation of semen parameters (9, 10), while also estimating
accurate sperm fertility markers in farm animals (11, 12).

Spermatozoa can transmit not just the paternal DNA but
also certain RNA molecules and transcription factors, presumably
inherited into the oocytes during fertilization (13). Researchers
have recently used cutting-edge approaches for discovering small
noncoding RNAs with various nucleotide lengths and biogenesis
processes, such as PIWI-interacting RNAs (piRNA), microRNAs
(miRNA), tRNAs, and long noncoding RNA (lncRNA)-derived
short RNAs (14–17). Sperm bearing RNA molecules are implicated
in spermatogenesis and embryo development at transcriptional
and posttranscriptional levels (18–20). As such, they play roles in
regulating spermatogenesis and fertilization by transferring small
noncoding RNA (sncRNA) and lncRNA into the oocyte (3, 19, 21).
In addition, paternally derived noncoding RNAs are key regulators
of preimplantation embryos (22) since some of them are involved
in the control of gene expression in zygotic and early embryonic
development (23). Accordingly, sperm noncoding RNAs can
enhance the transmission of epigenetic information to the offspring
(13) because environmental and metabolic-induced modifications
of sperm cells may influence the epigenetic modulation of embryo
development by changing the gene expression through noncoding
RNAs (24–27).

LncRNAs comprise nucleotides located in the cytoplasm
and nucleus, which are transcribed by RNA polymerase II
and are longer than 200 nucleotides and lack protein-coding
capacity. LncRNAs, with their higher and more stable structures,
modulate gene expression (cis and trans manner) at several levels,
including epigenetic, transcriptional, posttranscriptional, and
posttranslational, through their interactions with mRNA, proteins,
and other sncRNAs. They have significant functions in biological
processes such as modifying the chromatin structure, activating
gene expression, inhibiting gene expression, and translating mRNA
molecules. LncRNAs have crucial roles in regulating the many
biological processes that are highly expressed in bovine and mouse
testis and mature sperm (28, 29). There is a linkage between
noncoding RNA markers and male fertility, as the transcripts can
be involved in the prediction of fertility (30, 31). The lncRNAs
differentially expressed in distinct motility phenotypes of bovines
and humans (32) imply that sperm lncRNAmay possess functional
roles in fertility (33). Using RNA sequencing technologies, sperm
bearing RNA was found to be conversed among many species,
such as stallions, goats, and boar (34–36). The unique male
sperm ncRNAs with consistent fertility phenotypes can be valuable

as potent fertility biomarkers. Accordingly, this study aimed to
uncover long noncoding RNA profiles from ram sperm possessing
distinct fertility phenotypes.

2 Material and methods

2.1 Ram fertility assessment and
experimental design

The Republic of Turkey’s Ministry of Agriculture and Forestry’s
Institute of Bahri-Dagdaş International Agricultural Research
supplied information on the fertility phenotypes of adult rams.
Pregnancy rates from natural mating were used to determine the
fertility of mature rams (n = 66) at least 3–4 years old during the
breeding seasons of 2017–2018–2019. The ewes’ estrus was detected
using teaser rams, who were not permitted to mate, by covering
the prepuce area. The teaser rams were presented to the ewes early
in the morning for about 30min. The estrus was considered to be
ewes seeking, standing for teasing, and allowing mount attempts
by teaser rams. A handler selected estrous ewes and brought them
into an enclosure along with a randomly selected single ram for
natural mating. Throughout the breeding season, estrus detection
was maintained, and ewes were accepted to mate with the chosen
ram at random. Ewes were regarded as pregnant if they did not
return to estrus within 35 days of mating. In addition, the number
of pregnant and non-pregnant ewes for each ram was confirmed by
matching the mating and lambing dates according to the duration
of pregnancies. The rams’ fertility scores were rated based on their
conception rates. The rams were split into two groups based on
their fertility levels: the high-fertility (HF) group (n = 31; 94.5 ±

2.8%) and the low-fertility (LF) group (n = 25; 83.1 ± 5.73%). The
average pregnancy rate was 89.4 ± 7.2% (n = 66), and the rams
were divided into these groups based on their fertility levels. We
conducted an a priori power analysis using G∗Power3 (V3.1.9.4) to
test the differences between two independent group means using a
two-tailed test, an effect size (d = 2.52), and an alpha level of .05.
The result showed that a total sample of eight animals with two
equal-sized groups of n = 4 was required to achieve a power of .80
for RNA profiling. However, we excluded the rams that did not have
50 mating and were not used, so we profiled four animals for each
group out of a total of 56. During the breeding season, each ram
served at least 50 ewes in both groups.

2.2 Semen collection

The Bahri-Dagdaş Research Center Ethical Committee, Turkey
(Number: 22.12.2016/58), approved the animal procedures. We
trained the rams to obtain sperm using an artificial vagina (AV)
that enabled them to mount on teaser ewes during estrus. Rams
were permitted to ejaculate into the AV upon mounting. The first
three collections were discarded prior to the collection of research
samples, which was followed by semen collection and processing
for use in research. Fertility rates that were 1 standard deviation
above or below the mean were termed outliers. Four rams with the
highest fertility (pregnancy rate; % 99.2 ± 1.6) and four rams with
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the lowest fertility (pregnancy rate; % 73.6 ± 4.4) were selected
for lncRNA sequencing with high confidence. Subsequently, we
collected about 2× 109/ml spermatozoa per ejaculate, and then the
aliquots from each sample were adjusted to a final concentration of
107/ml in straws and frozen at−80◦C until lncRNA analysis.

2.3 RNA isolation

Prior to RNA isolation, we purified sperm by filtering the
semen samples with a 500-mesh sieve to eliminate cell debris.
Then, samples were treated with a somatic cell lysis solution
(0.3% Triton X-100 and 0.1% SDS in DEPC-treated H2O) for
30min on ice to eradicate somatic cells, followed by microscopic
analysis of non-sperm cell contamination. We isolated total RNA
from the purified ram sperm (n = 4, for each group) samples
using the SanPrep column microRNA miniprep kit (Bio Basic
Inc, Canada) with slight modification using the manufacturer’s
protocols. We added 800 µl of a guanidine–thiocyanate lysis buffer
enriched in 20mM DL-dithiothreitol onto the pellet, and then
sperm cells were homogenized by passing the samples through
a 26-G needle syringe 20–25 times. After other contaminants
were thoroughly removed and total RNA was attached to the
membrane, an on-column DNase digestion was carried out to
remove any traces of DNA contamination. We evaluated the
concentration and integrity of the total RNA samples using a
NanoDrop (Colibri Microvolume Spectrometer, Titertek-Berthold,
Germany) and a 2100-Bioanalyzer with the RNA 2100 Nano Chip
(Applied Biosystems, Carlsbad, CA, USA), respectively.

2.4 Library preparation for lncRNA
sequencing

Each RNA sample was utilized to prepare 2 g of RNA for the
RNA library, and ribosomal RNA was first eliminated using the
Ribo-ZeroTM rRNA Removal Kit from Epicenter. Then, using
the NEBNext R© UltraTM-Directional RNA Library Prep Kit from
Illumina R© (NEB, USA) in compliance with the commercial kit
protocol, sequencing libraries were developed utilizing the rRNA-
depleted RNA. Reverse transcription was used to create the first
strand of the cDNA following fragmentation with an average
length of 200 bp. The Agilent Bioanalyzer 2100 equipment was
used to evaluate library quality following product purification
using the AMPure XP system. As a result, libraries underwent
sequencing using the Illumina NovaSeq 6000 (Illumina Inc., San
Diego, CA, United States), and Novogene Corporation (Beijing,
China) generated 150-bp paired-end reads.

2.5 RNA-Seq read alignment and transcript
assembly

Initially, rRNA, adapter sequences, empty reads, and low-
quality reads were eliminated from the raw data. All trimmed
reads were confirmed to satisfy the quality threshold (Q-score;
Q20 and Q30) to ensure that there was no bias in the evaluation

step toward approaches that favor maximum read. The Phred scale
indicating the reliability of base-calling, with Q20 representing a
base call accuracy of 99% (or a 1% chance of error) and Q30
representing a base call accuracy of 99.9% (or a 0.1% chance of
error) was used as the quality score. The Ovis aries (v4.0) reference
genome was indexed with Bowtie v2.0.6, and the processed paired-
end reads were mapped to that genome with HISAT2 2.1.0 (37).
Each sample’s mapped reads were constructed using StringTie
(v1.3.1) (38). Finally, Cuffcompare, a program included in Cufflinks
(v2.1.1), was used to annotate the assembled transcripts.

