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Editorial on the Research Topic
 The sustainable management of land systems





1 Introduction

The sustainable management of land systems is central to addressing some of the most pressing global challenges of our time, including climate change, food security, biodiversity loss, and sustainable urbanization (Abduljabbar et al., 2025; Jayawardana et al., 2025; Juarez-Quispe et al., 2025). Land systems—defined as intertwined socio-ecological networks shaped by land use, governance, biophysical characteristics, and institutional arrangements—are impacted by and drive environmental and social change (Babli et al., 2025; Xiao et al., 2025). As such, their management plays a pivotal role in achieving multiple Sustainable Development Goals (SDGs), from zero hunger (SDG 2) and clean water (SDG 6) to climate action (SDG 13) and life on land (SDG 15) (Lambin and Meyfroidt, 2010; United Nations, 2025).

Land systems are inherently dynamic and multifaceted due to the intricate relationships that exist between ecological processes, human activities, economic demands, and policy frameworks (Pissourios et al., 2025; Wei S. et al., 2025). Whether due to urbanization, agricultural growth, infrastructure development, or deforestation, changes in land cover and land use have profound effects that cut across administrative and spatial borders (Huang and Lin, 2025; Min et al., 2025; Wei L. et al., 2025). These changes lead to habitat fragmentation, resource depletion, land degradation, and social injustices in many areas, necessitating integrated, place-based, and adaptive management approaches (Baldi et al., 2013; Loures et al., 2019; Naranjo Gómez et al., 2020).

Recognizing the need to better understand and guide these transformations, the Research Topic “The Sustainable Management of Land Systems” was launched to provide a platform for interdisciplinary research focused on identifying pathways, tools, and governance mechanisms that promote sustainability in land systems (Hashed et al., 2025; Ishiwatari et al., 2025; Zhao X. et al., 2025). This Research Topic sought to attract contributions from across disciplines, including geography, ecology, environmental engineering, agriculture, urban planning, remote sensing, economics, and social sciences, as well as from different world regions and institutional contexts (Matuk and Calka, 2025; Wang X. et al., 2025; Zhou et al., 2025).

This editorial synthesizes and reflects upon the findings of the 24 peer-reviewed articles published in this Research Topic. These contributions cover a wide range of case studies, conceptual analyses, and methodological approaches applied to various land-related issues, such as trade-offs between ecosystem services, interactions between urban and rural areas, neutrality of land degradation, stakeholder engagement, and the incorporation of technological innovations such as remote sensing, GIS, and modeling tools. These articles highlight the global significance of sustainable land system governance by representing geographic diversity across Europe, Asia, Africa, and Latin America.

By organizing the contributions thematically, this editorial aims to highlight not only the scientific advances made but also the broader insights into policy, planning, and practice. We begin by examining how the published works contribute to key thematic areas—such as ecosystem restoration, sustainable agriculture, urban dynamics, and land-use modeling—and conclude by identifying common lessons, ongoing gaps, and opportunities for future research and action.



2 Insights from research: the sustainable management of land systems

The articles published in the Research Topic The Sustainable Management of Land Systems offer a comprehensive overview of how diverse regions and disciplines address the challenge of managing land systems in a sustainable way. These 24 contributions employed a broad range of methodologies—from spatial modeling and ecological assessment to stakeholder surveys and optimization tools—to explore land use change, ecosystem services, agricultural sustainability, urban expansion, and land degradation. Despite their diversity, these studies collectively emphasized the need for integrated and adaptive land management approaches informed by both scientific evidence and socio-cultural realities.

Several studies applied spatially explicit modeling techniques to assess ecosystem functions and land-use dynamics under different scenarios. For instance, articles based in China (e.g., the Min River Basin, the Yangtze River Economic Belt, and Huize County) used tools such as PLUS, InVEST, and the Human Footprint Index to evaluate habitat quality, ecological security, and karst desertification over time. These models allow researchers to compare future land-use trajectories under competing policy scenarios, thereby supporting decision-makers in selecting pathways that prioritize ecological integrity and long-term sustainability. Their findings underscore the potential of integrated simulation frameworks for large-scale land planning and restoration. Embedding ecosystem services into planning processes is essential to ensure holistic outcomes, as highlighted in previous research (Alves et al., 2022, 2024; Li W. et al., 2025; Zhang K. et al., 2025).

Agricultural land systems also featured prominently, with research addressing both the biophysical and socio-economic dimensions of sustainability (Diogo et al., 2025; Morán-Alonso et al., 2025; Rabelo et al., 2023). A study on wheat cultivation evaluated nitrogen fertilizer optimization as a pathway to reduce carbon emissions across different regions of China, revealing significant regional disparities in efficiency (Guo et al., 2025; Wang and Su, 2025; Xu et al., 2025). Another long-term experiment with maize-based systems highlighted the benefits of Integrated Soil-Crop System Management in enhancing yields while maintaining soil health (Gui et al., 2025; Koumaki et al., 2025; Oldoni et al., 2025). Studies conducted in tropical settings, including Benin and Latin America, proposed indicators to assess and redesign silvopastoral systems and smallholder strategies (Culqui et al., 2025; dos Santos et al., 2025; Morales-Ruiz et al., 2025). These findings align with agroecological principles that emphasize the need for agricultural systems to be both productive and regenerative, while accounting for environmental boundaries and social contexts (Gopalsamy, 2017; Gonçalves, 2020; Silva et al., 2021).

A number of contributions focused on land-use change and scenario simulation to inform policy under uncertainty (Li C. et al., 2025; Zhao R. et al., 2025; Zou et al., 2025). Articles simulating spatial development in the Yellow River Basin, Henan Province, and resource-based cities showed that ecological protection scenarios outperform economic development ones in terms of sustainability metrics. These studies support the growing consensus that scenario-based planning, when combined with stakeholder engagement, can illuminate trade-offs and synergies in complex land systems (Baldi et al., 2013; Ruzgiene et al., 2025). Similarly, studies using green land use efficiency models and ecosystem service valuations highlighted the role of education, infrastructure, and land governance in mediating regional differences in sustainability outcomes (Chen et al., 2025; Cui et al., 2025; Gong et al., 2025).

Urbanization and infrastructure development emerged as significant drivers of land system transformation, particularly in rapidly growing regions of Asia and Africa. Research on railway corridors in China and urban expansion in Ethiopia revealed alarming rates of cropland loss, spatial fragmentation, and ecological degradation that often outpace the ability of planning institutions to respond effectively (Feng et al., 2025; Song et al., 2025a; Zhang Q. et al., 2025). These patterns mirror global trends of urban sprawl and raise concerns about the future of food security and ecosystem health in peri-urban zones (Li X. et al., 2025; Wang et al., 2025; Yu J. et al., 2025). In response, some articles developed spatial frameworks—such as production-living-ecological space models—to support land-use integration and conflict mitigation in urbanizing regions (Liu J. et al., 2025; Liu S. et al., 2025; Sarfo et al., 2025).

The issue of land degradation neutrality (LDN) was addressed through case studies in Ukraine and mining-affected regions, where authors proposed land reclamation strategies based on industrial backfill and ecosystem service mapping (Ford-Learner et al., 2025; Song et al., 2025b; Zhong et al., 2025). These efforts illustrate how degraded lands can be reintegrated into productive landscapes when supported by appropriate policies and technologies, contributing to the goals of the UNCCD and LDN targets (Liao et al., 2025; Martínez-Valderrama et al., 2025; Nandi et al., 2025). Other studies analyzed trade-offs among ecosystem services in tea-growing areas, showing that forested landscapes provide higher ecological value and multifunctionality than intensive agricultural systems (Castillo-Díaz et al., 2025; Wang et al., 2024; Wang Z. et al., 2025).

Finally, a subset of articles explored the integration of technology and cultural perception in shaping land governance (Liu and Zhu, 2025; Rahmawati et al., 2025; Yang, 2025). The use of fuzzy analytic hierarchy processes (FAHP), remote sensing, and carbon accounting models demonstrated how advanced tools can support sustainable land-use decision-making (Moberg, 2025; Weerasinghe et al., 2025). However, one article cautioned that cultural diversity and psychological factors also influence land-use choices, suggesting the need for participatory tools that recognize local values and mental models. In Kazakhstan, remote sensing was used to assess pasture degradation, revealing that human activities are often more significant drivers of change than climatic variability—an insight echoed in global assessments of land degradation (Amin and Romshoo, 2024; Peng et al., 2025; Yu Z. et al., 2025).

Across these contributions, a few recurring themes emerge: the value of interdisciplinary approaches; the necessity of linking local knowledge with technical tools; and the critical role of policy in translating science into practice. Collectively, these 24 articles provide a compelling narrative about the challenges and opportunities of land system management. They demonstrate that while tools and models are important, achieving sustainability ultimately depends on aligning ecological goals with social equity, institutional capacity, and long-term vision.



3 Final remarks

The 24 articles published under the Research Topic The Sustainable Management of Land Systems illustrate the complexity and urgency of guiding land use decisions in a changing world. Together, these studies reveal that land systems are not merely physical spaces subject to human intervention, but socio-ecological systems shaped by historical trajectories, institutional arrangements, cultural values, and environmental constraints. Their sustainability depends not only on technical and scientific innovation but also on governance, participation, and contextual adaptation.

Several key insights emerge from the collective body of work. First, land system sustainability requires a strong integration of ecological processes, socio-economic conditions, and technological capabilities. Studies that employed spatial simulation tools, ecosystem service modeling, and scenario planning proved especially useful in projecting land-use outcomes and exploring trade-offs. Such tools are most effective when combined with local knowledge and stakeholder participation, ensuring that land use strategies are both scientifically sound and socially legitimate (Baldi et al., 2013; Jukneliene et al., 2021).

Second, the challenge of land degradation, whether driven by climate stress, intensive agriculture, or extractive industries, remains a global concern. However, the contributions from countries such as Ukraine, Kazakhstan, and China demonstrate that restoration and adaptive reuse of degraded land are possible with the right policy support and innovative land management approaches (Secretariat, 2018). The transition from reactive to proactive land governance—one that anticipates degradation and builds resilience—is increasingly seen as a priority in both policy and research communities (Alves et al., 2023; Zulkifli et al., 2015).

Third, agriculture continues to be a central element in sustainable land systems. The emphasis on integrated soil-crop systems, silvopastoral designs, and regionally optimized fertilization highlights a shift toward farming practices that balance productivity with long-term ecological viability. These findings resonate with the principles of agroecology and regenerative agriculture, which advocate for systems that enhance soil health, sequester carbon, and support biodiversity (Côte et al., 2022; Gliessman, 2014).

Urbanization, another recurring theme, illustrates the spatial and institutional tensions in land management. The rapid conversion of agricultural land to urban uses, especially in peri-urban zones, threatens food security and ecological connectivity. Planning tools such as production-living-ecological space (PLES) models and urban ecological security frameworks, featured in several contributions, provide important mechanisms for mediating competing demands in complex urban landscapes. However, their effectiveness relies heavily on integrated governance and intersectoral coordination—areas that remain weak in many regions (Angel et al., 2011).

Finally, many of the articles reaffirm that land systems cannot be managed in isolation from cultural, institutional, and psychological factors. The influence of community values, governance structures, and cognitive biases in shaping land-use decisions suggests that participatory, inclusive, and culturally sensitive approaches are essential. Land use transitions are rarely linear or purely rational; they are often the result of negotiations, power asymmetries, and contested meanings of sustainability (Alves et al., 2023; Lambin and Meyfroidt, 2011).

In sum, this Research Topic advances both the theoretical understanding and practical approaches to land system sustainability. It highlights the value of interdisciplinary and cross-scalar research, the need for robust decision-support tools, and the centrality of adaptive governance. As land pressures intensify due to climate change, population growth, and globalized markets, the path forward lies in cultivating land systems that are not only efficient and productive but also equitable, inclusive, and resilient.

We hope that this collection of studies serves as both a reference and an inspiration for future research, policy development, and collaborative action aimed at securing the long-term sustainability of land systems around the world.
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In the past 30 years, Swedish EU Rural Development Programme (RDP) financing for constructed wetlands (CWs) had two goals: nutrient reduction and biodiversity conservation. Since 2007, at least 1,718 CWs have been implemented. However, their cost effectiveness has been difficult to assess as defined targets for improvements were lacking. In 2013, Sweden set up regional (county) targets for new CWs to mitigate eutrophication and conserve biodiversity as part of a 6-year plan under the RDP. Here, we investigate if the increase in targeting was effective, in particular if the 15 participating counties achieved their stated goals. We also compare CW characteristics during the regionally targeted period (2014–2020) with the preceding untargeted period (2007–2013). The results indicate that regional targets were not achieved. Most counties set lower targets for biodiversity conservation than for nutrient reduction. Hence, by 2020 more counties exceeded targets for the former than for the latter. Budget share allocated to the two goals was not decisive, instead the outcome could be attributed to prioritization, budget controls, timing consistency, decision criteria consistency and goal setting. During both periods half of the CWs were funded for each purpose, yet the number of wetlands constructed decreased by 82% in the second period. Landowners may have prioritized biodiversity CWs as construction costs were higher for nutrient retention CWs and costs were mostly not fully covered by the RDP. Furthermore, targets were not budget limited, which meant that county-level allocation of funds could be shifted to finance CWs that did not meet the intended purpose. To increase overall measure effectiveness, we suggest that the distribution of national funds for CWs should be divided between the two purposes identified at the regional level and that reallocation of funds only be permitted in accordance with redefinition at the county level.
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[image: Map of Sweden shows county targets for biodiversity and nutrient purposes. Bar chart compares the number of constructed wetlands before and after targeting periods, categorized by biodiversity, nutrient, and combined purposes. Key points include an eighty-two percent decrease in wetland numbers, larger construction areas, similar costs, larger subsidies, and the importance of specific budgets for improved effectiveness. Concluding notes emphasize regional distribution variations and allocation dependencies.]
GRAPHICAL ABSTRACT.
Evaluation of the regional targets set for each wetland purpose (biodiversity or nutrient).



1. Introduction

Wetlands are an important part of the Swedish rural landscape. They provide many environmental services including nutrient capture, enhancement of biodiversity, and hydraulic buffering. However, wetland area was extensively reduced throughout the 20th century to enhance agricultural and forest production. In the past 30 years, the Swedish government has supported the creation of constructed wetlands (CWs), as an agri-environmental measure (AEM) to compensate for the loss of natural wetlands. The new CWs have several purposes. In the 1990s when active support began, the two primary purpose was to reduce nitrogen (N) loads from agricultural areas to the Baltic Sea and to increase biodiversity (Graversgaard et al., 2021). Later the focus was expanded to include reducing agricultural phosphorus (P) losses and to enhancing aquatic environments in general.

Depending on their primary purpose, CWs can look different from each other. Effective N reducing CWs are usually large open ponds with varying amounts of emergent vegetation located in agricultural areas with sufficient hydraulic and N loads (Djodjic et al., 2022). CWs designed to promote P trapping should receive a high P load. Since 2010, CWs for P retention have typically been designed to route influent water into an initial open pond followed by a shallow area with emergent vegetation. CWs to support biodiversity are usually large and can be located anywhere in a catchment.

In Sweden, the decision to construct a wetland is ultimately up to the landowner. Landowners include individuals, corporations, municipalities and other actors (Andersson, 2012). The large financial investment is one of the main factors influencing landowners' willingness to construct wetlands (Franzén et al., 2016) and a lack in continuity of financial support is seen as an important barrier (Geranmayeh et al., under revision). Landowners' willingness is positively impacted by ecosystem management cooperation, support from regulatory authorities and policy design (Blicharska and Rönnbäck, 2018). However, farmers most often associate wetland construction with negative impacts on farming operations, due to land management changes (Hansson and Kokko, 2018).

The Swedish government has used financial support to landowners to encourage wetland construction through the European Rural Development Programme (RDP), Local Water Preservation Grant (LOVA) and Local Initiative for Nature Conservation (LONA). Both LOVA and LONA are directly financed by the Swedish state, while the RDP is up to 50% financed by the European Union (EU). Each EU state has the power to adapt and direct support to correspond with national priorities and needs (Andersson, 2012). The RDP covers up to 100% of the total cost for CWs, while both LOVA and LONA cover up to 90% of the total cost.

The RDP aims and targets of support for all purposes are evaluated and set for multi-year periods. After joining the EU in 1995, Sweden has been included in four of these periods: 1995–1999, 2000–2006, 2007–2013, and 2014–2020. In Sweden, the RDP is the most important source of financing CWs. For example, between 2011–2020, around 95% of all CWs were financed through the RDP (Speks, 2021). EU-mandated evaluations of the effectiveness of Swedish RDP support for CWs in the three most recent periods concluded that although the area of new wetlands increased, the increase was less than the expected areal goals (Andersson et al., 2009; Smith et al., 2016; Grigoryan, 2019). More importantly, these and other evaluations suggested that the cost effectiveness of the RDP CWs could be vastly improved through better targeting of areas for implementation and by being more purpose driven (Weisner et al., 2015, 2016; Bång et al., 2019; Djodjic et al., 2020; Graversgaard et al., 2021).

There is considerable international interest in improving AEM cost effectiveness and cost efficiency through targeting. The overall goal of targeting is to focus on the cost of implementation relative to the effect of a measure. This can lead to both greater cost efficiency and cost effectiveness. These two terms are related and often used interchangeably, leading sometimes to confusion. Cost effectiveness is the cost per unit of the targeted effect. A particular measure is more cost effective or less cost effective only relative to other measures. For example, construction of wetlands to reduce N losses from farming activities to receiving waters (the target) can be compared to other measures (e.g., cover crops) to reduce N losses from farming activities. The cost effectiveness of any two measures can be compared on different scales and potentially lead to different results. In the aggregate, CWs in Sweden have been shown to be more cost effective then cover crops (Mårtensson et al., 2020) but at a very local scale a particular wetland due to its design or placement may not be as cost effective as cover crops in the same area. In addition, the cost effectiveness of individual wetlands (proposed or implemented) can be compared, with the result that one wetland may be more cost effective than another. Cost efficiency is achieved when the resources used (quantified as costs) for a particular measure cannot be allocated in any other way and achieve a greater effect at the same place. In the work that follows we have chosen to focus on cost efficiency, i.e., the efficient allocation of resources to achieve a particular target.

In a communication on development of the new Common Agricultural Policy (CAP), EC (2017) 713 “The Future of Food and Farming”, the European Commission wrote that Member States should define quantified targets to ensure that environmental objectives agreed on are reached and that there should be flexibility in formulation of strategic plans to meet these objectives. Targeting locations where AEMs are implemented fills both of these criteria. The search for policy designs to incorporate targeting has led to a number of suggestions. Primarily, these have focused on either adjusting payments to landowners/managers or identifying factors which will contribute most to the desired environmental improvement and awarding premiums accordingly. The former led to interest in various types of payment mechanisms, such as reverse auctions, while the latter led to more explicit definition of conditions which encourage program participation, including decentralizing the policy decision process to lower administrative levels.

In spite of the interest within the EU with respect to improving the effectiveness of AEMs, there have been relatively few studies on administrative decentralization. Beckmann et al. (2009) performed a literature review and expert survey on AEM implementation which included a focus on how decentralization impacts measure efficiency and effectiveness. One of their insights was that although there is a resistance to change from agricultural administrators and farmer associations, it is possible for improvements (increased decentralization) to be made within existing administrative structures. Analyzing semi-structured interviews with institutional stakeholders, Yang et al. (2015) concluded that the rigidity of centralized RDP policy restricted local actors' ability to prioritize local needs. Bareille and Zavalloni (2017) developed and applied a model to explore how AEM decentralization would affect the provision of public goods. They found that while the returns for decentralizing payments for AEMs from central to regional government led to a decrease in the total amount of land used for AEMs, it did lead to the inclusion of higher value land and higher benefits to society. While there are other studies exploring effects of decentralization on AEMs, they focus primarily on local stakeholder involvement rather than a lower level of administration (e.g., Leventon et al., 2019; Schomers et al., 2021). Changes to the guidelines for CW implementation in Sweden within the RDP in the period from 2014–2020 brought in a higher level of decentralization with respect to determining local priorities, i.e., targeting.

Initially, participation in the Swedish RDP program for CWs was limited to previously defined nitrogen sensitive areas (NSAs) following established EU guidelines. The NSAs were broadly geographically defined and included large areas of Southern Sweden without regard to political boundaries. As the RDP expanded beyond a focus on N reduction to also include P retention and enhanced biodiversity, the geographical area of eligibility also expanded and currently includes all of Sweden. Up until the most recent program period (2014–2020), the separation by purpose between CWs intended for nutrient reduction and those with a focus on improved biodiversity was primarily left up to county-level administrators. RDP funds were allocated to county boards by the national program administrator, the Swedish Board of Agriculture. At the county level, applications submitted by landowners were evaluated and approved when basic general criteria were met and funds were available. There were no county-level targets set for the share of funds which would support nutrient reduction and the share that would support biodiversity. Funds could be used for either purpose as long as they were available. In addition, while county level authorities used informed judgement in their evaluation of applications, no metrics were available to evaluate expected effectiveness for either purpose (Grigoryan, 2019). As described above, evaluations concluded that there was still considerable room for improving program effectiveness through supporting purpose driven CW location and design (Andersson et al., 2009; Smith et al., 2016). This led to changes in the RDP policy for financing CWs.

In the Swedish 2014–2020 RDP, each county board had to propose targets for the budget share supporting CWs for nutrient reduction and the share supporting CWs for biodiversity. Proposing regionally determined budget shares would lead to assigning regional priorities for the two general CW purposes. Each county would identify targets for providing support for CWs based on the estimated regional conditions and needs. Coupling a budget share to a regionally defined target would improve cost efficiency and as a result also be expected to lead to greater cost effectiveness. The aim of this study is to investigate the result of this increase in targeting and its effect on construction of purpose driven wetlands. For the analysis, targets set by individual counties are compared with the construction of RDP-supported CWs in each county. In addition, wetland characteristics (including primary purpose, number, size and cost) are compared for wetlands constructed with RDP financing for the period from 2007–2013 with those for the immediately following period from 2014–2020 when regional (county level) targets were included for the first time. If targets were met then it may be assumed that there was greater environmental improvement, and as a result a higher degree of cost efficiency from the targeting.



2. Materials and methods


2.1. Data collection

Data on wetlands financed by the RDP during the last two program periods 2007–2013 and 2014–2020 was obtained in spring 2021 from the Swedish Board of Agriculture. These two periods are referred to as “earlier” and “later.” The data included both constructed and restored wetlands; data for 389 restored wetlands were excluded since our aim was to only look into CWs. Data for the earlier period categorized activities as “construction of wetlands,” “restoration of wetlands,” or “construction and restoration of wetlands.” Since the third category is broader than our focus on wetland construction, this category was not included in the study. The number of categories increased to six in the later program period: “restoration of wetlands,” “restoration of dams which collect phosphorus,” “restoration,” “construction of wetlands,” “construction of dams which collect phosphorus,” and “construction,” making it easier to exclude all wetland restoration activities. The remaining data consisted of 1,714 CW projects (82%) out of the original 2,103 projects.

The data received included county, project cost, construction area and amount covered by the RDP. “Construction area” is the land area in hectares (ha) affected by construction of the wetland, hence it is larger than the wetland water surface area.



2.2. Financing CWs

The original data reported project costs and not the costs of individual wetlands. Multiple wetlands were included in some projects, but only data on total project costs and amount financed by the RDP were available. When a project included multiple CWs, individual wetland costs were calculated by pro-rating individual wetland construction area by the total project area and multiplying by the total project cost. The construction cost per hectare wetland area in Swedish crowns (10 SEK ≈ 1€) was estimated by dividing the total wetland cost by the total wetland construction area.

The total budget for environmental investments and for wetland restoration and construction in the RDP was distributed by the Swedish Board of Agriculture in the following manner: 10% of the budget was divided to all 21 counties as a base amount, then 45% was divided by the share of agricultural land per county and the remaining 45% by the share of arable land in nitrate sensitive areas (NSA). The share of the total budget that was distributed to each county was estimated with the following equation:

[image: The formula for calculating "Budget_causey" is shown. It is the total "Budget_T" multiplied by 0.10, divided by the sum of the country, plus "Budget_T" multiplied by 0.45 multiplied by "A," plus "Budget_T" multiplied by 0.45 multiplied by "NSA", all divided by "Budget_T".]

In this study we only included the 15 southern counties (identified by letters, see Figure 2), as only one of the six northern counties had any arable land in NSA (1.2%). The 15 counties accounted for >90 % of the RDP budget, i.e., 38 billion SEK for the earlier period and 37 billion SEK for the later period.



2.3. Calculating targets

The targets for wetland construction in each county were collected from county Regional Action Plans set before the 2014–2020 RDP (Länsstyrelsen Jönköping, 2016; Länsstyrelsen Värmland, 2016; Länsstyrelsen Västmanland, 2017; Länsstyrelsen Kalmar, 2018; Länsstyrelsen Kronoberg, 2018; Länsstyrelsen Örebro, 2018; Länsstyrelsen Skåne, 2018; Länsstyrelsen Östergötland, 2019, 2020; Länsstyrelsen Södermanland, 2019; Länsstyrelsen Stockholm, 2019; Länsstyrelsen Blekinge, 2020; Länsstyrelsen Gotland, 2020; Länsstyrelsen Halland, 2020). In these Action Plans, an indication of how the budget should be distributed was given through stating the share allocated to:

	• Constructing and restoring wetlands and ponds for the purpose of biodiversity.
	• Constructing and restoring wetlands and ponds for the purpose of increased water quality.
	• Environmental investments for increased water quality.
	• Constructing two-stage ditches.

Only the targets directed at CWs were included in this study and new percentages were calculated from these two targets. These indicated the share of nutrient reduction CWs and biodiversity CWs that the county aimed to implement. In some cases, Regional Action Plans did not provide hard targets. For example, in County C, the Regional Action Plan stated that “at least 25% of the budget” should be allocated to each wetland purpose. County C was therefore listed with >25%, as they did not provide a detailed percentage.



2.4. Data analyses & statistics

Analysis of variance (Tukey's pairwise comparison method) were used to determine if there was a significant difference between average construction areas (ha) for the main purpose groups (biodiversity, nutrient reduction and combined biodiversity and nutrient reduction). The one-sample Kolmogorov–Smirnov test was used to test the null hypothesis that data came from a standard normal distribution. For all analyses a nominal significance level of 0.05 was used. Minitab 19 was used for all statistical analyses.




3. Results


3.1. National wetland construction RDP 2007–2020

During 2007–2020 the RDP financed 1,714 CWs, yet there was a large difference between the two periods, as only 15% of the CWs were implemented during the later period (Figure 1), corresponding to 25% of the total 4,803 ha wetland construction area. The total cost for constructing these wetlands was approximately 580 million SEK and the RDP financed 430 million SEK of that cost (74%). Payments from the RDP were higher during 2007–2013 (313 million SEK) compared to 117 million SEK in 2014–2020. These payments correspond to approximately 0.8 and 0.3% of the overall RDP budget in the earlier and later periods respectively.


[image: Bar charts compare constructed wetlands (CWs) regarding number and area for 2007-2013 and 2014-2020. Chart A shows CW numbers: biodiversity (38% to 51%), nutrient (42% to 49%), combined (20%). Chart B displays CW area: biodiversity (45% to 55%), nutrient (36% to 45%), combined (19%).]
FIGURE 1
 (A) Number of constructed wetlands (CWs) (% of total) and (B) construction area (ha and % of total area) with the main purpose of retaining nutrients (blue), increasing biodiversity (green) or a combined purpose (gray) financed by the Rural Development Programme (RDP) during 2007–2013 and 2014–2020.




3.2. Regional distribution of CWs RDP 2007–2020

There were large regional differences in wetland construction financed by the RDP. The greatest differences were found along the southern coasts, though this varied between the two periods (Figure 2). In the earlier RDP period, County M constructed 32% of all the wetlands using RDP financing, followed by 14% in County O and 10% in Counties N and H. The difference was even higher for the constructed wetland area, as during 2007–2013 County M implemented 41% of the total area. In the later (2014–2020) period, this decreased to 11% of the total number and 17% of the total area in County M. In contrast, the wetland area doubled to 16% in County O, while the number of wetlands was about the same (14 and 15%). In County D, both number and area increased from 2 to 8% and from 4 to 11% respectively.


[image: Two shaded maps labeled A and B depict data from RDP 2007-2013 and 2014-2020, focusing on northern regions. Map A shows the number of constructed wetlands (CWs) in various regions, with percentages representing agricultural land areas. Map B displays constructed wetland areas, with similar percentage representations. Darker shades indicate higher agricultural areas or CWs. Regions are marked with letters and percentages, providing a comparative analysis of land use and wetland construction during the specified periods.]
FIGURE 2
 Maps of southern Sweden divided into Counties (letter) showing the share of agricultural area of the County (blue scale), (A) share of number and (B) area of constructed wetlands financed with the RDP period 2007–2013 and 2014–2020.




3.3. County targets in RDP 2014–2020

For the later RDP program period, regional Action Plan Targets were set, i.e., what share of the total budget was to be allocated for improved water quality, two-stage ditches and wetland restoration and construction with main purposes of increasing biodiversity and nutrient reduction. As we only have data on CWs, targets for the two wetland purposes were estimated as a share of the wetland budget for each county (Figure 3). Most counties (9 of 15) targeted larger budget shares for nutrient CWs ranging between 60 and 71%, with the highest values in Counties E, O, S and T. The lowest nutrient target (11%) was set in County F, which is much less than the 35 and 37% set in Counties K and U. County C only set a target of at least 25% for both purposes, and therefore could reach the targets for both purposes. County F, with the lowest nutrient target, also reached both targets. Furthermore, in four of the 15 counties the difference between the target and those implemented was more than 10% for biodiversity CWs (Counties E, I, O, and T), while in three cases (Counties AB, H, and M) the target for nutrient CWs was exceeded by more than 10%.


[image: Bar charts compare two datasets: A shows nutrient community weights (CWs) and target nutrient percentages across categories C to U, with blue bars and X marks. B presents biodiversity CWs versus target biodiversity percentages for the same categories, using green bars and X marks.]
FIGURE 3
 County targets (crosses) as the share of each county's (letters) wetland budget with the main purpose (A) nutrient reduction and (B) biodiversity set before the last Rural Development Programme (RDP) program period 2014–2020. The share of RDP payment for CWs implemented during 2014–2020 with the main purpose (A) nutrient reduction (blue) and (B) biodiversity (green).


There was a large difference in budget distribution between counties; Counties M and O both received around 18% of the total budget, while the rest each received between 2 and 8% (Figure 4). The county budget did not have an impact on the ability to reach county-level targets. Counties AB and H, both with relative small budgets, managed to implement even more nutrient reduction CWs than their target. In contrast, Counties O and E had relatively high shares of the overall budget, yet neither managed to fulfill their target for nutrient reduction CWs.


[image: Bubble chart showing the relationship between target nutrient wetlands and payment nutrient wetlands percentages. Bubbles vary in size, indicating different data values for various labeled categories like A, B, C, and so on.]
FIGURE 4
 The share of nutrient wetlands 2014–2020 in relation to the county targets. Bubble size is the counties' share of the Rural Development Programme (RDP) budget.




3.4. Comparison of program before and after targeting
 
3.4.1. Construction area

Average construction areas varied significantly between periods. Both mean and median construction areas were larger during the later RDP period (4.6 ha and 2.5 ha) than during the earlier period (2.4 ha and 1.0 ha). Within each period the number of CWs for biodiversity and nutrient retention were similar (Figure 1). However, in the earlier period 20% of the CWs were categorized as a combination of the two purposes, while in the later period this classification was no longer used. On the other hand, biodiversity CWs accounted for a larger total construction area (2,275 ha) than nutrient CWs (1,836 ha), corresponding to 55 and 45% respectively. This was a result of significantly larger mean construction areas for biodiversity CWs (3.4 ha) than for nutrient reduction CWs (2.5 ha). Regardless of purpose, mean construction areas increased between periods (Figure 5A) with biodiversity CWs increasing from on average 2.9 to 5.3 ha and nutrient reduction CWs doubling in area from 2.1 to 4.1 ha.


[image: Four scatter plots with error bars showing data on different metrics from Rural Development Program (RDP) for Biodiversity (Biodiv) and Nutrient purposes between 2007-2013 and 2014-2020. Panel A displays area in hectares; Panel B shows construction cost in euros per hectare; Panel C illustrates subsidy in euros per hectare; Panel D indicates subsidy percentage. Each plot compares results between two time periods for both purposes.]
FIGURE 5
 Interval plots for (A) construction area (ha), (B) area-specific construction cost (SEK ha−1), (C) subsidy (SEK ha−1) and (D) subsidy (% of construction cost) financed by the Rural Development Programme (RDP) during 2007–2013 and 2014–2020 for biodiversity CWs (green) and nutrient CWs (blue). The CW with combined purpose during RDP 2007–2013 was excluded. Number of biodiversity CWs was 553 and 125, while corresponding number for nutrient CWs was 614 and 138 in the two respective RDP periods. Dots represent mean values and horizontal bars show 95% confidence intervals.




3.4.2. Construction cost

As the wetland area increased between the program periods, construction costs were significantly higher for each purpose. Mean construction cost for biodiversity CWs increased from 270,646 to 440,323 SEK, while the cost for nutrient CWs was on average 324,629 and 620,027 SEK. While there was no difference in the area-specific cost between the program periods for either purpose (Figure 5B), the area-specific construction cost was significantly higher for nutrient CWs (223,648 SEK ha−1) than for biodiversity CWs (168,292 SEK ha−1).



3.4.3. Subsidies

In contrast to construction cost (Figure 5B), both the average financial payment per hectare by the RDP and the share of costs paid by the subsidy (% of construction cost) were higher for both purposes in the later period (Figures 5C, D). Furthermore, during the first period there was a difference in average share covered by the subsidy between CWs for biodiversity vs. those for nutrient reduction (Figure 5D). However, during the later period subsidies for both purposes had similar (mean 83%) shares of construction costs (Figure 5D).





4. Discussion

Policies which are expected to support the cost efficiency of AEMs through targeting are either intended to lower costs directly or to improve efficiency through placement and design. It has long been suggested that decentralizing administrative decision making could lead to higher cost efficiency (see Beckmann et al., 2009), however, previous studies have not been based on a comparative evaluation of the effects of an actual change in policy. For example, the potential impact of decentralization on stakeholders has been studied (e.g., Leventon et al., 2019; Schomers et al., 2021) and Yang et al. (2015) explored decision-makers' perspective on decentralization through semi-structured interviews, while Bareille and Zavalloni (2017) modeled changes in the provision of public goods. The results and analysis presented here are based on a quantitative comparative evaluation of the devolution of targets from a national agency to regional authorities over two periods. Our study extends previous work on targeting by identifying factors which have an impact on the effectiveness of administrative decentralization.

The Swedish EU RDP developed national criteria to support wetland construction including regional purpose driven targets that would increase cost efficiency of CWs to reduce the amounts of nutrients entering waterways and to increase biodiversity. In the earlier RDP period both purposes were financed within the same measure and responsible county-level authorities had no national or regional targets for allocation between these purposes. This changed in the later RDP period when participating counties were asked to set specific goals for each purpose based on local priorities. In this study, we have evaluated how successful the two programs were in achieving their identified goals (Figure 2A). The deviations from the goals set and the results can in part be attributed to the following five factors: goal setting (quantification), decision criteria consistency, prioritization, budget controls and timing consistency.

The manner in which goals were set and quantified is probably the most important explanatory factor. In the earlier RDP period, quantitative goals were set for the total number and area of constructed wetlands regardless of purpose. When county boards were asked to identify targets for the share intended for biodiversity and nutrient CWs, respectively, there was no indication of how targets were set. Results are not consistent across counties with respect to which goals were met (Figure 3B). In some counties, targets for biodiversity CWs were exceeded by more than 10% (County E, I, O, and T) while in others targets for nutrient CWs were exceeded (County AB, H, and M) while some counties met both targets (County C, D, F, and K). This lack of consistency may be an indication that there were problems with how targets were developed.

There is considerable regional variation with respect to goals that were set (Figures 3A, 4). While most counties set goals of constructing over 50% of wetlands for nutrient reduction, in County F the share for nutrient reduction was set around 10%. It could be because there is less agricultural land in this county but then neighboring County G with a lower share of agriculture (Figure 2) set their nutrient reduction target at just under 50% and County T with the same share of agricultural land set the nutrient reduction goal at 70%. In addition, Counties O, S, and T have chosen to set the same goals at 71%. These counties are contiguous but have very different landscapes. That they have chosen the same targets may indicate that the goals were determined in some way in relation to each other. Finally, the total budget provided for each county to cover both purposes is to a large extent driven by the share of agricultural land in the county as well as the area included in nationally designated NSAs. Agricultural practices are the primary source of nutrient losses in Sweden. Assigning a large part of the national budget to counties based on the relative amount of agricultural land in the county reflects the importance of promoting creation of CWs in the areas where the problems are greatest. However, this does not seem to be the case (Figure 4). Some counties with large budgets (indicative of a large share of agricultural area and/or a need to reduce N losses) did not set high goals for wetlands for nutrient reduction (e.g., Counties C and M).

Achieving the benefits from targeting requires an ability at the regional (county) administrative level to choose between measures. The ability to accept (adopt) measures which are consistent with the stated goals and reject those that do not fulfill the criteria is why targeting leads to greater efficiency. For a voluntary program such as the RDP wetland construction initiative, there needs to be a sufficient number of applications to allow the approving authority to differentiate between proposals which will lead to fulfillment of the goal and those which will not. The number of applications needs to be at least equal to or higher than the target. This allows the authority to prioritize ex ante set targets. A shortage of applications for one or the other (or both) of the two purposes is one factor which could lead to targets not being met. Since participation is voluntary, the financial support needs to be at least equal to the costs expected to be incurred by the applicant. If the perceived compensation for participating is less than expected costs or if there is a perception that payments may not be forthcoming, then this would be a disincentive to apply.

Although construction costs for each purpose were similar between periods, the share of costs subsidized (level of compensation paid to the applicant) increased for both purposes in the later period (Figure 5C). This meant that in reality the level of compensation relative to costs increased. Therefore, it could be expected that the number of applications would increase. However, a temporary stop of funding for all new wetlands between these two periods in 2013 may have caused potential applicants to reconsider the likelihood that they would be compensated and consequently led to a fall in applications (Geranmayeh et al., under revision). Regardless of the effect on the number of applications due to greater net compensation and the decrease due to diminished expectations, all that can be seen is that the number of approved applications decreased by 82% in the second period (Figure 1A) although the average CW size for both purposes increased (Figure 5A).

Construction costs per hectare were lower in both periods for biodiversity CWs. However, the cost for each purpose was unchanged between the two periods (Figure 5B). Average construction costs were higher for nutrient CWs as these more often require that more material is moved for effective reduction (primarily with respect to P) than for biodiversity CWs that are typically flooded without removal of soil and where greater total area is most important for providing species habitat. The increase in construction area between the two periods (Figure 5A) may have been due to fewer applications for smaller CWs. Construction costs and the ability to compensate for these are limited by the conditions of the program where a cap is set on compensation per hectare. Increasing the size of the compensated area is one possible way for an applicant to be able to provide sufficient compensation to cover higher total construction costs.

A lack of budget control associated with the individual targets may explain some of the difference between the targeted goals and the second period results. The budget allocated to the regional (county level) authorities is meant to cover all CWs supported through the RDP program irrespective of intended purpose. There are no separate budgets for each purpose which in turn allows funds to be shifted between purposes at the county level without approval from the national authority. The result is that if there are more applications approved for one of the two purposes than has been set as a goal and there is still money available then this can be moved between them. This shift of funding between purposes allows goals to be exceeded. This effect is further enhanced by the timing inconsistency between annual budgets and program period goals.

Approval of applications is an ongoing activity. While there can be considerable delays between when an application is initially submitted and finally approved, this is rarely more than 2 years. Since applications are approved continually, it is difficult for a regional authority to manage approvals so that expected goals are achieved at the end of the 6-year period. In order to achieve the goal at the end of 6 years there would need to be annual review of the goals (or annual targets) to stay on track. Annual budgets would only support program period goals if these were evaluated and adjusted appropriately each year. If this is not the case, and applications are approved as long as there is funding then this may also lead to unintended results. For the individual responsible for evaluation and approval of applications an annual bias may also impact their decisions. The role of the individual at the regional (county) level with authority to approve applications is the final factor to consider in meeting targets. As noted above, the long period over which the program period goals are expected to be met requires a comprehensive perspective. Different individuals may be responsible for evaluation during the program period, hence the need for clear guidelines and assessment of what wetland types have already been implemented in the region for balancing the allocation of funds between purposes. In addition, criteria for evaluation used by individuals in this role need to be consistent with the goals. When there are too many applications being approved for one or the other of the two purposes this may point to a bias in the criteria applied or to a need to revise the criteria used.

Furthermore, non-specific or multiple purposes are harder to target. If the target had been singular, e.g., only N reduction efficiency, evaluation of alternatives would be possible based solely on how effective they were in achieving this. However, if the target is nutrient reduction in general, then some wetland alternative sites/designs may more effectively reduce P losses while others could be more effective at controlling N. Comparing which of these two is more effective is difficult, and they would need to be expressed in a common metric. This lack of comparability is even more problematic when evaluating wetlands created for biodiversity where goals, and thus effects, may be defined in multiple ways.

This analysis of the Swedish EU RDP reveals important aspects that need to be taken into account when evaluating and designing agri-environmental support programs to make them more effective. While the study is specific for the Swedish context these insights could also be used in other parts of the world where similar programs are in place. Particularly, we highlight the need for a comprehensive perspective with clear evaluation criteria and balanced allocation of funds.



5. Conclusions

The aim of this study was to investigate if an increase in targeting has been effective for the construction of purpose driven wetlands. In our study of the Swedish EU RDP periods from 2014–2020, the results indicate that regional (county) targets were not achieved. In some cases, the target for the area and number of nutrient CWs was exceeded and in others the result was lower than the target. As there were only two targets, every exceeded target for one purpose corresponded to an under-achievement for the other. The mixed results may be a positive indication of a learning process. It is not clear from the interviews and documentation reviewed for this study how targets were set by regions, as a larger share of agricultural land was not correlated with higher nutrient target. It may be that if targets were set somewhat arbitrarily based on a general feeling of what could be achieved, the results can provide feedback that can be incorporated in new targets for following periods. Irrespective of how targets were set and the results achieved, they provide an indication of the level of ambition for supporting construction of purpose driven wetlands in each region. Indicating the desired results makes it easier to evaluate program success and to perhaps understand the factors which contribute to achieving those results.

Another potentially important reason that regional targets were not met could be that they were adjusted according to the number and type of applications received. In the end it is the landowner that decides what type of wetland they seek to implement and their purpose. Land owners interest is often recreation and bird watching rather than nutrient reduction (Geranmayeh et al., under revision) and considering the higher cost for constructing the latter, there might be a preference for biodiversity CWs. If there was a surplus of applications for biodiversity and a deficit for nutrient reduction, given the flexibility of the program budget more funds could then be used for the purpose in higher demand. To increase the application rate and cost efficiency the total cost of the CWs needs to be covered instead of only 83% on average. Continuity and help with the complicated application process is crucial for landowners trust and willingness to construct wetlands, therefore long-term financial and support system is needed (Geranmayeh et al., under revision). Providing financial support for designated catchment officers and wetland advisory services can also be important catalysts and provide bridges between landowners and county authorities. Additionally, if the allocated budget is set for each purpose individually and only allowed to be used by the receiving county for the intended purpose, then it may be expected that targets could be more easily prioritized and achieved. The flexibility of shifting funds between purposes is also easier when purposes are not well defined.

Clear definitions and decision criteria are the basis for effective targeting. Non-specific or multiple goals are harder to target.

Finally, while a regional landscape approach is beneficial in many aspects, targets for individual wetlands should be set depending on the placement in the wetlandscape (Hambäck et al., 2022). To increase cost-efficiency of nutrient wetlands, a high nutrient load is crucial (Djodjic et al., 2022), while connectivity and maintenance is more important for biodiversity (Hambäck et al., 2022). Hence, separate budgets for nutrient and biodiversity CWs would lead to greater cost efficiency by focusing on evaluation of effective criteria for placement and design. In addition, cost-efficient assessment of existing wetlands at wetlandscape level and what type of wetland types are still needed to fulfill the reduction targets and to create a multifunctional wetlandscape is required. This would lead to an efficient usage of not only land, but also investment and maintenance support within the RDP program.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Author contributions

PG, AS, MB, and DC contributed to conception and design of the study. AS collected the data. PG performed the statistical analysis. PG and DC wrote the first draft of the manuscript. MF project administration and funding acquisition. All authors contributed to manuscript revision, read, and approved the submitted version.



Funding

This work was supported by the Swedish Environmental Protection Agency (WetKit Hydro-ES project, Grant No. 802-0083-19) and OPTAIN EU Horizon 2020 grant agreement No. 862756.




Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References
	 Andersson, K. (2012). Varför multifunktionella våtmarker? En studie om våtmarksimplementering och aktörssamverkan i Sverige. Stockholm: Stockholm Environment Institute.

	 Andersson, R., Kaspersson, J., and Wissman, E. (2009). Slututvärdering av Miljö-och landsbygdsprogrammet 2000–2006. (In Swedish) SLU, ISBN 978–91-86197–01-8

	 Bång, M., Gustavsson, A., Hjort, J., Ståhlberg, D., Svensson, E., and Söderberg, T. (2019). Resultat- och värdebaserade ersättningar för minskad övergödning – är det möjligt? Swedish Board of Agriculture, Report 32

	 Bareille, F., and Zavalloni, M. (2017). “Decentralization of agri-environmental policy design: the case of abandoned wetlands in Brittany,” in Journées de Recherche en Sciences Sociales (JRSS) 32.

	 Beckmann, V., Eggers, J., and Mettepenningen, E. (2009). Deciding how to decide on agri-environmental schemes: the political economy of subsidiarity, decentralisation and participation in the European Union. J. Environ. Plan. Manage. 52, 689–716. doi: 10.1080/09640560902958289

	 Blicharska, M., and Rönnbäck, P. (2018). What factors enable or hinder engagement of civil society in ecosystem management? The case of ‘pike factories' and wetland restoration in Sweden. J. Environ. Plan. Manage. 61, 950–969. doi: 10.1080/09640568.2017.1350145

	 Djodjic, F., Geranmayeh, P., Collentine, D., Markensten, H., and Futter, M. (2022). Cost effectiveness of nutrient retention in constructed wetlands at a landscape level. J. Environ. Manage. 324, 116325. doi: 10.1016/j.jenvman.2022.116325
	 Djodjic, F., Geranmayeh, P., and Markensten, H. (2020). Optimizing placement of constructed wetlands at landscape scale in order to reduce phosphorus losses. Ambio 49, 1797–1807. doi: 10.1007/s13280-020-01349-1
	 EC (2017). Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions the Future of Food and Farming. COM(2017) 713, Brussels.

	 Franzén, F., Dinnétz, P., and Hammer, M. (2016). Factors affecting farmers' willingness to participate in eutrophication mitigation—A case study of preferences for wetland creation in Sweden. Ecol. Econ. 130, 8–15. doi: 10.1016/j.ecolecon.2016.05.019

	 Geranmayeh P. Wennerholm M. Futter M. Blicharska M. (under revision). Agri-environmental advisors' perspectives on barriers opportunities for wetland creation – the view from Sweden. J. Env. Plan. Manage.

	 Graversgaard, M., Jacobsen, B. H., Hoffmann, C. C., Dalgaard, T., Odgaard, M. V., Kjaergaard, C., et al. (2021). Policies for wetlands implementation in Denmark and Sweden–historical lessons and emerging issues. Land Use Policy 101, 105206. doi: 10.1016/j.landusepol.2020.105206

	 Grigoryan, S. (2019). Våtmarker och dammar En uppföljning av stöd inom landsbygdsprogrammet baserad på uppgifter fram till och med den 2 oktober 2018. (In Swedish) Swedish Board of Agriculture, Uppföljningsrapport 2.

	 Hambäck, P. A., Dawson, L., Geranmayeh, P., Jarlsjö, J, Kačergytė, I., Peacock, M., et al. (2022). Trade-offs and synergies in wetland multifunctionality: A scaling issue. Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160746
	 Hansson, H., and Kokko, S. (2018). Farmers' mental models of change and implications for farm renewal–A case of restoration of a wetland in Sweden. J. Rural Stud. 60, 141–151. doi: 10.1016/j.jrurstud.2018.04.006

	 Länsstyrelsen Blekinge (2020). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020. The County Administrative Board of Blekinge. Dnr 600-1937-2013. Available online at: https://catalog.lansstyrelsen.se/store/28/resource/69

	 Länsstyrelsen Gotland (2020). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020. The County Administrative Board of Gotland. Dnr 600-1459-13. Available online at: https://www.lansstyrelsen.se/download/18.4c066510170f3a14b78146f7/1585894390066/Regional%20handlingsplan%20Gotland%202020.pdf

	 Länsstyrelsen Halland (2020). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020. Dnr 604-6474-2015.

	 Länsstyrelsen Jönköping (2016). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020. The County Administrative Board of Jönköping.

	 Länsstyrelsen Kalmar (2018). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Kalmar. Available online at: https://www.lansstyrelsen.se/kalmar/om-oss/vara-tjanster/publikationer/2018/regional-handlingsplan-for-landsbygdsprogrammet-och-havs–och-fiskeriprogrammet-2014-2020.html

	 Länsstyrelsen Kronoberg (2018). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Kronoberg. Available online at: https://docplayer.se/108240453-Landsbygdsprogrammet-i-kronobergs-lan.html

	 Länsstyrelsen Örebro (2018). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Örebro. Available online at: https://www.lansstyrelsen.se/download/18.2ddec05a17ee36dc53e14387/1645109719279/Beslutad%20av%20SJV%20%C3%96rebro%20RHP%202022.pdf

	 Länsstyrelsen Östergötland (2019). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Östergötland.

	 Länsstyrelsen Östergötland (2020). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020. The County Administrative Board of Östergötland. Dnr 600-9546-14. Available online at: https://www.lansstyrelsen.se/download/18.4a4eb7416faedec125fc2e/1580204080182/%C3%96sterg%C3%B6tland%20RHP%202020%20beslutad.pdf

	 Länsstyrelsen Skåne (2018). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Skåne.

	 Länsstyrelsen Södermanland (2019). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Södermanland.

	 Länsstyrelsen Stockholm (2019). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Stockholm. Available online at: https://www.lansstyrelsen.se/stockholm/om-oss/vara-tjanster/publikationer/2022/regional-handlingsplan-for-landsbygdsprogrammet-och-havs–och-fiskeriprogrammet-2014-2020.html

	 Länsstyrelsen Värmland (2016). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet 2014–2020 med förlängningsåren 2021–2022. The County Administrative Board of Värmland. Available online at: https://www.lansstyrelsen.se/varmland/om-oss/vara-tjanster/publikationer/2022/regional-handlingsplan-for-landsbygdsprogrammet-och-havs–och-fiskeriprogrammet-2014-2020-med-forlangningsaren-2021-2022.pdf.html

	 Länsstyrelsen Västmanland (2017). Regional handlingsplan för landsbygdsprogrammet och havs- och fiskeriprogrammet. The County Administrative Board of Västmanland. Dnr 600-4463-14. Available online at: http://media.grontkompetenscentrum.se/2018/06/Vastmanland-regional-handlingsplan-landsbygdsprogrammet-170101.pdf

	 Leventon, J., Schaal, T., Velten, S., Loos, J., Fischer, J., and Newig, J. (2019). Landscape-scale biodiversity governance: Scenarios for reshaping spaces of governance. Environ. Policy Govern. 29, 170–184. doi: 10.1002/eet.1845

	 Mårtensson, K., Johnsson, H., Collentine, D., Kyllmar, K., Persson, K., Djodjic, A., et al. (2020). Åtgärdsscenarier för minskat näringsläckage från åkermark: beräkningar för ett urval av delavinningsområden inom LEVA-områden. Technical Report.

	 Schomers, S., Meyer, C., Matzdorf, B., and Sattler, C. (2021). Facilitation of public Payments for Ecosystem Services through local intermediaries: An institutional analysis of agri-environmental measure implementation in Germany. Environ. Policy Govern. 31, 520–532. doi: 10.1002/eet.1950

	 Smith, H. G., Dänhardt, J., Blombäck, K., Caplat, P., Collentine, D., Grenestam, E., et al. (2016). Slututvärdering av det svenska landsbygdsprogrammet 2007–2013: Delrapport II: Utvärdering av åtgärder för bättre miljö. (In Swedish) Utvärderingsrapport 3.

	 Speks, A. (2021). Analyzing the impact of the financial systems for constructing wetlands in Sweden. Master thesis in Sustainable Development, Department of Earth Sciences, Uppsala University.

	 Weisner, S., Johannesson, K., and Tonderski, K. (2015). Nutrient retention in constructed wetlands on arable land - an analysis of measurements and effects of rural development programme (In Swedish with a summary in English). Swedish Board of Agriculture, Report 7.

	 Weisner, S. E. B., Johannesson, K., Thiere, G., Svengren, H., Ehde, P. M., and Tonderski, K. S. (2016). National large-scale wetland creation in agricultural areas—Potential versus realized effects on nutrient transports. Water 8, 544. doi: 10.3390/w8110544

	 Yang, A. L., Rounsevell, M. D., and Haggett, C. (2015). Multilevel governance, decentralization and environmental prioritization: how is it working in rural development policy in Scotland? Environ. Policy Govern. 25, 399–411. doi: 10.1002/eet.1690




		OPINION
published: 14 November 2023
doi: 10.3389/fenvs.2023.1295590


[image: image2]
Indicators for modeling redesign from conventional to sustainable silvopastoral systems –an expert's opinion
Annelise Aila Gomes Lobo1*, Mariana Campana1, Augusto Hauber Gameiro2, Gerson Barreto Mourão3 and Jozivaldo Prudêncio Gomes De Morais1
1Department of Biotechnology and Plant and Animal Production, Studies Group and Work in Agriculture and Livestock Farming, Federal University of Sao Carlos, Sao Paulo, Brazil
2Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
3Department of Animal Science, Luiz de Queiroz School of Agriculture, University of Sao Paulo, Piracicaba, Brazil
Edited by:
Sérgio António Neves Lousada, University of Madeira, Portugal
Reviewed by:
Priscila Coltri, State University of Campinas, Brazil
C. A. Zúniga-González, National Autonomous University of Nicaragua, Nicaragua
* Correspondence: Annelise Aila Gomes Lobo, anneliselobo@ufscar.br
Received: 19 September 2023
Accepted: 30 October 2023
Published: 14 November 2023
Citation: Gomes Lobo AA, Campana M, Gameiro AH, Mourão GB and De Morais JPG (2023) Indicators for modeling redesign from conventional to sustainable silvopastoral systems –an expert's opinion. Front. Environ. Sci. 11:1295590. doi: 10.3389/fenvs.2023.1295590

Keywords: agroforestry systems, environmental impacts, modeling, multifunctional, operational research, redesign
INTRODUCTION
A conceptual framework for the assessment of strategies to support the transition from conventional to sustainable agriculture is described by Hill and MacRae (1996), taking the form of an approach to the redesign process in which organizational structures and decision-making procedures are designed to be compatible with ecological “laws” and realities, and these are taken into account in all designs and management procedures. Despite the potential of silvopastoral systems (SPS) as a sustainable type of system for livestock production, there is a lack of development of whole-farm simulation models (Gómez et al., 2020).
Multifunctional and truly sustainable grassland landscapes require expansion of our thinking and narratives beyond narrow discussions informed by greenhouse gas emissions or carbon footprint assessments (Tittonell, 2021). Thus, the development of optimization models for agricultural production systems has aroused the curiosity of scientists since the middle of the 20th century, when the complexity of technical production relationships increased significantly with the advent and use of inputs and technologies responsible for increasing the productivity of plant and animal crops (Gameiro et al., 2010).
The main objective of the work as a whole is to create a modeling framework to guide the redesign of productive landscapes for ruminants in tropical conditions.
SUBSECTIONS RELEVANT TO THE SUBJECT: NOVEL IDEAS IN MODELING OF PRODUCTIVE LANDSCAPES
Mathematical modeling constitutes the simulation of real systems in order to predict their behavior, with the aim of mathematically describing a phenomenon. Furthermore, it can be applied in analyzing the influence of different environmental and biological variables, as well as making it possible to visualize various scenarios of the production system as a whole, by interconnecting a set of systems that seek a common goal, and thus it can help with decision-making for intervention in the system, answering the question: how can livestock systems be modeled to help farmers redesign their livestock systems for ruminant production?
In order to find a suitable response capable of changing the reality of family farmers, it is essential to create a tool through mathematical modeling. Given the complexity of the relevant systems in reality, an understanding of cause and effect is created in the model, which is a simplified and idealized representation of reality (Chwif and Medina, 2014).
From this perspective, it is worth mentioning one of the main areas of knowledge related to mathematical modeling with a view to optimization: operational research (OR). The Brazilian Society for Operational Research (SOBRAPO) defines this as an applied science aiming to solve real problems, focusing on decision-making, and applying concepts and methods from various scientific areas in the design, planning, or operation of systems; these are used to evaluate alternative courses of action and identify the solutions that best serve the objectives of individuals or organizations. Through quantitative-based development, operational research also aims to introduce elements of objectivity and rationality into decision-making processes, without neglecting, however, the subjective elements and organizational framework that characterize the relevant problems (SOBRAPO, 2010).
DISCUSSION
The phases of problem-solving through OR according to Marins (2011), in simplified form, can be seen in the flowchart in Figure 1.
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However, what will be presented in this context is the ‘Experience’ (Figure 1), which relies on reports from renowned researchers in their fields in order to contribute to the construction of indicators and parameters for the construction of the model; this will use the deterministic model type per se, in which the input data are known, and the research technique is linear programming with an objective function, with the objective of evaluating environmental impacts.
We want to show the importance of expert opinions in conducting scientific work, since this project is derived from FAPESP 2020/16076-0, the first redesign project conducted in Brazil, which covers everything from interviews concerning producers’ perceptions to the simulation of the redesigned property.
The experts’ contribution to the choice of parameters that will make up the model is refined according to information from the scientific literature and responses to the question of “how do the variables relate to one another?”, these variables being soil, plant, and animal parameters, and the ways in which they influence environmental impacts. The answer to this question is useful for decision-making within a ruminant production system and for actions such as public policies, which, in Brazil, are commonly categorized into social, economic, and environmental policies.
To answer the aforementioned question, including the environmental impact component, several interviews were held with 14 researchers working in different multidisciplinary areas, such as administration, animal science, agronomic engineering, forestry engineering, economics, and statistics, in order to identify indicators that could be used as variables in the model; these included parameters such as: fertilization, water deficit, precipitation, nitrogen fixation, soil erosion/compaction, nutrient and soil moisture content, and soil fertility (soil parameters); bromatology, production, availability, accumulation, growth stage, Urochloa brizantha, biological control, shade, digestibility, spatial distribution, number of individuals (i.e., density by area), number of species, presence of species such as grasses, shrubs, and trees; carbon sequestration by plants, wood, spacing (design), and the proportion of nutrients in the area available to the animal (plant-related parameters); and stocking rate, carcass yield, age at slaughter, growth rate, mortality rate, mature weight, average daily weight and gain, nutritional requirements, production system (e.g., intensive), breed of animals, mineralization of animals, nitrogen excretion, methane emission, YM (yield methane, i.e., energy lost in the form of methane), health aspects, nutrient dynamics, and energy partitioning (animal parameters).
CONCLUSION
Under this approach, our research group strongly believes that it will be able to answer the question and solve the proposed problem in relation to environmental impacts.
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This study quantitatively evaluated the role of cultural diversity and psychological awareness in sustainable land-use management (SLUM). Firstly, an assessment model based on fuzzy analytic hierarchy process is established by combining fuzzy logic, expert knowledge and analytic hier-archy process. The model addresses the uncertainty of qualitative assessment and adapts to dy-namic environments and complex human behavior. The research process included a literature review and expert consultation to identify key factors influencing land use and assign weights to these factors through FAHP. Subsequently, FAHP determined that cultural diversity had the highest weight among all considerations, indicating the urgent need to respect and integrate local cultural diversity in land management. Psychological awareness follows closely, suggesting that land-use decisions are profoundly influenced not only by tangible economic and environmental conditions, but also by the psychological states, knowledge levels, value systems, and social perceptions of groups and individuals. These findings highlight the need to consider and integrate these intangible factors when developing land management strategies. This approach fosters broad social acceptance and participation, ultimately moving towards the long-term goal of sustainable land use. Finally, the study provides decision-makers with a tool for identifying subtle differences at the cultural and psychological levels that can help develop more nuanced and personalized management options for different land use strategies.
Keywords: sustainable land-use management (SLUM), cultural diversity, psychological awareness, fuzzy analytic hierarchy process (FAHP), land management strategies

1 INTRODUCTION
With the continuous growth of global population and rapid economic development, land resources are facing unprecedented pressure. China is one of the most populous countries in the world, its land-use management is particularly complex and urgent. Sus-tainable land-use management plays an important role in ensuring agricultural safety, protecting the ecological environment and socio-economic development (Cervero, 2013; Ragheb et al., 2016). Therefore, a thorough understanding and integration of these elements is essential to propose and im-plement effective land management strategies.
Land-use management is an integrated decision-making process that guides the de-velopment and management of land to meet human needs and provide ecological services while ensuring long-term sustainability (Hurni, 2000). Sustainable land-use management extends the basic concept of land-use management to emphasize the need to maintain long-term environmental, social and economic health during land development and use. The con-cept of sustainable land management emphasizes that land resources are limited and must be used without compromising the ability of future generations to use them. The idea is to promote economic development, social welfare and environmental sustainabil-ity through the rational use of land. This requires a comprehensive consideration of var-ious land uses—such as farming, forestry, urban development—and the impact of human activities on the ecological environment (Aznar-Sánchez et al., 2019). This process involves planning, operating, maintaining and monitoring land-use with the aim of striking a balance between various land-uses, such as residential, agricultural, industrial and recreational, while protecting the environment and natural resources. In addition, sustainable land-use management often requires a systematic approach that goes beyond mere geography or environmental planning, but requires interdisciplinary collaboration that includes knowledge and skills in environmental science, urban planning, public policy, economics, law, and more (Bouma, 2002). Sustainable land-use management involves the development of policies, including laws, regulations, incentives and education, to ensure that all stakeholders are able to take social, economic and environmental impacts into account when utilizing land over time (Mensah, 2019).
In exploring the complexity of land-use decisions, Meyfroidt (Meyfroidt, 2013) emphasizes the in-fluence of social norms, emotions, beliefs, and values, and proposes a cognitively realistic approach to understanding how environmental changes feed back into land-use practices through human cognition. Subsequently, Salvati et al. (Salvati et al., 2017) by analyzing land cover changes in rural cultural landscapes in central Italy, revealed major changes driven by human ac-tivities such as urbanization, land abandonment, and deforestation, highlighting the im-portance of understanding local population dynamics for the development of effective landscape conservation policies. Four key concepts for achieving land degradation neutrality are presented (Keesstra et al., 2018): regenerative economics, nature-based solu-tions, connectivity and systems thinking highlight not only the global importance of sus-tainable land management (SLM), but also the sociocultural, institutional, economic, and policy challenges to achieving these goals. More recently, Sullivan-Wiley proposes an integrated social perception approach that combines qualitative and quantitative methods to reveal how rural landowners’ ecological thinking maps and future imaginings influ-ence land-use practices, finding that landowners’ narratives about the future are related to their current woodland use (Sullivan-Wiley and Teller, 2020). Nightingale and Richmond (Nightingale and Richmond, 2022) further explore the ways in which indigenous peoples strengthen cultural identity and self-determination by re-claiming and reconnecting traditional lands, an approach that not only strengthens community ties and preserves indigenous knowledge, but also improves mental health. However, Batterham et al. (Batterham et al., 2022) note that despite the clear negative effects of extreme cli-mate events and environmental degradation on psychological health in rural zones, there is a significant research gap at the individual level, particularly on farms, as well as the impacts of biodiversity and natural resource management on psychological health. This suggests the need for an interdisciplinary research approach to understand these rela-tionships more fully. Finally, Van Noordwijk et al. (Van Noordwijk et al., 2023) argue that instrumental and rela-tional values of nature are critical in natural resource decision-making, and that effective science-policy interfaces need to address both by providing prominent, credible, and le-gitimate synthesis of knowledge, acknowledging diversity of value perspectives and dif-ferences in decision-making patterns, with a view to changing the trajectory of develop-ment. Ma et al. (Ma et al., 2023) showed that neighborhood characteristics such as walking ability, vegetation cover, and social cohesion enhance mental resilience during crises, with sub-urban and medium-density areas showing greater mental health resilience, suggesting that urban planning that promotes these elements can improve overall urban resilience. Together, these studies build a multidimensional framework for understanding and re-sponding to the complexities in land-use decisions and how these decisions affect the fu-ture of the environment and society on a global scale (McDermott et al., 2023).
However, in China’s numerous agendas to promote sustainable land-use manage-ment (SLUM), the issues and challenges of cultural diversity and psychological awareness have become increasingly acute. These challenges are not only demonstrated in the utili-zation and allocation of land resources, but also touch on the collaborative process of so-cial and economic development and environmental protection (Sun et al., 2022). As the country at-taches great importance to the building of ecological civilization, SLUM has become a key way to realize regional development and ecological balance. However, SLUM practice and evaluation in China still face the challenge of cultural diversity and the influence of psy-chological factors, which are often ignored in the decision-making process. China’s cul-tural diversity and deep cultural heritage have influenced its land-use patterns. Social and cultural backgrounds and values in different regions have a profound impact on land-use decision-making, which reflects people’s cognition and attitude towards land resources to different degrees. In exploring cultural differences in ecosystem services and attitudes to-wards forest biodiversity, Lindemann-Matthies et al. (Lindemann-Matthies et al., 2014) found that Swiss participants tended to prefer species-rich forests, while Chinese participants had more mixed prefer-ences. Unless they are educated about biodiversity, they generally do not show a prefer-ence for species-rich forests. This finding highlights the importance of cultural context in the perception of ecological service value. Subsequently, Yu et al. (Yu et al., 2016) highlighted that China’s cultural heritage landscapes, especially those in central and southern regions, are at high risk from large-scale urbanization and diverse land-use changes. They raise the need to implement targeted conservation measures through spatial analysis and risk as-sessment to protect these areas of great value. This study provides a new perspective and methodology for the protection of cultural heritage landscape. Entering the 2020s, Gu et al. (Gu et al., 2022) further explored urban residents’ perception of suburban multifunctional land-use. They found that residents placed particular emphasis on meeting the need for respect and self-actualization when considering suburban land-use. This finding suggests that land-use policies and planning should take these needs fully into account, and that effec-tive communication between residents, farmers, and decision makers is critical. Next, Dai et al. (Dai et al., 2023) put forward a new view that government-led tourism development initiatives in rural China are transforming traditional rural communities into commercial tourism communities with economic benefits at their core. This shift has not only changed the basic social structure and values, but also had a profound impact on the sustainable de-velopment and policy making of rural tourism. Together, these studies paint a picture of how China, in the face of rapid development and change, is finding a balance between protecting cultural heritage, meeting the needs of residents and promoting rural develop-ment. In the context of SLUM, ignoring the difference of cultural values often leads to the disconnect between management strategies and local realities, which in turn affects the effective implementation of land management policies (Chen et al., 2019). For example, some national cultures attach importance to the spiritual connection with land and emphasize the im-material value of land, which conflicts with the economic value-oriented land-use deci-sions. Therefore, how to implement efficient SLUM strategy while respecting and protect-ing local culture is a problem that needs further study.
The transformation of psychological consciousness is also an important factor in SLUM. Psychological factors, including the psychological belonging, risk perception and behavioral motivation of land owners and users, are also of important implications to the sustainability of land management. With the rapid change of social and economic structure, people’s cognition and values of land are also changing, which is reflected in the land-use pattern and management (Naz et al., 2023). In particular, the large-scale migration of the rural population to the city has caused the change of the rural land-use population struc-ture, which poses new challenges to SLUM. Qian et al. (Qian et al., 2022) delve into the complexity of rice farmers’ perceptions of land tenure in eastern China, revealing that such perceptions involve not only cognitive assessments of the possibility of land redistribution, but also emotional responses. They found that psychological factors such as personality charac-teristics have a significant impact on farmers’ perception of land tenure, which indicates that probability estimation alone cannot fully reflect farmers’ overall feeling of land tenure. Subsequently, Nie et al. (Nie et al., 2023) pay attention to the land-use behavior of coastal farmers, in particular how they decide whether to abandon arable land based on their psychological construction of environmental risks. By combining the effects of four psychological dis-tances—social, temporal, hypothetical, and spatial—their research reveals the complex in-terplay of factors such as social trust, probability of extreme weather events, spatial prox-imity of residence to coastlines, and population mobility in the behavior of farmers who abandon arable land. These findings provide new perspectives for understanding and predicting land-use patterns in coastal areas. For such psychological and behavioral changes, how to promote people to form awareness and behavior to support SLUM through effective policy guidance and education mechanism becomes the vital to realize the goal of sustainable land management (Langemeyer et al., 2021). The balance between preserving cultural traditions and modernization is also an important issue in Chinese SLUM. In the process of modernization, it is a complex and urgent task to protect and inherit the traditional land-use methods that are beneficial to ecology, promote the efficient use of land resources, and avoid cultural homogenization and the loss of biodiversity (Ghermandi et al., 2020).
In summary, there are some significant research gaps in the field of SLUM in China. First, although land-use patterns are strongly influenced by cultural values and practices, cross-cultural comparative studies on the influence of land-use patterns on sustainable land management in different cultural contexts are insufficient (Hofstede, 1984). This type of compara-tive research is critical to understanding how cultural factors shape land-use decisions and how to integrate these factors in management strategies (Kaushal and Kwantes, 2006). Second, existing studies have rarely touched on the influence of psychological consciousness on land-use deci-sion-making, especially the psychological motivations and cognitive biases among key groups such as farmers, policymakers, and land developers. In-depth analysis of these psychological factors is the key to understanding and guiding land-use decisions. Third, studies assessing the long-term impact of cultural diversity and psychological factors on land-use patterns and sustainability are also relatively scarce. Long-term follow-up stud-ies are essential to assess the ongoing impact and changing trends of these non-material factors. In addition, the research mainly focuses on macro-level analysis, and the specific analysis of how to implement policies at the local level, especially at the individual and community level, is insufficient. This limits our understanding of the effects of policies and their implementation. In terms of research methods, the current methodological de-velopment has not fully integrated the methods and theories of psychology, cultural stud-ies and land management. Developing new interdisciplinary research methods will pro-vide a broader perspective for future research. In addition, the current research may focus on qualitative description in the method, and there are still deficiencies in providing quantitative analysis to support the qualitative conclusion. The strengthening of quantita-tive research will provide necessary objective data support for research.
Therefore, in order to quantitatively assess the role of immaterial factors such as cul-tural diversity and psychological awareness in SLUM, and to identify the major issues and challenges faced, an intelligent decision support system is constructed based on fuzzy Analytic Hierarchy Process (FAHP). This system combines fuzzy logic, expert knowledge and hierarchical analysis to form a compound decision-making tool, which can not only deal with ambiguity in qualitative evaluation, but also adapt to changing en-vironment and complex human factors (Kubler et al., 2016). In the process of introducing intelligent deci-sion-making systems, we will first identify the key factors affecting land-use, including ecological, economic, psychological, social and cultural factors, through an extensive lit-erature review and expert consultation (Mardani et al., 2015). Then, these factors are weighted using FAHP, and these data are further integrated by intelligent systems to simulate and forecast to evaluate the feasibility and potential effects of different management decision schemes (Liu et al., 2020). In addition, the results of FAHP will help us identify key intervention points and man-agement strategies in the impact of cultural diversity and psychological awareness on SLUM (Amiri and Mohajeri, 2017). For example, it may be discovered that in a specific cultural context, preserv-ing traditional land-use knowledge holds more importance than promoting modern ag-ricultural techniques. Additionally, under the influence of certain psychological expecta-tions, enhancing public participation could be more effective for implementing land pro-tection policies than solely offering economic compensation. The introduction of this in-telligent decision-making system is expected to enable decision makers to identify subtle differences in cultural diversity and psychological awareness that may have an important influence on the successful implementation of land-use management strategies. The sys-tem analyzes the psychological attitudes and cultural tendencies of the public, evaluates their acceptance of different land-use management strategies, and proposes more refined and personalized management plans accordingly (Skogen, 2003; Mosadeghi et al., 2015; Turner et al., 2020). By combining FAHP, this paper will provide a structured and scientific framework for in-depth analysis of the complex issues of SLUM in China, and propose more forward-looking and operational policy recommendations accordingly, contributing new perspectives and methodologies to the research and practice in related fields.
The rest of this paper is organized as follows. In Section 2, materials and methods are described, including research design and Fuzzy analytic hierarchy process (FAHP). In Section 3, a case study is presented, focusing on a specific region in Eastern China to demonstrate the practical application of the FAHP evaluation method. In Section 4, in a thorough discussion and analysis of the results. Finally, The conclusions of the study are given in Section 5.
2 MATERIALS AND METHODS
2.1 Research design
The method adopted in this study is divided into two stages. Firstly, a hierarchical decision support system is established by identifying research gaps and clarifying re-search objectives. Secondly, based on fuzzy analytic hierarchy process (FAHP), the priority of various alternatives is evaluated using computational techniques. Figure 1 shows the methodology of the whole research process.
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Phase 1: Identify research gaps and develop FAHP-based DSS.
In the first phase, the goal is to identify gaps in the study of SLUM in China and a decision support system (DSS) based on Fuzzy Analytic Hierarchy Process (FAHP) is developed. This stage is achieved through the following steps:
	1. Research on the status quo and management of sustainable land-use in China. Theoretical research and literature review to investigate the present situation and existing challenges of SLUM in China. Identify gaps in current research and areas where decision support systems can provide significant benefits.
	2. Identify factors and methods for sustainable land management. List potential factors that affect sustainable land-use, such as economic, environmental, social and policy-related aspects. Choose appropriate methods and tools to manage the land sustainably and incorporate FAHP to deal with ambiguities and uncertainties in expert judgment.
	3. In-depth interviews of the expert group. Conduct interviews with a diverse panel of experts, from experts in psychology, sociology, urban planners, cultural researchers, etc., to gather comprehensive insights. According to the feedback of several rounds of expert consultation, the Delphi method is used to improve the list of factors, and the FAHP method is applied to transform the qualitative opinions into quantifiable data.
	4. Construct the decision-making hierarchy to accurately reflect the priority of factors pointed out by experts. Use FAHP to address the ambiguities of human judgment and create a more robust decision-making framework.

The second stage: FAHP calculation method. In this stage, FAHP approach was applied to analyze and identify the weight of SLUM factors and program priorities in China.
1. Develop a questionnaire based on FAHP. Based on the principle of comparing the two, to assess the relative importance of various factors. The factors and methods identified were translated into fahp compliant questionnaire items. The questionnaire was designed in an accurate pairwise comparison and factor rating manner.
2. Apply the questionnaire in the context of a case study. Focus on specific areas or aspects of land-use in China. Ensure that the case study is representative of the broader trends and issues in SLUM across the country.
3. Distribute questionnaires to a panel of experts and conduct follow-up interviews. MATLAB and other software were used to analyze the scores of expert questionnaires. Compile questionnaire results and perform fuzzy analysis using software tools to handle large data sets and complex calculations.
	4. Rank factors and alternatives according to the comprehensive judgment of experts. Identify land-use management practices that best align with the principles of sustainable development in China.
	5. Summarize and discuss the findings. Highlight how FAHP-based decision support systems can contribute to more sustainable land management in China. Discuss the implications of this research and the potential for developing strategic support to influence policy and practice.

2.2 Fuzzy analytic hierarchy process
In the context of SLUM in China, incorporating cultural diversity and psychological awareness into the decision-making framework is a complex task. Fuzzy Analytic Hierarchy Process (FAHP) provides a powerful tool that can help decision makers quantify the impact of these often elusive non-material factors (Chen, 2020). By building a hierarchical model that includes a layer of objectives, a criterion level, and sub-criterion level, FAHP enables experts to assess the relative importance of different factors through fuzzy paired comparisons (Chang, 1992). Such pair comparisons can generate a fuzzy judgment matrix and ultimately extract the weight of each factor reflecting its role in sustainable land-use. Combining these weights not only reveals the key cultural and psychological drivers that influence land-use decisions, but also guides policy formulation to ensure that management strategies are developed and implemented taking full account of cultural richness and individual psychological differences in order to promote more effective and durable land-use patterns.
2.2.1 Triangular fuzzy numbers
A fuzzy number A on R is defined as a triangular fuzzy number (TFN) if its membership function [image: Mathematical expression featuring the membership function notation, mu subscript \(\tilde{A}\) of \(x\), where \(\tilde{A}\) is a fuzzy set and \(x\) is an element.]: R → [0,1] conforms to the equation mentioned Eq. 1 (Chang, 1996)
[image: Mathematical piecewise function \( \mu_A(x) \) is defined. It equals \((x-l)/(m-l)\) for \( l \leq x \leq m \), \((u-x)/(u-m)\) for \( m \leq x \leq u \), and \(0\) otherwise.]
here l ≤ m ≤ u, the values of l and u represent the lower and upper bounds of the support for the fuzzy number [image: Please upload the image or provide a URL for it, and I will help generate the alternate text.], respectively, with m denoting the modal value (as illustrated in Figures 2, 3). If the condition l = m = u is met, then the TFN is transformed into a non-fuzzy, or crisp, number (Anile et al., 1995).
[image: Graph depicting a triangular membership function used in fuzzy logic. It has a base from point \( l \) to \( u \) on the x-axis, peaking at point \( m \). The y-axis represents membership degree \(\mu(x)\), with a maximum value of 1.]FIGURE 2 | A triangular fuzzy number, [image: Please upload the image or provide a URL so I can generate the alternative text for you.] = (l, m, u).
[image: Graph depicting two triangular membership functions intersecting on a horizontal axis. Key points include m_j, l_j, and d, with peaks labeled S_j and S_(j+1). Axes labeled μ(x) and V(S)≥S_0 on vertical, x on horizontal.]FIGURE 3 | The intersection between Sj and Si.
2.2.2 Distance of TFN
Let [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] = (l1, m1, u1), [image: It seems there was an error with the image upload or description. Please try uploading the image again or provide a URL. You can also add a caption for additional context if needed.] = (l2, m2, u2), the distance between [image: Please upload the image or provide a link to it, and I will help you generate the alternate text.] and [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is express as (Van and Pedrycz, 1983):
[image: Equation for the distance \( d(\tilde{A}, \tilde{B}) \) is shown, calculated as the sum of differences \((l_{1} - l_{2})\), \((m_{1} - m_{2})\), \((u_{1} - u_{2})\) divided by three, with its reference number as (2).]
2.2.3 The extent analysis FAHP method
Chang’s Fuzzy Analytic Hierarchy Process (FAHP) involves the creation of a fuzzy pairwise comparison matrix [image: Tilde A equals a matrix with elements a sub i j, where i and j index the elements of the matrix, of size n by n.], which is a key step in the process. Thus, based on The process of Chang’s FAHP, the fuzzy pairwise comparison matrix denoted as [image: Matrix notation with a tilde above the letter A equals a matrix consisting of elements denoted by a tilde above a subscripted a sub i j, where n by n indicates dimensions.], is mathematically defined in the following manner:
[image: Matrix equation showing \(\tilde{A}\) equal to a product of two matrices. The first matrix has diagonal entries as \(1\) and off-diagonal entries as \(\tilde{a}_{ij}\). The second matrix has diagonal entries as \(1/\tilde{a}_{ij}\) and off-diagonal entries as \(1\).]
where
[image: Matrix \(\bar{A} = \tilde{a}_{ij}\) defined as 1 if \(i = j\); and \(1, 3, 5, 7, 9\) or their reciprocals if \(i \neq j\), followed by equation (4).]
The fuzzy synthetic extent value, denoted as Si, with respect to the i-th object is expressed as follows:
[image: Mathematical equation showing \( S_i = \sum_{j=1}^{m} M_{ij} \otimes \left[ \sum_{n=1}^{m} \sum_{n=1}^{m} M_{ij} \right]^{-1} \), labeled as equation (5).]
With
[image: The equation shown is a mathematical expression consisting of summations: the sum from 1 to m of M sub ij equals the sum from 1 to m of L sub ijp times the sum from 1 to m of m sub ijp times the sum from 1 to m of u sub ij. The equation applies for i equal to 1, 2, up to n, and is labeled as equation 6.]
[image: The equation shows a double summation of \(M_{ij}\) from \(i = 1\) to \(n\) and \(j = 1\) to \(m\), equal to the sum of three separate double summations: \(\sum \sum l_{ij}\), \(\sum \sum m_{ij}\), and \(\sum \sum u_{ij}\). It is labeled as equation (7).]
[image: An equation showing the inverse of the sum from i equals one to n and j equals one to m of M subscript i j. It equals the reciprocal of the sum from i equals one to n and j equals one to m of u subscript i j divided by n m, the reciprocal of the sum from i equals one to n and j equals one to m of m subscript i j divided by n m, and the reciprocal of the sum from i equals one to n and j equals one to m of l subscript i j divided by n m, enclosed in parentheses. Equation labeled as eight.]
The degree of possibility of Sj = (lj, uj, mj) ⩾ Si = (li, ui, mi) is denoted as:
[image: Mathematical expression depicting the value of \( V(s_i \geq s_j) = \text{height}(s_i \cap s_j) \). It equals \( 1 \) if \( m_j \geq m_i \), \( 0 \) if \( l_i \geq u_j \), and \( \frac{l_i - u_j}{(m_j - u_j) - (m_i - l_i)} \) otherwise. Equation (9).]
To compare two elements Sj and Si in Chang’s FAHP, it's essential to compute both V (Si ≥ Sj) and V (Sj ≥ Si)). The minimum degree of possibility d(i) for V(Sj≥ Si), where i, j = 1, 2, . . ., k, is determined as follows:
[image: Mathematical expression showing a function and its equivalence: \( V(S \geq S_1, S_2, S_3, \ldots, S_k) = V[(S \geq S_1) \text{ and } (S \geq S_2) \text{ and } \ldots (S \geq S_k)] = \min V(S \geq S_i), i = 1, 2, 3, \ldots, k \). Equation labeled as (10).]
If assumed [image: Mathematical equation describing the minimum value function. It states: d(A sub i) equals the minimum of V, with the condition S is greater than or equal to S sub i, for i equal to 1, 2, up to k.] Then, the weight vector can be obtain as follows:
[image: Mathematical notation showing a vector \( W \) composed of elements \( d(A_1), d(A_2), \ldots, d(A_n) \) with a transpose symbol, labeled as equation \( (11) \).]
Here [image: Mathematical notation showing the sequence \( A_i \) for \( i = 1, 2, \ldots, n \).] are n elements.
The weight vectors are gained by normalizing:
[image: Mathematical expression displaying a vector \( W \) consisting of elements \( W_1, W_2, \ldots, W_n \), with the vector transposed, labeled as equation (12).]
Where W is a real number.
2.2.4 Questionnaire design and linguistic scales
In this study, TFNs are employed to quantify the subjective pairwise comparisons made by decision-makers. A graphical representation of the language terms and triangular language labels is shown in Table 1 and shown in Figure 4 (Kahraman et al., 2006).
TABLE 1 | Linguistic scales and fuzzy scales for importance.
[image: Table showing linguistic scales for importance with triangular fuzzy and triangular fuzzy reciprocal scales. Categories include: "Absolutely more important (5/2, 3, 7/2)", "Very strongly more important (2, 5/2, 3)", "Strongly more important (3/2, 2, 5/2)", "Weakly more important (1, 3/2, 2)", "Equally important (1/2, 1, 3/2)", and "Just equal (1, 1, 1)". The reciprocal scale mirrors these with corresponding values.][image: Line graph showing triangular memberships labeled EI, WMI, SMI, VSMI, and AMI along the x-axis from 0 to 3, with y-axis marked μ(x) from 0 to 1.]FIGURE 4 | Linguistic scale for relative importance.
2.2.5 The consistency tests
In the Analytic Hierarchy Process (AHP), it is crucial to maintain consistency in the comparison matrix. This consistency ensures the logic and rationality of paired comparison evaluation. To assess the reliability of the comparison matrix in the Analytic Hierarchy Process (AHP), two key measures are used: the Consistency Index (CI) and the Consistency Ratio (CR). These are defined as follows (Saaty, 1994):
[image: Formula for the consistency index (CI) is shown as CI equals lambda max minus n divided by n minus one, where n is the number of criteria. This is labeled as equation thirteen.]
[image: CR equals CI divided by RI, labeled as equation fourteen in parentheses.]
Here RI is the random index and [image: The image displays the Greek letter lambda with a subscript "max," typically used in scientific and mathematical contexts to denote the maximum wavelength or eigenvalue in a given scenario.] denote the maximum eigenvalue. To ensure the reliability of the decision, the value of CR should not exceed 10%, as shown in Table 2. This threshold reflects the accuracy of the assessment and whether pairwise comparisons need to be modified to enhance consistency.
TABLE 2 | The random consistency index.
[image: A table displaying two rows and nine columns. The first row is labeled "n" with values from one to nine. The second row is labeled "RI" with values: zero, zero, zero point five eight, zero point zero nine, one point one two, one point two four, one point three two, one point four one, and one point four five.]3 A CASE STUDY
In eastern China, the widespread influence of Confucian culture is deeply rooted in the hearts of the people, and it has a significant guiding effect on land management attitudes and practices. Family ties, social harmony, and respect for the collective good are key principles in Confucian culture that occupy a central position in land-use and management. To gain a deeper understanding of how these cultural values influence land management decisions, this study applied Fuzzy Analytic Hierarchy Process (FAHP), a highly flexible multi-criteria decision-making tool capable of dealing with ambiguity. This approach identifies the interplay between cultural values and sustainable land-use and provides strategic recommendations on how to promote sustainable management of land resources while maintaining regional cultural identity. The results of this study offer a new perspective for understanding land management in eastern China where Confucian culture is prevalent, and provide a scientific basis for local policymakers to formulate land-use planning that is consistent with cultural and sustainability principles. The specific operation process is as follows.
3.1 Expert discussion
The study of the role of immaterial factors such as cultural diversity and psychological awareness in SLUM in China is an interdisciplinary research topic involving the fields of geography, psychology, sociology, environmental science and cultural studies. The joint efforts of psychologists, sociologists, experts in cultural studies and experts in the field of sustainable development are crucial in constructing an assessment model for SLUM in China. These experts can identify and distill the key factors for evaluating sustainability from different perspectives, ensuring that the assessment model is comprehensive and in-depth. The role of the cultural studies specialist is to identify and integrate cultural elements of land-use, which may include links between land and specific cultural identities, traditional knowledge and practices, and the relationship between land-use and cultural heritage conservation. They will also be able to assess how cultural diversity affects the acceptance and implementation of sustainable land management strategies. Psychologists can contribute to a deeper understanding of the psychological motivations and cognitive biases behind land-use decisions, including decision-makers’ attitudes toward risk, expectations for the future, and how their values and beliefs affect land management. Sociologists can analyze how land-use decisions are influenced by social networks, social capital, and local governance structures from the perspective of social structure and community interaction. These contributions by environmental researchers are essential to ensure that the indicator system is scientific and practical in the environmental dimension, ensuring that SLUM strategies are able to address current and future environmental challenges. By combining these interdisciplinary expertise, the system will be able to provide policymakers with a comprehensive, balanced and actionable framework for evaluating and guiding the sustainable use and management of land resources in China.
3.2 Building an assessment model for SLUM in China
To ensure the comprehensiveness and scientific nature of the assessment factors, 35 professionals, including academics, researchers and engineers, were organized into five groups grouped according to their fields of expertise. These groups cover a wide range of disciplines, from ecology, sociology, and environmental science to psychology and cultural studies, and each group examines and discusses factors in the assessment model that are relevant to its area of expertise. These groups usually work by conducting a thorough review of the existing literature, followed by in-depth discussions based on the field experience of the members. Through this process, they are able to identify and determine the evaluation factors that are critical to SLUM, taking into account China’s unique socio-economic conditions, cultural context and ecological environment. In the selection and adjustment of evaluation factors, panellists strive to reach a consensus to ensure that each factor objectively reflects the sustainability of land-use and helps guide practical land management decisions. After several rounds of discussion and repeated verification, the assessment model finally formed has not only been recognized by the peers academically, but also accepted by the actual management department. The successful construction of this system, thanks to the power of interdisciplinary cooperation, will guide the sustainable use of China’s land resources, promote the construction of ecological civilization, and ensure the rational use and long-term protection of land resources.
As shown in Figure 5, the assessment model divides the decision problem into three levels, including the target level, the criterion level and the sub-criterion level. In this study, China’s SLUM assessment model through in-depth research and comprehensive review, established five key factors and 21 related sub-factors, involving cultural, psychological, policy, environmental, economic and technological dimensions. These factors and sub-factors together constitute a comprehensive evaluation model aimed at comprehensively assessing and guiding the sustainable use and management of land resources. The cultural diversity dimension includes how land-use activities are adapted to local culture and maintain harmony between cultural traditions and modern land-use. Values and beliefs influence land-use decisions; cultural adaptation emphasizes the coordination of land-use and local culture; compatibility of land-use and cultural traditions considers whether land activities respect traditional values; cultural impact evaluates the strength of cultural factors’ influence on land management; and community participation and development emphasizes the importance of public participation in the decision-making process. The dimension of psychological consciousness involves people’s cognition and psychological factors of land management risk. Risk cognition analyzes the degree of public perception of land-use risk, psychological drivers focus on people’s attitudes and motivations towards land-use, cognitive bias explores possible psychological errors in decision-making, and psychological belonging reflects people’s emotional connection with land.The policy and governance dimension emphasizes the role of laws, regulations and planning. The perfection of land laws and regulations assesses the support degree of the current legal system for sustainable land-use, the sustainability of land-use planning considers whether the planning can meet the needs of long-term development, and the effectiveness of land dispute resolution mechanism focuses on the justice and efficiency of conflict resolution.
[image: Diagram illustrating sustainable land-use management in China, featuring five main factors: Cultural Diversity, Psychological Awareness, Policy and Governance, Environmental, and Economic and Technological Dimensions. Each factor connects to specific sub-factors, such as Values and Beliefs, Risk Perception, Environmental Protection Policies, Pollution Control, and Market Allocation of Land Resources. The diagram uses a color gradient to differentiate categories.]FIGURE 5 | The assessment model for SLUM in China.
3.3 Calculate the comparison matrix
In the study of SLUM in China, expert evaluation is the key link to evaluate the relative importance of different factors. In this process, rather than providing precise numerical ratings, the experts express their evaluations through vague numbers, as shown in Table 1. It can better reflect their understanding of the uncertainty of different management practices and their degree of preference. These fuzzy values form a preliminary comparison matrix. These preliminary matrices may be discussed and optimized within the expert group in order to reach consensus or at least to understand differences of opinion. After completing this step, the fuzzy judgments of five groups of 35 experts were synthesized using geometric average method to form a final fuzzy comparison matrix covering the main factors and their sub-factors. The factor comparison matrix and sub-factor comparison matrix obtained in this process are respectively recorded in the data table, as shown in Tables 3–8. Further analysis showed that all the comparison matrices were consistent, that is, their consistency ratio was less than 0.1, indicating that these matrices were statistically acceptable, ensuring the reliability of the evaluation results.
TABLE 3 | Comparison matrix of the factors.
[image: A table with five columns labeled C1 to C5 and five rows labeled C1 to C5. Each cell contains three numerical values separated by commas. Examples include "1,1,1" in C1 of row C1, and "1.0931,1.789,1.195" in C5 of row C1.]TABLE 4 | Comparison matrix of the “Cultural Diversity Dimension.”
[image: A table displaying numerical data with columns labeled C11 to C15 and rows labeled C11 to C15. Each cell contains a set of three or four numbers, such as 1, 1, 1 or 0.7984, 0.925, 0.991. The table shows different numerical values corresponding to the intersection of the column and row labels.]TABLE 5 | Comparison matrix of the “Psychological Awareness Dimension.”
[image: A table with rows labeled C21 to C24 and columns labeled C21 to C24. Each cell has a set of comma-separated numerical values. The diagonal cells from top-left to bottom-right contain "1,1,1". Values in other cells vary, such as "1.0491,1.5280,0.3771" in C21 row under C22 column.]TABLE 6 | Comparison matrix of the “Policy and Governance Dimension.”
[image: A table displays data with rows labeled C31, C32, C33, and C34, and columns titled C31, C32, C33, and C34. Each cell contains three numerical values. For example, the C31 row under C31 contains 1, 1, 1, and under C32 contains 1.0491, 1.5280, 0.8464.]TABLE 7 | Comparison matrix of the “Environmental Dimension.”
[image: A table with four columns labeled C41, C42, C43, and C44, and four rows labeled C41 to C44. Each cell contains a set of three numeric values, including series like 1, 1, 1; 0.4787, 0.6545, 0.9532; and 1.9848, 1.2451, 1.5283.]TABLE 8 | Comparison matrix of the “Economic and Technological Dimension.”
[image: Table displaying data across four columns labeled C51, C52, C53, and C54, with corresponding row labels G51 to G54. Each cell contains a series of numerical values separated by commas.]The described methodology integrates Chang’s fuzzy Analytic Hierarchy Process (FAHP) with MATLAB for a comprehensive analysis in the context of SLUM decision-making. This approach begins by adopting Chang’s extent analysis method to process fuzzy judgments into quantifiable weights. These weights represent the relative importance of six identified factors (C1—C5), as shown in Tables 3–8. The process involves several key steps:
	1. Fuzzy Evaluation Matrix Application: Utilizing the fuzzy evaluation matrix, the weights of the factors (C1-C5) are determined. This matrix forms the basis for subsequent calculations.
	2. Calculation of Fuzzy Synthetic Extent Values: Equations 5–10 are employed to calculate the fuzzy synthetic extent value for each factor. This value is crucial in understanding the degree of impact or importance of each factor within the overall decision-making framework.
	3. Computing Weights of Factors and Sub-Factors: FAHP is applied to determine the precise weights of both factors and their respective sub-factors. This is achieved through a detailed analysis that takes into account the relative significance of each element in the decision-making process.
	4. Degree of Possibility Calculation: Eq. 11 is used to calculate the degree of possibility for each factor relative to others. This step is essential to understand how each factor compares against others in terms of importance or influence.
	5. Normalization of the Weight Vector: Finally, Eq. 12 is used for normalizing the weight vector. Therefore, based on Eq. 12, the normalized weight vector W can be obtained as:

W = (WC1, WC2, WC3, WC4, WC5,)T = (0.2790, 0.2329, 0.1565, 0.1514, 0.1802)T
Similarly, the weight vectors W1, W2, W3, W4, W5 of sub-factors are calculated shown as below:
W1 = (WC11, WC12, WC13, WC14, WC15) = [0.1999, 0.2815, 0.1823, 0.1976, 0.1386] T
W2 = (WC21, WC22, WC23, WC24)) = [0.195,0.205,0.309,0.291] T
W3= (WC31, WC32, WC33, WC34) = [0.156,0.227,0.324,0.293] T
W4= (WC41, WC42, WC43, WC44) = [0.313,0.214,0.307,0.166] T
W5= (WC51, WC52, WC53, WC54) = [0.310,0.202,0.295,0.193] T
The result of this approach is a set of normalized weight vectors of factors and subfactors, providing a clear and quantifiable view of their respective importance in SLUM decision-making. This approach, which combines FAHP and MATLAB, enables precise and systematic analysis, facilitating informed and balanced decisions based on the relative importance of various factors and sub-factors.
Table 9 shows in detail the final weights of each factor and sub-factor calculated according to Chang’s method. In the process of multi-criteria decision-making, the global weights of sub-factors are calculated by multiplying their local weights with the weights of the corresponding main factors. This multiplication reflects the principle that the importance of a sub-factor is not only determined by its intrinsic value (local weight) but also by the significance of the broader category (main factor) to which it belongs. The local weights of sub-factors are derived from pairwise comparisons within each main factor, reflecting their relative importance in that specific category. These local weights are then scaled by the weight of the main factor, but at a higher level, reflecting the overall priority of each main factor in the context of the decision-making problem. This approach ensures that the global weights accurately represent the combined effect of both the intrinsic importance of the sub-factors and the overarching significance of their respective main factors.
TABLE 9 | The Local weights of the factors and the global weights of the sub-factors.
[image: Table listing various factors and sub-factors with their local and global weights, along with their rankings. Cultural Adaptability has the highest global weight at 0.0785, ranked first, followed by Cognitive Biases and Psychological Belonging. Factors like Perfection of Land Laws and Greenhouse Gas Emission Control have lower global weights and higher rankings.]4 RESEARCH RESULTS AND DISCUSSION
4.1 Local weight ranking and analysis of first-level factors
The decision-making process in this study involves assigning weights to different criteria, with the criterion with the highest weight considered to be the most important. The FAHP priority weight estimates for each criterion were used to determine the criteria with the highest weight, and the results are shown in Table 9; Figure 6. According to the calculation results, the weight value of cultural diversity dimension is 0.2790, which indicates that it is crucial to consider cultural factors in SLUM, as shown in Figure 6. Cultural diversity is an important aspect that must be considered in SLUM in China. This dimension includes a variety of elements, including values and beliefs, cultural adaptation, compatibility between land-use and cultural traditions, cultural impact, community participation and development. First, values and beliefs play an important role in shaping land-use practices. In China, different cultural groups may have different views on the relationship between people and the environment, which may affect how they use land. Understanding and respecting these diverse values and beliefs is essential to designing effective and sustainable land management strategies. Second, cultural adaptation is essential in the face of changing environmental conditions and land-use patterns. China’s vast and diverse cultural landscape requires adaptable land-use methods to meet changing social needs and environmental challenges. This adaptation includes the recognition and inclusion of traditional knowledge and practices that have been proven to be sustainable over time. Third, ensuring compatibility between land-use practices and cultural traditions is essential to maintaining cultural heritage and identity. Many cultural traditions in China are closely associated with specific landscapes and ecosystems. Balancing development needs with preserving cultural traditions is key to achieving SLUM. In addition, cultural influences shape the way communities interact with and use land resources. Cultural practices, such as traditional agricultural techniques or spiritual connections to certain landscapes, can have a profound impact on land-use decisions. Recognizing these cultural influences and incorporating them into land management strategies can lead to more sustainable and culturally sensitive approaches. Community participation is also key to successful land-use management. Involving local communities in the decision-making process fosters ownership and responsibility for land. It ensures that the diverse perspectives, knowledge and needs of communities are taken into account, leading to more inclusive and sustainable land management practices. Finally, community development should go hand in hand with SLUM. The long-term sustainability of land-use practices can be enhanced by promoting economic opportunities, social welfare and environmental management within communities. This holistic approach recognizes that SLUM is not only about environmental protection, but also about improving the quality of life of communities. In conclusion, the cultural diversity dimension is an integral part of achieving SLUM in China. By considering values and beliefs, cultural adaptability, compatibility with traditions, cultural impact, community engagement and development, decision makers and stakeholders can develop strategies that are both environmentally sustainable and culturally sensitive. Embracing cultural diversity not only protects China’s rich cultural heritage, but also contributes to the long-term wellbeing of communities and ecosystems.
[image: Donut chart titled "Local weights of factors," divided into five colored sections: red (C1) at 0.2790, pink (C2) at 0.2329, purple (C3) at 0.1565, blue (C4) at 0.1514, and light blue (C5) at 0.1802.]FIGURE 6 | Global weights of the sub-factors.
The weight value of psychological awareness dimension is 0.2329. This dimension involves the status and characteristics of land-users and managers at the cognitive, emotional and psychological levels, which directly affect the decision-making and behavior pattern of land-use. Risk perception is one of the core elements of psychological consciousness. It describes an individual’s perception and assessment of potential risks in land-use. These risks may involve economic losses, environmental degradation, social stability and many other aspects. The level of individuals’ awareness of these risks determines the degree of care they take in land-use and the risk control measures they take. The research shows that the level of risk perception is closely related to the individual’s information access channel, experience background and education level. Psychological drivers explain why individuals choose particular land-uses in the absence of obvious external pressures. These factors may include an individual’s values, beliefs, and long-term goals. For example, strong environmental awareness may drive individuals to prioritize the ecological benefits of land over short-term economic gains. Psychological drivers play an indispensable role in promoting behavioral changes in sustainable land-use. Cognitive bias refers to the phenomenon of deviation from rational judgment caused by the limitation of information processing or psychological presupposition in the process of land-use decision-making. These deviations can lead to overexploitation or improper protection of land resources. For example, managers may lose sight of the long-term implications of environmental protection policies due to excessive optimism or lack of sense of disaster. Psychological belonging and social identity are the psychological needs of individuals seeking emotional connection with land and social belonging in land-use. Individuals with a strong sense of belonging may be more inclined to maintain land resources and promote sustainable development of the community. Social identity is concerned with how individuals perceive their role in society and how they express that role through land-use. Social identity can strengthen connections among community members to promote sustainable land-use practices. In conclusion, the impact of psychological consciousness on China’s land sustainable management system cannot be ignored. Improving understanding of the psychological state of land-users and managers, especially their risk perception, psychological drivers, cognitive biases, psychological belonging and social identity, is essential for developing more humane, accurate and effective land management policies and measures. This requires that not only economic, environmental and technical factors should be considered in the formulation of land management strategies, but also psychological motivations should be deeply explored to improve the development of land-use in China in a more sustainable direction.
From the economic opinion, the market-oriented allocation of land resources is an important means to improve the efficiency of land-use management. The weight value of economic and technological dimension 0.1802. The market mechanism can effectively guide the transfer of land resources to more efficient uses, because the market price mechanism can reflect the scarcity of land resources and the demand changes of economic activities. In practice, through land auction, leasing and other market-oriented means, not only improve the transparency and justice of land resource allocation, but also stimulate the potential economic value of land, and improve the rational circulation and optimal allocation of land resources. For agricultural land, increasing its output and returns is central to achieving agricultural sustainability. Through improved planting structures, the introduction of efficient farming techniques and high-quality crop varieties, agricultural output per unit area can be effectively increased, while reducing negative environmental impacts. In addition, the progress of agricultural technology and science also includes the application of precision agriculture, which through the combination of information technology and agricultural technology, improves the level of fine management of agricultural production and further improves the efficiency of land output. At the technical level, the progress of land resource monitoring and evaluation technology has significant significance for realizing the sustainable use of land resources. The application of geographic information system (GIS), remote sensing technology, big data analysis and other modern technical means makes the monitoring of land resources more accurate and timely, and provides scientific data support for policy making. The application of these technologies not only improves the accuracy of land resource assessment, but also optimizes the quality of land management and planning. Finally, the development and application of land protection and efficient utilization technology is directly related to the realization of land resource sustainability. This includes soil improvement techniques, water-saving irrigation techniques, and sustainable land management techniques that help maintain land productivity, prevent land degradation, and enhance land versatility and ecological benefits. Taken together, the economic and technological dimensions play a crucial role in SLUM in China. They not only provide a market mechanism for the efficient allocation of land resources, but also promote the technological innovation of agricultural production, and ensure the scientific land-use decision-making and the effectiveness of land resource protection through advanced monitoring and evaluation techniques. With the continuous development of China’s economy and technology, the economic and technological dimensions will continue to play a key role in promoting the sustainable use of land resources.
The weight value of policy and governance dimensions is 0.1565. This dimension covers many aspects, such as the improvement of land laws, environmental protection policies, the sustainability of land-use planning, and land dispute resolution mechanisms, which play a key role in ensuring the long-term sustainable use of land resources and maintaining social harmony and stability. The maintenance of biodiversity is a primary consideration in the environmental dimension, as it relates to the integrity of ecosystems and their resistance to environmental change. The commitment to biodiversity conservation is reflected in China’s land planning policies through the development of ecological corridors, the establishment of nature reserves, and the implementation of species recovery programs. These policy measures are aimed at preventing habitat destruction and ecological degradation caused by excessive urbanization and agricultural expansion, thereby ensuring the health and diversity of natural communities. With China’s rapid economic growth, industrial pollution control and cleaner production have become particularly critical. To address this challenge, policymakers have taken a number of measures, such as strengthening pollutant discharge standards, promoting clean technology and circular economy concepts, and implementing efficient wastewater treatment and solid waste management strategies. These efforts aim to reduce the negative impact of industrial activities on soil and water resources in order to achieve a greener industrialization path. In addition, soil and water conservation and forestry management measures play a crucial role in combating soil erosion in some parts of China. For example, conservation measures such as afforestation, land cover and terracing have been effective in slowing land erosion and enhancing soil water retention. At the same time, sustainable forest management practices ensure a sustainable supply of forest resources, facilitate the provision of ecosystem services and contribute to the maintenance of biodiversity. Finally, as the world’s largest greenhouse gas emitter, China has also placed a strong emphasis on greenhouse gas emission control in SLUM. By improving energy efficiency, promoting the use of renewable energy, and optimizing agricultural practices and land-use patterns, China is reducing methane and carbon dioxide emissions from its agricultural land-use. This not only helps the country fulfill its international environmental commitments, such as the Paris Agreement, but also plays a positive role in the mitigation of global climate change. In summary, by integrating the environmental dimension into land-use management, China not only protects its own natural resources and ecosystems, but also contributes to global environmental governance. By implementing these environmental protection strategies, China is demonstrating its determination to maintain and add value to its environmental capital over the long term, as well as its commitment to achieving the Sustainable Development Goals.
In China, the environmental dimension occupies a crucial position in sustainable land-use management, especially in the context of the pursuit of balance between economic development and environmental protection. Even if the environment dimension has a weight value of 0.1514, it is still a significant part of the overall strategy. The maintenance of biodiversity is a primary consideration in the environmental dimension, as it relates to the integrity of ecosystems and their resistance to environmental change. The commitment to biodiversity conservation is reflected in China’s land planning policies through the development of ecological corridors, the establishment of nature reserves, and the implementation of species recovery programs. These policy measures are aimed at preventing habitat destruction and ecological degradation caused by excessive urbanization and agricultural expansion, thereby ensuring the health and diversity of natural communities. With China’s rapid economic growth, industrial pollution control and cleaner production have become particularly critical. To address this challenge, policymakers have taken a number of measures, such as strengthening pollutant discharge standards, promoting clean technology and circular economy concepts, and implementing efficient wastewater treatment and solid waste management strategies. These efforts aim to reduce the negative influence of industrial activities on soil and water resources in order to achieve a greener industrialization path. In addition, soil and water conservation and forestry management measures play a crucial role in combating soil erosion in some parts of China. For example, conservation measures such as afforestation, land cover and terracing have been effective in slowing land erosion and enhancing soil water retention. At the same time, sustainable forest management practices ensure a sustainable supply of forest resources, facilitate the provision of ecosystem services and contribute to the maintenance of biodiversity. Finally, as the world’s largest greenhouse gas emitter, China has also placed a strong emphasis on greenhouse gas emission control in SLUM. By improving energy efficiency, promoting the use of renewable energy, and optimizing agricultural practices and land-use patterns, China is reducing methane and carbon dioxide emissions from its agricultural land-use. This not only helps the country fulfill its international environmental commitments, such as the Paris Agreement, but also plays a positive role in the mitigation of global climate change. In summary, by integrating the environmental dimension into land-use management, China not only protects its own natural resources and ecosystems, but also contributes to global environmental governance. By implementing these environmental protection strategies, China is demonstrating its determination to maintain and add value to its environmental capital over the long term, as well as its commitment to achieving the Sustainable Development Goals.
4.2 Global weights ranking of sub-factors
The global weight ranking of the sub-factors is shown in Figure 7. In China’s SLUM, cultural adaptation (C12) has the highest global weight (0.0785), reflecting the critical importance of response and adaptation to evolving socio-cultural needs and conditions in land management decision-making. This suggests that management strategies must be flexible and able to adapt to a wide range of cultural dynamics, including urbanization, technological change and social transformation. Cultural adaptation plays a central role in the management of sustainable land-use in China, which is closely related to China’s diverse cultural background and rapidly changing socio-economic environment. With globalization and internal migration, various cultures and lifestyles come together, creating new requirements and challenges for land-use. For example, traditional farming communities may need to adapt to the pressures of urbanization while maintaining their cultural heritage. Cultural adaptation requires policymakers and land managers to deeply understand and respect local cultures and how they affect land-use when planning and executing land-use decisions. This is not just about preserving cultural sites or avoiding the destruction of cultural landscapes, but also about how traditional knowledge and practices can be integrated into modern land management frameworks as resources for sustainable development. In addition, cultural adaptation requires managers to identify and adapt to new needs brought about by social change, such as leisure space, urban green space, and the balance between agriculture and industry. In urban planning, for example, adaptability may take the form of adapting the design to accommodate community activities, or reserving space in a new development zone for the establishment of future cultural facilities. Ultimately, the goal of cultural adaptation is to create a flexible land management system that responds simultaneously to the needs of environmental protection and the cultural values of the community, ensuring that land-use decisions contribute to harmonious economic, social and cultural development. In China, this means balancing rapid urban expansion with the preservation of traditional ways of life in rural areas. By placing cultural adaptation at its core, land management strategies can more fully address this challenge to achieve long-term sustainable land-use.
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This is closely followed by cognitive bias (C23) (global weight 0.0720), the importance of which points to the need to be aware of and correct potential cognitive misunderstand-ings when formulating land policies and implementing land-use planning. Recognizing and countering these biases, which can lead to unequal resource distribution or underes-timation of environmental impacts, is key to promoting more just and sustainable land management. Cognitive bias is an important factor in the decision-making process of SLUM in China. These biases may stem from traditional ideas, limitations of experience, or misunderstandings and judgment errors caused by infor-mation asymmetry. The existence of cognitive biases requires that measures be taken in land management to identify and correct these biases. One approach is to balance different perspectives and expertise through multidisciplinary teamwork in order to fully assess the consequences of decisions from all perspectives. In addition, through an open and transparent deci-sion-making process and active public participation, more perspectives can be provided and critical thinking promoted, thereby reducing the impact of bias. On the other hand, decision models and tools, such as multi-criteria Decision Analysis (MCDA) or group De-cision support systems (GDSS), can also help managers identify potential cognitive biases and provide a more objective and scientific basis for decision-making. These methods en-able systematic analysis of complex land management issues, ensuring that different in-terests and values are balanced in the decision-making process. In a country as diverse as China, identifying and managing cognitive biases is critical to ensuring the fairness, effec-tiveness, and sustainability of land-use policies. Only through in-depth understanding and overcoming these psychological barriers can land-use strategies that are consistent with economic development and respect ecological balance and social justice be formu-lated.
Psychological belonging (C24) holds a significant role in the assessment model, with a global weight value of 0.0678. It emphasizes the importance of strengthening community members’ emotional connection to the land and their responsibility for its sustainable management. This sense of belonging goes beyond mere emotions; it represents a deep identification with the land and its culture, particularly in a culturally rich country like China, where land is closely tied to heritage and identity. Enhancing this psychological belonging can motivate community members to actively engage in land conservation and sustainable use. For instance, when implementing land remediation or urban renewal projects, respecting and preserving the sense of belonging among local residents can reduce community resistance and increase project acceptance. In China, traditional villages and land use practices are deeply embedded with cultural and spiritual values, making it imperative to maintain these values during development and modernization. Cultivating emotional ties through education and community involvement can encourage active land resource conservation and rational utilization. Psychological belonging is also closely linked to land identity, especially concerning the preservation of national culture and sustainability in minority areas. Land management strategies in these regions must be thoughtfully designed to support economic growth without compromising cultural identity and a sense of place. In China’s SLUM, emphasizing psychological belonging is crucial not only for environmental protection and social harmony but also for the preservation of cultural diversity and community cohesion. Prioritizing psychological attribution in land management decisions ensures that development benefits people’s wellbeing and the environment without sacrificing cultural heritage and social stability. Additionally, the global weight of market resource allocation (C51) at 0.0559 underscores the role of market mechanisms in resource allocation. It also highlights the necessity of policy intervention to ensure the sustainability and equity of land use. In an ideal market economy, resource allocation relies on market mechanisms, with prices reflecting supply and demand, guiding consumer and producer behavior. However, in land resource management, unchecked market mechanisms can lead to resource misallocation and environmental issues. Thus, sustainable land management in China requires a combination of market resource allocation and policy guidance and intervention. Ultimately, balancing ecological protection, social justice, and economic efficiency in land management necessitates strong government supervision and the effective operation of market mechanisms. Only through this synergy can long-term sustainable land resource use be realized.
Values and Beliefs (C11) (global weight 0.0558) are almost equal to the weight assigned by the market, highlighting the importance of integrating local and community values in land management. Land management strategies must respect and use these values to promote and guide sustainable land-use. Values and Beliefs play a fundamental role in SLUM in China. They are important cultural building blocks that shape land-use patterns, environmental policies, and civic behavior. In a country as rich in history and culture as China, traditional values and beliefs have a profound impact on understanding and guiding land-use. Traditional Chinese values that emphasize harmony with nature, such as the Taoist concept of non-governance and the Confucian concept of conserving land, coincide with the modern concept of sustainable development. However, industrialization and urbanization in the process of modernization have challenged and sometimes conflicted with these traditional beliefs. The pursuit of rapid economic growth often makes the short-term economic value of land resources outweigh the long-term ecological and social value. Incorporating Chinese values and beliefs into land-use decisions means balancing the needs of economic development and environmental protection. This requires strengthening sustainable values in national planning and local governance, and ensuring respect for ecological balance and social responsibility in land-use. For example, increasing the value of ecological services by focusing on farmland conservation, curbing sprawling urban land-use, and restoring and protecting natural ecosystems. In terms of education and public outreach, promoting the values of sustainable land-use can increase public awareness and participation in land conservation. Values of sustainable development can be fostered at all levels of society by promoting a lifestyle that uses land economically, encouraging public participation in environmental protection activities, and disseminating environmental ethics through the media and education system. Policymakers and social leaders should also lead by example and demonstrate their commitment to these values by protecting land resources through transparent and fair policies and laws that provide the public with an example of following sustainable land-use. In conclusion, the role of values and beliefs in SLUM in China is multidimensional, shaping not only individual and collective behavior, but also policy formulation and implementation. In the face of the dual challenges of global environmental change and domestic socio-economic pressures, reaffirming and strengthening traditional values of living in harmony with nature will be critical to achieving the goals of sustainable land management.
Cultural impact (C14) has the global weight (0.0551), but this does not mean that its impact can be ignored. This factor emphasizes the profound influence of cultural dimensions in shaping land-use patterns and management decisions, especially in the context of China’s vast geographical size and cultural diversity. The Influence of Cultural Influence on the management of sustainable land-use in China is multi-layered. It indirectly influences the land-use pattern and management strategy by shaping social norms, behaviors and expectations. China is a culturally diverse and profound country, and its land management practice is not only influenced by legal and economic factors, but also deeply influenced by historical tradition and social culture. For example, traditional values that value agriculture and land as the basis of life have fundamental implications for the conservation and use of rural land. Systems such as collective land ownership and household responsibility reflect China’s unique cultural influence, and these systems have played an important role in ensuring food safety and safeguarding farmers’ rights and interests. Cultural factors also play a key role in urban planning and land-use. The design of urban public space, the planning of residential areas and the protection of historical and cultural heritage often reflect the respect and protection of cultural traditions. In the process of rapid urbanization in China, how to balance the needs of modern development with the protection of cultural heritage is a key issue. Under the influence of globalization and marketization, cultural influence can also lead to conflicts and problems in land-use. Exotic lifestyles and consumption patterns may conflict with indigenous land-use practices and environmental protection, and may sometimes threaten the sustainability of land resources. Therefore, in land management, cultural influence needs to be carefully considered and integrated into the framework of sustainable development. The positive impact of culture on sustainable land management can be strengthened through education, media advocacy and citizen engagement. In addition, policymakers need to have a deep understanding of local cultural values and social habits in order to formulate and implement land management policies more effectively. The global weight of cultural influence suggests that any land-use policy or practice must adapt to and respect local cultures, while educating and guiding the public to understand and support the importance of sustainable land management. In this way, cultural influence can be an important force in moving China’s land management in a more sustainable direction. Taken together, these weights reflect the complex role of cultural and psychological factors in SLUM in China. They suggest that in order to promote efficient and sustainable land-use, policymakers and managers must consider the effects of everything from cultural adaptation to cognitive biases, from psychological belonging to perceived market mechanisms, and inherent values and beliefs.
The search for SLUM requires a multifaceted approach that harmoniously combines cultural traditions with modern ecological requirements. The compatibility of land use with cultural traditions (C13) is not only for the preservation of heritage, but is also an important tool for promoting community participation and development (C15). This engagement is essential to enhance risk perception (C21) and psychological drivers (C22), both of which are important to foster a proactive land conservation stance. The legal framework governing land (C31) is essential to ensure a balance between cultural and ecological needs. These laws must be refined to reflect contemporary environmental protection policies (C32) that are an integral part of the sustainability of land use planning (C33). An effective land dispute resolution mechanism (C34) is also necessary to resolve conflicts arising from competing land use interests. Biodiversity conservation (C41) is closely related to pollution control and cleaner production (C42) because together they contribute to the ecological resilience of land resources. At the same time, soil and water protection, together with forestry management (C43), underpins the viability of agricultural lands, which is directly related to the yields and profits of these lands (C52). The role of technology through Land Resource Monitoring and Assessment (C53) and Land Conservation and Effective Use Technology (C54) cannot be overemphasized. It is able to predict trends and the impact of land-use decisions, allowing for a more strategic approach to land management. Taken together, the interplay of these factors creates a complex and coherent system in which the sustainability of land use is constantly negotiated and adjusted according to cultural sensitivities, community inputs, ecology, and technological advances. Implementing these intertwined aspects through policies and practices is essential to achieving a sustainable balance in land use management.
4.3 Balancing cultural traditions with modern ecological
4.3.1 Integrating traditional agricultural practices with modern sustainability methods
Adaptation of Ancient Techniques: Ancient Chinese agricultural methods, such as the use of specific crop varieties and cultivation methods tailored to local conditions, can be adapted to modern agroecological practices. For example, climate models and soil analysis are used to determine when and how crops are most suitable for planting, while retaining traditional methods such as crop rotation and intercropping.
Enhanced Soil Management: In ancient times, it was a common practice to maintain soil health by adding organic matter and reducing soil turning. Modern sustainable agriculture can adopt these principles, such as maintaining soil fertility and structure through the use of organic fertilizers, green manure crops, and conservation tillage. In addition, modern technologies such as soil testing can be used to more precisely determine the needs of the soil, thus making fertilizers and farming methods more efficient and environmentally.
Biodiversity conservation: In traditional Chinese agriculture, diverse crops and varieties not only enrich people’s diet, but also help maintain the balance of the ecosystem. For example, a mix of varieties can prevent soil nutrient depletion and increase resistance to pests and diseases. Modern agriculture can take inspiration from this by promoting diverse cultivation that not only protects traditional varieties, but also uses genetic engineering to breed crops that are better adapted to contemporary challenges, such as climate change and pests and diseases.
Sensor-Based Irrigation Systems: Modern sensor technology can be integrated into traditional irrigation practices. Sensors can provide real-time data on soil moisture levels, temperature, and other environmental factors. This information allows for more precise water application, ensuring that crops receive the optimal amount of water at the right time. By combining this technology with traditional methods such as the ancient Chinese canal systems or terrace irrigation, water usage can be optimized, leading to significant savings and reduced water wastage.
4.3.2 Integrating cultural heritage and modern technologies
Cultural heritage as a platform for ecological education. Cultural heritage is vital as a dynamic site for ecological learning. By organizing studies and visits at these sites, participants can learn about traditional ecological knowledge and practices, demonstrating their relevance to contemporary society. These initiatives have helped to raise public awareness of sustainable development and foster a culture of environmental management.
Innovative use of technology in heritage conservation. The application of modern technologies such as 3D scanning and virtual reality is changing the field of heritage conservation. These tools not only facilitate meticulous documentation and conservation of cultural heritage sites, but also enhance public engagement through virtual Tours and interactive experiences. They are invaluable in planning restoration projects and raising public awareness of the importance of heritage conservation.
Protection and renovation of historical sites. In China’s urban landscape, the preservation and adaptive reuse of historical sites are of Paramount importance. This includes not only preserving these sites, but also creatively adapting them to contemporary use without compromising their historical authenticity. Transforming historic buildings into community centres, museums or environmentally sustainable commercial Spaces ensures that they continue to play an active role in the urban fabric.
Collaboration with academia and cultural institutions. Collaboration with universities, cultural institutions and research institutions is essential to integrate diverse expertise in the fields of heritage conservation, urban sustainability and Chinese cultural studies. Such collaboration is key to fostering innovation in urban development. By tapping into the rich knowledge and resources of these academic and cultural sectors, urban planners and developers can ensure that their projects are not only sustainable and efficient. Such cooperation is essential to respect and promote cultural heritage and meet modern needs.
4.3.3 Cultural landscape conservation in urban planning
Integrating Traditional Chinese Architectural Principles with Green Building Practices. Traditional Chinese architecture offers a wealth of knowledge in terms of design, materials, and spatial organization, which can be harmoniously integrated with modern green building practices. This integration could focus on energy efficiency, use of sustainable materials, and incorporating natural elements into urban spaces, all while respecting the aesthetic and functional aspects of traditional Chinese architecture.
Landscape Urbanism. Landscape urbanism, which emphasizes the role of natural landscapes in urban planning, can be tailored to reflect Chinese cultural traditions. This might involve creating urban parks and green spaces that reflect traditional Chinese garden designs, using indigenous plants, and incorporating elements like pagodas, stone bridges, and water features that are symbolic of Chinese culture.
Emphasizing Feng Shui in Urban Design. Feng Shui, an ancient Chinese practice, focuses on harmonizing individuals with their surrounding environment. Urban planners and architects can incorporate Feng Shui principles to create a balance between the built environment and natural elements. This includes the thoughtful placement of buildings, water bodies, and green spaces to enhance the flow of “Chi” (energy) and create a harmonious, sustainable urban landscape.
Policy Framework and Incentives. Governments can play a pivotal role by establishing policies that encourage the integration of cultural heritage into urban development. This could include financial incentives for developers who incorporate traditional elements into their designs, regulations that protect historic sites, and funding for research into sustainable practices that align with Chinese cultural traditions.
5 CONCLUSION
This study explores in depth the central role of cultural diversity unique to China in SLUM. Using an assessment model constructed by fuzzy Analytic Hierarchy Process (FAHP), this study quantifies and reveals how intangible cultural factors affect land-use patterns and policy acceptance. The results show that cultural background and psychological awareness have a profound impact on the behavior of land-users and their responses to policies.
Firstly, this paper takes into account cultural, psychological, economic, technological and environmental factors to explore the complexity and diversity of SLUM in China. The findings suggest that factors such as cultural adaptation, cognitive biases, psychological belonging, market resource allocation, values and beliefs, and cultural influences play an important role in determining land management strategies and practices. The centrality of cultural adaptation to land management decisions reflects the importance of responding to and adapting to evolving socio-cultural needs and conditions. This requires management strategies to be flexible and able to adapt to a wide range of cultural dynamics, including urbanization, technological change and social transformation. The importance of cognitive bias highlights the need to be aware of and correct potential cognitive misunderstandings when formulating land policies and implementing land-use planning. The prominent position of psychological belonging highlights the importance of strengthening the emotional connection and responsibility of members within the community to the land. The role of market allocation of resources is to guide the transfer of resources to more efficient uses, while emphasizing the need for policy intervention to ensure the sustainability and equity of land-use. Values and beliefs are almost equally weighted with market allocations, suggesting that integrating local and community values in land management is critical. Although the cultural influence has the lower weight, its far-reaching influence cannot be ignored in the context of China’s vast geographical size and cultural diversity. The pursuit of SLUM requires a multifaceted approach that harmoniously combines cultural traditions with modern ecological requirements. Compatibility of land-use with cultural traditions, community participation and development, risk perception and psychological drivers, legal frameworks, environmental protection policies, biodiversity conservation, pollution control, soil and water conservation, forestry management and greenhouse gas emission control are all key to achieving this goal.
Secondly, in the context of traditional Chinese culture, SLUM must recognize the profound impact of cultural traditions on land-use patterns. China’s land management cannot be separated from its cultural context, especially the agricultural culture, the concept of feng shui and the traditional pursuit of natural harmony. Traditional agricultural culture emphasizes harmonious coexistence with nature, and traditional knowledge can guide modern agricultural practice to ensure that crops are cultivated in harmony with natural laws. The concept of Feng Shui reflects respect for and protection of the land environment and helps to promote sustainable land-use. China’s collectivist cultural background is also important in land management, emphasizing the value of collective wellbeing and harmony can promote community participation in land planning and conservation activities. Therefore, the integration of traditional Chinese culture into land management strategies not only enhances the cultural rationality and social acceptability of land-use, but also provides support for the realization of ecological and social harmony. Future land management practices need to pay more attention to the excavation and utilization of these cultural resources in order to protect and promote the uniqueness and sustainability of land-use in China.
Thirdly, in the process of analyzing China’s SLUM, the role of individual and group psychological awareness cannot be ignored. Individual psychological awareness concerns perceptions, motivations, and behaviors of land-users, while group psychological awareness concerns interactions, collective memory, and shared values among community members. These two levels interact in determining the effectiveness of land management and together create a complex decision-making environment. Individual psychological awareness highlights the importance of education and information dissemination in shaping attitudes and behaviours towards sustainable land-use. Raising individual awareness of the scarcity of land resources and the value of ecological services through education and advocacy can inspire more responsible land-use behavior. In addition, understanding individual psychological awareness can also help to identify and mitigate cognitive biases that can lead to land resource misuse. At the same time, group psychological awareness is related to the social structure and cultural traditions of the community, which emphasizes how community members define and maintain sustainable land-use patterns through collective action and social norms. At this level, community participation becomes a key factor that not only facilitates the sharing of knowledge and resources, but also enhances the social legitimacy and effectiveness of policy implementation.
Finally, the interplay of these factors creates a complex and coherent system in which the sustainability of land-use is constantly negotiated and adjusted according to cultural diversity, community inputs, ecology, and technological advances. China faces unique challenges and opportunities in achieving SLUM. By integrating these diverse factors into a land management strategy that is both culturally sensitive and responsive to economic and environmental needs, China can not only protect its rich cultural heritage, but also provide a useful global example of sustainable land management.
Future research directions could also incorporate artificial intelligence (AI) technologies to better address the complexity and challenges of SLUM in China. Machine learning and data analysis methods can be used to analyze large-scale land use data to identify potential patterns and trends, which can provide more data support for policy making. AI can also be used to predict land use change and environmental impacts, helping decision makers better plan and manage land resources.
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Introduction: Managing soil fertility remains one of the major concerns of smallholder farmers in Sub-Saharan Africa (SSA). In order to understand the adoption potential of recommended practices to smallholders, this study aimed to characterize the resource availability, allocation and use patterns, and the soil fertility management practices in the maize farming system in northern Benin.
Methods: A survey was conducted with 262 households randomly selected across three municipalities from three agro-ecological zones. Focus groups discussions and individual interviews were conducted with the household heads using an interview guide and a structured questionnaire respectively. The main data collected included (a) the socio-economic characteristics of households, (b) the main farm type and their characteristics and (c) the current soil fertility management strategies and the rationale behind.
Results and discussion: The main soil fertility practices included the use of mineral fertilizer, manure, and crop residues application to plots. As a general trend, the rates of fertilizers applied by farmers [on average 132 ± 8.5 and 59 ± 5.8 kg ha−1 of Nitrogen-Phosphorus-Potassium (NPK) and urea] were below those recommended or required to ensure optimal maize yields. Five farm types corresponding to different resource endowments or wealth classes were identified. The scarce resource farms owned by the majority of poorer farmers use only small amounts of manure and fertilizer in their fields. Qualitative analysis indicated that farms have different constraints and opportunities to adopt newly proposed soil fertility management recommendations.
Conclusion: Extension services and decision makers must target specific interventions for appropriation and sustainability of technologies to resource mostly the smallholder farmers.
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1 Introduction

In sub-Saharan Africa (SSA), the majority of the population lives in rural areas and relies on agriculture for their livelihoods. This sector accounts for about 30%−50% of the gross domestic product, represents the main source of income for more than 60% of the population, and provides over 40% of export earnings (FAOSTAT, 2020). More than 90% of the food produced in the African continent is grown by smallholder farmers, mostly under rain-fed conditions. However, despite the promising prospects that agriculture offers for sustainable development, Africa's agricultural productivity is still low compared to other countries in the world, leading to chronic food insecurity (Smale et al., 2013). Indeed, the average yield of most cereals is low, ranging from 0.5 to 1.5 t ha−1 (FAOSTAT, 2020). Besides changing climate patterns, poor soil fertility is viewed as one of the major constraints to crop production and poverty as a result of the low intrinsic soil fertility, nutrient mining practices, limited and inadequate organic resources, and low investment capacity in external inputs (Barrett and Bevis, 2015; Vanlauwe et al., 2015).

As in many parts of SSA, the economy of Benin is essentially based on agriculture. Among all cereals, maize (Zea mays L.) is the most important staple crop and source of calories in the diets of the population. It occupies about 82% of the total land area under cereals and accounts for about 84% of cereal production (INSAE, 2013). The farming systems in Benin, like in SSA, are predominantly rain-fed and dominated by smallholder subsistence producers and pastoralists (Livingston et al., 2011; Smale et al., 2011). Maize production has been growing (from 219,593 tons in 1961 to 1,509,758 tons in 2018; FAOSTAT, 2020) due to increasing demand from neighboring countries as a result of cultivated area expansion (from 375,650 to 968,030 ha during the same period). In the framework of the Strategic Plan for Strengthening the Agricultural Sector, maize is considered a strategic crop for improving the livelihoods of smallholder farmers (PSDSA, 2017). Thus, increasing maize productivity would be interesting by increasing export revenues and thereby improving national and domestic food security. Despite its central role, maize productivity remains low, usually below 1.5 t ha−1 and well below its potential yields (3–5 t ha−1). Among all possible constraints, soil fertility depletion is the most severe threat to food security, sustainable agricultural production, and rural development in the country (Saïdou et al., 2004; Srivastava, 2010). It is mostly the result of mismanagement of agricultural land and historical dynamics of the political-ecological system and regional land policies (Carsky et al., 2001; Yemadjè et al., 2012).

For a long time, maize production and consumption were confined to the southern parts of the country, but now it has extended to the northern regions. Increasingly, the northern part of Benin is increasingly considered the basket of food (maize, soybean, yam, sorghum, and millet) and cash crops (cotton). In this region, climate variability and change have further contributed to low productivity in recent years (Tidjani and Akponikpè, 2012; Yegbemey et al., 2014; Akossou et al., 2016). Given the importance of maize for both food security and the rural economy in Benin and because opportunities for expanding cultivated land are often limited to marginal lands, improving its production cannot solely come from area expansion but also from productivity gains through appropriate management techniques that can restore and maintain the quality of agricultural land and narrow the yield gap. Previous research showed that the farm structure and farming practices in SSA are very diverse, and therefore, generic farm management recommendations do not work (Tittonell et al., 2005, Tittonell et al., 2007; Zingore et al., 2007). Management interventions require a good understanding of the farming systems and the diversity of socioeconomic situations to develop context-specific and targeted recommendations for sustainable intensification of the cropping systems (Bongers et al., 2015). In particular, several studies have shown that resource availability (land, labor, and cash) influences the adoption potential of agricultural practices among smallholder farms in Africa (Tittonell et al., 2005a,b; Zingore et al., 2006; Bidogeza et al., 2009; Kamanga et al., 2009; Bongers et al., 2015). For instance, the choice of nutrient management practice is mainly based on the availability of resources at the farm level rather than on a systematic and intentional way to increase soil fertility (Mapfumo and Giller, 2001). Better knowledge of the cropping systems (resource availability, allocation, and use patterns) and existing soil fertility practices may thus help understand the adoption potential of recommended practices for different farm types to better target sustainable intensification efforts. Therefore, this study aims at (1) typifying and characterizing the maize farming systems by assessing the diversity in resource availability and allocation; (2) identifying farmers' current soil fertility management strategies, including the use of recommended practices with a focus on manure, mineral fertilizer, and their integrated use; and (3) assess the opportunities and constraints for different farm types with maize production systems regarding the adoption potential of these practices in the future.



2 Materials and methods


2.1 Selection of study sites and observation units

The study was conducted in the departments of Borgou and Alibori, which cover three of the four agroecological zones (AEZ) in northern Benin. This region was selected based on the importance of maize farming. This area is the main food and cash crop production area of Benin. The rainfall distribution across the whole region is monomodal, characterized by a long dry season and a single rainy season between May and October that allows for only one cropping season per year. The sampling was conducted by using a hierarchical approach through a five-step procedure based on purposive (for selecting the municipal areas, villages, and farmers, i.e., maize farmers) and random techniques (for selecting the respondents). With the support of agricultural extension officers, the municipalities of Malanville, Banikoara, and Bembèrèkè in AEZs 1, 2, and 3, respectively, were selected (Figure 1). Within the three municipalities, two to four villages were selected that correspond to different administrative units of the municipalities considered. Within each village, 20–32 farmers were randomly sampled using a table of random numbers (Table 1). A total of 262 farmers were selected in the whole study area.


[image: Map of the Republic of Benin highlighting agro-ecological zones (AEZs) and study areas. AEZs range from one to eight, each with specific regions. Study zones include Malanville, Banikoara, and Bembèrèkè, marked by numbered circles. A smaller map of Africa provides geographic context.]
FIGURE 1
 Map of Africa showing the location of Benin (left) and the study sites (right).



TABLE 1 Sampling distribution.

[image: Table showing departments, communes, villages, and sample sizes. Alibori has communes Malanville and Banikoara with villages Koara-Tédji, Isséné, Ounet, and Bonharou, each with a sample size of 32. Borgou has commune Bembèrèkè with villages Pédarou, Guéré, Guessou-sud, Goua, and Ina, with sample sizes of 32, 32, 26, 20, and 24, respectively. Entire study site sample size is 262.]



2.2 Household survey and data collection

The selected farmers were surveyed during the rainy season of 2014 (July–August). The collected information gathered during the structured interviews using the questionnaire included (a) socioeconomic characteristics (including age, education level of the farmer and their family members, main occupation, access to credit, and land ownership and the farm's wealth) and income source and (b) the main farming system characteristics (total household members, farm size, and land property rights), farm assets (including labor availability, livestock ownership, and maize production system), the number of crop species grown each year, the number of cropped field areas, the number and type of animals owned (cattle, sheep, goats, and chicken), and farm machinery—family labor availability was calculated as the number of family laborers working full- or part-time in the farm and permanently hired laborers; and (c) soil management practices and current soil fertility management strategies, such as the quantity of applied fertilizers (manure and chemical fertilizers). The amount of manure quantity was expressed as the number of carts and translated to rates applied, assuming that one cart is equal to 976 kg of manure as proposed by Azouma et al. (2007).

Various sources of income were used to define the orientation of the farm. The percentage income from maize was obtained by dividing the income from maize production by the total income of the household (farm and non-farm activities), while the part of income from maize the in total expense of the household was estimated by asking the household head the contribution of maize production income to the total expenses of the household (%).

One focus group discussion was done per village with the local experts and extension officers. Participatory wealth ranking was used to identify the most relevant criteria that we could use to classify the farmers into different wealth classes and identify livelihood strategies.



2.3 Data analysis

The diversity of farming systems was analyzed through a farm typology following Tittonell et al. (2005a,b, 2010). This enables the categorization of different farm types with similar characteristics into specific farm clusters. Households were categorized according to their resources endowment and their main sources of income. Principal component analysis (PCA) was used to identify non-correlated socioeconomic indicators to use as proxies for the household categorization criteria, and households were grouped into homogeneous classes using agglomerative hierarchical clustering with Ward linkages (Husson et al., 2010). The PCA was conducted using 14 quantitative variables related to the characteristics of the household, labor, land use, livestock ownership, and household income (Table 2) to identify proxy indicators for the main drivers of livelihood strategies across localities. The loadings of the first most relevant principal components were examined for their bearings with meaningful indicators of the farm typology criteria. Variables with a significant factor loading (>0.70) were selected for input for the cluster analysis. Based on the resulting dendrogram, we divided our data set into five clusters with a minimum of 30 and a maximum of 90 farm households per cluster.


TABLE 2 Descriptive statistics (mean ± standard error in parentheses) of variables used for farm typology construction.

[image: A table compares agricultural data across three areas: Malanville, Banikoara, and Bembèrèkè, with an average column. Categories include age, education level, household and family labor size, total farm size, livestock, cropped land, fields per farm, field size, and income. Each category lists a mean and standard error. Malanville shows higher farm size (18.2 ha) and family labor (10.1 persons). Banikoara has more household size (19.8 persons) and total livestock (6.0 TLU). Bembèrèkè has the highest age (46 years) and income from maize (49.1%). Standard errors are in parentheses.]

Comparisons across locations and farm types in terms of socioeconomic characteristics, land use, and management indicators were done by calculating descriptive statistics and analyzing the variance using SPSS software version 21.

The assessment of potential adoption of the improved soil fertility management practices was based on a comparative assessment of (1) what resources farmers have, (2) what management practices the farmers currently apply, and (3) what the requirements of these practices are.




3 Results


3.1 Farm typology and variability between farms

Households were grouped into five clusters considering the main drivers of livelihood strategies represented by proxy indicators derived through PCA at each site independently. Generally, the same pattern observed in the PCA at the regional scale was also observed at each site (data not shown). The PCA at the regional scale indicated that 62.6% of the household variability was explained by the first three principal components (PCs), which have high positive loadings, respectively, on farm size, household size, family labor, cropped land, total livestock owned, area food crop, number of cattle, and area under cotton (Supplementary Table S1). The contribution of the fourth and fifth PCs (income from maize and age) explained only a little of the remaining variation. The Kaiser-Meyer-Olkin (KMO) value was high (0.62), and a Bartlett's test showed a significant difference at p < 0.0001, implying that the chosen set of variables was suitable for PCA. Eight variables have a factor loading >0.600 in the first three PCs and were selected to be used in the agglomerative hierarchical cluster analysis. Based on the dendrogram and the size of each cluster in the entire sample, the data set was divided into five clusters with a minimum of 30 and a maximum of 90 farm households per cluster.

Farm type 1: Farmers of type 1 are the poorest or medium-wealthy and the more “diversified farms” (seven different crop species grown). They have an average total farm size of 10.9 ha, of which 44.3 and 24.9% were cropped, respectively, with maize and cotton. This type of household has, on average, 13 household members, of which 54% work full-time on the farm. The farmer and their family members have no more than a primary school education (< 3 years of school). Farming is the primary occupation of all farmers. These farms obtain < 10% of their total household income from maize production. They obtain 37.2% of their total household income from maize and use about 45.9% of this maize income for household expenses. Farmers from this group also keep few livestock [3.1 tropical livestock unit (TLU)] and cattle (3.0 TLU) and have no farm machines. However, they own many hand-operated implements (12.0 on average), such as hoes and machetes, for farming. More than 50% of farms have a total annual revenue of less than US$1,000, and only 20% have a total revenue greater than US$2,000 per year.

Farm type 2: Farmers in this group belong to the medium-wealthy or wealthy. They have 29.9 ha on average (24.3 and 49.6% cropped land, respectively, with maize and cotton) and grow 5 crop species per cropping year. Some of the farmers, or their family members, were educated beyond primary and secondary school (7–10 years). Agriculture is their primary occupation. The family size is comparatively large, on average 33 persons, and 15% of the family members work full-time on the farm, while 49% work part-time. Farms in this group have the largest number of animals per livestock category (5.5 TLU) and cattle (7.3 TLU). Some farmers have machines, such as tractors and power tillers. Most of the farmers possess several hand-operated implements (14), in relation to the large number of working persons on the farm. They have earned almost more income than poorer households. These farmers obtain 21.5% of their total household income from maize, and 47% of this income is used for the total expense of the household. Of these farms, 58% have total revenue greater than US$2,000 per year.

Farm type 3: Farmers of type 3 have an average total farm size of 29.6 ha, of which 29.3 and 47.8% were cropped, respectively, with maize and cotton. These households have 23 household members, of which 17% work full-time on the farm. The farmer and family members also have more than a primary school education (6–8 years). Farming is the primary occupation of all farmers. These farms obtain 60.3% of their total household income from maize production, and ~65% of this maize income is used for the total expense of the household. They cultivate maize to meet the family's food requirements and sell the least amount of farm produce to the market. Farms in this group have the largest number of animals per livestock category (5.2 TLU) and cattle (5.2 TLU). Few farmers have machines, such as tractors and power tillers, and most of the farmers possess, on average, 10 hand-operated implements. More than 30% of farms have a total revenue of less than US$1,000, and 50% have a total revenue greater than US$2,000 per year.

Farm type 4: Farmers of type 4 are the poorest, with small total landholdings (average 10 ha, of which 44.9 and 24.8% cropped, respectively, with maize and cotton), and an average family size of ~11, of which 55% work full-time on the farm. Most farmers cultivate six different crop species. The farmer and family members have no more than a primary and secondary school education. Farming is the primary occupation of all farmers. These households have, on average, 11 household members. More than 50% of the family members work full- or part-time on their farms. They cultivate food crops mainly to meet the family's food requirements and work as agricultural laborers on other farms most days during the cropping seasons. This farm type obtains 15.0% of its total household income from maize production and more than 50% from off-farm activities. Farmers in this group also keep few livestock (4.1 TLU) and cattle (1.9 TLU) and rarely have farm machines. Of these farms, 42% have a total revenue of less than US$1,000, and 16% have a total revenue greater than US$2,000 per year.

Farm type 5: Farmers in this group have 12 ha on average (46.9 and 21.9% cropped, respectively, with maize and cotton) and grow on average five different crops. None of the family mem bers were educated beyond primary school, and their first occupation is farming. They have, on average, 13 family members, and 58% of them work full- or part-time on the farm. These farmers own few livestock (4 TLU) and cattle (3.9 TLU), and very few have farm machines. This farm type obtain 76% of total household income from maize production. Of farms, 25% have total revenue less than US$1,000, and 56% have total revenue greater than US$2,000 per year.



3.2 Land-use patterns across farm types and locations

The five farm types differed significantly in the number of crop species, food crop acreage, and maize, cotton, and yam acreage; the total income from maize production and the number of cattle varied strongly between farm types (p < 0.05; Tables 3, 4). The farm characteristics, such as the available farm labor and hand-operated implements, the food crop acreage, maize and cotton acreages showed a significant interaction between study site and farm type (p < 0.05; Tables 3, 4). Overall, farm types 1, 4, and 5 grow more food crops (72%−78% of total land size) than farm types 2 and 3 (68% of total land size). Farmers of type 1 grow more food crops in Banikoara (86%) than their homologs in Bemberèkè and Malanville (66%). Likewise, farms of type 3 grow more food crops in Banikoara and Bembèrèkè (81%−98%) than their homologs in Malanville (54%).


TABLE 3 Selected mean characteristics of households in the three study sites by location and farm type.

[image: Table comparing various farm types across three locations: Malanville, Banikoara, and Bembèrèkè. Data includes percentages of households, average education level in years, household size (total and labor), total area owned in hectares, number of cattle, and types of farm implements (with power or by hand). The bottom section lists p-values for location, farm type, and their interaction. Numbers in parentheses indicate standard errors, with 'ns' denoting non-significance.]


TABLE 4 Indicators of production activity and resource allocation across sites and farm type.

[image: Table showing agricultural data for three locations: Malanville, Banikoara, and Bembèrèkè, along with a summary for the whole area. It lists farm type, crop diversity, food crop acreage by hectare and percentage, maize and cotton acreage in hectares, and income percentage from maize. Numbers in brackets represent standard errors. P-values show significance for location and farm type effects.]

Among all food crops, maize acreage varies significantly between farm types. Overall, maize is the first major crop for all farm types, but the distribution pattern varies significantly within and between locations. In Banikoara, farms of types 1, 4, and 5 (55%−60% of total cropped land) grow more maize than farm types 2 and 3, while in Bembèrèkè, farm types 1, 2, 4, and 5 grow more maize (34%−49% of total cropped land) than farm types 3 (18.5% of total cropped land). Farms of type 1, 4, and 5 in Banikoara grow more maize (55%−60%) than their homologs in Bemberèkè and Malanville (36%−42%).

Cotton is the sole cash crop for all farm types. Overall, farm types 2 and 3 allocated more land to cotton (48.7% of total cropped land) than farm types 1, 4, and 5 (22%−25%). Farmers of type 1 in Banikoara allocated less land to cotton (14%) than the same farm type in Bemberèkè and Malanville (27%−34%), while farmers of type 5 in Banikoara and Bemberèkè allocated less land to cotton (13.5%) than the same types of farmers in Malanville (29%). Overall, the household income from maize production is higher in farm types 3 and 5 (60%−76%) than in farm types 1, 2, and 4 (15%−37%).



3.3 Resource endowment and use of soil fertility management practices
 
3.3.1 Traditional soil fertility management practices

The most common practices are outlined in Table 5. Except corralling practice, crop residue restitution, and legume–cereal rotation/intercropping (p < 0.05), the level of use of these practices did not differ between study areas (p > 0.05). In the whole study area, a large number of farmers (95.4%) occasionally or regularly use mineral fertilizers. Manure was applied exclusively to food crops through transporting and corralling. Of farmers, 16.8% use transported farmyard manure as fertilizer. On average, 9% of the surveyed farmers corral their farms in the study area, but this practice is used more in Malanville (11%) and Banikoara (9.8%). Most of the farmers practicing crop rotation (28.9%) mainly involve three crops (maize and cotton or legumes), whereas some have a broader range of choices. Because maize and cotton are the major crops in the farming systems in northern Benin, most of the time, the other crops are cultivated in association or rotation with the main crops. The average length of one crop rotation cycle is 2.5 years. Reportedly, 29.7 and 17.2% of farmers leave their crop residue on the fields after harvest, respectively, in Malanville and Bembèrèkè study areas, while only 4.7% report this practice in Banikoara. Only 15.5% of the surveyed farmers in the study area completely fallow their fields for three or more years. This decline in the installment of fallows is due to the decreasing availability of arable land within the territory of northern Benin. In Banikoara, where the cropping intensity is highest due to the cotton crop, fields are subject to partial fallow much more frequently than fields located in the other localities. On average, 8% of farmers use legume–maize rotation/intercropping. The actual use of soil fertility management practices does not show a significant difference between farm types, except for the use of crop residue restitution, legume–cereal rotation/intercropping, and cotton–maize rotation, where significant differences are observed (p < 0.05). Farmers of type 2 (15.2%), 4 (18.0%), and 5 (33.9%) apply more crop residue than farm types 1 and 3. More than 60% of farmers in farm type 1 and 2 use more legume–cereal rotation/intercropping practices than others. The levels of use of cotton-cereal rotation are significantly higher in farm type 5 (28.8%) than in other farm types. Despite of the absence of a significant difference, farmers of type 2 and 5 use the practice of corralling (8.8%) more than the others (4.4%).


TABLE 5 Descriptive statistics of current use of soil fertility management practices (% of respondents).

[image: Table showing farm types with percentages for five categories, averages, and p-values. Key values: Compost application average is 1.9, with a p-value of 0.695. Crop-residue restitution average is 16.4, significant at p < 0.05. Legume–cereal rotation average is 49.8, with a significant p-value of less than 0.001. Cotton–cereal rotation average is 15.3, significant at p < 0.05.]



