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Building a conscious robot is a scientific and technological challenge. Debates about 
the possibility of conscious robots and the related positive outcomes and hazards 
for human beings are today no longer confined to philosophical circles.

Robot consciousness is a research field aimed at a two-part goal: on the one 
hand, researchers working in robot consciousness take inspiration from biological 
consciousness to build robots that present forms of experiential and functional 
consciousness. On the other hand, scholars employ robots as tools to better 
understand biological consciousness. 
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Thus, part one of the goal concerns the replication of aspects of biological 
consciousness in robots, by unifying a variety of approaches from AI and robotics, 
cognitive robotics, epigenetic and affective robotics, situated and embodied robotics, 
developmental robotics, anticipatory systems, and biomimetic robotics. 

Part two of the goal is pursued by employing robots to advance and mark progress in 
the study of consciousness in humans and animals. Notably, neuroscientists involved 
in the study of consciousness do not exclude the possibility that robots may be 
conscious.

This eBook comprises a collection of thirteen manuscripts and an Editorial published 
by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid 
Robotics, and Frontiers in Neurorobotics, on the topic “Consciousness in Humanoid 
Robots.” This compendium aims at collating the most recent theoretical studies, 
models, and case studies of machine consciousness that take the humanoid robot 
as a frame of reference. The content in the articles may be applied to many different 
kinds of robots, and to software agents as well.
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Editorial on the Research Topic

Consciousness in Humanoid Robots

Building a conscious robot is a grand scientific and technological challenge. Debates about the
possibility of conscious robots and the related positive outcomes and hazards for human beings are
today no longer confined to philosophical circles.

There is no accepted definition of consciousness: see Vimal (2009) for an overview of different
meanings of the word. However, it is useful to point out the distinction of consciousness as
experience and consciousness as function. From the point of view of experience, a subject is
conscious when she feels visual experiences, bodily sensations, mental images, emotions (Chalmers,
1995). As Nagel (1974) points out, a subject has conscious experience if there is something it is
like to be that subject. From the point of view of function, a conscious subject is able to process
information which is globally available (Dehaene et al., 2017), she integrates information (Tononi,
2008), she is introspectively aware of herself (Floridi, 2005). Moreover, she generates inner speech
(Morin, 2005), she possesses an inner model of herself and external environment (Holland, 2003),
she is able to anticipate perceptual and behavioral activities (Hesslow, 2002), and she acts by
sensorimotor interactions with the external world (O’Regan and Noë, 2001).

Bringsjord (2007) contrasts the possibility of experiences in robots and proposes the notion of
cognitive consciousness (Bringsjord et al., 2018), offering a definition in terms of formal axioms.
Bringsjord et al. (2015) report the best example of cognitive consciousness by discussing a robot
that passed the human test of self-consciousness proposed by Floridi (2005).

Robot consciousness is a research field aimed at two-fold goal: on the one side, scholars working
in robot consciousness take inspiration from biological consciousness to build robots that present
forms of experiential and functional consciousness. On the other side, scholars employ robots as
tools to better understand biological consciousness.

Thus, a goal concerns the replication of aspects of biological consciousness in robots, by unifying
a variety of approaches from AI and robotics, cognitive robotics, epigenetic and affective robotics,
situated and embodied robotics, developmental robotics, anticipatory systems, and biomimetic
robotics (Chella and Manzotti, 2009; Bringsjord and Govindarajulu, 2018).

The other goal of robot consciousness concerns the employment of robots to mark progress in
the study of consciousness in humans and animals. Notably, neuroscientists involved in the study
of consciousness do not exclude the possibility that robots may be conscious (Dehaene et al., 2017).
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This e-book comprises a collection of 13 manuscripts
published by Frontiers in Robotics and Artificial Intelligence,
under the section Humanoid Robotics, on the topic on
“Consciousness in Humanoid Robots.” This compendium aims
at collating the most recent theoretical studies, models, and
case studies of machine consciousness that take the humanoid
robot as a frame of reference. However, the arguments of the
articles may be applied to different kinds of robots and even to
software agents.

OVERVIEW OF THE CONTENTS OF THE

E-BOOK

A methodological strategy for the study of robot consciousness
is introduced by Reggia et al. by means of the concept of
a computational correlate of consciousness. This parallels the
concept of a neural correlate of consciousness in the brain. Thus,
they describe a cognitive robot able to learn by imitation through
low-level cognitive components such as working memory and
causal reasoning mechanisms. The top-down cognitive control
of the working memory of the robot is a potential computational
correlate of robot consciousness.

According to Manzotti and Chella, the typical approaches
toward robot consciousness as, for example, global workspace,
information integration, enaction, cognitive mechanisms,
embodiment, constitute the Good Old-Fashioned Artificial
Consciousness. These share the same conceptual fallacy that the
authors name “the intermediate level fallacy.” Thus, they outline
a new conceptual framework toward robot consciousness.

The attentional mechanisms, theory of mind, and the role of
emotions are all critical aspects in the study of the mechanisms
underlying consciousness in humans and in robots. In this
context, Graziano proposes a theory based on the attention
schema as a starting point to build a conscious robot. The
attention schema theory may explain how an entity lays claim
to possess subjective awareness. According to Graziano, it
is possible to create a robot with a rich internal model of
consciousness that attributes consciousness to itself and to the
people it interacts with, and that uses this attribution to predict
human behavior.

Winfield proposes an artificial theory of mind that would
provide robots with new capabilities related to social intelligence
for human-robot interaction. The author suggests that a
simulation-based internal model may offer a new basis for the
artificial theory of mind. Internal models equip the robot with
a model of itself and the environment, including other agents,
so that the robot can test its possible actions and anticipate the
consequences for itself and the other agents.

Cominelli et al. present the cognitive system SEAI (Social
Emotional Artificial Intelligence) aimed for social and emotional
robots designed as a bio-inspired system with a model of
emotion and reasoning capabilities. In particular, SEAI comprises
a simulation of Damasio’s theory of consciousness.

Wang et al. and Chatila et al. consider the relevant
problem of robot self-consciousness. In details, Wang et al.
discuss self-consciousness in terms of NARS, an implemented

general-purpose intelligent system. The authors explain how a
general-intelligent system needs a notion of the “self ” based
on the experiences accumulated by the system during its
development. The implementation of self-awareness and self-
control capabilities in NARS is at an early stage; however, the
overall design fits well with the processes in the human mind.

According to Chatila et al., the self-consciousness of a robot
emerges by the distinction operated by the robot between its
own body and the external environment. The paper proposes
a cognitive architecture that considers several aspects: the
perception of the robot; the interaction capabilities with the
external environment; the learning phase; the interaction with
other agents; the decision-making capacities.

Aspects related to architectural features for a conscious robot
have been treated by Kinouchi and Mackin, Van de Velde, and
Balkenius et al. In particular, Kinouchi and Mackin propose a
cognitive neural architecture for a conscious robot where the
primary role of consciousness is the adaptation at the system-
level. The proposed architecture is based on a two-level design:
the first level is related to awareness, habitual behavior, and the
binding problem. The second level is associated with the general
goal-directed behavior of the robot.

Van de Velde provides suggestions for robot architectures
by analyzing the roles of cognitive processing and access
consciousness in the brain. The author argues that consciousness
is a process which is referred to in situ representations in
the brain that underlie the possibility of cognitive access.
Given this, consciousness may be related to a continuous
process of cognitive access controlled by the activity of in situ
representations themselves, as in the operations of queries
and answers.

Balkenius et al. discuss the roles of memory and the inner
world for a conscious robot. The authors introduce a memory
model, based on neurophysiological data, that considers many
aspects, such as object permanence and episodic memory. The
three components of the model are an identification network,
a localization network, and a working memory network. The
mechanisms that fill in the sensations to the generation of
perceptions can be detached from sensory input and run in
isolation, allowing for planning mechanisms and daydreaming.

The active inference framework is discussed in detail
by Linson et al. and by Biehl et al. The active inference
framework is a bridge between computational neuroscience and
robotics to psychology and phenomenology. The framework
provides a theoretical basis for a unified treatment of particles,
organisms, and interactive machines. The theory considers
perception, reasoning, and action selection under the heading
of a single principle. Notably, it suggests biologically plausible
explanations for cognitive phenomena and implications for
robot consciousness.

Finally, Signorelli analyses some misconceptions related
to the next generations of conscious robots. The author
discusses the sense in which a robot could reach capabilities
at the human level, asserting that it could be possible
only in case of a sentient robot. Then, a robot would
be classified according to the human types of cognition.
An important aspect of the author’s discussion is that a
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conscious robot would not overcome humans but, on the
contrary, it could present the very same limitations presented
by humans.

CONCLUSIONS

In summary, the advent of a conscious robot would be a
tremendous scientific and technological leap.

The 13 contributions collected in this e-book touch essential
aspects of the current debate about robot consciousness as the
relationship between phenomenology and cognition, the role
of theory of mind and self-awareness, the roles of attention
and emotions, the possible problems arising from a conscious
robot among us. Insights concerning the design of cognitive
architectures and initial implementations are discussed. The

active inference framework is investigated as a promising general
theory able to consider biological and robot consciousness.

The main message from this e-book is the need for
tight relationships between scientific and technological research
on robot consciousness and understanding of the processes
related to biological consciousness. In fact, understanding the
underlying aspects of biological consciousness would greatly
help to build a new generation of conscious robots, which,
in turn, would contribute to a better understanding of
biological consciousness.
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the attention schema theory:  
a Foundation for engineering 
artificial Consciousness
Michael S. A. Graziano*

Department of Psychology and Neuroscience, Princeton University, Princeton, NJ, United States

The purpose of the attention schema theory is to explain how an information-process-
ing device, the brain, arrives at the claim that it possesses a non-physical, subjective 
awareness and assigns a high degree of certainty to that extraordinary claim. The 
theory does not address how the brain might actually possess a non-physical essence. 
It is not a theory that deals in the non-physical. It is about the computations that cause 
a machine to make a claim and to assign a high degree of certainty to the claim. 
The theory is offered as a possible starting point for building artificial consciousness. 
Given current technology, it should be possible to build a machine that contains a rich 
internal model of what consciousness is, attributes that property of consciousness to 
itself and to the people it interacts with, and uses that attribution to make predictions 
about human behavior. Such a machine would “believe” it is conscious and act like it is 
conscious, in the same sense that the human machine believes and acts.
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introdUCtion

This article is part of a special issue on consciousness in humanoid robots. The purpose of this 
article is to summarize the attention schema theory (AST) of consciousness for those in the engi-
neering or artificial intelligence community who may not have encountered previous papers on the 
topic, which tended to be in psychology and neuroscience journals. The central claim of this article 
is that AST is mechanistic, demystifies consciousness and can potentially provide a foundation on 
which artificial consciousness could be engineered. The theory has been summarized in detail in 
other articles (e.g., Graziano and Kastner, 2011; Webb and Graziano, 2015) and has been described 
in depth in a book (Graziano, 2013). The goal here is to briefly introduce the theory to a potentially 
new audience and to emphasize its possible use for engineering artificial consciousness.

The AST was developed beginning in 2010, drawing on basic research in neuroscience, psychol-
ogy, and especially on how the brain constructs models of the self (Graziano, 2010, 2013; Graziano 
and Kastner, 2011; Webb and Graziano, 2015). The main goal of this theory is to explain how the 
brain, a biological information processor, arrives at the claim that it possesses a non-physical, 
subjective awareness and assigns a high degree of certainty to that extraordinary claim. The theory 
does not address how the brain might actually possess a non-physical essence. It is not a theory that 
deals in the non-physical. It is about the computations that cause a machine to make a claim and to 
assign a high degree of certainty to the claim. The theory is in the realm of science and engineering.

Given a mechanistic theory of this type, my best guess is that artificial consciousness will arrive 
relatively soon, within the next century, and that even farther down the road people will be able to 
migrate their minds to new hardware much like we now migrate essential data and algorithms from 
an obsolete computer to an upgraded model. That type of technology will obviously be transfor-
mational, though whether good or bad I am not sure. Every aspect of human existence—culture, 
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politics, health, preservation of knowledge and wisdom across 
periods of time, human dispersion across space, and other 
environments hostile to biology—will be fundamentally changed 
by the easy transferability of minds to new hardware. As crazily 
science fiction as these possibilities sound, I see our technology 
moving in that direction. My hope is that AST will provide some 
initial insights into consciousness that are concrete enough, and 
mechanistic enough, that engineers can build upon it to facilitate 
the technology.

tHe CrUCiaL diFFerenCe BetWeen 
Mind and Laptop

Before explaining the theory, it is useful to specify what phe-
nomenon it purports to tackle. The term consciousness, after all, 
has many, sometimes conflicting meanings. To help specify the 
meaning used here, consider the difference between a brain and a 
modern personal computer. Of course there are many differences, 
but one seems more consequential than others. The brain has a 
subjective experience associated with a subset of the information 
that it processes.

You can connect a computer to a camera and program it to 
process visual information—color, shape, size, and so on. The 
human brain does the same, but in addition, we report a subjective 
experience of those visual properties. This subjective experience 
is not always present. A great deal of visual information enters the 
eyes, is processed by the brain and even influences our behavior 
through priming effects, without ever arriving in awareness. Flash 
something green in the corner of vision and ask people to name 
the first color that comes to mind, and they may be more likely to 
say “green” without even knowing why. But some proportion of 
the time we also claim, “I have a subjective visual experience. I see 
that thing with my conscious mind. Seeing feels like something.” 
The same kind of subjective experience can pertain to other 
sensory events—a sound, a touch, heat and cold, and so on.

Consider another domain of information: episodic memory. 
It is a part of our self-identity. It provides a sense of a trajectory 
through life. But memory itself is not fundamentally mysterious. 
A computer can store memory, including elaborate information 
about its past states. Those memories can be retrieved and used 
to guide output. The crucial, human difference is not that we have 
memories, or that we can recall them, but that we have a subjec-
tive experience of memories as we recall them.

Consider one more information-processing event: a decision. 
Once more, decision-making is not fundamentally mysterious. 
A computer can make a decision. It can take in information, 
integrate it, and use it to select one course of action out of many. 
The human brain also makes decisions. Most of those decisions, 
possibly tens of thousands a day, occur automatically with no 
subjective experience, much like in a computer. Yet in some 
instances, we also report a subjective awareness of making the 
decision. We sometimes call it intention, choice, or free will. The 
ability to make a decision, in itself, is not a special human capa-
bility. The crucial difference between a personal computer and a 
human brain lies in the subjective experience that is, sometimes, 
associated with decision-making—or with memory, sensory 
processing, or other events in the brain.

This subjective experience is often called consciousness. I 
admit the term can be misleading. To some people, conscious-
ness refers to a metaphysical soul that floats free of the body after 
death. To many people it refers to the rich contents swirling within 
a mind. To some it refers specifically to the part inside you that 
has free will and chooses one action over another. I mean none 
of these things. I am referring to the human claim that we have 
a subjective experience of anything at all. In this account, I will 
use the terms consciousness, subjective awareness, and subjective 
experience interchangeably, to refer to this phenomenological 
property that people claim is associated with some select events 
and information in the brain.

Like many scientists who study consciousness, I focus on a 
microcosmic problem: a person looking at a small round spot 
on a screen (e.g., Webb et  al., 2016a). In some circumstances, 
the person could say, “I have a subjective experience of seeing 
that spot.” In other circumstances, the spot is processed by the 
visual system, has a measurable impact on the person, and even 
affects the person’s speech and decisions, and yet the person will 
report, “I didn’t consciously see anything.” What is the difference 
between these two circumstances? Why is subjective awareness 
attached to the visual event in one case and not the other? If we 
can understand the relevant brain processes for awareness of a 
spot on a screen, then in principle we can extend the explanation 
to any information domain. We would understand how people 
have a subjective experience of vision, touch, sound, the internal 
richness of memory, mental imagery, decision-making, and self. 
We would understand the conscious mind.

My point here is that most of what composes the conscious 
mind is, in principle, not a fundamental mystery. What has 
resisted explanation thus far is not the content of our experience, 
but the presence of subjective experience itself. I argue that sub-
jective experience is a confined, relatively easy piece of the neural 
puzzle to solve.

I also argue that the solution is no mere philosophical flour-
ish. Instead, it is a crucial part of the way the system models and 
controls itself. It is a key part of the engineering. Without under-
standing the subjective awareness piece, it may be impossible to 
build artificial intelligence that has a human-like ability to focus 
its computational resources and intelligently control that focus. 
It may also be impossible to build artificial intelligence that can 
interact with people in a socially competent manner. The study of 
consciousness is sometimes mistaken as a pursuit of metaphysical 
mystery, without any practical consequences. The AST does not 
address a metaphysical mystery. It addresses a concrete piece of 
the neural puzzle, as pragmatic as the transmission mechanism 
in a car.

GraspinG an appLe WitH tHe Hand

The idea of an attention schema was developed in analogy to 
the body schema. The body schema is an internal model, a rich 
and integrated set of information that reflects the state of the 
body, how it moves, and its relationship to the world (Head and 
Holmes, 1911; Shadmehr and Mussa-Ivaldi, 1994; Graziano et al., 
2000; Graziano and Botvinick, 2002; Holmes and Spence, 2004). 
The body schema not only contributes to the brain’s control of 
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the body but also contributes to cognition and verbal behavior. 
It allows the brain to draw conclusions and make claims about 
the body. Without a body schema, we would not know that we 
have a body—except in an intellectual sense, the same way we all 
know that we have a pancreas. With a body schema, we report 
having whatever shape or type of body is represented by that body 
schema. The present section describes the body schema and some 
of its implications. The following section will draw parallels to an 
attention schema and our claim to have awareness.

To understand the body schema, consider the body as a robotic 
device (it could be legitimately called a biological robot) and the 
brain as the information processor that controls it. Suppose this 
robot has reached out and grasped an apple. We want to know 
what information is available to that robot’s brain. Three specific 
types of information are relevant to this discussion: informa-
tion about the apple, about the robot’s own body, and about the 
physical relationship between the robot and the apple. One of 
the most important and overlooked aspects of the body schema 
is that it is not just a representation of the body itself. It contains 
information about the relationship between the body and the rest 
of the world.

We will begin with the apple. We ask this biological robot 
what it is holding, and the robot answers, “An apple.” We ask the 
robot, “Can you describe the apple?” and the robot does so. How 
does the robot do this? Its brain contains linguistic and cognitive 
machinery. The cognitive machinery has partial access to the 
models constructed within its visual system. Its visual system 
has constructed a rich model of the apple, a set of information 
about size, color, shape, location, and other attributes, constantly 
updated as new signals are processed. Due to the presence of this 
information, and due to the cognitive and linguistic access to the 
information, the machine is able to respond. It is worth noting 
that the robot is not actually telling you about the apple. It is 
telling you about the model of an apple, essentially a simulation, 
constructed in its visual system. If the internal model contains an 
error, if it represents the apple as twice too big, for example, the 
machine will report that incorrect information.

Next, we ask the robot, “What is the state of your body?” 
Once again, the robot can answer. The reason is that the brain 
has constructed a body schema—a set of information, constantly 
updated as new signals are processed, that specifies the size and 
shape of the limbs and torso and head, how they are hinged, the 
state they are in at each moment, and what state they are likely to 
be in over the next few moments. The primary purpose of a body 
schema is to allow the brain to control movement. A secondary 
consequence of the body schema is that the robot can explicitly 
talk about its body. Its cognitive and linguistic processors have 
some access to the body schema, and therefore the robot can 
describe its physical self.

Once again, it is worth noting that the robot is not reporting 
on the actual state of its body, but rather reporting the contents of 
an internal model. If that internal model is in error, then the robot 
will provide an incorrect report. If you trick the body schema 
into representing the arm as more to the left than it actually is, 
or larger than it actually is, that distorted information will pass 
through cognition and linguistic processing and enter the verbal 
report. Even rather extreme illusions of the body schema are 

easily induced, such as the rubber hand illusion (Botvinick and 
Cohen, 1998) or the Pinocchio illusion (Lackner, 1988). It is also 
worth noting that even when the body schema is working cor-
rectly, it is always incomplete. It does not contain information 
about, for example, bone structure, tendon attachments, or the 
biophysics of muscle contraction. Our biological robot cannot 
access its body schema and on that basis tell you about the actin 
and myosin fibers in the muscles. Its body schema contains only 
the information that the system needs to control the body. The 
body schema is, in a sense, a cartoon sketch of the body.

Finally, we ask the robot, “What is your physical relationship 
to the apple?” The robot says, “My arm is outstretched and my 
hand is grasping the apple.” The answer requires integrating 
two different internal models: the visual system’s model of the 
apple and the body schema. The machine has constructed an 
amazingly complex, brain-spanning meta-model. Yet in its 
essence, the behavior remains simple. The machine constructs 
internal models descriptive of its world. It can report the 
information content of those internal models because its cogni-
tive and linguistic mechanisms have at least partial access to 
those internal models. Nothing here is mysterious. Nothing 
is outside the realm of engineering. I argue that the biological 
robot, as described thus far, could be copied in artificial form 
using today’s engineering expertise, and it would function in 
essentially the same way.

I use the term “robot” to communicate a mechanistic perspec-
tive, but I intend to describe a human being. We operate in the 
manner described above. If you hold an apple, the reason why you 
can say so is that your brain has constructed an internal model of 
the apple and of your body, integrated those two models to form 
a larger, overarching description of your physical relationship to 
that apple, and cognitive and linguistic machinery has access to 
those internal models. There is something tautological about my 
central assertion: every claim a person makes, even a simple claim 
like, “Right now I’m holding an apple,” depends on information 
constructed in the brain. Without the requisite information, the 
system would be unable to make the claim.

GraspinG an appLe WitH tHe Mind

Suppose the robot as described above is asked another question. 
We ask it, “What is the mental relationship between yourself and 
the apple?” If the robot contains only an internal model of the 
apple and of a body schema, I argue that it would not be able 
to answer the new question. It would lack sufficient informa-
tion. It has sufficient information to answer basic questions 
about its physical body, about the apple, and about the physical 
relationship between the two. But a mental relationship? It lacks 
information on what a mental relationship is. We could ask, “Are 
you conscious of the apple?” but given the information present, 
the machine could provide only concrete and literal information 
such as, “There is an apple.” We could press and say, “Yes, but do 
you have an internal, subjective experience of it?” How could the 
machine answer? Thus far, we have not given it information to 
process that question. It would be like asking a digital camera 
whether it is aware of the picture it just took. The question is 
meaningless.
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Almost all theories of consciousness focus on how a brain 
might generate a feeling of consciousness. The AST takes a more 
pragmatic approach, asking how a machine can make the claim 
that it has a subjective experience. It is a theory about how the 
brain constructs the requisite information such that the person 
can make that specific claim. Without the requisite information, 
the claim cannot be made.

The AST is, in a sense, a proposed extension of the body schema. 
The proposal is that the brain constructs not only a model of the 
physical body but also a model of its own internal, information-
handling processes. It constructs an “attention schema.” That 
attention schema not only contributes to the control of attention 
but the information contained within it also has consequences for 
the kinds of claims that the machine can make about itself.

Attention is a catchall term that arguably adds more confusion 
than clarity, given its many connotations and meanings. Here, I 
will mainly avoid the term and use the phrase, “enhanced pro-
cessing.” I will occasionally use the term “attention” when nothing 
else captures the intended meaning succinctly. The phenomenon 
I outline below matches at least some uses of the term attention, 
especially as described by the neuroscientific, “biased competi-
tion” theory of attention (Desimone and Duncan, 1995; Beck and 
Kastner, 2009).

Signals in the brain can be selectively enhanced. For exam-
ple, consider again the robot from the previous section that 
encounters an apple. Its visual system constructs a representation 
of the apple. Under some circumstances, that representation 
may be suppressed in favor of other representations. Perhaps a 
sandwich, or another person, or something startling like a bear, 
wins a competition of visual signals, rises in signal strength, 
and suppresses the representation of the apple. Under other 
circumstances, the apple becomes the focus of processing and 
its representation is enhanced at the expense of other visual 
representations. This constantly shifting competition among 
signals can be slanted or biased toward one item or another by a 
variety of influences, including bottom-up influences (such as a 
suddenly moving object that causes a surge of signal in the visual 
system) or top-down influences (such as a cognitive decision to 
focus one’s resources on a specific task). If the apple’s representa-
tion in the visual system gains in signal strength, winning the 
competition of the moment, that enhanced processing has a suite 
of consequences. The apple is processed in greater depth—its 
nuances and details are more fully processed. It is also more likely 
to affect other systems throughout the brain, beyond the visual 
system. The signal is, in effect, broadcasted to other brain areas. 
It is therefore more likely to affect behavioral decision-making. 
Whether you reach for the apple or not, bite it, put it away, or 
decide not to touch it because it looks rotten, the processing of 
the apple has an impact on behavioral choice. The apple is also 
more likely to impact memory, allowing it to be recalled later and 
affect future behavior.

The focusing of resources described here is not limited to a 
spatial focus. One can focus processing resources on color, on 
motion, on a particular shape, or on other non-spatial features. It 
is also not limited to vision. The same type of selective, enhanced 
processing can be seen in audition, touch, and presumably 
smell and taste. One can apply the same enhanced processing to 

movement commands during a difficult movement sequence. It 
is even possible to selectively enhance entirely internal signals, 
such as recalled memories, visual imagination, or internal speech. 
The constantly shifting, enhanced processing of some signals over 
others, across a vast range of information domains, is one of the 
most fundamental attributes of the brain.

Now consider again the robot holding an apple. Suppose the 
machine is focusing its processing resources on the apple. You 
ask the robot, “What is your mental relationship to the apple?” 
Can the robot answer this question? Does it have sufficient 
internal information to report what it is doing computationally? 
According to AST, the robot can indeed answer the question, and 
the reason is that it contains an attention schema. The attention 
schema is a set of information that describes the act of focusing 
resources on something. The attention schema describes what 
attention is, what it does, what its most basic stable properties 
are, what its dynamics and consequences are, and monitors its 
constantly changing state. Given the information in the attention 
schema, and given cognitive and linguistic access to at least some 
of that information, the machine is able to say, “I have a mental 
grasp of the apple.”

Just as the body schema lacks information about mechanistic 
details such as bone structure and tendon insertion points, so the 
proposed attention schema lacks detailed information about how 
signals in the brain are selectively enhanced. The proposed atten-
tion schema lacks information about neurons, synapses, electro-
chemical signals, neural competition, and so on. It has a relatively 
impoverished description. Suppose you ask the machine, “Tell me 
more about this mental possession. What physical properties does 
it have?” The machine is not going to be able to give a scientifically 
accurate answer. It cannot describe the neuroscience of attention. 
It replies on the basis of the information available in the attention 
schema. It says, “My mental possession of that apple, the mental 
possession in and of itself, has no describable physical properties. 
It just is. It’s a non-physical part of me. My arms and legs are 
physical parts of me; they have substance. Whatever’s inside me 
that has mental possession of things, that part is non-physical. It’s 
metaphysical. It’s my awareness.”

It is important to point out what I am not saying. It is easy to 
imagine building a machine that says, “I am aware of the apple.” 
Just record that message on your phone, then press play, and the 
machine will utter the phrase. That superficial solution is not what 
is being described here. What is crucial here is the presence of a 
rich, descriptive model that is constructed beneath the level of 
cognition and language, and yet still is accessible to cognition. 
Because the machine is responding on the basis of an internal 
model, the response can be flexible, self-consistent, and meaning-
ful. If you ask the machine for more details, it can give a rich 
description. It might add, “That non-physical, subjective part of 
me, the real me, is located inside my body. It hovers in my head. 
It’s more or less vivid depending on circumstances. Now that I’m 
aware of that apple, I know about it, what it is and what it’s good for. 
I can choose to react to it. I’ll be able to remember it for later. Those 
are just some of the consequences of awareness. And awareness is 
not limited to apples. I sometimes experience other things as well. 
Right now I’m aware of you, sometimes I experience a flood of 
recalled memories, or mental imagery that I invent fancifully, and 
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sometimes I have the subjective experience of making a decision. 
There’s a commonality across all those circumstances—I have a 
subjective, mental possession of things inside me and around me.” 
In this description, the machine is coming close to the literal truth. 
It is giving a fairly close, if high-level and detail-poor, description 
of how it focuses its processing resources on one or another item. 
Its description veers from literal reality only as it muddles the 
more mechanistic details and ultimately claims to have a spooky, 
physically incoherent consciousness. Consciousness is, in a sense, 
a cartoon sketch of attention.

Suppose you ask the machine, “But aren’t you making all those 
claims simply because that’s the information contained in your 
internal models? Aren’t you just a computing machine?”

The machine accesses its internal models and finds nothing to 
match your suggestion. Its internal models do not announce to 
cognition, “By the way, this is information contained in an internal 
model, and the information might not be literally accurate.” On 
the basis of the limited information available, the machine says, 
“What information? What internal models? This has nothing to 
do with computation. No, I am simply subjectively aware of the 
apple.” The machine is captive to its own information. It knows 
only what it knows.

Colleagues have often asked me: granted that the brain prob-
ably does construct something like an attention schema, how does 
that internal model explain how we have subjective experience? 
Why does it feel like anything at all to process information? The 
answer is that the theory emphatically does not explain how we 
have a subjective experience. It explains how a machine claims 
to have a subjective experience, and how it is that the machine 
cannot tell the difference.

The AST has some similarities to the illusionist approach to 
consciousness (e.g., Dennett, 1991; Norretranders, 1999; Frankish, 
2016). In that view, subjective experience is not truly present; 
instead, the brain is an entirely mechanistic processor of informa-
tion that has an illusion of possessing consciousness. Exactly how 
the illusion occurs differs somewhat between accounts. Clearly, 
the illusionist approach has a philosophical similarity to the AST. 
However, I remain uncomfortable with calling consciousness an 
illusion. In AST, the brain does not experience an illusion. It does 
not subjectively experience anything. Instead, the machine has 
wrong, or simplified information that tells it that it is having an 
experience. In my view, calling consciousness an illusion is trying 
too hard to employ an everyday, intuitive concept that is not truly 
applicable.