2.6 Putative lncRNA identification

To classify newly screened lncRNAs with respect to their
positional relationship with knownmRNAs, putative lncRNAswere
identified. To minimize the false-positive rate (FDR), assembled
transcripts were classified to retrieve putative lncRNAs, such
as lincRNA, antisense lncRNA, intronic lncRNA, and sense-
overlapping. (A) Transcripts with a single exon were eliminated.
(B) Transcripts with fewer than 200 nucleotides were eliminated.
(C) Using Cufflinks v2.1.1, the annotated lncRNAs in the database
were used to exclude the transcripts that overlapped with the
exon region of the database annotation. (D) All transcripts with
modest levels of expression [FPKM thresholds were set for the
categorization of transcript expression levels; genes with very
low or no expression (FPKM < 0.5), and FPKM = 0.5 was
chosen as the cutoff to filter out the average read coverage per
transcript which was much higher than the other transcript] were
omitted (FPKM of a single exon transcript). Using three methods,
namely, Coding-Non-Coding-Index (CNCI) (39), Pfam-scan (40),
and coded potential calculator (CPC) (41), all estimated transcripts
with coding potential were filtered out, and a set of putative
lncRNAs was compiled from those with noncoding potential. Using
Cuffcompare, the distinct categories of lncRNAs were obtained.

2.7 Analysis of mRNA and lncRNA
expression levels

The FPKM value was used to evaluate levels of mRNA
and lncRNA expression. Cuffdiff (v2.1.1) was used to determine
lncRNA FPKM values. Later, the statistically significant DE genes
were quantified by a log2-fold change higher or equal to 2 (P-value
< 0.05) or P-adjust < 0.05 (applied correction for multiple testing
to the P-values to FDR), using Ballgown (42).

2.8 Target gene prediction

DE lncRNAs were selected to determine target genes. Pearson’s
correlation was used to assess potential coexpression between
lncRNAs and mRNAs. A Pearson correlation >0.7 and a P-value
of 0.05 were used to determine a positive association between
an lncRNA and an mRNA. LncRNAs can act as cis regulators
by remodeling factors onto local chromatin. We described cis-
modulated genes as protein-coding genes that were coexpressed
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TABLE 1 Summary of data production.

Sample Raw_reads Clean_reads Raw_data (G) Clean_data (G) Error_rate
(%)

Q20 (%) Q30 (%) GC_
content
(%)

LF 41,020,716 40,183,273 12.3 12.1 0.03 96.06 90.96 60.89

HF 50,087,458 49,069,550 15 14.7 0.03 95.39 89.5 62.37

Raw read statistics: the total number of reads for each file is determined, and each set of four consecutive lines represents the information for one read. Clean reads are the same as raw reads,

but only the filtered reads are used to calculate the results of any further study; Clean reads (G) the sum of a sequence’s length and number, expressed in giga bases; Error rate: the sequencing

error rate; Q20, Q30: the proportion of all bases for which the Phred score is 20 or 30 or above, indicating base call accuracy; the proportion of guanine (G) and cytosine (C) in all bases is known

as GC content.

with one dysregulated lncRNA and were within 30 kb upstream or
downstream in genomic distance in the same allele. To participate
in certain biological processes, key transcription factors (TFs) are
regulated in a trans manner by unique lncRNAs. As a result, we
matched these lncRNAs’ coexpressed mRNAs to mRNAs that were
regulatory targets of specific TFs to anticipate that these lncRNAs
might be involved in pathways controlled by these TFs.

2.9 Gene ontology terms and KEGG
pathway enrichment

We assessed DE mRNAs for gene ontology (GO) enrichment
analysis using g:Profiler (43). GO terms possessing a corrected P-
value < 0.05 were accepted as significantly enriched by DE genes.
The statistical enrichment of lncRNA target genes was examined for
KEGG pathway functional analysis based on the reactome pathway
database by WebGestalt (WEB-based Gene SeT AnaLysis Toolkit)
with P < 0.05 and FDR<5.0% (44). The following parameters were
specified for the enrichment analysis. A particular organism was
labeled as Ovis aries (sheep). Sequential GO analyses (biological
process; BP, cellular component; CC, and molecular function;
MF) were conducted. The g:SCS method is used to compute
multiple testing corrections for P-values based on GO and pathway
enrichment analysis, with the user threshold set at 0.05.

2.10 Statistical analysis

Data were analyzed through SPSS software (version 22.0).
Statistical plots were generated using GraphPad Prism 9 (GraphPad
Software, USA). During the experimental process, four biological
replicates were included with the measurement repeated twice.
LF vs. HF groups were analyzed using an independent t-test.
Significance was accepted at P-value= 0.05.

3 Results

3.1 Overview of sequencing data in ram
sperm between LF and HF

In the current study, we pooled two cDNA libraries out of
the eight total RNAs (LF and HF, each = 4) obtained from low-
and high-fertility ram sperm. The total number of raw readings
obtained from all cDNA libraries was 91,108,174. Upon filtering the
reads, a total of 89,252,823 clean reads were obtained. The Q20 (%)
percentages were 96.06 and 95.39 for LF and HF, respectively. The

TABLE 2 A list of reads that were mapped to the reference genome.

Sample name HF LF

Total reads 98,139,100 80,366,546

Total mapped 82,508,774 (84.07%) 69,017,041 (85.88%)

Multiple mapped 3,526,455 (3.59%) 2,394,038 (2.98%)

Uniquely mapped 78,982,319 (80.48%) 66,623,003 (82.90%)

Read-1 40,351,963 (41.12%) 33,802,488 (42.06%)

Read-2 38,630,356 (39.36%) 32,820,515 (40.84%)

Reads map to “+” 39,407,126 (40.15%) 33,255,875 (41.38%)

Reads map to “–” 39,575,193 (40.33%) 33,367,128 (41.52%)

Non-splice reads 77,745,931 (79.22%) 65,903,933 (82.00%)

Splice reads 1,236,388 (1.26%) 719,070 (0.89%)

Total reads: the number of reads after data filtration (clean data); Total mapped represents

the total quantity of mappable reads. If a suitable reference genome is available and no

contamination occurs during the experimental procedure, the percentage will typically exceed

70%. Numerous mappings: the number of sequences mapped to multiple reference sequence

positions; specifically mapped: the number of reads that map to a particular position in the

reference sequences. Map to “+”; Reads that map to “–”: the number of reads that are mapped

to the minus strand. Quantity of reads mapped to two exons; also known as junction reads.

Similarly, non-splice reads are those that are completely mapped to a single exon. The ratio of

splice readings to total read length is proportional.

TABLE 3 A list of reads that were mapped to the reference genome.

Classification of
mapped reads (LF)

Classification of
mapped reads (HF)

Others (49,390,745 [78.4%]) Others (57,960,150 [77.95%])

Protein_coding (12,785,367
[20.3%])

Protein_coding (15,352,804
[20.65%])

lncRNA (697,609 [1.1%]) lncRNA (855,897 [1.15%]

pseudogene (125,827 [0.2%]) pseudogene (137,580 [0.2%])

rRNA (10,395 [0.02%]) rRNA (11,500 [0.02%])

miRNA (5,685 [0.01%]) miRNA (7,407 [0.01%])

misc_RNA (3,588 [0.0%]) misc_RNA (13,778 [0.0%])

ribozyme (2,495 [0.0%]) ribozyme (7,883 [0.0%])

Distribution of mapped reads in known types of RNAs for low fertility (LF) and high

fertility (HF).

Q30 (%) percentages were shown to be 90.96 and 89.50 for LF and
HF, respectively. The percentages of GC content (%) were shown to
be LF, 60.89, and HF, 62.37 (Table 1). Furthermore, after aligning
the clean reads with the ovine reference genome through the
TopHat2 algorithm, we discovered that the total mapped reads or
fragments referring to all samples exceeded 75% and were mapped
in the reference genome (Table 2).

Frontiers in Veterinary Science 04 frontiersin.org163

https://doi.org/10.3389/fvets.2024.1337939
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hitit et al. 10.3389/fvets.2024.1337939

FIGURE 1

Venn diagram. The numerical values within each circle and the areas

of overlap symbolize the total count and the number of noncoding

transcripts that are found out by the software.

3.2 Chromosome read distribution and
known RNA types

The distribution intensity of the total mapped reads was split
up and computed for both the plus and minus strands within each
chromosome (Supplementary Table 1). The distributions of reads
in the known RNA types for LF and HF are depicted in Table 3. The
corresponding data related to these distributions can be found in
Supplementary Table 2.

3.3 Novel lncRNA identification in ram
sperm between LF and HF

We applied the lncRNA filtering method to determine the
novel lncRNA candidates in ram sperm. The specific filtering
technique is outlined in Supplementary Table 3. Using this lncRNA
filtering process, we identified a total of 14,352 lncRNAs, of which
11,209 were novel candidates, the data for which are supplied
in Supplementary Table 4. We utilized three distinct software
packages (CNCI, CPC, and Pfam) to estimate the potential protein-
coding ability of the transcripts (Figure 1).