3.3.2 Organic and mineral fertilization practices

Organic manure is obtained principally from cattle. In the study zone, organic manure is used in three principal forms: collection and transporting of farmyard manure to the farm, overnight corralling of cattle in the late dry season, and stubble grazing after harvest, of which the importance varies according to farmers' categories. The collection of cattle manure consists of collecting the dung either at the residence place of the owner or with the “Fulani” camping and transporting them to the piece of farm to be manured. The owners who have cattle can collect dung in their cowsheds. The dung obtained in this case is mixed with crop residues and other animal dung (sheep, goats, etc.) and then transported to the piece of farm to be manured. In the five farm types, 12%−22% report applying the farmyard manure by transporting, but the amounts are difficult to quantify as the application was not systematic. In the whole study area, although it is recommended that the manure be broadcast at the plowing time, the manure management practices in northern Benin reveal various facets. In general, the dung mainly transported by cart, bag, wheelbarrows, and polyester bags is placed in heaps, sun-dried during the dry season, and then broadcast at 60%−80% of dry matter (based on results from another experiment) with a hoe on soil surface after the first rains just before plowing. More than 80% of farmers who apply farmyard manure use this method. Another application method was observed among 8.5% of farmers and involves collecting dung and burning it directly on the fields that are to be manured. Some farmers, mainly the poorly resourced farmers who have some cows, also apply small quantities of manure by point placement after plant emergence (6.4%). The manure quantity applied showed a significant difference between farm types (p < 0.001; Figure 2). Overall, farmers of types 1 and 2 use more manure in these maize fields (3,289.1 ± 415.9 kg ha−1 on average) than farmers of types 4 and 5 (2,473.4 ± 429.9 kg ha−1) and farm type 3 (984.2 ± 489.1 kg ha−1). We can separate farmers into three groups; a lower quantity group that could afford < 2 t ha−1, a medium-quantity group that could afford 2–4 t ha−1, and a higher quantity group that could afford more than 4 t ha−1.


[image: Bar chart displaying manure amounts (kg per hectare) across five farm types in three locations: Banikoara, Bembèrèkè, and Malanville. Dark bars represent Banikoara, light bars Bembèrèkè, and gray bars Malanville. Error bars indicate variability.]
FIGURE 2
 Average farmyard manure amount at farm scale across different farm types in three localities of Benin.


Overnight corralling in the late dry season remains the main traditional form of dung use by the wealthy and medium-resourced farmers, considering that they need to own livestock or be able to afford to pay the Fulani for the manure contract. The animals are corralled on farmers' fields overnight after daytime grazing of rangeland during a few months (January–April) before the last plowing to ensure direct dropping of feces and urine on the field. Crop-residue grazing after harvest is primarily carried out by poorly resourced farmers. Thus, the farmers, in particular those who do not have animals or who keep a small number of animals, establish a stubble-grazing contract with Fulani herders. Crop residues and grasses on the harvested fields are important feed sources for livestock during the dry season. Maize fields are grazed in the dry season by the transhumant herds from Burkina Faso, Niger, and Nigeria. This contract makes it possible for the herdsmen to feed their animals with crop residue, especially during the dry periods of welding and scarcity of pasture, and for the farmers to bring cow dung to their fields.

The farmers use mainly three different mineral fertilizer application practices in their maize fields: a single use of compound NPK (43.5%), mainly the cotton formula; a single use of urea (41.9%); and a mixed application of the two fertilizers (53.4%; Table 6). The quantity applied did vary significantly between study locations for each practice (p > 0.05). Only the NPK and mix NPK-urea quantities vary significantly between farm types (p < 0.05). NPK application rates average 146.7 ± 10.9 kg ha−1 (farm type 2) and 166.6 ± 10.3 kg ha−1 (farm type 3) compared to 3.9 ± 6.5 kg ha−1 and 136.5 ± 7.0 kg ha−1 in the farm types 1 and 5, respectively. The amount of NPK applied is lowest with farm type 4 (94.7 ± 7.6 kg ha−1). The quantity of urea applied ranges between 46.1 and 78.1 kg ha−1 across sites and farm types. On average, farmers apply NPK and urea at 22 ± 8 and 44 ± 5 days after sowing, respectively. The methods of application are mainly broadcasting around the planting hill or top dressing without incorporation (95.3%), except for urea, in which the application is immediately followed by weeding and ridging (at application or the day after application).


TABLE 6 Mineral fertilizer use (kg ha−1) for various descriptive statistics of current use of soil fertility management practices (% of respondents) across sites.

[image: Table comparing the effects of different fertilizer types (NPK, Urea, NPK+Urea) on farm productivity across locations Malanville, Banikoara, Bembèrèkè, and the whole area. Data columns include fertilizer type, standard error (SE), and significance (p-values) with specified significance for location and farm type combinations.]





4 Discussion


4.1 Diversity of farming systems

Our study shows that the main influencing variables to classify farm types are the size of the farm and the percentages of total yearly income coming from maize, cotton, and off-farm activities. Personal observations and results from the focus group discussions with farmers concur that farmers prefer to distinguish themselves according to their main farming activities, being cotton farmers, maize farmers, or mixed farmers with both perennial crops and multiple annual crops.

In this study, human capital is described here by household size, household head age, education level, and family labor. The better and medium-resourced farms tended to have higher education levels, larger household sizes, and more family labor than the poorly resourced farmers. A majority of household heads are within the economically productive age range (20–64 years) of the country, indicating that most of the households are economically viable. Human capital is also related to ownership of assets and increased knowledge and experience (Kamanga et al., 2009). According to Kamanga et al. (2009), older farmers are considered more experienced and knowledgeable, and better resourced farmers tend to be better educated than the other groups. Educated farmers are often rational in decision-making concerning the timeliness of farm operations as well as the synchronization of major practices such as fertilizer application and weeding crops during growth stages. The size of the different farm types ranges between 12 and 18 ha, with an average of 15 ha over the total sample. Most farmers in the study area own more than 3.0 ha of land. This contrasts with farmers from the southern part of Benin, where most farmers own < 3.0 ha of land due to population pressure (Yemadjè et al., 2012). Better resourced farmers owned the largest fields, up to 18 ha in size. Yegbemey (2014) reported average crop areas of 14 ha in a survey carried out in maize cropping systems in northern Benin. In this study, better resourced farmers also owned the largest numbers of livestock with herds of up to eight head of cattle. The cattle numbers in the better resourced farmer group were similar to the numbers recorded by Yegbemey (2014) in the same study area. The better resourced households owned enough cattle that allowed them to use draft power for both farming and manure transport to field plots. The medium-resourced class owned at least four head of cattle. This is lower than that observed by Yegbemey (2014) for the modest farmers (six heads of cattle). The poorly resourced farmers have many constraints. They have fewer than two cattle, and they do not own large farm implements, such as a plow and scotch cart. Most of the time, farmers in northern Benin do not invest in only one crop. Approximately 20% of the farmers grow maize only. In that case, they rely on their wives or other household dependents to provide complementary crops (food) or buy them from the market. Furthermore, growing only one crop does not make it easy to implement crop rotation. To reduce risk aversion, farmers invest in more crops so that the very good yields of some might compensate for the failure of others. For 80% of the respondents, the average number of crops grown by farmers is three (i.e., often maize, cotton, and yam). Poor farmers grow a diversity of crops, ranging between six and eight different crops, but they cannot afford to do so because they have less land, less access to inputs and thus need to dedicate a greater proportion of their land to maize (or the main cash crop, cotton). Households from all wealth classes planted, consumed, and marketed important amounts of maize. Wealthier households planted larger maize acreages and earned more income from maize marketing than poorer households, while the share of cropped land planted to maize and the importance of maize as a food crop did not vary between wealth classes. Considering that, in the past years, northern Beninese farmers still regarded maize as “food for very poor people,” there has been a considerable evolution in this thought, whereby large acreages are increasingly farmed even more than in the southern areas. This study shows that maize is not a poor people's crop in northern Benin when evaluated on absolute acreages planted or absolute income earned. At a regional scale, we did not find evidence that maize is produced in “poverty pockets.” Thus, classifying maize as the crop for the poor people in northern Benin is too simplistic. This may be a historical perception from colonial times, when farmers had no limits on their access to land and could plant larger yam acreages, which was the main staple food crop in this region a few years ago.



4.2 Resource endowment and soil fertility management practices by farmers

A higher proportion of farmers use inorganic fertilizers. Inorganic fertilizers are widely adopted because of the immediate returns observed after application. However, application rates in the region are still low for most resource-poor farmers. Farmers with more available resources were involved more in applying mineral fertilizers, as mentioned also by Pender and Ruben (2004). Despite the recognized need to apply mineral fertilizers for high yields, the intensity of use in SSA, in general, and West Africa, in particular, is limited by the lack of capital, inefficient distribution systems, poor enabling policies, and other socioeconomic factors (Kormawa et al., 2003; Abdoulaye and Sanders, 2005; Morris et al., 2007). Low-cost means of improving soil fertility and productivity are therefore necessary.

Most resource-poor farmers practicing crop rotation mainly involve two crops (maize and cotton), whereas some have a broader range of choices. With maize and cotton being the major crops in the farming systems of northern Benin, most of the time, the other crops are cultivated in association/rotation with the main crops. Our result confirms those of Kindomihou et al. (2007), who observed that farming associations in northern Benin highlighted cereal–leguminous systems outside of mineral fertilizer use and the successions of cotton/cereal and cereal/leguminous/cereal systems. Thus, the perception that poorer farmers use intercropping to reduce the risk of crop failure by maximizing returns to land and labor (Fermont et al., 2009) can be confirmed in the sense that poorer households intercrop maize more than wealthier households (Table 4).

As for the other practices, it should be noted that 17% of farmers use transported farmyard manure as fertilizer. This proportion is much lower than those previously reported in West Africa (Harris and Yusuf, 2001; Hoffmann et al., 2001; Osbahr and Allan, 2003). The problem of manure transport is that it is mainly responsible for the low proportion of manually manured fields (Diogo et al., 2013). On average, 9% of the surveyed farmers corral their farms in the study area, with a relatively high proportion in Malanville and Banikoara. This could be explained by the contract of corralling with the transhumant herders of the Peulh ethnic group, who come from Niger, Nigeria, and Burkina Faso. This proportion is lower than that reported by Schlecht and Buerkert (2004) in western Niger (13%). According to Powell et al. (1998), this form of manure management is preferable to the application of transported manure because of the feed availability for livestock herds, the additional benefits of urine, and the nutrient-loss risk minimization. Many studies have highlighted the role of the transhumant herds in maintaining soil fertility in the mixed crop–livestock systems of West Africa, mostly in the Sudano–Sahelian zone (Schlecht et al., 2004). For poorly resourced farmers, manure or mineral fertilizer is primarily applied to cotton and, occasionally, cereals, mainly to maize. The combined applications of manure and mineral fertilizer is practiced only with the better resourced farmers (80%).

The levels of use of crop-residue restitution and cotton–cereal rotation are significantly higher in the medium-resourced (40 and 27%, respectively) and poorly resourced (42 and 59%, respectively) farms than the better resourced farms (18 and 15%, respectively). Reportedly, 17.2 and 29.7% of farmers leave their crop residues on the fields after harvest in Banikoara and Bembèrèkè, respectively, while only 4.7% report using this practice in Malanville. Crop residue is principally grazed in situ by livestock; also, a number of farmers export both the grain and stover from their fields. However, this latter practice is not carried out by poorly resourced households that lack draft animals or carts for transport. These proportions are much lower than the 36%−84% of the mulched fields reported from a previous survey in Niger (Schlecht and Buerkert, 2004; Schlecht et al., 2004). In this area, the application of crop residue mulch during the dry season is a method frequently advocated (Bationo et al., 1995; Buerkert and Lamers, 1999; Buerkert et al., 2000; Akponikpè et al., 2008). Crop residues constitute the main potential sources of slowly released plant nutrients in the Sahel to prevent nutrient depletion and preserve the long-term productivity of soils.

Only 16% of the surveyed farmers in the study area (mainly the better resourced farmers for 80%) completely fallow their land for three or more years. This decline in the installment of fallows is due to the decreasing availability of arable land within northern Benin. In Banikoara, where the cropping intensity is highest due to the cotton crop, fields are subjected to partial fallow much more than other zones.



4.3 Constraints and opportunities for adopting improved soil fertility management practices

Our survey results indicate that low organic fertilizer use remains a serious challenge in the study areas, coupled with the relatively low level of mineral fertilizer use and the implementation of better fertilization practices. There is an urgent need to find effective ways to aid farmers in cost-effective, rational, and integrated fertilization strategies. Most farmers have ceased the traditional practices of applying organic fertilizers such as farmyard manure, overnight corralling of cattle, and green manure (maize–legume intercropping/rotation). Based on the effects of decreasing soil fertility, many farmers apply more mineral fertilizers for compensation (Giller et al., 2011; Vanlauwe et al., 2014). Knowing the effectiveness of these practices (Suzuki et al., 2014; Bielders and Gérard, 2015), improving these traditional organic fertilization practices in the maize-based farming system of northern Benin may be an effective way to increase maize productivity and improve food security and smallholder household income. Many research efforts in SSA have been conducted to improve soil fertility management in smallholder agricultural systems. These practices include using small amounts of manure in hill planting (Ncube et al., 2009); small doses of mineral fertilizer in planting hill at sowing termed “microdosing,” “micro fertilization,” or “hill placement” (Buerkert et al., 2001; Bielders and Gérard, 2015); and a combination of a small amount of organic manure and mineral fertilizer (Ibrahim et al., 2015a,b). Before testing or developing new technologies, knowing their potential adoption across farm types is useful. Several studies have shown that many variables, such as resource availability (land, labor, and cash), influence adoption potential of agricultural practices among smallholder farms in Africa (Franzel et al., 2001; Twomlow and Ncube, 2001; Tittonell et al., 2005a,b; Zingore et al., 2006; Bidogeza et al., 2009; Kamanga et al., 2009; Bongers et al., 2015). Our survey results reveal that, despite the variability of both socioeconomic and management characteristics among farm types, many similarities in soil fertility management behaviors and attitudes exist and should be incorporated into the research and development of agricultural programs.

Opportunities exist in all farm types to adopt improved soil fertility management practices; however, the constraints vary across farm types. All farm types are potential adopters of the organic manuring practice (farmyard manure, overnight corralling of cattle, green manure, and their residual effects). Using farmyard manure in maize fields depended on manure availability within the farm and the village and the accessibility of farmers to procure it, which also depends on the availability of transport material. According to Schlecht et al. (1995, 1998) and Powell et al. (1996), the dung voided per TLU per day was assumed to amount to 2.2 kg of dry matter when stubble grazing and corralled on the field. In the present study, the potential amount of organic manure available from cattle corralling was, on average, 2.4, 5.9, 4.2, 1.5, and 3.1 t ha−1 in farm types 1, 2, 3, 4, and 5, respectively. Accordingly, possessing two cattle that could be rotated for 1–2 months can make it raising the soil fertility level as quickly as possible. The recommended rate of farmyard organic manure, either animal manure or green manure together, in maize fields is 6.0 t ha−1 (Dagbenonbakin, 2005). Farmyard manure can be used more in farm types 2 and 3 than the others but at lower rates than recommended. Farmers in farm types 1 and 4 have less organic manure as they have fewer animals than other farmers.

The corralling practice will be more profitable for farmers who have fewer resources and less cash, mostly because of its residual effect in the short and medium terms (Suzuki et al., 2014; Bielders and Gérard, 2015). Most farmers of type 4 cannot apply farmyard manure to maize as they have no cattle. This category of farmers can establish a stubble-grazing contract with Fulani herders. This contract makes it possible for the herdsman to, in particular, nourish their animals with crop residue in periods of welding and scarcity of pasture and for the farmer to bring cow dung into their field. Farm types 2 and 3, which are relatively wealthy, have significantly more land and labor available than the other farm types. Maize yields and revenues are high, and the current use of improved soil nutrient management is significantly higher than for other farm types. The current high use of a high rate of mineral fertilizer indicates that it seems to fit well with this farm type, and its adoption potential seems high. Also, as land and labor availability are high and maize yield and revenue are high, the adoption potential of the new proposed practices, such as hill placement of manure/mineral fertilizer and the reduced use of manure/mineral fertilizer quantity in hill planting, might be low for these farm types. Creating awareness and demonstrating the effectiveness of these practices in these farms (mostly with their permanently hired laborers because farmers in these farm types do not fertilize their fields themselves) may influence adoption. Moreover, the combined use of manure and mineral fertilizer might be high for these farm types.

Farm types 2 and 3 mostly rely on off-farm activities for their income, and investments in maize production seem to be limited. The adoption potential of new proposed practices such as hill placement of manure/mineral fertilizer and the reduced use of manure/mineral fertilizer quantity in hill planting might be high for these farm types. Moreover, the combined use of manure and mineral fertilizer might be low for these farm types. Farm type 4, the poorly resourced farms, has limited labor resources but less land and significantly less cash (low cash crop acreage) available. The unavailability of cash makes it impossible for this farm type to hire labor. With the main source of income coming from maize production, investments in cotton production, the cash crop, seem to be limited. The adoption potential of the recommendations to enhance maize yield and improve soil nutrient management and fertility seems to be low.

In summary, the adoption potential of the different possible fertilizer and manure recommendations differ between farm types. Farmers who have the most livestock and members who have access to more manure, transport, and labor implement more soil fertility management practices than other farmers. Having more resources, a rich farmer is better able to invest in soil fertility management than a poor farmer. The collection of manure can be very labor-intensive, especially when the household does not have cattle and the farmer has to collect manure in the bush. For mineral fertilizer, this is probably the only labor cost involved, although additional efforts are required to transport fertilizer from the market to the fields. In our study area, for farmers who do not grow cotton, mineral fertilizer is not always easily available in their village. In addition to labor, a cash or in-kind payment may also be required. Sometimes credit is available, but cash is still needed eventually to pay off the credit. An in-kind or cash payment is also necessary for parking the animals of the Peulh ethnic group.

Future research should target the development of new, cost-effective, easy-to-use soil fertility management technologies that can enhance the efficiency of both organic and inorganic fertilizers. The developed technology should also be culturally acceptable to smallholder farmers to enhance adoption. Furthermore, broader studies encompassing different agroecological regions and larger and more diverse samples are needed to fully understand and address the challenges of soil fertility management in maize and other widely grown crops in SSA.



4.4 Implication for policymakers in the adoption of sustainable soil fertility practices

The findings from this study emphasize the crucial role of policymakers in the adoption of sustainable soil fertility management in West Africa. The region's agroecological diversity, alongside varying resource endowments and demographics of farm households in the region, calls for a nuanced approach to formulating and executing agricultural policies and investments. This research accentuates the urgent necessity for policy frameworks that not only acknowledge but also robustly support the agrobiodiversity and indigenous knowledge systems intrinsic to these farming communities. Policymakers should allocate priority to investments in agricultural research and development. Such investments should target the promotion of sustainable farming practices and the enhancement of climate resilience. Moreover, policy initiatives ought to aim at augmenting farmers' understanding and management of agrobiodiversity, thus reinforcing the resilience of farming systems against the negative impact of climate change. In addition, the need for policy amendments that facilitate smallholder farmers' access to markets, credit, and improved inputs, thereby enabling them to navigate farming risks and elevate their economic well-being more effectively, is urgent. Such policies must incorporate farmers' typology, perceptions, and insights into the agricultural policymaking process to yield more effective and sustainable solutions.

This study could have benefited from examining the role of policies and institutional framework in promoting the adoption of improved soil fertility management practices. This may include subsidy programs, extension services, and farmer education programs.




5 Conclusion

This study characterizes the maize farming system using farm typology and points out the relationship between prosperity level and the way soil fertility is managed in northern Benin. Farms differ in land, labor, and financial resources and in potential nutrient availability, which affects land use and soil fertility management. Maize-based farming systems in northern Benin integrate diverse practices for soil fertility management, such as (1) “traditional” (fallow, corralling, farmyard manure application, legume–cereal rotation/intercropping, cotton–cereal rotation, etc.) and (2) “improved” (mineral fertilizer application, composting, integrated manure and fertilizer use, etc.). The main practice to improve/maintain soil fertility was mineral fertilizer and manure application, but the rates are far below those recommended or required to ensure good maize yields. The study has found that a smallholder farmer's soil fertility management is directly determined by the level of resources of the household, which influences the amounts of mineral fertilizer and manure that the household can use. The amount of fertilizer and manure that is available and affordable varies greatly between study zones and farm types. Development strategies, interventions, and policies aiming at increasing maize production and reducing poverty in northern Benin should be tailored to these farm types. This should target individual farm systems to achieve their goals. With subsistence farming being the most important to the poor, improving soil fertility for maize production in these farms will directly enhance their lives. In the transition to sustainable production systems, fertilizing using locally available resources could be well developed and the constraints to manure transportation could be lifted. This research recommends a combination of soil fertility technologies, including integration of traditional soil organic manure management practices, small amounts, and a judicious application method of fertilizer and manure, and their risks and adoption by smallholder farmers.
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Introduction: The Gansu section of the Yellow River Basin is an important water resource conservation and replenishment area for the entire Yellow River Basin. With urbanization and socio-economic development, it is urgent to study the characteristics of land-use change and its future simulation in order to realize the coordinated ecological and economic development.
Methods: Based on the patch-generating land-use simulation (PLUS) model, this paper investigated the main drivers of land-use type expansion with a comprehensive consideration of natural and socio-economic aspects; moreover, the study simulated land-use change in 2030 under the four scenarios of natural development, cultivated land protection, ecological priority, and economic construction.
Results: The results showed the following: 1) the prediction of land-use types continued the historical evolution since 1980. Grassland, cultivated land, and forest land were still the dominant land types, accounting for more than 87% of the basin’s total area. Water bodies and wetlands remained relatively stable, and there was an obvious increase of approximately 20% in construction land. 2) Construction land and grassland were primarily driven by the social factor of the distance from the primary road and the distance from the secondary road, respectively. The cultivated land was greatly affected by the economic factor of population density. 3) The cultivated land protection scenario was the only one of the four scenarios that could make the cultivated land area increase positively, with an increase rate of 0.5%. This scenario also restricted effectively the conversion of cultivated land into construction land. The ecological priority scenario can expand grassland obviously with a proportion of 1.82% and slow down oasis desertion. The economic construction scenario can increase the construction land area the most by a rate of 25.5% to accelerate the economic development of specific regions in the study area.
Discussion: Therefore, implementing policies on the basis of choosing suitable scenarios in different areas was significant for optimizing the land-use structure, promoting the efficient use of land resources and ecological environment in the Gansu section of the Yellow River Basin.
Keywords: land use/cover change, driving factors, PLUS model, prediction, multi-scenario simulation

1 INTRODUCTION
Research on land use/cover change (LUCC) focuses on simulating and exploring its spatiotemporal evolution at the regional or global scales, analyzing the dynamic mechanism of its development, and modeling its dynamic trend (Guo et al., 2009; Perring et al., 2016; Li et al., 2017; Wan et al., 2017; Liu et al., 2018a; Islam et al., 2018; Liu et al., 2020; Fu et al., 2020; Shah et al., 2022; Jing et al., 2023). The Gansu section of the Yellow River Basin is an important water conservation and replenishment area for the entire Yellow River Basin, taking on the important tasks of clean water recharge, ecological restoration, soil and water resource conservation, and pollution control in the upper reaches of the Yellow River (Gansu Provincial government, 2021). Therefore, LUCC of the Gansu section of the Yellow River Basin has become a focal point of national strategic importance and academic attention (Wang Rui, 2023; Zhang, 2023), especially after the ecological protection and high-quality development of the Yellow River Basin were elevated to a major national strategy in 2019.
Scholars have constructed various land-use change models based on different modeling objectives and realized land-use simulation in different regions. The Markov model and system dynamics rely on the past land quantity to reasonably predict the future land quantity, but they lack the ability to simulate the spatiotemporal land-use change. Cellular automaton (CA) can represent complex LUCC systems and have been widely used for simulating and forecasting of land use (Li and Yeh, 2000; Wu, 2002; Feng and Tong, 2018). The SLEUTH model (Clarke et al., 1997), CLUE-S model (Verburg et al., 2002; Verburg et al., 2004; Liu G. et al., 2017; Zhang et al., 2018; Huang et al., 2019), agent-based model (Chebeane and Echalier, 1999; Huang and Song, 2019), and FLUS model (Liu X. P. et al., 2017; Wang et al., 2019) are all extended version of the CA model. Because the SLEUTH and agent-based models do not easily integrate socio-economic factors in the simulation process, they are not widely used. The CLUE-S model is based on systems theory, including the non-space requirements module and space allocation module. The non-space demand module calculates the total demand for different types of land, but it needs to be completed by independent mathematical models. The FLUS model introduces the adaptive inertia coefficient and roulette mechanism; the roulette mechanism can better reflect the competition and uncertainty among different land types in the process of land-use change so as to enhance the accuracy of the simulation. However, it lacks the ability to model patch evolution of natural land-use types. In this paper, we select a patch-generating land-use simulation (PLUS) model coupling a novel land expansion analysis strategy (LEAS) with a CA model (CARS) based on multi-type random patch seeds (Liang et al., 2021). Compared to other models, the PLUS model can further reveal potential land-use conversion rules and identify the drivers of land expansion; moreover, it can get higher simulation accuracy and more similar landscapes (Li C. et al., 2021; Liang et al., 2021).
This paper’s aims were the following: 1. analyzing the spatiotemporal change characteristics of land-use types from 1980 to 2020. 2. Exploring the driving forces behind the expansion of land-use types in the Gansu section of the Yellow River Basin. 3. Simulating land-use changes for the year 2030 under four scenarios, namely, natural development, cultivated land protection, ecological priority, and economic construction. Although some studies on the land-use change of the Yellow River Basin were conducted (Zhang and Miao, 2020; Huang et al., 2022; Wu et al., 2022; Yu et al., 2023), future simulation of the land-use change and the driving factors of land type expansion were still not fully investigated in the context of the Gansu section of the Yellow River Basin. This paper will provide the scientific decision-making foundations for sustainable land use and ecosystem management, and moreover, it will provide the optimization basis for land spatial development and protection pattern aimed at high-quality development.
2 STUDY AREA AND RESEARCH METHODS
2.1 Study area overview
The Gansu section of the Yellow River Basin is located in the central and eastern part in Gansu Province (E92°13′–108°46′, N32°11′–42°57′). It is in the upper reaches of the Yellow River, with an average elevation of approximately 2,200 m, and most of the areas are in 400 mm isoprecipitation west. The Gansu section of the Yellow River Basin is an important ecological security barrier in western China. It contains more than one-fifth of the water volume of the Yellow River and accounts for approximately 80% of the population and GDP in the whole Gansu Province and is the core area of the province’s politics, economy, and culture. This study area consists of nine cities and prefectures, including Lanzhou, Baiyin, Wuwei, Dingxi, Tianshui, Pingliang, Qingyang, Gannan, and Linxia. The total area is approximately 1.8 × 105 km2, constituting 42.9% of the total area of Gansu Province. The main course of the Gansu section of the Yellow River Basin flows through four cities and prefectures, namely, Baiyin, Lanzhou, Linxia, and Gannan, covering a total length of 913 km, which accounts for approximately 16.7% of the total length of the main course of the Yellow River and covers roughly 19% of the entire area of the Yellow River Basin. Additionally, the Yellow River tributaries flow through five cities, including Wuwei, Qingyang, Pingliang, Tianshui, and Dingxi (Gansu Provincial government, 2021). (Figure 1)
[image: Map showing a detailed view of a province in China with boundaries marked in different colors for cities and early warning zones. The left inset highlights the province’s location within China. A legend explains the symbols used.]FIGURE 1 | Location of the Yellow River Basin in Gansu Province.
2.2 Data sources and processing
LUCC data from the years 1980, 1990, 2000, 2010, and 2020 were classified into cultivated land, forest land, grassland, water bodies, construction land, and unused land, with an accuracy of at least 94.3% (Liu et al., 2018b; Liu et al., 2020) (http://www.resdc.cn/). We separated beaches and marshland from the secondary level and classified them as wetlands; thus, there were seven categories of land-use types in the study area. We can get DEM (digital elevation model) data on the study area by processing DEM data on nine cities (http://www.gscloud.cn) with the mosaic function in the raster dataset of ArcGIS 10.8 software. We can also get slope from DEM data by means of ArcGIS 0.8. Annual average precipitation, annual average temperature, GDP, NDVI (normalized difference vegetation index), population density, and soil type data were acquired (http://www.resdc.cn/). Road, highway, railway, and river data were derived from the National Catalog Service for Geographic Information (https://www.webmap.cn/), and Municipal government headquarters data were obtained from BIGMAP (https://www.bigemap.cn). All data were resampled to a 30-m grid for consistent analysis.
2.3 Research methods
2.3.1 Change of land use
2.3.1.1 Land-use dynamic degree
The land-use dynamic degree model reveals the level and trend characteristics of land structure changes, directly reflecting the speed and amplitude of land change (Wang and Bao, 1999).
[image: Equation showing D equals the difference between Sb and Sn, divided by the product of Sb and T, multiplied by one hundred percent. This is labeled as equation one.]
where [image: Please upload the image or provide a URL, and I will be happy to generate the alternate text for you.] denotes the dynamic degree of a certain land type in period T; [image: It seems there is no image attached. Please upload the image you would like me to describe.] and [image: Please upload the image or provide a URL, and I can help generate the alt text for you.] denote the areas (km2) of a certain land type at the initial and final stages, respectively; and T is measured in years.
2.3.1.2 Land-use development degree
Land-use development degree refers to the actual development level of a certain land type within a unit of time (Sun et al., 2018).
[image: Formula displaying "UD equals U sub net over the product of S sub t and T, multiplied by one hundred percent", labeled equation two.]
where [image: Please upload an image or provide a URL, and I can help generate the alternate text for it.] is the development degree of a certain land type in period [image: It seems there is no image attached. Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL for me to generate the alt text. If you want, you can also add a caption for more context.] denotes the total area of a certain land type, which was transferred from other land types. The other indicators are the same as in Equation 1.
2.3.1.3 Land-use consumption degree
Land-use consumption degree represents the actual reduction in the utilization of a specific land type within a unit of time (Yang et al., 2015).
[image: Formula representing utilization calculation: UC equals U sub n b divided by the product of S sub t and T, all multiplied by one hundred percent. Equation labeled as three.]
where [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the consumption degree of a specific land type in [image: Please upload the image you would like me to generate alt text for.] period and [image: The image shows the mathematical notation "U" with subscript "ab".] denotes the total area of a certain land type, which was transferred to other land types. The other indicators are the same as in Equation 1.
2.3.2 Land-use transition matrix
Land-use transition matrix (Table 1) describes the mutual transformation relationship between different land-use types in a region, which can reflect the loss direction of each type of land at the beginning of the study period and the source composition of each type of land at the end of the study period (Wu et al., 2022). We obtain the transition matrix by utilizing the raster calculator function of ArcGIS 10.8 software based on two-period land-use data.
TABLE 1 | Land-use transition matrix.
[image: A contingency table with gray headers separating two groups, \( T_1 \) and \( T_2 \), along with \( S_{i+} \) and Out. Rows and columns are labeled \( A_1 \) through \( A_n \), with entries showing combinations like \( S_{11} \), \( S_{12} \), and \( S_{1n} \), indicating sums and differences.]Here, Ai is the ith land-use type. n is the number of land types. Sij denotes the conversion area from the ith land type at time T1 to the jth land-use type at time T2. Si+ represents the total area of the ith land type at T1. S+i represents the total area of the ith land type at time T2 (i = 1,2, … , n).
2.3.3 Scenario description
Under the policy support of the “Outline of the Plan for Ecological protection and high-quality development in the Yellow River Basin,” “Ecological protection and high-quality development plan for the Yellow River Basin in Gansu Province,” and “General planning of land use in Gansu Province,” based on the relevant scenario setting methods of previous studies and combined with the historical land-use change characteristics and future land-use planning in study area, we set four scenario models to simulate and predict the spatial distribution pattern of land use in 2030.
2.3.3.1 Natural development
ND was based on land-use transition probability matrix from 2000 to 2010 and from 2010 to 2020. This scenario had no other restrictions on the conversion of different land-use types or government and market interventions. It was the basis for considering other scenarios.
2.3.3.2 Cultivated land protection
The quality and quantity of cultivated land are crucial for a country’s food security; therefore, rigorously controlling the conversion of cultivated land into construction land and other land types is a vital step. We assumed a reduction of 80% in the probability of cultivated land conversion to construction land, a 30% reduction in the probability of conversion to forest land or grassland, and a 100% reduction in the probability of conversion to unused land.
2.3.3.3 Ecological priority
Ecological conservation zones, hydropower stations, rivers, and lakes were set as restricted areas in order to prevent the uncontrolled urban expansion from causing damage to the ecological environment. We assumed a 60% reduction in the probability of conversion from forest land, grassland, water bodies, or wetlands to construction land; a 90% reduction in the probability of conversion to unused land; and a 60% reduction in the probability of conversion to cultivated land. The probability of converting cultivated land to construction land or unused land was decreased by 60%. The probability of conversion from unused land to forest land, grassland, water bodies, or wetlands was increased by 20%.
2.3.3.4 Economic construction
In this scenario, ecological conservation zones, hydropower stations, rivers, and lakes were still set as restricted areas referring to the “Ecological protection and high-quality development plan of the Yellow River Basin in Gansu Province.” The possibility of converting cultivated land, forest land, and grassland into construction land increased by 20%. The conversion probability of construction land to other types of land except the cultivated land was reduced by 30%.
2.3.4 Description of the PLUS model
2.3.4.1 PLUS model and operation
The PLUS model (Liang et al., 2021), integrating a land-expansion analysis strategy (LEAS) module and a cellular automaton (CA) module based on multi-class random patch seeds, is a patch-based future land-use change simulation model. The LEAS module extracts the expansion of various land-use types between two dates of land-use data and takes samples from the expanded portions, and then, it employs the random forest algorithm to obtain the development probabilities for each land-use type and determine the contributions of the driving factors to the expansion of various land-use types during the study period. The CA model generates patches of land use in the way of spatial and temporal dynamics while adhering to the constraints imposed by the development probabilities and the total number of pixels of each land-use type that is predicted by the Markov chain module.
The land-use simulation process in the Gansu section of the Yellow River Basin based on the PLUS model needs to experience three steps: 1) simulating land-use data from 2020 by the CA module and achieving Kappa coefficient and FOM value through comparing simulation data with the real data from 2020 by the validation module. Thus, we can get the accuracy to determine whether future land use change can be simulated. 2) Computing land-use quantity of each land-use type for 2030. 3) On the premise of overall accuracy, based on historical data from 2020, we simulated the spatial pattern distribution of the study area in 2030 by the CA module under the condition that the predicted land-use quantity, development probability of various types of land use, neighborhood weight, and conversion matrix are set.
2.3.4.2 Quantitative driving factors
This study selected 15 driving factors consisting of natural factors, social factors, and economic factors, of which the natural factors included annual average temperature, annual average precipitation, DEM, slope, NDVI, and soil types; social factors involved the distances from primary road, secondary road, tertiary road, railway, highway, water area, and prefecture-level city government station; and economic factors included population density and GDP (Figure 2). We quantified these driving factors by converting the vector data of all the driving factors into 30 m × 30 m raster data and calculating the distance from each grid point to each driving factor with the help of the Euclidean geometric distance by ArcGIS 10.8 software. Through the correlation analysis, we know that the correlation coefficients among the driving factors are relatively small, and we can regard them as independent.
[image: Twelve black and white maps display various regional data across an area, each with a legend. The maps depict: elevation (DEM), slope, NDVI, temperature, precipitation, soil type, distances to different road types, water, prefecture-level government, GDP, and population density. Each map uses shading to represent different values, with legends indicating high and low extremes. Maps demonstrate spatial distribution of these variables across the region.]FIGURE 2 | Spatial distribution map of each driving factor.
2.3.4.3 Land-use demand forecast
In the natural development scenario, we predicted the quantity of various land-use types in 2030 based on the starting year 2010 and ending year 2020 by using the Markov chain module embedded in the PLUS model. In other scenarios, based on previous studies and combined with the historical land-use change characteristics and future land-use planning in the study area, we revised land-use transfer probability matrix from 2010 to 2020 and obtained the transfer probability matrix from 2020 to 2030. Subsequently, we calculated the area of each land type for the year 2030 (Table 7).
2.3.4.4 Land-use conversion matrix
Based on the historical land-use transfer situations, land-use conversion matrixes in different scenarios were established (Table 2), where 0 indicates disallowing transition and 1 signifies allowing transition.
TABLE 2 | Scenario simulation conversion matrix.
[image: The image shows two matrices labeled "2020–2030 ND CP" and "2020–2030 EP EC". Each matrix has rows and columns labeled \(a_1\) to \(a_7\). These represent land types: cultivated land, forest land, grassland, water bodies, construction land, unused land, and wetlands. The rows indicate the source, and the columns indicate the destination. The matrices are filled with binary values (0s and 1s).]2.3.4.5 Neighborhood weight parameters
This indicator represents the expansion intensity of a certain land-use type in the research period. Its value ranges from 0 to 1. The closer the value is to 1, the larger the value is, and the stronger the land-use type expansion ability is. In this study, land-use quantity in 2020 and 2030 was used to calculate the expansion intensity of each land-use type (Wang et al., 2019),
[image: Mathematical formula showing \( W_i = \frac{{(S_i - S_{\text{min}})}}{{(S_{\text{max}} - S_{\text{min}})}} \), labeled as equation (4).]
where [image: Please upload the image or provide a URL so I can generate the alt text for you.] represents the weight of the ith land-use type, [image: Please upload the image or provide a URL so I can help generate the alt text for you.] represents the expansion area of the ith land-use type from 2020 to 2030, [image: The image displays the mathematical notation "s subscript min".] represents the minimum value among the expansion areas of various land-use types, and [image: Equation showing the term "s" subscripted with "max" in italics, indicating the maximum value of a variable represented by "s".] represents the maximum value among the expansion areas of various land-use types (Table 3).
TABLE 3 | Neighborhood weights for simulated scenarios.
[image: Table showing land use scenarios with values for ND, CP, EP, and EC across categories: Cultivated Land, Forest Land, Grassland, Water Bodies, Construction Land, Unused Land, and Wetlands. Values range from 0 to 1.]2.3.4.6 Restricted development areas
In the cultivated land protection scenario, all cultivated lands were assumed not to participate in land-use transfer. In the ecological priority scenario, natural reserves, hydropower stations, rivers, and lakes were set as restricted areas, which did not involve the land-use transfer. In the economic construction scenario, the restricted areas were still set the same as in the ecological priority scenario. At the same time of economic construction, we must also ensure ecological protection (Gansu Provincial government, 2021).
2.3.4.7 Accuracy validation
We evaluated the accuracy of the simulation results using the Kappa coefficient and FOM value.
The Kappa coefficient was 0.94, FOM value was 0.2, and the overall accuracy was 95.93%. These results indicated that the model’s accuracy in simulating land-use changes in this study was relatively high, demonstrating the reliability and stability of the model. Therefore, it can be used for simulating land-use changes in the year 2030.
3 RESULTS AND ANALYSIS
3.1 Spatiotemporal changes in land use
3.1.1 Land-use spatial distribution characteristics
From 1980 to 2020, grassland, cultivated land, and forest land were the dominant land types in the Gansu section of the Yellow River Basin, reaching at 87%, of which grassland occupied the highest proportion, consistently accounting for approximately 47%, followed by cultivated land and forest land, accounting for approximately 27% and 13%, respectively. Cultivated land was mainly distributed in all the areas except for Gannan. Forest land was mainly distributed in Gannan and a small part of Tianshui, Wuwei, and Qingyang. Construction land was mainly concentrated in Lanzhou and Baiyin. Most of the unused land was located in Wuwei (Figure 3).
[image: Five maps show land use changes in a region from 1980 to 2020, labeled per decade. Green indicates cultivated land, with variations over time. Other land types include forest, grassland, water, construction land, unused land, and wetlands. A legend provides color coding for each category, and an arrow indicates north.]FIGURE 3 | Spatial change of land-use types in the Gansu section of the Yellow River Basin from 1980 to 2020.
3.1.2 Analysis of land-use quantity change characteristics
The cultivated land area initially increased and then decreased. From 1980 to 2000, the cultivated land area increased by 351.4 km2. However, from 2000 to 2020, cultivated land witnessed the most significant decline, with a total reduction of 3,052.3 km2. The construction land area increased continuously during the study period, and especially from 2000 to 2020, the construction land area had the largest increase with a total of 1,372.74 km2 for rapid urbanization, accounting for approximately 55%. Although the area of grassland had a little increase from 2000 to 2020, it was relatively stable. The area of forest land was also initially decreased during 1980 and 2000 and then increased after 2000 (Table 4).
TABLE 4 | Change of the land-use type from 1980 to 2020.
[image: A table comparing land-use types from 1980 to 2020. It lists areas in square kilometers and proportions in percentages for cultivated land, forest land, grassland, water bodies, construction land, unused land, and wetlands. Variations, dynamic degree, development, and consumption degrees are detailed for different periods, highlighting changes in land-use patterns over four decades.]3.1.3 Analysis of the land-use change rate
The amount and proportion of various land-use types from 1980 to 2020, variation in the area between different years, dynamic degree, development degree, and consumption degree of various land types calculated by Equations 1–3, respectively, are detailed in Table 4. We have seen that the dynamic degrees of all land-use types from 1980 to 2000 were lower than that from 2000 to 2020, except for water bodies and wetlands, which indicated that they changed more dramatically from 2000 to 2020. The dynamic degree of construction land was the highest from 1980 to 2020, which reached 1.74%. Water bodies showed the highest dynamic degree, with a negative growth rate of 0.95% from 1980 to 2000 but a positive growth rate of 0.86% from 2000 to 2020. The important reason for this was likely that the largest area in the secondary classification of water bodies was permanent glacial snow, which doubled during 2005 and 2010 (Xiao et al., 2021). Forest land also showed a negative dynamic degree of –0.06% from 1980 to 2000 and a positive 0.17% from 2000 to 2020. Grassland had a higher dynamic degree of 0.08% from 2000 to 2020 than 0.04% from 1980 to 2000. Cultivated land had the dynamic degree of 0.04% from 1980 to 2000 and −0.3% from 2000 to 2020.
During the entire study period, the development degree of land-use types in descending order was as follows: construction land, water bodies, wetlands, forest land, grassland, cultivated land, and unused land. The consumption degree in descending order is as follows: water bodies, cultivated land, wetlands, construction land, unused land, grassland, and forest land (Table 4).
3.1.4 Analysis of the land-use transition matrix
Based on the spatial analysis tools of ArcGIS 10.8 software, we used a raster calculator on the vector classification maps of land-use types for the two periods 1980–2000 and 2000–2020 in the study area and obtained transition matrixes of the two periods. From the land-transfer situation of the two periods, the main outflow direction of cultivated land was grassland and construction land, and the outflow area was 101.14 km2 and 204.72 km2, respectively, from 1980 to 2000 and 3,526.91 km2 and 1,093.76 km2, respectively, from 2000 to 2020. The outflow directions of forest land and unused land were also grassland, and the outflow area was 375.89 km2 and 140.86 km2, respectively, from 1980 to 2000 and 375.77 km2 and 342.27 km2, respectively, from 2000 to 2020. The main outflow direction of grassland was cultivated land, and the outflow area was 547.62 km2 from 1980 to 2000 and 1,545.62 km2 from 2000 to 2020.
Through analysis, we have seen that the conversion of land type mainly occurred between cultivated land and grassland. After 2000, the transfer of cultivated land to grassland led to an increase in the grassland area. The transfer of cultivated land to grassland and construction land led to a decrease in the area of cultivated land. The transition matrix from 2000 to 2020 dominated the whole study period (Tables 5, 6).
TABLE 5 | Land-use transition matrix from 1980 to 2000.
[image: Table showing land use changes from 1980 to 2000 across categories: cultivated land, forest land, grassland, water bodies, construction land, unused land, and wetlands. Column headers include proportions and transfers between land types, with values expressed in units and percentages.]TABLE 6 | Land-use transition matrix from 2000 to 2020.
[image: Table comparing land use from 2000 to 2020, showing changes in cultivated, forest, grassland, water bodies, construction, unused land, and wetlands. Proportional changes are detailed, indicating shifts in land use with cultivated land decreasing and construction land increasing significantly over the years.]3.2 Analysis of driving factors in land-use expansion based on the PLUS model
Cultivated land, grassland, and construction land changed dramatically from the transition matrix from 1980 to 2020. Through the LEAS module embedded in the PLUS model, it can be concluded that the driving factor of cultivated land expansion with the highest contribution was population density, followed by annual average precipitation and the distance from the primary road. Overlaying the data on cultivated land expansion in the study area and population grids, it can be concluded that the increasing area of cultivated land was mainly distributed in regions with a relatively low population density. The driving factor of construction land with the maximum contribution was the distance from the primary road, followed by the population density and the distance from the secondary road. Overlaying the data of construction land expansion in the study area and raster data of the distance from the primary road, it can be verified that regions with increased construction land are primarily distributed around the primary and secondary roads with dense population; in other words, expansion of construction land was near the city. The main driving factor affecting the increase in the grassland area was the distance from secondary road, followed by NDVI and annual average precipitation (Li et al., 2005; ZHANG, 2017; HAN C. L. et al., 2021; HAN HQ. et al., 2021). Overlaying the data on grass land expansion in the study area and raster data on the distance from the secondary road, it can be verified that most of the grassland growth areas are concentrated in the areas with high NDVI and rainfall near the secondary road.
For other land-use types, forest land expansion was mainly affected by annual average temperature, population density, and DEM; the expansion of water bodies was mainly affected by DEM, the distance from water areas, and soil types; the expansion of unused land was influenced by population density, GDP, and annual average precipitation; and the expansion of wetlands was affected by GDP, the distance from the highway, and water areas (Figure 4).
[image: Three maps displaying different suitability scenarios for a region, each with a corresponding bar chart. The first map highlights coal suitability, with areas marked in black indicating higher suitability. The second map focuses on limestone suitability, with gray areas signifying higher suitability. The third map emphasizes gravel suitability, with black and red regions showing varied suitability. Each map includes a legend and a bar chart on the right illustrating suitability levels in percentages.]FIGURE 4 | Increasing areas of cultivated land, grassland, and construction land superimposed with their highest contributing factors.
3.3 Analysis of multi-scenario land-use simulation
The PLUS model had high accuracy, with an average accuracy of 95.94%. The simulation accuracies of water bodies and construction land were a little low, with 79.81% and 75.91% accuracy, respectively. The accuracies of the five other land types were high. The results could accurately reflect the change of land-use demand in the Gansu section of the Yellow River Basin, which can be used for the following simulation and prediction. Based on the area of various land types under four scenarios, variation of area, and proportion (Table 7), we simulated the spatial pattern distribution of the study area in 2030 under four scenarios by the CA module of the PLUS model (Figure 5).
TABLE 7 | Land-use change in 2030 under multiple scenarios.
[image: Table displaying land-use types across seven categories: Cultivated land, Forest land, Grassland, Water bodies, Construction land, Unused land, and Wetlands in 2020. Data includes figures for ND, CP, EP, and EC, along with their variations and proportions in percentages. Each category shows numerical values representing different scenarios and changes.][image: Five maps showing land use changes in a region over different years. Color-coded legend indicates types of land use: cultivated land (yellow), forest land (green), grassland (brown), water (blue), construction land (red), unused land (light brown), and wetlands (light blue). Each map includes a north arrow and scale.]FIGURE 5 | Spatial distribution map of land-use types in 2030.
Under the natural development scenario, the area of cultivated land and unused land reduced by 906.03 and 250.66 km2, respectively, in 2030, and the area of grassland and construction land increased by 446.06 km2 and 774.95 km2, respectively, in 2030. Construction land expansion was obvious, accounting for 20.01%. From the point of view of spatial structure and transition matrix from 2020 to 2030, the expansion of grassland, which was converted from cultivated land, was mainly distributed in Huan county in Qingyang and Kongtong districts in Pingliang. Construction land expansion, which was also mainly from cultivated land, was distributed in the Liangzhou district in Wuwei; Lanzhou except for Qilihe and Honggu districts; Baiyin district, Pingchuang district, and Jingyuan county in Baiyin; Linxia city, Linxia county, Guanghe county, and Kangle county in Linxia; Anding district, Lintao county, and Longxi county in Dingxi; Gangu county, Wushan county, Qinan county, and Qinzhou district in Tianshui; Kongtong district, Huating city, Jingchuan county, Jingning county, and Zhuanglang county in Pingliang; and Xifeng district, Ning county, Zhengning county, and Zhenyuan county in Qingyang. There was also part of construction land converted from unused land located in the Liangzhou district and northwest of Minqin county in Wuwei. We found that construction land expansion mainly occurred in cities, prefectures, and nearby counties and districts.
Under the cultivated land protection scenario, forest land, grassland, and unused land reduced, while the cultivated land and construction land increased to 237.36 km2 and 286.67 km2, respectively, and water bodies also increased a little. According to the transition matrix from 2020 to 2030, some unused land had been converted into construction land, which appeared in the Liangzhou district and northwest of Minqin county in Wuwei. Parts of unused land had been converted into wetlands, which appeared in Minqin county in Wuwei and Maqu county in Gannan.
Under the ecological priority scenario, the area of cultivated land and unused land decreased significantly, of which unused land decreased the largest in the four scenarios, reaching 552.85 km2. Forest land, grassland, and water bodies increased, achieving the purpose of protecting forest land, grassland, and water bodies. Construction land still increased. From the transition matrix of 2020–2030, the area of grassland converted from cultivated land had reached 1,228.97 km2, which was obvious in Qingyang, Pingliang, Tianshui, Dingxi, Baiyin, and Lanzhou. A small amount of unused land was converted to construction land, which was distributed in the northwest of Minqin county and Liangzhou district in Wuwei. A small amount of unused land converted to grassland, which was distributed in Minqin and Gulang counties in Wuwei and Maqu county in Gannan.
Under the economic construction scenario, we still had the same restricted areas, as in the ecological priority scenario in order to not destroy the ecological protection area in the economic construction scenario. In this scenario, construction land expanded the most drastically, reaching at 25.5%, mainly encroaching on cultivated land and small amounts of unused land. Therefore, cultivated land decreased the most. Moreover, forest land played a certain role in construction land expansion. The distribution of construction land expansion was consistent with the natural development scenario.
4 DISCUSSION
4.1 Driving factors and recommendations for land-use change
In the past four decades in the Gansu section of the Yellow River Basin, the change of cultivated land, grassland, and construction land was relatively obvious. The area of construction land transferred from cultivated land accounted for 69.90% of the total increasing amount of the construction land area, while the area of grassland transferred from cultivated land represented 72.39% of the overall increasing amount of the grassland area. This indicated that the injection of the cultivated land area was a major factor contributing to the expansion of construction land and grassland. Therefore, the driving factors of the expansion of construction land and grassland can approximately reflect the reasons for cultivated land area decrease. On the other hand, the area of cultivated land converted from grassland accounted for 70.94% of the increase in the cultivated land area. Therefore, the driving forces of cultivated land expansion can, to a large extent, reflect the reasons for the decrease in the grassland area. Decision-makers should fully consider the conflict among cultivated land protection, ecological priority, and economic construction through analyzing the main driving factors of land-use expansion. In the future processes of land-use development and protection, we can learn from the main drivers of land-use change in this study and make the drivers play a greater role in land-use planning, project construction site selection, and enhancement of ecological services.
4.2 Trends and benefits for land-use change in different scenarios
Significant differences were observed in land-use changes under the four scenarios. Under the natural development scenario, construction land, mainly converted from cultivated land according to the transition matrix, grew rapidly with the intensification of human activities without policy restriction, reaching as high as 20.01%, and this is contrary to strengthening the construction of agricultural infrastructure and resolutely holding the red line of cultivated land protection (Gansu Provincial government, 2021). We must limit some conditions. In the cultivated land protection scenario, more emphasis was placed on restricting the conversion of cultivated land to construction land and other land types. It is recommended that decision-makers plan and control urban growth boundaries rationally, strictly control the construction land encroachment on cultivated land, and adhere rigorously to the red line for cultivated land protection (Gansu Provincial government, 2021). In the ecological priority scenario, noticeable growth was observed in grassland and water areas with a little increase in forest land. The degradation problem of the wetlands of the first meander of Yellow River National Nature Reserve in Maqu county had been weakened to a certain degree until 2030 (Chen, 2017; Wang M. M., 2023). This scenario mainly indicated that oasis desertion would be greatly slowed down in Minqin, Gulang, and Maqu in 2030, but it showed a better effect in Minqin (Li J. H. et al., 2021). This is probably because Minqin County successively carried out key ecological construction projects, such as sand control and ecological restoration, at the beginning of the 21st century (Xie and Chen, 2008). Although this scenario played an important role in ecosystem restoration, the cultivated land was not effectively protected. Under the economic construction scenario with same restricted areas as in ecological priority, construction land expanded the most drastically, which was mainly distributed in these places that are mentioned in the natural development scenario. These expansions were just close to the primary road, which was consistent with the main driving factors of construction land expansion. The reason of the dramatic expansion was probably the development of Lanzhou–Xining city clusters and the promotion of Tianshui, Pingliang, and Qingyang actively participating in the construction of city clusters on the Guanzhong plain (Gansu Provincial government, 2021). However, cultivated land, forest land, grassland, water bodies, and wetlands decreased faster than in the ecological priority scenario. Therefore, we should control the expansion rate of construction land to protect ecological land from encroachment under the policy guarantee of the “Ecological protection and high-quality development plan for the Yellow River Basin in Gansu Province” (Gansu Provincial government, 2021). On one hand, multi-scenario simulation can compare the spatial pattern difference between different scenarios, and on the other hand, it can realize the tradeoff development between multiple scenarios. According to this, we should advise decision-makers to consider selecting appropriate development scenarios for different regions.
4.3 Suggestions for land-use change
In past four decades, the area of grassland transferred from cultivated land represented 72.39% of the overall increasing amount of the grassland area. The reason was likely to be returning of cultivated land to forest and grassland under the background of a series of ecological protection and restoration projects after 2000 (Lv, 2003). The total area of cultivated land was still decreasing, which indicates that although the land consolidation campaign aimed at realizing the dynamic balance of cultivated land occupation and compensation was constantly promoted (Gansu Provincial government, 2019), it was still difficult to make up for the decrease in the total amount. Because the reduction of cultivated land has an impact on food security, we should strictly observe the red line of cultivated land protection, improve the production efficiency of cultivated land, and make intensive use of the existing cultivated land. We will also suggest decision-makers to lay emphasis on the cultivated land protection scenario in the areas where cultivated land is concentrated. On the other hand, it is necessary to control the transfer of grassland to cultivated land to ensure that the ecosystem does not undergo drastic changes. We hope that the ecological priority scenario is considered in the areas where grassland, forest land, or wetlands are concentrated.
4.4 Suggestions for future research
Through practice and thinking, there are still the following problems in this paper that need further research and discussion:
	1. Due to the complex and diverse factors affecting various types of land change, the selection of driving factors is not comprehensive enough, which will lead to deviation of prediction. Further research for selecting and analyzing of the driving factors will improve the prediction accuracy of PLUS. At the same time, the relationship between the driving factors (e.g., distance from roads and population density) and land-use change will be further elucidated by the logistic regression model.
	2. Land-use transfer probability matrix from 2020 to 2030 was revised according to previous studies and combined with the historical land-use change characteristics and future land-use planning in the study area. It is inevitably subjective. We plan to use the MOP model, which is multi-objective programming, to calculate the area of various land-use types of the study area in 2030 and then simulate land-use changes with the PLUS model to enhance the accuracy and robustness of land-use change predictions.

5 CONCLUSION
This paper analyzed the spatiotemporal changes in land use; explored the driving factors behind land-use expansion; and predicted the quantity, spatial distribution characteristics, and trends in land use for the year 2030 under four different scenarios based on the PLUS model. The following conclusions are drawn:
1. The prediction of land-use types continues the historical evolution since 1980. Grassland, cultivated land, and forest land remain the primary land types, accounting for more than 87% of the basin’s total area. Water bodies and wetlands have remained relatively stable. The primary trend in land-use change involved the exchange between cultivated land and grassland, along with the continuous expansion of construction land.
	2. The driving factors of the expansion of construction land and grassland can approximately reflect the reasons for the decrease in the cultivated land area. The driving forces of cultivated land expansion can, to a large extent, reflect the reasons for the decrease in the grassland area.
	3. Multi-scenario simulation results showed that under the natural development scenario, cultivated land was occupied by part of grassland. Under the cultivated land protection scenario, this restrained the conversion of cultivated land into construction land and other land types. Cultivated land showed positive growth. Under the ecological priority scenario, part of cultivated land was also transferred to grassland. Grassland and forest land showed positive growth. Under the economic construction scenario, construction land expanded the most drastically, mainly encroaching on cultivated land, small areas of unused land, and forest land. Our simulations and predictions are also consistent with the current regional development pattern. This study suggested valuable insights for future land-use prediction in the area.
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Introduction: With the rapid advancement of industrialization and urbanization in the Yellow River Basin, the number of resource-based cities is constantly increasing, leading to an imbalance in land use structure and the gradual worsening of adverse effects such as damage to the ecological environment. Hence, improving the efficiency of green land use in resource-based cities has extremely crucial ecological and practical meaning for sustainable development.
Methods: This study comprehensively considers interdisciplinary theories such as ecology and management, and combines the actual situation of resource-based cities in the Yellow River Basin to construct a new type of urban field green utilization efficiency assessment index system. To promote the coordinated development of different dimensions, the corresponding spatiotemporal evolution process and related influencing factors were also analyzed. 
Results and discussion: The research results indicate that the overall spatial evolution of the Yellow River Basin has active correlation. During the period from 2006 to 2022, the number of high value agglomeration cities in upstream resource-based cities increased by nearly 25%; Nearly 3% of resourcecities exhibit low-value heterogeneity, while the number of resource cities with low value agglomeration has decreased to 0. In addition, population density and scientific education expenditure level are key factors affecting the ratio of green land use in resource-based cities, while the impact of economic indicators is gradually decreasing. In summary, the assessment indicator system for urban land green utilization ratio proposed in the study is more comprehensive, and the spatial distribution results of influencing factors can provide a solid data foundation for decision-makers.
Keywords: sustainable development, the yellow river basin, resource oriented cities, land green utilization efficiency, spatiotemporal evolution

1 INTRODUCTION
For the past few years, sustainable development strategy and green development have become the primary topics in China. However, the ecological protection function of resource-based cities (ReB-C) in the upper and middle reaches of the Yellow River Basin (YRB) has been disrupted, leading to ecological problems such as soil erosion in midstream. Excessive sediment in the downstream areas can easily form suspended rivers, leading to floods (Zheng H et al., 2021; Jia L et al., 2022; Zhang et al., 2022). The YRB itself belongs to an ecologically fragile area, and the rapid advancement of industrialization and urbanization has formed a development model of high-intensity development and extensive management. This has caused serious obstacles to the ecological environment and land use, and further led to issues such as imbalanced land resource structure, low land use efficiency, and resource waste (Fan et al., 2022; Ning et al., 2022). Therefore, how to coordinate the relationship between different dimensions is the top priority in promoting green land use (GLU) in ReB-C in the YRB. To achieve the above goals, this study is guided by sustainable development and green development, and designs an evaluation index system (EIS) for GLU efficiency (GLU-E) of ReB-C in YRB through multidisciplinary theory and field conditions. The study also explored its space evolution process, related influencing elements, and ranking of influence. This project aims to give a reasonable suggestion for decision-makers to formulate plans, alleviate the pressure of land use and ecological environment, and promote to develop for long and high-quality of various ReB-C in the YRB.
The research targets to solve the problems that hinder the development and improvement of ReB-C in YRB. Guided by the introduction of GLU, the ecological protection concept and sustainable development concept are further applied to the land spatial planning system of the YRB. It hopes to strengthen the ecological security of urban land and stimulate to develop the long-term healthy social economy. There are two main innovative points in the research. The first point is to use multiple disciplines such as ecology, economics, and management to comprehensively design an EIS for GLU rate of ReB-C in the YRB. The second point is to use factor detection to analyze the impact range and spatial distribution differences of relevant influencing factors on the GLU rate of ReB-C. The structure of the study is mainly segmented into four sections. The first part is a review of relevant research results; The second part is to study the natural environment status and existing problems of ReB-C in the YRB, and design corresponding EISs for GLU ratio; The third part is the analysis of the results of the proposed research methods, including spatiotemporal evolution (SE) analysis and influencing factor analysis; The final part is a summary of the research.
2 RELATED WORK
Land, as the spatial carrier of all human social activities, is the material guarantee for human development and continuity, and land use efficiency can reflect the scale of human investment in land to obtain output that meets the needs of survival and development. Therefore, many scholars have conducted in-depth discussions on the relevant content of land use efficiency. B. Hung et al. conducted an evaluation of land use efficiency in Danping Township, Dakdoa District, Jialai Province, Vietnam, in order to achieve reasonable and effective land use and make important contributions to the country and local areas. After field research, the following results have been obtained: there are six common types of land use in this area. Among them, the economic benefits of LUT for chili pepper cultivation are the highest, the social benefits of LUT for coffee are the highest, and the overall benefits of LUT for bergamot are the highest. This also provides important scientific basis for achieving effective and sustainable land use efficiency (Hung et al., 2020). Y. Q. Duan et al. constructed an evaluation index for the coordination between rail-transit station operation efficiency and land use to alleviate the contradiction between rail-transit operation and surrounding ground use. The key indicators affecting the coupled development of the two were identified, including land use ratio, plot ratio, land use combination, and parking facility control. The sound control of indicators has promoted the land use efficiency around Xi’an Rail Transit Station (Duan et al., 2020). Silvio et al., to deal with the situation of insufficient nutrient supply of new vegetation in the process of vegetation restoration in the mining area, chose the long stemmed sheep’s hoof beetle and trees from the Amazon rainforest for research. The results showed that the long-stemmed sheep hoof beetle has practical significance for plant restoration in mining areas, and can effectively improve the land use efficiency of mining areas (Ramos et al., 2020). To make the most of water resources, land use efficiency and crop productivity are adopted to improve land technology for surface drip irrigation under arid conditions in India. S. S. Rathore et al. conducted field experiments on Indian mustard and found that Indian mustard also had better growth and yield characteristics in flat planting land configurations of 60/30 and 30/60 cm (Rathore et al., 2020). N. A. Alekseeva evaluated the resource potential and land use efficiency of agricultural production cooperatives, taking the Republic of Udmurt as an example, to promote changes in agricultural land transfer legislation. Finally, the study concluded that the factors underlying the connection between the level of legitimate land registration and land use efficiency are reasonable (Alekseeva, 2020).
The GLU ratio is obtained through the optimization of traditional land utilization efficiency development. Guided by green and sustainable development strategies, it emphasizes the moderate use of land resources to avoid ineffective utilization of land resources. F. Liu et al. found that the green utilization efficiency (GUE) of regional land is an important indicator of ecosystem health. Their research estimate the land-quality of Xinjiang Production and Construction Corps and other regions through the InVEST model, further analyzing the resemblances and distinctions in their space distribution. During 1990–2018, the degree of habitat degradation in Xinjiang decreased first following increased, and the quality of habitat gradually decreased; During 2018–2035, the area of arable and construction area in agricultural and non-agricultural areas will gradually increase, while forest and grassland will decrease. It may cause a gradual decline (Liu F and Xu, 2020). F. Qian et al. used land GUE to study spatial distribution features and balance collaborative spatial patterns in order to scientifically allocate multi-functional arable land. It showed that the multi-function of cultivated land could exhibit a synergistic trend in time, also it exhibited heterogeneity and volatility, giving instructions for new models of cultivated land development or management (Qian F et al., 2020). K. Song et al. found that water blooms threaten water quality and the eco-health of aquatic communities. China is experiencing high-speed economic growth and significant land-use changes in the past few decades. By analyzing the efficiency of land green utilization, it is found that human factors have exceeded the impact of climate elements of absolute atmospheric concentration in China’s soil and water conservation areas. This can provide information for resource management decision-making (Song et al., 2021). Y. Wu et al. discussed that analyzing the efficiency of GLU is greatly meaningful for balancing economic development and ensuring food security. Therefore, they applied the SBM to calculate the land GUE of 126 prefecture level cities in the Yangtze-River Economic-Belt from 2008 to 2017, and revealed their SE characteristics. From the perspective of factor input, the future direction of improving farmland utilization efficiency has been proposed (Wu et al., 2022). Y. U. Chuqiao et al. studied the land use change, landscape pattern, and habitat quality changes in Yunnan Province from 1980 to 2020. The purpose was to explore the SE characteristics of habitat quality in inland ecosystems, using landscape pattern analysis and InVEST habitat quality model. The conclusion is that the habitat quality in Yunnan Province shows a high low high distribution from northwest to southeast, and the overall habitat quality is higher than the average level. It is necessary to develop optimization strategies to improve regional ecological benefits (Chuqiao et al., 2022).
In summary, many studies on land use efficiency and SE analysis are existed, but there has been very little research on the GUE of ReB-C in the YRB. To expand the related surveys about the content mentioned above in the YRB, this article takes 53 ReB-C in the YRB as the research objects. The EIS and influencing factors of land GUE were designed to explore and analyze the degree of influence of different influencing factors.
3 CONSTRUCTION OF AN EIS AND AFFECTING ELEMENTS FOR GLU-E OF REB-C IN THE YRB
This chapter introduces the current situation of the natural environment, socio-economic development, and ecological environment pollution in the study area to analyze the actual situation of ReB-C in YRB. Furthermore, it aims to lay a solid foundation for the design of the EIS and related influencing factors for the GUE of ReB-C in YRB.
3.1 The current situation of natural environment in ReB-C in YRB
The YRB is the geographical and ecological area affected by the Yellow River system from its source to the sea (Kouassi et al., 2020; Jian et al., 2022). The mean altitude of the western Heyuan region is over 4000 m, consisting of plenty of high-mountains, with year-round snow covering; The altitude of the central region is loess landform, with serious soil erosion; The east is mainly composed of the Yellow River alluvial plain (Hai-Kun et al., 2020; WangHuang et al., 2021; Zhu et al., 2022). At the symposium on ecological protection in the YRB, General Secretary clarified the extremely important position of the YRB in China’s ecological security. He deeply elucidated the significant significance and made significant deployments to strengthen the governance and protection of the YRB. However, for a long time, there have been problems such as water shortage and soil erosion in the YRB, which would hinder to develop ReB-C. This also determines that there is a significant imbalance in the development level, economic development level, residential environment quality, and ecological environment carrying capacity of ReB-C in the upstream, midstream, and downstream. Thus, 52 resource-based prefecture level cities with fewer missing values and easy data collection were selected as the research objects from 67 prefecture level cities on both sides of the Yellow River. Taking into account regional factors such as macro management, Inner Mongolia Autonomous Region is divided into upstream regions and Henan Province into downstream regions. Figure 1 is the actual division of the YRB.
[image: Map of the Yellow River region showing its main stream and resource-based cities. Colors represent upstream, mid upstream, mid downstream, and downstream areas. A scale and legend are included.]FIGURE 1 | Actual division map of the research area.
The resources collected in this study in YRB are all sourced from the China’s Statistical Yearbook of the provinces where each city is located. Based on these data, the land use status of ReB-C in the YRB is analyzed. Firstly, the evaluation variables of land use structure are determined according to the Urban Land Classification and Planning Construction Land Standard (GB 50137–2011). There are significant differences in terrain, climate, and natural resource distribution among resource cities in the upstream, midstream, and downstream of the Yellow River Basin, which have a significant impact on the land use of resource cities in the Yellow River Basin. Therefore, this study analyzes the land use structure of resource cities in the Yellow River Basin from the upstream, midstream, and downstream perspectives. To ensure the scientific comparison of land use in ReB-C, the study only compared the land use structure of the YRB ReB-C maps from 2016 to 2022 (Table 1).
TABLE 1 | Land use structure of regional ReB-C.
[image: Table showing land use variations from 2016 to 2022 across three regions: Upstream, Middle reaches, and Downstream. Categories include Residential, Industrial, Logistics and Warehousing, Road Traffic Facilities, Green Space, Public Management and Service Facilities, Commercial, and Public Facilities. Data is presented in area per square kilometer and proportion percentage. Notable changes include significant increases in residential and green space land, with varied changes across other categories.]In Table 1, from the perspective of land-use changes in upstream, midstream, and downstream ReB-C, the changes in the top three areas from large to small are: LR, FS, and IL; GS, LR, and RL; RL, IL, and GS, respectively. Among them, the area of all downstream land use types has increased. In 2016, the proportion of different types of land use areas in the three sections of the river ranged from high to low: RL, IL, LR, GS, LP, LC, LL, and LF; RL, LP, IL, GS, LR, LC, LL, and LF; RL, IL, LR, LP, GS, LC, LL, and LF. The proportion rankings for 2022 are: RL, LR, GS, IL, LP, LC, LL, and LF; RL, GS, LR, IL, LP, LC, LL, and LF; RL, IL, LR, GS, LP, LC, LL, and LF. From this, upstream cities care more about the construction and expansion of road traffic facilities and green spaces, while the proportion of IL area is relatively high, which will cause significant pressure on the ecological environment. Midstream ReB-C pay more attention to the planning of land space greening and road transportation facilities, but seriously neglect the construction of public service facilities. Compared with ReB-C in the upstream and midstream, the area proportion of RL is higher in the downstream. This indicates that downstream ReB-C are urban agglomeration areas in the YRB, and different types of land use areas are increasing, leading to increased pressure on land use.
3.2 The social development and ecological environment pollution of ReB-C in the YRB
Resource oriented cities gather the population of the YRB region. As kinds of activities continue to expand, the necessity for land also increases, which in turn puts significant pressure on land use in the YRB. Table 2 shows the land use status of resource cities in the YRB.
TABLE 2 | Land use status of resource city construction in the YRB.
[image: Table comparing urban construction land and value added by the second and third industries per square kilometer in upstream, middle reaches, and downstream regions for 2006, 2012, 2016, and 2022. It shows growth rates across the regions, with downstream regions having notably higher values. Average annual growth rates are provided for each region and metric.]From Table 2, the construction land area and the added value area of the 2nd and 3rd industries in ReB-C in the YRB are both showing an increasing trend year by year, and the added value area of the 2nd and tertiary industries is higher than the area of urban construction land. This indicates that the economic benefits of the land in the region are extremely significant, with the economic activity intensity of the land ranging from strong to weak in upstream, midstream, and downstream ReB-C. The supply of construction land in upstream ReB-C is relatively small, so there are fewer related resources available for use; The utilization of land in mid stream ReB-C can still be improved; The expansion speed of downstream ReB-C is very fast, but it cannot effectively drive social and economy growth. In addition, the excessive proportion of traditional industries in various resource cities in the YRB will have adverse effects on energy use and ecological environment. Moreover, it also hinders the progress of GLU in cities, but the high-quality development of industries in the region needs to be rapidly promoted. Among the ReB-C in the YRB, the economy has maintained a sustained growth trend, reaching a growth rate of 13% in 2022, with per capita GDP significantly lower than the national level and a poor economic foundation. Previously, the economic growth of the YRB fluctuated greatly, which was affected by natural disasters such as floods and droughts, as well as ecological degradation such as river water interruption and water resource shortage. Therefore, in recent years, the progress of related ecological restoration projects has gradually accelerated, and the economic vigour around the YRB has been restored, ensuring a stable growth trend. In addition, the population of cities around the YRB is relatively dense, and the generation of a large amount of household waste can cause pressure on the ecological environment. Therefore, this project analyzes the pollution situation of the ecological environment of ReB-C in the YRB from the perspectives of production and life. In terms of production, the study observed the growth rate of industrial waste emissions, as listed in Figure 2.
[image: Line graph depicting growth rates of wastewater discharge, sulfur dioxide emissions, and smoke and dust emissions from 2006 to 2022. Red circles, green squares, and blue triangles represent each category, respectively. Notable fluctuations occur around 2014 and 2017, with peaks in wastewater discharge in 2015 and 2017. All categories generally show a decline over the period.]FIGURE 2 | The growth rate of industrial waste emissions from ReB-C in the YRB.
In Figure 2, the fluctuation characteristics of industrial waste emissions in the Yellow River Basin show a continuous downward trend, with negative growth rates in many years. This indicates that the policies and implementation of pollutant control and ecological environment protection in the Yellow River Basin have achieved excellent results. At the same time, the growth rate of emissions of the three pollutants tends to be consistent, which may be due to the neglect of the impact of industrial development on ecological security in the Yellow River Basin, resulting in excessive discharge of industrial waste. From this, there is still a contradiction in the YRB. But with the implementation of relevant policies and work, this contradiction is gradually being improved (Radovanovic et al., 2019; Barma and Modibbo, 2022; Khan et al., 2022). In terms of daily life, the study uses the treatment of pollutants in ReB-C in the YRB to represent the quality of urban ecological environment pollution control, as displayed in Table 3.
TABLE 3 | Treatment of pollutants in ReB-C in the YRB.
[image: Table comparing sewage treatment and household waste treatment rates from 2006 to 2022, showing minimum and maximum percentages. Sewage treatment minimum starts at 4.97% in 2006 and rises to 85.96% in 2022, with maximum nearly constant. Household waste treatment begins at 4.81% minimum in 2006, reaching 80.13% by 2022, with maximum remaining at 100%.]As the years increase in Figure 6, ReB-C in the YRB have significantly improved their treatment of sewage and household waste, thereby significantly reducing the adverse impact of urban sewage and household waste on the ecological environment. In urban sewage treatment, the minimum treatment rate was 4.37% in 2006 and 85.96% in 2022, an increase of 94.92%. In the harmless treatment of urban household waste, the minimum was 4.81% in 2006 and 80.13% in 2022, an increase of 94.00%. Their maximum processing rates are all 100%. Although the treatment level of domestic pollutants has been significantly improved, there are significant differences in the treatment capacity among different ReB-C in the YRB, and excellent treatment plans can be learned through exchange.
3.3 Design of EIS and affecting factors for GUE of ReB-C in the YRB
This study analyzes the actual situation of ReB-C in the YRB and obtains the internal logic between the construction and development of ReB-C and the efficiency of GLU, that is, changing the extensive use of urban land. Realizing the green utilization of urban land is necessary for developing high-quality ReB-C, as well as an inherent requirement for ecological civilization construction and a guarantee for improving social welfare. High quality cities and ecological civilization will also have an inactive impact on improving GLU, thereby achieving sustainable use of land resources. The research is guided by sustainable development and green utilization, so a land GUE EIS for ReB-C in the YRB has been designed. The content is displayed in Figure 3.
[image: Flowchart illustrating equivalent index types for urban greenness efficiency, divided into input, expected output, and undesirable output. It includes dimensions like capital, labor, land, energy, economic output, social output, and ecological issues, with indexes such as urban fixed asset investment, energy consumption, GDP, social retail sales, and urban dust emissions.]FIGURE 3 | EIS for GLU-E of ReB-C in the YRB
In Figure 3, due to the increasing impact of energy on the ecological environment and social economy, the energy consumption dimension has been added to the input indicators based on the traditional dimension; Furthermore, because the fact that ReB-C not only generate benefits in land use, but also cause losses to the ecological environment due to household waste and pollutants, two output indicators have been designed: expected output and unexpected output. To study the GUE of ReB-C in YRB and analyze the corresponding SE, the study first constructs the Unexpected Output Exceeding Efficiency SBM (UOEES). The UOEES model can not only avoid deviations caused by radial and angular measurements, but also consider the impact of unexpected output factors in the production process. Assuming each city is a decision-making unit, the decision-making unit numbers in the production system are [image: Please upload the image or provide a URL so I can help generate the alternate text.], and the input variable numbers are [image: Please upload the image you'd like me to generate alternate text for.]. The quantities of non or expected output variables are [image: It seems like there's an issue with providing an image. Please try uploading the image again, or provide a URL or context so I can assist you further.] and [image: The image shows the mathematical expression "b" with the subscript "ud."], and the corresponding vectors are [image: Mathematical expression showing "u" is an element of the set \( R_m \), indicating membership in a mathematical context.], [image: Mathematical expression showing \( v^y \in R_{bde} \).], and [image: Mathematical expression showing \( v^{e} \in R_{b\text{udf}} \).]. Eq. 1 is the UOEES model expression.
[image: Mathematical equation representing the minimization of delta (\(\delta\)). The equation is a fraction with the numerator as the average of the ratio \(\frac{\bar{x}_i}{x_{ik}}\) summed over \(m\). The denominator is the reciprocal of \(b_{ik}+b_{in}\) multiplied by the sum of \(\bar{y}/y_{ik}\) and \(\bar{y}/y_{in}\), raised to powers \(b_{ik}\) and \(b_{in}\) respectively.]
In Eq. 1, [image: Please upload the image or provide a URL, and I'll help generate the alternate text for it.] is the measurement result, while [image: Please upload the image or provide a URL so I can generate the alternate text for it.], [image: It looks like there was an issue with the image upload. Please try uploading the image again, and I'll assist you with generating the alt text.], and [image: It seems there was an issue with displaying the image. Please try uploading the image file directly or provide its URL.] respectively represent the relaxation variables of the positive and negative effects of land investment and land use in ReB-C. [image: Mathematical expression showing a vector notation with a subscript and superscript: "V-vector, superscript y, subscript s, k."] and [image: Mathematical notation showing a vector symbol \( \vec{v} \) with subscript \( qk \) and superscript \( e \).] are the [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.]-th expected output and [image: Please upload the image or provide a URL, and I'll generate the alt text for you.]-th non-expected output of [image: Please upload the image or provide a URL to generate the alternate text.] decision units, respectively. Eq. 2 is the constraint condition for the UOEES model.
[image: Set of mathematical inequalities and equations, labeled as equation (2), involving summations and subscripts. It includes variables such as \(u\), \(v\), \(w\), \(x\), \(y\), and \(z\), with conditions and constraints. Variables include subscripts and the constraints are set equal to or greater than certain values, followed by expressions like \(b_{de}\), \(b_{ud}\), and others with indices \(j\), \(s\), and \(q\).]
[image: Stylized mathematical notation showing the lowercase Greek letter "chi" followed by a subscript lowercase "j".] in Eq. 2 represents the design constraint. Secondly, the measurement of industrial agglomeration in ReB-C in the YRB is calculated. The most commonly used method at present is the Location Quotient (LQ) index, which is used to measure the importance of a specific industry in a region. It can evaluate its competitiveness by calculating the entropy value of population, economic and other factors. The expression of LQ is Eq. 3.
[image: Equation for LQ sub ab equals the fraction of L sub ab over the sum of L sub ab divided by the fraction of the sum over b of L sub ab over the sum of the sum over a of L sub ab. Equation number three.]
In Eq. 3, [image: I'm unable to generate the alt text for the image without being able to view it. Please provide the image by uploading it or sharing a URL.] represents the LQ of a region where [image: Please upload the image or provide a URL for me to generate the alternate text.] industries specialize and gather. [image: I'm unable to view or interpret the image you mentioned. Please upload the image or provide a URL, and I'll be happy to help generate the alt text.] represents the total number of employment in industry [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] in the region. [image: Summation notation with limits and an index variable. It shows a sigma symbol, representing summation, with the subscript 'a' and the superscript 'Lab'.] and [image: Double summation notation with indices a and b, and term \(L_{ab}\).] represent all industries in region [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a URL, and I will help generate the alternate text for it.] and the total employment of the country, respectively. [image: Summation notation showing the sum of \( L_{ab} \) with respect to \( b \).] is the sum of employed people in the national [image: Please upload the image or provide a URL, and I will assist you with generating the alternate text.] industry. When the LQ value is greater than 1, it indicates that the employment proportion is higher. The study only selected the maximum LQ value in the industrial industry to represent the industrial specialization aggregation index in the region. The measurement method for industrial diversification aggregation adopts the reciprocal representation of the mainstream Herfindahl-Hirschman Index (HHI). It can better measure the degree of industrial diversification aggregation from the perspective of market share in different industries, as shown in Eq. 4.
[image: Equation representing the Herfindahl-Hirschman Index (HHI) for labor: \( HHI_{lab} = \frac{1}{\sum_{a=1}^{A} (L_{a b} / L_{b})^2} \), labeled as equation (4).]
The larger the value of [image: It seems like there was an error in uploading the image. Please try uploading it again and I'll be happy to help with the alternate text.] in Eq. 4, the higher the level of industrial diversification and aggregation in the region. Then, Kernel Density Estimation (KDE) is used to describe the characteristics, which can estimate the probability density function through sample data, thus providing more information. The calculation of KDE is Eq. 5.
[image: Kernel density estimation formula: \( f(u) = \frac{1}{NH} \sum_{{i=1}}^{N} K\left(\frac{u_i - u}{H}\right) \).]
In Eq. 5, [image: Of course! Please upload the image or provide a URL for which you need the alternate text.] and [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] respectively represent the number and bandwidth of ReB-C. [image: Please upload the image or provide a URL, and if you have any additional context or caption, feel free to include that too.] represents the observed value of land GUE in ReB-C. [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the kernel function, which is commonly used to select the Gaussian kernel function for land use efficiency. Finally, the Spatial Autocorrelation Analysis (SAA) method was adopted to represent the space evolution characteristics of GLU-E in ReB-C. The global autocorrelation test verifies the degree of spatial correlation between the same attribute values. The calculation of the global autocorrelation coefficient is Eq. 6.
[image: The formula for SAA<sub>OS</sub> is given as the sum from i equals one to n, the sum from j equals one to h, of z<sub>ij</sub> times the difference of d<sub>i</sub> minus d̄, times the difference of d<sub>j</sub> minus d̄, divided by sigma squared times the sum from i equals one to l of the square of the difference of d<sub>i</sub> minus d̄.]
In Eq. 6, [image: Please upload the image you would like me to generate alternate text for.] represents the ReB-C amounts, and [image: It seems there's an issue with the image upload. Please try uploading the image file again or provide a URL. You can also include a caption for additional context.] represents the Moran index. [image: It seems you've mentioned a term or equation rather than providing an image. If you have an image you'd like described, please upload it or provide a URL. If you have a caption or context to add, feel free to include that as well.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] are the GUE values in samples [image: A large, stylized letter "i" with a dot above, resembling a serif typeface. The image appears in black against a white background, suggesting simplicity and clarity.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.], respectively. [image: Greek letter zeta with subscripts i and j.] represents the spatial-weight matrix, and [image: Please upload the image or provide a URL, and I will generate the alternate text for it.] represents the observed variance. The local spatial autocorrelation test is to verify whether a specific attribute value in a certain region has geographical spatial clustering, and its calculation is Eq. 7.
[image: The equation shows SAA\(_{OS}\) as the product of \(n(d_i - \bar{d})\) and the sum \(\sum_{j \neq i}\zeta_{i,j}(d_j - \bar{d})\) divided by the sum of squares \(\sum_{i=1}^{n}(d_i - \bar{d})^2\), labeled as equation (7).]
In global autocorrelation analysis, [image: The expression "SAA subscript OS greater than 0" appears in a mathematical context.] represents spatial positive correlation; [image: Mathematical equation with serif font: \( \text{SAA}_{\text{OS}} = 0 \).] is spatially uncorrelated; [image: Math equation with the expression: \( SAA_{QS} < 0 \).] is a spatial negative correlation. The local spatial clustering characteristics can be separated into high value clustering (HC), high value heterogeneity (HH), low value clustering (LC), and low value heterogeneity (LH). After the design of the EIS for land GUE in ReB-C in the YRB is completed, further qualitative analysis is needed to study the factors that may affect land GUE. Indicators are selected from six dimensions: economy, society, ecology, policy, population, and urban scale, as exhibited in Figure 4.
[image: Flowchart illustrating factors affecting the efficiency of green land use in the Yellow River Basin. It is divided into six categories: Economy, Society, Ecology, Policy, Population, and City Size. Each category is broken down into specific indices and detailed descriptions.]FIGURE 4 | Specific content of factors affecting the efficiency of GLU in ReB-C in the YRB.
In Figure 4, a total of 11 indicators were selected from six dimensions to verify the influencing factors of land green use efficiency in ReB-C in the YRB. Firstly, in order to incorporate the spatial effects of variables into the regression equation, it is necessary to establish a spatial weight matrix through certain standards during the actual model construction process, while also reducing errors and ensuring the scientificity of the results. Therefore, it is necessary to study the use of adjacency space matrix weights for analysis. Secondly, the existence of spatial dependencies in data is a prerequisite for determining the use of spatial econometric models, and the use of Moran’s index to determine the degree of spatial correlation is studied. Finally, construct the required spatial demand panel regression model, which includes Spatial Lag Model (SLM), Spatial Error Model (SEM), and Spatial Durbin Model (SDM). The expression of the SDM model is Eq. 8.
[image: Equation labeled as (8) showing a mathematical model: \(y_{it} = \beta U_{it} + \psi \sum_{j=1}^{N} \eta_{ij} y_{jt} + \lambda \sum_{j=1}^{N} \eta_{ji} y_{jt} + \epsilon_t + \vartheta_i + \theta_t\).]
In Eq. 8, [image: Please upload the image or provide a link to it, and I will generate the alternate text for you.] and [image: It seems like there was an issue with uploading the image. Please try uploading the image again, and I will help generate the alternate text for you.] respectively represent the functional values of region [image: Unable to view the image. Please upload the image or provide a URL to generate the alt text.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] in year [image: Please upload the image or provide a URL, and I can help you generate the alternate text for it.] and the observed values of independent variables. [image: Please upload the image so I can generate the alternate text for it.] is the estimated parameter vector. [image: Looks like there's no image to generate alt text for. Please upload the image or provide a URL, and I’ll be glad to help!] is the spatial autoregressive coefficient, and [image: Please upload the image or provide a URL so I can assist with generating the alternate text.] is the spatial regression coefficient. [image: A lowercase letter "g" with a subscript lowercase letter "i" written in a serif font style.] and [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] are the temporal and spatial effects, [image: Greek letter theta, subscript i.] represents the random perturbation term, and follows an independent identically distributed distribution. The SAR and SEM need to meet the following conditions, as shown in Eq. 9.
[image: Equations showing conditions for SAR and SEM models. For SAR: lambda equals zero, psi is not equal to zero. For SEM: lambda plus psi times beta equals zero. Equation number nine is indicated on the right.]
To explain the spatial heterogeneity among ReB-C in the YRB, the factor detector that can analyze the spatial stratification consistency is selected for testing. The expression is Formula (10).
[image: Formula for FD equals one minus the sum from k equals one to C of R sub k sigma sub epsilon squared, divided by N sigma squared. Equation number ten.]
In Eq. 10, [image: It seems there was no image uploaded. Please try uploading the image again or provide a URL link. You can also include a caption for context if needed.] is the classification of the dependent variable. [image: It seems there was an error in uploading the image. Please try uploading the image again, or provide a URL or additional context if needed.] and [image: It looks like you tried to upload an image, but it did not come through. Please try uploading the image again, and I will help you generate the alternate text.] represent the unit amounts in class-[image: Please upload the image or provide a URL for me to generate the alternate text.] and the entire region. [image: A mathematical expression showing the symbol for variance, with a lowercase sigma (σ) raised to the power of two, and a subscript "c" indicating a specific context or category.] represents the variance of the dependent variable in [image: Please upload the image or provide a link to it, and I can help generate the alternate text for you.], while [image: It seems like there was an error in uploading the image. Please try again by uploading the file or providing a link, and I will generate the alt text for you.] represents the variance of the entire region. The larger the [image: Please upload the image you'd like me to describe, and I'll generate the alternate text for you.] value, the more consistent the distribution in a certain area.
4 ANALYSIS OF THE RESULTS OF GLU-E IN REB-C IN THE YRB UNDER THE BACKGROUND OF SUSTAINABLE DEVELOPMENT
The study aims to explore the SE of land GUE in ReB-C in the YRB under the background of sustainable development. This chapter first analyzes the evolution results of ReB-C in the YRB in terms of time and space, and then qualitatively analyzes the relevant influencing factors that may affect the GLU ratio of ReB-C built on this. Finally, targeted improvement strategies were proposed.
4.1 Analysis of SE of land GUE in ReB-C in the YRB
The SE characteristics of land GUE in ReB-C in the YRB need to be obtained. The study first used software Eviews to acquire the kernel density curves of relevant data for 2006, 2012, 2016, and 2022. The temporal evolution of land GUE in ReB-C as a whole, upstream, midstream, and downstream can be expressed.
Figure 5 shows the temporal evolution of land GUE in ReB-C in the YRB. Figure 5A shows the overall temporal evolution of the Yellow River Basin, which shows the rapid increase to slow climb of the green land use efficiency of cities in the Yellow River Basin. At the same time, the shape of the main peak of the curve can reflect the proportion of high-value areas and low value areas. Among them, the difference in land green use efficiency in the Yellow River Basin at different periods is very obvious, and the polarization feature is more obvious. The proportion of high-value areas shows a slow increasing dynamic evolution feature. Figure 5B–D show the temporal evolution curves of land green use efficiency of resource-based cities in the upstream, midstream, and downstream Yellow River Basin, respectively. The upstream resource-based cities show a trend of first decreasing, then increasing, and then decreasing, the midstream cities show a trend of first increasing and then decreasing, and the downstream cities show a trend of first increasing, then decreasing, and then height increasing. In addition, the number and shape changes of the peaks in its variation curve are consistent with the overall trend of the YRB. In summary, the time period and location characteristics jointly determine the temporal characteristics of GLU-E in ReB-C in different regions of the YRB.
[image: Four graphs labeled A, B, C, and D depict nuclear density over time, with curves for the years 2006, 2012, 2016, and 2022. Each graph shows varying peaks and shapes, illustrating changes in density distribution. Graphs highlight temporal changes and trends in nuclear density.]FIGURE 5 | Time series evolution results of land GUE in ReB-C in the YRB. (A) Yellow River Basin, (B) Upstream, (C) Mid stream and (D) Downstream.
To explore the SE characteristics of land GUE in ReB-C in the YRB, the software GeoDa was used for analysis. The global Moran index (GMI) numerical results are exhibited in Table 4. It shows a significant positive correlation in spatial distribution among different years. It indicates that in terms of spatial characteristics of land green use efficiency, adjacent cities in the geographical location of ReB-C in the YRB will interact with each other. The GMI can only verify the spatial-correlation of land GUE in ReB-C in the YRB from a holistic perspective, but cannot identify the spatial clustering of local spaces. Therefore, the study utilizes ArcGIS software to conduct local spatial auto-correlation testing in the YRB.
TABLE 4 | Global moran index values of land GUE in ReB-C in the YRB.
[image: Table showing Global Moran index values from 2013 to 2022, indicating spatial correlation significance. Values range from 0.137 in 2013 to 0.325 in 2022. Z values and p-values suggest significance at 5% and 1% levels, with a noted spatial correlation.]Figure 6 shows the local agglomeration type results of land GUE in ReB-C in the YRB under different years. Figure 6A–D show the local agglomeration types of land green use efficiency in resource-based cities in the Yellow River Basin in 2006, 2012, 2016, and 2022, respectively. From Figure 6A, D, it can be seen that the HH type was mainly distributed in resource-based cities in the upper and lower reaches of the Yellow River in 2006, and in 2022, it was mainly distributed in resource-based cities in the upper and middle reaches. According to Figure 6A–D, it can be seen that the HL type is located in upstream resource-based cities in different years, and a small amount is also relatively stable in resource-based cities in the middle reaches of Shanxi Province, with a slow increase in the number of distribution in downstream areas. The LL type is mainly distributed in resource-based cities in the middle reaches, and its quantity continues to increase with the growth of the year. LH type is mainly distributed in resource-based cities in the upstream and midstream, and is relatively stable. Overall, the green land use efficiency of cities in Inner Mongolia Autonomous Region and Gansu Province in the upper reaches of the Yellow River shows two types: HH type and HL type, while Ningxia Hui Autonomous Region and Qinghai show LH type, midstream cities show LL type, and downstream cities mainly show LL type and HL type.
[image: Four maps labeled A, B, C, and D, depict regions along the Yellow River with color codes: blue for HH, red for HL, orange for LL, and green for LH. The main river stream and downstream resource-based cities are marked, with a scale indicating 0 to 300 kilometers.]FIGURE 6 | Local agglomeration types of land GUE in ReB-C of the YRB in different years. (A) 2006, (B) 2012, (C) 2016 and (D) 2022.
4.2 Analysis of the factors influencing the GLU-E in ReB-C in the YRB
To test the affecting factors of GLU-E of ReB-C in the YRB, it is necessary to exclude the influence of collinearity among variables on the regression results. Firstly, it is important to make sure the connection between variables based on the VIF.
Table 5 shows the test results of multicollinearity among different variables, and the max VIF value in the variables is 9.76, which is less than 10, indicating that the variables are relatively independent from each other and there is no serious collinearity relationship. Therefore, subsequent factor tests can be conducted. The GLU-E of ReB-C in the YRB and their SE owns an active correlation. Hence, the model chosen in the study is suitable for testing the influencing factors of land green use efficiency in ReB-C in the YRB, but a suitable model needs to be selected.
TABLE 5 | Test results of multicollinearity among different variables.
[image: Table showing Variance Inflation Factor (VIF) values for variables LnA1 to LnF2, and their reciprocals. VIFs range from 1.25 to 9.76, with a mean VIF of 3.29. Reciprocal values range from 0.102459 to 0.800000.]Above is the test details. From Table 6, only Robust LM spatial lag did not pass the LM test, while the rest were significant at the 1% level. Therefore, SLM is more suitable than SEM. then, based on the Hausman test results, it is more appropriate to choose a time and space dual fixed effect model. Finally, according to the test results of LR and Wald, both are at the 1% level, indicating that SDE cannot degenerate into SLM or SEM.
TABLE 6 | Test results of models under different tests.
[image: Table displaying inspection items with corresponding statistics and p-values. Items include LM-spatial lag, LM-spatial error, Robust LM-spatial lag, Robust LM-spatial error, Hausman, LR-spatial lag, LR-spatial error, Wald-spatial lag, and Wald-spatial error. Statistics and p-values vary, for example, LM-spatial lag has a statistic of 57.286 and a p-value of 0.000, while Robust LM-spatial error has a statistic of 0.969 and a p-value of 0.325.]To increase the reliability of the test results, the OLS was introduced for comparison (Table 7). From Table 7, the sign of the variable is close to the value of the regression coefficient, indicating the credible regression result. SDM is the best through the natural logarithm function value and R2 value. Through the regression analysis of the SDM, A1 and A2 economic dimensions show a negative and positive correlation with the GLU-E of ReB-C in the YRB, respectively; A2 is inactively correlated with the efficiency of GLU in surrounding cities. B1 in the social dimension and E1 and E2 in the population dimension are negatively correlated with the GLU-E of ReB-C in the YRB, and positively correlated with the GLU-E of surrounding cities. B2 is not related to the GLU-E of ReB-C in the YRB. In the ecological dimension, both C1 and C2 are positively correlated with the land GUE of ReB-C and surrounding cities in the YRB. The indicators in the policy dimension are positively correlated with the GLU-E of ReB-C in the YRB, and inactively correlated with the GLU-E of surrounding cities. In the dimension of urban scale, there is a negative correlation between F1 and the GLU-E of ReB-C in the YRB and surrounding cities, while F2 has no significant relationship with ReB-C in the YRB. To further investigate the sensitivity of the 9 influencing factors mentioned above, the study first used KMO values and Bartlett sphericity tests.
TABLE 7 | Test results of GLU-E in ReB-C in the YRB under different test models.
[image: A table showing regression analysis results for four models: SLM, SEM, SDM, and OLS. Each model has coefficients for variables such as LnA1, LnA2, and others, with corresponding t-values in parentheses. Some coefficients are marked with symbols like asterisk and hash, indicating statistical significance levels at 10%, 5%, and 1%, respectively. The table includes R-squared and LogL values for each model, and a note clarifying the symbols and significance levels.]The KMO value and Bartlett’s sphericity test results are shown in Table 8. It can be seen that the KMO value is 0.842, indicating that the selected influencing factors are very suitable for analysis. The Bartlett’s sphericity test result is 0.000, indicating that the 9 influencing factors meet the requirements for subsequent sensitivity analysis and can be used for principal component analysis. In principal component extraction, all components with eigenvalues exceeding 1 are first used as principal components, and then the correlation between factors and principal components is determined through principal load coefficients.
TABLE 8 | KMO value and Bartlett sphericity test results.
[image: Kaiser-Meyer-Olkin (KMO) value table with a KMO value of 0.842. A Bartlett's test of sphericity shows a p-value of 0.000.]The results of the principal component load matrix are shown in Table 9. From this, it can be seen that Principal Component 1 basically reflects the information of A1 and A2, so it can be regarded as a comprehensive indicator of the economy of resource-based cities. Principal Component 2 basically reflects the information of B1, so it can be regarded as a comprehensive indicator of the society of resource-based cities. Principal Component 3 reflects the information of C1 and C2, which can be regarded as a comprehensive indicator of the ecology of resource-based cities. Principal Components 4, 5, and 6 respectively reflect the information of D, E1, E2, and F1, so they can be regarded as comprehensive indicators corresponding to the policy, population, and urban size of resource-based cities, respectively. By using a linear combination coefficient matrix, the relationship between principal components and influencing factors can be constructed, and principal component scores can be obtained. Finally, the weights and sensitivity ranking of different influencing factors can be obtained.
TABLE 9 | Principal component load matrix.
[image: Table displaying influence factors and their corresponding principal component values from one to six. Factors A1 to F1 show varied numerical values, with A1 showing high values in component one and two, while F1 shows negative value in component six. Values range from positive 0.994 to negative 0.652.]The weight and sensitivity ranking results of different influencing factors are shown in Table 10. It can be seen that the main factors affecting the green land use efficiency of resource-based cities are A2, B1, and A1, with sensitivity ranking from 1st to 3rd, and corresponding weights of 0.1200, 0.1161, and 0.1145, respectively. The weights of other influencing factors are as follows: C2, C1, D, E2, F1, and E1 are 0.1123, 0.1030, 0.1071, 0.1066, 0.1103, and 0.1101, respectively, with sensitivity ranking corresponding to 4th to 9th.
TABLE 10 | The weight and sensitivity ranking results of different influencing factors.
[image: Table displaying influence factors, their weights, and sort order. A2 has the highest weight of 0.1200 and is ranked first. F1 has the lowest weight of 0.1103, ranked eighth.]To further explore the differences and changes on the GLU-E of ReB-C in different regions of the YRB, nine significant influencing factors A1, A2, B1, C1, C2, D, E1, E2, and F1 were selected through ArcGIS. After discretization processing, the overall ranking of the impact on GLU-E of ReB-C in the YRB in different years is available (Figure 7). As shown in Figure 7, with the growth of years, the land GUE of ReB-C in the YRB is not only limited to the degree of economic development, but also determined by population factors and scientific education level. And the urbanization rate impact on the GLU-E of ReB-C varies at different time periods. During the period from 2006 to 2012, the urban population increased significantly, providing sufficient labor while also exceeding the threshold of land carrying capacity, with negative effects dominating. From 2016 to 2022, relevant decision-makers alleviated the pressure brought by urbanization level through targeted governance, and industrial spatial planning gradually improved. However, problems such as resource-wasting and environmental pollution have adverse effects on the efficiency of GLU in ReB-C.
[image: Bar chart showing data across eleven indices from A1 to F1 over four years: 2006, 2012, 2016, and 2022. Each year is represented by different colors. The vertical axis ranges from one to ten, labeled as "Sort."]FIGURE 7 | Ranking of the overall impact of GLU-E in ReB-C in the YRB from different years.
Figure 8 shows the ranking results. Figure 8A shows the changes in the impact of green land use efficiency in resource-based cities in the upper reaches of the Yellow River Basin. In 2022, the [image: To generate alternative text, please upload the image you would like described.] values of E2, F1, E1, and B1 were 0.598, 0.552, 0.393, and 0.337, respectively, indicating that the above four factors will have a significant impact; A1, A2, and C2 will have a certain degree of impact; C1 and D are relatively weak factors. Therefore, it can be concluded that the influencing factors of land green utilization efficiency in resource-based cities in the upper reaches of the Yellow River Basin have shifted from being mainly ecological and policy oriented to being mainly economic, urban scale, population, and other dimensions. The influence of A1 in the economic dimension shows a fluctuating state. Figure 8B shows the changes in the impact of green land use efficiency in midstream resource-based cities. In 2022, the [image: It seems there was an issue with your image upload. Please try again by uploading the image file directly or by providing a URL. You can also include a caption for additional context if needed.] values of E1, F1, B1, and C1 were 0.598, 0.553, 0.393, and 0.339, respectively, indicating that the above factors have a significant impact; A1, A2, and D will have a certain degree of impact; C2 and D are relatively weak factors. Therefore, it can be concluded that the influencing factors of land green utilization efficiency in resource-based cities in the middle reaches of the Yellow River Basin have shifted from policy oriented to economic, urban scale, population, and other dimensions. The influence of economic dimension A1 and urban scale dimension shows significant fluctuations. Figure 8C shows the changes in the impact of downstream resource-based cities on land green utilization efficiency. In 2022, the [image: Please provide the image or a URL to it so I can help generate the alt text.] values of B1, E2, and A1 were 0.482, 0.441, and 0.318, respectively, indicating that these three factors have a significant impact; E1, C1, A2, and E1 will have a certain degree of impact; C2 and D are relatively weak factors. In summary, the factors that affect the overall, upstream, midstream, and downstream land GUE of ReB-C in the YRB vary at different time periods.
[image: Three bar charts labeled A, B, and C compare scores across various indices for four years: 2006, 2012, 2018, and 2022. Each chart has multiple indices, with different colored bars representing each year. The indices are labeled A1 through F1, with varying score values for each year.]FIGURE 8 | Ranking of the effects of different geographical positions on land GUE of ReB-C in the YRB. (A) Upstream resource-based cities, (B) Mid stream resource-based cities and (C) Downstream resource-based cities.
5 CONCLUSION
With the application of sustainable development strategies and green life concepts, the GLU-E in ReB-C has a promoting effect on the sustainable use of land in the YRB. It can also ensure the overall development and eco-protection in ReB-C. Based on a multidisciplinary approach and considering the actual situation of ReB-C in the YRB, a land GUE EIS was designed for ReB-C. The purpose is to improve the GLU-E in ReB-C in the YRB and promote developing that different dimension of the YRB. From the aspect of spatial pattern evolution, the YRB in general is positive. During the period from 2006 to 2022, the number of HH type ReB-C in the upstream increased by nearly 25%, with LH type ReB-C accounting for nearly 3%, and LL type ReB-C decreasing to 0. The midstream ReB-C are mainly scattered among LL type, while downstream ReB-C have evolved from HH type to HL type and LL type. In the DM model testing, factors such as D and E1 are key factors affecting the GLU-E of ReB-C in the YRB, while the impact of economic indicators gradually decreases. In summary, the interdisciplinary research method proposed in the study can promote the sustainable development of the Yellow River Basin, maintain local ecological security, and improve quality development, which has significant implications for improving regional coordination and green development. However, the research still has limitations, mainly in the following two aspects. On the one hand, during the data collection process, due to missing data, using data processing methods to complete may inevitably lead to potential biases; Simultaneously studying voluntary cities in the Yellow River Basin may limit their applicability to other regions. On the other hand, the study only analyzes the significant differences that affect the GUE of land in ReB-C, and the selected influencing factor indicators may lack representativeness. Thus, in future research, more objective methods can be found to optimize the indicator system and expand the selection of relevant influencing factors.
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Introduction: With the acceleration of urbanization, human population and built surface in urban areas have increased rapidly, triggering numerous environmental problems. Identification of ecological security pattern (ESP) can be helpful to optimize the interaction and relationship between ecological conservation and socioeconomic development in a given region. In this study, taking Chengdu City as an example, a methodology was used to analyze the city’s ESP.Methodology: Ecological sources were identified based on their ecological security values, which were derived from the spatio-temporal evaluation of ecosystem services and ecological health. The ecological resistance surface was revised with nighttime light index. Linkage Mapper combined with circuit theory was used to extracted ecological corridors and key ecological nodes.Results:: The results showed that the mean values of ecological security in Chengdu City presented a downward and then upward trend from 2000 to 2018. In 2018, the ESP in Chengdu City was formed by 140 ecological sources with the total area of 8,819.78 km2, 302 ecological corridors with the area of 456.91 km2, as well as 61 pinch-points and 17 barrier points. The ecological sources in Chengdu City were mainly distributed in or nearby Longmen Mountain and Longquan Mountain, two flanks of the Chengdu Plain, and connected each other with hundreds of ecological corridors. Most of ecological sources and corridors were composited of forests in mountainous areas and linpan units (wooded lots) in rural plain areas. On the contrary, pinch-points and barrier points were mainly distributed in the districts nearby the metropolitan urban center.Conclusion: Finally, this study proposed that constructing ESP must adopt a dynamic and holistic approach in considering the change of restoring ecosystems, shift of urban demands for ecosystem services and transformation of urban-rural land use/cover. Restoring and managing corridors sustainably are important for improving the ecological connectivity of all over ecological sources in a city, all of which together, if functioning well, could further support the realization of sustainable urbanization.Keywords: ecosystem services, ecosystem health, ecological security pattern, ecological connectivity, circuit theory
1 INTRODUCTION
In the last few decades, continuous urbanization and industrialization as well as human activities have led to an obvious pressure on biodiversity and ecosystem services, triggering environmental problems (Yang Y. et al., 2022), such as habitat fragmentation, biodiversity loss, and air or water pollution (Peng et al., 2018; IPBES, 2019; Xie et al., 2022). Recently, how to maintain the stability of regional ecosystems, integrate rural and urban ecosystems, and jointly achieve the sustainable prosperity of metropolitan areas, has become a global issue that attracted more and more attentions (Alberti, 2008; Kroll et al., 2012; Wolf, 2012; Li J. W. et al., 2023). Ecological security pattern (ESP) was recognized as an important countermeasure and a basic path to achieve regional ecological security and sustainable development (Kang et al., 2021). Generally speaking, ESP essentially refers to clarifying the mutual feedback between landscape patterns and ecological processes, and identifying spatially those important landscape patches where contained species, habitats and ecosystem functioning (Peng et al., 2018; Huang et al., 2020; Li WJ. et al., 2023). Originated from landscape planning methods (Kang et al., 2021), although ESP is similar to environmental network and green infrastructure that contribute to regional ecological conservation (Huang et al., 2020; Jie et al., 2023), it is more comprehensive and effective from the perspective of spatial architecture (Peng et al., 2018). Presently, the study framework of ESP has been formed including the identification of ecological sources as well as the extraction of ecological corridors by establishing resistance surface (Peng et al., 2019).
Ecological sources are usually large-size landscape patches that contain rich biodiversity and play an important role in sustaining ecosystem structure and functioning (Kang et al., 2021). In urban planning, effectively protecting urban ecological sources contributes to maintaining urban biodiversity (Xie et al., 2022), enhancing the stability and resilience of urban ecosystems (Wu et al., 2020), and improving the quality of life for city residents (Wu et al., 2021). Thus, the identification of ecological sources is the first and most fundamental step in constructing urban’s ESP which should be carefully designed (Zhang et al., 2017). Initially, most studies on metropolitan system identified ecological sources through simply extracting nature reserves, forests, green spaces, water bodies or scenic spots, which was supposed to ignore their disturbed status by human activities sometimes (Kang et al., 2021). Lately, some studies considered ecosystem services, ecological risk and/or sensitivity while assessing ecological sources (Lin et al., 2017; Yang Y. et al., 2022). Recently, a number of scholars suggested that it is necessary to integrate ecosystem health into assessment framework (Peng et al., 2015; Kang et al., 2018). The reason is that ecological source is able to not only provide diverse ecosystem services, but also contribute to maintaining ecosystem health (Kang et al., 2018). What is more, as people consciously protect and restore ecosystems in urban and rural areas, the quality of landscape patches could be continuously improved, and thus those restored or restoring lands should also be considered as potential sources in the future.
As one of indicators of ecological connectivity in a landscape (Tian et al., 2023), ecological corridors represent critical carriers in maintaining flows of materials and energy between ecological sources, which are normally extracted through the establishment of resistance surface and the simulation of species migration process (Huang et al., 2020). The resistance surface reflects the difficulty of species migration, which is considered to be the prerequisite for extracting ecological corridors accurately (Kang et al., 2021). While discussing resistance surface, many scholars preferred to consider land cover/use and topographic conditions such as slope and elevation (Su et al., 2021), but they underestimated the impacts of human activities on resistance surface (Kang et al., 2021). Lately, some studies modified the assessment framework with the indicators of human activity such as nighttime light (Zhang et al., 2017; Shuai et al., 2023) or impervious surface (Huang et al., 2020). At present, the extraction of ecological corridors mainly used related spatial models such as minimum cumulative resistance (MCR) (Wang and Pan, 2019) and circuit theory (Peng et al., 2018; Li J. W. et al., 2023; Tang et al., 2023). Although MRC has been used widely in quickly extracting the optimal path of ecological flow, it cannot identify the migration path of species exactly, including the width of corridors and key nodes (Peng et al., 2018; Xu et al., 2019). Recently, with the Ohm’s Law being innovatively applied in studying ecological process, circuit theory has been used to simulate the path of random migration of biological species, which can effectively extract corridor width and identify key nodes for reconstructing ESP (Peng et al., 2018; Xu et al., 2019; Gao J. et al., 2021; Li WJ. et al., 2023; Tang et al., 2023).
Nowadays, the assessment and improvement of ESP has become an important approach for consolidating and enhancing ecological security of metropolitan areas (Li et al., 2019). As a fast-growing metropolis, Chengdu City is not only the capital city of Sichuan Province, but also the most importantly economic, commercial, cultural and transport hub in western China (Li, 2017). During the past decades especially after the 1990s, accelerated urbanization has caused drastic changes on land use/cover in Chengdu City which further raised the consideration or even concerns on regional ecological security and socio-ecological resilience in a long run (Schneider et al., 2005; Yang et al., 2011; Whiting et al., 2019). After the late 2000s, a national program, “Rural Revitalization,” was carried out in China as well as Chengdu City. While actively pursued agricultural modernization and promoted widespread physical transformation of rural lands for urban infrastructure and services, this program also emphasized the preservation of traditional lifestyle and rural landscape such as linpan (wooded lots) landscape in order to reduce the loss of cultivated land, provide public amenities to publics, and enhance the resilience of agricultural system across the region (Wu et al., 2020; Zhong et al., 2022). In 2018, a new program called “Park City Construction” initiated by Chengdu City government with the main aims at increasing green space, constructing ecological infrastructure and improving harmonious relationship between nature and people in both urban and rural areas (Yang Z. et al., 2022; Zhong et al., 2022). Considering these ongoing programs, in this study we take Chengdu City as an example to: (1) assesse the status and trend of ecological security from 2000 to 2018; (2) identify ecological sources as well as corridors and critical nodes; and (3) explore an optimization strategy for constructing a healthy and sustainable “Park City.” It is hoped that this study could be beneficial to the spatial planning of Chengdu City and sustain its urbanization in the future.
2 METHODOLOGY
2.1 Study area
Chengdu City is a metropolitan area located at an alluvial plain extending between Longmen Mountain in the west and Longquan Mountain in the east with the longitude of 102° 54′–104° 53′ E and latitude of 30° 05′–31° 26′ N (Figure 1). As a fast-growing national metropolis, it covers an area of 14,335 km2, among which the built-up area is 932 km2, about 6.5% of the total. In 2018, its population was about 14.76 million with 60.94% living in urban (Statistic Bureau of Chengdu and NBS Survey Office in Chengdu, 2020). The great Minjiang River and Tuojiang River, both of the main branches of the Yangtze River, together with their numerous fine tributaries, run across this plain, forming an expansive watershed with a very flat but partly hilly topography. The climate of this plain is typically subtropical with a mild temperature (annual mean temperature: 15.2°C–16.6°C) and rich rainfall (annual mean precipitation: 899–1,284 mm) almost all year round, providing ideal conditions for crop cultivation, fruit plantation and subtropical forests (Editorial Committee of Chengdu Annals, 2000). Flowing down from the Dujiangyan Irrigation System in the northwest, a World Cultural Heritage site of the UNESCO, the network of irrigation canals or channels supports the agricultural prosperity of this plain in last many centuries and is still irrigating a vast area of cultivated fields up to date. Given the advantages of heat and water conditions, most of the rural areas in Chengdu plain are covered by a specific agro-cultural landscape, called linpan landscape, an integrated ecosystem complex including linpan unit (rural settlements surrounded by tree or bamboo groves), farmlands (mainly paddy fields) and freshwater bodies (mainly ponds and hydraulic channels) (Wu et al., 2020).
[image: Map showing elevation in a region of China, marked by Longmen Mountains on the west and Longquan Mountains on the east. Elevation ranges from 361 meters (blue) to 5150 meters (red). Major cities and boundaries are indicated, with a scale bar and compass rose included.]FIGURE 1 | The location of the Chengdu City.
2.2 Data sources
Several datasets were used in this research, which were elaborated as follows. The land-use data with a spatial resolution of 30 m in 2000, 2010 and 2018 were obtained from the Resource and Environment Science and Data Center (China) (https://www.resdc.cn/). The spatial distribution data of linpan units were acquired from the visually spatial interpretation based on Landsat, Google, Spot and sentinel images, which accuracy is higher than 80%. The daily precipitation data were obtained from the China Meteorological Data Service Centre (http://data.cma.cn). The Yearly Net Primary Production data (MOD17A3 NPP raster data products) with 500 m*500 m resolution, 16-day Normalized Difference Vegetation Index data (MOD13Q1 NDVI raster data products) with 250 m*250 m resolution as well as Yearly Potential Evapotranspiration (MOD16A3 PET raster data products) with 500 m*500 m resolution were acquired from NASA MODIS (https://modis.gsfc.nasa.gov/). The Digital Elevation Model (DEM) with 30 m*30 m resolution was obtained from the Geospatial Data Cloud website (http://www.gscloud.cn/). The soil-type database was downloaded from the Harmonized World Soil Database (HWSD, http://www.fao.org/) at the scale of 1: 1,000,000. The nighttime light data with 130 m*130 m resolution (2018.10.15) were acquired from Luojia Number 1 Wuhan University (http://www.hbeos.org.cn/). The agricultural production data were abstracted from Chengdu Statistical Yearbook (http://cdstats.chengdu.gov.cn/). All of above data were reclassified utilizing the nearest neighbor method in GIS, and the grids of raster data were unified to be 30 m*30 m.
2.3 Framework for ecological security assessment
The ecological security of a city is closely related to the capacity of ecosystems inside to deliver services sustainably and to maintain a high-level status of ecosystem health (Peng et al., 2015; Kang et al., 2018). According to the research of Peng et al. (2015), the assessment of the Ecological Security Value (ESV) is based on a formula including two parts, which is modeled as follows:
[image: Equation for ESV equals the cube root of the product of EHI and ESI.]
Here, ESV is the regional Ecosystem Security Value; EHI is the Ecosystem Health Index; and ESI is the Ecosystem Services Index.
2.3.1 Assessment of ecosystem health index
In this study, we adopted the traditional framework for EHI assessment with the indicators of ecosystem vigor, organization, and resilience (Kang et al., 2018). The formula of EHI is as follows:
[image: Mathematical formula showing "EHI equals the cube root of the product of EV, EO, and ER."]
Here, EHI is the Ecosystem Health Index; EV, EO, and ER represent the vigor, organization and resilience of ecosystem respectively, the details of which are described as follows.
Ecosystem vigor is characterized by the metabolism or primary productivity of ecosystem. In this study, net primary production (NPP) was used for assessing ecosystem vigor, which had been demonstrated to be effective in previous studies on ecosystem metabolism (Tian and Qiao, 2014; Kang et al., 2018).
Ecosystem organization refers to the stability of ecosystem structure, which is determined by landscape patterns related to spatial heterogeneity and ecological connectivity (Peng et al., 2015; Kang et al., 2018). Generally speaking, landscape heterogeneity could be evaluated with several indicators such as Area-Weighted Mean Fractal Dimension Index (AWMPFD), Shannon’s Diversity Index (SHDI), and Modified Simpson’s Diversity Index (MSIDI). The higher these indexes’ values are, the more heterogeneous the landscape should be.
Ecological connectivity is determined by ecological corridors and important ecological patches (e.g., woodlands and water bodies). In this study we use Splitting Index (SPLIT) and Contagion Index (CONTAG) to quantify the overall ecological connectivity of landscape between patches (Pan and Wang, 2021). According to the previous studies (Peng et al., 2015; Kang et al., 2018; Pan and Wang, 2021), the weights of landscape heterogeneity and connectivity are 0.35, but the weight for the ecological connectivity between patches is assigned as 0.3. Although each index can be quantified with Fragstats software, in order to eliminate the impacts caused by different dimensions, the results of index assessment could be standardized for further calculation of ecosystem organization index, which formula is as follows:
[image: Formula for \( P_i \) is shown: \((X_i - X_{min})/(X_{max} - X_{min})\).]
[image: Equation depicting environmental outcome (EO) as a weighted sum of variables: LH, LC, IC, AWMPFD, SHDI, MSIDI, SPLIT₁, SPLIT₂, CONTAG, SPLIT₃, CONNECT₁, and CONNECT₂.]
Here, Pi is the standardized index of landscape index of type i; Xi is the value of landscape index of type i; Xmin and Xmax are the minimum and maximum values of landscape index of type i respectively; EO is the ecosystem organization of assessed unit; LH and LC are the landscape heterogeneity and landscape connectivity respectively; IC is the ecological connectivity of assessed patches; AWMPFD, SHDI, MSIDI, SPLIT1, and CONTAG are the Area-weighted Mean Fractal Dimension Index, Shannon’s Diversity Index, modified Simpson’s Diversity Index, Splitting Index, and Contagion Index of Entire Landscape, respectively; SPLIT2 and SPLIT3 are Splitting Index of forest and water body patches; CONNECT1 and CONNECT2 are the Area-weighted Mean Fractal Dimension Index of forest and water body patches.
Ecological resilience refers to the ability of an ecosystem or landscape to recover its original structure and function after being disturbed by natural and human interventions, which reflects the ability of an ecosystem or landscape to resist or adapt to external disturbances (Gunderson, 2000; Peng et al., 2015). Due to the change of land-use/cover playing an important role impacting on ecological resilience, we used different types of land-use/cover to calculate resilience coefficient (Kang et al., 2018; Pan and Wang, 2021), which was further modified based on the NDVI data. The formula is as follows:
[image: Equation representing ER as NDVI sub i divided by NDVI sub mean j, multiplied by RC sub i.]
Here, ER is the ecological resilience of spatial entities; NDVIi represents the NDVI value of the raster i; NDVImeanj is the average value of NDVI of land-use/cover type j where the raster i belongs to; RCi is the resilience coefficient of land-use/cover type i (Table 1).
TABLE 1 | Resilience coefficient of land use/cover types.
[image: Table listing land-use types, resilience coefficients, and characteristics. Paddy fields and irrigated lands have coefficients of 0.5 and 0.4, indicating human intervention importance. Forestland and water have coefficients of 1.0, highlighting the importance of natural ecosystems in maintaining stability. Shrubland and high-density grassland both have 0.8, open and other woodland have 0.7, middle-density grassland also 0.7. Low-density grassland has 0.2, and urban, rural, and other construction lands have 0.1, indicating limited contribution to stability. Unused land has a coefficient of 0.]2.3.2 Assessment of ecosystem services index
Based on previous studies (Wu et al., 2020; Wu et al., 2021), five representative indicators (services) were selected for the calculation of Ecosystem Services Index (ESI), including food supply, water supply, habitat quality, soil conservation as well as carbon storage. Considering the uniform of five services due to the different dimensions, it is difficult to use them directly into the evaluation. Thus, it is necessary to standardize these values in line with the normalization method of landscape index mentioned above, and then calculate the indexes of five ecosystem services with following formula:
[image: Equation for normalization: \(Pi = \frac{X_i - X_{min}}{X_{max} - X_{min}}\), where \(X_i\) is the value to normalize, \(X_{min}\) is the minimum value, and \(X_{max}\) is the maximum value.]
[image: Mathematical equation showing the expected shortfall (ES) calculated as the sum of probabilities (p) multiplied by associated losses (W) at different time intervals: \(ES = p_1 \times W_1 + p_2 \times W_2 + p_3 \times W_3 + p_4 \times W_4 + p_5 \times W_5\).]
Here, Pi is the standardized index of ecosystem service of type i; Xi is the value of ecosystem service of type i; Xmin and Xmax are the minimum and maximum values of ecosystem service of type i respectively; ESI represents ecosystem service index; P1–5 is the normalized index of each ecosystem service; W1–5 is the weighted value of 1–5 service (adopting 0.2 as the average weight).
Food supply is an important provisioning service for agricultural ecosystem, which delivers grain, oilseeds, vegetables, meat, milk and aquatic products to rural and urban population. It was found that there is a significant linear relationship between NDVI and the yield of agricultural products including crops and animal products (Feng et al., 2014). In this study, based on agricultural production and land use/cover types in Chengdu City, the total outputs of grain, oilseeds, and vegetables were allocated into small grids according to the ratio between the grid NDVI value and the total NDVI value of cultivated lands. Given the importance of grasslands (mostly mowing pastures) in producing meat and milk, their outputs were also allocated into small grids according to the ratio between the grid NDVI value and the total NDVI value of grasslands. In Chengdu Plain, because aquatic products are mainly harvested from reservoirs and water ponds, the total output of aquatic products was evenly distributed to water bodies according to their areas. Thus, after calculating agricultural production with following formula, the spatial distribution of food provisioning service in Chengdu City could be obtained.
[image: The formula shown is \( G_{i} = G_{\text{sum1}} \times \frac{NDVI_{i}}{NDVI_{\text{sum}}} + G_{\text{sum2}} \times \frac{S_{i}}{S_{\text{sum}}} \).]
Here, Gi represents the agricultural production of raster i; Gsum1 is the total output of grain, oilseeds, vegetables, meat and milk; NDVIi is the normalized vegetation index of grid i; NDVIsum is the sum of NDVI values of cultivated lands and grasslands; Gsum2 is the total production of aquatic products; Si is the area of water bodies including reservoirs and ponds in grid i; and Ssum is the sum of the area of water bodies.
Water supply is one of the most important regulating services of ecosystems, which is also fundamental to many processes and functioning of ecosystems. In this study, water supply was evaluated with InVEST-Water Yield Model (https://www.naturalcapitalproject.org/invest/), which formula is as follows:
[image: The formula shown is: WY subscript xj equals open parenthesis 1 minus AET subscript xj divided by P subscript x close parenthesis times P subscript x.]
Here, WYxj is the amount of annual water supply from grid x; AETxj is the annually average evapotranspiration of grid x of land-use/cover type j; Px is the annual precipitation falling onto grid x; the ratio AETxj/Px is calculated based on the drying index, crop coefficient, potential evapotranspiration, and Z parameter (an empirical constant ranges from 1 to 30, sometimes referring to as “seasonality factor”), etc. More details about these calculations can be found in the user’s guide of InVEST Model (Sharp et al., 2016). Through repeatedly adjusting the Z parameter in the model, the calculated water supply could be as consistent as possible with the actual total water resources (Yang et al., 2020).
Habitat quality was calculated with the InVEST-Habitat Quality Model (Peng et al., 2018). Four factors considered in habitat quality assessment include: (1) the relative impact of each threat; (2) the relative sensitivity of each habitat (patch) to each threat; (3) the distance between habitats; and (4) the situation of habitats being legally protected (Su et al., 2021). The values of habitat quality range from 0 to 1, representing the habitat quality from the worst to the best. According to the InVEST user’s guide and previous studies (Lin et al., 2017; Su et al., 2021), six indicators including paddy, farmland, urban area, rural settlement, construction land and unused land as threats were used in assessing habitat quality.
Soil conservation was calculated with InVEST-Sediment Delivery Ratio Model, which is mainly based on the revised Universal Soil Loss Equation (RUSLE) (Peng et al., 2018; Tang et al., 2018; Pan and Wang, 2021). The formula is as follows:
[image: Mathematical formula depicting SC equals R multiplied by K multiplied by LS multiplied by the quantity one minus C multiplied by P.]
Here, SC is the amount of annual soil conservation; R represents rainfall erosion calculated with the method proposed by Hu et al. (2014); K is the value of soil erodibility according to the method of Williams et al. (1983) and related soil data from HWSD; LS is the divisor of slope grade and length; C is vegetation coverage and crop management; and P is a factor indicating control measures on soil erosion. The factor of crop management and soil erosion control were collected from other related researches (Hu et al., 2014; Gao J. et al., 2021).
Carbon storage was calculated with InVEST-Carbon Storage Model. The total carbon storage in ecosystems was measured with the sum value of carbon in four carbon pools, including aboveground carbon pool, underground carbon pool, soil carbon pool, and dead organic carbon pool. Based on the relevant parameters of carbon density in Chengdu City reported by Zhang (2018), carbon storage was calculated with following formula.
[image: The formula displays an equation: C subscript total equals C subscript carbon plus C subscript nitrogen plus C subscript soil plus C subscript debris.]
Here, Ctotal is the total carbon storage; Cabove and Cbelow is aboveground and underground carbon storage; Csoil is soil carbon storage; and Cdead is dead organic carbon storage.
2.4 Identification of ecological security pattern
Ecological security pattern has a crucial role in maintaining the stability of structure and function of ecosystems through developing a network of ecological sources, corridors, and key nodes into an integrated socio-ecological system (Peng et al., 2018; Wang and Pan, 2019). Given the status of Chengdu City in 2018 as an example, this study aimed at assessing the ecological security pattern (ESP) based on the methods reported by previous researches (Kang et al., 2018; Peng et al., 2018). Three steps were included in this study: (1) identifying ecological sources through quantifying and mapping ESV (see Section 2.3), (2) structuring resistance surface with nighttime light data, and (3) extracting ecological corridors, key pinch-points as well as barrier points with circuit theory. The methodological framework used in this study was shown in following chart (Figure 2).
[image: Flowchart depicting the relationship between ecosystem services and health, land use, and nighttime light data in 2018. Ecosystem services include carbon storage, habitat quality, food supply, soil conservation, and water supply. Ecosystem health includes vigor, organization, and resilience. These elements contribute to ecological security value, leading to ecological sources and resistance surface in 2018. Circuit theory connects to ecological corridors, pinch-points, and barrier points.]FIGURE 2 | Methodological framework for identifying ecological security pattern.
2.4.1 Ecological sources
Based on the assessment method of ecosystem services and ecological health (see Section 2.3), the results of Chengdu’s ESV in 2000, 2010 and 2018 were obtained. Initially, the results of ESV of 2018 was divided into five grades with natural breaks (Peng et al., 2018), where the grade from 1 to 5 represents the importance level ranging from low to high. If the patches are graded 4 or 5, it indicates that these patches belong to stable ecological sources, characterized by rich biodiversity and playing a crucial role in sustaining ecosystem structure and function. Additonlly, with the implementation of ecological restoration and biodiversity conservation programs from 2000 to 2018, the ecological conditions of many areas in Chengdu City have been improved continuously. Those restored and restoring lands have become a kind of ecological sources or potential sources. Previous research has shown that the habitat heterogeneity within a city significantly improves with the expansion of green spaces and parks (Uchida et al., 2021), which is believed to contribute to maintaining high levels of biological species diversity (Gao Z. et al., 2021). Therefore, we identified several areas as potential ecological sources where the ESV had increased annually from 2000 to 2018 and ultimately exceeded the regional mean value of 2018. What is more, according to the analysis of actual situation, the patches with the area below 0.3 km2 were eliminated from the dataset of ecological sources (Wang and Pan, 2019). Finally, all of ecological sources in Chengdu City were identified, including two types: stable ecological sources and potential ecological sources.
2.4.2 Resistance surface
Different types of land-use/cover possess different levels of resistance to the flows of matter and energy, and thus in many studies the values of resistance surface were assigned based on land-use/cover types (Su et al., 2021). Furthermore, it was found that resistance coefficient increased with the intensity of human activities (Zhang et al., 2017). In term of the representative indicator of human activities, the nighttime light data of Chengdu City was chosen in this study to reflect the status of economic development as well as urbanization, which were considered as the major human interventions in a city (Peng et al., 2016; Xie et al., 2017). According to the previous study (Zhang et al., 2017), the basic resistance coefficients of different land-use/cover types were explained in Table 2, and the nighttime light data was introduced in this study for revising these resistance coefficients. The revised resistance coefficient was calculated with following formula.
[image: Mathematical formula showing R prime equals one plus TLI subscript a, multiplied by R.]
[image: A mathematical formula is shown: \( TLI_{a} = \frac{(L_{i} - L_{min})}{(L_{max} - L_{min})} \).]
TABLE 2 | The criteria of resistance value for different land-use/cover types.
[image: Table showing land use or cover types with corresponding resistance coefficients. Paddy fields and irrigated land have a coefficient of 100, forestland and high-density grassland have 1, shrubland 3, open woodland and other forestland 5, middle-density grassland 3, low-density grassland 5, water 8, urban construction land 1,000, rural construction land 800, other construction land 900, and unused land 50. Source: Zhang et al., 2017.]Here, R’ is the revised resistance coefficient; (1+ TLIa) is the revising parameter of resistance coefficients of land-use/cover a; R is the basic resistance coefficient of land-use/cover type a; Li is the nighttime light data of grid i which belongs to land-use/cover type a; Lmin and Lmax are the minimum and maximum nighttime light indexes of land-use/cover type a respectively.
2.4.3 Ecological corridors, pinch-points and barrier points
Ecological corridors are the important channels of material, energy, and information exchange in an ecosystem or landscape, and can enhance ecological connectivity and then maintain ecosystem integrity (Wang and Pan, 2019; Huang et al., 2020; Zhang et al., 2021; Li J. W. et al., 2023; Tang et al., 2023). Generally, pinch-points and barrier points appear nearby ecological corridors. Pinch-points are those areas where ecological processes occur frequently and should not be removed or destroyed, while barrier points are the areas that hinder ecological processes and should be removed or restored (Lechner et al., 2015; Pierik et al., 2016). In this study, optimal corridors, pinch-points and barrier points were identified with Linkage Mapper of Geographic Information System (GIS) based on circuit theory model (http://www.circuitscape.org/linkagemapper). Sub-optimal corridors, additionally, including their range or width which was crucial to ecological process, were determined based on the cumulated resistance from 20,000 to 200,000 with an increment of 20,000 in Pinch-point Mapper model (Peng et al., 2018; Huang et al., 2020). Both optimal corridors and sub-optimal corridors together constitute the network of ecological corridors across the landscape of Chengdu City. Moreover, through grading the cumulative current based on natural breaks, pinch-points were identified (Huang et al., 2020). The searching radius of mobile window in Barrier Mapper tool of Linkage Mapper was 200 m (Gao Z. et al., 2021; Yang et al., 2021). More detailed explanations and descriptions about these models can be found in relevant publications (Lechner et al., 2015; Pierik et al., 2016; Peng et al., 2018).
3 RESULTS
3.1 Temporal and spatial dynamics of ESV in Chengdu City
3.1.1 Ecosystem health
The ecosystem vigor (EV), organization (EO) and resilience (ER) of Chengdu City in 2000, 2010, and 2018 were shown in Figure 3. The ecosystem vigor showed a declining and then rising trend from 2000 to 2018. Briefly, the value range of EV in 2000, 2010, and 2018 fluctuated from 0 to 1,313.90 g m−2 a−1, 0–1,364.60 g m−2 a−1, and 0–1,418.60 g m−2 a−1, respectively. However, in term of the mean value of EV at three time points, it showed a generally increasing trend from 508.51 g m−2 a−1 in 2000 to 494.25 g m−2 a−1 in 2010 and then 605.65 g m−2 a−1 in 2018, indicating the progressive improvement of vegetation in the city. At the same period from 2000 to 2018 the EO and ER values were relatively stable. The range of EO values in 2000, 2010 and 2018 changed from 0.124 to 0.655, 0 to 0.694 and 0 to 0.650, with the average values being 0.251, 0.248 and 0.250, respectively. As for the ER value at three time points, it fluctuated from 0 to 1.753 in 2000, 0 to 1.827 in 2010, and 0 to 1.853 in 2018, but its mean values remained about 0.5, being 0.528, 0.513, and 0.506 respectively.
[image: A series of maps illustrating changes in ecosystem vigor, organization, and resilience from 2000 to 2018. Each row represents a different ecosystem aspect, with maps for 2000, 2010, and 2018. Vigor is shown in yellow to dark blue, organization in light green to dark blue, and resilience in yellow to dark blue, each with a legend indicating the scale of values.]FIGURE 3 | Spatial distributions of EV, EO, and ER values in 2000, 2010, and 2018 in Chengdu City.
Based on the evaluation of EV, EO and ER above mentioned, the spatial distribution of EHI was calculated (Figure 4). The fluctuation of EHI values in 2000, 2010, and 2018 were from 0 to 19.06, 0 to 21.35 and 0 to 22.19, respectively. It could be found in Figure 4 that the general trend of mean EHI value was similar to the EV, which decreased firstly from 8.20 in 2000 to 7.95 in 2010, and then increased to 8.56 in 2018. In view of the EHI in 2018, the areas with high values were found on both sides of Chengdu City plain, i.e., in and nearby Longmen Mountain in the west and Longquan Mountain in the middle-east. The low valued areas mainly occurred in the middle plain where the metropolitan urban center and its satellite towns were located.
[image: Three maps show changes in Ecosystem Health Index for a region in 2000, 2010, and 2018. Colors range from green (<3) to dark blue (>15), indicating varying health levels.]FIGURE 4 | Spatial distribution of EHI value in 2000, 2010, and 2018 in Chengdu City.
3.1.2 Ecosystem services
The spatial distribution of water supply, food supply, habitat quality, carbon storage, and soil conservation were mapped in Figure 5. These five kinds of ecosystem services exhibited heterogeneous patterns temporally and spatially. Generally, water supply showed a continuously increasing trend, changing from 414.98 mm km−2 in 2000 to 686.85 mm km−2 in 2010, and then 985.61 mm km−2 in 2018. The areas with high water supply service were mainly distributed in the southwestern districts of Chengdu City, such as Pujiang City, Qionglai City, Dayi City, and Chongzhou City. During the same period, the total food supply decreased from 2000 to 2010 and then increased from 2010 to 2018. In average, the food supply in Chengdu City was 608.76 t km−2 in 2000, but in 2010 it declined to 522.58 t km−2 and then got to 643.64 t km−2 in 2018. The areas with high food supply were mainly distributed on both sides of Longquan Mountain, i.e., hilly and plain areas.
[image: Maps displaying changes in ecosystem services from 2000 to 2018. Each row represents a different service: water supply, food supply, habitat quality, carbon storage, and soil conservation. Color gradients indicate varying levels, with green to blue showing increasing values. Maps are organized chronologically from left to right.]FIGURE 5 | Spatial distributions of water supply, food supply, habitat quality, carbon storage and soil conservation services in 2000, 2010, and 2018 in Chengdu City.
The temporal changes of habitat quality, carbon storage and soil conservation had similar features from 2000 to 2018, showing a relatively stable trend, but the mean values of soil conservation increased sharply from 1855.88 t hm−2 in 2000–6,020.99 t hm−2 in 2018, indicating an increase of 2.24 times during the period of 18 years. In term of spatial patterns, the areas with high values of these three ecosystem services occurred in or nearby Longmen Mountain and Longquan Mountain, but low valued areas were found in the middle plain.
Integrating the evaluation of five ecosystem services into ESI model, the values of ESI varied in the ranges of 0.040–0.699 in 2000, 0.053–0.727 in 2010, and 0.042–0.771 in 2018, respectively. Their spatial distributions were mapped in Figure 6. As to the average values of ESI, it was 0.389 in 2000, but in 2010 it decreased a little bit to 0.384, and then quickly increased to 0.426 in 2018. Undoubtedly, the areas with high EHI values were also found in and nearby mountains where restoration programs had been implemented extensively in last few decades, but low valued areas were mainly distributed in the densely populated plain.
[image: Three maps show the spatial distribution of the Ecosystem Service Index for the years 2000, 2010, and 2018. The color gradient from yellow to dark blue represents increasing index values from 0 to 1.]FIGURE 6 | Spatial distribution of ESI in 2000, 2010, and 2018 in Chengdu City.
3.1.3 Ecological security
Combining the results of EHI and ESI mentioned above, ESV could be calculated accordingly (Figure 7). The values of ESV varied in the ranges of 0–3.237 in 2000, 0–3.449 in 2010 and 0–3.549 in 2018, respectively. In view of regional mean value, the ESV decreased from 1.741 in 2000 to 1.708 in 2010, and then increased to 1.869 in 2018. Considering the spatial pattern of ESV in Chengdu City, the high values of ESV occurred in mountainous areas, but the low values were also found in the circle around the metropolitan urban center, showing a similar feature to the change of ecosystem services.
[image: Two maps of China display ecosystem security values from 2000 to 2020. The maps use a color gradient from yellow (low security) to dark blue (high security). The scale on the right indicates values ranging from less than 0.5 to over 2.5.]FIGURE 7 | Spatial distribution of ESV in 2000, 2010, and 2018 in Chengdu City.
3.2 Spatial optimization of ESP
3.2.1 Recognition of ESP’s elements
3.2.1.1 Identification of ecological sources
Based on the natural breaks of the ESV in 2018, the areas (patches) with the grade of 4 to 5 (ESV>1.99) were designated as stable ecological sources. Meanwhile, considering the annual increase of the ESV from 2000 to 2018, the areas with the ESV above 1.869, the mean value of ESV in 2018, were regarded as potential ecological sources. Finally, 140 patches of ecological sources with an area of 8,819.78 km2 totally were identified, making up 61.52% of the studied territory, of which most were distributed in and nearby Longmen Mountain and Longquan Mountain (Figure 8A). Among these various ecological sources, the area of stable ecological sources was 7,924.83 km2, accounting to 89.85% of the total ecological source areas; but the area of potential ecological sources was 894.95 km2, making up only 10.15%.
[image: Map series depicting ecological zones and resistance coefficients in a region. Image (A) shows stable and potential ecological sources in green, with boundaries marked. Image (B) illustrates resistance coefficients, ranging from high in yellow to low in blue. Image (C) displays optimal ecological corridors in red, overlaid on ecological sources in green, with boundaries outlined.]FIGURE 8 | Ecosystem sources (A), resistance coefficients (B) and ecological corridors (C) in Chengdu City.
3.2.1.2 Identification of resistance surface and ecological corridors
According to the basic resistance value and the intensity of nighttime light, the distribution of modified resistance surface was mapped (Figure 8B). The average of modified resistance coefficients was 206.74, but the maximum and minimum values varied from 2000 to 1. In general, the resistance coefficients around the metropolitan urban center were higher than those in remote rural areas in particular of mountainous areas.
Ecological corridor is an important element of ESP, which is composed of striped areas with specific width and plays an important role in sustaining ecological processes and functioning. As shown in Figure 8C, there were 302 optimal corridors connecting hundreds of ecological sources in Chengdu City. The length of observed ecological corridors was 899.11 km in total. The distance in between ecological sources was 2.98 km in average, but it varied from 0 to 23.79 km. There were 186 corridors with the length of less than 2 km, accounting to 61.59% of the total number of optimal corridors, which implied most of the corridors were short.
3.2.1.3 Sub-optimal ecological corridors
With the setting of cumulative current higher than 0.01 and the increase of cumulative resistance from 20,000 to 200,000 (increments of 20,000), it was found that the corresponding areas of sub-optimal ecological corridors varied in each increment (Figure 9). Although the spatial distribution of these corridors remained unchanged, the total area increased firstly and then declined slightly with the increasing effects of threshold. The highest value occurred at the point when the cumulative resistance being 100,000 (Figure 10). The sub-optimal corridors identified in this study would be very important for the spatial planning of Park City in the future, which covered 456.91 km2 and accounted to 3.19% of the total area, including 61 pinch-points and 17 barrier points.
[image: Series of maps illustrating the cumulative current distribution in Chengdu at intervals from 20,000 to 200,000. Each map shows ecological sources in dark green, Chengdu boundaries, and barriers. A legend indicates current intensity from low (0.01) to high (0.11). An arrow points north, with a scale bar displaying distances up to 150 kilometers.]FIGURE 9 | Areas of sub-optimal ecological corridors and distribution of cumulative resistance.
[image: Bar and line graph showing the area and proportion of sub-optimal corridors against cumulative resistance. The green bars represent area in square kilometers, peaking between 70,000 and 100,000 cumulative resistance. The orange line shows the proportion in percentage, peaking at the same range.]FIGURE 10 | The areas and proportion of sub-optimal corridors.
3.2.2 Optimization strategy
On the whole, the ESP in Chengdu City was consisted of various ecological sources, mainly including forests, shrublands, grasslands, farmlands and water bodies, which were interconnected through ecological corridors. The total area of ecological sources was 8,819.78 km2, including 140 ecological sources, among which stable ecological sources made up 89.86% (7,924.83 km2), and potential ecological sources accounted to 10.15% (894.95 km2).The ecological corridors in Chengdu City, including 302 optimal corridors and sub-optimal corridors with the total length of 899.12 km and total area of 456.91 km2, contributed to the interconnection of ecological sources citywide.
In view of the spatial pattern of ESP in Chengdu City, three circles could be roughly divided, including: (1) ecologically stable area in outer circle, i.e., those areas in and nearby mountains; (2) ecologically sensitive area in middle circle, i.e., those rural areas in hilly and plain areas; and (3) ecologically vulnerable area in inner circle, i.e., urban center and surrounding satellite towns, which could be further elaborated as follows (Figure 11).
[image: Map depicting ecological areas with a legend showing land cover types: blue for lignite, red for coal pits, orange for puschpraions, brown for barriers, green for ecological sources, and dotted lines for corridors. Three sections, I, II, and III, are marked. Scale bar in the lower right corner.]FIGURE 11 | Spatial distribution of ecological security pattern and linpan units in Chengdu City. Note: (I) ecologically stable area, (II) ecologically sensitive area, and (III) ecologically vulnerable area.
3.2.2.1 Ecologically stable area
The areas with high-quality ESV were mainly distributed in two flanks of Chengdu plain, locating at Longmen Mountain in the west and Longquan Mountain in the east and their piedmonts. These areas were characterized by obviously vertical difference of topography and lush forests. Over 80% of the territory was identified as ecological sources, with numerous ecological corridors and pinch-points but without barrier points. In term of administrative districts, most of high-quality ESV were found in Pengzhou City, Dujiangyan City, Chongzhou City, Dayi City and Longquanyi City. The administrators of these administrative regions should formulate policies related to the protection and maintenance of ecological source, ecological corridors and pinch-points. In the north of Chengdu plain, such as Jintang district, the quality of ecological sources declined relatively due to the increase of population density, the intensification of industry, and the traditional transport hub connecting Chengdu with other urban to the north such as Deyang City, Mianyang City and even Xi’an City. If the socio-economic development of a region indeed requires occupying areas within the urban ecological security pattern, the priority should be to protect ecological pinch-points as much as possible. Additionally, careful consideration should be given to whether it is necessary to re-establish ecological source areas and construct ecological corridors to maintain regional ecological security.
3.2.2.2 Ecologically sensitive area
This area was located at the middle of Chengdu Plain with flat topography and very intensive agriculture. Due to the benefits of Dujiangyan Irrigation System, croplands were managed extensively and in a long history. The ecological sources here were mainly composed of linpan system which integrate rural residence, tree or bamboo groves, paddies and water bodies (e.g., hydraulic system and ponds) into a socio-ecological system and finally became the unique linpan landscape in the Chengdu Plain. The number of optimal and sub-optimal corridors was relatively higher than other areas in Chengdu City due to the reticulation of forested channels, ditches, roads and field paths. In additions, this area contained most of pinch-points, including 5 in Xinjin, 35 in Shuangliu and 18 in Xindu, as well as barrier points, including 2 in Pudu, 7 in Shuangliu and 8 in Longquanyi, all of which were priority nodes for ecological protection or restoration in the future.
3.2.2.3 Ecologically vulnerable area
This is an urbanized area, including urban center and neighboring districts such as Pidu, Wenjiang, and Shuangliu. In 2018, the average resistance coefficient here was very high, getting to the maximum of 2000 in several places. There were very few ecological sources and corridors, but a number of corridors could still be found in Xindu City due to the remained woodlands. Therefore, when planners and administrators of Xindu City undertake urban development and planning, they need to pay special attention to issues related to ecological source areas and ecological corridors. If urban development requires occupying or sacrificing ecological source areas and ecological corridors, new ecological sources and ecological corridors need to be simulated using 3S technology before planning the city’s development.
4 DISCUSSION
With the rapid urbanization process in developing countries, urban areas are facing many environmental challenges in the process of expansion (Jie et al., 2023). It is thus necessary to integrate ecological conservation into urban planning for achieving sustainable development goals. While formulating development plan of a city, it is imperative for decision-makers to clarify important structure and process of ecosystems in urban and rural landscape, such as patches, corridors and nodes, which should be protected or restored for ESP construction (Zhang et al., 2021). Normally, large-scale forestlands, nature reserves and mountain wilderness are easily identified as ecological sources (Huang et al., 2020), but those corridors in particular of short corridors which can influence several ecological processes and functions of patches are always ignored by city planners. In comparison with traditional protection approach, constructing a holistic ESP in a city is more proactive in considering the integration of ecological sources and corridors into the spatial planning, which finally could be beneficial to the security and resilience of socio-ecological system at a regional scale (Yuan et al., 2022).
4.1 Constructing ESP in considering corridor width
A reasonable ESP of a given metropolitan area may comprise almost all of important ecological sources and corridors within its territory for the smooth flow and exchange of ecosystem services in and across the urban-rural continuum, which can minimize or absorb the adverse impacts of external disturbance and then enhance the resilient capacity of the region (Yu et al., 1996; Alberti, 2005; Elmqvist et al., 2013). Ecosystem services do not function alone, but interweave with each other and are strongly influenced by the ecological connectivity between patches. Without effective corridors or corridor network, the functions of hundreds or thousands ecological sources could not be really synergized. The spatial pattern of ecological corridors is determined by their components, ecological nodes as well as configuration. The width of a corridor has a direct impact on its functions (Zhang et al., 2021; Li WJ. et al., 2023; Tang et al., 2023). Previous studies in determining the width of corridors normally considered a narrow buffer belt along corridor sides, e.g., subjectively demarcating a 2 km wide belt on both sides of a corridor as the buffer zone (Zhang et al., 2021). This approach, although it was low expensive, was thought to be subjective or even arbitrary for determining how wide a corridor is or should be protected. Recently, a few of scholars applied circuit theory, which was originated from physics, to analyze the width of ecological corridors (Pierik et al., 2016; Peng et al., 2018; Li et al., 2019; Xu et al., 2019; Huang et al., 2020; Li J. W. et al., 2023; Tang et al., 2023). In this study, we used the cumulated resistance with changing thresholds to determine the width of corridors, which could be an example in testifying circuit theory. As showed in Figure 9, with the setting of empirical cumulative current higher than 0.01 (Peng et al., 2018; Huang et al., 2020) and the cumulated resistance of 100,000, the corresponding area of sub-optimal ecological corridors was identified, which was as high as 456.91 km2 in Chengdu City. These sub-optimal corridors are supplementary parts of the corridor network in Chengdu City and must be restored and integrated into spatial planning in the future. The integration of optimal and sub-optimal corridors, undoubtedly, would increase the efficiency and effectiveness of ecological connectivity in the region, and be beneficial further to the long-term maintenance of regional ecological integrity and security.
4.2 Constructing ESP with dynamic perspective
Ecological sources are very important with their continuous supplies of ecosystem services to both urban and rural residents. Although it is not so difficult to identify and structure the ESP of a city, maintaining and managing the efficient ESP over a long term is still a challenge. Recently, the construction of park city or garden city has been practiced in many countries (Yang Y. et al., 2022). With the increase of green spaces and their functions in a city year by year, these restored lands are becoming more and more new ecological sources or corridors, continuously optimizing the ESP of urban and rural landscape. Uchida et al. (2021) found that the habitat heterogeneity in a city had been improved effectively with the increase of green spaces and parks, which could further maintain the diversity and abundance of biological species at a high level (Gao Z. et al., 2021). Recently, due to the raised awareness of publics and decision makers on the importance of wetlands, for example, many water bodies in Chengdu City as well as in other cities of China have been restored as artificial wetlands or parks, which provide diverse habitats for aquatic plants and animals such as amphibians, birds and fish. All of these restoration efforts and achievements remind us that the ESP of a city is changeable. In this study, we identified not only stable ecological sources but also potential ecological sources where the ESV increased yearly due to the continuous endeavors in ecological protection or restoration. With this dynamic perspective, the restoring trend of ecological sources in Chengdu City has been considered in ESP construction. Moreover, ecosystem services are also changeable with the succession of biological communities and the change of human demands in urbanizing process. Thus, the assessment of ESP should be made once a few years with continuous monitoring inputs of ecological improvement and land cover/use change (Li et al., 2021; Zhao et al., 2021). In the future, more attentions could be paid to establish multi-scenario simulation in considering multiple factors of natural (e.g., climate change) and anthropogenic (e.g., urbanization) disturbances for better predicting the dynamic process of ESP and coupling economic development and ecological restoration. In this way, decision makers or landscape planners could make reasonable policies for optimizing landscape architecture of a park city (Kang et al., 2021).
4.3 Constructing ESP with holistic approach
Urban-rural continuum as a holistic system may reflect socio-economic transformations in the process of urbanization and then form a complicated web of connections (Xiao et al., 2016). The rapid urbanization in last few decades has transformed urban and rural landscape in China as well as Chengdu City, particularly influenced the ability of rural landscape to provide ecosystem services to city residents (Wu et al., 2020). Following the human-environment interactions between urban-rural interfaces having been reformed, the functionalities of both urban and rural areas in delivering ecosystem services must be reconsidered in constructing city ESP (Wolf, 2012; Wu et al., 2020). In view of the ongoing program Park City Construction in Chengdu City, more emphases have been given to the layout and restructure of green spaces in urban areas, which generally underestimates the importance of rural landscape in the whole ESP. In fact, vast rural lands dotted by woodlots (i.e., linpan units) dominate the ecologically sensitive area in the Chengdu Plain (see Figure 10), delivering affluent provisioning services as well as regulating and cultural services from croplands, woodlands and wetlands (Wu et al., 2020). With the ArcGIS 10.2 spatial analysis tool, in this study we identified 57,848 linpan units (85.92% of the total number) which were located within the distance of 200 m to ecological resources nearby, implying the close inter-dependency between rural inhabitants and nature. Hundreds and/or thousands of linpan units are networked as a holistic system, which connect ecological sources (e.g., forests, bamboo groves, reservoirs and water ponds) with diverse corridors, providing possible habitats or “step stones” for species migration, and supporting material flow and energy exchange between urban and rural ecosystems (Liu et al., 2017; Wu et al., 2020). Moreover, local farmers have their traditional knowledge and practices to apply agro-biodiversity and ecosystem services delivered from linpan system to adapt to changes or interventions (Zhong et al., 2022), which have contributed to the resilience of socio-ecological system in a long run. Therefore, local governments could explore the possibility of ensuring the long-term viability of linpan units and construct the city ESP in a holistic approach with the integration of restoring urban green space and preserving traditional rural landscape.
4.4 Improving methodology for ESP assessment
Although the importance of ESP in city planning has been understand progressively (Peng et al., 2015; Kang et al., 2018), the methodology should still be improved in the future. In this study, we identified ecological sources through assessing ecosystem services and ecosystem health, but only 5 services were used in the framework. As we know, the ecosystem services delivered from natural and semi-natural ecosystems in a city are numerous, including at least four categories (MA, 2005). Concerning the sustainable development goals of a city, other services should be considered in the assessment of ESP and the data gaps of ecological sources must be filled with fine tools. In order to establish ideal model, more attentions should be paid to reasonable framework with multiple key indicators (Li et al., 2021). And these indicators should be not only ecological, but also social, economic, and even cultural dimensions (Peng et al., 2015). Secondly, considering the importance of the width of ecological corridors in determining the function and process of ecosystems, the method for extracting corridor width could be improved further though coupling Ant Algorithm and Kernel Density Function (Zhao et al., 2021). According to Li et al. (2021), expert consultation could modify the result of quantitative assessment and enhance the assurance of corridor width (Li et al., 2021). Finally, with the progress of Park City Construction in Chengdu City, more and more greenways, border trees, forest belts and hairy water ways would be restored and preserved. These linear spaces could be used for multiple purposes in the future such as ecological corridor and citizen’s recreation. Now various techniques and methodologies have been developed to design effective ecological space (Teng et al., 2011), but their effectiveness in ecological connectivity and habitat linkage still needs to be assessed with actual cases (Tian et al., 2023).
5 CONCLUSION
With continuous urbanization in China as well as Chengdu City, natural habitats are under the influence of highly intensive interventions. The ESP of a city is fundamental to sustain socio-economic development through protecting and restoring ecological sources, which should be paid more attentions in spatial planning of a city in the future. In this study, we used an innovative method for identifying ecological sources in Chengdu City, combining the assessments of Ecological Security Value (ESV), ecosystem services, and ecosystem health. The ecological resistance surface was revised by nighttime light index successfully. Linkage Mapper combined with circuit theory was used to extract ecological corridors and key nodes for constructing and optimizing the ESP. The results showed that the ecological security of Chengdu City presented a declining trend from 2000 to 2010, and then rose from 2010 to 2018. In 2018, the ESP including 140 ecological sources with the total area of 8,819.78 km2, 302 ecological corridors with the area of 456.91 km2, as well as 61 pinch-points and 17 barriers. The ecological sources in Chengdu were mainly distributed in or nearby Longmen Mountain and Longquan Mountain, two flanks of the Chengdu Plain, and connected each other with hundreds of ecological corridors. In addition to forested lands in mountains and hills, linpan units (wooded lots), water bodies and agricultural fields across the rural landscape all together structured and consolidated the ESP of this city. The restored ecosystems including reforested lands, urban green spaces, and artificial wetlands supplemented more and more potential ecological sources and sub-optimal corridors to the structure of city’s ESP, which remind us that the assessment and construction of ESP must adopt a dynamic and holistic perspective.
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The irrational application of chemical fertilizers in wheat cultivation not only threatens the agricultural ecosystem but also significantly contributes to carbon emissions, impeding the achievement of “carbon peaking” and “carbon neutrality” goals. The objective of this research is to assess the efficiency of chemical fertilizer use in wheat production across ten major wheat-producing provinces in China from 2004 to 2020. We employed a stochastic frontier production function to evaluate the technical efficiency of fertilizer use, determining feasible reduction levels. The Gini coefficient, kernel density estimation, and Markov chain analysis were further utilized to dissect the spatio-temporal dynamics of carbon emission reduction potential. Our findings provide a detailed analysis of the carbon emission reduction potential in wheat chemical fertilizer use across China’s ten major wheat-producing provinces from 2004 to 2020. The average carbon emission reduction potential is significant, at 251.1 kg CE/hm2, with considerable variation observed among regions. The western region, in particular, stands out with the highest potential, reaching up to 336.51 kg CE/hm2, which is notably higher compared to the eastern (230.05 kg CE/hm2) and central regions (158.28 kg CE/hm2). The spatial distribution of this potential is uneven, and the disparities are progressively increasing, primarily due to inter-regional differences. Despite a general decline in carbon reduction potential, the spatial distribution remains relatively consistent. To foster sustainable wheat production, it is imperative to prioritize the western region for targeted chemical fertilizer carbon reduction initiatives. Attention must also be given to the issue of regional disparities in low-carbon wheat production. Enhancing the role of soil testing and fertilizer recommendations is essential to increase the effectiveness of carbon reduction efforts. Additionally, a multi-faceted approach that incorporates various alternative measures is necessary to drive further reductions in chemical fertilizer-related carbon emissions.
Keywords: chemical fertilizer, wheat, carbon emission, sfa, soil testing and fertilizer recommendation

1 INTRODUCTION
The extensive use of chemical fertilizers has been a cornerstone of modern agriculture, significantly enhancing crop yields to meet the growing global food demand (Wang et al., 2022). However, this practice has not come without environmental consequences, particularly in terms of greenhouse gas emissions, which are critically linked to climate change. The urgency of addressing this issue is echoed by the Paris Agreement and the global commitment to sustainable development goals, highlighting the need for innovative agricultural practices that balance productivity with environmental stewardship.
China, being the world’s largest consumer and producer of chemical fertilizers, presents a unique case study in the quest for sustainable agricultural practices (Liao and Mi, 2022; Wei et al., 2022; Liu et al., 2023). While the country has seen a rapid increase in fertilizer use since the 1990s, contributing to impressive gains in crop production, this has also led to concerns over soil health and environmental sustainability (Wu et al., 2021; Guo et al., 2022; Saeed et al., 2022). The situation in China mirrors global trends, where the excessive use of chemical fertilizers has raised alarm bells in agricultural communities and policy circles worldwide.
International studies have underscored the negative environmental impacts of chemical fertilizers, including soil degradation, groundwater pollution, and the emission of greenhouse gases (Guo et al., 2021; Oyetunji et al., 2022). Moreover, research from the Indo-Gangetic Plains to the agricultural heartlands of Europe has consistently pointed towards the significant potential for carbon reduction through more efficient fertilizer use (Higgins et al., 2023).
This study aims to contribute to the global discourse by focusing on the carbon emission reduction potential in wheat chemical fertilizer use in China. Wheat, being a staple food for billions, makes it a focal point for sustainable agricultural practices. By employing a stochastic frontier production function and advanced analytical methods (Higgins et al., 2023; Jordan-Meille et al., 2023; Micha et al., 2023), this research quantifies the efficiency of chemical fertilizer use and its carbon reduction potential in wheat cultivation across China’s major wheat-producing provinces. The findings are expected to provide actionable insights for policymakers and stakeholders, not only in China but also offer a reference for other regions grappling with similar challenges.
The research outlines a study that utilizes panel data from 10 major wheat-producing provinces in China from 2004 to 2020 to measure the efficiency of chemical fertilizer input in wheat production and the proportion of fertilizer that can be reduced, thereby delving into the potential for carbon emission reduction from wheat chemical fertilizer use. The study innovates and expands upon previous research in the following two aspects:
	(1) It takes into account the constraints of economic and social factors, employing the Stochastic Frontier Analysis (SFA) method, which has advantages in dealing with random errors and statistical disturbances, to measure the technical efficiency of wheat production. Consequently, this method yields the efficiency of chemical fertilizer input for wheat, establishing the proportion of fertilizer that can be reduced per unit area (the extent to which actual fertilizer application deviates from the economically optimal amount) as a basis for carbon emission reduction, thus assessing the potential for carbon reduction from wheat chemical fertilizer.
	(2) The study employs the Gini coefficient, Kernel density estimation, and Markov chain analysis methods to delineate the spatial disparities and dynamic evolution characteristics of the carbon emission reduction potential of wheat chemical fertilizer. It analyzes and summarizes the spatiotemporal evolution patterns of this potential.