Another similar approach to consciousness might be called 
the “naïve theory” perspective (e.g., Gazzaniga, 1970; Nisbett and 
Wilson, 1977; Dennett, 1991). In that view, the brain processes 
information about its world but does not possess any subjective 
experience. We claim that we do because, at a cognitive level, 
we have learned a naïve theory. It is essentially a ghost story, a 
socially learned narrative that we use to explain ourselves, a social 
epiphenomenon with debatable utility. With different upbringing, 
we would not claim to have any conscious experience. Again, 
there is some philosophical similarity between this view and AST. 
Indeed, the two are very close. However, in AST, the naïve con-
struct of consciousness is not learned. It is not at a higher cognitive 
level. It is wired into the system at a deep level and constructed 

automatically, like the body schema. It is inborn. As discussed 
below, it is probably present in a range of species. Moreover, it 
is not a social epiphenomenon; instead, it serves a specific set of 
important cognitive functions. The brain constructs internal mod-
els because of the specific usefulness of modeling and monitoring 
items in the real world, and the usefulness of the attention schema 
is the crux of the theory, as discussed in the following sections.

The AST also has strong similarities to approaches in machine 
consciousness (e.g., Chella et  al., 2008) in which a system can 
contain representations of the self, the environment, and higher 
order, recursive representations of how the self relates to the 
environment. This general concept resonates closely with the 
concepts of the AST. The AST is a theory of how the human brain 
models its own human-like attention systems and thus makes the 
claim that it has a subjective experiential component. Artificial 
systems that have different internal architecture, perhaps differ-
ent processes akin to but not identical to human attention, might 
require different self-representations. A machine of that nature 
would not necessarily lay claim to consciousness in the sense that 
we humans intuitively understand it. Drawing on its own internal 
quirky representations, it would describe itself in ways specific 
to it. Of course, we might expect the contents of that machine’s 
mind to differ from a human’s mind. But, the point I am try-
ing to make here is that the very construct of consciousness, of 
subjective experience itself, whether the machine even has that 
construct and what the details of it may be, will depend on the 
precise nature of the machine’s internal models.

tHe adaptiVe VaLUe oF an attention 
sCHeMa: ControL oF attention

The sections above discussed the consequences of cognitive and 
verbal access to internal models. For example, the body schema 
allows you to close your eyes and still know about and talk about 
the configuration of your body. The primary function of the body 
schema, however, is probably less for cognitive access and more 
for the control of movement. One of the fundamental principles 
in control engineering is that a good controller contains a model 
of the item being controlled (Conant and Ashby, 1970; Francis 
and Wonham, 1976; Camacho and Bordons Alba, 2004; Haith 
and Krakauer, 2013). A robot arm, the airflow throughout a build-
ing, a self-driving car, each system benefits from an appropriate 
internal model. The model partly monitors the state of the item to 
be controlled and also partly predicts states into the near future. 
The body schema contains layers of information about the body, 
about its stable properties such as its shape and hinged structure 
and about more dynamic properties such as forces and velocities 
(Head and Holmes, 1911; Shadmehr and Mussa-Ivaldi, 1994; 
Shadmehr and Moussavi, 2000; Graziano and Botvinick, 2002; 
Holmes and Spence, 2004; Hwang and Shadmehr, 2005). This 
information is used during the control of movement for obstacle 
avoidance, for on-line error correction, and for longer term 
adaptation. If movements are systematically wrong or distorted, 
the internal model can be adapted to correct the errors.

We hypothesized that the same advantages accrue from having 
an attention schema. The ability to focus processing resources 
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strategically on one or another signal requires control. That 
control should benefit from an attention schema—a coherent set 
of information that represents basic stable properties of atten-
tion, reflects ongoing changes in the state of attention, makes 
predictions about where attention can be usefully directed, and 
anticipates consequences of attention. The best way to test this 
hypothesis would be to isolate cases where awareness fails—cases 
where the brain is processing information but people report 
being unaware of it. In those cases, by hypothesis, the attention 
schema has failed. While the system may still be capable of direct-
ing attention, focusing resources on the signal in question, the 
control of attention should suffer in characteristic ways—much 
like the control of the arm might become more wobbly, less able to 
error-correct, and less adaptable over repeated trials, if the arm’s 
internal model is compromised.

Several experimental results on attention and awareness have 
been interpreted as consistent with this prediction (McCormick, 
1997; Tsushima et  al., 2006; Lin and Murray, 2015; Webb and 
Graziano, 2015; Webb et al., 2016a), though more experiments 
are needed. Thus far, the relevant experiments have focused on 
visual attention and visual awareness. When people are unaware 
of a visual stimulus, they can still sometimes focus processing 
resources on it. They can direct attention to it (McCormick, 
1997; Lamme, 2003; Woodman and Luck, 2003; Ansorge and 
Heumann, 2006; Tsushima et  al., 2006; Kentridge et  al., 2008; 
Hsieh et al., 2011; Norman et al., 2013). However, in that case, 
visual attention suffers deficits in control. It behaves less stably 
over time and shows evidence of being less able to error-correct 
and less able to adapt to perturbations (McCormick, 1997; Lin 
and Murray, 2015; Webb and Graziano, 2015; Webb et al., 2016a). 
The evidence suggests that awareness is necessary for the good 
control of attention.

One group of researchers has presented a computational 
model of attention with and without an internal model and found 
that at least this simplified, artificial attention is better controlled 
with the internal model (van den Boogaard et al., 2017).

In our hypothesis, the attention schema first evolved as a crucial 
part of the control system for attention. The possible co-evolution 
of attention and awareness has been discussed before (Graziano, 
2010, 2013, 2014; Haladjian and Montemayor, 2015; Graziano 
and Webb, 2016). Since the basic vertebrate brain mechanisms for 
controlling attention emerged more than half a billion years ago, 
we speculate that the origin of awareness, at least in preliminary 
form, may be equally ancient. Awareness, in this view, is not sim-
ply a philosophical flourish. It is a part of the engineering. Just as 
one cannot understand how the brain controls the body without 
understanding that the brain constructs a body schema, so one 
cannot understand how the brain intelligently deploys its limited 
processing resources without understanding that it constructs an 
attention schema. That an attention schema causes us humans to 
lay claim to a metaphysical soul is a quirky side effect.

tHe adaptiVe VaLUe oF an attention 
sCHeMa: soCiaL CoGnition

One of the most devastating impairments to awareness in the 
clinical literature is hemispatial neglect. Damage to one side of the 

brain, typically the right temporoparietal junction (TPJ), causes 
a loss of awareness of everything to the opposite side of space 
(Vallar and Perani, 1986; Corbetta, 2014). Yet, information from 
the neglected side is still processed to some degree (Marshall and 
Halligan, 1988), and the visual system is still active to the highest 
levels of processing (Rees et al., 2000; Vuilleumier et al., 2002). 
Neglect appears to be caused by the disruption of brain networks 
involved in attention and awareness that pass through the TPJ 
(Corbetta, 2014; Igelström and Graziano, 2017).

The TPJ, however, has also been implicated in social cogni-
tion. When people attribute mind states to each other, such as 
beliefs or emotions, brain-wide networks are recruited that also 
pass through the TPJ (Saxe and Wexler, 2005; Kelly et al., 2014; 
Igelström et  al., 2016). A complicated literature suggests that, 
although there is some separation of function among subregions 
of the TPJ, considerable overlap of function is also present 
(Mitchell, 2008; Scholz et al., 2009; Igelström et al., 2016; Igelström 
and Graziano, 2017). The adjacency and possible overlap of social 
cognition functions with awareness and attention functions has 
caused some controversy.

We suggested that the functional overlap within the TPJ 
may have a deeper significance (Graziano and Kastner, 2011; 
Graziano, 2013). In our proposal, one of the primary uses for 
the construct of awareness is for social cognition. We attribute 
to other people an awareness of the objects and events around 
them. When we do so, we are in effect constructing a simplified 
model of other people’s state of attention. Arguably, all of social 
cognition depends on attributing awareness to other people. Does 
Frank intend to walk toward you, or sit in that chair, or eat that 
sandwich? Only if he is aware of you, the chair, or the sandwich. 
Is he angry that someone made a rude gesture at him? Only if 
he is aware of the gesture. Whether reconstructing someone 
else’s beliefs, intentions, emotions, or any other mental state, we 
depend first on attributions of awareness.

In our hypothesis, the TPJ is a central node in a brain-wide 
network that helps to compute an attention schema. That atten-
tion schema is our construct of awareness, and that construct can 
be applied to oneself or to others. Much like the color-processing 
networks in the visual system can assigned colors to surfaces, so 
the social cognition network can assign the construct of aware-
ness to agents, including oneself. Experimental evidence from 
brain imaging studies suggests that the TPJ does play a role in 
attributing visual awareness to others, and that some of the same 
subregions of the TPJ are involved in constructing one’s own 
visual awareness (Kelly et al., 2014; Igelström et al., 2016; Webb 
et al., 2016b). We suggest that the TPJ is a site where the ability 
to perceive consciousness in others grew out of our ability to be 
conscious ourselves. However, the TPJ remains an extremely 
complex area of the cortex that is still poorly understood. Far 
more work will be needed to specify its range of functions and 
how they are distributed anatomically.

Given the goal of this article, introducing AST to those who 
may be interested in engineering it, the specific networks in the 
brain are not of great importance. Whether the computations 
are performed by this or that part of the brain are irrelevant. 
What is important is the overlap in function between modeling 
oneself and modeling others. A mechanism that can compute 
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an internal model of attention, an attention schema, may be 
important not just for controlling one’s own attention, but also 
for monitoring the attentional states of others. The social use of 
an attention schema may be especially developed in humans. 
We attribute awareness to each other, to pets, to inanimate 
objects, and to the spaces around us. Arguably, the entire spirit 
world, from deities down to minor ghosts, owes itself to our 
social neural machinery building the construct of awareness 
and attributing it promiscuously to ourselves and everything 
else around us. To build machines with similar social ability, 
the ability to attribute consciousness to itself and to others, such 
that the machine can understand what it means for another 
agent to be conscious, may require something like an attention 
schema.

WHy BUiLd artiFiCiaL 
ConsCioUsness?

If AST is correct, then consciousness is buildable with current 
technology. In this respect, the theory differs from other major 
theories of consciousness that provide much less clear direction 
for how to build consciousness.

For example, the global workspace theory posits that the brain-
wide boosting and broadcasting of a signal, such as a visual signal, 
causes that signal to enter consciousness (Baars, 1988; Dehaene, 
2014). In effect, the global workspace theory is the same as the 
AST, if you took away the attention schema part, and had only the 
attention part—the ability of the brain to selectively enhance sig-
nals such that they have a global impact on many brain systems. 
While in my view the theory is likely to be correct as far as it goes, 
it is incomplete. It does not explain why the globally broadcasted 
information would be associated with the property of subjective 
experience. Building a machine that has signals boosted in that 
manner, to a strength sufficient to globally effect other systems in 
the machine, is easily done and arguably has already been done. 
But it is not a good prescription for building consciousness. There 
is no reason to suppose that a machine of that sort would sit up 
and say, “Wow, I have an internal experience of these things.” It 
brings us no closer to the behavior that humans exhibit, namely, 
claiming to have subjective awareness.

The integrated information theory (Tononi, 2008) suffers 
a similar problem. In that theory, consciousness is the result 
of highly integrated information in the brain. A mathematical 
formula can tell you how much integrated information, and thus 
how much consciousness, is present in any specific device. To 
many scientists, including myself, this theory is non-explanatory 
and ultimately unfalsifiable. It is somewhat like the science fiction 
trope: if you build a computer big and complex enough, inte-
grating enough information together, it will somehow become 
conscious. To be fair to the theory, in my view, there is likely to 
be at least some type of relationship between consciousness and 
highly integrated information. Even in AST, the proposed atten-
tion schema is a bundle of information that is integrated with 
other schemas and models around the brain. But as a prescription 
for building consciousness, the integrated information theory by 
itself has been disappointing, since even very complex technology 

that contains a lot of integrated information has not announced 
its consciousness yet.

The AST instead presents an extremely simple conceptual 
foundation. The machine claims to be conscious of items and 
events, because it constructs information that describes that 
condition of consciousness. Without the internal information 
indicating that it contains consciousness, it would not be able to 
make the claim. The reason why it constructs that quirky internal 
information is because it is a useful, if not literally accurate, model 
of the machine’s ability for deep, focused processing. The AST 
therefore points a practical way toward building a machine that 
makes the same claims of consciousness that people do.

I recognize that AST is not yet specific enough to hand a 
blueprint to an engineer. Yet, it lays a conceptual foundation for 
building consciousness. Because it is a theory in which a machine 
constructs a specific set of information and uses it in a specific 
way, it is buildable. Given current technology, an enterprising set 
of AI researchers should be able to build a machine that contains 
a fairly rich model of what consciousness is and that can attribute 
the property of consciousness to itself and to the people it inter-
acts with. It should be possible to build a machine that believes it 
is conscious and claims it is conscious and acts like it is conscious 
and that talks about its consciousness in the same ways that the 
human machine does.

Why try to build artificial consciousness? One could build it for 
entertainment value. It would be monumentally cool. But I also 
see two practical reasons. The first may be of technical interest to 
specialists, whereas the second is of fundamental importance to 
all of us.

First, evolution has given us effective brains, and copying the 
biological solution might make for capable artificial intelligence. 
Suppose that the theory is correct, and consciousness depends 
on an attention schema. With an attention schema acting as an 
internal control model, the brain is better able to control and 
deploy its limited processing resources. Perhaps giving machines 
a human-like focus of attention, and an attention schema, will be 
helpful. Artificial systems might thereby become better able to 
control their own limited processing resources. Admittedly, I do 
not know if this engineering trick borrowed from the brain will 
be of use to artificial intelligence. Computer systems can process 
more information, more quickly, than biological systems, and 
can be organized in fundamentally different ways. It is not clear 
whether human-like attention, or human-like control of atten-
tion, would necessarily benefit artificial systems. The idea would 
be worth pursuing, but better engineering solutions might be 
discovered along the way.

To me the most compelling reason to pursue artificial con-
sciousness is that, if the theory is correct, then consciousness is 
the foundation of social intelligence. An agent cannot be socially 
competent unless it has a fairly rich internal model of what 
consciousness is and can attribute consciousness to itself and 
to other people. If we want to build machines that are skilled at 
interacting with people, we will need to build in consciousness in 
the same sense that people attribute consciousness to themselves 
and see consciousness in others. It is the root of empathy. Without 
that capacity, our computers are sociopaths. A similar point has 
been made by others, including the point that social capability is 
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urgently needed in artificial intelligence (e.g., Sullins, 2016), and 
that self-models are a crucial part of human social competence 
(e.g., Hood, 2012).

While human sociopaths are evidently conscious—they can 
attribute that property to themselves—they are impaired at attrib-
uting it to others. They may know intellectually that other people 
contain minds, but they appear to lack a fundamental, automatic 
perception of the consciousness of others. Other people are 
mechanical objects to them. Half of the functional range of the 
attention schema is impaired. We cannot build machines that 
treat people with humanistic care, if they do not have that crucial 
social capability to attribute consciousness to others. Machine 
consciousness is a necessary step for our future. For those who 
fear that AI is potentially dangerous and may harm humanity, 

I would say that the danger is infinitely greater with sociopathic 
computers and it is of the utmost priority to give them conscious-
ness—both the ability to attribute it to themselves and to others. 
I urge anyone with the technical expertise, who is reading this 
article, to think about how to tackle the problem.
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While the concept of a conscious machine is intriguing, producing such a machine 
remains controversial and challenging. Here, we describe how our work on creating a 
humanoid cognitive robot that learns to perform tasks via imitation learning relates to 
this issue. Our discussion is divided into three parts. First, we summarize our previous 
framework for advancing the understanding of the nature of phenomenal conscious-
ness. This framework is based on identifying computational correlates of consciousness. 
Second, we describe a cognitive robotic system that we recently developed that learns 
to perform tasks by imitating human-provided demonstrations. This humanoid robot 
uses cause–effect reasoning to infer a demonstrator’s intentions in performing a task, 
rather than just imitating the observed actions verbatim. In particular, its cognitive com-
ponents center on top-down control of a working memory that retains the explanatory 
interpretations that the robot constructs during learning. Finally, we describe our ongoing 
work that is focused on converting our robot’s imitation learning cognitive system into 
purely neurocomputational form, including both its low-level cognitive neuromotor com-
ponents, its use of working memory, and its causal reasoning mechanisms. Based on 
our initial results, we argue that the top-down cognitive control of working memory, and 
in particular its gating mechanisms, is an important potential computational correlate 
of consciousness in humanoid robots. We conclude that developing high-level neuro-
cognitive control systems for cognitive robots and using them to search for computa-
tional correlates of consciousness provides an important approach to advancing our 
understanding of consciousness, and that it provides a credible and achievable route to 
ultimately developing a phenomenally conscious machine.

Keywords: machine consciousness, artificial consciousness, neural network gating mechanisms, cognitive 
robots, cognitive phenomenology, imitation learning, computational explanatory gap, working memory

inTrODUcTiOn

In this paper, we use the word “consciousness” to mean specifically phenomenal consciousness 
unless explicitly indicated otherwise. The term “phenomenal consciousness” has been used histori-
cally to refer to the subjective qualities of sensory phenomena, emotions, and mental imagery, for 
example the color of a lemon or the pain associated with a toothache (Block, 1995). Searle has 
presented a list of essential/defining features of consciousness, including subjectivity, unity, 
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qualitativeness, situatedness, and sense of self (Searle, 2004), and 
a detailed analysis of this term can be found in Chapter 3 in Tani 
(2017). Recent work in philosophy has argued for an extended 
view of phenomenology that includes one’s cognitive processes 
and hence is referred to as cognitive phenomenology, as we will 
elaborate below. In the following, we focus on conscious qualities 
specific to cognitive phenomenology in particular, as opposed to 
the more historically emphasized aspects of consciousness such 
as sensory qualia.

How can research based on cognitive humanoid robots con-
tribute to our understanding of consciousness? Consciousness is 
not well understood at present, and many philosophers have ques-
tioned whether computational studies or cognitive robots can play 
a significant role in understanding it. Such arguments cannot be 
refuted at present because there is currently no convincing imple-
mentation of instantiated consciousness in a machine, as described 
in Reggia (2013). Conversely, none of these past arguments appear 
sufficiently strong to convince many current investigators that 
machine consciousness is impossible (Reggia et  al., 2015). For 
this reason, it seems prudent to us to push ahead investigating this 
issue until the matter can be definitively resolved one way or the 
other, and it is in that context that we describe our research efforts  
below.

Here, we describe how our past and ongoing work on creat-
ing a humanoid cognitive robot that learns to perform tasks 
via imitation learning relates to consciousness studies. Our key 
contribution here is to expand and develop a concrete framework 
for investigating the nature of consciousness in cognitive robots. 
Our discussion is divided into three parts. First, we summarize 
our framework for advancing the understanding of the nature of 
phenomenal consciousness based on studying the computational 
explanatory gap (CEG) (Reggia et al., 2014). The main goal in this 
work is to identify neurocomputational correlates of conscious-
ness. We believe that identifying such correlates will be possible 
in cognitive robots, based on concepts that have emerged recently 
in the philosophical field of cognitive phenomenology, and we 
explain why that is so.

The core idea of our framework for studying consciousness 
in robots is that investigating how high-level cognitive processes 
are implemented via neural computations is likely to lead to the 
discovery of new computational correlates of consciousness. 
Accordingly, in the second part of this paper, we describe a 
cognitive robotic system that we recently developed that learns 
to perform tasks by imitating human-provided demonstrations. 
This humanoid robot uses cause–effect reasoning to infer a dem-
onstrator’s goals in performing a task, rather than just imitating 
the observed actions verbatim. Its cognitive components center on 
top-down control of a working memory that retains the explana-
tory interpretations that the robot constructs during learning. 
Because, as we explain below, both cause–effect reasoning and 
working memory are widely recognized to be important aspects 
of conscious human thought, we suggest that exploring how the 
cognitive and memory mechanisms embodied in our imitation 
learning robot provide an excellent test of our framework for 
studying consciousness in machines.

Finally, in the third part of this paper, we describe our recent and 
ongoing work that is focused on converting our robot’s imitation 

learning cognitive system into purely neurocomputational form, 
including its causal reasoning mechanisms and cognitive control 
of working memory. We summarize our initial results exploring 
the feasibility of this idea. Based on these results, we argue that the 
top-down cognitive control of working memory, and specifically 
its gating mechanisms, is potentially an important computational 
correlate of consciousness in humanoid robots that merits much 
further study. We conclude that developing neurocognitive 
control systems for cognitive robots and using them to search for 
computational correlates of consciousness provides an important 
approach to advancing our understanding of consciousness, and 
that it provides a credible and achievable route to ultimately 
developing a phenomenally conscious machine.

a cOMPUTaTiOnal aPPrOach TO 
UnDersTanDing The naTUre OF 
cOnsciOUsness

In the following, we propose a computational framework for inves-
tigating consciousness. We begin by summarizing the concept  
of a CEG, and we explain why recent advances by philosophers 
interested in cognitive phenomenology makes this barrier rel-
evant to consciousness studies. We then describe our proposed 
framework for studying consciousness that is based on identify-
ing its computational correlates.

computation, Mind, Brain, and Body
We have previously suggested that there is an important obstacle 
to understanding the prospects for machine consciousness that 
we call the CEG (Reggia et  al., 2014). The CEG is defined as 
our current inability to understand how higher-level cognitive 
computations supported by the brain can be accounted for by 
lower-level neurocomputational processes. We use the term 
“higher-level cognition” to refer to cognitive processes including 
decision-making, reasoning, intent-directed problem solving, 
executive control of working memory contents, plan generation, 
and language. These cognitive processes are viewed by many 
psychologists as being consciously accessible. In contrast, we use 
the term “lower-level neurocomputational processes” to refer to 
the types of computations that can be implemented using artifi-
cial neural networks like those currently studied in fields such 
as neuroscience, computer science, psychology, and engineering.

The CEG is related to past work in philosophy, neuroscience, 
and psychology, addressing various aspects of the mind–brain 
problem. In philosophy, the CEG differs from the philosophical 
explanatory gap, the latter referring to the difficulty we have 
in explaining how physical systems in the objective world can 
support the subjective qualities of consciousness (Levine, 1983). 
The philosophical explanatory gap relates to how difficult it is to 
understand how subjectivity can emerge from the brain or poten-
tially from other physical systems such as machines. The CEG 
differs in that it is not a mind–brain issue. Instead, the CEG is 
our current inability to understand how computations supporting 
high-level cognitive processes like those described above can be 
implemented via the lower-level computations that neural net-
works provide. Put otherwise, it deals only with computational 
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issues, and it applies both to people and to machines. Historically, 
philosophers have tended to deprecate the CEG, characterizing it 
as part of the “easy” problem of interpreting how the brain gener-
ates intelligent behavior (Chalmers, 1996). This viewpoint fails 
to account for why the CEG has been so difficult to bridge over 
the last 50 years in spite of an enormous research effort to do so. 
It also ignores the possibility that the philosophical explanatory 
gap and the CEG are not two independent issues, but that instead, 
the CEG might ultimately prove relevant to understanding the 
mind–brain problem. It is this latter issue that we discuss in the 
following, arguing that the CEG is relevant to obtaining a deeper 
understanding of the mind–brain problem. More recently in 
philosophy, work in cognitive phenomenology has argued that our 
phenomenal experiences are not limited to classical qualia such as 
those of sensory perception, but also include high-level cognition 
(Bayne and Montague, 2011; Jorba and Vincente, 2014; Chudnoff, 
2015). It is this idea more than anything else that makes the CEG, 
a purely computational issue, of relevance to understanding 
consciousness. Accepting that some facets of cognition reach 
conscious awareness is what makes computational studies of 
the CEG important in consciousness studies. The hypothesis 
guiding our work described below is thus that bridging the CEG 
provides a pathway to deeper comprehension of consciousness 
and eventually possibly even a phenomenally conscious machine. 
This hypothesis makes research that is directed at creating 
neurocomputational implementations of higher-level cognitive 
processes, including our own work with adaptive cognitive 
robots as described below, relevant to the issue of phenomenal 
consciousness.

The CEG also relates to recent work in the neurosciences and 
psychology. In the neurosciences, our current state of knowledge 
can be characterized as knowing a lot about how high-level cog-
nitive functions correlate with different macroscopic brain areas 
(e.g., language comprehension and Wernicke’s area, planning and 
prefrontal cortex) and a great deal about the microscopic neuro-
biological networks in these same areas. However, what we do 
not currently understand is how the brain implements the high-
level cognitive processes using the underlying neural circuitry. 
We view this situation as an example of the CEG, quite separate 
from any considerations about consciousness. In psychology, 
related work has been done to investigate the differences between 
information processing that is unconscious and information 
processing that is conscious (Dehaene and Naccache, 2001; 
Baars, 2002). Unconscious information processing is fast and can 
support multiple concurrent tasks, and these tasks can be done 
simultaneously without interfering with each other. It tends to 
involve localized brain regions and is often not reportable (people 
cannot explain how they carried out a task). In contrast, conscious 
information processing is much slower, restricted to one task at 
a time, involves widespread cortex activation, and is generally 
taken to be cognition that a subject can report. Again, we view 
such findings as being related to the CEG. The computational 
properties associated with unconscious processes often match up 
well with those of neural computations (e.g., the opaqueness or 
“non-reportability” of what a neural network has learned). The 
computational properties during conscious, reportable cognitive 
activities are much closer to what is seen with symbolic artificial 

intelligence (AI) systems, and do not relate well to how neural 
networks process information. To be clear, we are not suggesting 
that consciousness can be explained by symbolic reasoning or 
language—we just intend to convey that conscious, reportable 
cognitive activities need to be accounted for by resolving the CEG. 
Further, we are only considering the existence of consciousness in 
adults and do not relate our work to the mechanisms underlying 
the emergence of consciousness in infants.

Symbolic AI models are often used on computers devoid of 
any remotely human- or animal-like embodiment. However, all 
compelling and widely accepted examples of consciousness in the 
real world occur in embodied biological systems. Even propo-
nents of cognitive phenomenology still consider it plausible that 
conscious cognitive processing has some basis in sensorimotor 
experience (Prinz, 2011). From a purely practical standpoint, 
studying the CEG in the context of embodied robotic systems 
may be the most efficient route to ecologically valid input data for 
cognitive models. And it stands to reason that humanoid robots 
in particular will be best for studying machine consciousness that 
is as human-like as possible. At a deeper level, there are serious 
philosophical positions that consider embodiment to be intrinsi-
cally related to cognitive phenomenology (Nagataki and Hirose, 
2007). In sum, studying cognition in the context of humanoid 
robots specifically may be an important factor in bridging the 
CEG and potentially understanding/engineering consciousness.

a Framework for investigating 
consciousness
An implication of the ideas presented in the preceding section is 
that much recent research involving neurocomputational models 
of high-level cognition becomes relevant to comprehending the 
properties of consciousness. The basic idea is that these com-
putational investigations could discover neurocomputational 
mechanisms occurring with phenomenally conscious aspects of 
cognition that are not also found to be present during cognitive 
processes that are unconscious. We have proposed elsewhere 
that this could provide examples of computational correlates of 
consciousness, in the same way that neuroscientists have identi-
fied neural correlates of consciousness (Reggia et al., 2014, 2016).

A computational correlate of consciousness has been defined 
previously to be an aspect of information processing associated 
with conscious but not unconscious information processing 
(Cleeremans, 2005). In general, a computational correlate of con-
sciousness is not the same thing as a neural correlate as described 
by neuroscientists. Previously described neural correlates 
have included biological concepts that are not computational,  
e.g., regions of the brain, biochemical processes, and electrical 
activity patterns in the brain (Chalmers, 2000). On the other hand, 
the definition of computational correlates above is fairly general. 
For example, it might include logical reasoning algorithms like 
those studied in traditional AI. In this context, previous research-
ers have suggested that cognitive processes can be separated into 
neurocomputational processes representing unconscious facets  
of cognition, and symbolic processes representing conscious fac-
ets of cognition (Kitamura et al., 2000; Sun, 2002; Chella, 2007), 
i.e., symbolic information processing is viewed as a computational 
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correlate of consciousness. However, from our perspective, such 
models do not provide a way to bridge the CEG. The central idea 
in bridging the CEG as we defined it above is to identify how 
higher-level reasoning is implemented via underlying, purely 
neurocomputational mechanisms, much as the brain does. This 
is the crux of the matter.

Thus, in the rest of this paper we use the term “computational 
correlates of consciousness” to refer solely to neurocomputational 
mechanisms that occur only with conscious facets of higher-level 
cognitive processes and are not found with neurocomputational 
processes involved with other unconscious information process-
ing (not with neurocomputational mechanisms associated with 
implementing the normal pupil light reflex, for example). These 
correlates may be implemented in the brain, but are independent 
of the physical mechanisms that implement them (robot control 
circuitry, biological brain circuitry, and so forth). Our proposal 
is that uncovering computational correlates of consciousness will 
provide insight into the nature of consciousness (as per cogni-
tive phenomenology) and possibly even the development of a 
plausibly conscious physical machine.

We have recently given a fairly detailed description of previ-
ously proposed computational correlates of consciousness (Reggia 
et al., 2016) and refer the interested reader to that work. Here, we 
just briefly give a few examples that illustrate the central ideas 
involved. One widely known proposal is that global information 
processing is a computational correlate of consciousness, inspired 
by findings that information processing during conscious mental 
activities (and not unconscious cognitive processes) occurs widely  
across the cerebral cortex and is also correlated with enhanced 
communication between brain regions (Baars et  al., 2003; 
Massimini et al., 2005; Tagliazucchi et al., 2016). Another promi-
nent past suggestion is that information integration in a neural 
network is what distinguishes conscious from unconscious sys-
tems in general (Tononi, 2004). Still others have suggested that 
having a self-model is a computational correlate (Searle, 2004; 
Samsonovich and Nadel, 2005), even showing that physical robots 
controlled by neural networks can pass the “mirror test” of self-
awareness used with animals (Takeno, 2013). Other researchers 
have suggested that higher-order representations of one’s knowl-
edge about the world correlate with consciousness (Cleeremans 
et al., 2007; Pasquali et al., 2010). Additional studies have argued 
that attention mechanisms are potential computational correlates 
(Taylor, 2007; Haikonen, 2012). All of these ideas are intriguing 
and may provide important clues as to the fundamental nature of 
consciousness, and the fact that so many ideas are emerging in 
this area is quite encouraging.

a cOgniTiVe hUManOiD rOBOT ThaT 
learns BY iMiTaTing

In the previous section, we described a framework for studying 
aspects of consciousness based on developing computational/
robotic systems that account for high-level cognitive functions in 
neurocomputational terms. To pursue this approach, two things 
are needed: a physical robotic system that supports some aspects 
of high-level cognitive functionality, and an underlying neural 
control mechanism that implements that functionality.

