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Editorial on the Research Topic

Collection of COVID-19 induced biases in medical research

The COVID-19 pandemic has significantly impacted various aspects of social

interactions, individual behaviors, and healthcare practices. It has also altered many

physiological responses, leading to the expectation that numerous medical studies may be

affected by hidden biases related to the pandemic, either directly or indirectly linked to the

use of face masks or the virus itself. For example, wearing face masks has been shown

to create substantial biases in fields such as endocrinology, ophthalmology (especially

concerning dry eye and ocular conditions), sleep research, cognitive biases (including

studies on emotion recognition), and gender differences, among others. It is likely that

many of these biases remain unrecognized in other medical fields.

This Research Topic encompasses submissions that address previously unreported

biases arising from the COVID-19 pandemic and/or the use of face masks. Our objective

was to compile manuscripts that identify novel biases, thereby facilitating a more accurate

and impartial interpretation of clinical findings, methodological advancements, registered

clinical trials, cohort studies, and comparative studies conducted both before and after

the pandemic.

It is not surprising to state that the COVID-19 lockdown significantly affected many

healthcare systems. Turati et al. demonstrated that the orthopedic and trauma departments

in Italy encountered major difficulties, leading to a notable decrease in all services, such

as emergency consultations, outpatient visits, and surgical procedures. This situation

provides important lessons for the future, but tackling a future pandemic will necessitate

collaboration across multiple disciplines.

This subsequent finding may be referred to as a “policy bias” indirectly imposed by the

COVID-19 pandemic.

To improve healthcare comprehensively, public health initiatives have shifted from

focusing solely on pandemic response to gaining a deeper understanding of the aftermath,

which includes mental health challenges arising from societal restrictions and safety

measures. The lasting impacts of the COVID-19 pandemic depend on the health

system’s ability to foster healthier communities, enhance individual resilience, and reduce

environmental stressors moving forward. In this context, the pandemic’s consequences

have been examined in connection with the public health crisis and the physical isolation

caused by the SARS-CoV-2 virus.
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Marsico and Russo state that in addition to a person’s

willingness to embrace positive change, the pandemic has led

to emotional instability, created lasting memories, and caused

social upheaval in both private and public spheres. These groups,

which are often more socially disadvantaged than others, may

undermine their own confrontational behavior and be less capable

of demonstrating collective resilience over time.

This confrontational behavior could inadvertently exacerbate

systemic biases in medical research and policy.

A key concern for the scientific community is the rate of

retractions that occurred during the COVID-19 pandemic.

Furuse showed that retraction rates generally increased until

at least 2019, with the highest rates observed in the category

of “Neoplasms”. During the COVID-19 pandemic, there was

a significant surge in publications related to “Infections” and

“Respiratory Tract Diseases”; however, the retraction rates for these

categories and for COVID-19-related papers were not particularly

high compared to other diseases. Most disease categories showed a

stronger association with retractions in China, while for COVID-

19 papers, other countries exhibited higher retraction rates than

China. In recent years, papers that have been retracted are less likely

to appear in high-impact journals.

This phenomenon can be classified as publication bias.

Numerous research efforts have sought to assess the severity

and patterns of COVID-19. Initially, during the pandemic, the

complex trajectories of patients were described only in general

terms, and many studies were significantly impacted by biases

related to time, selection, and competing risks.

Lucke et al. demonstrated that multi-state models help mitigate

these biases by simultaneously analyzing various clinical outcomes

while considering their time-related nature, including ongoing

cases, and accounting for competing events. A group of researchers

utilized a publicly accessible dataset from COVID-19 first wave to

illustrate the advantages of employing multi-state methodology in

the analysis of hospital data.

They evaluated the results of the data analysis conducted with

multi-state models against the results obtained when different

types of bias were overlooked. Additionally, Cox regression was

employed to analyze the transitions between states in the multi-

state model, enabling a comparison of how covariates affect

transition rates between the two states. Finally, they computed

the anticipated lengths of stay and state probabilities derived from

the multi-state model and represented this information through

stacked probability plots. Utilizing multi-state models on real-time

data enables quick identification of changes in disease progression

when new variants emerge. This information is crucial for guiding

medical and political leaders, as well as the general public.

Another three common methodological biases need to be

addressed: competing risks, immortal-time bias, and confounding

bias in real-world observational studies that assess treatment

effectiveness. A team of researchers utilized a specific observational

data example involving COVID-19 patients to evaluate the effects

of these biases and suggest possible solutions. Indeed, neglecting

competing risks, immortal-time bias, and confounding bias can

distort treatment effect estimates.

According to Martinuka et al., using the basic Kaplan-Meier

method produced the most inaccurate results, leading to inflated

probabilities for the primary outcome in studies involving COVID-

19 hospital data. This inflation could misguide clinical decisions.

Therefore, it is essential to tackle both immortal-time bias and

confounding bias when evaluating treatment effectiveness. The trial

emulation framework presents a possible approach to mitigate all

three of these methodological biases.

This was only a part of the issue. Tackling bias in how SARS-

CoV-2 reinfection is defined is another key challenge. Traditionally,

reinfection is identified as a positive test result that happens at least

90 days after a prior infection has been diagnosed. However, this

lengthy timeframe might result in an undercount of reinfection

cases. Chemaitelly et al. explored the possibility of using a different,

shorter timeframe to define reinfection. The 40-day time window

was appropriate for defining reinfection, irrespective of whether it

was the first, second, third, or fourth occurrence. The sensitivity

analysis, confined to high testers exclusively, replicated similar

patterns and results. These findings will significantly impact the

issue of underestimation.

The comparison between immunity gained from previous

natural infections and that obtained through vaccination against

SARS-CoV-2 is a significant topic. In this context, we required a

statistical clarification to prevent any misinterpretation. To achieve

this goal, we need access to real-world data from a large population.

Weber et al. analyzed data from over 52,000 individuals. The group

that was infected tended to be younger, had a higher proportion of

men, and exhibited lower morbidity compared to the vaccinated

group. After the initial 90 days, these differences became more

pronounced. The analysis conducted during the second 90 days

revealed variations in results based on different analytical methods

and age groups. There were also age-related differences in mortality

rates. When considering the outcome of SARS-CoV-2 infection,

the impact of vaccination compared to infection differs by age,

showing a disadvantage for vaccinated individuals in the younger

demographic, while no significant difference was observed in

older adults. It is important to analyze two observation periods:

the first and second 90-day spans after infection or vaccination.

Furthermore, it is necessary to implement methods to correct any

imbalances. This strategy facilitates equitable comparisons, enables

more thorough conclusions, and helps avoid biased interpretations.

It is crucial not to mix up these results with the 40-day time

frame that was proposed as suitable for identifying reinfection

(Chemaitelly et al.).

As for the observational studies on the effectiveness of COVID-

19 vaccines, these designs have provided crucial real-world insights

that have influenced global public health policies. These studies,

which mainly utilize existing data sources, have been crucial for

evaluating vaccine effectiveness across various populations and

for creating effective vaccination strategies. Cohort designs are

commonly used in this research. The swift rollout of vaccination

campaigns during the pandemic led to variations in vaccination

rates influenced by socio-demographic factors, public policies,

perceived risks, health-promoting behaviors, and overall health

status. This may have resulted in biases such as healthy user

bias, healthy vaccine effect, frailty bias, differential depletion of

susceptibility bias, and confounding by indication. The pressure to

publish findings rapidly may have exacerbated these biases or led

to their oversight, thereby affecting the reliability of the results. The
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extent of these biases can vary greatly depending on the context,

data sources, and analytical techniques used, and they are likely

to be more pronounced in low- and middle-income countries due

to weaker data infrastructure. It is crucial to address and reduce

these biases to obtain accurate estimates of vaccine effectiveness,

inform public health strategies, and maintain public confidence in

vaccination efforts. Agampodi et al. in their brilliant article state

that clear communication about these biases and a commitment to

improving the design of future observational studies are vital.

Another type of neglected bias that may obscure data analysis

during the COVID-19 pandemic arises from treatment-induced

differences. Prosty et al. demonstrated that during the pandemic,

many patients received concomitant corticosteroids, which are

known to broadly suppress inflammatory cytokines, including

those associated with type II inflammation. This may have

obscured any differences induced by omalizumab and biased the

results toward the null hypothesis, while others did not receive

corticosteroid therapy. Results from one of the articles submitted

to our Research Topic suggested that the potential benefits of

omalizumab in COVID-19 may be mediated independently of the

modulation of the measured serum biomarkers. This finding, in

itself, impacts the interpretation of many clinical trials conducted

during the pandemic.

Given the numerous issues addressed in this brief editorial, the

significance of interdisciplinary collaboration in mitigating biases

exacerbated by the pandemic must be emphasized.
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Characteristics of retracted 
research papers before and 
during the COVID-19 pandemic
Yuki Furuse *

Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Objectives: During the COVID-19 pandemic, a large number of research 
papers were published, and some of them were retracted. The present study 
aims to reveal the characteristics of retracted papers before and during the 
pandemic.

Methods: The study investigated 24,542,394 publications from 1999 to 
2022 and analyzed the profiles of retracted papers from the perspectives of 
year, disease category, country, and journal.

Results: Retraction rates were generally increasing at least until 2019, 
and were the highest for “Neoplasms.” The number of publications for 
“Infections” and “Respiratory Tract Diseases” dramatically rose during the 
COVID-19 pandemic; however, the retraction rates in the two categories 
or of COVID-19-related papers were not especially high compared to other 
diseases. The association with retraction was strongest for China in most 
disease categories, whereas for COVID-19 papers, other countries showed 
higher retraction rates than China. In recent years, retracted papers have 
become less likely to be published in high-impact journals.

Conclusion: The COVID-19 pandemic does not seem to affect the 
retractions of research papers much. We should keep monitoring retractions 
and analyze the effects of pandemics for better science.

KEYWORDS

COVID-19, SARS-CoV-2, publication, retraction, research integrity

1 Introduction

Medical research plays an important role in advancing knowledge and in improving 
health. The hypotheses, findings, and reviews of biomedical research are widely shared 
among research communities and the general public through publications. Yet, “to err is 
human” (1). Some publications were retracted due to honest errors or misconduct.

During the COVID-19 pandemic, research communities have been eager to study 
this disease in order to mitigate its impact on public health. Thanks to these efforts, 
we successfully identified the causative agent, SARS-CoV-2, characterized its clinical and 
epidemiological features, and developed remedies and vaccines. However, unfortunately, 
some studies were later retracted, causing chaos. Such eventually retracted studies might 
result in mistakes in patient care that could cause possible harm. For example, several 
studies have reported the effectiveness of ivermectin in treating COVID-19, but were 
eventually retracted (2). These retractions affected the results of a meta-analysis that 
initially supported the use of the medicine. After excluding data from retracted and 
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questionable studies, the effect did not reach statistical significance 
(3). In actuality, the administration of the drug aiming to prevent or 
treat COVID-19 has caused severe adverse events in some 
people (4, 5).

Researchers have rushed to conduct studies on COVID-19 and 
publish their results. There might have been pressure to publish results 
quickly to combat the pandemic, possibly leading to careless or poor 
research that was later revealed to be incorrect. Furthermore, a flood 
of submissions and acceleration of the review process during the 
pandemic might affect the quality of research papers regarding not 
only COVID-19 but also other diseases (6). As such, the pandemic 
may have inflated the number of retractions and also made an impact 
on various aspects of retractions (7). This study analyzed the profiles 
of retracted research papers and compared them before and during 
the COVID-19 pandemic. Understanding them would help conduct 
better research activities, minimizing the chance of future retractions 
even under crisis situations such as a pandemic.

2 Methods

2.1 Publication records

The number of publications by retraction status, publication year, 
disease category, authors’ affiliated country, and journal was obtained 
via PubMed, accessed between 1 June 2023 and 15 October 2023.1 
Data were retrieved using the Rentrez package in R (8).

The disease category and microbial etiology of research papers 
were searched using MeSH terms (9). Information on the Journal 
Impact Factor 2021 (published in 2022), Journal Impact Factor 2018 
(published in 2019), and Scimago Journal Rank (SJR) indicator 2022 
was used to identify high-impact and “good” journals. All query terms 
used in the present study can be found in Supplementary Table S1.

When a research paper could be  assigned to multiple disease 
categories or authors’ affiliations, that paper was counted multiple 
times in different classifications. Thereby, affiliations were analyzed for 
all coauthors, not exclusively for the first or corresponding author.

2.2 Statistical analysis

The numbers of total publications, retracted papers, and retraction 
rates were counted and calculated by publication year and disease 
category. Disease categories were ranked based on the retraction rates 
by 3-year-periods from 1999 to 2022.

The association of affiliated countries with retracted papers was 
evaluated using odds ratio by the 3-year-periods. The odds ratio was 
calculated as follows: (“number of retracted papers from a country of 
interest”/“number of retracted papers from other countries”)/
(“number of non-retracted publications from a country of 
interest”/“number of non-retracted publications from 
other countries”).

The increasing trend of retraction rates was tested using the 
Kendall rank correlation coefficient. A multivariable regression 

1 https://pubmed.ncbi.nlm.nih.gov/

analysis, assuming a quasi-Poisson distribution, was performed to 
analyze the associations of publication year, disease category, and 
affiliated country with retraction counts, using the number of 
total publications as an offset. Statistical significance was set at 
p < 0.05.

3 Results

3.1 Disease category of retracted papers

Between 1999 and 2022, 24,542,394 publications were indexed in 
PubMed; of these, 14,717 were retracted (6.0  in 10,000 papers). 
Among the 18 disease categories, “Neoplasms” had the highest 
number of retracted papers (no. = 3,234), followed by “Digestive 
System Diseases” (1,187), “Urogenital Diseases” (959), “Nervous 
System Diseases” (866), and “Cardiovascular Diseases” (834) 
(Figure 1; Supplementary Figures S1–S3). In terms of retraction rates, 
which were calculated as the number of retracted papers per total 
publications, the highest rate was observed for “Neoplasms” (13.1 in 
10,000 papers), followed by “Digestive System Diseases” (10.4), 
“Endocrine System Diseases” (9.3), “Urogenital Diseases” (7.1), and 
“Stomatognathic Diseases” (7.0).

Both the total number of publications and the number of retracted 
papers increased from 1999 to 2019. During this period, statistically 
significant increases in the retraction rate were found for 16/18 disease 
categories. Although the total number of publications continued to 
increase after 2019, the retraction counts and rates declined 
(Figures 1B,C; Supplementary Figures S1–S3). The yearly number of 
retractions and retraction rates were analyzed based on not their 
retraction date but the publication date. The decrease of retractions 
after 2019 must be because this study was conducted in 2023; it still 
takes time to realize concerns and investigate them for papers 
published in 2020 or later. Therefore, comparing retraction rates in 
recent years to past years is difficult.

To address this issue, we compared the retraction rates among 
different disease categories using contemporary data. Figure  2A 
illustrates the trend of the contemporary ranking of retraction rates 
by disease category over 24 years by 3-year-periods. “Neoplasms” 
ranked the top in 6 out of 8 periods. “Respiratory Tract Diseases” was 
situated in the top 4 or 5 in the rank in 2011–2019, but it dropped to 
10th in 2020–2022. “Infections” kept low positions, 13th or below, 
throughout the study periods, even during the COVID-19 pandemic.

3.2 Infectious diseases in retracted papers

I then investigated retracted papers related to the top five 
intensively studied infectious diseases identified in a previous study 
(10): hepatitis C, HIV infection, influenza, malaria, and tuberculosis, 
along with five trendy infectious diseases over the past 20 years: 
COVID-19, Ebola virus disease, poliomyelitis, SARS, and Zika fever. 
Those diseases were declared a Public Health Emergency of 
International Concern by the World Health Organization (11). The 
number of publications on such infectious diseases rose after big 
outbreaks, that is, around 2003 for SARS, 2009 for influenza, 2014 for 
Ebola, 2016 for Zika, and 2020 for COVID-19 (Figures  3A,B; 
Supplementary Figure S4).
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From 2020 to 2022, 40 papers regarding COVID-19 were retracted 
(Figure  3C). Ten retracted papers on SARS in the corresponding 
period must be associated with studies comparing COVID-19 with 
SARS. Disease outbreaks did not lead to an increase in the retractions 
of research papers about influenza, Ebola, or Zika (Figures 2B, 3C,D). 
The peaks of SARS-related retractions in 2004 and 2009 were formed 
by one retracted paper each year. During the 2020–2022 COVID-19 
pandemic, the retraction rate of COVID-19 papers was lower than 
that of publications on tuberculosis, hepatitis C, or influenza 
(Figure 2B).

3.3 Retracted papers and authors’ affiliated 
country

Next, I analyzed data on countries affiliated with the authors of 
retracted papers in the top 20 countries with the largest number of 

publications. The association between retracted papers and affiliated 
countries was assessed by calculating the odds ratio in 3-year-periods 
(Figure 4; Supplementary Figure S5). During 2020–2022, a positive 
association for retractions was observed for China, India, and Iran. 
The odds ratios were high before, but recently decreased in Germany, 
Japan, and South Korea. The United  Kingdom, France, the 
Netherlands, Brazil, Turkey, Switzerland, and Belgium have always 
shown a negative association with retractions from 1999 to 2022.

Figure 5 and Supplementary Figures S6–S8 show the retraction 
rates in 2020–2022 by the 18 disease categories plus COVID-19 and 
affiliated countries. The retraction rates of COVID-19-related papers 
were comparable with other diseases in most countries. While 
retraction rates were generally high in China, India, Iran, Turkey, and 
Japan (>4.0 per 10,000 publications), the retraction rates of COVID-19 
papers from those countries were lower than other diseases except in 
India. China had the highest retraction rates in 16 out of 18 disease 
categories and the second highest in the remaining two categories. 

FIGURE 1

Trend of retractions among eight disease categories from 1999 to 2022. Yearly numbers of total publications (A), retracted papers (B), and retraction 
rates per 10,000 publications (C) in eight disease categories, which are among the top 5 diseases in publication counts or retraction rates, are shown. 
The results of all 18 disease categories can be found in Supplementary Figure S1.
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However, when it comes to COVID-19, seven countries (India, South 
Korea, Australia, Belgium, Sweden, France, and Iran) showed higher 
retraction rates than China.

3.4 Multivariable analysis for retraction 
counts

Factors significantly associated with retraction count by a 
multivariable regression analysis are listed in Table 1. As indicated by 
descriptive observations so far, recent publications, particular disease 
categories (e.g., “Neoplasms,” “Endocrine System Diseases,” and 
“Digestive System Diseases”), and specific countries (e.g., China, Iran, 
India, and Japan) showed significant associations with retraction after 
statistical adjustments among those variables. The analysis found that 
publications in “Infections” are significantly less likely to be retracted 
compared with “Cardiovascular diseases,” which is situated in the 
middle in retraction rates among 18 disease categories (incidence rate 
ratio, 0.56; p value <0.001).

3.5 Retracted papers in high-impact 
journals

Finally, the impact of the retracted papers was explored by 
checking the journals in which they were published. The proportion 
of all publications in high-impact journals (Journal Impact Factor 
2021 > 10) has gradually decreased in most disease categories since 
1999, except for the bounce of “Infections” and “Respiratory Tract 
Diseases” in 2020–2022 (Figure 6A; Supplementary Figure S9A).

The proportion of publications in high-impact journals was high 
for retracted papers before 2011 (Figure 6B; Supplementary Figure S9B). 

They have been decreasing recently, and in 2020–2022, retracted 
papers were less likely to be published in high-impact journals than 
the total publications in 17/18 disease categories (Figure  7; 
Supplementary Figure S10). The proportion of the total publications 
on COVID-19 published in high-impact journals was 18.0%, whereas 
5.6% of the retracted COVID-19 papers were published in such 
journals. That proportion of retracted COVID-19 papers in high-
impact journals was as low as other disease categories.

Because the COVID-19 pandemic drastically influenced the 
Journal Impact Factor (12), the same analysis was performed using the 
metric in 2018, i.e., the pre-COVID-19 period. Although the 
proportions of both total publications and retracted papers in high-
impact journals slightly lessened when using the information of 
Journal Impact Factor 2018, their trend and relationship did not differ 
substantially (Supplementary Figures S9C,D, S10).

Similar sensitivity analyses using a different threshold (Impact 
Factor > 5) and indicator (SJR Q1 rank) also confirmed the decreasing 
trend of the proportion of retracted papers in so-called “good” 
journals (Supplementary Figures S9E–H). Still, there are differences 
in the results between analyses of high-impact journals and “good” 
journals. The proportion of retracted papers published in such “good” 
journals was higher than that of total publications in some disease 
categories (Supplementary Figure S10). For example, 75.0% of 
retracted papers about COVID-19 were published in Q1 journals, 
while the proportion in Q1 journals for total COVID-19 publications 
was 63.4%.

4 Discussion

This study found that (1) the retraction rates of medical research 
papers were increasing; (2) the retraction rates differed by year, disease 

FIGURE 2

Ranking of retraction rates among different disease categories from 1999 to 2022. Ranking of retraction rates in 18 disease categories (A) and seven 
infectious diseases (B) in 3-year-periods are shown. Because there were no retractions for research papers on Ebola, Polio, and Zika, the three diseases 
were not shown in panel (B).
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category, country, and journal; and (3) the surge in research on 
COVID-19 led to a large number of retractions, but did not result in 
a high retraction rate. Although some previous studies investigated 
retracted publications, they did not focus on the disease categories of 
retracted papers (13–15). The skewed retraction rates in particular 
research areas and countries found in the present study suggest the 
existence of systemic problems in specific environments, such as the 
lack of research ethics education, insufficient research capability, or 
high pressure to publish research outcomes. However, this study does 
not mean to blame particular research areas or countries.

Retractions of COVID-19 studies were conspicuous during the 
pandemic period. Yet, this study did not find a high retraction rate for 

COVID-19 papers. The retraction rate of publications in “Infections” 
did not increase during the pandemic period either. The number of 
publications on COVID-19 was simply enormous. Notably, China 
showed a low retraction rate for COVID-19-related papers unlike 
other diseases. Further investigation on its mechanisms could provide 
clues for reducing retractions in the country.

The reasons for retraction vary. Honest errors can occur because 
of mistakes in handling samples or data, skewed statistical analyses, 
inaccuracies or unverifiable information, and irreproducibility. 
Misconduct includes plagiarism, data fabrication or manipulation, 
lack of adherence to ethical protocols, undisclosed conflicts of 
interest, and duplicate submissions. Although the present study did 

FIGURE 3

Trend of retractions among 10 infectious diseases from 1999 to 2022. Yearly numbers of total publications (A and B in different scales on the y-axis), 
retracted papers (C), and retraction rates per 10,000 publications (D) for ten infectious diseases are shown. Because there were no retractions for 
research papers on Ebola, Polio, and Zika, the three diseases were excluded in panels (C, D).
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not analyze the reasons for retractions because such data were 
unavailable in the PubMed database, Shi et  al. reported that 
COVID-19 papers were retracted more often without detailed 
explanations or due to “non-misconduct-related concerns” than 
non-COVID-19 studies (7).

One of the limitations of this study is that it relied solely on the 
data from PubMed. The database does not always include information 
on the time of submission or retraction. Changes in the time difference 
between submission and publication and between publication and 
retraction during the pandemic should be of interest and explored in 
future research. Furthermore, PubMed does not index some preprints 
that played a significant role in rapidly sharing research findings 
during the COVID-19 pandemic. More retractions can be found in 
other resources, for example, the Retraction Watch Database (6, 7).

The retraction counts and rates in recent years analyzed in this 
study must be underestimated. Because new publications with possible 
concerns are still under investigation or unrealized, some more papers 
may be retracted in the future. Consequently, it is difficult to directly 
compare the retraction rates in recent years to past years and 

determine if the COVID-19 pandemic has affected the retraction rates 
of non-COVID-19 research papers. Still, the relative changes in the 
retraction rates among different disease categories can be discussed 
(Figure 2). The retraction rates of “Neoplasms,” “Digestive System 
Diseases,” and “Endocrine System Diseases” remained high in both 
before and during the COVID-19 pandemic periods compared with 
other disease categories. There was no evident increase in the (relative) 
retraction rates of “Infections” or “Respiratory Tract Diseases” during 
the pandemic. Those findings imply marginal, if any, effects of the 
pandemic on retractions.

The importance of awareness, education, and compliance with 
research integrity increases as retraction rates continue to grow. 
We  should attempt to reduce errors and misconduct in research 
activities. However, it is virtually impossible to completely eliminate 
errors or misconduct. Additionally, an increase in retraction rates in 
recent years may indicate improvement in research transparency, 
information sharing, and constructive criticism in research 
communities. The decreasing trend of retracted papers in high-impact 
journals also suggests a rigorous peer-review process.

FIGURE 4

Association of affiliated countries with retraction from 1999 to 2022 in top 10 publishing countries. Odds ratios for retraction in 3-year-periods are 
shown for the top 10 countries with the highest publication counts. The results of the top 20 publishing countries can be found in 
Supplementary Figure S5.

FIGURE 5

Retraction rates by country and disease category in 2020–2022, in top 10 publishing countries for eight disease categories plus COVID-19. The 
retraction rates per 10,000 papers in 2020–2022 are shown for eight disease categories, as determined in Figure 1, and COVID-19-related papers in 
the top 10 countries with the highest publication counts. Vertical lines indicate 95% confidence intervals. The results of the top 20 countries for all 18 
disease categories can be found in Supplementary Figure S6.
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TABLE 1 Multivariable regression analysis for retraction count.

Variable Category*1 Adjusted incidence rate ratio (95% 
confidence interval)*2

p value*2

Publication year

2017–2019 3.59 (2.82–4.67) <0.001

2014–2016 2.78 (2.17–3.63) <0.001

2011–2013 2.48 (1.92–3.24) <0.001

2008–2010 2.46 (1.90–3.24) <0.001

2005–2007 2.57 (1.98–3.40) <0.001

2002–2004 1.47 (1.09–2.00) 0.013

1999–2001 Reference

Disease category

Neoplasms 1.97 (1.73–2.25) <0.001

Endocrine system diseases 1.63 (1.37–1.95) <0.001

Digestive system diseases 1.51 (1.30–1.76) <0.001

Musculoskeletal diseases 1.34 (1.10–1.62) 0.003

Urogenital diseases 1.28 (1.09–1.51) 0.003

Skin and connective tissue diseases 1.23 (1.01–1.48) 0.035

Cardiovascular diseases Reference

Immune system diseases 0.79 (0.63–0.97) 0.031

Eye diseases 0.71 (0.51–0.97) 0.037

Infections 0.56 (0.46–0.68) <0.001

Congenital, hereditary, and neonatal 

diseases and abnormalities

0.47 (0.34–0.63) <0.001

Affiliated country

China 17.57 (14.23–22.03) <0.001

Iran 7.98 (5.87–10.86) <0.001

India 5.15 (3.93–6.78) <0.001

Japan 4.95 (3.92–6.32) <0.001

United States 2.45 (1.96–3.10) <0.001

South Korea 1.77 (1.13–2.68) 0.009

Italy 1.67 (1.25–2.24) 0.001

Canada 1.47 (1.05–2.06) 0.024

United Kingdom Reference

*1Only items with statistical significance are shown. *2Adjusted incidence rate ratios and p values were calculated using a quasi-Poisson regression model.

FIGURE 6

Proportion of papers published in high-impact journals among eight disease categories from 1999 to 2022. The proportions of papers published in 
high-impact journals (Impact Factor 2021  >  10) for total publications (A) and retracted papers (B) in eight disease categories from Figure 1 are shown in 
3-year-periods. The results of all 18 disease categories can be found in Supplementary Figure S9.
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We have to keep an eye on retractions and analyze how pandemics 
affect them to find and address issues for creating better science. 
Infectious disease pandemics could cause errors or misconduct in 
research due to pressure to rapidly publish research findings in a high-
profile field. However, this study found that outbreaks of past 
emerging infectious diseases did not lead to an increase of retraction 
probability. In a crisis situation such as a pandemic, we should keep 
conducting research carefully and honestly to confront adversity.
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Introduction: Reinfections are increasingly becoming a feature in the 
epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection. However, accurately defining reinfection poses methodological 
challenges. Conventionally, reinfection is defined as a positive test occurring 
at least 90  days after a previous infection diagnosis. Yet, this extended time 
window may lead to an underestimation of reinfection occurrences. This study 
investigated the prospect of adopting an alternative, shorter time window for 
defining reinfection.

Methods: A longitudinal study was conducted to assess the incidence of 
reinfections in the total population of Qatar, from February 28, 2020 to 
November 20, 2023. The assessment considered a range of time windows 
for defining reinfection, spanning from 1  day to 180  days. Subgroup analyses 
comparing first versus repeat reinfections and a sensitivity analysis, focusing 
exclusively on individuals who underwent frequent testing, were performed.