3.4 Identification and characteristics of
lncRNAs between LF and HF in ram sperm

The primary characteristics of the lncRNAs’ biotype
distribution and length, exon intensity, and ORF length were

examined as a consequence of the sequence analysis. Using
Cufflinks, we divided lncRNAs into three groups: long intervening
noncoding RNA (lincRNA), antisense lncRNA, and intronic
lncRNA. Of these, 8.3%, 8.5%, 9.8%, 72.6%, and 0.8% of
the attained lncRNAs were sense intronic, antisense, sense
overlapping, lincRNA, and others, respectively (Figure 2A).
Using this classification scheme, we revealed that the majority of
the sperm-specific lncRNAs (72.6%) were lincRNAs. The exon
lengths of the obtained lncRNAs were between 126 and 20,040
bp, and approximately 37% of the lncRNAs were demonstrated
to be intense in 946–1,356 bp length (Figure 2B), with 1,542
bp being the median value. The exon length of the obtained
mRNAs ranged between 75 and 26,726 bp, with around 10%
of the mRNAs being intense at 835–1,025 bp (Figure 2B).
Furthermore, lncRNAs have been shown to be more abundant
in the first and fourth exons, whereas mRNAs were found to be
more abundant in the first and seventh exons (Figure 2C). The
length of the ORF of the lncRNAs was between 54 and 20,037
bp, with a median value of 1,461 bp (Figure 2D). For mRNAs,
the ORF length was reported as 3–26,460, and the median value
was 1,332.

The expressions associated with transcripts of lncRNA, mRNA,
novel lncRNAs, and TUCP were evaluated using Cuffdiff. The
most common approach for predicting gene expression levels,
FPKM, is based on the effects of gene length on sequence depth
and fragments described in the RNA sequence. The FPKM values
associated with samples were calculated (Supplementary Table 5).
Upon comparing FPKM values between LF and HF, no significant
change was observed (Figures 3A, B). Moreover, the expression
levels related to novel lncRNAs were the highest among the
transcripts. TUCP and novel mRNA transcripts were greater than
those of lncRNA and mRNAs, while lncRNA transcripts were
similar to those of mRNA (Figures 3C, D).

3.5 LncRNAs and mRNAs that are
di�erentially expressed in LF and HF

Cuffdiff was employed to identify differentially expressed
lncRNAs, mRNAs, and TUCPs. As a result, in HF and LF
ram sperm, 93 lncRNAs and 275 mRNAs were reported to be
differentially expressed (DE). We discovered 49 lncRNAs that are
significantly upregulated and 44 that are downregulated between
LF and HF groups. In addition, we discovered that 141 mRNAs
were upregulated, whereas 134 were downregulated. Volcano
plots show the up and downregulation highlights (Figures 4A,
B; Supplementary Table 6). We also examined the expression
patterns of DE lncRNAs and mRNAs using hierarchical clustering
analysis, which serves as an additional approach for shedding
light on differentially expressed genes by grouping genes with
comparable expression patterns. The transcript FPKMs were
utilized for hierarchical clustering, with discrete colors indicating
the direction of the expression level. The clustering of genes
on the left was caused by similar expressions (fold change >2,
P < 0.05) and LF and HF ram sperm, whereas the expression
change from blue to red indicated them as increasingly increased
(Figures 4C, D).
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FIGURE 2

(A) Distribution of various lncRNA types. (B) Comparison of the lengths of lncRNAs, mRNAs, novel lncRNA–mRNA, and TUCP. (C) A comparison of

the exon counts of lncRNAs and mRNAs. (D) A comparison of the ORF lengths of lncRNAs and mRNAs.

3.6 DE mRNA functional annotation and
KEGG pathways analysis

Following a study at the transcriptome level, 275 mRNAs
were selected for enrichment analysis due to their differential
expression levels (141 upregulated and 134 downregulated). The
top eight GO annotations terms in biological process (BP)
were significantly enriched in the DE mRNAs, namely, the
biological process (GO:0008150), cellular process (GO:0009987),
regulation of cellular process (GO:0050794), organelle organization
(GO:0006996), flagellated sperm motility (GO:0030317), sperm
motility (GO:0097722), and cilium movement involved in cell
motility (GO:0060294). In addition, in cellular component,
intracellular anatomical structure (GO:0005622), sperm flagellum
(GO:0036126), and motile cilium (GO:0031514) were among
the top GO terms and binding (GO:0005488), protein binding
(GO:0005515), enzyme binding (GO:0019899), and protein C-
terminus binding (GO:0008022) in molecular function (MF;
Figure 5A). The detailed definition of the GO terms is presented
in Supplementary Figure 1. According to the statistics of the
pathway enrichment, the top 16 KEGG pathways, including
complex I biogenesis, the citric acid (TCA) cycle, respiratory
electron transport, respiratory electron transport, mitochondrial
translation, and gene silencing by RNA, had higher concentrations
of DE mRNAs. ABHD2, AK1, CABS1, ROPN1, SEPTIN2, SLIRP,
and TEKT3 genes were commonly enriched for 9+ 2motile cilium,
sperm flagellum, and motile cilium. Moreover, CABS1, CCDC39,

CFAP97D1, ROPN1, SLIRP, TEKT3, and TTC12 were commonly
enriched in flagellated sperm motility, sperm motility, and cilium
movement involved in cell motility (Supplementary Figure 1).

3.7 Target genes of cis- or trans-regulated
by lncRNAs

To better understand how lncRNAs act in both cis and
trans manner, we predicted their targets. There were 471
mRNAs that were discovered as targets of 10 lncRNAs (five
upregulated and five downregulated), using 30 kb as the cutoff
(Supplementary Figure 2). According to the GO enrichment study
results, 55 significant GO terms were found (corrected P-value
0.05). In MF, the top five GO keywords were nucleoside phosphate
binding, protein binding, small-molecule binding, binding, and
nucleotide binding (Supplementary Figure 3). In BP, negative
regulation of the cellular metabolic process, system development,
response to chemical stimuli, organonitrogen compoundmetabolic
process, and multicellular organism development were among
the top five GO terms and cytoplasm, cell junction, cytosol,
nucleoplasm, and synapse in CC (Figure 5B).

4 Discussion

The quality of sperm on a cellular level alone is no longer
considered to be a reliable predictor of male fertility in selecting
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FIGURE 3

(A, B) A comparison of gene expressions. Box plot depicting FPKM values. The X and Y axes reflect the corresponding sample name and log10(FPKM

+ 1) value, respectively. For each sample, the plot region reflects, from top to bottom, the maximum, upper quartile, median, lower quartile, and

minimum statistics. (2) Density distribution of Fragments Per Kilobase of transcript per Million mapped reads. The X and Y axes show, respectively, the

value of log10(FPKM + 1) and the density of genes. (C, D) Violin plot for distinct forms of lncRNA, mRNA, and TUCP transcription. The X-axis of the

FPKM violin plot displays the sample names, while the Y-axis displays the log10(FPKM + 1). Each violin plot possesses five statistical parameters (max

value, upper quartile, median, lower quartile, and min value). The breadth of the violin plot indicates gene density.

superior male prospects in livestock as a source of frozen semen
(12, 31). Methods for analyzing the sperm transcriptome, such as
measuring messenger RNA levels, have been linked to increased
fertility (45). Analysis of the sperm transcriptome has become
the primary tool for predicting male fertility potential in the
livestock business, due in part to the widespread application of
this technology in livestock growth (45, 46). Accordingly, this
study demonstrated long noncoding RNA profiles in sperm from
rams with HF and LF phenotypes to uncover potential lncRNAs
associated with fertility.

The comparative analysis across multiple species indicates a
considerable gap in our understanding of the functional roles of
lncRNAs within sperm cells despite their prevalence in male germ
cell development. Previous studies on cattle, boar, sheep, mice,
and humans have collectively identified substantial numbers of
potential lncRNAs in sperm cells (46–48). However, the functional
annotation and investigation of these lncRNAs have remained
limited. We obtained a total of 91,108,174 cDNA libraries, of
which 89,252,823 were clean reads from ram spermatozoa. This
provides a robust dataset for comparative analysis, especially when
considering the consistency with similar studies conducted, such
as on human, turkey, and boar (79.8, 84, and about 65.5 million,
respectively) spermatozoa (49, 50). Furthermore, the range of

unique mapped reads, ranging from 66,623,003 to 78,982,319,
indicated a strong alignment of the sequenced data to the reference
genome of sheep. The high percentage of over 80% uniquely
mapped reads demonstrated a significant mapping consistency
comparable to that observed in bull and stallion spermatozoa (32,
36). This consistency across species further confirms the reliability
and quality of the obtained sequence data for ram spermatozoa,
supporting the validity of results.