Here, we describe our recent work on the first of these two 
requirements: Our efforts to create a cognitive humanoid robot 
that that can be used to explore consciousness-related and other 
issues (Katz et  al., 2017a,b). Why would one want to consider 
studying the CEG in a robot instead of simply going the easier 
route of computer simulations? One answer is that a cognitive 
system in a robot is embodied: It interacts with and causally acts 
on a real external environment, and in that sense there is a true 
“mind-body” problem, at least to the extent that one is willing to 
call a robot’s cognitive control system a mind. Further, it has been 
claimed that the ability to ground a cognitive robotic system’s 
symbols in the robot’s sensory data stream is a computational 
correlate of consciousness (Kuipers, 2008). While this suggestion 
is controversial (Chella and Gaglio, 2012), it suggests that some 
computational correlates may be particularly evident in a cogni-
tive system that interacts with the real world as part of a physical 
system.

Our own robot learns to perform tasks by imitating human-
provided demonstrations. During learning, it uses cause–effect 
reasoning to infer a demonstrator’s goals in performing a task,  
rather than just imitating the observed actions literally. Importantly 
for our own research as described in subsequent sections, the 
robot’s cognitive components center on top-down control of a 
working memory that retains the explanatory interpretations that 
the robot constructs during learning. We first briefly summarize 
this work here and then, in the next section, we relate this work to 
the search for computational correlates of consciousness.

imitation learning via cause–effect 
reasoning
Our work in robotics is motivated in part by the fact that it is 
currently very hard to program humanoid robots to carry out 
multi-step tasks unless one has a great deal of expertise in 
robotics. A potential solution to this problem is to use imitation 
learning (learning from demonstrations) rather than manually 
programming a robot. With imitation learning, a robot watches 
a person perform the task to be learned, and then imitates what 
it observed. An important mode of imitation learning occurs at 
the sensorimotor level, when the learning robot closely imitates 
the motions, gestures, and perhaps even the facial expressions 
of the demonstrator. Much work on robotic imitation learning 
has focused on this level. While important, this level does not 
involve an understanding of the demonstrator’s intentions, and 
hence suffers from limited ability to generalize to new situations 
where the robot must use different actions to carry out the same 
intentions.

Figuring out what a demonstrator’s goals are is a kind of 
cause–effect reasoning known as “abduction” in AI. The issue 
is to postulate what the demonstrator’s goals are in a way that 
is consistent with these goals causing the observed actions. AI 
researchers have extensively studied cause–effect reasoning (also 
called abductive reasoning) like this, including its use to infer 
the goals of an acting agent (Kautz and Allen, 1986; Peng and 
Reggia, 1990; Carberry, 2001). While some aspects of cognition 
have been simulated during past studies of imitation learning 
(Chella et al., 2006; Friesen and Rao, 2010; Dindo et al., 2011), to 
our knowledge, the utility of causal reasoning during imitation/
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FigUre 1 | A top-level view of CERIL, the cognitive portion of our imitation 
learning robotic system. The abductive reasoning processes (infer the causes 
from the effects) are shown on the left: they produce a hierarchical causal 
network that represents at the top an explanation for the observed 
demonstrator’s actions. After learning, this explanation can be used to guide 
plan generation in related but modified situations, as illustrated on the right. 
Figure from Katz et al. (2017a).

Reggia et al. Cognitive Robots and Consciousness

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 5 | Article 1

goal learning has not been studied substantially. However, in 
other application domains such as medical diagnosis or circuit 
fault localization, causal reasoning systems often rely on finite 
databases of background knowledge that exhaustively describe all 
of the possible causal events that might occur. In robotic imitation 
learning, this amounts to a finite list of general purpose primitive 
actions that a demonstrator or robot might perform, as well as 
the direct causal relationships between those actions and higher-
level goals, and the possible objects that might be present in the 
environment. The full spectrum of possible goals, actions, and 
objects involved in general human imitation learning is probably 
too rich and variable to be adequately encoded in a finite database. 
However, for specific applications, there will likely be a finite set 
of possible objects to be manipulated and a finite set of actions 
and goals that can be applied to those objects. In this case, it is 
feasible to adapt existing causal reasoning approaches to robotic 
imitation learning. Moreover, individual actions and goals within 
a finite list can still admit continuous-valued parameters, such 
as object positions and rotations, in order to approximate some 
of the richness and variability inherent in true human imitation 
learning. This is the causal knowledge representation supported 
in our existing work described below. A detailed description of 
the encoded knowledge as well as the algorithms used in our 
applications can be found in Katz et al. (2017a). Future work on 
underlying neural mechanisms for the causal reasoning func-
tionality could incorporate generative neural models to produce 
novel situation-specific actions that need not be anticipated in a 
finite database by a human knowledge engineer.

In this context, we recently suggested that causal reasoning 
is an important part of cognitively oriented imitation learning. 
To examine whether this idea can support imitation learning, we 
developed and studied an approach to imitation learning based 
on abductive cause–effect reasoning as illustrated in Figure  1 
(Katz et al., 2016, 2017a). During the observation of a demon-
stration, our approach assembles a parsimonious explanation for 
what was observed where the demonstrator’s intentions (goals) 
serve to explain the actions performed by the demonstrator. We 
refer to our cognitive learning model as CERIL, for Cause–Effect 
Reasoning in Imitation Learning. The basic idea with CERIL is 
that the inferred demonstrator’s goals (rather than the specific 
actions the demonstrator performed) can subsequently be used 
in related but new situations that may need different specific 
action sequences to achieve the same goals. Given that our pri-
mary interest here is in the role played by high-level cognition 
during imitation learning, our focus is on that and we largely take 
low-level sensorimotor processing as a given.

Figure 1 illustrates an example of CERIL learning about and 
then subsequently performing actions on a disk drive docking 
station. CERIL learns to maintain this disk drive dock, for exam-
ple replacing hard drives that experience a hardware fault. The 
objective of learning is to replicate a teacher’s goals in subsequent 
post-learning situations rather than to produce a literal repetition 
of the demonstrator’s actions. For example, if the demonstrator 
replaces a failing disk drive, CERIL must do the same thing, even 
if the spare drive has to come from a different location, and even 
if the faulty drive is in a different slot. CERIL may use a differ-
ent arm for certain steps, or transfer objects from one “hand” to 

another, even though the demonstrator did not take these specific 
actions.

As illustrated at the bottom left in Figure 1, a person provides 
a demonstration to CERIL by using a graphical computer pro-
gram with GUI controls in which the demonstrator manipulates 
objects on a virtual tabletop (Huang et al., 2015a,b). CERIL uses 
the event record from this demonstration to infer an explana-
tion for the demonstrator’s actions in terms of high-level goals 
for the shown task (labeled A in Figure 1). The high-level goals/
intentions/schemas have parameters, such as with grasp (object, 
location, gripper). In constructing explanations, CERIL uses pre-
defined goals/intentions and their sub-goals/sub-intentions that 
are defined a priori in its knowledge base. Explanations typically 
consist of a novel sequence of instantiated/grounded high-level 
goals that CERIL constructs through abductive causal reason-
ing. In particular, the inference process is an extended version 
of parsimonious covering theory (Peng and Reggia, 1990). The 
term “parsimony” refers to the fact that the simplest explana-
tions are to be preferred, while “covering” refers to the fact that a 
plausible explanation must be able to cause (cover) the observed 
demonstrator actions. Adapting parsimonious covering as the 
basis of imitation learning required substantial extensions to the 
original theory (Katz et  al., 2017a). These extensions included 
incorporating real-valued variables such as object locations 
and orientations, integrating causal chaining and temporal 
constraints, and accounting for spatial transformations related to 
manipulating objects.

Does it Work?
The right side of Figure 1 illustrates what happens after imitation 
learning of a task is complete. CERIL can learn and retain mul-
tiple tasks over multiple environments, but here we just consider 
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the single disk drive task described above as an example. After 
learning, CERIL can be given situations in the real world that are 
similar to what it was trained with (labeled B in Figure 1). It will 
then match its parameterized object models to the objects in the 
physical environment, which grounds its top-level goals in the 
new situation. It then uses its grounded explanation (a sequence 
of goals to be achieved in the order specified) to generate a plan 
for performing the specific task it has been given by using a 
hierarchical task network (HTN) planner (Ghallab et al., 2004). 
This is labeled C in Figure 1. From the viewpoint of parsimoni-
ous covering theory, this HTN planning process is using CERIL’s 
cause–effect relations in the opposite direction from what was 
done during learning (i.e., reasoning now goes from causes to 
effects rather than the opposite which was done during learning). 
Unlike during the learning phase, HTN planning now involves 
using goals and actions that are specific to the robot, not to the 
human demonstrator.

We have systematically tested CERIL using a humanoid  
physical robot (Baxter, Rethink Robotics™; pictured at the lower 
right of Figure  1) on a set of different tasks, and the detailed 
results can be found in Katz et al. (2017a). These tasks include 
learning basic maintenance skills on the disk drive station illus-
trated above, learning maintenance tasks on a pipe-and-valve 
plumbing configuration, and learning to construct toy block 
configurations. In addition, we used computer simulations to test 
CERIL’s ability to interpret correctly action sequences taken from 
a data set of 5,000 emergency response plans (Blaylock and Allen, 
2005). CERIL was able to function effectively and efficiently in 
all of these situations (Katz et al., 2017a). Most compelling is that 
CERIL is often able to learn and generalize to modified initial 
situations (spare disk is in a different initial location, a different 
indicator light is on, etc.) from a single demonstration, much as 
a person can do. Further computational simulations comparing 
different parsimony criteria have investigated the impact of using 
different criteria for what it is that makes an explanation “parsi-
monious” (Katz et al., 2017b), and we are currently conducting 
an experimental study to compare how CERIL’s learning and 
subsequent imitation compare to what is done by human subjects 
in the same situations.

Finally, a potential benefit of using a cognitive model of the 
kinds of cause–effect reasoning performed by humans during 
learning and planning is that it should allow a robot to explain 
to a human observer why it is carrying out certain actions with 
justifications that are intuitively plausible. Such an ability is 
critical to making the simulated reasoning mechanisms of robots 
and other autonomous systems transparent to people, and this 
transparency is often an important aspect of machine trustwor-
thiness. We have recently introduced methods by which CERIL 
can justify its actions to a human observer based on “causal plan 
graphs” (Katz et  al., 2017c). Figure  2 gives an example of this 
action sequence justification ability in its current form for a 
simple device maintenance task. We believe that such “report-
ability” of underlying inference processes will ultimately prove 
to be important to investigating the possibility of machine con-
sciousness. The reason for this is that in experimental psychology, 
investigators long taken a subject’s being able to report verbally 
his/her cognitive experiences to be an objective criterion for that 

subject to be subjectively aware of those experiences (Baars, 1988; 
Dehaene and Naccache, 2001).

BriDging The ceg

We believe that the imitation learning humanoid robot described 
above, when controlled by a purely neurocomputational high-
level cognitive control system and lower-level sensorimotor sys-
tem, provides an excellent context in which to study the CEG and 
to search for potential computational correlates of consciousness. 
It uses hierarchical causal knowledge, abductive inference, and 
intention/goal inference processes, all of which have long been 
widely viewed as modeling important aspects of human reason-
ing in general and involved in imitation learning specifically 
(Kassirer and Gorry, 1978; Peng and Reggia, 1990; Josephson 
and Josephson, 1994; Meltzoff, 1995; Baldwin and Baird, 2001; 
Bekkering and Prinz, 2002; Haikonen, 2003; Fuster, 2004; Fogassi 
et al., 2005; Iacoboni et al., 2005; Walton, 2005; Botvinick, 2008; 
Katz et al., 2017a). However, the control mechanisms instantiated 
by CERIL are currently implemented with traditional software: 
Our robot’s cognitive components are top-down symbolic AI 
algorithms for abductive inference and plan generation. In order 
to use our robotic learning system to study the CEG, the existing 
software needs to be converted into neurocomputational form, 
something that is currently in progress. At present, we have 
converted the low-level sensorimotor control of individual robot 
actions into neural network modules, replacing the correspond-
ing original software with a neural architecture, the DIRECT 
algorithm, that we have previously studied via non-robotic 
computer simulations (Gentili et al., 2015). Testing of the result-
ing robotic control system (i.e., the top-down symbolic cognitive 
components plus the neural sensorimotor components instanti-
ated in our robot) on tasks such as maintenance operations on 
the disk drive dock and pipe-and-valve system described above 
show that the robot’s behavior with a neural sensorimotor system 
is virtually unchanged from the original.

We have concurrently also been studying, so far only via non-
robotic computer simulations, neural mechanisms for cognitive 
control of working memory and other behaviors that are intended 
to serve as purely neurocomputational replacements for CERIL’s 
existing executive control system. In the rest of this section, we 
first describe the neurocomputational systems we are developing 
that are inspired by both cortical and subcortical processes that 
are believed to underpin human cognitive control mechanisms. 
We then describe a key hypothesis of our work addressing the 
CEG: that top-down gating of working memory is an important 
computational correlate of consciousness. This hypothesis is 
motivated in part by the recognition by many psychologists that 
working memory is a significant aspect of conscious human 
cognition, as we explain further below.

neurocomputational implementation of 
Top-Down gating
The current implementation of our robotic system for imitation 
learning provides a good illustration of the CEG as we por-
trayed it above: high-level cause–effect reasoning and planning 
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successfully implemented using symbolic AI operations, and 
low-level sensorimotor control successfully implemented using 
neural network methods. Given the framework that we have out-
lined above (see A Framework for Investigating Consciousness), 
our specific research agenda is clear: search for computational 
correlates of consciousness by replacing CERIL’s causal reason-
ing and planning algorithms with a purely neurocomputational 
system that provides the same functionality. Such a replacement 
is beyond the reach of current neurocomputational technology 
and is a very challenging target. However, it provides a concrete 
example of attempting to bridge the CEG, and in this context it 
has the potential to reveal candidates for computational correlates 
of consciousness as per our research framework and cognitive 
phenomenology.

Given this challenge, we are taking inspiration from what is 
known about the neurobiological mechanisms underlying human 
cognitive control. Of course, current understanding of these 

biological mechanisms is incomplete, but what is known provides 
a powerful foundation for addressing how CERIL’s mechanisms 
might be implemented using neural computations. Here, we give 
two examples of the results we have obtained so far using this 
approach, explaining for each how they relate specifically to the 
issue of top-down control of cognitive mechanisms.

First, we created and studied a neurocomputational system 
named GALIS that models executive control functions and can 
be related to the CEG (Sylvester et al., 2013; Sylvester and Reggia, 
2016). We have studied this model in computer simulations, and 
the goal now is to adapt an extended version of the methods 
used in GALIS as the top-level neural control mechanisms in 
CERIL. As illustrated in Figure 3, this model is centered on an 
executive system that gates (turns on or off) the functions of the 
other components of the system, including working memory. The 
working memory module is an autoassociative recurrent network 
that adopts one-step Hebbian synaptic changes to quickly store 
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by an executive system at the upper right. Our work focuses on the 
top-down gated control of working memory in particular.
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in the context of past suggestions that some activity state trajec-
tories in neural systems might be computational correlates of 
consciousness (Fekete and Edelman, 2011). What our model adds 
to this suggestion is the specific idea that temporal sequences of 
attractors (itinerant attractor sequences) used by executive mod-
ules instantiating top-down gating might be the specific property 
that makes activity state trajectories become computational 
correlates of consciousness. This idea is related to recent work 
suggesting that sequences of attractor states in recurrent neural 
networks can shed light on controversies surrounding cognitive 
phenomenology (Aleksander, 2017). The executive system in 
GALIS is sufficiently robust even in its current implementation 
to store and use multiple instruction sequences as appropriate as 
different conditions arise during problem solving.

Figure  4 elaborates on GALIS’ top-level architecture that is 
illustrated in Figure 3. Sensory inputs enter at the upper left, and 
motor control (e.g., “pointing” at a card) leaves at the bottom left. 
The internal structure of the recurrently connected networks 
forming working memory is shown, indicating that this memory 
stores associated pairs of object-location information. The 
memory for instruction sequences, or “programs,” is a recurrent 
neural network shown on the right as part of the control module. 
Not only does it store individual instructions as attractor states 
(much like the working memory, via symmetric synaptic weights 
produced by one-step Hebbian learning), but it also stores the 
transitions between one instruction to the next. Representing a 
sequence of attractor states in memory could be done in various 
ways, e.g., Tani has suggested that compositionality and discrete 
action sequences (sequences of a nonlinear neural system’s states) 
can be supported via chaotic dynamics (Tani, 2017). In GALIS, 
sequencing between instructions is instead based on asymmetric 
weights on recurrent connections in the instruction sequence 
memory’s network. These asymmetric weights are learned via 
temporally asymmetric Hebbian learning. Thus, during perfor-
mance of a task, the instruction memory goes to an attractor 
state (an instruction) corresponding to a local minimum of the 
network’s energy function and performs the specific action(s) 
indicated by that instruction. The underlying energy landscape 
governing dynamics then shifts, making the current attractor/
instruction unstable since it is no longer an energy minimum 
state. Guided by the learned asymmetric weights, the state of 
the network then transitions to a new local energy minimum 
that is the next instruction in the sequence/program. Multiple 
instruction sequences can be stored simultaneously in GALIS’ 
control memory. The detailed network structure and equations 
governing GALIS’ activity dynamics and synaptic changes during 
learning can be found in Sylvester and Reggia (2016).

Most importantly for our discussion here, as the executive 
system transitions through an instruction sequence, it exerts 
top-down influences on the functionality of other modules in the 
system. This control is exerted by gating connections leaving the 
executive system and traveling to other parts of the system. These 
gating connections originate at the lower right in Figure 4 and are 
labeled gx in the illustration, where gx is the activity state of con-
nection x. For example, the executive system turns on learning 
in the working memory, directing working memory to store the 
currently seen object’s identity and location, by having an output 

and recall problem-solving information such as what objects 
are in the workspace and their locations. The executive control 
module, of primary interest here, is trained to activate/de-activate 
the functions of the other components in the system. This gating 
control mechanism thus determines whether or not inputs are 
saved in working memory, when information stored in working 
memory is to be deleted, and when outputs are to be produced. 
Using Hebbian learning methods, it is possible to “program” 
GALIS to carry out tasks that require a sequence of motor actions 
to be executed that are specific to solving a given problem. For 
example, we trained GALIS to play simple card games that 
required it to retain in working memory the previous cards that 
it had seen, and to base decisions about its actions on the contents 
of working memory. Not only did GALIS perform the task well 
in solving hundreds of randomly generated card game problems, 
but it was also found to exhibit some significant similarities to 
people in terms of how many steps it took to solve card game 
problems of various difficulty levels (Sylvester and Reggia, 2016) 
as well as in memory capacity in separate experiments simulating 
human n-back problem solving (Sylvester et al., 2013).

The executive component, shown at the upper right in 
Figure  3, is the most interesting aspect of GALIS’ underlying 
neurocomputational system in the context of the CEG. It exerts 
top-down control over the functions of other operational parts of 
the overall system. This executive has an internal structure that is 
more complex than illustrated in Figure 3. It consists of multiple 
components, the most important of which is an associative mem-
ory that stores task instructions as attractor states. Each instruc-
tion indicates which system components should be activated/
de-activated (via the gating mechanism) at various times during 
a task in order to solve whatever problem is under consideration. 
The executive is trained to represent and remember sequences of 
instructions (“programs”) as sequences of attractor states. Like 
working memory, learning is based on Hebbian synaptic changes. 
Subsequently, the executive sequentially visits those learned 
attractor states in the correct order during problem solving. In 
effect, this procedural memory allows the executive to learn to 
represent simple tasks (sequences of instructions or “programs”) 
as sequences of transient attractor states. This is of special interest 
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arrows indicate recurrently connected networks. Thin arrows indicate the connectivity between modules. The working memory of Figure 3 is depicted on the left, 
while the executive system (control module) is shown on the right. The connections leaving the decoder module at the lower right of the illustration implement gating 
actions as explained in the main text. Figure from Sylvester and Reggia (2016).
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gtrain = 1, while it directs working memory to instead ignore the 
current visual input by having an output of gtrain = 0. Gating like 
this in GALIS is implemented via “multiplicative modulation” 
(Akam and Kullmann, 2014), where the gx values occur in the 
equations governing activity dynamics and learning in other 
modules. As an example, if unit k in the motor module has an 
activity ak, then what the external world actually sees at that time 
is the value gmotor  ×  ak that incorporates gmotor as a multiplying 
factor. If gmotor = 1, then the actual output from unit k at that time 
is ak, while if gmotor = 0, the actual output is 0. The specific details 
of how module functionality is gated in the equations controlling 
system behaviors are given in Sylvester and Reggia (2016).

The core ideas behind GALIS—using top-down gating pat-
terns to encode instructions, and using itinerant attractors to 
represent sequences of instructions and other data—make for a 
highly versatile model of computation that can support symbolic 
reasoning systems like CERIL. For example, suppose that activity 
patterns are used to represent individual actions and goals that 
might occur. Itinerant attractor sequences could then be used to 
store a list of actions that carry out a particular goal, or the list 
of goals that might cause a particular action, thereby encoding 
background causal knowledge. Moreover, during reasoning, a 

working memory could be used to incrementally accumulate a 
list of conjectured goals that are mutually consistent and account 
for all actions observed in a demonstration. Finally, instruction 
memory could be used to store the sequences of gating patterns 
that carry out the reasoning algorithms. For example, un-gating 
learning or activation dynamics could be used to store or retrieve 
background knowledge, respectively. Similarly, during reasoning, 
un-gated sequence learning in working memory could be used 
to append new goals when constructing an explanation, and 
un-gated interactions between background knowledge, working 
memory, and conflict detection regions could be used to check 
for inconsistencies before an explanation is modified. Of course, 
many more subtleties and details will have to be accounted for in a 
successful implementation. The foregoing examples are intended 
just to convey the high-level implementation strategy and bolster 
our claim to its feasibility.

However, a significant limitation to GALIS’ executive module 
is its inability to handle ambiguity. There is no need for a complex 
decision-making process in the card matching task described 
above because it could be specified with a simple set of deter-
ministic rules to carry out based on the state of the environment. 
More realistic tasks often necessitate decision-making to resolve 
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conflicts between potential responses, and often depend on rein-
forcement learning mechanisms to determine the relative value 
of these responses. For this reason, our second effort to imple-
ment neural mechanisms that could replace CERIL’s symbolic 
algorithms focuses on the role of subcortical structures like the 
basal ganglia in cognitive control, such as with decision-making 
and action selection.

Decades of research have implicated the basal ganglia in a 
wide array of cognitive and motor functions, many of which  
are associated with conscious processing (Schroll and Hamker, 
2013). Most notably, deficits observed in disorders such 
as Parkinson’s disease suggest a role of the basal ganglia in 
voluntary movement initiation (Wurtz and Hikosaka, 1986), 
sequential action performance (Benecke et al., 1987; Jin et al., 
2014), attention (Tommasi et al., 2015; Peters et al., 2016), and 
working memory (Lewis et  al., 2005; Gruber et  al., 2006). In 
many cases, the functionality of primitive sensorimotor reflexes 
in Parkinson’s disease patients is correlated with increases in 
cognitive impairment, suggesting a decreased ability to exert 
top-down control over unconscious behavior (Vreeling et  al., 
1993). In addition, there is evidence that abnormal inhibition 
in the striatum of the basal ganglia is associated with the con-
scious compulsions reported in tic disorders such as Tourette’s 
syndrome (Vinner et  al., 2017). Taken together, this evidence 
suggests that the basal ganglia comprise an important instru-
ment for conscious top-down control over the central nervous 
system that could offer a number of potential benefits to a neu-
rocognitive system, including a mechanism for biasing attractor 
landscapes like those used in GALIS toward reward associated 
trajectories (goal-directed behavior) and controlling the main-
tenance and capitulation of salient states (working memory). 
While the neural mechanisms underlying these processes are 
not fully understood (Goldberg et al., 2013), past computational 
models incorporating basal ganglia have been shown to capture 
important behavioral patterns associated with top-down control 
(Wiecki and Frank, 2013).

We are currently incorporating such a model into GALIS by 
dividing the executive module into components correspond-
ing to the prefrontal cortex and the basal ganglia. The latter is 
intended to address the aforementioned ambiguity issues that 
arise in complex environments by providing a competitive 
decision-making component that resolves conflicts arising in the 
former. In addition, such a component functions as a detector of 
salient states, thereby providing cues for the timing of behavioral 
execution, serving as a gate on the gating mechanism itself to 
prevent premature responses or to interrupt ongoing execution 
when appropriate. This is particularly relevant to the sensorimo-
tor level of imitation learning. As mentioned above, we replaced 
traditional low-level motion planning with the DIRECT neural 
algorithm (Bullock et al., 1993; Gentili et al., 2015), which learns 
in an unsupervised fashion using exploratory “babbling.” Much 
of the robotic motion planning done during imitation learning of 
maintenance tasks (like those we described above) requires the 
use of an inverse kinematics solver that determines a joint trajec-
tory for a given end-effector starting position and target. DIRECT 
learns this coordinate transformation in a self-organizing map 
architecture by training on a randomly generated set of joint 

movements and their consequential end-effector transformations. 
It computes inverse kinematics by finding a difference vector and 
adjusting the end-effector position using the transformed kin-
ematic information for the appropriate movements that must be 
made to reach the goal state. Once trained, the resulting model is 
capable of producing iterative joint movements that approximate 
the shortest path to the target position.

We have developed an augmented version of the DIRECT 
model that controls imitation of coordinated bimanual move-
ments (Gentili et al., 2015) to support end-effector orientations, 
which are critical to performing the demonstrated tasks. This 
allows the planner to provide joint trajectories that orient the 
robot’s grippers for fine motor tasks, such as manipulating 
screws, coordinating exchanges of objects between grippers, 
and fitting objects into tight spaces. However, these additional 
dimensions were found to pose a unique problem due to the 
rotational limits of the robot’s wrists in the absence of high-level 
decision-making and top-down control. The DIRECT model is 
trained to approximate the shortest path to the target position 
and orientation, but this path may be blocked by the rotational 
boundary of the wrists, in which case they must be rotated in the 
opposite direction. Furthermore, a given task may call for a par-
ticular rotational direction (for example, unscrewing demands 
counterclockwise rotation, regardless of the shortest path to the 
target rotation). Importantly for our work, these considerations 
motivate the need for top-down control by indicating situations 
in which top-down control over sensorimotor processing can be 
used to resolve planning conflicts and override habitual behavior: 
a gating signal may be used to force the motion planner to take 
the longer, suboptimal path. It is this kind of context-dependent 
control over top-down gating that we are currently implementing 
in the simulated basal ganglia components of our model, which 
is work in progress.

Top-Down gating of Working Memory
A key hypothesis of our work addressing the CEG described  
above is that the top-down gating of working memory (and 
potentially of other operational components) is an important 
computational correlate of consciousness. At the least, we believe 
that studying this aspect of the CEG will lead to the discovery of 
such correlates. Why is that?

The term working memory can be defined as the memory 
mechanisms that store and process information for a brief period 
of time. Human working memory has very strict capacity limita-
tions: Psychologists have found that we can only retain about 
four separate items in our working memory at any point in time 
(Cowan et al., 2005). If one tries to store more information, the 
individual items stored may interfere with each other and, in 
any case, the items will be replaced or decay away over time as 
problem solving evolves.

The important point here in terms of our work concerning the 
CEG is that psychologists consider the information processing 
done by the working memory system to be part of our conscious 
cognitive processes. They have found that storing, manipulating, 
and recalling information from working memory is conscious 
and reportable (Block, 2011; Baddeley, 2012). Thus, according 
to the tenets of cognitive phenomenology (discussed in Section 
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“Computation, Mind, Brain, and Body”), the computational 
processes that control working memory deserve consideration 
as possible computational correlates of consciousness. Further, 
working memory operations are largely managed via cognitive 
control systems that are biologically most clearly associated 
with prefrontal cortex “executive functions” that manage other 
cognitive processes in general (Schneider and Chein, 2003). In 
terms of the CEG, the issue becomes: can we identify neuro-
computational mechanisms that might implement the control of 
working memory functionality? Elaborating on the hypothesis 
stated at the beginning of this section, our proposal is that top-
down gating like that described above, which determines what is 
saved and discarded by working memory, furnishes the compu-
tational machinery that is used by executive cognitive processes 
in controlling working memory operations during conscious 
information processing and is thus a potential computational 
correlate of consciousness. With top-down gating, an executive 
module controls the functions of other modules. An executive 
system may use gating to enable/disable the connectivity between 
modules, to determine when they remember/forget information, 
when they generate outputs such as motor actions, and when 
they learn.

Our specific neurocomputational models described in the 
preceding subsection envision gating functions, guided by a 
neurodynamical executive system that sequentially visits attrac-
tors that represent instructions (i.e., that represent a procedure 
for carrying out a task), as corresponding to conscious aspects of 
cognition that involve working memory. In addition, the gating 
of working memory in a top-down fashion is reminiscent of the 
idea of mental causation considered by philosophers deliberating 
on the topic of free will (Kane, 2005; Murphy et al., 2009). These 
observations and the finding that control of working memory 
using top-down gating works effectively in neurocomputational 
systems and produces behavioral measurement results similar 
to those observed in humans during n-back memory tasks and 
card matching tasks (Sylvester et al., 2013; Sylvester and Reggia, 
2016) as described above, suggest to us that further investigation 
of these gating mechanisms may be profitable in the search for 
computational correlates of consciousness.