Results: The relationship between the number of reinfections in the population 
and the duration of the time window used to define reinfection revealed two 
distinct dynamical domains. Within the initial 15  days post-infection diagnosis, 
almost all positive tests for SARS-CoV-2 were attributed to the original infection. 
However, surpassing the 30-day post-infection threshold, nearly all positive 
tests were attributed to reinfections. A 40-day time window emerged as a 
sufficiently conservative definition for reinfection. By setting the time window 
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at 40  days, the estimated number of reinfections in the population increased 
from 84,565 to 88,384, compared to the 90-day time window. The maximum 
observed reinfections were 6 and 4 for the 40-day and 90-day time windows, 
respectively. The 40-day time window was appropriate for defining reinfection, 
irrespective of whether it was the first, second, third, or fourth occurrence. 
The sensitivity analysis, confined to high testers exclusively, replicated similar 
patterns and results.

Discussion: A 40-day time window is optimal for defining reinfection, providing 
an informed alternative to the conventional 90-day time window. Reinfections 
are prevalent, with some individuals experiencing multiple instances since the 
onset of the pandemic.

KEYWORDS

reinfection, bias, time window, immunity, COVID-19, epidemiology

1 Introduction

Reinfections with severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) increased as the protection conferred by natural 
infection waned over time (1, 2). Importantly, this increase was 
amplified by the emergence of the immune-evasive omicron variant 
and its subvariants (1–4). The occurrence of reinfections is becoming 
a regular feature in the epidemiology of SARS-CoV-2, resembling 
patterns observed in other respiratory infections such as common-
cold coronaviruses (5, 6) and influenza (7–10). Gaining insight into 
the epidemiology of SARS-CoV-2 reinfections is an essential 
prerequisite for understanding the broader landscape of SARS-
CoV-2 epidemiology.

However, defining a SARS-CoV-2 reinfection presents 
methodological challenges. The most suitable definition, in theory, 
entails genome sequencing of the virus in every SARS-CoV-2-positive 
test and evaluating whether the identified virus in a given positive test 
differs from that detected in the previous positive test (11–13). 
Implementing this approach is resource-intensive and impractical, 
especially at this stage of the pandemic.

A pragmatic methodological approach to defining a SARS-
CoV-2 reinfection involves applying a time window, allowing for 
the clearance of an earlier infection to classify a new positive test 
as a reinfection. Consequently, reinfection is commonly defined as 
a SARS-CoV-2-positive test occurring at least 90 days after a 
previous SARS-CoV-2-positive test (3, 14, 15). Despite the fact that 
the vast majority of SARS-CoV-2 infections resolve within a few 
days (16, 17), the adoption of this 90-day time window aimed to 
prevent the misclassification of prolonged infections as reinfections 
(3, 14, 15), recognizing the persistence of some infections for 
weeks or even months, albeit rarely (18–20). This choice also 
accounted for the situation earlier in the pandemic when 
reinfections were rare (11, 13, 21), emphasizing the importance of 
distinguishing between two rare events: reinfection versus 
prolonged infection.

While this definition offers a practical alternative for defining 
reinfection, it underestimates the occurrence of reinfections, as any 
true reinfection within 90 days of an earlier infection is not classified 
as such. The inherent bias in this definition compounds over time, 

given that this 90-day time window is applied to every subsequent 
reinfection, precisely when repeat reinfections are becoming 
increasingly common (22, 23). SARS-CoV-2 waves have been 
occurring within only a few months of each other, or even occasionally 
within weeks (24). Therefore, a 90-day threshold may miss many true 
reinfections in consecutive waves if the time difference between waves 
is less or comparable to this set 90-day time window.

With the continual evolution of this virus and the emergence of 
more immune-evasive subvariants (25), this conventional 90-day time 
window may introduce serious bias in studies of reinfections, 
potentially leading to incorrect inferences drawn from studies with 
inaccurately estimated occurrences of reinfections. Importantly, the 
caution needed to distinguish the rare events of reinfection from 
prolonged infection early in the pandemic is no longer warranted, as 
reinfections are no longer rare, while prolonged infections remain as 
rare as they were before.

To address this challenge, this study explored the possibility of 
implementing an alternative, shorter time window for defining 
reinfection. The investigation aims to enhance the methodologies used 
in studying reinfections and the immune protection of natural 
infection while mitigating the inherent bias present in the current 
definition of a 90-day time window.

2 Methods

2.1 Study population and data sources

The study was conducted on the population of Qatar from 
February 28, 2020, the date of the first documented SARS-CoV-2 
infection, up to November 20, 2023, the date of the end of the study. 
The analysis utilized the national, federated databases for coronavirus 
disease 2019 (COVID-19) laboratory testing, vaccination, 
hospitalization, and death retrieved from the integrated, nationwide 
digital health information platform (Supplementary Section S1). The 
platform has captured all SARS-CoV-2-related data with no missing 
information since the onset of the pandemic, including all polymerase 
chain reaction (PCR) tests and medically supervised rapid antigen 
tests (Supplementary Section S2).
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All SARS-CoV-2 testing in any facility in Qatar is tracked 
nationally in one database, the national testing database. This database 
covers all testing in all locations and facilities throughout the country, 
whether public or private. SARS-CoV-2 tests are classified on the basis 
of symptoms and the reason for testing (clinical symptoms, contact 
tracing, surveys or random testing campaigns, individual requests, 
routine healthcare testing, pre-travel, at port of entry, or other). 
Testing is offered free of charge or at heavily subsidized costs 
depending on the reason for testing within Qatar’s public healthcare 
system, accessible to all residents irrespective of nationality. These 
services are available at healthcare centers distributed across the 
country, catering to the diverse demographic and socio-economic 
segments of the population.

Up until November 1, 2022, nearly 5% of the population 
underwent SARS-CoV-2 testing each week, primarily for routine and 
non-clinical purposes (26). Based on the distribution of the reason for 
testing up to October 30, 2022, most of the tests in Qatar were 
conducted for routine reasons, such as being travel-related, and about 
75% of documented infections were diagnosed not because of 
appearance of symptoms, but because of routine testing (26, 27). 
However, starting from November 1, 2022, the testing rate was 
reduced to less than 1% per week (28).

The first omicron wave, reaching its peak in January 2022, was of 
very large magnitude and placed substantial strain on the country’s 
testing capacity (3, 27, 29). Consequently, rapid antigen testing was 
introduced and implemented as a substitute for PCR testing, 
employing identical testing protocols.

The extensive testing approach in Qatar enabled the tracking of 
reinfections, irrespective of symptomatic presentation, facilitating an 
opportunity to investigate potential biases in defining reinfection cases.

Qatar initiated its COVID-19 vaccination program in December 
2020, utilizing mRNA vaccines and prioritizing individuals based on 
coexisting conditions and age criteria (26, 30). The vaccination is 
administered free of charge to all residents, irrespective of nationality, 
and is centrally tracked at a national level (26, 30).

Qatar has young, diverse demographics; only 9% of its residents 
are aged 50 or above, with 89% being expatriates from over 150 
countries (31). Migrant craft and manual workers constitute about 
60% of the population (32, 33), mainly single men aged 20 to 49, 
hailing predominantly from countries like Bangladesh, India, and 
Nepal, and working in development projects (34). Consequently, 
nationality, age, and sex serve as proxies for socio-economic status in 
this context (31, 33, 35, 36). Further descriptions of Qatar’s population 
and the national databases have been reported previously (26, 27, 29, 
31, 34, 37, 38).

2.2 Study design

A longitudinal study was undertaken to assess the incidence of 
reinfections within the population of Qatar, considering varying time 
windows for defining reinfection, ranging from 1 day to 180 days. The 
study cohort encompassed all individuals with a documented SARS-
CoV-2-positive test during the study period. In this cohort, which 
comprised 935,192 individuals, a total of 6,170,451 tests (positive or 
negative) were conducted from the onset of the pandemic until the 
conclusion of the study on November 20, 2023. The average testing 
rate stood at 6.6 tests per person.

Primary infection was defined as the first documented instance of 
a SARS-CoV-2-positive test for an individual. Reinfection was defined 
as the first documented SARS-CoV-2-positive test occurring after the 
completion of the time window used to define reinfection, starting 
from the last previous SARS-CoV-2 infection diagnosis. The primary 
outcomes of the study included the total number of documented 
reinfections in the population and the maximum number of observed 
reinfections experienced by any given individual in the population, 
both examined across the various time window definitions 
investigated in this study.

In essence, the concept of the present study is that the relationship 
between the total number of reinfections in the population and the 
duration of the time window used to define reinfection may reveal 
clearly distinct dynamical domains, enabling an informed decision on 
setting the time window to define reinfection. The existence of two 
distinct dynamical domains is a reflection of the existence of two 
different population distributions influencing this relationship. The 
first is the distribution of clearing the infection, and the second is the 
distribution of the incidence of reinfection.

2.3 Statistical analysis

Frequency distributions and measures of central tendency were 
employed to characterize measures within the study cohort. Statistical 
analyses calculated the total number of documented reinfections in 
the population and the maximum number of observed reinfections 
experienced by any given individual, considering varying time 
windows for defining reinfection, ranging from 1 day to 180 days. The 
total number of documented first, second, third, and fourth 
reinfections in the population were also computed for the different 
time windows. This latter investigation aimed to assess whether 
distinct time window definitions are warranted for repeat reinfections 
compared to the first reinfection.

Documented reinfections constitute only a subset of all 
potential reinfections in a population, as many may go 
undocumented through a SARS-CoV-2 test. Patterns for 
undocumented infections may deviate from those that are 
documented. To address this, the study analyses were repeated in a 
sensitivity analysis including only high testers in the study cohort, 
a subset of the population less impacted by undocumented 
infections due to frequent repeat testing, often for routine reasons 
such as employment or travel (26, 27).

High testers were defined as individuals in the top 10th percentile 
of the real-world testing frequency distribution, encompassing all 
reasons for testing. According to this distribution, high testers are 
individuals with a testing rate of ≥3.4 tests per person-year. The 
consistency of patterns and results among high testers with those in 
the full cohort would support the conclusion that the proposed time 
window in this study may not have been influenced by the occurrence 
of undocumented infections. Statistical analyses were performed 
using Stata/SE version 18.0 (Stata Corporation, College Station, 
TX, USA).

A second sensitivity analysis was undertaken to examine the 
consistency of reinfection patterns observed in the main analysis, 
encompassing all times during the pandemic, when the analysis is 
restricted to the four largest SARS-CoV-2 infection waves, each 
dominated by a distinct variant (4, 21, 31, 39).
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2.4 Oversight

The institutional review boards at Hamad Medical Corporation 
and Weill Cornell Medicine–Qatar approved this retrospective study 
with a waiver of informed consent. The study was reported according 
to the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines (Supplementary Table S1).

3 Results

3.1 Optimizing the time window for 
defining reinfection

Table 1 shows the characteristics of the study cohort, comprising 
all individuals in Qatar with a documented SARS-CoV-2 infection 
during the study period. The study population is representative of the 
internationally diverse, yet predominantly young and male 
demographic of the country.

Figure 1 illustrates the total estimated number of reinfections in 
the population versus the time-window duration used for defining 
reinfection. Initially, the total number of reinfections declines rapidly, 
from 235,660 when the time window is set at only 1 day to 113,649 
when the time window is extended to 15 days after the previous 
infection diagnosis. This swift decline supports the notion that many 
individuals are testing positive within the first 15 days of a positive 
test. At the same time, it also indicates that more and more 
individuals are clearing the infection, leading to a progressive 
increase in the number of people testing negative with each passing 
day within this 15-day duration. This trend is consistent with the vast 
majority of infected persons clearing their infection within 15 days 
of diagnosis.

Following this initial rapid decline, a pronounced shift in the 
curve’s shape becomes evident within the time window spanning from 
16 days to 30 days (Figure 1). This transition to a new shape of the 
curve indicates the presence of two distinct dynamical domains: one 
where nearly all positive tests are attributable to the same original 
infection before day 15 after the previous infection diagnosis, and 
another, following the transition, where nearly all positive tests after 
day 30 are attributed to reinfections, with negligible contribution from 
prolonged infections. These two domains are labeled thereafter as the 
“infection clearance” and “reinfection plateau” domains, respectively.

These two clearly distinct domains emerge because two different 
population distributions dominate the relationship between the total 
number of reinfections and the duration of the time window at 
different times post-infection (Figure 1). The distribution of clearing 
the infection predominates in the infection clearance domain, while 
the distribution of the incidence of reinfection dominates in the 
reinfection plateau domain. The transition between these domains, 
occurring from 16 days to 30 days post-infection, is influenced by both 
of these distributions.

Given the existence of these two clearly distinct dynamics, 
choosing a time window for defining reinfection at 40 days strikes a 
balance. It is adequately conservative in defining a reinfection (as 
opposed to a prolonged infection) while not missing many reinfections 
compared to a longer time window. Setting the time window at 
40 days, instead of the conventional 90-day window, increases the total 
estimated number of reinfections in the population from 84,565 to 

88,384 reinfections, capturing an additional 4.3% of reinfections that 
would have been missed by applying the conventional 90-day 
time window.

TABLE 1 Baseline characteristics of the study population.

Characteristics Study cohort N (%)

Total N 935,192

Median age (IQR)—years 33.0 (24.0–41.0)

Age—years

0–9 years 90,028 (9.6)

10–19 years 87,116 (9.3)

20–29 years 192,565 (20.6)

30–39 years 296,309 (31.7)

40–49 years 167,292 (17.9)

50–59 years 70,175 (7.5)

60–69 years 23,214 (2.5)

≥70 years 8,493 (0.9)

Sex

Male 584,687 (62.5)

Female 350,505 (37.5)

Nationality*

Bangladeshi 52,762 (5.6)

Egyptian 48,945 (5.2)

Filipino 93,921 (10.0)

Indian 210,315 (22.5)

Nepalese 65,128 (7.0)

Pakistani 39,568 (4.2)

Qatari 176,951 (18.9)

Sri Lankan 24,255 (2.6)

Sudanese 24,085 (2.6)

Other nationalities† 199,262 (21.3)

Number of coexisting conditions

None 724,513 (77.5)

1 115,788 (12.4)

2 48,373 (5.2)

3 20,639 (2.2)

4 11,533 (1.2)

5 6,918 (0.7)

≥6 7,428 (0.8)

Vaccination‡

Unvaccinated 564,670 (60.4)

1 dose 19,657 (2.1)

2 doses 270,227 (28.9)

3 doses 79,666 (8.5)

≥4 doses 972 (0.1)

IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
*Nationalities were chosen to represent the most populous groups in Qatar.
†These comprise 173 other nationalities.
‡Ascertained at time of primary infection.

20

https://doi.org/10.3389/fmed.2024.1363045
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chemaitelly et al. 10.3389/fmed.2024.1363045

Frontiers in Medicine 05 frontiersin.org

3.2 Time window for first and repeat 
reinfections

The above analysis indicates an optimal choice of a 40-day time 
window for defining reinfection. Figure 2 explores the applicability of 
this time window individually for each of the first, second, third, and 
fourth reinfections. The results demonstrate that a time window of 
40 days is appropriate for defining reinfection, regardless of whether 
it is a first, second, third, or fourth occurrence. The number of 
reinfections versus the time-window duration followed a largely 
consistent pattern, irrespective of whether the reinfection was a first 
reinfection or a repeat reinfection.

Notably, in the analyses of third and fourth reinfections, the 
transition in the shape of the number of reinfections versus the time-
window duration appears to occur more rapidly, reaching the 
reinfection plateau sooner. This supports the possibility of an even 
shorter time window than 40 days for defining reinfection. This may 
be attributed to the fact that, by the time individuals in this population 
experienced their third or fourth reinfections during the pandemic, 
there was limited testing in the initial days after the infection to assess 
clearance, unlike in earlier stages. It could also be a result of faster 
clearance of reinfections, especially repeat occurrences (40–42).

3.3 Maximum number of reinfections in the 
population

Figure 3 illustrates the maximum number of observed reinfections 
experienced by any given individual in the population versus the time-
window duration used for defining reinfection. This figure highlights 

the relevance of an appropriate definition for the time window in 
capturing the phenomenon of repeat reinfections. For example, if the 
time window is set at 15 days, at least one individual in the population 
would have been estimated to have experienced 14 reinfections 
throughout the pandemic. Meanwhile, the maximum number of 
observed reinfections is 8, 6, and 4 if the time window was set at 30, 
40, and 90 days, respectively.

3.4 Sensitivity analysis: results for only high 
testers

The sensitivity analysis, restricted to only high testers in the 
population, reproduced the same patterns and results as those 
observed for the entire population. This held true for all study 
outcomes, including the total number of reinfections (Figure 4A), the 
number of each of the first, second, third, and fourth reinfections 
(Figures 4B,C), and the maximum number of observed reinfections 
(Figure  5). The analysis affirmed the 40-day time window as an 
optimal choice, suggesting that the conclusions drawn above regarding 
setting the time window are unlikely to have been altered by the 
occurrence of infections that were never documented.

3.5 Sensitivity analysis: reinfection patterns 
in distinct waves

The sensitivity analysis, restricting the analysis to each of the four 
largest SARS-CoV-2 infection waves, each dominated by a distinct 
variant, showed the same reinfection patterns observed in the main 

FIGURE 1

Total number of reinfections in the population versus the time-window duration used for defining reinfection. The dashed line at day 40 represents the 
proposed optimal time window for defining a reinfection.
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FIGURE 2

Number of (A) first reinfections, (B) second reinfections and (C) third, and fourth reinfections in the population versus the time-window duration used 
for defining reinfection. The dashed line represents the proposed optimal time window for defining a reinfection.
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analysis encompassing all times during the pandemic (Figure 6). This 
analysis affirmed the 40-day time window as an optimal choice, 
independent of the wave’s size or the variant that dominated the wave.

The analysis also indicated an increasingly steeper slope in viral 
clearance over time, especially during the first omicron wave. This 
trend may have been due to progressive changes in retesting 
requirements for individuals in isolation following documented 
infection, as well as the introduction of rapid antigen testing during 
the first omicron wave.

4 Discussion

Investigating the empirical dependence of the estimated number of 
reinfections in the population on the time-window duration used for 
defining reinfection has revealed the existence of two distinct dynamical 
domains, providing insights for a more effective definition of reinfection 
that is less susceptible to potential bias. In the first 15 days after an 
infection is diagnosed, labeled here as the infection clearance domain, 
nearly all SARS-CoV-2 positive tests are attributable to the same original 
infection. However, beyond the 30-day mark post-infection, within the 
reinfection plateau domain, nearly all positive tests are attributed to 
reinfections, with a negligible contribution from prolonged infections. 
These findings underscore that a time window of 40 days serves as an 
adequately conservative definition for reinfection, superseding the 
current conventional definition of a 90-day time window.

This conclusion emphasizes that the conventional 90-day time 
window is overly restrictive, resulting in significant bias in capturing 
reinfections and potentially leading to inaccurate or imprecise 
estimates in studies of reinfections, including those examining the 
immune protection of natural infection against reinfection. This 
limitation is particularly critical in the current stage of the pandemic 

when reinfections are common, and accurately capturing repeat 
reinfections is essential for a meaningful understanding of the current 
epidemiology of SARS-CoV-2 infection.

These findings enable the estimation of protection of natural 
immunity within the time window spanning from 40 to 90 days after 
a first infection, which is not possible under the conventional 
definition. Moreover, they indicate that studies assessing the protective 
effects of natural infection against reinfection might have overestimated 
this protection, especially when relying on short follow-up periods 
after the initial infection. It is recommended that future studies present 
results using both the conventional 90-day window and the proposed 
40-day window to assess potential biases and elucidate the implications 
of adopting the new proposed time window.

An important finding from this study is the higher incidence of 
reinfections compared to common perception. The 90-day time 
window missed a proportion of reinfections relative to the 40-day time 
window. Instances were identified where individuals experienced up 
to 6 documented reinfections over the nearly 4 years of the pandemic. 
Given that documented reinfections represent only a fraction of the 
total, which includes also undocumented reinfections, this implies that 
reinfections are substantially underestimated. This finding suggests a 
resemblance in reinfection patterns across various respiratory 
infections, encompassing SARS-CoV-2, common-cold coronaviruses 
(5, 6), and influenza (7–10). Furthermore, it aligns with experimental 
observations derived from sequential influenza challenge studies (10). 
This underscores the imperative for enhanced understanding of the 
epidemiology of reinfections to unravel the factors contributing to the 
“leaky” immune protection enabling their occurrence. The incidence 
of reinfections increases the risk of virus mutation and evolution due 
to increased transmissions in the population.

This study has limitations. The definition of reinfection was 
deduced through the observation of infection patterns, departing 

FIGURE 3

Maximum number of observed reinfections experienced by any given individual in the population versus the time-window duration used for defining 
reinfection. The dashed line represents the proposed optimal time window for defining a reinfection.
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FIGURE 4

Number of (A) all reinfections, (B) first reinfections, and (C) second, third, and fourth reinfections among high testers in the population versus the time-
window duration used for defining reinfection. High testers were defined as individuals in the top 10th percentile of the testing frequency distribution. 
The dashed line represents the proposed optimal time window for defining a reinfection.
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FIGURE 5

Maximum number of observed reinfections experienced by any given individual among high testers in the population versus the time-window duration 
used for defining reinfection. High testers were defined as individuals in the top 10th percentile of the testing frequency distribution. The dashed line 
represents the proposed optimal time window for defining a reinfection.

FIGURE 6

Reinfection patterns in distinct waves. Total number of reinfections in the population versus the time-window duration used for defining reinfection 
during the (A) ancestral virus wave (February 28, 2020-July 31, 2020), (B) alpha wave (January 18, 2021-March 7, 2021), (C) beta wave (March 8, 2021-
May 31, 2021), and (D) first omicron wave (December 19, 2021-February 28, 2022). The dashed line at day 40 represents the proposed optimal time 
window for defining a reinfection. All curves converge to zero at large durations of the time window due to the relatively short duration of each wave 
in comparison to the total study duration.
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from the conventional methodology of genome sequencing for 
every SARS-CoV-2-positive test (11–13). The latter approach 
entails evaluating whether the identified virus in a specific 
positive test differs from that detected in the preceding positive 
test (11–13). However, the practical implementation of the 
conventional approach, especially in the current stage of the 
pandemic, is not feasible. The outcomes of the application of the 
conventional approach during the early stages of the pandemic 
are, on the whole, consistent with the findings of the present 
analysis (11, 13). Notably, the conventional method has also 
proven to be intricate and often inconclusive when distinguishing 
reinfections from prolonged infections (11, 13). This complexity 
is exemplified in cases where only a few changes in allele 
frequency are observed (11, 13).

In lieu of the conventional method, we  presented a novel 
approach, which, to the best of our knowledge, has not been 
previously utilized for either SARS-CoV-2 infection or any other 
infection. The conceptual foundation of this approach stems from 
recognizing two specific population distributions behind the 
relationship between the estimated number of reinfections and 
the duration of the time window used for defining reinfection. 
The first distribution pertains to the clearance of the infection, 
while the second relates to the incidence of reinfection. The 
observation of two discernible dynamical domains, along with a 
transition region between them, strongly implies that the 
clearance of infection dominates the first domain, while the 
distribution of reinfection incidence dominates the 
second domain.

The present analysis was conducted on the population of 
Qatar, characterized by a predominantly young demographic 
composition. Consequently, the findings may lack generalizability 
to other countries where elderly citizens constitute a more 
substantial proportion of the population. The reliance on 
documented infections may introduce bias, as patterns for 
undocumented infections may differ from those documented. 
Furthermore, variations in testing frequency across different 
population segments and over time can lead to fluctuations in the 
likelihood of documenting infections. High testers may not 
be representative of the broader population due to self-selection 
influenced by factors such as perceived risk associated with 
occupation, living conditions, vaccination status, or underlying 
health conditions.

However, a strength of this study lies in its comprehensive scope, 
encompassing the entire population of a country with high testing 
rates. This approach enhances the capture of infections and 
reinfections, contributing to the robustness of the study’s findings. 
Additionally, the sensitivity analysis, focusing exclusively on high 
testers less impacted by undocumented infections, generated similar 
results, suggesting that the study findings are less likely to 
be influenced by undocumented infections.

5 Conclusion

A 40-day time window serves as an appropriately conservative 
definition for reinfection, offering an informed alternative to the 
current conventional 90-day time window. The latter, shown to 
be unnecessarily restrictive, introduces bias in reinfection capture that 

may jeopardize estimates in reinfection studies. Contrary to common 
perception, reinfections are more prevalent, with some individuals 
experiencing multiple instances since the onset of the pandemic. A 
nuanced understanding of the factors contributing to the “leaky” 
immune protection allowing for this heightened incidence of 
reinfections is warranted.
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Introduction: This study aims to discuss and assess the impact of three prevalent 
methodological biases: competing risks, immortal-time bias, and confounding 
bias in real-world observational studies evaluating treatment effectiveness. 
We use a demonstrative observational data example of COVID-19 patients to 
assess the impact of these biases and propose potential solutions.

Methods: We describe competing risks, immortal-time bias, and time-fixed 
confounding bias by evaluating treatment effectiveness in hospitalized patients 
with COVID-19. For our demonstrative analysis, we use observational data from 
the registry of patients with COVID-19 who were admitted to the Bellvitge 
University Hospital in Spain from March 2020 to February 2021 and met our 
predefined inclusion criteria. We  compare estimates of a single-dose, time-
dependent treatment with the standard of care. We  analyze the treatment 
effectiveness using common statistical approaches, either by ignoring or only 
partially accounting for the methodological biases. To address these challenges, 
we emulate a target trial through the clone-censor-weight approach.

Results: Overlooking competing risk bias and employing the naïve Kaplan-
Meier estimator led to increased in-hospital death probabilities in patients with 
COVID-19. Specifically, in the treatment effectiveness analysis, the Kaplan-Meier 
estimator resulted in an in-hospital mortality of 45.6% for treated patients and 
59.0% for untreated patients. In contrast, employing an emulated trial framework 
with the weighted Aalen-Johansen estimator, we  observed that in-hospital 
death probabilities were reduced to 27.9% in the “X”-treated arm and 40.1% in 
the non-“X”-treated arm. Immortal-time bias led to an underestimated hazard 
ratio of treatment.

Conclusion: Overlooking competing risks, immortal-time bias, and confounding 
bias leads to shifted estimates of treatment effects. Applying the naïve Kaplan-
Meier method resulted in the most biased results and overestimated probabilities 
for the primary outcome in analyses of hospital data from COVID-19 patients. 
This overestimation could mislead clinical decision-making. Both immortal-
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time bias and confounding bias must be addressed in assessments of treatment 
effectiveness. The trial emulation framework offers a potential solution to 
address all three methodological biases.

KEYWORDS

competing risks, confounding, COVID-19, emulated trial, immortal-time bias, 
methodological bias, treatment effectiveness

Introduction

During the coronavirus disease 2019 (COVID-19) pandemic, 
routinely collected observational data has become crucial for 
comparative treatment effectiveness research and for identifying 
potential therapeutic options (1, 2). Real-world observational data was 
increasingly used during the pandemic’s first waves when results from 
randomized clinical trials were either unavailable or used to 
complement trial findings. Observational studies can yield biased 
results when they are not appropriately designed and analyzed because 
of their type of data and potential methodological challenges (1, 3–5). 
While the methodological limitations of observational data have been 
extensively discussed, a review of early observational studies on the 
effectiveness of repurposed or novel treatments for COVID-19 
patients indicated that fundamental methodological biases such as 
competing risks, immortal-time bias, and confounding bias, either 
alone or in combination, were still often overlooked (2). Failure to 
address these methodological biases can result in skewed estimates of 
treatment effects and, consequently, incorrect conclusions (2, 5).

A competing risk is an event that precludes the observation of the 
primary event of interest (6, 7). In COVID-19 studies, when 
in-hospital mortality is the primary outcome, discharge becomes a 
competing event because it hinders the observation of death in 
hospital (8). Conventional survival analysis techniques, such as the 
naïve Kaplan-Meier estimator, treat competing events as right-
censored observations. This approach assumes that censored 
individuals will have the same probability of experiencing the event of 
interest as those who remain in the risk set, leading to a positive event 
probability instead of zero probability after the occurrence of a 
competing event (7, 9–11). For comprehensive mathematical proofs, 
we refer to the studies conducted by Zhang (11) and Coemans et al. 
(10). In the context of COVID-19 and analyzing in-hospital death, this 
assumption would imply that discharged patients have a similar risk 
of death as those still hospitalized, which is not clinically meaningful 
(7, 12). Hence, the independent censoring assumption is violated for 
hospital discharge because discharged patients are usually in better 
health conditions than those still hospitalized (13). In the presence of 
competing events, the naïve Kaplan-Meier method can lead to biased 
estimates and erroneous conclusions (13). Notably, the issue of 
competing risks can arise in analyzing time-to-event survival data in 
randomized clinical trials, observational studies, and target trial 
emulations (6).

Observational studies often evaluate the effectiveness of time-
dependent treatments, meaning patients may initiate treatment at 
different times after their study entry (14). Immortal time occurs 
when there is a delay between cohort entry and treatment initiation, 
during which patients are precluded from experiencing the outcome. 