2 RESEARCH METHODS AND DATA
The research frame diagram is as follows:
2.1 Stochastic frontier analysis (SFA) model
The paper employs the Stochastic Frontier Analysis (SFA) method to measure the efficiency of chemical fertilizer input in wheat production in China (Song and Chen, 2019). The chemical fertilizer input efficiency is defined as the ratio of the minimum possible amount of chemical fertilizer application to the actual amount applied, given a certain level of output and other input factors. Building upon the measurement of agricultural production technical efficiency, to avoid the potential issue of multicollinearity in the transcendental log production function model, the stochastic frontier function is set as the conventional Cobb-Douglas function form widely used in the measurement of agricultural production technical efficiency. The stochastic frontier production function model for wheat is defined as follows:
[image: Equation displaying the natural logarithm of \( Y_t \) expressed as a sum of coefficients (\(\beta_0, \beta_L, \beta_F, \beta_S, \beta_M\)) multiplied by the logarithm of variables (\(L_t, F_t, S_t, M_t\)), plus error terms \(v_t\) and \(u_t\).]
Where: [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the wheat output of province i in year t, [image: Please upload the image or provide a URL for it, and I will help you generate the alt text.], [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.], [image: Please upload the image or provide a URL so I can help generate the alternate text for it.], [image: Please upload the image or provide a URL for me to generate the alternate text.] represent the labor, chemical fertilizer, seed, and machinery inputs per hectare (hm2) in province i in year t respectively, [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is the parameter vector, [image: Mathematical notation showing \( V_{it} \sim N(0, \sigma_v^2) \), indicating that the random variable \( V_{it} \) follows a normal distribution with a mean of zero and variance \(\sigma_v^2\).] is the random error term (reflecting uncontrollable factors such as statistical errors, weather impacts, etc.), [image: Italicized letter "U" with a subscript "i" and "t" written in a mathematical style.] is the non-negative technical inefficiency term, assumed to be independent of [image: It seems that you attempted to include an image, but it is not displaying. Please try uploading the image again or provide a URL, and I would be happy to help generate the alternate text.], and [image: Formula showing that \( U_{it} \) follows a truncated normal distribution, denoted as \( N^+ \), with mean \( m_{it} \) and variance \( \sigma^2_u \).] follows a truncated normal distribution. The estimated formula (Zhang et al., 2023) for output-oriented wheat production technical efficiency is:
[image: The formula depicted in the image is: \( TE_{it} = \exp(-U_{it}) \), labeled as equation (2).]
By substituting the minimum feasible amount of chemical fertilizer application [image: It seems like there was a rendering issue with your request. Please upload the image or provide a URL to generate the alternate text.] for the actual amount [image: It seems there was an issue with your image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.] in Eq. 1 (Zhai et al., 2022), we can obtain the output of the minimum feasible chemical fertilizer application [image: Mathematical expression showing \( \ln F_{it}^{c} \), where \(\ln\) denotes the natural logarithm, \(F\) is a variable, and \(i\), \(t\), and \(c\) are subscripts.], expressed as:
[image: Mathematical equation showing a natural logarithm regression model. The equation is ln Y_t = β_0 + β_L ln L_t + β_F ln F_t + β_S ln S_t + β_M ln M_t + u_t, where β denotes coefficients, ln indicates a natural logarithm, and u_t is the error term.]
Since the output values of Eqs 1, 3 are equal, subtracting the latter from the former and deriving (Pei et al., 2023) it leads to the chemical fertilizer input efficiency [image: Please upload the image you'd like me to generate alternate text for.] :
[image: The image shows two equations. First, \( \ln FE_{it} = \ln Y_{it} - \ln Y^c_{it} \). Second, \( FE_{it} = \exp(-U_{it} / \beta_t) \).]
Given that chemical fertilizer input efficiency [image: Please upload the image you would like me to generate alternate text for.] represents the proportion of the minimum feasible chemical fertilizer [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] to the actual amount applied [image: Please upload the image or provide a link so I can generate the alternate text for you.], the proportion of the amount of chemical fertilizer that can be reduced without affecting wheat output (Liu et al., 2020), that is, the proportion of chemical fertilizer that can be reduced [image: Please upload the image you want me to generate the alternate text for.], See Eq. 5 for details:
[image: It seems like you mentioned a mathematical formula rather than an image. Please upload the image or provide a URL with any additional context you’d like to include for accurate alt text generation.]
2.2 Fertilizer carbon emission reduction potential estimation method
The paper refers to the calculation methods for agricultural carbon emissions in existing studies (Chen et al., 2020; Koondhar et al., 2021) and constructs a formula for carbon emission reduction potential based on the reduction of wheat fertilizer application according to the research topic, See Eq. 6 for details:
[image: Equation for \( R_{ik} \) is shown as \( R_{ik} = RE_{ik} \times (NR_{ik} \times \rho_1 + PR_{ik} \times \rho_2 + KR_{ik} \times \rho_3) \).]
In the formula, [image: It seems like there was a formatting error, and no image was uploaded. Please upload the image or provide a URL, and optionally include a caption for context.] represents the carbon emission reduction potential of wheat fertilizer in province i in year t, with the unit of kilograms of carbon equivalent per hectare (kg CE/hm2). [image: Please upload the image you're referring to, and I'll help you generate the alt text.] represents the proportion of fertilizer that can be reduced (%), and [image: Please upload the image or provide a link to it, and I will help generate the alternate text for you.], [image: Please upload the image or provide a URL so that I can generate the alternate text for you.], [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] represent the quantities of nitrogen, phosphorus, and potassium fertilizers applied per unit area of wheat, respectively, including the nitrogen, phosphorus, and potassium components derived from compound fertilizers (kg/hm2). [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: It seems like there is a reference to a mathematical expression, specifically the Greek letter rho with a subscript. However, I do not have an image to describe. Please upload the image or provide a URL, and I can generate the alternate text for you.], [image: It seems like there might be an error in your request as it does not link to or describe an image directly. Please upload the image or provide a URL so I can assist you with generating alternate text.] represent the carbon emission coefficients for nitrogen fertilizer, phosphorus fertilizer, and potassium fertilizer used in wheat, respectively. The greenhouse gas emission coefficients for nitrogen, phosphorus, and potassium fertilizers suitable for the conditions of wheat fertilizer application in China are selected as 2.116 kg CE/kg N, 0.636 kg CE/kg P2O5, and 0.180 kg CE/kg K2O, respectively, according to the study by Liu and Yang (2021).
2.3 Dagum gini coefficient
The paper utilizes the Gini coefficient group decomposition method proposed by Zhang et al. (2022) to calculate the spatial distribution Gini coefficient of the carbon emission reduction potential of wheat fertilizer from 2004 to 2020 and to conduct regional decomposition. The Eq. 7 for the Gini coefficient is as follows:
[image: Mathematical equation: G equals triple summation with indices j, p, q ranging from one to k, with y sub m minus y sub n over two pi squared r sub j. The sequence is y̅ sub 1 less than or equal to y̅ sub 2, and so on, up to y̅ sub k, referenced as equation (7).]
Where [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.] represent the carbon emission reduction potential of province i in region j and the average carbon emission reduction potential of wheat fertilizer across the 10 major producing provinces, respectively. n is the number of provinces, and k is the number of regional divisions. According to Dagum’s group decomposition method, the Gini coefficient is decomposed into three parts (Li et al., 2024): the contribution of within-group differences [image: Please upload the image or provide a URL so I can generate the alternate text for it.], the contribution of between-group differences [image: It seems there is an error or placeholder text. Please upload the image or provide a URL for which you need alternate text.], and the contribution of the super variance [image: It seems there is no image attached. Please upload the image or provide a URL so I can help generate the alternate text.], with the relationship between the three parts satisfying [image: Mathematical equation displaying "G equals G sub w plus G sub nb plus G sub l", showing a sum of three components.].
The calculation Eq. 8 for the within-group Gini coefficient [image: It seems like there was an issue with image upload or description. Please try uploading the image again or provide a URL, and if you like, include any additional context or caption for better assistance.] for region i is:
[image: The formula shown calculates G_ii as one over two Y bar, multiplied by the double summation from m equals one to n to n t of the absolute value of y_im minus y_iq, divided by n_i squared. Equation 8 is referenced.]
The calculation Eq. 9 (Wang et al., 2022) for the contribution of within-group differences [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is:
[image: Mathematical equation showing \( G_{w} = \sum_{i=1}^{k} G_{u_{i}} p_{s_{i}} \) with equation number (9) on the right.]
The calculation Eq. 10 for the between-group Gini (Meng et al., 2023) coefficient [image: It seems there's an issue with the input. Please upload the image or provide a URL for me to generate the alt text.] is:
[image: Mathematical formula showing \( G_{ij} = \sum_{m=1}^{n_i} |y_{im} - y_{ij}| / (\overline{Y}_i + \overline{YY}_j) n_i n_j \). ]
The calculation Eq. 11 for the contribution of between-group (Sinha and Chaudhury, 2021) differences [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is:
[image: Equation showing \( G_{ab} = \sum_{i=2}^{k} \sum_{j=1}^{i-1} G_{ij}(p_{i}p_{j} + p_{j}p_{i})D_{ij} \).]
Where [image: It seems there is a misunderstanding. Please upload the image file or provide a URL to the image you'd like me to describe.] is the relative impact of the difference in carbon emission reduction potential (Sueyoshi et al., 2021) between regions i and j, calculated Eq. 12 as:
[image: Mathematical equation detailing \( D_{ij} \), \( d_{ij} \), and \( p_{ij} \), with integrals from zero to infinity involving functions \( F_{i}(y) \) and \( F_{j}(x) \). Equation labeled as number twelve.]
Where [image: Please upload the image or provide a link to it so I can generate the appropriate alt text for you.] and [image: Sure, please upload the image or provide a URL so I can help generate the alternate text.] are the cumulative density distribution functions for regions i and j, respectively, and [image: It looks like there was an attempt to include an image, but the image did not come through. If you have an image file or URL, please upload it again or provide more context.], [image: Please upload the image or provide a URL so I can help generate the alternate text.] is the difference in density functions between the two regions (Lv et al., 2021).
The calculation Eq. 13 for the contribution (Wang et al., 2022) of super variance [image: It seems there was an issue with uploading the image. Please try uploading the image file again, and I will help you create the alt text.] is:
[image: Mathematical equation for \( G_t \) involves a double summation. The formula is \( G_t = \sum_{i=2}^{k} \sum_{j=1}^{i-1} G_{ij} (p_i s_j + p_j s_i) (1 - D_{ij}) \). The equation includes variables \( G_{ij} \), \( p_i \), \( s_j \), and \( D_{ij} \). Equation number is 13.]
2.4 Kernel density estimation
Assuming random variables [image: To generate alternate text, please upload the image or provide a URL, along with any additional context you want to include.] are independently and identically distributed, with [image: It looks like there was an issue uploading the image. Please try uploading the image again, and I’ll help you generate the alt text.] being the density function of [image: Please provide the image by uploading it, and I will help generate the alternate text for you.] which is unknown, the Kernel density estimation (Pérez et al., 2009) can be expressed as, See Eq. 14 for details:
[image: Kernel density estimation formula, \( f(x) = \frac{1}{Nh} \sum_{j=1}^{k} K\left(\frac{X_i - x}{h}\right) \). Conditions: \( K \geq 0 \), integral of \( K(x) \) over all \( x \) is 1, limit as \( h(N) \to 0 \), and limit as \( Nh(N) \to \infty \) as \( N \to \infty \). Equation numbered (14).]
Where N is the sample size; h is the bandwidth; [image: It seems like there was an issue with uploading the image. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] represents the i.i.d. observations; x is the mean; and [image: Mathematical notation showing a function \( K(\bullet) \) with a solid black circle representing a placeholder or variable for the function.] is the kernel function. In this paper, a Gaussian kernel function is used to estimate the dynamic evolution of carbon emission reduction potential resulting from the reduction of chemical fertilizer application in wheat (Liu et al., 2020), as shown in the Eq. 15 below:
[image: Mathematical expression for the Gaussian function: \( K(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^{2}/2) \), labeled as equation 15.]
2.5 Markov chain analysis method
The paper constructs a Markov transition matrix to reflect the dynamic evolution characteristics of the distribution of wheat chemical fertilizer carbon emission reduction potential (Wu et al., 2022). The Markov chain method is represented as a stochastic process [image: Please upload the image or provide a URL so I can generate the alternate text for it.], where the random variable [image: Please upload the image or provide a URL so I can generate the alt text for you.] indicates that the system state at time t is j, and it satisfies the following Eq. 16:
[image: Probability equation showing \( P(X_t = j \mid X_{t-1} = i, X_{t-2} = i_{t-2}, \ldots, X_0 = i_0) \) equals \( P(X_t = j \mid X_{t-1} = i) = p_{ij} \), where \( p_{ij} = n_{ij} / n_i \). Equation is labeled (16).]
Where: [image: It seems like there might have been an issue with uploading the image. Please try again by clicking on the image upload button or provide a URL to the image. If you have any additional context or a caption, feel free to include it.] demonstrates the dynamic behavior characteristics of the stochastic process, [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL. If there is any additional context or a caption, feel free to include it.] is the transition probability that the carbon emission reduction potential of wheat chemical fertilizer in a certain province transitions from state i at time t to state j at time t+1, [image: Lowercase letter "n" with a subscript "i".] is the total number of occurrences of the i-th level state of wheat chemical fertilizer carbon emission reduction potential within the sample period, and [image: Mathematical notation showing "n" with subscripts "i" and "j" in italics.] is the number of times the carbon emission reduction potential level transitions from the i-th state to the j-th state (Pérez et al., 2009).
2.6 Data sources
The paper uses the Stochastic Frontier Analysis (SFA) method to measure the technical efficiency of wheat production, thereby obtaining the efficiency of chemical fertilizer input for wheat, and subsequently determining the proportion of chemical fertilizer that can be reduced as the basis for carbon emission reduction. To this end, data from 10 major wheat-producing provinces for the years 2004–2020 were selected (including Henan Province, Shandong Province, Anhui Province, Hebei Province, Jiangsu Province, Xinjiang Uygur Autonomous Region, Shaanxi Province, Hubei Province, Gansu Province, and Sichuan Province. The wheat output of these provinces accounted for 94.4% of the total national wheat production in 2020), resulting in a sample size of 170.
For the estimation of the stochastic frontier production function, based on existing research [14,20,21], the following input variables were selected: chemical fertilizer application per unit area (hm2) (kg), labor input (days), seed usage (kg), and machinery costs (CNY). The output variable was wheat yield (kg). The input and output data for wheat were derived from the “National Agricultural Product Cost and Benefit Data Compilation” for the years 2005–2021. To ensure comparability over time, the machinery costs were deflated using the Agricultural Production Materials Price Index, with 2004 as the base year. The chemical fertilizer inputs for wheat include nitrogen, phosphorus, and potassium fertilizers, as well as compound fertilizers (diammonium phosphate, triple superphosphate, blended fertilizers, etc.). The other fertilizer components contained in compound fertilizers were also converted into their corresponding amounts of nitrogen, phosphorus, and potassium fertilizers. The specific conversion standards are shown in Table 1.
TABLE 1 | Methods of conversion for nitrogen, phosphorus, and potassium fertilizers in compound fertilizers.
[image: Table showing the composition of three fertilizer types. Diammonium Phosphate contains 17% nitrogen, 47% phosphorus, 0% potassium, and 64 kg pure quantity per 100 kg. Triple Superphosphate has 11% nitrogen, 24% phosphorus, 13% potassium, and 48 kg pure quantity. Mixed Fertilizer includes 10% nitrogen, 17% phosphorus, 3% potassium, and 30 kg pure quantity.]3 RESULT AND ANALYSIS
3.1 Results of the measurement of wheat fertilizer input efficiency and carbon emission reduction potential
The Frontier Analyst 4.1 software was used to perform the maximum likelihood estimation on model (1), and the results are presented in Table 2. The coefficients of the variables were all significant at the 1% level, and the one-sided likelihood ratio (LR) test rejected the null hypothesis of no technical inefficiency (u = 0), demonstrating that there is indeed technical inefficiency in China’s wheat production. This confirms the effectiveness of the SFA model setting. Additionally, the gamma (γ) value reached 0.866 and was significant at the 1% level, indicating that 86.6% of the error in the stochastic frontier production function is attributed to technical inefficiency, with only 13.4% due to uncontrollable random factors (statistical errors, weather, etc.). This suggests that the SFA model estimation is effective, and the use of the stochastic frontier function analysis method is appropriate.
TABLE 2 | Estimation results of the stochastic frontier production function model.
[image: A table presents various variables related to wheat production, including their symbols, definitions, coefficients, standard errors, and t-values. Key variables include Constant (C), Labor (L), Fertilizer (F), Seed (S), and Machinery (M). Coefficients are given with significance levels noted by asterisks where three asterisks denote a 1% significance level, two asterisks denote 5%, and one asterisk denotes 10%. The Log-likelihood ratio (LR) is also listed as a test statistic for significance.]From the model estimation results, among the four input factors, the output elasticity of chemical fertilizer is the highest, indicating that increasing chemical fertilizer input can further enhance wheat yield under current production conditions. The output elasticity for seeds and machinery is also positive, suggesting that increasing the input of quality seeds and promoting mechanization can effectively improve wheat yield. The negative output elasticity for the labor factor indicates that there is a serious issue of labor involution in the current wheat production process. Using formulas (2), (4), and (6), the technical efficiency of wheat production, the efficiency of chemical fertilizer input, and the carbon emission reduction potential were calculated, respectively. The results are categorized by the three major economic zones and presented in Table 3.
TABLE 3 | Average values of fertilizer carbon emission reduction potential in major wheat-producing provinces by region, 2004-2020.
[image: Table comparing data of provinces in East, Central, and West regions. It includes columns for technical efficiency, fertilizer input efficiency, and carbon emission reduction potential. East averages: 86.83% technical, 51.88% fertilizer efficiency, 230.05 kg CE/hm² carbon reduction. Central averages: 85.74% technical, 51.91% fertilizer efficiency, 158.28 kg CE/hm² carbon reduction. West averages: 68.55% technical, 21.86% fertilizer efficiency, 336.51 kg CE/hm² carbon reduction. National averages: 79.20% technical, 39.88% fertilizer efficiency, 251.10 kg CE/hm² carbon reduction.]Overall, for the 17-year period, the average technical efficiency of wheat production across the 10 major wheat-producing provinces reached 79.20%. However, the efficiency of chemical fertilizer input was relatively low, at only 39.88%. The average carbon emission reduction potential was 251.1 kg CE/hm2, a result that is close to existing studies [14] and thus considered to be relatively reliable. When examining the differences between provinces, there is a significant variation in carbon emission reduction potential, with the highest reaching 459.18 kg CE/hm2 (Shaanxi Province) and the lowest at 38.86 kg CE/hm2 (Henan Province). Half of the provinces have a carbon emission reduction potential greater than the average value of 251.1 kg CE/hm2.
Looking at the regions, the eastern and central parts of the country do not show a large difference in technical efficiency and chemical fertilizer input efficiency, which are 86.83% and 85.74%, and 51.88% and 51.91%, respectively. However, the eastern region has a greater carbon emission reduction potential than the central region. The western region has lower technical efficiency compared to the central and eastern regions, with a chemical fertilizer input efficiency that is significantly lower at only 21.86%. The carbon emission reduction potential in the western region is much higher than that in the central and eastern regions, reaching 336.51 kg CE/hm2. Overall, the carbon emission reduction potential shows a pattern of decreasing from the eastern to the western regions and then increasing again, with significant differences in carbon emission reduction potential both within and between regions. It is therefore necessary to conduct an in-depth analysis of the spatial differences in the carbon emission reduction potential of the major wheat-producing provinces in China to identify the patterns of spatial differences and to propose targeted recommendations.
3.2 Regional differences in wheat fertilizer carbon emission reduction potential and its decomposition
By calculating the Gini coefficient using formula (7), the paper measured the spatial distribution of the carbon emission reduction potential of wheat fertilizer. Following the group decomposition method of the Gini coefficient proposed by Dagum, and referring to existing research [22], the paper decomposed the regional disparities in the distribution of the carbon emission reduction potential of wheat fertilizer according to the three major regions of East, Central, and West, with the results shown in Table 4.
TABLE 4 | Gini coefficients for the distribution of fertilizer carbon emission reduction potential in major wheat-producing provinces and by region, 2004-2020.
[image: A table presents data from 2004 to 2020, comparing overall values, values within east, central, west, between regions, and corresponding percentages. It includes categories like between east-central and between east-west, with additional columns for within-region percentage, between-region percentage, and super variance percentage. The average row provides overall statistics from the dataset.]From the overall trend of the Gini coefficient, it can be seen that from 2004 to 2020, the overall Gini coefficient for the carbon emission reduction potential of wheat fertilizer in the main producing areas showed an increasing trend. It started from a minimum value of 0.206 in 2004 and reached the highest value of 0.378 in 2019, marking an increase of 83.5% over the 17 years, with an average annual increase of nearly 5%. This indicates that the spatial distribution disparity of the carbon emission reduction potential of wheat fertilizer in the main producing areas is gradually expanding.
3.2.1 Intra-regional disparities
Upon analyzing the Gini coefficients for intra-regional disparities, it was found that over the 17 sampled years, the disparities within the Eastern and Central regions fluctuated mildly, while the Gini coefficient for the Western region’s intra-regional disparities increased by 40% from 0.117 to 0.164, indicating a significant expansion of disparities within the region.
In the second phase, spanning from 2012 to 2018, only the Eastern region’s intra-regional disparities remained relatively stable, whereas both the Central and Western regions experienced an expansion in their intra-regional disparities. In the third phase, from 2018 to 2020, the intra-regional disparities in all three regions continued to expand, with the Eastern region’s disparities exceeding those of the Central and Western regions, showing an average annual growth rate of over 20%.
Over the entire sample period, the intra-regional disparities in the Eastern, Central, and Western regions all exhibited a gradually increasing trend, with the average annual growth rates of the Gini coefficients being 3%, 0.8%, and 6.78%, respectively. This suggests that the Western region has the fastest growth rate in the expansion of intra-regional disparities in the carbon emission reduction potential of wheat fertilizer, while the Central region has the slowest.
3.2.2 Inter-regional disparities
Upon analyzing the Gini coefficients for inter-regional disparities, it was observed that over the 17 sampled years, the Gini coefficients for the disparities between the three major regions—Eastern, Central, and Western—have all shown an upward trend, with the Eastern-Central, Central-Western, and Eastern-Western inter-regional disparities increasing annually by 3.6%, 6.8%, and 7.6%, respectively. This indicates that the spatial distribution disparities in the carbon emission reduction potential of wheat fertilizer between the three regions are progressively widening, with the Eastern and Western regions having the largest disparity and the fastest growth rate. The disparity between the Central and Eastern regions is the next largest, and the disparity between the Central and Western regions is the smallest.
3.2.3 Gini coefficient contribution rate
Upon analysis of the contribution rates of the Gini coefficients, it was found that over the 17 sampled years, the contribution rate of inter-regional disparities has always been the highest, rising from 44.1% in 2004 to 58% in 2020, with an average annual increase of nearly 2%. The contribution rate of super variability decreased from 27.4% in 2004 to 17% in 2020, remaining at a relatively low level throughout the sample period. On average, the contribution of inter-regional disparities was the greatest at 56.5%, followed by intra-regional disparities and super variability, averaging at 25.3% and 18.2%, respectively. This suggests that inter-regional disparities are the primary cause of the emergence and expansion of regional disparities in the carbon emission reduction potential of wheat fertilizer.
3.3 Kernel density estimation of wheat fertilizer carbon emission reduction potential
The paper employs Eviews software to calculate the Kernel density estimation as per formula (15) and to illustrate the distribution state differences and dynamic evolution patterns of the carbon emission reduction potential of wheat fertilizer. Figures 1–4 depict the overall and regional dynamic evolution of the carbon emission reduction potential distribution for the major wheat-producing provinces from 2004 to 2020.
[image: Line graph showing kernel density of carbon emission reduction potential in kilograms of carbon dioxide equivalent per hectare per year for 2005, 2010, 2015, and 2020. Each year is represented by a separate line, illustrating peaks and shifts over time. Density peaks move rightward from 2005 to 2020, indicating increasing reduction potential.]FIGURE 1 | The dynamic evolution of the overall fertilizer carbon emission reduction potential in wheat-producing provinces from 2004 to 2020.
Figure 2 provides a comprehensive description of the evolution of the carbon emission reduction potential for the 10 major wheat-producing provinces during the sample period. Firstly, the Kernel density curve of the carbon emission reduction potential consistently shifts to the left, with the main peak of carbon emission reduction potential at 310 kg CE/hm2 in 2005, which then declines to around 120 kg CE/hm2 by 2020. This indicates that the overall carbon emission reduction potential is on a downward trend. Secondly, the Kernel density curves for the four sample years all exhibit a unimodal shape, with the peaks becoming flatter, suggesting that the spatial disparity in carbon emission reduction potential is progressively widening.
[image: Density plot illustrating carbon emission reduction potential from 2005 to 2020. The plot shows curves peaking between -100 and 500 kg CE/hm², indicating changes in reduction potential over time, with four lines representing different years: 2005, 2010, 2015, and 2020.]FIGURE 2 | Dynamic evolution of carbon emission reduction potential of fertilizer in wheat production in the eastern region of China.
Figures 3, 4 describe the evolution of the carbon emission reduction potential distribution for the wheat-producing provinces in the Eastern, Central, and Western regions, respectively. Firstly, the Kernel density curves for both the Eastern and Central regions shift to the left, indicating a downward trend in the carbon emission reduction potential for these regions. In contrast, the main peak of the Kernel density curve for the Western region first moves to the right and then to the left, with the rightward shift being greater than the leftward shift, resulting in an overall increasing trend in the carbon emission reduction potential. Secondly, the Kernel density curves for the three regions at the four sample years mostly present a multimodal shape, with the Eastern region’s curves showing minimal change in the main and side peaks, indicating a relatively stable disparity in carbon emission reduction potential. The Central region’s curves show a rising and sharpening peak, suggesting a continuous reduction in the disparity of carbon emission reduction potential. The Western region’s curves transition from a unimodal to a multimodal shape, with the peaks becoming broader over time, indicating an expansion of the variation range, which signifies that while the carbon emission reduction potential in the Western region is increasing, the intra-regional disparities are also expanding.
[image: A line graph displaying kernel density estimates of carbon emission reduction potential in kilograms of carbon equivalent per hectare meter for the years 2005, 2010, 2015, and 2020. Each year is marked with a distinct line style. The graph shows peaks and trends, with the density peaking differently for each year, indicating changes in carbon emission reduction potential over time. The x-axis represents carbon emission reduction potential, and the y-axis represents kernel density.]FIGURE 3 | Dynamic evolution of carbon emission reduction potential of fertilizer in wheat production in the central region of China.
[image: Kernel density plot showing carbon emission reduction potential from 2005 to 2020. The x-axis represents reduction potential in kilograms carbon per hectare per year, and the y-axis shows kernel density. The curves represent data for 2005, 2010, 2015, and 2020, with peaks showing trends in emissions reduction over time.]FIGURE 4 | Dynamic evolution of carbon emission reduction potential of fertilizer in wheat production in the western region of China.
3.4 Markov chain analysis of wheat fertilizer carbon emission reduction potential
The paper utilizes the measured data on the carbon emission reduction potential of wheat-producing regions to set the time span as 1, 2, 3, 4, and 5 years. It categorizes the carbon emission reduction potential of each province into four levels: low, medium-low, medium-high, and high. By employing the Markov chain analysis method, a Markov transition probability matrix is constructed, as shown in Table 5.
TABLE 5 | Markov transition probability matrix of wheat fertilizer carbon emission reduction potential.
[image: A table displaying numerical data across periods T1 to T5, each with categories labeled Low, Medium-low, Medium-high, and High. Note explains T1 to T5 represent time spans of one to five years, respectively.]From the transition trends, it is observed that from 2004 to 2020, among the 10 major wheat-producing provinces, as the transfer time T increases, the probability for regions at the low, medium-low, and medium-high levels of carbon emission reduction potential to move up to a higher level gradually decreases. Conversely, the probability for regions at the high, medium-high, and medium-low levels to transfer down to a lower level increases, indicating a trend of the carbon emission reduction potential moving from higher levels to lower levels.
In terms of stability, the probability for the carbon emission reduction potential to remain in its original state ranges from 42% to 100%. The diagonal probabilities in the transition probability matrix are significantly larger than the off-diagonal probabilities, indicating that there is low mobility between different levels of carbon emission reduction potential, which suggests a certain degree of stability in the spatial distribution of the carbon emission reduction potential of the major wheat-producing provinces in China.
4 DISCUSSION
The findings of our study on the spatial-temporal analysis of carbon emission reduction potential in wheat chemical fertilizer use contribute to the body of literature focused on sustainable agricultural practices and the pursuit of carbon neutrality. Our results indicate a significant average carbon emission reduction potential of 251.1 kg CE/hm2 across China’s ten major wheat-producing provinces from 2004 to 2020. This figure is particularly noteworthy when juxtaposed with findings from other regions and studies. For instance, a comparative analysis with the Indo-Gangetic Plains, as reported by Chandel et al. (2022), reveals a similar trend in the potential for carbon reduction through efficient fertilizer use. However, the specific potential we identified in the western region of China, reaching up to 336.51 kg CE/hm2, surpasses the averages reported in other geographical contexts, underscoring the regional disparities in agricultural practices and their environmental impacts. Our results also resonate with the global concerns highlighted by the Paris Agreement, emphasizing the need for innovative agricultural methods that balance productivity with environmental sustainability. When compared with studies such as those by Guo et al. (2021) and Higgins et al. (2023), our research aligns with the growing recognition of the environmental consequences of chemical fertilizer use, including soil degradation and greenhouse gas emissions. The regional differences in carbon emission reduction potential that we observed, with the western region showing the highest potential, invite a comparison with studies like that of Liu and Yang (2021), which discussed spatial patterns in agricultural carbon emissions. The disparities we noted may be attributed to differences in agricultural practices, soil types, climate conditions, and the level of technological adoption in fertilizer application. Our study’s findings on the technical efficiency of fertilizer use, with an average of 39.88%, provide a benchmark for comparison with other regions and underscore the need for targeted interventions to improve fertilizer use efficiency. This aligns with the recommendations by Jordan-Meille et al. (2023) for a more harmonized approach to fertilization across Europe. The downward trend in carbon emission reduction potential that we observed, particularly in the eastern and central regions, contrasts with the growing potential in the western region. This could be indicative of the evolving agricultural practices and the need for adaptive management strategies. It also suggests that while some regions may be reaching a plateau in terms of carbon emission reduction potential, others still have significant room for improvement. In light of these comparisons, our study emphasizes the importance of regional-specific strategies for reducing chemical fertilizer use and enhancing its efficiency. The promotion of soil testing and targeted fertilization, as well as the adoption of alternative measures such as mechanization and water-saving irrigation technologies, are highlighted as critical steps towards achieving carbon neutrality in wheat cultivation.
5 CONCLUSION AND SUGGESTION
5.1 Conclusion
The study on the temporal and spatial differentiation characteristics of the carbon emission reduction potential of wheat fertilizer reduction can provide an objective basis for formulating region-specific policies to reduce the use of chemical fertilizers and increase their efficiency. This is crucial for improving the utilization efficiency of wheat chemical fertilizers, reducing the disparities in fertilization efficiency among different regions, decreasing chemical fertilizer carbon emissions, and promoting the achievement of agricultural “dual carbon” targets. Using panel data from 10 major wheat-producing provinces in China from 2004 to 2020, this study constructs a stochastic frontier function model to measure the input efficiency of wheat chemical fertilizer. This measurement is then used to determine the proportion of chemical fertilizer that can be reduced, which serves as the basis for calculating the carbon reduction potential. Through the use of the Gini coefficient and decomposition methods, the study reveals the trends in the overall and regional disparities in the carbon emission reduction potential of wheat chemical fertilizer. Additionally, the Kernel density estimation and spatial Markov chain analysis methods are employed to uncover the dynamic evolution characteristics of this potential. The study concludes the following:
	(1) The average carbon emission reduction potential of wheat chemical fertilizer in the 10 major producing provinces is 251.1 kg CE/hm2, with the highest potential found in the western region, reaching 336.51 kg CE/hm2, which is significantly higher than that of the eastern (230.05 kg CE/hm2) and central regions (158.28 kg CE/hm2). Moreover, only the western region shows a growing trend in carbon emission reduction potential, while the eastern and central regions exhibit a downward trend. Overall, the spatial distribution of carbon emission reduction potential decreases from the eastern region, increases in the central region, and peaks again in the western region, indicating a pattern of initial decrease followed by an increase from east to west. This suggests that wheat fertilizer use in the western region is more extensive compared to other regions, and the issue of excessive carbon emissions is becoming more severe over time.
	(2) The spatial distribution of wheat chemical fertilizer carbon emission reduction potential shows a distinct imbalance, with both intra-regional and inter-regional disparities widening. The inter-regional disparity contributes the most to the overall regional disparity. The western region experiences the fastest growth in the rate of intra-regional disparities, and the disparity between the eastern and western regions is the largest and growing the fastest. The western region is key to wheat chemical fertilizer carbon emission reduction efforts. To promote the overall reduction of wheat chemical fertilizer carbon emissions and achieve coordinated regional development in wheat production, it is essential to focus on the western region and address the excessive use of chemical fertilizers, particularly in Gansu and Shaanxi provinces, where the fertilizer use efficiency is significantly below the national average. The extensive fertilization practices not only damage the fragile local ecology but also result in substantial carbon emissions. It is necessary to improve the utilization efficiency of chemical fertilizers through measures such as promoting soil testing and targeted fertilization techniques, tailored to the actual production conditions of each province in the western region.
	(3) The Markov chain analysis indicates that, overall, there is a downward trend in the carbon emission reduction potential of wheat chemical fertilizer. There is a general trend towards lower and medium-low levels. However, the inter-group mobility between different levels of carbon emission reduction potential is low, which shows that the carbon emission reduction potential of the major wheat-producing provinces in China has a certain degree of stability in its spatial distribution. Although current policies and measures have played a role in promoting the reduction of chemical fertilizer use and emissions, they have not changed the current situation of uneven utilization efficiency of wheat chemical fertilizers and the regional distribution of carbon emissions. This has restricted the green and coordinated regional development of agriculture.

5.2 Suggestion

(1) The western region should be identified as a key area of focus for wheat chemical fertilizer carbon reduction. It is essential to pay attention to the issue of excessive chemical fertilizer application in the western region, especially in Gansu and Shaanxi provinces, where the fertilizer utilization rate is significantly lower than the national average. There is a substantial space for increasing the efficiency of fertilizer use and reducing carbon emissions. The extensive use of fertilizers not only damages the fragile local ecological environment but also leads to significant carbon emissions. It is necessary to improve the efficiency of chemical fertilizer use through the promotion of soil testing and formula fertilization techniques, tailored to the actual production conditions of each province in the western region.
(2) The issue of regional development disparities in the context of wheat’s low-carbon production process should be taken seriously. Policies should be adjusted according to the carbon emission reduction potential of different regions, and differentiated measures should be adopted based on the actual wheat production conditions of different regions and provinces. Instead of a “one-size-fits-all” approach, efforts should be concentrated on enhancing the fertilizer use efficiency in regions with lower levels and reducing the carbon emissions from provinces with higher potential, thereby narrowing the spatial disparities and addressing the weaknesses to promote an overall reduction in the carbon emissions from wheat fertilizer use.
	(3) The direct role of soil testing and formula fertilization in promoting the carbon reduction of wheat chemical fertilizers should be leveraged. The focus of policy promotion should be on the western region to increase the targeting of soil testing and formula fertilization policies. Due to constraints such as socio-economic conditions and natural factors, the construction of grassroots agricultural technology in the western region is weak. It is necessary for relevant departments to actively allocate funds, personnel, and technical resources to strengthen the construction of grassroots agricultural technology stations in the western region, enhancing the implementation and effectiveness of soil testing and formula fertilization techniques.
	(4) The use of factor substitution to promote the carbon reduction of wheat chemical fertilizers should be employed. The overuse of chemical fertilizers is mainly due to the substitution of fertilizers for labor Studies have shown that promoting mechanization and the use of socialized fertilization services can reduce this substitution opportunity. Similarly, strengthening the construction of agricultural water conservancy infrastructure, applying new water-saving irrigation technologies, and providing fertilization knowledge training to farmers to change extensive fertilization practices can all serve as substitutes for labor and chemical fertilizer inputs, thereby reducing the excessive use of chemical fertilizers and achieving carbon reduction in wheat chemical fertilizers.
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The unprecedented growth in population and swift industrial advancements exert considerable strains on the ecosystem, particularly within medium-sized and large urban landscapes. The critical investigation into the intricate links between current and prospective land utilization, as well as the ecosystem service value (ESV), holds considerable empirical relevance for the calibration of land usage frameworks, thereby contributing to the sustainable evolution of extensive urban zones. Utilizing GlobeLand 30 data, the present research probes into the pattern of land transformation and the spatial-temporal dispersal of ESV in Henan’s Yellow River vicinity over a span from 2000 to 2020. For the enhancement of land usage alignment, a Markov-PLUS fusion model was devised to gauge three disparate ESV transition scenarios slated for 2030, namely, natural development scenario (NDS), cropland protection scenario (CPS), and ecological protection scenario (EPS). The principal determinants of land transformation within the 2000–2020 period were recognized as elevation, populace concentration, and atmospheric temperature. Amid the rapid accretion of construction land engulfing substantial cropland and grassland areas, there was an ESV diminution to the tune of 1.432 billion RMB between 2000 and 2020. The ESV’s high-value regions were discerned within relatively undisturbed ecosystem zones, with the lower-value sections identified in cropland and constructed areas, where human interventions exerted pronounced effects on the ecosystem. In accordance with the 2030 land usage simulations and analyses, in contrast to alternative scenarios, the EPS exhibited the least fluctuation in land type alterations in 2030, demonstrated the most pronounced escalation in cold spot concentration, and reached a peak agglomeration level. This underscores that the EPS not only offers a refinement in land utilization configuration but also mediates the equilibrium between economic and ecological considerations. The insights derived from this investigation afford innovative evaluative methods for spatial planning, ecological recompense, and sustainable land exploitation within large- and medium-scale urban domains.
Keywords: LULC change analysis, Markov-PLUS model, scenario simulation, ESV, land use planning

1 INTRODUCTION
The judicious utilization of land epitomizes a vital modality for the symbiotic relationship between human civilization and nature, performing a key function in fostering human sustainability and conserving ecological equilibrium (Besser and Hamed, 2021). Ecosystem services, encompassing the tangible and intangible benefits furnished by ecosystems for human subsistence through ecological structure and function, operate under multifaceted constraints such as population expansion, economic progression, resource limitations, and environmental factors (Fu, 2020). As fundamental supports for human survival, ecosystem services both influence and are influenced by human activities. Specifically, demographic escalation and economic growth instigate human-induced land alterations, which consequently modify the land-use configuration. The ensuing ecological ramifications of varying land use types reciprocally influence spatial distribution patterns of land utilization, thereby inducing disruptions in the ecosystem’s functional aspects. These transformations most directly affect the ecosystem service value (ESV) (Hao et al., 2021). The Yellow River, venerated as China’s cradle river, and its surrounding ESV have garnered substantial attention. The implementation of pertinent ecological conservation policies within the Yellow River Basin has rendered high-quality development therein an essential task for adjacent provinces and regions, particularly in Henan Province, an agricultural stronghold in central China (Gong et al., 2023; Liu et al., 2023). In recent epochs, relentless urbanization and human interventions have perceptibly altered the ecosystem’s structure, impairing its functionality (Yang et al., 2021). In the urbanization trajectory of Ningxia Province, the equilibrium between the ecosystem, resources, and the environment has been undermined, intensifying the ecological vulnerability in the Yellow River’s upper reaches (Lin M. et al., 2020a; Fang et al., 2020). Over-extraction of groundwater and deforestation have precipitated a precarious ecological milieu in this region. The ecologically fragile zones, exemplified by drastic landscape transformations in the Galapagos Islands (Benítez et al., 2018) and demographic pressures threatening the ecosystem in Alaphuzha, Kerala (Prasad and Ramesh, 2019), have become focal areas for scholarly investigation. Such incessant human interventions have augmented the rate of conversion between land categories, notably swelling construction land areas, thereby fracturing the urban ecosystem’s supply-demand balance (Liu et al., 2015, pp. 1990–2010). This direct consequence manifests in land use/land cover (LULC) interchange (Yuan et al., 2018; Rimal et al., 2019), subsequently instigating rapid modifications in the ecosystem’s structure and function within a confined timeframe (Zhang et al., 2020a; Gomes et al., 2021). As a conspicuous indicator of human influences on ecosystems, alterations in land usage have ascended as a global research nexus for appraising ESV’s evolutionary characteristics through the lens of land-use transformations (Zhang et al., 2020b; Cao et al., 2021).
The valuation of ecosystem services transcends mere historical and current scenario analysis, extending to the prognostication and simulation of spatial distribution of future ESV in the context of land use alterations, thereby furnishing an empirical foundation for pertinent agencies (Wang et al., 2020; Liu et al., 2024). In the pursuit to forecast forthcoming land use type modifications, scholars have sequentially devised models such as the Markov, logistic, gray prediction, CA, CLUS-S, and FLUS models (Lin W. et al., 2020b; Hu et al., 2020; Liu et al., 2020; Tan et al., 2020; Peng et al., 2021). Despite these advancements, these models manifest discernible deficiencies, often concentrating on isolated aspects like spatial or structural optimization of land use types, and neglecting the multifaceted shifts in land use configurations (Wang et al., 2018). Through sustained endeavors, Liang (Liang et al., 2021) introduced the patch-generating land-use simulation (PLUS) model in 2021, which, while preserving merits of adaptive inertial and roulette competition mechanisms (Liu et al., 2017), enhances patch simulation protocols. Thus, it accommodates not merely spatial variations but also structural adaptations in land use types (Liu et al., 2017; Rao et al., 2018; Liang et al., 2021). More saliently, the model’s simulation precision has been markedly augmented, finding extensive applications in future land simulation. Concurrently, the integration of the PLUS model with gray multi-objective optimization (GMOP) (Li et al., 2021), the INVEST model (Fang et al., 2022; Shen and Zeng, 2022; Tian et al., 2022), and the Markov model (Yang et al., 2021; Han et al., 2022) facilitates evaluations of present and forecasts of future ecosystem service provision, ESV, ecosystem carbon neutrality (Li et al., 2020; Wang et al., 2022), and more. The PLUS model thereby performs an instrumental function in supporting regional sustainable development.
When scrutinizing ecosystem services’ worth, the attributes of ecologically fragile zones with stable ecosystems and prevalent forest and grassland regions have captivated broad scholarly interest. Nevertheless, within large and medium-sized urban areas, where construction land perpetually proliferates and cropland maintains a baseline, an emergent imperative arises to investigate ESV alterations to judiciously orchestrate land use composition. This is indispensable for the sustenance of regional sustainable growth. To bridge this research void concerning ESV dynamics within expansive urban zones, the current study amalgamated analyses of land use change degree, driving factor contribution rate, Moran index, and hot spot to assess both present and prospective ESV distribution trends and evolutionary traits in Henan Province’s Yellow River region. Initially, 13 determinative factors were harnessed to anticipate land use type pixel numbers via the Markov chain. Subsequently, the PLUS model was employed to emulate land-use type transitions in three distinct scenarios for 2030. Lastly, the spatiotemporal evolutionary properties of ESV, inclusive of concentration areas and cold and hot spot domains of ESV alteration, were evaluated. This inquiry thus offers a valuable reference for shaping land spatial planning and ecological compensation strategies in large and medium-sized cities.
2 RESEARCH REGION AND DATASET
2.1 Research region
The Yellow River region within Henan Province encompasses 8 cities and 1 county, namely, Zhengzhou, Luoyang, Kaifeng, Jiaozuo, Xinxiang, Sanmenxia, Puyang, and Jiyuan cities, along with Anyang Hua County, cumulatively extending across 59,200 km2. Geographically situated between longitudes 112°12′and 115°1′E and latitudes 34°47′and 35°44′N, the topography is characterized by an elevated eastern terrain that gradually descends towards the west. The study region’s diverse geomorphological features include mountains, hills, basins, and highlands, under the influence of a continental monsoon climate delineated by four pronounced seasons. The climatic conditions are featured by mean precipitation of 550–650 mm/year and mean temperature of 12.0°C–14.8°C (Figure 1). As of the conclusion of 2022, the regional population reached 41,946,400 individuals, with an urbanization rate of 66.87%, a figure that significantly transcends the 56.45% urbanization rate observed within Henan Province as a whole. Marked by a high population density, the rapid trajectory of economic development and urbanization within the study area has engendered a complex juxtaposition between urban growth and ecological consequences, thereby presenting intricate challenges to the sustainable evolution of territorial space. Furthermore, the initiation of strategies focused on ecological preservation and sustainable development has elevated significances of these goals. Specifically, within Henan Province’s Yellow River vicinity, the approach to ecological protection and the construction of ecological civilization have been escalated to unprecedented standards, reflective of the area’s contemporary significance.
[image: Map illustrating the study area in a section of China, highlighted within a grey provincial border. The enlarged view shows the topography with elevations ranging from 95 to 5073 meters. Cities such as Xuanwu, Aksu, and Hotan are labeled. A scale bar and compass rose provide orientation and distance reference.]FIGURE 1 | The research region.
2.2 Dataset
Land cover information was sourced from GlobeLand 30 data (http://www.globallandcover.com/), compiled by the National Geographic Information Centre, possessing an overall accuracy reaching 85.72% and a spatial resolution of 30 m × 30 m, including integration of shrubland into woodland. The research region is featured by several types of land uses, including construction land, water, grassland, forest, cropland, and unused land. To assess influence of land-use alterations along the Yellow River in Henan Province spanning the period from 2000 to 2020, a set of 13 representative driving factors were selected for analysis. Elevation data were acquired from the ASTER GDEM dataset (http://www.gscloud.cn/) with a 30 m × 30 m spatial resolution, from which slope data were extracted. Data pertaining to gross domestic product (GDP), population spatial distribution, soil type spatial distribution, precipitation, and average temperature were obtained from the Resource and Environment Science and Data Centre of the Chinese Academy of Sciences (https://www.resdc.cn/), with a spatial resolution of 1 km × 1 km. Distances to primary roads, highways, and railways were sourced from the National Geographic Information Resources Catalog Service (https://www.webmap.cn/), while distances to hospitals, schools, and governmental facilities were derived from the 2018 Gaode Map POI dataset.
Within the scope of the study, the aforementioned 13 selected driving factors were subject to standardization and resampling to ensure conformity with a uniform coordinate system and spatial resolution of 30 m × 30 m. Additionally, distances from first-class roads, high-speed roads, railways, hospitals, schools, and government locations were determined utilizing Euclidean distance analysis within the framework of ArcGIS10.7. Subsequently, the mask tool was employed to extract the driving factor data pertinent to the definitive study region.
Calculations pertaining to the output, sown area, and average price of agricultural products were conducted through integration with the Henan Statistical Yearbook and the Compilation of Cost and Income Data of National Agricultural Products, following a comprehensive statistical and analytical process.
3 METHODS
The analytical methodology coupling Markov and PLUS models includes two steps (Figure 2). First, the PLUS model was used for simulating the spatial distribution of land use/land cover (LULC) in the year of 2030 under the defined scenarios. Second, these simulated results were leveraged to analyze the spatiotemporal evolution of the ecosystem services value (ESV) corresponding to each scenario.
[image: Flowchart illustrating a land change model (PLUS) for land use/land cover (LULC) simulation from 2000 to 2030. It shows driving factors leading to LULC simulations in 2020 and 2030 across three scenarios: natural development, cropland protection, and ecological protection. It concludes with ecological service value (ESV) change comparison, highlighting spatiotemporal evolution from 2000-2020 and different scenarios in 2030.]FIGURE 2 | Research framework.
3.1 Markov model
The Markov model, extensively utilized for predicting the scale of land use demand, operates under the assumption that the land use pattern at a given time t+1 is influenced solely by its state at the preceding moment t. The mathematical formulation of this process is represented by (Gong et al., 2023):
[image: This is a mathematical equation showing \( X_{t+1} = P_{ij} \times X_t \).]
where [image: Please upload an image or provide a URL so I can help generate the alt text.] symbolizes land use transformation status at t, where t denotes a specific year, and [image: The image is not visible. Please upload the image or provide a URL for it, and include any context or description needed.] constitutes the transfer matrix of land use, encapsulating the probability of transition from the initial state i to the concluding state j.
3.2 PLUS model
The PLUS model is an advanced land use change simulation approach known for its comprehensive and dynamic characteristics (Liang et al., 2021). The modeling process involves several key steps. First, it is necessary to ensure that the row number of the land cover data within the study region is consistent, and that the type number starts from 1 to determine the land use expansion area across two distinct phases. Next, the Land Expansion Analysis Strategy Model (LEAS) is used, which explains the intrinsic change mechanism of land use within a given range, thereby determining the rate of change for different land types under specific driving factors (Rao et al., 2018). Following this, a Cellular Automata (CA) Model is utilized for simulating future land use types (Liu et al., 2017), and it is combined with a Markov model to predict the pixel number and area for land use types in subsequent years. Finally, a validation step is performed, where the simulated data are compared with actual land use information, evaluating overall accuracy, kappa coefficient, and figure of merit (FOM). The PLUS model has been empirically validated as reliable in predicting land use.
The [image: The Greek letter "Kappa" is shown in a stylized, italicized font.] coefficient is a significant metric for assessing the similarity between predicted outcomes and real-world conditions (Singh et al., 2018). Its mathematical expression is as follows:
[image: Kappa equals the fraction with numerator \( P_a - P_b \) and denominator \( P_c - P_b \), numbered as equation two.]
where [image: It seems there is no image attached. Please upload the image or provide a URL to enable me to generate the alternate text.] represents the ratio between the actual situation and the predicted result, [image: Please upload the image you would like me to generate alternate text for.] represents the ratio between the random prediction and the actual situation, and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represents the prediction accuracy rate under ideal situations. [image: The word "Kappa" in italicized serif font.] has a value range of 0–1; a value closer to 1 indicates that the land simulation result is more congruent with the real situation, reflecting a superior simulation effect.
FOM serves as an essential measure to verify spatial agreement between forecast results and actual scenarios (Pontius et al., 2008). Its mathematical expression is as follows:
[image: Formula: FOM equals B divided by the sum of A, B, C, and D, labeled as equation three.]
where [image: Please upload the image you would like me to generate alt text for.] represents the number of pixels altered by the actual change of the patch, but it is predicted to remain unaltered; [image: I am unable to see the image. Please upload the image or provide a URL so I can help create the alt text for it.] signifies the number of pixels accurately forecasted; [image: It seems there was an issue with image upload or the image wasn't provided. Please upload the image again or ensure the file is correctly attached. If you have a specific caption or context to add, feel free to include that as well.] symbolizes the number of pixels affected by incorrect regional predictions; and [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] reflects the number of pixels attributed to areas that have not changed but were forecasted as altered. The value range of FOM is [0–1], and a value closer to 1 corresponds to a simulation result that closely matches the actual situation, indicating a superior simulation effect (Hou et al., 2022).
3.3 Ecosystem service value coefficient correction and its calculation
In the context of the Yellow River area of Henan Province, ESV in the study region was classified into 11 distinct categories, according to the Xiegaodi value equivalent method, tailored to unique land use characteristics in this region (Xie et al., 2017). This required modification of the correlation coefficient of the value equivalent factor per unit area, as formulated in:
[image: Mathematical equation labeled as equation four. It shows \(E_i = \frac{1}{7} \sum_{i=1}^{k} \frac{m_i \times P_i \times C_i}{M}\), where \(m_i\), \(P_i\), \(C_i\), and \(M\) are variables or constants.]
where [image: It seems there is an issue with the input format or image upload. Please try uploading the image again or provide a URL if available.] symbolizes the economic value of grain per unit area (yuan/hm2), [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the crop type, [image: It seems there was an error uploading the image. Please try again by ensuring the image is properly uploaded, or provide a URL for me to access it. If there is a specific caption or context, feel free to include it as well.] are mean sown area, mean price and mean yield per unit crop area, respectively, [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.] stands for the quantity of all crops, and [image: It seems like there was an error in uploading the image. Please upload the image or provide a URL so I can help generate the alternate text for it.] is the total crop area.
ESV is further articulated as:
[image: Equation showing ESV equals the sum of Si times Ei from j equals one to six, denoted as equation five.]
where [image: Please upload the image or provide a URL for me to generate the alt text.] corresponds to the land use area associated with type [image: It looks like the image didn't come through. Could you please try uploading it again? You can add a caption for additional context if needed.], and [image: It seems there was an error in uploading or providing the image. Please try uploading the image again or provide its URL, and I can help generate the alternate text for it.] represents ESV corresponding to type [image: Please upload the image you'd like me to generate alt text for.].
During 2000 to 2020, wheat, corn, and soybean were identified as the principal grains cultivated in the Yellow River region of Henan Province. The associated average price, yield, and sown area for these crops were computed, leading to the derivation of the revised coefficient, calculated at 1,380.14 RMB/hm2, following Eq. 4. It was found that the ESV index corresponding to construction land equaled zero (Zhang et al., 2022). Consequently, the ESV coefficient of unit area along the Yellow River in Henan Province was obtained, discounting the impact of construction land on the ESV (Table 1).
TABLE 1 | ESV coefficients per unit area along the Yellow River region of Henan Province (RMB/hm2).
[image: Table displaying ecosystem service values categorized by primary and secondary types across different land uses: cropland, forest, grassland, water, and unused land. Primary types include supply services, regulating services, support services, and cultural services. The total ecosystem service values (ESV) for each land type are provided, with water having the highest total value at 123,625.92, while unused land has the lowest at 897.09.]3.4 Exploratory spatial data analysis
For a more refined analysis of the spatial distribution characteristics of ESV, the research region was partitioned into 2,623 square grids, each measuring 5 km × 5 km. This division was informed by existing research and allowed for exploratory spatial analysis and additional operations, balancing the need for accuracy with the goal of reducing computational labor (Su et al., 2020; Li et al., 2021). A vital aspect of this analysis involved the use of the spatial global analysis of the Moran index to express the spatial aggregation distribution of ESV. Furthermore, a hot spot analysis function was employed to identify significant distribution locations of high- and low-value regions within ESV space. This characterization facilitated the discernment of the cold and hot spot distribution pattern of ESV, enabling a subsequent examination and interpretation of the underlying law.
The hot spot analysis functions by pinpointing statistically significant hot spot and cold spot areas through the spatial clustering method, utilizing the z-score and p-value as evaluative metrics. The core algorithm is [image: To generate alternate text, please upload an image or provide a URL. If needed, include a caption for context.], expressed mathematically as:
[image: Mathematical equation depicting \( G^*_i = \frac{\sum_{j=1}^{n} w_{ij} x_j}{\sum_{j=1}^{n} x_j} \), labeled as equation six.]
where [image: Symbol of a capital letter "G" followed by a star symbol and a subscript lowercase letter "i".] signifies the hot (cold) point cell value, [image: Please upload the image or provide a URL so I can generate the alt text for you.] represents the attribute value of unit [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.], [image: It seems like there was an error in your request, or the image did not upload correctly. Please try uploading the image again or provide additional context for the request.] stands for the matrix of weight, and n refers to the total quantity of units. [image: To provide the appropriate alt text, please upload the image or provide a URL.] denotes the z score, where a larger z-score is indicative of a higher concentration among the elements, constituting a hot spot region in space. Conversely, a smaller z-score conveys a disparate degree of aggregation among the elements, designating a cold spot region in space.
4 RESULTS
4.1 Changes of land use areas
As shown in Table 2, cropland, forest, and construction land are the dominant types of land use in 2000–2020, constituting 55.68%, 24.72%, and 14.18% of the total area, respectively. During this period, the following alterations in land use were observed: Cropland and Grassland show a consistent decrease in area. Forest and Water present an initial increase in area followed by a decrease. Construction Land and Unused Land is featured by a continuous increase in area. Water Area is relatively stable.
TABLE 2 | Changes of LULC in 2000–2020.
[image: Table showing Land Use and Land Cover (LULC) types with area in square kilometers for years 2000, 2010, and 2020, alongside land change dynamics percentages over three intervals: 2000-2010, 2010-2020, and 2000-2020. Categories include cropland, forest, grassland, water, construction land, and unused land. Notable changes include an increase in construction land and a decrease in grassland from 2000 to 2020.]Examining the quantitative aspects of these changes, the following was noted: Construction land increased by 3,617.22 km2, representing 44.30% of the total change. Cropland decreased by 3,518.09 km2, amounting to 43.09% of the total change. Grassland shrank by 564.78 km2, constituting 6.92% of the total change. Forest expanded by 439.75 km2, equivalent to 5.39% of the total change. Water area grew by 24.16 km2, comprising 0.30% of the total change. Unused land area escalated by 1.42 km2, accounting for 0.02% of the total change.
From the perspective of dynamic land use change (Table 2), an analysis of the construction land and cropland from 2010 to 2020 revealed significant alterations. The changes were quantified as 4.38% for construction land and −0.67% for cropland. These figures were markedly higher than the values of 2.20% and −0.31% obtained for the period from 2000 to 2010, illustrating a twofold increase in the dynamic attitude of these land types. Additionally, the dynamic attitude of grassland underwent a noteworthy transformation. During the period from 2000 to 2010, the change was recorded at −1.79%, whereas from 2010 to 2020, it diminished to −0.12%. This change represents a 15-fold decrease in the dynamic attitude of grassland over the time span considered.
Construction land is characterized by its fast expansion, which was predominantly facilitated by the conversion of cropland and grassland. Conversely, these areas were minimally augmented by forest, water area, and unused land. This transformation can be attributed to the acceleration of urbanization and agricultural modernization, which have introduced new demands for the utilization of cropland and construction land. Consequently, these demands have precipitated continuous modifications in land use patterns over time.
4.2 Analysis of driver contributions
Within the framework of the PLUS model, LEAS was employed for determining contribution rates of driving factors to each type of land use in 2000–2020 (Table 3), along with the spatial distribution (Figure 3). The contribution rate data provide a significant measure of the influence exerted by driving factors on land use types, with values approaching 1 indicating an increasing impact of the corresponding factor on the observed land use.
TABLE 3 | Contribution of drivers to each land use type for 2000–2020.
[image: A table comparing various land types, including cropland, forest, grassland, water, construction land, and unused land, across different factors like elevation, slope, population density, GDP, precipitation, temperature, soil quality, and distances to primary roads, highways, railways, hospitals, government offices, and schools. Each cell contains numerical values reflecting the impact or presence of each factor on the respective land type.][image: A series of eleven maps depicting various geographical and socioeconomic metrics of Afghanistan. The maps display elevation, slope, population density, GDP per square kilometer, precipitation, temperature, NDVI, and distances to primary roads, highways, railways, government centers, and schools. Each map uses a color gradient or grayscale to represent different data values specific to the metric. A scale bar and north arrow are included for reference.]FIGURE 3 | Thirteen types of driving factors affecting LULC.
For cropland, temperature exerted the most substantial influence. Appropriate temperatures are instrumental in crop production, while an escalation in population density and GDP amplifies the necessities for food supply and corresponding demand for cropland (Zhang and Xie, 2019; Tian et al., 2022). In the case of forest change, the predominant drivers were elevation, temperature, and precipitation. Forests were primarily located in the western part of the Yellow River region of Henan Province, an area typically characterized by higher elevations, conducive temperatures, and abundant precipitation. Temperature and population density emerged as the central drivers of grassland change, signifying that grasslands are responsive to temperature fluctuations and are influenced by areas with elevated population densities (Liang et al., 2021; Zhai et al., 2021; Tian et al., 2022). Construction to support denser populations was the principal factor engendering changes in water availability, encroaching on either cropland or grassland (Zhai et al., 2021; Guo et al., 2022; Wang et al., 2022). In the context of construction land changes, population density was the primary driver, as increasing population densities necessitated additional construction land to house the burgeoning populace (Tian et al., 2022); this includes the requirement for specific distances to schools and government resources to enhance living conditions, education, and transportation accessibility. Collectively, assessment of drivers influencing land use contribution underscored that elevation, population density, and temperature were critical determinants in land use conversion. This observation is congruent with prevailing understanding and perceptions of land use dynamics, irrespective of the specific type of land use.
4.3 Spatial distribution of ESV
The Moran index values for the Yellow River region within Henan Province during the years 2000, 2010, and 2020 were recorded as 0.674, 0.656, and 0.674, respectively. These positive values indicate a positive correlation between ecosystem service value (ESV) and an agglomeration trend.
In 2000, the ESV for this region amounted to 70,523.7 million RMB; by 2010, it had increased to 71,306.7 million RMB, but in 2020, it fell to 69,917 million RMB. This pattern demonstrates an initial increase followed by a decline, and the overall ESV decreased by 1,432 million RMB over the 20-year period (Table 4). This decrease is indicative of the continual reduction in cropland and grassland area, which contributed to the decline in ESV. Conversely, the ESV of unused land did not exhibit significant fluctuations. Specifically, the ESVs of cropland and grassland decreased by 1917.9 million RMB and 940.3 million RMB, respectively, while those of forest and water area increased by 1,127.5 million RMB and 298.7 million RMB, respectively.
TABLE 4 | ESV changes during 2010–2020 (×108 RMB/hm2).
[image: A table displays Ecosystem Service Value (ESV) data for different Land Use and Land Cover (LULC) types from 2000 to 2020. It shows ESV values for cropland, forest, grassland, water, construction land, and unused land across 2000, 2010, and 2020. ESV changes are provided for periods 2000-2010, 2010-2020, and 2000-2020. For instance, cropland ESV decreased by 19.179 from 2000 to 2020, while forest ESV increased by 11.275. Total ESV shows a decrease of 14.320 from 2000 to 2020.]The ESV distribution along the Yellow River in Henan Province was assessed using the spherical kriging interpolation method. Subsequently, the ESV from 2000 to 2020 was categorized into six intervals employing the natural discontinuities method (Figure 4), enabling a spatial analysis and evaluation. Generally, the spatial distribution of ESV in this region remained relatively stable. Areas with high values are clustered in southern parts of Sanmenxia and Luoyang cities, as well as the northern regions of Jiyuan and Jiaozuo cities. These locales are primarily characterized by extensive grassland and forest coverage, and the ecosystem is comparatively intact. The strategy of converting cultivated land back to forest also contributed to an increase in forestland area, incrementally enhancing ESV. Conversely, areas with low values are in the northern parts of Luoyang, Zhengzhou, Jiaozuo, Xinxiang, and Hua County, along with Puyang and Kaifeng cities. The abundance of cropland and construction land in these areas has significantly compromised the ecosystem. Human activities related to production and daily living have inflicted serious damage, resulting in a substantial negative impact on ESV.
[image: Three maps depict land changes over time in 2000, 2010, and 2020, using color coding to represent Ecosystem Service Value (ESV) in Chinese Yuan. Colors range from red (less than 10) to green (greater than 90), with a visible increase in green areas by 2020, indicating higher ESV. A compass rose and scale bar are included.]FIGURE 4 | Spatial ESV distribution during 2000–2020.
4.4 Projections of different types of land uses
4.4.1 Validation and assurance of simulation model
Employing land use records from the years 2000 and 2010 as foundational data, this research integrated development probabilities of influential factors and the proportion of individual land use types to the aggregate classification into the PLUS model. Simulations were executed to depict land use categorizations for the years 2010 and 2020, with the ensuing outcomes being cross verified against real-world instances. The analysis manifested an overall precision of 89.7% and 88.7% for 2010 and 2020 respectively, with corresponding kappa statistics of 0.820 and 0.811, and FOM metrics of 0.136 and 0.088. A kappa statistic exceeding 0.8 (Huang et al., 2019; Lin W. et al., 2020b) corroborated the efficacy of the PLUS model simulation in the Henan Province’s Yellow River zone, substantiating the authenticity of the methodology for foreseeing future transformations in land utilization.
4.4.2 Land use type projections for multiple scenarios
To investigate the evolving trends of population, economy, and regulatory influence on land use, this research simulated land use type distributions under three distinct scenarios in Henan Province’s Yellow River region for 2030.
The natural development scenario (NDS) holds the development likelihood for 2020–2030 constant with the probability of 2010–2020, disregarding additional variables. In contrast, the cropland protection scenario (CPS) acknowledges the vital need to conserve cropland near the Yellow River in Henan Province. It is necessary to ensure the reasonable expansion of construction land, but also to strictly observe the quantity of cultivated land. This means mitigating the probability of converting forestland and cropland to construction land by 30%, while simultaneously augmenting the construction land’s conversion probability to cropland by 10%. Other lands follow the natural trend of development. Meanwhile, the ecological protection scenario (EPS) is aligned with contemporary ecological conservation demands, prioritizing land use forms that fortify ecosystem stability, emphasis needs to be placed on increasing the amount of grassland, forest, and cropland. Consequently reducing the probability of converting grassland, forest, and cropland to construction land by 40% while raising the probability of construction land to cropland by 40%. Other lands follow the natural trend of development. The domain weight was determined according to land use type proportions.
Under NDS, a comparative study with 2020 reveals a reduction in cropland by 1,874.84 km2, forest by 132.26 km2, and grassland by 21.82 km2. Conversely, expansions in water and construction land areas are observed, increasing by 39.88 km2 and 1999.02 km2, respectively (Figure 5; Tables 5, 6). In monetary terms, ESV declined by 921.0 million RMB during this period. This reduction comprises a decrease in cropland ESV by 1,022.1 million RMB, offset partially by an increase in water ESV by 493.1 million RMB. The accelerated growth of construction land, encompassing substantial portions of cropland, forest, and grassland, has instigated significant concerns for both ecological integrity and food safety. The emergent data points to a pronounced structural disequilibrium among the various land use categories.
[image: Three maps compare land use types in a region labeled NDS, CPS, and EPS. Colors indicate cropland, forest, grassland, water, construction land, and unused land, as shown in the legend. A scale indicates 0 to 120 kilometers alongside a compass rose.]FIGURE 5 | Spatial LULC distribution in 2030.
TABLE 5 | Projected LULC area and pixels under three different scenarios in 2030 (km2 and numbers).
[image: Table showing land use data for 2020 and 2030 across different scenarios: NDS, CPS, and EPS, with changes from 2020 to 2030. Categories include cropland, forest, grassland, water, construction land, and unused land, with values in specific units. The table reflects a decrease in cropland and forest areas, with an increase in construction land over the decade. Changes in each category are specified for the three scenarios.]TABLE 6 | Total ESV in 2030 compared with 2020 (×108 RMB/hm2).
[image: Table showing Ecosystem Service Values (ESV) for different land-use/land-cover (LULC) types in 2030 under three scenarios: 2030NDS, 2030CPS, 2030EPS, and changes from 2020. LULC types include cropland, forest, grassland, water, construction land, and unused land. ESV values are listed with respective changes. Total ESV for each scenario and the changes over time are also provided.]Under CPS, and in comparison to the state in 2020, there were reductions in the areas of cropland by 947.44 km2, forest by 111.13 km2, and grassland by 27.2 km2. Concurrently, increments were observed in water and construction land areas, increasing by 27.46 km2 and 1,058.31 km2, respectively (Figure 5; Tables 5, 6). In relation to NDS forecasted for 2030, the overall ESV experienced a growth of 413.8 million RMB. This alteration is characterized by augmentations in the areas of cropland, forest, and grassland, accompanied by a moderated expansion rate in construction land. Specifically, the decline in ESV pertaining to cropland was halved in comparison to the NDS, a finding that is congruent with the objectives of cropland conservation, leading to an enhanced rationalization of the land use architecture.
Under EPS, a comparative analysis with 2020 reveals a decrease in cropland area by 406.38 km2, forest by 98.17 km2, and grassland by 10.87 km2. Concurrently, the construction land and water areas have increments of 497.28 and 18.07 km2, respectively (Figure 5; Tables 5, 6). When contrasted with the 2030 cropland protection scenario, the overall ESV rose by 239.3 million RMB. This includes a decrease in the areas of cropland, construction land, and grassland equal to 2/5 of the reduction observed in the CPS, and a 4/5 reduction in forest area. Such findings point to an optimized land use structure within the EPS, emphasizing a harmonized balance between economic demands and ecological preservation. Although the overall ESV contracted by 267.9 million RMB relative to 2020, a restorative trend is discernible, signaling that policies fostering the transition of cropland to forest coupled with sustainable development initiatives have engendered a symbiotic enhancement for both ecological stewardship and socioeconomic sustainability.
4.4.3 ESV changes over space
The hot spot analysis conducted for the three scenarios within the study area divulged distinct patterns (Figure 6). Under NDS, hot spot regions were primarily clustered and largely confined to areas where ecosystem integrity was most robust. Conversely, cold spot regions were predominantly localized within Zhengzhou, Xinxiang, and Jiaozuo cities, where urbanization processes have been expedited. The consequential vast expansion of construction land has wielded a considerable impact on ecosystem functionality, culminating in a decline in ESV. In the context of CPS, both cold spot and hot spot concentrations manifested a minor increment, reflective of the fact that containment of cropland and forest areas can decelerate the rate of ESV degradation. Lastly, under EPS, clustering of cold spots escalated more markedly, and the spatial clustering of these cold spots intensified.
[image: Three maps labeled NDS, CPS, and EPS display geographical data with hot and cold spots. Red indicates hot spots and blue indicates cold spots, with varying confidence levels shown in shades. A compass and scale bar are included.]FIGURE 6 | Spatial distribution of ESV hot/cold spots across various scenarios in 2020–2030.
5 DISCUSSION
The correlation between land use structure and ESV is pronounced, with varying degrees of impact on ESV. Utilizing the Markov-PLUS coupled model, it is feasible to not only enhance the land use structure but also to balance both quantitative and spatial optimization objectives. This harmonization contributes to the dual goals of fostering ecological civilization construction and sustaining social and economic development, thereby promoting the synergistic evolution of ESV. In the context of the cropland protection and ecological protection scenarios, the simulated ESV exceeded that of the 2030 natural development scenario. This outcome signifies the capacity of combining Markov and PLUS models to refine land-use patterns and capitalize on the benefits associated with ESV. Through a detailed hot spot analysis of ESV in 2030 across the three scenarios, specific cold spot and hot spot regions were identified under varying conditions. By managing these targeted areas and concentrating on strategic renovation, the model facilitates precise, well-reasoned utilization of land resources.
5.1 A coupled model of land use along the Yellow River region in Henan Province
For urban regions within the Yellow River Basin, the central dilemma in accessing ESV lies in preserving ecosystem stability to the greatest extent possible, all the while facilitating rapid economic expansion and ensuring sustainability. A variety of coupled models have been deployed in major urban centers or ecological function zones; however, due to the pronounced disparities in the geographic characteristics such as " lakes, fields, forests, rivers, mountains, and grasslands” across different cities, these coupled models are not universally applicable. Tailored strategies must be crafted in alignment with the unique conditions of the study area.
Leveraging the foundational Markov model, the PLUS model was integrated to architect a coupled land use model specifically for the Henan Province region along the Yellow River. This model is attuned to the particular attributes of the study region, allowing for the formulation of regionally specific scenarios and the attainment of predefined objectives. By simulating land use data across three disparate scenarios, comparisons were made regarding both the changes in land use types and the spatial distribution of ESV’s cold and hot spot areas. The establishment of diverse land use scenarios through this method offers valuable insights that can guide comprehensive land use planning and regional ecological preservation in the future.
5.2 Study limitations and future research
In the broader context, governmental policies are pivotal in shaping changes in land use, with specific actions such as converting farmland to forestry having substantial impacts on ESV.
Furthermore, this study undertook a correction process for ESV coefficients to enhance their accuracy within China, particularly in the Henan Province region along the Yellow River. Notwithstanding, the study established the correction coefficient for construction land at zero, meaning it did not account for the extent of construction land’s influence on ESV. This omission only partially represents the true impact on ESV of construction land when deployed, resulting in residual uncertainty in the findings. Significant spatial heterogeneity characterizes the Yellow River region in Henan Province, primarily due to substantial environmental variations. To accurately reflect these regional differences, it is advisable to refine spatiotemporal coefficients for ecosystem service values using data such as net primary productivity (NPP) and precipitation. Furthermore, conducting accuracy assessments through comparative analysis of simulation outcomes under different domain weights is essential to enhance the credibility of future land use simulations and validate the model’s reliability. Consequently, integrating a variety of factors in future land use planning is crucial for developing more accurate predictive models and thereby deriving more precise outcomes. Additionally, implementing standardized, precise, and sustainable strategies will promote the effectiveness of land use planning and ecological conservation efforts in the region.
6 CONCLUSION
In addressing the challenge of population and economic growth impacting ecosystem service value (ESV) within large neutral cities, this study proposed the Markov-PLUS coupled model to sustain ESV stability through the optimization of land use structure. The model’s accuracy was validated using data from the Yellow River region of Henan Province. This investigation encompassed an analysis of changes in land area, the effect of key driving factors on land use, and ESV trends in the Yellow River region of Henan Province from 2000 to 2020. Additionally, the study simulated types of land use under three distinct scenarios for 2030 and performed cold and hot spot analysis of ESV for discerning spatial and temporal distribution laws of ESV.
The findings revealed that elevation, population density, and air temperature were primary contributors to changes in land use during 2000–2020. The occupation of significant amounts of cropland and grassland by rapidly expanding construction land led to a decrease in ESV by 1.432 billion RMB over this period. High-value ESV zones corresponded to areas with relatively intact ecosystems, while low-value ESV regions were predominantly found in cropland and construction land, where human activities exerted considerable influence on the ecosystem. Land use for 2030 was simulated and assessed. In the ecological protection scenario, optimization of the land use structure was achieved along with a balanced consideration of economic and ecological aspects, leading to a synergistic realization of ecological civilization construction and sustainable socioeconomic development. Concurrently, hot spot analysis showed relative stability in cold and hot spot areas under various 2030 scenarios. Notably, under the ecological protection scenario, there was a more pronounced increase in cold spot concentration, coupled with higher agglomeration.
Indeed, the utilization of the Markov-PLUS coupled model, combined with multiscenario analysis, offers a valuable reference framework for the sustainable growth of large and medium-sized cities, land use optimization, and ESV preservation. Within the principles of territorial spatial planning, recognition of regional disparities and specificities is integral, as is the bolstering of ecological protection, to ascertain the sustainable utilization of land resources, thereby culminating in the high-quality advancement of large and medium-sized urban areas. In areas where ecosystems are thriving, it is prudent to further enhance the ecosystem service functions. Give full play to the advantages of different regions, increase the coverage of woodland, grassland and other vegetation, and maintain the stability of the ecosystem to the maximum extent. Conversely, in locales experiencing a swift diminishment in cropland, stringent adherence to cropland protection measures is paramount, with primary focus on controlling and diminishing the loss of ecosystem service functions. At the same time, ensure the effective expansion of urban development boundaries, and coordinate the relationship between land use, urban expansion and ecological environment in the process of urban development along the Yellow River region of Henan Province. The achievement of regional governance mandates the creation of an ecological coordinated development mechanism and the formulation of a novel blueprint for ecological protection in the Yellow River region of Henan Province.
Future inquiries necessitate a consideration of governmental decisions and an enhancement of the correction techniques for the ESV coefficients. The derivation of a more holistic method for attaining the corrected coefficients is required, as this would furnish more precise ESV data to steer the future planning of comprehensive land use. Such precision is instrumental in fostering expeditious and stable development across ecological, economic, and agricultural domains within the Yellow River region of Henan Province.
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In modified production landscapes, biodiversity faces unprecedented pressures from human actions, resulting in significant species declines of plant and animal taxa, including birds. Understanding the underlying mechanisms responsible for such declines is essential to counteract further loss and support practitioners in conserving biodiversity and associated ecosystem function. In this study, we used standardized bird monitoring data collected over 6 years in managed forest and grassland areas across different regions in Germany, Central Europe. We combined these data with morphometric, ecological, behavioral, and acoustic trait data and detailed information on local land use management practices to understand how management decisions affect species and functional diversity, as well as ecological processes shaping local species composition. Our results reveal that the ecosystem and regional context must be considered to understand how management practices affect bird diversity aspects and composition. In forests, regional management decisions related to tree species and stand age affected bird diversity, as well as community and functional composition, and indicated environmental sorting due to ecological and behavioral requirements, biotic interactions, and morphometric constraints. In grasslands, independent of local management practices, increased intensity of land use resulted in an overall loss in bird species richness and functional diversity. Predominantly, constraints due to ecological or behavioral requirements affected bird species assemblage composition. In addition, our results indicated the importance of woody vegetation near managed grasslands and of considering environmental conditions beyond the local scale to support bird diversity and associated ecosystem functions. Our results highlighted that local management decisions can support bird diversity and maintain ecological function. However, this needs a view beyond the local scale of management units. It also demands a joint effort of biologists and land managers to integrate targeted conservation actions into regional management practices and create a network of habitats within production landscapes to protect nature, guard against biotic and functional homogenization, and prevent further degradation of ecosystems in production landscapes.
Keywords: birds, functional traits, land use effects, grasslands and forest management, biodiversity conservation

1 INTRODUCTION
Centuries of human land use have shaped the current landscapes in central Europe and created mosaics of different habitats for wildlife (Ellis et al., 2021). However, especially during the past decades, biodiversity has faced increasing pressures from human actions (Newbold et al., 2015; Joppa et al., 2016), including the intensification and industrialization of land use practices and land conversion (Foley et al., 2005). Altogether, this caused significant transformations from natural or near-natural to extreme anthropogenic landscapes (IPBES, 2019) and includes environmental changes from the local to the landscape scale (Tilman et al., 2017).
These environmental transformations are accompanied with an unprecedented global loss in biodiversity (IUCN 2019) across a wide array of plant and animal species groups (Ceballos et al., 2015; IPBES, 2019), including birds.
Among vertebrates, birds are one of the functionally most diverse taxa inhabiting different habitats across all climatic regions of the earth. They are integral parts of ecosystems in almost all terrestrial and aquatic ecosystems, and in addition to playing essential key roles in ecosystems, such as seed dispersal and predation, the acoustic diversity of bird song (Hedblom et al., 2014) has been shown to positively influence human empathy toward nature (Methorst et al., 2021).
Approximately 60% of the bird species globally are, however, reported to be declining by the IUCN (e.g., Johnson et al., 2011). Negative developments over the past decades are also reported for many European populations (e.g., Bowler et al., 2019; Burns et al., 2021), where declines have been linked to increased intensity and industrialization of local land use management practices across different ecosystems, including agricultural areas (Reif and Vermouzek, 2019; Rigal et al., 2023) and production forests (Reif et al., 2023).
Although land use and its effect on overall population trends may vary regionally (Bowler et al., 2021) between groups of species (Rigal et al., 2023) and across different spatial scales (Leroy et al., 2023), responses of individual bird species have been linked to functional traits such as size and mobility (Concepción et al., 2015), as well as resource and habitat specialization (e.g., Bowler et al., 2019; Reif and Vermouzek, 2019), key characteristics that have been suggested to determine the tolerance to environmental change (Tews et al., 2004; Öckinger et al., 2011) across various taxa.
Trait-based approaches provide more meaningful insights into species response to environmental change (Ali et al., 2022) and are more suited to understand and predict environmental effects on species occurrence and assembly than species numbers and species diversity measures alone (Mouchet et al., 2010; Wells et al., 2012; Carmona et al., 2021; Schleuning et al., 2022; Mouchet et al., 2010). Moreover, patterns of functional diversity (Villéger et al., 2008; Laliberté and Legendre, 2010) and trait composition (Lisboa et al., 2014) may thus help to understand the drivers of species occurrences and assemblage composition along environmental gradients (e.g., Mouchet et al., 2010; Schleuning et al., 2022), including the relative strength of environmental filtering and biotic interaction processes in differently managed environments (Mason et al., 2005; Gámez-Virués et al., 2015; Kraft et al., 2015). A true understanding of such processes is important to counteract further species loss and support practitioners in maintaining bird diversity and associated ecosystem function and services.
In birds, functional traits reflect distinct associations with environment, lifestyle, and diet (Tobias et al., 2022) and, thus, shape ecological niches (Pigot et al., 2020) and function (Ali et al., 2022). Bird traits are well-documented (Tobias et al., 2020), including morphometric parameters, ecological and behavioral attributes, and acoustic characteristics. Morphometric traits predominantly reflect the physical performance, such as aerodynamic abilities (e.g., mobility and maneuverability) or resource accessibility (beak size and strength) of species. Morphometric traits are correlated with ecological niches across the global bird phylogeny (Pigot et al., 2020); however, in regional datasets, morphometric traits alone may hamper the identification of environmental challenges due to niche-based processes and biotic interactions (Cadotte and Tucker, 2017; Rigal et al., 2022). Such challenges may be better described using ecological and behavioral trait classifications, such as habitat preferences, trophic level, dietary resource type, and foraging and migratory behavior (Tobias et al., 2022). In addition, acoustic traits, which are crucial for bird species communication to find mates and defend territories, may better reflect environmental challenges to ensure the acoustic recognition of a species identity, territorial quality, and individual fitness in differently structured habitats.
In this study, we used a large-scale dataset of birds collected in forest and grassland production landscapes across three regions in Germany, Central Europe. The data include the two major land cover types in Germany, grassland (21%–39% land cover depending on the federal state) and forest (39% land cover across Germany) ecosystems (Federal Statistical Office, 2022), both being under pressure through increased land conversion and representing environments where anthropogenic disturbance is relatively limited compared to industrialized agricultural and urban areas and, thus, are highly valuable ecosystems to support biodiversity.
Bird species observations were collected during 6 years using standardized audio–visual point counts and used to calculate alpha diversity and assess species composition per site. These data were combined with species trait data, including morphometric, ecological and behavioral, and acoustic traits and very detailed information about local land use management practices and land use intensity (LUI).
Our aim was to shed light on how the management of forest and grassland is linked to changes in species diversity and functional diversity aspects of bird assemblages. We thus assessed regional and ecosystem-specific differences in species and functional diversity metrics and composition and investigated the local effects of different management practices and land use intensity. To address the importance of different ecological processes shaping local species composition, we distinguished between morphometric, ecological and behavioral, and acoustic trait dimensions, which represent distinct environmental challenges due to management practices that may cause ecological sorting or biotic homogenization and can help evaluate regional- and ecosystem-specific differences in management effects. Finally, we investigated whether the strength of ecological processes may differ due to land management practices and/or change due to land use intensity.
2 METHODS
2.1 Study area
Our study was conducted within the long-term research platform of the Biodiversity Exploratories (www.biodiversity-exploratories.de), a large-scale project for functional biodiversity research, which encompasses three regions along a north–south axis in Germany: 1) the Schorfheide-Chorin Biosphere Reserve, a young glacial landscape characterized by moraines, lakes, and marshes in the lowlands (3–140 m asl) of northeast Germany; 2) the Hainich-Dün area situated in the hilly lands (300–400 m asl) of central Germany; and 3) the Schwäbische Alb plateau in the low Swabian Jura mountain ranges (720–840 m asl) of southwest Germany. All three regions are shaped by the anthropogenic land management of grassland and forest areas and harbor 100 permanently marked experimental sites in differently managed forest (n = 50; 100 * 100 m) and grassland systems (n = 50; 50*50 m), totaling 300 sites (Fischer et al., 2010). The average annual temperature decreases from north to south and reaches 8.1°C–9.6°C in the Schorfheide-Chorin region, 7.5°C–9.2°C in the Hainich-Dün region, and 6.9°C–8.6°C on the Schwäbische Alb plateau. In contrast, the average annual precipitation increases from north to south, with 450–790 mm in the Schorfheide-Chorin region, 350–860 mm in the Hainich-Dün region, and 810–1,100 mm in the Schwäbische Alb plateau, according to project-based records from 2008 to 2018.
2.2 Environmental data
In all three exploratories, experimental sites differed in management practices, which we classified into different management categories. Management categories in forests include old unmanaged beech, oak, and spruce stands in different developmental stages, mixed cultures, and intensely managed beech, pine, and spruce monocultures (Supplementary Table S1). Grasslands are managed either as meadows, mown pastures, and pastures (cattle, horse, and sheep grazing), where the management intensity varies from unfertilized and extensive grazing to high fertilizer input, mowing frequency, and grazing pressure on production grasslands (Supplementary Table S2). Annual information from local foresters and farmers allows us to quantify the management intensity of individual sites and was used to calculate the quantitative indices of silvicultural management intensity (SMI) in forests following the procedures outlined by Schall and Ammer (2013) and LUI for grasslands following the procedures outlined by Blüthgen et al. (2012). To reflect the environmental heterogeneity of the grassland neighborhood, we additionally quantified the proportion of woody vegetation coverage in a 100-m radius from the center of each site based on a land cover map provided by Schug et al. (2020). This map was originally designed to discriminate between woody, non-woody, and build-up surface at a 10-m resolution for all of Germany, using Sentinel-2 satellite data. We thus cross-checked the extracted data with digital aerial orthophotos from the three exploratory regions (License CC BY 4.0) and confirmed that the extracted wood vegetation from this map corresponds to single trees, hedges, and forests in the direct vicinity of our grassland sites.
2.3 Bird surveys
Bird surveys were conducted for 5 consecutive years between 2008 and 2012 and again in 2018. Sampling per year included five visits to each of the 300 sites in the grasslands and forests during the main breeding season from March to June. Observers conducted standardized audio–visual point counts for 5 min during the morning chorus between sunrise and 11:00 a.m. Surveys were conducted by experienced ornithologists or trained and tested student helpers. To reduce observer bias, the personnel did not change during the season, and changes in personnel between years were kept to a minimum. All visible and audible birds exhibiting territorial, breeding, or feeding behavior on site were counted as a record. For later analysis, we, however, only considered the maximum number of individuals observed during one of the five visits per year as a measure for the relative abundance of a bird species per site. In addition, we considered a presence-only count of a species per year and site as a measure for a species occurrence and used the accumulated occurrence counts of a species over a total of 6 years (based on 30 visits to a site) to determine local bird species assemblage composition.
2.4 Trait data
All bird species were characterized by a suite of functional traits including 1) morphometric measurements, which reflect physical limitations to individual species for resource use and movement; 2) ecological and behavioral traits, which reflect the environmental and interaction-based niches of a species; and 3) acoustic features of bird song, which reflect acoustic challenges for social communication and optimal signal design in differently structured environments (Table 1).
TABLE 1 | Functional traits used to calculate functional diversity measures in morphometric, ecological and behavioral, as well as acoustic trait space, and community weighted means of trait composition. Given are trait variable names, challenges associated with the three trait groups, and individual trait descriptions. Description of morphometric, ecological and behavioral traits follow Tobias et al. 2021 (Avonet) and are slightly Descriptions of morphometric, as well as ecological and behavioral traits follow Tobias et al. (2022) (Avonet), but are slightly adapted to the current study system; acoustic trait description represents definitions for feature extraction during acoustic analysis.
[image: Table detailing bird traits categorized into morphometric, ecological and behavioral, and acoustic traits. Morphometric traits include mass, wing and beak measurements, reflecting resource use. Ecological traits describe habitat preferences and behaviors, like habitat density and trophic niche. Acoustic traits cover song duration and frequencies, indicating communication challenges.]Morphometric, ecological, and behavioral traits were extracted from the online data repository AVONET (Tobias et al., 2022). For morphometric traits, we included measurements of the wings (wing length and Kipp’s distance), tarsus and tail lengths, body mass, beak length, and beak width, which determine the aerodynamic ability of a species, e.g., mobility and maneuverability (Rayner, 1988), as well as resource specializations. Ecological and behavioral traits included habitat preferences, including the relative use of different habitat types and environmental conditions with respect to habitat density, foraging style, trophic position and trophic niche, migratory behavior, and the centroid of the latitudinal distribution of the respective species, reflecting ecological or behavioral requirements and ecological niches (Tobias et al., 2020). In addition, we assessed acoustic characteristics of the song of a species, which determines the acoustic identity of a species and the occupied acoustic space (Luther, 2009) within bird assemblages. Acoustic trait data were extracted from original audio data of bird songs available from the online repository xeno-canto (https://xeno-canto.org). We restricted downloads of recordings to those of the highest-quality ranking (“A”) and an origin from Germany. We then selected recordings for further analysis based on a good signal-to-noise ratio (minimum 15 db) and unambiguity of the species identification. In very few cases, where xeno-canto did not provide sufficient recordings, we used the online sound archive of the Naturkundemuseum Berlin and supplemented the acoustic data with recordings of a commercially available CD. All recordings considered for analysis were made with a minimum sample rate of 32 kHz and a maximum of 48 kHz (resulting in a resolution of 32–41 Hz and 2.8–4 ms).
As we were interested in the species divergence of acoustic features, which allow partitioning of the acoustic space to improve communication with conspecific receivers, we focused the acoustic analysis on the complete song, rather than song components or elements (notes), following the procedure used by Tobias et al. (2010). The song structure and characteristics were then quantified using temporal and spectral measures, i.e., the duration of song, number of elements (notes), the maximum and minimum frequencies, and mean frequency of the entire song. In addition, we calculated the bandwidth and pace of the song (number of elements per song).
All acoustic measurements were obtained using Avisoft SASLab Pro 5.3.02 (Raimund Specht Berlin, Germany) and obtained from a spectrogram generated with an FFT of 1,024, a flat-top window, and 87% overlap. Songs were automatically detected using a threshold of −35 db, and the start and end of the song were determined by –6 db relative to the detection threshold. To ensure that the features of complete phrases were extracted, we set the hold time to 500 ms. For sub-element detection, the hold time was set to 10 ms. All measurements were visually inspected for acoustic disturbance effects and filtered if necessary to ensure that the extracted features are representative for the respective species.
2.5 Diversity metrics, species composition, and multidimensional trait space
Based on the relative abundance of bird species per site, we calculated the effective number of species (ENS, vegan package; Oksanen, 2019) and considered it a measure of species diversity (Jost, 2006). To further quantify the similarity in species assembly across sites, we used non-metric multidimensional scaling (NMDS; vegan package). NMDS scores were based on the Hellinger-transformed accumulated presence counts of a species across all 6 years, and Bray–Curtis similarity was used to assess the similarity between site-specific bird assemblages.
Using the assembled functional traits described above, we calculated functional diversity metrics, including functional richness, functional evenness (Villéger et al., 2008), and functional dispersion (Laliberté and Legendre, 2010). Here, functional richness is defined as the “volume” in functional trait space occupied within an assemblage (Villéger et al., 2008) and increases with an increase in functionally distinct species (independent of species abundances). Functional evenness represents the homogeneity of trait abundance distribution in the functional space (Villéger et al., 2008). Functional evenness approaches zero if only a narrow part within the functional trait space is occupied (e.g., in species-poor assemblages or assemblages with high dominance of single species). A decrease in functional evenness thus indicates an abundance shift toward specific traits (Mason et al., 2005), which are, for example, more suitable under certain environmental conditions, suggesting environmental sorting. In addition, functional dispersion reflects the mean distance in the multidimensional trait space of a species to the centroid of all species within a community, weighted by its abundance (Laliberté and Legendre, 2010), and reflects functional dissimilarity in traits within assemblages. To interpret the relative importance of individual traits contributing to the three different functional diversity metrics, namely, functional richness, functional dispersion, and functional evenness, we used random forest (function: random forest, 1,000 permutations; (Breimann 2001; Supplementary Figure S1.1)).
To further investigate the similarity in trait composition across species assemblages from different sites, we also calculated the community weighted means of traits, weighted by the relative abundance of individual bird species per site package FD (Laliberté et al., 2022), and then used NMDS (vegan package) to compute the similarity in trait composition between sites.
Both functional diversity metrics and community weighted means of traits were based on Gower’s distances, and a “Cailliez” correction was applied.
Functional diversity metrics and multidimensional trait space were calculated first across all traits combined and then separately for 1) morphometric, 2) ecological and behavioral, and 3) acoustic subsets of traits to evaluate the importance of different trait dimensions as the drivers of species assemblage composition.
2.6 Diversity patterns across regions and ecosystems
We assessed regional and ecosystem-specific differences in species and functional diversity metrics using generalized linear mixed-effect models (package: glmmTMB), including an interaction term between region and habitat types (forest and grassland; formula: glmmTMB (diversity metrics ∼ region * habitat type). The models were fitted using a negative binominal distribution, and sites were included as random factors due to repetitive sampling. Between-group effects were evaluated using a type II Wald chi-squared test (ANOVA; package car) and EM means (package emmeans).
Within each habitat type, we then assessed whether species diversity and functional diversity metrics correlate using the Pearson product moment correlation and tested correlative significance using linear regression models.
We then explored the effects of land management practices and land use intensity on bird diversity (ENS) by fitting generalized additive models (gams; package mgcv), including the respective management intensity indices (SMI/LUI) as smooth terms and management practice categories as factors. For this, we used a hierarchical approach and fitted a global model across regions {setting region as a random factor; formula: gam [ENS∼s (SMI/LUI) + management practice + s (region, bs = “re”)]} followed up by a separate regional model in which the region was included as a moderating effect for either silvicultural management intensity or local land use intensity in grasslands {Formula: gam [ENS∼s (SMI/LUI, by = region) + management practice]}. In all models, geographic coordinates were included as random effects to account for geographic autocorrelation. Models were fit either with negative binominal (grasslands) or Gaussian distribution (forests) after the visual inspection of model diagnostics (function appraise; package: gratia).
2.7 Species and trait composition
We further evaluated patterns of species and trait composition. We first assessed whether species composition and functional compositions (across all traits and separately for morphometric, ecological, behavioral, and acoustic trait space) differed between regions, habitat types, and management types using permutational multivariate analysis of variance (function adonis, vegan package, 1,000 permutations).
To assess possible relationships between the similarities in species composition and functional composition across sites, we then performed pairwise Procrustes correlations (functions: procrustes) and tested the significance using procrustean randomization tests (function: protest, 999 randomizations, vegan package) based on the extracted NMDS scores with symmetric rotation. Strong correlations, indicating a high interdependence of species occurrences and trait composition, suggest that traits play an essential role in determining species occurrence and structuring local assemblages. Pairwise Procrustes tests were conducted across all traits combined and then separately for 1) morphometric, 2) ecological and behavioral, and 3) acoustic subsets of traits to evaluate the relative importance of different trait dimensions.
To further understand how management decisions may affect the interdependence of species and functional composition, we then extracted procrustean residuals (PAMs) as a measure of the correlative strength between species and functional composition (all traits combined and individual trait dimensions). Here, smaller residuals reflect a stronger correlation and interdependence between species composition and trait composition, while larger residuals reflect lower interdependence (Lisboa et al., 2014). We then assessed the variation in procrustean residuals (PAMS) due to land use management practices using ANOVA (function aov and Tukey’s HSD post hoc test) and silvicultural management intensity or local grassland management intensity using gams (package mgcv). We included region as a factor and fitted the respective management intensity as a smooth [formula: PAMres ∼ EXPLO + s (management intensity)]. For grasslands, we also included the amount of woody vegetation as an additional smooth term [Formula: PAMres ∼ EXPLO + s (Land use intensity) + s (Woody vegetation)]. In all models did we include geographic coordinates as random effects to account for potential geographic autocorrelation.
All statistical analyses were carried out using R software (version 4.31.2, R Core Team, 2023) in the RStudio environment (2023.09.1).
A technical framework diagram and an overview of the different research variables are given in Supplementary Figure S1.2, Table S3.
3 RESULTS
In total, we observed 100 bird species across all three exploratories and habitat types, with 70–83 species recorded in each region (Schorfheide-Chorin: 83; Hainich-Dün: 82; and Schwäbische Alb plateau: 70). Across the monitored years, the effective number of bird species varied only slightly, with a decrease in bird observations and species diversity from 2008 to 2009 and a slight recovery in 2010–2011 and 2012 (Supplementary Figure S1.3). Only very few species were exclusively observed within one of the three regions (Supplementary Figure S1.4).
3.1 Species and functional diversity
Species diversity and functional richness exhibited similar expected average numbers and variation between the three regions (Table 2), whereas considerably less species diversity (GLMM: χ2 = 1,539.58; p < 0.001) and lower functional richness (GLMM: χ2 = 8.15; p < 0.01) (Figure 1) were found in grasslands than in forest sites. Similar results were also obtained when considering morphometric, ecological and behavioral, and acoustic richness separately.
TABLE 2 | Region- and habitat-specific differences in species diversity and morphometric, ecological and behavioral, as well as acoustic richness, assessed with generalized linear mixed-effect models (package: glmmTMB). Presented here are pairwise differences (based on EM means) between exploratory regions, habitats, and habitat types within each region.
[image: A table comparing different types of richness across regions and habitats. It shows species diversity (ENS), morphometric richness, ecological and behavioral richness, and acoustic richness, with values for each including metrics like Z-ratio and significance levels (p-values) indicated by asterisks. The sections are divided by region: Alb, Hainich, Schorfheide, and habitat type: forest versus grassland. The data highlights variations in richness across these categories.][image: Violin plots show species diversity and functional richness across different sites labeled Alb, Hainich, and Schorfheide. Left plot illustrates species diversity; right depicts functional richness. Data distinguishes between forest (green) and grassland (yellow) environments.]FIGURE 1 | Bird diversity and functional richness and its variation across trait spaces in grasslands (G, yellow) and forests (F, green) of the three different Biodiversity Exploratory regions.
In both forests and grasslands, bird species diversity was correlated positively with bird functional richness (forest: R2 = 0.35, F = 474.81, p < 0.001; grassland: R2 = 0.45, F = 166.46, p < 0.001) and functional dispersion (forest: R2 = 0.15, F = 1,898 = 165.44, p < 0.001; grassland: R2 = 0.56, F1 = 603 = 776.14, p < 0.001) (Figure 2). However, in forests, the overall functional evenness across trait spaces decreased with species diversity (R2 = 0.01, F1 = 898 = 7.02, p < 0.05) but increased with increasing species diversity in grasslands (R2 = 0.1, F1 = 206 = 18.31, p < 0.001).
[image: Three scatter plots showing relationships between species diversity and functional metrics in forest (green) and grassland (yellow) environments. The left plot shows functional richness, the middle plot shows functional dispersion, and the right plot shows functional evenness. Each plot has a fitted trend line.]FIGURE 2 | Functional richness, dispersion (trait dissimilarity; Laliberté and Legendre, 2010), and evenness (homogeneity of trait abundances) across trait dimensions with increasing species diversity in grasslands (yellow) and forests (green).
Bird diversity differed significantly between forest management categories (explained deviance = 37.3%, chi-square = 174, p < 0.001), with lower species diversity in younger forest stands (e.g., beach and pine pole wood) and higher species diversity in old-growth mature beech and mature spruce and structurally more heterogeneous forest stands (e.g., beech thicket with shelterwood; Figure 3). Across regions, silvicultural management intensity did not reveal a significant effect on species diversity (F = 2.5; p > 0.05); however, in the Schorfheide-Chorin region, species diversity decreased significantly with silvicultural management intensity (edf = 1.21, F = 13.9, p < 0.001), while it tended to increase with increasing silvicultural management intensity in the Hainich-Dün area (edf = 1.41, F = 6.0, p = 0.05).
[image: Box plots and a scatter plot evaluate the effective number of species across different management classes and silvicultural management intensity in Schwäbische Alb, Hainich-Dün, and Schorfheide-Chorin regions. The plots show variability among beech, spruce, oak, and pine across maturity levels and management types.]FIGURE 3 | Differences in species diversity between forest management classes within each of the three regions and in response to silvicultural management intensity across regions.
Across regions, bird diversity in grasslands (Figure 4) was slightly higher in pastures and mown pastures than that in meadows; however, independent of local management practices, species diversity decreased significantly with increasing local land use intensity (explained deviation = 35%, χ2: 8.01, p < 0.001). The strength of this effect, however, differed between regions. At the Schwäbische Alb plateau, we found an increasing loss in bird diversity, especially from extensive to intermediate land use intensities, and only a slightly negative response from intermediate to high land use intensities (edf = 2.28, χ2 = 11.65, p < 0.01) (Figure 4). Bird diversity in the Hainich-Dün region tended to linearly decrease with increasing land use intensity (edf = 1, χ2 = 2.875, p = 0.08), whereas we found no significant effect of land use intensity in the Schorfheide-Chorin region (edf: 1, χ2 = 0.48, n.s.).
[image: Two charts display information about species diversity and land use. The left chart is a box plot showing the effective number of species across three land types: Pasture, Meadow, and MownPasture, highlighting variations among them. The right scatter plot displays the relationship between effective number of species and land use intensity, with data grouped by categories ALB, HAI, and SCH, each represented by different colors. A trend line is shown for each group.]FIGURE 4 | Species diversity patterns in grassland areas, between different management types, and in response to increased management intensity using an index combining mowing frequency, fertilizer input, and grazing pressure.
3.2 Bird species composition
Non-metric multidimensional scaling clearly separated bird assemblages between sites (NMDS final stress: 0.12; R2 = 0.98, Figure 5). Permutational multivariate analysis of variance confirmed significant differences in species assemblages between regions (adonis R = 13.9, p < 0.001), grassland and forest sites (R = 232.6, p < 0.001), and between different management categories (R = 2.24, p < 0.001) in forests and grasslands. A plot-based permutation test for the homogeneity of multivariate dispersions further indicated a significant turn-over of species (F = 164.18, p < 0.001) between forest and grassland areas in all three exploratories, indicating clearly separated bird assemblages between ecosystems.
[image: Scatter plot displaying NMDS results with points representing regions: Schorfheide (red), Hainich (green), and Alb (blue). Shapes indicate habitats: triangles for grassland and circles for forest. Points are clustered, showing variations in composition by region and habitat along NMDS1 and NMDS2 axes.]FIGURE 5 | Non-metric multidimensional scaling (Bray–Curtis dissimilarities) of bird assemblages based on differences in the accumulated presence/absence counts of species observations across the 6-year monitoring period on grassland (triangles) and forest (dots) sites. Different regions are represented in different colors (red = Schorfheide-Chorin; green = Hainich-Dün; blue = Schwäbische Alb).
Across the exploratories, differences in taxonomic and functional composition between assemblages (across trait spaces) correlated stronger in forests (Procrustes, m2 = 0.3465, r = 0.8084, p = 0.001) than in grasslands (m2 = 0.7341, r = 0.5156, p < 0.001), suggesting that local environmental conditions via environmental sorting or a biotic interaction based on trait features play a greater role in structuring bird assemblages in differently managed forests than in grasslands.
3.2.1 Forests
Habitat-specific analysis, investigating the similarity in species composition, further confirmed significant differences in species assemblages between forest management categories [adonis (species): F = 8.63; p < 0.001] and also indicated significant differences in functional composition [adonis (traits): F = 5.66; p < 0.001; Figure 6], indicating that local forest management decisions affect both bird species composition and ecological function.
[image: Scatter plot illustrating NMDS1 and NMDS2 axes. Various symbols and colors represent different regions and forest management strategies, such as clearcut, selection cut, and wildfire. The plot shows data distribution and clustering based on these variables.]FIGURE 6 | Non-metric multidimensional scaling of bird assemblages based on differences in trait composition (across trait dimensions) and between differently managed forests (final stress: 0.14; non-metric fit R2 = 0.98) in the three different regions. Color reflects different management categories in forests, shape reflects different regions, i.e., Alb = circle, Hainich = triangle, and Schorfheide = square, and the size of points is proportional to the average log-scaled occurrence of species at a given site.
Changes in bird species composition were correlated with changes in trait composition for ecological and behavioral (70%, m2 = 0.5005, p = 0.001), acoustic (76%, m2 = 0.42, p < 0.001), and morphometric (59%, m2 = 0.6386, p < 0.001) trait dimensions, pointing toward ecological sorting, especially with respect to ecological requirements and communication with con- and hetero-specifics and also, but to a lesser degree, with respect to morphological characteristics.
The residual correlation strength of species and functional composition across trait dimensions, however, differed significantly between management categories (Figure 7; ecological and behavioral: F = 8.08, p < 0.001; acoustic: F = 8.33, p < 0.001; and morphometric: F = 3.18, p < 0.01) and decreased with increasing silvicultural management intensity for acoustic (explained deviance = 30.7%, F = 6.1, p < 0.001) and morphometric trait dimensions (explained deviance = 15.9%, edf = 1.68, F = 5.63, p < 0.05), while the residual correlation strength for ecological and behavioral traits remained unaffected by increased silvicultural management intensity (explained deviance = 26.7%, edf = 1.9, F = 0.779, p > 0.05).
[image: Three box plots display Procrustean residuals across different forest conditions at Schwäbische Alb, Hainich-Dün, and Schorfheide-Chorin sites. Each plot compares categories like Beech and Spruce across different maturity levels, showcasing variance in measured residuals.]FIGURE 7 | Differences in Procrustes residuals for ecological and behavioral trait dimension between forest management classes in the three different regions. Smaller residuals reflect a stronger interdependence of species and trait composition.
3.2.2 Grasslands
In grasslands, bird species compositional changes (adonis F = 2.09, p < 0.001) differed significantly between grassland sites managed as pastures, meadows, and mown pastures (Figures 5, 8). Furthermore, the overall functional composition revealed significant differences between grassland management categories [adonis (traits): F = 2.17, p < 0.05]; however, this overall result only reflected significant differences in ecological and behavioral trait composition (R = 2.62, p < 0.001), while acoustic (R = 1.71, p > 0.05) and morphological composition (R = 2.51, p > 0.05) did not significantly differ between management categories.
[image: Scatter plot showing data points categorized by four groups: SchleMeche-Alt (black circles), Freiburg-Oberau (blue circles), Hanisch-Dörr (green triangles), Schneeberg-Checker (red squares). Axes labeled NMDS1 and NMDS2 with clusters formed by colored markers.]FIGURE 8 | Non-metric multidimensional scaling of bird assemblages in grassland based on differences in species composition. Color reflects different management categories meadows, mown pastures, and pastures; shape reflects different regions, i.e., Alb = circle, Hainich = triangle, and Schorfheide = square.
Changes in bird species composition were highly correlated with changes in the composition of ecological and behavioral traits (84%, Procrustes m2 = 0.42, p < 0.001), highlighting that constraints due to ecological or behavioral requirements predominantly affect species assemblage composition in grasslands. Meanwhile, changes in acoustic composition (67%, m2 = 0.56, p < 0.001) and morphological composition were less correlated (26%, m2 = 0.9301, p < 0.01).
The residual correlation strength derived from the procrustean correlation between species and functional composition in grasslands did not differ between regional management categories (ANOVA: morphology: F = 1.4, p > 0.05; eco–behavioral: F = 1.8, p > 0.05; and acoustic: F = 1.6, p > 0.05). The local land use intensity neither revealed a significant effect on the interdependence of species composition and functional composition, indicating that changes in species composition due to local land use intensity (predominantly by reducing species diversity) in agricultural grasslands are followed by a similar change in functional composition across trait spaces. However, the residual correlation strength decreased with an increase in woody vegetation located near our grassland sites (Table 3), and this was consistent across ecological and behavioral (explained deviance = 24.9%, R2: 0.19; woody vegetation: F = 5.2, p < 0.001), acoustic (explained deviance = 22.3%, R2: 0.17; woody vegetation: F = 2.99, p < 0.05), and morphometric trait dimensions (explained deviance = 23.7%, R2: 0.18, edf: 1.5, woody vegetation: F = 3.58, p < 0.05), indicating an increased variance in bird and functional trait composition.
TABLE 3 | Model specifications and results for grasslands, assessing the relative importance of land use intensity and the amount of woody vegetation on the correlative strength of species and functional composition across trait dimensions.
[image: Statistical table presenting linear regression results. The formula shown is "PAMres ~ EXPLO + s(land use intensity) + s(woody vegetation) + s(RW, HW)". The adjusted R-squared is 0.14, with 18.5% deviance explained. Parametric coefficients for Schwäbische Alb, Hainich-Dün, and Schorfheide-Chorin are provided, along with standard errors, t-values, and p-values marked as "n.s" (not significant). Approximate significance of smooth terms includes edf (effective degrees of freedom), Ref.df, F-values, and p-values, with woody vegetation showing significant results at p < 0.01.]4 DISCUSSION
Birds are known to react sensitively to environmental pressures, and their population numbers and distribution patterns can reflect environmental changes in ecosystems (Morelli et al., 2021; Reif et al., 2023), including changes in other animal and plant populations. Understanding the ecological mechanisms responsible for bird species response to land use can thus help support biodiversity and ecosystem function in anthropogenic landscapes.
Our study identified how local land management affects the diversity and functional diversity of bird assemblages, whether local land management causes ecological sorting, and if so, which processes drive bird diversity and assemblage composition across different regions and the two major habitats, grassland and forest ecosystems. Such knowledge is essential to target conservation aims effectively and address respective stakeholders on how to maintain bird diversity and associated ecosystem function in anthropogenic landscapes.
Our data are based on an extensive dataset of bird species occurrence from 6 years in differently managed forest and grassland areas across three regions in Germany, which differ in climate and land use practices, and where bird occurrence data could be linked to very detailed and annually updated environmental information for management practices and local land use intensity. This is of particular importance as management applications and intensity of land use, especially in grasslands, may change annually, and neglecting such changes may mask the effects of local land use as an environmental driver for bird species occurrence in open land.
Our results highlight that the ecosystem (grassland/forest) and regional context must be considered to understand how management practices affect bird diversity and composition and emphasize that the importance of drivers for bird diversity differs between forest and grassland areas. This is in accordance with the results obtained by Vaccaro and Filloy (2022), who demonstrated that factors determining bird diversity and assemblage composition very much depend on the biome.
In forests, our results on species diversity patterns and functional diversity metrics suggested that within species-rich assemblages of differently managed forests, individual species tended to increasingly share functional traits, pointing toward ecological sorting. Interestingly, this pattern was especially pronounced for ecological and behavioral traits, while acoustic traits did not reveal an increased trait convergence, pointing toward the need to maintain acoustic identity and ensure biotic interactions in species-rich assemblages.
In contrast, assemblages in grasslands were rather species-poor or dominated by a single species and very limited functional diversity. An increase in species here led to an increase in functional dispersion and evenness, indicating a cumulative population of potentially available niches across trait dimensions and thus suggesting at the same time that in the managed grassland areas, higher bird diversity is limited by the availability of different potentially available niche spaces.
Within both forests and grasslands, bird diversity was significantly affected by local management.
In forests, bird diversity differed significantly between forest management classes, with generally lower species diversity in younger forests (e.g., beach and pine pole wood) and higher species diversity in mature and more structurally heterogeneous forest stands. The overall silvicultural management intensity across regions, however, did not reveal a significant effect on bird diversity. We argue that this is due to regional differences in forest management practices with intensively managed and homogenous pine pole wood stands in the Schorfheide-Chorin region, and the fine-grained uneven-aged but relatively intense management practices in beech stands of the Hainich-Dün region (Schall et al., 2018). This corroborates with previous findings and emphasizes that increased within-stand heterogeneity (Heidrich et al., 2020) promotes bird diversity and increases overall species richness by providing a high variety of different resources and potential nesting sites.
Bird diversity in grasslands did not differ between regional management categories but decreased significantly (across management categories) with local land use intensity. The strength of this effect, however, differed between regions and revealed stronger negative effects of local land use intensity in the Schwäbische Alb plateau and the Hainich-Dün region but not in the Schorfheide-Chorin region, where grassland sites are all located within long-established biosphere reserves, barely fertilized or mown and predominantly used for cattle grazing (Vogt et al., 2019), highlighting that regional differences in management practices can mask land use intensity effects on biodiversity patterns.
Habitat-specific analysis confirmed significant differences in species and functional composition between forest management categories and pointed toward ecological sorting, especially with respect to ecological requirements and biotic interactions. These results highlight that local forest management decisions with respect to tree composition and forest structure strongly affect both bird species composition and ecological functions. Similar results were reported by Leidinger et al. (2021), who showed that admixing tree species determines forest diversity by combining habitat heterogeneity effects and tree species-specific associations. This seems to be especially true for birds, which very much rely on local environmental conditions for nesting and feeding (Charbonnier et al., 2016) and where acoustic cues are used to attract mating partners and defend territories.
Our results further indicated that the correlative strength between species and functional composition varies between forest management classes and weakened with higher silvicultural management intensity, suggesting that bird assemblages in more intensely managed younger forest stands such as pine and beech pole wood are more randomly assembled compared to heterogeneous and/or mature forests. This is likely a combined effect of reduced availability of necessary resources at the local scale and spill-over effects from nearby mature stands, where optimal mating territories after remigration in spring are already occupied by more successful conspecifics. This corroborates with previous findings that demonstrated that younger forest stands reveal a greater year-to-year turnover of species, and heterogeneous forest management in the surrounding forest matrix positively affects locally determined results on species richness in younger stands (Wells et al., 2011).
In grasslands, constraints due to ecological or behavioral requirements of individual bird species greatly affected species assemblage composition and indicated the importance of considering environmental conditions beyond the local scale. This is of particular importance for grassland birds, which integrate habitat conditions over a wider area (Concepción et al., 2015). Although increased local land use intensity resulted in an equal change in species and functional composition, predominantly by reducing species diversity, our results suggested a positive effect of nearby woody vegetation such as single trees and hedgerows, maintaining ecological function. This supports the general call to enhance landscape heterogeneity (Stanton et al., 2018) by incorporating structural landscape elements such as hedges, paddock trees, or live fence to benefit the overall bird diversity (Concepción et al., 2015) and ecosystem service provisioning (e.g., Smith et al., 2022) and to counteract biotic homogenization (Gámez-Virués et al., 2015) within agricultural areas. However, we emphasize that focusing conservation efforts in grasslands only on increasing bird species diversity could neglect ecological requirements of open grassland specialists such as the European lapwing (Vanellus vanellus), the Eurasian skylark (Alauda arvensis), and yellow wagtail (Motacilla flava), which are all exclusive ground-nesting birds that prefer open landscapes (Borges et al., 2017; Püttmanns et al., 2021; Buschmann et al., 2023) and, thus, are directly affected by management applications (e.g., mowing and fertilizing), which often temporally overlap with their breeding times. This emphasizes that one single strategy for bird conservation does not exist, and ensuring both overall diversity and the persistence of grassland specialists needs to incorporate local conservation efforts for individual species into overall biodiversity conservation aims.
4.1 Conclusion
The European Biodiversity Strategy for 2030 aims to put Europe’s biodiversity on a path to recovery by 2030 by protecting nature and reversing the degradation of ecosystems (EC 2020), of which more than half are managed as agricultural and forested areas. Bird populations and assemblage composition reflect environmental conditions and changes in other animal and plant populations across different spatial scales and provide important ecosystem function and services. Understanding the mechanisms driving bird diversity and assemblage composition in managed ecosystems may thus benefit overall biodiversity conservation, help target conservation aims, and address respective stakeholders on how to maintain bird diversity and associated ecosystem functions in anthropogenic landscapes.
Our results emphasize that the ecosystem and regional context must be considered to understand how management practices affect bird diversity and composition. By including functional traits and understanding ecological mechanisms, however, local management decisions can be directed toward supporting bird diversity and ecological function. In particular, local forest management decisions with respect to tree composition and forest structure strongly affected both bird species composition and ecological function. In addition, higher structural heterogeneity generally benefitted the taxonomic and functional diversity of birds also in nearby, intensely managed, younger forest stands, suggesting that a mosaic of differently managed forests (e.g., Penone et al., 2019) with respect to tree species and age classes supports bird diversity and ecosystem functions within production forests. In grasslands, predominantly, constraints due to ecological or behavioral requirements of individual bird species greatly affect the bird species occurrence and species assemblage composition. Our results thus highlight the importance of maintaining extensively managed areas for grassland specialist birds [e.g., Rigal et al. (2023)] and support the general call for increased landscape heterogeneity by maintaining landscape elements such as trees and hedgerows, which benefit the overall bird diversity.
Finally, we argue that supporting bird diversity and ecological function in managed grassland and forest systems needs an integrative approach considering regional differences in species distributions and management applications and local consequences of management strategies affecting species-specific habitats and resource requirements. In particular, we emphasize on a view beyond the local scale of management units and a joint effort of biodiversity conservationists and land managers to create a connected network of different habitats within production landscapes, to ensure both the conservation of overall biodiversity and individual species with very specialized requirements in designated areas. We argue that a regionally focused management strategy for biodiversity is important to protect nature, guard against biotic and functional homogenization, and prevent the degradation of ecosystems in production landscapes.
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Objective: This study aims to evaluate the effectiveness of Integrated Soil-Crop System Management (ISSM) and provide technical support for sustainable high yield and efficiency in regional agriculture.Methods: The study compared the effects of no fertilization (Control), conventional farmer practices (FP), high-yield management (HY), and ISSM on maize yield and plant nutrient uptake. Measurements included grain yield, plant biomass, plant nutrient absorption, and soil nutrient content across different management strategies.Results: Over the 12-year experimental period, a significant decline in grain yield was observed under the Control treatment, with a slight decrease in the FP treatment. In contrast, consistent yield increases were noted for the HY and ISSM treatments. The ISSM approach significantly enhanced the average yield and plant uptake of P and K by 26%, 24%, and 32%, respectively, approaching 98%, 91%, and 85% of the levels achieved in the HY treatment. Furthermore, the average use efficiency of P and K fertilizers in the ISSM treatment exceeded those in the FP treatment by 18.7% and 1.2%, respectively, and those in the HY treatment by 17.4% and 24.8%, respectively. The adoption of ISSM led to a significant increase in total and available P and K content within the 0–20 cm and 20–40 cm soil layers and enhanced the available P and K content across all aggregate size fractions within the 0–20 cm soil layer.Conclusion: ISSM is capable of achieving long-term high and stable yields for spring maize, enhancing the uptake and utilization of P and K in plants, and bolstering the soil’s capacity to supply these nutrients, thereby fostering the sustainable development of the entire soil-crop system.Keywords: integrated management, maize production, nutrient uptake, soil fertility, sustainable agriculture
1 INTRODUCTION
Phosphorus (P) and potassium (K) are fundamental nutrients for plant growth and development, playing a pivotal role in enhancing crop yields and quality (Wang Y. et al., 2021). In China, despite abundant phosphate ore resources, the costs associated with mining and producing phosphate fertilizers are relatively high. Moreover, China remains heavily reliant on imports for potash fertilizer, with a self-sufficiency rate hovering around 50%. These factors, coupled with limited attention paid by farmers to the proper application of P and K fertilizers, have led to not only suboptimal crop yields and quality but also significant resource wastage and environmental pollution (Norse and Ju, 2015; Smith and Siciliano, 2015).
Against this backdrop, advancing sustainable agriculture through efficient management of P and K nutrients has become a pressing challenge for Chinese agriculture. The objective of this study is to assess the efficacy of Integrated Soil-Crop System Management (ISSM) in optimizing P and K utilization in maize production, thereby contributing to sustainable high yields and efficient resource use. This approach not only addresses the urgent need for improved nutrient management but also aligns with the broader goal of fostering environmentally friendly agricultural practices.
The ISSM method, introduced in 2011, represents a holistic strategy that reconfigures crop cultivation frameworks based on crop ecophysiological models and multiannual analyses of regional soil and climatic conditions (Chen et al., 2011). By integrating various agronomic interventions, including the selection of crop varieties, determination of planting density and periods, application of fertilizers, and tillage techniques, ISSM aims to optimize the utilization of natural resources such as sunlight, thermal energy, and water, ultimately enhancing soil fertility and crop productivity (Morugán-Coronado et al., 2020).
Despite the widespread adoption and reported success of ISSM in improving crop yields and resource efficiency, there remains a dearth of research focused on its long-term effects on P and K nutrients, particularly in maize production systems. The majority of existing ISSM studies have centered on crop yields, nitrogen absorption and utilization, and environmental impacts, with less emphasis on P and K management (Cong et al., 2023). This study, therefore, aims to fill this knowledge gap by evaluating the long-term effects of ISSM on maize productivity, P and K uptake by plants, and soil nutrient content.
Our research is situated within the context of maize production in Shaanxi Province, China, a region characterized by a temperate semi-humid continental monsoon climate and alluvial soils. Given the importance of maize as a staple crop in the region, optimizing its production through sustainable nutrient management practices is crucial for ensuring food security and maintaining soil health. By investigating the performance of ISSM vis-à-vis traditional farming practices, this study seeks to provide a robust empirical basis for the widespread adoption of ISSM in maize production systems, thereby promoting sustainable agricultural development and mitigating environmental degradation.
In summary, this study’s novelty lies in its comprehensive analysis of the long-term effects of ISSM on P and K utilization in maize production. By highlighting the potential of ISSM to enhance crop yields, optimize nutrient use efficiency, and bolster soil fertility, this research contributes significantly to the development of sustainable agricultural practices in Shaanxi Province and beyond.
2 MATERIALS AND METHODS
2.1 Overview of the study area
The field experiment was commenced in 2009 in Xunyang County, located in Shaanxi Province (geographical coordinates: 32°42′N, 109°01′E), which is distinguished by a temperate semi-humid continental monsoon climate. The region experiences an average annual temperature of 15.8°C and an average annual rainfall of 570 mm. The soil at the experimental site is classified as alluvial, with the following basic physicochemical properties observed in the 0–20 cm soil layer: pH of 5.15, organic carbon content of 7.08 g/kg, total nitrogen content of 1.04 g/kg, ammonium nitrogen content of 92.0 mg/kg, available phosphorus content of 29.1 mg/kg, available potassium content of 52.0 mg/kg, coarse sand content of 16.0 g/kg, fine sand content of 460.8 g/kg, silt content of 295.8 g/kg, and clay content of 227.4 g/kg.
2.2 Experimental design and field management
The field experiment encompassed four distinct treatments to evaluate various agronomic management strategies: Control (CK), wherein no fertilizers were applied to the plots. Farmers’ Practices (FP), established through extensive questionnaire surveys among local farmers to determine the predominant maize field management practices in the area. High Yield (HY), a management strategy that prioritizes maximizing maize yield without consideration for resource and cost inputs, employing the highest planting density along with the most substantial nutrient inputs and frequent fertilization. Integrated Soil-Crop System Management (ISSM), which restructures the crop production system and management techniques according to the regional climate and soil conditions. This approach aims to bolster soil fertility, augment crop yield, and elevate resource utilization efficiency through a balanced planting density, moderated nutrient provisioning, and a more streamlined fertilization strategy. Divergent methodologies across the treatments are observed in multiple facets, including planting density, tillage methods, quantities and sources of nutrient inputs, and fertilization tactics. The precise management protocols are delineated in Table 1.
TABLE 1 | Field management method in different experimental treatments in maize production.
[image: A table comparing management practices across four columns: CK, FP, HY, and ISSM. It details tillage methods, planting density (plants per hectare), chemical and organic fertilizer amounts, total nutrient input, and fertilizer operations. CK utilizes rotary tillage with no fertilizer input. FP uses the same tillage with specified chemical fertilizers. HY combines subsoil and rotary tillage with a mix of fertilizers. ISSM involves subsoil and rotary tillage with both chemical and organic fertilizers, detailing a comprehensive fertilization strategy.]Each experimental plot measured 120 square meters (20 m by 6 m) and was organized using a randomized block design with four replicates. The maize variety utilized for the trial was “Liangyu 99.” The experimental period spanned from sowing in late April to early May, with the harvest occurring from late September to early October.
The fertilizers utilized in the experimental trials were urea (46% nitrogen), diammonium phosphate (46% phosphorus pentoxide), and potassium sulfate (50% potassium oxide). The type of organic fertilizer employed was pig manure, which, on average, contains 5.2 g of nitrogen, 4.3 g of phosphorus pentoxide, and 4.7 g of potassium oxide per kilogram. Throughout the growth cycle of the maize, all experimental treatments were maintained following the optimal local agronomic practices for weed control and the management of pests and diseases, with no irrigation being applied to the fields.
2.3 Collection and measurement of plant samples
Yield assessments were conducted annually during the maize harvest period by selecting a central area of 65 square meters within each plot. Ten plants with even growth from each plot were sampled, and the aerial parts were collected. Subsequently, these samples were dried at a temperature of 70°C, weighed, and then ground into a fine powder. The nutrient analysis involved a digestion process using a combination of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2). Following digestion, the content of phosphorus and potassium nutrients in the samples was quantified using the vanadium molybdophosphoric yellow colorimetric method and flame photometry, respectively.
2.4 Collection and analysis of soil samples
Post-harvest in 2020, ten sampling points per plot were selected to collect soil samples from the 0–20 cm and 20–40 cm layers. These samples were homogenized, air-dried, and ground before being sieved through meshes of 0.85 mm and 0.15 mm to measure the contents of available phosphorus (P), available potassium (K), total phosphorus, and total potassium in the soil. The available phosphorus was extracted using a 0.5 mol/L NaHCO3 solution followed by the molybdenum antimony colorimetric method. Available potassium was determined by extraction with NH4OAc and quantified using flame photometry. Total phosphorus was assessed using the HClO4-H2SO4 digestion method, and total potassium was analyzed via the NaOH fusion method coupled with flame photometry.
Furthermore, ten undisturbed soil samples from each of the 0–20 cm and 20–40 cm layers were also collected from each plot, mixed, and stored in plastic containers for transport to the laboratory. The larger soil aggregates were broken down along their natural fracture planes and sieved through an 8 mm mesh, followed by complete air-drying. The soil aggregate composition was then assessed using both dry and wet sieving techniques (Felde et al., 2021). The aggregate samples obtained from the wet sieving process were dried at 70°C, weighed, and subsequently ground to pass through a 0.85 mm mesh. The contents of available phosphorus and available potassium were then measured from these samples.
2.5 Indicator calculation
Plant phosphorus absorption = Σ (dry weight of different plant parts × phosphorus content in different parts of the plant).
Plant potassium absorption is calculated in the same way as phosphorus.
Phosphorus fertilizer recovery rate = (cumulative phosphorus amount in fertilized treatment - cumulative phosphorus amount in unfertilized treatment) × 100/(phosphorus fertilizer application amount × phosphorus content in the fertilizer) (Wang et al., 2020).
Potassium fertilizer recovery rate is calculated in the same way as phosphorus.
SI = (mean - SD)/max. SI is used to evaluate the sustainability of maize grain yield and other indicators over the years (Zhuang et al., 2022); mean is the average value, SD is the standard deviation, and max is the maximum value among all experimental years.
CV = SD/mean × 100%. CV is the coefficient of variation, reflecting the degree of variation of the indicators over 13 years, SD is the standard deviation, and mean is the average value.
2.6 Statistic analysis
Data was sorted and calculated using Microsoft Excel, graphs were created using Origin 2018 software, and single-factor variance analysis was conducted using SPSS 18.0 software. The LSD method was used to determine the significance of differences between treatments at an α = 0.05 level.
3 RESULT AND ANALYSIS
The 12-year field experiment yielded significant insights into the effects of various management practices on spring maize. The analysis of aboveground biomass and grain yield across treatments revealed a clear trend: the Integrated Soil-Crop System Management (ISSM) and High Yield (HY) treatments consistently outperformed the Conventional Farmer Practices (FP) and the Control (CK), which received no fertilization.
3.1 Aboveground biomass and grain yield
The CK treatment showed a significant decline in both aboveground biomass and grain yield over the 12-year period, highlighting the importance of fertilization in sustaining crop productivity (Figure 1). The FP treatment exhibited a slight decrease, suggesting that conventional practices may not be sufficient to maintain yield stability. In stark contrast, the HY and ISSM treatments displayed a progressive increase in yield, with the ISSM treatment achieving yields that were on average 96% of the HY treatment levels, signifying its effectiveness in yield enhancement.
[image: Two line graphs labeled A and B. Graph A shows aboveground biomass from 2008 to 2020 for CK, FP, HY, and ISSM, with fluctuating trends. Graph B shows grain yield over the same period, also for CK, FP, HY, and ISSM, showing similar fluctuations. Both graphs compare the four categories over time.]FIGURE 1 | Change trends of aboveground biomass (A) and grain yield (B) of spring maize in different treatments from 2009 to 2020. Note: CK, No fertilization; FP, Farmers’practices; HY, High yield management; ISSM, Integrated soil-crop system management. The same as below.
3.2 Nutrient absorption and utilization efficiency
The interannual variation in phosphorus (P) and potassium (K) absorption by spring maize plants mirrored the trends observed in grain yield and aboveground biomass (Figure 2). The ISSM treatment notably enhanced the uptake of P and K by 26% and 32%, respectively, compared to the FP treatment, approaching 98% and 85% of the HY treatment levels. This indicates that ISSM strategies are instrumental in improving nutrient use efficiency (Table 2).
[image: Line graphs comparing plant nutrient uptake from 2008 to 2020. Graph A shows plant phosphorus uptake in kilograms per hectare, with four treatments: CK, FP, HY, and ISSM. Graph B displays plant potassium uptake with the same treatments. Both graphs indicate trends over time for each treatment.]FIGURE 2 | Change trends of plant phosphorus (A) and potassium (B) uptake of spring maize in different treatments from 2009 to 2020.
TABLE 2 | The mean grain yield, aboveground biomass, plant phosphorus and potassium uptake, phosphorus and potassium recovery efficiency of spring maize in different treatments from 2009 to 2020.
[image: A table displays data on different treatments labeled CK, FP, HY, and ISSM, with measures of aboveground biomass, grain yield, plant phosphorus uptake, plant potassium uptake, and fertilizer efficiency. The columns show mean ± standard deviation, SI, and CV values for each parameter, with distinct letters indicating significant differences at a 0.05 probability level.]3.3 Soil nutrient content
The soil nutrient content analysis underscored the impact of treatments on soil fertility (Figure 3). The ISSM treatment significantly increased the total and available P and K content in the 0–20 cm and 20–40 cm soil layers, surpassing the FP treatment (Figures 4, 5) (Table 3). This enhancement in soil nutrient content is attributed to the organic-inorganic fertilization method and improved tillage practices under the ISSM, which collectively improve soil structure and nutrient retention.
[image: Two line graphs compare phosphorus and potassium recovery efficiency from 2008 to 2020 using three methods: FP, HY, and ISSM. Graph A shows phosphorus recovery peaking near 80 percent in 2018. Graph B shows potassium recovery exceeding 100 percent by 2020. All methods show upward trends.]FIGURE 3 | Change trends of phosphorus (A) and potassium (B) recovery efficiency of spring maize in different treatments from 2009 to 2020.
[image: Bar graphs labeled A and B compare available phosphorus levels (mg/kg) across different aggregate sizes (mm): greater than 2, 2-0.5, 0.5-0.25, 0.25-0.053. Both graphs show variations among four treatments: CK, FP, HY, and ISSM, indicated by different shades. Statistical significance is marked by letters above the bars. The graphs display decreasing phosphorus availability with smaller aggregate sizes.]FIGURE 4 | Available phosphorus content of all aggregate size fractions in 0–20 cm (A) and 20–40 cm (B) soil layers.
[image: Bar charts labeled A and B show available potassium in milligrams per kilogram across various aggregate sizes in millimeters: greater than 2, 2 to 0.5, 0.5 to 0.25, and 0.25 to 0.053. Four treatments are compared: CK, FP, HY, ISSM. Bars are marked with letters indicating statistical significance.]FIGURE 5 | Available potassium content of all aggregate size fractions in 0–20 cm (A) and 20–40 cm (B) soil layers.
TABLE 3 | Soil total and available contents of phosphorus and potassium in 0–20 cm and 20–40 cm soil layers in different treatments.
[image: Table comparing phosphorus and potassium levels in soil across four treatments (CK, FP, HY, ISSM) at two depths (0–20 cm, 20–40 cm). Metrics include total and available phosphorus and potassium, measured in grams per kilogram and milligrams per kilogram. Each value is annotated with a letter (a, b, c, or d).]3.4 Correlation analysis
Correlation analysis among measured parameters revealed robust positive relationships, particularly between grain yield and plant nutrient uptake, and between soil nutrient content and aggregate fractions larger than 0.25 mm. These correlations underscore the interdependence of soil health and crop productivity under the ISSM approach (Figure 6).
[image: Heatmap displaying a correlation matrix with triangular formatting, covering variables labeled on both axes. The color gradient from light to dark corresponds to correlation values ranging from 0.60 to 1.00. Each cell contains a numerical value representing the correlation coefficient between the respective variables.]FIGURE 6 | Correlation analysis diagram of various indicators. Note: DM, Dry matter; GY, Grain yield; PU, KU, Plant phosphorus, potassium uptake; PRE, KRE, Phosphorus, potassium recovery efficiency; AP, AK, Available phosphorus, available potassium; TP, TK, Total phosphorus, total potassium; AP (0.25), AK (0.25): Available phosphorus (available potassium in >0.25 mm aggregate size fractions.
In conclusion, the ISSM treatment emerged as a superior strategy for achieving sustainable high yields and optimizing nutrient management in spring maize production. The findings emphasize the need for integrated management practices that consider both crop requirements and soil health for sustainable agricultural outcomes.
4 DISCUSSION
The study demonstrates that the HY and ISSM treatments significantly outperformed the FP treatment in terms of maize yield, nutrient uptake, and soil fertility. This improvement can be attributed to several key factors (Wang et al., 2023). Firstly, the increased planting density in HY and ISSM led to a larger population size and higher aboveground biomass per unit area, thereby enhancing yield potential (Weidhuner et al., 2021; Liu et al., 2022). Secondly, post-harvest deep tillage improved soil aeration, water infiltration, and root growth, fostering better nutrient and water uptake by plants (Phalempin et al., 2022; Schlüter et al., 2023). Thirdly, the combined application of organic and inorganic fertilizers strengthened soil structure and nutrient availability, ensuring an adequate nutrient supply during critical growth stages (Cao et al., 2021).
Notably, the ISSM treatment, through its optimized nutrient management strategy, achieved a balanced nutrient provision that closely matched the plants' demands (Oyetunji et al., 2022). This resulted in a more sustainable and stable yield pattern over the 12-year study period. Additionally, the ISSM treatment significantly increased soil phosphorus and potassium content, particularly in large soil aggregates, indicating its capacity to retain and supply nutrients efficiently.
The findings highlight the importance of appropriate tillage measures and fertilization strategies in achieving high and stable yields while maintaining soil fertility. Deep tillage, in particular, appears crucial for improving soil structure and root growth conditions (Han et al., 2023). Furthermore, the application of organic fertilizers, in combination with inorganic ones, not only supplements nutrients but also enriches the soil with organic matter, fostering long-term soil health (Zhang et al., 2021; Tian et al., 2022).
This study underscores the need to shift from traditional farming practices that prioritize short-term yields to sustainable strategies that consider long-term soil health and resource conservation. By adopting the ISSM approach, farmers can optimize nutrient use efficiency, reduce waste, and mitigate environmental impacts, thereby fostering environmentally friendly and resilient agricultural systems (Khatoon et al., 2020; Rana et al., 2020).
In conclusion, the ISSM treatment offers a promising solution for optimizing maize production in regions like Shaanxi Province, China. Its effectiveness in promoting high and stable yields, enhancing nutrient use efficiency, and bolstering soil fertility underscores its potential as an essential tool for sustainable agricultural development.
5 CONCLUSION
In summary, based on the 12-year long-term location experiment, this study revealed that the integrated soil-crop system management (ISSM) treatment effectively promoted continuous high and stable yield as well as efficient absorption and utilization of phosphorus and potassium nutrients in spring maize. The average annual grain yield and plant phosphorus and potassium nutrient uptake could reach 98%, 91%, and 85% of the traditional high-yield (HY) treatment, respectively, representing a significant increase of 26%, 24%, and 32% compared to the conventional farmer practice (FP) treatment. Furthermore, ISSM enhanced the recovery and utilization efficiency of phosphorus and potassium fertilizers. Notably, ISSM significantly increased soil phosphorus and potassium nutrient content compared to FP treatment, particularly within aggregates where some indicators approached or reached levels comparable to HY treatment. Therefore, this integrated approach for soil-crop system management has successfully achieved comprehensive objectives including high crop yield, improved soil fertility, and efficient resource utilization. It can be considered an effective method for optimizing cultivation practices in spring maize production in Northeast China while promoting environmentally friendly sustainable agricultural development.
6 RESEARCH LIMITATIONS AND FUTURE RESEARCH
While the study offers significant findings on optimizing spring maize production through ISSM practices in Xunyang County, Shaanxi Province, it also presents certain limitations that suggest areas for future research. Firstly, the regional specificity of the research outcomes implies a need for further studies to evaluate the adaptability of these practices in different climatic conditions, such as those found in Northeast China. This geographical expansion is crucial to understand the broader applicability of ISSM strategies. Secondly, the impact of climate change on agricultural practices should be a focal point for future work. This includes examining how shifting weather patterns and temperatures may influence the efficacy and sustainability of ISSM methods, ensuring their resilience in the face of global environmental changes. Thirdly, an economic analysis of ISSM practices is recommended to determine their financial feasibility for farmers. This analysis should consider the costs, benefits, and potential returns on investment, which are critical for the adoption of sustainable farming practices on a wider scale. Additionally, future research should explore the integration of maize with other crops within diverse cropping systems, such as crop rotation and intercropping, to enhance the sustainability and productivity of the agricultural landscape. Lastly, the role of technological innovations in enhancing ISSM practices should not be overlooked. Investigating how precision agriculture and advanced soil monitoring technologies can improve the efficiency and effectiveness of these practices could offer valuable insights for contemporary farming. By focusing on these areas, future research can build upon the current study’s findings, expanding the understanding of ISSM practices and their role in sustainable maize production, and ultimately contribute to the development of resilient agricultural systems tailored to diverse regional contexts.
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Habitat quality (HQ) serves as a pivotal metric for assessing biodiversity and ecosystem health, with alterations in land use driven by human activities posing direct implications on HQ and ecological sustainability within river basins. Prior research on HQ has predominantly centered on historical land use changes, neglecting the comprehensive consideration of future land use transformations and ecological zoning strategies’ influence on HQ. Consequently, this investigation simulates potential land use shifts in the Min River Basin across various future scenarios, leveraging the integration of PLUS and InVEST models, quantitatively dissects HQ’s responsiveness to these changes and delves into the spatial differentiation dynamics underlying these responses, while also exploring the drivers behind such differentiation. Synergizing with the Human Footprint Index (HFI), the study devises a rational ecological zoning plan tailored to the region and outlines targeted control measures for each zone. The results of the study showed that: 1) the east-central part of the Min River Basin was subject to a greater degree of human interference, and the trend of interconversion between grassland, forest land, and cropland was relatively significant, with construction land mainly originating from the transfer of cropland; 2) from 2000 to 2020, average HQ scores for priority protected zones, priority recovery zones, and appropriate development zones stood at 0.9372, 0.2697, and 0.6098, respectively, accompanied by a rise in the proportion of low and moderate HQ areas to 15% and 17%; (3) DEM and Slope were the main drivers affecting HQ, and their explanatory power reached 0.519 and 0.426, respectively; (4) in comparison to a natural development scenario (ND), the planning protection scenario (PP) offers greater promise for ecological preservation and sustainable development within the Min River Basin. The research results can provide technical support for the ecological restoration of land resources and the development and protection of national land space in watershed areas.
Keywords: habitat quality, the PLUS mode, driving factors, human footprint index, the min river basin

1 INTRODUCTION
Habitat quality (HQ) refers to the ability of ecosystems to provide suitable conditions for the development and growth of species following the availability of natural resources. It is of great significance in maintaining the security of ecosystems and enhancing human welfare (Alaniz et al., 2021; Sun et al., 2019a). In recent years, with rapid population growth and rapid economic development, the demand for land resources has gradually increased, and many natural resources have been exploited and utilized; natural resources are being destroyed at an unprecedented rate and have led to the endangerment of millions of species (Ellis et al., 2019; Hou et al., 2022; Rands et al., 2010; Wang and Cheng, 2022). Changes in land use types can affect the flow of materials and information in ecosystems, which in turn affects the level of regional HQ and further leads to changes in the ecological security pattern of watersheds. In this context, the characteristics of HQ response to land use change and its evolution mechanism have gradually become a hotspot in related research fields (Bai et al., 2019; Sun et al., 2019b).
The pursuit of HQ research was initiated in the 1960s, with a primary research approach centered on acquiring regional HQ parameters for plants and animals through rigorous field surveys and constructing an indicator evaluation system to comprehensively assess the habitats of species such as oriental white stork, red-crowned crane, and snub-nosed monkey (Liu et al., 2006; Wang et al., 2010; Li et al., 2016). Nevertheless, this methodology entails substantial human resources and efforts in gathering biodiversity data, rendering it operationally challenging and often impeding the comparability and dissemination of assessment outcomes. At the dawn of the twenty-first century, the advancement of remote sensing technology has significantly transformed the landscape of HQ assessment. The utilization of ecological assessment models for HQ evaluation has gained widespread acceptance across diverse regional scales (Berta Aneseyee et al., 2020; Li et al., 2021; Zhang et al., 2022). Prominent among these models are the HIS model, SoLVES model, and InVEST model. Notably, the InVEST model has garnered considerable attention from researchers due to its broad applicability, streamlined data acquisition process, and exceptional spatial representation capabilities. For example, Wang et al. (2022) investigated how land type in the Altay area affected headquarters using the InVEST model and concluded that the increase in the area of cultivated land and build-up land would lead to a decrease in HQ, while woodland and grassland could play a role in improving HQ. Peng et al. (2023) examined how HQ changes over time and space in the Three Gorges reservoir area. They found that as human activities become more intense in the area, the degradation of HQ becomes more pronounced. Similarly, Xiao et al. (2022) examined the effects of topographic gradient on HQ in Hubei Province using GIS and InVEST models. They discovered that on average, HQ increases as the topographic grade increases.
The changes in land use have a direct influence on HQ, subsequently influencing levels of biodiversity. Therefore, land use change is an important factor that cannot be ignored in the dynamic process of evaluating HQ (Wohlfart et al., 2017; Yin et al., 2020). At present, the models commonly used in studies on land use change mainly include the CA-Markov model, CLUE-S model, FLUS model, etc. However, the Markov Model is a simulation method applicable to the quantitative changes in land type. Still, its influence on the spatial distribution is small (Yecui et al., 2013; Zheng and Hu, 2018), whereas the CLUE-S model, although it can strengthen the spatial analysis ability, does not take into account the conversion of non-dominant land use, and is unable to portray the land use changes in various regions accurately (Mei et al., 2018), and, the FLUS model also has certain limitations. The PLUS model is a nonlinear dynamic change simulation model, which combines the advantages of transformation analysis strategy and pattern analysis strategy. Compared with the traditional model, the model has the ability to simulate the change of multiple land use types, and it can better explore the internal mechanism of land use change, avoiding the defects of the exponential growth of transformation types with the increase of the categories, and retaining the ability of the model to explore the driving mechanism of the change of land use in a certain period of time. It has been widely used by scholars in land use research (Zhang et al., 2023; Zhang et al., 2023). For example, Liang et al. (2021) analyzed the driving factors of land type change and verified the accuracy and reliability of the PLUS model using Wuhan as an example. Han et al. (2022) utilized the PLUS model to analyze the spatiotemporal evolution characteristics of ecosystem service values in Shandong Province, China, under multiple scenario modes. Wang et al. (2022) employed the PLUS model to dynamically predict changes in land usage in Bortala Mongol Autonomous Prefecture in Xinjiang, based on different climate scenarios.
Ecological zoning planning is a planning method that divides areas into different ecological regions or ecological units and formulates corresponding management strategies and measures to achieve ecological protection, sustainable resource use and sustainable environmental development. It can help governments, planners and decision makers better understand and manage ecosystems in different regions, coordinate the use of various types of resources, promote the coordination of economic development and ecological environment, protect rare species and the integrity of ecosystems, reduce environmental damage and ecological disasters, and achieve the goals of ecological civilization and sustainable development.
The Min River Basin, as an eco-barrier for the green economic growth of the Upper Yangtze River Economic Belt, exhibits rich land use types, with forests and grasslands occupying a significant proportion. These land types play a crucial role in the ecological functions and water conservation within the basin (Rashid et al., 2021). However, in recent years, the rate of land usage pattern change in the Min River basin has accelerated significantly, and the interconversion between various land types and their area changes have caused a great impact on HQ (Zhai et al., 2022). Most previous studies have focused on the assessment of HQ under historical land-use change, and have not yet comprehensively explored the impacts of land-use change, ecological zoning planning, and future land-use change on HQ. Therefore, it is necessary to study the effects of land use change and ecological zoning planning on HQ. Researching the assessment of land-use change on HQ in a changing environment can better coordinate the relationship between land use and HQ enhancement, mitigate the degradation of HQ caused by human-land conflicts, better understand and manage ecosystems in different regions, and promote sustainable regional development.
In this study, the future land changes in the Min River basin were simulated by coupling the PLUS-InVEST model, and by establishing natural development scenarios (ND) and planning protection scenarios (PP), the geographical patterns of land use change and HQ dynamics were examined to determine the effects of land use change on HQ and the related HQ reaction. In addition, the Human Footprint Index (HFI) was combined to make a reasonable ecological zoning plan for the study area and propose control measures for different zones. The results of these studies provide important theoretical support for promoting the construction of ecological civilization and the realization of sustainable development goals in the Min River basin.
2 MATERIALS AND METHODS
2.1 Study area
The Min River (99°38′-105°51′E, 28°16′-33°39′N) is an important branch of the Yangtze River’s upper stages, and it originates near the southern base of Minshan Mountain in Sichuan Province. The main stream has a watershed area of 135,881 km2 and a total length of around 711 km (Figure 1). There is a tiny population and a typical highland hilly environment along the Min River upstream. There is also evident vertical heterogeneity in the climate. The upstream section of the Min River, which runs north of Dujiangyan, has a typical highland mountainous climate with obvious vertical differentiation and a relatively small population. The middle and downstream sections of the Min River, which run south of Dujiangyan to Yibin City, where the Yangtze River meets, are primarily plain basins with a large area of arable land, a sub-tropical monsoon climate with a hot period, a high level of urbanization, and rapid economic development. (Chao-nan et al., 2020; Huang et al., 2016).
[image: Map of a region in China, highlighting elevation and river paths. Elevation ranges from 231 to 7466 meters. The map includes major cities and prefectures, with a color gradient indicating elevation. An inset map shows the study area's location within China.]FIGURE 1 | Overview of the min river basin.
2.2 Data Source
The land use data used in this study were obtained from the Resource and Environment Science Data Center (http://www.resdc.cn). The DEM data were obtained from the Geospatial Data Cloud (http://www.gscloud.cn) platform and the slope data were extracted on its basis. Distances from railways, highways, city centers, etc. Were calculated by using the Euclidean distance tool in ArcGIS software. Population and GDP were obtained from the Resource and Environment Science Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn). The annual average temperature and rainfall data were obtained from the China Meteorological Data Network (http://data.cma.cn). Grazing data are from the Food and Agriculture Organization of the United Nations (https://data.apps.fao.org/). Night lighting data were obtained from the Earth Observation Organization (EOG) (https://eogdata.mines.edu/). All data were cropped using Min River Basin vector boundaries, uniform projection and resolution.
2.3 Research methodology
2.3.1 The InVEST model
HQ refers to the condition of various resources and conditions provided by the environment that are necessary for the survival and development of individuals or populations (Xie and Zhang, 2023). When HQ is good, resources and conditions are met and the development of biodiversity is ensured. The habitat quality module calculates a score for HQ by considering external threat factors and their intensities, as well as the sensitivity of each land use type to these threat factors, which can vary among land use types (Gong et al., 2019; Sun et al., 2019b). These assessment results can help us understand the differences in HQ in different regions or under different land use types and provide a scientific basis for ecological conservation, land planning, and sustainable development (Lei et al., 2022; Li et al., 2023). HQ is calculated by the following (Equation 1):
[image: Equation describing a mathematical expression: \( Q_{si} = H_i \left[ 1 - \left( \frac{D_{si}}{D_{xi} + K_i} \right) \right] \), labeled as Equation 1.]
where Qxj denotes the HQ index of grid cell x of landscape type j; Hj denotes the habitat suitability score of landscape type j, ranging from 0 to 1; z is the scale constant, generally taken as 2.5; k is the half-saturation constant, we take 0.5; is the degree of habitat degradation, representing the level of habitat degradation of grid x in land use type j, which is calculated as follows (Equation 2):
[image: Mathematical equation displaying a formula for \( D_{xj} \), involving a double summation over indices \( r \) and \( y \). It includes variables \( \omega_r \), \( w_r \), \( r_{j,try} \), \( \beta_x \), and \( S_{tr} \), with equation number (2).]
where: r is the threat factor; R is the number of threat factors; ωr is the weight1 value of the threat factor; Yr is the number of rasters of the threat factor; ry is the coercion value of the threat factor; Sjr indicates the sensitivity of land use type j to the threat factor r, taking 0-1; irxy is the threat of raster y factor r to the disturbance level of habitat raster x, calculated as follows (Equations 3, 4):
[image: Equation for linear proportionality: \( i_{\text{xy}} = 1 - \left( \frac{d_{\text{xy}}}{d_{\text{f max}}} \right) \) if linear, labeled as equation (3).]
[image: Formula for electrical current: \( i_{xy} = \exp\left(-\frac{2.99}{d_{tmax}}\right)d_{xy} \), with a condition for exponential calculation, labeled as equation (4).]
where dxy is the linear distance between grid cells x and y, and dr max is the maximum effective distance of threat r in space.
When the model is run, not only land type data, but also threat factor data, threat source data and sensitivity of different habitat types to threats are required to be input. According to the above formula, and combining the previous related research and the practical conditions, woodland, grassland and water area were defined as habitats, and construction land, cultivated land and unused land were defined as non-habitats, and the maximum influence distance and weight of threat factors (Table 1) were set with references and relevant policies (Chu et al., 2018; Lei et al., 2022), as well as the habitat suitability of various land cover types on the threat factor sensitivity (Table 2).
TABLE 1 | Threats factors.
[image: Table showing threat factors with maximum distance, weight, and spatial attenuation types. Cultivated land: 4 km, weight 0.5, linear. Construction land: 8 km, weight 1, exponential. Unused land: 6 km, weight 0.6, linear.]TABLE 2 | Sensitivity parameters of habitat threat factors to different land types.
[image: Table displaying land use types with habitat suitability and threat factors. Cultivated land: suitability 0.6, threats 0, 0.9, 0.5. Woodland: suitability 1, threats 0.5, 0.8, 0.2. Grassland: suitability 1, threats 0.2, 0.5, 0.3. Waters: suitability 0.9, threats 0.4, 0.6, 0.5. Construction land: suitability 0, threats 0, 0, 0.1. Unused land: suitability 0.3, threats 0.1, 0.3, 0.]2.3.2 Geographical detector
Geographical detector is a means of revealing the internal drivers of spatial layers by detecting their heterogeneity, and it is a new technique that can reflect that the sum of the values of the internal differences of each layer is less than the total variation within the layer (Cao et al., 2023). In this study, we mainly used the two functions of factor detection and interaction detection to analyze the influence of different drivers of HQ. The influence of factor detection is expressed as q, which is calculated by the following (Equation 5):
[image: The image shows a mathematical equation: \( q = 1 - \frac{1}{N^2_c} \sum_{n=1}^{L} N_n \sigma^2_{h} \).]
where q represents the independent variable X’s explanatory power on the dependent variable Y; the greater the value, the greater the explanatory power, and vice versa the smaller; h is the stratification of the independent variable X or the dependent variable Y; Nh and N are the number of cells in the hth stratum and the whole region, respectively; and σh2 and Nσ2 are the variance in the hth stratum and the whole region. Table 3 lists the many kinds of interaction detection.
TABLE 3 | Two-factor interaction types of geographical detectors.
[image: Table showing different judgment basis equations and their corresponding interactions. The interactions include nonlinear decay, single-factor nonlinear decay, double-factor boost, independence, and nonlinear boost.]In this study, based on the results of previous research, seven factors were selected from both the natural environment and socio-economic aspects to detect the influence of spatial distribution of HQ, and seven influencing factors, namely, DEM (X1), slope (X2), Temperature (X3), Precipitation (X4), GDP (X5), Population (X6), and Nighttime lighting index (X7) were used as the independent variables, which were reclassified using the natural breakpoint method for the treatment, and then geo-detectors were used to detect the possible causative relationship between the two variables (Guo et al., 2023; Cui et al., 2022).
2.3.3 The Human Footprint Index
The Human Footprint Index (HFI) is a measure of the influence of human activities over the natural environment (Sanderson et al., 2002). It is intended to assess the human influence on various aspects of the earth, including land use change, species loss, and carbon emissions. Considering the specific conditions and relevant studies of the Min River Basin, five human activity indicators were selected, including land usage, population, grazing intensity, nighttime-light index, and transportation accessibility, to calculate the HFI. These metrics can be used to gauge how much human activity has affected the Min River Basin. Specifically, higher HFI values indicate a greater degree of anthropogenic impact.
On this basis, the same age of use was maintained for all five types of data, which was 2020. And the various types of data were pre-processed, and the raster values were reassigned to a score of 1–10, with a higher score indicating a higher intensity of human influence. In this study, construction land is assigned to 10, cultivated land is assigned to 7, and the rest of land use types are assigned to 1. Since the grazing intensity dataset is only updated to 2015, trend extrapolation analysis is performed on the data based on previous studies to obtain grazing intensity data in 2020. Traffic accessibility mainly included both railroads and roads, which were assigned values based on the analysis of multiple buffers for both, respectively. Then the newly generated fractional layers of roads and railroads are mosaicked and the maximum value of the overlap is selected as the evaluation result of traffic accessibility (Liu et al., 2018; Duan and Luo, 2020). Population density, nighttime light index and processed grazing intensity data were reassigned to the data in a raster of 1–10 points using the natural breakpoint method. The processed factors were processed by overlay analysis, and the obtained HFI was classified into three levels, resulting in the HFI evaluation results of the Min River basin (Figure 2).
[image: Map illustrating landslide risk levels in a specific region. Areas are color-coded: green for low risk, yellow for moderate risk, and red for high risk. A scale indicates the distance in kilometers.]FIGURE 2 | Min river basin HFI.
2.3.4 Spatial planning for ecological zoning
Ecological zoning is a spatial classification system that divides regions into areas with similar ecological characteristics and biodiversity. By dividing regions into different ecological partitions, we can better understand and manage biodiversity, protect ecosystem functions, and more accurately develop ecological conservation and sustainable natural resource management strategies (Jia et al., 2005; Xu et al., 2022). In this research, HQ was used to reflect the level of biodiversity. HFI was used to reflect the degree of impact of human activities on the Min River Basin. The results of HQ and HFI were classified as low (0-0.4), medium (0.4-08), and high (0.8-1) according to the natural breakpoint method (Figure 3), and overlay analyses were carried out in ArcGIS to obtain the spatial results of nine types of HQ-HFI (Figure 4).
[image: Two maps of the same region show habitat quantity grade and human footprint index grade. Both maps use a color gradient where green represents low values, yellow is moderate, and red is high. The habitat map shows low in most areas, with high concentrations in the southeast. The human footprint map also shows low in the majority but with more scattered moderate and high values throughout, particularly in the southeast. North is indicated at the top.]FIGURE 3 | HQ and HFI grading. Note: (A) HQ; (B) HFI.
[image: Map showing overlay of habitat quality and human footprint index, using color gradients from green to red. Green indicates high habitat quality, while red signifies high human footprint. A legend on the left provides index values.]FIGURE 4 | Results of HQ and HFI Superposition Analysis. LH indicates low HQ; MH indicates medium HQ; HH indicates high HQ; LF is low HFI; MF represents medium HFI; HF indicates high HFI.
On this basis, the nine spatial results were divided into three types of ecological control zones, namely, priority protected zones, priority recovery zones, and appropriate development zones, according to the degree of HQ and HFI impacts. Among them, priority protected zones are areas with good HQ and relatively few HFI, such as high HQ-low HFI, high HQ-medium HFI, and medium HQ-low HFI. Priority recovery zones are areas where the current HQ is poor due to the impact of unreasonable human development activities or changes in the natural environment, which cannot meet people’s needs for a high-quality habitat and need to be restored, such as low HQ-low HFI, low HQ-medium HFI, low HQ-high HFI, medium HQ-high HFI. Appropriate development zones are areas where economic construction can be carried out moderately while ensuring a balance between the quality of the habitat and the development needs of life, such as medium HQ-medium HFI, and high HQ-high HFI.
2.3.5 The PLUS model
The PLUS model was put out by Liang et al. (2021). The following is how it operates: The random forest technique is used to examine each form of land use individually and determine the development likelihood of each type of land use by spatially decomposing changes in land use across two periods; the modeling of various land usage is accomplished by combining the threshold descent methodology with random seed generation (Gao et al., 2022). Land use change is influenced by multiple driving factors and is not caused by a single factor. Therefore, the selection of driving factors has an important impact on the accuracy of land use spatial pattern simulation in the study area. Taking into account the unique characteristics of the region, the accessibility and coherence of information, as well as pertinent research findings, a total of 12 data points were meticulously chosen as driving factors for this study. These factors encompass a broad spectrum, including natural, social, transportation, and economic aspects, as depicted in Figure 5. This comprehensive selection ensures that the PLUS model is well-equipped to capture the intricate dynamics of land use change in the study area. Based on the two periods of land use data in 2010 and 2020, the 12 selected driving factors were inputted into the PLUS model, and it was ensured that all the driving factors and the row and column numbers of the land use were consistent, so as to obtain the probability of appropriateness of each land use type in the Min River Basin. The land use data in 2020 simulated by the model were compared with the actual ones (Figure 6), and the results indicated that the Kappa coefficient of the PLUS model simulation was 0.83 and the FOM coefficient was 0.13, which indicated that the results of the PLUS model simulation in this study were reliable and applicable, and could be used to carry out the prediction of the future land use changes in the simulation.
[image: A series of twelve maps illustrating various environmental and demographic factors in a region. Maps (a) to (c) show rainfall, slope, and topography using color gradients from green to red. Maps (d) and (e) display population distribution and hydrological zones. Map (f) uses gray shading for river density. Maps (g) to (l) depict spatial distribution metrics like distances from roads, rivers, and infrastructure with varying shades of gray to indicate intensity. Each map has a consistent scale bar and legend, providing context to the regional analysis.]FIGURE 5 | Driver factor data. Note: (A–I) are different driving factors.
[image: Comparison of land use maps from 2020 with actual data on the left and simulated data on the right. Categories include cultivated land (yellow), woodland (green), grassland (dark green), waters (blue), construction land (red), and unused land (light yellow).]FIGURE 6 | Model validation result.
2.3.6 Multi-scene setting
Changes in the demand for watershed development are important factors influencing the spatial use of land, and different demands for watershed development determine different spatial development orientations of land. The simulation and prediction of land use in watersheds under a variety of scenarios are set up in order to provide decision-makers with different decision-making perspectives and assist them in judging the development of the future spatial pattern of land use more scientifically, which is of great significance for the harmony of human-land relations and the stable development of the socio-economy (Nie et al., 2023; Li et al., 2022). Therefore, the following two scenarios were set up in this study:
	(1) Natural development scenario (ND): This scenario uses a Markov model to predict the future size of each category based on the rate of land use change from 2010-2020 and the driving factors, regardless of policy and planning constraints. This scenario provides the basis for the other scenarios.
	(2) Planning protection scenario (PP): The introduction of an integrated protection system for mountains, water, forests, fields, lakes and grasslands has promoted the concept of ecological civilization. Compared with the natural development scenario, the probability of forest land and grassland being converted to construction land is reduced by 50% under the PP scenario, and the probability of watersheds being converted to construction land is reduced by 30%. In addition, although arable land also has some ecological capacity, it is weaker compared to forest land. Therefore, under the PP scenario, the probability of conversion of arable land to construction land is reduced by 30%, and the reduced portion is used to increase the probability of conversion of arable land to grassland, and the priority protected zones obtained based on ecological zoning planning is set as a restrictive development area, which in turn simulates the land-use data in 2030.