In this study on ram fertility, we identified 11,209 sperm
lncRNAs, a subset comprising 93 differentially expressed
lncRNAs associated with LF and HF phenotypes in ram sperm.
Comparatively, in mouse mature spermatozoa, 4,088 novel
lncRNA transcripts were identified out of 20,907 known lncRNA
transcripts (29), demonstrating the complexity and diversity of
these transcripts in different species’ sperm cells. Similarly, in
human sperm, 27,472 novel lncRNAs were discovered (29), with
19 differential expressions of lncRNA out of 11,561 lncRNA
transcripts in mature bull spermatozoa (32). Analysis of goat
spermatozoa revealed 655 lncRNA transcripts relevant to
spermatogenesis from sequencing of the cDNA library, of which
1% annotated to lncRNAs was similar to ram spermatozoa with
a classification of 1.1% (51). We also showed that the type of
lincRNA seemed to be closer between ram and goat spermatozoa
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FIGURE 4

Volcano plot: (A, B) show di�erentially expressed lncRNAs and mRNAs in sperm between LF and GF rams, respectively. Heat map of clustering of

genes; (C, D) show di�erentially expressed mRNAs and lncRNAs between LF and HF ram sperm (fold change >2, p < 0.05), respectively. Colors

indicate the following red; up and blue; down.

(34), both revealing a 72.6 and 76.64% annotation to lncRNAs,
respectively, which highlights the relevance of these findings across
species and their potential implications for understanding male
fertility mechanisms.

The GO and KEGG investigations were carried out for
associated genes of DE mRNAs and lncRNAs to completely
examine the functional roles of mRNAs and lncRNAs in ram
sperm fertility. Candidate genes have been identified using
this bioinformatics approach, and they were related to male
reproductive biology. Our findings demonstrated that 275 mRNA
transcripts were enriched for the biological process, cellular
component, and molecular function GO characterizations. It has
become apparent that several metabolic pathways and regulatory
mechanisms have crucial roles in fertility, as related to sperm
motility. We demonstrated that ABHD2, AK1, CABS1, ROPN1,
SEPTIN2, SLIRP, and TEKT3 genes were commonly enriched for
the 9 + 2 motile cilium, sperm flagellum, and motile cilium.
Of these, ABHD2, an isolated molecule from sperm tails, is
needed to activate sperm (52). AK1 is an enzyme that is often
responsible for cellular energy balance. It is detected in the
flagella of murine and bovine sperm, which suggests that it is
involved in sperm motility and is also demonstrated to be directly
associated with bull fertility (53–55). Moreover, CABS1, CCDC39,
CFAP97D1, ROPN1, SLIRP, TEKT3, and TTC12 were commonly
enriched in flagellated sperm motility, sperm motility, and cilium

movement involved in cell motility. As a Ca2+ storage protein
in mature sperm, CABS1 is a crucial factor in the regulation of
calcium signaling and has been shown to preserve sperm flagella
structure (56, 57). ROPN1, implicated in fibrous sheath integrity
and sperm motility, is engaged in PKA-dependent signaling for
spermatozoa capacitation; therefore, mutation and lack of its
expression in murine sperm cells cause impaired fertility (58, 59).
We showed that differentially abundant protein profiles of sperm
from rams with contrasting fertility phenotypes were associated
with metabolic energy generation by sperm cells along with the
motility signaling pathway (4). Our results are consistent with
results from the previous study that mRNA–lncRNA interaction
seemed to regulate signaling pathways for functional motility.

The primary potential roles of lncRNAs are to control the
expression of neighboring protein-coding genes through both
cis and trans manners, integrating transcriptional coactivation
or repression. Consequently, we conducted an in-depth analysis
and determined the mRNAs situated within the 30 kilobase (kb)
threshold upstream and downstream regions of the differentially
expressed lncRNAs. We then employed GO and KEGG analyses
on the target genes to determine the undertaken lncRNAs. We
found that lncRNAs with different levels of expression are involved
in a number of important biological processes. We demonstrated
that the identified lncRNA TCONS_00136350 may regulate the
differentially expressed coding gene ADAM metallopeptidase
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FIGURE 5

(A) Functional enrichment analysis of DE mRNAs in LF and HF sperm of ram. Significantly enriched target gene terms are shown. GO keywords are

represented by red color codes, molecular functions by orange ones, biological processes by green ones, and cellular components by green ones

(CC). (B) Functional enrichment analysis of target genes of cis- or trans-regulated by lncRNAs. Illustrated are normalized enrichment scores for

specific sets of target genes.
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domain 32 (ADAM32). ADAM32 is a member of the disintegrin
family of membrane-anchored proteins and is detected on the
surface of mature sperm (60). ADAM32 has been demonstrated
to be implicated in sperm–egg plasma membrane interaction,
and (61) its expression levels are correlated with the quality of
human sperm (62). Although ADAM32 is not required for normal
male fertility (63), we showed that it was identified in the top
10 differentially abundant proteins in ram sperm (4). We also
discovered that differentially expressed lncRNA TCONS_00035618
modulated enolase 1 (ENO1), the protein expression of which was
higher in increased fertility of ram sperm (4). ENO1 plays an
important role in the process of metabolism of monocarboxylic
acids, and it is a component in the pathway that leads to glycolysis
and gluconeogenesis (KEGG:00010) associated with bull fertility
(64), and its lower expression levels lead to lowmotility (65). In line
with our study and of others, lncRNAs are potentially important
for the coactivation/repression of target genes that regulate sperm
fertility and motility.

5 Conclusions

Even though several potential lncRNAs have already been
identified through cutting-edge technology and accessible lncRNA
annotation tools, functional annotation of lncRNAs in sperm
biology is still in its infancy and holds great promise. In this study,
differentially expressed lncRNAs in ram sperm were ascertained
along with their associations with low vs. high fertility phenotypes.
These findings are important because they help advance both
the fundamental science of mammalian male gamete biology and
applied science that may provide practical value for potential male
fertility markers.
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Distribution of lncRNA on chromosomes. (A) Distribution of lncRNAs in low

fertility (LF) ram group. (B) Distribution of lncRNAs in high fertility (HF) ram

group.

SUPPLEMENTARY FIGURE 2

Identification pipeline for lncRNAs Identification pipeline for lncRNAs. Each

step is documented in detail in the Methods section.

SUPPLEMENTARY FIGURE 3

Functional enrichment analysis of target genes of Cis- or Trans-regulated by

lncRNAs. Illustrated are normalized enrichment scores for specific sets of

target genes. Significantly enriched target gene terms were shown. GO

keywords are represented by red color codes, molecular functions by

orange ones, biological processes by green ones, and cellular components

by green ones (CC).
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In this study, we detected signatures of selection in Hanwoo and Angus beef
cattle using allele frequency and haplotype-based methods based on imputed
whole genome sequence variants. Our dataset included 13,202 Angus animals
with 10,057,633 imputed SNPs and 10,437 Hanwoo animals with
13,241,550 imputed SNPs. The dataset was subset down to 6,873,624 SNPs in
common between the two populations to identify within population (runs of
homozygosity, extended haplotype homozygosity) and between population
signals of selection (allele fixation index, extended haplotype homozygosity).
Assuming these selection signals were complementary to each other, they were
combined into a decorrelated composite of multiple signals to identify regions
under selection for each of the breeds. 27 genomic regions spanning 25.15 Mb
and harboring 360 genes were identified in Angus on chromosomes 1,3, 4, 5, 6, 7,
8, 12, 13, 14, 16, 20, 21 and 28. Similarly, in Hanwoo, 59 genes and 17 genomic
regions spanning 5.21 Mb on chromosomes 2, 4, 5, 6, 7, 8, 9, 10, 13, 17, 20 and
24 were identified. Apart from a small region on chromosome 13, there was no
major overlap of selection signals between the two breeds reflecting their largely
different selection histories, environmental challenges, breeding objectives and
breed characteristics. Positional candidate genes identified in selected genomic
regions in Angus have been previously associated with growth, immunity,
reproductive development, feed efficiency and adaptation to environment
while the candidate genes identified in Hanwoo included important genes
regulating meat quality, fat deposition, cholesterol metabolism, lipid synthesis,
neuronal development, and olfactory reception.

KEYWORDS

signatures of selection, Hanwoo, Angus, WGS, beef cattle

1 Introduction

Natural selection is an adaptive response to the environment a population inhabits,
which drives its evolutionary changes by favoring traits that are advantageous and increases
their prevalence in the population. Very recently, at least on an evolutionary scale, human
driven artificial selection has also become a primary driver of changes in populations by
exerting selective pressure on traits of human interest. A prime example of artificial
selection is dog breeding: dogs have been bred for various desireable characteristics
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which led to a wide variety of breeds from the tiny Chihuahua to the
massive Great Dane. Such selection processes change allele
frequencies in populations and leave traceable marks across the
genome. Genomic regions under selective pressure can be identified
by their allele frequency distributions, measures of linkage
disequilibrium between loci and the structure of their haplotypes.
Identification of these genetic patterns or signatures of selection
(SOS) help us understand the underlying biological processes of
adaptation in different environments and provide insights into the
domestication history of agricultural species. They can also help us
identify genes or genomic regions that regulate the phenotypic
expression of traits of economic importance. For example, studies
of signatures of selection have been used to identify genes that
regulate coat color and body size in dogs (Pollinger et al., 2005;
Sutter et al., 2007), stature in horses (Makvandi-Nejad et al., 2012),
and body temperature maintenance under cold stress in cattle
(Igoshin et al., 2019). Randhawa et al. (2016) published a meta-
assembly of selection signatures in cattle genome by combining
results from various studies. They found that a number of selection
hotspots have been identified in European cattle but studies on
major cattle groups like Zebu, African and Composite cattle have
been few. They also observed that most of the selection signals were
unique for each breeds while some were shared across breeds. The
most prominent peaks were observed in genes of known major
effects like coat color, polled locus and muscle hypertrophy.