Misclassifying or excluding this pre-treatment period can introduce 
immortal-time bias, thereby biasing the estimated treatment effects 
(15–17). Previous studies have demonstrated that the most severe 
form of immortal-time bias occurs when studies incorrectly include 
immortal time, assuming that treated patients are at risk from the 
baseline. This is in contrast to methods designed to mitigate this bias, 
such as landmark analysis, the exposure density sampling method, 
and the time-dependent Cox model with time-varying treatment 
status (18–20). When immortal time is mistakenly included, it leads 
to an artificially reduced observed event rate for the treatment group 
and an artificially inflated event rate for the control group (14, 21). As 
a result, the hazard ratio (HR) for comparing the treatment vs. the 
control group may be underestimated (20). For negative outcomes like 
death, such underestimation misleadingly suggests a greater treatment 
effectiveness. In contrast, for positive outcomes like discharge, the 
underestimation of the treatment effect can make the treatment 
appear less effective. For a comprehensive review of the mathematical 
proofs, we refer to the studies conducted by Suissa (20), Beyersmann 
et al. (22), and the simulation study by Wang et al. (19).

Confounding represents another well-known and significant 
challenge in observational studies, arising from an unequal 
distribution of patient characteristics between treatment and control 
groups, which affect both treatment decision and outcome (23, 24). 
Therefore, simply comparing outcomes between the treatment and 
control groups without any adjustment can lead to biased estimates of 
treatment effects (25, 26). In causal analyses, common approaches to 
adjust for baseline characteristics include inverse probability 
weighting, standardization, and stratification-based adjustment 
methods such as stratification and matching methods (27, 28).

Throughout the COVID-19 pandemic, the target trial emulation 
framework was widely used to assess the effectiveness of treatments 
and vaccines using real-world data, particularly in the pandemic’s 
early stages (29–32). This framework applies the principles of 
randomized clinical trials to emulate a hypothetical trial using 
observational data, thereby answering specific causal questions (24, 
33). It has become crucial to explore treatment effects and address 
common methodological biases (34). While previous research has 
demonstrated that target trial emulation can handle both immortal-
time bias and confounding bias, our study further confirms the 
importance of considering competing risks within observational data 
(19, 34).

The aim of this study is 3-fold: (i) to provide an overview of the 
three most common methodological biases in observational hospital 
data; (ii) to evaluate the impact of each bias using a typical example of 
observational hospital data and applying various analytical 
methodologies; and (iii) to describe the target trial emulation 
framework that addresses these potential methodological challenges. 
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For illustrative purposes, we  analyzed observational hospital data 
from patients with COVID-19. This article provides an explanation of 
the potential methodological pitfalls in a descriptive manner and 
proposes alternative strategies for mitigating these challenges.

Methods

The Methods section is organized as follows: we  introduce 
challenges associated with competing risks through a typical example 
of observational hospital data of COVID-19 patients and conduct a 
time-to-event analysis without accounting for the patient’s treatment 
status. We  then describe a cohort of patients used for our 
demonstrative analyses and introduce the concept of target trial 
emulation. Next, we discuss immortal-time and confounding biases, 
outline standard analysis methods prone to bias, and explain how 
these challenges can be mitigated within the emulated trial framework. 
We  define the five models used for comparison to determine the 
impact of immortal-time bias and confounding bias. We emphasize 
that all analyses conducted, including the emulated trial, were 
demonstrative, and an assessment of clinical treatment effects was 
beyond the scope of this study.

Motivating example: competing risks in a 
COVID-19 hospital setting

To illustrate the concept of competing risks in time-to-event 
analysis of hospital data, we conducted an analysis using longitudinal 
patient-level data from a cohort of COVID-19 patients (n = 478) 
hospitalized at the Bellvitge University Hospital in Barcelona, Spain, 
from March 2020 to February 2021. These patients experienced 
various endpoints, including in-hospital death, discharge home, or 
transfer to another healthcare facilities. In this analysis, we defined 
in-hospital death as the primary outcome of interest and estimated the 
cumulative probabilities without considering the patient’s treatment 
status. Information on patient survival status beyond the follow-up 
period was not available.

In the naïve analysis, we calculated the cumulative probabilities 
using the one minus Kaplan-Meier estimator. We compared these 
results with those from the Fine-Gray analysis approach, which 
accounts for competing events like hospital discharge by keeping 
patients in the risk set until the end of follow-up. The Fine-Gray model 
is a direct model for cumulative incidence functions in the presence 
of competing risks (35). We conducted two Fine-Gray analyses. In the 
first analysis, we treated patients discharged home as a competing 
event and considered patients transferred to other facilities as 
censored observations, thus implementing the Fine-Gray model with 
two events. In the second analysis, we distinguished between reasons 
for hospital discharge, categorizing discharge to home and transfer to 
another healthcare facility as separate competing events. This 
approach allowed us to maintain both outcomes in the risk set, 
corresponding to the Fine-Gray model with three events.

Using the naïve Kaplan-Meier estimator resulted in an 
overestimated in-hospital death probability of 55.3% (Figure 1). By 
recognizing discharge home as the only competing event and by 
censoring transferred patients, the probability of in-hospital death 
dropped to 43.3% (Figure 1). Finally, by considering both reasons for 

hospital discharge, the in-hospital death probability substantially 
decreased to 38.1% (Figure  1). These findings underscore the 
importance of recognizing and addressing competing risks in the 
hospital data and have also motivated us to explore the future 
extensions of emulated target trial methodologies.

Illustrative study population: patients with 
COVID-19

For this case study, we  analyzed longitudinal data from 
hospitalized patients with COVID-19 as described above. A total of 
478 patients with moderate-to-severe COVID-19 were included. 
Inclusion criteria for these patients were based on the Horowitz index, 
a ratio of the partial pressure of oxygen to the fraction of inspired 
oxygen (PaO2/FiO2) of less than 300 mmHg measured at hospital 
admission and the presence of at least one inflammation-related high-
risk factor: C-reactive protein (>102 mg/L), lactate dehydrogenase 
(>394 U/L), D-dimer (>1,580 ng/mL), total lymphocyte count 
(<760 × 106/L), and ferritin (>1,360 mcg/L) at the time of admission. 
The high-risk categories were determined following the criteria and 
classification established by Rubio-Rivas et al. (36). For all patients, 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection was confirmed via PCR testing. The study follow-up period 
was 45 days post-hospital admission. Patients with no outcomes who 
were still alive at the end of this period were administratively censored 
(n = 59, 12.3%).

Trial emulation: study question and 
protocol components

To emulate a target trial, we defined our clinical aim as follows: to 
evaluate the effectiveness of treatment “X” compared to the standard-of-
care, which does not involve the administration of treatment “X,” on the 
risk of in-hospital death while acknowledging its effects on hospital 
discharge outcomes in COVID-19 patients. This question of interest 
could be  subdivided into three distinct components: assessing the 
impact of treatment on (i) in-hospital death, (ii) discharge alive home, 
and (iii) transfer to another healthcare facility. We  designed a 
hypothetical study protocol, specifying its components including 
eligibility criteria, treatment strategies and assignment, start and end 
of follow-up, endpoints, and causal contrast (Supplementary material 1).

Immortal-time bias

In studies evaluating time-varying or time-dependent treatments 
addressing immortal-time bias is crucial, for which several options 
are available. Two commonly used approaches that can lead to severe 
immortal-time bias and result in flawed estimates of treatment effect: 
(i) including person-time and classifying patients as treated from 
time zero, even if they receive treatment later during follow-up, and 
(ii) excluding person-time, which is the time from baseline to 
treatment initiation for the exposure group (16, 19, 37, 38). The 
landmark analysis is a design-based method involving setting fixed 
time as the landmark time and classifying patients according to their 
treatment status at the landmark (17). Patients are then followed from 
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the landmark time regardless of subsequent changes in their 
treatment status (17, 37). However, this approach has two principal 
limitations: (i) the choice of the landmark time and (ii) the exclusion 
of patients who had an outcome before the landmark time from the 
analysis (15, 28). To overcome these drawbacks, considering multiple 
landmarks and a pooled analysis via a supermodel is recommended 
(39). In the exposure density sampling method, unexposed patients 
are matched to exposed patients with respect to a time-dependent 
exposure. Specifically, for each exposed patient, one or more 
unexposed patients who have survived for a duration equivalent to 
that of the exposed patient are selected (40). This approach allows for 
the possibility that an unexposed patient may change their exposure 
status after matching. A simulation study demonstrated that the 
exposure density sampling method fully addressed immortal-time 
bias (40), in contrast to the simpler method of prescription time-
distribution matching (18, 41). Another common approach to 
account for immortal person-time is to use a time-dependent model 
(16, 18, 19). It involves modeling time-varying treatment status and 
includes it as a time-dependent covariate in a proportional hazards 
or another regression model (19). This approach enables the 
classification of patients as “treated” or “untreated” on each follow-up 
day, allowing for the reclassification of patients from “untreated” to 
“treated” status upon the treatment’s initiation. Alternatively, clone-
censor-weight and the sequential trial approaches allow for the 
incorporation of time-dependent treatment status through 
duplication or a nested design, and can be  applied within the 

framework of trial emulation. The cloning approach creates two exact 
copies of each patient, assigning one clone to the treatment and the 
other to the control arm. Subsequently, a clone in each arm is 
censored when the actual treatment received deviates from the 
treatment strategy of the arm to which it was initially assigned (34). 
This usually requires defining a clinically meaningful grace period 
(33, 34). In the sequential trial approach, a sequence of multiple 
nested trials with all potential time zeros is modeled (37). Each 
method has its own assumptions and limitations, which should 
be considered when interpreting study results. Our study focuses on 
three approaches: analysis that includes immortal time, modeling 
time-varying treatment status and using time-dependent Cox 
regression model, and the clone-censor-weight approach.

In our illustrative observational data example, time zero, or the 
baseline, was defined as hospital admission, with the possibility of 
administering treatment at a later follow-up time. Consequently, 
patients’ treatment status depended on their presence in the risk set 
until a specific time. To evaluate the impact of included immortal 
time, we initially conducted a naïve analysis, mistakenly categorizing 
patients who received treatment during follow-up as having been 
treated since hospital admission (Model 1, Table 1 in the Results). In 
this instance, the time period between hospital admission and “X” 
treatment administration is immortal, as patients must be outcome-
free to be  categorized as treated (16). We also performed a time-
dependent Cox regression analysis by modeling a time-varying 
treatment status using start-stop notation (Models 2–4). We used the 

FIGURE 1

Probabilities of in-hospital death with and without accounting for competing events. Probabilities of in-hospital death are calculated taking different 
analytical approaches: the Fine-Gray (3) model, considering three outcomes; the Fine-Gray (2) model, considering two outcomes, and the naïve 
analysis using the one minus the Kaplan-Meier estimator.
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clone-censor-weight approach for the target trial emulation, defining 
the grace period as treatment administration within 2 days of hospital 
admission (Model 5), as elaborated in Supplementary material 2. The 
length of this period was based on clinical relevance. We defined two 
treatment strategies: (1) administration of “X” treatment during the 
first 2 days of hospital admission, referred to as the “X”-treated arm, 
and (2) no administration of “X” treatment during the first 2 days, 
referred to the non-“X”-treated arm. Patients who experienced 
outcome events within 2 days were included in both treatment arms, 
avoiding immortal-time bias (34).

Confounding bias

After identifying and collecting all important variables—
potential confounders, several statistical approaches can 
be  considered to mitigate confounding bias. We  included the 
following patient baseline covariates in our study: age, sex, Charlson 
Comorbidity Index, levels of C-reactive protein, lactate 
dehydrogenase, D-dimer, total lymphocyte count, ferritin, and 
calendar time of hospital admission, categorized according to the 
pandemic waves. After examining the distribution of inflammatory 
variables, we applied the log and square root transformations to these 
variables to reduce the influence of extreme values. We assumed all 
these measured covariates were sufficient for controlling 
baseline confounding.

We first performed a univariable analysis without adjusting 
for baseline covariates to demonstrate the impact of ignoring 
time-fixed confounding (Models 1 and 2, Table 1). We  then 
included the baseline covariates into a Cox regression model and 
performed multivariable analysis (Model 3). We also employed an 
inverse probability of treatment weighting model based on 
propensity scores to balance baseline covariates in the treatment 
and control groups (Model 4) (42). To balance the patient’s 
characteristics and prognostic covariates between treated and 
untreated groups, we re-weighted the outcome variables of these 
patients by the inverse probability of the treatment received (28, 
43). As a result, we re-weighted the patients and created a pseudo-
population free of confounding (42). We used the ipw package and 
calculated robust standard errors (44). In emulated trial analysis, 
we applied the clone-censor-weight approach (Model 5). Cloning 
patients into two arms ensured that the two arms were balanced 
regarding baseline covariates, addressing time-fixed confounding 
bias (34, 45). Additionally, to correct for selection bias resulting 
from artificial censoring, we  estimated inverse probability of 
censoring weights (34). We  applied the code as presented by 
Maringe et  al. (34) for the target trial emulation analysis. 
Standardized differences were assessed before and after applying 
inverse probability of censoring weighting 
(Supplementary material 3). For this model, nonparametric 
bootstrap was used to compute 95% normal-based confidence 
intervals (CI) with 500 bootstrap replications. Multiple 
imputations were performed to replace missing values for 
inflammatory covariates measured at baseline. All analysis steps 
were applied to the five copies of the imputed datasets. Further 
details on the multiple imputation analysis are found in 
Supplementary material 4. All statistical analyses were performed 
in RStudio (2022.07.1) software (46).

Results

Patients characteristics

Overall, among the 478 patients with COVID-19 included in 
our initial data analysis, 183 (38.3%) experienced in-hospital death, 
237 (49.6%) were discharged from the hospital, and 59 (12.3%) were 
administratively censored at the end of the 45-day follow-up period. 
Among the 237 discharged patients, 139 (58.6%) were discharged 
to their homes, while 98 (41.4%) were transferred to other 
healthcare facilities. In total, 143 (29.9%) patients were treated with 
“X” treatment at any time during the follow-up period. In the 
emulated trial analysis, 73 (15.3%) patients received the “X” 
treatment within 2 days. Among those who received the treatment, 
20 died, 26 were discharged home, and 19 were transferred to other 
healthcare facilities. The cohort’s characteristics are detailed in 
Supplementary material 5.

Assessing the impact of treatment on 
in-hospital death rates

We calculated the cumulative incidence probabilities for 
in-hospital death by ignoring or accounting for competing events. 
Probabilities were derived using the conventional, naïve Kaplan-Meier 
estimator applied to the crude dataset, which was susceptible to all 
three biases. These results were compared to probabilities estimated 
from the weighted version of the Aalen-Johansen estimator used in 
the emulated analysis with the clone-censor-weight approach. The 
cumulative probabilities of in-hospital death using the naïve Kaplan-
Meier estimator were 45.6% for the treated and 59.0% for the untreated 
group at the end of the 45-day follow-up period. In contrast, the 
Aalen-Johansen estimator revealed cumulative probabilities of 27.9% 
for the “X”-treated arm and 40.1% for the non-“X”-treated arm 
(Figure 2).

Estimating treatment effects with and 
without addressing immortal time and 
confounding biases

We estimated the treatment effect while either ignoring or 
acknowledging immortal time and confounding biases, taking 
different approaches for three endpoints (Table 1). Model 1, which 
ignored both immortal-time and confounding biases, showed a 
significant decrease in in-hospital death with a resulting HR of 0.66 
(95% CI, 0.47–0.93). In Model 1, the estimated effect for competing 
events was 0.84 (95% CI, 0.59–1.21) for discharge home and 1.30 (95% 
CI, 0.86–1.94) for transfer to another healthcare facility. By accounting 
for a delay in treatment administration time through modeling a time-
varying treatment status in Model 2, the HRs increased for all 
outcomes: 0.79 (95% CI, 0.59–1.06) for in-hospital death, 0.91 (95% 
CI, 0.66–1.25) for discharge home, and 1.38 (95% CI, 0.96–1.97) for 
transfer. In addition, after adjusting for baseline covariates in Models 
3 and 4, by fitting a multivariable Cox regression (Model 3) or using 
the inverse probability of treatment weighting (Model 4), we observed 
for all outcomes shifts toward higher HRs compared to the fully crude 
analysis (Model 1). Most of the findings did not yield statistically 
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significant results, except in Model 1 for the in-hospital death outcome 
and in Model 3 for the transfer outcome.

In the emulated trial (Model 5) with defining a hypothetical 
protocol and a reliable 2-day treatment administration period, the 
resulting HRs were 0.68 (95% CI, 0.46–1.02) for in-hospital death, 
1.22 (95% CI, 0.82–1.81) for discharge home, and 1.26 (95% CI, 
0.77–2.07) for transfer. The trial emulation analysis allowed to 
model a hypothetical trial in which the treatment was administered 
within the first 2 days of hospital admission. This analysis showed 
that the treatment effect on both discharge home and transfer is 
toward a beneficial direction, and suggests a reduction in 
in-hospital death, however none of these results were 
statistically significant.

Discussion

This paper provides an overview of the methodological limitations 
of competing risks, immortal-time bias, and confounding bias when 
evaluating treatment effectiveness using observational hospital data 
from COVID-19 patients. This article demonstrates how biases may 
be mistakenly introduced and discusses the limitations of standard 
approaches that may lead to biased estimates of treatment effects. 
Observational studies evaluating treatment effectiveness are often 
complex, and have the potential for various types of biases. These 
combinations of biases can result in shifted effects of different 
magnitudes and directions, making it difficult to accurately estimate 

treatment effectiveness (14, 19). Our study aims to raise awareness of 
the common biases and the importance of addressing these 
limitations. This knowledge is essential for researchers assessing 
treatment effectiveness, particularly during the emergence or 
re-emergence of infectious diseases, when investigators face significant 
time constraints to obtain high-quality evidence of treatment 
effectiveness when relying on observational data, as was the case 
during the COVID-19 pandemic.

In our study, we illustrate the competing risk issue using a typical 
example of observational hospital data. Our results show that the 
naïve Kaplan-Meier estimator leads to biased cumulative incidence 
probabilities for the primary event of interest. Censoring discharged 
patients violated the independent censoring assumption, thus 
overestimating the probabilities of in-hospital death (47). Various 
methodologies and analytical techniques are available for analyses in 
the presence of competing events (48). In our emulated trial study, 
we used the Aalen-Johansen estimator to account for competing risks 
(49). This technique determined the proportion of patients who 
experienced a primary event of interest within the given time, 
considering the presence of competing events (50). Our previous 
studies elaborated on implementing competing risk analyses within 
the target trial emulation framework (51, 52). Another method to 
account for dependent censoring is to use the inverse probability of 
censoring weighting, which weights patients by the inverse probability 
of not yet having the competing event (48, 49). These weights can then 
be implemented in the Kaplan-Meier estimator (48). In fact, we agree 
with prior research that the choice of statistical analysis method in the 

FIGURE 2

Cumulative in-hospital death probabilities by treatment group, comparing results from the naïve Kaplan-Meier estimator applied to initial data with the 
weighted Aalen-Johansen in emulated trial. Abbreviations: KM, the Kaplan-Meier estimator; Emulated, emulated target trial analysis using the weighted 
Aalen-Johansen estimator.
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TABLE 1 Overview of statistical methods and results while addressing vs. neglecting immortal time and confounding biases.

Model Approach Statistical 
analysis 
method for 
outcome 
models

Hazard ratio (HR, [95% CI]) Immortal-time bias Baseline confounding bias

In-hospital 
death

Discharge 
home

Transfer Occurrence Description Occurrence Description

1 Conventional

Univariable Cox 

regression model with 

treatment status 

incorrectly assigned 

at baseline

0.66  

[0.47–0.93]

0.84  

[0.59–1.21]

1.30  

[0.86–1.94]
Yes

Ever-treated patients 

misclassified as treated 

from admission; never-

treated as untreated

Yes

Baseline covariates not 

included in regression 

model

2 Conventional

Univariable, time-

dependent Cox 

regression model with 

time-varying 

treatment status

0.79  

[0.59–1.06]

0.91  

[0.66–1.25]

1.38  

[0.96–1.97]
No

Treated patients time 

classified to “untreated / 

“treated” periods using 

start-stop notation; 

pre-treatment time 

classified as “untreated”

Yes

3 Conventional

Multivariable, time-

dependent Cox 

regression model with 

baseline covariates 

and time-varying 

treatment status

0.76  

[0.58–1.00]

0.92  

[0.68–1.24]

1.41  

[1.01–1.99]
No No

Baseline covariates 

included in regression 

model

4

Inverse 

probability 

treatment 

weighting

Weighted, time-

dependent Cox 

regression model with 

weights as a covariate 

and time-varying 

treatment status

0.76  

[0.52–1.08]

0.98  

[0.67–1.42]

1.50  

[1.00–2.24]
No No

Baseline covariates 

included in inverse 

probability treatment 

weights via propensity 

scores

5

Target trial 

emulation with 

clone-censor-

weight approach

Weighted cause-

specific Cox 

regression with 

censoring weights as a 

covariate and 

treatment arm

0.68  

[0.46–1.02]

1.22  

[0.82–1.81]

1.26  

[0.77–2.07]
No

Two clones: one in ‘X’-

treated arm and one in 

non-‘X’-treated arm

No

Cloning results in 

balanced covariates 

between two arms at 

baseline, inverse 

probability censoring 

weights applied to 

correct for selection bias

HR, Hazard ratio; CI, Confidence interval.

35

https://doi.org/10.3389/fmed.2024.1362192
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Martinuka et al. 10.3389/fmed.2024.1362192

Frontiers in Medicine 08 frontiersin.org

presence of competing events depends on the specific causal research 
question and the type of event (48).

A competing risk analysis that reports cumulative incidence for 
heterogeneous outcomes could be  particularly beneficial. 
Acknowledging all clinically important endpoints can provide 
researchers with a more comprehensive understanding of disease 
progression and enhance the assessment of therapy-associated benefits 
and risks. In a target trial emulation study conducted by Urner et al. 
evaluating the effectiveness of venovenous extracorporeal membrane 
oxygenation (ECMO) in COVID-19 patients, the study reported 
results for the primary outcome of in-hospital death and for the 
competing event of hospital discharge (53). Their study defined 
discharge alive as a competing event for in-hospital death rather than 
a censoring event. Such an approach provides a more comprehensive 
understanding of ECMO’s impact on various clinical outcomes (53).

Previous studies evaluated the impact of immortal-time bias and 
confounding bias on treatment effect estimates by comparing standard 
analytical approaches with emulated trials (54, 55). Hoffman et al. (54) 
reported that immortal time can lead to biased treatment effect 
estimates. The common “model-first” approaches failed to achieve the 
randomized controlled trial (RCT) benchmark using the same data 
source compared to the target trial emulation framework (54). The 
study conducted by Kuehne et al. evaluated the effectiveness of ovarian 
cancer treatment in terms of overall survival. The study found that 
ignoring methodological biases and using crude (univariable) analysis 
methods led to significant variation in effect measures, with immortal-
time bias contributing more substantially to the shifted effects than 
confounding (55). That study also demonstrated that various 
methodological biases can significantly shift the treatment effect 
measure in different directions. Our analysis led to similar conclusions. 
The magnitude of immortal-time bias can be influenced by factors such 
as the length of the immortal time period, the proportion of exposed 
patients, the event rate, and the length of a study’s follow-up (15, 56).

Our study also highlights the impact of baseline confounding bias 
and the importance of addressing it properly. To prevent confounding 
bias, it is essential to identify and account for all potential, clinically 
important confounders, and to apply appropriate statistical methods 
(27). The evaluation of time-dependent treatments necessitates the 
inclusion of post-baseline (time-dependent) confounders (54, 57, 58). 
High-quality, time-dependent data are crucial for drawing causal 
conclusions from observational data (27, 57). In our analysis, data on 
time-updated prognostic covariates were not available, which makes 
our study susceptible to time-dependent confounding bias. This is 
because treatment administration after baseline often depends on 
changing prognostic characteristics. To adjust for time-updated 
covariates, time-dependent clinical characteristics could 
be incorporated into the weights models (45, 57).

Our examination aligns with the existing literature recommending 
the target trial emulation framework as a beneficial approach for 
analyzing real-world data (24, 33, 54). This framework increases 
transparency in both the design and analysis stages by explicitly 
defining the research question, outcome, time zero, treatment 
strategies and assignment, and the analysis plan (24, 33). This 
approach facilitates the early identification and mitigation of potential 
biases by applying of design and/or analytical strategies (33). While 
the target trial emulation framework offers advantages, 
we  acknowledge its methodological complexities and the need to 

address frequent challenges associated with observational data (24, 
59). For more detailed introductions and tutorials on the emulated 
target trial framework, we refer to the articles by Hernan et al. (33), Fu 
(24), and Maringe et al. (34).

Our study has several potential limitations. First, it is a 
demonstrative study that uses a common data example from a 
single center, restricting the generalizability of our results 
regarding the magnitude of biases on the treatment effect. 
Therefore, our findings on the magnitude of each bias cannot 
be  extrapolated to other settings. Second, we  developed a 
simplified version of a hypothetical trial protocol, and additional 
criteria could be included in real treatment assessment studies. 
Third, while we  accounted for numerous baseline clinical 
covariates to control for confounding, we admit that unmeasured 
confounding is probable in our study. Data on time-updated 
prognostic covariates were not available. Fourth, we reported HRs 
as a summary measure to facilitate comparisons among the 
various regression models. Such summary effect measures as risk 
differences and risk ratios are preferable to hazards and are easier 
to interpret clinically (47, 60). Lastly, we did not discuss additional 
limitations of observational studies, such as selection bias, data 
quality, and missing data issues, all of which can impact the 
accuracy of their results (4, 61). However, it is important to 
emphasize that our findings were not interpreted clinically.
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Introduction: The fight against SARS-CoV-2 has been a major task worldwide 
since it was first identified in December 2019. An imperative preventive measure 
is the availability of efficacious vaccines while there is also a significant interest 
in the protective effect of a previous SARS-CoV-2 infection on a subsequent 
infection (natural protection rate).

Methods: In order to compare protection rates after infection and vaccination, 
researchers consider different effect measures such as 1 minus hazard ratio, 1 
minus odds ratio, or 1 minus risk ratio. These measures differ in a setting with 
competing risks. Nevertheless, as there is no unique definition, these metrics are 
frequently used in studies examining protection rate. Comparison of protection 
rates via vaccination and natural infection poses several challenges. For instance 
many publications consider the epidemiological definition, that a reinfection 
after a SARS-CoV-2 infection is only possible after 90 days, whereas there is no 
such constraint after vaccination. Furthermore, death is more prominent as a 
competing event during the first 90 days after infection compared to vaccination. 
In this work we discuss the statistical issues that arise when investigating protection 
rates comparing vaccination with infection. We explore different aspects of effect 
measures and provide insights drawn from different analyses, distinguishing 
between the first and the second 90 days post-infection or vaccination.

Results: In this study, we have access to real-world data of almost two million 
people from Stockholm County, Sweden. For the main analysis, data of over 52.000 
people is considered. The infected group is younger, includes more men, and is less 
morbid compared to the vaccinated group. After the first 90 days, these differences 
increased. Analysis of the second 90 days shows differences between analysis 
approaches and between age groups. There are age-related differences in mortality. 
Considering the outcome SARS-CoV-2 infection, the effect of vaccination versus 
infection varies by age, showing a disadvantage for the vaccinated in the younger 
population, while no significant difference was found in the elderly.

Discussion: To compare the effects of immunization through infection or 
vaccination, we emphasize consideration of several investigations. It is crucial to 
examine two observation periods: The first and second 90-day intervals following 
infection or vaccination. Additionally, methods to address imbalances are essential 
and need to be used. This approach supports fair comparisons, allows for more 
comprehensive conclusions and helps prevent biased interpretations.

KEYWORDS

protection rate, vaccination, conditional survival, competing risks, survival of the fittest

OPEN ACCESS

EDITED BY

Cristiana Sessa,  
Oncology Institute of Southern Switzerland 
(IOSI), Switzerland

REVIEWED BY

Ferdi Tanir,  
Cukurova University, Türkiye
Stefan Pilz,  
Medical University of Graz, Austria

*CORRESPONDENCE

Susanne Weber  
 Susanne.weber@uniklinik-freiburg.de

RECEIVED 25 January 2024
ACCEPTED 23 May 2024
PUBLISHED 12 June 2024

CITATION

Weber S, Hedberg P, Naucler P and 
Wolkewitz M (2024) Protection from prior 
natural infection vs. vaccination against 
SARS-CoV-2—a statistical note to avoid 
biased interpretation.
Front. Med. 11:1376275.
doi: 10.3389/fmed.2024.1376275

COPYRIGHT

© 2024 Weber, Hedberg, Naucler and 
Wolkewitz. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 12 June 2024
DOI 10.3389/fmed.2024.1376275

39

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1376275&domain=pdf&date_stamp=2024-06-12
https://www.frontiersin.org/articles/10.3389/fmed.2024.1376275/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1376275/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1376275/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1376275/full
mailto:Susanne.weber@uniklinik-freiburg.de
https://doi.org/10.3389/fmed.2024.1376275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1376275


Weber et al. 10.3389/fmed.2024.1376275

Frontiers in Medicine 02 frontiersin.org

Introduction

The development of vaccines is a critical and ongoing task in the 
fight against coronavirus disease 2019 (COVID-19). Numerous 
vaccines are currently under development and some are tailored to 
the currently circulating Omicron sublineages. Additionally, 
scientists are examining the extent of protection provided by a 
previous severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection against the risk of a subsequent infection (natural 
protection rate). One major interest lies in the protection rates after 
infection compared with those after COVID-19 vaccination, 
e.g., (1, 2).