3 RESULTS
3.1 Characteristics of land-use change
The Min River Basin is made up mostly of arable land, forests, and grasslands, making up over 94% of the entire area. Of these, grasslands make up more over 40% of the basin (Figure 7). During the period from 1990 to 2000, cultivated land underwent significant conversions to forest, construction land, and grassland, with respective conversion areas of 1,047.19 km2, 529.36 km2, and 332.79 km2. Forest land experienced conversions of 2,311.96 km2 to grassland and 1,048.23 km2 to cultivated land. Grassland underwent conversions of 2,170.85 km2 to forest and 323.49 km2 to cultivated land. During this period, there were noticeable interchanges among these three land types, while construction land, waters, and unused land witnessed an increase in their respective areas. From 2000 to 2010, the land use change in the Min River Basin was mainly characterized by the conversion of cultivated land to build-up. Around 879.07 km2 of arable land underwent conversion to build-up land, resulting in a growth of 624.32 km2, representing a 45% increase. Forest and water body areas experienced slight increments, with an increase of 1,126.19 km2 and 157.63 km2, respectively. However, grassland and unused land decreased by 1,382.01 km2 and 51.82 km2, respectively. During this period, the population in the Min River Basin grew rapidly, with increasing demand for land for residential, industrial and other facilities, and the scope of towns and villages continued to expand outwards; on the other hand, with the rapid development of urbanization, the GDP of the central urban areas and counties within the Min River Basin increased substantially, and the improvement of infrastructure and transport networks in various areas took up a large amount of arable land, resulting in a continuous increase in the area of construction land and a significant reduction in the area of arable land. The area of land used for construction has increased continuously, and the area of arable land has decreased significantly. Between 2010 and 2020, the primary trend of land type change was the conversion of cropland to build-up and water bodies. Within cropland, 134.71 km2 was converted to water bodies, and 728.66 km2 was converted to build-up, resulting in a growth of 467.56 km2, approximately 23%. Forest and grassland experienced slight reductions, while unused land showed a slight increase. During this period, Sichuan Province formulated a provincial ecological security pattern of ‘one belt, six slices and eight corridors’, strictly protected arable land, prevented the continuous construction of cities and towns, and at the same time strengthened ecological economic development, coordinated the relationship between socio-economic development and resource protection, and gradually improved the ecological situation of the land.
[image: Four circular diagrams show changes over different decades: (a) 1990-2000, (b) 2000-2010, (c) 2010-2020, and (d) 1990-2020. Each diagram has colored segments labeled GL, WL, UL, WT, CL1, CL2, representing various categories. Arcs and connecting lines suggest relationships or flow between segments.]FIGURE 7 | Land use transfer chord map of Min River basin from 1990 to 2020. CL1 represents cultivated land; GL represents grassland; WL represents woodland; WT represents waters; CL2 represents construction land; UL represents unused land. Note: (A–D) represent different years.
Overall, the most remarkable land usage changes during the period 1990-2020 are reflected in the growth of construction land and the reduction of cultivated land, with an increase of 1,350.76 km2 in construction land and a decrease of 1,212.93 km2 in cultivated land. The land area of grassland and unused land decreased by 1,276.23km2 and 53.17 km2 respectively.
3.2 Temporal and spatial variation of HQ
The InVEST model utilizes the Habitat Quality Index to represent the overall HQ in the study area. In the model, the HQ is represented by values ranging from 0 to 1, where values closer to 1 indicate better HQ. Using the natural breaks approach in ArcGIS, the HQ was categorized into three levels: low (0-0.4), medium (0.4-0.8), and high (0.8-1) taking into account the unique characteristics of the Min River Basin. Techniques for visualization were used to depict these HQ levels (Figure 8).
[image: Four maps show land use change from 1990 to 2020 in a region. The maps, labeled (a) 1990, (b) 2000, (c) 2010, and (d) 2020, each depict areas categorized as low, moderate, and high, using green, yellow, and red respectively. Notable change includes an increase in the red "high" areas over time, particularly along the southeastern edge.]FIGURE 8 | HQ patterns of spatial distribution. Note: (A–D) represent different years.
In terms of the time scale of HQ in the Min River Basin, from 1990 to 2020, the low HQ area increased from 17,810 km2 to 20,324.51 km2, and their percentage in the research region increased from 13% to 15%; the medium HQ area increased from 20,861.69 km2 to 22,769.66 km2, and their percentage increased from 15% to 17%; The high HQ area decreased from 97,535.23km2 to 93,112.75km2, and its proportion decreased from 72% to 68%. According to the calculation, the mean HQ of Min River Basin during 1990, 2000, 2010 and 2020 was 0.8203, 0.8188, 0.8074 and 0.7977, respectively, and the HQ showed a decreasing trend. As a whole, the overall HQ in the Min River basin is at high HQ, but the high HQ shows a decreasing trend and the low HQ shows an increasing trend between 1990 and 2020, which indicates a risk of habitat degradation.
On a spatial scale, the overall HQ of the Min River basin changes from 1990 to 2020 with a trend of gradual decrease from upstream to downstream. The upper reaches of Min River have high forest vegetation cover due to topography and soil conditions, and its land use types are mainly woodland and grassland, which are not conducive to cultivation and habitation, and are less affected by humans and have relatively high HQ. At the same time, with the accelerated urbanization and rapid expansion of build-up area, the area of forest and grassland is decreasing, which leads to the gradual deterioration of the ecological environment in this part of the region and has a great impact on the HQ. The high HQ areas are mainly located in the north and west of the study area, where there are more hills and mountains, and the forest coverage is higher, and the main land use types are woodlands, grasslands and lakes. Medium HQ areas are scattered, but mainly located in the southeast, where there are large areas of cultivated land and dense villages and towns, and the HQ is relatively low; low HQ areas are mainly located in the middle and east of the study area, where most of the areas are urban and human living areas, and most of the land usage in these areas are mainly cultivated land and build-up land, and urban transportation and other building land are expanding at a comparatively quick pace. The expansion rate of urban transportation and other construction land is relatively fast, which will have a certain threat to the habitat.
3.3 Analysis of HQ response to land-use change and its driving force
3.3.1 Response of HQ to land-use change
The inter-transformation between different land use types brought about different degrees of degradation and enhancement of HQ, resulting in changes in overall HQ. To further clarify the intrinsic connection between HQ and land use change, we calculated the transformation between different land use types that led to the change of HQ in the Min River Basin and their contribution rates (Figure 9; Table 4). The analysis shows that the factors leading to the improvement of HQ from 1990 to 2020 are mainly the conversion of reclaimed unused land to grassland, returning farmland to grassland, and returning farmland to forest, of which the conversion of unused land to grassland is the main factor, with a contribution rate of 29.45%, followed by conversion of cropland to grassland and forest land, with a contribution rate of 14.52% and 11.03%, respectively. The main factors leading to the deterioration of HQ in the region are that part of the grassland and forest land has been deserted as unused land, and part of it has been reclaimed as arable land, and construction land has been developed and occupied. The four most prominent land conversion types, namely, grassland to unused land, grassland to arable land, arable land to construction land, and forest land to construction land, account for a substantial proportion of the overall habitat degradation. These four types individually contribute 28.06%, 22.64%, 21.64%, and 20.32% respectively, collectively amassing a contribution rate exceeding 90% towards the overall degradation of HQ in the region.
[image: Two maps side by side show different data visualizations of the same region. Map (a) uses a color gradient from green to red to indicate various levels of a specific value, with corresponding labels from 0.0 to 12.0 in a legend. Map (b) highlights areas in blue and red, representing low and high values, respectively, with a separate legend. Both maps include a north arrow for orientation and a scale bar.]FIGURE 9 | (A) Land use conversion mapping, 1990-2020; (B) HQ change mapping, 1990-2020.
TABLE 4 | Changes and contribution of major land types affecting HQ in the Min River Basin from 1990 to 2020.
[image: Table showing land use change types and their contribution rates to habitat quality. For improvement: "Unused land-Grassland" contributes 29.45%, followed by "Cultivated land-Grassland" at 14.52%. For degradation: "Grassland-Unused land" contributes 28.06%, and "Grassland-Cultivated land" at 22.64%. Other types with varying rates are listed for both improvement and degradation.]Woodlands and grasslands have higher ecological suitability and have an improving effect on HQ, whereas the expansion of arable and built-up land can lead to the destruction and fragmentation of natural habitats, which in turn leads to the reduction of biodiversity and has a non-negligible negative effect on HQ. This is consistent with the findings of Fu et al. (2022) and Berta Aneseyee et al., 2020 whose studies found that the increase in the area of grasslands and forests along with the decrease in the growth rate of urban construction land is the main reason for the improvement of regional HQ. Meanwhile, Chen and Liu, 2024 also pointed out that urbanization has led to the occupation of a large amount of arable land, woodland, and grassland and the irreversible destruction of ecosystems.
3.4 Analysis of the driving force of HQ changes
From the results of the one-factor detection (Table 5), the one-factor explanatory power of natural environmental factors on HQ was much greater than that of socio-economic factors. Among them, X1 (DEM) and X2 (Slope), with 0.519 and 0.426 respectively, were the two factors with the greatest influence on the spatial variation of HQ. This was followed by X6 (Pop) at 0.298. DEM emerges as the strongest explanatory power of HQ across the Min River Basin, owing primarily to the basin’s topography. In this landscape, grasslands and woodlands prevail, with the steeper, higher-elevation areas boasting stronger vegetation cover and better-preserved ecological conditions, thereby inherently exhibiting superior HQ. Additionally, population dynamics play a significant explanatory role, as the intensity of human activities significantly modulates the regional habitat environment. Specifically, while urban development and construction endeavors tend to diminish habitat quality, environmentally focused initiatives spearheaded by humans contribute to the enhancement of the local environment.
TABLE 5 | Results of single factor detection.
[image: Table showing driving factors with corresponding Q values. DEM: 0.519, Slope: 0.426, POP: 0.298, NLI: 0.225, TEM: 0.167, GDP: 0.105, PRE: 0.076.]Single factor explanations of phenomena are often less robust than interactions of factors. To investigate the effects of factor interactions on HQ, this study explored the interactions of HQ at the watershed scale (Figure 10). The results showed that the degree of influence of each driver on the distribution pattern of HQ was not independent of each other, but mainly showed two-way enhancement or non-linear enhancement, suggesting that the interaction between the drivers was more effective in explaining the changes in the spatial distribution of HQ. Among them, X1 (DEM) and X6 (Pop) had the greatest explanatory power of 0.657, followed by X2 (Slope) and X1 (DEM), with a q-value of 0.633. Combining the above combinations with large q-values, it can be seen that the HQ of the Min River Basin is primarily influenced by the natural geographic elements (DEM and Slope), and that anthropogenic disturbances diminish with increasing elevation, and the ecological environment is improved.
[image: Heatmap showing correlation coefficients between variables DEM, SLOPE, TEM, PRE, GDP, POP, and NLI. Colors range from red (positive correlation) to blue (negative correlation), with values noted in each cell.]FIGURE 10 | Explanatory power of interaction detection of each influence factor.
3.5 Ecological zoning plan
Figure 11 displays the ecological zoning outcomes. The priority protected zones cover a total area of 102,058.68 km2, making up 74.99% of the whole area. The area mainly consists of vast natural landscapes of native woodlands, grasslands, lakes, and wetlands with excellent ecological restoration functions and high HQ, and its average HQ is 0.9372, which is regarded as the ecological barrier of the Min River Basin. Within the key protected areas, strict control is required and any development activities that may threaten the habitat are generally prohibited to ensure the stability of the ecosystem. Such measures will help to protect and maintain the ecological integrity of the priority protected areas and safeguard biodiversity and the sustainable development of the ecosystem.
[image: Map illustrating ecological region planning, showcasing key protected regions in green, key repair regions in yellow, and moderate development regions in red. A scale and a north arrow are included.]FIGURE 11 | Ecological zoning planning results.
The priority recovery zones are 22,969.02 km2, making up 16.88% of the whole area, and the average HQ in the area is 0.2697. Under the premise of strictly abiding by the permanent basic farmland protection control line, we need to promote the protection and restoration of the overall ecological space in conjunction with the construction of important ecosystem protection and restoration projects. We should establish biodiversity reserves that symbiotically coexist with ecosystems such as forests, grasslands, wetlands, and water bodies to enhance the functions of ecosystems, improve the quality of habitats in the region and restore species diversity. Such measures will help protect and restore the ecological environment in priority areas and ensure the healthy development of ecosystems.
The appropriate development zones are 11,070.05 km2, making up 8.13% of the whole area. The distribution of this part of the area is more scattered, and its average HQ is 0.6098, but it is suitable for some development and construction activities. When formulating local policies, policymakers should reasonably promote the development and construction of moderate development zones. By realizing the synergistic development of industrial ecology and ecological industrialization, appropriate directions for green industry development can be selected according to the actual local situation. At the same time, a variety of measures are needed to promote the realization of ecological product values, transform ecological advantages into economic advantages, and provide support for promoting high-quality economic development.
3.6 Land use change analysis and HQ response under future scenarios
Based on the land use data in 2010 and 2020, the land use data of the ND scenario and the PP scenario under 2030 were simulated by combining the selected 13 driving factors (Figure 12). Based on the land use area in 2020, the area of each category and its degree of change in 2030 under the two scenarios were calculated (Table 6).
[image: Two maps compare land use scenarios for 2030. The left map shows a natural development scenario, while the right illustrates a planning protection scenario. Both use color coding: green for woodland, yellow for cultivated land, light green for grassland, blue for water, dark gray for construction land, and red for unused land. The right map shows a reduction in construction land compared to the left. A scale bar and compass are included.]FIGURE 12 | 2030 Spatial pattern of land use patterns in two scenarios.
TABLE 6 | Situation of 2020 and modeling of multiple scenarios for changing land use type in 2030.
[image: A table comparing land use types between 2020 and projected scenarios for 2030. Categories include cultivate land, woodland, grassland, waters, construction land, and unused land, with areas measured in square kilometers. Changes from the 2020 baseline are shown for both a natural development scenario and a planning protection scenario, along with degree of change indicators (ND and PP). Values illustrate shifts in land usage over time.]Under the ND scenario, the area of cultivated land in the study area will decrease sharply, and the construction land will show a clear upward trend, and the area of cropland in the study area will reach 19,959.16 km2; the area of urban land will increase by 18.8% to 2,946.57 km2, indicating that under the condition of no conservation measures, the land for urban construction is expanding rapidly, and the cultivated land, grassland, and forest land become the main external input sources of land use.
In the PP scenario, the area of forest land is 53707.76 km2, which increases by 1.54% compared to the ND scenario, with a small increase. The water area is 1276.06 km2, which is increased by 6.53%. Despite the increase in the built-up land area, the increase is smaller than that of the ND scenario, which is only 6.65%. This indicates that there will be certain restrictions on the growth of built-up land under the PP scenario.
The HQ results for the two scenarios are shown in Figure 13. Under the ND and PP scenarios, the HQ was classified as high (0.8-1), medium (0.4-0.8) and low (0-0.4) (Figure 12). In the ND scenario, the area of high HQ was 92968.21 km2, the area of medium HQ was 22731.35 km2, and the area of low HQ was 20398.76 km2, whereas in the PP scenario, the area of high HQ was 93,468.17 km2, the area of medium HQ was 22,449.35 km2, and the area of low HQ was 20,398.76 km2. In the ND scenario, without the restriction of relevant policies, the construction land expands dramatically and erodes other land use types in the neighborhood, resulting in significant degradation of the HQ of the watershed and a decline in HQ. In the PP scenario, the conversion of forest land to other land use types is restricted by the relevant ecological protection policies, and the conversion of arable land to forest land significantly increases the area of forest land, while the area of grassland, watershed and other ecological land increases significantly, resulting in a significant increase in HQ under this scenario. Compared with the ND scenario, the area of high HQ area under the PP scenario increased by 499.96 km2, which indicates that the PP scenario can effectively improve the HQ of the Min River Basin.
[image: Two maps compare habitat quality in ND and PP scenarios. Regions are color-coded: green for high, yellow for moderate, and red for low quality. Both maps show similar spatial patterns with varying concentrations of colors. A scale bar and a north arrow are included.]FIGURE 13 | HQ changes under two land use scenarios in 2030.
4 DISCUSSION
4.1 Drivers of land-use change
Numerous factors converge to drive changes in land types. The HFI highlights that the central-eastern portion of the region experiences heightened human disturbance, encompassing approximately 10% of the area, predominantly featuring plains and river basins with advantageous natural and geographic attributes. Conversely, regions with lower HFI values are predominantly situated in the northern and western fringes of the basin, accounting for about 66% of the total area. These areas are predominantly mountainous and hilly, characterized by more challenging natural conditions that hinder human development, thereby contributing to their lower HFI scores. The accelerated urbanization process and the continuous expansion of urban construction land have absorbed a large amount of rural population and farmland. The impact of urbanization on land use is mainly manifested in urban expansion, industrial park construction and transportation infrastructure construction. This phenomenon is especially prominent in the plain areas with better natural and locational conditions. In addition, population growth is also an important factor affecting land usage in the Min River Basin. As populations expand, so too does the demand for housing, industry, and infrastructure, necessitating increased land development and utilization. This often entails the conversion of significant areas of land, including woodlands and grasslands—vital ecological resources—into urban construction land to accommodate the growing populace. Woodlands and grasslands play a pivotal role in managing soil erosion and land degradation in ecologically vulnerable watershed regions, where their preservation is crucial. Watersheds are of paramount importance for maintaining regional water ecological balances. Recognizing this, local governments have implemented measures aimed at strengthening river and lake systems, coordinating water resource utilization, and enhancing water environment management and ecological protection. These efforts have culminated in the formation of various watershed wetlands, notably the Min River Source National Wetland Park, which effectively safeguard the integrity of the watershed area, contributing to the overall ecological health and sustainability of the region.
Under the ND scenario, which does not take into account policy and planning constraints, the importance of ecological land has been neglected to satisfy the demand for economic growth, and original arable land, forest land, and grassland have been converted into land for construction. This excessive pursuit of rapid urban economic development has led to the loss of originally good ecological land. The end effect is a reduction in the amount of grassland, woodland, and arable land, which is bad for ecological security and stability as well as long-term economic growth. The PP aggressively protects forests and waterways while controlling the rate at which the amount of land used for building expands. This allows for sensible development activities to occur while maintaining ecological preservation.
Further analysis of the contribution of each driver to the change of each land type reveals that (Figure 14), DEM has the greatest contribution to build-up land, grassland, waters and unused land, and the area of these land types tends to increase in areas with lower DEM values and closer to the river; The driving factor with the highest contribution to the area of woodland is slope, and its increasing areas are mostly scattered along the foothills and rivers; the distance from municipal government factor has the greatest influence on the expansion of build-up land area, and its increasing areas are mainly distributed around government sites with relatively flat terrain, low slope and frequent socio-economic activities.
[image: A grid of nine panels, each featuring a bar chart paired with a thematic map. Panels (a), (b), (c) display bars labeled "Distance from generator" decreasing from left to right, corresponding to different land covers: cultivated, woodland, and grassland. The maps below each chart highlight these areas in a region using color coding for elevation and land cover types. Panels (d), (e), (f) follow a similar format for shrubland, wetland, and consolidated land. Panels (g), (h), (i) continue this pattern for mined land. Maps provide side-by-side visual comparisons of land distribution and elevation.]FIGURE 14 | (A), (B), (C), (G), (H), and (I) are the driver contributions; (D), (E), (F), (J), (K), and (L) are the areas of increase in each category overlaid with their highest contributors.
4.2 Effects of land use change on HQ
HQ is inextricably linked to land use type, and the spatial and temporal variation of HQ is highly consistent with the regional land type status. In the upper portion of the Min River basin, grasslands and forests are the predominant plant types, which can provide water conservation and water purification for the whole watershed with less human disturbance, and the HQ is in excellent condition. In contrast, the middle and downstream parts of the Min River are dominated by arable land, with high population density, and the HQ of the Min River basin is greatly damaged by farming, fertilization, domestic sewage, and industrial wastewater (Zhao and Wu, 2022). At the same time, urbanization converts habitat directly into land for construction, leading to the loss of natural HQ. It can also have indirect effects on natural habitats by reducing HQ through disturbances (e.g., noise, air and water pollution, etc.) brought about by urban land expansion (Wang et al., 2021). Li et al. (2022) revealed the response of urban land use change on HQ using Tianjin as a study, and their findings found that the rapid growth of build-up land was the main cause of HQ decline in the area. Similarly, Ye et al. (2022) showed that the HQ in the Guanzhong Plain urban agglomeration was in high HQ during the period of 2000–2020, but with an overall decreasing trend, which was mainly because of the transformation of woodlands and meadows into construction land with the rapid process of urbanization, which resulted in the decline of HQ. These studies also show that land use change has a strong impact on HQ. Therefore, in order to maintain the biodiversity of the Min River Basin, it is necessary to manage the development and utilization of land in a scientific and legal manner, to strengthen the protection of grassland and forest land, to ensure the appropriate area of ecological land, and to focus on the structural composition and spatial allocation of land, so as to improve the overall quality of ecological land, and thus to improve the overall quality of the habitats in the basin.
4.3 Limitations
In this study, the PLUS-InVEST model was coupled with HFI for simulating and analyzing the changes in spatio-temporal patterns of land use and HQ in the Min River basin, providing a basis and reference for environmental protection and sustainable development of ecology in the Min River basin. However, there are some limitations in the study. First of all, the model parameters in the simulation process of PLUS model are set according to the existing research experience and continuous debugging, and there are certain subjectivity, such as the neighborhood weights, attenuation coefficient and other parameters, which increase the uncertainty of the simulation results. In addition, although the driving factors selected in this paper involve natural and socio-economic factors, it is difficult to fully explain the causes of land use change due to the influence of subjectivity and limited access to data. In the future, we should continue to deepen the research to improve the prediction accuracy of the PLUS model. In the InVEST model, the setting of some parameters is based on the results of previous studies and the experience of experts, and the setting of parameters such as threat factors and habitat suitability values is more subjective, and the model calculates the threat of coercive threats superimposed, resulting in the threat value of multiple threat factors being much higher than the sum of the individual threats, and the calculation of the quality of the habitat will result in a corresponding error. Therefore, in the future, how to scientifically integrate multiple ecosystem services in the watershed, analyze the complex relationship between different ecosystem services, and fully integrate local measurement data to obtain a more accurate calculation of services is the key direction for the study of HQ, to better reveal the development and evolution of HQ in the Min River basin.
The Min River Basin is an important ecological barrier in the upper reaches of the Yangtze River, and is of great significance to the realization of sustainable regional economic and social development. HQ assessment in the Min River Basin is an important element of future ecological environmental protection in the Min River Basin, and it is necessary to strictly observe the three zones and three lines, prevent the uncontrolled expansion of urban land use, and strictly implement land use control to ensure that the ecological environment is not damaged. Continuing to promote the consolidation and development of the return of farmland to forest projects, both natural and man-made ways should be used to improve damaged habitats and optimize the structure of forest stands. At the same time, the management and control of existing nature reserves with poor HQ should be strengthened, and the boundary survey of the reserves should be further improved. On this basis, ecological zoning and habitat protection and restoration should be combined through overall conservation management, and ecological compensation mechanisms between watersheds should be explored to achieve synergistic effects.
5 CONCLUSION
In this study, the HFI of the Min River Basin was evaluated using a multi-indicator superposition analysis method. Ecological zoning planning of the watershed was carried out through the superposition analysis. The combined PLUS and InVEST models were used to characterize how future land type might affect HQ under two scenarios. The study shows that:
	(1) The mainland types in the Min River Basin are grassland, woodland, and cropland, accounting for more than 94% of the total area. By 2030, under the ND scenario, the area of cropland decreased by 2.1%, while the area of construction land increased significantly by 18.81%, the most significant change; in contrast, under the PP scenario, the area of forest land increased by a small amount of 1.54%, while the growth rate of construction land was significantly suppressed, with an increase of 6.65%.
	(2) During the study period, although the HQ of the watershed as a whole was high, it showed a changing trend of decreasing areas of high HQ and increasing areas of low HQ. By 2030, the ND scenario continues the declining trend in HQ, while HQ is greatly improved in the PP scenario.
	(3) HQ in the Min River Basin is affected by a combination of natural and socio-economic factors. Among them, dem, slope, and population contribute more to the spatial differentiation of HQ in the Min River Basin; dem and population have the strongest synergistic effect on the change of HQ.
	(4) According to the ecological zoning plan, the watershed is divided into priority protected zones, priority recovery zones, and appropriate development zones. Among them, priority protected areas accounted for the largest proportion of the area (74.99%), followed by priority protected areas (16.88%) and moderate development areas (8.13%).
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Introduction: Complex mineral mining leads to critical earth’s surface disturbance and environmental pollution from industrial waste. This research aims to comprehensively study, assess and show the current scale of the earth’s surface disturbances in the largest mining region of Ukraine – the Kryvyi Rih. Iron-ore Basin and suggests ways to improve the situation based on backfill technologies for the earth’s surface rehabilitation and industrial waste utilization.Methods: To identify the forms of surface disturbance, their parameters, and spatial location, satellite images of the region, government statistical data, and a geographic information system software suite were studied. An analysis of the effectiveness of existing reclamation measures for technogenic voids in the region was carried out, and a new concept of surface restoration was proposed using beneficiation tailings, which are difficult to utilize in the region.Results: It has been determined that the contribution of the Kryvyi Rih Iron-ore Basin to waste generation is 92.08% of the total volume of waste accumulations in Dnipropetrovsk Oblast and 65.5% in Ukraine as a whole, amounting to 10.7 billion tons. It is determined that 65.25% of the total disturbed land area is industrial waste, 34.76% – quarry cavities and mine failure zones, occupying 49% of the Kryvyi Rih city area. An analysis of waste accumulation density in allotted areas shows that per 1 m2 of land area, on average, 183.5 tons of dump waste rocks and 73.5 tons of beneficiation tailings are placed. Disposal of beneficiation tailings is recognized as a priority, because their utilization is slower, occupy the largest area, creating a risk of dams breaching and intense dusting from tailings dams surface, threatening the environment and public health. For the first time in Ukraine, a concept for the earth’s surface rehabilitation for various industrial purposes has been developed based on paste backfill technologies.Discussion: Paste backfill technology implementation is prioritized in the central and northern parts of the city, which can dispose of at least 65–70 million tons of waste in cavities and reclaim about 200 ha of land. The research results are valuable for the development of strategies or programs to overcome the technogenic-ecological crisis in the city. The rehabilitated earth’s surface can be usefully involved in various infrastructure projects for the development of the industrial and economic potential of an industrial city such as Kryvyi Rih.Keywords: earth’s surface disturbance, quarries, mine failure zones, mining wastes, technogenic load, paste backfill technology
1 INTRODUCTION
The rapid growth of the world’s population increasingly requires the consumption of mineral resources to provide raw materials for a wide variety of economic sectors, resulting in intensive mining of minerals in many countries of the world (Henckens, 2021; Maja and Ayano, 2021; Khan et al., 2021). On the one hand, mining of mineral resources is dictated by economic vectors of development, accounting for an important part of the country’s budget revenues. On the other hand, the mining industry has a negative impact on the natural environment. It is known and thoroughly studied that mining industry facilities pollute and cause significant damage to air, soils and the upper earth’s crust layer, as well as to groundwater and surface water resources, flora and fauna, safety and health of the population (Vinayagam et al., 2024; Batur and Babii, 2022; Yu et al., 2024; Mardonova and Han, 2023; Petlovanyi et al., 2023a). Some of the important sources of environmental pollution are: large-scale drilling-and-blasting operations in quarries, emissions from mine shafts, pumping of mine and quarry waters with subsequent formation of settling ponds и сбрасывание в поверхностные водоемы, and accumulated large-tonnage industrial waste (Farjana et al., 2019; Shehu et al., 2023; Andrade et al., 2015; Novitskyi et al., 2023).
The influence of the mining industry on the earth’s surface state deserves special attention. Significant land areas are allotted for mining sites of quarries, mines and mining dumps, which are very difficult and slow to return to their original state after the completion of mining operations (Maus et al., 2022; Ashimova et al., 2022). Stripping operations in quarries cause damage to valuable fertile soils, depress natural ecosystems, and disrupt the natural balance of geological and hydrological environment due to the formation of significant cavities in the subsoil, creating the risk of landslide phenomena (Marchelli et al., 2023; Bo et al., 2019). Underground mining operations result in complex geomechanical processes of the earth’s surface subsidence, which leads to a rise in groundwater table and waterlogging of territories, followed by soil salinization. Hazardous processes are the occurrence of deep failures in the earth’s surface, which have unpredictable consequences and lead to the destruction of infrastructure and even the resettlement of people (Morrison et al., 2019; Sakhno et al., 2023; Asgari et al., 2024). Significant areas are allotted for waste storage, such as waste rock dumps and tailings dams, which create technogenic landscapes and depress the population. There is a risk of shear phenomena on dumps and breaches of tailings dams (Shengo, 2021; Vallero and Blight, 2019).
The situation is aggravated by the fact that mining facilities and the consequences of their activities are located near settlements and civil infrastructure, which causes social tensions and a threat to public safety. Often there are conflicts with state authorities and business owners regarding harmful enterprise activities. Therefore, at the present stage of human development, the importance of environmental protection technologies in the complex mining of mineral resources in the world, along with population growth, should become a priority (Malashkevych et al., 2022; Hrinov et al., 2019; Mashifana and Sithole, 2021; Bondarenko et al., 2023).
During open-pit mining operations, a reclamation complex is performed aimed at bringing disturbed lands to a state suitable for their use for agricultural, forestry, fishery, recreational and other purposes. Reclamation usually consists of technical and biological stages (Favas et al., 2018; Tymchuk et al., 2020). The problem of restoring the earth’s surface for industrial purposes is especially acute when the scale of the formed quarry cavities is significant. The difficulty of filling the mined-out quarry spaces with overburden and hard rocks is that this can be done if there are sufficient volumes of such rocks when the quarry or other dumps in the immediate vicinity are in operation. Therefore, in industrial regions, the potential of lands disturbed by mining activities is usually lost (Shang et al., 2022). During underground mining, to extract valuable types of minerals, for the prevention of land subsidence and industrial waste management, especially in regions with developed industrial and civil infrastructure, technologies of backfilling the mined-out space are used (Xue et al., 2023; Kuzmenko et al., 2023; Petlovanyi M. V. et al., 2020; Udd, 2021). Nevertheless, despite these circumstances, the mining industry is an important sector of economic development in many developed and developing countries, including Ukraine, providing a significant number of jobs.
Ukraine is a country rich in mineral resources. In the interior of Ukraine, more than 20 thousand deposits and occurrences with 117 types of mineral raw materials have been identified, of which more than 8,949 deposits have industrial significance and are included in the State Balance of Mineral Reserves, while more than 2,800 deposits of 100 types of mineral resources have been industrially developed (Mineral Resources of Ukraine, 2021). There are 2,868 deposits involved in industrial development, where more than two thousand mining and processing enterprises operate. The total estimate of their value is in the range of $8–12 trillion (Post-war Recovery of Ukraine’s Economy, 2022). The most developed in terms of mining volumes are deposits of iron ore, coal, natural gas, oil, manganese and titanium-zirconium ores, as well as deposits of construction raw materials (granites, limestones, sands, kaolins, clays, etc.) (Mineral Resources of Ukraine, 2021; Petlovanyi M. et al., 2020; Lozhnikov et al., 2022).
The iron-ore industry in the Ukrainian economy is the leader in foreign exchange earnings to the State budget of Ukraine in terms of product exports among all types of minerals. The resource potential of the iron-ore industry is reflected in product exports from Ukraine. For example, a record volume of 44.46 million tons of ores, agglomerated and non-agglomerated iron concentrates were exported in 2021 (with a profit of US$6.9 billion) (Extractive Industries Transparency Initiative EITI in Ukraine 2021, 2023). Since 2022, due to the armed aggression of the russian federation, the productivity of the iron-ore industry has also undergone significant changes due to logistical difficulties, reduced demand and rising production costs, forcing major mining companies to temporarily stop iron ore mining. Iron-ore mining and production of iron-ore products by various companies have declined by 40%–75%.
The greatest irreparable damage to the surrounding natural environment, especially to the earth’s surface, is caused precisely by complex mining of iron ores, the reserves of which are concentrated in five iron-ore basins (Mineral Resources of Ukraine, 2021; Extractive Industries Transparency Initiative EITI in Ukraine 2021, 2023; Hromozdova et al., 2021; Kurylo and Plotnikov, 2020). The Kryvyi Rih Iron-ore Basin deserves special attention, where the main iron-ore balance reserves (48.6%) are concentrated. In this basin there is a significant density of mining and processing enterprises (quarries, mining-processing plants, mines, metallurgical plant) and wastes from their operation (overburden and mine rock dumps, tailings dams, metallurgical slag dumps), which occupy and disturb a significant earth’s surface area, creating depressive anthropogenic landscapes. At open-pit method of iron ore mining, per 1 million tons of mineral raw materials, the loss of land is 14–640 ha, and with at underground mining method, per 1 million tons, about 4 ha of land are lost for dumps and surface deformations (Syvyi et al., 2013). Most of the Kryvyi Rih Iron-ore Basin is occupied by the city of Kryvyi Rih, and these mining facilities are located around the city and even in the city itself, which entails a significant threat to the health and safety of the population. Iron ore mines extract ore without backfilling the mined-out space, which has caused severe earth’s surface subsidence with the formation of failure craters in the western outskirts of the city and the destruction of infrastructure facilities (Bazaluk et al., 2021a; Pysmennyi et al., 2023; Azaryan et al., 2018). Thus, a large-scale technogenic-environmental catastrophe has arisen in the Kryvyi Rih Iron-ore Basin, requiring an urgent solution. Similar technogenic-environmental problems in the regions of different countries around the world, where iron ores are mined, have been repeatedly noted in scientific papers (Syvyj et al., 2023; Yadransky et al., 2021). Similar technogenic-environmental problems have been repeatedly noted in various regions around the world where iron ores are mined. For example, in northern Spain, the stability of abandoned siderite mines has posed significant challenges. In the case of the Bodovalle mine, severe surface subsidence occurred due to the collapse of over-exploited rib pillars, resulting in large surface craters. This issue was documented in the study (Trigueros et al., 2021) which used advanced numerical methods to review and address the stability of the mine. Additionally, another study (Trigueros et al., 2024) assessed the effectiveness of backfilling in mitigating subsidence risks. The study found that backfilling could be an effective countermeasure to maintain stability and prevent further subsidence.
Many scientific papers are devoted to the study and solution of environmental problems of the Kryvyi Rih region. Special attention should be paid to scientific papers related to the study of the disturbed earth’s surface state. Thus, the works (Koptieva and Denysyk, 2020; Nazaruk and Ostroushko, 2021; Paranko et al., 2015) conducted a study of existing mining-industrial landscapes of the Kryvyi Rih region (quarries, failure zones, accumulated wastes) and compiled their classification, but did not provide characteristics and parameters of specific objects. The work (Rudenko, 2017) indicates quarries suitable for development, typological groups of buildings and structures that can be used for renovation, formulates principles and methods for the architectural-planning organization of public buildings and structures on the territory of quarries. In the course of research (Rudko and Yakovlev, 2018; Dovhyi et al., 2021), the authors assess the role of natural and technogenic factors entailing the disturbance of the primary natural state of the upper earth’s crust layer, hydrosphere, and landscape sphere of the Kryvyi Rih Basin. However, they provided only a general, but not detailed, assessment of the earth’s surface state. Many information sources constantly contain data (mostly outdated) on the general earth’s surface disturbance without detailing and grading for specific objects. There is also a lack of information in scientific and information sources on studying the parameters of failure craters formed from the influence of underground mining operations. A comprehensive current state analysis of the disturbed earth’s surface in the Kryvyi Rih Basin has not been conducted in open sources, and this has not been given sufficient attention. These studies today need to be clarified, systematized and presented in more detail, especially in terms of the forms of disturbances. Despite significant developments, the study of the above-mentioned issues is relevant at present, since the issues of studying, systematizing and identifying specific forms of the earth’s surface disturbances require further research and development of effective ways to improve the situation, which is very relevant for the region today. Effective ways of improvement should be to develop the earth’s surface rehabilitation technologies specifically for deep forms of the earth’s surface disturbances, such as inactive quarries and failure zones, by moving away from traditional backfill technology towards monolithic backfill types. This will make it possible to create a stable earth’s surface and use it wisely for the benefit of the region development, utilize a wider industrial waste range, thereby reducing social tensions.
Addressing these issues is of paramount importance as Ukraine moves steadily towards gaining membership in the European Union in the near future. In connection with the rapid development of European integration processes, Ukraine has adopted a gradual policy of substantially reducing waste generation and its recycling in accordance with the principles of 2006/21/EC, 2008/98/EC Directives, which regulate the principles of waste management and handling (including mining industry), as well as rehabilitation of disturbed lands.
The presented research aims to study and show the current scale of the earth’s surface disturbances in the largest mining region of Ukraine. The research identifies the main forms of the earth’s surface disturbances and analyzes, generalizes and systematizes their parameters and characteristics, revealing an idea of the scale of the growing technogenic-environmental catastrophe. Attention is drawn to possible ways of solving problems and restoring the earth’s surface. To improve the environmental state and Ukraine’s post-war rehabilitation, the need for land areas for the construction of new industrial, energy, defense and civil infrastructure facilities will gain significant importance.
2 RESEARCH BACKGROUND
2.1 Research object
An important task is to substantiate the choice of the Kryvyi Rih iron-ore region for a comprehensive analysis of the state of the earth’s surface disturbances. To do this, attention is given to the following aspects: iron ore production volumes, disturbed land area and the population living in the region.
As of today, iron ores are mined in three out of five iron-ore basins available in Ukraine – Kryvyi Rih, Kremenchuk and Bilozers’k. The Kerch Iron-ore Basin is located in the russian federation-occupied Autonomous Republic of Crimea. The Pryazovskyi Iron-ore Basin is in reserve, no mining is performed. The dynamics of iron ore mining for the latest period 2012–2021 is shown in Figure 1 (Mineral Resources of Ukraine, 2021; Extractive Industries Transparency Initiative EITI in Ukraine 2021, 2023).
[image: Line graph showing the volume of iron ore mining in million tons from 2012 to 2021. It starts at 177.1 in 2012, peaks at 177.4 in 2014, then declines to 152.7 in 2019, and rises to 173.0 by 2021.]FIGURE 1 | Dynamics of iron ore mining in Ukraine in 2012–2021.
Thus, for the period shown in Figure 1 mining ranges within 153–177 million tons. The share of the underground mining method is within 10%–15%, the other is the open-pit mining method. The highest figures are typical for the period when mining was carried out in four out of five iron-ore basins (2012–2014).
The period of 2016–2018 is characterized by a global decline in demand for steel and consequently iron ore, which has led to a rapid fall in market prices and forced mining enterprises to reduce the scale of mining. Since 2018, there has been a positive trend and in 2021, Ukraine’s iron ore mining has almost reached the record levels of a decade ago. There is no iron ore mining data for 2022, which is probably due to the military law in the country. However, information resources indicate a 50% decline in mining due to shelling, power outages, damage to infrastructure and the significant part of industry’s employees recruited into the Ukrainian Armed Forces. Figure 2 shows the distribution of iron ore mining volumes by Ukrainian regions.
[image: Doughnut chart displaying land area distribution among four regions: Dnipropetrovsk Oblast (75.24%, blue), Poltava Oblast (18.06%, orange), Kirovohrad Oblast (3.99%, red), and Zaporizhzhia Oblast (2.69%, green).]FIGURE 2 | Iron ore mining volumes in regions of Ukraine, %.
Data on the distribution of iron ore mining volumes by regions are known for 2020. According to Figure 2 in 2020, the largest volumes of iron ores were mined in the Dnipropetrovsk Oblast (75.24% or 122.87 million tons), where most of the Kryvyi Rih Iron-ore Basin is located. In the Poltava Oblast (Kremenchuk Basin) 18.08% or 29.53 million tons were mined, in the Kirovohrad Oblast (smaller part of the Kryvyi Rih Basin) – 3.99% or 6.52 million tons, and in the Zaporizhzhia Oblast (Bilozers’k Basin) – 2.69% or 4.39 million tons. Thus, the Kryvyi Rih Iron-ore Basin concentrates the largest iron ore production in Ukraine (Extractive Industries Transparency Initiative EITI in Ukraine 2021, 2023).
Today, deposits in Ukraine are mined mainly by open-pit mining, which has the greatest impact on the earth’s surface and the environmental state. According to the State GeoCadastre data, the total amount of disturbed land area in Ukraine is estimated at 142.7 thousand hectares, among which the following oblasts are the leaders: Dnipropetrovsk Oblast – 37.7 thousand hectares, Donetsk Oblast – 25.3 thousand hectares, Lviv Oblast – 10.7 thousand hectares, and Luhansk Oblast – 10.3 thousand hectares (National Report on the State of the Natural Environment in Ukraine in 2021, 2022). It is obvious that the mining industry, widely developed in these areas, has the greatest influence. The reclamation level is quite low and was only 17.35 ha in 2021. According to the National Report on the State of the Environment, data on the land areas occupied by mining enterprises are known, which are illustrated in Figure 3.
[image: Pie chart depicting regional data distribution. The red section represents Dnipropetrovsk Oblast with 23,577.4. Green is Donetsk Oblast with 8,667.8. Purple stands for Zhytomyr Oblast at 4,238.7. Light purple shows Poltava Oblast with 3,132.4. Blue is other regions with 15,961.9.]FIGURE 3 | Distribution of land areas occupied by mining industry enterprises (mines, quarries) by regions, (ha).
An analysis of the state of lands allotted for mining industry shows (Figure 3) that the leader is also the Dnipropetrovsk Oblast (44.7%), where the most of the Kryvyi Rih Iron-ore Basin and a complex of mining facilities are located (Pysmennyi et al., 2022; Kalinichenko et al., 2020; Stupnik et al., 2023).
The iron-ore industry has the greatest influence on the generation of industrial waste volumes that accumulate on the earth’s surface as a result of iron ore mining and beneficiation, thereby disturbing the earth’s surface. This is well illustrated by the data of the State Statistics of Ukraine, which provides detailed information on the generated waste volumes by categories (Ukrstat, 2021). Analysis of industrial waste categories makes it possible to identify the following types of waste that belong to the iron-ore industry: 1310.2.3.01 – “iron ore sludge and beneficiation tailings”; 1310.2.3.04 – “residues (dust, powder, etc.) from the iron-ore agglomerate production”; 1310.2.9.01 – “waste from iron ore quarrying”; 1310.3.1.01 – “iron-ore blast-furnace unconditioned agglomerate”; 1310.3.1.10 – “other iron-ore wastes.” Thus, of the 0.462 billion tons generated in 2020, the volume of the above-mentioned types of iron-ore industry waste is 0.357 billion tons or 77.2%. The total mining industry waste is 0.391 billion tons, meaning that the difference of 0.034 billion tons of waste is waste from mining of other minerals. The above information data indicate a significant contribution of the iron-ore industry to the total industrial waste generation in Ukraine.
Further, based on Dnipropetrovsk Oblast regional statistics data (Environment, 2023), the contribution to the industrial waste accumulation from mining enterprises of the largest Kryvyi Rih Iron-ore Basin, the area of which includes the city of Kryvyi Rih, is analyzed and compared with the accumulated waste of the Dnipropetrovsk Oblast and Ukraine. A comparison is illustrated in Figure 4.
[image: Map of Ukraine highlighting mining regions. The map shows Ukraine in yellow with specific areas like Kryvyi Rih and Dnipropetrovsk Oblast in purple. Text boxes provide data on total and generated mining tonnage, with shares of the mining industry noted for each region: Ukraine (15.635 billion tons, 0.391 billion tons share), Kryvyi Rih (10.845 billion tons, 0.257 billion tons share), and Dnipropetrovsk Oblast (11.345 billion tons, 0.278 billion tons share).]FIGURE 4 | Comparison of industrial waste generated by administrative units in 2020.
Analysis of Figure 4 shows that in 2020, the volume of waste generated from the iron-ore industry in the city of Kryvyi Rih is 0.256 billion tons, which is 92.08% of the total waste accumulation in the Dnipropetrovsk Oblast and 65.5% of the whole Ukraine. This demonstrates the powerful importance of the city of Kryvyi Rih and the Kryvyi Rih Iron-ore Basin as a whole in the generation of large-tonnage industrial waste both in the Dnipropetrovsk Oblast and in Ukraine.
Thus, an analysis of the population living within the iron-ore basins, where iron ore is mined, includes Kryvyi Rih – 1170.9 thousand, Kremenchuk – about 60 thousand, and Bilozers’k – about six thousand. Given the fact that the Kryvyi Rih Basin is more densely populated, the main city of Kryvyi Rih is gradually being rebuilt and expanded, so the research focuses specifically on the Kryvyi Rih Iron-ore Basin. A dangerous technogenic landscape has been created on its area, affecting the state of the environment, safety, health, and socio-economic sentiments in society. Therefore, the objective of this research is to determine in detail and reveal the degree of influence that the activity of the mining-metallurgical complex enterprises of the Kryvyi Rih Iron-ore Basin have had on the earth’s surface state and propose effective ways to improve the situation.
2.2 Characteristics and importance of the Kryvyi Rih Iron-ore Basin
As of early 2021, the Kryvyi Rih Iron-ore Basin concentrated the largest iron-ore balance reserves of 8.78 billion tons or 48.6%, where 123 million tons (75.2%) of Ukraine’s iron ore is mined. A strip of ferruginous rocks, ranging from 2 to 7 km wide, extends from south to north for more than 100 km, where the city of Kryvyi Rih (Dnipropetrovsk Oblast) occupies the main part of the basin. The area of the Kryvyi Rih Iron-ore Basin is estimated at 300 km2. The Kremenchuk Iron-ore Basin (Poltava Oblast) is a continuation of the Kryvyi Rih Iron-ore Basin to the north (Paranko et al., 2015; Dovhyi et al., 2019).
In the Kryvyi Rih Iron-ore Basin, high-grade ores are mined mainly by underground methods, and ferruginous quartzites are mined mainly by open-pit and partially underground methods. Iron ore has been mined since 1885. Today, a number of powerful mining companies are mining iron ore: “YUZHNIY GOK” Mining and Processing Plant (1 active iron-ore quarry), JSC Inhuletskyy Hirnycho-Zbahachuvalnyy Kombinat (1 active iron-ore quarry), PJSC Northern Iron Ore Enrichment Works (2 iron-ore quarries), PJSC ArcelorMittal Kryvyi Rih (2 active iron-ore quarries, 1 quarry at the stage of filling, 1 iron-ore mine), PJSC Central Iron Ore Enrichment Works (3 active iron-ore quarries, 1 quarry at the stage of filling, 1 iron-ore mine), PJSC Kryvyi Rih Iron Ore Plant (4 iron-ore mines), PJSC Suha Balka (2 iron-ore mines), Rudomine LLC (1 active iron-ore quarry), LLC Ukrainian Mining Company (1 active iron-ore quarry), BLASTCO MS. Ltd. (1 granite quarry). In addition to these enterprises, there are also five closed old quarries in the region.
As a result of intensive mining of iron-ore reserves over almost a 150-year period, a large-scale transformation of natural landscapes into mining-technogenic landscapes occurred in the Kryvyi Rih Iron-ore Basin, illustrated in Figure 5.
[image: Map of Ukraine highlighting the Kryvyi Rih region with arrows pointing to four aerial photographs. The photos depict landscapes, including expansive terrain and river views.]FIGURE 5 | Illustrative presentation of technogenic landscape around the city of Kryvyi Rih: 1 – Kryvyi Rih iron-ore basin; 2 – Kremenchuk iron-ore area; 3 – Pryazoviia iron-ore area; 4 – Kerch iron-ore basin; 5 – Bilozerka iron-ore area (landscape screenshots are made from open video resources: http://www.youtube.com/@user-vl7vn6vg9y, http://www.youtube.com/@MrJeshko).
Kryvyi Rih industrial region plays a leading role in the economy of Ukraine and is the main raw material base for the development of ferrous metallurgy, is of strategic importance for the economic independence and security of the state. In the total gross domestic product of Ukraine, the share of Kryvyi Rih is 9%, national exports – 8%, total industrial production of the Dnipropetrovsk Oblast – 42.3% (Investment Passport of Kryvyi Rih, 2021; Stupnik and Shatokha, 2021).
The paper draws special attention to the Kryvyi Rih iron-ore region, because around and in the city of Kryvyi Rih with a population of 650 thousand there is the largest concentration of mining facilities in Ukraine, the amount of lands disturbed by mining operations, the amount of industrial waste generated per one inhabitant and the most serious environmental problems of global scale. Despite the strong industrial development around the city of Kryvyi Rih, the environmental state in this region needs to be urgently addressed, especially the earth’s surface state.
3 METHODOLOGY
The research focuses on the study and systematization of the following forms of the earth’s surface disturbances in the Kryvyi Rih Iron-ore Basin (Dnipropetrovsk Oblast): quarry cavities, mine failure zones are formed and waste from the mining-metallurgical complex is accumulated (overburden and mine rock dumps, tailings dams, metallurgical slag dumps). When studying all forms of the earth’s surface disturbances, theoretical methods are used, such as collection and analysis of analytical information data, generalization and systematization.
To determine the geospatial location and identify the mined-out spaces of active and closed quarries, the information-analytical map of valid and invalid special permits for subsoil use from the State Geology and Subsoil Service of Ukraine is studied. Based on the annual productivity of active quarries and the volumes of balance reserves, they are graded according to the projected period of their operation (Extractive Industries Transparency Initiative EITI in Ukraine 2021, 2023; Ukrainian Geological Survey, 2024). To determine the geographical location and identify potential shear zones and failure craters within allotted areas of deposits for mining, the earth’s surface state is studied using the Google Earth satellite program on the area of mine land allotments.
The geospatial location and industrial waste accumulations of the mining-metallurgical complex are identified on the basis of the study of the State register of waste disposal sites in Dnipropetrovsk Oblast for 2021 (Register of Waste Disposal Sites in the Dnipropetrovsk Oblast, 2021). Each enterprise annually reports to local and government authorities on the generated waste volumes for the calendar year and in general. Then, annual registers of waste disposal sites are formed, indicating their characteristics for regions of Ukraine. Additionally, environmental passports and regional reports on the environmental state for Dnipropetrovsk Oblast are studied, as well as a number of reports and scientific-informational resources of the mining industry (Environmental Passport of the Dnipropetrovsk Oblast for 2022, 2023; Regional Report on the State of the Natural Environment in the Dnipropetrovsk Oblast for 2022, 2023).
After determining the geospatial location of the formed quarry cavities and mine failure zones in the subsoil, using the BlenderGIS software package, 3D-models (example, Figure 6) have been developed with the determination of geometric parameters – area of the earth’s surface disturbance along the contour (ha), depth of the cavities (m), predicted volume of cavities formed (million m3).
[image: Two pairs of 3D surface renderings show crater impacts. Pair (a) displays a horizontal and vertical view of a crater with an 82.5-micrometer width. Pair (b) shows similar views of a different crater with a deeper impact measuring 122 micrometers. Both craters are displayed in an orange hue against a dark background with measurement scales.]FIGURE 6 | Illustration of the 3D-model of the earth’s surface disturbance objects of the Kryvyi Rih Iron-ore Basin: (A) quarry cavities; (B) failure cavities.
The accuracy of the method has been verified, and if Google Earth geospatial data is adequately displayed, the accuracy is at least 90%. If the accuracy of Google Earth is unacceptable, an analytical method is used to determine the mined-out quarry space volume. The volume of resulting quarry and failure cavities is determined from the position of restoring the earth’s surface level: from the bottom to the imaginary horizontal area along the quarry surface at the lowest absolute elevation of the quarry contour. Based on the identification and study of the parameters and characteristics of the earth’s surface disturbance objects, an information-analytical map of their location in the city of Kryvyi Rih has been created.
To understand the environmental protection activities implemented in the region and their direct effectiveness in restoring the earth’s surface state, the activities and results of state, regional and city programs of the city of Kryvyi Rih have been analyzed with relevant conclusions being made.
4 RESULTS AND DISCUSSION
4.1 The state of the earth’s surface disturbances in the Kryvyi Rih Iron-ore Basin
4.1.1 Identification of mining-technogenic earth’s surface disturbance objects
In accordance with the research methodology, the main facilities of the mining, processing and metallurgical industries were studied and identified, the operation of which resulted in significant earth’s surface disturbances in the Kryvyi Rih city area and the environment in general. There are two large iron-ore quarries with five waste rock dumps located 25 km north-west of the northern outskirts of the city of Kryvyi Rih, mining the reserves in the northern part of the Kryvyi Rih Iron-ore Basin, which have no direct impact on the city of Kryvyi Rih. The research focuses on the main part of the Kryvyi Rih Iron-ore Basin, the facilities of which are located directly around the city of Kryvyi Rih.
Thus, as of today, 17 major large quarries have been identified in the Kryvyi Rih city area, including 13 quarries for iron ore and quartzite mining (11 active, 2 closed) and 3 quarries for granite mining (1 active, 2 closed). Underground mining is currently carried out by 8 iron-ore mines. It should be noted that over 120 years of iron ore mining in the Kryvyi Rih Iron-ore Basin, there are a number of small too old quarries, the identification of which is difficult (Figure 7).
[image: Map of Kryvyi Rih features various industrial sites marked with colored icons: green for quarries, blue for earth’s surface failures, orange for dumps, grey for tailings, and red for slag dumps. The city boundary is outlined in red. An arrow indicates north.]FIGURE 7 | Schematic map of the location of the identified earth’s surface disturbance objects.
The area of such quarries in terms of occupied earth’s surface ranges within 1.5–3 ha. Similarly, the region has a significant number of shallow old abandoned mines, of which there are about 15. Thirty-seven large overburden and hard rock dumps from quarries and mine dumps have been identified. It should be noted that the State register identifies only 20 dumps, which is probably due to the fact that the rest of the dumps are closed and rehabilitated, but still occupy land areas. The indicated group of dumps is also analyzed in this research. Nine tailings dams and three metallurgical slag dumps have been identified. Thus, having identified the earth’s surface disturbance objects and their geospatial location, a schematic map has been compiled (Figure 7).
Further attention is given to a detailed study of the earth’s surface disturbances and their parameters for each form in the Kryvyi Rih city area, which forms the major part of the Kryvyi Rih Iron-ore Basin. Attention is paid to forms of the earth’s surface disturbances specifically from iron ore mining and processing operations. Storage ponds and industrial sites of mines and quarries are not taken into account, as mine and quarry water pumping is an additional technological process, and land allotment is a temporary phenomenon, and will be returned to economic use after exploitation of deposits.
4.1.2 Formation of quarry cavities
As a result of long-term open-pit iron ore mining in the Kryvyi Rih Iron-ore Basin, quarry cavities of different scales have been created in the subsoil, which are the objects of the deep technogenic landscape. A gradation of identified main 17 quarry cavities has been compiled based on the occupied areas, and predicted volumes of the formed quarry cavities have been determined, given in Figure 8.
[image: A satellite image on the left shows multiple numbered sites marked in red and green. On the right, a bar and line chart compares disturbed areas and predicted cavity volumes across 17 quarries. Yellow bars represent disturbed areas, with values decreasing significantly after quarry 5. Blue line shows predicted cavity volume trends, with lower values for quarries 13 to 17. The chart also notes quarries at the stage of filling and those closed.]FIGURE 8 | Gradation of quarry cavities according to the occupied surface area and cavity volumes.
Figure 8 data analysis shows a significant variation in the parameters of the resulting quarry cavities. Thus, the occupied quarry surface area ranges from 12 to 643 ha, and the total earth’s surface area disturbed by quarrying is 3,750 ha. The volumes of resulting quarry cavities are in the range of 2.5–900 million m3, and the total volume of cavities is estimated at more than 4.5 billion m3. The maximum quarry depth in the region reaches the 400 m level. Of the 16 quarries in the basin, 7 quarries are inactive, of which 3 iron-ore quarries are at the stage of filling with waste rocks during the mining-technical reclamation stage, 2 closed granite quarries are flooded, where artificial water bodies are created, and 2 iron ore quarries are reclaimed for forestry purposes.
Based on a comparison of current productivity of quarries and available balance reserves within the deposits, a predictive gradation of their service life has been compiled (Figure 9).
[image: Bar graph depicting predicted service life in years for various quarry numbers. Quarries nine through seventeen are inactive with zero years. Quarries eight through twelve show increasing service life, peaking at quarry twelve with nearly one hundred years.]FIGURE 9 | Predicted service life of the Kryvyi Rih Iron-ore Basin quarries.
Figure 9 shows that seven quarries are currently inactive, covering approximately 220 ha of land area, for which it is imperative to explore the possibility of complete earth’s surface rehabilitation. In three inactive quarries today this is already applied by filling waste rocks in their mined-out space. In the next 10–20 years, four more quarries, where about 680 ha of land surface have been disturbed, can be expected to complete their operational life. It should be understood that the compiled gradation is predictive, since the economic situation may change over time. This is conditioned by fluctuations in the level of annual productivity of quarries, as well as the possibility of premature completion of mining operations with the write-off of their reserves due to proof of inexpediency of further mining the reserves for technical and economic reasons. In this way, it has been found that the total earth’s surface area disturbed by quarrying is 8.7% of the Kryvyi Rih city area.
4.1.3 Earth’s surface failures
Long-term underground mining of high-grade iron ores of the Kryvyi Rih Iron-ore Basin has had a powerful destructive impact on the earth’s surface state. The form of the earth’s surface deformations from the impact of underground mining operations in the Kryvyi Rih Iron-ore Basin is represented by two types of deformations: shear and failure zones, which are also objects of deep technogenic landscape. To determine the total area undermined by mining operations with the earth’s surface subsidence, it is necessary to conduct a complex specialized survey of the territory. Thus, according to scientists and the SE State Institute for Design of mining enterprises “Krivbassproekt”, the area of the earth’s surface subsidence (shear and failure zones) near the city of Kryvyi Rih is estimated at 4,000 ha, which is gradually increasing. Thus, the total area of shear zones increased by 2,400 ha compared to 1955, and the average depth of failure craters also increased from 60.0 m to 120.0 m.
Our research focuses specifically on identifying critical zones of the earth’s surface subsidence – failure craters with the determination of their basic parameters, such as disturbed land area and volumes. Significant earth’s surface deformations are caused by the use of ore reserve mining systems with caving of overlying rocks and blast-hole stoping systems of mining without backfilling the mined-out space. InSAR satellite remote sensing technologies based on interferometric radar have become widespread today to study the dynamics of the formation of failure craters or zones of smooth earth’s surface subsidence under the influence of mining operations (Zhao et al., 2023; Xu et al., 2024; Baltiyeva et al., 2023; Blachowski and Ellefmo, 2023). In future research, it is advisable to predict, based on the studies of dynamics of surface subsidence processes, an increase in the area of failure zones, whether they will reach adjacent infrastructure and what area of valuable soils may be damaged.
Based on the study of the earth’s surface state in the Google Earth program, 15 main failure zones formed on the western outskirts of the city of Kryvyi Rih have been identified and their parameters have been determined. A gradation of identified main failure zones has been compiled based on the disturbed land areas and predicted volumes of the resulting failure cavities, illustrated in Figure 10. These identified failure zones are located within the mining allotments of the Ternivska mine, Kolachevsky mine, Kozatska Mine, Yuvileina Mine, and Artem-1 Mine. The above mines have annual iron ore production in the range of 0.6–1.5 million tons, the mining depth ranges within 680–1,570 m, and the depth of explored reserves reaches 1,200–2,060 m. The horizontal thickness of ore deposits in different mines varies from 10 to 180 m, and their length along the strike is from 600 to 1,700 m. There are two mining methods used to mine iron ore reserves: the sublevel caving method and the sublevel stoping method, with some mines applying these methods separately, and some mines using both methods in a 50/50 or 70/30 ratio. In most mines, stopes and blocks are placed along the strike of the ore deposit, and their averaged parameters are as follows: the level height is 70–95 m, the width depends on the deposit capacity, and the length is 20–45 m.
[image: A map on the left marks specific areas in blue. On the right, a bar and line graph shows disturbed area versus failure zone numbers. Yellow bars indicate disturbed areas and blue points represent predicted cavity volumes. The disturbed area decreases notably from zones one to three, with smaller fluctuations in subsequent zones.]FIGURE 10 | Gradation of the failure zones according to disturbed land areas and cavity volumes.
Figure 10 data analysis also shows a significant variation in the parameters of the resulting failure cavities. Thus, the disturbed earth’s surface area within the craters ranges from 1.5 to 43 ha, and the total disturbed earth’s surface area due to the formation of failure zones is 180 ha. The volumes of quarry cavities formed are in the range of 0.3–9 million m3, and the total volume of cavities is estimated at over 35 million m3. The average depth of failure zones varies within 30–100 m, and the largest failure formed in the region in depth reached the level of 285 m (failure No. 12), named as “Queen of Craters.”
Thus, it has been determined that the earth’s surface area disturbed by the resulting failure zones is 180 ha, and the shear zone area of 3,600 ha, which is 8.4% of the area of the city of Kryvyi Rih.
The failure zones have created a real technogenic-ecological crisis in the city of Kryvyi Rih, which is associated with the following aspects:
	– failure zones have reached residential areas of the city’s private sector, resulting in the resettlement of some residents;
	– industrial and transport infrastructure facilities (buildings, roads) are destroyed;
	– over time, the surface of the craters gradually expands under the action of climatic and geomechanical factors, resulting in the development of erosion processes on the failure slopes and the degradation of valuable soils;
	– the occurrence of failure zones is sudden and poses a threat to the life and health of the population and natural ecosystems.

The mentioned problems and threats of failure zones require a complete immediate urgent solution, however, apart from filling them with waste rocks, no effective solution has been found. A conducted comprehensive analysis of the earth’s surface state in the Kryvyi Rih Iron-ore Basin, disturbed by large-scale mining of iron ore reserves from the subsoil by open-pit and underground methods, shows the urgent need to rehabilitate the territories to achieve environmental and socio-economic balance in the region.
4.1.4 Accumulation of industrial waste from the mining-metallurgical complex
An integral part of the technological mining and processing cycle of iron ores mining in the Kryvyi Rih Iron-ore Basin is the formation of overburden and hard rock dumps in quarries, waste mine rock dumps at mines, and tailings dams with ore beneficiation waste at processing plants. The mentioned objects represent a high-altitude technogenic landscape. By type of waste disposal site, rock dumps are open, surface, and bulk objects. The region also has a metallurgical plant for the production of rolled steel, where blast-furnace and steelmaking slag dumps have been created in the process of the technological cycle of iron and steel smelting. A gradation of 37 identified generated quarry and mine waste rock dumps has been compiled based on the allotted area and known value of the accumulated rock volumes, as shown in Figure 11. The volumes of waste rock stockpiled in only 14 out of 37 dumps can be identified from government open sources.
[image: Satellite image of a forested area with patches of cleared land on the left. On the right, a bar chart and line graph show data on rock dump numbers. The chart compares allotted area in hectares (yellow bars) and the volume of stockpiled rocks in metric tons (blue line), with both values decreasing as rock dump numbers increase.]FIGURE 11 | Gradation of quarry and mine waste rock dumps according to the allotted area and accumulated rock volumes.
Figure 11 data analysis shows a variable distribution of quarry and mine waste rock dumps by area and rock volumes. Thus, the area occupied by waste dumps is in the range of 6–990 ha, and the total earth’s surface area disturbed by waste rock dumps is 6,900 ha. The amount of rocks stockpiled in the identified rock dumps is 13–2,000 million tons. The volume of stockpiled rock in the 14 identified dumps is 7.2 billion tons, and the total volume for 37 dumps is projected to be 7.5–8.0 billion tons. The bulk density of waste rock stockpiled in dumps varies in the range of 2.5–2.8 t/m3, which makes it possible to estimate the volumetric parameters of these types of mining-technogenic relief. It should be noted that of the 37 existing waste rock dumps, 1 new dump is under construction. It has been determined that the total earth’s surface area disturbed by the formed quarry and mine waste rock dumps is 16.05% of the Kryvyi Rih city area.
Due to the fact that predominantly low-grade iron ores, represented by magnetite oxidized quartzite, are mined in the region by open-pit method, the quality of iron ore concentrates is brought to an iron content of 65%–67% at the processing plants, while significant waste volumes – tailings and beneficiation sludge – are generated and stockpiled in tailings dams. By type of waste disposal site (tailings dams), there are open, surface and bulk objects. A gradation of the nine identified generated tailings dams has been compiled based on the allotted land area and the volume of accumulated sludge, which is illustrated in Figure 12.
[image: Satellite image on the left shows land with scattered red areas. On the right, a bar and line chart displays two data sets for tailings dam numbers one through nine. The yellow bars represent the allotted area in hectares, while the blue line indicates the volume of stockpiled rocks in thousands of cubic meters. The vertical axis on the left is for the allotted area, and the right is for the volume of stockpiled rocks.]FIGURE 12 | Gradation of tailings dams according to the allotted land area and the volume of accumulated iron ore beneficiation tailings.
Figure 12 data analysis shows that tailings dams in the region occupy significant land areas. Thus, the area occupied by tailings dams is in the range of 50–1705 ha, and the total earth’s surface area disturbed by waste rock dumps is 6,530 ha. The amount of tailings stockpiled in tailings dams is 3.45 billion tons. The bulk density of beneficiation tailings stockpiled in tailings dams varies in the range of 1.55–1.65 t/m3, which makes it possible to estimate the volumetric parameters of these types of mining-technogenic relief. It should be noted that of the nine identified tailings dams, one new tailings dam is under construction. It has been determined that the total earth’s surface area disturbed by the formed tailings dams is 15.2% of the Kryvyi Rih city area.
In addition to the mining-technogenic landscape objects, three metallurgical slag dumps of a large metallurgical plant have been created in the region: dump of steel-smelting, open-hearth and converter slags, blast-furnace waste and blast-furnace granulated slags. A gradation of the identified slag dumps has been compiled based on the allotted land area and the known value of the accumulated slag amount, illustrated in Figure 13.
[image: Map view of a geographical area alongside a bar and line graph. The map indicates specific locations with coordinates overlaid. The graph shows the relationship between slag dump numbers on the x-axis, altered area in hectares on the left y-axis with bars, and the volume of stockpiled rocks on the right y-axis using a line. There are three slag dump numbers, and the graph depicts trends in area and volume.]FIGURE 13 | Gradation of slag dumps according to the allotted land area and the volume of accumulated metallurgical slag.
Figure 13 data analysis shows that the land area occupied by slag dumps is in the range of 11–231 ha, and the total earth’s surface area disturbed by slag dumps is 332 ha. The amount of slags stockpiled in dumps is 97.3 million tons. The bulk density of metallurgical slags stockpiled in dumps, depending on their types, varies in the range of 1.3–1.75 t/m3, which makes it possible to estimate the volumetric parameters of these types of accumulations. It has been determined that the total earth’s surface area disturbed by the formed metallurgical slag dumps is 0.8% of the Kryvyi Rih city area.
The conducted comprehensive analysis of the identified objects of industrial waste accumulations from the mining-metallurgical complex, disturbing the earth’s surface, shows that a significant mineral-raw material base of waste of natural and technogenic origin, accumulated in the Kryvyi Rih Iron-ore Basin, should be considered as potential backfill materials. It is important that the generated industrial waste according to the class of environmental hazard (toxicity and radioactivity) based on the legislation of Ukraine belongs to class IV (low-hazard) and can be considered for backfilling mined-out spaces. Given the significant volumes of resulting surface technogenic cavities and the reserves of potential backfill materials, the development of backfill directions to rehabilitate a geomechanically stable earth’s surface is timely and appropriate.
4.1.5 General assessment of the structure of the earth’s surface disturbances
The conducted comprehensive analysis of the forms of the earth’s surface disturbances by mining-metallurgical complex enterprises functioning in the main part of the Kryvyi Rih Iron-ore Basin (the city of Kryvyi Rih) makes it possible to present the current general situation infographically. The structure of the earth’s surface disturbances is presented in Figure 14.
[image: (a) A donut chart showing types of land disturbance in Kryvyi Rih: quarry (32.72%), waste rock dumps (30.96%), metallurgical slag dumps (17.69%), tailings dams (17.07%), and shear and failure zones (1.57%). (b) A bar graph comparing the total area of Kryvyi Rih (43,000 hectares) with disturbed land area (21,100 hectares).]FIGURE 14 | Structure of the earth’s surface disturbances in the Kryvyi Rih Iron-ore Basin: (A) general distribution; (B) distribution in relation to the city of Kryvyi Rih.
Figure 14 data analysis shows that 65.25% of the total disturbed land area consists precisely of accumulated industrial waste – quarry and mine waste rock dumps, tailings dams of iron ore beneficiation wastes, metallurgical slag dumps, while 34.76% is disturbed by quarrying, shear and failure zones of mines. If to compare the land area disturbed by mining operations around and in the city of Kryvyi Rih and the area directly in Kryvyi Rih (Figure 14B), it becomes obvious that there is a critical technogenic-environmental situation in the region, as the earth’s surface disturbances account for 49% of the city area. Given the industrial potential of the city of Kryvyi Rih, intensive reclamation of disturbed territories with rehabilitation of geomechanically stable earth’s surface level is an important and necessary direction, which will improve the state of the environment in the region and use the territories for the construction of various infrastructure facilities contributing to the socio-economic development of the region.
Since waste rock dumps and tailings dams contribute to the greatest earth’s surface disturbances (Figure 14A), the parameters of allotted land areas of all these identified objects in the Kryvyi Rih Iron-ore Basin have been compared. There is a linear relationship between the occupied land area and accumulated waste volumes, which is illustrated in Figure 15.
[image: Scatter plot showing the relationship between accumulated volume (billion tons) and occupied area (hectares) for waste rock dumps and tailings dams. Blue dots represent waste rock dumps, and red dots represent tailings dams. Dashed trend lines indicate positive correlations for both data sets.]FIGURE 15 | Relationship between allotted land areas and accumulated waste volumes in waste rock dumps and tailings dams.
Figure 15 data analysis shows that there is a significant difference between the land areas allotted for dumps and tailings dams. Thus, by increasing the volume of waste rocks stockpiled in dumps in the range of 0–2.6 billion tons, the allotted area increases by 5 times, and an increase in beneficiation tailings in tailings dams in the range of 0–1.0 billion tons leads to an increase in occupied land areas up to 14 times. If we look at the density of these waste accumulations, then on average 183.5 tons of waste rocks and 73.5 tons of beneficiation tailings are placed per 1 m2 of land area. Thus, land areas for placing iron-ore beneficiation tailings are used less efficiently than for waste rock dumps. This is a problem and attention today should be directed specifically to finding ways to utilize beneficiation tailings. The threat of tailings dams is the risk of breaching their dams, resulting in technical water leakage and pollution, as well as significant dust generation in the dry areas of alluviation of beneficiation tailings.
The exhaustion of the projected size of some waste dumps and tailings dams is also becoming a gradual problem, resulting in the need to construct new facilities. Thus, as of 2022, PJSC ArcelorMittal Kryvyi Rih began construction of a new waste rock dump Stepovyi-2 (Figure 11, No. 7). The area occupied by the facility will be 271 ha, and the total capacity is designed for 51.38 million m3 of stockpiled rocks. In addition, PJSC ArcelorMittal Kryvyi Rih has received permission and is building a new tailings dam, Tretya Karta (Figure 12, No. 5). Active tailings dams, such as Myrolyubiv and Obiednane, are planned to be closed after the commissioning of a new tailings dam. The tailings dam projected volume is planned to be 280 million m3, as more than 500 ha of land area is allotted.
The construction of new facilities for the placement of mining waste creates social tension in the region, causes constant indignation of residents and environmental organizations. According to the authors, a significant improvement in existing large-scale technogenic-environmental situation can be achieved by developing technologies for backfilling surface technogenic cavities in the region, which will gradually rehabilitate the earth’s surface level with the achievement of geomechanical stability and utilize part of the accumulated waste of the mining-metallurgical complex. To date, this conceptual approach has received insufficient attention in the region.
The general supply of the region with reserves of mineral-raw material base of backfill materials and the predicted volume of cavities formed in the subsoil allow us to assert the existing positive balance.
4.2 Directions for improving the earth’s surface ecological state
4.2.1 Mechanisms available for reducing the influence of the mining industry on the earth’s surface
The severe technogenic-environmental situation, developed in the Kryvyi Rih Iron-ore Basin, has not gone unnoticed by the central and local authorities. To improve the environmental situation in the Kryvyi Rih Iron-ore Basin, various programs have been developed and are being implemented at the state, regional and district levels with the participation of polluting enterprises with the implementation of a set of measures in the period 2000–2026. These programs focus on specific measures and effective mechanisms for improving the state of atmospheric air, water resources, disturbed lands, waste management, as well as protection of natural reserve fund objects, environmental monitoring and public environmental consciousness. Since the research purpose is to analyze the state of the earth’s surface influenced by mining operations, existing measures for the rehabilitation of disturbed lands and industrial waste management are studied.
Based on the results of implementation of the first Program on overcoming the ecological crisis of the city of Kryvyi Rih at the city level in the field of improving the land condition for the period from 2000 to 2010, 223.1 ha of land disturbed by mining operations have been rehabilitated in the Kryvyi Rih region (Gov, 2011). The implementation of the developed concept of the State Program on prevention of technogenic catastrophe in the city of Kryvyi Rih for 2013–2016 was not successful, as the Program was not adopted due to the savings in state funds in connection with the occupation of the Crimean Peninsula by the russian federation and the beginning of the occupation of the eastern part of Ukraine in 2014 (Author Anonymous, 2013). To continue solving specific environmental problems at the regional level, a long-term two-stage Program has been adopted to address environmental problems of the Kryvyi Rih Iron-ore Basin for 2011–2022 (Author Anonymous, 2011). To accelerate and promptly resolve problems at a more effective local level, in 2016 the City Program for solving environmental problems of Kryvbas and improving the state of the natural environment for 2016–2025 was approved (Author Anonymous, 2016). Given that the long-term Regional Program gradually lost its relevance, the City Program for 2016–2025 was adopted instead. The second stage of the Program has not been developed, and during the first stage of the Program, the Kryvyi Rih mining enterprises have utilized 179 million tons of industrial waste. In order to avoid duplication of measures of the above Programs, the long-term Program for the period 2011–2022 has been cancelled. Thus, as of today, the City Program for solving environmental problems in Kryvbas is being implemented, and its completion is scheduled for 2025. The implementation of this long-term Environmental Program has made positive changes in industrial waste management at various levels.
The dynamics of volumes of industrial waste generation and utilization, the main part of which are mining industry wastes for 2015–2020 in Ukraine, the Dnipropetrovsk Oblast and the city of Kryvyi Rih well illustrate the trends in their change (Figure 16). Due to the martial law in Ukraine, caused by the aggression of the russian federation, the State Statistical Service of Ukraine has restricted public access to information, therefore data for 2021 and 2022 are not given.
[image: Bar chart comparing industrial waste volume in billion tons from 2015 to 2020 for Ukraine, Dnipropetrovsk Oblast, and Kryvyi Rih. Blue bars represent waste generated, and orange bars show waste utilized. Ukraine shows higher volumes overall, with a noticeable gap between generated and utilized waste. A red trend line indicates an overall increase in waste volume.]FIGURE 16 | Volumes of industrial waste generation and utilization in Ukraine, the Dnipropetrovsk Oblast and the city of Kryvyi Rih.
Figure 16 analysis shows the significant importance of the city of Kryvyi Rih in the total volume of both generation and utilization of industrial waste. During this period, when intensive implementation of the Environmental Program measures to improve the state of the environment began, the city of Kryvyi Rih saw a positive trend towards increasing level of mining waste utilization (60–80 million tons/year). However, the tendency to increased intensity of these waste generation is still much stronger than its utilization, which stimulates the search for new utilization methods.
Quantitative indices of Environmental Program measures were identified and analysed according to known reports data (2019, 2020, 2022) related to the improvement of the earth’s surface state disturbed by mining operations (quarries, mine failures), resulting in the achieved quantitative indices, which are summarized and given in Table 1. It should be noted that the contribution of existing environmentally-oriented activities of the Environmental Program to the efficiency of the overall industrial waste utilization, according to data from Program implementation reports published in the public domain, averages 40%–50%.
TABLE 1 | List of environmentally-oriented activities implemented in the Kryvyi Rih Iron-ore Basin within the framework of the Environmental Program.
[image: Table comparing quantitative indexes in million tons for various activities in 2019, 2020, and 2022. Activities include filling mined-out spaces, processing overburden rocks, road construction, sludge utilization, and environmental program contributions. Numbers decrease in most categories over time except for the program's contribution, which increases in 2022.]As can be seen from the data in Table 1, the implementation of environmental programs has been successful and their contribution to waste management is about 50%. During the implementation period of environmental programs, there is an annual fluctuation in the annual rates of environmental improvement measures, due to a number of social, economic and political factors. The main influencing factors were: aggression of the russian federation in 2014 and the implementation of the anti-terrorist operation, global crisis and falling iron ore prices 2015–2017, aggression of the russian federation and full-scale war in 2022. This led to fluctuating levels of financing of environmental programs by the state and mining enterprises.
In addition to the participation of polluting enterprises in the environmental program activities (Table 1), other directions of industrial waste utilization are also used, which in combination allows achieving utilization rates in the range of 60–80 million tons/year. Thus, depending on the need, mining and processing plants in the region also use overburden rocks and beneficiation tailings for the construction of tailings dams to build dams, thus increasing their capacity without allotting new areas. In 2021, for the first time in Ukraine, a tailings thickening complex was commissioned at “YUZHNIY GOK” Mining and Processing Plant, which made it possible to reduce the volume of tailings slurry pumped into the tailings dam, reduce the volume of technical water, electricity supply and the area for placing tailings. In 2004, PJSC Central Iron Ore Enrichment Works developed and implemented a technology for processing beneficiation tailings to extract iron-ore concentrate. However, the technology does not fully process the re-extracted material and about 80% of the minerals are returned to the tailings dam (Vilkul et al., 2018). For example, in 2015, 6.4 million tons of beneficiation sludge were used to produce 852 thousand tons of concentrate.
The highest level of industrial waste utilization is achieved in the region precisely when handling waste rocks from quarries and mines. Figure 17 illustrates the processes of filling up the failure zones and old inactive quarries in the region.
[image: Central satellite image of Kerkennah highlighting key areas, with four inset photographs connected by dashed lines: (a) shows a panoramic landscape with a tower, (b) features a rocky terrain, (c) depicts another broad view of land, and (d) presents a body of water with steep banks.]FIGURE 17 | Illustration of the existing methods for the earth’s surface rehabilitation in the city of Kryvyi Rih: (A) filling with mine waste rocks of the Yuvileina Mine failure zone; (B) filling with mine waste rocks of the old Lenin quarry No. 1; (C) filling of quarry No. 2, PJSC Central Iron Ore Enrichment Works, with dump waste rocks; (D) filling of quarry No. 1, Novokryvorizky GZK, with dump waste rocks [images (A–C) by Dmytro Antonov; image d from open online resource: https://kryvyi-rih.name/ru/nezvychajni-pryrodni-misczya-kryvogo-rogu].
Noteworthy is the filling of shear zones and the earth’s surface failures during underground mining of iron ores occurring in the Kryvyi Rih iron-ore region. As a result of mining, failure zones have formed in the mining allotments of almost all mines. For example, in the Yuvileina Mine mining allotment, mining-technical reclamation of the failure zone is performed by filling it with mine waste rocks using bulldozers and dump trucks (Figure 17A). In the region, various mines are gradually filling up five failure craters. The situation is paradoxical, since if there were no failure zones on the earth’s surface, mine waste rocks would be stockpiled in dumps and occupy land areas. It is important to note that from a geomechanical point of view, the issues of how filling of waste rocks will affect the failure crater state have not been studied.
Backfilling of mined-out quarry cavities is also used in the region (Figures 17B–D). Mine waste rocks (Figure 17B) and overburden hard rocks from adjacent active quarries (Figures 17C, D) are used as a reclamation material. The type of mechanization used are bulldozers, draglines and dump trucks (Bazaluk et al., 2023). After rehabilitation of the earth’s surface level, enterprises plan to use the areas for new dumps without returning them to economic use. It should be noted that filling of quarries is generally used when backfill material is close to the site. When announcing intentions to construct new waste rock dumps, mining enterprises are often criticized by environmental organizations and residents for allocating new land areas without further intensive use of rocks for reclamation of already existing technogenic cavities in the region to accelerate the earth’s surface level rehabilitation.
These reclamation methods for quarry and failure cavities are characterized by simplicity and lower economic costs for enterprises. However, in surface technogenic cavities, a loose rock mass is formed, characterized by inhomogeneous filling of material, significant hollowness and high filtration properties (Villain et al., 2013; Petlovanyi et al., 2021; Wickland et al., 2010), which does not guarantee the effective and safe use of the rehabilitated earth’s surface for the possible future construction of various infrastructure facilities and is risky. In addition, waste rock filling operations result in dust generation during both the delivery of the backfill material and during the backfilling process.
The conducted analysis shows that the region pays more attention to the utilization of quarry and mine waste rocks, but the utilization of beneficiation tailings is slower. This is mainly the reuse of beneficiation tailings for the reconstruction of existing tailings dams. In addition to the fact that tailings dams in the Kryvyi Rih region occupy the largest area of disturbed land, there are risks of their dams breaching, and they are also a significant source of environmental pollution. The state of the surrounding air during tailings storage is affected by the drying beaches of the tailings dam alluviation during periods of dry and windy weather. Thus, according to the environmental impact assessment of one of the tailings dams (Figure 11, No. 4), the volume of emissions of fine particles only from an area of 45 ha of dry beaches will be 9.5 tons/year (Environmental Impact Assessment Report, 2021).
Thus, in the Kryvyi Rih Iron-ore Basin, there is an urgent need to utilize the accumulated iron ore beneficiation tailings and to develop effective mechanisms for their rational use, which will significantly reduce the allotment of land areas for new tailings dams and improve the environmental state.
4.2.2 A promising direction for restoring the disturbed earth’s surface
The high availability of significant reserves of mineral-raw material base of industrial wastes and the resulting volumes of technogenic cavities in the Kryvyi Rih Iron-ore Basin makes it possible to consider the prospect for development of technologies for their backfilling. A return to technologies of backfilling underground cavities in iron-ore mines today is ineffective and probable, since for more than 40 years, the iron-ore reserves has been mined using mining systems with caving of overlying rocks and blast-hole stoping without backfilling the mined-out space with a specific weight of 50% of each and today has reached a depth of 1,500 m (Bazaluk et al., 2021b). Consideration of backfill technologies at mining depths of 1,500 m is doubtful, since significant volumes of cavities and caved loosened mass have been formed in the subsoil above the level of mining operations, which have already led to the formation of a rock mass shear troughs. Technologies for forming the backfill mass are no longer capable of solving the problems of the earth’s surface deformation and will probably be very expensive.
The high availability of significant reserves of mineral-raw material base of industrial wastes and the resulting volumes of technogenic cavities in the Kryvyi Rih Iron-ore Basin makes it possible to consider the prospect for development of technologies for their backfilling. A return to technologies of backfilling underground cavities in iron-ore mines today is ineffective and probable, since for more than 40 years, the iron-ore reserves has been mined using mining systems with caving of overlying rocks and blast-hole stoping without backfilling the mined-out space with a specific weight of 50% of each and today has reached a depth of 1,500 m (Bazaluk et al., 2023). Consideration of backfill technologies at mining depths of 1,500 m is doubtful, since significant volumes of cavities and caved loosened mass have been formed in the subsoil above the level of mining operations, which have already led to the formation of a rock mass shear troughs. Technologies for forming the backfill mass are no longer capable of solving the problems of the earth’s surface deformation and will probably be very expensive.
Given the need to achieve geomechanical backfill mass stability, environmental difficulties with significant volumes of accumulated iron-ore beneficiation tailings, the low level of their utilization and the potential supply of the region with binder materials, for the first time for the conditions of the Kryvyi Rih Iron-ore Basin and Ukraine, it is proposed to develop and implement the paste technology for backfilling the formed surface technogenic cavities – inactive quarries and mine failure zones. The region has created favorable conditions for the implementation of paste backfill technology: significant volumes of accumulated beneficiation tailings and the availability of reserves of potential binder materials (cement plant, blast-furnace slag dumps, and dry fly ash from thermal power plants). These aspects are also confirmed in the previous research results of the authors (Petlovanyi et al., 2023b), where the “quarry cavities - backfill material” systems in the Kryvyi Rih region are recognized as priority for the development of backfill directions for the purpose of the earth’s surface rehabilitation.
Cement paste backfill technologies have become widespread in mines and quarries of various countries around the world as a significant environmental protection method. When backfilling underground cavities with paste, the earth’s surface continuity is preserved, large-scale utilization of beneficiation tailings, waste from metallurgy and thermal power plants is achieved, and the formation of new dangerous tailings dams is prevented (Yang et al., 2021; Bek et al., 2022; Behera et al., 2021).
In addition, the pipeline transport of paste backfill mixture makes it possible to create a widely developed mobile network of backfill pipelines for the purpose of delivering it to quarries and mine failures. This will make it more environmentally friendly to transport the backfill mixture than, for example, the delivery of dump waste rocks to quarries and failure zones, which is accompanied by intense dusting and pollution of the air and adjacent soils. In the conditions of the densely populated city of Kryvyi Rih and a significant number of industrial and civil buildings, pipeline transport for paste backfill mixture is a feasible technical solution. As an alternative to paste backfilling, cemented rockfill should be mentioned (Kuzmenko et al., 2014; Petlovanyi and Mamaikin, 2019). However, the main disadvantages will be the expected high wear of pipelines during transportation of the mixture, longer setting time of the mixture and segregation of coarse fractions with subsequent heterogeneity of the mass when filling quarry cavities and mine failure zones.
Extensive long-term experience in using paste backfill technology allows us to highlight its following advantages: lower pipeline wear, low filtration coefficient of artificial mass, no segregation of inert aggregate, no mixture stratification during transportation, minimal degree of shrinkage, low amount of water in technological processes, high degree of compaction and homogeneity of the mass. This makes this type of backfilling the most technologically convenient and environmentally friendly. With sufficient isolation and sealing of the bottoms of quarry cavities and failure zones, due to the colloidal water-holding capacity of the paste, very little free water is expected for possible leachate formation, thus reducing groundwater contamination (Cheng et al., 2020). The concept of the paste backfill idea for the Kryvyi Rih Iron-ore Basin is shown in Figure 18.
[image: Flowchart illustrating paste backfill technology. It begins with binder materials, inert aggregate, and water, leading to paste backfill. This is applied to failure zones and closed quarries, shown in photos. The lower section depicts the localization of the surface failure zone expansion and options for infrastructure construction, with related images and diagrams.]FIGURE 18 | Concept of restoring the disturbed earth’s surface in the Kryvyi Rih Iron-ore Basin (Image “paste backfill” from CEC Mining Systems: https://cecminingsystems.com/mining-solutions/paste-backfill-solutions/).
The ultimate goal of implementing the paste backfill concept should be the complete rehabilitation of a geomechanically stable earth’s surface level for its further use in various infrastructure projects to develop the region’s economic potential. These may include energy facilities, sports facilities, industrial workshops and warehouses, private residential buildings, etc.
The world practice of using paste backfill mixture shows a wide variation in possible its formulations and achieved physical-mechanical properties. Therefore, for the conditions of the Kryvyi Rih Iron-ore Basin, it is recommended to consider options for the characteristics of paste backfill mixtures given in Table 2.
TABLE 2 | Variants and characteristics of paste backfill mixtures.
[image: Table detailing the composition and predicted strength of binder materials. Columns indicate materials and their proportions: Cement, blast-furnace granulated slag, dry fly ash, and combinations of binder materials, with iron ore beneficiation tailings. Solid part proportions are two to ten for binder materials, sixty-five to seventy-five for solids, and fifteen to thirty-three for water. Predicted strength ranges from 0.5 to 3.0 MPa at twenty-eight days and 3.0 to 5.0 MPa at ninety days, with references to studies by Chen et al., Wang et al., Grabinsky et al., and Xu et al.]To prepare the paste backfill mixture, it is possible to use different types of binder materials or their combination of Kryvyi Rih region. It should be noted that at a distance of about 55 km in the south-eastern direction from the city of Kryvyi Rih, there is an ash and slag dump of the Kryvyi Rih Thermal Power Plant, connected by railway to the city of Kryvyi Rih. The ash and slag dump has accumulated 82.4 million tons of fuel slag and fly ash, which can be considered as a component for paste backfilling.
Given the location of major mining and processing facilities in the southern, western and northern parts of the city of Kryvyi Rih, further prospects and options for using paste backfilling are discussed separately for these areas (Figure 19).
[image: Map showing a mining area with labeled zones, including a cement plant, treatment plants, and various facilities. Arrows indicate material flow paths, highlighting reserves, treatment sites, and the Bathhill complex. A legend identifies symbols and their meanings.]FIGURE 19 | Prospects for the development of technologies for paste backfilling of technogenic cavities in the Kryvyi Rih Iron-ore Basin.
In the southern part of the city of Kryvyi Rih (Figure 19, I), the basis for iron ore mining is formed by the enterprises of the “YUZHNIY GOK” Mining and Processing Plant (1 quarry) and PJSC ArcelorMittal Kryvyi Rih (2 active quarries, 1 at the stage of filling), which in the process of their beneficiation have formed a number of tailings dams. Prospects for the development of paste backfill technologies in the near future, despite the availability of tailings thickening complex and binder materials reserves, are assessed as low, since the completion of mining the deposits by quarries and the availability of ready-to-backfill cavities are not expected before 12–15 years.
Theoretically, attention can be drawn to the flooded quarry, which is located 5–6 km in the north-western direction from the tailings dams and is in the process of being filled with dump waste rocks. However, this is likely to lead to technological difficulties and significant costs, as the quarry flooding depth reaches 100 m, and waste rocks are gradually filled into the mined-out space by excavators from the quarry walls using inclined ways, which causes the long-term presence of a water bowl in the bottom of the quarry. While the quarry bottom is filled with water, paste backfilling cannot be used, even with quarry water pumping systems, due to the too high cost of auxiliary processes. The system for transporting the paste mixture from the thickening complex to the technogenic cavities in the central part of the city will probably be difficult due to the dense presence of infrastructure facilities and transportation distances.
In the northern part of the city of Kryvyi Rih (Figure 19, III), there is PJSC Northern Iron Ore Enrichment Works with two large quarries and one tailings dam, and there are also two iron ore mines in operation. The service life of these two large quarries is estimated at 30 years, but there are other technogenic cavities. This group of ready-to-backfill technogenic cavities is located in the south-western part of the northern area of the city of Kryvyi Rih. At the ready-to-backfill stage, it is advisable to consider five failure craters near 2 mines, as well as 1 quarry, which is at the stage of filling, but can be additionally backfilled with paste. The distance of the backfill pipeline route from the tailings dam to the cavities is about 11–12 km. In 2023, PJSC Northern Iron Ore Enrichment Works planned to begin construction of the region’s second tailings pulp thickening complex, but it has been postponed due to martial law reasons. The option of developing a paste backfilling has a right to exist, but the energy consumption for transportation can be high.
In our opinion, the central part of the city of Kryvyi Rih has the most favorable conditions for the introduction of paste backfill technology in the Kryvyi Rih Iron-ore Basin (Figure 19, II). PJSC Central Iron Ore Enrichment Works operates here with one large quarry and one tailings dam, one quarry at the stage of filling and six iron ore mines. The ready-to-backfill cavities can be eight formed failure craters, additional backfilling of a quarry that is at the stage of filling and two long-closed water-free quarries. Favorable conditions are explained by the presence of these ready-to-backfill cavities in the closest proximity to the tailings dam and the possible location of the backfill complex for preparing paste backfill mixture. The transportation distance to the nearest technogenic cavities will be 4–5 km and even 11.0 km to the technogenic cavities, which are conditionally referred to the northern part of the city of Kryvyi Rih (Figure 19, III). Reserves of binder materials (slag dumps, cement plant) are located at a distance of about 30–40 km and can be delivered to the backfill complex warehouse by railway transport. It is also less promising to consider the accumulation of fly ash in the ash and slag dump of Kryvyi Rih Thermal Power Plant, but the railway transportation distance will be 85 km. A technologically convenient aspect is that the resulting technogenic cavities are in dry conditions. Atmospheric precipitation is filtered into the mine space through caved rocks at the failure bottoms, and closed quarries are drained by the influence of depression cones of large quarries located nearby. If to conduct backfilling simultaneously in the central and northern parts of the city (Figure 19 II, III), significant success can be achieved in intensifying the earth’s surface rehabilitation along the western outskirts of the city of Kryvyi Rih. Initially, it is recommended to implement pilot projects on paste backfilling of the failure zones and quarries nearest to the backfill complex and draw technical-economic conclusions about the effectiveness of the mentioned measure. In addition, the construction of a tailings thickening complex at PJSC Central Iron Ore Enrichment Works can be sufficiently effective to save the area of the existing tailings dam, technical water and utilize significant volumes of beneficiation tailings using paste backfill technology for backfilling technogenic cavities.
The use of paste backfill technology in the central and possibly northern part of the city will make it possible to utilize at least 65–70 million tons of accumulated beneficiation tailings, 4.5 million tons of blast-furnace granulated and dump slags or fly ash, thereby reclaiming 200 ha of land. The speed of filling technogenic cavities using paste backfill technology and, accordingly, reclaiming the earth’s surface level will depend on a number of factors, but first of all: the productivity of the mixer of the paste backfill components, which is a bottleneck today, the number of backfill complexes and the climatic conditions of the region, which affect the mode of conducting backfill operations. It is possible to consider the options for simultaneous paste backfilling of several cavities and individually, depending on the available productivity for the production of paste backfill mixture. In the practice of paste backfilling of mines, mixers with a capacity of 50–300 m3/h are used, which is sufficient to fill underground cavities. However, large-scale projects as filling surface technogenic cavities with paste backfill mixtures and intensifying the earth’s surface rehabilitation require the design of higher-performance mixers. It may also be possible to form a combined backfill mass from layers of paste and rock backfill, which is due to the change in climatic conditions during the year.
The layout of the facility for the preparation of the paste backfill mixture should contain the following: point for loading moistened tailings in the designated part of the tailings dam, conveyor line for transporting tailings from the tailings dam to the backfill complex, drying chamber (if necessary), receiving hoppers, feeder conveyors, silos with storage of binder materials, a warehouse and a binder materials grinding point (for blast-furnace slag), dosing units, mixer, pumping systems and installed pipeline systems. The issue of forming a backfill mass using paste backfill mixture in failures and quarries has not been sufficiently studied. Today, there are some studies in the world where paste backfill technologies are considered for surface technogenic cavities from mining activities (quarries, failure zones) (Sun et al., 2018; Zhang et al., 2021; Chen et al., 2023). In Wang et al. (2024), the authors propose a similar approach to paste backfilling a metal mine failure zones, and it is proposed to add waste rocks to the paste before it is fed into the cavity in order to improve the backfill mass properties. Also, some scientists conducted research on the impact of a paste-backfilled quarry on underground mining operations using numerical modeling. However, no information is provided on the processes and parameters of the backfill mass formation. The influence of water released into a quarry filled using paste backfilling is studied, but the technological aspects of backfilling are not discussed in the paper.
Our research purpose is similar but focuses on two aspects – studying the extent of the earth’s surface damage and alienation in a large region, as well as searching for ways to improve the situation based on the waste accumulated in the region, the availability of ready-made cavities and the use of backfill technologies. Our concept differs in that the reason for selecting the backfill method for technogenic cavities in the region, as well as a specific tailings dam as the source of the main material for paste backfill due to its moderate proximity to the cavities, have been substantiated. Our concept takes into account not only the failure zones but also the filling of inactive quarry cavities located next to it. In our approach, due to the influence of climatic conditions, a combined approach can be implemented – at favorable temperatures, form a paste backfill mass, and at unfavorable conditions, backfill with dump waste rocks, which are also available in sufficient proximity.
However, research in this direction is extremely limited today, and in addition to studying the properties of paste mixtures, there are still many unresolved issues: technologies for preparing, transporting and forming the backfill mass directly in quarry and failure cavities. These aspects require further research. It is also important to substantiate the type of optimal cementitious material or combination of cementitious materials, its dosage, as well as the rational solid content in order to achieve the best physical-mechanical properties. An important aspect is the study of the rheological properties of paste-based backfill mixtures to substantiate the rational transportation distance and its parameters. It is necessary to study the geofiltration processes of selected quarry cavities and to conduct numerical modeling of the backfill mass stability based on the studied properties using laboratory method. It is important to determine the influence of climatic conditions on the properties of paste backfilling, as well as to substantiate the cavity filling mode. These important tasks will be the subject and focus of further research by the authors.
It is worth noting that such large-scale environmentally-oriented projects for the disturbed earth’s surface rehabilitation based on paste backfill technology should be addressed and agreed with local communities, central and local government authorities, and private mining business. It is recommended to introduce the implementation of paste technology for backfilling technogenic cavities as an important environmental protection measure into the Environmental Program of the city of Kryvyi Rih.
The issues of the size and time frame for achieving the environmental-economic effect from the implementation of paste technologies for backfilling technogenic cavities remain relevant. There will probably be an effect, but it will be in the distant future. To develop industrial and economic potential, the rehabilitated earth’s surface over failures and quarries can be usefully involved in various infrastructure projects. This requires geotechnical-engineering calculations and surveys to determine the types and categories of facilities that can be constructed on the rehabilitated earth’s surface using the formed paste-based backfill mass with strength of 0.5–5.0 MPa. Mining companies are spending huge investments to expand and build new mining waste storage facilities. For example, the PJSC ArcelorMittal Kryvyi Rih mining enterprise invested $150 million in the construction of a new 500-hectare tailings dam, which could have been used alternatively to implement paste backfill technologies.
The use of paste backfilling in the region can become a breakthrough environmental project, since Ukraine has a very low rate of land reclamation. In 2021, only 17.35 ha of disturbed land were reclaimed in Ukraine, of which over 82.7% (14.35 ha) is agricultural land. This indicates that simple reclamation measures have been applied to land that has not been disturbed to a significant depth. It should be noted that for the whole period of mining the deposits of the Kryvyi Rih Iron-ore Basin, the earth’s surface has not been rehabilitated over any significant technogenic cavity (failure and quarry). Considering the low rates of disturbed land reclamation in Ukraine due to the used paste backfill technology for surface technogenic cavities, such as failures and old closed quarries, it is possible to achieve significant success in the reclamation rates and make an effective impetus in solving a number of problems of the existing technogenic-environmental catastrophe in the city of Kryvyi Rih.
5 CONCLUSION
The presented research conducted a wide range of analytical studies on the earth’s surface state disturbed by mining operations in the Kryvyi Rih Iron-ore Basin, which is the largest in Ukraine. The existing methods and efficiency of cavity elimination have been analyzed and, as a result, promising solutions for restoring the earth’s surface level have been proposed. The main scientific and practical results are as follows:
	1. It has been determined that a comprehensive modern detailed analysis of the disturbed earth’s surface state in the Kryvyi Rih Iron-ore Basin has not been conducted in the available open sources and insufficient attention has been paid to it. These studies currently need to be clarified, systematized and presented in more detail, especially regarding the forms of disturbances. Despite the significant developments, research into the above-mentioned issues is relevant today, which will make it possible to understand the scale of the current difficult technogenic-environmental situation, as well as to formulate effective ways and directions for solving the problem.
	2. It has been determined that the annual volume of waste generated by the iron-ore industry in the city of Kryvyi Rih is 0.256 billion tons, which is 92.08% of the total waste volume generated in the Dnipropetrovsk Oblast and 65.5% of the whole Ukraine. This demonstrates the powerful importance of the city of Kryvyi Rih and the Kryvyi Rih Iron-ore Basin as a whole in the generation of large-tonnage industrial waste both in the Dnipropetrovsk Oblast and in Ukraine, which leads to a significant technogenic burden on the environmental state.
	3. It has been revealed that 65.25% of the total disturbed land area consists precisely of accumulated industrial waste – quarry and mine waste rock dumps, tailings dams of iron ore beneficiation wastes, metallurgical slag dumps, while 34.76% is disturbed by quarrying, shear and failure zones of mines. If to compare the land area disturbed by mining operations around and in the city of Kryvyi Rih and the area directly in Kryvyi Rih, it becomes obvious that there is a critical technogenic-environmental situation in the region, with the earth’s surface disturbances accounting for 49% of the city area. Given the industrial potential of the city of Kryvyi Rih, intensive reclamation of disturbed territories with rehabilitation of geomechanically stable earth’s surface level is an important and necessary direction, which will improve the environmental state in the region and use the territories for the construction of various infrastructure projects contributing to the socio-economic development of the region.
	4. It has been revealed that the Kryvyi Rih region pays more attention to the utilization of quarry and mine waste rocks, but the utilization of beneficiation tailings is slower. This is mainly the reuse of beneficiation tailings for the reconstruction of existing tailings dams. It has been determined that land areas for placing iron-ore beneficiation tailings are used less efficiently than waste rock dumps, which is a problem for the region. An analysis of waste accumulation density in allotted areas shows that per 1 m2 of land area, on average, 183.5 tons of dump waste rock and 73.5 tons of beneficiation tailings are placed. Therefore, it is necessary to pay special attention to finding ways to utilize beneficiation tailings, which occupy the largest area, since there are risks of their tailings dam breaching and negative impact of drying beaches’ maps of tailings dam alluviation during periods of dry and windy weather on the environmental state and public health.
	5. An analysis of existing methods for reclamation of quarry and failure zones in the region has shown that only their partial filling with quarry and mine waste rocks is used. This method is characterized by simplicity and lower economic costs, but as of today, the earth’s surface level has not been rehabilitated over any technogenic cavity. In surface technogenic cavities, a loose rock mass is formed, characterized by inhomogeneous material filling, significant hollowness and high filtration properties, which does not guarantee the effective and safe use of the rehabilitated earth’s surface for the possible future construction of various infrastructure facilities and is risky.
	6. Given the need to achieve geomechanical backfill mass stability, environmental difficulties with significant volumes of accumulated iron-ore beneficiation tailings, the low level of their utilization and the potential supply of the region with binder materials, for the first time for the conditions of the Kryvyi Rih Iron-ore Basin and Ukraine, it is proposed to develop and implement the paste technology for backfilling the formed surface technogenic cavities – inactive quarries and mine failure zones. The region has created favorable conditions for the implementation of paste backfill technology: significant volumes of beneficiation tailings accumulations and the availability of reserves of potential binder materials (metallurgical slag dumps, cement plant).
	7. The conceptual framework for restoring the earth’s surface has been developed based on paste backfill technologies, taking into account the location of the main mining-processing facilities in the southern, western and northern parts of the city of Kryvyi Rih. Further perspectives and options for using paste backfill technology are discussed separately for these areas. The priority is to implement paste backfilling in the central and northern parts of the city, which would enable the utilization of at least 65–70 million tons of accumulated beneficiation tailings, 4.5 million tons of blast-furnace granulated and dump slags or fly ash, as well as the rehabilitation of 200 ha of land.
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Introduction: Transportation corridors, as special economic corridors, have a greater impact on land cover and landscape pattern changes.Methods: Therefore, 10 buffer zones were established at 1 km intervals on both sides of the Longhai Railway as the centerline to trace the impact of the railroad corridor on the land use change and regional landscape pattern change of the cities along the line from 1985 to 2020.Result: The results show that: (1) The land cover changes along the railroad corridor during the 35 years are mainly characterized by the conversion between cropland, grassland, and construction land. Compared with 1985, in 2020, the construction land increased by 161.96%, the grassland area decreased by 11.83%, and the cropland area decreased by 15.83%. (2) The fragmentation of land patches and vegetation coverage is negatively and positively correlated with the buffer zone distance, respectively. In the same year, the comprehensive land-use dynamic degree is smaller as it is further away from the railway. The nighttime light index in the buffer zone is significantly correlated with the land aggregation index and average patch area, and the closer to the railroad, the higher the land aggregation index of construction land. (3) In terms of zoning, the intensity of land cover and landscape pattern changes in the eastern section is higher than that in the western section, with a higher degree of land fragmentation and more agglomeration of construction land, and the transportation corridor has a greater impact on the change of integrated land use motives in this region. The results of the study can provide a scientific basis for optimising the spatial pattern of land and improving the ecological environment in the construction of cross-regional transport corridors.Keywords: spatial-temporal analysis, land cover, landscape pattern, Longhai Railway, transportation corridors
1 INTRODUCTION
Economic globalization and increasing regional cooperation have accelerated the process of urbanization, leading to rapid expansion of urban space (Bezpalov et al., 2022). When the rate of urban spatial expansion is higher than the rate of population growth, it will lead to a large amount of high-quality land resources being wasted, which will threaten the ecological security and sustainable development of the region (Grimm et al., 2008). Transportation corridors, as axes of regional development, have greatly promoted the coordinated development of cities along them. However, in the process of construction, operation, and maintenance, transportation corridors change the original land use and may lead to the degradation of regional ecosystems (Yang et al., 2023). The longer the transportation corridor route, the more complex the ecosystem it may affect (Changsheng, 2020). From the perspective of “globalization” and “localization”, the construction of transportation corridors will cause problems of land use homogeneity and heterogeneity (Xiao et al., 2024). According to the theory of “patch-corridor-matrix” (Forman, 1995), transportation corridors cut through the original landscape substrate and form new patches, changing the connectivity and edge effect between patches. This affects the fragmentation, diversity and complexity of the landscape, ultimately leading to changes in landscape patterns (Zhao and Peng, 2012; Yang et al., 2024).
The impacts of transportation corridors on regional land use changes and landscape patterns have been mainly studied in terms of spatial and temporal characteristics, simulation prediction mechanisms, driving factors, and impact effects (Forman, 2000; Sarfraz et al., 2023; Kanchan et al., 2024; Zhao et al., 2024). At present, urgent quantitative studies is needed on the issue about the impacts of regional cross-border railway corridors on land use, landscape changes, and ecological environment. Understanding the impact of transportation corridors on ecological quality, land use/land cover (LULC) is crucial for regional sustainable development (Kanchan et al., 2024; Sun et al., 2024). In addition, the evaluation of land use changes at different distances from railway lines has begun to receive attention from academia (Wang et al., 2021; Yang et al., 2022; Navalkar et al., 2023). In China, the railway has played a critical role in the rapid socio-economic development (Cui et al., 2021). In the context of the Belt and Road Initiative (Huang, 2016) and the “Two Horizontal and Three Vertical Urbanization Belt” development strategy (“https://www.gov.cn/gongbao/content/2014/content_2644805.htm” \o “https://www.gov.cn/gongbao/content/2014/content_2644805.htm” https://www.gov.cn/gongbao/content/2014/content_2644805.htm), the railway network of China is developing rapidly. There are more and more cross-regional railway transportation corridors, and one of the railroad lines worth noting is the Longhai Railway.
The Longhai Railway starts from Lanzhou City in Gansu Province of China in the west to Lianyungang City in Jiangsu Province in the east, linking the three major geographical regions of Northwest China, Central China, and East China. As an important part of the “Belt and Road” strategy and the “Two Horizontal and Three Vertical Urbanization Belt” strategy, the Longhai Railway plays a pivotal role in economic and transportation development. Therefore, it has attracted the attention and research of many scholars. Recently, researchers have studied the human-land relationship issues in cities along the Longhai Railway at the county (Liu et al., 2022), city (Guo and Xie, 2011), and provincial (Zhou et al., 2020) scales. However, there is a gap in research on the long-timescale and different distance effects of changes in land use cover and landscape patterns across the Longhai Railway. Hereby, in the context of regional economic cooperation, we aim to answer the following questions: (1) What are the spatiotemporal characteristics of land use changes along the Longhai Railway line at different regional scales? (2) How to quantify the impact of this transportation corridor on land use change and landscape pattern varying distance from the railway line? This will inform the study of the relationship between regional land use change and geo-economy, as well as the interaction between transportation and ecological corridors.
2 STUDY AREA
The Longhai Railway, built in 1904, runs in an east-west direction and crosses the second and third terraces in China, with different geographic and environmental conditions along the railway line. Both the “Belt and Road” and “Two Horizontal and Three Vertical Urbanization Belt” include the Longhai Railway line (Figure 1A). The altitude difference along this railroad corridor is large, up to 5,703 m (Figure 1B), showing a trend of low in the east and high in the west. There are significant differences in land use types and landscape patterns between the east and west along the railway line. In addition, Sanmenxia is a transitional zone between China’s second and third terraces (Wang et al., 2002). Therefore, under the comprehensive consideration of climate, topography, vegetation and other conditions, the Longhai Railway was also divided into two sections, i.e., the eastern section (Jiangsu-Henan) and the western section (Shaanxi-Gansu) with Sanmenxia in Henan as the boundary, to explore the changes in land use and landscape pattern of the areas along the line over the past 35 years, from both the overall and the sub-district perspectives.
[image: Map images showing strategic economic regions. (a) Highlights maritime routes, overland routes, and the Silk Road Economic Belt across Asia and northern Africa, with a legend indicating different routes. (b) Displays a color-coded elevation map of a region within China, with colors ranging from blue to red for altitude levels, accompanied by a legend.]FIGURE 1 | Study area [(A): the “Belt and Road” strategy and the “Two Horizontal and Three Vertical Urbanization Belt” strategy, (B) Topography along Longhai Railway].
3 DATA AND METHODS
3.1 Data
Land use classification data were obtained from http://globeland30.org/home.html?type=data, with a spatial resolution of 30 m × 30 m. Regarding the National Land Use Classification System, the area around the route was classified into six first-level land classes: cropland, forest, grass, wetland, construction land, and unused land (Table 1). DEM data were downloaded from the Geospatial Data Cloud (https://www.gscloud.cn) with ASTERGDEM datasets (30 m × 30 m). Fractional vegetation cover (FVC), an important basic data for describing ecosystems, was obtained using Google Earth Engine (GEE) with Landsat satellite dataset (30 m × 30 m, Level 2, Collection 2, Tier 1) during 1986–2020. The site conditions in the study area were synthesized and the vegetation coverage was classified into five categories: higher (FVC ≥0.7), high (0.5≤ FVC <0.7), medium (0.3≤ FVC <0.5), low (0.1 ≤ FVC <0.3), and lower (0.1 < FVC).
TABLE 1 | Land use classification system.
[image: Table showing land classification. Class I and Class II categories are listed. Class I: Cropland, Forest, Grass, Wetland, Construction land, Unused land. Class II: Paddy land, dry land, Forested land, shrubland, open forest land, other forest land, High-cover grassland, medium-cover grassland, low-cover grassland, Streams, lakes, reservoirs, ponds, mudflats, Land for towns, rural settlements, industry, mining and transportation, Bare rock, conglomerate.]Previous studies have introduced the urban lighting index into landscape ecology research to explore the characteristics of spatial pattern changes in urban development (Shen et al., 2023; Xie et al., 2023). The DMSP-OLS image and NPP-VIIRS image are mainly used for nighttime lighting data (Li et al., 2023). Firstly, the relative invariant target area method is used to carry out relative correction on the DMSP-OLS images of the Longhai Railway from 1992 to 2013, and the saturation correction and continuity correction are combined with the reference images after radiometric calibration, to obtain the DMSP-OLS continuity image dataset of various districts along the Longhai Railway from 1997 to 2013. The NPP-VIIRS images are corrected by noise processing and logarithmic transformation, and the NPP-VIIRS continuity image dataset is obtained for each district along the Longhai Railway from 2000 to 2020. In addition, due to the inconsistency of DMSP-OLS data acquired by different sensors for the same year, the author referred to existing methods to correct some images for inter-correction and continuity after saturation correction, see Equations 1, 2 (Zhang et al., 2020).
[image: Mathematical equation for DN of i, j. It equals zero if DNA of i, j equals zero and DNB of i, j equals zero; it equals one, otherwise, as the average of DNA and DNB of i, j.]
where [image: Mathematical expression representing a matrix element, denoted by "DN" with subscripts "(i, j)".] is the DN (Digital Number) value of image element j in the image of year i after correction, and [image: Mathematical expression with "DN" raised to the power of "a" and subscript "(i,j)".] and [image: Mathematical notation showing the element \(DN^{b}_{(i,j)}\).] denotes the DN value of image element j in the image acquired by two different sensors before correction. In this paper, the DN value takes the range of 0–63, the background value is 0, and the resolution is 1 km.
[image: Equation displaying the conditional assignment of \(DN(i,j)\). If \(DN(-i,-j)\) is greater than \(DN(i,j)\), then \(DN(i,j)\) is set to \(DN(-i,-j)\); otherwise, it retains its value.]
3.2 Methods
3.2.1 Flow chart of the methodology
According to the current status of land use along the Longhai Railway, we established a buffer zone extending 10 km to both sides with the railroad as the centerline, and the interval between buffer zones was 1 km. By superimposing the buffer zones and land use data, the land use changes and landscape changes along the railroad line of the Longhai Railway were analyzed in a geo-economic context (Figure 2).
[image: Flowchart detailing a research process. It begins with "Datasets input" including DEM, LUCC, DMSP/OLS, and Landsat data. Under "Methods," it shows land use dynamic indices and buffer analysis, focused on the Longhai Railway line, split into two segments: Zhengzhou–Huixian and Shangqiu–Guzhen. "Processed Output data" presents LUCC analysis and lighting data verification. The chart ends with "Aims to answer" two questions regarding spatiotemporal characteristics of land use changes along the railway and quantifying impacts based on distance.]FIGURE 2 | Flow chart of the methodology.
3.2.2 Transfer matrix
The inter-transition situation between land use types is mainly realized by using the land transfer matrix (Alves et al., 2022). The land use transfer matrix comes from the quantitative description of the system state and state transfer in system analysis. In the usual land-use transfer matrix, the rows represent the land use types at the time point of [image: It seems like there is no image attached. Please upload the image you want me to generate alt text for.], and the columns represent the land use types at the time point of [image: Please upload the image or provide a URL so I can help create the alt text for you.]. [image: Sure, please upload the image or provide a URL so I can generate the alternate text for you.] denotes the percentage of the area of land type [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.] converted to land type [image: Please upload the image or provide a URL for me to generate the alternate text.] in the period of [image: Please upload the image or provide a URL, and I will help you generate the alt text.]-[image: Please upload the image or provide a URL to generate the alt text.] in the total area of the land. [image: If you upload an image or provide a URL, I can help generate the alt text for it.] denotes the total area of the land type [image: Please upload the image or provide a URL, and I would be happy to help with generating the alt text.] in the time point of [image: Please upload the image so I can help generate the alternate text for it.]. [image: Please upload the image or provide a URL, and I'll be happy to help generate the alternate text for it.] represents the percentage of the total area of land use type [image: Please upload the image you'd like me to assist with, and I will generate the alternate text for you.] at [image: It seems like there is no image for me to analyze. Please upload the image or provide a URL, and I will generate the alternate text for you.]. [image: Please upload the image or provide a URL to generate the alternate text.]*-[image: It seems you haven't provided an image. Please upload the image or provide a URL, and I'll be happy to help with the alt text.] is the percentage decrease in the area of land type [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] between [image: It seems like you haven't uploaded an image. Please upload an image or provide a URL, and I can help generate the alternate text for it.] and [image: Please upload the image or provide a URL for me to generate the alternate text.]. [image: Please upload the image or provide a URL. If you have any additional context or a caption, it can help in creating more accurate alt text.]-[image: Please upload the image or provide a URL to generate the alternate text.] is the percentage increase in the area of land type [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] between [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Please upload the image so I can help generate the alternate text for you.] (Table 2).
TABLE 2 | Land use transfer matrix.
[image: A table displaying data with columns titled \(T_2\), \(P_*\), and Reduction. Rows include \(T_1\), \(\text{Added}\), and the base categories \(A_1\) to \(A_n\), plus \(P_*\). It contains variables like \(P_{11}\) to \(P_{mn}\) and expressions for reductions like \(P_1 - P_{11}\).]3.2.3 The dynamic degree of land use
Land use dynamics (Xiao et al., 2022) refers to the quantitative changes in land use types in a certain period, mainly reflecting the intensity of land use changes and regional differences in the rate of change, mainly divided into a single land use dynamics (Mustafa et al., 2021) and integrated land use dynamics (Chen et al., 2023), the formula is as Equations 3, 4:
[image: Equation for calculating K: K equals open parenthesis U subscript b minus U subscript a close parenthesis divided by U subscript a times one divided by T times one hundred percent.]
Where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is the attitude of a land use type during the study period, [image: Please upload an image or provide a URL so I can help generate the alternate text for it.] is the area of a land use type at the beginning of the study, [image: Please upload the image or provide a URL so I can generate the alt text for it.] is the area of the land use type at the end of the study, and [image: Please upload the image or provide a URL so I can generate the alternate text for it. If you have a specific caption or context, feel free to include that as well.] is the time length of the study.
[image: The equation \( L_c = \left[ \frac{\sum_{i=1}^{n} \Delta IU_{i \rightarrow j}}{2 \sum_{i=1}^{n} IU_i} \right] \times \frac{1}{T} \times 100\% \) is displayed, labeled as equation (4).]
Where [image: Please upload the image or provide a link so I can generate the alternate text for it.] is the integrated dynamic attitude of land use in the study area, [image: Please upload the image or provide a URL, and I will create the alt text for you.] is the area of the ith class of land use type at the starting time of the study, [image: Mathematical notation showing a delta symbol followed by "LU" with a subscript "i minus j".] is the absolute value of the area of the conversion of the [image: Certainly! Please upload the image so I can assist you with generating the alternate text.] th class of land into the [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] th class of land use type at the time of the study, and [image: Please upload the image or provide a URL so I can assist you in generating the alt text.] is the time of the study.
3.2.4 Land use and landscape pattern analysis
Landscape pattern analysis (Costanza et al., 2019) is the main method for evaluating landscape structure, composition, and spatial patterns. It condenses the landscape information and reflects the characteristics of the landscape. Among the landscape-level indicators are the landscape aggregation index (LAI), the largest patch index (LPI), and the Shannon’s diversity index (SHDI). The indicators at the patch level are three indicators: patch aggregation index (PAI), mean patch size (AREA_MN), and patch density (PD). The data of these indicators were calculated (Table 3) by the software Fragstats 4.2 (McGarigal and Marks, 1995).
TABLE 3 | Indices and definitions of landscape patterns.
[image: Table displaying landscape metrics, formulas, and their meanings: PAI formula measures patch adjacency and aggregation. LAI calculates landscape aggregation. AREA_MN relates total land area to patch amount. PD indicates patches per unit area, with N as patches and A as landscape area. LPI shows maximum patch dominance by area percentage. SHDI, a diversity index, uses negative area ratios and logarithms for each patch type.]3.2.5 Nighttime lighting statistics in the buffer zone
Currently, night-light remote sensing images are widely used for monitoring land cover (Zhang et al., 2024), estimation of socio-economic parameters (Li et al., 2016; Zheng et al., 2023), regional development studies (Lu et al., 2022), urbanization monitoring (Li et al., 2022) and many other research areas, which can objectively respond to socio-economic trends and facilitate the use of large spatial scales. For this reason, this paper selects the nighttime light data of the 10 km buffer zone from 2000 to 2020 for statistical research to verify and invert the role of the Longhai Railway on regional urban development. The total amount of night light [image: Please upload the image you would like me to describe.] and the growth rate [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] are respectively in Equations 5, 6:
[image: Mathematical equation representing the sum of x sub i from i equals one to n, denoted as L equals the sum from i equals one to n of x sub i, labeled as equation five.]
[image: The formula for calculating \( r \) is shown: \( r = \frac{L_{200} - L_{2000}}{L_{2000}} \times 100\% \), equation (6).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is the DN value of the [image: Please upload the image or provide a URL for me to generate the alternate text.] th image element.
4 RESULTS
4.1 Spatial and temporal characteristics of land use changes along the Longhai Railway
Five important node cities (Lanzhou, Xi’an, Zhengzhou, Xuzhou and Lianyungang) along the Longhai Railway, were selected to analyse the impact of the railway on their land-use changes (Figure 3). It was found that compared with 1985, the area of construction land in 2020 increased significantly in all five cities, especially in Zhengzhou and Xi’an, where construction land encroached on large areas of cropland. There are significant changes in land use types across the Longhai Railway, which are dominated by changes in construction land and cropland (Figure 4). Construction land increased from 2,475.67 km2 (1985) to 6,485.33 km2 (2020), an increase of 161.96%. Similarly, the area of cropland decreased from 23,820.52 km2 to 20,049.03 km2, a decrease of 15.83%. Forest area increased by 9.39% from 2,535.79 km2 to 2,773.84 km2. Grassland area decreased from 4,179.61 km2 to 3,685.13 km2, a decrease of about 11.83%.
[image: Map with six panels showing various transformations along a section of railroad in China. The top panel outlines the railway route from Longxi to Lanzhou with nearby towns. Panels (a) to (e) display detailed maps highlighting changes in land use around this area in different colors: red for significant development, blue for water bodies, green for vegetation, etc. A legend identifies the symbols and transformations. An arrow points north. The scale is indicated in kilometers.]FIGURE 3 | Expansion of crop and construction land along the Longhai Railway from 1985 to 2020 [(A) Lanzhou, (B) Xi’an, (C) Zhengzhou, (D) Xuzhou, (E) Lianyungang].
[image: Sankey diagram showing land use changes along the Longhai Railway from 1985 to 2020. Categories include cropland, forest, grass, wetland, unused land, and construction land, represented by different colors. The flow of colors between years illustrates transitions in land use types.]FIGURE 4 | Sankey map of land cover changes across the Longhai Railway from 1985 to 2020.
Overall, the area of construction land expansion increases year by year from west to east. In terms of buffer distance, the rate of change of land use types is inversely proportional to the buffer distance, indicating that the Longhai Railway has an important influence on the local land use pattern. Over the past 35 years, the rate of change of land use in the entire area of the Longhai Railway has shown an overall trend of slowing down and then speeding up, and the rate of conversion of various types of land use types has accelerated after 1990, especially between 1990 and 1995, when the expansion of construction land was the most prominent, and a large amount of cropland was converted into construction land. Especially in 1990–1995, when the expansion of construction land was the most prominent, and a large amount of cropland was converted into construction land (Figure 4).
In terms of the eastern and western sections, the construction land in the eastern section (Jiangsu-Henan) increased from 1,930.51 km2 in 1985 to 4,741.33 km2 in 2020, a year-on-year increase of 145.60%. Cropland decreased from 14,820.93 km2 in 1985 to 12,136.05 km2 in 2020, shrinking by 18.81% (Figure 5). On the other hand, the construction land in the western section (Shaanxi-Gansu) increases from 545.18 km2 to 1,744.08 km2, a year-on-year increase of 219.91%. The cropland area has decreased by 12.07% from 9,000.167 km2 in 1985 (Figure 6).
[image: Sankey diagram showing land use changes between cropland, forest, grass, wetland, unused land, and construction land from 1985 to 2020 in Jiangsu-Henan. Color-coded flows indicate transitions over five-year intervals.]FIGURE 5 | Sankey map of land cover changes in the eastern section (Jiangsu-Henan) of the Longhai Railway from 1985 to 2020.
[image: Sankey diagram depicting land use changes in Shaanxi-Gansu from 1985 to 2020. Categories include cropland, forest, grassland, wetland, unused land, and construction land, with flows showing transitions over time.]FIGURE 6 | Sankey map of land cover changes in the western section (Shaanxi - Gansu) of the Longhai Railway from 1985 to 2020.
Compared with the eastern section, the expansion of construction land in the western section was relatively slow. Specifically, there was no change in the construction land in the western section from 1990 to 2000, and it was not until the period of 2000–2015 that there was a relatively large change in the type of land use, which was mainly manifested in the conversion of cropland and grassland, with a slight increase in the construction land. Due to the ecological fragility of the western part of China and the reclamation of land for economic development in the early period, a large area of grassland was converted into cropland in 1990–1995 (Figure 6). However, after 2000, with the national emphasis on the ecological environment, the cropland was gradually converted into grassland and forest land. As for the eastern section, due to its flat terrain and good water-heat combination, the conversion of all kinds of land-use types accelerated from 1990 onwards, mainly the conversion of cropland and construction land. As can be seen from Figure 5, a large amount of cropland was converted to construction land, with the most conversions between 1995 and 2015. In addition, the study found that areas closer to the Longhai Railway (e.g., within the 2 km buffer zone) had the fastest land conversion.
4.2 Comparison of land use dynamics between the buffer zones of the Longhai Railway
The dynamics of land use change along the Longhai Railway at different buffer distances (i.e., the 1st–10th buffer zone, represents distances of 1–10 km from the railway line, respectively) from 1985 to 2020 was analyzed using two types of indicators: the degree of synthesis and single land use. The integrated land use dynamic degree of the whole area shows an M-shaped trend with the increase of buffer distance (Figure 7). There is a main peak between the 1st and 3rd buffers and a secondary peak between the 4th and 6th buffers.
[image: Three 3D surface plots comparing the index values for Longhai Railway, Shaanxi-Gansu, and Jiangsu-Henan regions. Each plot shows a color gradient from red to purple, indicating varying levels of the index from 0.4 to 0.6 across time from January 2018 to December 2019.]FIGURE 7 | Integrated land-use mobility and mobility index for the buffer zone of the Longhai Railway, eastern section (Jiangsu-Henan) and western section (Shanxi-Gansu).
For the degree of single dynamics (Figure 8), both the eastern and western sections showed a decreasing trend year by year from 1985 to 2005. However, after 2005, the area of grassland increased at a faster rate in each buffer zone, and the single land dynamics of grassland showed a “W” shape in time and buffer zone. During the same period, the single land dynamics of construction land showed an “M” trend in both time and buffer, with a peak in 1990 and 2010 respectively, mainly in the buffer (between the 2nd and 4th buffers). Worth noting is that for cropland, within 1 km buffer zone, peak and valley values were observed in 1985 and 2005, respectively. However, overall, regardless of the distance of the buffer zone from the railway line, the degree of single land use dynamics for cultivated land remained relatively small. In the 10 km buffer zone in 1985, a positive peak value was evident, while for the rest of the time, it remained negative. This indicates a continuous decrease in cropland along the Longhai Railway since 1985. As for grassland, we found that from 2000 to 2010, regardless of changes in buffer zone distance, its single dynamic attitude consistently showed positive values. The single dynamic attitude of construction land was also positive. This suggests that over the past 35 years, the area of construction land has continued to increase. From the east and west sections, the land use dynamics of grassland and construction land in the east section has similarities with the overall change characteristics of the west section.
[image: Nine 3D surface charts depict values across different land types: Cropland, Grass, and Construction land, for three regions: Longhai Railway, Jiangsu-Henan, and Shaanxi-Gansu. Each chart uses a color gradient from blue to red to represent data values, with axes labeled for time and location.]FIGURE 8 | Dynamic attitude and dynamic attitude index for single land use in the buffer zone of the entire Longhai Railway, the eastern and western sections.
At the same time, two land use dynamics indices, integrated and single, were utilized to measure the degree of land use dynamics at different buffer distances over 35 years. From the composite index, the land-use dynamics of the Longhai Railway showed an M-shaped characteristic in time, with two peaks around 1990 and 2005, respectively, and a high rate of land-use change (Figure 8). That is, it gradually increased from 23.7% in 1985 to 57.09% in 1990, then decreased to 49.8% in 1995, and rapidly increased to 75.17% in 2005. Combined with the single index, the changes in cropland and construction land have a higher contribution in these two phases, indicating that factors such as economic development and accelerated rate of urbanization exacerbated the degree of land use change in this phase. In the area farther away from the Longhai Railway, another peak appeared near 1985, and in combination with the single index, the change of grassland and construction land was the main factor influencing the attitude of land use change dynamics in this stage. In terms of buffer distance, the overall dynamic index is relatively low in areas farther away from the Longhai Railway, considering that the Longhai Railway passes through large cities such as Xi’an and Zhengzhou, indicating that the dynamic attitude of land use in urban areas is generally higher than that in peri-urban areas.
Specifically, the dynamic attitude of the western section did not change in the 2 km buffer zone from 1985 to 2000, while the change was more obvious between the 9th and 10th buffers. Starting from 2000, the rate of land change in the second buffer zone was higher, forming a peak in 2005. Combined with the single index, the contribution of cropland was higher in this period, indicating that the change in cropland was an important factor affecting this section. The dynamic attitude of the eastern section is in the shape of “M”, which is similar to the dynamic attitude of the Longhai Railway as a whole, indicating that the conflict between cropland and construction land caused by the intensification of urbanization is the main feature of this region. From the value of the dynamic attitude, the land use dynamic attitude of the eastern section is higher, indicating that the rate of change of land use types in the eastern region is higher, which is also consistent with the conclusion of the overall characteristics and spatial-temporal dynamics of the land use change along the Longhai Railway.
In terms of the single dynamic index, grassland as a whole has a “W” shape, while cropland and construction land have a roughly “M” shape. The construction land has the highest mobility index. In the west section of the Longhai Railway, the disturbance of the construction land to the cropland is low, while the disturbance of the construction land to the cropland in the east section is high. Combined with Figure 5, the construction land in eastern section mainly comes from the cropland, which indicates that the urbanization construction encroaching on the cropland is more serious. The phenomenon of grassland and cropland inter-transfer is more prominent in the western section, indicating that the conflict between environmental protection and cropland development is the theme of the region at different times.
4.3 Characteristics of vegetation coverage changes within different buffer distances along railway lines
The analysis of the current state of the natural ecological environment within a 10 km buffer zone along the Longhai Railway, based on vegetation coverage parameters, reveals that overall vegetation coverage values have been relatively high from 1986 to 2020. Within the 10 buffer zones (each established at 1 km intervals), the areas covered by low-density and moderately low-density vegetation accounted for 47.85%, 22.56%, 39.38%, 27.40%, 23.60%, 25.74%, 23.01%, and 24.56% from 1986 to 2020, respectively. Starting from the year 2000, the area covered by high-density vegetation has shown an increasing trend. Regarding buffer distance, the area covered by high-density vegetation generally increases with greater buffer distance (Figure 9), while the area covered by low-density vegetation tends to be inversely proportional to buffer distance. Within the same year, between the first and seventh buffer zones, the area covered by low-density and moderately low-density FVC decreases rapidly with increasing buffer distance. Between the 7th and 8th buffer zones, the area covered by these two FVC types shows an upward trend in some years and remains relatively stable in others. Subsequently, with further increases in buffer distance, the area covered by both types of FVC gradually decreases (Figure 10).
[image: Bar chart depicting surface reflection across six categories: Low, Lower, Medium, High, High+, and Higher from 1985 to 2020 in five-year intervals. Color gradient from purple to yellow indicates area in square kilometers, with higher values in later years, particularly in High+ and Higher categories.]FIGURE 9 | Grading of vegetation cover within different buffer zone distances.
[image: Nine line graphs display the change in the percentile of area with increasing buffer distances (one to ten kilometers) over the years: 1986, 1990, 1995, 2000, 2005, 2010, 2015, and 2020. Each graph shows a downward trend in the percentile of area as buffer distance increases. All graphs use a consistent scale, allowing for comparison over time.]FIGURE 10 | Low-density and lower-density FVCs vary with buffer distance.
4.4 Changes in landscape patterns in different buffer zones along the Longhai Railway
4.4.1 The impact of railway lines on patch scale index
In this study, the landscape pattern was characterized in terms of patch aggregation index (PAI), average area (AREA-MN), and patch density (PD) at the patch scale. During 1985–2020, the PAI index for each land use type showed an increasing trend, indicating that the effectiveness of land planning was relatively significant and more intensive land use (Figure 11). In terms of distance, the farther away from the Longhai Railway, the higher the PAI index of other land use types except for construction land, indicating a higher degree of agglomeration, while construction land is relatively fragmented, especially in the suburban areas, which show a fragmented distribution. Among the five land use types, cropland has the highest PAI, indicating a high degree of aggregation. Within the 1st–10th buffer zone, the PAI index is smoother, but generally shows an upward trend. From 1985 to 2020, the PAI of cropland within the 1st–2nd buffer zone decreased significantly. The PAI values within each buffer zone were higher than in other years during the same period. PAI values for construction land show an overall decreasing trend as the buffer area increases. There was an increasing trend within each buffer zone area over time. PAI values for forest land showed an overall fluctuating upward trend within the 1–10 km buffer zone. Within the 4th–6th buffer zone, there was a trough. The PAI of wetland showed a fluctuating and increasing trend internally with a slight decreasing trend within the 7th–10th buffer zone. The PAI values for grasslands showed little change overall, with a small peak at the 1st–2nd buffer zone, after which a slow decline began.
[image: Five 3D line graphs showing land cover types over time and buffer distance in kilometers. Graphs represent cropland, forest, grass, wetland, and construction land. Each graph uses lines for various years from 1985 to 2020, with values reflecting changes in Patch Area Index (PAI).]FIGURE 11 | The changing trend of PAI of buffer zones with different land use types on the Longhai Railway.
In terms of the AREA_MN (Figure 12), the changes in cropland, wetland, and construction land are more significantly characterized. With the change of time, the AREA_MN index of construction land showed a significant upward trend, while the relative AREA_MN index of cropland and wetland showed a more obvious downward trend, indicating that the conflict between construction land and cropland and wetland has been increasing. From the perspective of buffer distance, with the increasing distance of the buffer zone, the AREA_MN index of construction land gradually decreases, and the AREA_MN index of suburban areas farther away from the Longhai Railway is significantly lower, indicating that the construction of the railroad trunk line has a significant impact on the expansion of construction land.
[image: Five 3D line graphs illustrate land use changes over time for cropland, forest, grass, wetland, and construction land. Each graph shows changes in area with varying buffer distances from 1995 to 2020. Lines for different years are color-coded.]FIGURE 12 | Trends in the average area of buffer zones (AREA_MN) for different land use types along the Loonghai Railway.
In terms of PD (Figure 13), the value of construction land is the highest, and the overall PD value is relatively smooth, with the highest place occurring within the 2 km buffer zone, indicating that the density of construction land in this zone is higher and urban construction is faster. The PD value of the wetland area is the lowest and the density is the smallest. The PD value of cropland shows an increase first and then forms a small wave peak at 2nd buffer zone as the buffer distance decreases. Woodland and grassland areas were similar, with little inter-annual variation within each buffer.
[image: Five line graphs showing the value of Pb (lead) over buffer distances in various landscapes from 1985 to 2015. Top row: Cropland, Forest, Grass. Bottom row: Wetland, Construction land. Each graph displays multiple lines representing data at different years, with values generally increasing over time.]FIGURE 13 | Change trend of patch density (PD) in buffer zones of different land use types on the Longhai Railway.
4.4.2 The impact of railway lines on landscape level indices
At the landscape level, the landscape pattern along the Longhai Railway and within different buffer zones was analyzed as a whole using the Shannon Diversity Index (SHDI), the landscape aggregation index (LAI), and the largest patch index (LPI) (Figure 14). The overall LAI index in the study area was relatively smooth, showing an increasing pattern within the 2 km buffer zone, where land was more concentrated. During 1985 and 2020, the SHDI index showed an overall increasing trend with slight fluctuations as the buffer zone distance increased, indicating that each patch type was balanced and distributed in the landscape. Specifically, it gradually increased at the 1st–3rd buffer zone, then gradually decreased, and then gradually increased again at the 7th buffer zone, forming a peak at the 3rd buffer zone and a trough at the 7th buffer zone, respectively. In the time series, the LPI index fluctuated greatly in 1985 and 1990, and the LPI initially decreased in the 1st–2nd buffer zone, indicating that with the increase of the distance from the railroad line, the maximum patch area was smaller and more strongly disturbed by human beings, and then it slowly increased during 2nd–6th buffer zone, and then the LPI fluctuated strongly between the 6th–10th zone. After 1990, the overall fluctuation of the LPI index was smaller, but during the 1st–2nd buffer zone, the LPI was always in a decreasing trend, indicating that the closer to the railroad, the higher the degree of fragmentation of the patches.
[image: Three 3D line graphs depict various metrics over buffer distances from 0 to 10 kilometers for years 1985 to 2018. The left graph shows percentage carbon sequestration, the middle graph indicates soil organic matter percentage, and the right graph illustrates percentage vegetation cover. Lines for each year demonstrate trends and variations over the different buffer distances.]FIGURE 14 | Trends of different landscape indices [(A): Landscape aggregation index, i.e., LAI, (B): SHDI, (C): LPI] of the Longhai Railway.
4.4.3 Night light images
Changes in the intensity of the light index reflect the development of regional urbanization. The contrast between bright and dark areas on the lighting image can be a powerful tool for studying human activities and their impacts. By comparing and analyzing the intensity of nighttime lights in each district along the railroad from 2000 to 2020 (Figures 15, 16) with the land cover changes in each district during the same period (Figure 17). It is found that relatively developed cities such as Zhengzhou, Xi’an, and Xuzhou have a larger increase in lighting area and rapid economic development in the last 20 years. While small cities along the line have a certain degree of economic growth, the lighting growth is smaller, indicating that these cities are relatively slow to develop. The farther away from the railroad line, the smaller the intensity of the lights. Moreover, the areas along the line where cropland, forest land and grassland are distributed are sparsely populated, and the lighting index has remained almost unchanged over the years.
[image: Six-panel sequence of land cover change maps from 1980 to 2030. Green represents natural areas, yellow signifies human-modified areas, and red indicates urban expansion. Maps show increasing urbanization over time.]FIGURE 15 | Nightlight intensity from 2000 to 2020.
[image: Bar chart comparing DN values for the years 2000 and 2020. Orange bars represent 2000, with higher values at the ends and lower in the middle. Green bars represent 2020, showing significantly increased values, especially towards the middle. Both axes are labeled, with DN on the x-axis, and corresponding values for each year on the y-axes.]FIGURE 16 | Comparison of digit number value of nighttime light index between 2000 and 2020.
[image: Six-panel map series showing land use changes in a region from 2000 to 2020. Categories include unused land, water, grass, cropland, construction, and forest. Each map displays a color-coded representation, illustrating shifts in land use over time. A legend explains the color coding, and a compass indicates north.]FIGURE 17 | Land cover distribution from 2000 to 2020.
In addition, the light index within the buffer zone is highly correlated with the LAI and AREA_MN (Table 4), indicating that the light area along the route continues to expand and become more concentrated over time. The light index is significantly negatively correlated with the LAI and AREA_MN of three types of land use (cropland, forest land, and wetland), and significantly positively correlated with building land. Therefore, it further proves that the Longhai Railway has an important impact on the changes in the land landscape pattern along the line.
TABLE 4 | Correlation analysis of lighting index with aggregation index and mean patch area in the 10 km buffer zone of Longhai Railway, 2000–2020 (“**” denotes p< 0.01, “*” denotes p< 0.05).
[image: Table showing correlations between various land types and two metrics, LAI and AREA_MN, over different years (2000, 2005, 2010, 2015, 2020). Each land type, including Cropland, Forest, Grass, Wetland, and Construction land, has correlation values with significance levels indicated by asterisks.]5 DISCUSSION
5.1 The impact of linear transportation corridors on land use and coverage
Road construction will have a certain impact on the ecology, environment, and landscape pattern along the route. What is the impact range of linear transportation corridors on the ecological landscape pattern on both sides? This is a question worth studying. A study has found that the construction of highways leads to a decrease in landscape integrity, and the ecological landscape tends to become more complex and fragmented (Zhang et al., 2023a). Landscape diversity is greatly influenced by transportation routes and can be used to indicate the fragmentation, connectivity, and isolation of route buffer zones (Su et al., 2014). Existing research has shown that the impact of transportation on land cover change decreases linearly with distance (Röder et al., 2015; Vilela et al., 2020). However, the degree of comprehensive land use dynamics along the Longhai Railway line in the buffer zone shows an “M” type change. Similarly, the comprehensive dynamic degree of land use along the China-Laos railway from 2017 to 2022 shows two peaks within the buffer zones of 2–4 km and 8–10 km (Xiao et al., 2024). A positive dynamic degree indicates an increasing trend in the quantity of land use types, and vice versa. The comprehensive land use dynamics within a 2 km buffer zone along the Longhai Railway reached its peak at two-time points in 1990 and 2005. However, in other buffer zone locations, the comprehensive land use dynamics are showing an increasing trend year by year. Looking at the segments, there are two peaks in the eastern section within the 1–4 km buffer zone from 1990 to 2010. The spatiotemporal variation pattern of comprehensive land use dynamics in the western section is relatively complex. Research has shown that the further away from the Kunming Bangkok Expressway, the smaller the overall change in land use, and after the expressway is opened, its impact range will exceed 10 km (Zheng et al., 2021). However, for the same year, the comprehensive land use dynamic degree of the entire Longhai Railway line is smaller as it is further away from the railway line. This indicates that since the opening of the Longhai Railway, the impact of the railway on land use cover changes has decreased beyond 10 km along the railway line.
In addition, national policies have an important impact on regional ecological environment changes, such as the ecological protection red line situation in China’s ecological environment has been greatly improved. In 2005, China attaches great importance to ecological environmental protection, “Two Mountains” concept proposed the establishment of nature reserves, ecological civilisation construction bases, and other measures to strongly promote China’s ecological environment change. Sustainable land management benefits from this “Two Mountains” theory (Huang et al., 2024). From the point of view of land use along the Longhai Railway line, in 2005, there was a peak in the attitude of comprehensive land use motivation and single land use motivation, which indicates that the grassland changes are the most drastic at this time, and the policy has a significant impact on the ecological environment.
During the railway construction period, with the increase of buffer zone distance, the dynamic change of single land use was relatively stable (Xu et al., 2022). Since the Longhai Railway line was opened to traffic in 1953, it was not possible to analyze the ecological environment before its construction, and only the situation since 1985 was analyzed. From the results, the dynamic change of single land use for cultivated land area along the Longhai Railway line peaked positively at the 10th buffer zone location in 1985, while other years and buffer zone distances showed negative values and did not exhibit stable characteristics. Within the 10 km buffer zone along the Longhai Railway, the construction land has been continuously increasing, which also verifies the previous characteristics of land use type conversion, namely, grassland and cropland area were mainly converted into construction land. The main areas of increase and decrease were located in the first to second buffer zones, indicating that the operation of the railway has facilitated the conversion of land use patterns along the line. Within the range of 2–10 km from the Longhai Railway line, the construction land and grassland exhibited opposite trends in their single dynamic changes between 1985 and 2020. Specifically, the single land use dynamic change of construction land generally declined with the increase of buffer distance during 1990–2000.
According to the index of single land use dynamic degree, the absolute values of the land use change intensity index for various land use types have shown an increasing trend, indicating that factors such as accelerated economic development and urbanization have intensified the degree of land use change during this period. Overall, from 1985 to 2020, the main types of land use change were cropland and construction land, both experiencing significant changes. The area of cropland showed a decreasing trend overall, while the area of construction land increased. Additionally, between 2000 and 2010, the single dynamic degree of grassland increased, resulting in an increase in area, which may be related to environmental improvements in western China. The results of the single dynamic degree change of grassland in the Shaanxi-Gansu section also support this conclusion.
5.2 The impact of linear transportation corridors on the ecological environment
The distribution of vegetation coverage along the Lhasa-Linzhi railway indicates that the vegetation coverage increases as the distance from the railway line increases (Zhang et al., 2023b). Through analyzing the relationship between vegetation coverage changes and buffer zone distances over the past 35 years, we also found a pattern that the closer to the railway, the worse the vegetation coverage. Research on ecological changes along the Qinghai-Tibet Railway corridor has shown that the overall ecological environment quality relatively declined from 1986 to 1994, while it exhibited a stable recovery trend from 2013 to 2020 (Zou et al., 2024). In this study, regarding temporal changes, since the 1980s, the vegetation coverage along the Longhai Railway has generally been high, with a fluctuating decrease in the area of low-density and lower-density FVC. Between 1986 and 1995, the average proportion of low-density and lower-density FVC areas was above 30%. However, after 2000, the proportion of these two density levels fell below 30%, and the area of higher-density vegetation coverage increased significantly. This may be due to the effective promotion of the ecological restoration and protection project from 2000 to 2002, which improved FVC from low, medium, and high coverage levels to extremely high coverage levels (Cai et al., 2022).
The degree of land patch fragmentation along the China-Laos railway line is inversely proportional to the distance from the buffer zone (Xiao et al., 2024). Similarly, as the buffer zone distance increases, the degree of landscape fragmentation along the Longhai Railway decreases, and the rate of change in the landscape pattern gradually slows down. Through the study of the transportation corridor in Yunnan, China, it was found that although the overall landscape pattern is stable, there are still dynamic changes in the landscape composition and horizontal distribution of patch types (Liang et al., 2014). In terms of buffer distance, the AREA_MN index of construction land gradually decreases as the distance from the Longhai Railway line increases. Especially in suburban areas far from the Longhai Railway line, the AREA_MN index is significantly lower. This indicates that the construction of the railway trunk line has a significant impact on the expansion of construction land. Research analysis shows that the impact of the railway construction from Golmud to Lhasa on vegetation richness is limited to a 5 km range (Wang et al., 2015). In addition, the AREA_MN index of grassland does not change much in time and space, indicating that the Longhai Railway line focuses on ecological environment protection. These findings can enhance the prediction and assessment of vegetation cover dynamics within a certain distance along transportation corridors, as well as the implementation and management of afforestation projects.
6 CONCLUSION
Currently, with the rapid development of transportation, there is an urgent need to quantitatively study the scope, degree, and pattern of the impact of cross-regional transportation corridors on land use and landscape change. In this paper, 10 buffer zones at 1-km intervals were established on the Longhai Railway. Based on the land use change data, satellite data, and nighttime lighting data, using geographic information technology and landscape ecology methods, the conversion trend (1985–2020) of land cover types, spatial distribution patterns, and evolutionary characteristics of landscape patterns at different distances from the railway line were revealed. The main conclusions were as follows.
	(1) Between 1985 and 2020, the area of cropland and grassland in the buffer zone continued to shrink, mainly converted into construction land. Compared to 1985, construction land showed an increase of 161.96%. However, the cropland and grassland areas decreased by 15.83% and 11.83% respectively. In terms of the eastern and western sections, the construction land in the eastern section increased from 1,930.51 km2 (1985) to 4,741.33 km2 (2020), an increase of 145.60%. The construction land in the western section increases from 545.18 km2 to 1,744.08 km2, an increase of 219.91%. This indicates that with the continuous operation of the Longhai Railway Line, the expansion rate of construction land in the western section is faster, which is of great significance for shortening regional differences.
	(2) The construction and operation of interregional transport corridors often have a greater impact on the ecological environment. The results of the study show that the closer to the railway line, the more intense is the degree of integrated land use dynamics along the railway in the buffer zone. In addition, the impact of the railway on land use dynamics had two peaks in the buffer zone, which exacerbated landscape fragmentation while changing the landscape pattern. The fragmentation of land patches and fractional vegetation coverage is negatively and positively correlated with the buffer zone distance, respectively. The degree of fragmentation of construction land patches increases with the distance of railway line.