Various methods have been proposed to identify genomic
signatures of selection which can be broadly classified into two
main categories: within population measures for a single population

(e.g., runs of homozygosity and integrated haplotype score) or
between population measures that compare two or more
populations (e.g., fixation index and cross-population extended
haplotype homozygosity). Each of these test statistics explore
unique facets of the genomic architecture of populations but they
are not necessarily consistent with each other. Inconsistencies
between selection sweeps are observed not only due to the
inherent differences in statistical methodologies but also due to
differential sensitivity to sampling, demographic history and linkage
disequilibrium between loci (Ewing and Jensen, 2016). Therefore,
some studies take a more conservative approach and only focus on
the regions that are common across different measures, albeit at the
risk of not identifying a proportion of the relevant signals in the
process. An alternative approach is to consider the selection signals
from different methods as complimentary to each other (Ma et al.,
2015) and combine them to get a composite score (Randhawa et al.,
2014). Various methods to combine individual signals have already
been proposed in the literature (Grossman et al., 2010; Utsunomiya
et al., 2013b; Randhawa et al., 2014; Ma et al., 2015). Initial
approaches to combine the signals did not account for the
covariance structure between signals but Ma et al. (2015)
suggested a new approach to calculate a decorrelated composite
of multiple signals (DCMS) that adjusted for correlations between
signals and was more powerful to detect selected regions in
the genome.

This study focused on the identification of signatures of selection
in Angus and Hanwoo cattle. Both are beef cattle breeds, but they
have been subjected to entirely different selection pressures and have

FIGURE 1
Plot of first two principal components based on a relationship matrix constructed from 6,873,624 SNPs common between Angus and Hanwoo.
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different genetic population structures, body characteristics,
domestication history, beef quality and breeding program
objectives. Hanwoo are Korean taurine cattle, more related to
Asian taurine cattle like Japanese Wagyu than to western taurine
cattle breeds (Angus, Hereford, etc.) (Lee et al., 2014). Hanwoo have
a smaller stature than Angus, but its beef is popular for its juiciness,
high levels of marbling, and unique flavor (Cho et al., 2010); which,
similarly to Wagyu, attracts a market premium. Hanwoo was
historically a draft breed kept by small holder farmers which
accounted for more than 99% of the farms in Korea until 1985.
Hanwoo steers are typically kept up to 30–32 months of age to
improve the marbling score. In 1960s, various breed improvement
initiatives were taken in Korea. The recent advances in management
of beef production have also led to an increase in the size of beef
operations in Korea. Currently, the selection index of the Korean
Proven Bulls program is mainly driven by 4 traits–marbling score
(MS), carcass weight (CWT), eye muscle area (EMA) and back fat
thickness (BF). Consequently, Hanwoo have shown considerable
improvement in beef quality. Angus, on the other hand, are
European taurine cattle that originated from Scotland. Angus
have been intensively selected for growth, stature and feed intake
in the 20th century and have become themost common beef cattle in
the world. Angus are characterized by their high muscularity, fast

growth rate, medium height, and moderate levels of intramuscular
fat (Albertí et al., 2008). In contrast to Hanwoo, different selection
indices are used in Angus cattle breeding programs worldwide
depending on the type of beef production operation and its
breeding objectives. The average age at slaughter varies between
12 and 20 months depending on whether the calves are weaned and
sent directly to a feeding facility to be finished for slaughter or they
are grown on grass pastures at first, followed by a high-energy diet
for a short period of time (100–120 days) before slaughter.
Therefore, due to stark differences in evolutionary origin,
artificial selection, farming systems, and body characteristics,
differences in genomic landscape between them may point to
genetic basis of adaptive traits and meat production.

The objectives of this study were to identify genome wide signals
of selection in Angus and Hanwoo beef cattle using imputed whole
genome sequence (WGS) data. We used imputed whole genome
sequence data for this analysis to get a higher resolution of selected
genomic regions. We also combined individual selection measures
to obtain a decorrelated composite of multiple signals (DCMS) for
identification of selected genomic regions. These signatures of
selection were then mapped to the ARS-UCD1.2 reference
assembly to identify candidate genes located in these regions. We
also highlight important genes related to meat production
and quality.

2 Materials and methods

2.1 Genotype data

Imputed whole genome genotypes of 10,437 Hanwoo animals
(13,241,550 SNPs) and 13,202 Angus animals (10,057,633 SNPs)
were utilized for this analysis. Respectively, the Hanwoo and
Angus data consisted of 9,160 and 11,632 animals genotyped on
50k arrays (Illumina Bovine SNP50 BeadChip; Illumina, San
Diego, CA), 1,704 and 1,236 animals genotyped on 700k
arrays (777k SNP, Illumina Bovine HD Beadchip, Illumina,
San Diego, CA), and 203 and 334 reference animals with
whole genome sequence (WGS) data. All Hanwoo animals
originated from commercial farms in Korea while Angus data
was collected from commercial farms primarily in the US.
Sequence analysis was performed using integrated variant
discovery pipeline (https://github.com/rodrigopsav/IVDP) to
call variants. The key steps in the pipeline include read
trimming and adapter removal by trimmomatic, read
alignment to ARS-UCD1.2 Bos taurus assembly using bwa-
mem2, duplicated read marking by sambamba-markdup, base
quality recalibration using GATK BaseRecalibratorSpark and
ApplyBQSRSpark and variant calling using GATK
HaplotypeCaller. Sequenced animals were used a reference to
impute genotype data of their respective breeds. Eagle software
version 2.3.2 and Minimac3 was used for phasing and imputation
respectively. Details on quality control, WGS pipeline and
imputation accuracies for Hanwoo were previously reported in
Nawaz et al., 2022. Finally, Imputed whole genome data was
subset down to the 6,873,624 SNPs that were common between
the two breeds to calculate across population measures
of selection.

TABLE 1 Summary of results from runs of homozygosity analysis for
Hanwoo and Angus cattle.

Parameter Hanwoo Angus

Total SNPs 13241550 10057633

Total animals 10437 13202

Percentage of animals having ROH 99.7 99.9

Total number of ROH regions 129778 1169509

Mean number of ROH per animal 12.5 88.7

SD of number of ROH per animal 8.4 18.501

Minimum number of ROH per animal 1 1

Maximum number of ROH per animal 440 270

Mean length of ROH regions in KB 3024 2381.845

SD of length of ROH regions 5089.125 2965.864

Median length of ROH regions 1384 1565

Maximum length of ROH 123720 120023

Minimum length of ROH 1000 1000

No of ROH per animal 12.46 88.67

ROH 1–5 mb 113515 (87.5%) 1087433 (92.9%)

ROH 5–10 mb 8369 (6.5%) 56661 (4.9%)

ROH 10–15 mb 3616 (2.8%) 13443 (1.1%)

ROH 15–20 mb 1718 (1.3%) 5491 (0.4%)

ROH 20–25 mb 1017 (0.8%) 2828 (0.2%)

ROH 25–30 mb 614 (0.5%) 1527 (0.1%)

ROH >30 mb 929 (0.7%) 2126 (0.2%)
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2.2 Analysis

We performed principal component analysis on the combined
dataset containing all Angus and Hanwoo animals using plink 1.9 to
evaluate population structure in the data. Various selection signals
were calculated as explained below.

2.2.1 Within population measures
Runs of homozygosity (ROH) are defined as long

continuous homozygous genomic regions that are assumed to
be identical DNA segments inherited by descent from a
common ancestor, and that serve as an indicator of genomic
autozygosity, consanguinity, selection, and population size
reduction. ROH detection was done using the homozyg
function in plink using the default parameters except for the
number of SNPs in a scanning window (homozyg-window-snp)
which was increased to 100 instead of default 50 SNPs because
of the high density of SNPs in the sequence data. Default values
were used for all the other required parameters in
homozyg function.

To identify ROH islands, we calculated the autozygosity of each
SNP by taking the proportion of individuals in which a SNP was
identified within a ROH region.