DiscUssiOn

Current understanding of phenomenal consciousness is widely 
recognized to be very incomplete, and its relationship to cognition 
and the core neuroanatomical structures that support it continue 
to be the focus of recent work (Spreng et  al., 2008; Wang and 
He, 2014; Gomez-Marin and Mainen, 2016). This holds both with 
respect to consciousness in people and with respect to issues that 
surround the question of whether machines or animals can be 
conscious. The primary suggestion in this paper is that the CEG is 
an important contributing reason for our limited progress toward 
a better understanding of phenomenal consciousness. This view-
point runs counter to some past philosophical arguments that 
understanding the mechanisms of human cognition will not 
get us any closer to solving the “hard problem” of conscious-
ness. However, the growing recognition among contemporary 
philosophers who support the idea of cognitive phenomenology 

suggests, to us at least, that cognition and consciousness are suf-
ficiently intertwined that computational exploration of the CEG 
may productively lead to insights about the nature of conscious, 
both in machines and people. It is for this reason that we have 
suggested a framework for studying consciousness that is based 
on searching for neurocomputational correlates of consciousness 
in cognitive-level machines. Ultimately, this general framework, 
if applied broadly, may turn out to be critically important to 
providing new knowledge about our basic notions of conscious-
ness. Our view is that the CEG is a central issue for consciousness 
studies, and one that merits substantial investigation over coming 
years. Doing this should lead us to discoveries about the compu-
tational correlates of consciousness.

More specifically, in this paper we have emphasized the 
importance of searching for neurocomputational correlates of 
consciousness, and suggested that one direction in which such a 
search may prove to be productive is the investigation of execu-
tive gating of working memory functions. To our knowledge, very 
little past work in cognitive robotics or involving computational 
modeling has examined this specific issue. There have been past 
computational studies motivated by higher-order thought (HOT) 
theory that relate cognitive mechanisms to working memory. But 
these past neurocomputational models based on HOT theory 
have, to our knowledge, only developed “metacognitive networks” 
that monitor one another, and have not considered the possibil-
ity of top-down gating architectures where executive modules 
control other modules’ actions. Top-down gating as we describe 
it here also differs from previously proposed computational 
models of attention, including proposals that the production of 
an “efference copy” by control mechanisms (Taylor, 2007) or that 
having multiple components of a system simultaneously focus on 
a single subject (Haikonen, 2012), are computational correlates 
of consciousness. Such models do not explicitly focus on using 
top-down gating as described in this paper as a control mecha-
nism. As we noted earlier, other past related work includes the 
suggestion that some activity state trajectories in neural systems 
might be computational correlates of consciousness (Fekete and 
Edelman, 2011), and the temporal sequences of attractors used by 
executive modules instantiating top-down gating in our system is 
consistent with such a suggestion.

There is much room for further work in this area. For 
example, at the present time the mechanisms by which a corti-
cal/subcortical region may directly or indirectly control/gate 
the functions of other regions is not completely clear. Gating 
interactions in the brain could possibly be implemented by 
direct pathways between cortical areas, indirectly via actions 
of basal ganglia and thalamic nuclei, by functional mechanisms 
such as synchronized cortical oscillations, or by some mixture 
of these and other yet-to-be discovered mechanisms. An 
important future research topic would be to undertake a more 
detailed examination of the implications of using alternative 
gating mechanisms. This relates to the broader issue of what 
features must be incorporated into computational neural net-
work models to make them adequately representative of brain 
functions. Current neural network technology spans a broad 
range of biological realism, running from the relatively realistic 
Hodgkin–Huxley models incorporating spiking neurons with 
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multi-compartment dendritic trees to the relatively implausible 
use of linear models or backpropagation learning. In our own 
work, we have tried to strike a balance regarding this issue, but it 
remains an important question as to the level of complexity and 
biological realism in neural computation that will ultimately be 
best related to the investigation of consciousness. Further future 
work in neuroscience and psychology is also needed to sharpen 
our understanding of which cognitive processes are conscious 
and which are not as a prerequisite for validating computational 
correlates of consciousness.
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A socially intelligent robot must be capable to extract meaningful information in real time 
from the social environment and react accordingly with coherent human-like behavior. 
Moreover, it should be able to internalize this information, to reason on it at a higher level, 
build its own opinions independently, and then automatically bias the decision-making 
according to its unique experience. In the last decades, neuroscience research high-
lighted the link between the evolution of such complex behavior and the evolution of a 
certain level of consciousness, which cannot leave out of a body that feels emotions as 
discriminants and prompters. In order to develop cognitive systems for social robotics 
with greater human-likeliness, we used an “understanding by building” approach to 
model and implement a well-known theory of mind in the form of an artificial intelligence, 
and we tested it on a sophisticated robotic platform. The name of the presented system 
is SEAI (Social Emotional Artificial Intelligence), a cognitive system specifically conceived 
for social and emotional robots. It is designed as a bio-inspired, highly modular, hybrid 
system with emotion modeling and high-level reasoning capabilities. It follows the delib-
erative/reactive paradigm where a knowledge-based expert system is aimed at dealing 
with the high-level symbolic reasoning, while a more conventional reactive paradigm is 
deputed to the low-level processing and control. The SEAI system is also enriched by a 
model that simulates the Damasio’s theory of consciousness and the theory of Somatic 
Markers. After a review of similar bio-inspired cognitive systems, we present the scientific 
foundations and their computational formalization at the basis of the SEAI framework. 
Then, a deeper technical description of the architecture is disclosed underlining the 
numerous parallelisms with the human cognitive system. Finally, the influence of artificial 
emotions and feelings, and their link with the robot’s beliefs and decisions have been 
tested in a physical humanoid involved in Human–Robot Interaction (HRI).

Keywords: cognitive systems, artificial intelligence, artificial consciousness, social robotics, humanoids, somatic 
markers, rules engine, expert systems

1. inTrODUcTiOn

Everyone has a rough idea of what is meant by consciousness, but it is better to avoid 
a precise definition of consciousness because of the dangers of premature definition. 
Until the problem is understood much better, any attempt at a formal definition is likely 
to be either misleading or overly restrictive, or both. (Crick and Clark, 1994)
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After many years from these words, consciousness is still a 
thorny and mysterious subject. In human history, almost every 
philosopher, religious figure, psychologist, and scientist tried to 
explain its phenomenology. From Plato and Aristotle to Popper 
and Searle passing through Descartes and Kant, everyone has 
attempted to pinpoint the “seat of consciousness.” Today, this is 
considered as a process in the body–brain complex, from which 
consciousness arises and takes shape in terms of attitudes, beliefs, 
desires, and behaviors. If despite the huge advances in computer 
science, neurophysiology, and brain imaging, we do not have yet 
a clear vision about this topic, it is because scientific approaches 
are very recent. For a long time, consciousness has been perceived 
as something that is not tangible, not measurable, and therefore 
impossible to afford by means of scientific methods. Fortunately, 
nowadays, it is well-known that this assumption depended on 
a rigid distinction between mind and body, highly affected by 
cultural and religious convictions; merely, an anachronistic and 
occidental belief, inherited by the Cartesian division between 
res cogitans, a thinking substance which does not occupy physi-
cal space, and res extensa, our material body. This theory is no 
further pursued because of the numerous neuroscientists who 
demonstrated the strict dependency between our body, emotions, 
feelings, thoughts, and decisions. In particular, the neuroscientist 
Antonio Damasio demonstrated how strongly emotions and 
body are interconnected (Damasio, 1994). His theories were sup-
ported by studies conducted on brain-injured patients, thanks to 
which he disclosed how emotions and feelings emerge through 
the perception of our body, and how this process is fundamental 
for the arise of our consciousness (Damasio, 2000).

Another fundamental author, who made an important 
contribution to the understanding of consciousness, is the 
philosopher and cognitive scientist Daniel Dennett, with his 
seminal works “Consciousness explained” (Dennett, 1991) and 
“Kinds of minds: Toward an understanding of consciousness” 
(Dennett, 1996). In the former, he denied the existence of a 
single central place deputed to consciousness (the Cartesian 
theater), describing the brain as a “bundle of semi-independent 
agencies.” In the latter, he led the reader through a fascinat-
ing journey in the evolution of living beings to delineate the 
development of an intelligent conscious mind. He identified 
this phenomenon with the emergence of capabilities and means 
that turned out to be advantageous for the interaction between 
their possessor and the specific environment in which he lives. 
Therefore, consciousness is explained as the emergence of a 
set of inner mental representations, which results in the form 
of intentionality (previously discussed in Dennett (1989)). 
Clearly, an agent cannot develop any form of intentionality, 
beliefs, desires, and hence any kind of consciousness, without 
an autonomous mechanism, which lets him discriminate the 
entities that share the same environment.

Our purpose is to use an “understanding by building” 
approach (Webb, 2001) and to treasure all these theories applying 
them in the field of Social Robotics. In particular, we believe that 
the Damasio’s three-layered theory of consciousness (Damasio, 
2000) is applicable as a cognitive model for artificial intelligence 
(AI) and that the mechanism of somatic markers (Damasio, 1994) 
is an adequate mechanism for making an artificial agent able to 

autonomously interpret the entities of its social environment. 
When followed as design specifications, these can be the key 
elements to endow a social robot with the possibility to develop 
more complex and human-like behavior. Such a novel control 
architecture, highly human-inspired, would be the beginning of 
a new social robotics control paradigm.

2. cOgniTiVe sYsTeMs in sOcial 
rOBOTics

There are different definitions of Social Robot (Dautenhahn and 
Billard, 1999; Bartneck and Forlizzi, 2004; Breazeal, 2004) but 
they share fundamental characteristics: all these researchers 
agree that social robots may have different shapes or functions, 
but they always have to be able to recognize the presence of 
humans, engage them in a social interaction, express their own 
synthetic emotional state, and interpret that of its interlocutors. 
At the same time, they must be able to communicate in a natural 
human-like way, which should include also non-verbal language, 
such as communication by gestures, postures, facial expressions, 
or any other intuitive way. This definition is still true, but after 
a few years can be not sufficient anymore. Indeed, in the last 
decade, there has been a massive increase in the diffusion of 
social robots, and there have been great advances in the fields 
in which these robots can be involved. Some of these sectors are 
personal assistance and support in the house of elderly people 
(Pineau et al., 2003; Broekens et al., 2009; Sharkey and Sharkey, 
2012), robot therapy in the hospitals, e.g., in the treatment of 
ASD disorder (Werry et al., 2001; Pioggia et al., 2005; Scassellati 
et  al., 2012) and depression (Wada et  al., 2005; Alemi et  al., 
2014), contexts of public service (Chung et al., 2007), and even 
education (Saerbeck et  al., 2010; Causo et  al., 2016; Vouloutsi 
et al., 2016). It is evident that their role is moving further and 
further away from the traditional role of servants, for assuming 
more the role of companions in a peer relationship. This leads 
to the need for enhancing some of their requirements, such as 
empathic behavior, expressiveness, and believability. According 
to the classification made by Fong et al., it is possible to distribute 
social robots in a graduated scale that goes from the minimum 
level of socially evocative, robots that rely on the human tendency 
to anthropomorphize and capitalize on feelings evoked when 
humans nurture, care, or feel involved with their “creation,” to 
the highest that is socially intelligent, robots that show aspects 
of human-like social intelligence, based on deep models of 
human cognition and social competence (Fong et al., 2003). The 
state-of-the-art of this kind of robots shows great results of social 
robotics in this direction, but, if we focus on the cognitive system 
controlling a specific robot, it is always characterized by a specific 
feature that has been highly developed to the detriment of other 
functionalities.

Reporting some examples of cognitive systems for social 
robotics, a well-known case is the one of the cartoon-like 
robot Kismet (Breazeal and Scassellati, 1999). The underlying 
architecture of this robot was designed on the base of behavioral 
models and mechanisms of living creatures, and it is referred by 
Cynthia Breazeal as “the robot’s synthetic nervous system” (SNS). 
This modular framework was structured to provide Kismet with 
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the ability to express lifelike qualities, perceive human social 
behaviors, and allow the robot to be socially situated with people. 
Nonetheless, the system was intrinsically designed to model 
the social interaction between an infant and its caregiver, that 
resulted in a very sophisticated realism, believability, and expres-
siveness of the robot, but it did not allow the agent to develop 
specific behaviors toward different interlocutors neither to reason 
about their emotional state (Breazeal, 2003, 2004). This work was 
extended on Leonardo, another robot, whose cognitive system 
was focused on the functionalities of “perspective-taking” and 
“mind-reading” (Berlin et  al., 2006). An infant-like humanoid 
that can be definitely considered an emotional social robot is 
iCub (Metta et al., 2010). It is used as an open-systems platform 
for research in neuroscience and cognitive development but 
its biologically inspired cognitive system is more oriented on 
learning and evolution of some fundamental human movement 
capabilities, such as object tracking and grasping, or learning by 
demonstration (Vernon et al., 2007).

In many cases, we found that different approaches correspond 
to a different level of complexity. For example, a strategy to 
improve the quality of a social interaction, and increase the empa-
thy of the interlocutors, is to move away from complex cognitive 
architectures and rely more on the effects of a good affordance, 
as in the case of Paro (Kidd et al., 2006). The opposite direction 
has been taken by other researchers, who developed ambitious 
systems that are highly biomimetic. These research groups are 
trying to reproduce the function of brain areas and neural path-
ways for mimicking human cognitive capabilities, as in the case 
of the Distributed Adaptive Control (DAC) (Verschure, 2012), 
which has been used in applications with iCub, Zeno (Vouloutsi 
et al., 2016), and Nao (Fernando et al., 2014).

On the side of artificial consciousness, there is a recent review 
of cognitive systems inspired by how consciousness arise in 
humans made by Chella and Manzotti (2013) and another even 
more recent publication written by Dehaene et  al. (2017). We 
strongly agree with the first authors when saying that conscious-
ness could be the missing step in the ladder from current artificial 
agents to human-like agents. In the second work, Dehaene et al. 
suggest that the word “consciousness” conflates two different 
types of information processing computations in the brain: the 
selection of information for global broadcasting (C1), and the 
self-monitoring of those computations (C2). They argue that, 
despite their recent success, current machines are still mostly 
implementing computations that reflect unconscious processing 
(C0) in the human brain. We share also this latter analysis. Indeed, 
all the cognitive architectures that we investigated are extremely 
advanced works, and each of these systems, or machines, fully 
satisfies the purpose for which has been conceived. Nonetheless, 
in none of these instances, we have found a real creation of 
personal preferences acquired and processed through the body 
and emotions of the agent, which is considered the base for the 
foundation of a potential artificial consciousness.

We identify the best explanation of this process in the 
Damasio’s theory of mind, and we claim that, as yet, the best 
formalization of this theory is not implemented in any robotic 
system, but still remains the formalization done by Bosse et al. 
(2008), which will be introduced in the following section. On the 

basis of this observation, we decided to design from scratch a 
novel cognitive architecture for social robotics, which is intended 
to be the implementation of the Bosse computational model, in 
order to stay as close to the Damasio’s theory of mind as possible. 
Then, we will test the resulting system to assess the emergence of 
some form of artificial consciousness and its repercussions on the 
social behavior and beliefs of an artificial agent.

3. DaMasiO’s TheOrY anD iTs 
cOMPUTaTiOnal MODel

In this section, we will cite several parts from Damasio’s books 
(Damasio, 1994, 2000), especially the same parts on which Bosse 
et al. (2008) focused their attention and took inspiration for their 
formalization. The theory of mind of Antonio Damasio, as well 
as the way he described the emergence of consciousness, can be 
seen as the construction of a building. This construction starts 
from the emotions, passing through feelings, to arrive to what he 
calls “feelings of feelings.” These are the structural instruments to 
create the three different levels of consciousness, i.e., respectively: 
the proto-self, the core consciousness, and the extended conscious-
ness. These three floors share the same building: the body. This 
latter must be considered not as the theater in which this process 
takes place, rather, as a necessary means for the generation of 
consciousness.

According to the general analysis made by Bosse et al. (2008), 
Damasio described an emotion (or internal emotional state) as a 
(unconscious) neural reaction to a certain stimulus, realized by a 
complex ensemble of neural activations in the brain. As the neural 
activations involved often are preparations for (body) actions, 
as a consequence of an internal emotional state, the body will 
be modified into an externally observable emotional state. Next, 
a feeling is described as the (still unconscious) sensing of this 
body state. Finally, core consciousness or feeling a feeling is what 
emerges when the organism detects that its representation of 
its own body state (the proto-self) has been changed by the 
occurrence of the stimulus: it becomes (consciously) aware of 
the feeling.

In Damasio (2000), Damasio described this course of events 
along five steps:

 1. Engagement of the organism by an inducer of emotion, for 
instance, a particular object processed visually, resulting in 
visual representations of the object.

 2. Signals consequent to the processing of the image of the object 
activate neural sites that are preset to respond to the particular 
class of inducer to which the object belongs (emotion-induction 
sites).

 3. The emotion-induction sites trigger a number of responses 
toward the body and toward other brain sites, and unleash the 
full range of body and brain responses that constitute emotion.

 4. First-order neural maps in both subcortical and cortical regions 
represent changes in body state. Feelings emerge.

 5. The pattern of neural activity at the emotion-induction sites 
is mapped in second-order neural structures. The proto-self is 
altered because of these events. The changes in proto-self are also 
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mapped in second-order neural structures. An account of the 
foregoing events, depicting a relationship between the “emotion 
object” (the activity at the emotion-induction sites) and the 
proto-self is, thus, organized in second-order structures.

Bosse, Junker, and Treur conceived a model, based on 
these Damasio’s notions to simulate the dynamics of the basic 
mechanisms taking place in the mind and body of an agent. These 
dynamics are described as an evolution of states over time. States 
are intended as neurological states formed by neural processes. 
They used the following forms of abstraction:

•	 neural states or activation patterns are modeled as single state 
properties;

•	 large multi-dimensional vectors of such (distributed) state 
properties are composed to one single composite state prop-
erty, when appropriate; e.g., (p1, p2, …) to p and (S1, 
S2, …) to S.

To describe the dynamics of these processes, Bosse et al. used 
an explicit reference to time: dynamic properties can be formu-
lated relating a state at one point in time to a state at another 
point in time. They reported the following example “at any point 
in time t1, if the agent observes rain at t1, then there exists a point 
in time t2 after t1 such that at point t2 the agent has internal state 
property s” (Bosse et al., 2008). Where s, in the example, is viewed 
as a sensory representation of the rain. These dynamic properties 
are expressed in a temporal language, i.e., the Temporal Trace 
Language (TTL) (Jonker et  al., 2003), in which explicit refer-
ences are made to time points and traces. A trace over a state is 
a time-indexed sequence of states. For performing experiments, 

they exploited a simpler temporal language called Language 
and Environment for Analysis of Dynamics by SimulaTiOn 
(LEADSTO) (Bosse et  al., 2005). In this way, they can specify 
simulation models in a declarative manner. A basic notation 
of LEADSTO is α → e, f, g, h, β, meaning: “if state property α 
hold for a time interval with duration g, then after some delay 
(between e and f) state property β will hold for a time interval of 
length h” (Herlea et al., 1999).

Relying on this descriptive model, they presented a case in 
which an agent hears some music, which leads to an emotional 
state that implies physical responses. The process is described by 
executable Local dynamic Properties (LP) in LEADSTO nota-
tion, taking into account internal state property sr(music) 
for activated sensory representation of hearing the music, and 
a vector p = (p1, p2, …) of preparation state properties 
for the activation of the physical responses, defined as the mul-
tidimensional composite state property S = (S1, S2, …).  
A schema of this process is shown in Figure 1A, where the cor-
responding LPs are:

LP0 music → sensor_state(music)
LP1 sensor_state(music) → sr(music)
LP2 sr(music) → p
LP3 p → S

What is described until LP3 is the emotional unconscious reac-
tion to a stimulus (or a combination of stimuli), which becomes 
apparent in the form of bodily changes. According to Damasio 
(2000), there is still no sense of self nor feelings at this stage, 
because “the sense of self has a pre-conscious biological precedent, 
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the proto-self, and (…) the earliest and simplest manifestations of 
self emerge when the mechanism which generates core conscious-
ness operates on that non-conscious precursor.”

Here is the point in which body and, particularly, changes 
in the bodily state perceived as emotions assume their funda-
mental role for the emergence of feelings, which is described 
as follows: “as for the internal state of the organism in which 
the emotion is taking place, it has available both the emotion as 
neural object (the activation pattern at the induction sites) and 
the sensing of the consequences of the activation, a feeling, pro-
vided the resulting collection of neural patterns becomes images 
in mind” (Damasio, 2000).

Therefore, a feeling emerges when the collection of neural 
patterns contributing to the emotion lead to mental images. 
In other words, the organism senses the consequences of the 
emotional state. This result can be achieved by means of two 
mechanisms described by Damasio as via the body loop and via 
the as if body loop. Bosse, abstracting from the detailed steps 
made of biological states, summarized these two mechanisms 
as follows:

Via the body loop: the internal emotional state leads to a 
changed state of the body, which subsequently, after sensing, is 
represented in somatosensory structures of the central nervous 
system;
Via the as if body loop: the state of the body is not changed. 
Instead, on the basis of the internal emotional state, a changed 
representation of the body is created directly in the sensory 
body maps. Consequently, the organism experiences the same 
feeling as via the body loop: it is “as if ” the body had really been 
changed but it was not.

This part is formalized including in the model a number of 
internal state properties for sensory representation of body state 
properties (sr(S)) that are changed due to responses to the 
stimulus. Together, these sensory representations constitute the 
feeling induced by the stimulus. As shown in Figure 1, sr(S) 
can be reached in two ways, in LEADSTO notation:

LP4 S → sensor_state(S)
LP5 sensor_state(S) → sr(S)

or

LP6 p → sr(S)

where local dynamic properties LP4 and LP5 represent the 
body loop, while LP6 stands for the as if body loop.

Finally, Bosse et al. (2008) faced the consciousness problem 
of “feeling a feeling.” Damasio described the origin of conscious-
ness with these words: “Core consciousness occurs when the brain’s 
representation devices generate an imaged, nonverbal account of 
how the organism’s own state is affected by the organism’s process-
ing of an object, and when this process enhances the image of the 
causative object, thus placing it in a spatial and temporal context 
(p. 169) (…) beyond the many neural structures in which the 
causative object and the proto-self changes are separately repre-
sented, there is at least one other structure which re-represents 

both proto-self and object in their temporal relationship and thus 
represents what is actually happening to the organism: proto-self 
at the inaugural instant; object coming into sensory representa-
tion; changing of inaugural proto-self into proto-self modified by 
object (p. 177)” (Damasio, 2000).

Bosse formalized this final part of the process as transi-
tions between the following moments: (1) the proto-self at the 
inaugural instant; (2) an object come into sensory representa-
tion; (3) the proto-self has become modified by the object (see 
Figure 1B). Time is once again the key, and Bosse modeled these 
steps as a temporal sequence, a trace: “(…) in the trace consid-
ered subsequently the following events take place: no sensory 
representations for music and S occur, the music is sensed, the 
sensory representation sr(music) is generated, the prepara-
tion representation p for S is generated, S occurs, S is sensed, 
the sensory representation sr(S) is generated.” To model this 
process, Bosse et al. (2008) introduced three further internal state 
properties called: s0 for encoding the initial situation, and s1 
and s2 for encoding the situation after two relevant changes. 
The extended model is depicted in Figure 1C, formalized by the 
following LEADSTO notation:

LP7 not sr(music) & not sr(S) → s0
LP8 sr(music) & not sr(S) & s0 → s1
LP9 sr(music) & sr(S) & s1 → s2
LP10 s2 → speak_about(music)

The final state speak_about(music) is an action 
made by a conscious agent, who is aware of a feeling, emerged 
as a change in its body, associated with the specific object that 
invoked that change. For giving a practical example, thanks 
to the described process, a person after feeling shivers on his 
back due to the listening of a song, can make a statement 
such as the following: “I love this song,” where an association 
has been consciously created between a specific agent (“I”), a 
specific feeling (“love”), and a specific evocative object (“this 
song”).

Until this stage of the model, although Bosse states his 
intention to use a temporal approach, time has not been used. 
Indeed, the time parameters of LEADSTO (i.e., e, f, g, h) are 
not yet mentioned in the model, which, so far, has a more logi-
cal/causal approach. Then, time constraints are reintroduced 
to allow a simulation of the model. This choice was necessary 
to allow their software environment to generate traces in the 
time dimension and, thus, simulate reactions of the model 
to a controlled sequence of events. They successfully run an 
experiment in which they simulate both the body loop and the 
as if body loop. Finally, they deepened the Damasio’s concept 
of “representational content” formalizing in TTL the formation 
of first-order representations, which refer to external states 
of world and body, and second-order representations, which 
refer to internal states (other first-order representations) of the 
proto-self.

We consider the model proposed by Bosse as the most coher-
ent formalization of Damasio’s theory of mind available in the 
literature. The proof is that we took the mentioned notions 
as precise instructions for the design of our framework, and 
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numerous references to the model will be made in the next sec-
tions. Nonetheless, this model is a purely computational model. 
It works very well until it is limited to the domain of information 
processing. When we move to the design of cognitive systems 
for agents that have to interact in a real environment, new chal-
lenging needs and different requirements come out. The real 
world changes suddenly and unexpectedly, so real-time systems 
that are involved in real environments must be flexible and 
always ready to face conflict situations that require solutions. 
In some cases, the solution has to be quick and responsive.  
In some other cases, it is required a higher level of reasoning, 
which can be more abstract, not time-critical, as well as impor-
tant. In this context, a temporal approach with time constraints 
is not adequate.

4. The seai FraMeWOrK

(…) having a mind means that an organism forms 
neural representations which can become images, be 
manipulated in a process called thought, and eventually 
influence behavior by helping predict the future, plan 
accordingly, and choose the next action. (Damasio, 
1994)

The mind is described as a process in which inputs from sen-
sors are converted into knowledge structures that allow reason-
ing. These inputs can determine immediate reactions, while the 
results of the reasoning process are internal or external actions 
that together with the newly generated knowledge drive feelings, 
emotions, and behaviors of human beings.

Humans perceive the world and their internal state through 
multiple sensory modalities that in parallel acquire an enormous 
amount of information creating internal representations of the 
perceived world. Moreover, behaviors and skills are not innate 
knowledge but are assimilated by means of a knowledge acquisi-
tion process (Brooks et  al., 1999) and by emotional influences 
(Damasio, 1994). This is also supported by the evidence that pure 
rational reasoning is not sufficient to realize an advantageous 
decision-making, as demonstrated by studies conducted on 
subjects with affective and emotional deficits due to brain injuries 
(Bechara et al., 2000).

SEAI (Social Emotional Artificial Intelligence) is a framework 
for the development of bio-inspired robotic control systems 
endowed with a form of artificial consciousness. It is specifically 
tailored for social robotics applications, where cognitive features 
aimed at giving agents the capability to perceive, process, and 
respond to social stimuli are mandatory. Simultaneously, it makes 
use of the interactions that the agent has with its interlocutors 
to create beliefs and internal representations that will change its 
behavior. In order to achieve this purpose, the system has been 
conceived highly adaptive, responsive but also capable of abstrac-
tion and reasoning. As in human nervous system, planning is the 
slower part of the control architecture. Therefore, the planning 
engine of the system has been implemented using a rule-based 
expert system, which can deal with rules and data but is not 
designed to be fast. In the meanwhile, sensors and actuators 

deal with quick reactive actions that require fast communication 
channels and analysis algorithms (Qureshi et al., 2004). For this 
reason, a hybrid deliberative/reactive architecture, which inte-
grates a rule-based deliberative system with a procedural reactive 
system, has been selected as main design structure for the SEAI 
control system.

As shown in Figure  2, SEAI services can be conceptually 
divided into three main functional blocks: SENSE, PLAN, and 
ACT.

4.1. sense
4.1.1. Scene Analyzer
It is the Social Perception System (SPS) that we developed for 
Social Robots. This service uses dedicated modules that process 
incoming raw data from sensors (e.g., Microsoft Kinect ONE 
Camera,1 TouchMePad (Cominelli et  al., 2017), TOI Shield2), 
extract a set of features of the social environment, and contribute 
to creating integrated “meta-maps,” i.e., XML files that include 
structured information. For example, a meta-scene is a structured 
description of the perceived social environment (exteroception). 
The extracted features include a wide range of high-level verbal/
non-verbal cues of the people presents in the environment, such 
as facial expressions, gestures, position, age, and gender, and a 
set of the visually relevant points of the scene calculated from the 
low-level analysis of the visual saliency map. Finally, the meta-
scene is serialized and sent over the network through its cor-
responding YARP port. Details of the Scene Analyzer algorithms 
and processes are reported in Zaraki et al. (2017).

4.1.2. Power Supply
It is the energy monitor of the robot. This service manages 
the connection with the robot power supply and monitors the 
current consumption and the voltage levels. The Power Supply 
Monitor (PSM) service calculates the robot power consumption 
in Watt with a frequency of 1 Hz and serializes this information 
to be sent over the network. Data coming from PSM constitutes 
part of the data used to build structured descriptions of the 
robot’s body state (proprioception).

4.2. acT
4.2.1. Robot Control
This service is the first part of the robot actuation system. 
Its role is the translation of high-level instructions coming 
from the deliberative system in low-level instructions for the 
animators. It has internal modules dedicated to single parts of 
the robot (e.g., hands, arms, neck, and face). An example of 
these modules is HEFES (Hybrid Engine for Facial Expressions 
Synthesis), which is a module devoted to emotional control of 
a facial robot, described in our previous work (Mazzei et al., 
2012). This module receives an ECS (Emotional Circumplex 
Space) point (v,a), expressed in terms of valence and arousal 
according to the Russel’s theory called “Circumplex Model of 

1 https://developer.microsoft.com/en-us/windows/kinect/hardware.
2 http://www.besos.cc/portfolio-articoli/toi-shield/.
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FigUre 2 | The SEAI architecture includes a set of services (blue boxes), standalone applications interconnected through the network. The network communication 
and services deploy is based on YARP, an open-source middleware designed for the development of distributed robot control systems (Metta et al., 2006). Each 
service has its modules (green boxes) that collect and process data gathered from sensors or directly from the network and send new data over the network. The 
information flow is defined by XML packets, a serialized form of structured data objects. Thanks to this information management, SEAI is modular and can scale up 
by developing services, which can even be implemented in different programming languages and placed in different hardware devices. In the proposed architecture 
ACT, SENSE, and PLAN blocks are only descriptive constructs. The virtual link created by the connections between ACT and SENSE services represents the 
reactive subsystem. Conversely, the deliberative subsystem is represented by the connections between the I-Clips Rules Engine (PLAN) service and all the other 
services.
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Affects” (Russell, 1980; Posner et al., 2005), and calculates the 
corresponding facial expression, i.e., a configuration of servo 
motors that is sent over the network to the Robot Animator. 
Another example is the module for the Gaze Control of the 
robot, described in details in Zaraki et al. (2014). This module 
receives directly from the SENSE block a meta-scene object, 
which contains a list of the persons, each of them identified by 
a unique id and associated with spatial coordinates (x,y,z). 
The Gaze control module is also listening to the YARP port 
used by the deliberative subsystem to send the subject’s id 
toward which the robot must focus its attention. As a result, 
the module sends directives to the Neck/Eyes Animator to 
move the gaze of the robot toward the selected subject.