The combination of land use analysis and landscape ecology methods can better reflect regional development dynamics and ecological environment change characteristics. In later research, models such as the InVEST, PLUS model can be used to predict land use cover, combined with population, climate, and economic data, to more accurately analyze the impact of railways on the surrounding land use and ecological environment in future years, and provide reference for sustainable land and ecological environment management.
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The increasing demand for tea has resulted in the swift expansion of tea plantations, leading to significant alterations in the local ecosystem. This has garnered considerable attention. However, research on rationally modifying land use structures (LUSs) in specialized tea regions to achieve a balance with ecosystem services (ESs) and enhance their synergistic effects remains limited. In this study, we quantified the values of water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ) by the InVEST model, utilized K-means clustering to categorize the LUSs of the village areas in Anxi County from 2010 to 2020, and then investigated the influences of the LUSs on the ESs by the improvement of the constraint line tool, according to which we utilized the ecosystem services trade-off degree (ESTD) and the Pearson correlation coefficient to explore the trade-offs and synergies among ecosystem services. The findings indicated that: (1) LUSs in Anxi County are tea garden structure (TS), forest land-tea garden structure (FTS), and construction land-cropland-tea garden structure (CCTS); (2) In LUSs, to achieve a balance among WY, SC, CS, and HQ, the dominant land use proportions were as follows: 0.5 for tea plantations in TS; a range of 0.55–0.6 for forest land and 0.05–0.1 for tea plantations in FTS; and CCTS, 0.25–0.3 for built-up land, 0–0.1 for cropland, and 0.2 for tea plantations; (3) The trade-offs and synergies of ESs vary across different LUSs. The synergy is particularly evident in FTS. Increasing the quantity of forest area is helpful in enhancing the synergy of ESs. This study offers an analysis of the effect of LUSs on ESs and their interconnections in specialized tea planting regions. It serves as a valuable insight into informing urban planning for future land usage and ecological conservation efforts.
Keywords: ecosystem services, land use structure, specialized tea planting regions, village scale, trade-offs and synergies

1 INTRODUCTION
Land use connects human activities and interactions within natural ecosystems (Lang and Song, 2019). For many types of ecosystems, like grasslands (Schirpke et al., 2017), woodlands (Delphin et al., 2016), agricultural lands (Wu et al., 2018), and dry lands (Peng et al., 2018), protecting ESs requires good land use planning and the right land use structures (LUSs). It has been shown that natural factors like changes in climate, topography, soil composition, and vegetation, as well as human activities like urbanization, farming, animal husbandry, and efforts to restore ecosystems, all have an effect on ecosystem services (Arevalo et al., 2011; Chen et al., 2020; Huang et al., 2021; Jiang et al., 2022; Kucharik et al., 2000; Sannigrahi et al., 2020; Zeng et al., 2023; Zhang et al., 2022). While earlier research has come up with ways to improve the provision of ecosystem services by keeping important factors within certain limits (Biao et al., 2022), these methods usually have an indirect effect on how land is used instead of putting in place direct method. Real changes in land use relate to the impacts of different types of land use structures (Liang et al., 2021), and its immediate ramifications on ecosystem services remain insufficiently examined. This knowledge gap consequently restricts the capacity of policymakers to formulate efficacious strategies for land conservation and management.
In the realm of agricultural production, tea emerges as a significant cash crop whose global cultivation expansion poses new challenges to ecosystem services (Li et al., 2023a; Li et al., 2023b). The critical question of effectively governing specialized tea planting regions to foster sustainable ecosystem development has garnered widespread attention. The integration of 3S technology in the study of ecosystem services has spurred scholars to focus more intensively on the long-term, regional, and dynamic changes of ecosystem services, emphasizing aspects such as trade-offs and synergies, regional discrepancies, and clustering characteristics (Huang J. et al., 2023; Liu et al., 2023a; Liu et al., 2023c; Yang et al., 2024; Zhang et al., 2023). Scholars have widely used correlation analysis (Li and Luo, 2023; Tan et al., 2024), cluster analysis (Huang F. et al., 2023), and other multivariate analysis methods to explore the different relationship characteristics among ecosystem services. They have also used geographical detectors (Liao et al., 2024; Zuo et al., 2023), principal component analysis (Silva et al., 2024), and scenario simulation (Fang et al., 2023; Liu et al., 2023c) to further explore the driving factors, formation mechanism, and future development prediction of ecosystem service tradeoff synergy. Myriad factors influence interactions between variables in complex ecological processes, often displaying a distribution akin to scattered clouds (Blackburn et al., 1992; Cade and Guo, 2000). Therefore, researchers use the constraint line method to outline the limiting effects of various factors on response variables in complex ecosystems (Hao et al., 2017; Liu et al., 2023d; Qiao et al., 2019). Current studies on ES in tea plantations mainly focus on quantifying the ES (Liu et al., 2021; Shui et al., 2017; Sohel et al., 2015), the interaction of ES (Wang et al., 2023), and the influencing factors of ES (Feng and Sunderland, 2023; Jiang et al., 2023a; Li et al., 2023b), the spatial pattern (Li X. et al., 2023), and other related studies. However, the research on directly adjusting the land use structure of specialized tea planting regions to promote the balance of ecosystem services and enhance its synergy effect is insufficient. On the research scale, relevant studies primarily highlight the spatial pattern and internal relationships of ESs at the county, township, grid, and other levels. Given that the village area is the smallest unit for implementing ecological protection in China’s territorial spatial planning (Chen and Xu, 2022), policymakers find it more convenient to implement policies there. Therefore, it is necessary to clarify the impact of different land use structures on ecosystem services in specialized tea planting regions at the village scale to provide more accurate reference information for tea garden ecosystem balance and sustainable agricultural management.
China is globally recognized as the leading country in tea production and marketing (Jiang et al., 2023b). Anxi County, known as the “Hometown of Chinese Oolong Tea,” consistently holds the top position among China’s major tea-producing counties in terms of tea production. The tea trade is a crucial economic sector in Anxi County (Xiao et al., 2018; Zeng et al., 2013), making it a prime example of specialized tea planting regions. Based on the above background, this study concentrates on Anxi County as the study region and the village as the study scale. It measures the values of four key ecosystem services—water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)—in the study area from 2010 to 2020 using the InVEST tool. The study also classifies the land use structure in the study region using K-means clustering. Furthermore, it investigates the influence of LUSs on ESs by improving the constraint line. The trade-off and synergies among the ESs are then measured quantitatively using the ESTD model and Pearson correlation coefficient. This study aims to provide a scientific theoretical basis in similar areas worldwide through in-depth research and understanding of the effects of land use structure on ecosystem services in specialized tea planting regions, which is important for realizing the harmonious coexistence of ecological protection and agricultural development. Specifically, the main research objectives are (1) to identify LUSs in specialized tea areas through cluster analysis, (2) to determine the proportion of dominant land balancing the four ESs in different LUSs using improved constraint lines, and (3) to explore the trade-offs/synergies of ecosystem services in specialized tea areas.
2 MATERIALS AND METHODS
2.1 Study area
Anxi County is situated in the southeastern region of Fujian Province, within Quanzhou City. It is positioned on the outskirts of the Xiamen-Zhangquan Economic Circle, providing it with a notable geographical advantage. Anxi County’s latitude ranges from 24°50′ to 25°26′N, while its longitude spans from 117°35′ to 118°17′E. The topography of the county inclines from the northwest to the southeast, with higher elevation in the northwest and lower elevation in the southeast (Figure 1). The eastern region is characterized by a relatively low elevation and is predominantly covered by hills. In contrast, the western region is characterized by higher elevations and is dominated by medium and low mountains. The soil is mostly acidic red soil and yellow soil, which is suitable for tea planting. Anxi has a temperate and moist environment, with 1,850 h of average annual sunshine, a median yearly temperature ranging from 16°C to 22°C, and an annual rainfall level of 1,400–2,000 mm. These circumstances provide optimal light and humidity for the cultivation of tea plantations. Anxi County is divided into 15 towns and nine townships. As of the end of 2020, the county had a resident population of over 1,027,000. More than 70% of the population resides in rural areas, which contributes to a plentiful workforce for the tea business. In the same year, the county’s GDP amounted to 74.763 billion yuan, with a per capita GDP of 74.391 yuan. The tea industry, as a pillar industry, accounted for 37.45% of the county’s total output value and was the primary sort of revenue for local farmers. Using Anxi County as the study area has typical representative significance among specialized tea areas.
[image: Map showing Anxi County in Fujian Province, China. The top-left inset locates Fujian within the country. The middle-left inset shows Anxi within Fujian, highlighting nearby cities. The main image is a digital elevation model of Anxi, with red indicating higher elevations and green indicating lower elevations, ranging from eleven meters to one thousand five hundred and eighty meters.]FIGURE 1 | Study area, Anxi county.
2.2 Data resource
The research area’s remotely sensed imaging data were principally acquired from Landsat/TM/TIRS/OLI, retrieved on 16 September 2022, and provided by Geospatial Data Cloud (http://www.gscloud.cn). Table 1 displays a total of nine image data points obtained from three different time periods (2010, 2015, and 2020) due to variations in satellite shooting angle and other factors. Image splicing, cropping, and correcting techniques are employed to manipulate the image data from each time period. The data is then turned into a true color display using a band combination. Finally, it is compared with the accurate historical image data from Google Earth Pro. Following visual interpretation, on-site verification, and calibration, the study area was divided into nine land categories using the maximum likelihood method. These categories, based on the Classification Standard of Land Use Status (GB/721010-2017) and research requirements, include woodland, shrub, grassland, cropland, tea garden, orchard, building land (settlement, industrial and mining land, and town), mudflat, and water body. The classification accuracy for these periods was 87.63%, 86.92%, and 88.32%, respectively, which fulfilled the research requirements. Non-remote sensing image data sources are shown in Table 2.
TABLE 1 | Remote sensing image information data.
[image: Table displaying satellite imagery data with columns for Year, Image Source, Image Date, Path, Row, and Cloud Volume (%). Data spans years 2010, 2015, and 2020. Landsat/TM and Landsat/TIRS/OLI are image sources. Paths 119 and 120, and rows 42 and 43 are listed. Cloud volume is less than five percent for all entries.]TABLE 2 | Non-remote sensing image information data.
[image: Table displaying data types, resolution, and data sources. Data types include precipitation, temperatures, NDVI, slope, DEM, tea plantation area, population density involving tea, and tea production value. All have a resolution of thirty meters. Sources vary, such as cdc.nmic.cn, nesdc.org.cn, and fjax.gov.cn, and all were accessed on 22 September 2022. Slope data is calculated from DEM, and tea plantation area is extracted by land use.]2.3 Land use structure identification
At present, the research scale of the ecosystem in Anxi County, a specialized tea area, is more integrated into the scale of the township or grid, while the study of the village domain as the smallest administrative unit is few. There are 468 village-level administrative units in Anxi County, with an area ranging from 851 km2 to 605,450 km2, with an average area of 63,874 km2. In this study, the number of clusters was determined by calculating and visualizing contour coefficients in Python (Figure 2), and the K-means clustering method of SPSS 26.0 was used to divide village areas into different structural categories according to the land cover ratio of forest, cropland, shrubs, grassland, waters, construction land, mudflat, tea garden, and orchard.
[image: Line graph showing the relationship between variable X on the horizontal axis and silhouette score on the vertical axis. The graph depicts a decreasing trend in silhouette score as X increases from 1 to 30, with some fluctuations.]FIGURE 2 | K mean profile coefficient diagram.
2.4 Quantifying ecosystem services
2.4.1 Water yield (WY)
WY of the research region represents the region’s water supply capacity. The WY module of the InVEST model is computed using the water balance principle and takes into account plant cover, land use, terrain, soil texture, among other relevant aspects. The primary equation works as below Equation 1:
[image: Mathematical equation: \( Y_{xj} = \left(1 - \frac{AET_x}{P_x}\right) \times P_x \).]
Where: [image: It looks like you're trying to describe a mathematical expression rather than an image. The expression is "Y subscript x subscript j," indicating a value or element in a series or matrix. Let me know if you have an image you'd like me to describe!] is the water yield of the grid unit (mm); [image: Please upload the image so I can help generate the alternate text for it.] is the actual evapotranspiration of the grid cell (mm); [image: Please upload the image for which you need alternate text.] is the amount of rainfall (mm) on the pixel.
2.4.2 Soil conservation (SC)
SC is determined by potential soil erosion and actual soil erosion. In this study, a modified general soil loss equation ([image: Text displaying the acronym "RUSLE" in black serif font on a white background.]). The primary equation works as below Equation 2:
[image: Mathematical equation depicting the formula: \( A = R \cdot K \cdot LS \cdot (1 - C \cdot P) \), labeled as equation (2).]
The formula: [image: Please upload the image you want me to describe, and I will help you generate the alternate text.] for soil retention [image: Mathematical expression displaying a fraction with numerator \( t \) and denominator \( hm^{2} \cdot a^{1} \).]; [image: Please upload the image you'd like me to generate alt text for.] is a rainfall erosivity factor [image: The expression depicts a unit of measurement: megajoule multiplied by millimeter per hectare squared per annum raised to the power of one.], adopting the study of Wischmeier and Smith (1958) and combined with the actual situation in Fujian Province to establish the formula for the calculation method of [image: Please upload the image or provide a URL for me to generate the alternate text.]; [image: Please upload the image, and I will generate the alt text for you.] is soil erodibility factor [image: Mathematical expression showing "t times h divided by (MJ times mm)", representing a formula or unit involving time, Planck's constant, megajoules, and millimeters.], calculated using the [image: To generate alt text for an image, please upload the image or provide a URL. You can also add a caption for additional context if needed.] model (Williams et al., 1983); based on the ArcGIS10.2 platform, slope [image: Please upload the image or provide a URL so I can generate the alternate text for you.] length factor and slope factor are extracted from DEM data, and corresponding raster layer is generated, [image: Please upload the image or share a URL for me to generate the alternate text.] is a vegetation cover management factor, [image: Please upload the image or provide a URL for me to generate the alternate text.] is soil conservation measure factor, refer to Ma et al. (2021).
2.4.3 Carbon storage (CS)
The CS component of the InVEST model categorizes the ecosystem service of carbon storage into four parts: above-ground carbon storage, subsurface carbon storage, soil carbon storage, and carbon storage of deceased organic matter (Zhang et al., 2021). Based on this module, this study calculates the carbon storage of the basin, and the formula is as follows Equation 3:
[image: Mathematical equation displaying capacitor calculations: total capacitance \(C_{\text{total}}\) equals the sum of \(C_{\text{inner}}\), \(C_{\text{clevis}}\), \(C_{\text{coil}}\), and \(C_{\text{cleat}}\), with the equation labeled as (3).]
In this formula: [image: It seems like there is a misunderstanding. The text you provided appears to be a mathematical expression, not an image. If you have an image you'd like me to describe, please upload the image or provide a detailed description.] is the total carbon storage in the study area (t·hm−2), [image: Please upload the image or provide a URL for me to generate the alt text.] is an above-ground part of carbon storage (t·hm−2), [image: Please upload the image or provide a URL, and I'll generate the alternate text for you.] is part of the underground carbon storage (t·hm−2), [image: Please upload the image or provide a URL for me to generate the alternate text.] is soil carbon storage (t·hm−2), [image: The image shows the mathematical expression \( C_{\text{dead}} \) in a stylized serif font.] is dead organic carbon storage (t·hm−2).
2.4.4 Habitat quality (HQ)
In order to evaluate the habitat quality of Anxi County, the researchers utilized the habitat quality module of the InVEST model, which can provide insights into the regional biodiversity state (Gong et al., 2019b). The assessment of habitat quality was conducted using the following formula Equation 4:
[image: The image shows a mathematical equation: \( Q_{xj} = H_j \left( 1 - \left( \frac{D_{xj}^k}{D_{xj}^{k} + k^c} \right) \right) \). It is labeled as equation number 4.]
In this formula: [image: Please upload the image you want the alternate text for, or provide a URL. You can also add a caption for additional context if needed.] is the habitat quality index of grid [image: Please upload the image or provide a URL so I can generate the alternate text for you.] in land use [image: Please upload the image you would like me to describe, or provide a URL to the image.]; [image: Please upload an image or provide a URL, and I can help generate the alt text for it.] is habitat suitability of habitat type [image: Please upload the image or provide a URL so I can generate the alt text for it.]; [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the degree of habitat degradation of grid unit [image: Please upload the image or provide a URL for me to generate the appropriate alt text.] in category [image: Please upload the image you would like me to describe.] land use type; The weights and distances of the threat factors and the sensitivity factor assigned to the watershed by reference to related studies are half-saturation constants [image: Please upload the image, and I'll help you generate the appropriate alternate text for it.] , which is taken as half of the maximum value of a [image: Sure, please upload the image or provide a URL to the image you want the alternate text for.]; and [image: It seems there is a mistake, and the image did not upload. Please try uploading the image again or provide a URL. Let me know if you need any guidance!] is the normalization constant, which is usually set to 2.5.
2.5 The constraint effect of LUSs on ESs
Constraint lines are a well-established tool for examining the relationship between ESs and the influence of geographical factors. They effectively describe how limiting variables affect response variables in the constraint process (Hao et al., 2017). At present, the parameter method, scatter cloud grid method, quantile regression method, and quantile partitioning method are the primary approaches to creating constraint lines (Wang et al., 2022). Local Outlier Factor (LOF) is a density-based local outlier factor anomaly detection algorithm, which is the most representative method among the outlier detection methods, which determines the anomalies by comparing the locally reachable densities between the sample points and their nearest neighbors (Breunig et al., 2000). This study used the LOF algorithm to identify the abnormal data points in a set of standardized dispersed points. Segment the dispersed cloud into sections based on the x-axis value range. Determine the maximum value inside each interval as the boundary point and use these boundary points to fit every constraint line. Utilizing Origin 2021 software, conduct a simulation to derive the ideal constraint line by considering the form and efficiency for fit (R2) for the dispersed cloud. Take the average value of the village as the ES value. Analyze the form of the constraint line to identify the line shape and choose the function that most closely matches it.
2.6 Trade-offs and synergies of ES
Ecosystem services trade-off degree (ESTD) can better clarify the relationship among services (Zhang et al., 2020). On the dynamic time scale, the calculation method of Gong was referred to and improved (Gong et al., 2019a), so that [image: Mathematical notation showing the equation \( \text{ESTD}_{ij} = \text{ESTD}_{ji} \).], that is, the two services adjusted the calculation placement order, and their trade-offs and synergies were the same. The calculation formula is Equations 5, 6:
[image: Mathematical equation for ESG index: ESC subscript I equals the fraction. The numerator is ES subscript ta minus ES subscript tb, and the denominator is ES subscript tb. Equation labeled as number five.]
[image: Mathematical equation showing ESTD subscript i j equals one half times the sum of two fractions: ESCI subscript i over ESCI subscript j, plus ESCI subscript j over ESCI subscript i. Number six in parentheses on the right.]
Where, [image: Please upload the image or provide a URL to generate the alternate text.] and [image: Please upload the image or provide a URL so I can help generate the alt text.] respectively represent the value of the i ecosystem service at time a (final state) and time b (initial state); [image: It seems there was an error in your message because an image was not provided. Please upload the image or provide a URL to it, and I will be happy to generate alt text for you.] is i Ecosystem Services Change Index: [image: It seems there was an attempt to upload or describe an image, but there's only a text fragment. Please try uploading the image again or provide a URL for the image you need alt text for.] for the i and j types of ecosystem services, if [image: Please upload the image you want me to generate alternate text for.] (or [image: Please upload an image or provide a URL for me to generate the alternate text.]), there is a synergistic relationship (or trade-off relationship) between the two ecosystem services, and the absolute value reflects the level of trade-offs and synergies. In addition, from the perspective of static space, according to the classification of land use types and the quantification results of ecosystem services, four ecosystem services were evaluated at the village scale according to different land use types. Correlation analysis and visualization were carried out with the Pearson correlation coefficient software package in R language to detect the effect between ESs.
3 RESULTS
3.1 Spatial distribution of land use structure
The LUSs of specialized tea planting locations were classified into three categories using K-means clustering (Figure 3): tea plantation structure dominated by tea plantations (TS), forest tea plantation structure dominated by forest land (FTS), and mixed tea plantation structure dominated by construction land and cropland (CCTS). Aside from the tea garden, the presence of additional land classes like bushes, orchards, and construction land is relatively low. This indicates that the main function of this area is tea growing. In FTS, forest land accounted for more than 38%, and forest land was the main feature. In other land types of CCTS, although most of the proportion is lower than that of construction land and cropland, there are certain distributions in various proportions, showing the diversity of this type of land use.
[image: Three sets of graphs showing comparisons of land use categories: Forest, Shrub, Grassland, Cropland, Orchard Tea-garden, Construction Land, Mudflat, and Waters. Each set includes a radial and a line plot. Panels are labeled (a) TS, (b) FTS, and (c) CCTS. The radial plots show proportions of land use types, while line graphs display variations in proportions across different categories.]FIGURE 3 | Land use components (line chart) and cluster centers (radar chart) of the three land structure types. Tea plantation structure (TS); Forest tea garden structure (FTS); The mixed tea garden structure mainly consists of construction land and cropland (CCTS). (A) TS. (B) FTS. (C) CCTS.
In the 10 years from 2010 to 2020, the land use structure of Anxi County has changed obviously. Overall, there was a substantial increase in the share of tea plantation lands across all three types of land (Figure 4). This could be attributed to Anxi County’s financial growth strategy, which focuses on establishing itself as a specialized tea-producing region. In terms of various LUSs, the number of villages in TS remained stable at 159, most of which are located in the county’s western and central regions. Furthermore, the movement in TS mostly occurred from the northern region to the center and southern regions of the county since these areas have a more level topography that is suitable for tea cultivation. The FTS saw a decline in the number of settlements from 253 to 251. Nevertheless, there was a concurrent increase in forest area, indicating the successful execution of afforestation and forest conservation strategies, especially in the elevated and undulating areas of the northern and western regions. Simultaneously, CCTS is mostly dispersed throughout the western and southern regions, characterized by generally level topography. As a result of the fast progress of urbanization in the previous decade, the count of CCTS has risen from 56 to 58 villages. Although there has been an increase in the amount of land used for building, there has been a major decline in the amount of land used for agriculture.
[image: Maps showing land use change between 2010 and 2020 in three categories: (a) Tea Gardens (TS), (b) Forests (FTS), and (c) Construction Land (CCTS). Each map uses shades and symbols to depict density levels, as indicated by the legend. A scale bar and north arrow are included for geographic reference.]FIGURE 4 | Comparison of village LUSs in Anxi County from 2010 to 2020. (A) Tea plantation structure (TS); (B) Forest tea garden structure (FTS); (C) The mixed tea garden structure mainly consists of construction land and cropland (CCTS).
There is a mutual conversion between TS, FTS, and CCTS. The quantitative transformation of LUSs in Anxi County mainly occurs between FTS and TS, and the transformation from FTS to TS (Figure 5). Due to the requirements of specialized tea area economic development mainly occurring around township centers, the transformation from TS to FTS mainly occurs in the steep terrain suitable for forest planting in the north and central regions. Subsequently, there is a mutual conversion between CCTS and FTS. The conversion from CCTS to FTS primarily occurs in the south, while the conversion from FTS to CCTS mainly occurs at the junction of Anxi County. Human activities are more frequent and greatly affected, resulting in more villages converting to CCTS.
[image: Map and stacked area chart depicting land use transitions from 2010 to 2020. Panel (a) shows transitions with marked areas in various colors, such as pink and yellow, corresponding to legend categories like TS-FTS and FTS-TS. Panel (b) presents a flow of transitions over time in different shades, labeled with abbreviations like TS, FTS, and CCTS, indicating significant shifts.]FIGURE 5 | Transformation of village land use structure in Anxi County during 2010–2020. (A) Location of village land use structure change, (B) Sankey diagram of land use structure transformation during 2010–2020.
3.2 Constraint effect of LUSs on ESs
The restrictions of the LUSs on WY are less evident than those on CS, SC, and HQ (Figure 6), based on the contours of the constraint lines and boundary values. In TS, SC, CS, and HQ are hump curves, and WY are double hump curves. The TS can more effectively harmonize the four ES when the tea plantings are at a ratio of 0.5. CS and HQ peaked when the proportion of tea plantings was smaller (0.35–0.4). Out of the TS, SC exhibits the greatest value when the proportion of tea plantations is 0.5. While WY grew and then gradually fell as the fraction of tea plantations reached 0.75, SC, CS, and HQ steadily decreased as the proportion of tea plantations continued to rise.
[image: Two sets of scatter plots illustrate the relationship between soil characteristics and land use types, labeled as (a) TS, FTS, FTS and (b) CCTS, CCTS, CCTS. They highlight soil compaction, coarse fragments, nutrient quality, and water yield across forest, teagarden, construction land, and cropland. Each plot contains boundary points in red and blue, with trend lines and R-squared values for data relationships. Data points appear as blue dots, outliers as red dots, and boundary lines are gray.]FIGURE 6 | Constraint effect of prevalent land use ratio of three LUSs on ESs (P < 0.01). Y-axis, ecosystem service; X-axis, ratio of principal land utilization type in village. (A) Tea plantation structure (TS) and Forest tea garden structure (FTS); (B) The mixed tea garden structure primarily considers construction land and cropland (CCTS).
In the forest land occupation curve of FTS, the constraint line for SC is a hump curve, the constraint line for CS and HQ is close to positive linear, and the constraint line for WY is a flat convex wave curve. When the forest land proportion falls within the range of 0.55–0.6, the equilibrium of the 4 ES may be improved. If the forest land proportion is smaller than 1, CS and HQ exhibit an increase as the forest land proportion increases. Within the tea garden’s possession curve, the constraint line of SC is a convex wave curve, the constraint line of CS and HQ is nearly negative linear, and the constraint line of WY is a flat semi-convex wave. When the proportion of tea garden is between 0.05 and 0.1, the relationship between ES can be better balanced.
In CCTS, SC is nearly negative linear, CS is a hump curve, HQ is a convex wave curve and WY is a negative hump curve. SC is a semi-concave curve, CS and HQ are close to negative linear, and WY is a negative hump curve. In the possession constraint line of the tea garden, SC a is concave wave curve, CS and HQ are the semi-concave wave curves, and WY is a three-peak curve. The land use composition of mixed structure is the most complex and has multiple constraints. The balance of the four ecosystem services is satisfactory when the proportion of building land, farmland, and tea garden is between 0.25 and 0.3, 0 and 0.1, and 0.2, respectively.
3.3 Ecosystem service trade-offs and synergies changes under various LUSs
The trade-offs and synergies that happen when ecosystem services change over time in the research region from 2010 to 2020 are shown in Figure 7. Only WY-SC and HQ-CS have clear synergies, and the area is pretty big. The four remaining pairings of ESs exhibit significant trade-offs, with synergistic effects primarily observed in the central and western regions. When comparing the entirety of Anxi County, there were noticeable difference in the trade-offs among ESs based on various LUSs (Figure 8). In the field of TS, the majority of ESs exhibit a significant trade-off connection, particularly in WY-CS. The trade-offs and synergistic interactions among ESs in FTS are stronger. The synergistic region between WY-SC and HQ-CS, characterized by a high degree of synergy, exceeds 90%. Additionally, the region of the trade-off between the other four ESs is above 80%. Within CCTS, the synergistic effects between WY-SC and HQ-CS accounted for 91% and 84%, respectively, which is significantly larger than the corresponding trade-offs. However, the trade-offs among other ESs were not significantly distinct from the synergies in terms of their area.
[image: Six maps show spatial distribution of trade-offs and synergies in regions labeled as WY-SC, WY-HQ, WY-CS, SC-HQ, SC-CS, and HQ-CS. Red represents trade-off areas, while blue indicates synergy areas. A scale and north arrow are provided.]FIGURE 7 | Spatial pattern of trade-offs and synergies among ecosystem service pairs in Anxi County from 2010 to 2020. (A) WY-SC. (B) WY-HQ. (C) WY-CS. (D) SC-HQ. (E) SC-CS. (F) HQ-CS.
[image: Four stacked bar charts compare the percentages of trade-offs and synergies across different categories in Anxi County, TS, FTS, and CCTS. Red represents trade-offs, and blue represents synergies. Each chart displays categories labeled WY-SCWY-HQWY, CS-SC-HQ, SC-CS, HQ-CS, and HQ-CSS. Notable points include high trade-offs in each graph, particularly in WY-SCWY-HQWY, while SC-CS and HQ-CS show more synergies. Numerical percentages are noted on each bar segment, indicating the proportion of each category.]FIGURE 8 | Area proportion of trade-offs and synergies among ecosystem service pairs in Anxi County from 2010 to 2020.
Figure 9 illustrates the correlation among each ecosystem service in 2010, 2015, and 2020 from a static perspective. From 2010 to 2020, the WY-SC and HQ-CS in Anxi County exhibited a synergistic relationship, whereas the remaining pairs of ESs showed a trade-offs relationship. Additionally, the correlation coefficients for all ecosystem service pairs passed the significant test with a p value below 0.001. Among the variables, the correlation coefficient between WY-SC declined from 0.52 to 0.47, indicating a weaker synergistic link. However, there was an increase in the trade-offs among HQ-WY and HQ-SC and a slowdown in the trade-offs among CS-WY and CS-SC. In terms of various LUSs, the relationship of TS to each ecosystem service is significant, and it is consistent with the trade-offs synergistic results in the Anxi County study. The interdependence between WY-SC was significantly diminished compared to the total county level, whereas the level of the interaction among ESs in this area was generally low. In FTS, only WY-SC and HQ-CS were considerably greater than 0.001 in 2000, 2010, and 2020, but the synergistic effect was higher than that of the whole Anxi County, and the synergistic effect between the ecosystem service pairs was stronger. In CCTS, it was shown that only two out of the six pairs of ecosystem services were at a significance level of 0.001 in 2000, 2010, and 2020. However, the trade-offs across ecosystem services were more pronounced, particularly in WY-HQ.
[image: Heatmap showing weighted means of county-level Z-scores for years 2010, 2015, and 2020 across various indices: WY, SC, HQ, and CS for variables AmiX county, TS, FTS, and CCTS. Positive and negative trends are depicted in shades of blue and orange.]FIGURE 9 | Correlation between ES pairs in Anxi County and different LUSs in 2010, 2015, and 2020 (*p < 0.05; **p < 0.01; ***p < 0.001).
4 DISCUSSION
4.1 Transformation of land use structure
This study utilizes K-means clustering to classify LUS (Figure 3), a method commonly employed in ecosystem service partitioning (Gao et al., 2019; Li X. et al., 2023) and therefore this study suggests that this attribute-value-based approach is also applicable to the spatial domain. In addition, to guarantee the dependability of the clustering outcomes, the silhouette coefficient was employed to ascertain the optimal number of K-means clusters. Aside from geographical limitations, the land-use composition in a village is significantly shaped by macro-policy regulations, resulting in changes to the land use structure (Li et al., 2013). Anxi County is committed to becoming a renowned tea-producing county in China by focusing on the tea business and establishing a comprehensive development pattern that encompasses the entire industrial chain. This strategic approach has resulted in significant economic growth in the region. Anxi County has consistently held the top position among the major tea-producing counties in China since 2009, achieving numerous national milestones in tea plantation development, tea production, total value of tea-related products, tea industry workforce, number of beneficiaries, per capita income derived from tea, and overall completeness of the tea industry chain. Until 2023, the value of tea-related products has reached 36.2 billion yuan (Zhang and Li, 2022). As a result of Anxi County’s strong progress in the tea business, the proportion of tea gardens in the county has increased dramatically, with the greatest concentration found in TS.
In 2009, the Anxi County Government released the “Hundred Tea Plantation Hills Planting and Greening Planning Opinions” and subsequently implemented the “Tea to Forest” policy. This policy aimed to convert ecologically vulnerable areas, low mountains, and abandoned tea plantations into forested areas. Valuable tree species were planted in these tea hills to promote greening efforts in the tea plantations. The objective is to enhance the establishment of ecological tea plantations, ranging from a single model to the original ecological model, with the aim of efficiently managing soil erosion in the area and fostering the sustainable growth of tea production (Hong et al., 2024). Therefore, we noticed a decline in the quantity of FTS, but there was a rise in the percentage of forested regions. This indicates that tea plantations are undergoing a shift towards a more ecologically sustainable model.
Between 2010 and 2020, Anxi County experienced tremendous socio-economic development and urbanization, resulting in notable alterations in land use patterns. The growing need for construction land, fueled by industrial, commercial, residential, and transportation requirements, results in the growing area of construction land and the decline of cropland. This tendency aligns with the documented rise in the number of Comprehensive City and County Traffic Studies (CCTS), demonstrating the effect of urbanization on modifications in land utilization. Li found a similar situation in the Hexi region (Li Y. et al., 2023).
4.2 Constraint effects of LUSs on ESs
In this study, we try to determine the optimal land fraction that may effectively balance ecosystem services using a constraint line. This will directly aid in the development of land use optimization at the village level. Previous studies often employ the quantile division method to analyze the impact of ESs constraints. However, within this study, we use village as the study scale, which has a significantly smaller number of scattered points compared to those derived from raster data. Hence, the LOF approach is employed to detect outliers. Next, partition the distribution of an independent variable on the X-axis into several intervals and designate the highest value inside each interval as the boundary point for the constraint line. Afterwards, the curve is fitted accordingly. In comparison to the quantile division method, this process is better suited for situations with little data. What is more, it can further focus the discrete point below the limiting line, resulting in a better visualization of the feature between LUS and ESs.
The alteration in the trajectory of the constraint line seen in Figure 6 indicates that the ecosystem services is limited by modifications in land utilization within the land use structure, a majority of which may be corroborated by prior research. For instance, the average SC value in the TS is larger than that of other land use structures. In the CCTS, the SC value increases as the proportion of tea plantations increases due to the deep root system of tea plants, which firmly holds the soil and aids in soil retention (Shrestha and Thapa, 2015). Within CCTS, the SC value diminishes as built-up land and cropland expand. This indicates that the erosion of human-made surfaces and agricultural land surpasses the erosion of natural vegetation. (Fang, 2017). TS and CCTS have lower average CS than FTS (Li et al., 2023a). HQ falls when the proportion of tea gardens, building land, and cropland grows. However, in the case of forested area, the HQ increases in the FTS. This suggests that forests have a remarkable ability to maintain high HQ (Baixue et al., 2021). Yang also found in their study that the impact of land utilization structure on WY was not of statistical significance (Yang et al., 2021), which aligns with the findings of our study. Wang observed that forested regions had a greater capacity to generate surface runoff than agricultural regions on flat terrain, particularly in places with steeper slopes. Nevertheless, the simulation of the InVEST model did not accurately capture this topographic effect (Wang et al., 2018). As a consequence, InVEST model may overestimate the WY in flat areas, leading to a deviation of its results from the actual situation. Surprisingly, the SC value of FTS decreased as the ratio of tea gardens increased. The shift in a consistent pattern occurs due to distinct primary variables on each side of the thresholds. (Hao et al., 2017). It may be because FTS is mostly distributed on the higher slopes of Anxi County, and soil erosion on the steep slopes has become serious due to unscientific cultivation by tea farmers (El Kateb et al., 2013; Jiang et al., 2023a).
4.3 Changes in ecosystem service trade-offs and synergies in different LUSs
This study, according to the ESTD and Pearson correlation coefficients, examined the trade-offs and synergistic links between ecosystem services at specialized tea planting locations by combining the outcomes of land use structure categorization and ecosystem service quantification. The findings indicated that the trade-offs and synergistic effects among ESs differed across various LUSs. Specifically, temporally, HQ-WY, HQ-SC, CS-WY, and CS-SC exhibited significant trade-offs in the FTS in 2010, but these became insignificant by 2020. Furthermore, CS-SC was insignificant in the CCTS in 2010, but became significantly synergistic by 2020. From a spatial distribution perspective, the linkages between the four ESs in the FTS were primarily characterized by trade-offs, while the trade-offs observed in the CCTS were less pronounced compared to the synergies observed in the four ecosystem services. The research on the Loess Plateau also identified variations in the trade-offs and synergistic interactions among ESs based on various LUSs (Ding and Jian, 2024).
In terms of trade-offs effect, our findings indicate that the majority of significant relationships in TS were trade-offs. It is possible that the restricted diversity of vegetation in monoculture crops may amplify the trade-offs between ecosystem services, which aligns with previous studies (Feng et al., 2020; Power, 2010). The study found that there were stronger synergistic linkages in the SC-WY and CS-HQ of the FTS, indicating that forest vegetation s essential for enhancing the provision of ecosystem services. The abundance of forested areas in the FTS can augment the variety of plant communities, hence amplifying synergies in the HQ-CS. This promotes the relationships among various ESs and augments the resilience of the ecosystem. These findings align with Wang’s research (Wang et al., 2023). The most significant trade-offs were observed for HQ-WY in the CCTS. This could be attributed to the CCTS being situated in the low-elevation region of Anxi County, which is densely populated and experiences frequent human activities. The growth of urban areas causes a decline in vegetation cover and surface evapotranspiration, leading to an increase in water production. Simultaneously, the degradation of vegetation negatively impacts habitat quality. In their study on the Loess Plateau, Liu discovered that the trade-offs among HQ-WY is most pronounced in the well-developed urban sections of the two urban agglomerations. Furthermore, they observed that the extent of this trade-off diminishes as the amount of urbanization lowers (Liu et al., 2023b). Over time, the synergies effect of WY-SC diminished dramatically. This could be attributed to anthropogenic activities, such as land conversion and intensification, which modify ecological processes and disrupt the natural interconnections between ecosystem services. Furthermore, because ecosystem service interactions vary in strength and effects depending on land use structure, it is necessary to implement more focused land management and regulation.
4.4 Implications for urban land use and ecological protection planning
The results of this study provide critical insights into how LUSs in specialized tea-growing regions, like Anxi County, can inform broader urban planning and ecological conservation efforts. As rapid urbanization continues in many regions, including rural and peri-urban areas, it becomes increasingly important to integrate lessons learnt from the agricultural sector—particularly tea cultivation—into urban land use planning and ecological sustainability strategies. This is especially relevant as urban expansion often leads to significant alterations in ESs, including habitat degradation, reduced carbon storage, and water regulation challenges (Xie et al., 2020).
The identified trade-offs and synergies among key ESs in specialized tea-growing regions can inform urban land use policies aimed at balancing economic development and environmental protection (Wang et al., 2023). This study finds that the expansion of tea plantations in TS exacerbates the trade-offs between services such as HQ and CS. This has a cautionary effect for urban planners: single land use type expansion (e.g., extensive residential or industrial zones) can lead to the same kinds of ES trade-offs, such as reduced biodiversity, greater soil erosion, and lower overall resilience to climate change. Instead, urban planners can draw from the FTS, where synergies between ecosystem services are most pronounced. In urban settings, increasing the proportion of forested and green areas can mitigate the negative impacts of urban development by promoting HQ, CS, and WY.
The constraint line analysis used in this study to identify optimal land use proportions could be applied to urban planning scenarios. This tool can help urban planners determine the most appropriate ratios of built-up areas, green spaces, and conservation zones, balancing development needs with the preservation of ecosystem services such as CS and HQ. For example, planning the distribution of urban forests, parks, and mixed-use developments could follow the proportional strategies suggested for tea plantations and forests in this study.
The results of this study have direct implications for policy frameworks aimed at integrating agriculture, urban development, and ecosystem conservation. Policymakers could leverage the insights from this study to develop zoning regulations that limit the dominance of any single land use type. For instance, policies could promote the integration of forest patches within urban and agricultural zones to enhance ecosystem service synergies. Furthermore, local governments could use the ESTD model applied in this study to assess the potential trade-offs of large-scale development projects, ensuring that urban expansion does not come at the cost of critical ecosystem functions. In summary, the findings from this study can significantly inform urban planning and ecological conservation strategies. By understanding the balance of land use structures and their impacts on ecosystem services in tea-growing areas, urban planners and policymakers can design more sustainable, resilient, and ecologically balanced urban landscapes that support long-term environmental and socio-economic wellbeing.
5 CONCLUSION
This study utilized Anxi County as a case study to quantitatively evaluate the changes in land use structure and the relationships among ecosystem services in specialized tea planting regions. Expanding on this study, the research determined the ideal ratio of dominating land uses in these structures and proposed specific improvement solutions designed for specialized tea locations. The main discoveries are expressed as follows:
	(1) Between 2010 and 2020, tea garden, forest land, and construction land in Anxi County have changed significantly. Anxi County, known for its specialisation in tea production, has had a land use structure consisting of three distinct types throughout the previous decade: a single structure (TS) and two mixed structures (FTS and CCTS). Out of the three categories, the tea garden proportion increased, the number of TS stayed the same, the number of FTS fell, and the number of CCTS increased.
	(2) The variation in the proportion of dominant land uses within the LUSs will impact the constraint effect between the LUSs and ESs. The constraint line approach can be utilized to determine the ratip of dominant land utilization in order to attain harmonization among the four ESs. The dominant land use proportions of the four ESs in TS, CTS, and CTS are 0.5 (tea garden), 0.55–0.6/0.05–0.1 (forest land/tea garden), and 0.25–0.3/0–0.1/0.2 (construction land/cropland/tea garden).
	(3) There are variations in the trade-offs and synergies of ecosystem services in different land use structures. Most of the significant relationships in Anxi County, TS, are trade-offs. In FTS, the synergies among SC-WY and CS-HQ are the most evident, while HQ-WY in CCTS exhibits the most obvious trade-off. The varying results under different land use structures highlight the importance of a meticulous approach to land management and protection. As far as specialized tea areas are concerned, the proportion of forest land should be increased, ecological tea gardens should be built, and ecosystem synergy should be improved.

This study aims to establish an analytical framework for assessing the proportion of dominant land use structures and identifying the trade-offs and synergistic relationships between multiple ecosystem services, from a land use perspective. The findings of this study can provide valuable insights for land use planning and the mitigation of ecosystem service trade-offs. Nevertheless, the trade-off synergistic relationships can vary across different scales, and our investigation solely focused on the trade-off synergistic relationships at the village scale. In future research, we can analyze the trade-offs and synergies between different regions at various levels to gather additional empirical evidence for the sustainable development of regional ecosystems.
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Introduction: The research purpose is to scientifically substantiate an integrated approach to solving the problem of land degradation, based on the idea of land degradation neutrality (LDN), taking into account ecosystem services when planning land use to maximize the conservation of natural capital. The methodological basis of the research is the provisions and principles of the concepts of sustainable development, achieving LDN, and ecosystem services, as well as the research results revealing various aspects of land use, particularly their degradation.Methods: The following research methods are used in the paper: dialectical – to determine the cause-and-effect conditions of land degradation; analysis – to highlight the current state of land use in Ukraine and the factors that have led to land degradation; synthesis – for global trends towards achieving LDN; deduction – to explore the possibility of introducing global experience in achieving LDN in Ukraine; structural-functional analysis – to substantiate the feasibility of introducing an ecosystem approach to land-use planning to achieve LDN.Results: As a result of the research, the current land degradation state in Ukraine has been analyzed, and ways of achieving LDN in land-use planning through the prism of an ecosystem approach have been substantiated. Based on statistical data, the current and potential levels of arability of the territory of Ukraine have been calculated by natural-climatic zones, and the areas of eroded arable lands in Ukraine have been determined by the erodibility factor (low-eroded, mediumeroded,and highly-eroded).Discussion: For the first time, a structural-logical scheme has been developed for organizational-economic support for the effective use of degraded and low-productive agricultural lands in the context of implementing the idea of LDN, which is a tool for rational allocation and use of degraded lands. This scheme can serve as a basis for the development of land-use planning strategies for territorial communities, for institutions, and organizations competent in the field of land management.Keywords: land degradation neutrality, ecosystem approach, land-use planning, land erosion, erodibility factor, natural-climatic zones
1 INTRODUCTION
According to the data of Convention to Combat Desertification and the Intergovernmental Working Group report on LDN estimate that water erosion has damaged over 24% of land; wind erosion – over 12%; chemical degradation – up to 6%; physical degradation – up to 2% of the globe’s agricultural land. Analysis of Ukrainian and international reports, as well as other data provided by the United Nations Convention to Combat Desertification (UNCCD), has shown that in 2019 approximately 20% of the globe’s land cover is degraded to some extent (almost 30 million km2, which is an area the size of the African continent) (UNCCD, 2015). The concept of LDN is implemented within the framework of the United Nations Convention to Combat Desertification. The strategic goal of the concept is to maintain the productivity of land resources to provide essential ecosystem functions and services, as well as to improve food security today and in the future (Wang et al., 2022).
LDN objectives are interrelated with the concept of ecosystem services, pointing to the interdependence between human well-being and ecosystem sustainability. At the same time, the sustainability of ecosystems depends on the extent of their biodiversity, the loss of which has a negative impact on the production of vital services provided by ecosystems. A decline in the quality of ecosystem services results in significant economic losses and healthcare costs (Yuan et al., 2022; Makarova et al., 2023; Li et al., 2023; Zhang et al., 2022).
More than 3 billion people in the world, mostly poor rural communities, smallholder farmers and high-risk groups, have already been affected in one way or another by various types of land degradation. The situation is particularly acute in arid regions, which account for more than 45% of the total land area, and today one in three people in the world live in such regions. Land degradation – the permanent reduction or loss of soil fertility – has a significant impact on society and, in particular, leads to poverty, hunger, inequality, which in turn makes communities vulnerable to disease and disasters. At the same time, desertification, expansion of arable lands, and their urbanization are causing significant losses of organic carbon reserves in the soil, leading to a steady decline in the productivity of all ecosystems, with pastures experiencing the greatest losses of productivity, carbon, or land itself (Koshkalda et al., 2018; Sheludko et al., 2022; Koshkalda et al., 2022a).
Land degradation and excessive anthropogenic pressure have altered biodiversity that underpins the provision of ecosystem services sustaining life on Earth (Mulwafu and Kamchedzera, 2024; Kostenko et al., 2023; Du et al., 2024). This means that these changes threaten the survival of many species. Global warming has altered the geographic distribution, seasonal dynamics, and population characteristics of many plants and animals (Price et al., 2024; Koval et al., 2023). Endangered and extinct species pose a threat to the normal functioning of ecosystems. Thus, a globally accepted indicator – the Living Planet Index – shows that in the period from 1970 to 2016, the decline in populations of mammals, birds, fish, etc., averaged 68%. In tropical America, for example, this rate has declined by 94%, mainly due to land-use change (primarily the conversion of grasslands, savannas, forests and wetlands for agriculture and mining), indicating the need for land-use planning to achieve LDN. As for Ukrainian realities, the soil organic carbon content in Ukrainian chernozems has reached extremely low values, leading in subsequent years to degradation of agrophysical properties, which inevitably leads to the loss of arable land as a natural resource potential component (Stoiko and Parsova, 2017; Singh and Tewari, 2022; Haj-Amor et al., 2022; Schulze et al., 2021; Bär et al., 2023; Koshkalda et al., 2022b).
Today, the field of research into LDN has evolved from the drylands of Africa and Asia to a global scale of environmental rehabilitation of degraded lands in all regions of the world (Tóth et al., 2018; Gilbey et al., 2019).
Achieving land degradation neutrality requires the implementation of measures in compliance with the “Avoid – Reduce – Reverse” land hierarchy and is based on the principle “it is better to prevent degradation than to rehabilitate degraded lands.” Three global indicators are used to assess land degradation neutrality: land cover, land productivity, and soil carbon content.
Achieving LDN requires the implementation of measures in compliance with the Avoid – Reduce – Reverse land hierarchy and is based on the principle “it is better to prevent degradation than to rehabilitate degraded lands.” The potential socio-economic and environmental benefits of LDN indicate the feasibility of adapting this concept at the national, regional and local levels by integrating it into development planning processes, financing environmental protection, and informing policymakers and the public about the goals of LDN to stimulate investment (Allen et al., 2020; Dwivedi et al., 2022; Chigbu et al., 2022).
To achieve the goals of LDN, sustainable land management (SLM) practices are important, allowing for the implementation of measures to protect agricultural lands from degradation and measures to restore degraded lands through rehabilitation, renaturalization, and reclamation (Chigbu et al., 2022; Zucca et al., 2024). SLM measures are implemented at the landscape level through integrated land-use planning, while results are assessed at the regional and state levels (Alpysbay and Gapparov, 2021; Cowie et al., 2019).
Realizing the importance of land resources in the context of implementing the Sustainable Development Goals by 2030, there is a need to focus attention and efforts on the issue of land degradation (LDN; Target 15.3) in SDG15 (“Life on land”) by combating desertification, rehabilitating degraded lands, and achieving their globally neutral level of degradation (UNDP, 2019; FAO, 2021). Furthermore, achieving LDN is intertwined with other global land-related Sustainable Development Goals, such as “Zero Hunger” (SDG 2), “Clean Water and Sanitation” (SDG 6), and “Climate Action” (SDG 13), corresponding to provisioning and regulating services (UNCCD, 2017; UNCCD, 2019; UNDP, 2019).
The international community has announced plans to rehabilitate 1 billion hectares of degraded land by 2030. The stated goal is to conserve natural ecosystem life-support services and land productivity for future generations, while reducing the risks and consequences of natural disasters and pandemics, and increasing ecosystem and societal resilience to impending environmental stresses and climate shocks.
Today, almost a third of Europe’s arable land is concentrated in the territory of Ukraine, which prompted the authors to choose this country as the research object (Kovalchuk, 2022; Petrakovska et al., 2022; Petrakovska et al., 2020; Trehub and Trehub, 2018; Trehub and Trehub, 2017; Stoiko et al., 2023; Stoiko, 2020). According to various estimates and approaches, Ukraine has from 8 million to 15 million hectares of degraded land, including up to 13 million hectares damaged by water erosion, and more than 6 million hectares affected by wind erosion, while dust storms have covered up to 20 million hectares of agricultural land. Today, Ukraine’s priority environmental policy is to ensure the sustainable use and protection of land, improve the condition of affected ecosystems, promote achieving a neutral level of land degradation, and raise awareness among the population, landowners, and land users regarding land degradation issues (The Law Of Ukraine, 2019; Verkhovna Rada of Ukraine, 2019).
Achieving LDN will ensure the rehabilitation of not only land, but also ecosystems, which in turn will very slightly enhance climate change mitigation. Additionally, the importance of the ecosystem approach stems from the need to restore biodiversity habitats to avoid extinction and to restore the unimpeded movement of species and the natural processes that sustain life on Earth. Thus, research and the formulation of ecosystem approach principles in land-use planning in Ukraine are promising ways to achieve LDN, ensure sustainable development, and conserve natural resources for future generations (Burkovskiy, 2022; Pogrischuk, 2017; DeClerck et al., 2023; Robinson et al., 2022; Hillebrand et al., 2017).
The research purpose is to scientifically substantiate an integrated approach to solving the problem of land degradation in Ukraine, based on the idea of LDN, while considering ecosystem services in planning land use to maximize the conservation of natural capital. To achieve this purpose, this paper analyzes the natural-climatic zones of Ukraine, establishes the level of arability of the territory, and determines the project level of arability based on the Environmental Noncompliance Index of current cultivated lands. Furthermore, considering aspects related to the conservation of arable land or its conversion to other types of economic activities, a scheme for organizational-economic support for the effective use of degraded and low-productive agricultural lands in the context of implementing the idea of LDN has been developed.
Land-use planning is a tool for managing land resources that has been utilized since ancient times to protect land and people from natural disasters, as well as to address important issues related to land use, with the aim of ensuring the sustainability of land systems (Meyer and Turner, 1994; Bazaluk et al., 2024; Burby, 1998).
Considering the diverse suitability of land resources for different types of activities, the natural constraints on the placement of objects, and competition for the same resources, the primary objective of land-use planning is to optimize the choice of land-use methods and types of activities that ensure the most effective use of land resources in terms of socio-economic benefits and minimizing ecological harm, resolving land-use conflicts, reducing negative impacts, and achieving environmentally and socially beneficial outcomes, as well as ensuring a fair distribution of costs and benefits among all stakeholders (Godschalk, 2004; Randolph, 2004).
2 MATERIALS AND METHODS
2.1 Study area
Ukraine is a country in Central-Eastern Europe with an area of 603,628 km2. According to Boris Alisov’s classification, the territory of Ukraine has only two types of climate: temperate-continental climate almost throughout the entire territory and a Mediterranean climate on the Southern Coast of Crimea (Shimabukuro et al., 2022). The general pattern of Ukraine’s climate is an increase in its continentality from west to east and a close to latitudinal zonation in the distribution of temperature, humidity, and precipitation. This is due to the contrasting distances of the western and eastern regions from the Atlantic Ocean. The average annual temperature is 6°C–7°C above zero in the north and 12°C–13°C above zero in the south. The coldest area is the northeastern part of Ukraine, while the warmest is the southwestern and Southern Coast of Crimea. Precipitation is unevenly distributed over the territory of Ukraine. Rainfall depends on the season, topography, geographical location of the area, and other factors. The most precipitation falls in the mountainous regions of the Carpathians (in some areas over 1,500 mm), and the least on the coasts of the Black and Azov Seas (about 300–350 mm) (Maps of Ukraine, 2024).
According to natural-climatic zones, Ukraine is divided into three zones: forested lowland, forest-steppe zone, and steppe. To ensure effective land management, natural-climatic zones are adjusted taking into account the administrative-territorial arrangement, which includes 24 oblasts and Crimea. Thus, the forested lowland zone includes 7 oblasts of Ukraine, the forest-steppe includes 9 oblasts, and the steppe includes 8 oblasts and Crimea.
Normal precipitation in the forested lowland zone is 550–700 mm/year, and in the forest-steppe, it is 600–450 mm/year. In the forested lowland and forest-steppe, there is a gradual decrease in precipitation from west to east. In the northern areas of the steppe zone, there is precipitation of 450–475 mm/year, while the lowest precipitation (300–350 mm/year) falls in the southern sea coast lowland areas. In the steppe zone of Crimea, the amount of precipitation increases southward towards the Crimean Mountains (up to 470–500 mm/year). More than 1,000 mm/year of precipitation falls in the Crimean Mountains and 550–600 mm/year on the Southern Coast of Crimea. In the warm season, precipitation is 2–3 times more than in the cold season. An exception is the Southern Coast of Crimea, where the greatest amount of precipitation occurs during the cold season (RCCC Country profiles Ukraine, 2024).
The following soils are common within Ukrainian Polissia: soddy-podzolic, soddy-podzolic gley, soddy-calcareous, soddy gley, soddy-meadow, marshy, gray forest, and podzolized chernozem soils. The term “soddy” refers to soils that have a sod-like layer formed by the accumulation of organic matter on the surface, often found in regions with a significant amount of vegetation and moisture, such as Podzol-Histosol-Gleysol soils, and is commonly associated with Leptosols or Cryosols. This diversity of soil cover is caused by a humid and mild climate, a wide variety of chemical and mineral composition, well-developed meso- and micro-relief, close and very uneven groundwater occurrence, a variety of plant formations, and different intensities of human economic activity.
The soil cover of the forest-steppe zone is dominated by various types of chernozems (typical and podzolized) and gray forest soils formed on loess or loess-like loams. In the lowlands, meadow and meadow-chernozem soils are common, with peat soils in some places. Soil fertility levels are highest in the middle and eastern parts of the zone. The southern border of the forest-steppe zone almost coincides with the transition from typical chernozems, which are richer in organic matter and more fertile, to leached chernozems, which have slightly less organic content and fertility. An important natural resource of the steppe zone is its fertile soils, primarily chernozems. The zone ranks first in Ukraine in terms of the area of chernozems. It is the northern distribution of thick leached chernozems that is taken as the border separating the forest-steppe and steppe zones. Significant areas are occupied by very deep (over 120 cm), deep (80–120 cm) and medium-deep (60–80 cm) chernozems. Their soil organic carbon content ranges from 3% to 6%. Such highly productive chernozems account for more than 90% of all chernozem soils here (Maps of Ukraine, 2024; RCCC Country profiles Ukraine, 2024).
Soils of the steppe zone have significant territorial differences. While typical chernozems are widespread in the far north, leached chernozems are widespread in the central part, and dark chernozems are found in the southern regions. Chestnut soils are widespread in Prysyvashsha and Northern Crimea, while dark chernozems and soddy soils are widespread in the western and foothill parts of Crimea.
The soil organic carbon content in Ukrainian chernozems has reached extremely low values, leading to degradation of agrophysical properties and resulting in the loss of arable land as a natural resource.
According to various estimates and approaches, Ukraine has between 8 and 15 million hectares of degraded land, of which more than 1.1 million hectares need conservation, 0.315 hectares are low-productive lands, and 0.143 hectares require reclamation (Shimabukuro et al., 2022).
2.2 Methods
The methodological basis of the research includes the provisions and principles of concepts such as sustainable development, achieving LDN, and ecosystem services. The research results reveal various aspects of land use, particularly their degradation. The cause-effect conditions of land degradation, as well as the current state of land use in Ukraine and factors leading to land degradation, have been identified using the dialectical method. Global trends towards LDN are highlighted through the synthesis method.
Three global indicators are used to assess LDN: land cover, land productivity, and soil carbon content. These indicators reflect the land’s ability to provide ecosystem services and require extensive data for determination and analysis (Orr et al., 2017; Khazieva et al., 2023; Prăvălie et al., 2021; Cowie et al., 2018; Cowie et al., 2019; Gonzalez-Roglich et al., 2019). Most data can be obtained through a combination of indicator and questionnaire methods. The indicator method includes determining indicators such as soil erodibility, forest cover, land pollution, soil loss, and moisture content. The questionnaire method involves surveys of farmers, land users, and other stakeholders, as well as remote sensing-based mapping. However, indicators such as land productivity (Net primary productivity indicator, quantitatively described by the Normalized Difference Vegetation Index or Enhanced Vegetation Index) and organic carbon reserves in the soil are difficult to determine (Feng et al., 2022; Casas-Ledón et al., 2023; Liu et al., 2021; Cui et al., 2022; Pei et al., 2013).
Structural-functional analysis enabled the processing of data on quantitative indicators of land degradation in Ukraine and the calculation of indicators of the current and potential levels of arability of Ukraine’s territory by natural-climatic zones (low-eroded, medium-eroded, and highly-eroded). The project level has been determined using the Environmental Noncompliance Index of the current use of cultivated lands, numerically expressed as the ratio of actually cultivated land plots (according to land records) to the total area of land suitable for cultivation. When calculating the project level of arability, the indicator of exceeding the permissible arability is subtracted from the actual level.
The research utilized data from the analytical report “Land policy as a key and integral element of Ukraine’s environmental policy,” prepared as part of the project “Increasing Transparency and Accountability in Grassland Plowing,” implemented in Ukraine by the public organization “Ukrainian Nature Conservation Group” with the support of the National Fund for the Support of Democracy. This document analyzes Ukraine’s situation regarding natural ecosystems as a key factor in forming and maintaining a viable environment, considering land policy as an integral component of Ukraine’s environmental policy.
The concept of the article lies in the scientific justification of an integrated approach to addressing the problem of land degradation through the implementation of the idea of land degradation neutrality (LDN). The main goal is to achieve a balance between the degradation and restoration of land resources through sustainable land resource management and the application of ecosystem approaches. In this regard, it is anticipated that goals such as the conservation of natural capital, improvement of ecosystem services, and effective land-use planning to mitigate the negative impacts of erosion, urbanization, and other degradation processes will be achieved. The study emphasizes the necessity of land planning considering natural-climatic zones, introducing measures to prevent soil degradation and restore eroded lands. An important element of the concept is the use of an ecosystem approach in spatial planning to achieve sustainable development and conserve biodiversity.
3 RESULTS AND DISCUSSION
As a result of the research, it has been found that arable lands in Ukraine cover about 56% of its area (338 thousand km2). The level of arability varies from 15% in Zakarpattia Oblast to more than 69% in Mykolayiv and Zaporizhia Oblasts. On average, the level of arability in the forested lowland zone is about 35%, in the forest-steppe zone – about 59%, and in the steppe zone – about 62%. Having examined the existing state of land use in Ukraine, the authors of the work systematized and obtained data regarding the current and potential levels of arability of the territory according to natural-climatic zones (Figure 1).
[image: Map of Ukraine showing regional ploughness levels in brown and yellow shades, categorized into Steppe, Forest-steppe, and Forested wetland zones. Percentages range from high to low, with a global map highlighting Ukraine's location. Current and greatest ploughness percentages are noted as 45.9% and 45.4% respectively.]FIGURE 1 | Data on the current and potential levels of arability of the territory of Ukraine according to natural-climatic zones [based on the study (Burkovskiy, 2022)].
The data analysis in Figure 1 indicates that the leaders among the regions of Ukraine in terms of the existing level of land arability, considering natural-climatic zones, are Chernihiv Oblast (forested lowland zone – 44.3%), Vinnytsia Oblast (forest-steppe zone – 65.3%), and Kirovohrad Oblast (steppe zone – 72.2%). The same leadership is maintained at the project arability level of 31.4%, 48.0%, and 51.7%, respectively (Burkovskiy, 2022). As indicated in the paper (Burkovskiy, 2022), to maintain the balance of Ukrainian landscapes, some arable land should be conserved or converted to other categories. This means that no agricultural work will be carried out on it; instead, a meadow or forest (depending on the climatic zone) will be established. Over time, soil quality improves, and agricultural work can be resumed here. Project indicators for the conversion of arable land, which is currently used for economic purposes and varies by natural-climatic zones, are given in Figure 2.
[image: Bar graph comparing areas in thousand hectares across five categories: eroded slopes, low-productive land, water protection zones, saline land, and others. Steppe, forest-steppe, and forested lowland zones are differentiated by color. Eroded slopes have the highest area in the steppe zone.]FIGURE 2 | Project indicators for the conversion of arable land to natural forage grassland and afforestation [based on the study (Burkovskiy, 2022)].
Analysis of the data presented in Figure 2, considering the level of arable land degradation by natural-climatic zones, shows a total of 8,629.4 thousand hectares of arable land in Ukraine that should be converted to conservation, including: 3.69 million hectares of arable land on slopes with a steepness of 3° or more; 2.18 million hectares of low-productive land where farming is economically unfeasible – material and energy costs exceed production cost; 1.04 million hectares of arable land in the drainage network; 1.56 million hectares of land located near livestock farms and around settlements for the creation of hayfields and pastures; and 50 thousand hectares of land contaminated with radionuclides and heavy metals (Burkovskiy, 2022).
At the same time, according to the Law of Ukraine “On Land Protection” (The Law of Ukraine, 2024), the following are subject to conservation:
	– land plots used in violation of requirements to protect land from erosion and landslides;
	– arable land with one of the indicators characterizing soil properties that necessitate land conservation by natural-agricultural zones, determined in accordance with the appendix;
	– degraded lands, low-productive lands without steppe, meadow, forest vegetation cover, the economic use of which is ecologically dangerous and economically inefficient, as well as technogenically polluted land plots where it is impossible to obtain ecologically clean products, and the stay of people on these land plots is unsafe for their health;
	– other degraded and low-productivity lands.

A significant part of arable land is exposed to continuous erosion processes that significantly reduce soil organic carbon content, nitrogen, phosphorus, potassium, microelements, etc. The content of organic matter in the fertile soil horizon decreases. An analysis of reference (Pogrischuk, 2017) has shown that erosion causes a significant decrease in soil organic carbon content in eroded lands. In total, about 0.7 million tons of soil organic carbon are lost due to erosion per year. Figure 3 provides information on the area of low-eroded, medium-eroded, and highly-eroded lands.
[image: Three pie charts represent land erosion in different zones. The first chart shows the steppe zone with 54.8% low-eroded, 30.6% medium-eroded, and 14.6% highly-eroded lands. The second chart depicts the forest-steppe zone with 59.6% low-eroded, 33.1% medium-eroded, and 7.3% highly-eroded lands. The third chart illustrates the forested lowland zone with 61.1% low-eroded, 33.3% medium-eroded, and 5.6% highly-eroded lands. Total areas are indicated as 7,282.1, 1,989.5, and 466.5 thousand hectares, respectively, for each zone.]FIGURE 3 | Data on the area of eroded arable land in Ukraine by natural-climatic zones [based on the study (Burkovskiy, 2022)].
Analysis of the data given in Figure 3 shows that the largest land area belongs to low-eroded lands. In particular, the steppe zone accounts for 4,449.36 hectares, the forest-steppe zone – 2,424.94 hectares, and the forest zone – 407.79 hectares (Burkovskiy, 2022). To select effective measures to suppress soil erosion processes based on predetermined trends in their manifestation, it is necessary to analyze the cause-and-effect relationships between the type of soil erosion and the direct/non-direct causes of these erosion processes. For example, arable slopes lead to planar or linear water erosion of soils. Moreover, the intensity of erosion processes depends on factors such as the length and steepness of the slope, mechanical composition of the soil, intensity of precipitation, and agricultural practices. These erosion processes can be minimized or stopped by implementing soil protection and erosion control measures that require additional costs from land users.
In turn, failure to take these measures due to ineffective economic leverage, lack of funds, lack of awareness, or other indirect reasons leads to further soil erosion manifestation. At the same time, these slope areas can be removed from intensive cultivation for hayfields, pastures, or forest lands and used for agricultural, forestry, recreational, or nature conservation purposes. This raises the question–how to make the right decision and choose the best alternative for the use of erosion-hazardous arable land masses? And this choice is not only for the landowner or land user. Given the concept of LDN, which is primarily a political phenomenon, this decision should be envisaged in local, regional, and state policies through SLM and spatial planning.
SLM refers to a process that seeks to integrate the management of land, water, biodiversity, and other natural resources to meet human needs while supporting ecosystem services and livelihoods. Spatial planning is an important component of territorial development management and implies geographical reflection of economic, social, cultural, and environmental policies of society. The purpose of spatial planning is to order and regulate the use of land effectively to meet people’s needs within a particular space.
Given the diversity of natural, social, economic, political and other conditions of territorial development, there are no specific measures to achieve LDN within these territories. On the contrary, the variability of alternatives is as varied as the different types of erosion and the extent of erosion processes, as well as the reasons for their occurrence. It is important to develop a set of measures that will include the full range of possible actions to prevent or minimize erosion processes and/or restore the quality of already eroded soils. Taking into account the above-mentioned factors, the authors of the paper have developed a scheme for organizational-economic support for the effective use of degraded and low-productive agricultural lands in the context of implementing the idea of LDN to maximize the preservation of natural capital (Figure 4).
[image: Flowchart illustrating sustainable land management based on ecosystem services. It includes sections on methods, tools, land database development, land-use planning, and project solutions for a comprehensive plan. Methods focus on land-use regulation and spatial land use. Tools include motivation, assessment, and monitoring. Land database development covers land inventory and soil surveys. Land-use planning involves data analysis and land use type zoning. Project solutions address land composition and legal aspects. The chart emphasizes the institutional basis for conservation and restoration of land bioproductivity.]FIGURE 4 | Structural-logical scheme for organizational-economic support for the effective use of degraded and low-productive agricultural land in the context of implementing the idea of LDN.
The structural-logical scheme for organizational-economic support effectively describes the system of relationships between landowners and land users in the process of using degraded and low-productive agricultural lands. The main methods indicated in the scheme act as the primary means of solving the problems of effectively using agricultural land, particularly degraded and low-productive land. Regulation of land relations creates a balance between the rights of owners and the needs for sustainable use. Land use and conservation administration ensure responsible and balanced use of resources. Sustainable land-use management and spatial land-use management implement an integrated approach aimed at achieving sustainable development and degradation neutrality. Various tools are used in the process of organizational-economic support for the effective use of degraded and low-productive agricultural lands in the context of implementing the idea of LDN. The key ones are motivation, stimulation, awareness training, assessment, organization and monitoring.
Motivation and incentives are used to encourage landowners and land users to participate actively in the rehabilitation of lands and efficient land-use programs. Awareness training plays an important role in developing a conscious and responsible approach to the conservation and use of natural resources. Assessment provides an objective assessment of the effectiveness of measures and makes necessary adjustments to achieve the set objectives. Organization and monitoring are necessary to systematically monitor the execution of plans and to identify new opportunities to optimize processes. These tools interact to create a highly effective mechanism for achieving sustainable agricultural land use and degradation neutrality. Their implementation helps to strike a balance between economic and environmental aspects, thus contributing to sustainable development and the conservation of natural resources for future generations.
The proposed scheme also outlines the main stages of ensuring the effective use of degraded and low-productive agricultural land in the context of implementing the idea of LDN, particularly:
The first stage – land database development – includes an inventory and survey of lands to create a complete and accurate database. This involves collecting and analyzing various information resources such as geodata, soil characteristics, geobotanical indicators, and other relevant data. This process provides a comprehensive overview of the land state and characteristics necessary for the next steps.
The second stage – land-use planning – involves the development of land-use planning strategies based on the data obtained. This stage includes determining the intensity of land use, considering its purpose and needs for rehabilitation. Land zoning is a key element for optimizing land use and ecosystem restoration.
The third stage – project solutions for a comprehensive plan – involves developing a comprehensive plan that integrates the management of degraded and low-productive agricultural lands. This stage identifies optimal solutions to improve the condition and efficient use of these lands, considering sustainable development and the principles of the ecosystem approach.
Each of these stages includes a number of key actions and methods, considering the principles of the ecosystem approach and aimed at achieving LDN.
The proposed scheme can serve as a basis for developing land-use planning strategies for territorial communities. For institutions and organizations competent in the field of land resource management, the scheme can be a tool for the rational allocation and use of degraded lands. And for agricultural enterprises, the scheme may be useful in developing business plans and strategies aimed at the effective use of degraded and low-productive lands, taking into account economic and environmental aspects. In general, the application of the proposed scheme helps to solve problems with soil degradation and achieve the maximum agricultural land potential by planning land use through the prism of the ecosystem approach. This helps to conserve biodiversity, provide food, and stimulate the development of agricultural areas.
Research aimed at achieving land degradation neutrality (LDN) through land-use planning and an ecosystem approach emphasizes the importance of integrating various policies and coordinating stakeholders across different sectors. LDN aims to balance land degradation by ensuring that positive outcomes (through restoration or sustainable practices) compensate for losses, thereby maintaining a stable or improved state of ecosystems.
Key findings from current research indicate that land-use planning plays a crucial role in achieving land degradation neutrality (LDN) by implementing sustainable practices in sectors such as agriculture, forestry, and urban development. For example, agroforestry and green infrastructure in urban areas can enhance both carbon sequestration and land productivity, contributing to the achievement of LDN goals. Effective land-use planning requires the integration of ecological, economic, and social aspects to address complex challenges such as desertification, soil erosion, and loss of biodiversity (Gichenje et al., 2019; Gunawardena et al., 2024).
However, difficulties arise due to the fragmentation of policies and the need for better coordination among stakeholders. Research indicates that a unified political environment is necessary to integrate LDN objectives at all levels of governance—from local to national. There is also a need for improved data collection on soils and land resources, mobilization of financing, and more standardized management structures (Kust et al., 2016).
In the methodological aspect, the research recommends using spatial planning tools and models that allow for the assessment of land degradation risks and tracking restoration efforts. This helps to align LDN actions with other sectors, such as climate resilience and economic development (Briassoulis, 2019; UNCCD/Science-Policy Interface, 2022).
Other studies on land degradation neutrality (LDN) also emphasize the importance of an ecosystem approach and the integration of sustainable land resource management. For example, the study (Haiyan et al., 2022), highlights the need to integrate methods for assessing land degradation neutrality with ecosystem services to achieve global sustainable development goals, noting that LDN can be used as an indicator of effective ecosystem management, particularly through monitoring changes in land cover, land productivity, and soil organic carbon content.
Similarly, the study by Cowie et al. (2018) states that LDN requires consideration of the “ecosystem balance between degradation and restoration” and emphasizes that to achieve LDN, it is necessary to “ensure appropriate indicators for monitoring changes in land condition and developing effective management methods” (Cowie, 2020).
A common way of dealing with soil erosion and rehabilitating already eroded land is agroforestry – a system and technology of land use that combines crop production, livestock farming, horticulture, and forestry within the boundaries of a farm, community, or a certain space (Agroforestry Strategic Framework. Fiscal Years 2019–2024, 2019). Agroforestry is defined as a dynamic and ecologically sound natural resource management method that combines land management with agricultural crops and woody vegetation. In practice, it diversifies and supports production to increase social, economic, and environmental benefits for land users at all levels. Agroforestry is also important for smallholder farmers and other rural residents, as it can improve their food security, income, and health.
Stopping and minimizing soil erosion processes is the first priority of SLM policy to achieve LDN. However, practice shows that the anthropogenic burden on land resources will continue through urbanization, expansion of infrastructure, involvement of land in agricultural production, etc. Therefore, simultaneously with soil conservation measures, it is necessary to rehabilitate already eroded lands with the aim of involving them not only in agricultural use but also for environmental purposes (for example, in an ecological network). The difference between the concept of LDN and existing soil erosion control strategies is that it includes the possibility of balancing unavoidable soil erosion (loss) through measures to restore the biological productivity of land in other areas (reproduction). That is, a state of neutrality is assumed to be achieved due to the absence of net losses of natural capital.
Despite the difficulty of achieving LDN, we still believe that this approach to solving the problem of soil erosion in Ukraine is acceptable. In particular, domestic scientists propose reducing the area of arable land by removing erosion-hazardous and degraded masses, which are recommended to be converted to more environmentally sustainable lands (hayfields, pastures, shrubs, forests, wetlands) through regeneration, conservation, rehabilitation, and transformation. Such views are consistent with the principles for developing measures to balance land degradation: priority for local rehabilitation – rehabilitation should be conducted within the same biogeographical territorial unit; the advantage of rehabilitation over degradation – the rehabilitated land area should exceed the degraded land area, since the degradation process can occur faster than the rehabilitation process, which can take up to several decades; balanced management should be conducted at local, regional, or national levels within the same biophysical or administrative framework within which land-use planning decisions are made, thus contributing to the effective implementation of decisions made.
As a result of Russia’s military aggression, Ukraine suffered massive shelling, missile strikes, radiation pollution, air pollution, littering of territories, as well as problems with unburied or spontaneously buried bodies of the dead and landmines. This led to aggravation of economic, environmental, and social challenges, particularly in the field of food security both in Ukraine and globally. Military operations caused large-scale destruction of Ukraine’s land resources, deterioration of soil quality, and increased degradation processes, resulting in damage to land resources and losses to owners and land users.
In addition to the problems related to land degradation in Ukraine indicated in the study, a full-scale invasion by the Russian Federation began in February 2022, characterized by extensive use of various weapons systems, military equipment, and ammunition, which lead to significant pollution and destruction of the soil cover, intensifying the number and degree of degraded lands. The use of various types of ammunition (high-explosive, armor-piercing, cumulative projectiles, and mines) creates shock waves and explosion products that spread in the environment, causing soil deformation. During the burning, explosion, and detonation of munitions, toxic or hazardous products are formed that pollute the soil.
Unfortunately, a full assessment of the scale and level of land pollution will only be possible after the complete cessation of hostilities. Currently, more than 25% of lands in Ukraine need demining or survey (ZN,UA Mirror of the week, 2024). It should also be noted that a significant territory of Ukraine is currently under occupation: as of the beginning of 2024, Russia occupies a total of 109,000 square kilometers of Ukrainian territory (before the start of full-scale invasion in 2022, about 7% of Ukraine’s territory was occupied (Denkovych, 2024)). Therefore, the study aims to analyze, articulate, and justify the need to introduce measures to achieve LDN, within which the author’s conceptual approach for organizational-economic support for the effective use of degraded and low-productive agricultural land is implemented in the context of LDN implementation.
4 CONCLUSION
Having examined the existing state of land degradation in Ukraine, ways to achieve LDN have been substantiated, particularly through land-use planning based on an ecosystem approach. Based on statistical data and previous studies, indicators of arability have been calculated by natural-climatic zones, as well as the current and potential levels of arability of the territory of Ukraine. Additionally, the areas of eroded arable lands have been determined by the degree of erosion (low-eroded, medium-eroded, and highly-eroded).
The analysis revealed that approximately 8.6 million hectares of arable land in Ukraine require conservation, a significant portion of which is low-productive or erosion-prone. Studies have also found that erosion results in substantial losses of humus, which negatively impacts soil fertility. To prevent further degradation, it is proposed to implement soil protection and anti-erosion measures, as well as to withdraw eroded lands from intensive cultivation, converting them into meadows, pastures, or forested areas.
An important element of sustainable land resource management is the implementation of an ecosystem approach that combines the management of land, water, and biodiversity. Spatial planning should promote the optimal use of land, taking into account ecological, social, and economic needs. Achieving land degradation neutrality requires the development of a set of measures aimed at minimizing or restoring eroded lands.
The proposed scheme for the organizational and economic support of the effective use of degraded and low-productive lands will help balance landowners’ rights with the need for sustainable use. The implementation of this scheme will contribute to increasing land productivity, preserving natural capital, and ensuring the sustainable development of rural areas. Particular attention should be paid to agroforestry, which is an effective method for restoring eroded lands and enhancing productivity through the combination of agricultural and forested areas.
In general, achieving land degradation neutrality requires an integrated approach to land use management at the local, regional, and national levels, which will allow for the preservation of natural resources and ensure long-term ecological stability.
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Introduction: Investigation of the evolutionary trend of habitat quality in karst and rocky desertification zones is crucial for enhancing ecological security and conservation.Methods: Analysis of land use statistics from the years 2000, 2010, and 2020, changes in habitat quality (HQ) and land use (LULC) between 2000 and 2020 were analyzed using Huize County in Yunnan Province as an example. The InVEST and FLUS models were applied to simulate LULC under different scenarios in 2030 and 2040 and assess changes in spatial gradients of habitat quality at each timepoint and factors influencing them.Results: The findings indicated that (1) The predominant land use types are grassland and woodland, experiencing the most significant growth in urbanized areas, the main sources of which are paddy fields and high-cover grassland. (2) The habitat quality between 2000 and 2020 was average and displayed a consistent decline. The spatial distribution pattern indicates low HQ in urban areas, high HQ in the outskirts, low HQ in the south-west, and high HQ in the north-east. In all four scenarios, habitat quality predominantly decreases in urban areas and regions with a dense concentration of built-up land. (3) Habitat quality spatial distribution is primarily affected by the type of land use, with NDVI being the secondary determinant.Discussion: The ecological environment of Huize County must be restored and safeguarded with a focus on ecological priorities and harmonious development scenarios. This study provides methodological lessons for ecorestoration and policymakers in areas of karstic rocky desertification.Keywords: land us, habitat quality, InVEST model, FLUS model, multi-scenario projections, spatial autocorrelation analysis, geodetector
1 INTRODUCTION
Karst desertification is the phenomenon and process of destruction of surface vegetation, soil erosion, and large-scale exposure of bedrock under humid climate conditions, which is disturbed by karstic activity and irrational human activity, resulting in decertified landscapes (Tang et al., 2019). While southwest China has significant ecological protection, there is also a severe rock desertification problem in its southwest karst region, resulting in a decline in ecosystem function and a serious threat to the ecological security of the region (Li T. et al., 2023). Thus, it is imperative that the ecological environment in the southwest karst region is protected and restored to maintain the ecological security of the region (Chang et al., 2024). Various scholars at home and abroad have conducted systematic research on extracting and assessing rocky desertification areas, spatial and temporal evolution patterns, influence mechanisms, restoration, and management to realize the combination of rocky desertification prevention and control (D’Ettorre et al., 2024). According to Guo et al., rocky desertification was examined spatially and temporally by using a spatial remote sensing monitoring model for rocky desertification constructed in Bijie City for the past 35 years, and geographic probes were used to clarify the driving factors for rocky desertification evolution in different periods (Guo et al., 2023); A model proposed by Zhang et al. (2021) can be used to extract information about karst rock desertification directly from complex features within karst areas; A southern karst desertification management area is used as the research object by Wu J. et al. (2022), who combine remote sensing and geographic information system technology to construct a landscape ecological quality model and analyze the ecosystem’s stability, degree of disturbance, and other characteristics quantitatively; As a result of quantitative analysis of the spatial and temporal changes and evolutionary patterns of rocky desertification from 2001 to 2020, Qian et al. (2022) were able to improve the CA-Markov model, and three governance scenarios were developed to predict rocky desertification trends in the next 30 years.
HQ is a crucial metric accustomed to evaluating the ecological conditions of a habitat (Hall et al., 1997), which not only reflects regional biodiversity status but also ecosystem ability to provide ecological services (Gomes et al., 2021; Marques et al., 2020). The quality of habitat is intricately linked to alterations in human economic and social endeavors (Koo et al., 2020; Su et al., 2012). Recent findings indicate that urbanization is the primary driver for alterations in the distribution and quality of habitats (McDonald et al., 2018; Tang et al., 2020; Yang, 2021). As populations agglomerate and human activities intensify, natural habitats are under greater pressure (Chen et al., 2022; Yang et al., 2023). The current research methods used to assess habitat quality at different spatial scales can be divided into two categories: the first is the use of field surveys to determine habitat quality through the development of an indicator system, which is time-consuming and difficult to implement. Secondly, habitat quality can be assessed using models (Terrado et al., 2016). Recent findings indicate that the main models currently utilized for evaluating regional habitat quality include the Social Valuation of Ecosystem Services (SolVES) model (Sherrouse et al., 2014), the HSI model (Bełcik et al., 2019), the MIMES model (Boumans et al., 2015), and the Trade-offs-Habitat Quality (InVEST-HQ) model (Marques et al., 2020). Among them, the InVEST-HQ model is mostly suitable for research areas with poor species distribution data or the coexistence of mixed habitat types. It has the advantages of convenient operation, strong visualization ability, and a more complete theoretical system (Akbari et al., 2021). Scholars at home and abroad mainly make land use dynamic prediction with the help of cellular automata (CA), artificial neural networks (ANN), Markov chains (MC), ANN-CA, PLUS models, and FLUS models (Zhang et al., 2022; Lin et al., 2020; Liu et al., 2017; Liang et al., 2018; Huang et al., 2024a; He et al., 2017), etc., and realize habitat quality prediction and assessment through the InVEST-HQ model. Based on the meta cellular automata model, FLUS (Future Land Use Simulation) model integrates the dual impacts of natural and human activities. Using artificial neural network algorithms, it is optimized and improved. Based on the combination of land use data with different driving force factors, suitability probability maps are generated for various land uses in the study area, as well as predicting the spatial distribution of future land uses with high simulation accuracy by simulating regional land use responses (Chen et al., 2021; Liu et al., 2023). Geostatistical analyses and Geodetector were used to investigate the regional and temporal dynamics of habitat quality (Cai et al., 2023); factor correlation analyses, multivariate linear regressions, and geographically weighted regressions (Liu et al., 2017; Zhu et al., 2020) were used for the profiling of influencing factors and driving mechanisms. Unlike traditional models, which are limited in their ability to examine the effects of each factor individually, Geodetector can quantify the synergistic effects of factors and analyze the spatial distribution because of multiple factors, revealing the interactions among them (Li Y. et al., 2023).
Karst regions are characterized by karst development and high landscape heterogeneity, which makes the interaction between human activities and the ecological environment more complex (Li T. et al., 2023). Karst desertification research currently focuses primarily on macro-level changes in desertification, analysis of its causes, and discussion of preliminary management strategies (Pan et al., 2022; Yang et al., 2022; Chong et al., 2021). And there is a lack of research that focuses on the quality of habitats and the factors that drive them. With mountains and valleys crisscrossing its territory, complex geological structure, and complete stratigraphic development, Huize County is situated in the northeast Yunnan Plateau. As a typical karst area, carbonate rocks are widely distributed, have many caves and landforms, and are distributed in patches (Zhao L. et al., 2023). There is an increasing contradiction between aggravated land rock desertification and socio-economic development, and the environment is in a fragile state. Despite this, little research has been conducted on changes in habitat quality in the region. A few studies have been conducted using the InVEST model to simulate habitat quality in karst regions; however, most have used conventional parameters without considering the threats to habitat quality posed by rocky desertification, resulting in limitations in assessment results and driving factor analyses.
The study employed land use data from Huize County for the years 2000, 2010, and 2020 to deploy the InVEST-HQ model for the computation of habitat quality. By incorporating rocky desertification indicators into the Habitat Quality Assessment System, the specificity of habitat quality assessment can be captured more accurately. The evolution pattern analysis of habitat quality was conducted using the transfer matrix and spatial autocorrelation. Additionally, the FLUS and InVEST-HQ models were employed to predict future habitat quality under various scenarios, considering Huize County’s ecological environment and social development goals. The impacts of different development scenarios on habitat quality were assessed; moreover, Geodetector was utilized to analyze the influencing factors. The purpose of this research is to examine the scientific issues associated with land use and habitat quality in karstic desertification areas, as well as the mechanisms affecting habitat quality. To provide a scientific basis for ecological conservation and sustainable development of the Karst region.
2 MATERIALS
2.1 Study area
Huize County is in Qujing City, within the province of Yunnan, on the eastern part of the Yunnan plateau and near the convergence zone of the Qianxi plateau. The geography displays a variation in elevation, characterized by elevated terrain in the southern division and lower terrain in the northern division, characterized by a step-like descent. The highest elevation of the territory reaches 4,017.3 m, the lowest elevation of 695 m. The territory of the river basin covers an area of 5,854 km2. The mean annual precipitation is 817.7 mm. Vegetation area for central, east Yunnan plateau semi-moist evergreen broad-leaved forests, Yunnan pine forest area, northeast Yunnan plateau high, mid-mountain Yunnan pine forest sheep meadow subarea. Influenced by the topography, climate, soil, and vegetation show significant vertical changes. At the end of 2022, the urban population was 328,800, with a resident population of 791,300 and an urbanization rate of 41.6%. (Figure 1).
[image: Three-panel map illustration. Panel (a) shows a map of China with Huize County marked in red. Panel (b) displays a detailed map of Yunnan Province, highlighting Huize County in orange. Panel (c) depicts Huize with marked areas of rocky desertification in pink and county boundaries in yellow. Scale bars and north arrows are present in each panel.]FIGURE 1 | The study area location. (A) China. (B) Yunnan Province. (C) Huize County.
2.2 Data source and preprocessing
Data on land usage for the years 2000, 2010, and 2020 were utilized in this analysis and acquired through decoding Landsat images with a spatial resolution of 30 m. There were six primary classifications of land use zones: agriculture, forest land, grassland, watersheds, populated land, and unutilized land. Additionally, there were 25 subcategories based on the land use categorization system of the Chinese Academy of Sciences (CAS). Driving factors are derived from the geospatial data cloud and the geographic national condition monitoring platform. Detailed data information and sources are shown in Table 1. The study data were all resampled to 30 m, with uniform raster row and column numbers of 2,820 and 4,596, and processed using ArcGIS 10.8, FLUS V2.4, and InVEST 3.13.0.
TABLE 1 | Data information and sources.
[image: A table with three columns labeled "Data type," "Data name," and "Initial data sources." Under "Basic data," entries are Administrative boundaries, Land use data, and Socio-economic statistics, sourced from Geospatial data cloud and Yunnan Provincial Statistical Yearbook 2022. Under "Driving factor," entries are Environmental conditions and Socio-economic conditions, sourced from Geospatial data cloud, Google Earth Engine, and a monitoring platform.]2.3 Scenario setting
Four scenarios were established to simulate and predict habitat quality in Huize County based on its geo-geomorphology and socio-economic development as follows:
	(1) Natural Development Scenario (NDS): Based on the assumption that the development trend remains unchanged and modeled with the development trend from 2010 to 2020, the transfer category and probability are determined.
	(2) Economic Development Scenario (EDS): In accordance with the report on the draft national economic and social development plan for Huize County for 2024, transforming and upgrading the industry, accelerating the development of culture and tourism, and fostering the growth of the tertiary sector will be promoted. IBM SPSS Statistics 26 was used to calculate the correlation between GDP and each category in Huize County from 2000 to 2020. Statistical findings indicate that the Pearson correlation coefficient between GDP and urban land as well as other building land in Huize County is the highest, equaling 0.995 (P < 0.01). Therefore, it is assumed that within the EDS, urban land and other construction land cannot be transformed into other land categories, and all other land categories can be transformed into urban land and other construction land, and the probability of transferring each land category increases by 50%. The probability of transferring each category is increased by 50%. Urban land and other construction land remain unchanged.
	(3) Ecological priority scenario (EPS): As part of its commitment to ecological environmental protection and restoration, Huize County actively practices the concept “green mountains are golden mountains.” A new round of forest land protection and use planning in Huize County will require coordination of forest land protection and use, as well as clarification of forestry production space and ecological space. In order to guarantee the development of ecological space for woodland and grassland, it is assumed that forested land, shrubland, open woodland, and other forested land can be converted to each other but not to other land categories, and the transfer probability of the four categories of land is increased by 100%, and the transfer probability of urban land, rural residential land, and other construction land is decreased by 50%. The probability of transfer is unchanged for urban land, rural residential land, and other construction land, and the probability of transfer is reduced by 50% for all other land categories.
	(4) Harmonious development scenario (HDS): Ensure that all aspects of coordination are considered, including urban-rural coordination, economic and social coordination, and human-nature coordination. Through the promotion of agricultural modernization, new industrialization, tourism industrialization, and appropriate economic development, it provides economic income such as arable land and construction land while simultaneously protecting natural areas such as forests and grasslands. It is assumed that the transfer probability of forest land and grassland remains unchanged in this scenario, the transfer probability of urban land, rural residential land, and other construction land increases by 25 percent, and the transfer probability of the rest of the land categories decreases by 25 percent (Figure 2).