Integrated haplotype score (iHS) aims to identify genomic
regions that were under recent positive selection based on the
relationship between an allele’s frequency and the extent of
linkage disequilibrium around it. iHS was calculated (Voight
et al., 2006) based on extended haplotype homozygosity (EHH)
values (Sabeti et al., 2002) calculated using the program hapbin
(Maclean et al., 2015). Due to the high dimensionality of our data
and computational limitations of the software, the analysis was
performed by dividing both Hanwoo and Angus datasets into seven
and 14 bins containing 1491 and 943 animals per bin, respectively.
The correlation of iHS between sample bins ranged from 0.86 to
0.93. Final values of iHS were calculated by taking the average of iHS
values from the data bins. Absolute values of iHS were smoothed out
in windows of 1,001 SNPs to identify regions under recent
positive selection.

2.2.2 Across population measures
Fixation Index (FST) is a measure of population

differentiation. It represents the proportion of total genetic
variance that exists within a sub population. Allele frequencies
of Angus and Hanwoo datasets were calculated using freq
function in plink. Average of Angus and Hanwoo allele
frequencies were used as the baseline allele frequency (p) and
genetic variances (p*(1 − p)). Finally, FST was calculated for each
SNP by taking squared deviation of allele frequency in a breed
from the baseline frequency divided by allelic variance (Weir and
Cockerham, 1984):

FST � σ2

p 1 − p( )

To identify prominent genomic regions, FST was smoothed in
windows of 1,001 SNPs using runmed function in base R.

Across population extended haplotype homozygosity (XPEHH)
(Sabeti et al., 2007) is another population differentiation-based test
that is used to detect selective sweeps in which selected regions are

close to fixation in one population but remain polymorphic in
another population. For XPEHH, we compared the two breeds
under study (Angus and Hanwoo) directly against each other to
identify regions that were differentially selected between
populations. We used the hapbin software (Maclean et al., 2015)
to perform this analysis with the xpehh function.

2.2.3 Decorrelated composite of multiple
signals (DCMS)

In order to combine the several test statistics, we used the
method suggested by Ma et al. (Ma et al., 2015) that takes into
account correlations between signals to calculate a decorrelated
composite of multiple signals (DCMS) based on their p values.
Firstly, fractional ranks of autozyosity and absolute values of ROH,
iHS, FST and XPEHH were used to calculate their p values using
stat_to_p-value function in R package MINOTAUR (with
parameters two.tailed = FALSE, right.tailed = TRUE). Then, a
pairwise correlation matrix was created between absolute values
of the signals. This matrix was used as an input to DCMS function in
MINOTAUR to calculate raw DCMS scores as follows (Ma
et al., 2015):

DCMS � ∑
n

t�1

log 1−plt
plt

( )

∑
n
i�1 rit| |

plt was the p-value of individual selection measures and rit was the
Pearson correlation between two measures. Finally, p values of raw
DCMS scores were calculated by pnorm function using empirical
mean and standard deviation. Multiple test correction was done by
calculating false positive rate (FDR) using p.adjust function in base R
with method= ‘BH’. SNPs having adjusted p-values (q) less than
0.05 were deemed to be significant. Adjacent significant SNPs
(located less than 1 MB apart) were combined to identify regions
under selection by a custom script in R.

2.2.4 Functional annotation of signatures
of selection

A Bos taurus gene annotation dataset which included positional
information for all known bovine genes (n = 27,900) mapped to the
latest bovine assembly (ARS_UCD1.2) was downloaded from
ensemble with BIOMART. Significant genomic regions were
mapped to genes using the GenomicRanges package in R
(Lawrence et al., 2013).

3 Results

The observed heterozygosity in Angus and Hanwoo cattle was
0.30 and 0.31 respectively. Principal component analysis revealed
that Angus and Hanwoo animals clearly clustered separately
from each other in tight clusters (Figure 1). The first principal
component separated the two populations and accounted for
65.1% of genomic variation in the dataset. The second principal
component captured variation in Angus animals which
accounted for only 5.4% of the total genomic variation in the
dataset. These results indicate that majority of the genomic
variation in the dataset can be explained by the differences in
genomic architecture of the two breeds.
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3.1 Within population measures

ROH: The mean number of ROH detected per animal was
higher in Angus (88.7 ± 18.50) as compared to Hanwoo (12.5 ± 8.4)
(Table 1). The median length of ROH regions was also higher in
Angus (1,565 BP) as compared to Hanwoo (1,384 BP). However, the
proportion of ROH regions longer than 5MBwas higher in Hanwoo
(12.5%) than Angus (7.1%). Therefore, Hanwoo had fewer ROH
regions, but they were longer than in Angus suggesting a
comparatively more recent selection in Hanwoo. Mean genome
wide autozygosity was higher in Angus (0.08) as compared to
Hanwoo (0.01). The highest peak for Hanwoo was observed on
CHR 7 (BP 50280340) and smaller peaks were observed on CHR 2,
12, 23, 24 and 29. In Angus, the strongest signal was observed on
CHR 13 (BP 63,854,457). Other significant peaks were also identified
on CHR 8 and 14.

iHS: Genome wide distribution of absolute iHS values was
similar in Hanwoo and Angus with a mean of 0.31 and
0.30 respectively. Absolute value of iHS indicated genomic
regions with unusually long haplotypes on chromosomes 1, 5, 6,
8, 10, 11, 13, 16, 17, 20, 23, 24 and 29 in Angus harboring
13,009 significant SNPs. The strongest signal was detected on
CHR 16 (rs208273139) at 40,588,657 BP. In Hanwoo, the
strongest signal was observed on chromosome 2 at (rs207720085)
82,874,034 BP. Other peaks were observed on chromosomes 1, 2, 3,
5, 6, 7, 8, 9, 14, 17, 20, 25 and 26 harboring 13,030 significant SNPs.
Correlation between iHS values of Angus and Hanwoo was
0.016 indicating differences in the regions of selection sweeps
between the two breeds.

We also observed that ROH and iHS were significantly
correlated (R = 0.252, 95% confidence interval 0.251–0.253) in
Hanwoo and Angus (R = 0.286, 95% interval 0.286–0.287).

FIGURE 2
Circos plot of p-values for genome wide signatures of selection in Angus cattle.
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3.2 Across population measures

Fixation index FST: SNPs with an FST value in the top 0.2%
were identified on 18 out of 29 autosomes indicating
widespread allele frequency differences between breeds.
CHR 4 contained the highest number of significant SNPs
(n = 1,577) followed by CHR 8 (n = 1,464) and CHR 5 (n =
1,256). The most significant SNP (rs209900249) was observed
on CHR 4 position 69,682,473. Other prominent FST hotspots
were observed on CHR 1, 2, 3, 6, 7, 9, 10, 13, 14, 16, 18, 20, 21,
28, and 29.

Across population extended haplotype homozygosity (XPEHH):
13,004 SNPs with top 0.2% XPEHH values were located on CHR 3
(n = 2,216), 8 (n = 4,826), 13 (n = 4,115) and 14 (n = 1,847). The
most significant peak was observed on CHR 13 at position
62,594,885 (rs207508467).

We also observed that the two measures of across population
measures were significantly correlated, Pearson correlation R =
0.2956 and a 95% confidence interval 0.295–0.296.

3.3 Decorrelated composite of multiple
signals (DCMS)

Angus: A total of 39,898 SNPs were identified with significant
p-values. Genic SNPs accounted for 27.49% of all the significant
SNPs. 27 significant genomic regions were identified using the
DCMS adjusted p-value (q value) cutoff of 0.05. The mean length
of selected regions was 931.613 Kb (±1,255.33) while their total
length was 25.153Mb. The significant genic regions mapped to CHR
1,3, 4, 5, 6, 7, 8, 12, 13, 14, 16, 20, 21, and 28 (Figures 2, 3) that harbor
360 genes (Table 2). The most significant genomic selection signal
was observed on CHR 13 where 91 genes were found spread across
3 distinct regions.

Some of the notable genes identified in significant genomic
regions were associated with body size and stature (PLAG1,
CHCHD7, RPS20, LYN), growth and feed intake (TMEM68,
TGS1, LYN, XKR4), growth differentiation factor (GDF5), feed
efficiency (OR6C76, PIK3CD), embryonic growth and
reproductive development (NMNAT1), immunity related to
tropical adaptation (SLC25A33, SPSB1), immune response and
immune regulation (PIK3CD), pigmentation and adaptation to

environment (ASIP). A complete list of all the regions and genes
identified is shown in Table 2.

Hanwoo: A total of 10,162 SNPs were found in significant
hotspots of selection using FDR cut off value of 0.05 on adjusted
DCMS p values (q value). Out of these only 2,095 (20.6%) SNPs
were located in genes. Significant SNPs were used to identify
17 significant genomic regions. The mean length of the selected
regions was 306.27 kb (± 337.43) while their total length was
5.21 Mb. Significant genomic regions mapped to CHR 2, 4, 5, 6, 7,
8, 9, 10, 13, 17, 20, and 24 (Figures 4, 5) which harbor
59 genes (Table 3).