According to Gail et al. (3) there are different ways to measure 
protection rate. Vaccine effectiveness is defined as the percentage 
reduction in the attack rate that can be attributed to the vaccine. The 
attack rate is determined as the proportion of individuals infected 
within the designated risk group during a specified time period. This 
corresponds to the risk of acquiring an infection and thus the effect 
measure considered corresponds to 1-relative risk (RR), with RR being 
the relative risk of the vaccinated compared to the unvaccinated group. 
Additionally, Gail et  al. (3) states that, when evaluating vaccine 
effectiveness using data from a case control study, 1-odds ratio (OR) is 
an appropriate effect measure, with OR being the odds ratio between 
the vaccinated and unvaccinated groups. In addition to these two effect 
measures, one minus the hazard ratio (HR) can also be considered. 
There are two considerations we want to point out when comparing 
RR, OR and HR. Considering the comparison of RR and OR a 
common rule is that if the event is rare (<10%) the estimates are similar, 
see (4). In a survival setting 1-RR and 1-HR do not differ if the hazard 
is small, see (3). However, in this work we focus on a competing risk 
setting, where the interest is in the comparison of a measure on the risk 
scale (RR or OR) and a measure on the rate scale (HR). In competing 
risk settings, the effect measures are only comparable if in addition 
there is no effect on the competing hazard.

When evaluating protection rates after vaccination or infection, each 
of these effect measures is considered. However, they address different 
scales. While the HR is a measure on the rate scale, the RR and the OR 
are measures on the risk scale. Consequently, HRs give information 
about direct effects on the cause-specific hazard for the event of interest 
and about indirect effects via influence on possible competing event 
hazards. For instance, death is a competing risk for the event of interest, 
which is infection after vaccination or infection. In contrast, ORs and 
RRs are summaries of direct and indirect effects, allowing for conclusions 
about the probability of the occurrence of the event of interest.

Although these measures differ when facing competing risks, they 
are all used for investigation, as there is no unique definition of the 
protection rate. For instance, Letizia et  al. (5) used data of an 
observational study for investigation of the natural protection rate. 
Analysis was done via Poisson regression and 1-HR is reported. Dagan 
et  al. (6) investigated vaccine effectiveness using Kaplan–Meier 
estimators and used the corresponding risk estimates in order to 
obtain the vaccine effectiveness via 1-RR. Powell et al. (7) considered 
1- odds ratio (OR) in order to compare protection rate after infection 
and vaccination for different variants.

It should be noted, that when considering former SARS-CoV-2 
infection as an exposure and its effects, the competing risk of death is 
more prominent than after COVID-19 vaccination. The infection 
affects the mortality hazard, which has an impact on the time at risk for 

developing a further infection and is hence indirectly affecting the 
infection risk. Furthermore, in publications a reinfection after a SARS-
CoV-2 infection is only possible after 90 days per epidemiological 
definition (1, 2). Hence, analysis of the protection rate of an infection 
starts after 90 days and only individuals surviving the first 90 days are 
at risk of a reinfection. In contrast, there is no such constraint for the 
analysis of protection rate after vaccination. Consequently, when 
comparing protection rate after infection or vaccination, analysis 
should start after 90 days in order to avoid immortal time bias. 
However, this is not a fair comparison, as it is prone to selection bias. 
The mortality hazard increases in the initial period after an infection 
and subsequently decreases until 90 days post-infection. Thus, as 
elderly and more morbid patients are at a higher risk of dying due to 
infection during the first 90 days, the population is overall healthier 
during the second 90 days. For the vaccinated group there is no such 
selection during the first 90 days, as the vaccination does not affect the 
mortality hazard.

Thus, comparison of the protection rate of vaccination versus 
natural infection poses several challenges due to significant differences 
in reinfection and death rates among groups within the first 90 days.

To examine the statistical challenges that arise from assessing 
protection rates, we have access to population-based observational 
data from several databases from Stockholm County, Sweden. 
Information on almost two million people is available from 2020 to 
2022. Information about SARS-CoV-2 infections and vaccinations is 
provided, alongside other patient-related characteristics, all derived 
from population-based data sources with high coverage. Thus, when 
comparing the natural protection with protection after a vaccination, 
we can examine imbalances between groups at baseline and during 
follow-up and discuss solutions to address them. Furthermore, 
we estimate HRs and ORs for comparison, in order to obtain one 
measure on the rate scale and one measure on the risk scale.

For a comparison between immunization via infection or 
vaccination, we consider several investigations. We highlight different 
aspects of effect measures and insights drawn from different analyses. 
The aim is to promote an awareness of the differences between the 
causes of protection in order to create a fair comparison.

Materials and methods

Study population

Among the entire population of Stockholm County, Sweden, 
we identified all individuals born 2001 or earlier, thus being 18 years 
or older during the entire COVID-19 pandemic period. We included 
all individuals alive and residing in Stockholm County on the 15th of 
March 2020. Individuals with a PCR test positive for SARS-CoV-2 
before the 16th March 2020 were excluded.

Data sources

Data were linked from three population-based data sources using 
personal identification numbers, unique for each Swedish resident, 
from the Stockholm regional healthcare data warehouse (VAL), 
SmiNet, and the National Vaccination Register (NVR). VAL contains 
data from administrative healthcare databases within the Stockholm 
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Region, including demographics, migration, drug prescriptions, and 
data on all inpatient stays and outpatient visits reimbursed by Region 
Stockholm (8). This includes near complete coverage of specialist care 
and 94% of primary care (8). SmiNet contains all PCR SARS-CoV-2 
positive test results reported in accordance with the Communicable 
Diseases Act (9). The data from NVR included all COVID-19 
vaccinations administered in Sweden to the Stockholm County 
population.1

Analysis

The aim of this work is the comparison of protection of a SARS-
CoV-2 infection after a first vaccination without being infected before, 
or a first infection without being vaccinated before. For simplicity, 
we will call the first vaccination or infection “time of first immunization.”

We perform several analyses. First, we determine the inclusion 
window in order to define the study population for the main analysis 
of this work. The main analysis addresses the comparison of protection 
rate after vaccination with the natural protection rate. Observation for 
this main analysis starts at time of first immunization. Thus, the focus 
of the first analysis is to investigate the time to first immunization and 
in the main analysis, we  focus on challenges concerning group 
imbalances and different effect measures. We distinguish between the 
first and the second 90 days after first immunization and investigate 
both observation periods.

Determination of study cohort for main analysis 
(inclusion window)

As we want to compare protection rates after first vaccination and 
first SARS-CoV-2 infection, we have to define an inclusion window in 
order to define a study cohort with reasonable groups for comparison. 
Thus, we first have a look at the competing risk model considering 
time to first immunization (first vaccination or first SARS-CoV-2 
infection separately). Death is a competing risk, see Supplementary  
Figure S1. The aim is to define an inclusion window, so that the 
vaccinated group and the infected group are both big enough and 
facing the same pandemic situation.

Follow-up for this analysis starts on 2020-03-15 when a more 
extensive transmission of the virus started. Note, that vaccination first 
was possible on December 27th 2020 in Sweden.

Main analysis
In order to investigate protection rate after immunization via 

SARS-CoV-2 infection or vaccination, we distinguish between two 
observation periods. The first observation period represents the first 
90 days after the time of first immunization. The second observation 
period represents the second 90 days, starting at day 91. In general a 
reinfection after SARS-CoV-2 infection is per definition only possible 
after 90 days, thus investigation of the protection rate starts after the 
first 90 days. The first 90 days represent the selection process, selecting 
individuals who are surviving the first 90 days and are thus available 

1 https://www.folkhalsomyndigheten.se/the-public-health-agency-of-sweden/

communicable-disease-control/vaccinations/vaccination-register-and-

vaccination-coverage/variable-list-for-the-national-vaccination-register/

for the main analysis. Hence, the first 90 days after immunization, as 
well as the second 90 days should be considered and investigated.

Time zero is the time of the first immunization. In the following, 
the groups for comparison of the protection rate after SARS-CoV-2 or 
vaccination are called the infected and the vaccinated group, 
respectively. The infected group will be considered as the reference 
group. Possible confounders measured at time zero are age (continuous), 
sex (binary), and comorbidity count (categorical). Comorbidity count 
has categories 0,1,2,3, ≥ 4 and considers the following comorbidities: 
cancer, cardiac disease, cerebrovascular disease, chronic kidney failure, 
chronic liver disease, chronic lung disease, dementia, diabetes, dialysis, 
down syndrome, hypertension, mental health disorder, mental 
retardation, neurological disease, obesity, other immunocompromising 
conditions and treatments, pregnancy, transplantation (solid organ or 
stem cell), living in nursing home, and receiving home help services.

During the first 90 days, people in the vaccinated group can get an 
infection or they can die without an infection. In contrast to that, 
people in the infected group can die during the first 90 days and they 
can be vaccinated for the first time, but they cannot get infected [per 
definition; see (1, 7)]. Thus, groups are not comparable concerning 
reinfection during first 90 days.

Selection for the second analysis occurs at the end of the first 
observation period. Available for the analysis of the second 90 days are 
those people still alive and without an infection at the end of the first 
observation period, and without first vaccination after having the first 
SARS-CoV-2 infection. The outcome of interest during the second 
observation period is the occurrence of first SARS-CoV-2 after 
immunization during the second 90 days.

The second analysis is a conditional analysis. The first analysis 
provides information about the selection process for this 
conditional analysis.

Analysis of the first 90  days: selection for 
conditional survival

The chosen model is a competing risks model with three possible 
events during a follow-up of 90 days: first SARS-CoV-2 after 
immunization via first vaccination, Death, and first Vaccination after 
Immunization via first SARS-CoV-2 (see Supplementary Figure S2).

Note that we do not handle second vaccination as competing risk 
in the vaccination group. For simplicity, we decided that a further 
vaccination is no reason for exclusion of analysis of the second 90 days. 
Due to the methodological character of this work, we think that this 
is a reasonable choice.

The estimated transition probabilities (via the etm package in R) 
are illustrated via stacked probabilities plots. Death (death without first 
Covid19 nor first vaccination, and death overall) during the first 90 days 
is investigated via Cox regression and logistic regression. Continuous 
baseline characteristics are given by mean, standard deviation (SD), 
median, first quartile (Q1), and third quartile (Q3). Categorical baseline 
characteristics are given by percentages. A comparison has been done 
of the baseline characteristics for the baseline population and the 
population selected for the conditional survival analysis.

Analysis of the second 90  days: conditional 
survival

For the conditional survival analysis, follow-up starts 90 days after 
first immunization, see the competing risks model as depicted in 
Supplementary Figure S3. Follow-up is 90 days and the possible 
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events are first SARS-CoV-2 infection after immunization or death. 
Excluded from the analysis are individuals who had a SARS-CoV-2 
infection, who are first vaccinated, or who died within the first 
90 days.

Conditional survival is actually what is being done in the literature 
when considering natural protection rate. In these examples, the first 
90 days after infection are not considered (at the most briefly in the 
discussion, e.g., (1, 10)).

We estimate two effect measures considered in the literature when 
investigating the protection rate: HR and OR. Note that usually 1 
minus the respective effect measure is given. The infected group is 
considered as the reference group. HRs are estimated via the survival 
package in R, ORs are estimated via the glm function using logit as a 
link function.

Focus of this analysis are differences between the effect measures 
and imbalances between the groups.

Both a crude analysis, i.e., without any adjustment, and several 
approaches, addressing the imbalance between groups were done: 
regressions with adjustment for baseline covariates (age (continuous), 
sex (binary), comorbidity count (categorical)), analysis of matched 
cohorts (matching of selected population via the same baseline 
covariates using the matchit package in R), and one weighted analysis.

Matched logistic regression is done using a mixed model with the 
matching group as a random effect (via lme4 package in R). The 
matching approach performs generalized full matching in the selected 
population. This is a faster alternative to the full matching approach 
and thus applicable to a large dataset. This matching approach 
estimates the average treatment effect (ATE) in a population compared 
to the selected population available after 90 days.

The weighting approach considers the selected population and 
uses inverse probability weights obtained via the weightit package 
considering the ATE option and each of the covariates 
mentioned above.

An overview of the different analysis approaches is listed in 
Table 1.

Analysis is done in R (Version 4.1.0).

Results

Study population

On March 15, 2020, 1,860,797 subjects were available in the 
dataset according to the inclusion criteria. A small proportion of those 
(N = 11,203, 0.6%) were excluded as there were some inconsistencies 

with the data during the follow up, for example earlier death date than 
first SARS-CoV-2 infection, second SARS-CoV-2 infection, or first 
vaccination. Thus, for the first analysis, the determination of the 
inclusion window for the time-to-event analysis resulted in 1,849,594 
available subjects. In the case where the death date equaled the 
infection or vaccination date, 0.001 was added to the time of death.

Figure 1 shows the stacked plots in age groups (10 year steps) with 
the cumulative transition probabilities corresponding to the 
competing risk model addressing the time to first immunization.

It can be seen that vaccination is first possible at the end of 2020 
(27 December 2020). Furthermore, in the orange area, which 
represents the proportion of people being first infected without being 
vaccinated before, there is only a minor increase after the beginning 
of 2021.

According to the National Board of Health and Welfare (11) the 
first four surges in Sweden are as follows: 1. from March to September 
2020, 2. from October 2020 to January 2021, 3. from February to June 
2021, 4. from July to December 2021. These boundaries can be seen 
via the violet dotted lines in Figure 1.

With this information and the development of the curves in 
Figure 1, the inclusion window for the study population is defined as 
first immunization between 2020-12-27 and 2021-01-31 (dates 
included). Using these dates implies that for the analysis of the first 
90 days the follow-up of 90 days might fall into two surges (period 2 
and 3). For the analysis of the second 90 days the follow-up of 90 days 
lies completely in period 3.

Analysis of first 90  days

According to the inclusion window, the time of first immunization 
lies between 2020-12-27 and 2021-01-31 for 56,201 subjects.

The baseline characteristics (as available in December 2020 for 
each subject) are given in Table 2.

The infected group is younger, has more men and is less morbid 
compared to the vaccinated group.

In Figure  2 the cumulative incidences correspond to the 
competing risks model addressing the first 90 days after first 
immunization for the overall population and in age groups (<60 
and ≥ 60).

Note that the ranges of the y-axis differ depending on the 
considered population (overall or in age groups). Obviously, one 
difference is that during the first 90 days there are no SARS-CoV-2 
infections in the infected group, i.e., there are no orange areas in the 
left column. In contrast, there are no green areas on the right column. 

TABLE 1 Different analysis approaches for investigating protection rate and how imbalances between groups are addressed.

Approach How? What is addressed?

Crude  - crude group comparison

 - ignoring imbalances

Adjusted  - conditional effect in selected population

 - addressing imbalances after selection

Matched Generalized Full Matching

(ATE in selected population)

 - addressing imbalances after selection

 - (Generalized full matching is often faster than even nearest neighbor matching, especially for large datasets)

Weighted ATE in selected population  - addressing imbalances after selection

ATE, average treatment effect.
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Recall that vaccination is not considered as competing event in the 
vaccinated group as we  do not distinguish between different 
vaccination states. It can be seen, that the selected proportions for the 
conditional analysis in the overall population are similar between 
groups. The probability of having an event during the first 90 days is 

between 3.5 and 4% in both groups. In contrast to that, in the elderly 
population it is more likely to survive the first 90 days without an event 
in the vaccinated group, compared to the infected group. There is a 
difference between the two groups concerning the competing event 
death, especially in the elderly.

FIGURE 1

(A–G) Time to first immunization via first vaccination or first SARS-lines show borders of surges in Sweden in age groups (10 year steps, with (A) being 
the youngest group (Age between 18 and 30) and (G) being the oldest group (Age>=80)).
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We performed regression analysis of death without other events 
during the first 90 days via Cox and logistic regression in the overall 
population and in age groups. In Table 3, the results are presented for 
crude regression and with adjustment for sex, age (continuous), and 
comorbidity count (categorical).

It is strikes that the unadjusted HRs and ORs are smaller than one 
in both age groups, but greater than one in the overall population. 
This situation is known as the Simpson Paradox (12). The reason 
therefore is that the sample size of the two groups in the age groups 
differ. The elderly infected group is only a small proportion of the 
overall SARS-CoV-2 population (3,447 of 19,335, 17.8%), whereas 
this is not the case for the vaccinated group (14,807 of 36,866, 40.2%). 
But, most of the deaths occur in the elderly population (in both 
immunization groups).

Adjusting or at least considering age groups leads to estimated 
effect sizes clearly apart from one, i.e., the unadjusted ORs by age 
groups are 0.225 for the younger population and 0.509 in the elderly.

In order to see how this selection process affects the study 
population the baseline characteristics for the selected population 
are also listed in Table 2. It can be seen that the differences in age and 
comorbidity count even increased in the available population. While 
the vaccinated group has only minor changes in these two variables, 
the infected group, notably, became less morbid from the first 
90 days to the second 90 days, as more morbid patients passing away. 
Out of 461 subjects with a comorbidity count of ≥4 only 123 
survived the first 90 days without an event. Note that in the 
vaccination group 3,352 of 3,778 with ≥4 comorbidities survived the 
first 90 days without an event. This difference is illustrated in 
Figure 3.

Note that the different movements in immunization groups 
mainly occurs in the older population, see Supplementary Figure S4 
and Supplementary Table S1.

In conclusion, the population is changing within 90 days in a 
different way in the both groups. For the analysis of the second 90 days 
addressing the protection rate, the groups need to be made comparable 
in order to make a fair comparison.

Analysis of second 90  days

In order to see how the matching and weighting mechanisms 
perform, love plots are shown in Supplementary Figure S5.

In Figure 4, the results of the different regression analyses are 
presented. The exact values are listed in the Supplementary Table S2.

Note that adjustment is for sex, age (continuously), and 
comorbidity count (categorical).

The unadjusted analysis considering death shows HRs and ORs of 
with values greater than 12  in the overall population and values 
greater than 5 in the elderly. However, this is not a fair comparison. 
Recall the imbalances in the considered population. The vaccinated 
group is older and has more comorbidities. These are two factors with 
an impact on death. The estimated effect can be mainly explained by 
these group differences. This can be seen by the effect estimates for the 
different approaches addressing imbalances.

It strikes, that there is a difference in age groups. In the younger 
population there is no difference in the approaches and the confidence 
intervals are wide. Note, that there are only very few deaths in this 
population, similar in both groups. However, looking at the older 
population there are some minor differences between the approaches. 
Most of the deaths occur in this population. The increase in 
imbalances between groups after selection mainly comes from the 
elderly. In this population the infected group is more robust due to 
frailer patients dying in the initial 90 days after infection. While there 
is no such effect in the vaccinated group (see Supplementary Figure S4). 
Hence, the huge unadjusted effect in the overall population mainly 
comes from the older population. Addressing the imbalances via the 
different approaches reduce the estimated effect.

Considering the outcome SARS-CoV-2 infection, there is mainly 
a difference between age groups. In the overall population there is an 
effect of vaccination vs. infection throughout the approaches (not 
always statistically significant). This effect comes from the younger 
population. In this population the vaccinated group has a disadvantage 
compared to the infected group. This is in contrast to no difference 
being found in the elderly population.

TABLE 2 Baseline characteristics for the population at baseline and for the selected population available after the first 90  days.

Population at baseline Population after 90  days

Infected group 
(N =  19,335)

Vaccinated group 
(N =  36,866)

Infected group 
(N =  16,924)

Vaccinated group 
(N =  35,525)

Age

Mean (SD) 44.4 (16.9) 56.7 (20.4) 41.7 (14.3) 56.0 (20.1)

Median [Q1,Q3] 43.0 [31.0,55.0] 55.0 [41.0,73.0] 40.0 [30.0,52.0] 54.0 [41.0,71.0]

Sex

Female 9,990 (51.7%) 26,106 (70.8%) 8,570 (50.6%) 25,223 (71.0%)

Male 9,345 (48.3%) 10,760 (29.2%) 8,354 (49.4%) 10,302 (29.0%)

Comorbidity count

0 14,376 (74.4%) 19,623 (53.2%) 13,443 (79.4%) 19,381 (54.6%)

1 2,891 (15.0%) 5,886 (16.0%) 2,406 (14.2%) 5,762 (16.2%)

2 1,077 (5.6%) 4,018 (10.9%) 701 (4.1%) 3,769 (10.6%)

3 530 (2.7%) 3,561 (9.7%) 251 (1.5%) 3,261 (9.2%)

> = 4 461 (2.4%) 3,778 (10.2%) 123 (0.7%) 3,352 (9.4%)
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Concerning the issue of competing risks there are no big 
differences between the estimates of the HR and the OR. Hence, the 
topic of competing risks is not a big issue (at least in this data 
example). Note that the event rates during the second 90 days are low 
in each age group and for each event.

Discussion

In this work we  investigated challenges when comparing the 
protection rate for SARS-CoV-2 infection after an infection or after 
vaccination. We divided the time after first immunization into the 

FIGURE 2

Cumulative probability plots for analysis of first 90  days. On the left panel (A,C,E) the infected group is presented and on the right panel (B,D,F) the 
vaccinated group is considered. In the first line (A,B) the overall population is presented, while the second and the third line represent the age groups 
(C–F, respectively).

45

https://doi.org/10.3389/fmed.2024.1376275
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Weber et al. 10.3389/fmed.2024.1376275

Frontiers in Medicine 08 frontiersin.org

first and the second 90 days of follow-up. Due to the epidemiological 
definition, a comparison of protection rates after infection or 
vaccination has to start after the first 90 days. This results in a 
selection process for the analysis. We have seen that this selection 
process differs between groups. While in the vaccinated group there 
were not many changes concerning the distribution of the baseline 
covariates in the selected population compared to the baseline 
population, in the infected group there were substantial differences. 
The selection process in the infected population resembles a “survival 
of the fittest” scenario. The two groups (vaccinated and infected) 
already had imbalances at baseline and the selection process 
intensifies this.

The considered approaches  - adjustment, matching and 
weighting - obviously cannot address the selection process itself in 
an explicit way, as only the selected population is considered. 
However, it is important to consider the differences in mortality 

during the first 90 days when reporting the effects after 90 days. This 
will enable decision-makers to make a careful risk assessment.

We strongly recommend not to only start the analysis after 90 days 
and ignore the first 90 days, but rather investigate the selection 
process itself.

There are numerous approaches to address the imbalances 
between groups. In this work we presented adjustment, general full 
matching, and weighting addressing ATE as an estimand. Of course 
there are more possibilities to address imbalances in regression 
analyses. For instance, there are already several ways of performing 
matching or weighting, see (13). When choosing a method, one 
should be aware of what estimand is being addressed, in order to 
interpret the resulting estimation. It is crucial to be aware of differences 
between groups and addressing them in the analysis. Especially if the 
group comparison considers a vaccinated group versus a 
non-vaccinated group, it is possible that the data is prone to the 

TABLE 3 Results of regression analysis for death without other event during the first 90  days after first immunization in the overall population and in 
age groups.

Death without other event (vaccination vs. infection)

Population HR OR

Overall
Unadjusted 1.118 [0.981;1.274] 1.153 [1.011;1.316]

Adjusted 0.166 [0.144;0.192] 0.216 [0.184;0.253]

<60
Unadjusted 0.222 [0.081;0.607] 0.225 [0.074;0.574]

Adjusted 0.153 [0.055;0.429] 0.185 [0.059;0.482]

≥60
Unadjusted 0.47 [0.411;0.537] 0.509 [0.444;0.585]

Adjusted 0.171 [0.148;0.198] 0.31 [0.267;0.361]

The infection is considered as the reference group. HR, hazard ratio; OR, odds ratio.

FIGURE 3

Comparison of comorbidity count between groups for baseline population and selected population available for conditional analysis after first 90  days.
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healthy vaccine bias, see (14, 15). This bias occurs if the vaccinated 
group is in general more healthy than the comparison group. One way 
to investigate the healthy vaccine bias is comparing the non-COVID 
mortality in both groups. However, in order to do this, the cause of 
death needs to be known. Note, that in our data, the infected group, 
which is the non-vaccinated group, is less morbid than the vaccinated 
group, based on age and comorbidity count at baseline.

Furthermore, the competing risk has to be taken into account. 
Using data from Stockholm, the impact of the competing risk did not 
lead to a large discrepancy between ORs and HRs. An explanation 
might be that there are only few infections during the second 90 days, 
and even fewer deaths. Hence the event rates are low for each of the 
competing events. However, from a patient’s point of view it is 
important to get information about both events. Therefore, we advise 
to always report both, i.e., measures on rate and on the risk scale, for 
the outcome and the competing event death in order to get a complete 
picture of the risk dynamic.

For our investigation we were able to use an extensive dataset 
from Stockholm County with information on over 1.8 million people. 
This allowed us to consider only a small inclusion window for this 
study and still have a sample size of over 52.000. With this inclusion 
window we ensured that there was no notable variation in the virus at 
time of immunization and in the time considered for infection after 
immunization (i.e., the second 90 days after immunization).

A limitation of this investigation is that we did not distinguish 
between different levels of vaccination. For simplicity we  only 
considered vaccinated as being at least vaccinated once and without 
previous infection. For the illustrative purpose of this work, this is a 
justifiable simplification. Allowing for more complexity in the 
determination of immunization groups requires more thought 

concerning the time at risk considered in the analysis comparing the 
groups. However, since the analysis is limited to short time frames (the 
first and second 90-day periods after initial vaccination), the 
consideration of extra doses is of minor importance.

Furthermore it needs to be noted, that we did not distinguish 
between SARS-CoV-2 related deaths and non-related deaths. While 
this differentiation is not important for the purpose of this work, it is 
quite important for clinicians and patients and should be incorporated 
when investigating related research questions.

It is important to note that infections in this dataset are only 
identified when individuals are tested. Unfortunately, we do not have 
data on testing frequencies. Hence we cannot compare them between the 
infected and the vaccination group in order to see whether this is similar.

Even though the progress of the pandemic has led to changes in 
the underlying populations, the topic of this work remains relevant. 
Over time, the number of people with numerous infections and 
vaccinations has increased. Hence the analysis has become more 
complex. Nevertheless, the initial problem is still present. If the main 
analysis starts after 90 days, and thus there is a selection process 
during the first 90 days, it is crucial to take this first period into 
account as there might be differences between groups. Hence it is 
necessary to evaluate this problem in a simple setting in order to get 
a better understanding.

In conclusion, for a comparison between immunization via 
infection or vaccination, we strongly emphasize to consider several 
investigations in order to make fair comparisons and to draw 
comprehensive conclusions. Information on the selection process for 
the main analysis should be  investigated and reported in the 
publication, namely the first 90 days. It is essential to present both in 
order to avoid biased interpretation.

FIGURE 4

Estimation of effect estimates (HR and OR): results from regression analysis. Infection is considered as reference group. On the left column the 
outcome SARS-CoV-2 infection is considered and on the right column the competing event death is considered (HR, hazard ratio, OR, odds ratio).
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Lessons learned: avoiding bias via 
multi-state analysis of patients’ 
trajectories in real-time
Elisabeth Lucke *, Derek Hazard , Marlon Grodd , Susanne Weber  
and Martin Wolkewitz 

Institute of Medical Biometry and Statistics, University Hospital Freiburg, Freiburg, Germany

Objectives: Many studies have attempted to determine the disease severity and 
patterns of COVID-19. However, at the beginning of the pandemic, the complex 
patients’ trajectories were only descriptively reported, and many analyses were 
worryingly prone to time-dependent-, selection-, and competing risk biases. 
Multi-state models avoid these biases by jointly analysing multiple clinical 
outcomes while taking into account their time dependency, including current 
cases, and modelling competing events. This paper uses a publicly available 
data set from the first wave in Israel as an example to demonstrate the benefits 
of analysing hospital data via multi-state methodology.

Methods: We compared the outcome of the data analysis using multi-state 
models with the outcome obtained when various forms of bias are ignored. 
Furthermore, we  used Cox regression to model the transitions among the 
states in a multi-state model. This allowed for the comparison of the covariates’ 
influence on transition rates between the two states. Lastly, we  calculated 
expected lengths of stay and state probabilities based on the multi-state model 
and visualised it using stacked probability plots.

Results: Compared to standard methods, multi-state models avoid many biases 
in the analysis of real-time disease developments. The utility of multi-state 
models is further highlighted through the use of stacked probability plots, which 
visualise the results. In addition, by stratification of disease patterns by subgroups 
and visualisation of the distribution of possible outcomes, these models bring 
the data into an interpretable form.