[image: Flowchart illustrating a land use change model integrating datasets like DEM, slope, precipitation, and others. The FLUS Model uses inputs for multi-scenario forecasting, involving historical LULC and Markov models. It outputs to the InVEST Model for habitat quality prediction, considering threat sources such as roads and population.]FIGURE 2 | Flowchart.
3 METHODS
3.1 Pearson’s correlation coefficient
The Pearson correlation coefficient quantifies the degree of correlation between two variables (Ma et al., 2016), which range from −1 to 1. The study used the coefficient to calculate the degree of correlation by comparing Huize County’s GDP with various categories. Equation 1 gives the calculation formula:
[image: Formula for the Pearson correlation coefficient, \( r \), equals the sum from \( i=1 \) to \( n \) of \((X_i - \bar{X})(Y_i - \bar{Y})\) divided by the square root of the sum from \( i=1 \) to \( n \) of \((X_i - \bar{X})^2\) multiplied by the sum from \( i=1 \) to \( n \) of \((Y_i - \bar{Y})^2\).]
where [image: Please upload the image or provide a URL so I can help generate the alt text for it.] and [image: It seems there might have been an issue with uploading the image. Please try uploading it again or provide a URL. If you have a caption or context for the image, feel free to include that as well.] are the means of the variables [image: Please upload the image you would like me to generate alt text for.] and [image: Sure, please upload the image you would like me to generate alternate text for.] respectively. The closer |r| is to 1, the higher the degree of linear correlation between [image: Please upload the image or provide a URL, and I can help generate the alt text for you.] and [image: It seems you're trying to share an image. Please upload the image file or provide a URL for me to help generate the alt text.]. Negative values indicate negative correlation, positive values indicate positive correlation, and a value of 0 indicates that there is no correlation between the variables.
3.2 Land demand forecasting based on FLUS modeling
The FLUS model integrates land use change and future land use scenario simulation under human activities and natural influences (Chen et al., 2021; Feng et al., 2021). The total probability is calculated by Equation 2:
[image: Equation showing torque calculation: \( TC_k = S_k^4 \times \Omega_k \times Inertia_k \times (1 - se_{k-1}) \).]
where [image: Mathematical notation showing a variable or expression with superscript "t" and subscript "pk."] denotes the probability that image element [image: It seems there was a problem with the image upload. Please try uploading the image again, and I will be glad to help with the alternate text.] is converted from initial land use type [image: It seems like there might have been an issue with uploading your image. Please try uploading it again, and make sure to provide any necessary context if you have a specific caption or description in mind!] to target land type [image: It seems there was an issue with uploading the image. Please try again by clicking the image upload button.] at iteration moment [image: Please upload the image or provide a URL so I can help generate appropriate alt text for it.]; [image: Mathematical notation showing "S" with subscripts "t" and "pk".], [image: Mathematical expression showing a symbol of uppercase Omega with a superscript letter t and the subscript letters p and k.] and [image: Inertia with superscript t and subscript k.] are the suitability probability, neighborhood density and inertia coefficients, respectively; and [image: Mathematical expression displaying "SC" followed by a subscript "k prime minus k".] denotes the conversion cost of converting from initial land use type [image: Please upload the image or provide a URL so I can help generate the alt text.] to target land type [image: It seems there is no image attached. Please upload an image or provide a URL, and I will generate the alternate text for it.].
The study mainly considered 13 driving factors: elevation, slope, slope direction, average annual precipitation, average annual temperature, distance from highway, distance from main road, distance from river, distance from village, distance from county station, distance from township station, gross domestic product, and population, and simulated the 2020 land use data with the 2010 land use data as the base period data and checked the accuracy of the land use data. The Kappa coefficients of natural development, economic development, ecological priority, and harmonious development scenarios are all 0.898. The FOM coefficient is 0.02, indicating that the simulation effect is reasonable, and the model is usable (Liu et al., 2023).
3.3 Habitat quality assessment based on the InVEST model
The habitat quality model combines information on land cover and biodiversity threat factors to generate habitat quality maps. It ranges from 0 to 1, with larger values indicating better habitat quality (Sallustio et al., 2017; Wang et al., 2024). Equation 3 gives the calculation formula:
[image: Equation depicting a formula: \( Q_{xj} = H_j \left[ 1 - \left( \frac{D_{xj}}{D_{xj} + k} \right) \right] \) labeled as equation (3).]
where [image: To provide alt text, please upload the image or share a URL.] denotes the habitat quality of patch group [image: Please upload an image or provide a URL so I can generate the alt text for it. Optionally, you can add a caption for additional context.] in land use type [image: It seems there was an issue with the image upload. Please try uploading it again, and I will be happy to help with the alt text.]; [image: It appears there was an attempt to insert an image, but it seems there's an issue with displaying or processing it. Please upload the image file or provide a URL for the image you would like described.] denotes the total threat level of raster [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] in land use type [image: Please upload the image you want me to generate alt text for by using the image upload feature.]; [image: Please upload the image or provide a URL, and I can help create the alt text for it.] and [image: Please upload the image you would like me to generate alt text for, and I will be happy to help!] are scaling factors (constants), [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is a normalized constant with a defined value of 2.5, and the [image: Please upload the image or provide a URL for me to generate the alternate text.] constant is a half-saturation constant with a defined value of 0.5; and [image: It seems there was an error in uploading the image. Please try uploading the image file again, and I will be glad to help you with the alternate text.] is the habitat suitability of land use type [image: Please upload the image you would like me to generate alt text for.].
Generally, natural environments are the most sensitive to external stressors, followed by semi-artificial environments, which are relatively less sensitive to ecological stressors. The InVEST model divides land use into natural and manmade environments. Construction land, as a typical human-made environment, can reflect the threatening impacts of human activities on habitats, ecological conditions, and biodiversity in a particularly significant way. A certain extent of ecological destruction is also caused by arable land, which is a semi-artificial environment. In addition, bare rock textures and rocky desertification areas are important indicators of rocky desertification. As a result of this analysis, urban land, rural residential land, other construction land, paddy fields, dry land, rocky desertification areas, and bare rock texture were identified as threat factors. Taking into consideration the InVEST Model User Manual and the relevant literature (He et al., 2023; Ji et al., 2023; Huang et al., 2024b), the maximum impact distance and weight of each threat source factor (Table 2) as well as the suitability and sensitivity to stressors of different habitat types (Table 3) were determined. Huize County habitat quality levels were categorized into five categories: low (0.0–0.2), lower (0.2–0.4), medium (0.4–0.6), higher (0.6–0.8) and, high (0.8–1.0).
TABLE 2 | The maximum distance, weight and spatial decay type of threat factors affecting habitat quality.
[image: Table displaying various threat factors with columns for maximum distance in kilometers, weight, and spatial decay type. Paddy field and dry land have a maximum distance of 1 km, weight of 0.2, and linear decay. Urban land has a distance of 5 km, weight of 1, and index decay. Rural residential land spans 3 km, weight 0.8, and index decay. Other construction land covers 6 km, weight 1, and index decay. Bare rock texture has 1 km distance, weight 0.7, and linear decay. Rocky desertification spans 4 km, weight 0.2, and index decay.]TABLE 3 | Habitat suitability and sensitivity of different land use types to threat factors.
[image: Table displaying habitat suitability and threat factors for various land use types. It includes categories like Arable land, Woodland, Grassland, Body of water, Construction land, and Unused land. Each category lists subtypes, such as Paddy field, Woodland, and High-cover grassland, with numerical values representing their suitability and threat levels across factors like Paddy field, Dry land, Urban land, Rural residential land, Other construction land, Bare rock texture, and Rocky desertification.]3.4 Spatial autocorrelation analysis of habitat quality
Spatial autocorrelation reflects the correlation between a specific geographical phenomenon or a specific attribute value on a regional unit and the same phenomenon or attribute value on neighboring regional units. It is a measure of the degree of aggregation of values in a spatial domain, and Moran’s I index is commonly used to measure the interrelationships between spatial elements (Zhang L. et al., 2023). In this study, the spatial distribution characterization of habitat quality in the case site will be carried out using GeoDa 1.22. Spatial autocorrelation is divided into global spatial autocorrelation and local spatial autocorrelation. As shown in Equations 4 and 5, the formulas are as follows:
Global Moran’s I index formula:
[image: Mathematical formula for I: \( I = n \frac{\sum_{i=1}^{n}\sum_{j=1}^{n} W_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n}\sum_{j=1}^{n} W_{ij}}\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) \).]
Local Moran’s I index formula:
[image: Mathematical formula for I sub i equals the fraction of the product of open parenthesis x sub i minus x bar close parenthesis and the summation from j equals 1 to n of W sub i j times open parenthesis x sub j minus x bar close parenthesis, all divided by the summation from j equals 1 to n of open parenthesis x sub j minus x bar close parenthesis squared divided by n.]
where [image: Please upload the image or provide a URL so I can generate the alternate text for it.] refers to the number of detection values; [image: Please upload the image so I can generate the alt text for you.], [image: It appears there was an error in your request, as no image was uploaded. Please upload an image, and I can generate an alternate text for it.] refer to the spatial location of detection values [image: Please upload the image or provide a URL, and I will help generate the alternative text for it.] and [image: Sure, please upload the image you would like me to describe, or provide a URL to it.]; [image: The image shows the letter "W" with subscript "ij," often used to denote elements in a matrix or tensor in mathematical contexts.] refers to the spatial location relationship between [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.] and [image: Please upload the image you would like me to generate alternate text for.]. When they are adjacent, [image: It seems there was an issue with image uploading. Please try uploading the image again or provide a URL. If you need assistance with describing an equation or drawing, let me know!] = 1, and when they are not adjacent, [image: It seems there was an issue with uploading the image. Please try uploading the image file again, or provide a URL and caption if necessary.] = 0.
3.5 Geodetector
Geodetector is a statistical method proposed by Wang et al. to detect spatial heterogeneity and reveal the driving factors behind it. The dependent variable Y (habitat quality) and independent variables X (land use type, precipitation, air temperature, elevation, population density, slope, and NDVI) were selected for analysis. In this study, factor detectors and interaction detectors were used to explore the drivers of spatial differentiation in habitat quality in 2020. Factor probes are measured by the q-value metric. According to Equation 6, the formulas are as follows (Li Y. et al., 2023):
[image: Equation showing \( q = 1 - \frac{\sum_{h=1}^{L} N_h \sigma_h^2}{N \sigma^2} \), labeled as equation six.]
where the value range of q is [0, 1], which indicates the explanatory power of the independent variable [image: Please upload the image or provide a URL, and I will help generate the appropriate alternate text for it.] on the dependent variable [image: I'm sorry, I cannot view the image you uploaded. Please upload it directly here, and I will help create an alt text for you.]. A larger value indicates a stronger explanatory power and vice versa a weaker one; L is the number of partitions or classifications of the factor; [image: I'm unable to process images directly. Please upload the image using the appropriate function or provide a URL so I can assist you in generating the alternate text.] and [image: Please upload the image or provide its URL so I can generate the alternate text for you.] are the number of cells in h and the whole region, respectively; and [image: Mathematical notation showing the variance of a random variable, represented by the lowercase Greek letter sigma squared with a subscript h.] and [image: Symbol for variance, denoted as lowercase sigma squared.] are the variance of the values of [image: Please provide an image or a URL to the image you would like me to describe.] in [image: It seems there was an issue with uploading the image. Please try uploading it again or provide a URL if it's hosted online. You can also add a caption for additional context.] and the whole region, respectively. The interaction detector determines the enhancing or weakening effect of two independent variables on the dependent variable [image: Please upload the image so I can generate the alt text for you.] by identifying the interaction between them. The following five categories are included: nonlinear attenuation, one-factor nonlinear attenuation, two-factor enhancement, independent and nonlinear enhancement.
4 RESULTS
4.1 Characteristics of spatial and temporal land use changes in Huize County
4.1.1 Changes in land-use types
From Figure 3, grassland is the primary land use type in Huize County (50.25%). Forest land is the second most prevalent (32.59%), of which medium-coverage grassland and sparse forest land accounted for the largest proportion, 34.21% and 18.96%, respectively; other land use categories represented a lesser percentage. The area of forest land in Huize County increased the most from 2000 to 2020, amounting to 8,650.89 hm2, followed by construction land and water; grassland area decreased the most, with 10,113 hm2, followed by cropland, with a decrease of 1,564.15 hm2. Spatially, the greatest land use change occurred in the northwestern part of Huize County.
[image: Four maps showing land cover changes in a region from 2000 to 2020. Categories include paddy field, woodland, water bodies, and construction land. Legend includes colors for different land types. Maps illustrate the progression of urbanization and natural land changes over the years.]FIGURE 3 | Land utilization and alterations in Huize County between 2000 and 2020.
4.1.2 Land use transfer matrix
High-cover grassland was the most converted in Huize County from 2000 to 2020, mainly to medium-cover grassland (Figure 4C). This was followed by dryland, primarily transformed into open woodland, high-cover grassland, and medium-cover grassland. With an area of 88,594.56 hm2, medium-cover grassland has been transported in the biggest amount, which is consistent with the transformation trend from 2000 to 2010 (Figure 4A), and the change in land types from 2010 to 2020 is more complicated, indicating that it has been greatly influenced by human activities during this decade (Figure 4B).
[image: Three pie charts display land use changes over different periods. Chart (a) covers 2000–2010, chart (b) 2010–2020, and chart (c) 2000–2020. Each chart uses colors to represent categories such as paddy fields, woodlands, grasslands, urban land, and more. Lines within each chart illustrate transitions between land categories. A legend explains the color key for various land types.]FIGURE 4 | Land use changes in Huize County between 2000 and 2020. (A) 2000–2010. (B) 2010–2020. (C) 2000–2020.
The area of other construction land increased the highest between 2000 and 2020 (93.8%), followed by urban land (69.6%), which was mainly converted to paddy land; other construction land was converted at the fastest rate (79.6%), and it was converted to rural settlements with 171.28 hm2, followed by high-covered grassland, and then converted to medium-covered grassland with 71,026.61 hm2, a decrease of 56.3%. Urban land occupation of paddy fields is concentrated in urban areas; medium-coverage grassland and other construction land occupations of high-coverage grassland are mainly set in urban areas and the northwest, and the distribution of other areas is scattered, which coincides with the rocky desertification area of Huize County (Figure 3).
4.1.3 Forecasts of alterations in land utilization by 2030 and 2040 under different scenarios
Under all four scenarios, as shown in Figure 5, the area of construction land will continue to rise. Under the NDS, reservoirs pits and ponds and other construction land have the largest area of growth, and all other land types have the same trend of change as in 2010–2020, except for other woodland, high-cover grassland, and mudflat; the remaining land types’ trends under the EDS are the same as those under the NDS, except for the decrease of permanent glacier snow; under the EPS, the area of shrub forests and sparse woodlands increases, and the area of shrub forests in 2030 rises to 49,409.64 hm2, and in 2040 further grows up to 49,491.99 hm2, and the area of open forest land increases to 112,961.52 hm2 in 2030 and further increases to 113,693.31 hm2 in 2040, which is consistent with the expectation of environmental prioritization and sustainable development, the area used for urban and other construction slows down, while the area of rural communities grows at a slower rate; in the HDS, the 2030–2040 are all in the same trend as in 2010–2020.
[image: Land use maps depict four scenarios (NDS, EDS, EPS, HDS) for 2030 and 2040. Each map uses color-coding to represent various land types, such as paddy fields, woodlands, grasslands, rivers, urban areas, and more, with a key at the bottom. Maps show geographic distribution and scale bar indicates distances.]FIGURE 5 | Huize County land use simulation prediction map for 2030 and 2040 under several scenarios.
4.2 Features of temporal and spatial variations in Huize County’s habitat quality
4.2.1 Spatial and temporal variations in habitat quality
The average values of habitat quality in Huize County in 2000, 2010, and 2020 were 0.6922, 0.6814, and 0.6795, respectively, with an average level of habitat quality and an overall declining trend. The area of the area with no change in habitat quality level from 2000 to 2020 stands for 88.00%, while the shrinking area accounted for 5.51%, and the expanding area accounted for 6.49%. The area of low habitat quality area increased by 1948.32 hm2, accounting for 0.33%; the area of lower habitat quality area decreased by 632.52 hm2, accounting for 0.1%; the area of medium habitat quality area decreased by 1,721.7 hm2, accounting for 0.29%; the area of higher habitat quality area accounted for the largest share and decreased, with a total decrease of 6,751.53 hm2, accounting for 1.13%; the area of higher habitat quality area increased by 6,991.02 hm2, accounting for an increase of 1.19%. In some parts of the region, high-HQ areas are increasing because of ecological conservation efforts. Nonetheless, the increase in low-HQ areas and the decrease in low, lower, and medium habitat quality areas indicate that the ecological environment is still undergoing serious challenges.
The spatial pattern of habitat quality in Huize County is characterized by the distribution of low in the urban area, high in the periphery, low in the southwest, and high in the northeast (Figure 6). The low habitat quality level is mostly concentrated on urban land, rural settlements, and other construction land. There is a significant decline in habitat quality in the center of the county. This is largely due to the expansion of urban land uses, changing the surrounding land use types, and causing increased harm to habitat. Areas where woodlands and grasslands are located are mostly in high as well as higher levels of habitat quality due to little anthropogenic impacts. Habitat quality declined the most around the urban area from 2000 to 2020 and improved in the northeast. Judging from the changes in habitat quality at all levels, the management of rocky desertification in Huize County has had a slight effect. However, ecological and environmental protection still needs to be strengthened.
[image: Three maps display vegetation changes in a region over time: 2000, 2010, and 2020. Each map includes a zoomed-in area. Below are three corresponding maps showing changes from 2000-2010, 2010-2020, and 2000-2020, using color codes: red for increase, yellow for decline, and green for little change. A scale bar is present.]FIGURE 6 | The habitat quality of Huize and its regional distribution between 2000 and 2020.
4.2.2 Habitat quality projections for 2030 and 2040 under different scenarios
The findings indicate the spatial arrangement of habitat quality in Huize County in 2030–2040 under the four scenarios is basically the same as that in 2000–2020, as depicted in Figure 7. Under the four scenarios of NDS, EDS, EPS, and HDS, the mean habitat quality by 2030 was 0.6793, 0.6793, 0.6800, and 0.6794, respectively, and by 2040 was 0.6787, 0.6784, 0.6798, and 0.6786, respectively. In the different scenarios for 2030 and 2040, there are differences in the average HQ of Huize County. Except for the EPS, habitat quality in urban areas under the other three scenarios showed a decreasing trend. Overall, decreasing HQ level mainly occurs in urban areas and areas where construction land is concentrated under the four scenarios. In contrast, increasing habitat quality mainly occurs in natural ecological habitats such as paddy fields, grasslands, and woodland types. In all four scenarios, the proportion of land area with unchanged habitat quality level is relatively high, above 97%. According to the four scenarios, the mean habitat quality is EPS > HDS > NDS > EDS. The area of low habitat quality areas increased by 0.11% under NDS between 2020 and 2040. This can be attributed to the fact that, under the state of nature, urbanization is continuously expanding the urban area, converting a significant portion of natural habitats, such as croplands and woodlands, into construction areas. Rapid economic development is accompanied by the rapid expansion of industrial scale and accelerated urban expansion, which results in an increase of 0.14% in low habitat quality areas under EDS. Under EPS, the lowest percentage of habitat quality decline occurred, and the highest percentage of habitat quality improvement occurred. The area of low habitat quality decreased, while the areas of higher habitat quality and high habitat quality areas increased by 0.06% and 0.08%, respectively. Under HDS, the area of low habitat quality areas increased by 0.12%, which is in the same range as NDS and EDS. In terms of habitat quality conditions and changes in each scenario, the EPS is most favorable to habitat quality in Wheeler County, and the EDS is the most threatening to habitat quality.
[image: Land maps depict different scenarios (NDS, EDS, EPS, HDS) for the years 2030 and 2040. Each map uses color gradients from red to green, indicating levels from 0.0-0.2 to 0.8-1.0, likely representing varying degrees of a studied metric over the region. North orientation and a scale bar are included.]FIGURE 7 | Huize County’s habitat quality prediction and spatial distribution under several scenarios.
4.2.3 Analysis of spatial autocorrelation in habitat quality
The study established a grid system with cells of 1 km × 1 km and computed the average habitat quality for each individual cell. Spatial autocorrelation analyses were conducted on the distribution patterns of habitat quality in 2000, 2010 and 2020, and the results showed that the global Moran’s I indicator of habitat quality in Huize County was 0.471 (Figure 8A), 0.453 (Figure 8B), and 0.457 (Figure 8C), respectively, which passed the significance test, indicating that habitat quality in Huize County has a strong positive spatial correlation and that the characteristics of spatial aggregation are relatively stable.
[image: Three scatter plots labeled (a) 2000, (b) 2010, and (c) 2020 show the relationship between IQ and EQ. Blue data points cluster around a purple trend line in each plot. Correlation coefficients are 0.473 for 2000, 0.453 for 2010, and 0.457 for 2020, indicating a moderate positive correlation over time.]FIGURE 8 | Huize County global spatial autocorrelation analysis of habitat quality. (A) 2000. (B) 2010. (C) 2020.
The results of LISA cluster plot analysis for Huize County in 2000 (Figure 9A), 2010 (Figure 9B), and 2020 (Figure 9C) show that the habitat quality is categorized into five distinct classifications. It can be concluded that habitat quality in Huize County is characterized by H-H and L-L clusters, which indicates a positive spatial autocorrelation. H-H clusters are found in grassland and woodland areas that have higher habitat quality, and L-L clusters are distributed around the construction land with poorer habitat quality. According to the statistical data on the quantity of grouped grids, it can be concluded that the number of H-L grids increased from 2000 to 2020, and the number of H-H, L-L, and L-H grids continued to decrease.
[image: Three maps showing forest fragmentation in a region for the years 2000 (a), 2010 (b), and 2020 (c). Areas are color-coded: red for high increase (H-I), blue for high decrease (H-D), light red for low increase (L-I), and light blue for low decrease (L-D). Grey indicates areas not significant. A scale bar indicating distances is present on each map.]FIGURE 9 | Localised spatial autocorrelation analysis of habitat quality in Huize County. (A) 2000. (B) 2010. (C) 2020.
4.3 Examination of the variables affecting the spatial variation in Huize County’s habitat quality
4.3.1 Driver one-factor detection analysis
From the factor explanatory power q-value (Figure 10), Land use type (X1) > NDVI (X7) > Elevation (X4) > Air temperature (X3) > Slop (X6) > Population density (X5) > Precipitation (X2) in the degree of explanation of habitat quality of the impact factors in 2020. All results of the habitat quality driver detections passed the significance test of p < 0.05. Among them, 0.701 is the driving force of land use. This is the dominant factor affecting habitat quality, indicating the environmental impact of human activity. There are several land uses that affect habitat quality, including cropland, woodland, grassland, and construction land; areas that contain a higher proportion of woodland and grassland areas are rated higher for habitat quality; Changing areas of construction land are useful indicators of urbanization and expansion, as construction land and cropland may result in a lower habitat quality rating when they are combined with cropland. NDVI follows with a driving force of 0.211. The NDVI can be viewed as a vegetation factor, and vegetation can effectively sequester carbon and reduce soil erosion when growing in a suitable environment. The third strongest driver of habitat quality was elevation at 0.158. This indicates that changes in elevation may lead to changes in temperature, precipitation, and vegetation type. These changes directly affect species distribution and ecosystem structure. Temperature (0.121), slope (0.116), population density (0.113), and precipitation (0.108) were less powerful drivers but also contributed to habitat quality to some extent. Temperature and precipitation influence the growth of vegetation and the control of soil erosion by affecting water supply and evapotranspiration. Slope, which represents topography, can affect habitats by regulating ecological conditions such as surface temperatures and water storage capacities. Density of the population is an important indicator of human activity, and its level is related to the degree to which natural habitats are disturbed by human activity.
[image: Bar chart showing q-values for driving factors X1 to X7. X1 has the highest q-value at 0.70137. Factors X2 to X7 have q-values ranging from 0.10797 to 0.21664, with X3 having the lowest. A legend indicates the q-value is represented by blue bars.]FIGURE 10 | Single factor detection results.
4.3.2 Driver interaction factor detection analysis
As shown in Table 4, the interactions between the drivers were all non-linearly enhanced and two-factor enhanced. Except for the interactions between land use and the other five drivers, population density and slope, population density and NDVI, all factors increased nonlinearly with one another, which were two-way augmented, with the two-way augmentation being greater than the nonlinear augmentation. Land use and other factor drivers exceeded 70%. These findings suggest that the kind of land use is the primary factor influencing the quality of the habitat. The kind of land use and the other variables interact strongly. Temperature ∩ slope (0.466), elevation ∩ slope (0.432), precipitation ∩ elevation (0.408), and elevation ∩ NDVI (0.462) were all greater than 0.4, and the two-factor interactions were enhanced to varying degrees, indicating that habitat quality was affected by multifactor interactions.
TABLE 4 | Habitat quality driver interaction detection results.
[image: Correlation table showing interactions among factors: land use type, precipitation, air temperature, elevation, population density, slope, and NDVI. Asterisks indicate two-factor enhancement. Numeric values indicate correlation coefficients between each pair of factors.]5 DISCUSSION
5.1 Multi-scenario predictive assessment of land change and habitat quality
Although the application of the InVEST-HQ model has been relatively widespread (Chen C. et al., 2023; Yohannes et al., 2021; Yang et al., 2018), it is mostly an assessment of the historical status quo of habitat quality in the whole region, and there is insufficient research on the simulation and prediction of future multi-scenarios, which makes it difficult to meet the needs of spatial governance in the new era. The karst region of eastern Yunnan is an important socio-economic and ecologically fragile area (Zhang et al., 2024a), playing an important role in economic development and biodiversity conservation strategies (Zhao Z. et al., 2023), but literature involving habitat quality in the region is relatively rare, and in-depth exploration of the evolution mechanism and prediction and assessment of habitat quality in the region is needed to provide scientific reference for ecological and environmental governance and protection of karst land, as well as for the promotion of regional high-quality development. In this paper, changes in land use and habitat quality in Huize County from 2000 to 2020 are studied. The future evolution of land use patterns and habitat quality was analyzed in depth using the InVEST and FLUS models. The rate of decline in habitat quality slowed down from 2010 to 2020, and since the comprehensive management project of rocky desertification in karst areas was initiated by the state in 2008, the project has had a significant positive impact on the ecological environment of Huize County. However, despite the progress made in the management of rocky desertification areas in the county, it faces many challenges (Zhang G. et al., 2023). Among them, the large size of the rocky desertification area, coupled with the complex natural conditions and more prominent anthropogenic interference factors, has led to enormous difficulties in governance (Wang Y. et al., 2023). The areas with the worst habitat quality are built-up areas and agricultural areas, which is consistent with the findings of Zhang and Chen (2022) on the pattern of habitat quality in their study area, and the main reason may be that development activities such as land development, resource extraction, and industrial production have caused serious damage and pollution to the ecological environment, which triggered the loss of biodiversity and the decline of environmental quality (Yang H. et al., 2023). To improve habitat quality, land use planning and management must be further strengthened. Scientific and reasonable land use methods need to be adopted to minimize the negative impact on the ecological environment (Chen X. et al., 2023; Ma et al., 2023). The extent of urbanized land increased under all four scenarios projections, indicating that human activities have significantly changed land types through urbanization, agriculture, industry, infrastructure development, tourism development, and policy planning (Luan et al., 2023). Among the four scenarios, compared with the other three scenarios, the EPS is the most effective for ecological restoration in Huize County, which aligns with the findings reported by Fu Shaotong and colleagues (Fu et al., 2024), in which the area of scrub forests and sparse forested land increases and the area of urban and other built-up land decreases due to the fact that the focus is on the preservation and restoration of ecosystem functions in this scenario. This scenario can enhance the ecosystem’s stability and improve resistance to external pressures such as natural disasters and climate change (Zhang et al., 2017). It can also help protect the urban and rural ecological environment. It can promote sustainable development, encourage the establishment of ecological civilizations and sustainable green development, and maximize environmental benefits (Li et al., 2019). Consequently, more eco-friendly land use and resource management policies are adopted to reduce human activity’s impact on the ecosystem (Hou and Wu, 2024; Zhao L. et al., 2023). The biggest factor affecting habitat quality is land use type, which aligns with the discoveries made by Xie and Zhang (2023), as different land use types may bring different ecological pressures and resource utilization methods, which have significant effects on habitat quality. The results suggest that natural factors play a key role in habitat quality. Economic factors also significantly regulate and influence habitat quality (Li et al., 2022). Therefore, the synergistic effect between the factors should be considered comprehensively (Zhang et al., 2024b).
5.2 Research on mechanisms affecting habitat quality
Geodetector, a powerful tool in spatial analysis, was used in this study to effectively reveal geographical heterogeneity and identify differences in factors’ influence on target variables in different regions (Huang et al., 2021; Wang X. et al., 2023). This is done by quantifying the contribution of factors to geographic phenomena and spatial differentiation. In this study, seven factors, namely, land use type, precipitation, air temperature, elevation, population density, slope, and NDVI, were selected as driving factors to explore their influence on HQ in Huize County. These factors can have a direct impact on habitat resource availability and ecological stability, which in turn impacts HQ. Different types of land use can impact HQ in different ways. Land use type showed the strongest influence in single-factor exploration, indicating its significant effect on habitat quality spatial differentiation (Yue et al., 2024). Land use change is often the main driver of habitat quality change, especially in areas strongly disturbed by human activities (Yang L. et al., 2023; Liu et al., 2022). As a secondary influence, NDVI can indicate the health of ecosystems, in which high values are associated with healthy ecosystems. Changes in it can indicate how human activities influence HQ. Topographic factors modulate HQ spatial distribution to some extent. In addition, they may indirectly influence habitat quality by influencing climatic conditions and biodiversity (Ma et al., 2024). In addition to single-factor analyses, Geodetector played a crucial role in revealing interactions between multiple factors and quantifying their effects on spatial distribution (Zhang S. et al., 2023). This is an invaluable advantage in understanding complex geographical processes. It contributes to a more comprehensive understanding of spatial phenomena where multiple factors come together (Guo et al., 2022). In the interaction detection, the interaction between land use type and other factors showed the largest effect. This indicates that the combined effect of land use and natural factors such as climate and topography have a more complex and far-reaching impact on habitat quality. Increasing construction land may fragment habitats, which will increase the effects of precipitation and temperature changes on species survival (Liu et al., 2022). In addition, topographic structures, such as elevation and slope, act in synergy with land use types to influence erosion patterns, runoff patterns, and soil fertility, further complicating habitat management. As a result, interactions between different factors exceed simple additive effects (Guo et al., 2022). They enhance the overall impact of individual factors on HQ through the interplay of complex ecological mechanisms. Different types of land, such as grasslands and woodlands, were considered to improve HQ in the study area. A single factor, precipitation, had a marginal effect on HQ. However, the interaction with elevation had a significant effect, indicating that a number of factors interact to determine HQ (Wang Y. et al., 2023). This interaction effect reflects the synergy between human activities and the natural environment (Zhang et al., 2024a). It further emphasizes the need to consider multiple factors and their interactions comprehensively when carrying out habitat quality assessment and ecological conservation planning to develop more effective conservation strategies (Lv et al., 2023).
5.3 Recommendations for optimizing HQ
5.3.1 Restructuring of land use types
Based on the study on the dynamic evolution of land use and its corresponding changes in habitat quality, decreasing the occupation of ecological land near construction sites, such as forest, grassland, and water, as well as slowing down the expansion of construction sites, will result in higher HQ improvements in the study area (Zhang et al., 2022; Wu Z. et al., 2022). First, optimizing land use can improve the allocation of industrial space more rationally, reducing overreliance on construction land for economic development and minimizing environmental impact (Zhang et al., 2020). Additionally, reducing urban and construction encroachment on ecological land (e.g., forest lands and grasslands) can protect the ecosystem and maintain the region’s ecosystem balance (Zhou et al., 2020). Based on the simulation projections, construction land will continue to grow in all four scenarios between 2030 and 2040. Thus, Huize County should implement the forest and grassland protection system firmly based on strict control of the uncontrolled expansion of construction land in the upcoming round of planning.
5.3.2 Ecological restoration of low HQ areas
Considering areas with low HQ and areas with declining HQ under scenario modeling, adhere to an ecological priority and green development strategy (Song et al., 2020). Mountain, water, forest, field, and lake protection and restoration must be continuously promoted, and a reasonable ratio of construction land to green space and ecological reserves should be allocated for construction in newly renovated built-up areas (Gao et al., 2022). By scientifically dividing functional zones, industrial, residential, and commercial land uses are ensured not to encroach excessively on ecologically sensitive areas, especially wetlands, forests, and other areas with ecological significance (Chen et al., 2024). Green belts, pocket parks, and ecological corridors are among the green infrastructure to be constructed. Providing habitat connectivity, improving air quality, improving quality of life, and enhancing biodiversity in urban areas (Li et al., 2024; Zhang et al., 2024). Establish artificial afforestation and grass plantings to protect slopes, with special attention to drought and barren-resistant plant species, such as Amorpha fruticosa, Caragana korshinskii, Hippophae rhamnoides, etc., The use of biotechnology and engineering techniques enhances the fertility and water retention of soils, as well as promoting the growth of vegetation.
5.4 Limitations
In this study, 13 driving factors were identified, including elevation, slope, and aspect, from natural environmental and socio-economic factors to be input into the FLUS model. The lack of soil data in the model led to it ignoring soil characteristics when predicting land use changes, thereby affecting the accuracy and spatial heterogeneity of land use simulation. This weakened the model’s predictive ability. Soil type is a crucial factor in determining land suitability and influences land use type. In subsequent studies, soil data will be introduced and model parameters adjusted in order to improve the model. It is urgent to implement these improvements, as they will significantly enhance the accuracy and reliability of the model’s predictions and its effectiveness in land resource management and planning.
The InVEST model parameters were determined through parametric references to relevant literature and expert advice (Xiang et al., 2023), which may be applicable and reliable in their original study context. However, environmental conditions, ecological processes, and land-use practices may vary significantly across ecosystems and geographical regions, and the direct application of these parameters may ignore ecological characteristics and geographical differences between regions. This uncertainty may affect decision-makers assessments of ecosystem services and the effectiveness of management options, thus limiting the generalizability and reliability of the model for application in different regions. Future research should incorporate corrections based on this study with field sampling data to improve model parameter localization.
6 CONCLUSION
This paper uses InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) and FLUS (Fuzzy Land Use Simulation) models, which are widely used in environmental research, to compare and analyze the results of the predictive simulation of habitat quality in Huize County under four scenarios and the analysis of influencing factors, and draws the following conclusions:
	(1) Medium-cover grassland and sparse woodland account for the largest proportion of land in Huize County. From 2000 to 2020, the land area designated for construction in Huize County experienced progressive growth. Most urban and rural settlement land is transformed from agricultural land (especially paddy fields). To change the land use structure, the return of farmland to forests, the cultivation of plantations, and the priority protection of grasslands and woodland patches are important measures.
	(2) Huize County habitat quality has seen a consistent decline from 2000 to 2020. The spatial pattern exhibits a distribution characterized by low values in the urban area, high values in the periphery, low values in the southwest, and high values in the northeast. EPS and HDS are the optimal approaches for safeguarding habitat quality. As economic development is being promoted, it is important to take measures to ensure ecological protection, increase investment in ecology, and ensure the sustainability of ecosystems to minimize adverse environmental impacts.
	(3) The habitat quality in Huize County is a complex issue, influenced by a confluence of natural and economic factors. Among these, the type of land use, elevation, and temperature stand out as the three variables with the most significant effects on habitat quality. Understanding and addressing these factors is crucial for any efforts to improve habitat quality. Ensure that land-use planning is strengthened, particularly in areas of mining and agricultural development, to protect ecosystems.
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Introduction: Agricultural green development (AGD) prioritizes sustainable growth by integrating economic, ecological, and social dimensions, aiming to harmonize agricultural economic development with environmental protection and social progress.Methods: This study integrates the three-stage super-efficiency DEA-SBM model with the BP algorithm, creating an advanced DEA-SBM-BP model to overcome the shortcomings of traditional DEA in evaluation and management processes. The study further applies the Dagum Gini coefficient, kernel density estimation (KDE), and Moran’s index to assess and forecast the efficiency and spatiotemporal evolution patterns of green agricultural development in key cities within the Yangtze River Delta.Results: The analysis shows that AGD in the central city of the Yangtze River Delta is overall balanced; however, substantial variations exist among cities within individual provinces. Factors like macroeconomic conditions, workforce quality, and policy support play a crucial role in promoting the efficiency of AGD. Among these, macroeconomic development level has a negative impact, while labor quality and policy support exhibit bidirectional effects. Infrastructure construction, digitalization of agricultural economy, and rural security have become key factors in the green development of modern agriculture. The green advancement of agriculture in the central Yangtze River Delta region typically exhibits a marked clustering effect; however, the local clustering reveals a trend toward dispersed development.Discussion: Despite the emergence of new characteristics in agricultural production in China within the context of high-quality development, differences in resource endowments and economic structures among cities continue to be significant factors contributing to regional imbalances and changes in the agglomeration patterns of agricultural development.Keywords: Yangtze River Delta, AGD efficiency, spatiotemporal evolution, DEA-SBM-BP model, Moran’s index
1 INTRODUCTION
China’s economy has been transformed from a phase of rapid growth to one characterized by high-quality development. The core aspects of high-quality include the vitality, innovation, and competitiveness of the economy, which are closely interconnected with and enhanced by green development. The concept of green development values harmony between humans and nature, takes green, low-carbon cycles as the main principle, and regards the construction of ecological civilization as the basic approach. It not only provides sustainable vitality and innovation for the economy but also serves as one of the sources of economic development. Therefore, developing a comprehensive green, low-carbon, and circular economic system is considered crucial for advancing high-quality development in China. As an important pillar of the Chinese economy, agriculture has historically occupied a crucial position in the national economy, directly affecting the country’s food supply capacity. Ensuring the consistency and growth of agricultural production is essential for maintaining domestic food stability. Simultaneously, agricultural development is closely linked to the economic progress in rural areas of China and the enhancement of farmers’ living standards. Fostering diversified rural economic development through agricultural green development (AGD) is crucial for reducing the urban-rural divide and realizing the aim of establishing a well-off society in all aspects. Currently, China’s agricultural production mode is still dominated by small-scale farming, with small production scale, lagging technological level, and irrational allocation of agricultural resources. This has resulted in increasingly serious challenges, including excessive land exploitation, water resource wastage, and widespread instability in farmers’ incomes, thereby underscoring the significant issues related to agriculture, rural areas, and farmers. The Chinese government pointed out that issues related to agriculture, rural areas, and farmers are fundamental concerns that impact the overall interests of the country and the wellbeing of the people. It is necessary to always prioritize the resolution of agriculture, the countryside, and farmers issues as a top priority of the Party’s work and implement the rural revitalization strategy. Different from the traditional extensive agricultural production, agricultural development under the background of rural revitalization covers various aspects such as improving rural industrial structure, enhancing agricultural productivity, and promoting diversified rural economic development. It emphasizes high-quality AGD and focuses on the coordinated development of agricultural economy, ecological environment, and social progress.
The Yangtze River Delta, located in eastern China, spans four provinces and municipalities including Jiangsu, Anhui, Zhejiang, and Shanghai. It is among the most economically advanced, populous, and culturally influential regions in the country. In recent years, the region has supported the development of precision agriculture through modern agricultural technologies and integrated excellent agricultural resources with tourism, achieving coordinated development of agricultural economy, ecological environment, and social progress. Therefore, a thorough analysis of the characteristics of AGD in the Yangtze River Delta is expected to offer valuable insights for AGD in this region as well as in other regions.
The main contribution of this research: 1) Combining the three-stage super-efficiency DEA-SBM model (3S-DEA-SBM) with the BP algorithm to construct the three-stage super-efficiency DEA-SBM-BP (3S-DEA-SBM-BP) model, thereby addressing the shortcomings of the DEA model in systematic evaluation and proactive management. This model can predict the final efficiency value when determining input planning, facilitating timely adjustment of inputs to ensure that input-output remains in an effective state. 2) From a city perspective, this study utilizes the 3S-DEA-SBM-BP model to minimize the impact of external environmental factors, enabling an objective measurement of AGD efficiency in cities within the Yangtze River Delta. It also predicts development trends for the next 3 years and analyzes the factors influencing AGD. This contributes to managers’ more effective formulation of various policies. 3) Using KDE and the Gini coefficient to simultaneously analyze the differences in AGD efficiency within and between provinces.
2 LITERATURE REVIEW
As an agricultural powerhouse, agricultural development occupies a crucial position in China’s economy. However, the traditional agricultural model has long relied on chemical fertilizers, pesticides, and water resources. Although this reliance has significantly increased yield, it has also led to a series of ecological imbalances, including soil pollution, water eutrophication, and excessive groundwater extraction (Craswell, 2021). Therefore, in order to achieve high-quality economic growth, it is imperative to accelerate the green transformation and upgrading of agriculture. Currently, research on AGD, both domestically and internationally, primarily centers on three areas. The first is the exploration of the definition and rich connotations of AGD. AGD is a comprehensive approach that encompasses organic, circular, low-carbon, ecological, and green agricultural principles, aiming to balance economic, ecological, and social benefits. Its core lies in enhancing resource utilization efficiency through technological innovation and alleviating conflicts between agricultural activities and resources, ecology, and the environment (Liu et al., 2020a). AGD does not aim to safeguard the ecological environment at the expense of agricultural growth but seeks a higher level of ecological protection (Yin et al., 2021), emphasizing minimizing resource consumption and environmental impact while enhancing the quality and efficiency of agricultural products to boost agricultural profitability and social prosperity (Zhou and Wen, 2023). Secondly, based on the definition and connotations of AGD, scholars have developed evaluation indicator systems for assessing the level of AGD from various perspectives. Commonly used indicator dimensions in existing research include fundamental agricultural conditions, agricultural sector composition, potential for agricultural development, and intensity of agricultural inputs (Liu et al., 2020b), as well as economic and social transformation, resource consumption, green production, and living standards (Yao et al., 2023). Additionally, indicators such as social macroeconomic conditions, technological advancement, and resource environment are also considered (Chen and Zhang, 2023). In terms of research methods, while qualitative methods such as subjective weighting (Wei et al., 2018), the Delphi method (Flinzberger et al., 2020), and scenario analysis (Mirzabaev et al., 2022) are widely applied, quantitative methods remain predominant. Quantitative methods like entropy weight method (Gao et al., 2023), grey relational analysis (Meili, 2021), DEA models (Liu et al., 2022), and DEA-Malmquist index (Myeki et al., 2023) are extensively used due to their objectivity. With the advancement of research, scholars have increasingly integrated traditional models with machine learning techniques to develop new evaluation models suited for the era of big data (Shen et al., 2022). Finally, in the context of rural revitalization efforts, research on the driving factors of AGD has garnered increasing attention. Digital economy (Min, 2024), industrial integration (Tian et al., 2024), digital finance (Li et al., 2023), and inclusive finance (Gao et al., 2022) have become significant forces driving AGD. These factors inject new momentum into the green transformation of agriculture by enhancing resource allocation efficiency, optimizing industrial chain structure, and reducing production costs. At the same time, mechanization (Zhu et al., 2022), as a key method for improving agricultural production efficiency, remains an important and indispensable indicator in agricultural green production.
In summary, existing research on AGD provides a solid foundation for this study. In the context of high-quality development, we need to recognize that, although there has been a general enhancement in ecological efficiency and AGD levels in China, the overall level remains relatively low (Liu et al., 2023). Moreover, due to differences in resource endowment and economic development levels, there are significant disparities in the implementation of green development concepts across regions. The eastern region benefits from technological and market advantages, resulting in a significantly higher level of AGD compared to the central and western regions (Sun and Sui, 2023). This disparity poses a significant challenge to the comprehensive advancement of agricultural green transformation in our country. Moreover, it is worth noting that although quantitative methods such as the entropy weight method, grey relational analysis, and data envelopment analysis (DEA) models have been widely applied in practice, each of these methods has its limitations. The entropy weight method and grey relational analysis are highly sensitive to data, which may lead to variability and uncertainty in the results. The DEA model demonstrates flexibility in handling various data types and multiple input and output variables, providing significant advantages compared to other evaluation models (Kyrgiakos et al., 2023). However, DEA typically requires that the number of decision-making units (DMUs) be at least two to three times the sum of the input and output indicators, which limits the choice to a few representative indicators and restricts the systematic nature of the evaluation. Additionally, most existing evaluation models are retrospective analyses, lacking predictive capabilities, and are thus inadequate for effectively guiding current production planning. Therefore, there is an urgent need to develop a comprehensive evaluation model that integrates systematic assessment, broad applicability, and predictive ability.
As one of the most economically influential regions in China, the Yangtze River Delta has become a pioneering and demonstrative area for AGD policies, supported by a robust policy framework. In advancing AGD, the region has established various types of demonstration zones, including ecological agriculture demonstration areas, technology-driven agricultural demonstration areas, and agricultural industry integration demonstration zones (Geng et al., 2020; Cheng and Ren, 2024). Although these demonstration zones are all committed to the goal of AGD, they exhibit significant differences in terms of factor allocation and development pathways. AGD encompasses multiple dimensions, including traditional elements and emerging factors such as agricultural digitization, which complicates the rational allocation of resource inputs. Consequently, how to scientifically plan and reasonably allocate various resource inputs has become an important challenge. The three-stage DEA model is capable of fully considering external environmental impacts under diverse input and output conditions, demonstrating significant advantages in the rational allocation of resources. However, its systematic evaluation and predictive capabilities still have limitations. Therefore, this study constructs a 3S-DEA-SBM-BP model based on DEA and BP algorithms to comprehensively analyze the key impacts of various inputs on AGD. Furthermore, this research employs methods such as kernel density estimation (KDE) and Moran’s index to systematically analyze the efficiency and spatiotemporal evolution characteristics of AGD in the Yangtze River Economic Belt at the urban level. The aim is to deeply analyze the AGD characteristics of cities in the Yangtze River Delta and predict their future development trends, providing valuable guidance for AGD planning in this region and beyond.
3 METHODOLOGY
3.1 Research region
The Yangtze River Delta is located in the eastern part of China, spanning four provinces and municipalities including Jiangsu, Anhui, Zhejiang, and Shanghai. In the year 2019, the Chinese government released the Outline of the Plan for Integrated Regional Development of the Yangtze River Delta. This strategic framework designates a central zone comprising 27 cities, with the specific distribution of cities shown in Figure 1. This central zone serves as the nucleus for radiating and propelling high-quality development throughout the Yangtze River Delta region. Therefore, this study focuses on these 27 cities, employing a 3S-DEA-SBM-BP model to thoroughly explore the features of AGD and forecast future development trends.
[image: Map of Jiangsu Province, China, highlighting research areas in orange and non-research areas with diagonal gray lines. An inset shows Jiangsu's location within China, emphasizing the study region. A scale bar indicates distances.]FIGURE 1 | Research Region. Note: County-level cities under the jurisdiction of each municipality are not specially labeled.
In 2017, China explicitly put forward the idea of establishing a sound economic system for green, low-carbon, and circular development. This provided a clear direction for high-quality development in the new era and presented an extremely important theme for the times. Given that the relevant data for 2023 has not been released, this study has chosen the timeframe from 2017 to 2022 and considers 2023 as the future period.
3.2 Research method
3.2.1 DEA-SBM based on non-expected output
Because the CCR and BCC models assume that inputs and outputs change proportionally, Tone (2001) introduced the SBM model, which allows inputs and outputs to vary in different proportions, existing researches have indicated that the SBM solution values are more in line with actual production efficiency values (Gerami et al., 2022). However, the original SBM model can only measure the efficiency of DMUs with expected outputs, while actual production processes often involve non-expected outputs. Tone (2003) proposed the DEA-SBM model based on non-expected outputs, expanding its applicability. The formula can be expressed as (Equation 1).
[image: Mathematical expression depicting an optimization problem with the objective "min ρ". The formula is a fraction. The numerator is "1 minus (1 over t) times the sum from i equals 1 to t of s sub i over x sub ik". The denominator is "1 plus (1 over c1 plus c2) times the sum of two series: from r equals 1 to c1 of s prime sub r over y sub rk, plus from t equals 1 to c2 of s prime sub t over b sub tk".]
[image: A mathematical optimization problem is shown with constraints. It includes variables \( \lambda \), \( s^- \), \( s^+ \) where \( X\lambda + s^- = x_k \), \( Y\lambda - s^+ = Y_k \), \( B\lambda + s^b = b_k \), and all variables are non-negative.]
In which, [image: Please upload the image or provide a URL for me to generate the alternate text. You can also include a caption for additional context if you like.] is the i-th input of the k-th DMU, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the r-th output of the k-th DMU, b stands for non-expected output, [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the number of expected and non-expected outputs respectively. [image: Please upload the image or provide a URL to it, so I can help generate the alternate text.], [image: Please upload the image you would like me to generate alternate text for.], [image: Please upload the image or provide a URL to generate the alternate text.] represent the input matrices and output matrices and coefficient matrices, while [image: Please upload the image or provide a URL to it, and I will help you generate the alt text.] is input slack variables and [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is output slack variables.
The Super-Efficiency model, with the addition of extra constraints denoted by “ [image: It seems like there's a misunderstanding about adding an image. Please upload the image or provide a URL, and I will help you generate the alt text.]”, calculates the efficiency values of DMUs by utilizing the production frontier formed by other DMUs. Consequently, the Super-Efficiency SBM model can effectively differentiate the efficiency of DMUs that are in the DEA-efficient state. The formula can be expressed as (Equation 2).
[image: Mathematical formula for minimizing ρ. The equation is a fraction with the numerator as \(1 + \frac{1}{t} \sum_{j=1}^{t} \frac{s_{j}^{i}}{x_{ik}}\) and the denominator as \(1 - \frac{1}{c_{1} + c_{2}} \left(\sum_{r=1}^{c_{1}} \frac{s_{r}^{f}}{y_{rk}} + \sum_{t=1}^{c_{2}} \frac{s_{t}^{p}}{b_{tk}}\right)\).]
[image: Mathematical formulation consisting of an optimization problem. It includes constraints represented by two summations, each with an index \( j \neq k \), and conditions involving variables \( x \), \( \lambda \), \( s^- \), and \( s^+ \). The expression \( 1 - \frac{1}{c_1 + c_2} \left( \frac{\sum s^+}{y_{rk}} + \frac{\sum s^-}{b_{rk}} \right) > 0 \) is part of the constraints. The variables \( \lambda \), \( s^- \), and \( s^+ \) are non-negative.]
3.2.2 3S-DEA-SBM based on non-expected outputs
First, the initial efficiency values for each DMU and the slack values for each input indicator are calculated.
Next, the slack variable of the input indicator is used as the dependent variable, and Stochastic Frontier Analysis (SFA) regression is performed with selected external environmental factors as independent variables. The results from this regression are then used to adjust the original inputs. The formula for the SFA regression function is represented in (Equation 3).
[image: Mathematical equation displaying \( s_{ik} = f(Z_{ik}; \beta) + v_{ik} + \mu_{ik} \), labeled as equation (3).]
In which, [image: It looks like there's a problem with the image upload. Please try uploading the image again, and feel free to add any context or details if needed.] represents the slack variable for the i-th input of the k-th DMU. [image: Please upload the image or provide a URL for me to generate the alt text.] represents the environmental variable. [image: If you can provide the image by uploading it, I can help generate alternate text for it.] represents the coefficient to be estimated for the environmental variable. [image: The image shows the mathematical symbol \( v_{ik} \), likely representing a component or element in a matrix or vector notation, where \( i \) and \( k \) are subscript indices.] represents the random disturbance. [image: Mathematical expression of a random variable \( v_{ik} \) following a normal distribution with a mean of zero and a variance of \( \sigma_v^2 \).], [image: The Greek letter "mu" followed by the subscript "i k".] represents the inefficient management.
The maximum likelihood estimation method is utilized to estimate location parameters. During the research, the separation formula proposed by Luo is applied to break down the mixed errors into managerial inefficiency and random error (Luo, 2012). The separation formula is shown as (Equation 4).
[image: Mathematical equation showing expected value estimation: \(\hat{E}(\mu_{ik} + \nu_{ik}) = \frac{\sigma \lambda}{1 + \lambda^2} \left[\frac{\phi(\frac{\lambda \epsilon_i}{\sigma})}{\Phi(\frac{\lambda \epsilon_i}{\sigma})} + \frac{\lambda \epsilon_i}{\sigma}\right]\). Equation number (4) is shown at the end.]
In which, [image: Equation depicting a variable epsilon sub i equals mu sub i k plus nu sub i k.], [image: Mathematical formula showing lambda equals sigma sub mu divided by sigma sub nu.], [image: The equation shows sigma equals the square root of sigma subscript mu squared plus sigma subscript nu squared.];
The final adjusted formula is as follows:
[image: Mathematical equation depicting an update formula: \( X^{A}_k = X_{ik} + \left(\max\left(f(Z_i; \hat{\beta}_k)\right) - f(Z_i; \hat{\beta}_k)\right) + \left(\max(v_k) - v_k\right) \).]
In which, [image: It seems there is no image uploaded. Please upload the image or provide a URL so I can generate the alternate text for you.] (Equation 5) is the adjusted input, while [image: Please upload the image or provide a URL so I can generate the alt text for it.] is the input before adjustment.
Eventually, the efficiency values, adjusted using SFA, are recalculated with the non-expected Output super-efficiency DEA-SBM model.
3.2.3 BP algorithm
The BP algorithm generally consists of three parts: the input layer, the hidden layer, and the output layer. Existing research indicates that a three-layer BP algorithm can approximate any nonlinear function. Therefore, this paper primarily introduces the training process of the three-layer BP algorithm model. The training process of the BP consists of forward propagation of the signal and backward propagation of the error.
Assume that [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the input to the i-th neuron in the input layer. [image: Please upload the image you would like me to generate alternate text for.] and [image: Please upload the image or provide a URL, so I can generate the appropriate alternate text for you.] represent the weights from the hidden layer (h) to the input layer (i) and from the output layer (o) to the hidden layer (h), respectively; [image: Greek letter theta subscript h in italic font.] is the threshold of hidden layer neuron h; f and g respectively represent the activation functions for the hidden layer and the output layer; [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the threshold for the neuron o in the output layer, and [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] represents the output of the o-th neuron in the output layer. The training process of the BP algorithm is as follows:
The process of forward signal propagation (Equations 6, 7). The input [image: Please upload the image or provide a URL for me to generate the alternate text.] and output [image: Please upload the image or provide a URL for it.] of the hidden layer node (h):
[image: Equation depicting the net input to a neuron in a neural network: net sub i equals the sum from h equals one to M of W sub h i multiplied by x sub i plus theta sub h. This is equation six.]
[image: Mathematical expression describing a function \( z_h = f_h(\text{net}_h) = f\left( \sum_{i=1}^{M} W_{hi} x_i + \theta_h \right) \) labeled as equation 7.]
The input [image: Sorry, it seems there was an issue with the image upload. Please try uploading the image again.] and output [image: It seems like there was an error in uploading the image. Please try uploading the image again, or provide a URL. If you have a caption for the image, feel free to include it for additional context.] of the output layer node (O):
[image: The formula represents the net input to a neuron in a neural network. It is given by the sum from \( h = 1 \) to \( q \) of the product of weights \( W_{oh} \) and inputs \( z_h \), plus a bias term \( a_o \).]
[image: Output equation for a neural network: \( y_o = g(\text{net}_o) = g\left(\sum_{h=1}^{q} W_{oh} z_h + a_o\right) \) labeled as equation nine.]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please upload the image you would like me to describe.] is the total number of neurons in the input and hidden layer, respectively (Equations 8, 9).
Error backpropagation. The error E for the n-th sample is given by (Equation 10)
[image: Equation representing the error function: E equals one-half times the sum from o equals one to L of the square of (T sub o minus y sub o), labeled as equation ten.]
where [image: Please upload the image or provide a URL for me to generate the alt text.] is the true value of the o-th neuron, and L denotes the total number of neurons in the output layer.
The total error for N samples is given by:
[image: The formula \( E_x = \sum_{p=1}^{N} E = \frac{1}{2} \sum_{p=1}^{N} \sum_{o=1}^{L} (T_o - y_o)^2 \) represents a summation of squared differences, commonly used for error calculation in neural networks.]
As per (Equation 11), it is evident that the total error is a function of the weights and thresholds in each layer. Therefore, by adjusting the weights and thresholds, the error can be reduced. The adjustment of the correction amount [image: ΔW subscript oh] for the output layer weights is carried out using the gradient descent method. Assuming the learning rate is [image: The Greek letter eta in a stylized, italicized font.], from the partial derivative of (Equation 8), it can be expressed as (Equation 12).
[image: The image shows a mathematical equation: \(\Delta W_{oh} = -\eta \frac{\partial E}{\partial W_{oh}} = -\eta \frac{\partial E}{\partial \text{net}_o} \frac{\partial \text{net}_o}{\partial W_{oh}} = -\eta \frac{\partial E}{\partial \text{net}_o} z_h\). The notation \(\eta\) represents the learning rate, \(E\) is the error, \(W_{oh}\) is the weight, and \(z_h\) is an input value. This is labeled equation twelve.]
Similarly, the formulas for the adjustment of the output layer threshold [image: Delta symbol followed by lowercase letters "a" and "k" in subscript, representing a mathematical change in the variable "a" associated with "k".], the hidden layer weight [image: The expression shows the mathematical notation \(\Delta W_{ij}\), representing the change in weight from neuron \(i\) to neuron \(j\) in the context of neural networks.], and the threshold [image: Triangle symbol followed by theta subscript i.] can be represented as (Equations 13–15).
[image: The image shows a mathematical equation: Δaₒ = -η ∂E/∂aₒ = -η ∂E/∂netₒ, labeled as equation (13).]
[image: Equation showing the change in weight \( \Delta W_{ji} \) as \(-\eta \frac{\partial E}{\partial W_{ji}} = -\eta \frac{\partial E}{\partial \text{net}_j} x_i \), where \(\eta\) is the learning rate, \(E\) is the error, and \(x_i\) is the input.]
[image: The image shows an equation: Δθₕ = -η ∂E/∂θₕ = -η ∂E/∂netₕ, labeled as equation (15).]
Based on the partial derivatives of (Equations 9, 10), this paper defines the local gradient as (Equation 16).
[image: Equation showing the derivative of error with respect to net output. It reads: δₒ = -∂E/∂netₒ = (∂E/∂oₒ)(∂oₒ/∂netₒ) = (Tₒ - yₒ)g'(netₒ) = (Tₒ - yₒ)yₒ(1 - yₒ), labeled as equation 16.]
The formulas for adjusting the output layer weights and thresholds can be simplified to (Equations 17, 18).
[image: Mathematical expression representing the change in work done, denoted as ΔW_cal, equals the product of ρ, δ, and y_h, displayed as equation (17).]
[image: Equation showing the change in parameter \(a_o\) with respect to the error function \(E\): \(\Delta a_o = -\eta \frac{\partial E}{\partial a_o} = \eta \delta_o\), where \(\eta\) is the learning rate and \(\delta_o\) is the error term. Equation numbered (18).]
Likewise, define (Equation 19).
[image: Equation showing the derivation of \(\delta_h\). It includes partial derivatives of the error \(E\) with respect to \(net_h\) and \(y_h\), followed by the derivative of the net function \(f'(net_h)\). Further, \(\delta_h\) is equated to \(\delta_o W_{oh}\), demonstrating its relation to output \(\delta_o\) and weight \(W_{oh}\).]
The formulas for adjusting the hidden layer weights and thresholds can be simplified to (Equations 20, 21):
[image: Mathematical expression showing the weight update formula: ΔWᵢⱼ equals ηδⱼxᵢ, labeled equation twenty.]
[image: Equation showing the change in theta subscript h, represented as delta theta subscript h, equals eta times delta subscript h. It is labeled as equation twenty-one.]
In the BP algorithm, the weights and thresholds between layers are iteratively adjusted based on the error between the output value and the expected value, until the final sample error is achieved or the specified number of iterations is reached. Therefore, the ultimate performance of the BP algorithm is closely related to factors such as the error threshold, learning rate, and number of iterations.
3.2.4 Dagum Gini coefficient
The Gini coefficient is an important indicator used to measure the inequality of income or wealth distribution. In 1997, Dagum decomposed the Gini coefficient into the contributions of intra-group differences, inter-group net differences, and inter-group super-variable density. This method not only effectively identifies the sources of regional disparities but also explains the issues of cross-terms between subgroups. Therefore, the Dagum Gini coefficient is widely used in analyzing regional disparities, and its specific formula is as follows:
Overall Gini coefficient (Equation 22):
[image: Mathematical equation representing total energy \( H \) as the sum of energy components \( H_{uv} \), \( H_{nv} \), and \( H_{f} \), with the reference number twenty-two.]
Intra-regional disparity contribution (Equations 23–26):
[image: Mathematical equation displaying \( H_w = \sum_{j=1}^{m} H_{j} \rho_{j} s_{j} \) with the equation number (23) beside it.]
[image: Mathematical equation showing \( H_{jj} = \frac{1}{2a_1} \sum_{i=1}^{s} \sum_{r=1}^{s} \left| \rho_{ji} - \rho_{hr} \right| \div n_j^2 \). It is equation number 24.]
[image: The formula \( p_j = \frac{o_j}{o} \) is displayed, where \( p_j \) represents a probability ratio, \( o_j \) is a specific outcome, and \( o \) is the total possible outcomes. It is labeled as equation (25).]
[image: Equation \( s_i = \frac{{o_j \alpha_j}}{{n o}} \) labeled as equation (26).]
where [image: Please upload the image or provide a URL so I can generate appropriate alt text for it.] represents the overall mean, [image: Please upload the image or provide a URL, and I will help generate the alt text for it.] is the average efficiency of AGD in region [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to assist you with the alternate text.], [image: It seems there is no image attached. Please upload the image, and I will help you generate the alternate text.] is the number of provinces, [image: It seems there was an error with the image upload. Please try uploading the image again, and I can help you generate the alternate text for it.] represents the number of provinces included in the subgroup [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Please upload the image or provide a URL, and I'll help generate the alternate text for it.] is the number of regions; [image: It seems like you're trying to describe a mathematical expression or notation, not an image. Could you please provide the image or give more context? If you meant something else, let me know how I can assist you!] is the Gini coefficient within provinces.
Inter-regional net value difference contribution (Equations 27–30):
[image: Mathematical equation showing the formula for \( H_{hb} \), which is computed as a double summation from \( j = 2 \) to \( k \) and from \( h = 1 \) to \( k \). The formula inside the summation includes \( H_h(p_js_h + p_ns_j) I_{j h} \). It is labeled as equation (27).]
[image: Mathematical equation showing \( I_{jh} = \frac{s_{jh} - w_{jh}}{s_{jh} + w_{jh}} \), labeled as equation (28).]
[image: Integral equation representing \( s_{\mu} \) as a double integral. The outer integral is from zero to infinity with respect to \( \rho \), and the inner integral is from zero to \( \rho \) with respect to \( x \). The integrand is \( (\rho - x) \). It is labeled as equation (29).]
[image: Equation showing \( w_{i,n} = \int_{0}^{\infty} dF_i(\rho) \int_{0}^{\rho} (\rho - x) dF_j(x) \) with label (30).]
where [image: If you upload the image or provide a URL, I can generate the alt text for you.] is the relative impact of efficiency between regions [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It seems like the content may not have been uploaded correctly. Please provide the image or a URL, and optionally, add a caption for additional context.] represents the difference in efficiency between region [image: It seems there might be an error or incomplete information related to the image you are trying to describe. Please upload the image or provide a URL, and I will help you generate the alternate text.] and [image: Please upload the image, and I can help generate the alt text for you.], and [image: Certainly! Please upload the image or provide a URL, and I will generate the alternate text for it.] can be understood as the mathematical expectation of [image: The image shows a mathematical expression with Greek letters: rho subscript hr minus rho subscript ji greater than zero.] that satisfy the conditions in regions [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: Please upload the image or provide a URL for me to generate the alternate text.].
Super-variable density difference contribution (Equations 31, 32):
[image: Equation displaying \( H_t = H_{H_t}(p_{s_H} + p_{h_S})(1 - H_{H_t}) \).]
[image: Equation showing \( I_{jh} = \frac{{s_{jh} - w_{jh}}}{{s_{jh} + w_{jh}}} \), labeled as equation (32).]
where [image: If you would like me to generate alt text for an image, please upload the image or provide a URL to it.] represents the relative impact between regions [image: It seems there's an issue with uploading the image. Please try again, and ensure the image file is correctly attached. Once it's uploaded, I can help generate the alternate text for you.] and [image: It seems there was an issue with uploading the image. Please try uploading it again, or provide a URL or description if possible.].
3.2.5 Moran’s index
Moran’s Index is a statistical method used to assess the distribution characteristics and interrelationships of spatial data. Its basic assumption is that spatial data values at neighboring locations may exhibit some form of dependence, which diminishes with increasing distance. Moran’s index can be expressed as (Equations 33, 34).
[image: Mathematical formula representing \( I_a \). The equation is a ratio with the numerator as a double summation over indices \( i \) and \( j \) ranging from one to \( n \) of \( w_{ij}(x_i - \bar{x})(x_j - \bar{x}) \), where \( w_{ij} \) are weights, and \( x \) are variables with mean \( \bar{x} \). The denominator is \( S^2 \) multiplied by a double summation over indices \( i \) and \( j \) of \( w_{ij} \). The condition \( i \neq j \) and equation number thirty-three are included.]
[image: Mathematical equation representing \( I_b = \frac{x_i - \bar{x}}{S^2} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x}) \).]
Here, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] and [image: It seems like there was an error in your message regarding the image upload. Please make sure to upload the image file directly or provide a URL, and I will be happy to help generate the alt text for you.] represent the global and local Moran’s Index values, respectively, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents the total number of provinces under investigation, [image: Please upload the image or provide a URL so I can help generate the alt text for it.] and [image: Please upload the image you would like me to generate alternate text for.] denote distinct spatial units, [image: Please upload the image or provide a URL for it. This will help me generate the appropriate alt text.] and [image: Please upload the image or provide the URL, and I can help generate the alt text for it.] indicate the efficiency values of province [image: Please upload the image you would like me to describe, and I will generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.], [image: Certainly! Please upload the image or provide a URL, and if you have any specific context or caption for it, you can include that too.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] indicate the mean and variance, and [image: Please provide the image by uploading it or sharing a URL link, and I will help generate the alternative text for it.] serving as the spatial weight matrix. Global spatial autocorrelation analyzes the overall spatial disparities and clustering patterns of AGD. In contrast, the local Moran’s Index focuses on assessing spatial differences among neighboring cities.
3.3 Indicator selection
3.3.1 AGD efficiency input-output indicators
AGD emphasizes following sustainable development principles in the agricultural production process, fully utilizing advanced science and technology and scientific management methods to foster agricultural sustainability and enhance the ecological environment. Agricultural development has its unique characteristics, requiring inputs of land and labor, whether it is traditional or modern agriculture. In the information age, digital economy and green technology innovation have become two key directions leading the transformation of industrial structures, and they naturally influence agricultural development (Yin and Qiu, 2023). Therefore, this paper takes crop sown area, labor force, mechanization level, green technology innovation, and agricultural digital economy as input indicators. In measuring agricultural digital economy indicators, most studies currently consider broadband penetration rate as a substitute indicator for the digital economy. However, with the rise of short video platforms, mobile phones have become important terminals for many farmers to participate in online transactions due to their convenience and low threshold. Therefore, this paper considers the Internet device penetration rate, including broadband penetration rate and mobile terminal penetration rate, as substitute indicators for the digital economy.
AGD emphasizes the pollution-free and sustainability aspects of production. However, inevitably, agricultural production processes will generate unintended outputs such as environmental pollution. Agricultural pollution sources mainly include chemical fertilizers, pesticides, plastic film residues, and agricultural carbon emission. Existing studies often use the quantities or residues of chemical fertilizers, pesticides, and plastic films as surrogate indicators for solid pollution sources, and they use the quantities of various fossil energy sources as surrogate indicators for carbon emission (Liang and Long, 2015), Although this simplifies the calculation steps, it fails to comprehensively reflect agricultural surface pollution sources. Building upon existing research, this article uses the Entropy Weight-TOPSIS method to comprehensively analyze the residues of chemical fertilizers, pesticides, and plastic films residues to obtain an agricultural pollutant emission index. During the calculation process, residues = actual usage * retention rate, with the retention rates for chemical fertilizers, pesticides, and plastic films chosen as the average rates published by the Chinese Ministry of Agriculture, which are 59.8%, 59.4%, and 18.6%, respectively. Regarding agricultural carbon emission, this paper calculates the total carbon emission for each city based on the usage of nine energy sources: coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas, and natural gas. The IPCC method is employed for estimation, and the carbon emission from agriculture in each city are estimated based on the proportion of the primary industry.
Furthermore, in the context of rural revitalization, promoting AGD has become a policy tool to narrow the rural-urban disparity and promote common prosperity. AGD emphasizes sustainable development and environmental protection. By adopting eco-friendly production methods, enhancing product added value and quality, it drives the diversified development of industries such as organic agriculture, eco-tourism, and rural e-commerce, continuously enriching the connotation of rural economic development, creating more employment opportunities, reducing the development gap between urban and rural areas, and ultimately achieving the goal of common prosperity. Therefore, this paper utilizes the entropy weight-TOPSIS method to select nine representative indicators in three dimensions: affluence, sharing, and sustainability. These dimensions include per capita GDP, per capita disposable income of rural residents, the proportion of local general budget revenue, urban-rural income ratio, security level, unemployed reemployment, the number of higher education graduates, water resources, and greening rate. These indicators are used to comprehensively analyze and obtain the Rural Shared Prosperity Index to measure the promotion of agricultural development on social equity. As a result, the output indicators in this paper are finally determined as agricultural production value, agricultural pollutant emission index, agricultural carbon emission, and Rural Shared Prosperity Index, balancing economic, environmental, and social benefits. The AGD input-output indicator system is shown in Table 1.
TABLE 1 | AGD indicator system.
[image: Table detailing agricultural indicators, including input, output, and undesired outputs. Input indicators: crop planting area, labor force, mechanization level, green technology innovation, and agricultural economy digitalization. Output indicators: agricultural gross output and rural shared prosperity index. Undesired outputs: agricultural pollution emission index and agricultural carbon emissions. Each row includes units, explanations, and calculation methods.]3.3.2 Environmental variables
Environmental variables are defined as factors that affect production efficiency but cannot be managed by the DMU itself. In order to effectively eliminate the interference of the environment, it is necessary to select environmental factors from multiple dimensions. Yan et al. considered per capita regional GDP, the proportion of primary industry to GDP, the proportion of internal expenditure on scientific activities, along with the total value of trade in goods as the most influential external environmental factors affecting food production (Yan et al., 2022). Chen Y et al. believed that external environmental factors can be decomposed into natural, economic, and policy factors, and further proposed that natural factors such as terrain and precipitation, economic factors including level of economic development and dependence on trade, as well as policy factors like the extent of financial support, are important factors influencing green production in the agricultural sector in China (Chen et al., 2021). Since the differences in resource endowments among regions in the Yangtze River Delta are relatively small, this paper was based on economic and policy factors, combined with the characteristics of agricultural production, to choose three indicators—macroeconomic development level, labor quality, and policy support—as environmental variables. Considering the availability of data, this study uses per capita disposable income of rural residents to measure the macroeconomic development level of each region, the ratio of graduates from higher education institutions to the resident population to measure labor quality, and the funding allocated for agriculture, forestry, and water resources in the overall public budget to measure government policy support.
3.4 Data sources
The data sources include the China Statistical Yearbook, Statistical Yearbooks of Various Cities, China Energy Statistical Yearbook, and the Greenhouse Gas Emissions Inventory for the years 2017–2022. In cases where data was missing for certain years, it was imputed using the historical average growth rates. The Rural Shared Prosperity Index, Agricultural Pollution Emission Index, and Carbon Emission were calculated based on the statistical data using the methods introduced earlier in this paper.
4 RESULTS
The 3S-DEA-SBM-BP model constructed in this study first measures the AGD efficiency of each city using the 3S-DEA-SBM model. Subsequently, the AGD efficiency of each city is used as the output set for training the BP algorithm. The technical roadmap of this study is shown in Figure 2.
[image: Flowchart depicting a three-stage DEA-SBM model for analyzing agricultural efficiency. It processes inputs like crop planting area and technology through the model to produce expected outputs while minimizing undesirable ones like pollution. The model uses BP neural network adjustments with factors such as economic development and policy support informing the analysis. Outputs include measurements like technical efficiency and policy suggestions for regional disparity analysis.]FIGURE 2 | The technical roadmap of this study.
4.1 3S-DEA-SBM model
4.1.1 First-stage AGD efficiency
The study first employs the constant returns DEA-SBM model with non-desired outputs to measure the efficiency of AGD, setting the weights of non-desired and desired outputs at a 1:1 ratio. Summarize and organize the calculation results to obtain the average efficiency of AGD in the first stage of each city in Table 3.
From a longitudinal perspective, the average efficiency of AGD in the first stage in the Yangtze River Delta region from 2017 to 2022 ranged from 0.72 to 0.75, showing overall stability. Nonetheless, scale efficiency was marginally greater than pure technical efficiency, suggesting that AGD in the Yangtze River Delta region has reached a relatively mature stage. From a horizontal perspective, there is a significant disparity in the efficiency of AGD among different cities. The lowest efficiency was observed in Tongling City, Anhui Province, with a value of 0.19, while the highest efficiency reached 1, resulting in a gap of 0.81. During the period from 2017 to 2022, there were 13 cities with an efficiency value of 1 under the DEA-SBM model in the first stage. These cities include Anqing, Chuzhou, and Xuancheng in Anhui Province; Changzhou, Nanjing, Nantong, Wuxi, and Yancheng in Jiangsu Province; and Shanghai, as well as Jinhua, Ningbo, Taizhou, and Zhoushan in Zhejiang. This indicates that these 13 cities maintained DEA efficiency over the six-year period. Additionally, there is a considerable difference in AGD efficiency among different provinces. Anhui Province, Jiangsu Province, Shanghai City, and Zhejiang Province had efficiency values of 0.62, 0.87, 1.00, and 0.68, respectively. Shanghai City and Jiangsu Province exhibited higher AGD efficiency, while Anhui Province had relatively lower AGD efficiency.
Due to the large number of DMUs in a DEA-efficient state, this article employs the super-efficiency model to reevaluate the 13 cities that remained DEA-efficient. In the super-efficiency model, Zhoushan City in Zhejiang Province has the highest average efficiency, with a value of 1.99, while Xuancheng in Anhui Province has the lowest, with a value of 1.01. The difference between them is 0.98. This indicates that even among cities in the DEA-effective state, there remains a significant disparity in development efficiency.
The influence of environmental factors and random noise cannot be eliminated by the first-stage DEA model. To achieve a more objective measurement of AGD efficiency, the second stage will utilize a SFA to remove the impact of environmental factors and random noise and obtain more accurate AGD efficiency values.
4.1.2 Second stage SFA analysis
In this stage, the redundant variables of input indicators, measured by the first stage DEA-SBM analysis of AGD efficiency, are taken as the dependent variables. Meanwhile, three environmental variables - macroeconomic development level, labor quality, and policy support - for the years 2017–2022 are selected as independent variables. Logarithmic transformations are applied to the environmental variables, and their impact on the redundant values of various input indicators is calculated using Frontier 4.1 software, as shown in Table 2.
TABLE 2 | Results of SFA.
[image: A data table presents regression coefficients for various variables: cropland area, labor force, mechanization level, green technology innovation, and agricultural economic digitization. Each variable is listed with coefficients \(\beta_0\) through \(\beta_3\), variance \(\sigma^2\), and other statistics \(\gamma\) and LR, alongside significance levels (denoted by *, **, ***). The numbers are followed by standard errors in parentheses. Note indicates significance at the 10%, 5%, and 1% levels.]As shown by the coefficients in Table 2, the regression coefficients of the macroeconomic development level on the slack variables of various inputs are positive, and all are statistically significant at the 1% level. This indicates that an improvement in the macroeconomic development level reduces the efficiency of green agricultural development. This may be because in economically developed regions, social capital and high-quality talent are more likely to flow into the more advanced secondary and tertiary industries, thus reducing the efficiency of green agricultural development. The quality of the labor force is significant at the 1% level for the slack variables of all inputs. However, the regression coefficient of labor quality on the slack of agricultural economic digitalization level is negative, indicating that the improvement in labor quality reduces the slack of agricultural economic digitalization but significantly increases the redundancy of other inputs, such as green technology innovation. This could be because high-quality workers possess higher education levels and technical skills, enabling them to utilize modern agricultural technologies and equipment more effectively, thereby reducing the dependence of agricultural production on inputs like land and labor. The regression coefficient of policy support on the slack of mechanization level is positive and significant at the 1% level, while the coefficients on the slack of other input indicators are negative. The slack variables for crop planting area, labor input, and agricultural economic digitalization pass the 1% significance test. This suggests that policy support increases the slack of mechanization level but significantly reduces the redundancy of other inputs. This phenomenon may be due to government support for agricultural production through subsidies for agricultural machinery. As government attention to agricultural production continues to increase, more capital and management talent flow into the agricultural machinery production sector, leading to resource redundancy.
In summary, the selected environmental variables—macroeconomic development level, labor quality, and policy support—all have statistical impacts on AGD. Among them, the macroeconomic development level has a negative impact, while labor quality and policy support exhibit bidirectional effects.
4.1.3 The third stage of AGD efficiency
Recalculate efficiency for the adjusted input data from the second phase using the steps from the first phase. To further distinguish cities that are not in a DEA efficient state, we referenced the research methods of Yi M et al. and categorized the AGD efficiency of each city into four levels (Yi et al., 2019). Specifically, when the AGD technical efficiency is greater than or equal to 1, it indicates that the development efficiency is in a DEA efficient state, with input-output balance and rational resource allocation. When the technical efficiency is between 0.8 and 1, the development efficiency is in a relatively efficient state, indicating that inputs have not been fully converted into outputs, but balance can be achieved through systematic adjustments. When the technical efficiency is between 0.6 and 0.8, it indicates a weakly efficient DEA state, with inputs and outputs weakly efficient, requiring long-term adjustments to achieve balance. When the overall technical efficiency is less than 0.6, it indicates an inefficient DEA state, with obvious problems in resource allocation, necessitating a reconfiguration of inputs. Summarizing and organizing the calculation results, one can obtain the average efficiency of AGD in the third stage for each city in Table 3, along with a spatial distribution comparison of average efficiency between the first and third stages, as illustrated in Figure 3.
TABLE 3 | The average efficiency of AGD in each city for the first and third stages.
[image: A table displays efficiency metrics for different cities across two stages, first and third. Columns include DMU, TE, PTE, SE, and S-TE for each stage. Values range from 0.19 to 1.18, indicating varying efficiency levels. Note: S-TE represents the third-stage technical efficiency.][image: Maps depicting efficiency of regions in S-TE1 and S-TE3, with color coding: red for ineffective, orange for weak efficiency, yellow for relatively effective, and gray for not researched. Regions include Cheok, Huiping, and Anping. A scale indicates distances in miles.]FIGURE 3 | Comparison of first and third stage super-efficiency values.
From Table 3 and Figure 3, it is evident that the overall AGD efficiency values in the third stage are lower than those in the first stage. This indicates that environmental factors and random disturbances have a significant impact on the measurement of AGD efficiency in the Yangtze River Delta region. Therefore, using SFA to eliminate environmental factors and random disturbances can yield more objective and accurate efficiency values.
From a longitudinal perspective, the average AGD efficiency values in the third stage ranged from 0.63 to 0.71. Compared to the first stage, technical efficiency significantly decreased and exhibited higher fluctuations. The gap between scale efficiency and pure technical efficiency narrowed, indicating that the AGD efficiency in the Yangtze River Delta region is significantly influenced by environmental factors and random disturbances. When viewed across cities, notable disparities in AGD efficiency persist. The lowest value is still found in Tongling City, Anhui Province, with a value of 0.22, while the highest value is 1, resulting in a difference of 0.78. From 2017 to 2022, eight cities achieved an average efficiency value of 1, including Changzhou, Nantong, Wuxi, and Yancheng in Jiangsu Province, as well as Jinhua, Ningbo, Taizhou, and Zhoushan in Zhejiang. The eight cities also had an average efficiency value of 1 in the first stage, indicating their high AGD efficiency, which is attributed to their favorable internal environments. But, Shanghai, Anqing City and Chuzhou City in Anhui Province, Xuanzhou City, and Nanjing City in Jiangsu Province saw their efficiency values drop from 1 in the first stage to 0.34, 0.84, 0.70, 0.88, and 0.74 in the third stage, respectively. This suggests that the previously higher AGD efficiency values of these cities were due to their favorable external environments, such as macroeconomic development and policy support. Among the eight cities in an effective DEA state, Zhoushan City in Zhejiang still had the highest average efficiency value of 1.99, while Taizhou City in Zhejiang had the lowest value at 1.02, resulting in a significant difference in development efficiency. Additionally, there were substantial differences in development efficiency between different provinces in both the first and third stages. The third-stage efficiency values in Anhui, Jiangsu, Shanghai, and Zhejiang were 0.46, 0.86, 0.74, and 0.70, respectively. Compared to the first stage, Zhejiang’s technical efficiency slightly improved, while Anhui, Jiangsu, and Shanghai experienced a decrease in technical efficiency. Among them, Anhui and Shanghai were more affected by external environmental factors.
4.2 BP algorithm
To address the limitations in quantity and the inability to manage in advance between the DEA model DMU and indicators, this paper integrates the BP algorithm to construct a 3S-DEA-SBM-BP model. This model is designed to systematically evaluate the efficiency of AGD.
4.2.1 Construction and training of the BP algorithm
The input set for the BP algorithm in this study, in addition to the input indicators of the DEA model, includes additional input indicators such as agricultural chemicals, energy, resources, environmental protection, security level, export dependence, infrastructure construction, and others. This comprehensive set of inputs aims to measure the economic, environmental, and social aspects of inputs in agricultural production. The input set of BP is shown in Table 4.
TABLE 4 | The input indicators for the BP algorithm.
[image: A table lists input variables with corresponding units and calculation methods. Variables include Cropland Area, Labor Force, Mechanization Level, Green Technology Innovation, and more. Units vary, such as Thousand Hectares and Billion Yuan. Calculation methods describe specifics like actual cropland area and internet device penetration rate.]The efficiency values from the third stage of AGD in each city between 2017 and 2022 serve as the output dataset for the BP algorithm. Of this set, 80% is used as the training set, 10% as the validation set, and 10% as the testing set. After min-max normalization, MATLAB 2016a software is employed for computation. The parameter configurations are as follows: a single-layer BP network architecture featuring 6 nodes in the hidden layer; the activation function connecting the input layer to the hidden layer employs the Logsig function, whereas the output layer utilizes the Purelin function as its activation function. The training function is set as Trainlm, with a learning rate of 0.001, a minimum error goal for training of 1E-07, and a maximum number of iterations set at 15,000.
The final 3S-DEA-SBM-BP model in this study achieved fitting coefficients of 0.94, 0.92, and 0.96 for the test set, validation set, and training set, respectively. The overall fitting coefficient was 0.94, indicating a good overall fit, with all fitting coefficients being above 0.9.
It can be observed that the BP algorithm’s test set predictions closely match the actual efficiency changes in DEA (Figure 4). The BP algorithm’s predicted values range from 0.25 to 2.14, while the actual efficiency values range from 0.32 to 2.00. The overall average error is 0.076, with only one instance of a prediction failure, where DEA-effective status was incorrectly predicted as non-DEA effective. The prediction accuracy is 94%. Therefore, the 3S-DEA-SBM-BP model, combining the 3S-DEA-SBM-BP model and BP algorithm, can effectively measure and predict the AGD efficiency.
[image: Line graph comparing expected and predicted values over 35 units. Red and blue lines represent expected and predicted values respectively, showing variations and occasional overlap throughout the range. Both axes are unlabelled with numeric scales.]FIGURE 4 | Fitting Results of the DEA-SBM-BP Mode. Note: The left side of the dashed line represents the validation set, and the right side represents the test set.
4.2.2 Weight analysis of indicators
The weights at various layers in the BP algorithm can, to some extent, reflect the influence of the input layer on the output layer. However, the weights obtained by training the BP network only represent the relationships between the neurons in the network, and the weights or their products do not fully reflect the decision weights of the input indicators on the output indicators. Therefore, in this paper, leveraging existing research findings, decision weights are measured by calculating the absolute impact coefficients between input and output indicators (Wu et al., 2006). The formula for calculating the absolute impact coefficients is as follows:
Significant Correlation Coefficients (Equation 35):
[image: Mathematical equation representing \( r_{\infty} = \sum_{h=1}^{p} W_h (1 - e^{-W_h \alpha})(1 + e^{-W_h \alpha}) \), labeled as equation 35.]
Correlation Index (Equation 36):
[image: Mathematical formula displaying \( R_{\infty} = \left| (1 - e^{-x \tau}) / (1 + e^{-x \tau}) \right| \) with the equation labeled as number 36.]
Absolute Impact Coefficient (Equation 37):
[image: Equation \( S_{ij} = R_{ij} / \sum_{i=1}^{m} R_{ij} \) is shown, labeled as number 37.]
where i represents the input layer neuron in the BP algorithm, [image: Please upload the image or provide a URL so I can generate the alt text for you.]; j represents the output layer neuron in the BP algorithm, [image: It seems there's an issue with the image upload or link. Please try uploading the image again or provide a URL. You can also add a caption for more context.]; h represents the hidden layer, [image: The mathematical expression is \( h = 1, 2, \ldots, p \), indicating a sequence from one to \( p \) with unspecified intermediate values.]; [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the weight between input layer i and hidden layer h; [image: It seems that there's an issue with the image upload. Please try uploading the image again, and feel free to add any additional context or a caption if needed.] represents the weight between output layer neuron o and hidden layer neuron h; According to the above formula, the weights between each neuron can be calculated to obtain the absolute impact coefficients, i.e., the weights for input indicators on output indicators. Table 5 present the weights and distribution of each input indicator in the 3S-DEA-SBM-BP model constructed in this paper.
TABLE 5 | Input indicator weights.
[image: Table listing various indicators with their corresponding weights and rankings. Indicators include Crop Planting Area, Labor Force, Mechanization Level, Green Technology Innovation, Agricultural Economic Digitization, Agricultural Chemicals, Energy, Resources, Environmental Investment, Safety Guarantee Level, Export Dependence, and Infrastructure Construction. Weights range from 0.0368 to 0.1267, while rankings range from 1 to 12, with Infrastructure Construction ranked highest and Mechanization Level lowest.]From Table 5, it can be observed that infrastructure development, agricultural digitization, and social security are the most influential factors affecting the efficiency of AGD in the Yangtze River Delta region, with weights all above 12%. This is because agriculture is highly vulnerable to natural factors, and robust agricultural infrastructure helps resist the uncertainties posed by these natural elements, ensuring stable expected returns in agricultural production. In the digital age, the “digital+” approach is driving continuous improvements in agriculture, injecting new energy into rural revitalization. Social security represents social equity, which promotes the rational allocation of resources and ensures that everyone has access to high-quality education and training opportunities, thereby enhancing people’s quality of life. Therefore, improvements in infrastructure development, agricultural digitization, and social security significantly enhance agricultural production efficiency. The next most influential factors affecting the efficiency of AGD in the Yangtze River Delta region are environmental investment, crop planting area, and green technology innovation, each with weights exceeding 10%. As AGD emphasizes the convergence of economic, environmental, and social benefits, the impact of environmental investments on AGD efficiency is gradually increasing. It is noteworthy that among the influencing factors of AGD, traditional agricultural elements such as resources, agricultural labor, energy, agrochemicals, and mechanization, all have weights below 5%. This suggests that traditional extensive agriculture is shifting towards sustainable agriculture.
4.3 Regional disparity analysis
The analysis results from earlier sections indicate that AGD efficiency in the Yangtze River Delta region has gradually improved, yet significant disparities persist among cities within the provinces. Taking Anhui Province as an example, during the study period, Chuzhou City exhibited the highest AGD efficiency, reaching 0.87, while Tongling City showed the lowest efficiency at only 0.22, resulting in a difference of 0.65 between them. In comparison, the differences in AGD efficiency between Anhui Province and Jiangsu Province, Shanghai, and Zhejiang Province were 0.46, 0.28, and 0.36, respectively, highlighting a significant imbalance in development within the province. To objectively assess the degree of AGD imbalance among provinces and cities, this study employs the Dagum Gini coefficient to measure both intra-regional and inter-regional inequality.
The comprehensive Gini coefficient for the Yangtze River Delta region remained around 0.3 during the study period, suggesting that AGD in the region is generally balanced. In terms of the contribution rate of the Gini coefficient, the impact of inter-group differences has decreased, while the contribution rates of intra-group differences and hyper-variable density have increased. This indicates that the imbalance in AGD within provinces is a significant factor affecting the further balanced development of the Yangtze River Delta region. Regarding intra-regional differences, the Gini coefficient of Anhui Province has consistently been higher than the overall level of the Yangtze River Delta, with the coefficient approaching 0.4 in several periods, nearing a warning level. This indicates a severe imbalance in AGD within Anhui Province. The Gini coefficient of Zhejiang Province is similar to the overall level of the Yangtze River Delta, indicating a relatively reasonable range. The Gini coefficient of Jiangsu Province has consistently been lower than the overall level, remaining below 0.1 from 2017 to 2019, indicating an absolutely balanced state of AGD within the province (Figure 5A). However, a certain degree of development disparity can incentivize industrial innovation and technological progress, while an absolutely balanced state might limit further industrial upgrading. In recent years, the Gini coefficient of Jiangsu Province has increased slightly, staying below 0.2, which is still within a reasonable range. Regarding inter-regional differences, the Gini coefficient between Zhejiang Province, Jiangsu Province, and Shanghai is relatively small, indicating that these three have achieved good results in collaborative AGD. The gap between Anhui Province and the other three regions is relatively large, but it shows a decreasing trend (Figure 5B).
[image: Panel A shows a stacked bar chart representing the percentage of shipping on the Yangtze River from 2017 to 2021, with a line graph overlaying the chart indicating the growth index. Panel B presents a grouped bar chart displaying comparative data for different year intervals from 2017 to 2021, comparing metrics across regions like Anhui-Jiangsu and Anhui-Shanghai.]FIGURE 5 | (A) The Gini coefficients within provinces and their decomposition. (B) The Gini coefficients among provinces.
4.4 Analysis of spatiotemporal evolution characteristics
4.4.1 Dynamic distribution and evolution characteristics
Based on the calculation results of AGD efficiency, this paper further analyzes the dynamic distribution characteristics of AGD using the KDE, as shown in Figure 6.
[image: Three-dimensional plot depicting kernel density estimation (KDE) over time from 2010 to 2022, with efficiency values ranging from -1 to 3. The graph features curved lines in a gradient from blue to green, highlighting variations in density.]FIGURE 6 | Kernel density curve of AGD efficiency in central cities of the Yangtze river delta.
From 2017 to 2022, the peak height and width of the kernel density curve for AGD efficiency remained relatively stable. Most values were concentrated within a certain range, with relatively few values deviating significantly from the mean, indicating that the absolute differences in AGD across these cities remained generally stable (Figure 6). However, it is noteworthy that the kernel density curve in 2018 exhibited a ‘one main peak and one secondary peak’ bimodal pattern, highlighting a significant polarization trend in AGD in the Yangtze River Delta. Starting from 2019, the secondary peak gradually weakened, indicating a significant reduction in the polarization trend. The reason might be that in 2018, the integration development of the Yangtze River Delta was elevated to a national strategy, but Anhui Province’s economy is relatively lagging, and its industrial structure differs significantly from that of Jiangsu Province, Zhejiang Province, and Shanghai, possibly causing its integration process to be somewhat slower.
4.4.2 Spatial correlation analysis
The preceding analysis reveals notable spatial disparities in AGD across the Yangtze River Delta. Generally, Jiangsu and Zhejiang Provinces demonstrate superior performance, whereas Anhui Province shows comparatively weaker results. To quantitatively examine the spatial distribution differences in AGD within this region, this study utilizes both global and local Moran’s Index for further investigation.
4.4.2.1 Global spatial autocorrelation analysis
Global Moran’s I is a statistical indicator used for spatial data analysis, which measures the overall similarity or correlation of data values in geographic space. The results of the global Moran’s Index analysis are shown in Table 6.
TABLE 6 | Analysis results of global Moran’s index.
[image: A table displaying data from 2017 to 2022, showing columns for Year, Moran's I, Expected Value, Standard Deviation, Z Value, and p-value. Each year lists corresponding statistical values, with p-values marked as significant at the 1% level.]As shown in Table 6, the Global Moran’s I for AGD efficiency from 2017 to 2022 is greater than 0, and all values pass the 1% significance level test. This suggests a robust positive spatial correlation in the distribution of AGD. Specifically, the Global Moran’s I increased from 0.1522 in 2017 to 0.2047 in 2020, suggesting an increasing spatial agglomeration effect in AGD. After 2020, the Global Moran’s I showed a downward trend, but the Z-values and P-values for 2021–2022 remained significant at the 1% level. This indicates that although the spatial agglomeration characteristics of AGD weakened slightly, they still demonstrate a relatively stable pattern. This change could be attributed to the initiation of the Rural Land Contracting Right Transfer Management Measures in 2021, which kickstarted the reform of land “tri-partite” rights, allowing farmers to transfer land contracting rights through leasing, subcontracting, swapping, and transferring to other farmers or agricultural enterprises. While this policy promotes the scale and intensive use of land, it also leads to fragmented land transfers, altering the original land use pattern. Additionally, for environmental protection, the government has designated important ecological functional zones and ecological environment-sensitive areas in the Yangtze River Delta region, prohibiting or restricting agricultural production and construction activities in these areas, resulting in the transfer of agricultural production to non-protected areas and further changing the original agricultural clustering trend.
4.4.2.2 Local spatial autocorrelation analysis
The global spatial Moran’s I reflects the overall spatial clustering characteristics of AGD at a macro level, but it cannot depict the specific spatial connections between individual cities. Therefore, this paper further employs Local Moran’s I to study the spatial connections between cities, and the LISA cluster map of local spatial autocorrelation is shown in Figure 7.
[image: Six maps showing annual changes in a region from 2017 to 2022. Each map uses a color system: gray for non-researched, blue for significant in 0 to 1, orange for significant in 1 to 5, and red for significant areas greater than 5. The maps include a compass rose indicating north.]FIGURE 7 | Local spatial autocorrelation LISA clustering for different years. (A) 2017; (B) 2018; (C) 2019; (D) 2020; (E) 2021; (F) 2022.
From 2017 to 2022, an average of 49% of the cities demonstrated LISA spatial agglomeration each year. However, this mainly manifested as low-low and high-low agglomeration types, with only Changzhou and Zhoushan displaying high-high agglomeration characteristics (Figure 7). This indicates that while the AGD in the core cities of the Yangtze River Delta has formed a relatively stable spatial agglomeration effect, there is still significant room for improvement. In 2017, spatial agglomeration characteristics were primarily observed in the northwest part of the core area of the Yangtze River Delta, such as Chuzhou, Nanjing, and Zhenjiang, as well as in the southeastern part, including Taizhou and Wenzhou. Starting from 2018, the agglomeration phenomenon began to shift toward the central region, with a weakening trend in the northwest, gradually forming a central agglomeration area centered around Huzhou and Xuancheng. However, by 2019, the localized agglomeration characteristics in the core area of the Yangtze River Delta had significantly weakened, with only 33% of the cities showing localized agglomeration effects, and the distribution becoming more scattered. This may be due to the initiation of the Yangtze River Delta Regional Integration Development Plan in 2019, which began to promote the marketization of agricultural land, altering the original land use pattern. Between 2020 and 2021, the agglomeration characteristics in the core area of the Yangtze River Delta significantly strengthened and gradually concentrated in the central region, with Huzhou and Xuancheng reemerging as central agglomeration areas. However, by 2022, the clustering characteristics showed a similar situation to that in 2019. This change may be related to further land reforms and the designation of important ecological function zones, among other policy measures.
In General, the central cities in the Yangtze River Delta have experienced a development trend in the local characteristics of AGD characterized by concentration, dispersion, re-concentration, and re-dispersion. Policy factors such as land reform have been significant factors leading to the local dispersion of AGD. However, it is worth noting that the efficiency of AGD in various cities has shown an improving trend over the years, indicating significant differences in the driving factors between the efficiency and spatial distribution of AGD.
4.5 Efficiency forecast
The 3S-DEA-SBM-BP model constructed in this paper, combining the 3S-DEA-SBM model and the BP algorithm, not only allows for a more systematic evaluation of the development efficiency of various sectors but also addresses the inability of existing evaluation models to be managed proactively. When determining the input plans, the 3S-DEA-SBM-BP can predict the final efficiency values, enabling various sectors to adjust inputs promptly to achieve the optimal input-output state. Since the data for input planning beyond 2023 has not been released, this paper first uses the GM (1,1) model to forecast the inputs for the next 3 years (2023, 2024, and 2025). Subsequently, the constructed 3S-DEA-SBM-BP model is applied to predict the AGD efficiency of each city, aiming to analyze in-depth the changing trends in AGD in the future. Due to space limitations, this paper only presents the fitted and forecasted values of input for Anqing City, Anhui Province, as shown in Figure 8.
[image: Thirteen line graphs showing actual versus predictive values from 2017 to 2025 for various factors including cropland area, labor force, mechanization level, green technology innovation, digitalization of agriculture, and others. Red circles represent actual values, and blue lines with triangles show predictive values. Each graph consistently demonstrates an upward trend with slight variations between actual and predictive data.  ]FIGURE 8 | The forecasted results of input for Anqing City.
The GM (1,1) model demonstrates high accuracy in predicting various inputs, showing consistent trends between predicted and actual values (Figure 8). Additionally, the average relative mean error between the predicted and actual values of each input is only 3.03%. This indicates that the predicted values can effectively reflect the future trends of various agricultural inputs in Anqing City. Based on the projected inputs for agricultural production in each city over the next 3 years, the future AGD efficiency values for each city were forecasted using the three-stage DEA-SBM-BP model constructed in this study. Figure 9 illustrates the projected efficiency values and spatial distribution of AGD in the central cities of the Yangtze River Delta for the years 2023–2025.
[image: Six maps display the spatial distribution of research effectiveness in a region from 2023 to 2025. The top row shows the effectiveness categorization: inefficient, weak, relatively effective, and highly effective, using varying colors. The bottom row indicates research significance, with colors for significance levels L1 to L4. The areas of significance or effectiveness differ each year, and a legend explains the color codes. A scale bar and north arrow are included for reference.]FIGURE 9 | Future trends of AGD and spatial distribution in central cities of the Yangtze River Delta. (A) AGD in 2023; (B) AGD in 2024; (C) AGD in 2025; (D) LISA clustering in 2023; (E) LISA clustering in 2024; (F) LISA clustering in 2025.
Over the next 3 years, the overall efficiency of AGD in the Yangtze River Delta region remains relatively stable. Anhui Province continues to lag behind Jiangsu Province and Zhejiang Province but shows a significant overall improvement trend (Figure 9). Cities such as Hefei and Xuancheng in Anhui Province, as well as Wenzhou and Huzhou in Zhejiang Province, are expected to gradually transition from an inefficient state to a relatively efficient state, with Huzhou projected to reach an efficient state by 2025. Meanwhile, Hangzhou will transition from a relatively efficient state to an efficient state. However, Chizhou City is expected to experience a regression after improving from an inefficient state to a relatively efficient state, indicating the need for further adjustments to various inputs. In the next 3 years, the central cities of the Yangtze River Delta will see a significant enhancement in local agglomeration characteristics, potentially forming new agglomeration centers around Hangzhou and Huzhou.
5 DISCUSSION
The development of agriculture not only directly impacts a nation’s food security and stable economic growth but also serves as a pillar of rural economies, influencing the prosperity and stability of rural societies. This study measures the efficiency of AGD in the central cities of the Yangtze River Delta and analyzes regional differences. The findings indicate that while AGD in the Yangtze River Delta has demonstrated a consistent upward trend in recent years, considerable regional disparities remain. This discovery is consistent with the findings of scholars such as Xu and Lei, although their research primarily focuses on inter-provincial differences and overlooks intra-provincial disparities (Xu and Kong, 2024; Lei and Tu, 2024). Variations in factors such as resource endowments and economic structures among cities contribute to significant regional imbalances in China’s agricultural development, rendering provincial average efficiency values not broadly representative. This study identifies significant imbalances in AGD among cities within Anhui Province, indicating that the overall efficiency value of Anhui Province does not fully represent the development status of cities within the province. This suggests significant shortcomings in previous research, which often substituted provincial efficiency values for regional development levels. Analyzing the development characteristics of individual cities can more comprehensively depict the actual development status of a region. From the viewpoint of the spatiotemporal evolution of AGD, both this study and research by Lu and Xiong confirm significant spatial agglomeration effects in AGD along the Yangtze River Economic Belt (Lu and Xiong, 2023). However, this study finds that there have been drastic changes in the local spatial distribution of AGD between 2019 and 2022. The reasons for this change can be attributed to factors such as the influence of land reform policies. From a methodological perspective, this study and the research by Pan demonstrate the significant impact of external environmental factors on management efficiency (Pan et al., 2022). Efficiency values measured using the 3S-DEA-SBM model are more objective, aiding policymakers in more effectively formulating various policies.
In traditional agricultural production, the area of cultivated crops and labor have always been important factors affecting agricultural productivity. Previous studies have emphasized the feasibility of improving agricultural efficiency by increasing the level of mechanization in agricultural production (Du et al., 2023; Sun et al., 2024). However, this study found that factors such as mechanization level, agricultural chemicals, and energy, which are traditionally relied upon in agriculture, have significantly reduced proportions in agricultural green production. Instead, factors such as infrastructure construction, agricultural economic digitization, and security level have a more significant impact on agricultural production efficiency. This finding aligns with the conclusions of studies by Wang et al., which indicate that in the context of high-quality development, agricultural production exhibits new characteristics (Wang et al., 2024; Wang and Qian, 2024).
While this paper comprehensively evaluates and predicts the efficiency of AGD using the objective 3S-DEA-SBM-BP model and analyzes regional development disparities, it still has two limitations that need to be addressed. Firstly, this study uses the entropy-weighted TOPSIS method to construct the indices of the Rural Shared Prosperity Index and Agricultural Pollution Emission Index. Although the entropy-weighted TOPSIS method has been widely applied in previous research, the indices it generates still have certain limitations. Secondly, this study uses city-level data, which may overlook the efficiency of AGD at the county level. County-level data can more comprehensively reflect the differences within the region.
6 CONCLUSION
This study combines the 3S-DEA-SBM model with BP neural networks to construct an innovative 3S-DEA-SPM-BP model, thereby providing a systematic and quantitative analytical tool for evaluating and predicting the efficiency of AGD in the Yangtze River Delta region. This model not only addresses the limitations of existing DEA models in predictive capability but also offers a new theoretical perspective for the systematic evaluation of AGD. In the research process, a comprehensive analysis of both traditional and emerging factors reveals the critical impacts of infrastructure construction, agricultural economic digitization, and safety levels on AGD. These findings provide important theoretical support and practical references for the digital transformation of agriculture and infrastructure upgrades. Additionally, this study analyzes the spatiotemporal evolution characteristics of AGD in the central cities of the Yangtze River Delta, revealing significant differences between cities in the region, particularly highlighting the pronounced differentiation within Anhui Province. In recent years, changes in policy factors have further exacerbated this trend. Notably, the predictive results of this study indicate that, in the next 3 years, urban disparities in the Yangtze River Delta are expected to narrow, and the characteristics of agglomeration will significantly strengthen, with the potential formation of new agglomeration centers around Hangzhou and Huzhou. This provides policymakers with forward-looking references for optimizing regional agricultural development layouts. Overall, this study not only provides reliable quantitative analysis tools for evaluating and predicting AGD efficiency but also deepens the understanding of the spatiotemporal dynamics of AGD, further advancing the theory and practice of sustainable agricultural development.
The analysis results presented in this paper provide the following recommendations for AGD in various regions.
6.1 Deepen the planning and regional coordination of intelligent agricultural production to promote sustainable agricultural development
Through rational planning of agricultural production activities, farmers can not only improve efficiency and maximize the utilization of agricultural resources but also contribute to the rational allocation and optimal utilization of agricultural resources. This helps farmers better adapt to market changes and reduce the impact of market fluctuations on farmers’ income. In addition, by coordinating agricultural production plans in different regions, resource sharing and complementary advantages can be achieved, further improving the overall efficiency of agricultural production. Advanced planning also provides the government with fundamental data, aiding in the formulation of agricultural policies and the rational allocation of resources to promote the healthy development of the entire agricultural industry. Therefore, the government should actively promote the establishment of agricultural information systems, providing timely and accurating weather, soil, and market information to assist farmers in making informed decision, such as rational crop selection, planting time, and fertilizer level. Simultaneously, the widespread adoption of technologies such as sensors, drones, and big data analysis in agriculture should be vigorously promoted to achieve precision agricultural management.
6.2 Emphasize the persistent and stable macro-control role of external environmental variables in AGD
Different environmental factors have varying effects on the efficiency of AGD. Macro-control of AGD can be achieved by guiding changes in external environmental variables. While the improvement of macroeconomic development level and labor quality may promote the upgrading of the agricultural structure to some extent, it is more likely to divert idle social funds and high-quality talents towards more developed secondary and tertiary industries, affecting the rapid development of the primary industry. Therefore, policy support is needed to guide idle social funds and high-quality talents toward the primary industry, promoting the high-quality development of agriculture.
6.3 Increase investment in infrastructure and innovative technology
During the transition from traditional extensive agriculture to AGD, factors such as infrastructure construction and agricultural economic digitization have a more significant impact. By optimizing transportation, irrigation, and energy infrastructure, the production and distribution of agricultural products become smoother, effectively reducing the transportation and energy costs of agricultural production. Moreover, robust infrastructure creates favorable conditions for increasing the added value of agricultural products. For example, the construction of agricultural processing plants and cold chain logistics systems helps extend the shelf life of agricultural products, enhance their commercialization, and drive agricultural products towards deep processing and high-end markets, thereby increasing farmers’ income. Additionally, by introducing advanced agricultural technology, farmers can achieve precise agricultural management, thereby improving production efficiency, reducing resource wastage, and advancing agriculture towards digitization and intelligence. Therefore, increasing investment in infrastructure and implementing agricultural economic digitization technologies can accelerate the improvement of current agricultural production efficiency and sustainability.
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This study investigated the historical and future trends of urban expansion and its subsequent impact on agricultural land-use in Hawassa city, Ethiopia. A time-series of remote-sensing imageries from Landsat Thematic Mapper for the years 1984, 1990, 2000, and 2010 and Operational Land Imager for 2021 were used to extract the LULC information from the study area. Seven major land-cover classes’ waterbody, built-up, agricultural land, wetland, grassland, woody vegetation, and agroforestry were identified with visual image interpretation along with supervised image classification techniques using the maximum-likelihood algorithm for the study years. The urban and agricultural lands were then extracted from the original LULC data to quantify the extent, rates, and number of area conversion between the two. The Land Change Modeler module of TerrSet software was used to predict the spatial extents of built-up and agricultural lands in 2030 and 2050. The results showed that there have been significant changes between the LULC types in Hawassa city within the past 37 years, from which built-up and agricultural land have shown the most prevalent changes. It showed that built-up land has increased from 584.73 ha in 1,984–3,939.03 ha in 2021, representing a 573.65% increase at an annual growth rate of 15.50%. However, agricultural land decreased from 8,324.64 ha to 3,595.68 ha in the respective years, with a 56.81% decrease at a rate of −1.54% each year. A total of 3,148.74 ha (37.82%) of agricultural land was converted into built-up land within the past 37 years (85.10 ha per year, a rate of 1.02%. The built-up land is projected to increase to 5,009.85 ha and 6,794.73 ha from 2021 to 2030 and 2050, with annual growth rates of 3.02% and 2.50%, respectively. In the same years, agricultural land will decrease to 2,849.58 ha and 2033.46 ha by 2.31% and 1.50% annually, respectively, from which 64.76 ha (1.80%) and 48.41 ha (1.35%) will be converted into built-up land, respectively. Future planning and development in the city should consider the rapid increase in built-up land toward agricultural land areas and develop appropriate adaptation mechanisms for the local community, which is highly dependent on agriculture.
Keywords: agricultural land loss, land change modeler, Landsat, remote sensing, urban expansion

1 INTRODUCTION
The dynamics of land use and land cover change (LULCC) are crucial drivers of global environmental change, contributing to ecological degradation, loss of biodiversity, and alterations in local climates and natural landscapes (Rimal et al., 2018). LULCC involves the conversion between different types of land use and stems from complex interactions between human activities and the natural environment. It significantly influences ecosystem processes, biological cycles, and biodiversity (Hamad et al., 2018; Hyandye and Martz, 2017; Liping et al., 2018).
Urbanization, a prominent and accelerating trend worldwide, is one of the most significant anthropogenic activities affecting LULCC (UN-DESA, 2015; Shi et al., 2016; Wu et al., 2010; Roy et al., 2021). This transformation involves a shift from rural to urban culture, characterized by an increase in urban populations, expansion of urban built environments, and establishment of urban landscapes, leading to changes in social structures and lifestyles (Chaolin, 2020; UN-DESA, 2019). However, there is no common universal definition of “urban,” as countries adopt different criteria to categorize urban and rural areas. As outlined by UN-DESA (2019) and Chaolin (2020), the level of urban expansion is often represented as the percentage of the population residing in urban areas, a statistic that has grown significantly over time. For instance, in 1950, approximately 29.6% of the global population lived in urban areas, which increased to 50.15% by 2007 and is projected to reach about 6.68 billion by 2050 (UN-DESA, 2019). UN-Habitat (2020) anticipates that within the next decade, all regions will experience increased urbanization, although highly urbanized regions will see slower growth. Less developed regions, particularly East Asia, South Asia, and Africa, are expected to witness the most substantial increases in urban populations, with India, China, and Nigeria projected to account for 35% of the global urban population increase from 2018 to 2050.
The patterns of urban expansion observed globally, characterized by rapid urbanization driven by economic growth, rural-to-urban migration, and infrastructural development; resonate closely with the situation in Hawassa City, where similar dynamics are at play. As seen in many developing regions, the influx of populations into urban areas in Ethiopia reflects global trends of urban agglomeration, which often lead to the conversion of agricultural lands into urban spaces, socio-economic stress, and cultural shifts. The rapid growth of urban populations has led to significant land consumption for urban development, resulting in the loss of prime agricultural land and posing challenges to food security (Pandey & Seto, 2015; Barati et al., 2015; Roy et al., 2022). In Ethiopia, approximately 80% of the rural population relies on agriculture for their livelihoods, constituting over 50% of the gross domestic product (GDP) and engaging more than 85% of the labor force, generating over 95% of foreign exchange earnings (Ayele and Tarekegn, 2020). However, agricultural land in peri-urban areas is increasingly being transformed into built environments due to horizontal urban expansion, adversely affecting land use value (Admasu et al., 2019; Ayele and Tarekegn, 2020). This trend is particularly evident in major Ethiopian cities such as Addis Ababa, Hawassa, Bahir Dar, and Mekele, where demand for urban land continues to rise (Dires, 2016; Roy et al., 2023a).
For effective sustainable development and natural resource management, timely and accurate information on land-use change patterns and urban expansion trends is essential (Das and Angadi, 2021). Remote sensing (RS) and Geographic Information Systems (GIS) are advanced technologies and essential for the comprehensive assessment, evaluation, and visualization of the spatial heterogeneity of urban environmental (ubham Roy a, 2022). These technologies provide critical historical datasets and depict an urban expansion trend that enables the decision makers to understand the environmental transformations and its impacts to prepare well informed monitoring plan alternatives (Lambin et al., 2001; Wu et al., 2016; Roy et al., 2023b). Multi-temporal satellite imagery has been used to analyze urban expansion patterns and model future changes (Pandey & Seto, 2015; Rimal et al., 2018; Zhong et al., 2011), offering valuable insights for urban planners and land use specialists regarding potential landscape alterations (Wu et al., 2006). Among various predictive models, the integration of the Land Change Modeler (LCM) with cellular automata (CA) and Markov chain models (CA-Markov) has proven to be particularly effective for simulating urban growth trends (Leta et al., 2021; Mohamed and Worku, 2020; Rimal et al., 2018; Sarkar and Chouhan, 2019).
This study investigates the historical trends of LULCC and urbanization in Hawassa City and their implications for agricultural land use. Using a time series of Landsat images from 1984 to 2021, this research also forecasts urban and agricultural land areas for 2030 and 2050 using GIS and RS analysis tools. Currently, LULCC poses significant environmental challenges. The rapid expansion of urban areas into agricultural and non-agricultural lands alters the physical landscape and contributes to complex social and economic issues. As one of the key aspects of LULCC, urbanization is an inevitable component of economic development, fundamentally changing the physical patterns of the environment (Barow et al., 2019; Belay, 2014; Majumder et al., 2023).
In Ethiopia, uncontrolled and illegal settlements in peri-urban areas are on the rise, leading to horizontal urban expansion and the consequent loss of fertile agricultural land. The increasing urban population in major cities such as Addis Ababa, Bahir Dar, Hawassa, and Mekele has intensified the demand for land for housing and infrastructure purposes in peri-urban areas, resulting in the transformation of agricultural land into urbanized spaces (Dires, 2016; Roy et al., 2024a; b). For example, Hawassa city has experienced rapid urbanization since its establishment; it expanded from approximately 48 ha in 1959 to over 4,044 ha in 2006, accompanied by a significant increase in population, estimated to be about 281,158 by 2015 (Admasu, 2015). This swift urbanization necessitates new urban land for various developments, including residential, commercial, institutional, industrial, and infrastructural projects, thereby prompting further land-use dynamics (Admasu, 2015).
In Ethiopia context as urban areas expand into previously fertile agricultural and non-agricultural lands, the transformation disrupts traditional land uses and exacerbates social issues, such as psychological distress and the erosion of cultural practices, as urban lifestyles increasingly encroach upon rural traditions. This growth, despite being a byproduct of economic development, threatens food security, exacerbates conflicts over land ownership, increasing migration towards urban areas in search of better economic opportunities and livelihood opportunities by reducing available cropland and limiting livestock rearing. Consequently, the Ethiopian experience underscores the urgent need for balanced urban planning that considers both development goals and sustainability to mitigate the adverse impacts of urban expansion. Consequently, land previously used for agricultural production and livestock farming is increasingly being converted for urban use. This shift exposes farmers to a range of challenges, including social issues like psychological distress, loss of traditional cultural practices due to the encroachment of urban culture, and economic setbacks stemming from reduced cropland availability, limited opportunities for livestock rearing, and diminished income sources (Dires, 2016).
Existing studies on urban expansion in Hawassa City have primarily focused on the spatial and economic aspects of growth, often overlooking the nuanced effects on agricultural land use and the social implications for local communities (Abate et al., 2021; Desta and Zeleke, 2020). While research has highlighted the quantitative loss of agricultural land due to urban encroachment, there is a lack of comprehensive analysis on the qualitative consequences, such as the impact on food security, traditional livelihoods, and local cultural practices, which are crucial for understanding the broader implications of urban sprawl (Mekuriaw and Gokcekus, 2019). By exploring these dimensions, my work aims to fill this critical gap, providing a holistic perspective that connects urban development with agricultural sustainability and social wellbeing, thereby enhancing stakeholders’ understanding and informing better land-use policies in the context of Ethiopia’s rapid urbanization.
Thus, knowledge of historical trends and rates of change among the different land cover types in the study area is essential for informed future planning and environmental management. Although various studies have investigated urban expansion patterns (Admasu, 2015; Gashu and Gebre-Egziabher, 2018), changes between different land cover types (Wondrade et al., 2014), and drivers of these changes (Degife et al., 2019) in Hawassa, previous research has not specifically addressed the extent of agricultural land loss due to urbanization or provided forecasts for future urban and agricultural land use in this area. To fill this research gap, this study analyzes the historical and future trends of urbanization and its impacts on agricultural land use by utilizing a time series of Landsat satellite imagery from 1984 to 2021 and forecasting potential developments for 2030 and 2050. This information will serve as a critical resource for urban land-use planning and the sustainable management of the urban environment in Hawassa city.
2 MATERIALS AND METHODS
2.1 Description of the study area
Hawassa city is located on the shore of Lake Hawassa (from which the name of the city was driven) on the fringes of the Great Ethiopian Rift Valley (Bekele, 2010). Hawassa city has been the capital of the Southern Nations, Nationalities, and People’s Region (SNNPR). Since June 2020, the city has been the capital of the Sidama Regional State. Hawassa city is located in the Southern part of Ethiopia along the Addis Ababa-Nairobi international highway at a distance of 275 km from the country’s capital, Addis Ababa, (Admasu, 2015). The city is located astronomically between 6054′42″N – 70 05′50″N latitude and 38024′51″E – 38033′25″E longitude. Hawassa city lies on a relatively flat plain in the rift valley topography, with an average elevation of approximately 1,690 m above mean sea level. Recently, the city has been structured into eight sub-cities, locally named “Kifle Ketema” (Figure 1): Addis Ketema, Bahil Adarash, Haik Dar, Mehal, Menharia, Misrak, Tabor, and Tula, and 32 Kebeles (Admasu, 2015). According to the 2020 Hawassa city administration boundary, the total area of the city is approximately 23,538.24 ha, which was used in the present study.
[image: Map illustrating the Sidama Region near Lake Hawassa. The main map highlights various administrativas with distinct colors, including Hawassa city and its suburbs. Two insets show a broader view of the Ethiopian region and the Sidama Region's location. A scale bar indicates distance in kilometers.]FIGURE 1 | Location of the study area.
2.2 Methods of data collection
2.2.1 Data types and sources
To carry out the research, different types of data from different sources were collected and used (Table 1). Data types used include time series Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) images, Copernicus’s Sentinel-2 images from the European Space Agency (ESA), Orthophotos, DEM, Google Earth, Hawassa city boundaries, field survey data (GPS), population data, soft ideas, and related written documents.
TABLE 1 | Types and sources of data used in this study.
[image: A table listing various data types and their sources for a study, along with descriptions. The data types include Landsat TM and OLI, Orthophoto 2018, Sentinel-2 image, Google Earth images, ASTER GDEM, and others. Sources range from USGS, NASA, Hawassa city administration, to field surveys and interviews. Descriptions include uses such as LULC information, topography characterization, and survey boundary indication.]2.2.2 Materials and analytical tools
Different materials and analysis software were used to carry out the research. Materials like handle GPS and field notebooks have been used to collect data during field observation. A computer with the necessary software installed was used for data analysis and report writing in the office.
Software like ArcGIS, QGIS, TerrSet, Kobo toolbox, and Microsoft Office were used as the major analysis and presentation tools for the study. ArcGIS was used to prepare variables for the prediction of future LULC and for accuracy assessment. Spatial variables like elevation, slope, distance to the city center, and distance from the road were prepared as input variables for the prediction using ArcGIS’s ArcMap program. In the accuracy assessment, a Frequency tool was used to compute the frequency of the reference and predicted land cover classes and combines them into a table of a matrix (error matrix table). QGIS was used to perform the image analysis processes and preparation of the final maps. Additional plugins such as the Semi-Automatic Classification Plugin (Congedo, 2021) were installed to perform image analysis and classification for producing thematic land cover classes from the source images. TerrSet (Eastman and He, 2020) software was used to predict future land cover in the study area.
2.2.3 Spatial data collection methods
The data used in this research were mostly from remote sensing data collected from secondary sources. The time series Landsat images for the study area were downloaded from the online data archives (Table 2) for each study year from 1984 to 2021 to generate the land cover information in the study area. Landsat TM for 1984, 1990, 2000, and 2010 and OLI and Sentinel-2 for 2021 were downloaded from USGS website, https://earthexplorer.usgs.gov. The base year, 1984, for the study was chosen in closer to the historical evidence of the city municipality establishment (Kinfu et al., 2019) and the availability of a medium resolution historical satellite image data to generate the land cover information. The devastating famine of 1984 triggered significant shifts in urbanization and land use patterns, as people migrated from rural areas to urban centers in search of relief and opportunities. This event served as a pivotal moment in Ethiopia’s development trajectory, shaping subsequent land management policies and practices. Following this, based on the political transformations, population growth, socio-economic development, and urban land supply and administration policy, a near 10 year gap land use and cover change was investigated for the years listed above.
TABLE 2 | Description of satellite images used in the analysis.
[image: Table listing satellite sensors with acquisition dates, path/row coordinates, and spatial resolutions in meters. Landsat-5 TM: 1984/12/17, 1990/12/18, 2000/01/28, 2010/11/07; all have a spatial resolution of 30 meters. Landsat-8 OLI: 2021/01/05, 30 meters. Sentinel-2B MSI: 2021/12/29, 10 meters. All paths/rows are 168/055.]Google Earth Pro and DEM data were also downloaded from their respective websites. Ortho-photographs and study area boundary data were obtained from the Hawassa city administration. A field survey was also conducted to collect some ground truth sample points using handle GPS for validation of the 2021 classification map as well as to get a general overview of the study area. The collection of GPS points was done randomly on the accessible land areas (except lake and swampy areas) within the study area. The sampling methods for ground truthing involved systematically selecting training sites based on stratified random sampling to ensure representation across different land cover types, while the final selection was guided by accessibility, variability in the landscape, and the availability of high-resolution imagery for accurate classification.
2.3 Data management and analysis
2.3.1 Data management
The data collected from different sources in different formats were combined into a structured folder in the form of a file database to facilitate the searching and use of the data for analysis. The datasets were stored in sub-folders according to their type and format for easy retrieval and analysis.
2.3.2 Analyzing the spatial datasets
2.3.2.1 Preprocessing images
Data collected from different sources can be in different file formats, coordinate reference systems, geometry, and radiometric conditions. Thus, these variations in the dataset must be corrected before use in any analysis. Satellite images acquired from different sources must be corrected for geometric and radiometric errors before use. The Landsat images used (Table 2) in this research were already corrected for these errors at the source, and these steps were skipped. In this study, the pre-processing steps applied to the images were the selection of bands and merging, clipping with the study area, and enhancing the image’s visual clarity. The selected bands for characterizing the land cover information were blue, green, red, near-infrared (NIR), and shortwave infrared (SWIR) bands (https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research; accessed on 03 September 2022). These bands were merged to form a single multi-band image and then clipped in the study area. The image scene for the study area was taken with a spatial reference system of the WGS 1984 datum and UTM Zone 37 N projection, and that of the study area was Adindan, UTM Zone 37N. To align the datasets correctly, the study area was projected into the image’s reference system (WGS 1984; UTM Zone 37N) with the same datum.
2.3.2.2 Analyzing land use and land cover patterns
The LULC pattern of the study area was obtained using a supervised classification technique with the maximum-likelihood classifier (MLC) in QGIS. In this process, training samples were collected for different land cover categories based on visual interpretation of the remote sensing images (Figure 2). The visual interpretation method was selected to identify and collect training samples for the land cover categories. These samples were then trained in software to perform the classification process. Approximately 10 different land cover classes were identified. Water bodies, built-up, agricultural land, wetland, grassland, woody vegetation, agroforestry, wet grassland, cultivated land, and open land are considered. These classes were later recoded into seven major land cover classes—waterbody, built-up, agricultural land, wetland, grassland, woody vegetation, and agroforestry (Table 3), to reduce the amount of error in the classifications using the assumptions of Congalton (1991).
[image: Flowchart illustrating the process of predicting land use and land cover (LULC) changes. It starts with input data, including Landsat images from 1984 to 2021, orthophotos, Google, and Sentinel images, and field survey data. The process involves supervised classification, extracting training and validation samples, accuracy assessment, and change analysis to determine LULC changes, urban and agricultural land usage. Driver variables and LCM (Land Change Modeler) predict LULC for 2030 and 2050, highlighting predicted urban and agricultural lands.]FIGURE 2 | Flowchart of the analysis.
TABLE 3 | Description of major LULC categories.
[image: Table listing seven class names with descriptions. Class names: Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody vegetation, Agroforestry. Descriptions explain each class, mentioning covered lands, types of vegetations, and specific land uses like residential, agriculture, and forestry.]Agriculture and cultivated lands are grouped into a common name, agriculture, where the former class indicates land with no crop cover and the latter class indicates crop cover, in the context of this study. Wetland and wet grassland were also grouped into the wetland class. Grass-dominated areas with a high degree of reflection as vegetation and smooth texture in the Cheleleka wetland were classified as wet grassland and later merged into the wetland class. Open and grassland land were merged into a common grassland class. This process was performed because medium-resolution Landsat images did not allow for the identification of correct and detailed land cover classes and types that were recorded in the images.
After the recoding process was completed, the r. neighbors grass tool in QGIS was used to remove unnecessary pixels from the classification results. A mode neighborhood operation with a 3 × 3 size was used to determine the most frequent value around the pixel and assign that value to the central cell (https://grass.osgeo.org/grass82/manuals/r.neighbors.html).
2.3.2.3 Accuracy assessment
Accuracy assessment was performed to identify variations that may have occurred between classification and reference sample data for each study year. Due to the complexity of digital classification, the reliability of the results must be assessed (Congalton, 1991). Accuracy assessment requires two things; one is the ground truth (reference) data and classification map data, to produce measures of the amount of error between them.
.2.3.2.3.1 Reference data collection
Reference samples were collected from all images used for classification to assess accuracy. Reference samples from 1984, 1990, 2000, and 2010 were collected from Google Earth images, Landsat image interpretations, field observations, and interviews conducted in 2021. For 2021, Google Earth images, Orthophotos, Sentinel image interpretations, field observations, and interviews were used as sources for collecting reference samples. Although it is recommended that a minimum of 50 reference sample sizes be required for each land cover category in the error matrix, the number may increase or decrease depending on the size of the area under study, the number of land cover categories and the relative importance of the categories (Congalton, 1991). Accordingly, the reference samples collected for each category varied (Table 4). A total of 1,017 reference sample points were collected for all study years to assess the accuracy of the classification maps for the study area.
TABLE 4 | Total number of reference samples from each category for accuracy assessment.
[image: Table showing the number of reference samples for various classes from 1984 to 2021 and their totals. Classes include Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody vegetation, and Agroforestry. Each row lists the samples per year, with Agriculture having the highest total of three hundred fifty-nine and Woody vegetation the lowest with thirty. Total samples per year range from one hundred ninety-nine to two hundred twelve. Overall total is one thousand seventeen.].2.3.2.3.2 Assessing classification accuracy
Using the classification results and reference data, the classification accuracy was determined by cross-tabulating the observed and classified map data. The class value of the classification map was extracted for each reference location, and the frequency of the class values from the reference data and the classified maps was computed in ArcMap. The reference class values, classified class values, and frequency fields were combined into an error matrix table form using the Pivot table tool in ArcGIS software. An error matrix table is the most common method of representing the accuracy of remote sensing data, using reference data as columns and classification data as rows (Congalton, 1991). The total accuracy, producer accuracy, user accuracy, and kappa values using the Equations 1–4 were calculated manually in Microsoft excel using the error matrix tables generated in ArcMap.
[image: Equation showing Overall Accuracy (OA) as the ratio of the sum of correctly classified samples to the total number of samples used, expressed as OA equals the sum of \(N_{ii}\) over \(N\).]
[image: PA equals the number of correctly classified samples in a class divided by the total number of reference samples of the class, represented as Nii divided by Ni.]
[image: Equation for User's Accuracy (UA) in classification: UA equals correctly classified samples in a class divided by the total number of classification samples of the class, represented as Nᵢᵢ over Nⱼ. This is equation (3).]
[image: Equation for K is shown as \( K = \frac{N \sum N_{i} - \left[ \sum \left( N_{i} \times N_{j} \right) \right]}{N^{2} - \sum \left( N_{i} \times N_{j} \right)} \) with a reference number (4).]
Where [image: Please upload the image or provide a URL for me to generate the alternate text.] is the total/overall accuracy, [image: Please provide the image by uploading it or providing a URL, and I would be happy to help generate the alternate text for it.] is the producer’s accuracy, [image: Please upload the image or provide a URL for me to generate the alternate text.] is the user’s accuracy, [image: Sure, please upload the image or provide a URL so I can generate the alt text.] is kappa of the classifications, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the total number of samples, [image: Please upload the image or provide a URL so I can generate the alt text for you. If you have any specific context or details you'd like included, feel free to mention them.] is the number of samples correctly classified (diagonal), [image: It seems there was an error or an incomplete request, as no image has been uploaded or linked. Please provide an image or a URL, and optionally include a caption, so I can generate the alt text for you.] is the total number of reference samples in a class, and [image: It seems like you've included a formula or mathematical notation instead of an image. Please upload the image you would like me to describe, and I will be happy to help!] is the total number of classification samples in a class.
The total, producer, and user accuracy results are presented as percentages.
2.3.2.4 Land use and land cover change analyses
Change analysis was performed between consecutive study years to characterize the pattern of changes and quantify the amount of land area changed from the older classification to the latter one in the QGIS environment. The changes were performed for 1984–1990, 1990–2000, 2000–2010, 2010–2021, and 1984–2021.
.2.3.2.4.1 Percentage change (PC)
The percentage of change (PC) between the classes from the older year to the later year was computed using Equation 5 as the ratio of the difference between the final and initial year areas of a class to the initial year’s area of the same class.
[image: The formula shown is for calculating the percentage change: \( PC = \frac{A_{t2} - A_{t1}}{A_{t1}} \times 100 \), where \( A_{t2} \) and \( A_{t1} \) are the values at two different times. It is labeled as equation (5).]
Where [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is the percent change in the area for each class, [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will help you generate the alternate text.] and [image: If you'd like me to generate alt text for an image, please upload the image or provide a URL. Once you do, I can help create a descriptive text for it.] are the area of a class at time one and time two, respectively.
.2.3.2.4.2 Annual rate of change (ARC)
The annual rate of change (ARC) for each LULC type was calculated using Equation 6 (Israel, 2013) using the data derived from the remote sensing analysis. It was computed as the proportion of the percentage change (PC) to the time interval between the first and second classification maps.
[image: Formula for Average Rate of Change: ARC equals open parenthesis A sub two minus A sub one close parenthesis divided by open parenthesis delta t times A sub one close parenthesis, all multiplied by one hundred, equals PC divided by delta t.]
Where [image: To generate the alternate text, please upload the image or provide a URL to it.] is the annual rate of change, [image: It seems there is no image uploaded. Please upload an image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide a URL so I can help generate the alt text for it.] are the areas of a class in time one and time two classification maps, respectively, and [image: Please provide the image or describe its content so I can help generate the appropriate alternate text.] is the time interval between time one and time two classification maps.
.2.3.2.4.3 Net change in area according to land cover types
The net change for each land cover type is computed using Equation 7 as the difference between the areas gained and lost by land cover class in each study year. The net change can be negative or positive. If the net change is negative, then the area gained is less than the area lost, indicating the loss of the area for that particular land cover type. Positive net change indicates that the area lost in the class is less than the area gained, indicating an increase or gain in the area of the land cover class between the study years.
[image: Equation showing "Net change equals area gain minus area loss", labeled as equation seven.]
The area gained in a land cover class is when the area from the other land cover classes in the older year classification is reduced to a class in the recent year classification, whereas an area loss occurs when the area of a class in the older classification is reduced to other land cover classes in the later year classification.
2.3.2.5 Analyzing urban expansion and agricultural land use trends
Urban and agricultural land use categories were extracted from the generated LULC information. LULC classes were reclassified into three classes, namely, other lands, built-up, and agricultural land, by recoding the original LULC data. The original classes like waterbody, wetland, grassland, woody vegetation, and agroforestry, were combined into a new class named other lands, and the remaining built-up and agricultural lands were left unchanged. These processes were performed for each year’s classification, the spatial patterns and trends of the built-up and agricultural lands were mapped, and their area extent was generated accordingly.
2.3.2.6 Predicting urban and agricultural land use
The land change modeler (LCM) module of TerrSet software (Eastman and He, 2020) was used to predict urban and agricultural lands for 2030 and 2050. LCM primarily uses a multilayer perceptron neural network-CA-Markov chain (MLPNN-CA-MC) approach to predict the future extents and patterns of LULC changes (Leta et al., 2021; Roy et al., 2024c). The model is strong due to its dynamic projection proficiency, suitable calibration, and ability to simulate several types of land cover (Leta et al., 2021; Rimal et al., 2020). The LCM was used to determine the transitions between the different LULC classes and predict future changes based on the historical changes between the time one and time two land cover classification maps (Eastman and He, 2020; Khawaldah et al., 2020; Rimal et al., 2020; Rimal et al., 2018). Three steps were followed (Figure 3). To perform land change prediction in LCM as an empirically driven process that moves in a stepwise fashion (Eastman and He, 2020): 1) Change Analysis, 2) Transition Potential Modeling, and 3) Change Prediction.
[image: Flowchart depicting a land use land cover (LULC) change analysis and prediction process. It includes blocks for input data: LULC T-1, T-2, T-3, and driver variables. The process begins with change analysis, identifying LULC changes from T-1 to T-2, including spatial trends. Transition potential modeling utilizes a transition model and potentials. Change prediction to T-3 results in predicted land cover, both soft and hard predictions, followed by validation and error mapping. A key indicates input data, LCM tool, and outputs. A note explains T-1 and T-2 as classifications and T-3 as projected land cover.]FIGURE 3 | Generalized flow of prediction process using the LCM model Source: Adapted from Eastman and He (2020).
The combination of Land Change Modeler and Markov chain was selected due to their proven effectiveness in modeling land-use change, particularly in scenarios with complex dynamics. Alternative methods, such as cellular automata or artificial neural networks, were considered but deemed less suitable for this study due to their limitations in handling large datasets and complex interactions. While the chosen tools are powerful, it’s essential to acknowledge potential limitations, such as the sensitivity of Markov chains to historical trends. The CA-Markov model was selected for its effectiveness in simulating land-use changes by integrating cellular automata with Markov chains, allowing for a nuanced representation of urban dynamics; however, its limitations include potential oversimplification of complex urban growth patterns, reliance on historical data that may not account for unforeseen socio-economic factors, and the possibility of overestimating the predictability of future land-use changes in rapidly urbanizing settings and the need for accurate calibration of Land Change Modeler.
.2.3.2.6.1 Change analysis
In this step, the changes/transitions between the different LULC types of time one and time two classification maps were performed. The proposed method determines the potential combinations between the two classification maps and produces a change map as the output. This approach also allows one to examine the contribution of changes as derived by one land cover category in the classification.
.2.3.2.6.2 Transition potential modeling
The transition potential modeling step is where transition potential maps were generated, which are, in essence, maps of suitability for each transition. Here, a collection of transition potential maps is organized within an empirically evaluated transition sub-model that has the same underlying driver variables and is used to model the historical change process (Eastman and He, 2020; Roy et al., 2024d). The transition potential modeling tap of LCM helps group transitions into a set of sub-models and explore the potential power of explanatory variables. The variables can be either static or dynamic. Static variables are variables that do not change over time and are used to express basic suitability for the transition under consideration. Dynamic variables are time-dependent drivers such as proximity to existing development or infrastructure, and they are recalculated over time during a prediction (Eastman and He, 2020). In the context of this study, the variables used (elevation, slope, distance to road, and distance to city center) for the prediction were all assumed to be static.
.2.3.2.6.3 Change prediction
The change prediction step in LCM uses historical rates of change and the transition potential model to predict future scenarios for a specified future date (Figure 3). It determines how the variables influence future changes and how much change occurred between time one and time two, and then calculates the relative amount of transition to the future date (Eastman and He, 2020; Roy et al., 2024e). The LCM change prediction produces two basic models of changes: hard and soft prediction models. The hard prediction model was based on a competitive land allocation model (Figure 3). The soft prediction yields a map of vulnerability to change for the selected set of transitions. The hard prediction yields only a single realization, whereas the soft prediction comprehensively assesses the change potential (Eastman and He, 2020).
.2.3.2.6.4 Model validation
Validation of a model is significant before its use because it allows the quality of the predicted land cover to be determined compared to the actual land cover (Leta et al., 2021), although there is no consensus on the criteria used to assess the performance of land change models (Keshtkar and Voigt, 2016; Roy et al., 2024f). In the context of this study, the land cover maps of 2000 and 2010 were used to predict the land cover in 2021. The predicted maps were then compared to the actual land cover map of 2021 to determine the number of errors and quality of the prediction model.
3 RESULTS AND DISCUSSION
3.1 Historical trends of land cover change
3.1.1 Land cover extents and patterns in Hawassa from 1984 to 2021
The results of the Landsat image analysis (Table 5; Figure 4) indicated that there has been a significant change in the pattern and extent of land use and land cover types in Hawassa between 1984 and 2021. Table 5 summarizes the area and percent cover generated from the Landsat image analysis. It showed that water bodies and agricultural lands covered the largest share (about 73.6%) of the land cover types investigated in the study area, which were about 38.3% and 35.3%, respectively, in 1984.
TABLE 5 | Area summary of different land cover types over the study years.
[image: Table showing changes in Land Use Land Cover (LULC) classes from 1984 to 2021. Categories include Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody vegetation, and Agroforestry. Areas in hectares and percentages are listed for each year: 1984, 1990, 2000, 2010, and 2021. Total area remains constant at 23,583.24 hectares. Notable trends include an increase in built-up area and a decrease in agriculture and wetland areas over time.][image: Six maps showing land use and land cover changes from 1984 to 2021. Each map includes categories: water body, built-up, agriculture, wetland, grassland, woody vegetation, and agroforestry, with different areas shaded in various colors. A scale and legend are included.]FIGURE 4 | Patterns of land cover types in Hawassa during 1984, 1990, 2000, 2010, and 2021.
The largest coverage of water bodies was comprised of Lake Hawassa in the western part of the study area, as there was no other water body area detected in the images of the study area. The area coverage of the water bodies in 1984, 1990, 2000, 2010, and 2021 was reported to be 9,031.68 ha (38.3%), 9,150.57 ha (38.8%), 9,312.57 ha (39.49%), 9,298.08 ha (39.43%), and 9,178.02 ha (38.92%), respectively (Table 5). It increased from the beginning of the year until 2010 and then decreased by a small amount in 2021. Wondrade et al. (2014) found similar results for the increment of Lake Hawassa from 1973 to 2011 in their study on mapping land cover changes in the Lake Hawassa Watershed using multi-temporal remotely sensed image data. The reason for the increase in the lake water level was indicated an increase in runoff from the upper watershed as a result of excessive deforestation (Wondrade et al., 2014).
The major agricultural land area was the large-scale farms around Hawassa airport in the northwest and to the east of Lake Hawassa, and the fragmented smaller areas of the peasant’s farmlands were in the southern part of the study area. The agricultural land has been decreasing faster from 8,324.64 ha (35.3%) in 1984–3,595.68 ha (15.25%) in 2021 among the total land cover types in the study area. This trend was mainly due to the fastest expansion of built-up land driven by many pushing factors and to the expansion of agroforestry systems in the area.
Built-up land covered the least area next to woody vegetation, 584.73 ha (2.48%) in 1984. It has been increasing slowly from the date to 1990 (2.79%), increased by 0.31% within 6 years, but showed to increase very quickly (approximately one-half of the area in the previous year) starting from 2000 to 2021 (Table 5). These periods saw the formation of large settlements, higher development activities, and high informal settlements in the peripheral areas of the city. Higher development activities included the establishment of Hawassa University (main campus) and the establishment of Hawassa industrial park, to list a few, which occupied wider areas. Agroforestry has also shown an increase from 1,453.95 ha (6.17%) in 1984–2,784.24 ha (11.81%) in 2021. This was mainly due to the shifting of annual crop production systems into perennial cash crops like Enset and Khat in the rural Kebeles in the study area, which consume the largest agricultural cropland areas.
The amount of wetlands has also been decreasing in the study area. It was about 3,385.62 ha (14.36%) of the total land cover in the study area in 1984. This has gradually decreased to 2,980.71 ha (12.64%), 2,832.3 ha (12.01%), 2,538.09 ha (10.76), and 2,171.07 ha (9.21) in 1990, 2000, 2010, and 2021, respectively. This was due to the drying of the swampy area on the periphery as a result of climate change, which gradually changed into grassland, agricultural land, and built-up (2010 and 2021 maps in Figure 4) over time, resulting in a decrease in the total area of the wetland. The results were consistent with studies conducted in the Lake Hawassa watershed, which reported a decline in the wetland area (Degife et al., 2019; Wondrade et al., 2014).
Grasslands have also been shown to increase gradually over the study period. According to the image analysis results, 735.48 ha (3.12%) of the total land area in 1984 was covered by grasslands, mostly around the Alamura and Tabor mountains and along the boundary between the Cheleleka wetland and agricultural land, as shown in Figure 4. This increased to 1,268.37 ha (5.38%) in 2021. The area has gradually been increasing because of the drying of the Cheleleka wetland and the formation of open spaces through the reservation and fencing of agricultural land for construction or other purposes for a longer time. Woody vegetation has also been increasing in the study area from 67.14 ha (0.28%) in 1984 to 361.26, 156.96, 463.14, and 646.86 ha in 1990, 2000, 2010, and 2021, respectively. This was due to the formation of protected areas and/or parks, the establishment of green areas, and the planting of trees in institutional compounds within the city.
3.1.2 Rate of land use and land cover changes from 1984 to 2021 in Hawassa city
This section demonstrates the amount of area transition (Table 6) between the different categories that resulted in an increase or decrease in the spatial extents (Table 7) and patterns of change between the different LULC categories within the study years. Table 7 summarizes the amount of land area and percentage of change in each category between the years 1984–1990, 1990–2000, 2000–2010, and 2010–2021.
TABLE 6 | Area (ha) transitions between different land cover categories from 1984 to 1990.
[image: Table comparing land use and land cover in 1984 and 1990. Categories include Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody Vegetation, Agroforestry, and Total. Data shows totals, gains, and net changes, with values highlighted for emphasis.]TABLE 7 | Summary of changes in total area in LULC categories between the study years.
[image: Table showing land use and land cover (LULC) area and percentage changes between study years: 1984-1990, 1990-2000, 2000-2010, 2010-2021, and 1984-2021 for Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody vegetation, and Agroforestry classes. Data is presented as change in hectares (Δ ha) and percentage (Δ%). Each LULC class has varied changes, with notable increases in Built-up areas and decreases in Agriculture over the years.]Water bodies, particularly Lake Hawassa, increased by 0.5% and 0.69% of the total land area from 1984 to 1990 and from 1990 to 2000, respectively, but decreased from 2000 to 2010 and from 2010 to 2021 by −0.06% and −0.51, respectively (Table 7). As shown in Table 6, water bodies gained a total of 132.57 ha from built-up (0.09 ha), agriculture (2.6 ha), wetland (128.26 ha), and grassland (1.62 ha) in 1990 and lost about 13.68 ha (7.29 ha into a wetland, and 6.39 ha into woody vegetation) in 1984, with a net gain of 118.89 ha (0.5%) of the total study area. In the same way, from 1990 to 2000, it gained a net area of 162 ha from the other land cover types. It has lost 14.49 and 120.06 ha in the years 2000–2010 and 2010–2021, respectively. The increase or decrease in the water body level might have been due to the increase or decrease in the water discharge from the upper watershed in the area as a result of the variability in the climatic factors in the area, which could require further investigation. The other possible reason is misclassification of the pixel values due to confusion between the spectral values with other land cover types and shadows in the images as a result of the spatial resolution of the images used for classification.
The amount of built-up land has been increasing between the study years. It increased by a net area of 72.36 ha (0.31% of the total land cover area) from 1984 to 1990 in 6-year intervals. The number increased to 2.12%, 4.99%, and 6.81% between 1990 and 2000, 2000–2010, and 2010–2021, respectively (Table 7). The net change in built-up land from 1984 to 2021 was approximately 3,354.30 ha (14.22% of the total area of the LULC types in the study area). It showed that the built-up land experienced a 6.7-fold increment during the study period (584.73 ha in 1984–3,939.03 ha in 2021) (Table 7). Built-up land gained its area from the different LULC classes, where agricultural land was the most changed and reduced from the other five.
Our current analysis identifies several primary factors driving urban expansion, including informal settlements, industrial development, and residential expansion. Notably, the urban growth pattern is characterized by horizontal development in all directions. The increase in built-up land in the study area can be attributed to population growth and a rising demand for land to accommodate various needs, such as housing, infrastructure services, industries and factories, institutional buildings, and other construction activities. This interconnected set of factors underscores the dynamic nature of urban development in the region. Classification error sources in remote sensing can significantly impact the reliability of results, particularly due to spectral confusion among land cover types and resolution limitations. Spectral confusion arises when different land cover types exhibit similar reflectance characteristics in certain spectral bands, leading to misclassification; for instance, vegetation types such as grassland and forest can appear similar in spectral signatures, making it challenging to accurately distinguish between them. Additionally, resolution limitations pertain to the spatial resolution of the imagery used; lower resolution can amalgamate various land cover types within a single pixel, resulting in further classification inaccuracies. These factors together complicate the land cover classification process and highlight the necessity for additional validation and refinement methods, such as supplementary ground truthing and the application of advanced classification algorithms, to enhance the reliability of the results obtained from remote sensing data.
Haregeweyn et al. (2012) found similar results of the increase in built-up land at the expense of agricultural land in their study in Bahir Dar on the dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe. Terfa et al. (2019) reported that the extent of major cities in Ethiopia (Addis Ababa, Adama, and Hawassa) have experienced significant changes from 1987 to 2017. It showed that the increment of the three cities was about 3-fold, 6-fold, and 6-fold during the study period (Terfa et al., 2019). A comparison of satellite estimates and census data in India, as reported by Pandey and Seto (2015), indicated that the conversion of agricultural land into built-up was largely concentrated in areas with high economic growth. The survey results also revealed that the rapid increase in the built-up area was due to the use of the city as a political center, improved basic infrastructure and utility services (road, water, electricity), educational and health services, population (birth and migration), and topographic and natural elements. Studies have witnessed a rapid increase in the city’s spatial extent (Admasu, 2015; Degife et al., 2019; Gashu and Gebre-Egziabher, 2018; Kinfu et al., 2019; Terfa et al., 2019; Wondrade et al., 2014) in the past few decades.
The potential ripple effects of the rapid conversion of agricultural land to urban uses in Hawassa’s economy could be considerable, as this trend threatens the livelihoods of many residents who depend on agriculture for their income and food security, potentially leading to increased poverty levels and economic instability if alternative employment opportunities within the urbanized areas do not materialize (Abate et al., 2021). Furthermore, this transformation is likely to exacerbate migration to other regions or urban areas, as rural populations facing land loss seek improved livelihoods and escape the socio-economic pressures stemming from diminished agricultural viability, mirroring trends seen in other rapidly urbanizing societies where rural disenfranchisement drives urban migration (Kebede & Gezahegn, 2021).
Agricultural land in the study area has been converted not only into built-up but also into other types of land cover. Next to built-up, the net conversion of agricultural land was to agroforestry, grassland, and woody vegetation from 1984–2021 with the respective area converted was 1,093.96 ha, 429.07 ha, and 275.78 ha. The highest percentage of change in agricultural land was observed between 2000 and 2010 (Table 8); approximately 2050.83 ha (8.7%) of the total land cover was changed into other land cover types. Between 1990 and 2000, the least agricultural land loss was 29.25 ha. In this period, agriculture gained much of the land area from other land cover types like grasslands. In general, the net loss of agricultural land from 1984 to 2021 was −4,728.96 ha, representing 20.05% of the total land cover.
TABLE 8 | Annual rate of change (ha and percentage per year) in LULC from 1984 to 2021.
[image: Table showing Land Use Land Cover (LULC) changes from 1984 to 2021 across different classes: Waterbody, Built-up, Agriculture, Wetland, Grassland, Woody vegetation, and Agroforestry. Data is displayed in hectare (Ha) and percentage (%) for periods: 1984–1990, 1990–2000, 2000–2010, 2010–2021, and 1984–2021, indicating fluctuations in land use over time.]Wetlands have also been decreasing each year and are being converted into other land cover types, such as grassland, agriculture, built-up, and agroforestry. Approximately 404.91 ha of wetland was lost between 1984 and 1990, from which 158.32 ha and 108.10 ha were converted into grassland and agricultural lands, respectively. A large conversion of the wetlands into grasslands was observed between 2000 and 2010 and between 2010 and 2021, which was 177.68 ha and 293.84 ha, respectively. The net area lost from 1984 to 2021 was about 1,214.55 ha, or 5.15% of the total area. Wondrade, Dick, and Tveite (2014) found similar results of a decrease in the wetland in the area that arises as a result of climate change, as discussed in other studies (Terfa et al., 2019; Wondrade et al., 2014).
On average, agroforestry increases within the study period. A net area of 1,330.29 ha of land was gained by agroforestry from other land cover types, such as agriculture, wetland, and grassland from 1984 to 2021. This is due to the conversion of croplands into perennial cropping systems in the area, which covers open land areas with perennial crops such as Khat and fruit trees.
3.1.3 Rate of changes in land use and land cover in Hawassa city
As presented in Table 8 the annual rate of change for each LULC category in the study area was computed. As presented in the table, agriculture and wetlands decrease each year in the study area from 1984 to 2021. The largest loss of agricultural land was observed in the years from 2010 to 2021, where approximately 168.89 ha (3.10%) of the land was lost each year, and the least was observed from 1990 to 2000, where only 2.93 ha (0.04%) was lost each year. From 2010 to 2021, the highest expansion of built-up (expansion of settlements) has been experienced, and large investments have taken place, like Hawassa industrial park. The least loss of agricultural land from 1990 to 2000 indicates the net loss of agricultural lands because it gained a large amount of land area from other land cover types like grassland and agroforestry, over the years (Table 8). Thus, approximately 127.81 ha (1.54%) of agricultural land was lost each year from 1984 to 2021 in Hawassa city. On the other hand, wetlands have been decreasing by 67.49 ha (1.99%) each year between 1984 and 1990, and this change were slowly decreasing until 2021. The net loss of the wetland, as shown in Table 8, from 1984 to 2021 was approximately 32.83 ha (0.97%) each year for the last 37 years, and the reason for the decrease in the wetland area is discussed in the previous sections.
Built-up was the only class in the study area that showed the fastest rate of change, particularly increased, in the study years. It has been increasing at a rate of 12.06 ha (2.06%) since 1984 to 1990 and increased to 49.97 ha (7.60%), 117.57 ha (10.16%) and 146.05 ha (6.26%) each year between 1990 and 2000, 2000 and 2010, and 2010 and 2021, respectively. Within the past 37 years, built-up land has been increasing at a net annual rate of 90.66 ha (15.50%). Water bodies have also increased at a rate of 0.22% and 0.18% each year from 1984 to 1990 and from 1990 to 2000, respectively, but have decreased from 2000 to 2010 and from 2010 to 2021 at a rate of 0.02% and 0.12% annually, respectively.
Grassland, woody vegetation, and agroforestry lands have also shown increasing rates from 1984 to 1990 and from 2000 to 2021 but decreasing rates in the years between 1990 and 2000 in the study area. Between 1990 and 2000, these LULC classes lost much of their area to agricultural lands than they gained in the years, resulting in a net loss of the area among the categories. From 1984 to 2021, annual rates of approximately 1.96%, 23.34%, and 2.47% changes in grassland, woody vegetation, and agroforestry, respectively, were determined (Table 8) by image analysis in Hawassa.
3.1.4 Accuracy assessment of classifications
Based on the reference samples collected and the classification maps, the accuracy report showed that the total accuracy of all maps in each year ranged from approximately 89%–93% and kappa ranged from 0.86 to 0.92. However, the total accuracy does not represent the errors in each category in the classification maps. The error amounts in each category were reported using the producer’s and user’s accuracy. The producer’s accuracy can be determined according to the interest of the map producer in how a certain area is classified or mapped, while the user’s accuracy can be determined from the point of view of the map user to indicate the probability that a pixel classified on the map represents that category on the ground (Congalton, 1991). For example, the producer accuracy of the 1984 classification was approximately 71.43%, whereas the user accuracy was 100%. This result can be interpreted as follows. Although 71.43% of the woody vegetation was classified on the map, 100% of the woody vegetation was actually as such on the ground.
Similarly, in 2010, the error matrix table showed that although the producer of this map can claim that 100% of the time an area that was grassland was identified as such, a user of this map will find that only 69.23% of the times will an area he/she visits that the map says is grassland will be grassland. The errors that occurred in the maps were because some pixels that were categorized into different/same land cover classes may have different/similar spectral reflectance, which makes it difficult to classify (Wondrade et al., 2014).
Agricultural land may be confused with open land classified as grassland. The accuracy of classification may also affected by the spatial resolution of the image used. High-resolution images can produce highly accurate land cover information for an area because they record every detail on the land. However, medium-resolution images can produce information that reveals the changes in LULC types over time but with fewer details.
3.2 Impacts of urban expansion on agricultural land
3.2.1 Historical trends in urban expansion and their effects on agricultural lands
The analysis of satellite imagery in the study area revealed a highly increasing trend of urban expansion, largely at the expense of agricultural land area, between the study years in Hawassa (Figure 5). In 1984, only 584.73ha (2.48%) of the total area was covered by built-up, whereas agricultural land covered 8,324.64 ha (35.30%) in the year. However, in 1990, 2000, 2010, and 2010, built-up increased to 2.79%, 4.91%, 9.89, and 16.70%, respectively, whereas a decrease in agricultural land in the same respective years (31.94%, 31.82%, 23.12, and 15.25%). The spatial patterns and trends of changes between the two land use types are shown below. As summarized in the change matrix table (Table 9), built-up land gained a large amount of agricultural land in between the study years. This means that the largest amount of agricultural land was lost due to expansion in the built-up area. From 1984 to 1990, a net change of 99.18 ha of agricultural land was converted into built-up, which increased to 434.07 ha, 1,160.04 ha, and 1,058.31 ha between the years 1990–2000, 2000–2010, and 2010–2021, respectively. A total of 3,148.74 ha (13.35%) of agricultural land was converted into built-up within the past 37 years of the study period. The expansion of the built-up was restricted to the northeast, east and southeast because Lake Hawassa is located in the western part of the study area (Terfa et al., 2019), which prevented the built-up area to expand to the western part from the center.
[image: Line chart displaying land use changes from 1984 to 2050, with built-up areas in red and agriculture in green. Built-up areas increase from 584.73 ha to 6794.73 ha, while agricultural areas decrease from 8324.64 ha to 2033.46 ha.]FIGURE 5 | Trends of urban and agricultural land area in Hawassa from 1984 to 2050.
TABLE 9 | Urban and agricultural land area transition matrix from 1984 to 2021 in the study area.
[image: A table showing land use changes from 1984 to 2021 across different categories: Other lands (O), Built-up (B), and Agriculture (A). Data is presented in columns for each year with figures for total area, gain, loss, and net gain/loss. Key observations include fluctuations in area for each category over the years, with specific gains or losses noted for each period from 1984 to 2021.]Historical evidence indicates that the total area of built-up land in the city was 48 has in 1959 (Admasu, 2015), where 404 pensioned soldiers from different parts of the country (Addis Ababa, Harar, Korem, and Wukro) were given land to settle in the eastern part of Hawassa Lake during Haile Selassie, according to the elders and socioeconomic profile of Hawassa city (2020). This was the time where the prime agricultural land in Hawassa has started to be converted into housing units to serve the housing needs of the people.
This initial stage of the city has gradually been consuming large amounts of agricultural land for housing, industries, and other infrastructure services to serve the population of the city, resulting in the current status of the city. The rapid increase of the city’s population results in the need for housing, social services, infrastucture development, and socio-economic changes. In areas of weak government control, these results in an increasing informal settlemtnts and urban sprawl, with faster horizontal expansion of the built-up lands. This inturn consumes the larger agricultural lands, and leads to shorter food security.
Urban expansion affects local livelihoods and food security by often leading to the encroachment of agricultural lands, displacement of communities, and increased competition for resources, thereby highlighting the urgent need for policies that integrate sustainable urban planning with the preservation of livelihoods and agricultural practices to ensure resilient and food-secure urban environments.
Studies on urban land use dynamics have witnessed an increase in urban expansion in the main cities of Ethiopia (Fenta et al., 2017; Haregeweyn et al., 2012; Jenberu and Admasu, 2020; Terfa et al., 2019; Terfa et al., 2020), which results in the loss of major agricultural lands and mainly affects food security (Muchelo, 2018), particularly in countries like Ethiopia, where the majority of the people depend on agricultural products (Terfa et al., 2020). The increase in urban area reduces the available agricultural land area, which has seriously impacted peri-urban farmers, who are often left with little or no land to cultivate and thus have increased vulnerability (Ayele and Tarekegn, 2020). Wondrade et al. (2014), in their reports on the mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, claimed that about 70% of the cropland was converted into built-up due to the expansion of residential, industrial, and other infrastructures, including the occupation of public lands by residents, favorable economic conditions, and a rapid construction process.
According to the study results of (Dadi et al., 2016) presented in (Ayele and Tarekegn, 2020), on the major drivers of urban sprawl and their impacts on land use conversion in the peri-urban Kebeles of Dukem town, Ethiopia, it was shown that the available land to grow wheat and teff flour had declined from 2005 to 2011. It showed that wheat land declined from 230.82 km2 in 2005 to 104.82 km2 in 2011, whereas teff flour shrunk from 134.77 km2 to 93.67 km2 in the same period.
Field observation and household survey reports also showed that large amounts of agricultural land in the study area were lost due to the high expansion of urban built, which arose due to high population growth (birth and rural-to-urban migration), infrastructure services, economic development, which aligned with Pandey and Seto (2019), and the formation of the city as a regional center. Muchelo (2018) stated that urban population growth in Sub-Saharan Africa exerted more pressure on agricultural land in the peripheral areas of cities. The majority of rural migrants in Sub-Saharan Africa prefer to settle in peri-urban areas to engage in farming for survival, where the cost of living is lower and attainment of a home is much more rapid than in completely urban areas (Muchelo, 2018). These facts, along with the economic development of a city, result in a change in the LULC, particularly in the consumption of large agricultural lands for building purposes.
3.3 Modeling future trends of urban expansion and agricultural land (2030 and 2050)
Future trends and extents of the Urban and agricultural lands for 2030 and 2050 were projected using TerrSet software with the LCM module. The 2021 classification image was used as the basis for prediction (Figure 6). The spatial extent of built-up agricultural lands for the prediction years (2030, and 2050) was shown in Figure 7. It was projected that the built-up land will cover an area of about 5,009.85 ha (21.24%) and 6,794.73 ha (28.81%) of the total land area in 2030 and 2050, respectively. The change matrix report in Table 10 shows the possible land cover types that will contribute to the increase in built-up land area during the study years. Of the LULC types, agricultural land accounts for the largest part of the area. As presented in Table 10, built-up land will gain a total of 1,070.82 ha (4.5%) from 2021 to 2030 and 2,855.7 ha (12.1%) from 2050, from which 582.84 ha (2.5%) and 1,403.91 ha (6%) will come from agricultural land, respectively. During the same period, agricultural land will lose a total of 746.1 ha (3.2%) and 1,562.22 ha (6.6%), respectively. The land area will be reduced from 3,595.68 ha in 2021–2,849.58 ha in 2030 and 2033.46 ha in 2050, which will cover a small area in the study area (Figure left). Mohamed and Worku (2020) simulated urban land use and cover dynamics in Addis Ababa and proved that an increase in built-up land consumes ecologically valuable natural landscapes such as waterbodies, forests, mixed woodland, and cropland, which will continue at the expense of the loss of these landscapes. Global projections of urban expansion indicate that urban land cover in Sub-Saharan Africa will expand at the fastest rate (Angel et al., 2011). According to Angel et al. (2011), urban land cover in the region will expand by more than 12-fold between 2000 and 2050. According to the report, the projected rate of increase in urban land cover will be higher than the rate of increase in the urban population because urban population densities can be expected to decline.
[image: Five maps displaying land use changes from 1984 to 2021. Each map shows a study area with different colors indicating land use types: persistent other lands (white), other lands to built-up (red), built-up to other lands (pink), persistent built-up (brown), built-up to agriculture (yellow), agriculture to other lands (orange), agriculture to built-up (cyan), and persistent agriculture (green). A legend and compass are included for reference.]FIGURE 6 | Patterns and spatial trends of urban and agricultural land changes from 1984 to 2021.
[image: Map series showing land use and land cover change predictions for a region in 2021, 2030, and 2050. Colors represent different classes: beige for other lands, red for built-up areas, and green for agriculture. The maps illustrate increasing built-up areas over time. Scale and legend included.]FIGURE 7 | Spatial extent of built-up and agricultural lands for the years 2021, 2030, and 2050.
TABLE 10 | Transition matrix table for the future built-up and agricultural land use changes from 2021 to 2030 and 2050.
[image: Table showing land use predictions for 2030 and 2050 compared to 2021. For 2030, other lands reduce to 15,481.2 with losses of 567.36, built-up areas increase to 3,937.95 with a gain of 1.08, and agriculture rises to 2,771.28 with a loss of 824.4. For 2050, other lands decrease to 14,417.3 with a loss of 1,631.25, built-up areas slightly decrease to 3,936.15 with a loss of 2.88, and agriculture increases to 1,856.88 with a loss of 1,738.8. Total predictions are highlighted for each year.]3.3.1 Validation report of the prediction
In comparing the area reports of the actual and simulated land cover maps for 2021 (Table 11), it was found that there was a small variation within the area of the same class in both maps. A less effective simulation was observed for built-up and agricultural land because these land cover types change faster in actual situations.
TABLE 11 | Summary of actual and predicted land cover for 2021.
[image: Table displaying land cover classes, comparing actual and projected areas in hectares and percentages. Waterbody area increases by 120.06 hectares, built-up area decreases by 654.93 hectares, agriculture increases by 524.16 hectares, wetland increases by 199.53 hectares, grassland increases by 19.35 hectares, woody vegetation decreases by 95.4 hectares, agroforestry decreases by 112.77 hectares. Total area remains consistent at 23,583.24 hectares.]Agreement between the actual and simulated land cover in 2021 was determined using the kappa indices (Kno, Kstandard, and Klocation) in this study. Kno is the measure of the overall proportion of pixels correctly classified versus the expected proportion correctly classified with no ability to specify quantity or location, Kstandard is the proportion assigned correctly versus the proportion that is correct by chance (measure of the ability of the simulated layer to attain perfect classification), and Klocation is the measure of spatial accuracy due to the correct assignment of values that also validate the location between the actual and simulated maps (Keshtkar and Voigt, 2016; Zadbagher and Becek, 2018). The results of the three indices were measured to be all above 70% (Kno = 0.75, Kstandard = 0.73, and Klocation = 0.77), The standard kappa index of the which means that the model is valid with substantial agreement strength (Leta et al., 2021; Zadbagher and Becek, 2018) and, hence can be used for predicting the 2030 and 2050 land cover of the study area. The statistical range of the three indices ranged from 0 (random location) to 1 (perfect location), (Keshtkar and Voigt, 2016; Zadbagher and Becek, 2018).
The kappa indices presented in the study provide strong evidence of the model’s accuracy in predicting land cover change. Specifically, Kno, Kstandard, and Klocation values of 0.75, 0.73, and 0.77, respectively, indicate that the model’s performance significantly surpasses random chance and accurately captures both overall classification and spatial patterns. While these indices confirm a high level of confidence in the projections, stakeholders should also consider the potential limitations of the model and the uncertainties inherent in long-term planning. By understanding these factors and conducting scenario analysis, stakeholders can effectively use the projections to inform decision-making related to land use, infrastructure, and environmental conservation.
3.3.2 Rates of future urban and agricultural land use changes
The rate of change in urban and agricultural land was computed from the data generated from the analysis of the remote sensing images. The percentage of change (PC) (Table 12) and annual rate of change (ARC) (Table 13) were computed for urban and agricultural land use types from 1984 to 2021, 2021 to 2030, and 2050 predictions. The results showed that PC (Table 12) in urban and agricultural lands increased faster but in opposite directions (increasing in the urban area, whereas decreasing in agricultural lands). Built-up land increased by approximately 12.37% from 1984–1990 to 76.04%, 101.63%, and 68.88% from 1990–2000, 2000–2010, and 2010–2021, respectively. In contrast, agricultural land decreased within the respective years by 9.5%, 0.39%, 27.33%, and 34.07%. The highest percentage of changes in built-up land (101.63%) was observed between 2000 and 2010, when a large amount of agricultural land was converted into built-up (Figure 8). On the other hand, the lowest percentage of change (0.39%) in agricultural land was observed in 1990–2000, where only 29.25 ha of the land was lost. Between 1990 and 2000, agricultural land gained much of the lands from other land cover types like agroforestry and grasslands than it lost during these periods, which resulted in a smaller rate of change between the years.
TABLE 12 | Area changes and percentage changes in built-up and agricultural lands from 1984 to 2050.
[image: Table showing land use and land cover (LULC) changes from 1984 to 2050 across three categories: Other lands, Built-up, and Agriculture. Changes are expressed in area and percentage for each period. Other lands increase significantly until 2021, then decrease. Built-up areas show consistent growth, especially from 1984 to 2021. Agriculture decreases in area and percentage across most periods.]TABLE 13 | Annual rate of change [area (ha) and %] in built-up and agricultural lands from 1984 to 2050.
[image: Table showing annual rate of change in land use and land cover classes from 1984 to 2050. Categories include Other lands, Built-up areas, and Agriculture. Metrics are presented in hectares (Ha) and percentages, with historical data from 1984 to 2021 and predictions for 2021 to 2050. Notable changes include a significant increase in Built-up areas, modest changes in Other lands, and a decrease in Agricultural lands.][image: Map showing changes in agricultural and built-up land from 1998 to 2050. Left panel indicates agricultural land, right panel shows built-up land. Areas are color-coded by year: 1998 in purple, progressing to 2050 in red.]FIGURE 8 | Spatial trends of agricultural land (left) and urban built-up area (right) from 1984 to 2050.
The results show that in the study years, built-up land has increased at a faster rate each year. As presented in Table 13, the annual rate of change in built-up land between 1984–1990, 1990–2000, 2000–2010, and 2010–2021 was reported to be about 2.06% year−1, 7.60% year−1, 10.16% year−1, and 6.26% year−1, respectively. In contrast, agricultural land has been declining in the respective years at rates of 1.58, 0.04, 2.73, and 3.10% each year (Figure 8). Between 1984 and 2021, built-up land increased by 3,354.3 ha, which increased by 90.7 ha year−1 at a rate of 15.5% each year. On the other hand, agricultural land decreased by 4,728.96 ha, which has been decreasing by 127.8 ha each year at a rate of 1.54%.
Field observation and survey reports revealed that a high expansion of the built-up area in Hawassa City was observed from 2000 onward. Terfa et al. (2019), in their study on the characteristics, spatial patterns, and driving forces of urban expansion in Addis Ababa, Adama, and Hawassa from 1987 to 2017, Ethiopia, reported that the annual expansion of Hawassa city from 1987–1995, 1995–2005, and 2005–2017 was about 0.65, 0.9, and 1.57 KM2, respectively, which aligns with the results presented in this study, although the dates selected for the study are different.
As shown in Table 12, it is expected that approximately 1,070.82 ha (27.18%) and 2,855.7 ha (72.50%) changes in the area of built-up land will take place from 2021 to 2030 and 2050. Between the same respective years, about 119.0 ha (3.02%) and 98.5 ha (2.50%) changes will occur annually (Table 13), increasing the total area of built-up land. At the same time, 746.1 ha (20.75%) and 1,562.22 ha (43.45%) agricultural land changes (loss) occur at a rate of 2.31% and 1.5% each year, respectively. From this, 64.76 ha (1.8%) and 48.41ha (1.35%) of the annual agricultural land loss are expected to change to built-up land, respectively.
The projection of the built-up and agricultural land changes was drawn based on the existing situation during the study. However, the rate of change in the projected land areas would increase or decrease based on the external factors such as urban land administration and use policies, climate changes, industrial development, and social transformations. For instance, if rural-to-urban population migration decreases and the government implements vertical growth, the consumption of the land for horizontal built-up will be slower.
Studies on urban land prediction have reported a significant increase in the urban built-up area in selected cities worldwide (Aburas et al., 2016; Bose and Chowdhury, 2020; Mohamed and Worku, 2020; Sarkar and Chouhan, 2019; Wu et al., 2010). The analysis results of Sarkar and Chouhan (2019) in the Siliguri Metropolitan Area, West Bengal, indicated that built-up areas (urban) have increased very rapidly, and this sudden growth in the built-up area is also causing a decrease in agricultural land and forest cover. It showed that built-up land increased from 2.18% in 1991 to 13.71% in 2017, whereas agricultural land decreased from 32.53% to 23.13% in the same years. The projected results of the authors for the built-up and agricultural land from 2017–2033 and 2033–2043 was 5.4% and 7.07%, and −3.83% and −7.36%, respectively. Although future LULC prediction research is limited to Ethiopia, Mohamed & Worku, 2020 projected the urban LULC dynamics of Addis Ababa and the surrounding area and reported that built-up land continuously increased over time with the decline of other land cover types, like cropland and forest. It increased from 3.7% in 2005 to 7.0% in 2015 and is expected to increase to 9.6% and 11.9% in 2025 and 2035, respectively.
Angel et al. (2011) based on the global projection of urban expansion from 2000 to 2050 indicated that the projections will be a function of urban population growth and density change. Although the world urban population is expected to increase from 3 billion in 2000 to 5 billion in 2030 and 6.4 billion in 2050, the rate of increase is expected to slow down from 2% per annum in 2000 to 1.65 in 2030 and 1.14% in 2050, and the rate of urban population growth in less developed countries will be five times faster than in more developed countries (Angel et al., 2011). According to the report, urban land area in less developed regions is expected to grow from 297,048 km2 in 2000 to 767,226 km2 in 2030 and 1,233,461 km2 in 2050 by about 158% and 315%, respectively.
To address the challenges posed by rapid urbanization and the consequent loss of agricultural land in Hawassa, implementing more structured urban planning that prioritizes the protection of designated agricultural zones could prove beneficial. Establishing clear land-use policies that delineate urban boundaries while conserving key agricultural lands can help safeguard food security and sustain local livelihoods. Additionally, incorporating mixed-use development strategies that integrate residential, commercial, and agricultural uses may promote sustainable growth and enhance the resilience of the community. Engaging local stakeholders in the planning process ensures that policies reflect the needs and perspectives of those most affected, ultimately fostering a balanced approach to urban development that accommodates growth while preserving essential agricultural resources (Desta & Zeleke, 2020).
4 CONCLUSION
The application of GIS and remote sensing technologies is essential for effectively monitoring land use and land cover (LULC) changes over time, providing valuable insights into environmental dynamics. Historical remotely sensed satellite images play a crucial role in this process, with the Landsat satellite offering global coverage at a medium resolution (30 m) since 1972. In contrast, Sentinel images, while providing higher resolution (10 m) since 2015, lack the comprehensive historical data necessary for long-term analysis. Furthermore, incorporating field visits and visual interpretation enhances digital image classification accuracy, while the land change modeler (LCM) tool enables predictions of future LULC changes by analyzing key geographical variables such as slope, elevation, and proximity to urban centers and main roads. Our analysis reveals that there have been significant changes between the LULC types in Hawassa city within the past 37 years, from which built-up and agricultural land have shown the most prevalent changes. It showed that built-up land has progressively increased from 584.73 ha in 1984–3,939.03 ha in 2021, however, agricultural land decreased from 8,324.64 ha to 3,595.68 ha in the respective years. This implies that there is a rapid urbanization in Hawassa City, in the expense of agricultural land. The built-up land is projected to increase to 5,009.85 ha and 6,794.73 ha from 2021 to 2030 and 2050, while, agricultural land will decrease to 2,849.58 ha and 2033.46 ha same years. This alarming trend poses a critical threat to the livelihoods of local communities in peri-urban areas, who primarily depend on agriculture for their subsistence. To address these challenges and strike a balance between development and environmental preservation, cities like Hawassa must adopt smart urban planning strategies. Approaches such as green infrastructure can promote urban resilience by integrating natural systems, while vertical urbanization can optimize land use and reduce pressure on agricultural areas. Additionally, encouraging peri-urban agriculture could sustain local food systems and provide alternative livelihoods for those communities affected by urban expansion. Overall, the implications of this study emphasize the urgent need for planners and policymakers to develop proactive urban planning and land-use policies that protect agricultural zones and support sustainable urban growth. Future research should focus on assessing the effectiveness of these smart planning strategies and exploring innovative solutions that reconcile urban expansion with environmental conservation, ultimately ensuring a more sustainable future for cities like Hawassa.
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The development of mining cities has led to changes in land use and the evolution of landscape patterns. Constructing an ecological security evaluation system can reflect the ecological security status of mining city areas and provide planning references for these cities. This study, based on Heihe City’s land use data from 1980 to 2020, systematically analyzes the spatial and temporal evolution characteristics of land use, landscape patterns, and landscape ecological security levels by constructing a land use transfer matrix and calculating landscape pattern indices and landscape ecological security indices. The results show that: 1) Forest land is the main type of land use in Heihe City, accounting for over 50% of the total area. Land use changes primarily occurred between 2000–2010 and 2010–2020, with the spatial pattern characterized by overall stability and localized dramatic shifts, mainly involving the conversion of forest land to farmland and unused land. 2) From 1980 to 2020, the landscape ecological security pattern in Heihe City improved. Landscape diversity and landscape contagion increased, while landscape fragmentation, the largest patch area, and the average patch area decreased. Land use was optimized overall, but the trend of forest fragmentation became noticeable. 3) Between 1980 and 2020, the landscape ecological security level in Heihe City improved significantly. Driven by ecological restoration policies, the ecological security level in the southern region greatly improved, while the spatial pattern continued to show a trend of lower security in the south and higher security in the north. Specifically, the area proportions of low-security and relatively low-security areas increased by 6.23% and 9.55%, respectively. The spatial clustering of landscape ecological security levels is evident, with high-high value clustering mainly in the north and low-low value clustering mainly in the south. It is necessary to further promote ecological protection in the north to ensure the ecological barrier function, while strengthening ecological restoration in the south to improve ecological security levels. Additionally, continuous macro-policy regulation is needed to maintain long-term ecological security in Heihe City. The ecological security level of mining city landscapes is influenced by economic dependence, policy constraints, and environmental issues. This study can provide guidance for planning improvements in the study area and other mining cities.
Keywords: ecological security assessment, Heihe city, land use, landscape pattern, mining city

1 INTRODUCTION
1.1 Background
With the rise of mining cities, China introduced relevant policies to align with global standards. Since 1978, the global coal industry has gone through four stages: the first stage, from 1978 to 1992, was a period of deepening reform in the coal industry, during which developed countries began comprehensive adjustments and restructuring, promoting the construction of township coal mines and achieving rapid increases in coal production. During this time, a large number of mining cities emerged, while developing countries were still in the preparatory phase of resource development (Li et al., 2002). The second stage, from 1993 to 2001, was marked by coal industry reform aimed at poverty alleviation. In developing countries like China, the number of small coal mines decreased from over 80,000 in 1998 to around 22,000 b y 2001. During this period, industrial and mining land use in China significantly decreased, leading to notable changes in land use patterns, while developed countries were experiencing the growth phase of mining city development (Fan et al., 2005). The third stage, from 2002 to 2011, focused on the sustainable and healthy development of the coal industry, with efforts to build a new coal industry system and transform the economic development model (Zhou and Tang, 2004). During this time, awareness grew about the limitations resource depletion posed to urban development, leading to explorations of sustainable development strategies for mining cities. As global coal production reached its designed capacity, the comprehensive regional development of mining cities improved, and their scale expanded. The fourth stage, from 2012 to the present, has been characterized by a focus on high-quality development in the coal industry, with policymakers worldwide emphasizing the ecological security of mining cities. Over these 4 decades, the planning and development of mining cities have become a key focus of research in global land-use and spatial planning (Liu Y. et al., 2023).
1.2 Related work
Mining cities refer to cities or regions where the mining industry is the dominant economic driver (Liu X. et al., 2023). Mining activities have significant impacts on the environment, leading to ecological issues such as large-scale land subsidence and a decline in biodiversity due to long-term exploitation (Shi and Xiang, 2023). These environmental problems result in land-use changes that pose challenges to the sustainable development of these cities (Mardonova and Han, 2023). However, there are several gaps in the current research on mining cities: First, in terms of research content, scholars primarily focus on ecological restoration strategies in mining cities, particularly on water ecosystem management and vegetation restoration techniques, but there is a lack of systematic analysis of the evolution of landscape ecological security patterns in the context of land-use and spatial planning (Feng et al., 2023; Li Q. et al., 2023; Xu et al., 2023; Zhao et al., 2023). Second, from the research perspective, insufficient attention has been given to mining cities as resource-depleted urban areas, especially those with rich mining resources and significant ecological importance, such as Heihe City (Wei et al., 2023)., which remains under-researched. Exploring the long-term evolution of landscape ecological security patterns in mining cities can deepen our understanding of the ecological security dynamics of these cities and advance knowledge of the comprehensive management of ecological degradation. It also provides a scientific basis for assessing the effectiveness of ecological restoration efforts. Therefore, conducting long-term research on the landscape ecological security patterns of mining cities is essential for guiding ecological protection and restoration efforts.
Land-use change refers to alterations in the types, functions, or characteristics of land use within a specific region or area. Such changes directly influence the structure and patterns of landscapes (Zhang J. et al., 2023). The landscape pattern index method is commonly used to assess and describe the characteristics of landscape patterns in a given area or region. Previous research has often employed this method for quantitative studies on the landscape pattern changes of urban land-use types (Ye et al., 2022). However, in studies focusing on mining cities, which are resource-depleted urban areas, most research leans towards qualitative planning, and there is relatively little quantitative research using landscape indices (Dong et al., 2023; Gao et al., 2024). Li Baojie and others conducted a landscape pattern analysis of mining areas using the optimal analysis grain size, revealing that changes in regional land-use landscape patterns are the result of the combined effects of natural and human factors. Their analysis of the spatiotemporal evolution of landscape patterns in the Jiawang mining area based on the optimal grain size provides a new method for the quantitative assessment of land-use rationality and scientific validity (Li et al., 2016) Although some scholars have studied landscape patterns in mining cities, most of these studies focus on short-term dynamic landscape patterns over a few specific years, without addressing the dynamic changes over a period of nearly 40 years (Dong et al., 2023; Luo et al., 2023; Wu et al., 2014; Wu et al., 2021). This paper selects a time frame that covers key periods of land policy reform and mining culture development in China, making the study of landscape pattern evolution in mining cities within this context more representative.
Ecological security assessment is the foundation and premise of ecological security research. It is the process of evaluating the health status of a specific region or ecosystem and its potential to withstand external impacts (Lv et al., 2024). This process reflects the degree to which human beings are protected from ecological damage and environmental pollution, playing a crucial role in maintaining the ecological balance of the Earth and supporting the development of mining cities. The ecological security of mining cities refers to the ability of their natural, artificial, and complex ecosystems to maintain their normal structure and function while also recovering from external pressures and stresses. As cities driven by mining activities, the ecosystems of mining cities are more fragile and complex than those of traditional cities. Currently, research on the ecological security of mining cities focuses more on establishing evaluation mechanism models and selecting evaluation indicators, with little attention paid to the relationship between ecological security and land-use change. This gap makes it difficult to guide the management and regulation of ecological security effectively (Li Z. et al., 2023; Yang and Ye, 2023; Yao et al., 2023; Zhao et al., 2024). By conducting ecological security assessments of mining cities, the impact of different land-use practices on the ecosystem can be evaluated, thus informing land-use planning and management to achieve sustainable utilization of land resources and protection of the ecological environment in mining cities (Chen and Ma, 2023; Li X. et al., 2023). This study combines the analysis of landscape pattern evolution with ecological security assessments in mining cities based on land-use change. The methodology primarily uses quantitative analysis, supplemented by qualitative analysis, to make the results of the ecological security assessment more convincing.
1.3 Objectives and contributions
Based on the above, this study selected Heihe City in Heilongjiang Province, China, as the research subject through data pre-selection, as it provided the most representative data results (Yang et al., 2022). Heihe City has a relatively low level of mining development and is still in its early stages, but it is rich in various mineral resources. As a typical mining city in northern China and a forestry city, Heihe boasts abundant forest resources and serves as a natural ecological barrier for the “granary of Northeast China,” giving it significant ecological importance. During its development, Heihe faces common challenges of resource-dependent cities, such as the over-exploitation of natural resources and ecological degradation. This study used land-use data from five periods—1980, 1990, 2000, 2010, and 2020—to conduct a detailed assessment of the landscape pattern evolution and ecological security of Heihe from 1980 to 2020. Methods employed include land-use transition matrices, landscape pattern indices, landscape ecological security assessments, and spatial autocorrelation analysis. The research aims to answer two specific questions.
	(1) How did the landscape patterns of Heihe change across different spatial and temporal dimensions during the 4 decades of policy turbulence from 1980 to 2020?
	(2) How did these changes in landscape patterns affect the ecological security of the mining city across different spatial and temporal dimensions from 1980 to 2020?

Addressing these questions will provide policy insights for improving the ecological security of similar mining cities in China and offer a reference for studying the ecological security of mining cities in other countries and regions.
2 MATERIALS AND METHODS
2.1 Study area overview
Heihe City is located in the northern part of Heilongjiang Province (47°42′–51°03′N, 124°45′–129°18′E), at the eastern end of the Greater Khingan Range and the northern part of the Lesser Khingan Range, with a total area of 6,872,600 hm2 (Figure 1). The terrain within the city features rolling mountains and valleys, with higher elevations in the northwest gradually sloping down towards the southeast, forming a landscape that runs from the northwest to the southeast. Heihe has a cold temperate continental monsoon climate, characterized by high temperatures and strong winds in spring, simultaneous heat and rain in summer, sharp temperature drops in autumn, and cold, dry winters. The seasons are distinct, with long winters and short summers. According to the results of Heihe City’s third national land survey, the current land-use types in Heihe include 2.1879 million hm2 of arable land, 10,300 hm2 of orchards, 3.2125 million hm2 of forest land, 160,800 hm2 of grassland, 858,400 hm2 of wetlands, 75,300 hm2 of urban, village, and industrial land, 51,900 hm2 of transportation land, and 116,300 hm2 of water areas and water conservancy facilities.
[image: Map showing the Wudalianchi and surrounding areas in Heilongjiang Province, China, with a digital elevation model. Regions are color-coded by elevation, with red indicating higher altitudes and blue indicating lower. Key locations, including Aihui, Nenjiang, Sunwu, and Yi'an, are labeled. An inset map highlights the region's location within China.]FIGURE 1 | Location map of the study in Heihe City, Heilongjiang Province.
Heihe City is located in the key metallogenic belt of the Greater and Lesser Khingan Ranges, with extremely rich mineral resources and vast development potential. A total of 95 types of minerals have been discovered within the city’s jurisdiction, accounting for 68.35% of the 139 types found in the entire province. There are verified reserves of 38 types, which make up 40.86% of the 93 types identified in the province. These include one type of energy mineral, 20 types of metal minerals, and 17 types of non-metal minerals. Heihe holds the province’s largest reserves for 26 types of minerals, including copper, gold, lead, zinc, tungsten, perlite, pumice, and shale used for cement production, while coal ranks sixth. Additionally, the city has over 140 million tons of marble reserves. The primary minerals being developed and utilized are coal, iron, copper, lead, zinc, molybdenum, gold, silver, and mineral water. However, Heihe City is currently facing several challenges. Some mines are approaching closure due to resource depletion, large-scale mine development is insufficient, and the costs of land and forest requisition are high, all of which have slowed the pace of mining development. As Heihe’s mineral resources gradually become exhausted, problems such as environmental degradation and difficulties in sustaining economic development have become increasingly prominent (Wei et al., 2023).
2.2 Research methodology
2.2.1 Data source and preprocessing
The land use data in this article is derived from the national land use type remote sensing monitoring spatial distribution data provided by the Resource and Environment Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 3 February 2024), with a spatial resolution of 30 m × 30 m. The unified spatial reference coordinate system is the Krasovsky_1940_Albers coordinate system, including land use data for five periods: 1980, 1990, 2000, 2010, and 2020. The comprehensive accuracy of land use type evaluation in this dataset exceeds 90%.
Based on the “Current land use classification” (GB/T 21,010–2017) and considering the landscape characteristics of Heihe City, the landscape types in Heihe City are classified into seven categories: arable land, forest land, grassland, water bodies, urban and rural residential land, industrial and mining land, and unused land. Urban and rural residential land includes commercial and service land, industrial and mining storage land, residential land, public management and public service land, special land, and transportation and transportation land. Considering the spatial resolution of the image data and the precision of information extraction, other construction land in urban and rural areas, industrial and mining land, and residential land, including factory areas, large industrial areas, quarries, etc., are uniformly classified as industrial and mining land.
2.2.2 Landscape pattern indices
Landscape pattern indices can highly condense landscape spatial pattern information, reflecting its structural composition and spatial configuration characteristics (Han et al., 2018; Jingwei and Haize, 2006; Lu et al., 2012). Based on principles of landscape ecology, nine landscape indices were selected for calculation: at the patch scale level, the indices include LPI, AREA_MN, FRAC_AM, and COHESION; at the landscape scale, the indices include N.P., CONTAG, LPI, FRAC_AM, and SHDI (Table 1).
TABLE 1 | Landscape pattern index description.
[image: Table detailing landscape pattern indices at patch and landscape scales, with index names and their significance. Patch scale indices include LPI, AREA_MN, FRAC_AM, and COHESION, each describing aspects like patch area, fragility, edge complexity, and spatial connectivity. Landscape scale indices include N.P., LPI, CONTAG, FRAC_AM, and SHDI, addressing patch number, area, connectivity, and diversity.]2.2.3 Landscape ecological security index

	(1) Selection of Landscape Ecological Security Index

The Landscape Ecological Security Index construction method based on landscape disturbance and vulnerability has been widely applied in many studies (Feng et al., 2016; Nitschke and Innes, 2008; Sheng et al., 2018; Sun and Chen, 2017; Zhang et al., 2019). Landscape disturbance represents the degree of disturbance to different landscape ecosystems (Zhang et al., 2019), calculated by weighting landscape fragmentation, isolation, and dominance (Zhang et al., 2019). Landscape fragmentation describes the continuity and integrity of natural or anthropogenic landscapes, typically referring to the degree of fragmentation or isolation between different landscape elements (such as forests, grasslands, water bodies, etc.) within an area (Qing et al., 2007). Landscape isolation refers to the spatial distance and degree of isolation between different landscape types within a region (Jin and Hu, 2003). Landscape dominance is usually determined by comparing the coverage area of different landscape types (Cheng et al., 2005; Daqing et al., 2005; Jiang et al., 2002; Lohbeck et al., 2016). Existing research considers landscape fragmentation as the most important factor in landscape disturbance, followed by isolation and dominance, thus assigning values of 0.5, 0.3, and 0.2 (Gao et al., 2021; Wang et al., 2021), rrespectively. Landscape vulnerability represents the degree of change in landscape use types after disturbance (Wang et al., 2021). Based on existing research (Wang et al., 2021) and the actual situation of the study area, values were assigned as follows: urban and rural residential land is the most stable, assigned a value of 1; forests and grasslands are mostly located far from residential areas and relatively stable, assigned values of two and 3, respectively; farmland is susceptible to human disturbance, assigned a value of 4; water bodies, located close to residential and farmland areas, are greatly disturbed by human activities, assigned a value of 5; unused land and industrial and mining areas represent the most fragile ecosystems, assigned a value of 6. Using ArcGIS 10.3, the study area was divided into 1 km × 1 km grids, and each grid’s Landscape Ecological Security Index was calculated. Finally, the Landscape Ecological Security Index for the study area was obtained through Kriging interpolation (Table 2).