4.2.2. Robot Animator
It is the low-level service for the actuation of the robot. This ser-
vice receives multiple requests coming from the Robot Control, 
such as facial expressions and neck movements. Since the behav-
ior of the robot is inherently concurrent, parallel requests could 
generate conflicts (e.g., a surprised facial expression while blink-
ing). Thus, the Robot Animator is deputed to the distribution of 
requests through each dedicated animator (e.g., hands animator, 
face animator, neck/eyes animator, etc.). Moreover, the anima-
tion engine is responsible for blending multiple actions taking 
account of the time and priority of each incoming request. This 
actuation service is directly connected with the motors moving 
the robot.
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When a service of the ACT block receives an instruction 
coming from the PLAN block, as the example of an emotion to 
be expressed, then a deliberative action is taking place. On the 
contrary, when the instruction is a quick communication due 
to algorithms that link information gathered by sensors to the 
movement of motors, the system is dealing with a reactive non-
declarative action.

4.3. Plan
4.3.1. I-CLIPS Brain
The name stands for Interactive CLIPS, it is the core of the PLAN 
block and embeds a rule-based expert system that works as a 
gateway between the reactive and the deliberative subsystems. 
The I-CLIPS Rules Engine has been designed using CLIPS 
(Giarratano and Riley, 1998), and it can be considered as the 
evolution of our previous work described in Mazzei et al. (2014). 
In CLIPS expert systems, facts represent pieces of information 
and are the fundamental unit of data used by rules. Each fact 
is recorded in the fact-list. I-CLIPS supports the definition of 
templates, structured facts defined as list of named fields called 
slots. Templates in a declarative language are structured data 
similar to objects in a procedural language; therefore, it is pos-
sible to convert objects in I-CLIPS templates and vice  versa. 
The decision-making process is based on the evaluation of 
rules. Each rule is composed of two parts: left hand side (LHS) 
contains all the conditions to make the rule trigger, and right 
hand side (RHS) contains the actions that will be fired if the LHS 
conditions are all satisfied. The RHS can contain function calls, 
assertion of new facts or modifications of templates. Assertion 
of new facts generates new knowledge that can be sent to the 
other services through the network or used as input for the other 
rules. If the LHS of a rule is satisfied, that rule is not executed 
immediately but it is marked as activated. Activated rules are 
arranged in the agenda, a list of rules ranked in descending 
order of firing preference. Rules order in the agenda drives the 
execution order. Here, the I-CLIPS modules are CLIPS modules 
(some examples in Figure 2). Therefore, each module is a.clp 
file that includes definition of rules and templates. Once a 
module is loaded by the I-CLIPS Rules Engine, these rules and 
templates are defined and become part of the SEAI Knowledge 
Base. Modules are distinguished for their function. They have 
their own agenda and can work in parallel receiving, process-
ing, and sending information through the network. Incoming 
data can be shared between more modules, as in the case of the 
Emotion Module and the Attention Module in Figure 2, receiv-
ing both the meta-scene, for sending different information in 
the network, or, no information at all, e.g., the Energy Module, 
because the outcome is a modification of internal parameters 
(templates). The modular structure of the SEAI system allows 
to include or exclude entire modules, and so, to unable and 
disable functions at run-time. Modules can have dependencies 
on other modules, for example, in the rules LHS of module 
B there can be checks about the state of templates defined by 
module A. If module A has not been loaded, then module B 
will not work, but this will not lead to any further consequences. 
More in general, an activation of an existing function (loading 
an existing module), or an addition of a new function (loading 

a new designed module), will not compromise the smooth 
functioning of the whole system.

What has been described is mainly a causal approach, similar 
to other approaches in the literature (Manzotti, 2006; Seth, 2008; 
Chella and Manzotti, 2013), but it is also possible to have partial 
control on time, in two ways: “prioritization” and “dummy facts.” 
Prioritization of the rules disposition in the agenda can be done 
declaring saliency inside the rules. Saliency is a real number 
from −10,000 to 10,000 that can be declared in the definition 
of a rule. Activated rules with higher saliency will be placed at 
the top of the execution list. No declaration of saliency means 
saliency equal to 0. With this method, layers of rules inside 
a module can be created. A layer, which can be considered a 
sub-module, is a set of rules with the same saliency that con-
nect two or more templates, and it is called a Rule Set. In this 
way, we know that a modification of template T1 will cause a 
modification of template T2, and not vice versa (if not needed). 
If multiple rules of the same rule set are activated, they will be 
ordered on the agenda depending on the selected conflict reso-
lution strategy. CLIPS makes available the selection of various 
conflict resolution strategies among which the depth strategy has 
been selected for its similarity to the typical human reasoning 
strategy. Using depth strategy, the last rule activated by the facts 
is the first to be executed generating a behavior that is more 
responsive and influenced by recent events. The other method is 
by using “dummy facts.” In this latter case, the execution order of 
rule sets is guaranteed by the assertion of facts: a fact (a dummy 
fact) is asserted as an action of all the RHS of the rules of the 
precedent rule set and as a condition in the LHS of all the rules 
of the subsequent rule set, which then will immediately remove 
that fact from the fact-list, hence the name “dummy.”

5. POrTing The cOMPUTaTiOnal 
MODel in The seai FraMeWOrK

With respect to the explained framework, we developed 
modules aimed at replicating the biological mechanisms of 
consciousness as described by Damasio and then formalized 
by Bosse. In this section, we present the developed cognitive 
system dividing the description into the same three notions of 
“emotion,” “feeling,” and “feeling of a feeling,” and we illustrate 
how these three levels can be exploited in SEAI for the emer-
gence of the three-layered consciousness defined by Damasio. 
The “body loop” and the “as if body loop” are also discussed. 
Moreover, our model of the somatic marker mechanism, which 
was not included in the Bosse model, will be also described.

First, in order to explain how the SEAI Cognitive System pro-
cesses the information, another kind of schematic representation 
is required. Indeed, the functioning of SEAI, akin to the human 
brain, resides in the structure, meaning the connections among 
its internal functional parts. In our case, we have a structure 
made of templates connected together by rules. The three level 
of consciousness will be described by gradually loading modules 
that will define templates and rules in the SEAI knowledge base. 
This schematic representation is highly inspired by the Bosse 
model (Figure 1), where sensory states are templates or facts in 
our system, and local dynamic properties are rule sets.
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In Figure 3, the entire SEAI Cognitive System is shown, where 
all the developed modules have been loaded.

5.1. The external World
In Figure 3, the line delimiting the big white box represents the 
edge of the physical body of the robot, the gray box in which it 
is immersed is the external world. Sensors and actuators are the 
interfaces by which the robot connects with the world. They are 
represented by a collection of triangles standing in the middle 
between the body of the robot and the world. Incoming yellow 
triangles are sensors and outgoing red triangles are actuators. 
The set of sensors and the perception capabilities depend on 
the features and the equipment of the robot. As represented in 
the figure, there are external stimuli that can be perceived by 
the perception system (bright blue circles), while others (pale 
blue circles) may not have the corresponding sensory channel 
in the perception system of the robot. In the case of social 
robotics, stimuli could be different features of the environment 
(e.g., temperature, noise level, luminosity, and so on), social 
cues regarding a unique subject (e.g., gender, facial expression, 
posture, physio parameters, and so on) or characteristics of an 
object (e.g., shape, color, dimensions, and so on). Usually, each 
sensor has a dedicated perception module for the pre-process-
ing of extracted raw data. This is similar to the pre-processing 
taking place in the human sensory channels. Likewise, the 
actuation system depends on the motor system of the artificial 
agent. Typical actuators are servomotors and a set of motors 
corresponds to a body part of the robot driven by a dedicated 
animator. However, also speakers for speech synthesis or lights 
simulating blushing of the skin are considered here as actuators. 
Arrows coming out from actuators represent the actions of the 
robot that will lead to some change in the world, this change 
will be reacquired by the agent as a new collection of external 
stimuli.

5.2. The internal World
In the model of Figure 3, the focus is all on the PLAN block, 
which has been extended and its internal structure revealed. The 
SENSE and ACT block have been compacted in two representa-
tional bars with the same reference colors used in Figure 2: the 
yellow bar represents the sum of all perception services, while the 
red bar stands for the actuation services. Blue boxes are templates, 
and continuous arrows are rule sets. Directions of arrows repre-
sent the causal/temporal direction due to the abovementioned 
layering approach. In parallel with external stimuli, the agent 
has also internal stimuli. They are represented in the schema as 
an inner blue circle and can be a collection of simulated physi-
ological parameters or a set of values representing the psycho-
physical state of the agent. Internal stimuli are updated after 
every execution cycle after processing the information coming 
from the external and internal world of the agent. In the middle 
of the picture, it can be noticed a gray square containing three 
representative layers. The gray space is the working memory of 
the robot and corresponds to the “fact-list,” the list of all the facts 
of which the agent is aware of itself and the world. The three 
representative layers are a symbolic representation through 
which we describe the arise of consciousness that is reached and 
enriched by the awareness of facts of increasingly higher level of 
abstraction. Non-continuous arrows are not rule sets but YARP 
connections with other services or another kind of connections. 
These details will be clearer with the following description of rule 
sets and modules.

5.3. rule sets and Modules
Following the key numbers in Figure  3: (0) external stimuli 
reach the SENSE block passing through sensors; these con-
nections indicate the sensory acquisition, pre-processing, and 
integration. These two latter processes take place in the SENSE 
and provide a single structured meta-map (e.g., a meta-scene) 
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that is sent through a YARP connection. Once the information 
has been extracted by the external world (exteroception) or 
perceived from the body (interoception) forming meta-maps, 
these are analyzed by the deliberative system. (1) The system 
uses pattern matching to compare incoming information with 
internal representations (pre-defined templates) and recognize 
real and useful information from inconsistent and useless 
data. (2) If a meta-map has an expected structure and satisfies 
conditions about internal data, then it is accepted by SEAI as 
reliable information, and a new fact is asserted in the agent 
working memory. Facts in the fact-list activate sets of rules of 
the I-CLIPS rules engine, which will modify other templates or 
create secondary facts. (3) EMORS (EMOtion Rule Set) is a set 
of rules that analyze facts to process a related emotional predis-
position, realized as a modification of values of the templates 
body preparation (bp(v,a)), emotional state (es(v,a)), or 
both. (4) BEHRS (Behavioral Rule Set) is the set of rules that 
analyze the facts to provide instructions for the robot about cer-
tain actions to take, the effect of these rules is the modification 
of the templates reactions or actions. This rule set is divided into 
(4a) STD-BEHRS (STandarD Behavioral Rule Set), (4b) ALT-
BEHRS (ALTernative Behavioral Rule Set), and (4c) SPEC-
BEHRS (SPECific Behaviors Rule Set), which have increasing 
priority. This distinction will be clearer in the next section. (5) 
FEERS (FEEling Rule Set) analyze the emotional state template 
to extract a higher level information that is a conscious feeling, 
the consequence is the assertion of a secondary fact about the 
mood of the agent. (6) SOMARS (SOmatic MArker Rule Set) is 
the set of rules simulating the somatic marker mechanism. These 
rules work in two different directions: they can analyze the body 
and emotional state to trigger the assertion of a somatic marker, 
and in case of recognition of a marked entity, they can recall the 
bodily state that the agent “felt” when that entity was labeled. 
(7) REARS (REAsoning Rule Set) is the set of rules that allows 
reasoning chain and deductive inferences. These rules do not 
connect specific templates, because they analyze known facts to 
assert higher level facts. This rule set is extremely useful to do 
abstract symbolic reasoning and contributes to the modeling of 
higher levels of consciousness. Thereby, it is represented by a 
golden arrow inside the fact-list box. (8) EXERS (EXEcution 
Rule Set) must be the last set of rules to be run. Therefore, they 
have the lowest saliency values and will be placed at the bottom 
of the agenda. When all the other rule sets have contributed to 
the modification of the templates, the actions to take have been 
decided, the EXERS can send instructions to the ACT Block. 
This is done through function calls in their RHS that send high-
level commands in the YARP network. (9) These commands 
are translated by the Robot Control into motor commands and 
dispatched by Robot Animator to the actuators of the robot. (10) 
Finally, the bodily state induced by the events is upgraded as a 
new set of internal stimuli, and the actions of the agent lead to 
a modification of the social environment that is interpreted as a 
new set of external stimuli. An execution cycle from 0 to 10 lasts 
0.33 ms, which is in line with the physiological time needed for 
passing from an intention to an action (Libet et al., 1983).

The discussed rule sets and templates are arranged in three 
different modules:

EMOTION MODULE includes the following: Representation 
of Internal Stimuli template, Representation of External Stimuli 
template, Reactions template and Body Preparation template. As 
Rule Sets, the Emotion Module includes EMORS, STD-BEHRS, 
and a few rules from REARS and EXERS;
FEELING MODULE includes the following: Emotional State 
template, Actions template, additional EMORS rules that can 
modify also (or only) the emotional state, ALT-BEHRS, an 
extension of REARS, and additional EXERS rules for the execu-
tion of actions;
FOF3 MODULE includes the following: Somatic Marker tem-
plate, SOMARS, SPEC-BEHRS, and additional rules of REARS.

As can be noticed, there are entire rule sets that are sole prop-
erty of a module (e.g., SOMARS) and rules of the same rule set 
that appear in different modules (e.g., EMORS and REARS). In 
fact, different modules may include rules with similar function, 
connecting the same templates, or having the same priority.

5.4. emotion and Proto-self
Following the narrative process used in Bosse et al. (2008), we 
start from a SEAI system in which only the Emotion module is 
loaded (Figure  4). Included in the Emotion module, there is 
the body preparation template. As mentioned in the descrip-
tion of the SEAI framework, to model emotion we use the ECS 
(Emotional Circumplex Space) representation (Russell, 1980). 
An ECS point is described by two coordinates: v, valence, the 
quality of an emotion (i.e., positive or negative), and a, arousal, 
which is the activation level of an emotion; v and a are normalized 
between 1 and −1. Body preparation is described by a (v,a) point 
that is a bodily state, induced by events, that corresponds to a 
specific emotion. This state will be performed by the agent as an 
immediate reflex and will last only the duration of the emotional 
stimulus. Let us assume the same example reported in Bosse et al. 
(2008), an agent hearing and reacting emotionally to music, and 
suppose that the SENSE block of SEAI includes a simple software 
for sound analysis. For example, this software is able to extract 
the music tempo in terms of beats per minute (bpm) and the 
sound volume (db). Then, referring to Figure 4, this example in 
SEAI would be the following: (0) the music (external stimuli) is 
acquired by the sensors of the agent (microphones), the audio is 
processed by the application in the SENSE block, which creates 
a single structured data: a meta-map containing the perceived 
characteristic of that music. The meta-map is sent as a YARP 
bottle in the network; (1) the meta-map comes to the I-CLIPS 
Brain, where is compared with the representation of music, a 
template (music (bpm) (volume)); (2) if the informa-
tion is consistent (e.g., a condition could be bpm > 0) then the 
meta-map becomes a fact in the fact-list, otherwise is rejected; (7) 
REARS may be activated by the (music) to do reasoning chain 
and assert facts, such as (music-genre-is chill-out) 
if 70 < bpm < 120 or (volume-is low) if db < 45; (3) the 
appearance of a (music) fact activates also the EMORS. For 
instance, EMORS can trigger specific bodily states in relation-
ship to specific volume ranges. This means a modification of body 

3 FOF, Feelings Of Feelings.
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preparation from neutral bp(0,0) to bp(v,a); (10,1,2) this 
bodily change is updated as an internal stimulus and becomes 
also a fact in the fact-list; (4a) the contemporary presence of the 
two facts, one about the music and one about the bodily change, 
activates a behavior, typically a rule of BEHRS which acts on the 
reactions template, copying the bp (v,a) coordinates that now are 
present as a fact of the fact-list; (8) when a disposition is ready 
and available in the reaction template, EXERS is activated and the 
(v,a) point is sent to the ACT block; services of the ACT block 
interpret and express the emotional state to perform, translating 
that emotion in a list of commands for motors. In this way, the 
emotion is physically expressed through the body of the agent 
(e.g., a serene facial expression).

This part of the process corresponds to the sequence LP0, 
LP1, LP2, and LP3 described in section 3. At this stage, the sys-
tem is only responsive and capable to process information and 
express consistent emotional states. The behavior of the agent 
will be always the same in front of the same stimulus, and its 
reactions will not last more than the duration of the incoming 
input. In any case, the simultaneous existence of known facts 
about the surrounding environment and the body state induced 
by the entities of that environment fully satisfy the definition 
of Proto-Self. As a consequence, this first preliminary stage of 
synthetic consciousness results activated in Figure 4.

5.5. Feelings and core consciousness
The addition of the Feeling Module leads to the definition of new 
templates and rule sets, which have been highlighted in blue, in 
Figure 5. A new template defined by this module is the emotional 
state template. This new internal representation of the cognitive 
system is different from body preparation. On the one hand, 
the same emotion model is used for the representation, and so, 
the instances of this template are also ECS points. On the other 
hand, es(v,a), unlike bp(v,a), is an internal parameter that 

does not lead necessarily to an immediate reaction, but rather 
it is used by the system to modulate the behavior of the robot. 
This modulation occurs because the module defines new rules 
of EMORS, which can modify bp(v,a), es(v,a), or both. 
The bp(v,a) points are still discrete states, while es(v,a) 
is modified gradually, by an increase or decrease of its previ-
ous (v,a) values. The FEERS checks emotional state to assert in 
the fact-list the current emotional state as a fact. REARS will 
interpret these states to assert secondary-order facts about the 
current mood of the agent (e.g., bored, relaxed, and annoyed). 
The simultaneous presence in the fact-list of a bp to perform and 
an es will activate the ALT-BEHRS, which acts on the actions 
template, placing (v′,a′) values that correspond to

 

′ = − ∗ + ∗
′ − ∗ + ∗

v k v k v
a k a k a

bp es

bp es

( )
( ) ,

1
1=  

where k is the influence factor, a global variable, accessible to all 
modules, which value is set within 0 < k < 1 and determines the 
influence of the emotional state on the agent.

Returning to the example of music listening, nothing changes 
until the sensory representation of the music is asserted as a 
fact in the fact-list, but now (3) new EMORS rules determine 
variations of the es values. For example, there is a rule that 
makes ves increase together with the music tempo and another 
one making aes decrease in case of low sound volume. Let us 
take the case of a slow relaxing music heard at low volume.  
A protracted listening to this kind of music will lead to: (5) the 
assertion of the fact es(v,a) by the FEERS, which every run 
cycle will be upgraded with decreasing values of both ves and aes; 
(4b) the activation of the ALT-BEHRS due to the contemporary 
presence of a bp and an es in the agent working memory; (7) the 
analysis of the es-fact by the REARS and the subsequent asser-
tion of secondary-order facts (e.g., (music-is boring)). 
The ALT-BEHRS acts on the actions template placing (v′,a′) 
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values. (8) The EXERS rules defined by the Feeling module have 
higher saliency than the EXERS rules of the Emotion module and 
check the actions template. When all the BEHRS rules have been 
fired, if both actions and reactions are filled with values, reactive 
impulses are temporarily “inhibited” and actions are sent to the 
ACT block services. The follow-up (9,10) is exactly the same 
described in the previous condition because services of the ACT 
block are not aware of the declarative process underlying the 
received instruction. Nonetheless, thanks to Feeling module, we 
will see the previous serene facial expression turning gradually 
into a bored expression.

The described process corresponds to the addition of LP4 
and LP5 in the computational model and the emergence from 
the subcortical to the cortical level in the biological model. 
It represents the arise of a feeling through the body loop. 
Indeed, the result of this cognitive process is the emergence of 
secondary-order representations generated by means of slower 
gradual changes in the body. Here, feelings are not yet internally 
represented. At this stage, the agent has not a specific behavior 
toward a precise evocative object, thus, cannot even speak about 
the music. Nonetheless, reactions to the music are changing, 
the raised emotions are changing, and feelings are getting clear, 
which corresponds to the description of what Damasio calls a 
Core Consciousness, that appears activated in Figure 5.

5.6. Feeling of a Feeling and extended 
consciousness
In order to uplift feelings and consciousness to a higher level, we 
relied on the somatic marker hypothesis, formulated by Damasio 
(1994). A Somatic marker (SM) is an association between a 
relevant change in the body state, perceived as an emotion, and 
the causative entity that induced that change. According to the 
hypothesis, somatic markers are processed in the ventromedial 
prefrontal cortex (VMPFC) and the amygdala and strongly 

influence subsequent decision-making. Indeed, SMs use our 
body to create emotional beliefs and opinions about specific 
entities with which we interact, giving an essential contribute for 
the formation of an extended consciousness. This mechanism, 
in case of a second exposure to a marked entity, will recall the 
body state felt in the past biasing our decisions and behavior 
toward that specific entity. The hypothesis was demonstrated 
by Bechara et al. submitting healthy patients and brain-injured 
patients to the “Iowa Gambling Task,” a gambling card game 
specifically conceived by the authors to assess the efficiency of 
the SM mechanism (Bechara et al., 1997). To model this brain–
body mechanism, we designed the SOMARS. This part of our 
cognitive system has been tested in a preliminary computational 
experiment, where we submitted a simulated reproduction of the 
Iowa gambling task to an artificial agent endowed with SOMARS 
(Cominelli et al., 2015).

In Figure  6, the SEAI system after the loading of the FOF 
module is shown. This leads to the definition of the Somatic 
Marker template, additional rules in REARS, the SPEC-BEHRS, 
and SOMARS. SOMARS has been divided into SOMARS rules 
for SM creation (6a, blue arrows in Figure 6) and for SM recall 
(6b, green arrows in Figure  6). To better explain the labeling 
and recall method, we refer again to the music example: nothing 
changes in the perception of the music (0,1) and the creation of 
its internal representation as a fact (1); neither the influence of 
the music on body preparation and emotional state through the 
EMORS is changed (3), nor the subsequent feelings assertion due 
to the FEERS (5); but now there are rules of SOMARS that, (6a) if 
the intensity of the emotional state |es|, intended as the modulus 
of es(v,a) vector, exceeds a decided threshold called sensitivity 
(s), then assert a fact in the fact-list: an instance of the somatic 
marker template. A somatic marker in SEAI is a fact (sm(id)
(value)(bp)), where id is an identification number assigned 
to the causative entity, value = ves * 100, and bp is a multifield slot 
that contains the current (vbp, abp). In the example, the listened 
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FigUre 6 | SEAI after FOF Module loading. New parts highlighted in blue. Green arrows (6b) indicate SOMARS rules for somatic marker recall.
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music, after a few minutes playing, induces by means of EMORS 
an es, which modulus is

 | |= + >es v a ses es
2 2 , 

as a consequence, SOMARS checks the fact-list, the music-genre 
chill-out is identified with a specific id, labeled with a 
value and associated with the bp(v,a) felt in that moment. 
A new (sm) has been created.

This sequence corresponds to the sequence of transitions 
between the states s0 (the proto-self exists at the inaugural instant), 
s1 (an object come into sensory representation), and s2 (the proto-
self has become modified by the object). In LEADSTO formaliza-
tion, this is equivalent to LP7, LP8, and LP9.

From here on, the labeled entity in the fact-list will activate 
rules of the SOMARS for SM recall (6b) that will modify the body 
preparation state immediately recalling the bp(v,a) that was 
felt and associated with that entity. This bp will be represented 
as a sensory representation of the body state (sr(S) in Bosse, 
a fact in SEAI). This new state is not derived by an upgrade of 
the body state (LP4 in Bosse, 10 in SEAI), but from an internal 
representation of body preparation recalled from the long-term 
memory of the agent. This is, in all respects, an as if body loop, and 
corresponds in LEADSTO notation to LP6.

Another consequence of the recognition of a marked entity 
may be the activation of (4c) a rule of SPEC-BEHRS, triggering 
some specific behavior toward that entity, pushing a high priority 
action to be executed, such as saying something about that music 
(e.g., “this music is getting boring”). The sequence that includes 
(4c), (8), and (9) coincides to LP10.

Finally, even REARS rules may be activated to assert more 
abstract and general facts. For instance, a rule of the reasoning rule 
set could be: if there are the facts (music), (music-genre 
is chill-out), and a (sm) which label that music with a bp 
corresponding to a bored face, then assert the fact (chill-out 
is boring).

The emergence of SMs is the emergence of personal opinions, 
about the entities of the world, that the agent autonomously builds 
through the interactions with such entities. This mechanism, 
which leads to the construction of an autobiographical memory 
and biases the behavior of the agent and its opinion about the 
world, is deputed to the bio-inspired mechanism activated by the 
FOF module. Things would have ended differently, for example, 
if other entities of the external world had moved the emotional 
state in a different direction, predisposing the agent in a better 
“mood.” In this case, chill-out music would have been probably 
labeled as a nice music genre recalling a pleasant body state to 
express. In general, it is evident that this level of consciousness, 
which could not exists without its predecessors, moves beyond 
the “here and now,” includes personal opinions and feelings about 
specific entities of the world and allows the creation of higher 
general thoughts. We identify this level with the equivalent of 
the Extended Consciousness, which as a consequence appears 
activated in Figure 6.

6. TesTing seai in The real WOrlD—
The hri eXPeriMenT

In this section, we report an experiment in which SEAI has been 
used as cognitive system of the humanoid robot FACE (Facial 
Automaton for Conveying Emotions)4 (Figure  7). FACE is a 
human-like robotic head, with the appearance of an adult female, 
capable to perform very sophisticated expressions by means of 
a hyper-realistic facial mask. The android’s head has been cus-
tomized by our research team starting from a Hanson Robotics5 
head. The facial mask is made of Frubber (“flesh rubber”), a pro-
prietary skin that mimics real human musculature and skin, and 

4 www.faceteam.it.
5 http://www.hansonrobotics.com/.
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FigUre 7 | The FACE Robot (Facial Automaton for Conveying Emotions) displaying some of its hyper-realistic facial expressions.
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it is actuated by 32 servomotors. The robot has also a mechanical 
system, composed of a controlled neck with 3° of freedom and 
movable eyes to allow gaze control (Zaraki et al., 2014, 2017).  
In this experimental setup, the head has been mounted on a pas-
sive mannequin, placed in a seated position. In order to achieve 
the maximum possible naturalness of the HRI, the interaction 
takes place in a normal situation of everyday workplace: an 
office room that has not been prepared or specifically structured. 
The experiment of this study has been approved by the Ethics 
Committee of the University of Pisa (prot. 68459, ref. Ethical 
Approval by CEAVNO, Comitato Etico di Area Vasta Nord). All 
research participants provided written and informed consent.

In the presented experiment, FACE interacted with three 
subjects, identified as ID1, ID2, and ID3. The experiment can be 
divided into the following four scenes:

Scene 1. ID1 enters the room where the robot is seated. He 
performs several disturbing or impolite actions: he does not 
greet the robot, immediately invades the robot’s intimate space, 
does not speak to it, folds his arms for a while, and then leaves.
Scene 2. ID2 enters the room and performs mixed actions: he 
greets robot, invades the robot’s intimate space but then imme-
diately makes a step back, speaks for a while to the robot, and 
then leaves.
Scene 3. ID3 enters the room and performs actions that are 
typical of nice behavior: he greets warmly the robot, smiles at it, 
speaks a lot to it; finally, greets again and leaves.
Scene 4. ID1, ID2, and ID3 come back into the room where 
the robot is located and arrange themselves in three positions 
at different distance from the robot. They just maintain their 
position for about 30  s without doing anything to draw the 
attention of the robot. Then, they all leave the scene.

This sequence has been recorded as a repeatable scenario 
using Kinect Studio, a tool to record and play back depth, color 
streams, and audio from a Kinect.6 In this way, it is possible to 
present exactly the same scenario to the robot comparing the 
effect of the same social scene in three different conditions of the 
cognitive system: (cond1) SEAI with only the Emotion module 
and the Attention module; (cond2) including the Feeling module; 
and (cond3) including the FOF module.

6 https://msdn.microsoft.com/en-us/library/hh855389.aspx.

Images gathered by the Kinect are analyzed by the Scene 
Analyzer, which extracts (or estimate) several main social cues 
of the subjects involved in the scene, e.g., their facial expression, 
age, gender, gestures, body postures, and proximity. The SENSE 
service detects also, for every incoming frame, the salient point 
of the image, processed by means of pure image analysis based 
on colors, contours, light contrast, rapid movements, etc. This 
point is also identified by an ID, which is ID0. All the informa-
tion is organized as a meta-scene that is sent to the I-CLIPS 
Brain through YARP. Once the meta-scene has been processed 
by the I-CLIPS Brain, an ID will draw the attention of the robot 
that will look at it. This ID is also called Winner ID. This is 
an automatic non-emotional mechanism decided by the rules 
of the Attention module, loaded in all the three conditions. 
This module, indeed, defines several standard behavioral rules 
(STD-BEHRS) that, choosing the winner, drive the attention 
of the robot. For example, the FACE attention is attracted by 
someone raising their hand or speaking to the robot. If no one 
is doing anything relevant but subjects are present in the scene, 
then the robot will look to the closest subject. If no subject 
is present in the FOV, then the robot will analyze the scene 
by looking at the salient point. The attention model, here 
implemented in the form of rules, was studied and discussed 
in Zaraki et al. (2017).