Conclusion: To accurately guide the provision of medical resources, this 
paper recommends the real-time collection of hospital data and its analysis 
using multi-state models, as this method eliminates many potential biases. By 
applying multi-state models to real-time data, the gained knowledge allows 
rapid detection of altered disease courses when new variants arise, which is 
essential when informing medical and political decision-makers as well as the 
general population.

KEYWORDS

lessons learned, avoiding bias, pandemic preparedness, multi-state models, real time, 
analysis strategies
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1 Introduction

1.1 Background

Having emerged in December of 2019, the SARS-CoV-2 virus has 
brought with it a variety of challenges. Due to its diverse clinical 
courses and surging waves of patients, it has impeded the provision of 
appropriate resources for hospitalised patients. At the beginning of the 
pandemic, studies attempting to understand the characteristics of 
COVID-19 suffered from severe time-related types of bias due to 
length bias, immortal-time bias, competing risk bias, and selection 
bias (1). For example, Zhou et al. carried out a study in Wuhan, China, 
in which 613 cases out of 813 were excluded because these patients 
had not yet experienced an outcome (2). Similarly, in Chen et al. 525 
out of 799 patients were excluded from the analysis because they were 
still hospitalised (3). However, as Bajaj et al. argue, those in a moderate 
condition may stay in the hospital for longer than those in a poor 
condition, because the latter may succumb more quickly (4). At the 
same time, those in a good condition stay in the hospital for a shorter 
time than the ones in a moderate condition, as the former are likely to 
be discharged sooner. Thus, by ignoring all active cases, a selection 
bias arises, in which patients in a moderate condition are excluded, as 
their stay in the hospital is likely to be longest.

In addition, various studies suffered from competing risk bias. 
Competing risks refer to situations where an individual is subject to 
multiple possible events, and the occurrence of one event precludes 
the occurrence of the others (5). Assuming death is the event of 
interest, for example, the possibility of in-hospital death is eliminated 
when an individual is discharged from the hospital. Hence, being 
discharged is a competing event to dying in the hospital. In survival 
analysis, disregarding the presence of competing events can lead to a 
severe bias in the results.

To address the problem of poor data quality and biassed samples, 
this paper shows how statistical analyses can be used to avoid these 
biases in the context of the COVID-19 pandemic, following the 
example of Hazard et  al. with multi-state models (6). Multi-state 
models entail defining certain states and the transitions among them. 
Multi-state models have the advantage that they are very flexible. For 
example, depending on the desired complexity, states can easily 
be consolidated. This increases the comprehensibility of the plots and 
at the same time can simplify the analysis (7).

1.2 Research in context

Multi-state models have been used in a variety of research contexts. 
For example, in modern ecology, it is used in capture-recapture 
experiments because the multi-state models allow for simple 
incorporation of temporal variation in the transition rates by modelling 
the rates as a parametric function over time (8). Furthermore, multi-state 
models are commonly used in cancer clinical trials, where patients 
usually experience multiple disease stages (9). The complex transitions 
between these stages can be comprehensively analysed using multi-state 
models. In addition, multi-state models can be used for predictions. 

More specifically in the context of hospital data, Roimi et al. used a multi-
state model to predict individual patients’ hospital states based on their 
characteristics, such as age and gender. Furthermore, they also carried 
out analyses to predict the total hospital utilisation (10). Similarly, Keogh 
et  al. also predicted the length of stay in hospital wards during the 
COVID-19 pandemic based on the patients’ characteristics. However, 
they extended their work by introducing the concept of “conditional 
expected length of stay,” which is defined as the expected length of stay 
in a certain state, conditional on the complete pathway taken through the 
states (11). In yet another paper, the multi-state model is analysed with 
parametric methods, which has the advantage that these parameters can 
be used to carry out simulations (12). The advantages and disadvantages 
of a variety of multi-state modelling approaches are reviewed in (13).

The implication of disregarding competing events in statistical 
analyses has been discussed frequently among the research community. 
In (14), McCaw et al. outline the problem of competing risks based on two 
papers: in (15), Beigel et al. carried out a clinical trial evaluating the effect 
of remdesivir versus a placebo in hospitalised COVID-19 patients. 
Similarly, Li et al. conducted a trial to detect the effect of convalescent 
plasma as compared to the effect of the standard of care on hospitalised 
COVID-19 patients (16). In both studies, death is a competing event. In 
addition, Wolkewitz et al. carried out an analysis to determine the impact 
of the duration of mechanical ventilation on the development of 
pneumonia while considering extubation as a competing event (17). An 
unbiased result could only be obtained when the competing event was 
accounted for. Supplementary Table 2 in (18) shows an overview of papers 
published in high-impact journals with a competing risk problem. In all 
cases, being discharged alive was the competing event that should have 
been accounted for in the analysis. Ignoring this competing event led to 
an overestimation of the cumulative incidence of the event of interest 
which, in the cases of the papers mentioned in Supplementary Table 2, 
was death or a composite outcome of intubation or death. Furthermore, 
a systematic literature review of observational studies that evaluated drug 
effectiveness in patients with COVID-19, carried out by Martinuka et al. 
(19), assessed the studies on three common methodological pitfalls in 
time-to-event analyses, one of them being competing risk bias. Their 
results showed that only one paper out of 11 accounted for the competing 
risk of being discharged alive by extending the follow-up period for 
discharged patients. All the others suffered from a competing risk bias. 
This highlights the scope of the problem.

Whilst it is evident that the topic of competing risk and selection bias 
as well as the use of multi-state models for the analysis of hospital data is 
not new to the research community, the topics are rarely taken into 
consideration by clinicians. Hence, this work aims to illustrate the biases 
that early COVID-19 analyses were subject to and provide a simple and 
easily applicable solution to overcoming these sources of bias by using the 
multi-state methodology. In addition, the paper aims to show how the 
continuous use of multi-state models in hospital data analysis facilitates 
hospital planning in disease outbreak scenarios by using comprehensive 
data visualisation techniques, thereby enhancing pandemic preparedness.

2 Methods

2.1 Data

The data used to demonstrate the advantages of multi-state 
models was collected in the form of a nationwide Israeli COVID-19 

Abbreviations: ELOS, Expected length of stay; M/S, Moderate/severe; ICU, Intensive 

care unit.
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registry. It was previously used by Roimi et al., who conducted a multi-
state analysis to predict hospital capacity utilisation in Israel. The data 
was collected in real-time and includes the day-to-day clinical course 
of patients hospitalised for at least 1 day between March 1st and May 
2nd of 2020. It furthermore includes information on the patients’ age, 
sex, and initial admission date.

2.2 Multi-state models

In the model, four states are defined: moderate/severe (M/S), 
critical, discharge, and death. A patient starts in M/S or critical and 
can change between these two states an unlimited number of times 
before either dying in the hospital or being discharged. Death and 
discharge were defined as absorbent states, forbidding any transition 
away from these states. Supplementary Figure 1 illustrates the multi-
state model. One important characteristic of multi-state models is that 
they allow the inclusion of competing events. In this model, discharge 
is the competing event of death. It is important to classify discharge as 
a competing event because being discharged alters the probability of 
death, i.e., persons discharged from the hospital are likely to 
be healthier and therefore have a lower probability of dying than those 
hospitalised (5). Disregarding this in the analysis would bias the 
results. Supplementary Table 1 shows example clinical courses of 3 
patients through this multi-state model.

As von Cube et al. described, the analysis of multi-state models 
implies the calculation of transition probabilities and transition-
specific hazard rates (20). In this paper, transition probabilities are 
calculated using transition hazards, which are defined as the 
instantaneous risk of moving between two states. Moreover, in our 
model, the calculation of the transition probabilities is dependent on 
all hazard rates of the transitions. Further mathematical details of 
multi-state models are explained in von Cube et al. (20) and Wolkewitz 
et al. (21).

2.3 Statistical analyses

We used two different approaches to highlight the advantages of 
multi-state models over standard analysis techniques. In the first 
approach, we illustrated the bias which arises by excluding all active 
cases as was done in Zhou et al. and Chen et al. (2, 3). To do so, 
we excluded all active cases from our data and carried out a logistic 
regression for the outcome of “death.” Based on this regression, 
we predicted the probability for the event “death” to have occurred by 
May 2nd, 2020 for the different age groups. We stratified this analysis 
for the state at initial admittance. We then compared the results to the 
probability of dying using the multi-state model to highlight the 
discrepancies in the results if active cases are excluded. In the second 
approach, we demonstrated the bias that arises if competing events are 
censored. This means that only the event of interest, death, was 
considered. We created cumulative incidence curves for this model 
and compared them to the cumulative incidence curves obtained 
when considering the competing event of being discharged. This 
analysis was also stratified by age groups and the initial state of 
admittance. The methodology is displayed in Figure 1.

In addition, we  analysed the multi-state model using stacked 
probability plots. Transition probabilities were calculated using the 
mstate package in R (Version 4.3.1) and the code created by Hazard 
et  al. (6). First, cause/transition-specific Cox regressions were 
calculated. Cox models are a popular regression method in survival 
analysis. They are used when the effect of covariates on censored 
survival times is analysed. Cox regressions are calculated to compare 
how covariates affect the instantaneous risk of a transition between 
two states, i.e., the hazard ratio. For simplicity, the transitions M/S to 
critical and M/S to death were merged into one transition, to model 
how covariates affect the risk of clinical decline from the M/S state. 
Similarly, the transitions critical to M/S and critical to discharge were 
merged into one transition to model the effect of the covariates on an 
improvement from the critical state. To measure the effect of the 

FIGURE 1

Methodology for the statistical analysis of the data set.
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month of admittance, a binary variable was used differentiating 
between admission in March and admission in April. The few cases 
that were admitted in May were included in April. After performing 
Cox regression, the baseline hazard was calculated, which is the 
hazard of the event of interest occurring at a certain point in time if 
the effect of all other covariates is zero. Then, the transition 
probabilities were calculated based on the baseline hazards. Finally, 
the transition probabilities were used to calculate the expected length 
of stay (ELOS) as shown in Hazard et al.

3 Results

The dataset included 2,675 patients of which 1,319 were younger 
than 60, 870 were between 60 and 80, and 486 were over the age of 80. 
2,480 patients were originally admitted in an M/S state and only 195 
patients were in a critical state at the time of admittance. By May 2nd, 
2020, 198 patients had died and 311 patients (11.6%) were still active. 
Hence, by excluding all active cases, the data was reduced to 2,364 
patients with 1,233 below 60, 734 between 60 and 80, and 397 over the 
age of 80. Of the 2,364 patients, 2,233 were initially in an M/S state and 
131 in a critical state.

3.1 Bias in research during the COVID-19 
pandemic

3.1.1 Selection bias
Figure 2 depicts the predicted 30-day hospital mortality obtained 

using a logistic regression model when excluding all active cases from 
the data. As a comparison, it also shows the predicted 30-day hospital 
mortality obtained when the entire cohort was analysed using multi-
state models. The graph shows that when excluding active cases from 
the analysis the probability of death is overestimated in the groups of 
patients where more deaths occurred, such as in the older age groups 

and in those who were initially admitted in a critical state. For 
example, when analysing the biassed cohort, the probability of death 
of the patients between 60 and 80 who were initially admitted in a 
critical state is 0.63. In comparison, when including all individuals 
initially admitted in a critical state, the probability of death is 0.34. The 
same pattern is seen for patients above 80 when initially admitted in 
a critical state. All numeric values of the 30-day hospital mortality can 
be found in Supplementary Table 6.

3.1.2 Competing risk bias
Figure 3 shows the cumulative incidence curves of two different 

models. Whilst the event of interest in both models was “death,” the 
event “discharged” was only classified as a competing event in one 
model (“Accounting for competing risks”). In the other, this competing 
event was ignored (“Ignoring competing risks”). The results show that 
especially for the patients who were initially admitted into a moderate/
severe state, there are large discrepancies in the cumulative incidence 
curves between these two models. The method where competing risks 
are ignored overestimates the cumulative incidence of the event 
“death.” For example, the cumulative incidence of death after 30 days 
when ignoring the presence of competing risks is 0.37 whereas the 
cumulative incidence when considering the competing risk is 0.24.

3.2 Advantages of multi-state methods to 
avoid bias

Having demonstrated the bias that arises through standard 
methods of analysis that were used at the beginning of the COVID-19 
pandemic, the following results highlight the advantages of using 
multi-state models.

3.2.1 Planning bed capacity
Figure 4 shows the estimated probabilities in each state over 

time stratified for age groups and initial state of admittance. The 

FIGURE 2

The probability of dying stratified by the initial state of admittance and age group, calculated once based on a subsample that excluded all active cases 
(Logistic Regression) and once based on the full cohort using multi-state methods (Multi-state). The numbers underneath each bar indicate the 
amount of people in the respective group.
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estimated probability of each state on any day can be determined. 
Figures 4A–C shows the predicted proportions of patients admitted 
in a moderate/severe condition in each state over time stratified by 
age group. For patients between 60 and 79, 30 days after 
hospitalisation 3.5% are in M/S, 4.7% are in critical, 85.9% are 
discharged and 5.9% are dead. This information is valuable for the 
standard care units. Similarly, Figures 4D–F shows the estimated 
probabilities in each state over time of those patients being 
admitted in a critical state. This information is relevant for the 
intensive care wards as it indicates how long patients stay in a 
particular condition and more importantly, in which condition the 
patients leave the ward. For example, for patients between 60 and 
79, 30 days after hospitalisation 8.5% are in M/S, 16.4% are in 
critical, 45.5% are discharged, and 29.6% are dead. Thus, not only 
are these graphs useful when it comes to the planning of the 
different wards in the hospital, but by comparing the wards 
(standard care and ICU) with one another they can be useful in 
identifying disease patterns.

In addition, four different Cox regressions were constructed based 
on the model. As explained, for simplification purposes transitions 
one and three (as depicted in Supplementary Figure 1) were merged 
into one model as well as transitions four and five. The age group, sex, 
and initial admission date were included in the model as covariates. 
Overall, the age group and the binary covariate indicating the 
admission date (March versus April) were significant in most 
regressions. An increased age was associated with an increased hazard 
rate of transitions from M/S to critical or death, and from critical to 
death. The full result of the regressions is included in the 
Supplementary Tables 2–5 and it shows how multivariable Cox 
regressions can be  used as an outlook to analyse how certain 
characteristics are risk factors for a specific transition.

Furthermore, to show how the multi-state models can be used to 
prepare healthcare providers for future COVID-19 waves, the ELOS 
in the two non-absorbent states was calculated as an example for 
patients between 60 and 80. For those admitted in a M/S condition, 
the ELOS in M/S is 9.28 days and the ELOS in the critical state is 
2.75 days. In contrast, those admitted in a critical condition have an 

ELOS of 4.96 days in the M/S state and an ELOS of 15.91 days in the 
critical state, when estimating from the first day of hospitalisation. 
Supplementary Figure 2 shows the days in the M/S and critical state 
for each age group of the entire cohort.

3.2.2 Analysis to study the most recent 
developments in real-time

In addition, multi-state models allow the study of the most recent 
disease developments in real time. As an example, Figure 5 shows the 
stacked probability plots for the whole population stratified by the 
admittance date and initial admittance state. By stratifying for the 
hospital admission date, we show real-time changes in the clinical 
patterns of COVID-19. For those admitted in the M/S state, the 
mortality is higher when admitted in April/May than in March. This, 
however, is different when starting in the critical state. Here, the 
mortality seems to be lower for those admitted in April/May and the 
estimated probabilities over time in the critical condition are lower 
than for those admitted in March. Such information helps to clarify 
any observed differences in severity between the regular and the 
intensive care ward.

4 Discussion

In this paper, we compared standard survival analysis methods used 
for the analysis of COVID-19 hospital data in the beginning of the 
pandemic with advanced multi-state models. Supplementary  
Figure 2 and Supplementary Table 6 showed that selection bias led to an 
overestimation of death in the groups where many deaths occurred. As 
explained above, Bajaj et al. pointed out that excluding active cases biases 
the cohort towards the very ill and those that are only very lightly diseased. 
In our analysis, we manage to separate the severely ill from those that have 
a light course of the disease by stratifying for the initial state of admittance. 
Hereby, we show that our results support the claim of Bajaj et al., as 
Figure  2 shows that the probability of dying is overestimated in the 
patients admitted in a critical state, thus in the severely ill patients. These 
results are only partly reproducible in the opposite sense, i.e., showing that 

FIGURE 3

Cumulative incidence of dying stratified for age group and initial state of admittance. Solid lines show the results in which the competing risk of being 
discharged is accounted for, whereas the dashed lines show the results where the competing risk was not accounted for.
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the probability of death is underestimated in the patients initially admitted 
in a M/S state. Whilst we see an underestimation for patients above 80 
admitted in an M/S state, this cannot be observed for the other age groups. 
This could perhaps be explained by the small percentage of patients 
admitted in M/S that died, leading to an imprecise prediction of the 
probability of dying. In addition, Figure 3 shows that competing risk bias 
also leads to an overestimation of death because when ignoring competing 
risks, the model does not differentiate between being discharged and 
being hospitalised. Thus, those discharged are assumed to have the same 
risk of the event of interest as those who are still hospitalised. 
Consequently, the cumulative incidence is overestimated. In contrast, the 
cumulative incidence curves for the patients initially admitted in the 
critical state are very similar, as fewer patients are discharged. These results 
suggest that numerous analyses carried out at the beginning of the 

pandemic overestimated the severity of the disease. This is relevant as the 
overestimation may have led to some of the harsh public health measures, 
such as the closure of schools, which have, in retrospect, faced criticism 
for having been disproportionate (22). Hence, this example highlights the 
importance of obtaining unbiased information on disease severity, in 
which, as outlined above, multi-state models prove to be very useful.

In addition to highlighting the benefits of multi-state models in 
eliminating sources of bias, this paper also described further 
advantages of using multi-state models and corresponding stacked 
probability plots. One advantage is the potential these models have to 
assist the resource organisation of the hospital. By integrating stacked 
probability plots into the analysis, vital information on patients’ 
clinical courses over time can be  displayed comprehensively and 
concisely. Furthermore, through the use of Cox regressions and the 

FIGURE 4

Predicted probabilities of being in each state at specific times for the patients admitted in a moderate state (A–C) and those admitted in a critical state  
(D–F).

54

https://doi.org/10.3389/fmed.2024.1390549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lucke et al. 10.3389/fmed.2024.1390549

Frontiers in Medicine 07 frontiersin.org

calculation of the ELOS, risk factors can be identified and the disease 
courses of individual patients can be predicted, thereby facilitating the 
planning of the hospital wards.

Additionally, stacked probability plots are easily interpretable and 
thereby facilitate communication with the general public. As van 
Schalkwyk et al. writes, the COVID-19 pandemic came at a time when 
distrust in institutions among the population was growing, for 
example through a change of government (23). This distrust worsened 
during the pandemic, as information from the media or research 
community was misunderstood by the population. However, stacked 
probability plots facilitate the interpretation of information conveyed 
by professionals. For example, Berger et al. carried out a country-level 
analysis of hospital capacity and utilisation. Besides measuring how 
different countries increased their ICUs as a response to COVID-19, 
they compared how long patients stayed in the ICU (24). However, the 
length of stay in the ICU can only be compared among countries if the 
mortality rate is the same. Otherwise, the comparison of ICU stations 
would not be meaningful because patients may leave the ICU due to 
death or due to discharge. The stacked probability plots manage to 
depict this idea by showing that the length of stay in the critical ward 
is determined by the occurrence of other states.

The utility of the plots to analyse real-time clinical patterns is 
especially highlighted in Figure 5, where the plots are stratified by 
admittance date. This is particularly clinically informative when new 
variants arise. Throughout the pandemic, various SARS-CoV-2 
variants have emerged. The Delta variant was termed a variant of 
concern after its identification in India in May of 2021. It has increased 
transmissibility and virulence, as seen by elevated death and 

hospitalisation rates (25). However, there is no difference in 
characteristics between the wild-type virus and the Delta variant when 
compared by age and sex (26). In November of 2021, the Omicron 
variant was labelled a variant of concern. Whilst this variant showed 
a reduced severity overall, it led to increased hospitalizations in 
children under the age of 1 year (27). It is crucial to have this 
information in real-time because, based on such knowledge, 
policymakers could implement rules protecting small children and 
their parents, e.g., by allowing home office. Thus, it can be seen how 
multi-state models and stacked probability plots facilitate the 
communication of the disease and its real-time developments to the 
general public. This highlights that in the context of pandemic 
preparedness, it is imperative to collect high-quality hospital data 
continuously and promptly to understand the characteristics of the 
virus and to plan health care provision accordingly.

The strengths of this study are that it uses examples from the first 
pandemic wave to illustrate the extent to which the two forms of bias, 
selection bias, and competing risk bias, impact the results obtained 
from COVID-19 hospital data. Furthermore, the study provides an 
alternative approach that solves the shortfalls of standard methods and 
is therefore ideal for use in survival analysis in settings with more than 
one possible event. The limitation of the study is that it only includes 
data collected during the first pandemic wave. Our research would 
greatly benefit from analysing the clinical course of SARS-CoV-2 
variants, as this would further illustrate the potential to detect 
differences in clinical characteristics using multi-state methods. 
However, whilst other data sets may exist of the time when variants 
were circulating, they could only be used if they are comparable to the 

FIGURE 5

Stacked probability plots stratified by admittance date and initial state.
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Israeli data set of the first wave in terms of the characteristics of the 
population and the hospital service. Otherwise, false conclusions 
would be drawn. As such comparable data was unavailable, further 
variants were not included in the analysis.

5 Future works and conclusion

With enhanced data collection across Europe, future works could 
aim to demonstrate the effectiveness of multi-state models in detecting 
differences in clinical courses over longer periods. In addition, in 
future disease outbreak scenarios, e.g., influenza outbreaks, additional 
covariates can be incorporated into the analysis. These variables could 
aim at capturing differences in the risk profiles between the patients. 
Examples include demographic factors and health access disparities. 
Upon integration of such factors, the prediction of hospital capacity 
utilisation will become more accurate and thus, more personalised 
care can be provided to the patients.

In summary, this paper shows that in the context of pandemic 
preparedness, it is crucial to collect the right type of data to carry out 
appropriate, unbiased analyses, and thus aid efforts to overcome 
further pandemic waves. Hence, by showing the simple but detailed 
analyses that can be carried out with routine hospital registries as 
collected in Israel, this paper aims to improve the statistical analysis 
techniques used, thus obtaining unbiased information on the disease 
of interest in a timely manner so that public health measures can 
be implemented accordingly.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional requirements. 
Written informed consent to participate in this study was not required 
from the participants or the participants’ legal guardians/next of kin 
in accordance with the national legislation and the institutional  
requirements.

Author contributions

EL: Conceptualization, Formal analysis, Methodology, 
Visualization, Writing – original draft. DH: Data curation, Formal 
analysis, Methodology, Software, Visualization, Writing – review & 
editing. MG: Conceptualization, Data curation, Supervision, Writing –  
review & editing. SW: Supervision, Writing – review & editing. MW: 
Conceptualization, Funding acquisition, Methodology, Resources, 
Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

I would like to thank Roimi et  al. for making their dataset 
publicly available.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1390549/
full#supplementary-material

References
 1. Wolkewitz M, Lambert J, von Cube M, Bugiera L, Grodd M, Hazard D, et al. 

Statistical analysis of clinical COVID-19 data: a concise overview of lessons learned, 
common errors and how to avoid them. Clin Epidemiol. (2020) 12:925–8. doi: 10.2147/
CLEP.S256735

 2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for 
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort 
study. Lancet. (2020) 395:1054–62. doi: 10.1016/S0140-6736(20)30566-3

 3. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 
113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. (2020) 
368:m1091. doi: 10.1136/bmj.m1091

 4. Bajaj V, Sinha GR. Computer-aided design and diagnosis methods for biomedical 
applications. Chapter 14 reliable diagnosis and prognosis of COVID-19. First ed. Boca 
Raton: CRC Press (2021).

 5. Wolkewitz M, Cooper BS, Bonten MJ, Barnett AG, Schumacher M. Interpreting 
and comparing risks in the presence of competing events. BMJ. (2014) 349:g5060. doi: 
10.1136/bmj.g5060

 6. Hazard D, Kaier K, von Cube M, Grodd M, Bugiera L, Lambert J, et al. Joint analysis 
of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: 
a multistate approach. BMC Med Res Methodol. (2020) 20:206. doi: 10.1186/
s12874-020-01082-z

 7. von Cube M, Wolkewitz M, Schumacher M, Hazard D. Re: "the clinical course of 
coronavirus disease 2019 in a us hospital system: a multistate analysis". Am J Epidemiol. 
(2021) 190:1699–700. doi: 10.1093/aje/kwab044

 8. Rushing CS. An ecologist's introduction to continuous-time multi-state models 
for capture-recapture data. J Anim Ecol. (2023) 92:936–44. doi: 10.1111/1365-2656. 
13902

56

https://doi.org/10.3389/fmed.2024.1390549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2024.1390549/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1390549/full#supplementary-material
https://doi.org/10.2147/CLEP.S256735
https://doi.org/10.2147/CLEP.S256735
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1136/bmj.m1091
https://doi.org/10.1136/bmj.g5060
https://doi.org/10.1186/s12874-020-01082-z
https://doi.org/10.1186/s12874-020-01082-z
https://doi.org/10.1093/aje/kwab044
https://doi.org/10.1111/1365-2656.13902
https://doi.org/10.1111/1365-2656.13902


Lucke et al. 10.3389/fmed.2024.1390549

Frontiers in Medicine 09 frontiersin.org

 9. Le-Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar 
SJ. Application of multi-state models in cancer clinical trials. Clin Trials. (2018) 
15:489–98. doi: 10.1177/1740774518789098

 10. Roimi M, Gutman R, Somer J, Ben Arie A, Calman I, Bar-Lavie Y, et al. 
Development and validation of a machine learning model predicting illness trajectory 
and hospital utilization of COVID-19 patients: a nationwide study. J Am Med Inform 
Assoc. (2021) 28:1188–96. doi: 10.1093/jamia/ocab005

 11. Keogh RH, Diaz-Ordaz K, Jewell NP, Semple MG, de Wreede LC, Putter H, et al. 
Estimating distribution of length of stay in a multi-state model conditional on the 
pathway, with an application to patients hospitalised with COVID-19. Lifetime Data 
Anal. (2023) 29:288–317. doi: 10.1007/s10985-022-09586-0

 12. Jackson CH, Tom BD, Kirwan PD, Mandal S, Seaman SR, Kunzmann K, et al. A 
comparison of two frameworks for multi-state modelling, applied to outcomes after 
hospital admissions with COVID-19. Stat Methods Med Res. (2022) 31:1656–74. doi: 
10.1177/09622802221106720

 13. Meira-Machado L, de Una-Alvarez J, Cadarso-Suarez C, Andersen PK. Multi-state 
models for the analysis of time-to-event data. Stat Methods Med Res. (2009) 18:195–222. 
doi: 10.1177/0962280208092301

 14. McCaw ZR, Tian L, Vassy JL, Ritchie CS, Lee CC, Kim DH, et al. How to quantify 
and interpret treatment effects in comparative clinical studies of COVID-19. Ann Intern 
Med. (2020) 173:632–7. doi: 10.7326/M20-4044

 15. Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of COVID-19 – 
preliminary report. Reply N Engl J Med. (2020) 383:994. doi: 10.1056/NEJMc2022236

 16. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy 
on time to clinical improvement in patients with severe and life-threatening COVID-19: a 
randomized clinical trial. JAMA. (2020) 324:460–70. doi: 10.1001/jama.2020.10044

 17. Wolkewitz M, Palomar-Martinez M, Alvarez-Lerma F, Olaechea-Astigarraga P, 
Schumacher M. Analyzing the impact of duration of ventilation, hospitalization, and 
ventilation episodes on the risk of pneumonia. Infect Control Hosp Epidemiol. (2019) 
40:301–6. doi: 10.1017/ice.2018.360

 18. Tleyjeh IM, Kashour T, Mandrekar J, Petitti DB. Overlooked shortcomings of 
observational studies of interventions in coronavirus disease 2019: an illustrated 

review for the clinician. Open forum. Infect Dis. (2021) 8:ofab317. doi: 10.1093/ofid/
ofab317

 19. Martinuka O, von Cube M, Wolkewitz M. Methodological evaluation of bias in 
observational coronavirus disease 2019 studies on drug effectiveness. Clin Microbiol 
Infect. (2021) 27:949–57. doi: 10.1016/j.cmi.2021.03.003

 20. von Cube M, Schumacher M, Wolkewitz M. Basic parametric analysis for a multi-
state model in hospital epidemiology. BMC Med Res Methodol. (2017) 17:111. doi: 
10.1186/s12874-017-0379-4

 21. Wolkewitz M, von Cube M, Schumacher M. Multistate modeling to analyze 
nosocomial infection data: an introduction and demonstration. Infect Control Hosp 
Epidemiol. (2017) 38:953–9. doi: 10.1017/ice.2017.107

 22. Hammerstein S, König C, Dreisörner T, Frey A. Effects of COVID-19-related 
school closures on student achievement-a systematic review. Front Psychol. (2021) 
12:746289. doi: 10.3389/fpsyg.2021.746289

 23. van Schalkwyk MCI, McKee M. Research into policy: lessons from the 
COVID-19 pandemic. Eur J Pub Health. (2021) 31:iv3–8. doi: 10.1093/eurpub/
ckab155

 24. Berger E, Winkelmann J, Eckhardt H, Nimptsch U, Panteli D, Reichebner C, et al. 
A country-level analysis comparing hospital capacity and utilisation during the first 
COVID-19 wave across Europe. Health Policy. (2022) 126:373–81. doi: 10.1016/j.
healthpol.2021.11.009

 25. Robert-Koch-Institute. SARS-CoV-2: Virologische Basisdaten sowie 
Virusvarianten im Zeitraum von 2020–2022: Virus Varianten. (2022). https://www.
rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.
html.