	(2) Determination of Landscape Ecological Security Standards.

TABLE 2 | Calculation method of landscape ecological security index.
[image: Table displaying landscape metrics. Six metrics listed: Fragmentation Degree, Separation Degree, Dominance Degree, Disturbance Degree, Vulnerability, and Ecological Security Index. Each includes a calculation method and explanation. Variables represent landscape features like area, perimeter, and weights. Disturbance Degree uses weights with references. Vulnerability refers to sensitivity values for various landscape types.]To reflect the spatiotemporal differences in the landscape ecological security index of the study area, reference to existing research results and combined with the actual distribution of the landscape ecological security index in the study area (Gao et al., 2021; Wang et al., 2021), the natural breakpoint method is adopted to divide the landscape ecological security level of the study area into five grades. The classification intervals for other years are standardized based on the classification intervals for the reference year (Table 3). To make the landscape ecological security pattern map more intuitive, each level of landscape ecological security is further divided into three equal parts while maintaining the same level intervals.
TABLE 3 | Landscape ecological security evaluation standards.
[image: Table classifying the Landscape Ecological Security Index (ES_k) into levels. Ranges: 0.151 to 0.194 (Low Security), 0.194 to 0.233 (Lower Security), 0.233 to 0.280 (General Security), 0.280 to 0.341 (Safer), 0.341 to 0.450 (Safe).]2.2.4 Spatial autocorrelation analysis
Global spatial autocorrelation can reveal whether geographic phenomena exhibit spatial clustering and is often characterized using Moran’s I (HuaLin, 2008). Local spatial autocorrelation reflects the degree of correlation between a geographic phenomenon or attribute in a local area unit within a larger region and the same phenomenon or attribute in adjacent local area units, and is often represented using LISAi indices (HuaLin, 2008). The calculation formulas are as follows (Equations 1, 2).
	(1) Global Spatial Autocorrelation:

[image: Formula for Moran's I, a measure of spatial autocorrelation: \( I = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \sum_{i=1}^{n} (x_i - \bar{x})^2} \), where \( n \) is the number of spatial units, \( x_i \) are observations, and \( W_{ij} \) are spatial weights.]
In the equation, n represents the total number of sample points for variable x; xi and xj denote the observed values of a certain attribute in areas i and j, respectively; [image: It seems there was an issue with your request. If you're trying to upload an image or provide a URL, please try again. Optionally, you can add a caption for additional context.] denotes the average value of the attribute across all n areas; Wij represents the spatial weight matrix. When the Moran’s I index is positive, it indicates spatial clustering, meaning similar values are adjacent to each other; when the Moran’s I index is negative, it indicates spatial dispersion, meaning similar values are far apart from each other; when the Moran’s I index is close to 0, it indicates a random spatial distribution of patterns.
	(2) Local Spatial Autocorrelation:

[image: Equation for Local Indicator of Spatial Association (LISA): LISA sub i equals the fraction of x sub i minus x bar over the summation of x sub i minus x bar squared, times the summation over j of W sub i j times x sub j minus x bar for i does not equal j. Equation number 2.]
The LISAi does not have a fixed range of values. A LISAi value greater than 0 indicates spatial clustering of similar values around the area unit, manifested as high-high or low-low clustering. A LISAi value less than 0 indicates spatial clustering of dissimilar values, manifested as high-low or low-high clustering.
3 RESULTS
3.1 Land use change analysis
3.1.1 Analysis of land use structural changes
Between 1980 and 2020, forest land, cultivated land, grassland, and unused land were the primary land-use types in Heihe City. Among them, forest land accounted for the largest area, though it steadily decreased over time, while the area of cultivated land and industrial mining land continuously expanded. The total area of industrial/mining land increased 32-fold, from 180.27 hm2 in 1980 to 5,775.10 hm2 in 2020. Spatially, forest land was widely distributed across various parts of Heihe City, with southern forest areas gradually being converted into farmland. Industrial and mining land was mainly concentrated in the southern and southwestern regions. Water bodies were primarily located in the southern part of the study area, while cultivated land was mainly distributed in the southwest and northeast. Unused land was more scattered, primarily dispersed in the southwestern part of the study area (Table 4; Figure 2).
TABLE 4 | Land use change in the study area from 1980 to 2020.
[image: Table showing land use changes from 1980 to 2020. Categories: Farmland, Woodland, Grassland, Waters, Urban and Rural Residential Land, Industrial and Mining Land, Unused Land. Data columns include area (hm²) and percentage for each decade. Farmland and woodland show notable changes, with woodland consistently being the highest.][image: Land use maps show changes in a region from 1980 to 2020 in ten-year intervals. The legend indicates categories: study area, water, farmland, woodland, grassland, urban, residential, industrial, mining, and unused land. Different colors represent each category, depicting transitions over time.]FIGURE 2 | Land use changes in heihe city from 1980 to 2020.
3.1.2 Analysis of land use transfer changes
Between 1980 and 2020, the mutual conversion among cultivated land, forest land, grassland, and unused land was the main direction of land use type transitions in the study area. During these 40 years, 3,924.13 hm2 of forest land were converted to cultivated land, primarily in the southern and northeastern parts of the study area. Additionally, 2,064.5 hm2 of grassland were converted to cultivated land, distributed throughout various parts of Heihe City. This indicates that, alongside mining development, Heihe City has increasingly emphasized the sustainability of agriculture and the ecological environment. Faced with the driving force of urban construction and development, 154.09 hm2 of cultivated land were converted to urban and rural residential construction land, along with 84.45 hm2 of forest land and 55.04 hm2 of grassland, with the main conversion areas located in the southwestern part of Heihe City. It was observed that the degree of land use transfer for industrial and mining land was relatively low, with only a small portion converted to cultivated land. The main reason for this is Heihe City’s strong reliance on mineral resources, and the long-term environmental impacts caused by mining activities, which make it difficult for industrial and mining land to be repurposed for other uses in the short term after mining operations have ceased (Supplementary Table S1; Figure 3).
[image: Five circular charts depict land use changes over different time periods: 1980-1990, 1990-2000, 2000-2010, 2010-2020, and 1980-2020. Categories include farmland, woodland, grassland, waters, urban and rural residential land, industrial and mining land, and unused land. Each chart shows varying proportions of these categories, with farmland and grassland prominently featured. A legend explains the color coding for each land type.]FIGURE 3 | The land use transfer patterns vary across different land categories in the study area over different years.
From the perspective of different land use periods, the main land use transitions occurred between 2000–2010 and 2010–2020. During 2000–2010, driven by the national policies of returning farmland to forest and grassland, along with the development of Heihe City’s forestry industry, the primary land transitions involved forest land. A total of 2,560.98 hm2 of forest land was converted to cultivated land, 2,534.68 hm2 to grassland, and 1,192.94 hm2 to unused land. During the same period, 1,156.12 hm2 of cultivated land were converted to forest land, while grassland and unused land contributed 2,444.57 hm2 and 1,465.97 hm2, respectively, to forest land (Supplementary Table S4; Figure 3). In the period between 2010 and 2020, the most significant land transitions involved water bodies, with 1,124.71 hm2 of water area being converted to other land types, while only 573.73 hm2 of other land were converted to water bodies. During this period, the water area was reduced by half, primarily transitioning into cultivated land and unused land. This reduction suggests potential over-extraction and processing of water resources, leading to their depletion and conversion into cultivated land. Additionally, the failure of ecological restoration attempts in areas affected by mining development may have resulted in the transformation of water bodies into unused land (Supplementary Table S5; Figure 3).
Overall, from 1980 to 2020, the changes in cultivated and forest land were the most significant, with a scattered spatial distribution. The general trend shows forest land undergoing the most notable transformations. The land use pattern exhibited significant changes in the northeastern and southwestern regions, while the northwestern and southeastern areas remained relatively stable (Supplementary Table S1; Figure 3).
3.2 Landscape pattern change analysis
3.2.1 Patch scale change analysis
Regarding patch contagion (COHESION), the patch indices for various land-use types were all close to 100, indicating a high degree of connectivity among the landscape patches, forming a relatively continuous and cohesive whole. However, the patch cohesion for urban and rural construction land and industrial and mining land was relatively low, though it gradually increased from 1980 to 2020. The primary reason for this increase is that Heihe City has vigorously developed its mining industry from 1980 to 2020, attracting a large number of mining-related industries and services, which led to the concentration of economic activities and, consequently, the focused distribution of industrial and mining land and urban-rural construction land. Additionally, the Heihe City government’s “General Land Use Plan for Heihe City (2006–2020)”(https://www.heihe.gov.cn/hhs/c102620/202012/c11_225272.shtml) (accessed on 8 October 2024) mandated adjustments in the scale of construction land, further enhancing the cohesion of urban-rural construction land and industrial and mining land (Figure 4).
[image: Four bar charts labeled a, b, c, and d, comparing land use categories for the years 1980, 1990, 2000, and 2010. Categories include Farmland, Woodland, Grassland, Waters, Urban and Rural Residential Land, Industrial and Mining Land, and Unused Land. Each chart has a different metric: chart a shows confusion, chart b shows PRAC, chart c shows KAPPA, and chart d shows AREA. Each category is represented by color-coded bars for each year.]FIGURE 4 | Changes in patch scale landscape pattern indices from 1980 to 2020. (A) Changes in cohesion landscape pattern index from 1980 to 2020. (B) Changes in FRAC_AM landscape pattern index from 1980 to 2020. (C) Changes in the LPI landscape pattern index from 1980 to 2020 (D) changes in AREA_MN landscape pattern index from 1980 to 2020.
[image: Five line graphs labeled a to e, each displaying different metrics over time from 1995 to 2010. Graph a shows a decline in FRAC_ARFC, graph b a similar decline in IFL, graph c a sharp drop then rise in NSDF, graph d shows an increase in SHGFI, and graph e presents a decrease in SOVI/ARFC. Data points are marked, showing changes at specific years with connecting lines.]FIGURE 5 | Changes in Landscape Pattern Index at the landscape Scale from 1980 to 2020. (A) 1980–2020 FRAC_AM Landscape Pattern Index Changes. (B) 1980–2020 LPI Landscape Pattern Index Changes. (C) 1980–2020 N.P. Landscape Pattern Index Changes. (D) 1980–2020 SHDI Landscape Pattern Index Changes. (E) 1980–2020 CONTAG Landscape Pattern Index Changes.
In terms of area-weighted average patch fractal dimension (FRAC_AM), forest land and unused land exhibited relatively high values, close to 1.3. In contrast, the area-weighted average patch fractal dimensions for other land-use types were more balanced, hovering around 1.2 and 1.1. This indicates that the shapes of patches for forest land and unused land are relatively complex with jagged edges, while the patches for other land types have simpler shapes with smoother edges. By 2020, the area-weighted average patch fractal dimension for industrial and mining land had increased, mainly influenced by Heihe City’s ecological restoration policies. Human interference has caused changes in the shapes of these industrial and mining areas. The “General Planning for Mineral Resources in Heilongjiang Province (2016–2020)” (https://www.hlj.gov.cn/hlj/c108411/202110/c00_31181663.shtml) (accessed on 8 October 2024) proposed land reclamation in mining areas, which effectively addresses ecological issues in these regions, resulting in more complex shapes for industrial/mining land. Furthermore, the rugged terrain of Heihe City, characterized by rolling mountains and intersecting valleys, has contributed to the increasing complexity of the boundaries of industrial and mining land as mineral extraction deepens, which is another reason for the rise in the fractal dimension of these patches (Figure 4).
In terms of the largest patch index (LPI), forest land has consistently been the dominant landscape type in Heihe City. However, from 1990 to 2020, the LPI area of forest land gradually decreased, while the LPI area of cultivated land gradually increased. This shift can be attributed to Heihe City being primarily a forestry-based economy during this period, where economic development was closely tied to forest resources. As urban development progressed, activities such as deforestation and mining caused the originally continuous forest land to be fragmented into smaller patches of residential land, industrial and mining land, and unused land, resulting in spatial fragmentation (Figure 4).
Regarding average patch area (AREA_MN), forest land had the largest AREA_MN, indicating the lowest degree of landscape fragmentation. This is because forest land accounted for 60% of the original land-use types in Heihe City, and resource extraction in mining areas was concentrated in regions planned by the Heihe City government. As a result, forest areas that were either undeveloped or minimally impacted by development were often retained on the periphery of mining zones or in difficult-to-develop areas, leading to relatively concentrated patches of forest land. The AREA_MN of forest land peaked in 1990 and subsequently began to decline, mirroring the trend of increasing fragmentation in unused land and cultivated land during the same period. This indicates that after 1990, the process of urban integration contributed to the increased fragmentation of forest land, cultivated land, and unused land.
3.2.2 Analysis of landscape-level changes
In terms of the area-weighted average patch fractal dimension (FRAC_AM), the study area showed a gradual decline from 1980 to 2020, decreasing by 0.02 over this period, indicating that the landscape in the study area has become simpler and the edges have become smoother. Regarding the largest patch index (LPI), the area of dominant landscapes in the study area gradually decreased from 1990 to 2010, but began to increase again from 2010 to 2020. This suggests a decline in the status of forest land as a dominant landscape, although it has somewhat recovered due to support from the return-to-forest policy. Concerning the number of patches (NP), there was a decline in the number of patches from 1980 to 1990, reaching a minimum value, indicating an increase in landscape connectivity in Heihe City in 1990, which enhanced the overall resilience of the landscape to disturbances. After 1990, the number of patches began to rise gradually, suggesting an increasing degree of landscape fragmentation in Heihe City. In terms of landscape diversity (SHDI), there has been an upward trend in landscape diversity in the study area since 1990. This increase is primarily associated with the rise in grassland area during the ecological restoration process, as well as the expansion of urbanization leading to an increase in the area of built-up and unused land. Regarding landscape contagion (CONTAG), the contagion index in the study area began to decline from 1990, dropping by 4% by 2010. This indicates that during this period, the degree of adjacency or connectivity between different patch types in the landscape of Heihe City weakened, while the extent of human activities affecting the natural landscape increased, coinciding with a gradual rise in urbanization levels.
3.3 Landscape ecological security pattern evolution
3.3.1 Overall analysis of landscape ecological security pattern
From a general perspective, between 1980 and 2020, the spatial distribution of landscape ecological security levels in the study area showed a trend of being lower in the south and higher in the north. Over time, the overall landscape ecological security pattern has shown improvement. Specifically, in 1980, the proportions of low-security and relatively low-security areas in the study area were 28.37% and 36.03% respectively, mainly concentrated in the southern part with a fragmented landscape of agricultural land, forests, urban and rural construction land, and unused land. Areas classified as relatively safe and safe were primarily located in the north and east, covering 12.08% of the area, predominantly composed of forests with more intact land use. Overall, the ecological security level of Heihe City was relatively low in 1980. By 2020, the proportions of low-security and relatively low-security areas had decreased to 22.14% and 26.48% respectively, showing increases of 6.23% and 9.55%. This improvement was particularly notable in areas such as Aihui District, Wudalianchi City, and Bei’an City, likely due to integrated planning of agricultural land and controlled zoning for mineral development (Figure 6).
[image: Six maps show safety changes over time from 1980 to 2020. Areas are marked from low safety in red to safe in blue, according to the legend. Each map represents a different decade.]FIGURE 6 | Evolution of ecological security landscape pattern in the study area from 1980 to 2020.
From 1980 to 1990, the ecological security levels in the study area continued to exhibit a pattern of lower levels in the south and higher levels in the north, but the ecological security in the low-security and relatively low-security areas in the southern and central regions improved. The proportion of low-security and relatively low-security areas decreased from 64.40% in 1980 to 41.11% in 1990, indicating an improvement in the ecological environment of Heihe City during this period, with an overall increase in landscape ecological security. From 1990 to 2000, the ecological security levels in the study area gradually shifted from the pattern of lower in the south and higher in the north to one of lower in the central region and higher in the surrounding areas. The environmental quality of Sunwu County improved, while that of Wudalianchi City and Nenjiang County deteriorated. From 2000 to 2010, the ecological security levels in the study area saw an overall improvement, forming a landscape ecological pattern of lower in the central region and higher in the surrounding areas, with particularly improved environmental quality in Wudalianchi City, where most areas were classified as relatively safe or safe. However, from 2010 to 2020, with the accelerated urbanization process, the ecological quality of Heihe City declined, and the overall ecological security level decreased. This decline was especially prominent in the central and southern regions, where areas classified as safe transitioned to relatively low-security areas, primarily due to an increase in unused land and a reduction in landscape restoration capacity (Figure 6).
3.3.2 Spatial autocorrelation analysis of landscape ecological security index
From 1980 to 2020, the global spatial autocorrelation indices for the five periods were 0.892, 0.992, 1.029, 1.038, and 1.103, all of which passed the significance test at p = 0.01. This indicates that the ecological security index exhibits spatial clustering. Spatially, two extremes in Heihe City’s ecological security index were observed, with relatively few areas showing high-low or low-high clustering. Most areas exhibited no significant correlation, with local spatial autocorrelation primarily characterized by high-high value clustering and low-low value clustering.
In 1980, the clusters of ecological security indices were relatively scattered, with low-low value clusters appearing around the periphery. By 1990 and 2000, the spatial distribution of ecological security in Heihe City became more stable. Locally, high-high value clusters were mainly concentrated in the northern and eastern regions, indicating a relatively good level of ecological security in these areas. Meanwhile, the low-low value clusters around the edges gradually expanded southward, reflecting a decline in ecological security in the southern region, with a growing risk of ecological degradation. The spatial autocorrelation results for the ecological security index suggest that the northern and eastern regions, where forests are distributed, acted as ecological barriers, effectively maintaining the environment. In contrast, the central and southern regions, due to the development of industrial, mining, and urban construction land, experienced more frequent human disturbances, making the ecosystems more fragile. During the 2010 and 2020 periods, the area of high-high value clusters in the northern region became more stable, while the low-low value clusters in the central region shifted entirely to the south. This was due to the central region’s unused land patches gradually forming larger, more regular patches under proper urban planning, reducing ecological damage in the surrounding areas. However, urban and rural construction in the southern region began to impact the environment, highlighting the need for future attention to ecosystem restoration and protection in this area (Figure 7).
[image: A series of five maps depicting a study area from 1980 to 2020, showing spatial clusters and outliers. Colors indicate high-high clusters (dark green), high-low outliers (orange), low-high outliers (light blue), low-low clusters (yellow), and nonsignificant areas (white). A legend and scale are included on the right.]FIGURE 7 | Local spatial autocorrelation map of ecological security index in the study area from 1980 to 2020 (p = 0.01)
4 DISCUSSION
4.1 Nsights on landscape pattern index
4.1.1 Screening and analysis of landscape pattern index
Evaluating the spatial pattern changes of mining cities using landscape pattern indices is meaningful and necessary because it can provide a reference for policymakers in planning mining cities (Wei et al., 2009). In selecting landscape pattern indices, covering every aspect in practical applications is optional. Landscape pattern indices serve repetitive purposes, and only a few indices are needed to fully meet the requirements of pattern analysis, reflecting the characteristics of landscape patterns in the study area. Therefore, this study screened landscape factors, and nine indices representing landscape fragmentation, aggregation, and diversity were selected for calculation.
Compared to the study by Ya et al., which only analyzed the spatial changes of the landscape from a temporal perspective (Ya-Hui et al., 2021), this study further divided landscape indices into patch-level and landscape-level analyses. It described the changes in landscape patterns of different land types in the study area over different time dimensions and the overall landscape pattern changes in the study area over different time dimensions, providing a comprehensive analysis from macro and micro perspectives, making the results more scientifically sound. From the results of landscape pattern analysis, it can be observed that human disturbances significantly impact the spatial pattern of a mining city.
4.1.2 Analysis of landscape pattern index results
Based on the analysis of landscape pattern indices, the landscape pattern of Heihe City has been primarily influenced by economic dependence, policy restrictions, and environmental issues.
From the patch scale perspective, significant changes were observed in the average patch area (AREA_MN) and the largest patch index (LPI) for forest land between 1980 and 2020. However, other landscape patterns showed little variation. This is mainly because the forestry industry holds an important position in the economic structure of Heihe City. The forestry industry is one of Heihe’s traditional sectors, with abundant forest resources, particularly high-quality timber such as red pine and white birch. The city has actively developed industries related to timber processing, non-timber forest product development, and forest tourism. With the growing awareness of sustainable development and ecological protection, Heihe City has gradually promoted the sustainable use of forest resources and the conservation of its forest resources in recent years. Over the past 40 years, mining activities and land use policies in Heihe City have been subject to strict government regulation and oversight. The local government has controlled the area of forest land, effectively increasing its extent by implementing afforestation projects on reclaimed farmland and unused land in various forest farms. Consequently, the changes in the landscape pattern of forest patches have been the most significant.
From the landscape scale perspective, the landscape diversity index of Heihe City showed an upward trend from 1980 to 2020, while other indices displayed a downward trend. This pattern is closely related to the mining policies, ecological restoration policies, and urbanization processes implemented in Heihe City. The city is rich in mineral resources, with a diverse range of types distributed across various patches, which facilitates economic diversification. Under this model of mining development, Heihe City has experienced significant changes in its economic structure, which has also influenced the updating and alteration of the landscape pattern. Additionally, due to the transformation of the industrial structure, the local government has adopted policies for the redevelopment and reuse of abandoned mining areas or extraction sites. This involves converting mined-out land into green spaces, parks, wetlands, or other forms of urban land. For instance, the Xigangzi coal mining area in Heihe City has combined mine environmental restoration with farmland occupation and compensation projects to transform industrial wasteland into fertile land. This has enriched the types of landscape patches within the city, thereby increasing landscape diversity. At the same time, Heihe City has initiated ecological restoration projects aimed at restoring ecosystems in mining areas through vegetation recovery, soil remediation, and water body management. These efforts have diversified the landscape structure of damaged areas and increased the complexity of the ecosystem. Furthermore, with the acceleration of the urbanization process, the government has expanded land types for various uses, such as commercial zones, residential areas, industrial districts, and transportation facilities. This urbanization process has clarified the boundaries between different land uses, increasing the number and variety of landscape patches and enhancing overall landscape diversity.
4.2 Ecological security evaluation insights
4.2.1 Optimization insights for ecological security evaluation
Due to the adoption of different standards, the results of landscape ecological security assessment of mining cities obtained from different research objects can only present conclusions partially consistent with those of previous studies (Chen and Ma, 2023). Scholars typically combined ecological security assessment with evaluation model studies in previous research. For instance, Yin et al. combined landscape ecological security assessment with the PSR model (Yin et al., 2012); While Zhang et al. integrated ecological security assessment with the Pressure-State-Response framework (Zhang R. et al., 2023). However, due to differences in evaluation objects and evaluation models, the scientific validity of the assessment results cannot be guaranteed. Additionally, evaluation criteria have become one of the controversial issues in landscape ecological security assessment results. For example, Wang et al. constructed an ecological security evaluation system through the evaluation of ecosystem service importance and ecological sensitivity, mainly using the Analytic Hierarchy Process (AHP) combined with expert questionnaires to obtain evaluation criteria, leading to highly subjective conclusions (Zhou et al., 2022). In this study, however, theoretical models were not relied upon, and all research was based on the land use changes in Heihe City from 1980 to 2020. In constructing ecological evaluation criteria, quantitative research methods were adopted, and the landscape ecological security assessment results obtained by calculating landscape pattern indices reduced the subjectivity and errors introduced by expert scoring methods.
Moreover, this study did not use a single ecological security evaluation system. Still, it supplemented the landscape ecological security assessment results through spatial autocorrelation analysis of landscape ecological security spaces, helping to deepen the understanding of the spatial characteristics and dynamic changes of ecosystems, thereby better assessing the health status of ecosystems and guiding ecological protection and management efforts. Spatial autocorrelation analysis of landscape ecological security spaces was used to examine the overall analysis of landscape ecological security indices, validating the feasibility of the ecological security assessment results.
4.2.2 Ecological regulation measures in ecological security areas
Considering the economic development characteristics and natural environment conditions of Heihe City, and based on the 2020 ecological security evaluation results, corresponding management measures are proposed according to the different ecological security levels and characteristics, in order to reduce ecological security risks to a controllable range. The division of ecological functional areas from the perspective of sustainable development in mining cities has not yet been proposed for Heihe City (Shi and Xiang, 2023). This study, based on Heihe City’s ecological security index and higher-level planning, uses methods such as overlaying current land use data, DEM data, and administrative boundaries, along with spatial interpolation analysis, to divide Heihe City into four functional areas: the ecological security control area for mining cities, ecological protection area, ecological optimization area, and ecological comprehensive development area (Figure 8) (Song et al., 2023).
[image: Map illustrating ecological zones within a region. Different colors highlight areas: green for ecological security control, brown for ecological protection, orange for ecological optimization, and pink for ecological comprehensive development. A compass and a scale are included.]FIGURE 8 | Ecological security zoning of heihe city.
In the low and relatively low ecological security areas of Heihe City, there is a phenomenon of low-low value clustering, which is highly sensitive to human interference (Song et al., 2023). These clusters appear in agricultural and forested lands, where the ecological security status is poor, and serious ecological degradation and related issues are present. This region has been designated as the ecological security control area for mining cities. The total area of this control area is 4,308,956 hm2, accounting for 64.52% of the total area. Key areas include the central and southern parts of Nenjiang County, Wudalianchi City, and Bei’an City, as well as the northern part of Nenjiang County and the central region of Aihui District. In this area, ecological regulation efforts should focus on reversing the trend of ecological retrogression, with particular attention to post-development land quality protection and soil restoration. Conservation and rehabilitation measures should be implemented to protect agricultural and forested lands. By constructing ecological corridors and restoring ecological nodes and barrier points, all development activities that could cause pollution should be prohibited, minimizing the impact of human activities on the existing ecological environment (Zhang et al., 2017; Zhang et al., 2018; Zhang et al., 2024; Li Q. et al., 2023).
The general ecological security area of Heihe City is in a state of ecological alert, where both low-high and high-low value clustering phenomena occur, indicating that the area is sensitive to human interference. Although the ecological environment has been partially damaged, it still retains some capacity for self-recovery (Feng et al., 2023). This region has been classified as the ecological security protection area for mining cities, mainly distributed in the northern parts of Xunke County, Sunwu County, and the northern part of Aihui District, covering an area of 15,948 hm2. The dominant landscape types in this area include degraded unused land (bare rock), large expanses of high-vegetation-cover paddy fields, and human-disturbed forested areas (shrubland) and farmland. Therefore, priority should be given to protecting the degraded unused land and forested areas in this area, preventing the expansion of land use driven by the pursuit of economic gains, and reducing unreasonable human development activities. For the degraded unused land in this area, measures such as land leveling, increasing green cover, and prohibiting further development should be taken to maintain ecological security levels (Wei et al., 2023). As for the human-disturbed forested areas, strict implementation of the “Grain for Green” project should be enforced to prevent the over-expansion of farmland for economic development purposes.
The relatively safe areas of Heihe City are regions with strong resilience to disturbances, exhibiting high-high or high-low value clustering. These areas have an intact ecological structure and a high level of ecological security. This region has been designated as the ecological optimization area for mining cities, primarily located in Aihui District, covering a total area of 6,419 hm2. The dominant landscape type in this area is undisturbed forestland, which can serve as an ecological barrier and support sustainable regional developments (Wei et al., 2023). Therefore, it is essential to continue promoting active forestland protection policies, implementing the “Grain for Green” and “Wetland Restoration” policies, and intensifying efforts to protect the forested landscape in this area (Feng et al., 2023). Human activity should be minimized to reduce negative impacts, and unreasonable agricultural practices such as deforestation for farming must be strictly limited. These measures will help maintain the natural ecological succession of Heihe City while balancing social, ecological, and economic benefits.
The safe areas in Heihe City are areas with strong self-recovery capabilities, where high-high value clustering is evident. These areas have the highest level of ecological security and can accommodate moderate development. This region has been designated as the ecological comprehensive development area, located in the northern part of Aihui District, covering a total area of 1,326 hm2. Although this area enjoys a high level of ecological security, it also faces significant environmental pressures. In the course of development, efforts should leverage the concentration of forestland to enhance infrastructure development, promote the clustering of the forestry industry, and prioritize the advancement of modern forestry. Additionally, it is important to vigorously develop the service sector, accommodate industrial transfers from central cities, and manage population transfers from restricted and prohibited development areas. This approach aims to prevent ecological degradation caused by blind development.
4.3 Limitations and future directions of the study
This study provides important insights into Chinese mining cities’ ecological protection and planning development. The assessment results are a scientific basis for government agencies to formulate ecological protection policies and plans. For mining cities at different stages of development, this study can help determine development strategies and propose appropriate ecological protection measures to ensure the sustainable development of landscape ecological security in mining cities. Despite rigorous data processing and indicator selection, the choice of landscape pattern index, the accuracy of remote sensing data, and the determination of ecological evaluation criteria may all affect the assessment results. To further improve the accuracy of the assessment, future research could consider increasing the analysis of ecological risk assessment to validate the accuracy of the results. While this study analyzed the spatiotemporal dynamics of ecological security levels in the study area and explored their spatial correlations, it did not investigate the driving factors affecting ecological security levels. In the future, it is necessary to conduct a quantitative analysis of the driving factors behind ecological security changes, investigate land use conflicts, and perform multi-scenario simulations and predictions. This will help develop systematic strategies that focus on improving the ecological environment baseline, formulating reasonable spatial layouts, and planning for tourism development to enhance the ecological security status of the research area and promote the sustainable and coordinated development of geological parks and regional ecosystem safety. Furthermore, the ecological regulation measures and planning development strategies proposed in this paper are framed from a policy planning perspective; specific measures need to be implemented through the establishment of an ecological security framework.
5 CONCLUSION
In this study, for the first time in its kind, the ecological security level of mining cities is integrated with the development strategies of mining cities.Based on the land use data from Heihe, Heilongjiang, from 1980 to 2020, this study analyzed the spatial pattern changes in Heihe using landscape pattern indices. By constructing a landscape ecological assessment system and conducting spatial autocorrelation analysis, the ecological security level of Heihe from 1980 to 2020 was determined. The results of this study are also applicable to mining cities worldwide that are in similar stages. Compared to other studies, this research adopts a “dual evaluation index,” making the constructed ecological security assessment system more comprehensive and the assessment results more objective. The main research conclusions are as follows.
	(1)  This article reveals the spatiotemporal evolution of land use in Heihe City from 1980 to 2020. Through land use data and land transfer matrices, the study found that over the 40 years, the spatial pattern of land use exhibited overall stability with significant local changes. By 2020, the current land use in Heihe City primarily consists of arable land, forest land, and unused land. Arable land and forest land have gradually shifted towards unused land. This trend indicates that during the urbanization process, mineral exploitation can lead to land degradation.
	(2)  Using Fragstats 4.2 software, four patch-level indices (AREA_MN, COHESION, FRAC_AM, LPI) and five landscape-level indices (FRAC_AM, LPI, NP, SHDI, CONTAG) were calculated to analyze the spatiotemporal dynamics of the landscape pattern in Heihe City from 1980 to 2020. The study found that over these 40 years, at the patch scale, except for forest land, other patches experienced severe fragmentation, had simpler shapes, and smoother edges. The patches of various land use types showed a high degree of cohesion, with forest land and arable land being the dominant landscapes in the study area. At the landscape scale, the overall landscape diversity in Heihe City increased, while landscape fragmentation and contagion decreased, indicating an optimization of the landscape pattern. Therefore, in future planning, attention should continue to be paid to the connectivity of Heihe City’s landscape spatial pattern.
	(3)  Spatial autocorrelation analysis was conducted to assess and analyze the ecological security level of Heihe City and its spatiotemporal evolution characteristics from 1980 to 2020. During this period, the overall ecological security index of Heihe City showed an upward trend, but the ecological security index in the southern region remained low. Additionally, the landscape ecological security index displayed spatial clustering, mainly characterized by high-high value clusters and low-low value clusters. High-high value clusters were primarily located in the northern forested areas of the study region, while low-low value clusters were mainly found in the southern mixed land use areas. Therefore, the government of Heihe City should focus on the ecological security of the southern region and take proactive measures to improve it.
	(4)  Based on the ecological security index, the urban ecological security space of Heihe City was regulated by dividing the city into mining urban ecological security control areas, ecological protection areas, ecological optimization areas, and comprehensive ecological development areas, corresponding to low and lower security areas, general ecological security areas, relatively secure areas, and secure areas, respectively. The ecological security control area focuses on reversing the trend of ecological retrogression. The ecological protection area emphasizes protecting the degraded unused land and forest land within the area. The ecological optimization area promotes active forest protection and ecological policies, while the comprehensive ecological development area aims to improve infrastructure construction and promote industrial diversification. The research results contribute to maximizing ecological and economic benefits in mining cities, promoting the sustainable development of such cities, enriching the theoretical framework, and guiding similar mining cities.
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Ecosystems worldwide are facing significant challenges resulting from the dual pressures of global climate change and human activities, particularly in terms of significant biodiversity loss associated with land-use change. Focusing on the Yangtze River Economic Belt (YREB), this study uses the System Dynamics (SD) - Patch-generating Land Use Simulation (PLUS) model to simulate land-use development under different scenarios of shared socio-economic pathways (SSPs) and representative concentration pathways (RCPs) from 2030 to 2050. Furthermore, the InVEST model is applied to evaluate changes in habitat quality (HQ) over the period 2000 to 2050. A hotspot analysis further highlights the spatial heterogeneity of HQ within the YREB. The study showed that the land-use pattern in the YREB from 2020 to 2050 will be dominated by cropland in the eastern region, grassland in the north-west, and forest land in the central and southern regions, with a steady increase in built-up land in the east. The HQ index exhibits a gradual increase from east to west, ultimately declining to 0.726 under the SSP585 scenario for 2050. This trend reflects moderate habitat degradation (HD), with the degree of degradation shifting towards lower and higher proportions of HQ. Spatial analysis of HQ further reveals that the eastern region is identified as a cold spot, the central region is categorized as non-significant, while the western region emerges as a hot spot, where HQ exceeds 40%. These findings offer a scientific foundation for promoting high-quality development and enhancing biodiversity conservation in the YREB.
Keywords: habitat quality, SD model, PLUS model, InVEST model, SSP-RCP scenarios, Yangtze River economic belt

1 INTRODUCTION
The rapid evolution of the socio-economic landscape, coupled with the persistent processes of the urbanization and industrialization, has led to increasing disturbance of natural habitats by human activities, exacerbating the problem of habitat fragmentation (Tu et al., 2023; Zhao et al., 2024). In this context, the Sustainable Development Goal (SDG15), as articulated in the 2030 Agenda for Sustainable Development, underscores the critical importance of protecting, restoring, and sustainably utilizing terrestrial ecosystems to safeguard natural habitats and promote biodiversity (Palmer, 2015). Over the past 4 decades, China has undergone significant land-use changes (LUC) (Kong et al., 2023; Luan and Li, 2021; Luo et al., 2022). These alterations in land-use have directly modified the distribution of natural biological habitats, thereby exacerbating habitat fragmentation and contributing to biodiversity loss (Haddad et al., 2015; Oliver et al., 2015). In the future, urban expansion is expected to lead to ecological fragmentation, which will pose an ongoing threat to biological habitats (Li et al., 2022). Habitat fragmentation disrupts the migration of organisms between habitat patches and impairs the exchange of materials and energy (O'Connor et al., 2020; Zhang G. et al., 2023), ultimately leading to a deterioration in HQ. This phenomenon has emerged as a critical focus in global ecological research. Considering the intensifying global habitat fragmentation, investigating the impact of LUC on HQ is of paramount importance for advancing the objectives of SDG15.
HQ is the ability of an ecosystem to provide suitable natural ecological conditions (Hillard et al., 2017; Weber et al., 2018). It is critical for maintaining stability in biodiversity within natural ecosystems and plays a significant role in enhancing human wellbeing (Riedler and Lang, 2018). The advancement of 3S technologies has facilitated the development of various ecosystem assessment models (Hall et al., 1997). Among these, the Maxent model (West et al., 2016), ARIES model (Dai et al., 2024), SoLVES model (Sherrouse et al., 2022), and the InVEST model (Zhang K. et al., 2024) have emerged as prominent tools widely utilized in the field. Notably, the InVEST model provides intuitive visual representations, thus addressing the limitations of previous ecosystem service assessments that often relied on abstract and less comprehensible textual descriptions (Lin et al., 2017; Sallustio et al., 2017). Moreover, this model is well-established and has been extensively applied in research conducted at various scales (Qin et al., 2024; Ren et al., 2022; Zheng et al., 2022), across diverse administrative units (Bai et al., 2019; Wang et al., 2023), and in biodiversity assessments (Gong et al., 2019; Li G. et al., 2024).
Climate change and LUC serve as the principal driving factors behind modifications in HQ, with LUC themselves being influenced by both climate dynamics and socio-economic development (Bian et al., 2024; Li X. et al., 2024). Among the latest generation of climate models, the sixth Coupled Model Intercomparison Project (CMIP6) represents the most recent advancements in predicting future climate scenarios (Brunner et al., 2020). This model primarily incorporates Shared SSPs and RCPs. In recent years, researchers have increasingly utilized SSPs-RCPs scenarios to investigate land-use prediction studies within the framework of projected climate change (Dong et al., 2018; Tian et al., 2022). Zhang X. et al (2024) developed a novel integrated framework by combining the SD-FLUS-InVEST models to simulate the dynamic evolution of ecosystem services under LUC in the Yellow River Basin across three scenarios: SSP1-1.9, SSP2-4.5, and SSP5-8.5. Lu et al. (2024) utilized the SD model to investigate the supply and demand relationships of six ecosystem services in the Yangtze River Delta urban agglomeration under the SSP-RCP scenarios from 2018 to 2050, proposing corresponding management measures.
Land-use simulation encompasses two fundamental aspects: quantitative structure and spatial distribution. In predicting quantitative demand, SD is an enhanced top-down model (Wang et al., 2022), adeptly accounting for the comprehensive influences of both social and natural factors on LUC. Conversely, the PLUS model has become widely adopted for spatial distribution simulation, primarily due to its high accuracy and user-friendly interface (Liang et al., 2021). Given the inherent complexity of predicting land-use evolution, reliance on a single model is inadequate for a thorough assessment. Numerous studies have explored the impact of LUC under future development scenarios on HQ. However, several gaps remain in the research on HQ. First, the influence of climate factors on both LUC and HQ has often been neglected in the formulation of future development scenarios. Second, previous predictive simulations typically suffer from arbitrary and subjective decisions in the configuration of land-use demand shifts across multiple scenarios, thereby increasing the uncertainty of the projections. In contrast, the SD model offers a more robust approach by effectively capturing the nonlinear dynamic changes within complex systems and the interrelationships among their various components. Consequently, integrating the SD-PLUS model facilitates a more robust simulation of LUC, effectively capturing the interplay between social and natural factors across various prospective development scenarios.
The rapid economic development and accelerated urbanization of the YREB present significant challenges to the regional ecological environment. Despite robust economic growth, there remains a critical gap in research regarding land use quantity, structure, and spatial dynamics. This study addresses this gap by constructing a comprehensive assessment framework based on the latest SSP future development scenarios. The framework integrates SD–PLUS - HQ models to evaluate the spatiotemporal evolution of LUC quantity and their implications for HQ under varying development scenarios. The primary objectives of this research are as follows: 1) to utilize the SD-PLUS model to simulate the quantity, structure, and spatial distribution of land-use within the context of future development scenarios; 2) to couple the SSP-PLUS-HQ model to analyze the spatiotemporal evolution of HQ structure across different scenarios, thereby elucidating the characteristics of HQ evolution and the overall degradation processes; and 3) to examine the response of various LUT to changes in HQ and to identify the spatiotemporal clustering characteristics of HQ through hotspot analysis. The findings of this study will provide a scientific foundation for optimizing land-use structure and advancing ecological sustainability within the YREB.
2 MATERIALS AND METHODS
2.1 Overview of the study area
The YREB is located at geographical coordinates 108°30′E to 122°15′E and 24°30′N to 35°45′N, and spans eastern, central and western China. This economic belt comprises 11 provinces and municipalities (Figure 1). The region has an annual precipitation of 1,067 mm and an annual temperature of 16°C. It covers an area of approximately 2,0523 million km2, accounting for 21.4% of China. In 2023, the population of the YREB is about 608 million, accounting for 42% of China. The region’s GDP is about 58.43 trillion-yuan, accounting for 46.7% of China’s. In addition, the YREB has more than 40% of China’s forest cover and about 20% of China’s water cover, positioning the region as an innovative demonstration zone for ecological conservation and restoration efforts.
[image: Map series depicting geographic boundaries and features in China. Panel (a) shows national borders and provincial boundaries with a focus on the turquoise-shaded YREB region. Panel (b) highlights different provinces within the YREB using various colors, and includes a statistical distribution inset. Panel (c) illustrates digital elevation within the YREB, using color gradients to indicate altitude, accompanied by topographical features. Each map includes a north arrow and scale bar for reference.]FIGURE 1 | Location map of the YREB. (A) The location of the YREB in China. (B) Provincial capital cities of the YREB, (C) DEM of the YREB.
The YREB constitutes a vital element of China’s three principal development strategies and serves as a critical link in the framework of the “21st Century Maritime Silk Road” (Shi and Zhou, 2023). Nevertheless, the region is confronted with a myriad of severe environmental challenges resulting from sustained high-intensity development and urban expansion (Zhang L. et al., 2023). These challenges manifest as heightened environmental pollution, ecological degradation, water and air quality deterioration, soil erosion, and a significant decline in ecosystem functionality (Chen et al., 2024; Liu et al., 2022). As the longest and most expansive economic belt in China, the YREB, characterized by its unique geographical location, abundant natural resources, and favorable ecological conditions, plays an indispensable role in the country’s ecological security framework. Consequently, the preservation of a robust ecological environment within the YREB is imperative for fostering global ecological security.
2.2 Research methodology
2.2.1 Data sources and preprocessing
The land-use data we used comes from the Wuhan University team (Yang Jie and Huang, 2021), which constructed spatiotemporal features based on Landsat data obtained from the Google Earth Engine (GEE) platform and generated land use classification results by combining with the Random Forest Classifier. To improve the spatiotemporal consistency of the classified data (CLCD), the team also proposed a post-processing method that combines spatiotemporal filtering with logical inference. The dataset has an overall classification accuracy of 80% and is specific to the Chinese region, so it was chosen as the base data for analysis in this study. The digital elevation model (DEM), slope, precipitation, temperature, population density and nighttime lighting data used in this study were obtained from the Resource and Environment Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn/); and the data on roads, railways, rivers, lakes and urban land were obtained from the National Geographic Information Resource Catalogue Service System (https://www. webmap.cn). Details of the specific data are shown in Table 1.
TABLE 1 | Data sources.
[image: Table listing data types, spatial resolutions, and sources. Land-use data source: Yang Jie and Huang (2021). DEM has a resolution of thirty meters. Temperature: one thousand meters. Night light: five hundred meters. Waterway: three hundred meters. Sources include resdc.cn, eogdata.mines.edu, and webmap.cn.]2.2.2 Research framework
The research framework consists of four key components (Figure 2). Firstly, multiple scenario simulation parameters are established based on socioeconomic and climate change projection data across various SSP-RCP scenarios. The SD model is employed to simulate land-use and cover demands for each scenario. Secondly, the PLUS model is applied to analyze the spatiotemporal distribution of land-use across three distinct scenarios. Thirdly, the InVEST model evaluates the spatiotemporal variations in regional HQ, elucidating the dynamics of HQ and its degradation process, while also examining the influence of different LUT on HQ. Finally, hotspot analysis techniques are utilized to explore the spatial clustering patterns of HQ.
[image: Flowchart illustrating a multi-scenario simulation of habitat quality. It features steps for simulating land use, from scope boundaries to model validation. A circular diagram emphasizes habitat quality factors. Maps and bar charts depict land-use type impacts and hotspot analyses for the years 1980 to 2050 under different scenarios. Different sections are color-coded to differentiate processes and data outputs.]FIGURE 2 | Research framework.
2.2.3 Invest model
HQ is an index of an ecosystem’s potential to provide species with the ability to survive and reproduce. The HQ module quantitatively assesses the effects of different LUT on habitat suitability for both flora and fauna, while also evaluating the intensity of threats posed by various habitat stressors. This comprehensive approach enables the simulation of the spatial distribution of HQ. The specific formula employed in this analysis is as follows (Equation 1):
[image: Mathematical equation showing Q subscript ly equals H subscript ly times open parenthesis one minus D subscript y divided by D subscript ly plus k superscript z close parenthesis. It is labeled as equation one.]
where Qiy denotes the HQ index for grid cell i within LUT y; Hiy represents the habitat suitability for grid cell i within the same LUT; and Diy indicates the level of HD for grid cell i in LUT y. The parameter k signifies the semi-saturation parameter, while z refers to the model’s default constant. This study establishes the year 2020 as the baseline for evaluating HQ. Given the specific conditions of the YREB, cropland, built-up land, and barren land are identified as the primary factors threatening HQ, as these LUT are significantly influenced by human activities. The values for the parameters are determined based on the recommended reference values provided in the InVEST model user manual and are further corroborated by findings from relevant literature (Ji et al., 2023; Qin et al., 2024; Zheng et al., 2023). See annex for details.
2.2.4 PLUS model
The PLUS model is an advanced simulation tool designed for LUC, grounded in the principles of cellular automata (CA) (Liang et al., 2021). This model innovatively integrates a novel Land Expansion Analysis Strategy (LEAS) with a variety of random patch seeds (CARS) within the CA framework, with the objective of predicting and simulating the generation and evolution of diverse land type patches. Specifically, based on the land-use in the two historical periods, a map of the distribution of land-use development potential is produced through historical land-use expansion trends and influencing factors, and finally land-use projections for future years are obtained. See annex for details. The study used land-use data from 2000 to 2020, coupled with 12 driving factors, to accurately simulate the LUT for the year 2020. Comparison of the simulated data with actual land-use data for 2020 showed a Kappa coefficient of 0.841 and a FoM of 0.184, indicating a high degree of prediction accuracy and validating the effectiveness of the predictive simulation methodology.
2.2.5 SD coupled SSP-RCP multi-scenario
To examine the nonlinear relationship between socio-economic factors and LUC, we employed a SD model for land-use scenario simulation. This model comprises four primary components: the land-use, the population, the climate, and the economy. It has been extensively utilized in research related to LUC simulations across various future scenarios (Qiu and Shi, 2015), See annex for details.
An important distinction between scenario analysis and predictive models is that scenario analysis considers the inherent uncertainties of social and ecological systems from the outset, incorporating potential future states into a transparent problem-solving framework. In simulating possible changes in ecological systems, scenario analysis showcases unique advantages that can help decision-makers develop strategies more effectively. Currently, scenarios formed by combining SSPs and RCPs are applicable to ecological system analysis at different scales and across multiple fields, and can also be used for future land-use predictions and land cover modeling studies.
The scenarios in CMIP6 are combinations of various SSPs and RCPs, emphasizing the driving role of different socioeconomic development models in climate change and revealing the potential impacts of future socioeconomic development. To address future changes in climate and socioeconomic conditions, relying on a single future development scenario is no longer sufficient for current research needs. We selected three development scenarios from the SSP-RCP framework: SSP126, SSP245, and SSP585.
The SSP126 scenario is a combination of SSP1 and RCP1.9, representing sustainable socioeconomic development under low levels of greenhouse gas emissions. In this scenario, land is strictly regulated, and grassland and forest land remain intact, constituting the current lowest radiative forcing sustainable development scenario. The SSP245 scenario combines SSP2 with RCP4.5, representing a medium radiative forcing scenario, where land regulation is relatively strict and socioeconomic development continues in the current trajectory. Lastly, SSP585 is a combination of SSP5 and RCP8.5, representing a high radiative forcing scenario with moderate land regulation, reliance on substantial fossil fuel resources, and resulting in high levels of greenhouse gas emissions, thereby driving rapid socioeconomic development.
2.2.6 Hotspot analysis
HQ hotspots are defined as regions within a designated area that exhibit a relatively high capacity for HQ, whereas cold spots are characterized by a diminished level of HQ. This study employs the Getis-Ord Gi* module within ArcGIS software to conduct a comprehensive hotspot analysis of HQ (Equation 2). This module effectively delineates the spatial distribution and aggregation characteristics of areas with elevated HQ (hotspots) and those with reduced HQ (cold spots) (Wu et al., 2022; Zhang X. et al., 2023).
[image: Gi-star statistic formula is shown. The numerator is the sum of Q_ij from i equals 1 to n, minus a-bar squared times the sum of Q_ij from i equals 1 to n. The denominator includes two parts: the square root of the sum of x_i squared over n minus a-bar squared, and the square root of the expression from i equals 1 to n minus 1, square of the sum of Q_i.]
where Gi* represents the aggregation index for raster cell i; ai denotes the attribute value associated with raster cell i; Qij refers to the weight matrix; n signifies the total number of units; and aˉ represents the mean value of HQ across all pixels.
3 RESULTS
3.1 Spatiotemporal evolution characteristics of land-use
3.1.1 Spatial change of LUT
Between 2000 and 2020, the spatial distribution of land-use demonstrated a predominant presence of cropland, forest land, and grassland. In particular, the eastern region was characterized primarily by cropland, whereas the northwest was largely covered by grassland. The central and southern regions were predominantly composed of forest land. The eastern area, notably situated in the lower YREB plain, exhibited significant expanses of cropland. Conversely, the northwest remained dominated by grassland, while the central and southern areas were primarily characterized by forest land coverage. Water was predominantly located in the eastern region, and built-up land exhibited a radial distribution around the urban centers within the YREB, with a marked concentration in the east (Figure 3).
[image: Twelve-panel map series showing land use changes in a specific region from 2000 to 2050 under different SSP scenarios (SSP126, SSP245, SSP585). Each map displays areas of cropland, forest land, grassland, water, built-up land, and barren land, with a color-coded legend. The maps illustrate shifts in land use over time and under various socioeconomic pathways. Each scenario is represented for the years 2030, 2040, and 2050.]FIGURE 3 | Spatial distribution of SSP multi-scenario land-use in the YREB 2000–2050.
Under the three scenarios, the spatial characteristics of land-use projected from 2030 to 2050 remain largely consistent (Figure 3). Notably, the land-use distribution in 2030 is expected to be similar to that in 2020. By 2040, the area designated as built-up land in the east is anticipated to expand across all development pathways, while the west and centre will primarily comprise forest land and grassland systems. In 2050, built-up land in the east is projected to achieve a dominant position, continuing its outward expansion, with a discernible radial diffusion trend of built-up land also emerging in the centre. It is noteworthy that the rate of expansion of built-up land is significantly higher in the SSP126 and SSP585 compared to the SSP245.
3.1.2 Regional land-use structure change
From 2000 to 2020, the predominant LUT in the YREB were forest land, which comprised an average of 51.96%, and cropland, accounting for an average of 33.46% (Figure 4). Grassland constituted an average of 9.38%. In contrast, water (average proportion of 2.43%) and built-up land (average proportion of 2.56%) occupied relatively minor areas, while barren land represented the smallest fraction, averaging 0.21%. Notably, the areas designated as cropland and grassland experienced continuous declines, with proportion changes of −1.21% and −0.78%, respectively. Conversely, forest land and built-up land exhibited consistent growth, with proportion changes of 0.31% and 1.63%, respectively. Furthermore, both water (proportion change of 0.01%) and barren land (proportion change of 0.04%) showed a dynamic increase.
[image: Horizontal bar chart showing land use proportions from 2000 to 2060 for various categories: cropland, forest land, grassland, water, built-up, and barren land. Each bar is divided by time intervals and scenarios, color-coded from dark blue for 2000 to red for 2050-2060, as indicated in the legend on the right. Proportions range from 0.0 to 0.5 on the x-axis.]FIGURE 4 | SSP multi-scenario land-use structure in the YREB 2000–2050.
This study examines the land-use structure under three scenarios, revealing a continuity with patterns observed between 2000 and 2020 (Figure 4). In the SSP126 scenario, both 2030 and 2050 demonstrate significant reductions in cropland (with a proportion change of −2.66%) and grassland (with a proportion change of −0.81%). Conversely, built-up land experiences a notable increase (with a proportion change of 2.59%). Furthermore, there are slight increases in forest land (with a proportion change of 0.25%), water (with a proportion change of 0.01%), and barren land (with a proportion change of 0.62%). In the SSP245 scenario for the same years, cropland (proportion change of −1.80%), grassland (proportion change of −0.60%), and water (proportion change of −0.27%) continue their downward trend. In contrast, forest land (proportion change of 0.38%), built-up land (proportion change of 2.01%), and barren land (proportion change of 0.27%) exhibit ongoing growth, with built-up land reflecting the most pronounced increase. Under the SSP585 scenario, the years 2030 and 2050 reveal the most significant changes in cropland (proportion change of −2.77%) and built-up land (proportion change of 3.10%). Additionally, grassland (proportion change of −0.14%) and water (proportion change of −0.38%) show declines, while forest land (proportion change of 0.10%) and barren land (proportion change of 0.09%) demonstrate slight increases.
3.1.3 Transfer of LUT
To improve the understanding of the relationships between different LUC, a quantitative assessment was conducted to analysis the spatial distribution patterns of land-use transitions under three scenarios from 2000 to 2050 (Figure 5). The specific transition periods are categorized as follows: 2000–2010, 2010–2020, 2020–2030, 2030–2040, and 2040–2050. This analysis elucidates the transition characteristics of different LUT, thereby revealing the patterns of land-use evolution within the YREB. In terms of spatial distribution, the characteristics of land-use transitions from 2000 to 2010 were marked by a predominant increase in built-up land in the east, accompanied by an expansion of forest land and grassland in the south. This transition was primarily driven by the conversion of cropland, forest land, and grassland. In the subsequent period from 2010 to 2020, built-up land in the east continued to dominate, while the distribution of forest land and grassland systems became increasingly dispersed. From 2020 to 2050, as indicated by the scenarios SSP126, SSP245, and SSP585, land-use transitions were characterized by a further increase in built-up land in the east, with only minor changes observed in other land types. Notably, during the period from 2030 (SSP126) to 2040 (SSP126), there was not only a significant increase in built-up land in the east but also substantial expansions of grassland and forest land in the west.
[image: Nine maps showing land use change over time from 2000 to 2050 under various scenarios. Each map highlights areas of cropland, forest, grassland, water, built-up, and barren land, using different colors. The changes are depicted for different SSP scenarios (SSP126, SSP245, SSP585) and timeframes. A legend indicates the color codes for each land type.]FIGURE 5 | Spatial distribution of SSP multi-scenario land-use transfer in the YREB 2000–2050.
From 2000 to 2010, the cropland transferred to forest land was approximately equal to the forest land transferred back to cropland. In contrast, the cropland transferred to built-up land significantly exceeded the built-up land transferred back to cropland. Furthermore, the grassland transferred to forest land was greater than the forest land transferred to grassland, and the water transferred to cropland also surpassed the cropland transferred to water. The primary change in built-up land during this period was attributed to conversions from other land-uses, whereas barren land exhibited only minor fluctuations. The characteristics of land-use transitions from 2000 to 2010 were consistent with the overarching transition patterns of the period; however, the transition areas among cropland, forest land, grassland, and water remained relatively small, while the built-up land conversion showed a notable increase. Looking ahead to the period from 2020 to 2030 (for scenarios SSP126, SSP245, and SSP585), cropland, forest land, grassland, and barren land were primarily transferred to built-up land, with other land types remaining largely stable (Figure 5). Similarly, during the subsequent periods from 2030 to 2040 and from 2040 to 2050 under the same scenarios, the patterns of land-use transition continued to be fundamentally consistent with those observed from 2020 to 2030, reflecting a predominant trend of converting other land types into built-up land.
3.2 Spatiotemporal evolution characteristics of HQ
3.2.1 Distribution pattern evolution of HQ
The multi-scenario analysis (SSP126, SSP245, SSP585) conducted from 2000 to 2050 reveals a spatial distribution of HQ within the YREB that increases from the northeast to the northwest (Figure 6). Specifically, the provinces of Jiangsu and Anhui exhibit lower HQ, while Hubei, Hunan, and Jiangxi display moderately low levels. In contrast, the surrounding regions generally present relatively high HQ. Similarly, the eastern region of Sichuan and the Chongqing area are characterized by lower HQ, whereas western Sichuan demonstrates higher quality, with Yunnan and Guizhou reflecting intermediate levels.
[image: Eleven maps show land use changes over time for a region from 2000 to 2050 under different SSP (Shared Socioeconomic Pathways) scenarios. Colors range from green to red, indicating areas from low to high use intensity. The 2000, 2010, and 2020 maps show existing conditions, while SSP126, SSP245, and SSP585 scenarios project future changes for 2030, 2040, and 2050, showing increasing red areas over time, particularly in SSP585. A scale bar and legend indicating use intensity are included at the bottom.]FIGURE 6 | Spatial distribution of SSP multi-scenario HQ in the YREB 2000–2050.
Overall, the analysis indicates a persistent downward trend in HQ from 2000 to 2050 across all scenarios. Notably, HQ was highest in 2000, with a mean value of 0.770, which subsequently declined to 0.752 by 2020, reflecting a decrease of 2.34% over this period. From 2030 to 2050, the mean HQ continues to decline across all scenarios, with the lowest mean value recorded in 2025 (SSP585) at 0.726. Specifically, during the period from 2030 to 2050, HQ is projected to decrease by 2.28% under SSP126, by 1.74% under SSP245, and by 2.55% under SSP585.
3.2.2 Structural changes of HQ
From 2000 to 2050, the HQ classification structure of the YREB shows a spatial distribution trend that gradually improves from east-west (Figure 7). Specifically, from 2000 to 2020, the HQ in the eastern region was poor (average proportion 2.896%), the central region had medium HQ (average proportion 36.389%), the southern region had relatively high HQ (average proportion 33.778%), and the western region exhibited the optimal HQ (average proportion 26.937%).
[image: Sixteen maps depicting projected land suitability for agriculture in different years and scenarios across a geographic region. Color-coded from yellow to dark blue, they represent suitability levels from poor to optimal. Each map corresponds to various years: 2000, 2010, 2020, and future years under SSP126, SSP245, and SSP585 scenarios in 2030, 2040, and 2050. A legend indicates the color scale.]FIGURE 7 | Spatial distribution of SSP multi-scenario HQ classes in the YREB 2000–2050.
During this period, the changes in HQ classifications manifested as a continuous increase in areas of poor HQ (proportion 1.624%) and high HQ (proportion 1.349%), while the medium HQ (proportion −1.21%) and optimal HQ (proportion −1.762%) continued to decrease. For the forecast period from 2030 to 2050, the HQ structure under the three development pathways (SSP126, SSP245, SSP585) remains largely consistent with that from 2000 to 2020.
In detail, during the years 2030 and 2050 under SSP126, the proportion of poor HQ (proportion 2.584%) continues to increase, the proportion of high HQ (proportion 0.077%) slightly rises, while the moderate HQ (proportion −2.041%) and optimal HQ (proportion −0.62%) continue to decline. During the periods 2030–2050 under both SSP245 and SSP585, the trends in HQ structural changes are consistent with those observed under SSP126. Among them, the reduction in medium HQ during the SSP245 period (proportion −1.804%) is the smallest, while the changes in poor HQ (proportion 3.087%) and medium HQ (proportion −3.068%) during the SSP585 period are the most pronounced.
3.2.3 Evolutionary characteristics of HD
In the multi-scenario analysis conducted from 2000 to 2050, the overarching trend of HD reveals a pronounced gradient, intensifying from west to east (Figure 8). Specifically, areas characterized by weak HD are predominantly situated in the northwestern section of the YREB, while the eastern and central regions of Sichuan demonstrate relatively weak HD. The eastern region exhibits moderate HD, whereas the southern and northern regions manifest higher degrees of HD, with these areas displaying an interwoven distribution pattern relative to those experiencing moderate HD.
[image: Twelve maps illustrating land degradation over different years and scenarios. Maps are labeled (a) 2000, (b) 2010, (c) 2020, (d-f) SSP126 for 2030, 2040, 2050, (g-i) SSP245 for 2030, 2040, 2050, (j-l) SSP585 for 2030, 2040, 2050. Colors range from dark green (weak degradation) to light yellow (high degradation). A scale bar is included.]FIGURE 8 | Spatial distribution of SSP multi-scenario HD classes in the YREB 2000–2050.
Regarding the average characteristics of HD over the period from 2000 to 2050, a consistent increase in HD levels is observed between 2000 and 2020, culminating in a total rise of 5.54%. Across the various scenarios assessed, the most significant HD is projected under SSP126 (2030), accounting for 25.75% of the total area affected, closely followed by SSP585 (2030) at 25.57%. Conversely, the weak HD is anticipated under SSP126 (2050), representing 24.99%.
In terms of HD categories from 2000 to 2020, moderate HD emerges as the predominant classification, comprising 34.91% of the YREB. This is succeeded by weak HD at 23.25%, while the proportions of high (21.59%) and mild HD (20.25%) are notably smaller. During this interval, the area classified as experiencing high HD has steadily increased, now representing 6.02%, whereas the areas categorized as weak, mild, and moderate HD have seen respective reductions of −2.12%, −1.97%, and −1.94%.
The structural characteristics of HD projected for the period from 2030 to 2050 across multiple scenarios demonstrate a substantial degree of spatial consistency with those identified during the years 2000–2020, primarily indicating a prevalence of moderate HD. In both the SSP126 and SSP585 scenarios for 2030–2050, there is an observed increase in the proportions of weak and high HD, while the proportions of mild and moderate HD exhibit a corresponding decrease. Conversely, in the SSP245 scenario for the same period, the proportion of weak HD is found to increase, whereas the proportions of mild, moderate, and high HD decline. Notably, during the SSP126 phase, the most significant increase in weak HD is recorded, with a change of 1.90%, while moderate HD experiences the most pronounced decrease, amounting to −2.53%. Similarly, in the SSP585 phase, the most considerable reduction in mild HD is documented, reflecting a change of −1.16%.
3.3 Evolution of HQ with LUC
3.3.1 Impact of different LUT on HQ
To elucidate the impact of various LUT on HQ changes, we conducted a quantitative assessment of HQ associated with each land-use category (Figure 9). From 2000 to 2050, the characteristics of HQ changes across different LUT exhibited a high degree of consistency. The overall ranking of HQ was established as follows: grassland > forest land > water > barren land > cropland > built-up land. The average HQ values for each LUT were: cropland (0.576), forest land (0.893), grassland (0.947), water (0.617), built-up land (0), and barren land (0.599).
[image: Bar chart displaying projected land use changes across different categories: Cropland, Forest land, Grassland, Water, Built-up, and Barren land. Each category has bars shaded in a gradient of colors representing various SSP scenarios and timeframes from 2000 to 2060. The vertical axis measures ft(Q) ranging from 0 to 1.0.]FIGURE 9 | HQ under different LUT.
During this timeframe, HQ for cropland, forest land, and water was observed to be highest in 2000, whereas HQ for grasslands peaked in 2020. By 2050 (SSP126), a notable increase in HQ for barren land was documented. Throughout the period from 2030 to 2050, the HQ of cropland and forest land remained stable, with a balanced transition observed between the two categories. Additionally, in the 2030–2050 period (SSP585), both grassland and forest land demonstrated the highest levels of HQ.
3.3.2 Transfer analysis of HQ
To elucidate the relationships between changes in various HQ types, we undertook a quantitative assessment of the spatial distribution characteristics associated with HQ type transitions from 2000 to 2050 across multiple scenarios (Figure 10). The temporal divisions for these transitions were specifically aligned with alterations in land-use structures. By analyzing the transition characteristics of different HQ types, we identified the evolving patterns of HQ within the YREB.
[image: Series of maps showing vegetation transfer potential over time from 2000 to 2060 in a specific region. Each map is labeled with its respective timeframe, illustrating different scenarios: SSP126, SSP245, and SSP585, for different periods. The legend indicates categories such as "No transfer," and various growth levels from "New poor" to "Next optimal," with corresponding colors. The progression shows changes in vegetation suitability across the region.]FIGURE 10 | Spatial distribution of SSP multi-scenario HQ class transfer in the YREB 2000–2050.
Regarding spatial distribution, the period from 2000 to 2010 revealed a notable increase in areas characterized by weak HQ in the eastern region. Simultaneously, there was an expansion in the areas classified as having medium and high HQ in the southern region, primarily driven by transitions toward medium HQ. The transition characteristics observed from 2010 to 2020 were largely consistent with those of the preceding decade, both reflecting a trend of higher HQ levels transitioning to lower ones. In the subsequent period from 2020 to 2050, the poor HQ in the eastern region continued to expand, while the medium and high HQ in the western region showed slight increases; other regions remained relatively stable.
From 2000 to 2010, the area exhibiting a transition from poor to medium HQ was significantly smaller than that reflecting the transition from medium to poor HQ. Furthermore, the areas involved in the transition from high to medium HQ were approximately equivalent to those associated with the transition from medium to high HQ. In contrast, the area corresponding to the transition from optimal to high HQ was substantially larger than that for the reverse transition from high to optimal. In the subsequent period from 2010 to 2020, the area transitioning from high to medium HQ remained consistent with that transitioning from medium to high HQ, while the area for the transition from optimal to high HQ continued to increase. During the period from 2020 to 2030, the predominant transition observed was from medium to poor HQ, followed closely by the transition from optimal to medium HQ. In the periods from 2030 to 2040 and from 2040 to 2050, the transition characteristics of HQ types closely mirrored those observed from 2020 to 2030, with the most significant transition occurring from medium to poor HQ between 2030 and 2040.
3.4 Hotspot analysis of HQ
To elucidate the spatiotemporal distribution characteristics of HQ heterogeneity, we employed hotspot analysis to examine the spatiotemporal variations in HQ across multiple scenarios from 2000 to 2050 (Figure 11). The analysis reveals a distinct distribution pattern, characterized by the presence of cold spots in the east, areas of negligible significance in the centre, and hot spots in the west. Furthermore, the south exhibits an alternating distribution of cold and hot spots, which is characterized by small, patchy dispersal patterns.
[image: Twelve maps display spatial data from 2000 to 2050 with variations in cold and hot spots, shown in blue and red. Each row represents a different scenario or time period, with legends indicating significance levels. Circular insets illustrate proportionate data distributions.]FIGURE 11 | Spatial distribution of cold hotspots of HQ 2000–2050.
Specifically, in the eastern regions of Sichuan and Chongqing, the extent of cold spots shows a gradual decline over time. Projections indicate that by 2050 (SSP126, SSP245, SSP585), the area occupied by cold spots in this region will reach its minimum, reflecting a trend towards increasing fragmentation. Between 2000 and 2050, the distribution of hotspots (>40%) constitutes a primary characteristic of the YREB, followed by cold spots (>30%), while the proportion of insignificant areas (<30%) remains the lowest. As time progresses, the area classified as hotspots (99%) exhibits a gradual decline, paralleled by a decreasing trend in cold spots (99%). Conversely, the insignificant zones show a consistent increase. Notably, under the SSP585 scenario for the period from 2030 to 2050, the hotspots (99%) begin to increase, while the cold spots (99%) continue to decline, and the insignificant zones further expands. This dynamic indicates that both cold and hotspot regions primarily undergo outward expansion or contraction based on their existing spatial distributions.
4 DISCUSSION
4.1 Impact of LUC on HQ
The spatial distribution of HQ indices exhibits a high degree of correspondence with the spatial distribution of LUT (Wu et al., 2022). In the context of three distinct climatic scenarios projected for the future YREB, substantial alterations in HQ are anticipated, with the patterns of these changes closely associated with land-use transformations. Therefore, the accuracy of future HQ assessments will be contingent upon the precision of land-use simulations. This study demonstrates a high degree of simulation accuracy, with the predictive model developed being extensively applied in various contexts, including urban agglomerations (Chen and Ning, 2024) and watersheds (Ji et al., 2023). The model has consistently exhibited superior simulation precision across these diverse regions. Furthermore, there has been an increase in regions experiencing HD, which coincides with the expansion of urban development, particularly in the economically advanced eastern areas (Pan et al., 2023). This expansion of built-up land has led to a significant reduction in cropland, which is identified as the primary driver of declining HQ. The HD is predominantly concentrated in regions characterized by high levels of urbanization and dense population clusters. This phenomenon is similarly evident within the Yellow River Basin (Ji et al., 2023).
As a cornerstone of high-quality economic development in China, the YREB imposes significant pressures on the regional ecological environment throughout the processes of comprehensive urbanization-industrialization (Chen et al., 2021; Ding et al., 2021). Within this context, land types exhibiting high habitat suitability—such as forest land, grassland, and water are increasingly being transformed into poor habitat suitability types, particularly built-up land, which results in a marked decline in HQ. Furthermore, the total population within the YREB constitutes over 40% of China’s, while its geographical area represents only 21.4% of the country’s total landmass. Accelerated urbanization has driven a substantial influx of people into urban centers, intensifying the demand for built-up land in both major urban districts and their surrounding counties (Chen et al., 2023). This phenomenon has not only facilitated the unplanned expansion of built-up land, encroaching upon cropland ecological spaces—such as forest land, grassland, and water—but has also led to severe disturbances and threats to the surrounding ecological environment, thereby contributing to the HD. This result aligns with the decline in ecosystem service functions associated with anticipated urban land expansion in the Yangtze River Delta urban agglomeration. Notably, it indicates that the rate of HD is occurring at an accelerated pace (Yang et al., 2024). Notably, regions of high HQ are predominantly located in the upstream areas of the YREB, particularly in Sichuan and Yunnan provinces. These areas, characterized by relatively high altitudes and abundant forest land and grassland resources, are less vulnerable to development pressures, resulting in comparatively minimal disturbances to their HQ (Sun et al., 2023). Our research findings are strongly corroborated by the analysis demonstrating that HQ in the upstream regions of the Yangtze River Basin is minimally affected by human activities. In contrast, the Sichuan Basin and western areas are identified as critical zones for HQ restoration (Bian et al., 2024).
In the future development scenarios, SSP126 and SSP245 are generally regarded as more desirable pathways. The SSP126 promotes a sustainable development model that prioritizes stringent land-use controls to safeguard the ecological environment. In 2020–2050, this scenario anticipates a substantial reduction in cropland and grassland, coupled with a significant expansion of built-up land. Forest land and water, on the other hand, show moderate growth, particularly in the eastern regions, though HQ in these areas deteriorates. Conversely, the western regions experience substantial restoration of grassland and forest land from 2030 to 2040, facilitated by the effective implementation of sustainable development policies. In contrast, the SSP245 represents a more gradual transition towards sustainability, with slower economic growth and moderate levels of population growth and urbanization. Despite these trends, habitat quality continues to decline. The scenario is characterized by pronounced LUC, particularly the expansion of built-up land, which results in the reduction of cropland and forest-grassland. Furthermore, the increase in ecological land in the western regions is limited, exacerbating the HD in these areas. The most extreme of the SSP585, envisions rapid economic growth and energy-intensive development, which drive accelerated urban expansion and a dramatic loss of ecological land. This results in significant encroachment on cropland and a considerable reduction in grassland and water, leading to a severe decline in HQ. Overall, the SSP126 appears to offer the most favorable pathway for sustainable development. By employing effective land-use management strategies and region-specific policies, it can mitigate the HD. In contrast, both the SSP245 and SSP585 pose greater risks. The SSP245 scenario may exacerbate ecological degradation due to the unchecked expansion of built-up land, while the SSP585 highlights the environmental costs of an over-reliance on economic growth. Consequently, ensuring ecological sustainability while promoting economic development is crucial for achieving a balanced and harmonious future, where both ecological integrity and economic prosperity are prioritized.
4.2 Policy implications
The transformation of land-use patterns is driving significant global habitat loss (Li X. et al., 2024). In the downstream region of the YREB, these patterns are undergoing profound changes, particularly due to the acceleration of urbanization and the expansion of infrastructure. This shift has led to increasing habitat loss and a decline in biodiversity, which have become critical challenges to the ecological environment (Guan et al., 2018; Yu, 2021). The effects of different land-use patterns on the environment are variable; however, the expansion of built-up land is particularly damaging, often resulting in the encroachment upon natural ecosystems such as forest land, grassland, and water, thereby exacerbating ecosystem degradation. Under projected future development scenarios, HD is expected to intensify. Consequently, addressing the adverse effects of LUC on HQ is essential for improving the ecological environment. This necessitates a careful balance between economic development and ecological preservation, particularly through the enhanced delineation and enforcement of ecological redlines to safeguard areas of high HQ and prevent overdevelopment.
To mitigate the ecological challenges arising from LUC, policies should prioritize ecological restoration and the transformation of agricultural practices. In regions where LUC are especially pronounced, a combination of natural restoration and controlled intervention can be employed to enhance ecosystem functions, restore vegetation cover, and improve biodiversity. Simultaneously, agricultural development models should shift toward more sustainable, eco-friendly practices such as crop rotation, fallowing, and other techniques that promote the long-term health of the ecological environment. The formulation of differentiated protection and development strategies based on the HQ of specific areas is critical to ensuring the rational use of resources and maintaining ecological stability over time.
Within the context of ecological protection policies in the YREB, it is imperative to establish an integrated ecological management framework that emphasizes enhanced cross-regional policy coordination. By scientifically delineating ecological redlines, improving the management of ecological function zones, and promoting targeted ecological engineering initiatives, the stability of ecosystems and biodiversity can be better safeguarded. Additionally, the land-use structure should be optimized to ensure that the functional roles of different land types are appropriately positioned, facilitating a mutually beneficial outcome for both green development and economic growth. Governments must foster cooperation and coordination to navigate the tension between socio-economic development and ecological protection, advance the construction of an ecological civilization, and ultimately achieve the harmonious and sustainable development of the economy, society, and ecology in the region.
4.3 Limitations and uncertainties
This study integrates a top-down SD model with a bottom-up PLUS model, incorporating SSPs and RCPs scenarios to evaluate future trends in LUC from both socioeconomic and natural climate perspectives. Furthermore, the InVEST model is utilized to assess HQ across multiple scenarios from 2000 to 2050. Nevertheless, these models exhibit certain limitations. The SSP-RCP scenario data primarily focus on global and national levels, with relatively few studies addressing regional scales. To mitigate this issue, we have taken local development needs into account when establishing the SSP-RCP scenario parameters. Additionally, the InVEST model is frequently adjusted based on prior research, which introduces an element of subjectivity. Consequently, future studies should adopt a more rigorous approach to develop more accurate and reliable model parameters.
5 CONCLUSION
This study employs a coupled SD-PLUS model to simulate and predict land-use patterns in the YREB for the period from 2030 to 2050, based on scenarios that integrate SSP-RCP. In conjunction with the InVEST model, we conducted a comprehensive assessment of HQ across various scenarios from 2000 to 2050, elucidating the spatiotemporal dynamics of HQ and the associated degradation patterns. The results indicate a declining trend in HQ between 2000 and 2020, with a spatial distribution that demonstrates a gradient of increasing quality from east to west. HD is predominantly concentrated in agroforestry transition zones and urban, revealing a clustering pattern characterized by cold spots in the eastern region, negligible degradation in the centre, and hot spots in the west.
In the context of three future development scenarios projected for the period 2030–2050, HQ is expected to primarily shift from medium to poor, followed by a transition from high to medium. Specifically, in the SSP126, HQ is projected to decrease by 2.28%. In the SSP245, it is expected to decline by 1.74%; and in the SSP585, the decline is projected to be 2.55%. The pattern of HD remains largely consistent with the trends observed during the 2000–2020 period, with moderate HD being the dominant trend. Notably, the HQ of both cropland and forest land remains stable, and a balanced transition is evident between these land types. The YREB is characterized by the presence of hotspots (>40%), followed by cold spots (>30%), with areas exhibiting insignificant quality (<30%) representing the smallest proportion. The distribution of these cold and hot spots is primarily driven by the expansion or contraction of existing regions.
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The overlap and irrational distribution of Production-Living-Ecological Spaces (PLES) has disrupted traditional urban-rural development patterns and impeded regional integration. This study, focusing on the Yangtze River Delta region, introduces a PLES framework and constructs a classification system based on multitemporal land use data. The CA-Markov model was employed to simulate land use changes for the years 2030 and 2040. By quantifying and analyzing the number, distribution, and transitions of PLES categories, the study identifies spatial and temporal patterns and evaluates the coupling coordination of the various PLES components. The key findings are as follows: (1) The proportion of Production-Living Space (PLS) increased from 9[image: Please upload the image or provide a URL, and I will generate the alt text for you.] in 2000 to 14[image: Please upload the image or provide a URL so I can generate the alternate text for you.] in 2020, with projections indicating further growth to 15[image: Please upload the image or provide a URL so I can create the alternate text for it.] by both 2030 and 2040, while Ecological Space (ES) remained relatively stable; (2) The coupling coordination between the stages of PLES evolved from mild disharmony to weak coordination, reflecting a shift from localized improvements to broader, more integrated spatial development; (3) The spatial distribution of PLES coupling exhibited significant heterogeneity, characterized by higher values in the eastern region, lower values in the western region, and a pattern of concentration in the north and dispersion southward. These findings contribute to a deeper understanding of the spatial dynamics of PLES and provide strategic recommendations for optimizing the spatial layout of the Yangtze River Delta urban agglomeration, thereby promoting sustainable urban development.
Keywords: production-living-ecological space, Yangtze River Delta, sustainable development, CA-Markov model, land use simulation, spatial layout optimization

1 INTRODUCTION
The spatial organization and distribution of Production-Living-Ecological Spaces (PLES) emerged from prolonged human activities. Consequently, refining the configuration and distribution of PLES is vital and aligns with the evolving developmental path of human society (Liu, 2016). In recent decades, China has witnessed significant urban growth, paralleled by substantial challenges in managing spatial development and maintaining environmental sustainability. The development of PLES has been shaped by global factors such as climate change, biodiversity loss, and ecological degradation. This global-to-local shift in sustainable development paradigms necessitates a focused academic exploration into the logical and balanced structuring of PLES. Such structuring must address complex ecological and environmental changes while fulfilling the growing material needs of human populations (Yang, 2020).
The concept of PLES is pivotal to spatial planning, yet its application in research, especially in international contexts, remains limited. Globally, investigations into PLES often rely on classical Western theories such as spatial zoning (Buck, 1943), ribbon cities (Blayney-Dyett, 1980), and idyllic cities (Short, 2006). These studies primarily concentrate on analyzing and improving regional functions. In contrast, the discourse in China is more comprehensive. In 2012, the Chinese government emphatically declared the need to optimize the spatial development pattern of the nation’s territory, aiming to promote a development paradigm characterized by intensive and efficient production spaces, livable and moderate living spaces, and pristine and beautiful ecological spaces (Huang et al., 2017). Consequently, the PLES concept has rapidly become a central theme in land science, urban planning, and related disciplines within China. Despite its prominence, the definition of PLES has been elusive, particularly in the face of evolving dynamics in spatial planning. This ambiguity has led to multiple challenges, including a gap between theoretical frameworks and practical implementation, which makes the application of PLES a subject of debate (Kong et al., 2021).
The current research on PLES primarily concentrates on theoretical connotations, identification, and classification. Scholars are dedicated to enhancing and expanding the theoretical implications of PLES. Systematic studies in classification and identification typically involve analyzing spatial representations. These two research aspects are interconnected and collaboratively contribute to theoretical advancement. This process has led to two primary research paradigms: the first emphasizes “Land” focusing on its essential characteristics and functions (Bian et al., 2016; Yue and Zhang, 2007). For instance, Liu et al. (2017) proposed a PLES division concept based on the “bottom-up, functional hierarchy” principle, taking into account existing land use conditions and analyzing their balance. This approach provides a scientific foundation for planning and optimizing PLES decision-making. Concurrently, some scholars have developed a series of value volume accounting functions derived from the value function of land ecosystem services, thereby enhancing the methodology for assessing PLES (Zhang et al., 2017; Liu et al., 2016; Li and Fang, 2016). The second paradigm focuses on “Space” examining PLES performance across various scales and its distinctions Wei et al. (2021); Hong et al. (2023). For example, Hu et al. (2016) analyzed PLES from different regional perspectives, including urban and rural contexts, emphasizing distinguishing PLES functions across regions rather than applying a generalized approach. Additionally, Fu et al. (2022b) used a coupled coordination degree model to delineate PLES at the national level and investigated changes and evolutionary patterns in PLES across 336 cities from 2000 to 2020. Conversely, Li et al. (2021) selected specific temporal nodes to conduct an in-depth analysis of changes in Coupled Coordination Degree (CCD) at the regional level. The extensive use of multi-source big data has significantly enhanced the precision of PLES research methodologies and techniques. For example, Fu et al. (2022a) utilized remote sensing, Points of Interest (POI), and nocturnal illumination data, along with advanced algorithms such as convolutional neural networks (CNN), machine learning, and random forests, to proficiently identify and categorize the spatial functions of PLES within urban environments. Their research demonstrates that models incorporating multi-source data and machine learning substantially improve classification outcomes and increase predictive accuracy.
Driven by the intensifying spatial reform of land and evolving demands, numerous scholars have conducted studies from the perspectives of multifunctional land use Li and Wu (2022); Du et al. (2022) and ecological service system functions (Liang et al., 2022). The study sought to elucidate the transformation process of PLES and its coupling mechanism. It aimed to uncover the spatial and temporal evolutionary characteristics and the coupling and coordination relationships of regional PLES, while also conducting an in-depth analysis of its driving factors and ecological impacts. Gong et al. (2023) developed a county-level Productive-Living-Ecological Framework evaluation system utilizing integrated coordination and spatial autocorrelation models, with counties as the evaluation unit. They quantitatively analyzed the PLES of counties in Jiangsu Province and suggested relevant optimization strategies. Liu et al. (2022) forecasted the progression of the coupled PLES coordination degree in the Daqing River Basin, informed by land use dynamics, and examined the effects under various development scenarios. Concurrently, they analyzed the effects of different spatial configurations on sustainable urban development. Hong et al. (2023) investigated the determinants of PLES in Changfeng County by utilizing the land transfer matrix, center of gravity migration, and geographic factor detection models, identifying policy regulation as the primary influence. While these studies have established a quantitative scientific foundation for the regularity and characterization of PLES through the classification and identification of various scenarios, the current research predominantly emphasizes the analysis of spatial variability within a single time frame. The efficacy of this method is significantly contingent upon the quality of data collection. It lacks integrated forecasting and analysis across various temporal intervals, urban cluster scales, and models. This constrains our thorough comprehension of the optimization of regional spatial configuration and its interplay with sustainable urban development, thereby influencing the formulation and execution of strategies.
This study aims to examine the spatial and temporal evolution of PLES in the Yangtze River Delta (YRD), a region characterized by rapid industrialization and urbanization. The growing overlap and irrational distribution of PLES pose significant challenges to regional integration and sustainable development. To address these issues, we propose a novel PLES function scale, categorizing PLES into four distinct types: Ecological-Production Space (EPS), Production-Ecological Space (PES), Production-Living Space (PLS), and Purely Ecological Space (ES). Using coupled spatial autocorrelation analysis and the CA-Markov model, this study provides a comprehensive spatial analysis of PLES utilization in the YRD, aiming to uncover spatial development patterns and offer strategic recommendations for optimizing the spatial layout, which will contribute to sustainable urban growth and regional integration (Figure 1).
[image: Flowchart illustrating a process of land use modeling. It starts with land use data from 2000 to 2020, fed into a CA-Markov model for classification. The model generates predictions for land use in 2030. This information is used for PLES classification, leading to sub-processes like production ecology, ecological space, and tourism. There's a feedback loop for analyzing changes in PLES over time. Additional steps include spatial information optimization and coupling analysis for regional planning. The chart concludes with optimization strategies for PLES's coordinated development in the Yangtze River Delta region.]FIGURE 1 | Research framework.
The following objectives direct our research: quantifying and analyzing changes in the number and distribution of PLES categories over time, evaluating the spatial patterns and coupling coordination of these spaces, and proposing actionable strategies based on our findings. By addressing these objectives, this study will improve our understanding of the complex interplay between urban development and environmental management in one of the world’s most dynamic regions.
2 MATERIALS AND METHODS
2.1 Study area
The YRD region consists of four provinces: Jiangsu, Zhejiang, Anhui, and one city, Shanghai. This region spans 358,000 km2; and includes 41 cities. The YRD region, located in the lower reaches of the Yangtze River in eastern China and along the coasts of the Yellow Sea and East China Sea, has numerous ports (Figure 2). This region has been highly developed since ancient times and is characterized by a subtropical monsoon climate. With a population of approximately 230 million and an urbanization rate of over 75[image: Please upload the image or provide a URL so that I can generate the appropriate alternate text for it.], the YRD region reported a GDP of 29 trillion yuan in 2022, making it a vital industrial and economic hub in China (Liu and Zhang, 2020). Thus, the YRD region is recognized by its remarkable economic development, openness, and strategic importance in China’s territorial planning.
[image: Map of Jiangsu Province in China, showing county boundaries and locations. An inset highlights Jiangsu's position within China. A bottom-right map indicates elevation, with red for higher and green for lower areas.]FIGURE 2 | Overview map of the research area.
Since the early 21st century, large areas of arable land, wetlands, mudflats, and water bodies have been developed, resulting in significant changes in the number and distribution of various species. This development has intensified resource and environmental tensions in the region, with territorial space development reaching unsustainable levels. Urban expansion requires extensive land and natural resources, leading to significant encroachment of production and living areas on ecological spaces. This encroachment has caused ecological degradation, impeded economic development, and hindered regional integration efforts. To implement the strategy of ecological priority and green development, it is crucial to optimize the land space pattern and resolve spatial conflicts in the YRD region. Consequently, strict land use regulations must be enforced to govern development and optimize land resource utilization.
2.2 Data sources and PLES classification
The land use and land cover change (LUCC) data for 2000, 2010, and 2020 were obtained from the Resource and Environment Data Center of the Chinese Academy of Sciences and the Geospatial Data Cloud Platform. The data had a spatial resolution of 30 m. These data were primarily derived from annual Landsat TM remote sensing images. The images were interpreted using a remote sensing monitoring classification system, which categorizes land use into six main categories: arable land, forest land, grassland, water areas, urban and rural industrial and residential land, and unused land. The accuracy of the interpreted data exceeded 90[image: Please upload the image or provide a URL to it, and I will help generate the alt text for you.]. The Landsat images were acquired in 2000, 2010, and 2020, with specific acquisition times for each dataset, ensuring consistency and temporal relevance.
Moreover, the relationship between LUCC data and remote sensing data is critical, as remote sensing images serve as the foundational data source for LUCC analysis, enabling accurate and consistent land use classification across different periods. These datasets were processed using ArcGIS 10.7 software to construct a fundamental database of the PLES spatial land patterns in the YRD region. All vector data were converted to surface grids in GCS WGS 1984, yielding 30 [image: Please upload the image or provide a URL for it, and I will create the alternate text for you.] 30 m raster data for analysis.
Given that PLES encompasses multidimensional characteristics, including spatial scale, functional complexity, and a broad range of effects, and that a single space often possesses one or multiple functions (such as the coexistence of production, living, and ecological functions), this paper, building on comprehensive academic research into the in-depth categorization of PLES, innovatively classifies the land resources of the YRD region according to a system of six major land categories. This detailed and systematic classification (as shown in Table 1) aims to provide a more precise and comprehensive analysis of the land use patterns in the region.
TABLE 1 | PLES land use classification system for the YRD region.
[image: Table showing Ecological–Living–Production Space (PLES) classification with first and second-level land-use types. Categories include Production-ecology Space, Ecological-production Space, Production-living Space, and Ecology Space. First-level types like arable land, woodland, grasslands, water, urban and rural land, and unused land are detailed with specific codes and second-level types, such as paddy field, woodland, grassland varieties, water bodies, and land types.]2.3 Land use patterns and scenario modeling
2.3.1 PLES transfer pattern
Land use dynamics refers to the change rate of land use types and their spatial distribution within a given region and period (Liu et al., 2018) (Equation 1):
[image: K equals P subscript b minus P subscript a divided by P subscript a, multiplied by one over t, multiplied by one hundred percent. Equation one.]
where k is the land motion attitude of the study area, Pa and Pb denote the area of land type in the first and last years of the study, respectively, and t represents the number of years in the study period. However, k could not sufficiently characterize the direction and amount of PLES transfer. Therefore, this study introduces a land transfer matrix. The land transition matrix (LTM) serves as a tool for describing land use change, recording the transition between different types of land over time and can be used to analyze the trend of land use change (Equation 2).
[image: Matrix representation labeled as \( P \) showing a general matrix with elements \( p_{11} \) to \( p_{mn} \). Dots indicate continuation of elements. Equation number \( (2) \) is to the right.]
where P represents the land area, n represents the land use type, and I and j denote the land use type at the beginning and end of the study, respectively.
2.3.2 Land use simulation
In this study, the CA-Markov model was used to simulate the PLES of the YRD in 2030 and 2040, based on the known PLES data of the YRD region in 2000 and 2020. The CA-Markov model is a mathematical model that describes the evolution of stochastic systems using meta-cellular automata (meta-CA) and Markov processes. In this model, each meta-cell can exist in one of a finite number of states (Sang et al., 2011), with the probability of transfer determined by the state of the adjacent beta cell to i (Equations 3, 4).
This study adopted a point-by-point acquisition strategy to reduce errors caused by the large time span. First, based on the land use data from 2000 to 2010, the land use data for 2020 were predicted, and the predicted data were then compared with the actual data. The model’s prediction accuracy reached at least 85[image: Please upload the image or provide a URL for me to generate the alternate text. If you have a specific context or caption, feel free to include that as well.], indicating a high level of reliability. Next, based on the 2010 and 2020 land use data, the land use for 2030 was predicted. The 2020 and 2030 data were then input into the model to obtain the land use data for 2040. To improve prediction accuracy, the model performed 200 iterations at each node, and the accuracy of the simulation results was verified using the Kappa coefficient.
[image: Matrix \( P \) is represented as a block of elements \( p_{11} \) to \( p_{mn} \) arranged in an \( m \times n \) format, indicating a generic matrix structure. The equation is marked as expression (3).]
[image: The image shows a mathematical equation: \( S_{t+1} = P_t \times S_t \), labeled as equation 4.]
2.4 PLES coupling analysis
2.4.1 PLES function-evaluation index system
The functional indicators of PLES are based on the characteristics of the six major land types, and, drawing from existing research results (Bunce et al., 1996), the principle of multifunctional land type grouping was proposed. The PES, EPS, PLS, and ES were categorized according to their PLES utilization values. The production function (PF), living function (LF), and ecological function (EF) were assigned scores based on their PLES utilization values, with each land use type having its dominant function, and a full score of 5. For example, ES had ecology as its dominant function, and thus the ecological function was assigned a score of 5. Another example is PLS, where the dominant functions include production and living, in line with the composite nature of the land use. Therefore, both the production and living functions were assigned a score of 4 (as shown in Table 2).
TABLE 2 | PLES functional scoring scale.
[image: A table displays land use types and their associated functions. The types are Production-Ecology Space, Ecological-Production Space, Production-Living Space, and Ecology Space. Columns indicate values for Production Function, Living Function, and Ecological Function. The dominant functions are production (agriculture), ecological (forest), production (industry), and ecology (ecologically) respectively.]2.4.2 Coupling coordination degree analysis and grading
Coupling coordination (CD) and coupling coordination degree (CCD) are physics-based concepts that quantify the interdependence between two entities, which describe the interactions and feedback between multiple subsystems and how they coordinate to achieve the overall goal (Shi et al., 2020). This model was used in this study to calculate the coupling coordination degree of PLES in the YRD region, according to the following Equation 5:
[image: Equation labeled as 5. C sub d equals four times the fraction where the numerator is the product of S sub p e p, S sub e p p, S sub p p s, and S sub e s, while the denominator is the sum of the same variables. This expression is raised to the power of one-fourth.]
where CD is the coupling degree of PLES in the YRD region, with a value range of [0,1], and [image: It looks like there was an error with your image upload. Please try uploading the image again, and I will be happy to help you generate the alternate text for it.],[image: Certainly! Please upload the image or provide a URL, and I will help generate alternate text for it.], [image: It seems you've mentioned a mathematical expression, not an image. Please upload the image or provide a URL for me to generate the alt text. If the expression is part of the image, you can describe the image further.], [image: It seems like there might be an error in how the image is being referenced or uploaded. Please try uploading the image directly or provide a valid URL.] and denote the assigned scores of PES, EPS, PLS, and ES spaces, respectively. Although the coupling degree CCD could reflect the degree of interaction between spaces, it could not express the coordination characteristics between spaces. Therefore, based on the coupling degree, the coupling coordination degree model of space was introduced, with the following calculation formula (Equations 6, 7):
[image: Equation showing T equals alpha times S_spec plus beta times S_exp plus gamma times S_sev. The sum of alpha, beta, and gamma equals one.]
[image: Mathematical formula representing CC subscript A as the square root of C subscript A times T. CC subscript A is an element of the interval from zero to one.]
where T represents the comprehensive coordination index, CCD is the coupling coordination of PLES, [image: Mathematical symbols alpha, beta, and gamma presented in a horizontal line.] represent the spatial weights, considering the composite specificity of the four spaces, with the weight of each space set to 0.25, which ensured the fairness of its individual spatial comparisons. Consisted of values in the range of [0,1], and this study utilized previous work, which was categorized into five classes, namely, excellent coordination, primary coordination, barely coordination, mild imbalance, and severe imbalance, as shown in (Table 3).
TABLE 3 | Classification table of the CCD.
[image: Table illustrating coupling coordination levels and their attributes. Levels range from one to five, with corresponding value ranges and meanings: Excellent coordination (0.8-1.0), Primary coordination (0.6-0.8), Barely coordination (0.4-0.6), Mild imbalance (0.2-0.4), and Severe imbalance (0.0-0.2). Features describe harmony and imbalance in PLES development and integration.]2.5 Direction of PLES spatial distribution characteristics
The spatial distribution of PLES has distinctive features due to the large time span and large area of the spatial regional extent. Moran’s I was used to analyze the spatial separation characteristics of CCD in the YRD region in the years 2000, 2010, 2020, 2030, and 2040, and their differences. Spatial autocorrelation is commonly used to evaluate correlations within similar regions, and is considered the most important factor when analyzing spatial correlation (Jackson et al., 2010). Moran’s I has been frequently employed in global spatial autocorrelation for spatial autocorrelation calculations, according to Equation 8:
[image: Mathematical formula for spatial autocorrelation: \( I = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij} \sum_{i=1}^{n} (x_i - \bar{x})^2} \).]
Local spatial autocorrelation is the study of the degree of autocorrelation between local regions, and is typically computed by Anselin Local Moran’s I, according to Equation 9:
[image: Mathematical formula for Moran's I: I equals the fraction where the numerator is the product of \((x_i - \bar{x})\) and the summation from \(j=1\) to \(n\) of \(\omega_{ij}(x_j - \bar{x})\). The denominator is \(S^2\). This equation is labeled as \(9\).]
When measured between [0, 1], Moran’s I index indicates that geographic units with similar attributes in the geographic space are clustered together. When measured between [1, 0], Moran’s I index indicates that geographic units with dissimilar attributes in geographic space are clustered together. The I index of Moran is close to 0, and when Moran’s I index is close to zero, attributes in a geographic space are randomly distributed, and spatial autocorrelation does not exist.
3 RESULTS
3.1 Model accuracy
In this study, a point-by-point method was employed to simulate land use for the years 2000, 2010, and 2020, using known land use data as a reference. The model’s performance was assessed by comparing the simulated land use data with the actual land use data from these years. The agreement between the simulated and actual data was quantified using the Kappa coefficient, which measures the level of accuracy and consistency. The Kappa coefficients for the years 2000, 2010, and 2020 were 0.982, 0.887, and 0.903, respectively, indicating a strong to very good agreement between the simulated and actual land use patterns. These Kappa values suggest that the simulation model is highly reliable. Additionally, the overall simulation accuracy exceeded 88[image: Please upload the image or provide a URL so I can generate the alternate text for you.], further demonstrating the precision and robustness of the model. This high accuracy in simulating past land use trends ensures the reliability of the model for predicting future land use scenarios, such as those for the years 2030 and 2040.
The Kappa coefficient ranges from −1 to 1, with values above 0.81 indicating very strong agreement, and those between 0.61 and 0.80 indicating strong agreement. The high Kappa values in this study underscore the model’s reliability and accuracy in replicating historical land use patterns. Additionally, the overall simulation accuracy exceeded 88[image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.], further demonstrating the robustness of the model. This high level of accuracy in simulating past land use trends ensures the model’s credibility for predicting future scenarios, such as those for 2030 and 2040.
3.2 Changes in PLES volume over time
Comparing Figure 3; Table 4, it is evident that the PLS expanded by 11618.75 km2 reflecting a 37[image: Please upload the image you would like me to generate alternate text for.] increase in land area during this period. In contrast, the PES experienced a reduction of 7151.39 km2. However, given its initially substantial volume, the rate of land change was minimal at only 0.5[image: Please upload the image or provide a URL so I can generate the alternate text for you.]. Meanwhile, the volume of PLS is expanding, though there was a reduction of 6434.03 km2, resulting in a 4[image: Please upload the image or provide a URL so I can generate the alternate text for you.] change in land area. Overall, the data suggest that the volume of PES remained relatively stable between 2000 and 2040.
[image: Six maps show changes in land use over time for a region, labeled from 2000 to 2050 in decade intervals. Colors denote different land categories: production ecology, production and living, ecological space, and ecological production. A legend and scale bar are included.]FIGURE 3 | Changes in area of PLE space from 2000 to 2040.
TABLE 4 | Change in PLE area (km2) in the YRD area from 2000 to 2040.
[image: Table displaying land use data from 2000 to 2040 across five categories: arable land, wood land, grass land, water, urban and rural land, and unused land. It includes the difference between initial and final land area in square kilometers, and the degree of change in land dynamics shown in percentages. Bold values highlight the degree of land use change for clarity in spatial dynamics.]3.2.1 Dynamics of the PLE space from 2000 to 2040
To enable a comprehensive analysis of PLES dynamics over various time frames, the interval from 2000 to 2040 was segmented into five 10-year periods. As shown in Figure 4, urbanization and economic development from 2000 to 2010 resulted in a substantial expansion of PLS and a notable decline in PES. These changes led to significant ecological and environmental challenges. However, post-2010, with the national government’s intensified focus on land management, a substantial number of land policies were introduced and implemented. These measures effectively decelerated urbanization rates. Moreover, with the emergence of concepts such as ecological civilization, low-carbon cities, and green cities, government officials and urban planners increasingly focused on ecological construction and protection. Consequently, ES and EPS have maintained stability throughout the subsequent three periods. In summary, the most significant shifts in PLE space occurred primarily during the 2000–2010 period. After this initial phase, the magnitude of changes progressively stabilized, setting the stage for ongoing stable development in the future.
[image: Stacked bar chart showing the proportion of spatial distribution from 2000 to 2010. Each bar is divided into four categories: ES, MS, BPS, and PBS. ES consistently has the smallest proportion, whereas BPS and MS vary, with BPS increasing over time and PBS maintaining a significant presence throughout.]FIGURE 4 | Percentage of PLE space area, 2000 to 2040.
3.2.2 PLE spatial transfer matrix analysis
To gain further insight into the direction and extent of PLE conversion, we created land transfer Sankey diagrams for each time period (Figure 5). In the early years, a substantial amount of ES and PES was converted into PLS to meet urban construction demands. However, in later years, the conversion rate slowed with the adoption of sustainable and high-quality urban development concepts. A modest amount of ES was consistently converted into EPS and PES across all periods, with the conversion volume fluctuating from 8.172 km2; in 2000–2010 to 57.75 km2; in 2030–2040, showing an upward trend. This indicates that urban planners and government agencies have increasingly prioritized ecological protection, integrated ecological concepts into urban design, and aimed to create more livable, healthy, and sustainable urban environments through relevant policies and planning adjustments.
[image: Four circular diagrams show changes from 2000 to 2040 in different categories such as PES and PLS. Each diagram is divided into sections with color-coded segments. Labels indicate different periods: 2000-2010, 2010-2020, 2020-2030, and 2030-2040.]FIGURE 5 | Land transfer chord diagram 2000–2040.
3.3 Morphological changes in PLES
3.3.1 Assessment of the level of coupling
The CCD of PLES in the YRD region was evaluated from 2000 to 2040 utilizing a functional score table. During the study period, the CCD of PLES in the YRD region was initially characterized by mild dysfunction, which subsequently evolved to a state of marginal coordination. This progression denotes an upward trajectory from localized to more widespread conditions, with a spatial distribution pattern characterized by higher values in the east and lower values in the west, as depicted in (Figure 6). In the early part of the study period, most areas in Jiangsu and Anhui provinces demonstrated high coordination levels, achieving second-level coordination status. In contrast, much of Zhejiang Province and Shanghai Municipality recorded lower CCDs, indicating poor coordination and classified under third-level coordination. Notably, from 2000 to 2020, 73.1[image: To generate alt text, please upload the image file or provide a URL. If you have additional context or details you'd like included, feel free to add that information.] of cities in Zhejiang Province exhibited mild dislocation, while 17.4[image: Please upload the image or provide a URL for me to generate the alternate text.] showed moderate dislocation. This lower coordination level was primarily attributed to rapid economic development and accelerated urbanization in Zhejiang Province, leading to extensive conversion of ES and EPS into PLS, thereby exacerbating PLES dislocation. In response, a series of land management and ecological protection policies were implemented, increasingly focusing on the preservation and enhancement of ES and EPS. From 2020 onwards, there was a marked reduction in the proportion of cities with mild and moderate dislocation in Zhejiang Province, with decreases of 38.6[image: Please upload the image or provide a URL for me to generate the alternate text.] and 17.4[image: Please upload the image or provide a URL, and I will help generate the alternate text for it.], respectively. Consequently, most regions evolved into minimally coordinated cities, indicating a general enhancement in coordination levels. Moreover, as the government progressively emphasized the advancement of YRD integration, an analysis of annual distribution maps (Figure 6) indicated a notable reduction in dysfunctional cities and an improved overall spatial correlation of PLES.
[image: Series of five maps from 2000 to 2040 depict changes in coupling coordination levels in a region. Shading from dark to light represents levels from excellent to severe imbalance. Marked variation is shown over time with a progression towards darker shades indicating better coordination. A legend and scale bar are included.]FIGURE 6 | Changes in the spatial distribution of CDs and CCDs, 2000–2040.
3.3.2 Identification of regional disorders
To investigate the time series of functional coupling within the PLES in the YRD region, we generated box-and-line plots for each period to examine functional anomalies. Figure 7 illustrates that the peak CCD values during each time interval are recorded in Yancheng and Xuzhou, whereas the minimal values are noted in Tongling, Zhoushan, Zhenjiang, and Huangshan. The distribution indicates that cities with the highest CCD values are primarily located in the northern region. In contrast, those with the lowest values are in the central and southern areas. This is due to the extensive wetland regions in Yancheng and Xuzhou, with Yancheng designated as an “international wetland city.” These cities gain advantages from rigorous land and ecological management practices. This strict management fosters well-coordinated PLES functional coupling in these cities. In contrast, central cities with low CCD values experience poor PLES functional coupling due to uneven land distribution resulting from topographical variations. Zhoushan City, consisting of disjointed islands, encounters considerable difficulties in attaining integrated PLES functions.
[image: Five box plots represent data from different cities across various years: Tongling, Yancheng, Xuzhou, Zhengjiang, and Huangshan for the years 2005, 2010, 2015, 2020, and 2025. Each plot shows the distribution of values with quartiles, medians, and possible outliers.]FIGURE 7 | CCD Outliers boxplot.
3.4 Spatial autocorrelation analysis
3.4.1 Spatial aggregation time analysis
The spatial autocorrelation of PLES functional CCDs in the YRD region from 2000 to 2040 was analyzed using Geoda software, as illustrated in (Figure 8). The global Moran’s I index demonstrated a consistently positive value throughout the study period, indicating a spatial positive correlation among regional PLES CCDs, reflecting a clustering effect within the YRD region. This index initially declined, followed by an uptick and another decline from 2000 to 2040. The spatial positive correlation was strongest in 2000, but weakened in 2020, reflecting a reduction in spatial clustering during that period. This pattern is primarily attributed to the varying development and urbanization processes across cities in the YRD region. From 2000 to 2020, as PLES functions developed, there was a reduction in the differences in coupling coordination between cities, leading to a downward trend in the index. However, from 2020 to 2040, changes in policy and urban development strategies led to an initial increase, followed by a subsequent decrease in the index.
[image: Five scatter plots showing relationships between years (x-axes) and inset RGR (y-axes) with linear trend lines. Each plot displays Moran's I index values: 0.152, 0.066, 0.037, 0.079, and 0.052, indicating spatial autocorrelation. Blue dots represent data points.]FIGURE 8 | Change in Moran’s I index, 2000–2040.
3.4.2 Local spatial association indicator (LISA) analysis of PLES in the YRD region
To investigate the phenomenon of spatial clustering more thoroughly, we generated LISA maps to illustrate local spatial autocorrelation (Figures 9, 10). The clustering results predominantly demonstrate H-H and L-L types, indicating a notable degree of spatial variation within the YRD region. In general, the H-H cluster is concentrated in the northeastern part of the region, particularly in the cities of Lianyungang, Suqian, and Huai’an. These cities serve as hubs of elevated values, and their surrounding areas also exhibit similar value levels. In contrast, the L-L cluster is predominantly located in the west-central region, encompassing Tongling, Chizhou, and Wuhu cities, with the surrounding areas exhibiting relatively low values. This pattern indicates that coupling and coordinated development are more prominent in the northern part of the region compared to the central and southern areas. The distribution pattern may be described as a “northern agglomeration and southern dispersion,” suggesting a degree of spatial polarization. An analysis of the topography reveals that the northern YRD region is comprised of plains with extensive wetlands and ecological spaces. The plains and wetlands in the northern region constrain urban expansion, contributing to the prevalence of H-H clusters. Conversely, the hilly terrain in the central and western areas also hinders urban development, leading to a higher prevalence of L-L clusters. Additionally, the lower level of economic development hinders the implementation of environmental protection policies, leading to more L-L clusters.
[image: Six maps showing spatial data for the years 2000, 2010, and 2020. The top row displays LISA Cluster Maps with color codes for high-high, low-low, low-high, and high-low significance. The bottom row shows LISA Saliency Maps with varying green intensities for saliency values ranging from zero to six, outlining significant areas over time.]FIGURE 9 | Lisa cluster distribution map from 2000 to 2020.
[image: Four maps display Lisa Cluster and Saliency data from 1980 and 2040. The top row shows Lisa Cluster Maps with varying hot and cold spots, while the bottom row displays Lisa Saliency Maps with significant areas marked. Each map includes a legend indicating statistical significance.]FIGURE 10 | Lisa cluster distribution map from 2030 to 2040.
4 DISCUSSION
4.1 Expansion of PLS and its effects
The proliferation of PLS in the YRD region during the study period impeded the robust development of the regional economy and society. Yang et al. (2020) made similar observations, concluding that the spatial proliferation of PLS hinders the functionality of rural PLES, thus obstructing socio-economic advancement. Moreover, Wu et al. (2021) examined PLES in the Guangdong-Hong Kong-Macao Greater Bay Area, which shares similarities with the YRD region in terms of geographical extent and economic conditions, and reached analogous conclusions.
These findings are consistent with observations in the YRD region, where rapid urbanization has significantly increased the proportion of secondary and tertiary industries. This shift has led to a steady decline in the output value of the primary industry. Concurrently, the growth of secondary and tertiary industries has created numerous employment opportunities in urban areas, drawing a significant portion of the rural population into the cities. To accommodate the increased production and living needs resulting from the population surge, this has caused the rapid and unregulated expansion of PLS (Fu et al., 2022b).
Additionally, Dong et al. (2021) emphasized in their study of land use conflicts in Jinan that the scarcity of land resources poses a significant challenge to sustainable regional development. Similarly, in the YRD region, the influx of people into urban areas has heightened the demand for various resources, particularly land. These resources are relatively limited, and the inability to effectively manage land supply and demand has inevitably hindered urban development. As a result, the unequal allocation of land resources has widened the divide between urban and rural regions, heightened social stratification, and amplified social inequities. This has resulted in intensified social conflicts, a deterioration in quality of life, and ultimately impeded healthy socio-economic development.
4.2 Stability of and challenges to ES
During the study period, the proportion of ES in the YRD region remained relatively stable, with only minimal fluctuations. This stability can be primarily attributed to the fact that ES often includes areas such as mudflats and hilly or mountainous regions, which are difficult and costly to develop. Despite this relative stability in area, the functionality of ecological spaces has declined, resulting in a reduction in the quality of ecological services and the loss of biodiversity. This, in turn, directly jeopardizes the safety of human habitats.
A substantial corpus of research has emphasized the significance of ecological functions in urban development. For example, Ollerton (2017) explored the importance of ecological functions within urban ecology, while Brown and Kliskey, (2008) and colleagues examined the impacts of coupled socio-ecological systems. Their findings suggest a positive correlation between social productivity and biological values.
Previous studies have demonstrated that ecological space in the YRD region is encountering considerable difficulties. As the core city of the YRD region, Shanghai catalyzes regional socio-economic development, frequently leading to the degradation of the ecological functions of adjacent cities. As a result, the simultaneous goals of economic growth and ecological preservation have not been balanced, hindering the establishment of a sustainable ecological economy.
As an essential urban resource, ecological space provides a variety of values and is integral to the urban ecosystem. Ensuring the stability of ecological space is vital to preserving its functions. The effective management and stabilization of ecological spaces can provide suitable habitats for diverse species, thus safeguarding biodiversity (Savage and Warde, 1993). Furthermore, it can enhance urban ecosystems, improve the residential environment, and elevate overall urban quality. Additionally, ecological space serves as a water conservation zone, regulates precipitation runoff, reduces urban flooding hazards, strengthens the city’s ecological resilience, and promotes the sustainable development of human society.
4.3 Imbalance and coordination in spatial development
The coupling analysis and spatial autocorrelation findings indicate that the PLES functional CCD in the YRD region exhibits spatial unevenness, characterized by marked variations in coordination levels and substantial regional disparities. The coordination of PLES functions is higher in economically developed coastal regions, whereas it is poorer in non-coastal and some inland regions with weaker economic development. Notably, Shanghai exhibits lower coordination compared to surrounding regions, which is attributed to spatial imbalances arising from higher urbanization levels and a larger share of PLS. The coupling coordination is better in the eastern coastal regions compared to the western inland regions. This disparity pertains to the diminished impact of urban agglomerations and the developmental divide among areas.
Extensive research has been conducted to address the issue of developmental imbalance. Unbalanced economic development is widely recognized as a principal cause of regional development disparities (Van and Ushakov, 2020). For instance, Etherington and Jones (2009), Savage and Warde (1993), and others have analyzed the consequences of unbalanced spatial development and concluded that it leads to uneven income distribution, which triggers social conflicts and hampers sustainable societal development. Secondly, excessive reliance on resource development and neglect of environmental protection in some regions have caused ecological degradation, hindering sustainable economic development. Ultimately, uneven regional development adversely affects the realization of national development strategies and objectives, hinders inter-regional collaboration and resource allocation, and obstructs the establishment of a cohesive development framework.
Therefore, it is crucial to enhance internal collaboration, improve regional industrial linkages, accelerate the flow and sharing of resources, and leverage the radiative influence of central cities to address unbalanced development and reduce the development gap (Qin et al., 2024).
4.4 Spatial distribution of PLES and clustering trends
Numerous scholars have studied the spatial distribution and clustering trends of PLES. For instance, Fu et al. (2022b) analyzed PLES in China and identified a spatial trend of “high in the south and low in the north,” attributing this to significant ecological damage and population density. Building on this, Yang et al. (2020) recognized substantial economic disparities as a major contributing factor and advocated for differentiated sustainable development strategies.
The study period reveals a spatial clustering effect of PLES coupling coordination in the YRD region, marked by a “north clustering and south dispersing” trend. Compared to previous studies, the main factors contributing to this difference include topographic features as well as ES degradation. The northern part of the region is characterized by flat terrain, suitable for urban development, and is covered with extensive wetlands and other ecological spaces, resulting in predominantly H-H agglomeration areas. In contrast, the central and southern parts are mountainous and hilly with rugged terrain, making development challenging and resulting in predominantly L-L agglomeration areas.
Subsequent analysis utilizing the coupled coordination model indicates that the eastern region demonstrates markedly elevated coordination levels relative to the western region, illustrating a spatial pattern of “high in the east and low in the west.” This phenomenon can be ascribed to multiple factors: First, coastal cities exhibit significant economic development, elevated urbanization, and strong PLES governance and management capabilities. Second, due to its intricate topography, the western region encounters difficulties in PLES development and management. Lastly, the eastern region, primarily composed of central cities, benefits from substantial urban collaboration capabilities, resulting in enhanced collaborative governance.
As economic inequality persists, the agglomeration effect and spatial disparities in the YRD region are likely to exacerbate. This phenomenon hinders regional collaboration and development, obstructing the attainment of sustainable and balanced growth. Consequently, it is essential to formulate and implement policies and strategies to improve regional cooperation and address existing disparities, thus fostering coordinated and sustainable development throughout the region.
4.5 The relationship between PLES and sustainable development
The connection between PLES and sustainable development is demonstrated by achieving a cohesive equilibrium among economic efficiency, social equity, and environmental conservation through scientific land resource management (Lin et al., 2020). Initially, optimizing the spatial distribution of production activities supports sustained economic growth, reduces environmental pollution, and boosts resource efficiency by appropriately positioning industrial, agricultural, and service sectors. Secondly, spatial planning aims to enhance the quality of life and social welfare by thoughtfully allocating residential areas, public amenities, and transportation infrastructure. Furthermore, eco-spatial initiatives focus on protecting the natural environment and providing ecosystem services such as improving air quality and managing water resources, which are crucial for environmental sustainability (Addanki and Venkataraman 2017). Effective integration of PLES is key to optimizing spatial configurations. The development of green and ecological corridors promotes the integrity of ecological networks, enhancing spatial multi-functionality and flexibility, and enabling the coexistence of human activities with the natural environment. As urbanization progresses rapidly, scientific spatial planning must address urban expansion and related spatial pressures by establishing urban growth boundaries to prevent sprawl and protect vital farmland and natural areas (Duan et al., 2021). Inter-regional coordination is crucial for achieving sustainable development on a larger scale, requiring collaborative planning and management of productive, residential, and ecological spaces across regional boundaries.
Despite advances in PLES theory and its application, challenges persist in evaluating the sustainability impacts of spatial configurations and implementing effective strategies across different policy and economic contexts (Jiang and Liu, 2020). This gap primarily stems from a disconnect between theory and practice in applying PLES, requiring adaptations to the specific economic, social, and environmental characteristics of each region, thereby increasing the complexity of the research. Additionally, PLES research necessitates an interdisciplinary approach involving urban planning, environmental science, and economics, which demands diverse knowledge bases and efficient collaborative frameworks (Zhang and Zhu, 2015). Empirical research faces challenges due to the lengthy duration of case studies and regional variations, which limit the generalizability of findings. Current methodologies may not fully capture the complex impacts of PLES implementation. While technologies like GIS and remote sensing provide powerful tools for spatial analysis, their application in policymaking and planning presents significant challenges. To gain a deeper understanding of the specific impacts and potential benefits of PLES in sustainable development, future research must prioritize methodological innovation, interdisciplinary collaboration, and expanded empirical investigations.
4.6 Bridging policy advice and practice
Policy guidelines, national strategies, and regional development objectives influence socio-economic development and dictate the trajectory and speed of PLES evolution. Effective land use policy is essential for the coordinated development of PLES and is a pivotal element in attaining sustainable development goals in China (Lin et al., 2022; Liang et al., 2022). This paper consolidates prior research and incorporates land use forecasts for 2030 and 2040, utilizing the CA-Markov model to recommend strategies and actions consistent with future development trajectories. The predictive model suggests that coupling coordination in the YRD will enhance, regional disparities will diminish, and sustainable development capacity will be augmented. This study proposes three optimization strategies to achieve this objective:
First, the spatial configuration of PLES in the YRD region requires optimization (Duan et al., 2018). Geographic and economic factors have engendered considerable east-west disparities in PLES structure. Consequently, land development and utilization must conform to reasonable constraints, advancing ES, PES, and EPS judiciously while safeguarding urban ecosystems and environments. Urban development boundaries must be rigorously regulated in the western region to avert unrestrained expansion while protecting food security. In the eastern region, ecological protection principles and efficient urban land management mechanisms are crucial for facilitating high-quality urban development.
Secondly, the composite functions of PLES in the YRD region require examination. The distribution of PLES in the YRD is markedly concentrated and demonstrates composite functions. Consequently, stringent regulation of urban construction land necessitates the exploration of rational PLES composite functions. This involves leveraging the capabilities of these functions in urban environments, optimizing the coordination of PLES coupling, and enhancing spatial utilization efficiency to foster the sustainable development of PLES in urban agglomerations.
Finally, it is crucial to improve the collaborative capabilities of urban agglomerations in the YRD region and to utilize central cities as catalysts for regional development. The main aim of the integrated development strategy for the YRD city cluster is to promote regional coordination, with Shanghai acting as the central city in this initiative. Utilizing the central city’s impact on adjacent regions is essential for improving PLES coupling coordination. Relocating certain labor-intensive industries from Shanghai to the western region can promote its development and improve regional PLES coupling and coordination. Furthermore, bolstering internal collaboration, improving regional industry connections, and expediting resource sharing will facilitate the achievement of economic integration objectives in the YRD region.
5 CONCLUSION
This study developed a PLES classification system tailored to the urban and rural land use characteristics in China, utilizing the CA-Markov model and spatial autocorrelation analysis for a comprehensive quantitative analysis and long-term simulation of the dynamic evolution and coupling characteristics of PLES in the YRD region. The findings reveal spatial development disparities across the region and propose targeted optimization strategies and specific recommendations for its spatial configuration. These contributions significantly enhance the theoretical framework for regional development and land use, introducing innovative methodologies and providing a solid scientific basis for land management, spatial planning, and policy development in the YRD and similar regions. This work offers crucial practical guidance to promote sustainable and harmonious regional growth. Key findings of the study are as follows:
	1. Changes in PLES: The most significant rate of land alteration occurred between 2000 and 2010, driven by urbanization and development. After 2010, the rate of land change decelerated. The volume of PLS experienced annual growth, while ES remained relatively stable. Further research indicates that the increase in PLS volume was primarily driven by EPS and PES.
	2. Coupling Results: The coordination of PLES functions in the study area is insufficient. However, improvements in land management and economic conditions have gradually shifted from mild dislocation to minimal coordination. The development trend shows an upward trajectory, transitioning from a “point to surface” model, with a spatial distribution pattern of “high in the east and low in the west.
	3. Spatial Autocorrelation Results:The CCD of PLES demonstrates positive spatial correlation over various periods, with fluctuations in Moran’s I index. The region exhibits spatial heterogeneity, primarily marked by H-H and L-L clusters. The distribution, shaped by topographical and natural geographic factors, shows a “northern agglomeration and southern dispersion trend.
	4. Rational Allocation of PLES: The rational allocation of PLES is essential for promoting socio-economic and sustainable development. To enhance PLES, it is crucial to formulate policies and strategies for spatial optimization and management, refine the spatial configuration of PLES in the YRD to avert harmful land expansion, augment the composite functions of PLES to elevate land use efficiency, and bolster collaboration within urban agglomerations to promote regional sustainable development.