The most significant genomic region was on CHR 2 between BP
81860076 and 82963443 BP where only 1 gene was identified
(ENSBTAG00000048361). The greatest number of SNPs mapped
to a gene on CHR 17 that plays important role in immunity (LRBA).
An important region on CHR 24 (BP 43384983–44317964) was
identified that contained genes (e.g., MC2R) regulating fat
deposition and meat quality. Other genes identified were
previously associated with important roles in brain development
(CPLANE1), developmental regulation (NIPBL), breakdown of
amino acids (BCKDHB), olfactory reception (OR6F1). A
complete list of all the regions and genes identified has been
provided in Table 3. Interestingly, none of the significantly
selected regions were common between Hanwoo and Angus.

4 Discussion

The main aim of this study was to identify genomic regions
under selective pressure in Angus and Hanwoo cattle utilizing
imputed whole genome information. We first identified
individual selection signals by four distinct methods primarily
based on allele frequency and haplotype patterns. We combined
individual signals to identify strong signals of selection. Finally, we
identified various positional candidate genes related to beef
production and quality. Overall, we observed more genomic
regions and genes under selective pressure in Angus than in
Hanwoo with a limited overlap of selected regions or genes
between the breeds, which is consistent with large differences in
breed origin, environmental habitats, divergent selection histories,
breeding program objectives and ultimately, the phenotypic
differences between the breeds.

FIGURE 3
Manhattan plot of DCMS p-values in Angus cattle. Horizontal black line indicates the significance cut off (0.05 FDR).
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TABLE 2 Genomic regions under selection in Angus cattle identified by DCMS q values ≤ 0.05 and genes identified in those regions.

Start End CHR No of genes Genes

26683714 26745320 1 0 None

50460996 53793201 3 35 MTF2 DIPK1A RPL5 SNORA66 SNORD21 U6 EVI5 ENSBTAG00000055274
5S_rRNA GFI1 RPAP2 GLMN C3H1orf146 BTBD8 ENSBTAG00000040248
EPHX4 BRDT ENSBTAG00000054884 ENSBTAG00000047443 TGFBR3
CDC7 HFM1 ENSBTAG00000054082 ENSBTAG00000046077 ENSBTAG00000055150
ZNF644 bta-mir-2285b-2 BARHL2 ZNF326 LRRC8D
bta-mir-2285k-5 ENSBTAG00000050182 LRRC8C LRRC8B ENSBTAG00000038625

55238880 55468638 3 3 PKN2 ENSBTAG00000051499 ENSBTAG00000051844

69475528 69894433 4 6 7SK SNX10 CBX3 HNRNPA2B1 NFE2L3 MIR148A

48288996 48752060 5 4 MSRB3 LEMD3 WIF1 U6

52011261 52117527 5 1 TAFA2

53692271 54424033 5 3 SLC16A7 ENSBTAG00000055198 ENSBTAG00000053531

58055499 59307814 5 42 U6 ENSBTAG00000047825 ENSBTAG00000052093
ENSBTAG00000049329 ENSBTAG00000051156
ENSBTAG00000046778 ENSBTAG00000048295
ENSBTAG00000054507 ENSBTAG00000050480
ENSBTAG00000051165 ENSBTAG00000051462
ENSBTAG00000049219 ENSBTAG00000051274
ENSBTAG00000048779 OR6C76 OR6C75 ENSBTAG00000049581
ENSBTAG00000049184 ENSBTAG00000048408
ENSBTAG00000024691 ENSBTAG00000051265
ENSBTAG00000050381 ENSBTAG00000049213
ENSBTAG00000054097 ENSBTAG00000049016
ENSBTAG00000045922 ENSBTAG00000048168
ENSBTAG00000053702 ENSBTAG00000054733 ENSBTAG00000049913 ENSBTAG00000051198
ENSBTAG00000002913 ENSBTAG00000051990 ENSBTAG00000048864 ENSBTAG00000046446
ENSBTAG00000049753 ENSBTAG00000054193 OR10A7 ENSBTAG00000049751
ENSBTAG00000053229 ENSBTAG00000053772 ENSBTAG00000037629

1155763 1320935 6 1 ENSBTAG00000051456

8724140 8824920 6 0 None

78535547 78939028 6 0 None

38009575 38227430 7 8 FAF2 RNF44 CDHR2 GPRIN1 SNCB EIF4E1B TSPAN17 UNC5A

44026848 44466715 7 22 ENSBTAG00000012150 MEX3D MBD3 UQCR11 TCF3 ONECUT3 ATP8B3 REXO1
KLF16 ABHD17A ENSBTAG00000050118 SCAMP4 CSNK1G2 bta-mir-6120 BTBD2
SOWAHA SHROOM1 GDF9 UQCRQ LEAP2 AFF4 U6

89565309 94976398 8 42 5S_rRNA ENSBTAG00000052296 NXNL2 SPIN1 ENSBTAG00000051928 ENSBTAG00000054632
CDK20 FBXW12 ENSBTAG00000021235 MSANTD3 TMEFF1 CAVIN4 PLPPR1 5S_rRNA ENSBTAG00000025760
MRPL50 ZNF189 ALDOB PGAP4 RNF20 GRIN3A ENSBTAG00000050971 ENSBTAG00000030953

(Continued on following page)
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TABLE 2 (Continued) Genomic regions under selection in Angus cattle identified by DCMS q values ≤ 0.05 and genes identified in those regions.

Start End CHR No of genes Genes

CYLC2 U6 SMC2 ENSBTAG00000047350 ENSBTAG00000013445 ENSBTAG00000050829
ENSBTAG00000052864 ENSBTAG00000053491 ENSBTAG00000016173 ENSBTAG00000050464
ENSBTAG00000000145 ENSBTAG00000052019 OR13C3 ENSBTAG00000049256 OR13C8
ENSBTAG00000048409 NIPSNAP3A ABCA1 SLC44A1

12701319 12716083 12 1 TNFSF11

61100092 61130961 13 12 ENSBTAG00000052743 DEFB121 DEFB122A DEFB122 DEFB123 DEFB124
REM1 HM13 bta-mir-12010 ID1 COX4I2 BCL2L1

62482399 65519468 13 71 BPIFB4 BPIFA2A ENSBTAG00000031375 BPIFA2C ENSBTAG00000011704
BPIFA2B ENSBTAG00000031373 BPIFA3 BPIFA1 BPIFB1 BPIFB5 CDK5RAP1 ENSBTAG00000031354 SNTA1
ENSBTAG00000010131 ENSBTAG00000053051 ENSBTAG00000053797 NECAB3 C13H20orf144 E2F1 PXMP4
ZNF341 CHMP4B RALY EIF2S2 ASIP AHCY ENSBTAG00000050108 ENSBTAG00000046623 ITCH DYNLRB1
MAP1LC3A PIGU TP53INP2 NCOA6 GGT7 ACSS2 GSS MYH7B bta-mir-499 TRPC4AP EDEM2 PROCR MMP24 EIF6
FAM83C UQCC1 ENSBTAG00000053266 GDF5 ENSBTAG00000052250 CEP250 ENSBTAG00000030976 ERGIC3 ENSBTAG00000053187
SPAG4 CPNE1 RBM12 NFS1 ROMO1 RBM39 ENSBTAG00000053775 PHF20 5S_rRNA SCAND1 CNBD2
ENSBTAG00000052997 ENSBTAG00000053403 EPB41L1 ENSBTAG00000050801 AAR2 DLGAP4

67831405 69506639 13 8 FAM83D ENSBTAG00000044690 DHX35 U6 ENSBTAG00000049087
ENSBTAG00000050378 ENSBTAG00000048871 MAFB

22710076 24757731 14 24 XKR4 TMEM68 TGS1 LYN RPS20 ENSBTAG00000045097 U1 MOS PLAG1
CHCHD7 ENSBTAG00000054153 SDR16C5 SDR16C6 PENK U6 BPNT2 FAM110B
ENSBTAG00000047136 ENSBTAG00000051748 UBXN2B CYP7A1 U1 SDCBP NSMAF

40378981 41205611 16 9 TNFSF18 ENSBTAG00000052047 ENSBTAG00000053302 TNFSF4
ENSBTAG00000020550 AADACL4 DHRS3 VPS13D SNORA59A

42527352 44175641 16 32 MTOR ANGPTL7 EXOSC10 SRM MASP2 TARDBP CASZ1 PEX14 DFFA ENSBTAG00000045105
CORT CENPS PGD ENSBTAG00000048790 ENSBTAG00000048747 ENSBTAG00000054239
U6 UBE4B RBP7 NMNAT1 LZIC CTNNBIP1 CLSTN1 PIK3CD U6 5S_rRNA U6 TMEM201
SLC25A33 ENSBTAG00000049485 SPSB1 H6PD

45628162 46172668 16 3 ENSBTAG00000048839 ENSBTAG00000051176 CAMTA1

31142802 31450979 20 11 ENSBTAG00000033187 NNT PAIP1 ENSBTAG00000049623 C20H5orf34
TMEM267 CCL28 HMGCS1 ENSBTAG00000048672 NIM1K ENSBTAG00000042376