 26. Hu Z, Huang X, Zhang J, Fu S, Ding D, Tao Z. Differences in clinical characteristics 
between Delta variant and wild-type SARS-CoV-2 infected patients. Front Med. (2021) 
8:792135. doi: 10.3389/fmed.2021.792135

 27. Guo Y, Han J, Zhang Y, He J, Yu W, Zhang X, et al. SARS-CoV-2 
omicron variant: epidemiological features, biological characteristics, and 
clinical significance. Front Immunol. (2022) 13:877101. doi: 10.3389/fimmu.2022. 
877101

57

https://doi.org/10.3389/fmed.2024.1390549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1177/1740774518789098
https://doi.org/10.1093/jamia/ocab005
https://doi.org/10.1007/s10985-022-09586-0
https://doi.org/10.1177/09622802221106720
https://doi.org/10.1177/0962280208092301
https://doi.org/10.7326/M20-4044
https://doi.org/10.1056/NEJMc2022236
https://doi.org/10.1001/jama.2020.10044
https://doi.org/10.1017/ice.2018.360
https://doi.org/10.1093/ofid/ofab317
https://doi.org/10.1093/ofid/ofab317
https://doi.org/10.1016/j.cmi.2021.03.003
https://doi.org/10.1186/s12874-017-0379-4
https://doi.org/10.1017/ice.2017.107
https://doi.org/10.3389/fpsyg.2021.746289
https://doi.org/10.1093/eurpub/ckab155
https://doi.org/10.1093/eurpub/ckab155
https://doi.org/10.1016/j.healthpol.2021.11.009
https://doi.org/10.1016/j.healthpol.2021.11.009
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.html
https://doi.org/10.3389/fmed.2021.792135
https://doi.org/10.3389/fimmu.2022.877101
https://doi.org/10.3389/fimmu.2022.877101


TYPE Review

PUBLISHED 30 October 2024

DOI 10.3389/fmed.2024.1474045

OPEN ACCESS

EDITED BY

Reza Rastmanesh,

American Physical Society, United States

REVIEWED BY

Sankha Shubhra Chakrabarti,

Banaras Hindu University, India

Paolo Eusebi,

University of Perugia, Italy

*CORRESPONDENCE

Suneth Agampodi

suneth.agampodi@ivi.int

RECEIVED 31 July 2024

ACCEPTED 14 October 2024

PUBLISHED 30 October 2024

CITATION

Agampodi S, Tadesse BT, Sahastrabuddhe S,

Excler J-L and Kim JH (2024) Biases in

COVID-19 vaccine e�ectiveness studies using

cohort design. Front. Med. 11:1474045.

doi: 10.3389/fmed.2024.1474045

COPYRIGHT

© 2024 Agampodi, Tadesse, Sahastrabuddhe,

Excler and Kim. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Biases in COVID-19 vaccine
e�ectiveness studies using
cohort design

Suneth Agampodi1,2*, Birkneh Tilahun Tadesse3,

Sushant Sahastrabuddhe1, Jean-Louis Excler4 and

Jerome Han Kim4,5

1Innovation, Initiatives and Enterprise Development Unit, International Vaccine Institute, Seoul,

Republic of Korea, 2Section of Infectious Diseases, Department of Internal Medicine, Yale University

School of Medicine, New Haven, CT, United States, 3Epidemiology, Public Health, and Impact Unit,

International Vaccine Institute, Seoul, Republic of Korea, 4International Vaccine Institute, Seoul,

Republic of Korea, 5College of Natural Sciences, Seoul National University, Seoul, Republic of Korea

Observational studies on COVID-19 vaccine e�ectiveness (VE) have provided

critical real-world data, informing public health policy globally. These studies,

primarily using pre-existing data sources, have been indispensable in assessing

VE across diverse populations and developing sustainable vaccination

strategies. Cohort design is frequently employed in VE research. The rapid

implementation of vaccination campaigns during the COVID-19 pandemic

introduced di�erential vaccination influenced by sociodemographic disparities,

public policies, perceived risks, health-promoting behaviors, and health status,

potentially resulting in biases such as healthy user bias, healthy vaccinee e�ect,

frailty bias, di�erential depletion of susceptibility bias, and confounding by

indication. The overwhelming burden on healthcare systems has escalated the

risk of data inaccuracies, leading to outcome misclassifications. Additionally,

the extensive array of diagnostic tests used during the pandemic has also

contributed to misclassification biases. The urgency to publish quickly may have

further influenced these biases or led to their oversight, a�ecting the validity

of the findings. These biases in studies vary considerably depending on the

setting, data sources, and analytical methods and are likely more pronounced

in low- and middle-income country (LMIC) settings due to inadequate data

infrastructure. Addressing and mitigating these biases is essential for accurate

VE estimates, guiding public health strategies, and sustaining public trust in

vaccination programs. Transparent communication about these biases and

rigorous improvement in the design of future observational studies are essential.

KEYWORDS

COVID-19, vaccine e�ectiveness, cohort studies, biases, misclassification bias, healthy

user bias, healthy vaccinee e�ect, di�erential depletion of susceptibility bias

1 Introduction

The COVID-19 pandemic has triggered numerous vaccine studies, with 1,263 vaccine

trials (all phases) registered in the World Health Organization’s International Clinical

Trials Registry Platform (WHO ICTRP) for more than 250 vaccine candidates (1). These

vaccine trials involved more than 80 countries within the first 2 years of the pandemic (99).

Due to the urgency of the pandemic, authorities were searching for rapid and reliable data

on vaccine efficacy and robust real-world data on vaccine effectiveness (VE) to develop

evidence-based vaccination strategies (2).

While randomized, placebo-controlled clinical trials provide robust efficacy and safety

data, their value is limited by stringent inclusion criteria, lack of representativeness of

diverse populations, and controlled environments that do not reflect local epidemiology
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or programmatic challenges. Thus, observational studies became

crucial due to their rapid implementation, cost-effectiveness, and

flexibility in integrating pre-existing data sources (3). These studies

can capture the performance of vaccines across diverse populations,

address operational issues, and inform sustainable, contextually

appropriate vaccination policies using real-world evidence (4).

The landscape of observational studies on the effectiveness of

COVID-19 vaccination shows that more than 2200 observational

studies were published directly or indirectly referring to VE by the

end of 2022 (5). Despite their importance, observational studies are

prone to different biases, some being exemplified by COVID-19

pandemic-related factors (6). Recognizing the importance of these

errors in VE studies, the WHO prepared interim guidelines for

evaluating COVID-19 VE in 2021 (7) and a revision in 2022 (8).

These documents have comprehensively outlined studies, errors,

and measures to overcome those possible challenges. Despite these

guidelines, the biases in observational studies on VE prevailed.

An evaluation of those biases and a closer look into how these

predicted biases in VE were observed in COVID-19 offers a

unique opportunity to design better vaccine effectiveness studies

in future pandemics (9). Test-Negative Design (TND), a case-

control approach for estimating VE, involves comparing the odds

of vaccination among individuals who test positive or negative for

the disease. It was widely used during the early pandemic and

extensively discussed (10–16). Hence, this paper explores common

biases in cohort studies (Table 1), the most common type of

studies used for COVID-19 VE assessments (17), to guide future

researchers in planning VE studies.

2 Biases due to di�erential
vaccination in populations

In COVID-19 VE studies employing a cohort design,

individuals vaccinated through mass immunization programs are

enrolled as cohort participants. If the vaccinated population

systematically differs from the unvaccinated population, the

estimated VE does not reflect the true VE. Biased estimates of VE

occur when the participants selected for the study do not represent

the general population, leading to systematic differences in the

association observed between exposure and outcome among those

selected and those eligible. These disparities lead to a bias often

called “selection bias.” However, the type of biases in VE studies

using cohort design that occurs due to differential vaccinations

are not due to conditioning on common effect but resulting from

the existence of common causes of exposure and outcome, which

could be classified as confounding (18). Despite the classification

used (as confounding or bias), a thorough assessment of how these

systematic differences occur is crucial to understanding biases in

COVID-19 VE studies (Figure 1).

2.1 Coverage-dependent bias in COVID-19
VE estimates

During the initial phase of vaccination campaigns, when

coverage was low, the vaccinated group systematically differed

TABLE 1 Biases in cohort studies investigating COVID-19 vaccine

e�ectiveness (VE).

Bias Description

Socioeconomic and

demographic bias

Unequal access to vaccines due to socioeconomic and

demographic disparities can inflate VE estimates, as

vaccinated individuals may have better overall health

outcomes.

Healthy user bias This bias occurs when individuals who get vaccinated

are also more likely to engage in other

health-promoting behaviors, leading to an

overestimation of VE.

Healthy vaccinee

effect

The tendency for vaccinated individuals to be generally

healthier can result in an overestimation of VE, as they

are less likely to experience severe disease outcomes.

Frailty bias Frailty bias occurs when individuals with poorer health

or more comorbidities are more likely to get vaccinated,

leading to an underestimation of VE.

Confounding by

indication

Confounding by indication arises when patients with a

higher perceived or known risk of severe disease are

more likely to get vaccinated, affecting VE estimates

due to differences in baseline health risks.

Differential

depletion of

susceptibles bias

This bias happens when highly susceptible individuals

are disproportionately removed from the population

over time, making it seem as if VE is declining.

Attrition bias Attrition bias occurs when there are systematic

differences between individuals who included in the

final analysis and those who loss to follow-up, leading

to non-representative samples and potentially biased

VE estimates.

Immortal time bias Immortal time bias arises when an “immortal” period

during which the outcome cannot occur is incorrectly

included in the vaccinated group, falsely enhancing VE.

Misclassification

bias

Misclassification bias occurs when individuals or events

are incorrectly categorized regarding vaccination status

or disease outcome, leading to inaccurate VE estimates.

Non-differential

misclassification of

outcomes

This bias happens when the misclassification rate is

similar across groups, generally biasing results toward

the null and diluting the observed effect size.

Differential

misclassification of

outcomes

Differential misclassification occurs when the

likelihood of misclassification differs between groups,

leading to either an overestimation or underestimation

of VE.

Case counting

window bias

Case counting window bias occurs when the time frame

for counting cases is misaligned between vaccinated

and unvaccinated groups, leading to biased VE

estimates.

Waning immunity

bias

Waning immunity bias arises when the natural decrease

in immune response over time is not accounted for,

creating the perception of declining VE in long-term

studies.

from the unvaccinated group. These differences can cause the

VE estimate to be underestimated or overestimated, depending

on underlying reasons such as country-specific priorities and

selective vaccination practices. This bias is sometimes referred

to as “early vaccine bias” (8). Similarly, when vaccine coverage

is high, unvaccinated individuals systematically differ from

the vaccinated or general populations. Personal beliefs, health

promotion practices, contraindications, or access issues can all

contribute to inaccurate VE estimates among unvaccinated people
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FIGURE 1

Di�erential COVID-19 vaccination leading to inaccurate estimates of vaccine e�ectiveness in cohort studies. The colored labels show the specific

names given to the biases that resulted in specific di�erential vaccinations. Green, overestimation of VE; Red, underestimation of VE.

in high-coverage settings. The Weekly COVID-19 Vaccination

Dashboard of the Center for Disease Control (CDC) clearly showed

these differences since 2021, when coverage was low and high

(19). Any VE study conducted during these phases may be biased.

This bias likely influenced many early COVID-19 VE studies when

vaccination coverage was low, and it continues to affect studies as

coverage increases beyond a certain level. Many biases described

under “selection” biases could be part of this broader bias.

2.2 Biased selection due to socioeconomic
status and demographic factors

Despite the massive production of COVID-19 vaccines, data

worldwide show socioeconomic and demographic disparities

leading to unequal availability, access, and affordability of

vaccination (20). These factors separate those vaccinated from

those who are not. The observation of this disparity is universal

(21–24) and operates at global as well as national and subnational

levels (25). Early in COVID-19 immunization programs, US

data reported that Black and Hispanic ethnic groups and those

who live in rural areas were less likely to be vaccinated (26),

and these categories also have lower access and affordability to

general healthcare, resulting in worse health outcomes. Data from

more than 35 million people in the UK shows that the lower

socioeconomic groups were less likely to get vaccinated (19).

These socioeconomic disparities and inequalities systematically

differentiate the vaccinated group, which typically has a lower

infection risk and better disease outcomes. This usually leads

to inflation of VE estimates, which may not apply to the

general population.

A similar bias may operate in the opposite direction. Certain

demographics, especially the young population, reported higher

levels of vaccine hesitancy and declining to get vaccinated in

some settings (27, 28). Our World in Data shows that in many

countries, the lowest proportion of vaccination is among those

between 18 and 25 years of age (29). Even though not vaccinated,

this group is generally young, healthy, and less susceptible to severe

complications and deaths. Combined data from Europe and the

US shows that among the adult population, the lowest case fatality

rate is among this age group (30). If this occurs in a specific

community where VE studies are conducted, the estimates could

be lower than expected due to demographic differences in the

vaccinated and unvaccinated groups. In contrast, having elderly

and more vulnerable populations in vaccinated cohorts might

reduce the VE estimate. Thus, this bias could affect the VE estimate

in both directions.

2.3 Healthy user bias

Healthy user bias is a broader concept where individuals who

engage in one health-promoting behavior (such as vaccination) are

more likely to engage in other health-promoting behaviors. This

bias can lead to an overestimation of VE. If vaccinated individuals

are also more likely to follow other preventive measures such as

mask-wearing and social distancing, the observed benefits may be

due to these combined behaviors rather than the vaccine alone.

Healthy user bias typically affects prospective cohort designs on

VE, where the prospective vaccine campaign participants primarily

consist of those with healthy behaviors. One of the early COVID-

19 VE studies from Hungary showed that the crude mortality rate

was 5.3 per 100,000 person days among the unvaccinated group
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compared to 4.0 among the vaccinated group even during the non-

endemic period, showing that the two groups may be systematically

different and the vaccinated group is generally healthier (31).

A retrospective cohort study using 6,974,817 individuals from

December to June 2020 shows that recipients of three COVID-

19 vaccines had lower non-COVID-19 mortality risk than their

comparator groups. For mRNA vaccines, the adjusted hazard

ratios of dose 1 and dose 2 ranged from 0.38 to 0.48 (32).

Another early analysis from Milwaukee showed that unvaccinated

persons had over twice the risk of non-COVID-19 natural death

than the vaccinated (33). Many subsequent studies show reduced

hospitalizations and deaths due to other causes in the vaccinated

group, confirming the presence of healthy user bias (34, 101). In

studies where all-cause mortality is considered as the outcome for

VE calculation, this could have a more profound effect, where

healthy behaviors may affect the risk of deaths due to other causes

as well.

2.4 Healthy vaccinee e�ect

The “healthy vaccinee effect” is a related but distinct concept

from “healthy user bias” in observational studies on VE. In

these studies, individuals who choose to get vaccinated are

generally healthier than those who do not (35). This can lead to

overestimating VE since healthier individuals are naturally less

likely to experience severe disease outcomes independent of the VE.

Part of this effect could be observed in COVID-19 studies where

the overall mortality and hospital admission rates are lower during

the first few weeks after vaccination (36). The age-standardized all-

cause mortality rate from the UK in 2021 shows that within the first

3 weeks following the first dose of vaccination, the death rate was

795.2 per 100,000 people. This rate increased to 1,232.2 per 100,000

people after the initial 3 weeks. A similar pattern was observed with

the second dose, where the death rate was 471 per 100,000 people

within the first 3 weeks, rising to 850 per 100,000 people after 3

weeks (37). The lower all-cause death rate within the first 3 weeks

of vaccination is likely due to the fact that those vaccinated are

not acutely ill at the time of vaccination, suggesting the indirect

presence of the Healthy Vaccine Effect. Xu et al. reported that

age, sex, and race/ethnicity groups adjusted non-COVID-19 related

mortality rates among COVID-19 vaccinees were lower than those

among comparators for the first three COVID-19 vaccines licensed

in the USA. After the first dose, the adjusted hazard ratios (aHRs)

were 0.46 for BNT162b2, 0.41 for the mRNA-1273 vaccine, and

0.55 for Ad26.COV2.S (32). Ostropolets and Hripcsak extensively

analyzed this effect using a retrospective cohort design based on

electronic health records. It showed that even after adjustment for

many health-related variables, the vaccinated group had low overall

health-seeking and hospital admission within the first few weeks of

vaccination (38).

2.5 Frailty bias

The opposite of the healthy vaccine effect is known as

the “frailty bias” or “unhealthy vaccine effect.” The impact of

frailty on the outcome of COVID-19 is well-known, and low

vaccine effectiveness among frail vaccine recipients is reported

in many studies. For example, Meeraus et al. analyzed over 4.5

million AZD1222 vaccine recipients and noted that VE against

hospitalization was >90% in the lowest multimorbidity quartile

compared to 80% in the highest quartile. Further, among the elderly

who are ’fit,’ the VE was 86.2%, whereas it was 72% among the

frail. VE against hospitalization was lowest in immunosuppressed

individuals (65%) (39). However, frailty could be a selection bias

as well. This bias occurs when individuals who are more likely to

get vaccinated are those with poorer health or more comorbidities,

leading to an underestimation of VE. In this scenario, the

vaccinated group appears to have worse health outcomes not due to

the vaccine’s ineffectiveness but because they were already in poorer

health than the unvaccinated group.

2.6 Confounding by indication

Confounding by indication occurs when the reason for

vaccination is related to the patient’s health status or risk of

the outcome being studied. Patients with a higher perceived or

known risk of severe COVID-19 might be more likely to get

vaccinated, such as older adults or those with comorbidities.

An analysis of vaccine policies from 185 countries shows that,

except in the Western Pacific region, all other regions prioritized

clinically vulnerable and elderly populations in their vaccine rollout

(39). These subgroups have a higher baseline risk for unfavorable

outcomes, which can confound observed VE because their health

outcomes might differ from those not vaccinated regardless of

the vaccine’s true effectiveness. This can lead to overestimating or

underestimating VE due to differences in baseline risk between

treated and untreated groups. The bias was well-known to

researchers yet common in published literature (40).

While both frailty bias and confounding by indication involve

differential selection for vaccination, confounding by indication

is driven by the perceived risk of COVID-19 outcomes and

general health status, while frailty bias is more about the inherent

vulnerability of individuals being vaccinated.

2.7 Di�erential depletion of susceptible
bias

Differential depletion of susceptible (DDS) bias occurs when

the most susceptible individuals are disproportionately removed

from the at-risk population over time through infection or

vaccination. Initially, highly susceptible individuals are more likely

to contract COVID-19, making VE appear high. Over time,

as susceptible individuals gain immunity, both vaccinated and

unvaccinated groups show lower infection rates. This results in an

apparent waning of VE, not due to the vaccine losing effectiveness

but because the overall population has become less susceptible. In

COVID-19 VE studies, this bias can underestimate VE over time,

falsely suggesting waning VE. This bias is a form of selection bias

because the composition of the population changes, affecting the

observed effectiveness. DDS could affect all observational study
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designs used for VE studies. During the COVID-19 pandemic,

many studies have shown waning effectiveness (41). For example,

a study by Chemaitelly et al. from Egypt estimated the long-term

effectiveness of COVID-19 mRNA boosters and reported negative

relative effectiveness 6 months after boosting, attributing it to

“negative immune imprinting” (42). However, Noam argued that

in this study, it is possible that the use of discrete-time hazards

conditioned on survival for at least 6 months after vaccination

results in selection bias due to the depletion of susceptible from

the cohort that did not receive a booster (43). Using a simulation

model, Kahn et al. demonstrated that if baseline VE is high, the

effect of depletion of susceptible bias is low. However, for ’leaky

vaccines’ (low baseline VE), the impact of this bias is higher (44).

It is essential to consider the differential depletion of susceptible in

vaccine effectiveness studies to avoid misleading conclusions.

3 Attrition bias

Attrition bias occurs when there are systematic differences

between individuals who remain in a study and those who drop out

over time (45). For instance, individuals from lower socioeconomic

backgrounds, who often have different health behaviors, poorer

health outcomes, and limited access to healthcare, are more likely

to leave the study or not visit health facilities for diagnosis. This

selective dropout can result in a non-representative sample, as these

individuals are frequently at a higher risk of infection due to their

circumstances. If they drop out disproportionately, the remaining

participants may exhibit a lower overall risk of infection, potentially

leading to an overestimation of effect size.

Attrition bias in observational VE studies is unique because

these studies often involve large cohorts using secondary data. In

many countries, COVID-19 vaccination was offered universally,

and vaccination records are uniquely maintained in immunization

registries, making the data on vaccination status better than other

health data (46). However, outcome data for the cohort studies

come from different registries, including hospitals, insurance, or

similar databases, which can be linked to vaccination registries

(47–49, 103). Access, affordability, and coverage of diagnosis and

treatment may differ from vaccination, leading to a ’loss to follow-

up’ from the original cohort. Unlike prospective cohort studies,

where investigators are aware of loss to follow-up, data linkage

studies have no definitive way to determine whether there was loss

to follow-up. Consequently, lost follow-up is often not reported in

cohort studies on VE. For example, in the systematic review of Law

et al. none of the cohort studies investigating the VE of inactivated

vaccines reported the attrition rate (50). Discussing the impact of

attrition on VE is specifically important based on the context and

policies, health-seeking behaviors, and vulnerable groups.

4 Information biases

In VE studies using cohort design, information biases

can significantly distort the VE estimates. These biases arise

from misclassification of exposure or outcome, often due to

inconsistent or inaccurate data collection methods. Once the

cohorts are identified, it is crucial to obtain accurate data; however,

measurement errors can lead to bias in the analysis, known as

information bias (51). For example, variations in diagnostic testing

practices, inaccuracies in vaccination records, or differential recall

between vaccinated and unvaccinated individuals can result in

either overestimation or underestimation of VE. The direction

and magnitude of this bias depend on whether the distribution of

errors for a specific variable, such as vaccination status or disease

incidence, is influenced by the true values of these variables or by

errors in measuring other variables.

4.1 Immortal time bias

Immortal time bias occurs in observational studies when an

“immortal” time period is incorrectly classified or excluded from

the analysis (52). This period is immortal because, during this

time, the outcome of interest (such as infection or death) cannot

occur. In COVID-19 vaccine studies, this bias can arise if the time

between the initiation of the study and when individuals receive the

vaccine is not correctly accounted for. If this period is mistakenly

included in the vaccinated group, it can falsely enhance the vaccine’s

apparent effectiveness because individuals cannot experience the

outcome during this “immortal” period. As an example, Flacco et al.

(53) reported that the monthly mean death rates were 0.97 per

1,000 for vaccinated individuals and 2.26 per 1,000 for unvaccinated

individuals, showing a significant difference in overall deaths. Their

data indicates that the mean follow-up time was 561 days for those

never vaccinated, compared to 399 days for those vaccinated, due

to the time gap between the start of the study and vaccination. The

vaccinated group had a mean of 162 days of immortal time before

vaccination (only those still alive received the vaccine), while all

deaths during this period were allocated to the unvaccinated group.

Since this was a single cohort from a province, the vaccinated

group contributed to the denominator of the unvaccinated group

before receiving their vaccines. Using the same data, Berrino et al.

(54) recalculated the mortality rates and concluded that the rates

were almost similar when accounting for the immortal time of

the vaccinated group. Immortal time bias is not due to differential

vaccination but rather an error in the denominator, which may

happen in the analysis process or retrospective cohort studies.

4.2 Misclassification bias

Misclassification bias occurs when individuals or events are

incorrectly categorized regarding exposure or outcome status.

This bias can arise if vaccination status or disease outcome is

inaccurately recorded. While the misclassification of exposure

status (vaccination) might seem theoretical in prospective cohort

studies, most VE studies use retrospective designs. Due to

incomplete or inaccurate historical data and errors in data

linkage, there is a risk of misclassifying vaccination status. This

is particularly relevant if vaccination records are not up-to-date

or come from different healthcare providers with varying record-

keeping practices. One of the first systematic reviews on the VE of

COVID-19 vaccines showed that of the 42 studies published within

the first 6 months, 31 used vaccination registries, five included
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self-reporting, and 6 did not report the source of vaccination

information, highlighting the risk of misclassification bias in these

studies (17).

Misclassification of disease or outcomes is expected due

to variability in diagnostic test accuracy, differences in test

administration timing, and potential misinterpretation of results.

The COVID-19 pandemic led to rapid advancement and large-

scale production of various diagnostic test kits, none of which

possess 100% sensitivity or specificity. This inevitably results in

false positives and false negatives, contributing to misclassification.

Several systematic reviews on COVID-19 diagnostic tests indicate

significant variability in sensitivity and specificity across different

platforms, tests, timing of testing relative to exposure, and

result interpretation (55–57). A meta-analysis of 24 commercially

available antigen kits demonstrated a pooled sensitivity of 77%

and a pooled specificity of 98%, highlighting a substantial risk

of misclassification (58). Despite WHO’s recommendation to use

RT-PCR for VE studies (8), the reliance on two-stage screening

procedures increases the likelihood of misclassification. These

variations can lead to incorrect disease status classification, further

complicating VE estimates.

During the pandemic, changes in diagnostic criteria (59–61),

referral procedures, breakthrough infections, and even COVID-

19 death classifications occurred over time. Since VE studies

rely on real-world data, these variations in disease diagnosis

and death classifications can differ not only over time but also

across different sites, hospitals, or provinces, influenced by policy

changes or subjective human factors. Many studies across the globe

show that a large number of COVID-19 deaths are unaccounted

for and reported as “excess mortality,” and there are time and

space variations of these numbers (62). Surveillance and reporting

biases further complicate the scenario; inconsistent case reporting

practices and variability in public health surveillance intensity can

lead to uneven detection and reporting of cases. Understanding the

changes and events in study areas, regions, and countries over the

study period is essential to comprehending misclassification biases.

4.2.1 Non-di�erential misclassification of
outcomes

Non-differential misclassification occurs when the

misclassification rate is similar across groups. This can happen

if the outcome measured has a low specificity, leading to false

positive cases in both groups. It generally biases the results toward

the null, diluting the observed effect size and making it harder

to detect a true association between vaccination and outcomes

(63). Sometimes, it can happen due to the way the “outcome” is

recorded. This has been shown in studies where the allocation

of outcomes (COVID-19-related hospital admission) uses data

from the billing process. These include patients without symptoms

admitted for other reasons but tested positive for COVID-19 (38).

Because the outcome documentation is from billing data, those

without clinical disease but positive test results were included

as those with outcomes (COVID-19 hospital admissions). The

misclassification is similar for both groups; thus, the VE estimates

are diluted. Similarly, a study from the Netherlands showed that

42% of cases included in the hospital register on COVID-19

patients are missing the reason for admission, and whether the

positive COVID-19 test results were associated with COVID-19

clinical disease is not known (103).

4.2.2 Di�erential misclassification of outcome
Differential misclassification occurs when the likelihood

of misclassification differs between groups (vaccinated vs.

unvaccinated). Depending on the direction of the misclassification,

it can lead to overestimation or underestimation of VE. In studies

using secondary data for VE studies, the allocated diagnosis

could be systematically different in the two groups. Some studies

show that vaccinated people usually attribute mild to moderate

symptoms to vaccine side effects and do not seek care, thus

less likely to be diagnosed as having COVID-19 (38). On the

other hand, healthcare workers may suspect COVID-19 more

among unvaccinated groups during hospital visits and perform

testing, leading to higher detection or “diagnostic bias.” This

could be partly due to policies where test results were mandated

for many institutions and procedures if the individual is not

vaccinated, thus leading to more cases of asymptomatic or mild

cases of COVID-19 among unvaccinated groups. This will lead to

differential misclassification of outcome status among vaccinated

and unvaccinated groups, inflating VE estimates. However, it will

not always overestimate VE. A study in Australia reported that

fully vaccinated participants were twice as likely as those who were

unvaccinated to report positive COVID testing intentions, which

may lead to overdiagnosis of COVID-19 in the vaccinated arm,

underestimating VE (64). The context-specific factors could play a

major role in deciding in which direction the bias operates.