6.1. results
6.1.1. Experiment 1
In this first condition, the Emotion module is loaded. This leads 
to the definition of body preparation and the EMORS that can 
modify bp (v, a) according to external and internal stimuli.  
It results in a FACE bodily change, and so, an emotional response 
to what is happening in its social environment. For example, the 
absence of people in the FOV of FACE causes the display of a 
sad facial expression corresponding to negative valence and low 
arousal (−0.3, −0.5). As the subject enters in the room, we see in 
Figure 8 two parallel consequences: rules of the Attention mod-
ule will bias the attention of the robot from the salient point to 
the detected subject, while rules of the Emotion module change 
the bodily state of the robot. This change in the status of the 
body will be expressed according to our emotion model through 
the FACE expressive capabilities: an ECS point is translated by 
the Robot Control in 32 commands for the relative servomotors 
moving its face and neck.
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FigUre 8 | Results of the HRI Experiment with FACE integrating SEAI in condition 1. Columns are the four scenes. Rows are, in order: winner ID, bp (v), and bp (a). 
Time t is expressed in seconds.
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In Figure 8, looking at the charts of bp(v) and bp(a), it is 
possible to see, along all the interaction, the emotional response 
of the robot. FACE expresses discomfort (−0.5, −0.6) when a 
subject invades its intimate space, an angry expression (−0.52, 
−0.67) if someone folds his arms, smiles (0.21, 0.6) if someone 
greets her or smiles at her, and expresses interest (0.62, 0.2) when 
an interlocutor speaks to her. Without going into the details of 
the actions performed by the subjects in their interaction with 
the robot, the trend of bp (v,a) shows how the robot is emotion-
ally affected in the three first scenes. In the first one, the impolite 
behavior of ID1 induces unpleasantness and annoyance, hence, 
values of negative valence are predominant, accompanied by 
large arousal fluctuations. ID2 has an engaging interaction 
with the robot, he manifests a polite behavior, quite neutral. 
As a consequence, positive values of valence are predominant 
and the arousal is not highly affected. In scene 3, we can see 
the effects of the interaction with ID3: the interaction is full of 
positive stimulus, this induce in the robot frequent emotions of 
pleasantness and high excitement. Finally, we see in scene 4 that, 
the entire time the robot is detecting people, bodily changes are 
nearly irrelevant. Indeed, the three subjects just stand in front 
of the robot without saying or doing anything. The emotion 
expressed by the robot is always neutral (0,0), with an exception 
when the subjects leave the room. In this transition, there are 
fluctuations due to the overlapping of detected people going out 
through the same door, resulting in a difficult reconstruction of 
the skeletons by the Scene Analyzer. In any case, sudden quick 
variations are filtered by the Robot Animator and will not lead to 
the movement of the robot.

Concerning the behavior of the robot, in terms of attentive 
model, for the first three scenes, the winners of FACE’s attention 
can only be the single subject presents in each scene or the salient 
point (ID0). The salient point draws the attention of the robot in 
the absence of social stimuli, therefore, before and after subjects’ 
detection. In the last scene, including all subjects, the robot 
focuses its attention on ID1, because he is the closest subject and 
nobody is doing anything to draw the attention of the robot.

At this stage, FACE bodily state is clearly affected by external 
events, but the agent is not aware of its own feelings. Emotions 
last exactly the duration of the stimuli. There is no memory of the 
experiences. Therefore, behavior is reactive and FACE does not 
take deliberative decisions about specific subjects. The evidence is 
that when the subjects come back into the room it is like nothing 
has happened before, the attention of the robot is not influenced 
and the robot simply look at the nearest person. We are still at an 
equivalent of the proto-self level of consciousness.

6.1.2. Experiment 2
The emotional state template comes along with the loading 
of the Feeling module. The effects of this module are shown in 
Figure 9. EMORS can now modulate the emotional state (es) of 
the agent, which is continuously upgraded by FEERS through the 
assertion of facts in the working memory. The influence of events 
on es can vary from a low influence (e.g., talking to the robot, as 
in scene 3, from t = 100 s to t = 130 s) to a very important influ-
ence (e.g., invading its intimate space, as in scene 1, from t = 10 s 
to t = 15 s). This leads to a modification of the emotional state 
expressed by the robot: the agent does not show exactly the (vbp, 
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FigUre 9 | Results of the HRI experiment with FACE integrating SEAI in condition 2. Columns are the four scenes. Rows are in order: winner ID, bp (v), bp (a),  
and es. Effectively executed v′ and a′ are, respectively, colored as red and green lines, while bp values not affected by es are represented as black lines to allow 
comparison. Time t is expressed in seconds.
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abp) values, but this emotional immediate reaction is modulated by 
the new internal representation of emotions. These new values are 
(v’,a’), discussed in section 5, where the influence factor has been 
set as k = 0.1. The higher priority of ALT-BEHRS guarantees that 
(v′,a′) are executed instead of (vbp, abp). In the charts of bp(v) 
and bp(a), we report both the values with (red line for valence, 
green for arousal) and without (the black line underneath) the 
es contribute. As expected, their difference is proportional to 
the intensity and the duration of the emotional state perceived. 
Moreover, the trend of es is slower and can last more than the 
duration of the causative stimulus, as in the transitions from 
detecting subjects to loneliness, which is no more immediate but 
smoothed (e.g., scene 3, es and bp after t = 130).

At this stage, the agent is aware of its own simulated feelings 
thanks to a continuous assertion of facts in its working memory 
reporting its own synthetic emotional state. Feelings also emerge 
in the body as shades of the emotional states expressed by the 
agent. In any case, all this information is temporary, there is a 
modulation of the behavior but still, no clear connection between 
the causative stimulus, the agent body state, and the subsequent 
feeling perceived. As a consequence, a recall of emotions driving 
specific behaviors is not feasible and the deliberative behavior of 
the agent is approximately the same: ID1 is still the winner of 
FACE attention.

6.1.3. Experiment 3
The addition of FOF module results in the definition of SOMARS 
and the possibility for SEAI to exploit the somatic marker 
mechanism. In Figure 10, we can see the results of the experi-
ment in this third condition. The difference is impressive: during 
the first three scenes, in which the agent interacts individually 
with the three subjects, the attentive behavior of the robot is 
exactly the same, but the emotions evolve in a very different 
way; while, in scene 4, in front of all the subjects the attentive 
behavior is completely changed, emotional reactions are more 
stable, and the emotional state perceived is zero. This is due to 
the SM creation and recall mechanism discussed in section 5.6. 
Referring to the experiment, sensibility has been set to s = 0.75, 
so, the annoying behavior of ID1 makes the es intensity 
increase rapidly until it exceeds the s threshold (t = 15.5 s), this 
leads, in the next run cycle (t = 15.83 s), to the creation of a SM 
containing the winner ID, a marker value of −74.4 according to 
the equation reported in section 5.6, and the current bp (v,a) 
induced by the causative entity. The same thing is happening 
when FACE interacts with ID3 during scene 3, but here the 
quality of the marker is positive (details in Figure 10). As soon 
as these markers are created, the emotional state is no longer 
perturbed by the marked entity, because the agent has a precise 
belief and an associated emotional behavior to express toward 
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FigUre 10 | Results of the HRI experiment with FACE integrating SEAI in condition 3. Columns are the four scenes. Rows are, in order: winner ID, bp (v), bp (a), es, 
and sm. Effectively executed v′ and a′ are, respectively, colored as red and green lines, while bp values not affected by es are represented as black lines to allow 
comparison. In es, we pointed out the es (v,a) values that caused the creation of a sm. In sm we reported the values of SMs in the moment in which they have been 
created by the system. IDs colors are indicated in the sm chart. Time t is expressed in seconds.
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that specific subject, which is the somatic state felt and labeled 
through the somatic marker mechanism. This can be seen both 
in scenes 1 and 3 after the creation of the SM, and, which is 
more important, in the last scene. Indeed, in scene 4 when all 
the subjects are in front of the FACE robot, FACE is no longer 
attracted by the presence of the nearest subject. On the contrary, 
the presence of marked subjects completely bias its behavior: 
ID1 now is labeled, and when he enters and becomes detected, 
the robot immediately recalls the somatic state (−0.5, 0.6) felt 
in the past causative interaction; the same happens as soon as 
ID3 comes into the FOV of the agent. In our behavioral model, 
SPEC-BEHRS related to positive marked entities have higher 
priorities on rules driving the attention on negative marked 
entities. Therefore, until ID1, ID2, and ID3 are all detected, the 
attention of the robot is all for ID3. FACE is specifically attracted 
by him, thanks to his previous nice behavior, and stares at him 
with a pleasant facial expression (0.2, 0.68). In this last scene, 
ID2 becomes quite invisible to the robot, because his neutral 
previous interaction has never pushed the emotional state over 
the sensibility threshold (as shown in the es trend of scene 3). 
That experience did not influence enough the robot to create a 
dedicated SM.

This last experiment represents the test of the full SEAI 
system configured as Damasio’s theory simulator endowed with 
the somatic marker mechanism. At this stage, the agent is able 
to autonomously create long-term memory information about 
entities of it social environment. These memories are emotional 
memories and are perceived by means of the body. They can 
affect the somatic state of the agent in case of further interactions, 
and bias the behavior in a very evident way. This mechanism, 
completely bio-inspired, let the agent automatically build its own 
beliefs about the outer world and about itself. What has been 
described, to all intents and purposes, models the construction 
of an autobiographical emotional memory and it respects the 
minimum requirements for the emergence of what Damasio 
described as an Extended Consciousness.

7. DiscUssiOn anD cOnclUsiOns

In this paper, a novel cognitive architecture for social robots has 
been presented. We selected a well-known mind theory to be mod-
eled and implemented in the form of a cognitive system control-
ling an emotional robot with sophisticated expressive capabilities. 
The developed system is called SEAI (Social Emotional Artificial 
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Intelligence). In particular, it has been inspired by the findings of 
Antonio Damasio and it is consistent with the computational for-
malization made by Bosse et al. (2008). It is based on a declarative 
rule-based expert system on top of procedural services deputed 
to the perception and motion control of the robot. Compared to 
other robotic cognitive systems, some of which discussed in the 
state-of-the-art section, SEAI has still some shortages: homeosta-
sis control is missing, the agent’s physiological parameters are a 
symbolic representation, capabilities such as perspective-taking 
or mind-reading have been not yet considered. Most of the effort 
has been spent in the C1 meaning of consciousness, rather than 
in the C2 definition (Dehaene et al., 2017). On the other hand, 
SEAI stands out from the other systems thanks to the hybrid 
concept with which has been designed. Indeed, the modular 
design of the architecture potentially enables the extension and 
portability of the system to any other social robot simply adapt-
ing, or adding, low-level services to the sensory apparatus and 
the motor system of the specific agent. This can be done keeping 
the “personality,” memories, beliefs, experience, and behavioral 
traits of the agent, all of which depend on the cognitive part of the 
system, and therefore can be transferred or modified indepen-
dently. Moreover, the innate extensibility of the rule-based expert 
system, which is the core of the cognitive block, puts no specific 
limitations to the inference reasoning capabilities with which the 
artificial agent can be endowed, which depends on the number 
and complexity of the rules. In the presented experiments, SEAI 
endowed a social humanoid with artificial emotions and feelings 
that have been influenced by the context, the agent managed to 
exploit them to build opinions on the social world in which is 
immersed, and, based on them, it manifested more sophisticated 
social skills. For instance, in the last experiment, an evident bias 
from the robot’s standard behavior emerged. Such experiment 
obviously does not pretend to be the demonstration that we cre-
ated a conscious being, but it is a clear demonstration of how 
SEAI and the chosen “understanding by building” approach lead 
to an important confirmation: with SEAI, robots can benefit from 
their own artificial emotions for taking decisions and treasure 
their past interactions. Future works will include (1) the expan-
sion of SEAI in order to include the missing features identified in 
the other robotic cognitive systems; (2) the simulation of many 
other complex human social behaviors by writing new rules and 
expanding the current rule- sets; (3) study of the people’s reactions 
to the adaptation of the robot behavior to its social environment 
by means of HRI experiments, eventually on long-term interac-
tions. For the purpose of points (2) and (3), the involvement of 
professional figures from behavioral psychology and neurosci-
ence would be greatly fruitful, and a questionnaire investigating 

the interlocutors feedback about the perceived consciousness of 
the robot will be required. The key issue is if the social interaction 
with humans would effectively benefit from the created devia-
tions in the behavior of the social robot. Our hypothesis to test is 
that the realism derived by the integration of SEAI will improve 
the acceptability and the believability of this new kind of robots. 
In conclusion, we believe that SEAI is a potential valuable tool 
for modeling human consciousness and, ultimately, a promising 
beginning to tackle the possibility to attribute to the robots a 
synthetic form of consciousness. In this latter case, ethical issues 
will become extremely relevant and critical.
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The emerging neurocomputational vision of humans as embodied, ecologically embed-
ded, social agents—who shape and are shaped by their environment—offers a golden 
opportunity to revisit and revise ideas about the physical and information-theoretic 
underpinnings of life, mind, and consciousness itself. In particular, the active inference 
framework (AIF) makes it possible to bridge connections from computational neurosci-
ence and robotics/AI to ecological psychology and phenomenology, revealing common 
underpinnings and overcoming key limitations. AIF opposes the mechanistic to the 
reductive, while staying fully grounded in a naturalistic and information-theoretic foun-
dation, using the principle of free energy minimization. The latter provides a theoretical 
basis for a unified treatment of particles, organisms, and interactive machines, spanning 
from the inorganic to organic, non-life to life, and natural to artificial agents. We provide 
a brief introduction to AIF, then explore its implications for evolutionary theory, ecological 
psychology, embodied phenomenology, and robotics/AI research. We conclude the 
paper by considering implications for machine consciousness.

Keywords: free energy, uncertainty, self-organization, embodiment, evolution, affordances, skilled expertise, 
frame problem

1. oVerVieW and GentLe introdUCtion to tHe aCtiVe 
inFerenCe FraMeWorK (aiF)

In this article, we will consider the active inference framework (AIF)—or, more strictly speaking, the 
principle of free energy minimization (FEM)—as a principle, rather than as a hypothesis. This means 
that we do not consider evidence for or against AIF per se. As a principle, AIF cannot be falsified—it 
is just a formal description of dynamics (much like Hamilton’s principle of least action; see below) 
that we apply to sentient agents. The process theories that attend AIF do, clearly, require evidence, 
which we refer to in our discussion.

Following a general overview, this section offers a gentle introduction to AIF, illustrating aspects 
of its instantiation as predictive processing (PP). Subsequent sections unpack the framework in 
greater detail, drawing out its implications for evolutionary theory, ecological psychology, embodied 

50

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00021&domain=pdf&date_stamp=2018-03-08
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00021
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:adam.linson@stir.ac.uk
https://doi.org/10.3389/frobt.2018.00021
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00021/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00021/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00021/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00021/full
http://loop.frontiersin.org/people/427623
http://loop.frontiersin.org/people/808
http://loop.frontiersin.org/people/785
http://loop.frontiersin.org/people/20407


Linson et al. Active Inference and Ecological Perception

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 21

phenomenology, and robotics/AI research. In the final section, 
we directly consider aspects of machine consciousness.

Given the ill-defined concept of consciousness, we endeavor 
to bring onto the same page researchers from physics, biology, 
neuroscience, philosophy, cognitive science, and robotics/AI, by 
reviewing concepts that are sometimes presumed to have unique 
and self-evident meanings. This approach aims to dispel mis-
interpretations and sharpen the cross-disciplinary focus on the 
substance of the claims. Throughout the following exposition and 
argument, there are several deep connections to the possibility 
of machine consciousness, although this topic only emerges as 
central in the concluding section. The preliminary sections are 
a necessary prelude to appreciating the implications of AIF for 
biology and robotics/AI, given that the notion of consciousness 
in robotics is sourced from the human equivalent. It is, therefore, 
important to establish a perspective from which human biology 
is accounted for by a mechanistically grounded, information-
theoretic treatment. This perspective can lend itself to robotic 
implementation; however, without this grounding, any arbitrary 
properties associated with consciousness could be thusly imple-
mented, putting the proverbial cart before the horse in modeling 
the target phenomenon.

Embodied and embedded human cognition has been analyzed 
extensively, not only in cognitive science but also in ecological 
psychology and phenomenological philosophy. Furthermore, all 
three fields have continually engaged with robotics/AI, contribut-
ing insights and critical perspectives, in some cases even effecting 
technological shifts (see, e.g., Brooks, 1999; Dreyfus, 2007; see 
also Chemero and Turvey, 2007; Sahin et al., 2007). More recently, 
there has been a proliferation of fruitful exchanges between 
robotics/AI and neuroscience (Hassabis et al., 2017), especially 
with respect to PP. The generalization of PP in AIF makes it 
possible to bridge connections to ecological psychology and phe-
nomenology, revealing common underpinnings and overcoming 
key limitations inherent to the latter two.

To indicate where this account is headed, our conclusion sup-
ports the idea that there is a fundamental relationship between 
(self-)consciousness and processual recursion, which has been 
suggested in other work (e.g., Maturana, 1995; Seth et al., 2006). 
To reach this conclusion, our discussion of consciousness is 
deferred throughout the paper, which tries to account for the 
emergence of processes and recursive architectures that under-
write a conscious embodied agent. In this light, we set up AIF in 
Section 1 in such a way as to be expanded upon in later sections. 
Sections 2 and 3 take a long view of the emergence of human 
biology that paves the way for the remaining sections. Sections 4 
and 5 address relevant paradigm contrasts in computational 
treatments of perception and action, and their implications for 
both biological and robotics/AI research. Sections 6 and 7 explore 
theoretical implications and practical applications, concluding in 
Section 8 with a consideration of humanoid robot consciousness 
(the theme of this special issue).

1.1. setting Up the Framework
AIF considers a thermodynamically open, embodied, and 
environmentally embedded agent (see, e.g., Friston, 2009, 2010; 
Friston et al., 2010, 2015a,b, 2016, 2017a,b,c). In AIF, the adaptive 

behavior of such a “cybernetic” agent is understood to be regu-
lated by ecologically relevant information, underpinned by a per-
ception/action loop. Taking a broad bio-evolutionary view, AIF 
regards the entire embodied agent as a generative model of the 
organism-relevant thermodynamics of its ecological niche (see 
below), in that the agent is a member of a phylogenetic species 
that is co-stabilized with its niche. This notion encompasses the 
reciprocal organism/niche coevolutionary relationship (Laland 
et al., 2017).

During later evolutionary periods in which organisms with 
neural systems arise, brains come to augment the more funda-
mental embodied agent with a neuronal-connectivity-based 
extension to the generative model that handles more complex 
organism/niche dynamics. Thus, even when discussing PP—the 
human (neuronal) instantiation of active inference—the brain 
should be understood as “taking a back seat” to the body, serving 
the body by facilitating more complex coordination. Such coor-
dination, including the dramatic niche reshaping seen in human 
culture, serves to co-stabilize organism and niche.

For a bacterium or a plant considered as an agent (Calvo and 
Friston, 2017), the embodied biological inheritance (the stable 
species as generative model) can be regarded as an implicit, 
surprise minimizing, familiarity with the niche. Many (if not all) 
of the earliest species inherit all the mechanisms they need for 
responding to and reshaping their niche, to facilitate their own 
survival and development. Such brainless organisms should be 
kept in mind whenever we “skip ahead” to the AIF description 
of human neural architecture—and its role in navigating the 
complexity of our cultural niche.1

1.2. Generative Model Basics
We next introduce the core notion of a neuronally implemented 
generative model. Consider, for example, a first-time visit to a 
university campus. Since a university is a contingent cultural 
entity, no part of our biological inheritance should be expected to 
provide us with any campus familiarity. However, if we have any 
earlier exposure to other universities, from visiting, reading, or 
hearing about them, this experience may contribute to our expec-
tations of familiar features: we could speculatively populate any 
given campus with some lecture halls, administrative buildings, 
cafes, and so on. This mental act of populating, in other words 
generating, amounts to using a generative model of a campus (i.e., 
generating consequences from causes). On a first-time campus 
visit, such a generative model allows us to “predict” (extrapolate 
from the model) that there is a cafe, or, more precisely, that there 
is a high probability of there being a cafe, even if in actuality, there 
is not one there.

If we are visiting a specific campus for the first time, our 
generative model will be rather vague, but as we gain familiar-
ity, we fill in more details. This process of gaining familiarity 
is a form of exploration, which may entail wandering, read-
ing signs, and talking to passers-by. The exploratory process 
amounts to updating or nuancing our generative model for 

1 For a related approach in philosophy of science, see, e.g., Bechtel (2014) and 
Bechtel and Abrahamsen (2007).
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this particular campus, including specific buildings and their 
layout. The exploration fills in the blanks, so to speak, such that 
we can then exploit the model for explicit or implicit purposes, 
whether finding the shortest path to the cafe or aimlessly 
meandering on a leisurely stroll. If, when exploring the campus, 
every sensory impression evinces the right sort of predictions, 
you have effectively inverted your generative model. In other 
words, to update your model of this campus, it has to predict 
the right things in the right place at the right time. This process 
amounts to learning to recognize the causes “out there” in 
relation to their context-dependent sensory consequences, or 
more simply, getting a grip on how sensations are caused by 
attempting to predict them—and then learning how to predict 
in this context.

Thus, the explore/exploit dynamic in relation to a generative 
model of a niche (including any subset thereof) can be understood 
as a process of gaining familiarity and “leveraging” that familiar-
ity to achieve any preferred outcome (Schwartenbeck et al., 2013). 
The generative model itself is augmented and developed through 
a broadly construed learning process that transforms neuronal 
networks. This developmental learning process throughout 
the lifespan is facilitated by, and supplements, the preceding 
evolutionary development of the embodied apparatus. Crucially, 
this learning entails something that gets quite close to conscious 
processing, namely a form of abductive inference that differs from 
standard accounts of perceptual inference, as we will see in later 
sections.

Significantly, in AIF, the gaining and leveraging of familiarity 
with respect to the generative model is not limited to agent-
external (distal) phenomena. While seeing an apple in a tree is 
ordinarily thought of as perception (i.e., perceiving the apple or 
its qualities), AIF radically expands the notion of perception. In 
AIF, vision and the remaining four classical senses are part of 
exteroceptive perception, or exteroception. Beyond exterocep-
tion, however, motor-system-governed biomechanical actions, 
such as plucking an apple from a tree, can be perceived not 
only by exteroception (by sight and touch), but also by what 
is referred to as proprioception. Even in seemingly isolated 
vision, there is continuous interaction between extero- and 
proprioception, as visual sensing interacts with eyeball, head, 
and even whole-body movement. This is a fundamental move 
beyond PP per se; it acknowledges that simply making sense of 
sensory data is only half the problem. You also have to actively 
coordinate your sensory surfaces and, essentially, become the 
author of your own sensations. We will see later that the impera-
tives for the active sampling of the environment, subsequent 
inference, and consequent learning, all comply with the same 
imperative, namely to enhance familiarity or resolve uncertainty 
and surprise.

A further perceptual modality accounts for the sensing of 
hunger and related internal sensations that are not necessarily 
discernible through extero- or proprioception. These internal 
sensations are grouped together as interoception. Here, too, we 
must recognize the continuous interactions between interocep-
tion and the other modalities, whether in bacteria or humans. 
For bacteria, the generative model embodies continuous relation-
ships between extero-, proprio-, and interoception in the form 

of chemotaxis and flagellar movements. For humans, when we 
feel an afternoon lull as a need for a snack, extero-, proprio-, 
and interoception interact, guiding us to the cafe to satisfy our 
hunger. In this light, the expanded notion of perception in AIF 
stretches well beyond the traditional sense of seeing the apple, in 
that it brings all perception and action under the same umbrella 
of ecologically embedded adaptive behavior.

1.3. Further preliminaries
The full scope of the embodied (and optionally neuronally 
augmented) generative model in AIF includes the building and 
leveraging of familiarity with the array of interactions between 
extero-, proprio-, and interoception. This familiarity may be 
gained during the lifespan, as in human development, or it may 
be predominantly biologically inherited, as with bacteria. Across 
all cases, however, the agent seeks to bring about its preferred 
and familiar future (e.g., satisfying hunger) by advancing the 
state under its generative model, through a sequence that begins 
with its present state, and follows a pathway guided by (inherited 
or learned) familiarity. Given the exteroceptive dimension, the 
agent’s state can always be more comprehensively understood as 
the joint state of the agent/environment system.

Despite the relative simplicity of the basis of AIF—an embo-
died generative model with interactive modalities that facilitate 
agent/environment state transitions—the framework elegantly 
scales up from bacteria and plants to humans, even in atypical 
cases: a caring individual who sacrifices their own life for a pre-
ferred or expected future in which someone they rescue survives; 
a psychedelic drug taker who seeks a perpetually exploratory 
series of wild hallucinations over a more stable experience;  
a prisoner on a principled hunger strike who attempts to bring 
about a future, not of sated hunger, but of some greater social 
justice. In all instances, agents are interactively reducing their 
uncertainty in an open-ended self/world relationship (“what will 
happen” or “what would happen if I did that”).

This process of bringing about a preferred future is referred to 
(in AIF) as active inference, a concept that will be further fleshed 
out in the remaining sections. At present, it should already be 
clear why active inference is not continuous with earlier notions 
of perceptual inference, given the role of the three modalities 
accommodated by the generative model—especially when we 
consider that proprio- and interoceptive predictions change the 
sensory evidence for our percepts (via motor and autonomic 
reflexes, as we will see later). Arguably, even the AIF treatment of 
perception itself is not continuous with earlier theoretical treat-
ments of perception, since in AIF, perception is deeply situated 
in the embedded context of the active agent. Moreover (as we will 
also see later), AIF goes beyond established paradigms critical 
of traditional perceptual inference such as ecological psychology, 
which, despite its action-oriented perspective, still exhibits a 
latent exteroceptive-centrism.

A final and highly significant meta-theoretical feature set of 
AIF—one that should appeal to humanities scholars who are 
wary of naturalistic and information-theoretical accounts of 
humanness—is that the framework inherently enshrines the fun-
damental uncertainty and unknowability of the future, along with 
the agent’s fallibility about the present and past. In addition, in 
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contrast to superficially similar accounts, AIF markedly opposes 
the mechanistic to the reductive. These features will emerge more 
clearly throughout the paper. The next section addresses the role 
of the free energy principle, “the other side of the coin” of active 
inference.

2. deMystiFyinG FeM: FroM pHysiCs  
to inForMation tHeory and BaCK 
aGain

In this section, we use a version of Maxwell’s “demon” thought 
experiment to illustrate how concepts such as entropy and 
equilibrium link thermodynamics and information/control theory 
in cybernetics (e.g., Ashby), especially regarding how this link 
pertains to self-organization and the regulation of coupled 
systems. Readers already familiar with these concepts may wish 
to skip this section. In Section 2.1, we provide an introductory 
account of statistical thermodynamics and associated concepts, 
such as FEM, entropy, and uncertainty. We then connect these 
concepts to information theory and cybernetic control theory in 
Section 2.2. Finally, in Section 2.3, we return to thermodynamics, 
with an emphasis on substrate limitations for physically realized 
computational process models.

2.1. thermodynamic FeM, entropy,  
and Uncertainty
It might seem far-fetched to think that the entire universe has 
a direct relationship with a personal computing device. And 
yet, from the standpoint of thermodynamics, your laptop heats 
up because of the work it is doing shunting around subatomic 
particles, which in turn directly increases the total entropy of 
the universe. Of course, cosmologists have little interest in the 
vanishingly insignificant impact of a laptop on the universe. Scale 
matters a great deal in thermodynamics, because any thermody-
namic system is an artificially bounded subsystem of the universe, 
which by stipulation, resides at the largest end of the scale. In 
this sense, the timescale of the universe offers the longest pos-
sible temporal trajectory, into which all other system trajectories 
eventually collapse.

It is a theorem in physics that the total entropy of the universe 
continuously increases (a corollary of the second law of thermo-
dynamics). Thus, for any subsystem, whether a galaxy, organism, 
or even a laptop, if it can in any way reduce entropy within its 
system boundaries, this will only be for a relatively short time2 
until it must yield to the entropy-increasing pressure of the uni-
verse. This relationship can be viewed as a process of maintaining 
a local state equilibrium at the temporary expense of a global 
state disequilibrium; the global state will eventually reclaim its 
equilibrium in the long run by overwhelming the local state.

Thermodynamic entropy can be understood as a measure of 
our ability to predict the position of particles within a system 
over a duration. This is why entropy typically increases with 

2 This, of course, could be millions of years.

heat,3 since generally speaking, faster particle movement gives 
off more heat than slower movement, and faster movement leads 
to more-difficult-to-predict positions. Conversely, cooling slows 
down particles, making their positions more predictable, thereby 
decreasing entropy. Another way to describe the predictability of 
particle positions is in terms of our relative certainty about their 
predicted positions (in relation to the limited set of all possible 
positions). In this sense, higher thermodynamic entropy, greater 
unpredictability, and greater uncertainty are all linked to the same 
underlying quantity.

To bring together the notions of equilibrium states and 
entropy, consider a modern refrigeration unit. Its interior is 
kept cool by the operation of an electrical motor that gives off 
heat outside the unit. The entropy of the room (and indeed the 
universe) that houses the unit, i.e., the global equilibrium state, 
increases by the operation of the motor, while the cool interior, 
i.e., the local equilibrium state, momentarily maintains a lower 
entropy than the exterior. Eventually, of course, over the long run, 
the motor will stop, finally rewarming the unit. For keeping our 
drinks cool, however, it suffices to focus on the local subsystem 
and its corresponding timescale.

Finally, we reach the notion of FEM. In thermodynamics, 
particle movements count as work, and work has two main ener-
getic effects: it uses some energy to do the work, and it releases 
some energy as light and/or heat. The energy available or “free” 
for the work is, thus, un-mysteriously referred to as free energy, 
in contrast to the available energy already (lawfully) dedicated to 
being released during the work. Returning to the above example, 
in a room with a refrigerator, when the fan has warmed the room 
air, the warm air particles have sufficient free energy to expand 
across the entire room. As long as the refrigerator door is closed, 
those particles cannot penetrate the fridge, so they only expand 
to occupy the room minus the fridge (a disequilibrium between 
the global/room and local/fridge states). However, when the 
fridge door is opened, the warm air particles expend their free 
energy by expanding into the open fridge. In this sense, they 
(lawfully) minimize free energy, i.e., they use the available free 
energy to expand across the full space, including the fridge 
interior. That is, through thermodynamic FEM, the global equi-
librium/high entropy state of the warm room overwhelms the 
local equilibrium/low entropy state of the cool fridge interior.