69997413 70839780 20 8 ENSBTAG00000050065 IRX2 U6 ENSBTAG00000054006 5S_rRNA IRX4 NDUFS6 ENSBTAG00000050317

2650859 3126131 21 2 ATP10A U6

62909681 63080951 21 3 5S_rRNA ENSBTAG00000049199 ENSBTAG00000052737

25323298 25520626 28 9 DDX21 KIFBP U6 SRGN ENSBTAG00000042264 ENSBTAG00000051145 VPS26A SUPV3L1 HKDC1
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Genes identified within selected genomic regions in Angus
included previously known regulators of growth, body size, feed
intake, reproductive performance, and immunity. For example,
PLAG1 regulates cell proliferation and its association with carcass
weight and stature has been reported in several cattle breeds
(Utsunomiya et al., 2013a; Takasuga, 2016; Fink et al., 2017).
Similarly, LYN, another regulator of cell proliferation and RPS20,
a catalyst of protein synthesis, have been associated with body
weight and preweaning daily gain in Nellore (Utsunomiya et al.,
2013a; Fink et al., 2017). CHCHD7 was previously reported as
significantly associated with height in Jersey and Holstein
(Utsunomiya et al., 2013a; Fink et al., 2017) and with carcass
weight in Wagyu cattle (Nishimura et al., 2012). Both PLAG1
and RPS20 have also been associated with fetal growth and
calving ease (Takasuga, 2016). Several olfactory receptors were
also found in significant genomic regions (e.g., OR6C76, OR6C75,
OR10A7, OR13C3, OR13C8). The olfactory transduction pathway

has been associated with feed intake as it affects the perception of
odor and in turn influences food preference and consumption (Abo-
Ismail et al., 2010). Olfactory receptor loci have also been identified
in other selective sweep studies in cattle and there are indications of
recent duplication events (Ramey et al., 2013); which suggests that
olfactory receptors may be under strong selection. TMEM68 (a
cyltransferase involved in glycerolipid metabolism) and XKR4
have been associated with growth and feed intake in Nellore
(Terakado et al., 2018). XKR4 has also been associated with
subcutaneous fat in indicine and composite cattle (Porto Neto
et al., 2012). TGS1 (trimethylguanosine synthase 1) has pleitropic
effects in growth traits and feed efficiency (Terakado et al., 2018;
Ghoreishifar et al., 2020). GDF5 (growth differentiation factor) is
critical for normal skeletal development. Loss of GDF5 function
results in developmental delay and a shortened appendicular
skeleton (Buxton et al., 2001). PIK3CD (a component of the
phosphatidylinositol-3-kinase pathway) is involved in lymphocyte

FIGURE 4
Circos plot of p-values for genome wide signatures of selection in Hanwoo cattle.
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signaling. Mutations in PIK3CD causes immune dysregulation and
disease pathogenesis (Tangye et al., 2019). SPSB1 (splA/ryanodine
receptor domain and SOCS box containing 1) is an important
component of mammalian innate immune system regulation that
recognizes foreign molecules derived from pathogens (Lewis et al.,
2011). We also identified solute carrier genes (SLC44A1, SLC16A7,
SLC25A33) which belong to a major class of transport proteins in
the cell membrane and play an important role in response to
metabolic states and environmental conditions (Pizzagalli et al.,
2021). Various solute carrier genes were also identified in another
study directly comparing zebu and taurine cattle using differential
allele frequency and haplotype diversity methods (Chan et al., 2010).
This strongly suggests their role in adaptation to tropical
environments. ASIP (Agouti signaling protein) is a well-known
gene associated with coat color pigmentation and environmental
adaptation in several species (Bertolini et al., 2018).

Considering the breed’s innate characteristics and the high
focus of the Hanwoo breeding program to select for increased
marbling, it was reasonable to expect that some genomic regions
under selection would be related to marbling score. An important
region on CHR 24 was identified which contained
ENSBTAG00000046153, MC2R and SETBP1 genes. The same
region was also identified by composite signal in a multi breed
study within a Hanwoo-specific signal (Gutiérrez-Gil et al.,
2015). MC2R (adrencorticotropin receptor) and MC5R
(melanocortin 5 receptor) genes belong to a family of
melanocortin receptors (reviewed by Switonski et al. (2013))
that are involved in fatty acid and lipid metabolism pathways
and reproduction. These genes have been previously located
within a QTL region for marbling and backfat thickness and
meat quality in pigs (Kováčik et al., 2012; Switonski et al., 2013).
MC5R is a functional candidate for fatness in domestic animals
and obesity in humans (Switonski et al., 2013) because it regulates
interleukin 6 (IL6) (Jun et al., 2010) and downregulates leptin
secretion (Hoggard et al., 2004) respectively resulting in
increased fat deposition and increased feed intake. Based on
these findings, we conclude that this selected region on CHR
24 is an important functional region for meat quality and should

be further investigated in future studies in Hanwoo and/or other
beef cattle.

Although it is common to focus on the genes identified in selected
genomic regions, it should also be considered that much of the
phenotypic diversity originates from differential regulation of gene
expression by regulatory elements like promoters, enhancers,
silencers, etc. (van Laere et al., 2003; Salinas et al., 2016). In this
study 29.67% and 27.3% of the significant SNPs found in Angus
and Hanwoo were annotated to gene coding regions, while the
majority of the significant variants were located elsewhere. Similarly,
Vernot et al. (2012) reported that the number of regulatory variants
under selection far exceeded the number of variants in protein coding
regions although their effect sizes may be small. Therefore, apart from
the genes highlighted above, there may also be important regulatory
elements within these significant genomic regions that play an
important role in determining the phenotypic diversity of these breeds.

Detection of signatures of selection in populations can be
challenging as it may be confounded with various other events in
the population’s history that can lead to false positive results, e.g.,
population bottlenecks, migration, and genetic drift.
Ascertainment bias is also a common problem in SNP data
(Vitti et al., 2013). This study utilized whole genome sequence
information from thousands of animals which should, to some
extent, mitigate these issues. However, our study did not account
for variation in the rate of recombination which may mimic the
characteristics of selection signals (Haasl and Payseur, 2016). We
also did not focus on other types of structural variants under
selection such as copy number variants and tandem repeats
which can play important biological roles. Moreover, the
cutoff values used to initially filter the raw selection sweep
signals across methods is largely arbitrary. For example,
studies analyzing genotype data tend to adopt more liberal
cutoffs of top 1% or 5% while those based on sequence data
typically use a more conservative cutoff value such as the top
0.1% or 0.01%. For discovery of important QTLs or therapeutic
targets, these thresholds may have downstream implications. In
this study we first used 0.02% as a threshold of significance for
individual selection signals just to highlight the peak genomic

FIGURE 5
Manhattan plot of DCMS p-values in Hanwoo cattle. Horizontal black line indicates the significance cut off (0.05 FDR).
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regions. We acknowledge this choice is subjective and these peaks
were not used for any downstream analysis. Importantly, for the
DCMS p-values we adopted a more conservative approach and
used FDR cutoff of 0.05 which is widely used and acceptable in
animal breeding and genetics. Candidate gene search was only
performed for SNPs that passed the FDR cut-off based on the
DCMS p-values. Theoretically, this approach should control the
false positive rate in this study.

Signatures of selection can serve as a complementary method to
genome-wide association studies for identification of functional
variants in the genome and to provide new insights into the
underlying biology of traits important for agricultural production.
Since detecting selected genomic regions does not require
phenotypic data, these studies can be particularly useful to
identify genes for traits that are difficult or at time impossible to
measure, for example, adaption to extreme environment and disease
resistance. Significant genomic regions in this study may be used to
select SNPs in future and test for their predictive ability. However,
SNPs located in conserved genomic regions may have lower
frequencies making it difficult to estimate their effects correctly
and thus using them for prediction. These challenges may be
overcome by overlapping results from various selection sweeps as
well as GWAS particularly for traits that are known to be regulated
by large effect loci. Finally, future projects comparing Hanwoo and
Angus against indicine cattle breeds may also reveal candidate genes
related to environmental adaptation.

5 Conclusion

To date, this is the largest signatures of selection study in Angus
and Hanwoo beef cattle, both in terms of the density of SNPs and the
number of animals per breed. We detected more selected genomic
regions in Angus than in Hanwoo and the total length of genomic
regions with evidence of selection was also higher in Angus.
Moreover, we observed that the signatures of selection in
Hanwoo and Angus are unique markedly reflecting differences in
their selection history, genomic architecture and breed
characteristics. More specifically, in Angus, we identified genes
associated with growth, body size, feed intake, reproductive
development and immunity, while in Hanwoo important genes
associated with immunity, fat deposition, cholesterol metabolism,
neuronal development and meat quality were identified. Future
studies may help independently validate key functional genes
regulating traits associated with these breeds.
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