This study addresses deficiencies in previous PLES research, particularly in categorizing urban cluster size and function. It highlights the need for additional, comprehensive research across diverse scales and regions, particularly in urban agglomerations. The proposed methods and models offer a robust reference for analogous spatialtemporal analyses and forecasts in other regions.
While the study achieves high accuracy in simulating land use patterns, uncertainties remain in future projections due to model assumptions, input data precision, and the omission of certain dynamic driving factors, such as socioeconomic and climate influences. Incorporating these additional factors and improving input data quality in future research could further enhance the reliability of land use simulations.
Furthermore, the methods and conclusions presented in this study hold significant application potential. Future research could explore the adaptability of the PLES framework and simulation methods in other regions with varying land use characteristics. Expanding the scope to larger spatial scales or integrating it into crossregional planning and management could provide valuable guidance for optimizing territorial space and promoting sustainable development.
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This research analyzes the spatio-temporal evolution and driving factors of agricultural land use carbon emissions (ALUCE) in China from 2013 to 2022, utilizing LMDI and STIRPAT models. Key findings include: (1) Significant regional disparities exist, with eastern provinces exhibiting high and increasing ALUCE levels, while western provinces remain low and stable, necessitating targeted regional strategies and technological support. (2) Total ALUCE in China decreased by 8.6%, highlighting the need to optimize high carbon emission sources for sustainable agriculture. (3) ALUCE inequality is stable yet slightly variable, driven by inter-provincial differences, with spatial polarization evident. (4) Agricultural production efficiency inhibits ALUCE, while output increases and labor scale positively contribute. A novel environmental organizational framework is proposed to reduce ALUCE, offering policy implications for developing countries focused on regional strategies, technical support, and sustainable practices.
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1 INTRODUCTION
The plantation industry is a core component of agriculture. It plays a crucial role in maintaining ecological balance and ensuring national food and economic security (Suarez, 2024). Over time, with the development of agricultural mechanization and agrochemicals, the economic efficiency of China’s plantation industry has increased significantly. However, due to traditional development models, the major challenges faced by the farming industry include high energy consumption, severe environmental pollution, and high emissions (Chen et al., 2024). These problems not only damage ecosystem health but also gradually reduce the quality of arable land resources, seriously hindering the sustainable development of the plantation industry. In response, China introduced the “dual-carbon” strategy, aiming for carbon peaking and carbon neutrality. The government has elevated green development as a core concept, emphasizing a shift from high-speed growth to high-quality development (Zhang et al., 2024). This strategic pivot highlights the need for a low-carbon transformation within the agricultural sector, making the plantation industry a key focus of sustainable development efforts. According to recent data, cropping activities account for approximately 30%–40% of the total agricultural carbon emissions in China, with the use of chemical fertilizers, energy consumption in irrigation, and changes in land use being significant contributors (Xu et al., 2022; Liao and Zhou, 2023). This underscores the critical role of the plantation industry in achieving carbon reduction goals and promoting sustainable agricultural practices. Therefore, addressing agricultural land use carbon emissions (ALUCE) is crucial, as it plays a significant role in reducing overall carbon emissions and advancing the low-carbon transition in the agricultural sector.
The research on ALUCE has been extensively conducted, covering multiple aspects including measurement methods, spatiotemporal evolution, driving factors, and low-carbon transition pathways. (1) Regarding the calculation method of ALUCE, the carbon emission coefficient method has become the primary tool for assessing ALUCE. This method estimates total carbon emissions by calculating the carbon emissions associated with each agricultural activity’s inputs and outputs. Although this method is widely applied in assessing agricultural land carbon emissions, it faces challenges in terms of accuracy and spatial-temporal adaptability. Therefore, more precise carbon emission measurement and modeling techniques need further development to improve the accuracy and temporal resolution of the data (Cederlöf, 2016; Xuan et al., 2023). (2) Concerning the spatiotemporal evolution of ALUCE, different methods and regional differences are crucial factors to consider. Carbon emission trends show significant regional variation, which is closely related to factors such as natural ecology, agricultural resource distribution, and economic development levels. For example, the eastern and southern regions, characterized by intensive and efficient agricultural production, exhibit more concentrated carbon emissions, while the western and northern regions have lower emissions due to resource and climatic constraints (Li et al., 2024; Liu and Lin, 2024). Furthermore, analyzing the spatiotemporal evolution of ALUCE not only requires attention to total carbon emissions but also necessitates an in-depth examination of specific regional production structures and policy backgrounds, providing essential regional references and policy guidance for the low-carbon transition of agriculture. (3) The driving factors of ALUCE are influenced by various elements, including agricultural production efficiency, production structure, agricultural output level, and agricultural labor scale. Specifically, agricultural production efficiency is a key driving factor as it directly reflects the resources and energy required per unit of output. Improving production efficiency typically reduces resource waste and carbon emissions, thus negatively correlating with ALUCE (Wang et al., 2022). The production structure reflects the relative contributions of different agricultural sectors, such as crop farming, forestry, animal husbandry, and fisheries, each with varying sources and intensities of carbon emissions. Significant regional differences exist in agricultural production structures, with the eastern regions generally characterized by intensive agriculture, while the western regions rely more on traditional farming practices (Gnayem et al., 2024). The agricultural output level is closely related to carbon emissions, as regions with higher output may experience variations in carbon emissions due to technological innovations or increased resource inputs (Tian et al., 2024). Agricultural labor scale, which reflects the number of individuals engaged in agricultural activities, can indirectly influence carbon emissions by affecting production methods and efficiency (Huang et al., 2024). The study of these driving factors helps reveal the intrinsic relationship between agricultural carbon emissions across regions and provides feasible pathways for low-carbon agriculture. (4) The low-carbon transition pathways for ALUCE involve improving agricultural production efficiency, optimizing agricultural production structures, increasing output levels, and rationally adjusting labor scales. First, improving agricultural production efficiency helps reduce the resource consumption per unit of output, thus reducing carbon emissions (Wu et al., 2024). Second, optimizing agricultural production structures by reducing high-carbon agricultural inputs and increasing sustainable agricultural practices will significantly lower carbon emissions. The increase in agricultural output levels is often accompanied by technological innovations that enhance carbon emission efficiency (Deng et al., 2024). Lastly, changes in agricultural labor scale, particularly the transition from labor-intensive to mechanized agriculture, can reduce labor demand and indirectly lower carbon emissions. Through these multidimensional transition pathways, the low-carbon development of agricultural land use can be effectively promoted, supporting the achievement of China’s dual-carbon goals.
The research on the spatiotemporal evolution of ALUCE has made certain progress, but there are still several gaps. Firstly, although existing studies have revealed differences in ALUCE across regions, there is a lack of in-depth exploration of the interaction between socioeconomic factors and carbon emissions. Most studies focus on natural ecology, agricultural resource distribution, and climatic conditions, while less attention has been paid to how economic development, policy implementation, and other factors influence the spatiotemporal evolution of ALUCE. Secondly, although static analyses have identified spatial differences in ALUCE across regions, there is limited understanding of its dynamic temporal changes. Existing research has not fully considered the role of agricultural technological development, industrial structural adjustments, and other factors in the spatiotemporal evolution of ALUCE. Lastly, while the spatial distribution of ALUCE has been explored, the specific reasons for low ALUCE provinces remain insufficiently analyzed. In particular, the role of technological innovations and low-carbon agricultural practices in low-emission areas needs further clarification.
Based on the above analysis, the innovations of this paper are as follows: First, this study introduces a novel combination of the LMDI (Logarithmic Mean Divisia Index) and STIRPAT models (Stochastic Impacts by Regression on Population, Affluence, and Technology), leveraging their complementary strengths to provide a comprehensive, multi-dimensional analysis of the driving factors behind ALUCE and its spatio-temporal evolution. By combining the LMDI’s ability to decompose emission changes and the STIRPAT model’s focus on socioeconomic variables, this research offers a more nuanced and holistic understanding than previous studies, which often focused on a single perspective. The combination of these models allows for a deeper exploration of micro-level agricultural practices and how they contribute to regional differences in ALUCE, filling a critical gap in the existing literature. Second, the research uncovers significant regional disparities in ALUCE between eastern and western China. It provides a detailed analysis of how agricultural practices, such as crop selection, irrigation techniques, and technology adoption, impact emissions. Additionally, it examines how socio-economic conditions influence these practices. This analysis emphasizes the need for region-specific policies that are tailored to the unique agricultural and socio-economic conditions of each region. Third, empirical findings show that agricultural production efficiency strongly inhibits ALUCE. This provides solid evidence supporting policies that improve agricultural efficiency through technological innovations and better resource management, which can help reduce emissions. Finally, the study introduces an innovative Environmental Organizational Framework, grounded in the γ-multiple helix model, which integrates stakeholder collaboration and dynamic adaptation. This framework bridges the gap between theory and practice, offering actionable strategies for sustainable agricultural development, particularly in developing countries, and presents a multi-layered approach that aligns with both immediate emission reduction needs and long-term carbon neutrality goals. The integration of micro-level agricultural practices and regional disparities into this framework further enhances its relevance and practical applicability.
2 RESEARCH DESIGN
2.1 Overview of the research area
This research focuses on China’s ALUCE in the plantation sector, spanning diverse climates and topographies from the northeast to the tropical south. The study covers 30 provinces, including economically developed coastal areas, agricultural hubs in the central region, resource-rich western areas, and the vast northeastern plains. These regions, with varying agricultural practices and emissions, provide insights into ALUCE dynamics under different climatic and economic conditions, offering strategies for low-carbon development applicable to China and similar countries.
ALUCE distribution for 2013, 2018, and 2022 was mapped using ArcGIS (Figures 1–3), with darker colors indicating higher emissions. Provinces like Henan, Shandong, Jiangsu, and Anhui consistently showed high ALUCE due to large-scale production, mechanization, and heavy fertilizer use. Despite emission reduction efforts, ALUCE continued to rise. In contrast, western provinces like Qinghai and Gansu maintained lower ALUCE due to smaller agricultural scales and natural constraints. Moderate ALUCE provinces such as Hubei, Hunan, Zhejiang, and Sichuan showed fluctuations driven by agricultural technologies and policy measures.
[image: Map of China displaying economic activity levels by region in 2013, using a color gradient from light yellow to dark brown. Darker areas indicate higher activity, with notable concentration in eastern provinces like Shandong, Jiangsu, and Zhejiang.]FIGURE 1 | ALUCE in 2013.
[image: Map of China illustrating Adult Literacy Rate (ALR) in 2015 by province. The map uses a gradient from light yellow to dark brown, indicating increasing literacy rates. A key and inset map are included.]FIGURE 2 | ALUCE in 2018.
[image: Map of China in shades of yellow to dark brown, indicating levels of cropland intensity in 2022 across different regions, with darker colors representing higher intensity. An inset map shows China's location in Asia.]FIGURE 3 | ALUCE in 2022.
The trends reveal a differentiated pattern: eastern provinces have higher and increasing emissions, while western and central regions remain more stable. This highlights the need for region-specific strategies, technological support, and policy guidance to reduce ALUCE and promote sustainable agricultural development.
2.2 Research methodology
2.2.1 Dagum Gini coefficient method
The Dagum Gini coefficient is an advanced measure of inequality that extends the traditional Gini coefficient by incorporating a decomposition approach, with specific definitions provided in the Appendix 1. This coefficient not only captures the overall inequality but also distinguishes between intra-group and inter-group inequality. In the context of ALUCE, Dagum Gini coefficient helps to identify whether disparities in carbon emissions are primarily driven by differences within individual provinces or between different regions, providing a clearer understanding of the sources of inequality. Referring to Hu and Deng (2023), the Dagum Gini coefficient and its decomposition are calculated using the following:
[image: Mathematical equations involving calculations of G and related variables. G is defined using a series of summations and variables such as \(\mu_i\), \(\mu_m\), and \(y_{ij}\). G is expressed as a sum of components including \(G_u\), \(G_{nb}\), and \(G_{gb}\). Each component is further defined using summations and various parameters such as \(p_i\), \(s_i\), and \(D_{im}\). The image includes several indices, including \(i\), \(j\), \(m\), and \(k\).]
where G denotes the overall Gini coefficient of ALUCE, and yij denotes ALUCE in the jth province of the ith region, k is the number of regions, n is the number of provinces, and μ is the average value of ALUCE in each region, and Gii is the Gini coefficient of the ith region, and Gim is the Gini coefficient between the ith and mth regions, and Dim is the relative impact of ALUCE for cultivation between the ith and mth region. dim is the difference in ALUCE between regions, and pim is the difference in ALUCE between the i and m regions, ymr-yij is the mathematical expectation of the sum of the >0 sample values in the i and m regions.
2.2.2 Spatial kernel density estimation methods
Spatial autocorrelation testing is a critical preliminary step in the analysis of spatial kernel density distribution dynamics (Kariminejad et al., 2022). It not only ensures the accuracy and relevance of the analysis but also aids in the rational interpretation of the spatial characteristics of ALUCE. By calculating the Moran’s I statistic, it can assess the spatial correlation of ALUCE distribution across Chinese provinces, laying a solid foundation for further dynamic analysis of spatial distribution. The calculation formula for Moran’s I is represented as follows:
[image: Moran's I formula is shown. It is the sum from i equals one to n of the sum from j equals one to n of W subscript ij times (Y subscript i minus Ȳ) times (Y subscript j minus Ȳ), divided by S squared times the sum from i equals one to n of the sum from j equals one to n of W subscript ij.]
[image: Equation showing the sample variance formula: S squared equals one over n times the sum from i equals one to n of (Y sub i minus Y bar), where Y bar is the mean given by one over n times the sum from i equals one to n of Y sub i.]
Where Yi and Yj represent the observed ALUCE values for provinces i and j respectively, and Wij is the spatial adjacency weight matrix, implemented as a 0–1 matrix.
The spatial kernel density estimation method is used to analyze the distribution dynamics of ALUCE in China. The traditional kernel density estimation method is represented by Equations 4, 5. In contrast, the spatial kernel density estimation method incorporates time and space factors into the traditional kernel density estimation method. This approach uses continuous density curves to describe the distribution conditions of the random variables under spatio-temporal evolution, as shown in Equations 6, 7.
[image: The formula represents a kernel density estimate: \( f(x) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{X_i - x}{h}\right) \), where \( K \) is the kernel function, \( h \) is the bandwidth, \( N \) is the number of data points, and \( X_i \) are the data points.]
[image: Mathematical expression for a Gaussian function: \( K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right) \). Equation number five.]
[image: Mathematical equation for \( f(x, y) \) represented as a sum involving kernel functions: \( f(x, y) = \frac{1}{N h_x h_y} \sum_{i=1}^{N} K_x \left( \frac{X_i - x}{h_x} \right) K_y \left( \frac{Y_i - y}{h_y} \right) \).]
[image: The image shows the mathematical expression for the conditional probability density function: \( g(y \mid x) = \frac{f(x, y)}{f(x)} \), labeled as equation (7).]
Where [image: It seems there is no image provided. Please upload an image or provide a URL for the image you would like described.] denotes the random variable x density function; N is the number of observations; and h denotes the bandwidth; [image: It seems there is no image uploaded. Please upload an image or provide an image URL, and I can help generate the alternate text for it. If you provide a caption, that can also offer additional context.] denotes the random variable x the kernel function of the random variable; [image: Please upload the image or provide a URL for me to generate the alt text.] denotes the joint density function of x and y. [image: Please upload the image or provide a URL to generate the alternate text.] denotes the distributional state of y under the x condition.
2.2.3 Driver decomposition model
The Logarithmic Mean Divisia Index (LMDI) method is a type of index decomposition analysis widely applied in environmental and energy economics, with specific definitions provided in Appendix 1. The LMDI method was chosen for this research due to its ability to decompose changes in carbon emissions into several explanatory factors, including production efficiency, industrial structure, and scale effects. Unlike traditional decomposition methods, LMDI is known for its robustness and lack of residuals, making it ideal for analyzing the drivers of carbon emissions in complex systems like agriculture.
To better understand the driving factors of ALUCE, this research employs the LMDI model. The LMDI model was selected because it effectively decomposes changes in carbon emissions, revealing the factors that have the most significant impact on the increase or decrease of ALUCE. Specifically, the LMDI model can break down changes in carbon emissions into key influencing factors such as agricultural production efficiency, industrial structure, and labor scale (Wu et al., 2016). This decomposition analysis provides important insights for policymakers, helping them identify priority areas to focus on for carbon reduction.
Another advantage of the LMDI model is its ability to handle data from different time periods and regions, allowing for precise analysis of regional carbon emission variations (Wang and Yan, 2022). For example, by using this model, this study can compare the impact of agricultural production efficiency on carbon emissions between eastern and western China, offering targeted policy recommendations for low-carbon transitions. Therefore, the application of the LMDI model is crucial for a comprehensive analysis of the driving factors of carbon emissions across different regions. An LMDI model is constructed to quantitatively decompose the driving factors of ALUCE, with its specific formulation as follows:
[image: ALUCE equals ALUCE divided by G, multiplied by G divided by G sub BIG, multiplied by G sub BIG divided by P, multiplied by P. Equation number eight.]
[image: The equation shows beta sub one equals AIUCE over G in parentheses, labeled equation nine.]
[image: Equation showing beta sub two equals G over G sub big, with reference number ten in parentheses.]
[image: \( \beta_s = \frac{G_{\text{big}}}{P} \quad (11) \)]
Where ALUCE represents the total carbon emissions from agricultural land use (t), with the variables defined in Table 1; G represents the total output value of the plantation industry (yuan), GBig represents the total output value of agriculture, forestry, animal husbandry, and fishery (yuan); P represents the scale of agricultural labor (persons); β1 represents agricultural production efficiency (kg/yuan), β2 represents agricultural production structure (%), and β3 represents agricultural output level (yuan/person).
[image: Equation featuring "ALUCE" defined as the product of four variables: β1, β2, β3, and P, with the equation labeled as number 12.]
TABLE 1 | Driving factors of ALUCE.
[image: Table detailing agricultural driving factors, their definitions, data sources, and symbols. Factors include Agricultural Production Efficiency, Structure, Output Level, and Labor Scale. Definitions involve ratios and numbers related to output value and employees. Data is sourced from the China Rural Statistical Yearbook, with symbols β₁ to β₄.]By applying logarithmic, additive, and decomposition methods to Equation 12, the contribution values of each decomposed factor of ALUCE are obtained. The formula is expressed as follows:
[image: The formula shown is Δβ₁ = (AUCEᵀ - AUCE⁰) / (ln AUCEF - ln AUCE⁰) × (ln β₁ᵀ - ln β₁⁰), labeled as equation 13.]
[image: Δβ₂ equals the difference between AUCEᵀ and AUCE⁰, divided by the logarithmic difference of AUCEF and AUCE⁰. This is multiplied by the difference between the natural logarithm of β₂ᵀ and β₂⁰, as shown in equation 14.]
[image: The formula shows the change in \(\Delta \beta_3\) as the difference between \(AUCE^T\) and \(AUCE^0\), divided by the difference in the natural logarithm of \(AUCE^T\) and \(AUCE^0\), multiplied by the difference between the natural logarithm of \(\beta_3^T\) and \(\beta_3^0\), denoted as equation (15).]
[image: ΔP equals the fraction \(\frac{\text{ALUCE}^F - \text{ALUCE}^0}{\ln \text{ALUCE}^F - \ln \text{ALUCE}^0}\), multiplied by \((\ln P^T - \ln P^0)\). Equation number 16.]
[image: Equation showing: Delta ALUCE equals Delta Beta one plus Delta Beta two plus Delta Beta three plus Delta P, with reference number seventeen.]
Where [image: If you have an image you'd like me to describe, please upload it or provide a URL. If you have additional context, feel free to include that as well.] represents the carbon emission effect induced by agricultural production efficiency; [image: Delta symbol followed by beta subscript two.] represents the carbon emission effect induced by agricultural production structure; [image: Mathematical notation showing the symbol delta followed by beta subscript three.] represents the carbon emission effect induced by agricultural output level; [image: It seems there is no image provided. Please upload the image or provide a URL so I can assist you with generating the alternate text.] represents the carbon emission effect induced by the scale of agricultural labor; [image: The text image displays the word "ΔALUCE" in a serif font. The letter "A" is replaced by the Greek letter delta (Δ), and the text is presented in a slanted style.] represents the total carbon emission effect induced by all influencing factors. [image: To generate alt text, please upload the image or provide a URL.], [image: Mathematical notation of the Greek letter beta with a subscript one and a superscript capital T.], [image: Mathematical expression showing beta subscript two raised to the power of T.], [image: Mathematical notation showing the transpose of the vector beta subscript three.], and [image: If you upload an image or provide a URL, I can help generate alternate text for it. Let me know if you need further instructions!] represent the values of ALUCE, [image: It seems like there was an error in attaching the image. Please upload the image again or provide a URL to it. If there is any additional context or a specific focus you would like for the alt text, let me know!], [image: Please upload the image or provide a URL so I can generate appropriate alt text. If you wish, you can also add a caption for additional context.], [image: It seems there was a misunderstanding; I am unable to view or analyze images directly in this format. Please upload an image or provide a URL for me to generate alt text.] and [image: Please upload the image or provide a URL so I can generate the alt text for you.] in year T, respectively; [image: The text "ALUCE" is presented in a stylized serif font, with a superscript zero next to the letter "E".], [image: If you want me to generate alternate text, please upload the image or provide a link to it. You can also add a caption for additional context if you like.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Mathematical notation displaying the symbol beta, subscript three, and superscript zero.], and [image: Please upload the image or provide a link to it so I can help generate the alternate text.] represent the values of ALUCE, [image: It seems like the provided content is not an image, but rather a reference to a symbol, which is the Greek letter beta followed by a subscript one. If you meant to include an image, please upload it or provide a link.], [image: Please upload the image or provide a URL to enable me to generate the appropriate alt text for it.], [image: It seems like there might have been a miscommunication. Please upload an image or provide a URL for me to create the alternate text.] and [image: Please upload the image so I can generate the appropriate alternate text for it.] in the base year, respectively.
2.2.4 STIRPAT model
The STIRPAT model (Stochastic Impacts by Regression on Population, Affluence, and Technology) extends the IPAT identity, allowing for the examination of how population dynamics, economic growth, and technological progress collectively impact environmental variables like carbon emissions. This model is particularly suited for analyzing the combined effects of multiple socio-economic factors on carbon emissions, including population size, economic development, and technological advancement. The STIRPAT model is flexible in capturing nonlinear relationships and accounting for regional and temporal variations, providing deeper insights into the socio-economic drivers of ALUCE, with specific definitions provided in the Appendix 1. It not only quantifies the direct effects of each factor but also reveals their interactions. This makes it a powerful tool for understanding long-term trends in ALUCE. Unlike traditional decomposition methods, its multidimensional analytical capability allows for a more comprehensive understanding of the complex environmental impacts. The specific formula is as follows:
[image: The image shows a mathematical equation: \( AIUCE = a\phi^{\delta_5} \over \delta_5 p_5 \xi_5^f \). The equation is labeled with the number (18) on the right.]
Where a represents the model coefficient; b, c, d, and e represent the coefficients of the driving factors; and e represents the error term.
Taking the logarithm of Equation 18, can obtain the following formula:
[image: The mathematical equation shows: the natural logarithm of AIUCE equals the natural logarithm of a plus b times the natural logarithm of beta sub one, plus c times the natural logarithm of beta sub two, plus d times the natural logarithm of beta sub three, plus e times the natural logarithm of beta sub four, plus the natural logarithm of f. The equation is labeled as number nineteen.]
To analyze the impact of driving factors on ALUCE, path analysis is used to decompose the correlation coefficients based on the STIRPAT model. This approach estimates the total, direct, and indirect effects of driving factors on ALUCE. By analyzing the influence of driving factors on ALUCE from both individual and common perspectives, this method serves as an important approach for exploring the driving patterns of ALUCE.
This research selects the LMDI and STIRPAT models based on their extensive application in carbon emission analysis and their complementary strengths. The LMDI model is renowned for its efficient decomposition capabilities. It allows for precise identification of the driving factors behind changes in carbon emissions, such as agricultural production efficiency, production structure, and output levels. This model enables a quantitative analysis of these factors’ contributions to changes in ALUCE, providing valuable insights for policymakers to identify priority areas for emission reduction. On the other hand, the STIRPAT model excels at analyzing the complex relationships between socio-economic variables and environmental pressures, particularly in capturing nonlinear and dynamic changes. The STIRPAT model can address a broader range of socio-economic factors, such as population size, economic development level, and technological progress, revealing their comprehensive impacts on carbon emissions. By combining the decomposition analysis capability of the LMDI model with the dynamic regression analysis of the STIRPAT model, this research constructs a more comprehensive analytical framework that not only quantifies the effects of driving factors but also uncovers the deeper relationships between socio-economic variables and carbon emissions. This approach provides new theoretical support for the study of ALUCE and offers greater explanatory power and practical value in regional disparity analysis and policy formulation.
2.3 Variable selection and data description
2.3.1 Measurement of ALUCE
The ALUCE specific formula is as follows:
[image: Mathematical equation representing an expression for ALUCE. It shows ALUCE is equal to the sum of ALUCE subscript t, multiplied by the sum of T subscript i times epsilon subscript i.]
In Equation 18, Ti represents the input amount of the ith carbon source, and εi represents the carbon emission coefficient of the ith carbon source. The main carbon sources and their emission coefficients for ALUCE are shown in Table 2.
TABLE 2 | Major carbon sources and emission coefficients of ALUCE.
[image: Table showing carbon emission coefficients for various carbon sources and their references. Diesel and fertilizer have coefficients of 0.59 and 0.89 kg/kg, respectively. Pesticide is 4.93 kg/kg, plastic mulch is 5.18 kg/kg, irrigation is 266.48 kg/km², and tillage is 312.60 kg/km². References include IPCC 2019, Oak Ridge National Laboratory, Institute of Agricultural Resources, and others.]Table 3 displays ALUCE for 2013 and 2022, in conjunction with the average ALUCE from 2013 to 2022. ALUCE 2013/2022: ALUCE for each province in 2013 and 2022. Mean ALUCE 2013–2022: Average ALUCE across the 2013–2022 period for each province.
TABLE 3 | Partial sample of ALUCE in 30 provinces of China (ten thousand tons).
[image: A table displays data for various provinces, showing values for 2013 ALUCE, 2022 ALUCE, and the mean from 2013 to 2022. Each row lists a province, assigned ID, and the respective values for each year and the mean. Provinces include Anhui, Beijing, Fujian, and others, totaling 30 entries with specific numerical data for each column.]2.3.2 Factors affecting ALUCE
This study focuses on four key driving factors: agricultural production efficiency, production structure, output level, and labor scale, all of which directly influence carbon emissions and are crucial for understanding ALUCE. Agricultural production efficiency (β1) reflects the resources and energy required per unit of output; improvements in efficiency typically reduce resource waste and carbon emissions, thus negatively correlating with ALUCE. Agricultural production structure (β2) represents the contribution of various agricultural sectors (such as crop farming, forestry, and animal husbandry) to carbon emissions. The differences in agricultural structures, with intensive farming in the eastern regions and traditional farming in the western regions, affect ALUCE. Agricultural output level (β3) indicates the overall economic output of agriculture, directly linked to carbon emissions. High-output regions may experience variations in carbon emissions due to technological innovations or increased resource inputs. Agricultural labor scale (β4) reflects the number of people involved in agricultural activities, which can influence production methods and efficiency, indirectly impacting carbon emissions, especially between labor-intensive and mechanized agricultural regions.
Descriptions of each variable can be found in Table 3. By considering these standards, the selected factors not only possess scientific validity and practicality but also provide an effective theoretical framework for understanding and addressing agricultural carbon emissions.
2.3.3 Data description
The data used in this research, including fertilizer, agricultural film, pesticides, diesel for agricultural machinery, crop sown area, irrigated area, total output value of the plantation industry, agricultural output value, and agricultural labor force size, were sourced from the China Rural Statistical Yearbook (2013–2022) and the provincial statistical yearbooks of the 30 mainland provinces (excluding Hong Kong, Macao, Taiwan, and Tibet). These data were manually collected. Provincial-level data was selected for its representativeness and consistency, providing valuable insights for national policy formulation and the overall analysis of ALUCE patterns across China.
Descriptive statistics for the variables were conducted using Stata16, and the results are shown in Table 4. The ALUCE variable shows substantial variability, with values ranging from 11.651 to 995.753. The β1 and β2 variables exhibit concentrated distributions with small standard deviations, indicating that most data points cluster around the mean. The β3 variable has a wider range and higher standard deviation, indicating greater variability. The β4 variable shows significant disparities across provinces.
TABLE 4 | Descriptive statistics for each variable.
[image: Table displaying statistical data for five variables: ALUCE, β1, β2, β3, and β4. Each variable includes 300 observations. Mean, standard deviation, minimum, and maximum values are listed along with VIF test results. VIF values range from 1.08 to 1.53, indicating no multicollinearity as they are below 10. The average VIF is 1.26.]Pearson correlation tests conducted in Stata16 are shown in Table 5. The correlation between ALUCE and β1 is 0.260, suggesting that higher production efficiency is associated with increased carbon emissions. The ALUCE-P correlation is 0.439, indicating that a larger agricultural labor force correlates with higher emissions. The β1-β3 correlation is −0.358, suggesting that increased production efficiency may reduce output. The β2-β3 correlation is −0.243, implying that structural changes in agriculture could lower output. Lastly, the β3-β4 correlation is −0.418, highlighting inefficiencies in labor-intensive agricultural models. VIF values are all below 10, confirming no multicollinearity among the variables.
TABLE 5 | Correlation test.
[image: Correlation table showing relationships between ALUCE, β₁, β₂, β₃, and β₄. Values indicate correlation coefficients with significance levels marked as *, **, and *** for 10%, 5%, and 1% respectively. Notable correlations: β₁ with ALUCE (0.260***), β₃ with β₂ (-0.243***), and β₄ with ALUCE (0.439***).]3 EMPIRICAL ANALYSIS
3.1 Analysis of the results of measuring ALUCE in China
Figure 4, calculated using Stata16 based on Equations 18 and 20, reveals substantial inter-provincial disparities in ALUCE and carbon emission intensity across 30 Chinese provinces. Provinces such as Henan, Shandong, and Hebei report the highest total ALUCE, primarily due to their large-scale, intensive agricultural activities. Henan, as a major grain-producing area, relies heavily on chemical inputs like fertilizers and pesticides to enhance crop yields, contributing significantly to higher emissions. For example, in 2022, Henan used over 1.8 million tons of chemical fertilizers, contributing significantly to carbon emissions. Based on the carbon emission coefficients from Table 3, the use of chemical fertilizers in Henan results in substantial emissions, with a coefficient of 0.89 kg of CO2 per kg of fertilizer. The heavy use of pesticides (4.93 kg CO2 per kg) and plastic films (5.18 kg CO2 per kg) in agriculture further exacerbates emissions in the region. These data highlight the significant role of agricultural inputs in driving ALUCE and the region’s overall carbon emissions. In contrast, provinces like Qinghai, Beijing, and Shanghai exhibit the lowest total ALUCE, driven by limited agricultural activities and a focus on industrial and service sectors. Qinghai’s reliance on traditional, low-input farming methods and a smaller agricultural land area further explain its lower carbon emissions, highlighting the impact of different economic structures and land use priorities.
[image: Bar and line chart illustrating carbon emissions and carbon emissions intensity across various regions in China. Blue bars represent carbon emissions in ten thousand tons, while the line with circles indicates carbon emissions intensity in ten thousand tons per 10,000 yuan. Regions like Shandong and Hebei show higher emissions and intensity, whereas Hainan and Qinghai have significantly lower values.]FIGURE 4 | Average ALUCE and ALUCE intensity in 30 Chinese provinces during the sample period.
In terms of carbon emission intensity, Zhejiang, Fujian, and Beijing rank the highest. These southeastern provinces employ high-input, high-output farming models aimed at maximizing productivity, relying heavily on synthetic inputs such as plastic films, chemical fertilizers, and advanced irrigation systems. This intensive approach significantly increases carbon emissions per unit area of farmland. Conversely, Guizhou, Sichuan, and Chongqing show the lowest carbon emission intensities, primarily due to their adoption of traditional, low-input agricultural practices and more diverse cropping systems. The agroecological approaches in these southwestern provinces, focusing on soil health and resource conservation, naturally limit carbon emissions and promote sustainability.
The observed regional disparities in ALUCE can be attributed to differences in agricultural practices, technological access, economic development, and policy focus. High-emission provinces like Shandong and Jiangsu have greater access to advanced agricultural technologies, yet their focus on maximizing output often leads to excessive use of high-carbon inputs. In contrast, western provinces such as Qinghai and Ningxia typically use less mechanized, lower-input farming methods, resulting in lower emissions. Moreover, eastern provinces tend to prioritize economic growth and intensive farming, whereas western regions often emphasize environmental conservation and sustainable land use. This variation suggests the need for region-specific policies that account for local agricultural practices and socio-economic conditions.
Figure 5, calculated using Stata16 and plotted with Excel, shows that China’s total ALUCE decreased from 3,426,950 tons in 2013 to 3,132,320 tons in 2022, reflecting an 8.6% decline over 10 years. This reduction likely results from energy-saving technologies, improved agricultural practices, and green development initiatives. Fertilizer emissions peaked at 1,784,900 tons in 2016 but decreased to 1,538,900 tons by 2022, remaining the largest contributor to ALUCE. Plastic mulch emissions also peaked in 2016 at 449,230 tons and decreased to 406,840 tons by 2022. Pesticide and diesel emissions rose until 2016, then declined, with pesticide emissions dropping sharply from 296,770 tons in 2015 to 203,560 tons in 2022. Irrigation emissions increased from 557,704 tons in 2013 to 612,120 tons in 2022, reflecting expanded irrigation infrastructure. Tillage emissions remained stable, with a small annual increase from 17,002 tons in 2013 to 17,560 tons in 2022.
[image: Two line graphs display agricultural input data from 2013 to 2022. The left graph shows costs of fertilizer, plastic mulch, diesel, pesticide, tillage, and irrigation. The right graph depicts carbon emissions growth for the same inputs, with overall trends decreasing over time. Both graphs include legends for clarity.]FIGURE 5 | Time series trends of ALUCE and its growth rate in China during the sample period.
Overall, the analysis shows that while there have been reductions in emissions from fertilizers, plastic mulch, pesticides, and diesel, the increase in irrigation emissions highlights areas for further efficiency improvements. The stable tillage emissions indicate a consistent approach to land management. These findings highlight the need for actionable measures, such as promoting the adoption of precision irrigation technologies and incentivizing the use of low-carbon fertilizers. Additionally, improving water-use efficiency through advanced irrigation systems and reducing pesticide use by supporting integrated pest management could further help in reducing ALUCE. With the advancement of energy-saving and emission-reduction technologies and green agricultural policies, the carbon emissions from the main sources of ALUCE showed a significant decline during the sample period. This reflects the effectiveness of measures aimed at reducing chemical inputs and improving resource use efficiency.
China’s vast geographical expanse leads to significant regional differences in climate, arable land resources, agricultural structures, and economic development, which in turn cause disparities in ALUCE carbon emissions across provinces (Figure 6). Fertilizer is the primary ALUCE source, with provinces like Shaanxi, Henan, Hubei, and Jilin showing high fertilizer reliance to boost crop yields. Plastic mulch usage is high in Shanghai, Beijing, Gansu, and Xinjiang, improving efficiency but contributing to emissions. Diesel usage is notably high in Guizhou, Heilongjiang, Inner Mongolia, and Qinghai, driven by mechanization. Pesticide input is significant in Jiangxi, Hunan, Hainan, and Zhejiang. While irrigation and tillage-related emissions are less variable, regions like Heilongjiang and Qinghai report higher irrigation emissions. These regional differences reflect varying agricultural practices and resource usage, highlighting the need for region-specific emission reduction strategies, particularly for high-ALUCE sources like fertilizers, plastic mulch, and diesel, to promote sustainable agriculture.
[image: Stacked bar chart showing the proportion of agricultural inputs such as fertilizer, plastic mulch, diesel, pesticide, tillage, and irrigation across various regions in China. Each region is represented on the x-axis, while the y-axis indicates the percentage contribution of each input. The chart reveals variability in input use, with fertilizer and plastic mulch being prominent in most regions.]FIGURE 6 | Proportion of ALUCE sources.
3.2 Analysis of regional differences in ALUCE
The measurement results of the Gini coefficient and contribution rate of ALUCE in the regional divisions of China, calculated using Equation 1, are shown in Figure 7. It was calculated using MATLAB 2022b and plotted using Excel.
[image: Four graphs in a two-by-two layout show data from 2014 to 2022. (a) Line graph shows various ethnic condition indices maintaining similar levels. (b) Bar graph indicates stable intergroup conditions. (c) Line graph displays index consistency across regions like Northeast and West. (d) Line graph compares conditions in different regional pairs.]FIGURE 7 | Changes in the Gini coefficient of ALUCE. (a) Gini coefficient. (b) contribution rate. (c) Gini coefficient within group. (d) Inter-group Gini coefficient.
The measurement results of the Gini coefficient and contribution rate of ALUCE across China’s regional divisions are presented in Figure 7, calculated using MATLAB 2022b and plotted using Excel. From Figure 7A, the overall Gini coefficient reflects the level of inequality in ALUCE across different regions of China, fluctuating between 0.369 and 0.376 from 2012 to 2019. This indicates a relatively stable, yet slightly variable, degree of inequality in ALUCE. The within-group Gini coefficient (Gw), measuring inequality within individual provinces, remains around 0.1, suggesting that internal provincial inequality has shown minimal variation over time. In contrast, the between-group Gini coefficient (Gb), which captures the inequality between different provinces, has declined from 0.128 in 2012 to 0.109 in 2021. This trend may be associated with a narrowing of disparities between provinces, though the underlying causes likely include multiple factors such as regional policies, economic changes, and shifts in agricultural practices. The transition density Gini coefficient (Gt), which represents both within- and between-group differences, increased from 0.147 to 0.164 during the same period. This indicates a growing complexity in the distribution of ALUCE disparities. The higher between-group Gini coefficient compared to the within-group coefficient suggests that inter-provincial differences are more pronounced than intra-provincial differences. To address these disparities, targeted emission reduction policies should be designed for high-emission provinces, such as promoting precision agriculture and incentivizing the use of low-carbon technologies. In provinces with lower emissions, policies could focus on maintaining sustainable practices while enhancing agricultural efficiency. These tailored policies would ensure that emission reduction efforts are more effectively aligned with regional characteristics.
In Figure 7B, the stable contribution of within-group inequality to ALUCE disparities contrasts with the gradual decline in the between-group contribution rate. This pattern suggests a relative reduction in inter-provincial disparities over time, which may be influenced by broader socio-economic trends or regional agricultural adjustments. However, the increasing trend in transition density contribution points to a rise in the complexity of ALUCE inequality, potentially driven by factors like divergent regional policies and varied levels of technology adoption. These findings indicate that while narrowing inter-provincial disparities is important, addressing the combined effects of both within- and between-group differences is equally crucial for achieving balanced and sustainable agricultural development.
From Figure 7C, the data reveal significant regional disparities in ALUCE within China. The inequality within the Northeast and Western regions has increased, suggesting an expansion of internal disparities. This trend may be related to differences in local agricultural practices, economic conditions, or access to technology, but further investigation is needed to pinpoint specific drivers. In the Eastern region, the consistently high level of inequality likely reflects the diverse range of agricultural practices and varying levels of economic development. Conversely, the Central region shows lower and more stable inequality, which might be associated with relatively uniform agricultural practices and balanced economic growth. These findings suggest that regional policies should be tailored to address the unique characteristics and challenges of each area. This is especially important in the Northeast and Western regions, where internal disparities are widening.
Figure 7D illustrates significant disparities between regions, with a general trend of decreasing inequality in ALUCE between the Eastern and Western, as well as Central and Western regions. This suggests a narrowing gap in ALUCE levels among these regions, which could be linked to shared advancements in agricultural technologies or policy harmonization efforts. The increasing disparity between the Western and Northeastern regions points to diverging trends. These differences may be influenced by varying regional policies, technology access, or economic conditions. This highlights the need for targeted interventions in these areas, such as increased investment in technology and better resource allocation, to reduce disparities and promote more balanced development in agriculture.
3.3 Distribution dynamics of ALUCE
The results from Table 6's global spatial auto-correlation test and Figure 8’s local indices show that from 2013 to 2022, Moran’s I indices were greater than zero and passed the 5% significance test, indicating a significant positive spatial correlation of ALUCE among provinces in China. This necessitates further analysis of ALUCE distribution dynamics using the spatial kernel density method. Both global and local Moran’s I were calculated using Stata16, based on Equations 2, 3.
TABLE 6 | Global spatial auto-correlation measurement results for ALUCE.
[image: A table displays the index, z(I), and p-value for years 2013 to 2022. Index "I" values range from 0.131 to 0.183, with significance levels indicated by asterisks. z(I) values range from 1.499 to 1.894. P-values range from 0.047 to 0.085, with notes indicating the significance levels for p-values less than 0.01, 0.05, and 0.10, represented by ***, **, and * respectively.][image: Three scatter plots comparing The mean temperature of AUC with different calibrations. The x-axis represents The mean temperature of AUC and the y-axis shows the variances. Each plot has a fitted line indicating correlation. The left plot shows a lower correlation coefficient of 0.857, the middle plot has a coefficient of 0.905, and the right plot has a higher correlation of 0.911. Various data points are labeled accordingly.]FIGURE 8 | Local Moran’s indices for Year 2013, 2018, and 2022.
The spatial conditional static kernel density and contour distribution of ALUCE are shown in Figure 9. It was calculated and plotted using MATLAB, based on Equations 4–7.
[image: Two-panel data visualization showing density plots. The left panel is a three-dimensional surface plot depicting kernel density, with axes labeled "ALUCE in the province in 1 year," "ALUCE in neighboring provinces in 1 year," and "kernel density." The right panel is a contour plot with axes labeled similarly, featuring density contours and a diagonal reference line. The plots illustrate spatial relationships in data across a province and its neighboring regions.]FIGURE 9 | Spatial static kernel density and contours of ALUCE.
From the kernel density plot, the main peak appears on the center line, indicating that these provinces have ALUCE values similar to those of their neighboring provinces. This suggests a high level of uniformity in agricultural production methods, resource use efficiency, and emission reduction measures among neighboring provinces. Besides the main peak, the density plot shows a tailing phenomenon in some areas, particularly where ALUCE values are lower. This indicates that the ALUCE values in these provinces are more widely distributed and include some extremely low values.
The contour plot peaks, with one located along the diagonal line and another below it, indicate a phenomenon of polarization in China’s ALUCE. When the contour peak is positioned on the diagonal line, it suggests that the ALUCE values of the province are approximately equal to those of its neighboring provinces. This implies that some provinces exhibit similarities in agricultural practices, resource use efficiency, and emission reduction measures. Conversely, when the contour peak is below the diagonal line, it indicates that some provinces have lower ALUCE values than their neighboring provinces. These provinces perform better in terms of ALUCE, exhibiting lower carbon emissions. They play a demonstrative role in low-carbon agricultural development, and their successful experiences and technologies can be extended to neighboring provinces to help achieve ALUCE reduction goals. This information is crucial for formulating regional and targeted emission reduction policies, contributing to more balanced and sustainable agricultural development.
Figure 10, calculated using MATLAB based on Equations 4–7, presents the spatial dynamic kernel density and contour maps of ALUCE. The results show that ALUCE values in certain provinces are influenced by neighboring regions. In the Eastern region, high-density areas with high ALUCE reflect intensive agricultural activities and resource utilization, though some balance exists. The Western region has more low-density areas, indicating uneven distribution, with certain provinces having high ALUCE values likely due to low resource efficiency. In the Central region, the main peaks are aligned along the y-axis, with high-density areas above the diagonal line, suggesting that ALUCE in these provinces will continue to increase in the next 3 years (t+3). The Northeastern region’s high-density areas are concentrated on and below the diagonal line, indicating a more balanced ALUCE distribution, with some provinces exhibiting low emissions. Overall, the Eastern region has higher ALUCE, while the Central and Northeastern regions show more balance and lower ALUCE, serving as models for low-carbon agricultural development. The Western region needs improvements in resource use efficiency and agricultural technology to reduce ALUCE.
[image: Five contour plots showing ALUCE versus neighboring provinces per year for different regions: Overall, East, West, Central, and Northeast. Each plot includes a diagonal line representing equal ALUCE values between regions.]FIGURE 10 | Spatial dynamic contours of ALUCE in each region.
4 DRIVER ANALYSIS
4.1 Key driving factors analysis for ALUCE
Decomposition of driving factors for ALUCE using the LMDI model, as illustrated in Figure 11. Figure 11 was calculated using Stata16, based on Equations 8–17.
[image: Four bar and line charts from 2014 to 2022 display different factors. The Efficiency Factor chart shows bars and a fluctuating line. Structural Factor highlights a decline with varied bars. Output Factor depicts modest variations with an upward line trend. Size Factor displays consistent bars with a spiking line graph.]FIGURE 11 | Contribution values and contribution rates of each driving factor in ALUCE.
4.1.1 Efficiency Factor
The efficiency factor exhibited noticeable fluctuations across the analyzed years. The most prominent positive contribution occurred in 2017, suggesting that improvements in agricultural efficiency were likely associated with reduced ALUCE during that year. This may reflect advancements in technology and the adoption of more efficient production methods, which are generally expected to help mitigate carbon emissions. In contrast, negative contributions observed in 2016 and 2022 indicate that efficiency gains were less pronounced, potentially pointing to external factors or varying levels of technology adoption. The peak contribution rate of the efficiency factor, which exceeded 40% in 2017, underscores its potential role in reducing emissions during certain years. Moving forward, policies that promote precision agriculture and increased mechanization could help enhance efficiency, though the extent of their impact on long-term carbon reduction requires further investigation.
4.1.2 Structural Factor
The impact of the agricultural production structure factor varied across the years, with alternating positive and negative contributions. This variation suggests that shifts in agricultural structure may have different effects on ALUCE depending on the context and specific changes made. For example, the structural factor had its highest positive contribution in 2014, while 2018 and 2020 showed notable negative contributions, possibly reflecting changes in the composition of high-emission agricultural sectors. Although the overall contribution rate of the structural factor was generally below 15%, its fluctuations indicate that structural adjustments in agriculture could be linked to changes in carbon emissions. Policymakers may benefit from exploring strategies that support low-carbon agricultural practices, such as organic farming and sustainable cropping systems, while further analyzing the specific effects of different sectors on ALUCE.
4.1.3 Output Factor
The output factor consistently showed a positive contribution, indicating a strong association between increased agricultural output and rising ALUCE. The significant contributions in 2016 and 2020 align with periods of notable agricultural expansion. However, this expansion is often accompanied by increased use of high-carbon inputs, such as fertilizers and machinery, which are associated with elevated carbon emissions. This finding highlights the potential need for stricter measures to encourage energy-saving and emission-reduction practices, including the adoption of energy-efficient machinery and eco-friendly fertilizers. Future policy efforts should aim to balance agricultural output growth with strategies that reduce carbon intensity, though additional research is necessary to clarify the relationship between output increases and carbon emissions.
4.1.4 Scale Factor
The agricultural labor scale consistently contributed positively to ALUCE, suggesting a significant association between labor scale and carbon emissions in certain years. The peak contributions observed in 2017 and 2020 may reflect an expansion of the agricultural labor force during these periods. However, as mechanization and modern agricultural technologies have advanced, the contribution of the labor scale has gradually diminished, indicating a potential shift away from labor-intensive farming. This trend suggests that future policy initiatives could prioritize the promotion of mechanized agriculture, especially in regions that still rely heavily on manual labor. Reducing dependence on human labor while increasing the use of technology may help lower carbon emissions, although the specific impact of these changes warrants further examination.
4.2 Analysis of flux diameters
This research uses ridge regression analysis to enhance parameter estimation stability and address correlations between factors like production efficiency, industrial structure, output level, and labor scale. By applying ridge regression, a model was established to analyze the influence of these factors on ALUCE. Ridge trace plots and coefficient of determination (RSQ) charts for each factor, shown in Figure 12, were calculated based on Equation 19 using SPSS26.
[image: Two line graphs depict data trends related to parameter \( \kappa \). The left graph shows lines for \( \ln \beta_1 \) to \( \ln \beta_4 \) across values of \( \kappa \), with \( \ln \beta_1 \) decreasing while others follow various trends. The right graph indicates a decreasing pattern for BSQ as \( \kappa \) increases, with values ranging from about 1.00 to 0.95.]FIGURE 12 | Ridge plot of drivers of ALUCE and changes in the coefficient of determination.
The regression equation was fitted using SPSS26, with the ridge coefficient K selected at 0.05 after analysis of the ridge trace curve (Table 7). The goodness-of-fit for the equation was above 89%, and each driving factor passed the significance test at the 10% level, confirming the strong relationship between the factors and ALUCE. Validation through an independent sample T-test showed a P-value of 0.951, indicating a good fit between the predicted and actual values of ALUCE, suggesting that the model is suitable for further analysis of ALUCE’s driving factors.
TABLE 7 | Ridge regression fitting results for factors influencing ALUCE.
[image: Table displaying regression analysis results with columns for different variants and their coefficients. ln β1 is 0.075 with p-value significance at 1%, ln β2 is 0.442 with 10% significance, ln β3 is -0.043 with 1% significance, and ln β4 is 0.084 with 10% significance. R-squared is 0.87, and F test is 67.28. Standard errors are in parentheses.]Although the STIRPAT model successfully reveals the impact of variables such as population, affluence, and technology on ALUCE, it has certain limitations in predicting how changes in future socio-economic indicators (such as a decrease in the number of farmers, the expansion of agricultural management scale, and the improvement of agricultural economic development) will affect carbon emissions. The STIRPAT model primarily captures current or historical relationships but does not account for long-term structural changes or feedback effects brought about by agricultural practices, technological innovations, or economic transformations. To overcome these limitations, future research could combine the STIRPAT model with dynamic models or scenario simulation methods to predict the long-term impact of these changes on carbon emissions. For example, integrating system dynamics models or agent-based models could better simulate the process of future socio-economic and agricultural transformations, thereby improving the accuracy of carbon emissions forecasts and providing stronger support for the formulation of carbon neutrality policies.
To analyze the impact of various driving factors on ALUCE, path analysis based on the STIRPAT model is used to decompose the correlation coefficients, measuring the total, direct, and indirect effects of production efficiency, industrial structure, output level, and labor scale on ALUCE. The total effect represents the correlation between each driving factor and ALUCE, the direct effect is shown by the standardized regression coefficients, and the total indirect effect is calculated by summing the products of the direct and indirect effects. Specific results are presented in Table 8, calculated using SPSS26. Since the STIRPAT model accommodates partial errors, a small residual impact is considered reasonable.
TABLE 8 | Results of path analysis for factors influencing ALUCE.
[image: Table showing impacts of variants \(\ln \beta_1\) to \(\ln \beta_4\). Overall impacts are 0.075, 0.442, -0.043, and 0.084 respectively. Direct impacts are 0.017, 0.173, 0.007, and 0.018. Indirect impact sums detailed, with residual impacts 0.052, 0.241, -0.033, and 0.059.]The path analysis in this research indicates that lnβ2 plays a significant role in influencing ALUCE, with a total effect of 0.442, the highest among all factors. The agricultural production structure not only exerts a direct effect (0.173) on carbon emissions but also amplifies the emission reduction effects of lnβ1 and lnβ4 through positive indirect effects (0.055 and 0.064, respectively). However, lnβ2 shows a negative indirect effect (−0.092) through lnβ3, suggesting that in the absence of structural adjustments, an increase in output level could lead to higher carbon emissions. Thus, the agricultural production structure functions as a bidirectional transmission mechanism at the systemic level, enhancing production efficiency while controlling the negative impact of output levels on carbon emissions. This finding underscores the systemic importance of optimizing the agricultural production structure to achieve more effective carbon reduction, an area that policymakers should prioritize.
lnβ1 has a total effect of 0.075 on ALUCE, with a direct effect of only 0.017, indicating its limited direct influence on carbon emissions. Notably, the impact of production efficiency is largely realized through the agricultural production structure, as evidenced by its indirect effect (0.006) and transmission through labor scale (0.017). Therefore, policies aimed at improving production efficiency must also focus on optimizing the agricultural production structure to maximize the indirect emission reduction effects. Specific policy measures should include promoting precision agriculture and energy-efficient machinery. These can improve production efficiency and reduce reliance on high-carbon inputs, leading to greater carbon reduction.
Conversely, lnβ3 shows a negative total effect on ALUCE (−0.043), with both its direct and indirect effects being negative (0.007 and −0.017, respectively). This indicates that, in the absence of structural adjustments, increasing output levels will likely lead to higher carbon emissions. While improving output is critical for meeting agricultural demand, policymakers must ensure that output growth is accompanied by structural adjustments to mitigate its negative impact on carbon emissions.
Based on the results of the path analysis in this study, the interactions between driving factors play a crucial role in influencing ALUCE, particularly the complex relationships between efficiency improvements, structural adjustments, labor scale, and output levels. While agricultural production efficiency (lnβ1) and agricultural production structure (lnβ2) are key drivers of emission reductions, their interactions with other factors, such as labor scale and output levels, have not been fully explored. Improving production efficiency can indirectly reduce carbon emissions by optimizing the agricultural production structure, but this process is not unidirectional. Without corresponding structural adjustments, efficiency improvements may lead to overutilization of resources or high-carbon inputs, potentially offsetting the reduction effect. Therefore, efficiency enhancement and structural adjustment must evolve in coordination, and interventions focusing on a single factor may be ineffective. Furthermore, there are potential feedback effects between labor scale (lnβ4) and output level (lnβ3). Increasing agricultural output often leads to greater labor input, thereby raising carbon emissions, particularly in labor-intensive agricultural sectors. To achieve carbon neutrality, policies should encourage appropriate adjustments in labor scale, reduce reliance on traditional labor, and promote agricultural mechanization and smart technologies to enhance production efficiency and lower carbon emissions. Therefore, policies should integrate both efficiency improvements and production structure optimization, reduce high-carbon inputs, and promote sustainable agriculture. At the same time, when increasing output levels, adjusting labor scale to reduce reliance on manual labor will help achieve carbon emission reductions. Lastly, policies should support the green transformation of the agricultural supply chain, encourage the application of low-carbon technologies, and promote a coordinated low-carbon transition across sectors. By comprehensively considering the interactions of these factors, policymakers can develop more precise and effective low-carbon transition pathways, thereby advancing the achievement of carbon neutrality in the agricultural sector.
4.3 Drivers organizational framework
Based on the empirical results, an innovative environmental organizational framework for reducing ALUCE in China is constructed according to the γ-multiple helix model (Xue and Gao, 2022), comprising the main layer, the behavioral layer, the functional layer, and the objective layer, as depicted in Figure 13.
[image: Flowchart illustrating an agricultural emissions reduction framework. It includes levels: ground, behavioral, functional, and target. Stakeholders like universities, agribusinesses, and government interconnect. Key actions involve technology transfer, policy enforcement, and market creation.]FIGURE 13 | The innovative environmental organizational framework for ALUCE emission reduction.
The ground level plays a crucial role in reducing ALUCE, involving collaboration among various institutions and organizations. Universities and colleges contribute by conducting research, providing technical support, and training personnel, thus offering scientific foundations and human resources for ALUCE reduction. Research institutes focus on developing and promoting low-carbon agricultural technologies and methods. Agricultural research and development institutions tailor emission reduction strategies to local conditions, offering feasible solutions for farmers. Agribusinesses lead in implementing advanced technologies and management practices to enhance production efficiency and reduce carbon emissions, while also promoting greener agricultural products. Governments play a pivotal role in policy formulation, financial support, and overseeing the effectiveness of emission reduction measures. Social organizations, including NGOs and community groups, advocate, educate, and raise awareness, mobilizing public participation in emission reduction efforts. Together, these actors form a collaborative network that drives effective ALUCE reduction and promotes sustainable agricultural development.
The behavioral level integrates strategies to enhance agricultural efficiency and reduce carbon emissions, supporting sustainable agriculture. Key actions include optimizing cropping patterns, improving soil quality, and reducing the use of fertilizers and pesticides; enhancing productivity through high-efficiency crop varieties and modern technologies; adjusting the agricultural production structure to optimize resource use; developing the agricultural labor force with education and training; and promoting technological innovation, such as precision agriculture and water-saving irrigation systems. These measures collectively foster sustainable agricultural development.
The functional level includes key components: policy guidance, agricultural technology innovation, education and training, resource optimization, and agricultural product competitiveness enhancement. These layers aim to create a supportive policy environment, develop and promote environmentally efficient technologies, enhance farmers’ skills, optimize resources like water and soil, and improve market competitiveness through better product quality and marketing strategies. Together, they form a comprehensive framework for reducing ALUCE and promoting sustainability.
The target level focuses on three core objectives: (1) promoting green agricultural ecosystems through organic farming and eco-friendly methods to reduce carbon emissions; (2) increasing farmers’ income by improving efficiency and adopting low-carbon technologies, while reducing the carbon footprint; and (3) fostering sustainable agricultural development through R&D investment, policy support, and a conducive business environment. This framework emphasizes both immediate improvements and long-term sustainability through economic, ecological, and social dimensions.
5 CONCLUSIONS AND IMPLICATIONS
Based on the empirical analysis, this research draws the following conclusions: (1) Significant regional disparities in ALUCE are observed across Chinese provinces. Central provinces like Henan exhibit the highest emissions, primarily due to the scale of agricultural activities, rather than technological advancements. This suggests that policy interventions should focus not only on technological improvements but also on controlling the expansion of intensive farming practices. Western provinces, such as Qinghai, report lower emissions due to traditional farming methods. However, these methods are still susceptible to rising emissions as farming areas expand. Economically developed eastern regions, including Shandong and Jiangsu, show high ALUCE due to resource-intensive agricultural practices. The increase in emissions in these regions is not just driven by economic growth but also by the lack of sustainable practices in large-scale production. Lastly, southwestern provinces like Guizhou and Sichuan have lower emissions, which is largely due to slower agricultural modernization and lower industrialization levels, rather than purely traditional practices. (2) The inequality in ALUCE across regions remains relatively stable over time, with minor fluctuations observed. This aligns with Ke et al. (2022), who noted persistent regional disparities in agricultural emissions. While both intra-provincial and inter-provincial disparities contribute, inter-provincial differences are the main driver. Our research highlights that socio-economic factors, such as industrialization and rural-urban migration, also play a significant role in shaping these disparities. This emphasizes the need for region-specific policies that align agricultural practices with broader socio-economic development goals. (3) Improvements in agricultural production efficiency significantly reduce ALUCE. However, our research finds that efficiency improvements alone are not enough to reduce emissions at the regional level without structural changes in agricultural practices. Technological advances can reduce emissions, but their impact is often overshadowed by factors like the use of high-carbon inputs and large-scale monoculture. Some structural changes, such as shifting to more resource-intensive crops, can even increase emissions. (4) Path analysis demonstrates that the agricultural production structure serves as a key intermediary, enhancing the positive effects of increased efficiency while mitigating the negative impacts of higher output levels. We highlight the need to integrate environmental sustainability, particularly in high-emission sectors like livestock farming and industrialized crop production. This contrasts with Delandmeter et al. (2024), who focused on optimizing crop production techniques. Our findings suggest that sustainable practices in livestock and crop rotation are equally important, indicating a broader scope for policy interventions. Additionally, understanding farmers’ adoption of low-carbon practices, influenced by socio-economic factors such as income, technology access, and government policies, is essential for achieving carbon neutrality.
This research provides several key policy implications for reducing ALUCE in developing countries. (1) Region-specific strategies. Governments should implement targeted policies based on regional differences in ALUCE. In high-ALUCE regions, the focus should be on precision agriculture and identifying emission hotspots, while in lower-ALUCE areas, efforts should prioritize capacity-building, such as training local farmers and promoting sustainable agricultural practices. The EU’s emphasis on sustainable land management and conservation tillage offers valuable lessons for addressing high-carbon practices in regions with intensive agriculture. (2) Technology transfer. Governments should prioritize the transfer of sustainable agricultural technologies through the establishment of technology centers and research partnerships. This will enhance agricultural efficiency and emissions management tailored to local conditions. Learning from the EU’s Common Agricultural Policy (CAP), which supports technological innovation and sustainable practices across member states, China and other developing countries can facilitate knowledge-sharing and capacity-building in agriculture. (3) Sustainable agricultural practices. It is essential to optimize the use of high-carbon inputs like fertilizers and fossil fuels by promoting efficient fertilizer use, adopting biodegradable mulches, and investing in energy-efficient machinery. These practices, commonly promoted by the EU’s green agricultural policies, can reduce emissions while improving productivity. Implementing similar measures, such as eco-friendly fertilization strategies and integrated pest management, would enhance China’s low-carbon transition. (4) Addressing regional inequalities. Policies should aim to reduce intra- and inter-regional ALUCE disparities by improving access to resources, technology, and markets, particularly in marginalized areas. Financial incentives, along with improved access to land and water, will encourage the adoption of sustainable practices and help balance regional inequalities. Drawing from the EU’s experience, policies that provide financial support and technical assistance to underdeveloped regions can accelerate the adoption of sustainable agricultural technologies, thus reducing the carbon footprint of agriculture in these areas.
This study contributes to understanding Agricultural Land Use Carbon Emissions (ALUCE) by using the LMDI and STIRPAT models to analyze driving factors and spatio-temporal evolution. It offers theoretical support for policymakers by identifying key areas for carbon reduction and emphasizing the impact of regional disparities. The analysis of ALUCE changes across provinces provides data-driven insights for developing targeted emission reduction policies, highlighting the importance of optimizing agricultural production structures and improving efficiency. However, the study has limitations. Firstly, while the dataset covers 2013–2022, it may not capture long-term trends, and recent agricultural practices and policy changes might not be fully reflected. The use of provincial-level data provides a national overview but overlooks micro-level differences, suggesting that future research should use city or county-level data for more precision. Secondly, the LMDI and STIRPAT models, while effective in decomposing driving factors, oversimplify the complexity of agricultural systems. Future studies should consider dynamic systems models to explore long-term effects of agricultural transformation and technological innovations. Thirdly, indirect effects such as changes in market demand and international trade were not fully addressed in this study, and future research should explore these to provide more comprehensive policy recommendations. Finally, while focused on China, expanding this research to other developing countries or regions with similar agricultural practices could validate the findings and offer insights into socio-economic and environmental contexts. Future work could also explore scenario-based modeling to predict long-term ALUCE trends under different conditions, providing more systematic solutions for achieving carbon neutrality.
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Agricultural practices in Kazakhstan exert considerable pressure on the landscape, leading to environmental degradation, pastureland fragmentation, and biodiversity loss. Sustainable land management is crucial for balancing economic development and ecological preservation. This study assesses land conditions in the Zhanaarka region of Ulytau Oblast, Kazakhstan, focusing on climatic and anthropogenic impacts. Using Landsat 5 and 8 satellite imagery (2009, 2013, 2018), we evaluated land cover changes through NDVI analysis, climate factor assessment (temperature and precipitation), and GIS-based mapping. Pearson’s correlation and multivariate analysis were applied to identify relationships between vegetation dynamics and climatic variables, alongside anthropogenic influences such as land development and irrigation. Significant shifts in vegetation cover and land boundaries were observed over the study period. Multivariate analysis revealed no single climatic variable (temperature or precipitation) as a limiting factor for Normalized difference vegetation index (NDVI) changes. However, anthropogenic activities, including unsustainable land use, were key drivers of pasture degradation. The findings highlight the dominant role of human activities in land degradation, despite the region’s climatic vulnerabilities. The study underscores the need for integrated land-use policies to mitigate degradation and promote sustainable agricultural practices. Recommendations are provided to enhance resilience against climate change and anthropogenic pressures.
Keywords: Remote Sensing, GIS, land degradation, pasturelands, NDVI, climate change, Kazakhstan

1 INTRODUCTION
Global land use system has undergone significant transformations due to various processes such as increasing areas of housing and agricultural use (Foley et al., 2011; Chouari, 2024), and land degradation resulting from erosion, and desertification. As Usievich (2017) noted, about a quarter of the favorable lands were lost in the last century. The high development of livestock and agriculture in the twentieth century has increased the concern for reducing land degradation. Given the rapid development of land deforestation, countries face the challenge of significantly reducing per capita cultivation of land, while the pressure on them is constantly increasing (Gupta, 2019). According to a report by the United Nations Convention to Combat Desertification, over half of the world’s agricultural land is experiencing moderate to severe degradation, leading to a reduction in arable land (Vicente-Serrano et al., 2024). The United Nations’ projected scenario for the year 2025 shows that one in five people will be living on land that is vulnerable to drought. In 2017, more than 2 billion hectares of fertile land on Earth were degraded. By 2024, the rate of degradation is expanding by 1 m sq km worldwide. As shown in the report of the United Nations Convention to Combat Desertification (UNCDD), the rate of degraded land has already reached 15 million square kilometres (Watts, 2024). Land degradation has a negative impact on 3.2 billion people on the planet, and it is safe to say that there is not a single continent that is not affected by this problem (Health, 2018). The countries affected are those whose main activity is agriculture. Neglecting and shortening crop rotations and overuse lead to deterioration of soil quality, loss of organic matter, reduction of plants and limiting their growth. However, the impact of people’s lack of knowledge about environmentally sound land management and other factors that lead to degradation should also be noted (Kirby and Landmark, 2011).
This issue is also relevant to Kazakhstan, where 40% of the land is used for agriculture and has a high value of pastures, arable land and fodder markets for livestock feeding (Robinson and Petrick, 2024). Kazakhstan has a significant socio-economic impact from land degradation which has started from extensive agricultural expansion in the 1950s based on the Virgin Land Programme (Tselina) (Durgin Jr, 1962; Brezhnev, 1979; McCauley, 1976). According to recent studies, more than 75% of Kazakhstan’s land area is considered to be desertification-sensitive areas of moderate and higher sensitivity (Issanova et al., 2020), covering about 3.8% of the total land area, mainly distributed over seven oblasts in western, northwestern and south western Kazakhstan (Hu et al., 2020). Extensive and intensive human activities related to agriculture and livestock raising in the two main desertification zones in northern Kazakhstan have contributed to desertification to some extent. According to the “Sustainable management of pasture resources. Desertification and land degradation is a global problem” project pasture lands cover 188 million hectares (70%) of the area of the country. 77% of pasture is in the plains, 25% - is sand, 18% - low mountainous, foothills, and 5% - valley, lowlands. Due to the unreasonable land use and its climatic characteristics, ERA-NET supported programme RURAGRI has found that most of the land is threatened (country’s livestock per hectare index is 0.29). According to the study, the country has degraded land accounts for more than 15% of the country’s land area, i.e., 27.1 million hectares. This is mainly due to the system, which has been based on the free and unsystematic traditional way of grazing the livestock (Zhou et al., 2005; Kioko et al., 2012).
The study of landscape dynamics in arid regions is of particular importance for understanding the main threats that arise in arid ecosystems. Livestock farming contributes significantly to desertification, necessitating new approaches to land management to mitigate future food shortages threatening millions, particularly in developing countries, within one to two decades (Hamidov et al., 2016; Rahaman et al., 2021). This problem mainly affects cultivated and irrigated land, but grazing land must also be considered. In 2018, the natural pastures in Kazakhstan have counted around 180.4 million hectares, where more than 3% of them are improved, while around 60% are affected by waterlogging. This leaves a total of about 111.2 million hectares of land suitable for livestock grazing. Notably, more than 80% of livestock is concentrated in private herds, most of which graze within 5–7 km of settlements (Summary analytical report for 2017, 2018).
This work reflects the main issues raised in the XXI century agenda adopted by the 1992 UN Conference in Rio de Janeiro, and in the 2012 General Assembly resolution “increasing agricultural productivity… diversify, increase efficiency, achieve food security… minimizing threats to the ecosystem and transfer of environmentally sound technologies… including conservation and sustainable use,” SD Agenda for the period up to 2030, Laws of Kazakhstan and regional development plans.
Today, the Government of Kazakhstan is engaged in the development of the livestock sector with increased production volume, efficiency, and profitability. It is closely linked to the strategy of the Ministry of Agriculture of the Republic of Kazakhstan, which has a target of 15 million head of cattle, in part through the improvement of land quality (Vidyanova, 2021). Analysing previous studies, we concluded that all studies on the development of the agro-industrial complex (AIC) and regulation issues in Kazakhstan, conducted since independence of the country aimed to develop only an economic mechanism for resource management (Suimuhanov et al., 2019). A mechanism based on a combination of state regulation and market self-regulation (Lapova, 2013; Dulambaeva et al., 2014; Idrisova et al., 2017) pursuing a balanced price and financial and credit policy and creating a network of farms with the purchase of cattle (Umbitaliyev, 2013). As found in scientific databases the extensive research on Kazakhstan was focused on various aspects of climate’s impact on the agricultural sector (Islyami et al., 2020; Yu et al., 2020; Karatayev et al., 2022; Wang et al., 2022; Bolatova, 2023), the spread of drought (Sayat et al., 2025), the evaluation of land resources for crop cultivation (Shmelev et al., 2021), and mapping of abandoned agricultural lands using satellite remote sensing (Löw et al., 2015). Research on pasture resources and their degradation level also has been conducted, particularly in the Akmola region (Spaeth et al., 2025), West Kazakhstan Region (Nasiyev et al., 2022; Yesmagulova et al., 2023), Balkhash area (Lebed et al., 2012), Northern Kazakhstan (Stybayev et al., 2021) and other areas, except the Central Kazakhstan. It is worthy of note that a paucity of scientific research has been conducted on issues of agricultural land management, with particular attention paid to landscape features and their impact on the development of the agro-industrial complex of Kazakhstan. Furthermore, there has been a dearth of research conducted in central Kazakhstan.
With the development of industry, agriculture, and transport in Ulytau Oblast, where located case study region Zhanaarka, the problem of land degradation is growing. The Ulytau Oblast is an administrative division of Kazakhstan, situated in the country’s central region. The region receives minimal precipitation, rendering it susceptible to drought, which is the primary driver of severe land degradation. In recent years, the combined effects of climate change and human activities have resulted in alterations to the climatic and human factors that influence vegetation and the environment. The idea of the research lies in the assessment of pastureland in Central Kazakhstan in the example of Zhanaarka region, based on climate and space monitoring for the years 2009, 2013, and 2018. Evaluation of the land conditions needs identifying changes in land boundaries, NDVI vegetation indices, correlation calculation between different indicators and RS data. The use of ecological mapping for assessing land resources will enable the determination of the condition of agricultural land within the research area.
Specific agricultural and industrial regulations need to be implemented to prevent and manage land desertification. The desertification mapping framework developed in this paper can be applied in other regions globally. The findings regarding the driving factors of desertification offer valuable insights for government authorities in Kazakhstan.
2 MATERIALS AND METHODS
2.1 Study area
The Zhanaarka region of Ulytau Oblast was selected for the present study. It is located on the border of the Kazakh Uplands and the Bethpakdala Desert at 46°00′ to 49°22′ north latitude and to 70°07′ to 70°35′ east longitude (Figure 1).
[image: Two maps are shown. The left map highlights a region in green within a larger geographic area. The right map provides a detailed view of this region, displaying divisions such as Mufindi, Kilolo, and Iringa District. It uses different colors to represent varying altitudes or zones, with a legend indicating altitude levels.]FIGURE 1 | Geographical location and topography of study area.
It should be noted that after the adoption of the Resolution of the Government of the Republic of 2022 the Karaganda region was divided into the Ulytau Oblast (Adilet, 2022). The reduction of the territory resulted from the transfer of the Zhanaarka and Ulytau Oblasts to the Ulytau Oblast. Data until 2022 corresponded to the territory of Karaganda Oblast in this respect. The geographical location and the vastness of the Ulytau Oblast explain the significant difference in climatic conditions. A continental and dry climate characterizes the area. Annual precipitation ranges from 130–310 mm. However, each district has relatively different indicators. For example, in the warm period in the northeast of the country, the average precipitation is up to 270 mm, while in the south (in the desert zone), it is only 65–80 mm.
The reason for choosing the area is livestock, which depends on climatic and physical-geographical characteristics. The study area is mainly comprised of desert, semi-desert, and mountainous regions. The territory of the region is in the mountainous part of the Saryarka and has a continental climate, which is characterized by cold and harsh winters and hot and dry summers. Zhanaarka Region is located in the mountainous, desert and semi-desert areas of the centre of Kazakhstan and has various features of land cover. The district accommodates numerous agricultural entities, comprising over 800 farms and several cooperatives. Currently, approximately 1.38 million hectares of pastureland are actively utilised, with around 72% remaining as reserve due to inactivity. This district was selected for the study as livestock production constitutes the primary agricultural activity in the area, influenced by its climatic and physiographic characteristics. The district encompasses extensive pasturelands, which comprise a significant portion of the total land area, estimated at approximately 6.2 million hectares, of which nearly 4.9 million hectares are designated as pastureland.
2.2 Data sources and data processing
Currently, to analyse the changes data collected from various data-sources. The ecological condition of the Zhanaarka region was evaluated based on the specific characteristics of vegetation cover, physical and geographical location, climatic data, and anthropogenic influence on the territory. In 2009, 2012 and 2018, maximum drought indicators were recorded in the territory of Kazakhstan, predominantly affecting these areas. In order to assess the state of land resources in the study region, these periods were selected in order to identify the relationship between the quality of vegetation cover and climatic impact. Space images for 2009, 2013 and 2018 were selected due to their quality and availability of data for the study region. Agricultural land use data of the Zhanaarka region for 2009 were analysed to determine the state of the land and its valuation, and characteristics of agricultural land in 2013 and 2018 with open data provided by the Statistics Committee of the Ministry of National Economy of the Republic of Kazakhstan (MNE RK). Climatic data such as a temperature and precipitation were obtained from three weather stations located in the research area from the site rp5.ru (http://rp5.kz). Landsat 7 and 8 images retrieved from the US Geological Survey (www.usgs.gov) with spatial resolution 30 m. Pearson’s Correlation was applied to determine between the main factors influencing the state of the land, i.e., temperature and precipitation. Framework for this study is shown in the Figure 2. Attribute information of datasets used in this study is presented in Table 1, which contains the information that was important for the study to be conducted.
[image: Flowchart showing data processing steps. Data collection includes satellite data (Landsat 5-8), climate data (temperature, precipitation), and statistics (land use data). These undergo preprocessing (NDVI). Correlation analysis follows, leading to interpretation.]FIGURE 2 | Framework diagram for this study.
TABLE 1 | Dataset’s information used in the study.
[image: Table listing data sources and their links. Row 1: NDVI from Landsat, link at www.usgs.gov. Row 2: Statistical data from the Statistics Committee of Kazakhstan, link at stat.gov.kz. Row 3: Climate data (temperature, precipitation) from Reliable prognosis rp5, link at rp5.kz.]The research was performed using the NDVI, which the is one of the indicator for assessing the condition of vegetation coverage (Huete et al., 2002; Löw et al., 2015). NDVI measures the quantity of photosynthetic active biomass (Tokareva, 2010). It is considered one of the most accurate indices to quantify vegetation cover. The NDVI formula assesses vegetation health by comparing the difference between the reflection of near-infrared (NIR) and red light (RED), normalized by their combined values. It indicates that the vegetation density (NDVI) at a given pixel is determined by dividing the difference between the reflected red and infrared light intensities by the sum of those intensities. NDVI ranges between −1 and 1; the NDVI values of some specific land use and land covers.
[image: The image shows the formula for the Normalized Difference Vegetation Index (NDVI): NDVI equals the near-infrared value (NIR) minus red light value (RED), divided by NIR plus RED.]
As for Landsat 5 bands 4 (NIR) and 3 (RED) and for the Landsat 8 bands 5 (NIR) and 3 (RED) separately.
The correspondence between the NDVI index and the land cover type (by quality and type of vegetation cover). It should also be noted that the greater the value of the infrared reflectance, the greater the value of the NDVI index, which also represent the “greenness” indicator with healthy canopy (Caccamo et al., 2011). This allows the analysis of the index to further determine the quality and type of vegetation.
Correlation analysis is another equally important method in the study of land degradation, which shows the impact of climate on one of the most important factors on land degradation. Pearson’s Correlation helps to compare one data object with another, attribute by attribute (Berman, 2016). The relationship is determined between the following factors: temperature, precipitation, and NDVI.
Correlation is the relationship between two variables (Filandysheva, 2015). The values range from −1 to +1, with +1 indicating a strong link and 0 a weak link (Table 2). A negative correlation coefficient indicates the opposite: the higher the value of one variable, the lower the value of the other. An absolute value of the coefficient of correlation can also characterize the strength of the link.
TABLE 2 | The correlation coefficient values ranges.
[image: Table showing a correlation strength guide. Values: less than 0.2 is "Very weak", less than 0.5 is "Weak", less than 0.7 is "Moderate", less than 0.9 is "Strong", greater than 0.9 is "Very strong".]Using the previously mentioned methods, which include vegetation sensitivity analysis with NDVI, researchers construct maps of healthy vegetation. Based on these maps, they calculate the healthy vegetation status of the area, dividing it into three categories: healthy, transitional, and unhealthy vegetation types.
3 RESULTS AND DISCUSSION
3.1 NDVI trend and land-cover status
The vegetation conditions index by NDVI was calculated (Figure 3). Landsat 5 and 8 images were selected to analyse vegetation patterns in the study area. NDVI images of 2009, 2013, and 2018 were classified into three categories - healthy vegetation cover, unhealthy vegetation cover, and land with transitional vegetation for improved discrimination and analysis.
[image: Three heatmap images display data for 2009, 2013, and 2018 on a map. Color gradients from red to green indicate values, with red representing high values and green representing low. Each year shows variations in data distribution.]FIGURE 3 | NDVI images of 2009, 2013 and 2018.
The analysis of vegetation conditions over the selected time period reveals that the NDVI index fluctuates. In order to identify the healthy vegetation cover in the Zhanaarka region was designed a map with highlighted (Figure 4).
[image: Three maps show changes in healthy vegetation in an area over time. In 2009, sparse green areas indicate limited vegetation. By 2013, there is a noticeable increase in green coverage. In 2018, the green areas expand significantly, indicating increased healthy vegetation throughout the region.]FIGURE 4 | Healthy vegetation of the Zhanaarka region for 2009, 2013, and 2018.
The images illustrate the condition of the land, which was particularly vulnerable to fluctuations in 2009 due to the lower temperatures recorded at all three weather stations. In 2018, an improvement in vegetation health resulted in a significant increase in the cattle population by approximately 40% and a noteworthy rise in the horse population of over 100%. The district possesses a considerable stock of forage, estimated at around 150,000 tonnes, which is sufficient to support livestock production. Yields fluctuate from small plots to 3 ha, contingent upon weather conditions, necessitating grazing in remote areas due to limited vegetation and the fragmentation of seasonal pastures. Farmers manage an area exceeding 1 million hectares of pastureland, whilst some non-state agricultural entities oversee several hundred thousand hectares.
Autumn pastures are extremely important for animal husbandry. During the autumn regrowth, the gross harvest increases, and the quality improves. During 9 years, land degradation increased by 1,502,900 ha, affecting the count of livestock (Table 3).
TABLE 3 | Status of land in the Zhanaarka region.
[image: Table showing area changes in square kilometers for three categories from 2009 to 2018. Unhealthy vegetation cover increased from 2,082,900 in 2009 to 3,586,800 in 2018. Transitional lands grew significantly in 2013 to 3,583,800 but decreased to 1,307,400 in 2018. Healthy vegetation cover declined from 2,556,300 in 2009 to 1,295,900 in 2018.]3.2 Impact of climate and livestock farming on land degradation
Climate is one of the important factors influencing degradation. As noted A correlation analysis using wind, precipitation, and NDVI data was carried out to determine the impact of climate in the study area. Similar work has already been carried out in regions of the west part of Kazakhstan (Kіshіbekova and Koshіm, 2016).
In the study area, a weak correlation is noted. The annual average of the correlation coefficient is generally very weak (Table 4).
TABLE 4 | Average annual correlation.
[image: Table displaying annual average of correlation index for weather stations Atasu, Karazhal, and Kyzylzhar. In 2009, values were −0.296, 0.0402, and −0.403 respectively. In 2013, values were −0.1345, −0.111, and −0.127. In 2018, values were −0.432, −0.189, and −0.40067.]A correlation coefficient value below 0.5 indicates an insignificant impact of meteorological factors on land degradation. While climate plays a crucial role, in agricultural areas, climatic data are generally not the primary limiting factor for vegetation cover (Akhter and Afroz, 2024). Vegetation dynamics are also influenced by seasonal variations (Coetzee, 2022), while land cover and land use play a significant role in determining productivity (Guo et al., 2021; Zhang et al., 2021; Wei et al., 2022; Behifar et al., 2023). The results of the correlation and regression analysis indicate that neither high temperatures nor low precipitation were the primary drivers of land degradation in the study area.
The primary type of agricultural activity in the study area is animal husbandry which consist of 75%. As evidenced by the large number of farms (821), peasant farms, and other enterprises engaged in animal husbandry. Taking into account this factor and the location of this territory, which is situated at the intersection of the Kazakh Upland and the Betpak-Dala Desert, this also contributes to the low soil quality (fertility) and a scarcity of vegetative cover. The climate, terrain, soil type, and grazing vegetation greatly impact livestock husbandry. Most cereals and herbs grow at an average daily temperature of 3°C–5°C, and heat-loving plants at a higher temperature. The beginning of the growth of all plants falls, in particular, in the middle and end of April, which is also the beginning for grazing animals in pastures. The most unfavourable period of sheep grazing is winter due to snow cover, icing, strong winds, and low temperatures. The most favourable period for sheep grazing is in spring and autumn. Due to burnout, vegetation loses all its useful properties during the summer. It is during the autumn period during which it is possible to determine the entire nutritional value of pastures. Under favourable weather conditions, namely warm and wet autumn, the gross harvest is increased, and the quality of plants is improved The optimal grazing period for cows on pastures extends from late April until autumn, with the transition to housing occurring 15 days before the first frost (Titova, 1978). Using this information, the Maslikhat of Zhanaarka region’s approved management and utilisation plan for 46 pastures in 2018–2019 was analysed.
Under this plan, rules for grazing livestock in the territory of Karaganda Oblast were approved. Based on the regulation, the procedure for grazing livestock was approved. In Chapter 2, it was noted that “Agricultural animals belonging to natural and legal persons, regardless of the form of ownership, are subject to accounting and registration.” Grazing occurs in fenced or unpaved pastures by owners or authorized persons. Due to natural and climatic conditions, grazing is allowed in fenced or unpaved pastures. There is a ban on grazing animals that have not undergone vaccination and veterinary procedures and sick animals, as well as in areas of common use and water protection zones (Qoldau, 2022). The addition of road, rail, river, and settlement data to the NDVI analysis showed that land near rivers and human settlements suffered significant degradation.
The latest data is entered into the “Supervision Technology database. Digital monitoring of land” (Qoldau, 2022) showed that the number of pastures in Kazakhstan is 100647 with an area of 38,154,095.82 ha, of which 47.15% belong to the Ulytau Olast (including Karaganda), where 722,288.48 ha of land lie in the Zhanaarka region (Table 5).
TABLE 5 | Statistics on irrational grazing lands, January 2021 (Qoldau, 2022).
[image: Table comparing pasture load data across various regions. Total area and figures for pastures under different load percentages are shown. Examples include overall totals, Ulytau Oblast, and Zhаnaarka region, with specifics on the number and area of pastures under different load conditions.]The Oblast region comprises 8,982,777 ha of pasture land and 10,427 ha of unused land. For greater clarity, the ground load was divided into five steps, from low to high pressure (Table 6).
TABLE 6 | Pressure on grasslands (Qoldau, 2022).
[image: Table displaying pressure levels and corresponding area in hectares. Five levels are listed: Low (2,735,819.8 ha), Permissible (2,293,115.4 ha), Optimal (2,041,844.5 ha), High (1,894,777.68 ha), and Very High (17,219.53 ha).]The physical geographical location of the region influences the predominance of pastures in the Zhanaarka region. From 2009 to 2017, a significant increase in livestock was observed in the area. The number of cattle increased by 17.2 thousand heads and horses by 28.5 thousand heads. Nevertheless, sheep and goats increased by 18.2 thousand by 2013. This increase was one of the reasons for the deterioration of land in the region (Table 7).
TABLE 7 | Number of livestock, in thousands of head (Qoldau, 2022).
[image: Table showing livestock numbers for cattle stock, sheep and goats, and horses in 2009, 2013, and 2017. Cattle: 42.9, 52.7, 60.1; Sheep and goats: 106.4, 124.6, 104.5; Horses: 27.1, 42.6, 55.6.]Thus, it can be concluded that animal husbandry, occupying 75% of the farms in the region, is one of the main causes of degradation.
According to the latest data from the Bureau of National Statistics of the Republic of Kazakhstan, published in the analytical report dated 4 April 2024, a study was conducted through collaboration with JSC “NC CGS” on space monitoring of crop production to assess the state of vegetation health. The study calculated pasture areas based on vegetation cover conditions across various regions and cities of national significance (Table 8).
TABLE 8 | Areas of pasture lands by state, in ha (Analytical Material, 2024. Space monitoring data on crop production).
[image: Table displaying grassland areas, in hectares, across various regions of Kazakhstan. It includes total grassland area and areas categorized by condition: no vegetation, very bad, bad, satisfactory, good, and excellent. Some notes indicate maximum negative values.]The data indicates that the largest areas of pasture are found in three regions: Aktobe (15%), Karaganda (13%), and Abay (9.4%). Karaganda Oblast alone accounts for over 520,000 ha of land with no vegetation. Additionally, the regions with the poorest vegetation indicators are Ulytau and Karaganda Oblasts, where “very bad” and “bad” conditions are most prevalent.
The study revealed that the main causes of land degradation in pastures are abandonment, overgrazing of livestock, and cutting of shrubs. Over-grazing of land may include areas near villages, but common pastures are more affected. Among other things, cattle grazing is carried out throughout the year in one place. In order to achieve this, it is necessary for the land users to adhere strictly to scientifically based crop rotation systems. Unfortunately, this is not being done properly. For example, a land user’s commitment to crop rotation is part of the land lease agreement. However, in the absence of effective monitoring mechanisms, this has essentially remained on paper. The limited number of staff and technical equipment of the local land inspectorate did not make it possible to solve the control problem. The hope was to be found in the widespread introduction and application of modern digital technologies, in particular space surveillance and the remote sensing of the earth. However, there are many problems. One of them is the lack of a methodology for decoding the images received, adapted to our conditions.
The active use of land for agriculture increases the pressure on land. Based on the analysis of data collected from all studies conducted in the region, it was determined that the main focus of agricultural development in the area was based on the principle of zoning. The zoning process considered several factors, including varying terrain types, temperature fluctuations from north to south, and increasing desertification in the region’s southern areas. Based on an analysis of Landsat 5 and 8 satellite data, combined with temperature and rainfall information from a weather forecasting site, and using Pearson’s’ Correlation and regression analysis, a significant increase in degraded land was observed since 2009, totalling 1,502,900 ha. Livestock is the main activity in the district had the greatest impact on the land. Land degradation was most severe near villages. Livestock numbers started increasing from 2009, where number of cattle has counted from 42.9 thousand heads to 60.1 (i.e., 40%), horses number doubled up to 55.6, which negatively affected and reflected in the plantation area decrease from 40.4 to 18.2. It also determined that the correlation and regression analysis have a minimal impact of climate on land degradation. A comparison of the data with the Committee on Statistics revealed that 64.4 percent of the total land area has more than 100 percent of the land load.
The vegetation cover of the area has changed from 1/3 to about 58%, which is also an indication of a high degree of land degradation. Cattle overgrazing is one of the main causes of this effect. Thus, based on the results obtained, we can conclude that using the NDVI, it is possible to determine the distribution of vegetation and assess the problems associated with soil degradation. In addition, it is also possible to evaluate the impact of temperature and precipitation on vegetation degradation. The investigation results ascertain a significant increase in the percentage of agricultural land degradation in the Zhanaarka region.
Land degradation is considered one of the most pressing and critical challenges of our time. There are many interventions to address this issue. To effectively implement regional development plans aimed at optimising the use of land resources, collaboration with specialists and local people is essential. This process should begin with an accurate assessment of the livestock population in each area. The second comprises the division of grasslands into specific regions with information on the amount of pressure and the grazing season. In addition, an explanatory conversation with residents of the region is essential to explain the necessity and importance of the applicable measures. Thirdly, it is important and necessary to carry out planting in the area (shrubs). It has also related to the process of sowing and reseeding speciality crops. It is recommended that areas experiencing seed degradation be replanted with suitable forage crop species to enhance pasture quality. Implementing regular reseeding practices is essential for maintaining a healthy grass cover. Additionally, controlling invasive species is necessary, as they can negatively impact forage lands and displace native vegetation. Alfalfa, for example, is a possible option. It grows around mid-April, and the regrowth period is about 2 weeks. In addition to alfalfa, it is also effective to plant Haloxylon (Saxaul) and Halocnemum shrubs. Plantations with high yields are the most favourable in the area. They have a positive effect on soil cover, significantly reduce the rate of desertification and provide additional fodder for livestock.
Community participation and awareness-raising among the local population are crucial factors to consider. Engaging the local community is essential to ensure the efficacy of decisions and measures. Additionally, training programs for farmers and local authorities in sustainable pasture management are necessary. Promoting collective action against land degradation and facilitating resource sharing will support more effective dryland pasture management.
The analysis of the vegetation index NDVI serves to corroborate the data on degradation. The observed decline and growth in VI values are attributable to a number of factors, including average levels of overgrazing, the distinctive characteristics of plant communities, soil conditions and prevailing climatic circumstances. The effective management of pasture in arid territories necessitates a comprehensive approach that considers the interrelationships between environmental, social and economic factors. Having conducted this study, we talk about the importance of using relatively new methods in various studies. That is, the use of GIS and remote sensing, as well as the NDVI index, makes it possible to conduct a full analysis of land assessment, vegetation cover and make a forecast of possible consequences. Considering that this method is now becoming increasingly popular, it can be assumed that in the future it will be able to completely replace the ground-based research method.
The results of this study indicate that the significant increase in degraded pasturelands in the Zhanaarka region from 2009 to 2018 is predominantly driven by anthropogenic pressures, including an increase in livestock numbers and inadequate grazing management. The analysis revealed that climate factors such as temperature and precipitation were not the primary drivers of vegetation cover changes during the study period. This finding aligns with Guo et al. (2021), who reported that human activities exert a more pronounced impact on land degradation in semi-arid regions compared to climatic variations. Furthermore, spatial analysis of degraded lands highlights that areas near settlements are the most affected, a pattern also observed by Zhang et al. (2021), who identified zones of high population density and intense land use as hotspots for degradation.
The study further demonstrates the limited efficacy of existing pasture management strategies, such as zoning and load regulation, in mitigating degradation which also highlighted by many authors (Aida and Sabira, 2020). Despite these efforts, the findings underscore the need for enhanced management frameworks to address the escalating pressure on land resources. These observations are consistent with previous research, including Behifar et al. (2023), which emphasized the importance of adaptive strategies in improving pasture conditions and reducing degradation rates in arid regions.
The trends identified in vegetation cover changes underscore the necessity of implementing restoration measures, such as the introduction of resilient forage crops like alfalfa and saxaul, to enhance pasture productivity. Similar approaches have proven effective in other studies, such as Zhang et al. (2021), where adaptive pasture management practices significantly improved land conditions and mitigated degradation.
Comparison with contemporary literature reveals that the degradation rate in the Zhanaarka region, with a loss of 1.5 million hectares over 9 years, mirrors trends in other arid regions globally. For instance (Deas and Coetzee, 2022), reported comparable degradation patterns in South Africa, where overgrazing and land-use changes contributed to extensive land deterioration. While studies identified precipitation as a significant factor influencing NDVI variations in highly seasonal environments (Shah et al., 2024), the findings of this study indicate a weak correlation between climatic parameters and pasture conditions, likely due to the relatively stable precipitation levels in the Zhanaarka region. The recommendations for the use of resilient forage plants and adaptive management practices in this study align with the findings, where demonstrated the benefits of such measures in reducing degradation and enhancing land conditions (Xuan et al., 2021; Huang et al., 2024; Lesiv et al., 2025).
These findings highlight the pressing need for an integrated approach that incorporates restoration efforts, adaptive management practices, and active community participation to mitigate land degradation and promote sustainable agricultural development. This comprehensive strategy is essential for addressing the challenges posed by human-induced pressures and climate variability, ensuring the resilience of ecosystems and the sustainability of agricultural practices in the Zhanaarka region.
4 CONCLUSION
This study proved the efficacy of the synergistic application of remote sensing, GIS, and NDVI in assessing land and vegetation cover and their degradation over time. The investigation also signified the capability to make predictions through remote sensing data. The anticipated social and economic impact of the research from the perspective of increasing agricultural production volume and effects on the improvement of the natural environment’s ecological condition and the social conditions of the population. It is based on the criteria of economic, ecological and social order. In turn, the application of the results of the assessment will make it possible to give a qualitative and quantitative assessment of degraded areas. In exclusion of the methodology developed for assessing land resources, the results of the correlation regression relationship between climate indicators and area changes will contribute to the development of measures to reduce land pressure taking into account territorial characteristics. Moving forward, interdisciplinary collaborations and evidence-based policy interventions will be essential for promoting sustainable land use practices and achieving the objectives of global environmental conservation and sustainable development.
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Waxi 100 100 | 100 112 | 100 | 100 | 100 112

Yancheng | 100 = 100 | 100 117 | 100 100 0 s
Yangzhou | 076 087 | 087 076 080 087 | 092 081
Zhenjiang | 047 062 | 084 047 | 056 061 | 094 056
Shanghai 100 1.00 | 100 109 | 074 = 076 | 096 075
Hangzhou 089 091 | 096 090 | 091 09 095 093
Huzhou 032 035 090 032 | 036 040 090 036
Jiaxing 033 082 043 033 | 036 066 057 036
Jinhua 100 100 | 100 105 | 100 = 100 | 100 104
Ningbo | 100 100 | 100 109 | 100 100 | 100 107
Shaoxing 036 0.41 | 088 036 | 039 044 089 039
Taizhou 100 100 | 100 104 | 100 100 100 102
Wenzhou | 025 = 031 | 081 025 | 026 033 080 026

Zhoushan | 100 100 | 100 199 | 100 = 100 | 100 199

Niche: -1 represeriis: tie: tird-stape-tochnical elficiency:
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Cropland area Labor force Mechanization Green technology Agricultural economic

level innovation digitization
Bo -222.12 ~12.43* (-10.76) 204.99*** (198.47) 594754 (-554.32) ~49.30°* (63.51)
(-1903.11)
B 34757 (38.38) 2174 (5.96) 18.18°** (~44.89) 5287 (60.27) 20.95%* (48.46)
B 42517 (19.58) 228" (3.28) 7.71% (3.10) 10.19°* (10.24) -4.50%* (-4.88)
Bs -5851%% (-50.60) | -3.93* (-3.48) 8.99%* (~7.20) 524 (-113) -44.20" (-3127)
7 23323.99"* 27123%* (271.60) 4557.04"* (4555.40) 1771403 (17713.98) 7113.09%* (7116.81)
(23324.39)
y 0.99*** (79357.17) 099+ 099"+ (773383.18) 0.99*** (746410.30) 0.99*** (108087.55)
(1994888.29)
IR 8710 1523 1694+ 1459 1224

Note: *, **, *** represents significance at the 10%, 5%, and 1% levels.
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Det

on

LMDI Logarithmic Mean Divisia Index, a decomposition method used to analyze changes in carbon emissions by quantifying the contribution of
different factors

STIRPAT Model A stochastic regression model extending the IPAT identity, used to examine the influence of population, affluence, and technology on
environmental impacts

Dagum’s Gini Coefficient An advanced Gini coefficient that decomposes inequality into within-group and between-group components, enhancing the analysis of
regional disparities
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Input

Output

Undesired
Outputs

Indicat:

Crop Planting Area

Labor Force

Mechanization Level

Green Technology
Innovation

Digitalization of
agricultural economy

Agricultural Gross
Output

Rural Shared Prosperity
Index

Agricultural Pollution
Emission Index

Agricultural Carbon
Emission

Unit

Thousand
hectares

Ten thousand
people

Ten thousand
kilowatts

Billion yuan

Billion yuan

%

Ten thousand
tons

Explanation

Actual area used for planting crops

Number of employees in the primary industry

Degree of agricultural production with the help
of machinery

Investment in modern agricultural technologies
such as breeding, new pesticides, and fertilizers

‘The extent to which IoT is used in crop
production and sales

‘The overall level of universal prosperity achieved
by climinating polarization and poverty

‘The impact of residual levels of fertilizers,
pesticides, and plastic film on the environment

Total greenhouse gas emissions from
agricultural activities

Calculation method

Actual land area where crops are sown or transplanted

Number of people employed in the primary industry

Total power of agricultural machinery

R&D expenditure

Internet Device Penetration Rate

Total monetary value of all products from agriculture,
forestry, animal husbandry, and fisheries

Comprehensively calculated using TOPSIS method based
on indicators such as per capita GDP and per capita
disposable income of rural residents

Comprehensively calculated using TOPSIS method based
on average residual levels

Comprehensively calculated using the IPCC method based
on various energy usage levels
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and cover classes Projected Difference
(Projected—actual)

Area (ha) Area (ha) %
Waterbody 9,178.02 3892 9,298.08 3943 12006 051
Built-up | 3,939.03 60 3,841 Bes 65493 -278
| Agriculture 3,595.68 1525 411984 1747 52416 222
V Wetland 217107 921 23706 s 199.53 085
Grassland 126837 Coaw 1,287.72 [ 1935 | 0.08
Woody vegetation 64683 e 55143 P ~95.4 ~0.40
Agroforestry 278424 s 267147 1133 —112.77 048

Total 23,5832 100 23,583.24 100
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2030 (Predicted)

o

B

Other lands (0) | 15481.2  489.06 78.3 1604853 | 567.36
7 Built-up (B) 1.08 [ 3,937.95 | I 393903 | 108

Agriculture (A) | 241.56 582.84 2,77128 | 359568 | 8244

Total 15,723.81 [ 500985 | 284958 | 23,5832

Gain 242.64 10719 783

Net gain/loss. -324.72 [ 1,070.82 | 61 |

2050 (Predic

2021
Other lands (0) | 14,417.3 | 145467 | 176.58 16048.53 | 1,631.25
Built-up (B) 288 3,936.15 3,939.03 2.88
Agriculture (A) | 334.89 [ 1,403.91 | 1,856.88 ‘ 359568 | 1,738.8
7Toul | 14,755.05 [ 679473 | 203346 235832
Gain 337.77 2,858.58 17658
Netgainfloss | -129348 | 28557 | -156222
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Other lands (O)

‘ 578.79 1467387 | 58806 | Other lands (0) = 14,193.5 7191 112716 1539261 | 1,199.07
Built-up (B) 36.09 ‘ 468 80.64 584.73 11673 Built-up (B) 63 572.67 78.12 657.09 | 84.42
Agriculture (A) 1270.71 ‘ 17982 | 687411 | 832464 | 145053 | Agriculture (A) 72234 51219 629901 753354 | 123453
Total 1539261 ‘ 65709 | 753354 | 23,5832 Total 1492218 | 115677 | 7,50429 23,5832
Gain 1,306.8 ‘ 189.09 | 65943 Gain 728.64 584.1 1,205.28
Net gain/loss 718.74 ‘ 72.36 -791.1 Net gain/loss -470.43 499.68 -29.25

A Total Loss
Other lands (0)  1,4160 882 67401 | 1492218 | 76221 ‘ Other lands (0) | 1,4395.2 6588 74331 | 1579734 140211
Built-up (B) 7254 | 101466 6957 115677 | 14211 ‘ Built-up (B) 1052 221022 17 23544 | 12222
Agriculture (A) | 156483 | 122958 470988 | 750429 | 279441 ‘ Agriculture (A) | 1,54278 | 107001 | 2,840.67 | 545346 261279
Total 1579734 | 233244 545346 ‘ 23,583.2 ‘ Total 1604853 393903 | 359568 & 23,5832
Gain 1637.37 | 131778 74358 [ [ Gain 16533 | 172881 75501
Net gainfloss 87506 | 117567 205083 ‘ ‘ Net gainfloss w119 16065 185778 |

Other lands (0)

13,689.8 254.61 729.45 1,4673.87 984.06
Built-up (B) 49.05 528.93 675 584.73 558
Agriculture (A) 2,309.67 3,155.49 2,859.48 8,324.64 5,465.16
Total 16,048.53 3939.03 3,595.68 23,5832
Gain 235872 3410.1 7362
Net gain/loss 1,374.66 33543 -4,728.96
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LULC classes

Change years

1984-1990

Ha %

2000-2010

Ha

%

1984-2021

Waterbody 1981 022 1620 018 -145 -002 -1091 -0.12 3.96 004
Built-up 12,06 206 ‘ 4997 760 ‘ 117.57 10.16 14605 626 90.66 1550
Agriculture -131.85 -158 ‘ -293 -0.04 ‘ -205.08 -273 -~168.89 -3.10 -127.81 -154
Wetland a9 | o199 ‘ -1484 ~0.50 ‘ -2042 -104 -3337 -131 -3283 ~0.97
Grassland 7.14 0.97 ‘ ~9.05 -1.16 3535 5.14 2064 198 14.40 1.96
Woody vegetation we | mo [ ~2043 -5.66 30.62 1951 1670 361 15.67 2334
Agroforestry 11130 7.66 ‘ -1892 ~0.89 ‘ 5242 271 2977 121 3595 247
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Area and percentage change between study years

LULC classes

1984-1990 1990-2000 1984-2021

A ha A% A ha A% L A ha A%
Waterbody 118.89 0.50 162 069 -14.49 ~0.06 -12006 -0.51 146.34 062
Built-up 7236 oa 499.68 212 1,175.67 | 4.99 771,606.59 6381 73,354.30 2
Agriculture -791.10 -3.35 | -2925 -0.12 [ ~2050.83 -8.70 ~1857.78 -7.88 | ~4,728.96 [ -2005
Wetland ~40491 -172 -14841 -0.63 -294.21 -125 ~367.02 -156 -1,21455 -5.15
Grassland | 284 [ 018 | -90.54 -0.38 [ 35352 | 150 227.07 096 | 53289 | 226
Woody vegetation 20412 125 -2043 -0.87 306.18 | 130 183.69 078 579.69 246
Agroforestry 667.80 283 -189.18 -0.80 [ 524.16 222 32751 139 | 1,33029 [ 564
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LULC 1990

LULC 1984
GR
Waterbody (WB) 9,018.00 = - 7.29 — 639 9,031.68 13.68
Built-up (BU) 0.09 467.99 80.65 0.63 7.1 2574 252 584.73 116.74
Agriculture (AG) 260 179.84 6,873.99 62.38 24977 108.01 848.05 8,324.64 1,450.65
Wetland (WL) 12826 558 108.10 2,860.06 15832 90.10 35.19 3,385.62 525.56
Grassland (GR) 162 315 267.14 43.57 344.25 4245 3329 735.48 391.23
Woody vegetation (WV) — 0.08 231 210 477 56.25 162 67.14 10.88
Agroforestry (AF) - 045 20135 4.68 14.09 3231 1,201.07 1,45395 252.88
Total 9,150.57 657.09 7,533.54 2,980.71 77832 361.26 212175 23,583.24
Gain 132557 189.10 659.55 120.65 43407 305.01 920,68
Net change 11889 7236 ~791.10 -40491 4283 294.13 667.80
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Years

LULC classes

1984 2000 2010 21
Area (ha) % Area (ha) % Area (ha) % CENGE)]

Waterbody 903168 3830 915057 38.80 931257 3949 9,298.08 3943 9,178.02 3892
Built-up | sun 248 657.09 279 115677 491 2,332.44 989 3939.03 1670
Agriculture 832464 3530 753354 3194 7,504.29 3182 5453.46 2312 3,595.68 1525
7 Wetland e w36 | 2oz et | 223 Lot | 25m09 | 1076 217107 921
Grassland 735.48 312 77832 330 68778 292 10413 442 1268.37 538
Woody vegetation 67.14 028 e s 156.96 0.67 46314 196 646.83 274
Agroforestry 1453.95 617 212175 9.00 193257 819 2456.73 1042 278424 1181
Total 23,583.24 100 23,583.24 100 23,583.24 100 23,583.24 100 23,583.24 100






OPS/images/fenvs-12-1499804/fenvs-12-1499804-t004.jpg
Number of reference samples

1990 2000 2010 2021

Waterbody 28 39 39 37 38 181
Built-up 14 13 15 31 47 120
Agriculture 85 6w 67 44 359
Wetland 30 31 36 P 146
Grslnd | 12 v 9 14 62
Woody % 4 3 8 8 30
vegetation
Agroforestry 27 19 2 2 28 19
Total 203 v 204 199 1017
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Annual rate of change (%) between study years
LULC classes
1984-1990 1990-2000 2000-2010 2010-2021 1984-2021 2021-2030° 2021-2050°

Ha % Ha % Ha % Ha % Ha % Ha % Ha %
Other lands

Builtup

Agriculuure
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Percentage of changes between study years
LULC classes
1984-1990 1990-2000 2000-2010 2010-2021 1984-2021 2021-2030 2021-2050

Area % Area % Area % Area % Area % Area % Area %
Other lands 5. 2119 5 s

Builtup 2 1 1 160659 107082

Agriculture 185778 472896 761
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Data type

Basic data Administrative
boundaries

Land use data

Socio-economic statistics

Data nam

Geographical demarcations of Huize County’s administrative
jurisdiction

Land usage statistics for the years 2000, 2010, and 2020

Statistical summary of gross regional product, population data
for 2020

Initial data sources

Geospatial data cloud (http//wwiw.gscloud.cn)

Geospatial data cloud (hitp://www.gscloud.cn)

Yunnan Provincial Statistical Yearbook 2022

Driving Environmental
factor conditions

Socio-economic
conditions

Elevation, slope, aspect, mean annual precipitation, mean
annual temperature, distance to river

Normalized Difference Vegetation Index (NDVI)
Population, gross domestic product (GDP), distance to highway,

distance to main road, distance to village, distance to district
station, distance to township station

Geospatial data cloud (http://wwiw.gscloud.cn)

Google Earth Engine (httpsi/carthengine.google.com/)

Platform for monitoring geographic national conditions
(http://www.dsac.cn/)
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LULC type ESV ESV change

2030NDS 2030CPS 2030EPS 2020-2030NDS 2020-2030CPS 2020-2030EPS

Cropland 169.677 174733 177.682 -10221 -5.165 2215
Forest 372253 372.795 373127 -3.391 -2.849 -2517
Grassland | 39.854 | 39.930 40.203 [ -0.530 [ -0.454 [ -0.181
Water 99.904 98.368 97.208 4931 3395 2234
Construction land 0.000 0.000 0.000 [ 0.000 0.000 [ 0.000
Unuse land | 0018 0018 0019 0.000 [ 0.000 0.001
Total ESV 681.707 685.845

688.238 -9.210 ~5.073 -2.679
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ar opland Forest asslan Water Construction land Unuse lan
2020 - 32,999.39 14,651.64 242558 768.23 840522 2058
2030 NDS 31,12455 14,519.38 239376 808.11 1040424 2058
Pixels 34,582,834 16,132,649 2,659,741 808,831 11,649,336 22,863
cps 3205195 14,540.51 239834 795.69 946353 2061
Pixels 35,613,278 16,156,120 2,664,818 814,207 10,584,933 22,899
EPS 32,593.00 14,5347 241470 786.30 8,902.50 20,66
Pixels 36214447 16170517 2,683,004 873,672 9,891,663 2,951
2020-2030 NDS 187484 -13226 3182 39.88 1999.02 0.00
cps -947.44 -11113 2724 2746 105831 0.03
EPS 40638 -98.17 -1087 1807 49728 0.08
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LULC type

2000-2010

ESV change

2010-2020

Cropland
Forest
Grassland
‘Water
Construction land
Unuse land

Total ESV

199.077

364.370

49.787

91.986

0.000

0017

705.237

192821

378.606

40.891

100731

0.000

0.017

713.067

179.898

375.644

40.384

94.973

0.000

0018

690917

-6256

14.237

-8.896

8745

0.000

0.000

7.830

-12.923

-2962

-0507

-5758

0.000

0.001

-22.150

-19.179

11275

-9.403

2987

0.000

0.001

-14320
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Divers Cropland Forest Grassland Water Construction land Unuse land
Elevation 00969 01623 01524 01816 0.1026 02661
Slope 00299 00493 00588 00101 00191 00392
Population density 00929 00691 0.1006 02559 0.1265 0.0680
GDP 00953 00822 00751 00712 00773 00587
Precipitation 00881 00867 00696 00612 0.0673 01930
Temperature 01217 01611 01616 01199 0.1043 00347
Soil 00467 00218 00452 00807 0.0498 00361
Distance to primary roads 00682 00628 00520 00429 00536 00587
Distance to highways 00632 00539 00451 00313 00543 00594
Distance to railways 00772 00699 00557 00417 00729 00518
Distance to hospitals 00826 00472 00407 00208 00618 00245
Distance to government 00709 00482 00606 00421 00903 0.0806
Distance to schools 0,063 00855 00827 00406 0.1203 00291
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LULC type Area/km? Land change dynamics/%
2010 2000-2010 2010-2020

Cropland 3651747 3536991 32,999.39 -031 ~067 048
Forest 1421188 14,767.17 14,651.64 039 -008 015
Grassland 2,990.36 245605 2,425.58 -179 -0.12 ~094
Water 74407 81481 768.23 095 -057 0.16
Construction land 4,788.00 584372 8,405.22 220 438 378
Unuse land 1915 1922 2058 004 071 037
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Primary type

Supply Services

Regulating services

Support Services

Cultural Services

Total ESV

Secondary type Forest Water Unuse lan
Food production 1525.05 32203 32203 903.99 690
Raw material production 33813 740.67 47385 50375 2070
Water supply ~1801.08 38184 26223 7,507.95 1380
Gas regulation 1,228.32 2,429.04 1,665.37 2,891.39 89.71
Climate regulation 64176 7,268.73 440264 406451 69.01
Purifying the environment 186.32 2,162.22 1453.75 6,314.13 28293
Hydrological regulation 2063.31 5258.33 322492 87,273.07 165.62
Soil conservation 71767 2,958.10 2028.80 223582 10351
Maintaining nutrient circulation 21392 22542 156.42 17252 690
Biodiversity 23462 2,695.87 184479 7,19052 96,61
Aesthetic landscape 10351 1,196.12 81428 4,568.26 4140
- 5451.55 25,638.38 16,649.07 12362592 897.00
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1980 1990 2000 2010 2020
Land Use Type

Area/hm?  Percentage/% Area/hm’ Percentage/% Area/hm’ Percentage/% Area/hm’ Percentage/% Area/hm’  Percentage/

Farmland 100238035 1560 119138592 178 161151776 212 17666460 2644 162691082 2135
Woodland 405011912 a6t 401408585 s00s 359279019 5377 35822123 5176 356530522 su

Grassland 298917 1306 66483834 995 73675 1008 n962160 1077 65785147 985

Waters S1,46373 070 970014 o7 055834 091 1311330 170 S8861.87 08

Urban and Rurl Resdential Land | 3695793 035 29750 078 S04 02 S845935 o087 760671 036
Industrial and Mining Land 15027 009 a5 o0 210 oo 59119 o1 510 009

Unused land 27.631.63 939 70892633 1061 68726534 1029 56466840 845 70455650 1054
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Land use type  Precipitation  Air temperature  Elevation  Population density  Slope

Land use type 07011

‘ Precipitation 0.7500° Coaom

‘ Air temperature | 07274 02561 01211

‘ Elevation 07607 0.4080 oao 01577

\' Population density | 0.7265* 02539 02758 03010 01132

Slope 0.7593" Coasr e 04329 0.1907* 0.1156

‘ NDVI 0.7505" 03579 038033 04619 0.3066° Dm0z

Note: The addition of * indicates that the interaction of the two factors is a two-factor enhancement. and the absence of this indicates a nonlinear enhancement.
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Landscape Ecological Landscape Ecological

Security Index Security Level

01515 ES; <0.194 Low Security

0.194< ES, <0.233 Lower Security ‘

0.233< ESy <0.280 General Security ‘

0.280.< ES, <0.341 Safer ‘
|

0341.< ES; <0450 Safe
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Level Level Habitat Threat factor
llanduse 2 land suitability

type use type Paddy Dry Urban Rural Other Bare Rocky
field land land residential  construction  rock desertification
land land texture
Arableland | Paddy field 0.6 0 1 05 06 05 03 02
Dry land 03 1 0 06 07 06 05 03
Woodland Woodland 1 06 06 05 04 08 01 08
Low wood 09 06 07 08 04 07 03 08
Open 07 06 09 09 08 07 02 07
woodland
Other 07 07 07 08 07 07 02 06
woodland
Grassland High-cover | 08 08 08 04 05 05 01 02
grassland
Medium- 07 08 08 06 07 04 02 02
cover
grassland
Low-cover 06 09 07 06 07 04 02 [
grassland
Body of water | Riversand 0.8 03 02 03 03 06 05 1
canals
Lake 09 02 02 03 03 06 05 1
Reservoir pit | 0.7 02 02 03 03 04 05 1
Permanent | 0.1 0 0 07 06 06 02 1
glacial snow
Mudflat 06 03 02 07 02 01 03 1
Construction | Urban land | 0 0 0 0 0 02 06 0
land
Rural 0 0 0 01 0 07 06 0
residential
land
Other 0 0 0 07 06 0 07 0
construction
land
Unused land | Bare rock [ 0 [ 08 09 06 0 [
texture
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Name

Calculation Method

Explanation

Landscape Fragmentation [} N and 4, represent the number and area of patches for landscape type i, respectively
Degree

Landscape Separation Degree si= A A denotes the total landscape area (in hm?)

Landscape Dominance Degree D, = 2tk P stands for the perimeter of landscape type I (in hm?)

Landscape Disturbance Degree

Landscape Vulnerability

Landscape Ecological Security
Index

A,
Ei =aC; +bS; +cD;

Fi: The referencing method in
literature

ES = Z(%)(l ~10EF;)

a, b, c are weights, assigned values of 0.5, 0.3, and 0.2, respectively (Gao et al., 2021; Wangeetal., 2021)

Values are assigned based on the sensitivity of landscapes to disturbance, specifically: Unused land,
mining land: 6; Water bodies: 5; Farmland: 4; Grassland: 3; Forest land: 2; Construction land: 1 (Wang
et al, 2021; Xie, 2011)

mis the number of landscape types, and Ay, represents the area of landscape type i in the kth sampling
unit
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Landscape Pattern Index Significance

Index

Patch Scale

Landscape
Saale

LPL - The proportion of the largest single patch area in the landscape s typically expressed as a percentage. The higher the
value of LPI, the larger the patches of that type in the entire landscape, indicating a more significant impact on the
landscape (Corry, 2005)

AREA_MN - AREA_MN describes the average area of all landscape patches within a specific area. A higher AREA_MN index
indicates that the average size of landscape patches is larger, resulting in lower landscape fragmentation
(Han et al, 2018)

FRAC_ AM - FRAC_AM s used to measure the complexity of landscape patch edges. When FRAC_AM approaches 1, it indicates
that the shape of the patch s relatively simple, with smooth edges, such as circular or square patches. When
FRAC_AM approaches 2, it indicates that the shape of the patch is very complex and convoluted, with long and
irregular edges (Jingwei and Haize, 2006)

COHESION - The COHESION index reflects the degree of spatial connectivity between individual patches in the landscape. A
higher COHESION index indicates that the patches in the landscape are more likely to form a more continuous and
cohesive whole (Wei et al,, 2009)

NP. - The N.P. index measures the number of landscape patches (ic., discrete areas of different landscape types) within a
specific area. A higher N.P. index indicates higher landscape fragmentation (Xiaoping et al., 2009)
LPI - Same as above
CONTAG - The CONTAG index measures the degree of adjacency or connectivity between patches of different types within the
landscape. A higher CONTAG index indicates better connectivity in the landscape (Han et al., 2018)
FRAC_AM - Same as above
SHDI - The SHDI index measures the biodiversity or landscape diversity within an area. A higher SHDI index indicates higher

landscape diversity in that area (Xiaoping et al., 2009)
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Inspection items

Statistic

LM-spatial lag 57.286 0.000
LM-spatial error 50,882 0.000
Robust LM-spatial lag 7374 0,006
Robust LM-spatial error 0.969 0325
Hausman 46.03 0,002
LR-spatial lag 67.15 0.000
LR-spatial error 90.63 0,000
‘Wald-spatial lag 57.27 0,000
Wald-spatial error 91.96 0.000
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Variable LnAl LnA2 LnBl1 LnB2 LnCl LnC2 LnD LnEl  LnE2 LnF1 LnF2  Mean VIF

VIF 976 8.45 259 ‘ 2.56 241 231 ‘ 1.85 1.80 ‘ 154 153 125 329

1VIF 0102459 | 0.118343  0.386100 ‘ 0390625 | 0.414937 0.432900‘0.540541 0555556 ‘ 0649351 0.653595  0.800000 -
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Formula: PAMres ~ EXPLO + s (land use intensity) + s (woody vegetation) + s (RW, HW)

Adj. R? 0.14; deviance explained: 18.5%; RML: —23.96; scale estimate = 0.0 n = 147

Estimate Standard error

Parametric coefficients

Schwibische Alb -054 047 -145 ns
Hainich-Diin 056 044 127 ns
Schorfheide-Chorin 121 0.96 126 ns

Approximate significance of smooth terms

edf REA F p-value
Land use intensity 188 237 095 ns
Woody vegetation 259 322 377 <0.01**

Geographic location 20 20 128 ns
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e 2013 2014 015 2017 2018 2019 2020 2021 2022
Global Moran index value 0.137* 0.169 0.211# 0.171* 0.182* 0.289# 0.291# 0.301# 0.312# 0.325#
p-value 0.031 0.010 0.001 0.010 0.010 0.001 0.001 0.001 0.001 0.001
» Z value 1.989 2721 2.841 2.573 2497 3799 3.803 3816 3.833 3.967
Spatial correlation + + + + + + + + + +

Note: * and # are significant at the 5% and 1% levels, while + represents a significant active spatial correlation.
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Species diversity (ENS)  Morphometric Ecological and Acoustic richness

richness behavioral richness

se | Z-ratio | p | E | se | Z-ratio | p E se Z-ratio p se Z-ratio p
Region
 Alb—Hainich -022 006  -382 005 011 | 041 ns | 000 013 000 ns | 006 008 073 ns
Alb—Schorfheide -006 006 -104 ns | 009 011 030 ns | 044 016 269 * 1034 | 008 403
Hainich—Schorfheide | 0.16 006 282 =004 010 041 ns | 044 015 286 * 1028 | 008 365
Habitat
Forest—grassland 192 004 3970 058 009 651 LIS 012 935 L2 | 007 | 1675

Habitat in region

Alb

Forest-grassland 214 009 | 2457 029 016 170 ns | 082 021 | 399 | 103 | 012 | 807
Hainich

VForengrasslnnd 179 | 008 2251 e e ors | 6 L 0w o7 aso w127 o | s
Schorfheide

Forest-grassland 184 | 008 2231 044 014 | 306 * 176 025 699 =+ | 106 | 0.1 | 951 .
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Sewage treatment rate

Harmless treatment of household waste

Minimum value/%
Maximum value/%
Minimum value/%

Maximum value/%

497

100.00

481

100.00

31.09

99.90

12,00

100.00

3164

99.42

2218

100.00

85.96

100.00

80.13

100.00
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Description

Morphometric traits Reflect physical limitations of species for resource use and movement
Mass Averaged body mass of species
Wing length Length from the carpal joint to the tip
Kipp's distance Length from the tip of the first secondary feather to the tip of the longest primary feather
Beak length Length from the tip of the beak to the base of the skull
Beak width Width of the beak at the anterior edge of the nostrils
Tail length Distance between the tip of the longest rectrix to where it protrudes from the skin
Tarsus length Length of the tarsus
Ecological and behavioral traits Reflect a species environmental and interaction-based niche
Preferred habitat Forests (tall trees and closed canopy), woodlands (parklike tree dominated habitat), grasslands (open land), human-modified areas
(urban and agricultural land), shrubland (bushy habitat, e, juniper heaths), and wetland (lakes and marshes)
Habitat density Dense habitat, semi-open habitat, and open habitat
Foraging behavior Generalist, aerial, insessorial arboreal perching, and terrestrial
‘Trophic level >70% diet herbivore, >70% diet carnivore, and omnivore (no clear preferences)
Trophic niche Herbivore, granivore, aquatic predator, invertivore, vertivore, and omnivore
Migratory behavior Sedentary, partially migrating, and long-distance migrating
Centroid of latitudinal distribution | Geometric center of the species range (restricted to breeding and resident range)
Acoustic traits Reflect acoustic challenges for social communication and optimal signal design
Song duration Song duration and start and end of the song were determined by 6 db relative to the detection threshold of ~35 db within recording
sequences
Pace Number of elements (notes) per song durations sub-clement detection was set to a 10-ms hold time
Maximum frequency Highest frequency of the entire song
Minimum frequency Lowest frequency of the entire song
Mean frequency Mean frequency of the entire song
Mean frequency (sd) Variation in the mean frequency within the song

Bandwidth Bandwidth of frequencies covered by the entire song
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Region

Upstream Middle reaches Downstream
Urban Value added of Urban Value added of Urban Value added of
construction the 2,4 and 3,4 construction the 2,4 and 34 construction the 2,4 and 3,4
land/square industries/ land/square industries/ land/square industries/
kilometer square kilometer square kilometer square
kilometer kilometer kilometer
2006 1290 2,125 1,098 2524 2,506 7.841
2012 1534 6,297 1,581 6010 3,590 19,589
2016 2,195 13,769 1806 12,406 4419 35,708
2022 2,368 16116 2271 19,596 6,006 57,702
Average 423 1392 510 1404 589 1349
annual
growth
rate/%
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Region

Upstream Middle reaches Downstream
Time Area/ Proportion/  Time Area/ Proportion/  Time Area/ Proportion/
square % square % square %
kilometer kilometer kilometer
Residential 2016 47700 3380 2016 443,50 2991 2016 683.64 30.33
land (RL)
2022 49071 2870 2022 582.04 28.09 2022 93927 30.01
Variation 1371 - Variation 13854 - Variation 255.54 -
Industrial 2016 199.50 1372 2016 2532 1486 2016 42766 18.80
land (IL) t T
2022 22836 1305 2022 22636 1063 2022 59624 18.94
Variation 28.86 - Variation 104 - Variation 168.58 -
Land for 2016 6241 3.80 2016 57.34 337 2016 73.05 281
logistics and
warehousing 2022 68.15 348 2022 7108 300 2022 8236 267
(LL)
Variation 574 - Variation 1374 - Variation 1931 -
Land for road 2016 19632 1349 2016 15467 9.98 2016 335.04 14.63
traffic |
facilities (LR) 2022 30254 17.48 2022 37173 1776 2022 47956 15.17
Variation 10622 - Variation 217.06 - Variation 14452 -
Greenspaceand | 2016 16717 1282 2016 147.92 1089 2016 238.57 1118
square land (GS) T T T
2022 26715 1655 2022 368.74 1859 2022 38627 1279
Variation 99.98 - Variation 22082 - Variation 147.70 -
Land for Public | 2016 13623 1058 2016 21408 1546 2016 268.88 1255
Management i
and Public 2022 16225 1029 2022 19081 9.85 2022 359.13 1191
Service T T
Facilities (LP) | Variation 2602 — Variation -2327 - Variation 90.25 -
Land for 2016 7529 617 2016 11381 854 2016 13286 642
commercial and . T 3
service 2022 10388 680 2022 13564 7.15 2022 169.14 578
facilities (LC) T T T T T
Variation 2859 - Variation 2183 - Variation 3628 -
Land for public | 2016 67.82 5.63 2016 92.80 7.09 2016 6220 324
facilities (LF)
2022 5084 363 2022 90.45 493 2022 75.15 274
Variation -1698 - Variation -235 - Variation 1295 -
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Variable S EM SD OLS
LnAl ~0.120%(-1.99) ~0.119 (-1.76) ~0.173#((-3.67) ~0.152*(-2.03)
LnA2 0.012°(2.05) 0.015%(2.38) 0.016#(2.69) 0.036#(4.88)
LnB1 ~0.139%(~1.98) ~0.098#(~4.64) ~0.209(-357) ~0.124#(~4.16)
LnB2 0.031 (0.26) 0.014 (0.52) 0021 (0.73) 0.097 (0.60)
LnCl 0.094#(3.63) 0.091#(3.39) 0.096#(4.21) 0.095#(6.79)
LnC2 0.050°(2.50) 0.044#(2.74) 0.059#(3.89) 0.058 (1.89)
LoD 0.138%(2.46) 0.168#(3.87) 0.185#(3.09) 0.177#(278)

7 LnE1 ~0.391#(-4.50) ~0405¢(3.81) ~0524#(-:3.75) ~0.487#(~2.80)
LnE2 ~0.379 (~1.67) ~0.320°(-2.00) ~0.422#(4.46) ~0.359%(~4.85)
LnF1 ~0232(-1.97) ~0.246 (~1.86) ~0.268 (~1.64) -0.203*(-2.12)
Lnk2 ~0.007 (-0.95) ~0.006 (-0.51) ~0.003 (-0.94) -0.002 (-0.71)

WLnAL - - -0251#(-3.27) =
WLnA2 - - ~0.026 (~1.93) =
WLnB1 - - 1.407#(3.32) =
WLnB2 = = 0.068 (0.66) =
WLnC1 - - 0.078*(2.42) =
WLnC2 - = 0.153*(2.32) =
WLnD - - ~0.233*(-0.215) -
WnEl - - 0.214#(4.36) =
WLnE2 - - 0.120%((2.03) =
WLnF1 = - ~0.247#(-2.83) -
WLnF2 - - ~0.067 (~0.093) -
Cons 1807157 ~2697523 - -1218178
R-squared 0.079 0.049 0210 0297
Logl 300.6899 295.4301 5183216 -

Note:

. arid ¥ sespeciivily: pass the iaspecisn under- L00: 5%, and: 18- conditions: The: t-vles-or -zl

cnclossd in.parenthieses:fo tie:ciihit oF the regresiion: codiiciest.
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Treatment -20 cm 20-40 cm

Total Total Available Available Total Total Available Available
phosphorus potassium phosphorus potassium phosphorus potassium phosphorus potassium
(9/kg) (g/kg) (mg/kg) (mg/kg) (g/kg) (g/kg) (mg/kg) (mg/kg)
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Treatment boveground Grain Plant Plant Fertilizer Fertilizer
biomass yield phosphorus potassium phosphorus potassium
(t/hm2) (t/ uptake uptake recovery recovery
hm2) (kg/hm2) (kg/hm2) efficiency (%) efficiency (%)
Mean + [ 113 £ 30¢ 62+ L6 166+ 57d 540 = 24.5d - -
£ P 18.1 £ 1.3b 104 + 347 + 3.0c 93.1 = 11.5¢ 415 + 13.1c 782 +29.7b
08b
HY 28+ 15 1345108 7542 1445 £ 732 428 = 11.6b 546 % 16.0c
ISSM 220+ 13 131409 432:43b 1229 + 5.4b 602 % 1940 794 % 289
st K 049¢ 0.53 0.39b 032 - -
P 0.83b 082b 081a 074b 046¢ 041b
HY 085 0.83ab 082a 0.89 0.55 0502
ISSM 0.861 0852 079% 0.90a 051b 042b
cv K 2675 26.06 3458 4533 - -
P 7.15 817 862 1238 3157 37.97
HY 649 o 879 506 27.04 293
ISSM 599 7.15 991 439 3217 3635

Note: Different letter means significantly different at a = 0.05 probability level. The same as below.
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Manageme

Item

Tillage Method

Planting Density
(plants/hm?)

Chemical Fertilizer
Amount (kg/hm?)

Organic Fertilizer
Amount (kg/hm?)

Total Nutrient Input
(kg/hm?)

Fertilizer Operations

Rotary tillage to
15 cm before
sowing in spring

55,000

Rotary tillage to 15 cm before sowing
in spring

55,000

225N, 100 P05, 60 KO

225 N, 100 P205, 60 K,0

50% N, 100% P,O5 and KO applied

as basal fertilizer; and 50% of N
applied as topdressing at the jointing
stage

Subsoil tillage to 25 cm after harvest in
autumn and rotary tillage to 15 cm
before sowing in spring

80,000

300 N, 120 P;0s5, 150 K0

30,000 N, 355 P,05, 165 K,0

35% N, 65% P,0; and K;O applied as

basal fertilizer; 10% of N and 15% of
P,0; and K,O as starter fertilizer applied
with the seed at sowing, 35% of N applied
as topdressing at the jointing stage; and
20% of N, P05 and K,O applied as
topdressing at the silking stage

Subsoil tillage to 25 cm after harvest in
autumn and rotary tillage to 15 cm
before sowing in spring

70,000

200 N, 67 P,05, 67 K;O

25,000

24,100 N, 241 P,05, 101 K;0

40% of N, 80% of K,O and 100% of P,O5

applied as basal fertilizer; 10% of N as

starter fertilizer applied with the seed at

sowing; and 50% of N and 20% of K,0

applied as topdressing at the jointing
stage






OPS/images/fenvs-12-1495262/inline_9.gif
k'





OPS/images/fenvs-12-1406460/inline_10.gif





OPS/images/fenvs-12-1426956/fenvs-12-1426956-g006.gif





OPS/images/fenvs-12-1495262/inline_8.gif





OPS/images/fenvs-12-1406460/inline_1.gif





OPS/images/fenvs-12-1426956/fenvs-12-1426956-g005.gif
A

aex sk Qex wir
5 o emw i e
4 S YR

T05 05025 0350057
JUENBEINI

TOS | 0E038 0T-00ss





OPS/images/fenvs-12-1495262/inline_7.gif





OPS/images/fenvs-12-1406460/fenvs-12-1406460-t010.jpg
Influence factor Sort
Al 0.1145 3
A2 0.1200 1
B 0.1161 2
a1 0.1030 5
o} 01123 4
D 0.1071 6
El 0.1101 9
E2 0.1066 7
Fl 0.1103 8
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Influence Principal Principal Principal Principal Principal Principal

factor component 1 component 2 component 3 component 4 component 5 component 6
Al 0.986 0359 ~0023 0001 0236 0274
A2 0.994 [ ~0015 0068 0215 | 0125 0.196
BI 0.286 0857 -0213 0068 | 0136 0025
a1 0.198 ~0.182 0424 0264 ‘ 0011 0048
c 0.346 ~0015 0628 0175 [ 0013 -0.126
D 0.360 -0132 -0.138 ~0424 -0025 -0246
E1 0265 0067 ~0226 0132 -0518 0.067
E2 | 0135 ~0012 075 0159 [ 0479 0,053
Fl 0239 0063 0023 0173 | 0126 [ 0652






OPS/images/fenvs-12-1426956/fenvs-12-1426956-g003.gif
>

100 aEra Y e sH [T Ay e sy

: w‘f

/4(‘/\&

[Phosphorus recovery cificiency
{
Potassium recovery efficiency (%)
s =

205 2010 2012 2013 2016 2008 2020 308 2010 2012 2013 2016 2018 20
Year Year





OPS/images/fenvs-12-1495262/inline_5.gif





OPS/images/fenvs-12-1406460/fenvs-12-1406460-t008.jpg
KMO value 0.842

0.000
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2020 status 2030 natural 2030 planning protection Degree of Degree of

area (km?) development scenario (km?) change change
scenario (km?) (ND) (PP)
Cultivate land 20 388.22 19 959.16 19 867.49 -00210 02554
Woodland 52 890.27 52 80465 53 706.76 00016 00154
; Grassland 56 459.12 56 42113 55 921.91 00007 00095
Waters 1197.74 128576 127606 00735 C ooes
Construction land 248005 294657 2645.10 0.1881 00665
Unused land 268235 268048 268043 ~0.0007 0007






OPS/images/fenvs-12-1406460/inline_33.gif





OPS/images/fenvs-12-1406460/inline_32.gif





OPS/images/fenvs-12-1406460/inline_31.gif





OPS/images/fenvs-12-1431295/fenvs-12-1431295-t005.jpg
Driving factors DEM Slope POP NLI TEM GDP PRE






OPS/images/fenvs-12-1406460/inline_30.gif





OPS/images/fenvs-12-1431295/fenvs-12-1431295-t004.jpg
Habitat quality improvement

Land use change type

Unused land-Grassland
Cultivated land-Grassland

Cultivated land-Woodland

Rate of contribution
%

2945

1452

1103

Unused land-Woodland

Construction land-Cultivated land

438

313

Cultivated land-Waters

Construction land-Grassland

1.88

145

Habitat quality degradation

Grassland-Unused land
Grassland-Cultivated land
Cultivated land-Construction land

‘Woodland-Cultivated land

28.06

2264

2164

2032

Grassland-Construction land
Woodland-Unused land
‘Woodland-Construction land

Grassland-Waters.

455

3.62

2.02

153
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Judgment basis Interaction

| q (XiNX;)<Min [q (X)),q (X2)] Nonlinear decay

Min [q (X,),q (X2)]<q (XinX;)<Max [q (Xy),q (X2)] Single-factor nonlinear

decay
Independence

|
| q (XiNX)>Max [q (X0).q (X2)] | Double-factor boost
| 4 (Xi0K) = q (X,)+q (X) \
| \

q (XiNXz)>q (Xi)+q (X2) Nonlinear boost
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Habitat suitability Threats factors

Cultivated land Construction land Unused land
Cultivated land 0.6 0 | 09 0.5
‘Woodland 1 | 05 08 0.2
Grassland 1 02 05 03
‘Waters 09 04 0.6 [ 0.5
Construction land 0 0 0 0.1
Unused land 03 0.1 03 [ 0
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Locations = Farmtype Households, Education Household size Total Number Farm implements

n (%) level area of
(years) ownhed cattle
(ha)
Total Labor With With hand
power
Malanville 1 9(14) 3.0(1.4) 133(23) | 61(16) | 17.3(28) 1127 00 114 (3.8)
2 6(9) 69 (1.4) 473(34) | 283(23) | 337(41) 5.0(3.0) 0.5 (0.15) 15.3 (7.6)
3 11(17) 63(1.3) 282(21) | 159(14) | 3L1(25) 19(3.0) 0.0 8927
4 9(14) 30(22) 118(23) | 56(1.6) | 129(28) 0.5 (4.4) 0.2 (0.04) 10.6 (3.5)
5 29 (45) 27(08) 124(12) | 75008 | 135(L5) 35(1.6) 0.1(0.02) 13.0 (2.3)
Banikoara 1 27 (42) 3.3(08) 152(12) | 84(08) | 1L0(L5) 35(24) 05 (0.12) 142 (2.5)
2 12(19) 7.1(1.3) 28.1(18) | 178(13) | 327(22) 89(1.6) 0.5(025) 12,6 (3.4)
3 8(13) 68(22) 235(3.4) | 118(23) | 239(41) 5.8 (4.4) 1.0 (0.30) 12.8 (6.4)
4 1117 1.9(1.2) 99 (2.1) 6.1(1.4) 80(25) 3.0 (4.4) 0.8 (0.41) 17.0 (5.1)
5 6(9) 08(22) 143G4) | 60(23) | 129(41) 18(2.7) 0.5(0.06) 135 (6.8)
Bembereke 1 54 (40) 3.7(0.6) 10.7(09) | 6.1(0.6) 9.9 (1.1) 44 (1.1) 0.5(0.13) 110 (1.4)
2 15 (1) 82(0.8) 230(18) | 159(12) @ 264(21) 8.1(23) 0.7 (0.34) 15.1(3.9)
3 11(8) 7.8(22) 170(34) | 123(23) | 313(41) 4.8 (1.6) 0.8 (0.14) 115 (5.8)
4 30 (22) 3.6 (1.1) 11L1(12) | 68(0.9) 9.8 (15) 23(18) 0.1(0.03) 124 (2.3)
5 24(18) 2.0(0.9) 133(14) | 92(10) 9.4(L7) 33 (4.4) 0.3(0.02) 9.0(1.8)
Whole area 1 90 (34) 3.3(0.6) 13.1(09) | 69(0.6) | 109(L1) 3.0(18) 0.4(0.05) 12,0 (1.2)
2 33(13) 7.4(09) 328(14) | 207(10) | 299(L7) 73(12) 0.6(0.13) 14.0 (2.4)
3 30 (11) 6.9(L1) 29(17) | 133(12) | 296(2.1) 52(1.4) 0.5(0.08) 10.3 (2.4)
4 50 (19) 28(09) 109(LD) | 61(08) | 10.0(1.3) 19(2.3) 0.3(0.04) 13.1(1.8)
5 59 (23) 1.8(0.8) 133(13) | 75(09) | 118(16) 39(17) 02(0.01) 114 (1.5)
p-values
Location (L) ns <0.001 0.011 0.023 ns 0012 <0.001
Farm type (F) 0.020 <0.001 <0.001 <0.001 0.001 ns ns
LxF ns <0.001 <0001 ns ns 0022 0.002

The numbers in parentheses indicate standard errors. ns, non-significant.
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Locations Farm type Crop Food crop Food crop Maize Cotton Income

diversity acreage (ha) acreage (%) acreage (ha) acreage from
(ha) maize (%)
Malanville 1 6.7(0.4) 73(19) 65.6(7.5) 37(13) 62(15) 433 (3.3)
2 5.0(0.7) 75(29) 84.8 (11.3) 8.1(19) 14.6 (2.2) 30.0 (4.9)
3 45 (0.4) 6.6(1.7) 53.6 (6.8) 7.0 (1.2) 14.2 (1.4) 58.6 (3.0)
4 5.8(0.4) 60(1.9) 69.9 (7.5) 25(13) 46(15) 17.8(3.3)
5 5.1(02) 7.5(1.0) 708 (4.0) 3.0(0.7) 6.0 (0.8) 77.7 (1.8)
Banikoara 1 82(02) 87(1.0) 862 (4.0) 3.6(0.7) 4.4(08) 65.0 (4.9)
2 4.7 (0.4) 8.8(1.5) 67.5(6.0) 85 (1.0) 20.1(12) 20.4 (2.6)
3 53(07) 9.6(2.9) 97.7 (11.3) 7.0(19) 12,6 (2.2) 60.0 (4.9)
4 62(0.4) 8.4(17) 825 (6.8) 23(12) 2.7 (1.4) 34.0 (3.0)
5 45(0.7) 98(29) 86.8 (11.3) 5.1(L9) 35(22) 17.2(1.8)
Bemberske 1 7.2(02) 89(0.7) 66.3 (2.9) 40(05) 0.8 (0.6) 75.6 (2.0)
2 57(03) 9.8 (15) 659 (5.8) 122 (1.0) 26(1.2) 204 (2.5)
3 53(07) 13.1(29) 815 (11.3) 10.1 (1.9) 3.0 (2.2) 65.0 (4.9)
4 62(02) 67(1.0) 732 (4.1) 38(0.7) 1.0 (0.8) 365 (1.8)
5 6.1(0.3) 75(1.2) 86.2 (4.6) 5.1(0.8) 0.8 (0.9) 13.5(1.3)
Whole area 1 7.4(02) 87(0.8) 723 (3.0) 39(0.5) 2.4(06) 372(1.6)
2 5.1(0.3) 9.1(1.2) 68.9 (4.7) 10.1 (0.8) 115 (0.9) 21.5(2.0)
3 5.0(0.3) 86(15) 68.7 (5.8) 7.7(1.0) 115 (1.2) 603 (2.5)
4 6.1(0.2) 7.0 (09) 74.7 (3.6) 3.2(0.6) 2.0 (0.7) 15.0 (1.3)
5 52(03) 7.6 (1.1) 78.1(4.3) 4007 3.7(09) 76.0 (1.9)
p-values
Location (L) 001 ns <0.001 0010 <0.001 0.022
Farm type (F) 0013 0.009 <0.001 <0.001 <0.001 <0.001
LxF 0.654 ns <0.001 ns <0.001 ns

The numbers in brackets indicate standard errors of the means. ns, non-significant.
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Farm types 2 3 4 5 Average p-values
Mineral fertilizer 94.1 100.0 100.0 96.0 93.2 96.7 0.463
application

Corralling 40 9.1 53 4.0 85 62 0.667
Farmyard manure 168 152 21.1 22,0 119 174 0.681
application

Compost application 1.0 3.0 - 4.0 17 19 0.695
Crop-residue restitution 9.9 152 53 18.0 339 164 0.002*
to soil

Manure and mineral - 3.0 30 - 17 15 0.703
fertilizer combined

Fallowing 129 6.1 211 220 18.6 16.1 0264
Legume-cereal 62.4 27.1 36.8 66.7 56.0 49.8 <0.001%
rotation/intercropping

Cotton-cereal rotation 109 9.1 120 28.8 158 153 0.024*

*Significant difference with p < 0.05.
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Locations Farm types Fertilizer types

Urea SE NPK + urea

Malanville 1 1417 146 50.0 9.9 166.7 30.1
2 150.0 29.1 50.0 199 200.0 30.1
3 179.8 103 84.0 75 166.7 30.1
4 100.0 11.9 64.3 7.5 1333 52.1
5 1429 84 78.1 55 180.9 126

Banikoara 1 100.0 11.9 46.1 7.5 154.5 10.9
2 140.9 88 50.0 115 175.0 157
3 175.0 206 55.0 141 178.0 368
4 87.5 168 58.3 115 1256 197
5 1333 168 58.3 115 150.0 52.1

Bembereke 1 100.0 52 511 35 148.0 9.8
2 150.0 119 70.8 8.1 176.9 17.4
3 145.0 206 50.0 141 2250 36.8
4 96.5 9.7 59.0 63 1163 116
5 133.3 9.2 55.0 63 1738 15.0

Whole area 1 1139 65 49.1 43 156.4 111
2 146.7 109 56.9 8.1 184.0 12.7
3 166.6 103 63.0 7.1 189.9 20.0
4 94.7 7.6 60.5 5.0 125.1 19.0
5 136.5 7.0 63.8 47 168.2 185

Significance (p-values)

Location (L) ns ns ns

Farm type (F) <0.001 ns 0015

LxF 0.044 ns ns

SE, standard error; NPK, Nitrogen-Phosphorus-Potassium ns, non-significant.
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2020

Cultivated Forest Grassland Waters Construction Unused Wetlands Out Proportion

land land land land (%)
Cultivated 4517225 49674 352691 3118 109376 13096 2160 530116 5205
land
Forest land 13011 2369291 37577 oos | 5806 s 208 59496 584
Grassland 1545.62 88081 82688.39 na 346.98 s 3695 30960 2065
Water bodies 971 237 1076 swrrs | 458 084 o w0 037
[ Consriction 17332 784 mos 1% 28112 o 072 21825 214
land
Unused land a7 880 30227 1120 7344 1600493 6133 87052 855
Wetlands 18.80 154 65.10 v 1415 488 199276 142,19 140
o 225103 139811 1435189 i 1590.98 s - =
Proportion 2210 1373 4276 o 1562 317 o - -
(%)
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Land-use type Cultivated Forest Grassland Water Construction Unused Wetlands

land land bodies land land

In 2020 47423.82 25091.77 87044.99 642.17 3872.12 16328.15 212497

ND 46517.79 25038.15 8749105 6709 4647.07 16077.49 208553

cP 47661.18 2499825 86971.05 671.48 4158.79 15981.3 2085.97

EP 461145 2513835 8862674 6898 4068.63 157753 211467

EC L senas | 25078 8741376 67007 48596 16072.57 2084.96

' Variation in ND 906,03 -53.62 446.06 2873 | 77495 06 -39.44
Proportion in -191 -021 051 447 2001 -154 -186

| ND (%)

Variation in CP 23736 9352 7394 2931 286.67 -346.85 -39
Proportion in CP (%) 05 I 008 456 | 74 | -212 -184
Variation in EP 130932 o | 1swzs 47.63 19651 -552.85 -103
Proportion in EP (%) -276 | 019 182 742 | 507 | -339 048
 Variation in EC -102257 R 279 987.48 ssss | 001
Proportion in EC (%) -216 -026 042 434 255 -157 -188
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2020-2030

a 0‘ 1 0 0 0 0 0 1 1 1 1 1 0 0
| a o 1 1 o 0 0 1 1 1 i 0 1 1 1
a 0 0 0 1 0 0 0 1 1 1 1 1 1 1
as 1] 1 1 0 1 1 0 0 0 0 0 1 0 0
a 1 0 1 1 1 i 1 1 0 1 1 1 1 1
a 0 1 N L 0 0 1 L L 1 1 1

a1, a2, 3, a4, @5, 4 and a; represent cultivated land, forest land, grassland, water bodies, construction land, unused land, and wetlands, respectively. The matrix rows represent the source, and
sl et weoat the Geetiation.
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Scenario Cultivated Forest Grassland Construction Unused Wetlands

setting land land land land
ND 0 051 08 056 1 039 052
cp 092 04 043 059 1 0 ‘ 049
EP 0 047 1 047 052 026 045
EC 0 | 048 069 052 1 | 038 ‘ 049
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Year Indicator Land-use types
Cultivated Grassland  Water Construction Unused  Wetlands
land bodies land land
1980 Area (km) 50127.33 24577.64 8571150 678.20 228528 1701578 2165.88
Proportion (%) 27.46 1346 14695 037 125 9.32 119
1990 Area (km) 5026149 24601.03 8576353 554.42 228188 16940.79 2157.90
Proportion (%) 27.53 13.48 46.98 03 125 9.28 118
2000 Area (km?) 5047873 2429193 8572636 548.85 249946 16879.93 2135.88
Proportion (%) 27.65 1331 14696 03 137 9.25 117
2010 Area (km’) 4843404 2515170 8657220 61355 302698 1659474 2168.63
Proportion (%) 2653 1378 4742 0.34 1.66 9.09 119
2020 Area (km’) 4742643 25094.46 8705286 64313 387219 16330.60 212522
Proportion (%) 2598 1375 47.69 035 212 8.95 116
1980 ~ Variation (km?) 13416 2338 5203 -123.79 -3.40 ~7499 -797
1990
Dynamic 003 001 001 -183 -001 ~0.04 ~0.04
degree (%)
1990 ~ Variation (km?) 217.24 -309.10 -37.17 -5.57 21758 ~60.86 -2202
2000
Dynamic 004 -0.13 0 -0.1 095 004 -0.1
degree (%)
2000 ~ Variation (km?) ~2044.69 859.77 84584 64.71 527.52 -285.19 3275
2010
Dynamic 041 035 01 118 211 -0.17 015
degree (%)
2010 ~ Variation (km?) ~1007.62 -57.24 480.66 2957 84521 -264.14 ~4341
2020
Dynamic -021 -002 0.06 048 279 -0.16 -02
degree (%)
1980 ~ Variation (km?) 35140 -285.72 1486 -129.36 21417 -135.85 -30.00
2000
Dynamic 004 ~006 0.00 ~0.95 047 004 -007
degree (%)
Development 007 0.03 0.04 01 049 001 005
degree (%)
Consumption 004 0.08 0.04 106 002 0.05 012
degree (%)
2000 ~ Variation (km?) 30523 80253 132650 94.28 137274 -549.33 ~1066
2020
Dynamic ~0.30 017 0.08 086 275 -0.16 -002
degree (%)
Development 022 029 025 123 318 010 031
degree (%)
Consumption 053 012 018 0.35 044 0.26 033
degree (%)
1980 ~ Variation (km?) ~270091 516.82 134135 -35.08 158691 ~685.18 ~4066
2020
Dynamic -0.13 005 0.04 -0.13 174 -01 ~005
degree (%)
Development 014 015 0.14 047 195 005 017
degree (%)
Consumption 028 0.10 0.10 059 022 0.15 022

degree (%)
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2000

Cultivated Grassland Construction Unused Wetlands O Proportion

land land land (%)

Cultivated 4977162 3244 10114 7.18 20472 360 655 355.63 1983
land

Forest land 3011 2416473 37589 132 313 175 037 41257 23.00

Grassland 547.62 | a0s 85059.43 26 1149 s 412 6200 3635

Water bodies 7139 | vo 37.42 a7 300 553 9.07 | 800

[ Consriction 9.67 om 071 012 227463 0.00 - 1065 059
land

Unused land 1984 288 14086 - 118 16848.70 233 167.08 931

Wetlands 2847 0.64 1089 299 132 8.10 211344 a1 292

» In 707.10 127.20 666.92 1408 22483 3122 244 - -

Proportion 3942 TS 37.18 I 1253 o [EE I

(%)
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Grassland area,ha Grassland area by condition, ha

No vegetation  Very bad Bad Satisfactory Good Excellent

Republic of Kazakhstan 80,845,312.00 411377870 | 40,564309.50 | 25794,616.50 8,266,877.80 | 1,709,896.70 395,832.80
Abay 7,614,133.60" 40802760 | 3500,699.50  3,037,805.80 548,183.00 93,787.30 2563040
Akmola 4,186,939.30 14305660 | 145732710 1,868,555.00 580,88200  113475.10 23,643.50
Aktobe 11,688,953.10° 10252570 5,0646802' 43148266 1900680.10°  287,310.90 18929.60
7 Almaty 3,385,189.30 15377670 2,082298.60 606,479.80 36228210 | 14847610 31,876.00
Atyrau 2481,171.70 21105610 156800070 656,92.20 39,677.50 519180 7534
West Kazakhstan 6,405,187.30 2795300 | 317687650 | 2785319.1° 366,735.90 4441300 3,889.80
Zhambyl 3435,084.30 25918540 2,568,801.70 459,774.20 112,686.70 2993420 4702.10
Zhetisu 372936140 186793.90  2,125930.90 823,557.80 3600810 | 19756540 | 35,6650
Karaganda 1007201540 | 52009820 4903391L6°  3,687,504.1° 862,695.20° 93,775.90 455040
Kostanay 4,494,888.70 89.497.70 57349720 1919.275.40 1494568.90° | 28837750 129,672.00
Kyzylorda I 1,991,243.90 1005196 sa1720 aedsas | 13952530 04770 | 634730
Mangystau 2,353,026.00 37391780 184679610 119,761.30 1211890 4319 0
Pavlodar 4,774,989.00 10359270 221135880  2,012736.00 385,908.10 53,265.50 8,127.90
North Kazakhstan 2,115,060.10 127,035.80 734917.70 858,344.00 319,141.40 62,676.00 1294520
Turkestan 3,281,090.00 29938250  2,416,024.60 357,720.20 139,816.60 61,196.10 6,950.00
Ulytau 6,154,209.20" 433,38240° | 4,552,991.2* 1,008,176.00 15032220 893830 399.1
East Kazakhstan 2,682,468.30 264,647.00 859,589.90 814,317.90 491,58020  170,582.50 81,750.80
Astana - - - - - - -
Almaty 245 - - 49 8.6 11 -
Shymkent 769 - - 394 17 205 -

*Maximum indicators of negative values.
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Data source Source link

i NDVI Landsat (5)/TM, Landsat (8) ‘ [——

3 Statistical data ‘The Statistics Committee of the Ministry of National Economy of the Republic of Kazakhstan

https:/stat.gov

kz

Climate data (temperature, precipitation) Reliable prognosis 1p5 ‘ https://rp5 kz
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2009 2013 2017

Cattle stock 29 527 60.1
Sheep and goats 1064 1246 1045

Horses 271 426 556
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Pressure level

Low 27358198
Permissible 2,293,154
Optimal 2,041,845
High 1,894,777.68

Very high

17.219.53
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Load on pastures, less Load on pastures, more In total
than 20% than 100%

Number of Area of Number of Area of Number of Area of
pastures pastures, ha pastures pastures, ha pastures pastures, ha

In total 63,121,52936 | 42,336 20,907,089.44 58310 17,246907.38 ‘ 100,647 38,154,095.82 60.45
Ulytau Oblast | 1293842178 | 3,549 3418722.20 5025 2,681,878.63 8,574 6,100,600.83 47.15
(including.
Karaganda)

Zhanaarka 1,512,461.00 442 271,541.67 1,001 450,746.81 1443 722,288.48 47.76

region
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Indicators Area (km?)

2013 2018

Unhealthy vegetation cover 2,082,900 2,293,200 3,586,800

Transitional lands 1,551,000 3,583,800 1,307,400

Healthy vegetation cover 2,556,300 ‘ 313,100 1,295,900
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<05 Weak
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509 Very strong
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Department Commune Village Sa
Alibori Malanville Koara-Tédji 32
Isséné 32
Alibori Banikoara Ounet 32
Bonhanrou 32
Borgou Bembereke Pédarou 32
Guéré 32
Guessou-sud 26
Goua 20
Ina 24
Entire study site 262
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Study area Malanville Banikoara em Average
Age (years) 43 (11) 39 (9) 46 (12) 44 (11)
Education level (years) 2.8(3.4) 37(5.0) 3.5 (4.5) 34 (44)
Household size (person) 17.9(1.2) 19.8 (2.1) 12.8 (1.0) 16.8 (1.4)
Family labor (person)* 10.1(0.8) 9.1(1.4) 8.4(0.7) 9.2 (1.0)
Total farm size (ha) 182 (1.4) 16.1 (1.4) 123 (09) 14.7 (0.7)
Total livestock (TLU)' 3.7(0.9) 6.0(09) 45 (0.6) 47 @7)
Total cropped land (ha) 13.4(1.3) 107 (1.3) 132 (0.9) 127 (3.2)
Number of fields per farm 9.8(0.7) 9.2(0.7) 7.5(0.5) 8.5(0.4)
Size of the fields (ha) 1.1(0.1) 0.8(0.2) 12(0.1) 1.1(0.1)
Area of food crop (ha) 7.1(0.7) 8.8(0.7) 8.4(0.5) 8.2(0.4)
Area under cotton (ha) 7.8(0.7) 8.0(0.7) 1.1(05) 44 (04)
Area under maize (ha) 4.0 (0.6) 4.7 (0.6) 5.2(0.4) 48(0.3)
Income from maize (%) 51.9(13) 46.6(2.2) 49.1 (1.1) 49.2 (1.5)

* At least 14-year-old persons working full-time on the farm; standard errors are presented in parentheses.
8, goat = 0.1, chicken = 0.01, pigs = 0.2, and sheep = 0.1.

Tropical livestock unit (TLU): sum of the animals with a coefficient of cow =






OPS/images/fenvs-12-1359521/math_8.gif





OPS/images/fenvs-12-1359521/math_9.gif
ifmzm

1
V(sy25) = igt(s ) = { | ik
oty e

)





OPS/images/fsrma-03-1354981/crossmark.jpg
©

|





OPS/images/fsrma-03-1354981/fsrma-03-1354981-g001.gif





OPS/images/fenvs-12-1359521/math_5.gif
©





OPS/images/fenvs-12-1359521/math_6.gif





OPS/images/fenvs-12-1502824/math_28.gif
e (28)
h = ST o





OPS/images/fenvs-12-1359521/math_7.gif
)





OPS/images/fenvs-12-1502824/math_27.gif
@)





OPS/images/fenvs-12-1502824/math_26.gif
(6)





OPS/images/fenvs-12-1502824/math_25.gif
@5)





OPS/images/fenvs-12-1502824/math_24.gif
(@





OPS/images/fenvs-12-1502824/math_23.gif
(23)





OPS/images/fenvs-12-1464490/inline_24.gif





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g008.gif
[——

0 b Yo g i 0 5 10 3
U s 0 19 2000 5200 R





OPS/images/fenvs-12-1464490/inline_23.gif





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g007.gif





OPS/images/fenvs-12-1464490/inline_22.gif





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g006.gif





OPS/images/fenvs-12-1464490/inline_21.gif
Uy





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g005.gif
7w
i

e un e wnu wen s awn
e ks s e s s wess | wnk





OPS/images/fenvs-12-1464490/inline_20.gif
C dead





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g004.gif





OPS/images/fenvs-12-1499804/fenvs-12-1499804-g003.gif
Potenial | 1 topor s
Modehng | oy

| ougut






OPS/images/fenvs-12-1499804/fenvs-12-1499804-g002.gif
Onbophne, oot

 assiioso 2000300, |
| OSITRIOR T man Sen ae L pi
et
[

1

[ e orime

| o0 0t ||
et






OPS/images/fenvs-12-1359521/fenvs-12-1359521-t009.jpg
Land Protection and Efficient Use Technology (C54)

Factors and sub-factors Global weight
Cultural Diversity Dimension (C1) 02790

Values and Belifs (C11) 0199 0.0558 5
Cultural Adaptability (C12) 02815 0.0785 1
Compatibility of Land Use with Cultural Traditions (C13) 01823 0.0509 8
Cultural Influence (C14) 01976 00551 6
Community Participation and Development (C15) 0.1386 0.0387 15
Psychological Awareness Dimension (C2) 02329
Risk Perception (C21) 0195 0.0454 14
Psychological Driving Factors (C22) 0205 0.0477 10
Cognitive Biases (C23) 0309 0.0720 2
Psychological Belonging (C24) 0291 0.0678 3
Policy and Governance Dimension (C3) 0.1565
Perfection of Land Laws (C31) 0.156 0.0244 21
Environmental Protection Policies (C32) 0227 0.0355 17
Sustainability of Land Use Planning (C33) 0324 0.0507 9
Land Dispute Resolution Mechanisms (C34) 0293 0.0459 13
Environmental Dimension (C4) 01514
Biodiversity Conservation (C41) 0313 0.0474 1
Pollution Control and Clean Production (C42) 0214 0.0324 19
Soil and Water Conservation and Forestry Management (C43) 0307 0.0465 2
Greenhouse Gas Emission Control (C44) 0.166 00251 20
Economic and Technological Dimension (C3) 01802
Market Allocation of Land Resources (C51) 0310 0.0559 4
Output and Profit of Agricultural Land (C52) 0202 0.0364 16
Land Resource Monitoring and Assessment Technology (C53) 0295 0.0532 7

0193 0.0348 18
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c32

c33

L1l

0.4787,0.6544,0.9532
0.7616,0.5714,0.9340

1.4067,1.1106,1.1099

2
1.0491,1.5280,0.8464
LLL
1.2323,1.1893,1.1335

1.4587,1.5389,1.2009
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| 0.8067,0.4295,0.9596
‘ 0.2262,0.9901,0.3568
‘ LL1L
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ca1 ‘ L1 1.0491,1.5762,1.7083 1.9848,1.2451,1.5283 ‘ 1.1851,1.3774,1.2009

a2 ‘ 0.4787,0.6545,0.9532 LL1 0.8822,0.5136,0.9335 ‘ 02460,1.2301,1.7151
a3 ‘ 1.0491,15258,1.7172 1.6269,0.7859,1.1335, L1 ‘ 12181, 1.7741,2.3449
[el%3 ‘ 0.8327,0.8961,0.7272 0.8375,0.2689,0.8615 07133,0.5637,0.8210 ‘ L1l
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C51 C52 C! C54
cs1 L1l 1.0134,1.5579,1.4275 ‘ 1.3077,1.3461,1.2055 1.4028,0.8130,1.2009
52 1.373422,1.7393 [ LL1 ‘ 0.9415,0.1482,0.7485 | 0.3071,05628,0.5283
Cs3 0.3270,0.1693,0.3874 1.9638,0.7859,1.1335 ‘ LL1 1.2181,1.7741,2.3450

C54 0.7769,0.3384,0.766 0.1257,0.2644,0.2022 ‘ 0.4111,0.5637,0.8201 LL1
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Linguistic scale for importance Triangular fuzzy scale Triangular fuzzy reciprocal scale

 Absolutely more important (AMI) (5/2,3,712) | @713, 25)
‘ Very strongly more important (VSMI) | [v 877 ) ‘ (173, 2/5, 1/2)
‘ Strongly more important (SMI) (312, 2, 5/2) ‘ (215, 1/2, 2/3)
‘ Weakly more important (WMI) LW ‘ 23, 1)

* Equally important (ED) 12,1, 3/2) ‘ 23,1,2)

\ Just equal w11 ‘ HER)]






OPS/images/fenvs-12-1359521/fenvs-12-1359521-t002.jpg
n T2 3 4 5 6 7 8 9
& |8 | ¢ (28 |58 | f | | |





OPS/images/fenvs-12-1359521/fenvs-12-1359521-t003.jpg
(e}

@il

LL1

G2

1.4571,13124,2.0891

Cc3

15116,13312,1.4282

ca

1.8517,1.4413,1.8741

E5)

1.0931,1.789,1.195

2

Q

2

c

0.7984,0.925,0.991
0.331,0.2206,0.4651
0.745,0.9870,0.6340

1.1045,0.8664,0.761

LL1
0.8222,05354,0.6299
0.3249,0.3067,0.5038

0.5692,0.7859,0.9441

15431,1.1121,1.3310
LL1
0.7892,0.4326,0.5549

0.7674,0.8674,0.9664

1.2211,1.6512,1.2214
1.2508,1.3314,1.3827
LL1

1.4323,0.7745,0.8777

1.3319,1.3354,1.22
1.2232,09774,0.867
1.1595,19541,1.3961

LL1






OPS/images/fenvs-12-1359521/fenvs-12-1359521-t004.jpg
c1 C12 C13 C14 (&
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Class names Descri

1 Waterbody ‘The land area is covered by lakes and large water reservoirs

2 Built-up Built-up areas include residential, commercial, industrial, and transportation facilities, construction sites, large excavation/quarry sites,
and settlements

3 Agriculture Land that was cultivated or uncultivated on both small- and large-scale agricultural land was used for growing annual crops such as

maize, wheat, and potatoes
4 Wetland Waterlogged and swampy areas covered by grass
5 Grassland Land includes grasses, open areas, scattered shrubs used for grazing, and other areas, such as open green areas (with no trees) and open

market areas (with no shade)

6 Woody vegetation Includes natural forests, plantations, woodlots, and trees in compound green areas

7 Agroforestry Farmlands with perennial crops such as ense, fruit trees, Khat, coffee, sugarcane, etc
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Satellite/sensor

Acquisition date (yyyy/

Spatial resolution of visible- and near-infrared (NIR)

mm/dd) bands (m)
Landsat-5 T™ 1984/12/17 168/055 30
1990/12/18 168/055 30
2000/01/28 168/055 30
2010/11/07 168/055 30
Landsat-8 OLI 2021/01/05 168/055 30
Sentinel-2B MSI 2021/12/29 168/055 10
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Data type Data source

11 Landsat TM and OLL: WRS path/row: | USGS Producing land use and land cover (LULC) information and
168/055 https://earthexplorer.usgs gov mapping for the study area

12 Orthophoto, 2018 Hawassa city administration For validation of land-use/cover classifications

13 Sentinel-2 image https://scihub.copernicus.cu/dhus

14 Google Earth images hitps://google.com/earth

15 ASTER GDEM (DEM) NASA Used to characterize the topography of the study area

https://earthdata.nasa.gov/

16 Study area boundary Hawassa city administration To indicate the boundary and extent of the study area

17 GPS survey data Field survey Ground truth data samples were used to validate the
classification map for the recent 2021 land cover map

18 Population Hawassa city administration, department of finance and | To determine the sample size for the household survey and

economic development (DFED)

investigate its growth rate in the study area

19 Soft idea Interview (houschold and key informant)

110 Written documents Hawassa city administration, Internet, and lterature
(published or unpublished articles)

‘The interview results reveal the historical and current status
of LULC in the study area

Written documents providing information about the city,
documented as hard/soft copies or from online sources, like
google and journal articles
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Overall impact Direct impact Indirect impact Indirect impact Residual impact

In gy In B2 In B3

In B, 0.075 0017 - X -0017 0017 0.006 0052
In B, 0442 0173 0.055 -0.092 0.064 0027 0241
Ing; -0043 0.007 -0.007 X - ~0.007 -0.017 ~0.033

In g, 0.084 0.018 0.018 X -0.018 . 0.007 0.059
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Binder materials Binder materials Solid part Predicted strength, MPa

Binder materials Solid part Water

Cement Iron ore beneficiation tailings 2-10 65-75 15-33 05-30

28 days (Chen et al,, 2024; Wang et al., 2024)
30-50

90 days (Grabinsky et al, 2022; Xu et al, 2018)

Blast-furnace granulated slag

Dry fly ash

Combination of binder materials
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e of activity

Quantitative index, million tons

2019 2020 2022
Filling of the mined-out quarry spaces and mine failure zones with waste rocks 192 27 182
Processing of overburden rocks for crushed stone production 70 22 17
Use of overburden rocks for road construction in quarries 162 455 43
Utilization of sludge from agglomeration and blast-furnace, as well as steel-smelting industries 0342 028 016
Utilized (within the framework of the Environmental Program) 427 3073 244
Contribution of the Program to total utilization in the Kryvyi Rih city, % 517 395 482






OPS/images/fenvs-12-1502824/inline_33.gif





OPS/images/fenvs-12-1502824/inline_22.gif





OPS/images/fenvs-13-1455151/fenvs-13-1455151-t006.jpg
2019 2020 2021

2022

Index 2013 2015 17
g 0.183* 0.174* 0.151% 0.141% 0.138* 0.135% 0.134% ‘ 0.128* 0.135% 0131
() | 1.799 [ 1721 1531 1.649 1724 1.894 1.585 ‘ 1542 1499 1459
P value 0072 0085 l 0.056 0.047 | 0054 0063 0066 ‘ 0080 0.062 0074

Slobe B 6.9 cunraeent sianakiesnos lpvlizat o2 B0 3o Dbk and < 10 Tosmecinily
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P ‘ 0.260"* 1.000

B ‘ 0.059 -0.015 1.000
B | 0039 | 038 | 0243 1.000
B4 ‘ 04394+ 0.031 0.054 -0.418** 1.000 ‘
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Obs Mean Std. Dev Max

ALUCE 300 ‘ 335912 227.392 11651 995.753
B 300 ‘ 0.156 0055 [ 0.034 I 0.355 119
'S 300 ‘ 0570 0082 ‘ 0377 0.782 108
Bs 300 l 6457 3266 [ 5876 [ 19.384 153
pt 300 ‘ 719.836 | 496,661 [ 12700 [ 2044000 124

Note: The VIF, test shows that the average VIF, for all variables is about 1.26, and all individual VIF, values are less than 10, so there is no multicollinearity problem.






OPS/images/fenvs-12-1502824/inline_2.gif
Vrk





OPS/images/fenvs-13-1455151/fenvs-13-1455151-t003.jpg
Province Id 2013 ALUCE 2022 ALUCE Mean Province Id 2013 ALUCE 2022 ALUCE Mean
ALUCE ALUCE
13-2022 2013-2022

Anhui 1 542415 513.486 547.997 Jiangsi 16 270135 222881 254287
Beijing 2 28525 14370 18771 Liaoning v 323999 280279 304962

7 Fujian 3 243424 e s ner | 18 342,692 415981 393.649

Mongolia

Gansu A 251610 229074 253.920 Ningsia | 19 70855 70949 71564
Guangdong | 5 393563 349.079 383.159 Qinghai | 20 22584 18691 21294
 Guangsi 6 354.969 357.054 367.863 Shandong | 21 912,653 734645 827377
Guizhou 7 157351 132912 150.029 Shanxi 2 198255 187.202 196963
 Hainan s 91208 79368 w0992 | Shaamd | 2 323.907 298461 316574
Hebei ¥ 697.694 526277 631.220 Shanghzi 24 35.159 19425 29.962

10 962.174 883.124 957.198 Sichuan | 25 421599 375790 406.936

| n 510614 524405 538.473 Tianjin a6 48.676 27817 37.365
12 525.250 429.566 481.185 Xinjiang 27 430.054 542738 545.441

 Hunan 5 422513 395772 423853 Yunnan | 28 359654 319352 365.363
Jilin 14 320017 336348 346.590 Zhejiang | 29 301003 256.651 284053

147275 140767 ot

Jiangsu 15 562023 507.870 538.696 Chongging | 30
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Carbon source Carbon emission Reference source

coefficient
Diesel 0.59 kg/kg. IPCC (2019)
Fertilizer 089 ke/kg Ouk Ridge National Laboratory, United States
Pesticide 493 kelkg Oak Ridge National Laboratory, United States
Plastic mulch 5.18 kglkg Institute of Agricultural Resources and Regional Planning, Nanjing Agricultural University (Holt and
Shukla, 2016)
Irrigation 266.48 kg/km?® Refer to Relevant Research (Pulido-Bosch et al,, 2018)
Tillage | 312,60 kg/km® Refer to Relevant Research (Zhang et al, 2022)
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Driving factor Definition Data source Symbol

Agricultural Production | Ratio of ALUCE to the total output value of the plantation industry China Rural Statistical [

Efficiency Yearbook

Agricultural Production | Proportion of the total output value of the plantation industry to the total output value of China Rural Statistical B2
Structure agriculture, forestry, animal husbandry, and fishery Yearbook

Agricultural Output Level | Ratio of the total output value of agriculture, forestry, animal husbandry, and fishery to the number | China Rural Statistical Bs
of employees in the primary industry Yearbook

Agricultural Labor Scale | Number of employees in the primary industry China Rural Statistical Bs

Yearbook
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Class | Class Il

Cropland Paddy land, dry land
Forest Forested land, shrubland, open forest land, other forest land
Grass High-cover grassland, medium-cover grassland, low-cover grassland
Wetland Streams, lakes, reservoirs, ponds, mudflats
Construction land Land for towns, rural settlements, industry, mining and transportation
Unused land Bare rock, conglomerate
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eal Cropland Forest Grass Wetland Construction land
LAT 2000 ~0973 ~0962 0234 ~0719* 0994+
2005 0966 ~0957 -0238 0768+ 0991+
2010 ~0983 ~0948* -0318 ~0831% 0994+
2015 ~0995* ~0957 -0318 -0722* 0995+
2020 ~0936* ~0936* 0346 0673 0997+
AREA_MN 2000 ~0778" ~0.982° 0234 ~0914* 0981
2005 ~0870 ~0978" 0450 ~0906+ 0,987+
2010 ~0917% ~0.943* 0178 ~0.896% 0988
2015 ~0958* ~0950° 0250 ~0746* 0991+
2020 ~0.976* -0936 0346 0673+ 0997+
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dscape metric

PAI

LAI

AREA_MN

PD

LPI

SHDI

Formula

PAI =2In(n) + iiﬂ, In(Py)
=

LAI = T2, PAI x A%

AREAMN = mean(A [ patch])

N
PD=%
LPI = 322 x 100

SHDI = -Y P;InP;

Meaning

P, is the probability that patch types i and j are adjacent to each other. Reflects the degree of aggregation of
different patch types in a changing landscape

For the overall landscape, the Landscape Aggregation Index (LAI) can be calculated by summarizing PAI,

weighted by A%
‘This indicator reflects the relationship between the total area of category I land and the amount of land

The number of patches per unit area. N denotes the number of patches in the landscape and A denotes the total
area of the landscape

@yay refers to the maximum patch area in a given patch type; A denotes the total landscape area. The
proportion of the largest patch area (%) in a particular patch type is used to determine the type of landscape
dominance; the larger the value, the greater the dominance

SHDI is equal to the negative of the sum of the area ratios of cach patch type multiplied by the value of the
natural logarithm at the landscape level. i is the patch type sequence number, P; is the proportion of class  in
the landscape to the area of class I in the landscape, and n is the total number of patch types of class I in the
landscape
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Land use/cover Resistance coefficient use/cover Resistance coefficient

Paddy field 100 Middle-density grassland 3
Irrigated land | 100 [ Low-density grassland 5
Forestland 1 Water 8

Shrubland | 3 Urban construction land 1,000

Open woodland 5 Rural construction land 800
Other forestland | 5 Other construction land 900
High-density grassland 1 Unused land 50

Source: Zhang et al., 2017.
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Year Overall Within- Within- Within- Between- Between- Between- Within- Between- Super

east central west east- central-  east-west region region (%) variance

central west (%) (%)

2004 0206 0200 0259 0117 0272 0.186 0232 285 44.1 274
2005 0243 0202 0267 0171 0275 0234 0302 23 511 207
2006 0219 0.193 0258 0130 0294 0.190 0274 271 474 255
2007 0243 0208 0259 0140 0318 0216 0322 257 532 211
2008 0253 0205 0274 0148 0296 0244 0338 256 549 195
2009 0257 0213 0265 0.160 0291 0253 0339 w 532 s
2010 0286 0.196 0278 0179 0331 0271 0409 246 613 141
2011 0269 0.199 00 | ot 0319 0253 0379 us | 572 o
2012 0302 0.199 0256 | 0214 0336 0288 0428 54 569 177
2013 0296 0202 021 | o1 oxs | o 0428 wr | 57.1 e
2014 0302 0203 0257 0188 0344 0293 0440 237 62.1 142
2015 030 | o 0246 0207 0371 0303 0478 ns | 624 141
2016 0319 0203 0261 0203 0378 0298 0475 236 625 139
2017 035 | 0w s | oz 0386 0314 0497 | 609 s
2018 0344 0204 0286 0242 0370 0334 0499 249 602 149
2019 0378 0310 0285 | o023 0443 0384 0520 244 58.6 e
2020 0378 0295 0292 0244 0428 0389 0515 2148 580 172
Average | 0291 0214 0266 0186 0341 0278 0404 253 56.5 182
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Provinces Technical Fertilizer input Carbon emission reduction potential (kg

efficiency (%) efficiency (%) CE/hm?)
East Hebei 8376 a2 297.90
Shandong 95.09 7778 8796
Jiangsu 8166 3674 30429
Fum— 8683 5188 23005
Central Henan 97.69 8890 3886
Anhui 8327 1038 21742
Hubei 7627 2644 21855
Average 8574 5191 158.28
West Xinjiang 8338 4118 31062
Gansu 1741 202 1144
Shaanxi 63.02 979 45018
Sichuan 80.40 3406 16480
Average 6855 2136 33651
National | 7920 3988 25110
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Variable name Symbol el on Coefficiel Standard error

Constant c Baseline level of wheat output when other inputs are zero 6505 0588 11057
Labor L Labor input in days per hectare 0176 0045 -3913
Fertilizer F Chemical fertilizer application in kg per hectare 0.199% 0077 2589
Seed s Seed usage in kg per hectare 0,192+ 0,066 2925
Machinery M Machinery costs in CNY per hectare 0,076+ 0026 2918
Variance of the error term (%) 7 Measures the variance of the random error term 0037 0029 1.290
Technical inefficiency ratio (y) v Proportion of the error attributed to technical inefficiency 0,866 0.105 8229
Mean of the inefficiency effect () i Mean value of the technical inefficiency term 0161 0124 1.300

Log-likelihood ratio (LR) LR Test statistic for the significance of technical inefficiency 57240 - -

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.
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Fertilizer type Nitrogen Phosphorus Potassium Pure quantity (kg) per 100 (kg)of physical

(N) (%) (P20s) (%) (K20) (%) quantity
Diammonium 17 17 0 | o
Phosphate
Triple Superphosphate 1 u 13 8
Mixed Fertilizer 10 17 3 30
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Data type Resolution (m) Data source

Precipitation 30 hitpe//cde.nmic.cn/ (accessed on 22 September 2022)
Temperatures 30 | https//ede.nmic.cn/ (accessed on 22 September 2022)
Normalized Difference Vegetation Index 30 7 htp://www.nesdcorg.cn (accessed on 22 September 2022)
Slope 30 Calculated from DEM
DEM ] 30 hitps://asfalaska.edu/ (accessed on 22 September 2022)
Area of tea plantation 30 Extracted by land use
Population density involving tea 30 hitps//www.fjaxgov.cn/ (accessed on 22 September 2022)

Total tea production value 30 hitp://www.fjaxgov.cn/ (accessed on 22 September 2022)
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Year Image source Image date Patl Row Cloud volume (%)
2010 Landsat/TM 2010/08/03 120 2 <5
2010/12/09 120 43
201012118 19 | 43
2015 Landsat/TIRS/OLI 2015/01/14 19 43
2015/01/21 120 43
2015/05/13 120 | 2
2020 Landsat/TIRS/OLI | 2020/02/20 120 2
2020/02/20 120 | 43
2020/03/16 19 43
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