4.3 Case counting window bias

The case counting window bias occurs when the time frame

for counting cases in a study is not properly aligned with the

period during which a vaccine is expected to be effective. This can

happen if the cases are counted from the start of follow-up for the

unvaccinated group but only after vaccination for the vaccinated

group; the difference in these windows can lead to biased VE

estimates. So, the cases in the unvaccinated group are counted

during a period when they were at higher risk. In contrast, cases

in the vaccinated group are only counted after they might have

already benefited from some protection. Fung et al. showed that

even a vaccine with almost zero VE could be presented as having a

VE of 48% if the case counting window bias is ignored (65).

4.4 Waning immunity bias

Waning immunity bias occurs when the observed effectiveness

of a vaccine appears to decline over time due to a natural decrease in

immune response, notably the reduction in neutralizing antibody

levels. Initially, vaccines demonstrate high effectiveness due to

a robust immune response. However, as antibody levels wane,

individuals may become more susceptible to infection, creating

the perception of declining vaccine effectiveness (VE). Numerous
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studies, including several systematic reviews (45, 66, 67), have

reported this phenomenon, particularly those involving mRNA

vaccines against COVID-19. A systematic review of 40 studies

estimated that VE against omicron infection and symptomatic

disease decreased by 20% at 6 months post-primary vaccination

cycle and by 30% at 9 months post-booster dose administration

(68). This waning immunity is a natural biological process; failing

to account for it in VE studies properly can introduce bias,

leading to inaccurate interpretations. Long-term VE studies must

incorporate original or short-term VE data and clearly state

the duration post-vaccination to avoid biased interpretation of

VE estimates. Additionally, considering the date of vaccination

in analysis and data presentation is essential. Addressing this

bias is crucial, particularly in the ongoing “infodemic” (69) and

vaccine hesitancy.

5 Confounding

Confounding occurs when an extraneous factor influences both

the likelihood of vaccination and the health outcome, leading to a

distorted estimate of vaccine effectiveness (18). Thismanuscript has

described factors such as health-seeking behaviors, demographic

differences, and underlying health conditions leading to differential

vaccination. While these factors were labeled as biases—such as

selection bias, healthy user bias, and frailty bias—these are, in fact,

confounding factors. They influence both vaccination status and

outcomes, distorting the true effect of the vaccine. For instance,

individuals with prior exposure to SARS-CoV-2 or underlying

comorbidities may have different risks of severe COVID-19, which

could distort VE estimates if not properly adjusted for (70, 71, 100).

In addition to these specific factors, researchers must consider

other confounders that may further affect VE estimates, such

as geographic differences, occupational exposures, and previous

infection history. Failure to control for such confounders can

lead to inflated or underestimated VE estimates, particularly when

assessing protection against severe disease. To ensure accurate and

reliable VE estimates, thorough identification and adjustment of

these confounding factors are essential in observational studies.

6 Biases and challenges of VE studies
in LMICs

The assessment of VE in low and lower-middle-income

countries (LMICs) faces significant challenges due to various

biases and unique factors. Disparities in vaccine deployment,

reliance on less effective vaccines, supply constraints, and dosing

challenges necessitate evaluations of mixed and suboptimal

regimens. Additionally, distinct health and demographic profiles

can lead to differential vaccination coverage, altering estimated

vaccine protection (72). High seroprevalence of naturally acquired

immunity and the risk of new variant emergence due to

uncontrolled transmission further complicate VE estimates.

The absence of robust systems for maintaining vaccination

records, integrating data across platforms, and ensuring accurate

digitalization, along with limited diagnostic capacity and barriers

to accessing and affording healthcare, exacerbate the risk of

misclassification of both exposure (vaccination status) and

outcome (disease occurrence). Such misclassification is a critical

source of information bias in these studies, significantly impacting

the accuracy of VE estimates. Therefore, targeted VE studies are

essential to develop accurate and effective vaccination strategies

tailored to LMICs. However, the availability of vaccine studies

in these settings is limited. A systematic review by Petráš et al.

included 761 published VE studies, but only two were from low-

income countries, both from Zambia (73). One was from a prison

outbreak using a case-control design with self-reporting/rapid tests

(74), and the other was a hospital-based study with significant

missing data (75). Among lower-middle-income countries, Indian

authors published 28 studies. Except for India, only Bangladesh

(76), Egypt (77), Morocco (78), and Pakistan (79–83) had estimated

VE in their settings. Real-world evidence and the effect of biases

on those estimates from LMICs are missing in global literature.

A comprehensive analysis of these available studies is critical to

understanding how specific biases affect VE estimates in future

academic preparations.

7 E�ects of biased estimates

Biases significantly impact the internal validity of vaccine

efficacy (VE) studies, with far-reaching societal and policy

implications. Early studies often reported VE as high as 95%

(84), fostering overconfidence in vaccine protection and prompting

global policy changes. Health agencies described vaccines as

“extremely protective,” creating a misconception that vaccines

could prevent infection (85). This led to policy changes in

some places prioritizing vaccination for transmission interruption,

sometimes neglecting vulnerable populations at higher risk for

severe COVID-19 outcomes. Overestimating VE altered public

perception, with increased infection rates post-vaccination due

to risk behaviors (86). Variations in VE estimates influence

vaccination willingness (87); one study showed that 51.3% would

accept a COVID-19 vaccine that is 50% effective, and 77.1%

would accept a vaccine that is 95% effective (84). Differences

in VE estimates can significantly fuel vaccine hesitancy and

erode public trust in vaccination programs. Media coverage

and anti-vaccine movements can exploit these inconsistencies,

spreading misinformation and increasing hesitancy. Transparent

communication about the limitations and strengths of VE

studies is crucial to maintaining public trust and encouraging

vaccine acceptance.

8 Minimizing biases in cohort studies
on VE

Target trial emulation (TTE) is often used to minimize biases

in observational studies on VE by applying design principles from

randomized trials to the analysis of observational data, thereby

explicitly tying the analysis to the trial it is emulating. The TTE

approach was extensively used in COVID-19 VE studies when

applying cohort design (14, 88–94, 102). Still, the challenges and

errors in properly executing this approach can introduce the

abovementioned biases, resulting in inaccuracies in estimating VE
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if the emulation is improperly planned and executed. Although

referred to as “TTE bias” in literature, it is not technically a specific

type of bias but could be due to any other type detailed above.

Biases, once introduced, are challenging to control in

observational studies. Minimizing bias during the design stage

is paramount. The WHO guidelines on observational studies for

COVID-19 vaccine effectiveness (8) outlined various strategies to

mitigate these biases. Bayesian modeling approaches could address

specific biases, such as misclassification bias due to imperfect tests

(95). A thorough evaluation of all potential biases is essential when

reporting VE studies but reporting and assessing the direction of

biases may be more challenging than it seems. Brookmeyer and

Morrison (96) demonstrated this complexity using data published

in a VE study (97) to simulate different biases occur in linked

registry studies. They showed that if the bias is due to a single

source, the direction of the bias is predictable. However, if multiple

sources of biases are present, then the direction of the bias can

be either way. Often, the biases are multiple; thus, predicting

direction can be difficult. It is crucial to discuss these biases’

probable impact and direction on VE study results and report them

comprehensively in all observational studies.

9 Conclusion

These well-known epidemiological biases may occur more

frequently during a pandemic. Rapid vaccine development

and distribution can lead to differential vaccination practices,

prioritizing high-risk populations and exacerbating frailty bias

and confounding by indication. Socioeconomic disparities and

diverse health behaviors become more pronounced, while the

overburdened health systems increase the risk of data inaccuracies

and outcome misclassification. The frequency of occurrence of

these biases varies widely based on the setting, data sources, and

analysis. These biases could be higher in VE in LMIC settings due to

a lack of proper data sources. Understanding and mitigating these

biases are crucial for accurate VE estimates, informing public health

strategies, and maintaining public trust in vaccination programs.

With the peak pandemic now behind us and less urgency for

rapid publication, a comprehensive investigation into the long-

term vaccine effectiveness is warranted, ensuring that all previously

discussed biases are thoroughly addressed. Additionally, future

studies must explicitly account for whether individuals who were

infected with COVID-19 subsequently received vaccination, as this

may affect long-term outcomes such as mortality and PASC. While

studies like Cai et al. (98) demonstrate that the risk of death declines

over time but remains elevated in previously hospitalized patients,

they do not account for whether subsequent vaccination modifies

this risk. Incorporating this factor in future research will provide

more accurate assessments of vaccine effectiveness and long-term

health risks, thereby guiding public health policies more effectively.
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Background: The CIAO trial recently demonstrated a probable clinical benefit 
of omalizumab in the treatment of severe COVID-19; however, the mechanism 
underlying this benefit remains unclear. Therefore, we sought to longitudinally 
assess the impact of omalizumab on serum cytokines in CIAO trial patients to 
determine its mechanism of action.

Methods: Blood samples were collected on days 0, 2, 7, and 14 from patients 
recruited into the CIAO trial and who consented to this substudy. Blood samples 
were tested by a panel of 25 inflammatory cytokines, as well as for markers of 
mast cell activation. Levels of inflammatory biomarkers were compared over 
time between omalizumab- and placebo-treated patients by generalized linear 
mixed-effects model. Associations between biomarkers and clinical outcomes 
were investigated by mixed-effects logistic regression.

Results: Nineteen patients were recruited into this substudy; 10 were assigned 
to placebo and 9 to omalizumab. Monokine induced by gamma interferon was 
significantly positively associated with severe COVID-19 (Odds Ratio [OR] = 1.06, 
95%CI = 1.00–1.11, p  = 0.043). Further, omalizumab significantly reduced 
interleukin-15 (Coefficient = −0.95, p  = 0.048) and macrophage inflammatory 
protein-1 (Coefficient = −1.31, p = 0.010) levels. However, neither was significant 
in analyses adjusting for multiple hypothesis testing.

Conclusion: Although limited by a small sample size, these results suggest that 
omalizumab’s potential benefit in COVID-19 may be mediated independently of 
modulation of the measured serum biomarkers. Further studies are needed to 
investigate omalizumab’s mechanism of action in COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) has had significant health 
and economic repercussions globally (1). The pathogenesis of 
COVID-19 is biphasic involving viral replication and dissemination 
followed by immune activation (2). Severe COVID-19 is postulated 
to involve pathological hyperinflammation (2, 3), which has been 
associated with impaired type I and III interferon (IFN) signaling 
(4–6). Type II inflammation has also been associated with severe 
disease (7). A small randomized controlled trial (RCT) studying 
dupilumab, a monoclonal antibody targeting IL4R-α, suggested a 
possible mortality benefit from inhibition of the type II inflammatory 
response in severe COVID-19 (8). Therefore, IFN and type II 
inflammation-targeting agents demonstrate potential as 
COVID-19 therapies.

Omalizumab is a monoclonal antibody that binds IgE and 
inhibits its interaction with the FceRI receptor on immune cells 
(9), used for refractory chronic spontaneous urticaria (10), asthma 
(11), and nasal polyps (12). Recent data suggest that omalizumab 
may have antiviral activity (13–15). In asthmatic patients, 
omalizumab significantly decreased the incidence of upper 
respiratory tract infections and the duration of viral shedding (15, 
16). The postulated mechanism of action was inhibition of 
IgE-FceRI interaction augmenting type I IFN signaling (17, 18). 
Omalizumab has also been shown to attenuate type II 
inflammation/mast cell activation in asthmatic patients (13). In 
light of this evidence, the COVID-19 Immunologic Antiviral 
therapy with Omalizumab (CIAO) trial was conducted to assess 
the efficacy of omalizumab in moderate to severe COVID-19 (19). 
Despite early termination due to waning recruitment, among the 
40 patients enrolled, omalizumab was associated with a 93% 
probability of reduction in death or mechanical ventilation on day 
14 (19). The mechanism by which omalizumab conferred this 
benefit remains unclear. Thus, we  sought to investigate 
omalizumab’s mechanism of action in COVID-19 by analyzing its 
impact on longitudinal levels of various biomarkers.

Methods

Trial design

This substudy focused on the exploratory endpoints of the 
CIAO trial (19). Ethics approval was obtained from all 
participating sites and informed consent was acquired for each 
subject. Briefly, the CIAO trial was a multi-center randomized 
double-blind trial comparing a single dose of omalizumab 375 mg 
plus standard of care vs. placebo with standard of care in patients 
hospitalized for COVID-19 respiratory illness. The primary 
outcome was a composite of mechanical ventilation or all-cause 
mortality at 14 days with secondary endpoints including the time 
to clinical improvement of COVID-19 evaluated using the WHO 
9-point ordinal scale (20). Data for this nested study were obtained 

from the subset of patients recruited at the McGill University 
Health Centre (MUHC), who consented to have blood samples 
drawn during their hospitalization on days 0, 2, 7, and 14 
(±2 days).

Sample processing

Samples were centrifuged and the serum was isolated and stored 
at −80°C for subsequent batched analysis. The total IgE (IgE) (day 0), 
tryptase (day 0), and C-reactive protein (CRP) (days 0, 2, 7, 14) 
assays were performed by the MUHC central laboratory. CD63 
expression, a marker of basophil activation, was measured using the 
CD63 flocast flow cytometry assay (Buhlmann; Schonenbuch, 
Switzerland), as previously described, on days 0, 2, 7, and 14 (21). A 
panel of 25 different cytokines was measured for all samples (days 0, 
2, 7, and 14) using the cytokine 25-plex human panel immunoassay 
according to manufacturer’s instructions (Invitrogen; Vienna, 
Austria).

Statistical analyses

All statistical analyses were performed using R (4.3.2, 
Foundation for Statistical Computing, Vienna, Austria). 
Demographic and clinical data were summarized with descriptive 
statistics. Mixed-effects logistic regression was used to determine 
whether measured biomarkers were associated with severe 
COVID-19 (WHO ordinal COVID-19 score 5–7). In this model, 
patient identification and study day were random-effect and fixed-
effect variables, respectively. Generalized linear mixed-effects 
models (GLMM) with a gamma distribution were used to model 
biomarkers over time using the lme4 package (22). Fixed-effect terms 
were used for study day and omalizumab assignment and a random-
effect term for patient identification. A likelihood ratio test was 
performed to determine omalizumab’s effect on biomarkers over 
time. p-values in each model were adjusted for multiple hypothesis 
testing separately using the Benjamini-Hochberg method (Q-value). 
Line graphs of the cytokine levels over time were plotted using the 
ggplot2 package (23).

Results

Patient demographics

Of the 40 patients recruited into the CIAO trial, 19 were recruited at 
the MUHC and consented to blood tests for this substudy. Nine patients 
were assigned to omalizumab and 10 to placebo. The patient 
demographics, comorbidities, vaccination status, receipt of concomitant 
interventions, and WHO COVID-19 ordinal scores are presented in 
Supplementary Table 1. The median age of the study population was 
65.0 years (interquartile range 59.5–80.0) and 31.6% were female. 

70

https://doi.org/10.3389/fmed.2024.1437322
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Prosty et al. 10.3389/fmed.2024.1437322

Frontiers in Medicine 03 frontiersin.org

Cardiovascular disease (63.2%), diabetes (52.6%), chronic kidney disease 
(26.3%), and cancer (21.1%) were the most common comorbidities. The 
majority (72.2%) of patients were vaccinated against COVID-19. At 
enrollment WHO ordinal severity scores for COVID-19 were most 
commonly 4 (36.8%), 3 (31.6%), 5 (21.1%), and 2 (10.5%). Concomitant 
COVID-19 therapies were received by all patients, including 
dexamethasone (100.0%), remdesivir (57.9%), tocilizumab (5.3%), and 
baricitinib (5.3%). The primary outcome, death or mechanical ventilation 
at day 14, occurred in 4 patients (21.1%).

Biomarker comparisons

Blood samples were obtained for 100% of participants on day 0, 
73.7% on day 2, 52.6% on day 7, and 31.6% on day 14.

In unadjusted analyses, monokine induced by gamma interferon 
(MIG; OR = 1.06, 95%CI = 1.00–1.11, p  = 0.043, Q = 0.77) was 
significantly positively associated with severe COVID-19, but was not 
significant when adjusting for multiple hypothesis testing (Table 1). 
None of the remaining biomarkers were statistically significantly 
associated with the outcome.

Mean biomarker values over time are plotted in Figure  1 for 
omalizumab vs. placebo. In unadjusted analyses, omalizumab 
significantly decreased interleukin (IL)-15 (Coefficient = −0.95, 
p = 0.048, Q = 0.41) and macrophage inflammatory protein-1 (MIP-1; 
Coefficient = −1.31, p  = 0.010, Q = 0.27); however, these were not 
statistically significant after adjustment. Receipt of omalizumab did 
not significantly affect any of the other 25 biomarkers 
Supplementary Table 2.

Discussion

After adjustment, we  did not find a statistically significant 
association between the biomarkers studied and disease severity or 
any significant differences in biomarkers over time as a function of 
omalizumab treatment.

Previous studies have noted that SARS-CoV2-specific IgE are 
correlated with COVID-19 severity (24, 25). While these results, 
combined with omalizumab’s possible efficacy in COVID-19 may 
suggest a specific role for IgE or type II immunity in the pathogenesis 
of COVID-19, they may also merely be indicative of global immune 
dysregulation (7). Indeed, we  did not identify any significant 
associations between disease severity and type II inflammatory 
cytokines, IFN-α, and markers of mast cell activation, in this study 
with limited sample size. Other studies on the subject revealed 
conflicting results with one study suggesting a positive association 
between type II inflammation and COVID-19 mortality (26), 
whereas another failed to detect a significant association between 
type II/type I inflammatory cytokine imbalance and death (27).

Our findings suggest that omalizumab’s possible clinical benefit in 
COVID-19 is mediated by mechanisms other than modulation of 
serum levels of IFN-α or type II inflammation. These results contrast 
those for dupilumab in COVID-19, which demonstrated a probable 
clinical benefit of dupilumab and an associated reduction in type II 
inflammatory cytokines (e.g., eotaxin-3 and YKL-40) compared to 
placebo (8). Notwithstanding our study’s limitations, there are several 
alternative explanations for these findings. All patients received 

concomitant corticosteroids which are known to broadly suppress 
inflammatory cytokines, including type II inflammation (28), and this 
may have obscured any omalizumab-induced differences and biased 
results toward the null. Alternatively, Djukanović et al. demonstrated 
that, compared to placebo, omalizumab treatment significantly 
reduced IL-4+ staining cells and eosinophils in bronchial biopsies in 
asthmatic patients (13). Therefore, omalizumab’s effect may 
be mediated by immune modulation at the tissue rather than serum 
level. Additionally, the assay used for cytokine detection in this study 
does not analyze the levels of certain type II inflammatory cytokines 
(e.g., IL-9) and type I interferons (e.g., IFN-β), which have been shown 
in other studies to be  modulated by omalizumab (18, 29). 
Consequently, we cannot exclude the possibility that omalizumab 
affected unmeasured cytokines.

TABLE 1 Mixed-effects logistic regression of biomarkers associated with 
severe COVID-19 (WHO ordinal COVID-19 score 5–7).

Biomarker OR (95%CI) p-value Q-value

CD63+ (%) 1.59 (0.91–2.78) 0.10 0.77

CRP (mg/L) 1.03 (0.97–1.10) 0.28 0.95

Eotaxin (pg/ml) 0.72 (0.33–1.57) 0.40 0.95

GM-CSF (pg/ml) NA NA NA

IFN-alpha (pg/ml) 0.98 (0.86–1.13) 0.82 0.95

IFN-gamma (pg/ml) NA NA NA

IL-1 beta (pg/ml) NA NA NA

IL-10 (pg/ml) NA NA NA

IL-12/IL-23 (pg/ml) 1.05 (1.00–1.09) 0.072 0.77

IL-13 (pg/ml) 1.17 (0.70–1.93) 0.55 0.95

IL-15 (pg/ml) 0.97 (0.88–1.08) 0.58 0.95

IL-17A (pg/ml) 0.80 (0.49–1.31) 0.37 0.95

IL-1RA (pg/ml) 1.00 (0.99–1.00) 0.83 0.95

IL-2 (pg/ml) 0.99 (0.93–1.06) 0.82 0.95

IL-2R (pg/ml) 1.00 (1.00–1.00) 0.81 0.95

IL-4 (pg/ml) 1.00 (0.97–1.03) 0.94 0.95

IL-5 (pg/ml) NA NA NA

IL-6 (pg/ml) 0.96 (0.90–1.03) 0.28 0.95

IL-7 (pg/ml) 0.89 (0.71–1.11) 0.29 0.95

IL-8 (pg/ml) 1.00 (0.98–1.02) 0.79 0.95

IP-10 (pg/ml) 1.00 (0.86–1.12) 0.95 0.95

MCP-1 (pg/ml) 1.00 (0.99–1.01) 0.54 0.95

MIG (pg/ml) 1.06 (1.00–1.11) 0.043 0.77

MIP-1 alpha (pg/ml) 1.00 (0.94–1.06) 0.87 0.95

MIP-1 beta (pg/ml) 1.00 (0.98–1.02) 0.72 0.95

RANTES (pg/ml) 1.00 (1.00–1.00) 0.93 0.95

TNF-alpha (pg/ml) NA NA NA

Tryptase (ug/mL)* 0.90 (0.67–1.20) 0.47 0.95

IgE (ug/L)* 1.00 (1.00–1.01) 0.14 0.81

*IgE and tryptase were only performed on day 0; therefore, only a conventional logistic 
regression was performed for these laboratories.
NA: Not applicable. Too few values above the threshold of detection to perform a logistic 
regression.
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This study has multiple strengths including being conducted 
within the context of a randomized double-blind RCT, which 
minimized confounding by severity. Analyses were adjusted for 
multiple hypothesis testing to reduce the risk of type I error. Despite 
these strengths, this study is subject to limitations. First, the study 
population was small which may increase the risk of type II error. 
Second, the substudy population was further reduced by a loss to 
follow-up for blood sample collection on later study days, due to death 
or discharge. Third, many of the cytokine levels fell beneath the limit 

of detection of the assay, possibly due to concomitant receipt 
of corticosteroids.

Conclusion

This study suggests that the possible mortality benefit demonstrated 
by omalizumab in the CIAO trial could be mediated independently of 
modulation of serum IFN-α and type II inflammatory cytokines. Further 

FIGURE 1

Mean cytokine values over time stratified by treatment assignment, with omalizumab in red and placebo in blue. Solid dots represent the mean and the 
error bars represent the standard deviations.
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studies are necessary to elucidate the mechanism of action of omalizumab 
in COVID-19 and other viral illnesses.
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Impact of COVID-19 lock-down 
period on orthopedic and trauma 
surgical activity in a northern 
Italian hospital
Marco Turati 1,2,3, Simone Gatti 1, Luca Rigamonti 4, 
Giovanni Zatti 1,2, Daniele Munegato 1, Marco Crippa 1,2,3*, 
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Objectives: This study aims to describe the impact of COVID-19 on Orthopedic 
and Trauma surgical activity in a single level-I trauma center in Northern Italy 
during the lockdown period. We  proposed comparing surgical procedures 
performed during the outbreak and in the same period the previous year.

Methods: In this single-center retrospective epidemiological cohort study, the 
“lockdown cohort” of patients who were treated from March 1st to May 24th, 
2020, was compared to the “control cohort” who received treatment during 
the same period in 2019. The primary outcome was to evaluate the differences 
between the lockdown and control cohorts regarding surgical volumes. The 
secondary outcome was to evaluate any differences in the type of surgical 
procedures performed in the two cohorts in the elective and emergency setting.

Results: Orthopedic surgical activity has suffered a global reduction of 72.4% 
during the lockdown period (from 36  ±  6.1 to 10.7  ±  8.4 per week; p  <  0.01), with 
the ratio of emergency to elective operations increasing from 0.7:1 in 2019 to 
3.3:1  in 2020. Elective surgery has in fact been almost completely suspended 
and was affected with a reduction of 88.9% (from 20.8  ±  5.2 to 4.3  ±  2.8 cases 
per week; p  <  0.01), while emergency trauma surgery suffered a 49.7% reduction 
(from 15.1  ±  3.2 to 8.2  ±  6.1 cases per week; p  <  0.01).

Conclusion: The COVID-19 outbreak severely impacted Italy, particularly the 
Lombardy region, and affected the national health system. The 2020 COVID-19 
lockdown has heavily conditioned our Orthopedic and Trauma department 
surgical activity.
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1 Introduction

Following the outbreak of the epidemic in China, Italy—
particularly the Lombardy region—emerged as the second epicenter 
of the novel coronavirus disease 2019 (COVID-19). The first Italian 
case was recorded in Codogno on February 21st, 2020, and from there, 
the virus spread rapidly throughout the region and the entire country 
(1). In response to this national emergency, the Italian government 
adopted two main strategies: health policies focused on strengthening 
hospital system capacity, and preventive measures like lockdowns and 
social distancing to reduce the risk of virus transmission (2).

On March 9th, the Italian government announced a national 
lockdown (hereinafter DPCM-1), and the Lombardy Regional 
Council issued a decree to guide the regional response to the 
outbreak, reorganizing the health system. To control the spread of 
the virus, approximately 90% of hospital departments were dedicated 
to treating COVID-19 patients. This reallocation of resources led to 
a reduction in the number of functioning operating rooms, allowing 
hospital staff (such as operating room nurses and anesthesiologists) 
and medical equipment, including ventilators, to be redeployed for 
COVID-19 care. Additionally, all licensed physicians, including 
those from the national army, were recruited to assist in the 
crisis (3).

The orthopedics department, which handles both elective and 
emergency services, also contributed to the pandemic response. 
Therefore, the measures implemented in the orthopedic field had to 
be adjusted to reorganize staff and equipment to address the challenges 
posed by COVID-19, while still maintaining emergency orthopedic 
services (4).

In this study, we aimed to investigate and analyze how the SARS-
CoV-2 pandemic affected orthopedic services, particularly in terms of 
surgical activity in both elective and emergency settings. Our primary 
objective was to evaluate the differences in surgical volumes between 
the lockdown period and a control cohort. The secondary objective 
was to assess any changes in the types of surgical procedures 
performed during these periods (2019 vs. 2020) in both the elective 
and emergency settings.

2 Materials and methods

In this single-center retrospective epidemiological cohort study 
we  reviewed the operating room activities of an Orthopedic and 
Trauma Department performed during the first Italian “wave” of 
COVID-19 pandemic in a single level-I trauma center in northern 
Italy (5).

Orthopedic operating room (OR) activities are divided into 
two categories: Trauma and Elective surgeries. Elective surgeries 
include scheduled orthopedic procedures such as arthroplasties, 
foot and ankle surgeries, hardware removal, nonunion treatments, 
pediatric elective procedures, and Sports Medicine interventions. 
Before surgery, all elective patients were evaluated in an outpatient 
setting, after which an orthopedic surgeon scheduled their 
procedure. Trauma surgeries, on the other hand, involve patients 
presenting through the emergency department who are indicated 
for surgery. Importantly, no changes to surgical guidelines 
occurred during this period.

All patients who underwent orthopedic surgery were included in 
the analysis, regardless of the department to which they were admitted, 
with no age restrictions applied. Only patients with incomplete data 
were excluded.

Data on patient characteristics (including age and gender), wait 
times from hospitalization to surgery, principal diagnoses, and the 
surgical procedures performed were retrieved from our computerized 
medical records. All data collection adhered to current Italian and 
European privacy laws and followed ethical guidelines for 
study conduct.

Both diagnoses and procedures are registered according to the 
International Classification of Diseases ICD 9th edition (ICD-9). 
Collected data are divided into two cohorts:

 • The “lockdown cohort” included patients who underwent 
surgery at our hospital during the 12-week period from March 
1st to May 24th, 2020, which coincided with the full lockdown 
in Lombardy.

 • The “control cohort” consisted of patients who were surgically 
treated during the same 12-week period in the previous year, 
2019. To account for variations in surgical activity on different 
days of the week, we used 1-week time spans (7 days of activity) 
as the unit of analysis. This approach allowed us to evaluate 
evolving trends during the pandemic and make comparisons 
with the previous year’s data.

Focusing on the total volume of surgical procedures, Figure 1 
shows a significant decline in the weekly number of surgeries in 
2020, with no procedures performed during week 3, which 
coincided with the first peak of COVID-19 cases at the end of 
March. Figure 2 highlights stark differences in the distribution of 
total surgeries over the entire period, with the median number of 
procedures in 2019 being nearly four times higher than in 2020. 
These findings highlight the relevant impact of the pandemic on 
surgical activities.

To understand whether such drop in surgical procedure 
influenced homogeneously the activity of the Orthopedic and Trauma 
center, we decompose the evolution and the distribution of surgical 
procedures between elective (Figures 3, 4) and trauma (Figures 5, 6) 
procedures. The results show stark differences in elective surgeries 
between the lockdown and control cohorts, whereas the differences in 
trauma procedures between 2019 and 2020 are less pronounced.