2.2. FeM, entropy, and Uncertainty in 
information theory and Cybernetics
Imagine that when we open our fridge door, a tiny demon4 
appears, to swat away the incoming warm air particles. If it swats 

3 We specify “typically” here as a nod to the Fluctuation Theorem (that generalizes 
the second law to non-equilibrium systems). In brief, the Fluctuation Theorem says 
that the probability of entropy decreasing vanishes as the observation time or size 
of the system increases (Evans and Searles, 2002). In other words, at a microscopic 
level, it is possible to have transient decreases in entropy, but the probability of this 
occurrence quickly becomes almost zero, over time.
4 Maxwell’s demon is a thought experiment proposed by James Clerk Maxwell to 
account for violations of the Second Law of Thermodynamics (Maxwell, 1871, pp. 
308ff.). Subsequently, it was realized that even Maxwell’s demon complies with the 
Second Law in virtue of Landauer’s principle, namely, that “any logically irreversible 
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away a few particles at a time, it can delay the inevitable process 
of the fridge warming up. The more particles it can swat away, the 
more prolonged the delay. Better still, what if it could swat away 
all incoming particles? This would be as good as leaving the fridge 
door closed, as the local equilibrium of the cool interior would 
be maintained (at least over the short run); anything less, and the 
global equilibrium state (the warm room) would overwhelm the 
cool fridge and spoil the milk.

This demon scenario illustrates what cybernetics pioneer  
W. Ross Ashby (1958) termed “the law of requisite variety.” Requi-
site variety refers to the sufficient available responses by the local 
subsystem to resist the global system, such as the demon’s suf-
ficient responses to all incoming warm air particles to maintain 
the cool fridge. Without requisite variety, the global equilibrium 
is permitted to prevail in the short run.

Now imagine the demon is working as a remote operator, 
controlling the positions of the cool air particles in the fridge, 
and maneuvering them along the plane of the door-opening to 
block any incoming warm air particles. This leads the particles to 
bounce off each other while remaining on their respective original 
sides of the opening, in which case the local subsystem remains 
thermodynamically identical before and after the onslaught of 
repelled particles. Significantly, the average thermodynamic state 
of the entire local subsystem is not concerned with a subset of 
specific particle positions. And yet, in our example, it is precisely 
this subset of particle positions that serve to maintain the local 
equilibrium. In this respect, while differing particle positions 
can result in thermodynamically equivalent systems, the systems 
would be informationally distinct, in that they reflect different 
organizations of the same set of particles. This brings us to 
Shannon (1948) information theory.

For Shannon, the distinct informational notion of entropy 
is borrowed from thermodynamics, as suggested by John von 
Neumann, who noticed the affinity between the concepts 
(Levine and Tribus, 1978). Shannon recognized that a set of 
binary switches has many possible on/off positions that can, 
by stipulation, be assigned any meaning. When transmitting 
a set of positions as a signal over a channel, noise made up of 
the same elements of the signal increases along the length of 
the channel. As this noise increases, it clouds the source signal, 
which in turn must be distinguished from an increasingly 
greater set of possible on/off switch configurations. In this 
sense, the location of the signal in the noise becomes increas-
ingly uncertain.

As with particle positions in thermodynamics, the greater 
the ability to “predict” where the signal is within the noise, the 
greater the certainty. Thus, informational FEM is a reduction 
of uncertainty, i.e., an increased probability of picking out the 
relevant signal from the noise. By analogy to physics, this quanti-
fied uncertainty is termed Shannon entropy. Higher Shannon 
entropy reflects a greater uncertainty in picking out the relevant 
information, so informational FEM amounts to improving the 

manipulation of information, such as the erasure of a bit or the merging of two 
computation paths, must be accompanied by a corresponding entropy increase 
in non-information-bearing degrees of freedom of the information-processing 
apparatus or its environment” (Bennett, 2003).

identification of the relevant information. Technically, Shannon 
entropy is the expected self-information (a.k.a. surprisal) that 
(variational5) free energy aspires to approximate. This means that 
if one minimizes variational free energy at every point in time, the 
time average or expected surprisal is likewise minimized, thereby 
minimizing Shannon entropy via FEM.

Since the signal for Shannon is merely a particular organiza-
tion of a subset of the same elements comprising the noise, the 
organization itself constitutes the relevant information. Of course, 
different organizations of the same source may be relevant under 
different circumstances. In Section 6.3, we will consider this sense 
of variable relevance in relation to the frame problem. Here, we 
focus on a narrow sense of relevance that builds on Ashby’s law 
of requisite variety.

Conant and Ashby (1970) introduced the Good Regulator 
Theorem. This holds that, when two systems are coupled, given 
requisite variety (as with our demon controller), one system 
can remain in its local equilibrium state (cool fridge interior), 
despite the pressure of the system in a global equilibrium state 
(warm room). Without requisite variety, the system with greater 
variety will overwhelm the other, subsuming it into the global 
equilibrium. Requisite variety can be thought of a system having 
sufficient control information—and response parameters—to 
maintain its local equilibrium (the demon re-organizing the 
particles). In this sense, the system is a “good regulator” of the 
global system and on this basis, behaves as a model of the global 
system. We will see later that this translates into an agent with the 
right sort of generative model that can generate the consequences 
of a variety of actions.

Crucially, using this theorem, Shannon entropy can be 
transformed into a sender-free construct. Specifically, for the 
model in local equilibrium resisting the global state, it must not 
only have sufficient parameters, but it must pick out the “cor-
rect” organization of elements from the global system (such that 
“correct” refers to the information that allows the local system to 
resist being overwhelmed). To illustrate the sender-free notion of 
Shannon entropy with the fridge example, note that there is high 
uncertainty concerning which subset of warm air particles and 
their positions will threaten the open fridge door boundary. If the 
demon does not continuously select and re-organize the interior 
particles into the “correct” (blocking) positions, the milk spoils. 
Informational FEM amounts to the reduction of uncertainty 
(sender-free Shannon entropy) concerning the warm air parti-
cles, without there being a sender transmission per se. This will be 
important later (to Gibsonians, among others) for understanding 
that, on the AIF conception, the environment does not transmit 
information to the ostensible sensory-receiver.

2.3. design requirements for a Brain
Finally, we return to thermodynamics, in a slightly different 
role. Imagine replacing our demon with an ordinary laptop run-
ning special software to perform the same role described above 
(identifying and blocking incoming warm air particles), with one 

5 We will use the term of variational free energy (in information theory and Bayesian 
statistics) to distinguish it from thermodynamic free energy in FEM.
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additional constraint: the laptop must be placed inside the fridge. 
Lacking the demon’s thermodynamic law-defying properties, 
the laptop emits heat whenever it computes and controls the 
particle organizations. Thus, it is potentially self-defeating, since 
it threatens to raise the interior temperature despite keeping the 
outside forces at bay. Engineers could in principle redesign and 
reprogram the laptop to achieve efficient blocking by performing 
relatively few computations. A poor design might run too hot 
or too unreliable to be useful, while an ideal design would not 
overheat and block just enough particles to keep the milk cool.

This is why it is not enough to say that a thermodynamic 
system at local equilibrium can be a good regulator of a greater 
system by informational FEM alone. The local system must 
do thermodynamic work to be a good regulator of the greater 
system.6 Thus, the local system architecture must accomplish this 
work without a self-defeating heat increase (which would also 
increase thermodynamic entropy). This points to the fact that 
the means by which informational free energy is minimized must 
simultaneously serve to minimize thermodynamic free energy in 
order for the local system to maintain its equilibrium. We will see 
later that this theme is central to notions of efficiency, simplicity, 
and the elimination of redundancy that is inherent in FEM.

3. eVoLUtion tHroUGH a CyBernetiC 
Lens: seLF-orGaniZinG systeMs, 
eMBodiMent, and eCoLoGiCaL 
adaptation

Building on the previous section, we show how FEM can be 
used to make sense of self-organization and embodiment. We 
first show how physical chemistry models build on statistical 
thermodynamics, and how biological models build on a chemical 
conception of metabolic processes. We then show why physical 
and informational requirements are relevant to understanding 
embodied biological agents in relation to the coevolutionary 
development of species and their ecological niches.

3.1. self-organization and system 
Boundaries
The multiscale self-similarity of thermodynamic FEM comes into 
clear focus in physical chemistry. In a chemical system, predicting 
the behavior of individual particles can be intractable, but we can 
use the same mathematical models for particle aggregations as for 
individual particles. A transparent example of this is the process 
of crystal formation, called nucleation (Auer and Frenkel, 2001). 
In a pool of solute, many particles are distributed throughout. 
Typically, the behavior of the liquid is such that, for the particles 
to minimize (thermodynamic) free energy, they simply follow the 
liquid flow patterns (i.e., the paths of least resistance, in other words, 
the least surprising trajectories). However, if the right subset of 
particles comes into proximity, their thermodynamic FEM will in 

6 Note that this is an instance of Landauer’s principle described in Footnote 4, 
speaking to the fact that there is no free lunch when it comes to trading information 
for energy—in any process, the two are essentially the same.

fact lead them to aggregate together. This particle aggregation will 
continue to swirl around in the pool and, at various points, more 
particles will begin to follow a pathway that affords greater FEM by 
joining the aggregation than by swirling around apart from it. The 
aggregation becomes the nucleus of an emergent crystal forma-
tion, which reaches a critical tipping point that leads an increasing 
number of particles to join up with it in a crystalline structural  
arrangement—all this mandated by simply following the path of 
least resistance at each point in time.

In virtue of this pattern, the crystal is distinct from the pool: 
it is an emergent self-organizing system with sharp boundaries. 
Specifically, the crystal is a free-energy-minimized molecular 
arrangement which has a lower-entropy local equilibrium than 
the contrasting higher-entropy global equilibrium of the pool. Of 
course, the crystal is merely an inanimate rock. Consider, how-
ever, another equivalent self-organizing criticality system, a forest 
fire (Drossel and Schwabl, 1992; Malamud et al., 1998). There is 
a critical tipping point at which the chemical process of the fire 
gains the capacity to spread according to a pattern of available 
fuel, to continue the chemical catalytic process. The forest fire, 
like the crystal, has clear system boundaries that emerge. Unlike 
the crystal, however, the nature of the fire’s metabolic process 
means its system boundaries will not be maintained without 
additional fuel, in which case the fire will “die out.”

This metaphor of fire “dying” aptly reflects the fact that biologi-
cal systems also exhibit self-organized criticality, with a parallel 
metabolism that demands fuel to maintain system boundaries. A 
bacterium must obtain fuel from beyond its system boundaries 
to burn within those boundaries, in order to maintain them. 
Hence, there is a direct continuity and self-similarity across self-
organizing aggregations-as-embodied systems from physics to 
chemistry to biology (Sengupta et al., 2013; Friston et al., 2015a,b; 
cf. Chemero, 2008; Bruineberg and Rietveld, 2014).

3.2. ecological Context
At the biological level of description, the theoretical vantage 
point of ecology becomes relevant to understanding how organ-
isms keep a positive balance in their metabolic bank account, 
so to speak. The cybernetic evolutionary lens described above 
reveals the connection of the embodied organism to the AIF 
notion of a generative model. Specifically, the embodied agent 
has a “do or die” to-do list to maintain its system boundaries, or 
more comprehensively, to survive and thrive. This list includes 
the agent obtaining fuel from its niche (to sustain its metabo-
lism), avoiding active existential threats (e.g., predators), and 
also remaining within its embodied-apparatus-relative niche 
boundaries by not being a fish out of water, a land mammal falling 
down a ravine, or indeed any organism exceeding atmospheric 
thresholds of high and low temperatures and surface pressures.

Broadly, this set of agentive processes can be understood as an 
active engagement in a homeostasis/allostasis dynamic (Pezzulo 
et al., 2015), which more broadly still, can be regarded as adaptive 
behavior. For adaptive behavior to succeed, that is, for the organ-
ism to survive and thrive, it must have inborn and/or acquired 
familiarity with itself and its niche. In other words, the agent 
must be able to act on control information concerning its self/
niche relationship (Friston, 2014). This control information can 
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be understood as embodied system-boundary-internal adaptive 
behavioral guidance information, with the sole requirement that 
it is good enough for facilitating the agent’s ability to survive and 
thrive, akin to satisficing (Simon, 1957).

Notice, however, that despite foregrounding the importance 
of boundaries, the picture is one in which living organizations 
are themselves changeable in ways that minimize the free energy 
of an evolving process (see, e.g., Clark, 2017). Notice also that, 
despite the sometimes-grim connotations of cybernetics and 
control theory, the notion of “control” is here synonymous with 
regulation, in the sense that you control, i.e., regulate, your own 
appetite simply by eating. In this sense, for the organism to be a 
good regulator, it must have a satisficing degree of certainty about 
itself and its niche to pick out what is relevant to its “to-do” list, 
such as responding to perceived hunger or danger, e.g., by seek-
ing food or shelter. In logically equivalent terms, the agent must 
reduce its uncertainty, i.e., minimize (variational) free energy for 
a thermodynamic payoff.

To achieve this FEM, on an evolutionary timescale, organisms 
may mutate and potentially become an embodied generative 
model of a new niche. On a lifespan timescale, they may explore 
their niche to learn its contours, find new sources of suste-
nance and shelter, and new threats to avoid, i.e., augment their 
inborn generative model. In the interplay of evolutionary and 
lifespan trajectories, organisms transform their niches, bringing  
about higher-certainty correspondences to some aspects of their 
embodied generative model (e.g., tunneling underground to 
cushion light sensitivity). Indeed, some perspectives in theore tical 
biology speak to evolution itself as a FEM process, for instance, 
generalizing Darwinian processes as physical implementations  
of Bayesian inference (Frank, 2012; Lammert et al., 2012; Camp-
bell, 2016).

Early lineages of organisms including bacteria and plants 
respond to self and environmental regularities even without a 
neural system, whereas later lineages including humans have the 
further support of a neural system to respond to more statistically 
complex regularities. Such complexity is reflected by increasing 
neuronal connectivity throughout the evolution of stable species. 
The ability to identify regularities in control information that 
reflect (self and niche) thermodynamic regularities can thus be 
viewed as an ecological adaptation requirement. By attaining 
effectively low uncertainty concerning adaptively relevant niche 
information—that is, by continuously minimizing (variational) 
free energy—the embodied agent is able to maintain a stable 
local (thermodynamic) equilibrium. The agent thereby resists the 
potentially overwhelming pressures of the environmental global 
equilibrium (the second law of thermodynamics) for the limited 
duration of its lifespan.

3.3. Complexity and spatiotemporal 
integration
Given our account thus far, it should be clear why, from a “good 
regulator” perspective, the more informationally complex the 
niche, the more complex the embodied (and eventually brain-
augmented) generative model must be to facilitate effective 
adaptive behavior. The basic reflexive behavior, from bacterial 

chemotaxis to some plant and even insect behaviors, indicates 
that the preponderance of adaptive “work” can be done at a deeply 
embodied level, with low-level connectivity requirements (see, 
e.g., Mann et al., 2017). This is why for Gibsonian ecological psy-
chology and Brooksian robotics, the bulk of relevant regularities 
are regarded as being wholly external to the embodied (natural 
or artificial) agent.

However, the theoretical framing device positing that “the 
world is its own best model” (Brooks, 1999) ultimately does not 
scale up to account for more complex agent/niche interaction 
dynamics. From the AIF perspective, it might be said simply 
that the world is its own best world, while the embodied agent 
itself is the best model of those aspects of the world relevant to 
its surviving and thriving—a familiar econiche that it has largely 
constructed for itself (Laland et al., 2017). Arguably, in relation 
to evolutionary natural selection pressure arising from niche 
saturation, mutants will only survive to stabilize as a new species 
under one of two conditions: expanding into a new niche that 
is spatially beyond the saturated niche, or expanding into one 
that is spatially coextensive with it, but presents a different set 
of relevant regularities (see Ito and Ikegami, 2006). In the latter 
case, the corresponding increasing informational complexity of 
the niche plausibly relates to increasing organismic complexity 
(coevolution).7 Once neural systems emerge, this coevolutionary 
pattern continues with increasing neuronal connectivity (Yaeger, 
2009; see also Seth and Edelman, 2004; Yaeger and Sporns, 2006; 
Yaeger, 2013).

Continuing with this account, a significant meta-theoretical 
feature of AIF can be noted, namely, that the human individual 
is re-contextualized as emerging naturally from the social group. 
There has been increasing interest in socially grounded neurosci-
ence (e.g., Dumas et al., 2010; Dumas, 2011) and social robotics 
(Leite et  al., 2013). Yet, some accounts largely consistent with 
AIF (e.g., Butz, 2016) only consider the social as an afterthought 
to the individual. Under the above considerations, however, 
given the upper bound on individual brain capabilities from a 
thermodynamic perspective, for humans to stabilize as a species, 
social cooperation offers the greatest advantage for establishing 
an adequate niche to sustain a stable population (see Yoshida 
et  al., 2008). Indeed, identifying evolutionary stable strategies 
in multi-agent games, within AIF, can lead to some counter-
intuitive yet compelling conclusions, particularly in terms of 
the degree of sophistication agents require in relation to others  
(see Devaine et al., 2014).

At the same time, as human culture emerges, introducing 
even greater niche complexity, the very same cooperative dis-
tributed information dynamics can lead to inherent difficulties. 
It is intrinsic to the underlying mathematical model of AIF that 
an apparatus which evolved for reducing uncertainty is equally 
sufficient for increasing uncertainty under particular circum-
stances. This is evident in social misunderstandings, such as 
mistaking the attributed motivation of a facial expression (Clark, 

7 Note that we are again appealing to the good regulator theorem. In other words, 
there is a homology between the complexity of the world being regulated and the 
good regulator that must embody a model of that world.
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2015b, Section 2.9). The potential for the system to backfire, so to 
speak, is a consequence of the fact that human niche complexity 
includes social and cultural relationships, artifacts, language, 
and so on, which corresponds to substantially more complex 
neuronal connectivity in humans as compared to our evolu-
tionary predecessors (Street et  al., 2017). Even within human 
groups, a narrower, more predominantly physical, interpersonal 
local niche engagement (e.g., a stag hunt) requires considerably 
less informational complexity than the vast distributed neural/
environmental information dynamics across a broad integrated 
physical and sociocultural niche. In the latter, agents face a 
greater challenge in leveraging more radically limited partial 
information (Ramamoorthy et al., 2012).

As neural complexity increases on an evolutionary timescale, 
the AIF model of the neural architecture is described in terms 
of an increasing number of interconnected hierarchical layers. 
These layers facilitate more extended spatiotemporal integra-
tion, with a growing set of nested local scales of time and space, 
ranging from the immediacy of the reflex arc, to ecologically 
situated behavior, to the lifespan. For instance, a beaver building 
a dam must be able to handle more extended time and space 
than a bacterium. Primates (including humans) exhibit nested 
spatiotemporal integration when interactively engaged in a 
dynamic situation or observing a visual sequence, as do humans 
when following along with speech or writing by integrating 
syllables into words, words into sentences, and sentences into 
a narrative (Hasson et al., 2008; Kiebel et al., 2008; Chen et al., 
2015; Friston et al., 2017c; Yeshurun et al., 2017). This complex 
nesting, which has been implemented in robotics (Modayil 
et al., 2014), corresponds to a neural architecture that instanti-
ates active inference in humans as PP, with growing empirical 
evidence of neurobiological substrate correspondences (Friston 
and Buzsáki, 2016; see also Clark, 2013, 2015b).

4. UnVeiLinG tHe WorLd, UpendinG 
tHe inpUt/oUtpUt ModeL oF 
perCeption (and aCtion)

With a focus on brains, this section shows how AIF upends the 
input/output model of perception (and action) still prevalent in 
embodied cognition and ecological psychology research, and 
perhaps even more prominently so in robotics/AI. As the full 
implications of this upending unfold, two major theoretical 
problems—the inverse problem and the frame problem—are 
revealed to be artifacts of the input/output model, such that 
AIF does not merely solve, but in fact dissolves these problems. 
Moreover, the philosophical concern raised against PP (and by 
extension, AIF), namely, that it entails or implies a solipsistic 
agent, hermetically sealed off from the world by an evidentiary 
boundary (or “veil”), is shown to be unfounded.

4.1. the poverty of indirect and direct 
perception
Is the embodied generative model stuck behind an “evidentiary 
boundary” (or “veil”), with no direct access to an outer world that 

is merely inferred? This is the notion of indirect perception that 
Hohwy (2013, 2016) advocates (cf. Clark, 2016). What Hohwy 
misses is a relevant distinction between phenomenal sensation 
and control information (elaborated in this section). Follow ing 
the AIF account outlined above, control information provides 
the possibility for the agent being a good regula tor. However, this 
remains distinct from phenomenal sensation of the world. At 
the same time, phenomenal sensation can itself be harvested 
for control information, in addition to information beneath the 
awareness threshold (Kang et al., 2017).8

Consider, for example, a video conference call apparatus. In 
an efficient design, the data flowing from one call participant 
to another will serve two simultaneous roles: a qualitative 
(content-relevant) role, in that the data underpin the audiovisual 
streams by which the parties can converse; and, at the same time, 
the data will serve a quantitative (content-irrelevant) role as 
control information, in that the data transfer rate will modulate 
the audiovisual resolution to compensate for bandwidth varia-
tion. In a parallel sense, in AIF, there is direct thermodynamic 
engagement between the agent’s sensory surfaces and the world. 
This is precisely why we wear special glasses to view an eclipse, 
or earplugs at a loud concert: the direct engagement can be so 
powerful as to be biologically destructive. At lower intensities, 
light and sound contribute to a variety of enjoyable phenomenal 
sensations, and yet, they serve a dual role as control information. 
Under situations of acute existential threat, the control informa-
tion may be the only relevant signal, whereas under presumed 
existential comfort (e.g., at the cinema), the control informa-
tion may be largely dampened while (by cultural convention) 
phenomenal sensations are experienced for their own sake. Most 
quotidian cases lie somewhere in between these two extremes, 
such as eating to satisfy hunger while simultaneously savoring 
the sensory delights.

Given the broadly Helmholtzian inference tradition that 
Hohwy draws on, it is notable that this is precisely the kind of 
inference that Gibson (1979/1986) criticizes in his elaboration 
of ecological psychology, finding fault in theories in which “the 
outer world is deduced”:

The traditional theories of perception take it for granted 
that what we see now, present experience, is the sensory 
basis of our perception of the environment and that 
what we have seen up to now, past experience, is added 
to it (pp. 251ff.).

This critique motivates Gibson’s positive account of “direct 
perception,” also referred to as “information pickup” (Gibson, 
1979/1986, pp. 147ff.). And yet, upon closer analysis, his positive 
account results in many of the same theoretical shortcomings as 

8 See Yahiro et  al. (2017) for preliminary empirical support of this premise; 
their experimental findings point to different physiological pathways, e.g., low 
environmental temperature leading to involuntary shivering vs. the phenomenal 
sensation of coldness leading to voluntary warmth-seeking behavior. On the 
complex interplay between phenomenal sensation and preconscious information, 
see Sergent et al. (2013).
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the inferential model he criticizes, as we will see below (cf. Fodor 
and Pylyshyn, 2002).

Both Helmholtz and Gibson ultimately inherit the same 
problems from the classical input/output model of perception. 
What Gibson criticizes in traditional inferential theories is the 
notion of passive input, which he replaces with active input—but 
it is still input! The active component in Gibson hints at the 
significance of proprioception, but ultimately, he assigns it an 
exteroceptive-centric role (Gibson, 1979/1986, p. 141). To make 
this argument, we first present the classical input/output model 
shared by computational perceptual theory (conventional in biol-
ogy and robotics/AI) and contrast it with AIF.

4.2. Classical Computation vs. active 
inference
The classical input/output model of perception (and action) is 
the predominant model used in psychological, neuroscientific, 
and robotic explanations; this model also typically underlies the 
notion of neural computation and information processing, and it 
is ripe for retirement (Clark, 2014). AIF implies a vastly different 
conception of the relationship between perception, action, and 
the world, that also points to a different sense of computation 
and indeed perception itself. To understand AIF’s ontological 
commitments and implications for perceptual theory generally, 
and for robotics/AI, we must examine the assumptions and 
implications of the predominant model.

The basic elements and processes of the classical/computa-
tional model can be generalized as follows: un-encoded (“raw”) 
data from the environment (“world”) is selectively sampled by 
the agent and encoded as input (“reading” the raw data). This 
raw data input, once encoded into the system, is then processed 
(beginning with “early perception”). This processing chain pro-
duces a decoded output, terminating as a percept (and potentially 
entering into a secondary stage related to concepts). After this 
discrete stage, as this story goes, an executive controller may 
then retrieve the percept (or concept) from storage and engage 
it in further action-relevant computations or reflexively issue a 
reactive action command.

Significantly, two major problems arise as mere artifacts of 
this model—the inverse problem and the frame problem. Both 
have given rise to countless accounts of how to bypass or solve 
them. Most famously, Marr (1982) produces a highly influential 
and elaborate account of how to solve the inverse problem, to 
get from the input stage to meaningful experience of the world. 
His solution comprises an elaborate series of “early” perceptual 
processing stages for disambiguating apparent equivalen-
cies, implemented in subsequent decades of computer vision 
research. Marr was in part responding critically to Gibson’s 
account, although some readings offer a middle ground between 
the two theories (Ullman, 1980; see also Shagrir, 2010). Gibson 
(1979/1986) and later analysts of ecological psychology argue that 
the inverse problem is bypassed without appealing to the kinds of 
processes Marr introduces (e.g., Hatfield, 2003; Chemero, 2009; 
Orlandi, 2017), for instance, by bodily movements (exploring or 
swaying) that reveal constant proportions in three-dimensional 
situatedness, in contrast to two-dimensional sources of optical 

projections. Like Marr, however, these ecological accounts still 
treat (what is regarded as) exteroceptive input as primary, even 
when the necessity of proprioceptive coupling is acknowledged.

Those who accept the classical/computational input/out put  
model of perception must also face the frame problem (McCarthy 
and Hayes, 1969; Minsky, 1974), which can be generalized as a 
problem of knowing when and what raw sampling is needed for 
updating beliefs about the world (e.g., in relation to an isolated 
local action that only modifies a small subset of the environ-
ment9). It also concerns how to handle an input encoding from 
one context following a change of context. Thus, the frame 
problem is also known as the “relevance” (or “significance”) 
problem, based on the premise that there is no obvious means 
of ascertaining what is cognitively relevant or significant under 
changing circumstances. The frame problem has led to elaborate 
logic-based solutions (Shanahan, 1997) and critical accounts of 
robotic AI based on embodied phenomenological philosophy 
(Dreyfus, 1992, 2007; cf. Wheeler, 2008).

4.3. Upending the input/output Model  
of perception (and action)
Building on the previous sections, we briefly show how AIF  
re-arranges the picture to dispense with the classical/computa-
tional model of input and output. Recall that above, we noted that 
there is direct thermodynamic engagement between the agent’s 
sensory surfaces and the world, which requires protection from 
high intensities (e.g., earplugs at a loud concert). For an intui-
tive example of lower intensity engagement, consider a game of 
tennis. It would take some mental gymnastics to make sense of 
the idea that an arm is input to a racket, and a racket input to a 
ball—on this view, what would count as output? Instead, using 
basic physics, we regard the action of hitting the ball as a transfer 
of energy, from the arm to the racket to the ball. This same sense 
of thermodynamic energy transfer occurs between an organism’s 
environmental niche and its sensory surfaces.

In AIF, the embodied agent learns the regularities of the sen-
sory surface perturbations, much like what Gibson (1979/1986) 
refers to as invariants. Moving beyond Gibson, in AIF, the invari-
ants extend across interactive regularities in extero-, proprio-, 
and interoception, in the form of the generative hierarchical 
model. The more regular covariance that is learned, such as how 
invariant proprioceptive hand-grasping patterns covary with 
invariant racket-swinging, ball-hitting patterns, the more reliable 
the generative model is as control information across a variety of 
conditions to which the model is adapted (see Kruschke, 2008). 
In PP, this adaptive process proceeds by a feedback loop with 
prediction error, i.e., minimizing prediction error amounts to 
adapting the generative model to the present conditions (Clark, 
2013, 2015a,b).

The continuous embedding in the niche, which the agent 
explores to learn the covariance regularities, allows the agent 
to develop and update the generative model (akin to Gibson’s 
notions of “tuning” and “resonance”). This goes beyond the exter-
oceptive-centric notion that minor proprioceptive alterations 

9 For discussion, see Sprevak (2005).
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bypass the inverse problem. In AIF, the generative model links 
all reliably invariant information in a deeply situated way, such 
that perception and action enable the embodied agent to propel 
itself through a temporal succession of generative model modula-
tions, for instance, approaching a distal food source to eventually 
alleviate hunger.

Under such situated embedding, the frame problem never 
presents itself, because the relevant aspects of the niche are ther-
modynamic perturbations, while engagement with the niche is 
facilitated by continuous control information. In the preponder-
ance of ecologically valid conditions, there is never a temporally 
suspended slice of un-embedded input to be processed, nor is 
there an isolated (i.e., non-deeply situated) encounter with an 
exteroceptive input stimulus that is lightly probed through 
proprioception. That is, in real-world embodied and embedded 
cognition, there are no disconnected moments of perception of 
the world, since the world wholly envelops the agent throughout 
its lifespan. (We return to the frame problem in Section 6.3.)

Ambiguities arising from thermodynamically relevant niche 
details can indeed fail to be disambiguated, as they do during 
contrived experiments and illusions. However, in AIF, ambiguity 
is not an “early perception” input processing challenge, but rather 
a matter of the precision-weighting of layers of the hierarchical 
architecture (Friston, 2008). Many situated perceptual ambigui-
ties can be accommodated by the precision-weighting of higher 
or lower layers: higher layers provide broad continuities to previ-
ous situations, such that ambiguities closer to the sensory surface 
can be ignored or recognized as illusory (as when the magician’s 
assistant seems to disappear into thin air), while ambiguities 
at higher levels can be suspended pending further lower-level 
evidence (as when it is unclear if a friend entered the theater or 
joined the crowd outside). In addition, perceptual disambigua-
tion is facilitated by the nested multiscale dynamics described 
above (Brascamp et al., 2008).

5. GiBson reConFiGUred: Beyond  
re-desCription

Notably, AIF carries forward Gibson’s core critique of his behav-
iorist and cognitivist predecessors; however, AIF also addresses 
the fundamental inadequacies of his positive account, as we 
illustrate in this section. We begin with an initial re-description 
or translation of some Gibsonian concepts into AIF. At relevant 
points throughout, we also highlight connections to robotics.

5.1. initial Mappings
Recall from above Gibson’s objection to theories (e.g., Helmholtz’s) 
in which the present perception of the world is inferred by an 
additive process that uses the past (memory) to supplement 
missing details. Here, a technical clarification will be useful to 
distinguish traditional perceptual inference from AIF/PP. Shortly, 
we will flesh out what the actual process of “active inference” 
entails, but for now, it can be stated that in PP, the prediction 
of the present is fundamentally non-inferential in the traditional 
sense (see below for the specialized sense of surprisal-reducing 
model inference). Instead, perceiving the present is facilitated by 

an extrapolation from the environmentally embedded generative 
model. The model develops through biological inheritance and 
lifespan experience, based entirely on invariant covariance of 
modalities from past interactions.