The COVID pandemic influenced not only the volume of 
surgical procedures, but also the type of procedures. To illustrate 
this, we analyzed the five most performed (i.e., “Top 5”) procedures 
in 2019 and 2020, distinguishing between elective and trauma 
surgeries. In the elective field, there was a drastic reduction in both 
the volume and variety of procedures. Comparing Figures 7, 8 the 
number of joint replacement surgeries and arthroscopic procedures 
dropped by 90%. For instance, the meniscectomy, the most common 
elective surgery in 2019, was performed only three times in 2020. 
In contrast, as shown in Figures 9, 10 the types of trauma procedures 
remained relatively consistent between 2019 and 2020. The most 
frequently performed surgery in both cohorts was open reduction 
and internal fixation (ORIF) for femoral fractures (26.4% of all 
procedures in 2019 and 19.8% in 2020). In the lockdown cohort, 
hemiarthroplasty ranked second (12.1%), followed by ORIF for tibia 
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FIGURE 1

Evolution number of surgeries (total). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the weekly evolution in the Total Number of surgical procedures.

FIGURE 2

Distribution number of surgeries (total). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the boxplot of the distribution of weekly Total Number of surgical procedures.
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FIGURE 3

Evolution number of surgeries (elective). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the weekly evolution in the Number of Elective surgical procedures.

and fibula fractures (8.1%), ORIF for ulna and radius fractures 
(8.1%), and ORIF for carpal-metacarpal fractures (5.0%). In 2019, 
after femur fracture surgeries, the next most common trauma 
procedures were ORIF for ulna and radius fractures (10.6%), 

ORIF for tibia and fibula fractures (9.6%), and 
hemiarthroplasty (7.6%).

Overall, these stylized facts provide three key pieces of evidence: 
(i) the total number of surgical procedures was significantly lower in 

FIGURE 4

Distribution number of surgeries (elective). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the boxplot of the distribution of weekly Number of Elective surgical procedures.
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2020 compared to 2019, (ii) the reduction was not uniform across 
elective and trauma procedures, and (iii) the types of elective 
procedures changed between 2019 and 2020, while this was less 
evident for trauma procedures. In the following section, we present 
our empirical strategy to validate these findings, controlling for 
confounding factors and the distribution of the outcome variables.

2.1 Statistical analysis

Our statistical analysis, conducted using STATA-16 for Windows, 
aims to determine whether the COVID-19 lockdown influenced (i) 
the volume of orthopedic surgical procedures and (ii) the types of 
procedures performed. After aggregating our individual data by week, 

FIGURE 5

Evolution number of surgeries (trauma). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the weekly evolution in the Number of Trauma surgical procedures.

FIGURE 6

Distribution number of surgeries (trauma). Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure shows the boxplot of the distribution of weekly Number of Trauma surgical procedures.

79

https://doi.org/10.3389/fmed.2024.1454863
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Turati et al. 10.3389/fmed.2024.1454863

Frontiers in Medicine 06 frontiersin.org

FIGURE 7

Top-5 elective procedures in 2019. Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, 
Monza (Italy). The Figure reports the top 5 elective surgical procedure in 2019. ACL stands for “Anterior Cruciate Ligament.”

FIGURE 8

Top-5 elective procedures in 2020. Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori 
Hospital, Monza (Italy). The Figure reports the top 5 elective surgical procedure in 2020.

FIGURE 9

Top-5 trauma procedures in 2019. Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, 
Monza (Italy). The Figure reports the top 5 trauma surgical procedure in 2019. ORIF stands for “Open Reduction and Internal Fixation” and CRIF stands 
for “Closed Reduction and Internal Fixation.”
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we first compared the average number of surgical procedures between 
2019 and 2020. To assess whether the differences in the number of 
procedures between these 2 years are statistically significant, 
we  conducted a t-test and reported the results. Additionally, 
we examined whether average patient characteristics (age and gender) 
and the time from hospitalization to surgery differed between the 
lockdown cohort and the control cohort, ensuring that variations in 
the patient population did not account for differences in 
surgical activity.

To simultaneously control for confounding factors, we estimated 
the following linear model:

 
2020

w w wY Covid X= α + β + Γ +   (1)

where our outcome variable wY  is the number of surgical 
procedure (total, elective, trauma) or the number of surgical 
procedures by type of procedure (e.g., Orhopaediatrics, 
Arthroplasty, etc.) for each week w ∈ {0, 1, …, 12}. The variable of 
interest is 2020Covid , which is a dummy variable that takes value of 
one in the year 2020. The vector wX  includes a set of controls that 
can influence the volume and type of surgical procedure. The vector 
includes the average patient age, gender composition, and the 
average number of days between hospitalization to surgery. Finally, 
our model accounts for potential heteroskedasticity of the 
error term w .

Estimating Equation 1 with a standard ordinary least square 
(OLS) estimator provides the estimates of the partial correlation 
between the lockdown period and surgical procedures ( )β̂  For 

instance, if the dependent variable is the total number of surgical 
procedures, a negative β̂ suggests that in the lockdown period the 
weekly number of surgical procedures is smaller than the control 
period, after controlling for patient characteristics. Due to the 
substantial number of zeros in the dependent variable, OLS estimator 
can fit less precisely our data (6). For this reason, we follow (7) and 
we also estimate our baseline using the Poisson pseudo maximum 
likelihood estimator (hereafter PPML). Such an estimator is well 
suited to address large mass of zeros in the dependent variable and 
heteroskedasticity patterns in the error terms.

3 Results

3.1 Surgical volumes

From the early days of the outbreak, Fondazione IRCCS San 
Gerardo dei Tintori Hospital began reorganizing all departmental 
activities to address the emergency. Following the implementation 
of the lockdown on March 8th, 2020, more restrictive measures 
were adopted, including the suspension of all non-urgent surgical 
and outpatient services. Table  1 presents the total number of 
orthopedic and trauma procedures performed in 2019 and 2020. 
During the 61-day lockdown period (from March 1st to April 
30th, 2020), a total of 129 cases were treated, compared to 468 
cases during the same period in 2019. This represents a decrease 
of 339 cases, equating to a drop of approximately 72.4% (from an 
average of 36 ± 6.1 cases per week to 10.7 ± 8.4 cases per week; 
p < 0.01).

FIGURE 10

Top-5 trauma procedures in 2020. Authors’ calculation overt Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, 
Monza (Italy). The Figure reports the top 5 trauma surgical procedure in 2020. ORIF stands for “Open Reduction and Internal Fixation.”

TABLE 1 Surgical procedures.

(1) (2) (3) (4) (5) (6)

Year Total No. Trauma Trauma (%) Day(s) surg. Age Women (%)

2019 468 197 42.1 2.6 51.7 45.5

2020 129 99 76.7 2.6 55.8 48.1

Authors’ calculations on data from Orthopedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza (Italy). Columns (1)–(2) shows the total number of 
surgical procedures and trauma-specific, respectively. Column (3) presents the percentage of trauma-specific over the total. Column (4) shows the average number of days between the 
hospitalization and the surgery. Column (5) presents the average age of the patients, while column (6) shows the percentage of female patients.
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The reduction in orthopedic surgical volume is not proportionate 
across operative categories. Table 2 shows the differences across total, 
elective and trauma surgeries. Elective surgery has been almost 
completely suspended and it is the most affected with an 88.9% 
reduction (from 20.8 ± 5.2 to 4.3 ± 2.8 per week; p < 0.01). Emergency 
Trauma surgery suffers “only” a 49.7% reduction (from 15.1 ± 3.2 to 
8.2 ± 6.1 per week; p < 0.01). Most of orthopedic surgical activities in 
the lockdown period consisted of emergency Trauma procedures 
(76.7%), with a Trauma-to-Elective (T:E) ratio of 3.3:1. Before the 
pandemic our control cohort registered a T:E ratio of 0.7:1, with 
Trauma surgery representing only 42.1% of total orthopedic OR 
activity. Notably, there were no significant differences in the 
demographic characteristics (sex and age) of the two patient cohorts, 
as shown in Table 2, indicating that variations in patient characteristics 
do not fully account for these differences. However, the number of 
days between hospitalization and surgery decreased in the emergency 
setting, dropping from an average of 5.2 days in 2019 to 2.1 days in 
2020 (p < 0.05).

Finally, Table 3 presents the estimates from our benchmark 
Equation 1. The outcome variable includes the weekly total number 
of procedures [columns (1)–(4)], elective procedures [columns (2)–
(5)], and trauma procedures [columns (3)–(6)]. Focusing on the 
OLS estimates [columns (1) to (3)], the results indicate that the 
lockdown significantly reduced the total number of orthopedic 
cases: on average, there were 25 fewer cases per week compared to 
the same period in 2019, including 18 elective cases and nearly 7 
trauma cases. These coefficients are precisely estimated at the 1% 
significance level. The results are confirmed using a non-linear 
estimator (PPML) in columns (4) to (6). By interpreting the 
coefficients as semi-elasticities and controlling for confounding 
factors, we  find that the pandemic decreased the weekly total 
number of orthopedic procedures by 71.1%. As expected, the 
results vary considerably between elective and trauma procedures: 
elective procedures were reduced by 88.4%, while trauma 
procedures experienced a milder reduction of 47.6% due to 
the pandemic.

3.2 Surgical procedures

Regarding the secondary outcome of the study, we  assessed 
whether the pandemic influenced not only the total number of 
procedures but also affected the types of procedures conducted 
differently. Figures 7, 8 indicate that the most commonly performed 
elective procedures changed significantly between 2019 and 2020, 
while trauma procedures showed less variation. In this section, we test 
this observation by presenting estimates based on our empirical model 
outlined in Equation 1, after aggregating elective and trauma 
procedures into broad categories.

Concerning elective procedures, Table 4 presents the results on 
the number of procedures, aggregated into six broad categories: 
arthroplasty (col. 1), foot and ankle (col. 2), hardware removal (col. 3), 
non-unions and infections (col. 4), orthopediatrics (col. 5), and sports 
medicine (col. 6). Linear estimates are shown in the top panel, while 
the bottom panel presents non-linear estimates.

Focusing on the OLS results, we  observe some degree of 
heterogeneity across procedures. During the pandemic, there were 
approximately 4.4 fewer procedures per week related to sports T
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medicine (p < 0.1), 2.3 fewer for orthopediatrics (p < 0.05), and 1.4 
fewer associated with arthroplasty (p < 0.01). Results for foot and ankle 
interventions, hardware removal, and non-unions/infections were not 
statistically different from zero. However, the lack of precision in some 
estimates may stem from the considerable number of zeros in the 
dependent variable, which can create estimation issues for a linear 
model. Indeed, the coefficients related to the pandemic period 
estimated from the non-linear model presented in panel B are all 
statistically significant, except for those associated with foot and 
ankle procedures.

Interpreting the estimates as semi-elasticities, elective procedures 
dropped by 68.9% for arthroplasty, 94.1% for hardware removal, 
60.9% for non-unions/infections, 85.4% for orthopediatrics, and 
93.4% for sports medicine during the lockdown. Overall, these results 
indicate that the lockdown influenced the various types of elective 
procedures differently.

Table 5 presents the linear and non-linear estimates associated 
with trauma surgical procedures, aggregated into the following seven 
groups: elbow, wrist, and hand fractures (col. 1); hip and femur 
fractures (col. 2); knee, ankle, and foot fractures (col. 3); orthogeriatric 
procedures (col. 4); pediatric procedures (col. 5); polytrauma (col. 6); 
and shoulder and upper arm fractures (col. 7). Interestingly, the 
estimated coefficients are not statistically significant or are only 
marginally significant (p < 0.1) in a few cases. These results appear to 
confirm the evidence presented in Figures 9, 10. While there was a 
decrease in the total number of trauma cases, the types of procedures 
remained relatively consistent between 2019 and 2020.

4 Discussion

Our study demonstrates the significant impact of COVID-19 on 
elective and emergency orthopedic surgery. Given the unpredictable 
nature of the SARS-CoV-2 epidemic, particularly during the first 
wave, the lockdown policy implemented by the Italian government 
resulted in an overall reduction of approximately 70% in surgical 
volumes, dropping from 468 cases in 2019 to 129 cases in 2020. The 
reduction was more pronounced for elective surgeries compared to 
trauma emergency services (88.9% vs. 45.7%). During the initial weeks 
of the pandemic, international guidelines for orthopedic surgeons 
recommended minimizing in-hospital stays for all orthopedic patients 
and postponing any surgical procedures that could be deferred (8). 

Only non-deferrable conditions in the emergency setting, such as 
fractures and bone infections requiring urgent management, were 
admitted and treated accordingly. Notably, our data indicate a 
reduction in the number of days between hospitalization and surgery, 
decreasing from an average of 5.2 days in 2019 to 2.1 days in 2020 
(p < 0.05). However, these results can be partially explained by the 
redirection of residual surgical capacity toward managing these 
specific conditions and the reduction in in-hospital length of stay.

During the initial weeks of the pandemic, international guidelines 
for orthopedic surgeons recommended reducing the in-hospital 
length of stay for all orthopedic patients and postponing any surgical 
procedures that could be deferred (9, 10). Additionally, the decline in 
trauma-related admissions during the COVID-19 outbreak may 
be attributed to a reduction in public activities, fewer traffic-related 
accidents, and a decrease in sports injuries due to restrictive social 
distancing measures, such as the closure of gyms and sports clubs 
during the national lockdown (11, 12). Furthermore, the fear of 
contracting the virus may have deterred patients from presenting to 
emergency departments with minor traumas, contributing to the 
overall reduction in hospital admissions (4).

An epidemiological study conducted in Italy reported a significant 
drop in the incidence of proximal femoral fractures nationwide 
between 2019 and 2020. As illustrated in Figures  9, 10 our study 
corroborates this decline, with femoral fractures remaining the most 
frequently performed procedures (13).

The delay in treating non-urgent orthopedic surgeries represented 
a burden that the Italian health system is partially still facing (14). 
These restrictions also affected the diagnostic process, resulting in 
delays in both the diagnosis and subsequent treatment of several 
orthopedic conditions (15). Additionally, patients with confirmed 
diagnoses were unable to access treatment promptly. Consequently, the 
implementation of specific treatment protocols, which consider 
timeliness in the decision-making process, could not be realized (16, 
17). The experiences of various medical centers have demonstrated that 
telemedicine could serve as a valuable tool to facilitate the diagnostic 
process. Further investigation is needed to equip patients and 
physicians with new, effective instruments for improving care (18), and 
to better explore the long-lasting consequences of such health shock.

Notably, Italian government regulations during this period also 
affected other emergency surgical services (19). Furthermore, an 
intriguing retrospective observational study revealed that the 
COVID-19 pandemic significantly impacted the volume of surgical 

TABLE 3 Surgical procedures—regression results.

Estimation OLS PPML

Surgical 
procedures

Total Elective Trauma Total Elective Trauma

(1) (2) (3) (4) (5) (6)

COVID2020 −25.121*** (3.171) −18.301*** (1.952) −6.821*** (1.929) −1.243*** (0.225) −2.158*** (0.361) −0.646*** (0.209)

Age 0.254 (0.157) 0.046 (0.085) 0.209** (0.100) 0.017 (0.012) 0.006 (0.014) 0.024* (0.013)

Women −18.194 (11.264) −4.215 (5.964) −13.980* (7.496) −1.218 (0.885) −0.834 (1.252) −1.545* (0.892)

Day(s) Surg. −0.125 (0.217) −0.012 (0.109) −0.113 (0.171) −0.015 (0.026) −0.005 (0.032) −0.019 (0.030)

Observations 26 26 26 26 26 26

R2 0.80 0.84 0.51 0.76 0.82 0.46

Authors’ calculation on data from Orthopaedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza (Italy). Robust standard errors are reported in 
parenthesis. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01. The results report the coefficients from: OLS estimator [col. (1)–(3)], and PPML estimator [col. (4)–(6)]. The R2 associated to 
the PPML estimations is the standard Pseudo R2.
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TABLE 4 Elective surgical procedures—regression results.

Type of procedure Arthroplasty Foot and 
ankle

Hardware removal Non-unions 
infections

Orthopediatrics Sports medicine

(1) (2) (3) (4) (5) (6)

Panel A: OLS results

COVID2020 −1.414*** (0.495) −0.536 (0.421) −0.640 (0.426) −0.585 (0.366) −2.310** (0.915) −4.421* (2.158)

Age 0.027** (0.010) 0.045** (0.019) 0.047* (0.025) 0.027** (0.009) 0.100* (0.054) 0.094* (0.048)

Women −0.411 (0.785) −1.016 (1.246) −1.263 (1.487) 1.325 (0.860) −0.125 (2.445) 1.473 (2.007)

Day(s) Surg. −0.001 (0.006) 0.017 (0.023) −0.481 (0.506) −0.025 (0.049) 3.502 (2.807) −1.724 (2.340)

Observations 26 26 26 26 26 26

R2 0.81 0.64 0.57 0.59 0.60 0.89

Panel B: PPML results

COVID2020 −1.166*** (0.273) −1.336 (1.057) −2.824** (1.175) −0.940** (0.435) −1.924*** (0.313) −2.713*** (0.572)

Age 0.046*** (0.007) 0.037*** (0.014) 0.027** (0.012) 0.037*** (0.007) 0.111*** (0.034) 0.022*** (0.008)

Women −0.093 (0.292) −0.605 (0.746) −0.509 (0.583) 1.589*** (0.568) 0.138 (0.762) 1.755** (0.728)

Day(s) Surg. 0.009*** (0.003) 0.003 (0.010) 0.642 (0.403) −0.014 (0.031) 0.624 (0.784) 1.951*** (0.750)

Observations 26 26 26 26 26 26

Pseudo R2 0.79 0.47 0.46 0.53 0.56 0.90

Authors’ calculation on data from Orthopaedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza (Italy). Robust standard errors are reported in parenthesis. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01. Panel A reports the 
OLS estimates, while Panel B reports PPML estimates.
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TABLE 5 Trauma Surgical procedures—regression results.

Type of procedure Elbow wrist and 
hand fractures

Hip and femur 
fractures

Knee ankle and 
foot fractures

Orthogeriatric Pediatric Polytrauma Shoulder and 
upper arm 
fractures

(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS results

COVID2020 1.423 (0.937) −0.146 (0.465) −0.331 (0.509) −1.222 (0.783) −0.134 (0.236) −0.457 (0.291) 0.008 (0.353)

Age 0.045*** (0.010) 0.044*** (0.009) 0.046*** (0.012) 0.023* (0.012) 0.152*** (0.026) 0.027*** (0.008) 0.053** (0.020)

Women 0.980 (0.811) −1.439** (0.612) −1.140 (0.819) 1.148 (1.012) −0.186 (0.349) −0.291 (0.656) −1.679 (1.300)

Day(s) Surg. 0.102 (0.071) −0.028 (0.054) 0.048 (0.050) 0.081 (0.159) −0.500*** (0.165) 0.046** (0.018) −0.092 (0.127)

Observations 26 26 26 26 26 26 26

R2 0.58 0.54 0.54 0.41 0.72 0.67 0.50

Panel B: PPML results

COVID2020 0.761* (0.430) −0.194 (0.316) −0.071 (0.346) −0.370* (0.217) 0.007 (0.391) −0.778* (0.418) 0.314 (0.460)

Age 0.039*** (0.009) 0.035*** (0.008) 0.039*** (0.009) 0.038*** (0.011) 0.196***

(0.038)

0.036*** (0.008) 0.075*** (0.015)

Women 0.178 (0.320) −0.721** (0.288) −1.159** (0.464) 0.371 (0.313) −0.058 (0.429) −0.365 (0.444) −1.817** (0.748)

Day(s) Surg. 0.075* (0.044) −0.018 (0.027) 0.051* (0.027) 0.052 (0.037) −0.538** (0.223) 0.024*** (0.008) −0.051 (0.065)

Observations 26 26 26 26 26 26 26

Pseudo R2 0.47 0.42 0.39 0.37 0.58 0.59 0.48

Authors’ calculation on data from Orthopaedic and Trauma Department, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza (Italy). Robust standard errors are reported in parenthesis. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01. Panel A reports the 
OLS estimates, while Panel B reports PPML estimates.
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procedures performed in a rural hospital. However, despite a shift 
towards non-operative management for conditions such as 
appendicitis and acute cholecystitis, there was no long-term increase 
in severe cases requiring surgery (20). The scientific community’s 
research agenda should focus on investigating the extent to which 
changes in patient care plans during the COVID-19 pandemic affected 
health outcomes. The experiences of worldwide healthcare service 
reductions may provide valuable insights into minimizing unnecessary 
care (21).

The first wave of the pandemic exposed the world’s 
unpreparedness to handle such an emergency. Since then, several 
improvements have been made. Flexibility and adaptability, along 
with scientific and technological advancements, have emerged as 
crucial factors in addressing this situation. Additionally, postoperative 
management has undergone various changes; the use of telemedicine 
has become a vital tool, enabling the monitoring of patients during 
rehabilitation without requiring them to visit a specialist in the 
hospital (22). Moreover, the COVID-19 pandemic highlighted the 
importance of primary care in ensuring continuity of care following 
hospital discharge.

In conclusion, the COVID-19 outbreak severely impacted the 
entire Italian national health system. Significant efforts were needed in 
terms of restrictions and the mobilization of healthcare workers, which 
hindered the ability to maintain standard care for various diseases. Our 
Orthopedic and Trauma department faced substantial challenges, 
leading to a significant reduction in all services, including emergency 
department consultations, outpatient consultations, and surgeries. Our 
experience may offer valuable insights for the future; however, 
addressing a future pandemic will require multidisciplinary coordination.
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Prolonged physical isolation, 
agonistic behaviour, and human 
resilience in pandemic times
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With the purpose of enhancing a comprehensive approach to healthcare, public 
health initiatives have moved from managing the pandemic response towards an 
increased understanding of the sequelae, including but not limited to mental health 
issues triggered by societal limitations and precautionary measures. The long-term 
effects of the COVID-19 pandemic lie in the health system’s capacity to promote 
a renewed sense of healthy communities, strengthen individual resilience, and 
mitigate environmental stressors in the future. Under these terms, the pandemic 
breakdown has been discussed in relation to the public health crisis and physical 
isolation resulting from SARS-CoV-2 disease.
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Introduction

Social stressors are well-known to interfere with individual thoughts, triggering negative 
emotions and affecting human behaviour (1). Traditionally, the relationship between aggressive 
behaviour and social deprivation showed a response variability in laboratory studies of 
non-human animals and humans (2). Specifically, different types and models of aggression 
were proposed in the study of neural circuits behind the expression of aggressive behaviour, 
including environmental influences and the occurrence of social cues, emotions (e.g., fear or 
anxiety), motivational systems, and pleasure (3).

Since the fight against the SARS-CoV-2 pandemic has led us to 2 years of liminal feelings 
for the unknown consequences and cycle of the disease, human survival response to the 
infection transmission has resulted in a long-term impact on mental health (4). Nevertheless, 
expressed emotional states, one’s lived experience, the healthcare system crisis, transnational 
policy interventions, and individual responses have exacerbated pre-existing health inequity 
and increased social disparities, which may affect human resilience (5).

Agonistic behaviour through the lens of 
contemporary science

In psychological terms, human agonistic behaviour may occur when external and/or 
internal stimuli elicit emotional processes, cognitive interpretation of events, or fight-or-flight 
responses. Previous studies in animal ecology have found long-lasting evidence that agonistic 
behaviour reduces reproduction and fertility and, conversely, it increases mortality and 
facilitates social dispersion (6). However, fear may drive aggressive behaviour, either in terms 
of primary or combined emotions expressed by human beings (7).

To develop a new framework on human agonistic behaviour, reinforced research efforts 
should move forward with the traditional model of cause-and-effect relationship (8), whereby 
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a study’s focus should consider the health policy implications, the 
private and public dimensions, and the spatial distribution across 
dispersed geographical areas. Hence, the global effects of the pandemic 
are likely to represent “collective entities,” namely distinct groups of 
individuals who are culturally responsive and whose actions are 
individually based on the “disease,” the “policy,” and the “economy” of 
the pandemic.

According to the proposed definition, multi-omics or social 
entities are meant to exist separately from other things. It follows that 
collective entities should be  addressed as something having an 
independent existence, namely all the integrative entities, either 
individual or collective, which belong to the process of agonistic 
behaviours. Hence, our understanding of entities should be more 
focused on processes rather than their own existence.

Unveiling the complex ontology of individual biology on human 
society would identify discrete entities in past or future pandemics, 
including those collective entities that are either cohabitating or 
disengaging. In terms of pandemic outcomes, agonistic behaviour is 
hereby introduced at either the individual or population level.

Introducing the SARS-CoV-2 model of 
socio-behaviour analysis

First, the pandemic has resulted in emotional dysregulation, 
evidenced by manifestations of fear, anxiety, irritability, and 
frustration. These emotional responses are automatic and well-
established reactions to deprivation. Second, experiencing the 
pandemic has likely resulted in episodic and semantic imprinting. This 
phenomenon involves space-oriented and one-time exposure to event 
memories, which are conveyed through a more general understanding 
of one’s lived experiences. Third, self-isolation, quarantine, and limited 
physical interactions have exacerbated social deprivation through the 
enforcement of lockdown policies and social distance measures. 
Fourth, the immediate and delayed effects of the pandemic have led 
to unprecedented consequences on both the private and public 
spectrums. All four nodes of this model have produced a pattern of 
recovery (the “policy”), either in terms of individuals healing from the 
illness (the “disease”) or societies recovering from economic 
constraints (the “economy”). A four-node representation of what 
we call the psyche of SARS-CoV-2 is shown in Figure 1.

Understanding the social isolation of 
human ecosystems

The ongoing changes in how we interpret the environment have 
involved the replacement of natural spaces in response to ever-
evolving human needs and new modalities of adaptation. 
Technological and economic infrastructures have added more 
complexity to cyclical patterns whilst combining previous health risks 
from exposure to new environments (9).

Following the SARS-CoV-2 pandemic, our research priorities 
should include the prolonged period of physical isolation and consider 
what the unforeseeable outcomes could have been in terms of 
agonistic behaviours. The intermittence of physical isolation may 
feasibly have a negative impact over prolonged periods or during 
human developmental time. Furthermore, the prolonged uncertainty 

over the disease and its transmission appeared to reinforce the effects 
of physical isolation on an individual basis (“disease”) whilst 
influencing the real-time experiences amongst those collective entities 
(“economy” and “policy”).

Nevertheless, unwarranted generalisations may raise 
controversies and debates about whether the scientific evidence 
gathered on an individual basis (micro level of analysis) is used to 
explain societal events of collective entities (macro level of analysis). 
In particular, the latter consequences refer to the physical isolation 
exacerbated by the “disease” and the “policy” on communities, whilst 
agonistic behaviour relies on the social dispersal of the “economy” 
resulting from the SARS-CoV-2 pandemic. Indeed, research efforts 
to unveil the relationship between social isolation and perceived 

FIGURE 1

Psyche of SARS-CoV-2.
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loneliness have shown the presence of complex proteomic networks, 
associations with morbidity and mortality profiles, and heterogeneity 
in health outcomes (10).

Discussion

By considering the reiteration of the events throughout human 
history that have inspired either societal change or defeat, we argue 
it is time for immediate action on public health policy. We have 
paid particular attention to one of the possible health outcomes of 
the COVID-19 pandemic, namely aggressive or defensive 
behaviour at individual, community-based, or global levels. In the 
post-pandemic world, we might suggest revising a dominant view 
when promoting individual and community health against the 
unified global threats (e.g., climate change, SARS-CoV-2, and war) 
and the divided global market or competing commercial 
interests involved.

However, unveiling individual and global phenomena in this era 
requires psychological science to provide its own traditional methods 
and novel strategies. Three levels of analysis were presented to argue 
how the “disease,” the “policy,” and the “economy” of the pandemic 
have shaped what we call the psyche of SARS-CoV-2. Our aim for 
proposing a new analysis model was to reflect upon the aggressive 
view of human behaviour and to interpret the complex societal 
patterns of human resilience (11).

Along with individual’s readiness for positive change, the 
pandemic has triggered emotional dysregulation, created episodic and 
semantic imprinting, and generated social disruption over the private 
and public spectrum. Those collective entities, which also constitute 
the more socially disadvantaged ecosystems compared to the others, 
might jeopardise their own agonistic behaviour and be less likely to 
show collective resilience over time. As a result, agonistic behaviour 
might unintentionally increase systemic biases in medical research 
and policy.

Beyond the factors affecting an individual’s resilience, we question 
what impact the pandemic has on global health systems and the social 
significance of human-induced actions, including the expression of 
agonistic behaviours worldwide.

In 1986, the Seville Statement on Violence concluded that the 
biological foundations of individual aggressive behaviour do not cause 
the war itself, whilst a historical attempt was made to prevent the 
confusion and misuse of either individual attitudes or political 
warfare (12).

By referring to collective entities as multi-omics or social entities, 
are the pandemic sequelae related to agonistic behaviour or showing 
an increase in the number of human casualties? For this purpose, new 
research is recommended as a crucial step to address a falsifiable and 
scientific integration of health, education, and culture (13).
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