Perception in AIF is thus not an additive process, but a gen-
erative one, which matters here for an important class of cases, 
namely, those in the cultural (as opposed to natural) domain. 
The cultural domain has physically bound cases with no natural 
equivalent, such as the operation of a door with a doorknob. We 
see many naturalistic examples in Gibson’s writings, concerning, 
e.g., tunnels (which may occur in nature), but he also wishes to 
extend his theory to the human cultural environment (Gibson, 
1966). Moreover, he wants to allow for a concept of learning 
(at best, coarsely defined), while simultaneously objecting to a 
model of mental storage and retrieval (Gibson, 1979/1986). How 
then, should it be possible to learn how a doorknob works such 
that “direct perception” of one (via ambient optical arrays) is at 
once the perception of a means for opening the door, without 
any specified mechanism for establishing this correspondence? 
If the correspondence is merely a conditioned association, then 
how can he avoid the claim (as he intends) that past experience is 
added to the present?

Despite Gibson’s professed aversion to computation and 
traditional perceptual inference, the deeper problem here is that 
his theory recapitulates and is thus still bound by the classical/
computational input/output model (cf. Bickhard and Richie, 
1983). To better understand this issue, we must turn to his con-
cept of affordances. For clarity, we will first establish how AIF 
re-describes aspects of Gibson’s ecological framework in terms of 
the generative model.

In some AIF contexts (FitzGerald et al., 2014), it is more useful 
to treat the generative model as a model space populated with an 
ensemble of plausible generative models. For instance, consider 
a proprioceptive model of hand configurations: grasping, wrist 
rotation, peripersonal reach, and so on. To be clear, this sense 
of generative model is not an imagistic mental representation, 
but rather, a mathematical model of a set of invariant synaptic 
firing patterns that reliably correspond to bodily movements. 
These proprioceptive models (subsets of the complete generative 
model) are equivalent to Gibson’s notion of organismic capacities. 
Within the model space, there are also exteroceptive models that 
reliably correspond to sensory perturbations caused by, e.g., trees 
and branches, doors and doorknobs, and so on, which relative 
to proprioception, re-describe Gibson’s notion of environmental 
action opportunities (a branch affords climbing a tree, relative 
to the bodies of certain organisms). In his theory of affordances, 
Gibson also notes the relevance of the organism’s wants and 
needs. These are incorporated into AIF as prior beliefs or prefer-
ences constituted by the generative model. Key among these are 
the priors over interoceptive predictions, by which we reliably 
come to recognize internal sensations such as hunger, fatigue, 
lack of fresh air, and so on (Seth et al., 2012).

Each of these models interact within a hierarchical model 
space, such that single modality invariants intersect and interact 
with each other, resulting in invariant covariance relationships: 
(interoceptive) hunger is reduced by eating fruit from a tree, which 
can be (exteroceptively) seen and (proprioceptively) reached 
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by climbing branches. In a cultural context, the (interoceptive) 
need for fresh air can be met by (exteroceptively) transitioning 
from indoors to outdoors, as facilitated by a (proprioceptive) 
action sequence involving turning the doorknob and walk-
ing out of the room. The action sequence itself can be further 
broken down, in that even the doorknob interaction is a result 
of invariant covariance between exteroceptive control informa-
tion and proprioceptive reaching, grasping, and turning; this 
principle has been successfully robotically simulated (Pio-Lopez 
et al., 2016). In brief, AIF offers a fundamentally embodied and 
embedded account of situated perception and action, rather than 
an exteroceptive-centric input/output model. The latter requires 
traditional perceptual inference based on early (perception) input 
processing of an impoverished stimulus; or, as Gibson has it, such 
inference is replaced by a woefully underspecified “direct percep-
tion” mechanism that fails to explain learned cultural affordances.

To summarize this initial re-description of Gibson’s frame-
work in AIF, and more importantly, the underlying shift in 
emphasis, we have seen that Gibson’s affordances concern the 
perception of (a) environmentally specified information as 
action opportunities in relation to the organism’s (b) embodied 
capacities and (c) needs and wants. In AIF, all three are integrated 
into the embodied (and neuronally augmented) hierarchical 
generative model, with correspondences to Gibson in terms of 
(a) exteroception, (b) proprioception, and (c) interoception. This 
allows us to make sense of a common ecologically valid scenario, 
such as the interoceptive need for fresh air, and the extero- and 
proprioceptive interactions that lead to turning the doorknob, 
opening the door, and walking outside. We are now in a position 
to flesh out what “active inference” itself refers to, which requires 
the introduction of a specialized concept: policies.

5.2. affordances and policies
The notion of policies highlights how the generative model can 
be temporally deployed over possible future states. Once this is 
understood, the full implications of embedded spatiotemporal 
nesting and its relationship to agent/environment dynamics can 
be brought into view. Policies are means of transitioning between 
states of the generative model, which can only be in one (actual-
ized) state at a time.10 The conventional sense of actions (e.g., 
reaching for the doorknob) “fall out” of policies, as we will see 
next.

A theoretician seeking to define a policy in propositional 
terms might define one (in the following example) as “go 
outside to get fresh air.” The underpinnings of the policy are 
in effect a possible transition between two states of the genera-
tive model: the current state (at time t0) and a preferred future 
state (at time t1). At t0, the agent is inside a room with a door 
to the outside. In the exteroceptive modality (in addition to 
phenomenal sensation), there is control information present 
concerning walls, doors, doorknob mechanisms, and so on. There 
is also proprioceptive (control) information available concerning,  

10 Our description of active inference here will be based largely upon discrete time 
and state space generative models (e.g., Markov decision processes). These are 
simpler to handle in terms of their numerics (and possibly conceptually); however, 
the same principles apply to the continuous state space models usually considered 
in Bayesian filtering and predictive coding formulations of active inference.

e.g., hand-grasping and leg-walking abilities. In the interoceptive 
modality, there is information concerning a sensed lack of fresh 
air and its presumed contribution to fatigue.

In this case, the preferred future outcome is having fatigue 
alleviated by getting fresh air. This would mean that if this 
outcome were attained, at t1, the generative model would be 
altered, such that the exteroceptive information would pertain 
to an outdoor rather than indoor scene, and the interoceptive 
information would pertain to breathing fresh rather than stale 
air. To realize the preferred outcome, the agent actively infers the 
(t0 to t1 state transition) policy. Working backwards in a sense, to 
facilitate this transition, a series of actions “fall out,” unfolding 
without requiring the planning of a sequence of action commands 
(Adams et al., 2013), in stark contrast to the robotics paradigm of 
sense-plan-act. Instead, the reliable covariance with propriocep-
tion and the other modalities of the generative model leads to 
reaching, grasping, and turning the doorknob, to open the door, 
to walk outside, to get fresh air, given that this set of covariances 
has been empirically established (i.e., learned).

The bottom line here is that if an agent entertains a generative 
model of the future, the agent must have beliefs (i.e., expectations) 
about future or counterfactual states under each allowable policy. 
Put simply, we have in mind here an agent whose generative 
model transcends the present and is continuously predicting the 
future (and past). Crucially, each prediction—at different times 
in the future—is subject to the same policy-dependent transition 
probabilities as apply to the here and now, thereby “connecting 
the dots” in a path to preferred and familiar outcomes. On this 
view, the present simply provides sensory evidence for one of 
several (counterfactual) paths into the future, where the path 
(or policy) with the greatest evidence gets to determine the next 
action. Notice again how we return to the path of least resistance 
or minimum (expected) free energy (i.e., maximizing model 
evidence over possible pathways).

Through a continuous series of perception/action loops, the 
embodied agent remains in open exchange with the world by 
actively probing its environment (Kruschke, 2008) and leveraging 
the control information of the generative model to alter the ther-
modynamic substrate (its physical position and condition). Even 
Gibson could not object to this sense of inference: there can be 
no “direct perception” of the future! Here, however, is where the 
uncertainty and unknowability of the future can be understood as 
a feature of AIF that is lacking in ecological psychology, namely, 
concerning conditional future outcomes. Even on the most chari-
table reading of Gibson, assuming we can explain (without magic) 
that one could “directly” perceive that “the doorknob affords 
opening the door” based on the ambient optical array, conven-
tional affordance theory is left stranded in the face of an invisibly 
locked or broken doorknob. That is, when the doorknob fails to 
open the door, the exteroceptively ascertained ambient optical 
array remains identical before and after the attempt. Thus, within 
Gibson’s framework, the doorknob forcibly remains an apparent 
affordance even with prior information that it does not open the 
door in this case. In such ecologically valid scenarios commonly 
faced by human cognition, it is a severe meta-theoretical weak-
ness if they cannot be adequately addressed.

In contrast to ecological psychology, AIF elegantly handles 
conditional outcomes in terms of probabilities. This is why it uses 
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a Bayesian model of neural processing, given that empirical priors 
derived from experience influence the generative model compu-
tations of probability,11 a significantly different sense of computa-
tion than that used in input/output model descriptions (which 
hold that sampled input is computed/processed). Reconfigured 
by AIF, a typical affordance is merely a high likelihood, such 
that “affords” amounts to “offers a relatively sure bet.” Thus, “the 
doorknob affords opening the door” is more accurately rendered 
as “the doorknob offers a relatively sure bet for opening the door,” 
thereby accounting for the conditional outcomes in which the 
doorknob is locked or broken, unknowable by exteroception 
alone. In addition, when a source of information indicates a 
locked or broken state (such as a performed or observed attempt 
to open it, or by word of mouth), the doorknob ceases to be an 
apparent affordance, since it no longer offers the agent a relatively 
sure bet for opening the door, despite the fact that the ambient 
optical array is unaltered.

AIF is consistent with the view that “affordances are relations.” 
More precisely, “affordances must belong to animal/environment 
systems, not just the environment,” in that perceiving affordances 
is perceiving “the relation between the perceiver and the environ-
ment” (Chemero, 2003, pp. 185–6; see also Chemero, 2008). By 
adding the extended temporal dimension of AIF, the affordance 
relationality can be further understood as being between a 
presently given agent/environment relational state and probable 
future agent/environment relational states.

This move also allows AIF to account for conditions in a 
more distant future, such as dinner plans next week, which 
some theorists view as beyond the scope of ecological (and 
enactive) explanation. Here, such planning ability is seamlessly 
accounted for in the process of active inference. The plan sets 
into motion a series of intermediary interactions (actively 
inferred state transition policies) that propel the embodied 
agent toward the preferred future outcome. These interac-
tions are based on experience and are, thus, deemed reliable 
(in a satisficing sense) with reasonably high probability, while 
(simultaneously) suggesting a low-probability capacity to fail. 
Put simply, all I need to do to determine my next action is to 
choose the most probable action under the prior belief: “I will 
not miss next week’s dinner party.” This prior belief generates 
a hierarchical cascade of empirical priors, each providing con-
textual guidance to accumulate the sensory evidence for the 
particular path I am pursuing. If everything goes well, this path 
would end successfully with arrival at the dinner party. Note 
that not only is there a deep generative model in relation to time 
in play here (Dehaene et al., 2015), there is also a hierarchical 
depth in terms of short and long-term policies, i.e., trajectories 
of states (see Friston et al., 2017c).

5.3. Free energy, revisited
What does all this have to do with the free energy principle? 
The policies the agent infers, as transitions from present to 

11 See Albrecht et  al. (2016) for an implemented reinforcement-learning-based 
decision-making model defined in terms of such probabilities (expectations).

preferred future state, are those that minimize (variational) free 
energy expected on actualizing the preferred future state. This 
contextualizes the notion of reward motivations (that policies 
increase expected future reward) and even problem-solving 
itself, in that the reward or the solutions are part of the preferred 
future outcome as viewed from a present state (Friston et al., 2009, 
2010; Friston, 2011; cf. Newell et al., 1959). Technically speaking, 
the expected free energy ensures that the prior probability of a 
policy maximizes reward (i.e., prior preferences) in the future, as 
in machine learning, under the constraint that it also minimizes 
uncertainty and ambiguity. Moreover, in the agent’s relationship 
to the niche, expected free energy is minimized—uncertainty or 
disequilibrium is reduced (see Sections 2 and 3)—as the agent 
strives to select the relevant control information in the face of 
the densely rich informational environment (high Shannon 
entropy). This is an important point which takes affordances into 
the epistemic realm.

In other words, by trying to infer the FEM path of least 
resistance into the future (even for a challenging task), there is 
a necessary component of uncertainty that combines with prior 
preferences to determine the best policy. This means that the most 
probable policies or paths are those that resolve uncertainty when 
navigating the lived world (Berlyne, 1950; Schmidhuber, 2006; 
Baranes and Oudeyer, 2009; Still and Precup, 2012; Barto et al., 
2013; Moulin and Souchay, 2015). To achieve this, agents engage 
in some interactions that serve an epistemic rather than prag-
matic purpose, i.e., epistemic actions (Kirsh and Maglio, 1994). 
In AIF, we can place such epistemic actions in the general context 
of physical or mental epistemic foraging (Pezzulo, 2017), and 
further specify what facilitates such epistemic actions, namely, 
epistemic affordances. The latter concept brings with it the notions 
of salience—epistemic affordances that will reduce uncertainty 
about future states of the world—and novelty—epistemic affor-
dances that will reduce uncertainty about the contingencies or 
parameters of my generative model. (The next section furthers 
this account of affordances.)

In summary, one’s preferred future state is realized by 
exploiting high likelihoods in the sequence of state transitions 
of the generative model that underpins the agent/environment 
relationship (e.g., my relatively high certainty that my hand turns 
a doorknob, which opens a doorway, which I can walk through 
to get outside, to get fresh air, and to alleviate my fatigue). 
Exploiting high likelihoods refers to the probabilistic Bayesian 
decision-making computations that play out on a dynamic, 
neurobiological substrate (Pezzulo et al., 2015). In this context, 
it can be said that local minima of uncertainty (in the projected 
model state transitions) provide the critical points that can be 
leveraged to facilitate a preferred future (or avoid an undesired 
future). At the ecological “behavior” scale (policies), these local 
minima provide a comprehensive re-description of affordances 
that unites the exteroceptive with the proprio- and interoceptive 
dimensions (Pezzulo and Cisek, 2016). They also generalize to the 
sub-ecological “action” scale, as reflex arcs, grounded in the phys-
ics of nerve electricity (Friston et al., 2010; Sengupta et al., 2013), 
and the supra-ecological “activity” scale, as extended active and 
resting states, grounded in physiological homeostasis/allostasis 
dynamics (Ashourvan et al., 2017).
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6. sKatinG UnCertainty: GeneraLiZed 
aFFordanCe tHeory, sKiLLed 
eXpertise, and tHe FraMe proBLeM

This section considers how local minima of uncertainty in the 
projected temporal sequence of generative model states serve to 
unify developmental theory and the underspecified (by Gibson) 
notion of learned affordances. We then show concrete applica-
tions in skilled practical and cultural activities. Finally, drawing 
on robotics studies, we connect spatiotemporal nesting and 
agent/environment dynamics to adaptive policy reuse.

6.1. Generalized affordance theory
Here, we generalize affordances to every available reliable regu-
larity in the agent/environment relationship, including basic 
objects. While this level of generality may seem meta-theoretically 
undesirable, it is worth bearing in mind that Gibson extended 
affordances to this high level of generality in explaining that 
air affords breathing, the ground affords standing on, cliffs are 
negative affordances for bipedal locomotion, and so on (Gibson, 
1979/1986). On our account, affordances encompass the entirety 
of intuitive physics (see Clark, 2016).

As Franz and Triesch (2010) argue, a number of purported 
Gestalt percepts have only been considered in relatively late peri-
ods of individual (lifespan) human development, as even within 
the first several months after birth, there is a tremendous amount of 
densely rich environmental information encountered. The inborn 
apparatus (as suggested by AIF) for discerning regular covariance 
and leveraging that in  situated activity can be computationally 
simulated with only a limited construct that yields a number of 
Gestalt-like phenomena. The limited construct—foreground and 
background differentiation—is a minimal mechanism that would 
be plausibly selected for on an evolutionary timescale.

In addition, there appears to be another plausibly selected for 
(inborn) minimal mechanism for differentiating inanimate from 
animate entities, with the latter possibly extending to finer-grained 
differentiations between conspecifics and other animals. There 
is evidence of this mechanism in brain scans of primates (Sliwa 
and Freiwald, 2017) and human infants (de Haan and Nelson, 
1999, Southgate et al., 2008), and from human in utero behavioral 
experiments (Reid et al., 2017). This mechanism would plausibly 
underpin the fundamentality of social cooperation to human 
cognition (Barrett et al., 2010, Cortina and Liotti, 2010); a related 
point has been made about language, noting the fundamentality 
of dialog from which monolog is derived (Pickering and Garrod, 
2004).

The above suggests that early developmental learning pro-
ceeds through interactive exploration (Stahl and Feigenson, 
2015), which makes possible a high-level generative model of 
intuitive physics that augments inborn capacities with empirical 
priors. This is especially evident from the gradual development 
of coordinated bodily movement, ranging from basic crawling, 
walking, and stacking blocks, also explored in robotics (Pierce 
and Kuipers, 1997, Modayil and Kuipers, 2008, Ugur et  al., 
2011, 2012), all the way up to more elaborate activities such as 
interpersonally coordinated dancing and playing sports (Boyer 

and Barrett, 2005). Based on reliable covariance from empirical 
priors and inborn minimal mechanisms for differentiating fore-
ground and conspecifics, the present state and future projections 
of the generative model facilitate (via actively inferred policies) 
the realization of preferred outcomes through the exploitation 
of local minima of uncertainty, i.e., generalized affordances. It 
is in this context that epistemic affordances play a key role and 
can be associated with intrinsic motivation, exploration, “motor 
babbling” and artificial curiosity in developmental neurorobotics 
(Schmidhuber, 2006, Baranes and Oudeyer, 2009). Put simply, 
being compelled to pursue FEM, uncertainty-reducing epistemi-
cally enriched policies ensure that agents quickly come to discover 
“what would happen if I did that.”

Consider an example that works both literally and as a broad 
analogy to this generalized affordance process: the crossing of 
a roaring rapids via stepping stones. The rapids are in constant 
flux, but the fluctuations of the water also momentarily expose 
surface regions of the stones. In this sense, despite the high 
uncertainty brought about by the flux, the overlapping exposed 
surface regions for each stepping stone provide stable points—
local minima of uncertainty. These local minima facilitate 
crossing the river, by which the preferred outcome of reaching 
the opposite bank is realized. In a literal sense, the stones are 
clearly conventional Gibsonian affordances, presented here as 
local minima of uncertainty in sequential states of the generative 
model. Analogically, the roaring rapids correspond to the general 
sensory flux of thermodynamic surface impingements, and the 
stepping stones correspond to any reliably invariant multimodal 
covariance established by empirical model updating. This sense 
of local minima also suggests a formal correspondence to the 
basins of attraction in neurodynamics (Freeman, 2012).

6.2. skilled expertise
By considering affordances in this light, we can demonstrate how 
affordance theory relates to arguments about skilled expertise 
from the perspective of phenomenological philosophy. The latter 
argues for the central role of embodiment as the basis of skilled 
expertise, in contrast to some conventional theories that view 
expertise in terms of a mastery of symbol systems and condi-
tional rules (which, for historical or pragmatic reasons, can be 
commonly found in robotics/AI implementations). According 
to the most widely adopted embodied phenomenology theory of 
skill acquisition (Dreyfus and Dreyfus, 2005), there are five stages 
of progression from novice to expert, whether in, e.g., riding a 
bicycle, playing chess, or practicing medicine.

To briefly summarize these five stages, as the theory goes, a 
novice (in any domain) learns by appealing to basic rules that 
can indeed be expressed symbolically as propositions. Even with 
these conditional rules, the novice cannot necessarily discern 
what is relevant in the domain. This changes slightly in the next 
stage, when the advanced beginner continues to follow the rules, 
but gradually begins to notice what perceptions of the domain 
are relevant. Upon reaching the third stage, competence, the prac-
titioner gains an appreciation of the vastness of domain-relevant 
nuances, along with the recognition that a list of rules could not 
be exhaustive; even if such a list could be near comprehensive, 
it would be too unwieldy to manage in real-time interaction. 

62

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Linson et al. Active Inference and Ecological Perception

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 21

Nevertheless, to cope with the domain, some rule-like responses 
remain helpful at this stage. The fourth stage, proficiency, finally 
overcomes the appeal to rule-like responses with an embodied 
ability to discern relevant situational nuance. However, the profi-
cient practitioner continually reaches decision-making junctures 
that require a considered evaluation of different pathways 
forward. In the final stage, when expertise is attained, the expert 
seamlessly selects a pathway forward, rather than interrupting 
the “flow” (Csikszentmihalyi, 1990) for a considered evaluation. 
This form of embodied expertise is also described as “absorbed 
coping,” referring to the phenomenological absorption in the 
interactive situation.

Without objecting to this characterization of embodied exper-
tise as irreducible to symbols and rules, it is possible to explain 
the underpinnings of the stage progression using AIF simply 
by viewing the progression in reverse. If expertise is regarded 
as having a highly developed generative model of the agent/
environment relationships within the domain, then the preferred 
future realized through active inference is the attainment of the 
implicit or explicit goal (cycling across the terrain or defeating the 
chess opponent). Through experience (i.e., empirical prior-based 
model updating of reliably invariant modality covariances), the 
agent discovers how to exploit the relevant affordances—the 
local minima of uncertainty in the generative model state  
transitions—to achieve the preferred outcome using domain-
specific policies.12

By working backwards through the progression (moving 
from expert to novice), it becomes clear that without sufficient 
experience, the generative model has yet to become sufficiently 
“attuned” (a Gibsonian term) to the domain; some scaffolding 
is needed to stabilize the domain-specific interactions. The 
earlier the stage, the more scaffolding is needed, such that the 
novice relies almost exclusively on scaffolding (which need not 
be symbol and rule-based, as it could also be based on mimicry 
of experts). Any scaffolding presumably also serves to orient the 
non-expert practitioner to the relevant regularities that facilitate 
the progression. Note that, when learning to ride a bicycle, train-
ing wheels do not directly contribute to learning the cycling skill, 
but rather, they serve as supportive scaffolding to position the 
bicycle perpendicular to the ground until the relevant regularities 
for remaining perpendicular independently have been sufficiently 
learned.

An interesting robotics application of domain-specific sensori-
motor skills is found in the notion of policy reuse and adaptation 
(Rosman et al., 2016). From an AIF perspective, this parallels an 
equivalent phenomenon in humans. For example, given the abil-
ity to ride a standard bicycle, and confronted with an unfamiliar 
old-fashioned penny-farthing, an agent could glean from the 
similar seat, handlebar, wheel, and pedal configuration that the 
bicycle-riding policy could be reused to ride the penny-farthing, 
with some necessary adjustments.

A real-world example in which a policy was adapted from a 
source to a particularly divergent target is the cultural advent of 

12 In performing arts such as music, skilful policies may relate to actualized or simu-
lated coordination in improvisation, performance, and compositional practices 
(see Linson, Forthcoming).

skateboarding, which was based on surfing.13 Even though there 
are extreme differences between surfboard fins and skateboard 
wheels, ocean and pavement, the early skateboarders recognized 
the embodied motion similarities between the domains. In 
this case, a certain cross-domain policy identity is maintained 
through reuse and adaptation that focuses on the complex spa-
tiotemporal nesting required in both practices involving body, 
board, and traversal surface: the interactive precision-weighting 
required for short timescale, rapid adjustments, and the simulta-
neous progressively longer timescales of extended maneuvering. 
The Gibsonian concept of “resonance” appears to be appropri-
ately matched to such complex situated activity, in which the 
agent’s multiscale embodied neurody namics “resonate” with 
the multiscale environmental dynamics, following experiential 
attunement to the relevant regularities (Teques et  al., 2017; cf. 
Raja, 2017).

6.3. the Frame problem
At several points above, we have referred to the agent’s identifica-
tion of what is relevant or significant in a situation, which appears 
to run up against the frame problem. To recap, the frame problem 
holds that given actions that alter limited aspects of a situation, 
or given relevance-altering shifts in situational context, there is 
no clear mechanism to appeal to by which irrelevant situational 
aspects can be easily ignored. Dreyfus (1992) famously proposes 
that embodiment obviates the frame problem in a way that 
symbolic AI implementations cannot. He goes further still and 
proposes that even typical subsymbolic AI cannot overcome the 
problem; he finds some promise in Freeman’s neurodynamics 
(Dreyfus, 2007), although his analysis of why this shows promise 
is limited. Given the convergences between Freeman’s neurody-
namics and AIF (Friston, 2008, 2010; De Ridder et al., 2014), it is 
not surprising that the latter should offer the robust response to 
the frame problem Dreyfus anticipated.

It is worth briefly restating the nature of neural computation 
in AIF, due to its substantial difference from the computation of 
input, symbols, propositional logic, and other common associa-
tions. Even the convenient shorthand used by neuroscientists and 
others that the brain “is” Bayesian or “implements” Bayesian 
models can lend itself to misunderstanding AIF’s ontological 
commitments. Essentially, given synaptic connectivity and trans-
mission patterns, it is possible to model them mathematically. It 
is rarely misunderstood when equations are used to descriptively 
model a planet’s orbit in order to predict its positions—most 
people do not assume that this approach suggests the planet itself 
is computing anything (nor that the planet’s material complex-
ity is “reduced” or “eliminated” in the pragmatic abstraction 
of a mechanistic orbital model). Analogously, by appeal to the 
broader theoretical context of AIF, it can be stated that there are 
transformations in the dynamic neurobiological substrate in 
the service of the environmentally embedded body that can be 

13 The early skateboarders were “replicating on dry land the surfer’s traverse across 
ocean surface and close sensing of changing wave forms. Through surf-related 
moves, skaters recombined body, board and terrain, simultaneously copying one 
activity (surfing) while initiating a second (skateboarding)” (Borden, 2001, pp. 
31–33).
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mathematically modeled in terms of probability distributions. 
Thus, embodied and embedded brain activity can be modeled 
as the computation of these distributions. That the calculations 
should be Bayes-approximate within AIF results from implicit 
pragmatic efficiency directives (arising from the constraints laid 
out in Sections 2 and 3), such as “extrapolate from experience” 
(empirical priors), “context matters” (hierarchical model archi-
tecture), and “when expectations are not met, re-assess” (respond 
to surprisal through model updating, precision-weighting, or 
abduction, depending on particulars about the accumulation of 
prediction error).

The frame problem, in its many incarnations, can be sum-
marized in a single question: How does an agent know what is 
significant in an interactive situation? AIF answers with its own 
unique breakdown. The first level of the breakdown is that the 
agent can be either open or closed to potential significance. This 
is overlooked by most other accounts, which take openness to 
significance for granted, thereby missing the ecologically com-
mon phenomenon of habits. In AIF, habits can be regarded as 
context-free responses that are established by their invariance 
across multiple conditions (FitzGerald et al., 2014). When we act 
out of habit, we merely “go through the motions,” suppressing 
any potential significance that might otherwise be contextually 
relevant.

Apart from habit, when the agent is open to potential sig-
nificance, AIF points to a second-level breakdown of possible 
outcomes (when potential significance arises in a situation). 
Given that the active agent always entertains a repertoire of 
plausible policies within its generative model, there is a funda-
mental relationship between policy selection and the expected 
free energy within the policy or model space. Given that expected 
free energy scores the epistemic affordance of alternative policies 
on models, there is an inbuilt imperative to select significant or 
relevant actions. Significance in this instance is related to the 
epistemic, uncertainty-reducing component of expected free 
energy, while relevance can be construed in relation to prior 
preferences about ultimate actions. When a potentially significant 
aspect of the environment recruits a policy, it becomes relevant; 
this is equivalent to the notion of a “solicitation” in affordance 
theory and phenomenological philosophy (see Bruineberg and 
Rietveld, 2014; Bruineberg et al., 2016). In short, the significance 
or relevance is an integral aspect of FEM by which the frame 
problem is dissolved.

This argument rests upon appreciating that expected free 
energy can be decomposed into two parts (Figure 1). Variational 
free energy per se can always be decomposed into accuracy and 
complexity terms. This appeals to the Bayesian interpretation 
of variational free energy as an approximation to (or lower 
bound on) Bayesian model evidence. On this view, Bayesian 
model evidence is effectively simplicity plus accuracy.14 But 
what about expected free energy? It transpires that expected 
accuracy is the expected probability of obtaining preferred 

14 Note that minimizing variational free energy implicitly minimizes complexity 
and associated computational costs—via Landauer’s principle—that link thermo-
dynamic free energy to variational free energy. In other words, the path of least 
variational free energy is, thermodynamically, Hamilton’s path of least action.

outcomes, while expected simplicity is epistemic affordance, 
namely, the resolution of uncertainty or information gain 
afforded by the outcomes anticipated under any particular 
policy. This intrinsic value of a particular policy or model 
appears in many guises, most notably as intrinsic motivation 
in robotics (Oudeyer and Kaplan, 2007; Schmidhuber, 2010), 
the value of information in economics (Howard, 1966), and 
Bayesian surprise in models of exploration and visual searches 
(Schmidhuber, 1991; Itti and Baldi, 2009).

Ultimately, without the input/output model, the core difficul-
ties associated with the frame problem—when to sample input, 
what to sample as input, what to do with input, or what becomes 
of fixed output—do not arise. There is only the generative 
model’s accommodation of sensory perturbations in terms of 
hidden causes. By incorporating epistemic imperatives into the 
(Bayesian model) selection of policies in AIF, the broad frame 
problem never manifests. This is because novel information is 
not pre-screened for relevance, but instead is rendered relevant 
or significant when it leads to model updating or the selection 
of a new policy, and irrelevant or insignificant when it does 
neither. Note that the latter case holds irrespective of benefit 
or cost, given that the non-assimilation of novel information 
may be helpful (e.g., metabolic savings) or harmful (e.g., missed 
opportunity).

This approach also avoids concerns about the inadequacy 
of fixed representational encoding accounts of perception 
(Bickhard, 2008), given that in AIF, environmental information 
can serve multiple context-dependent relational roles in situated 
interaction (cf. Pylyshyn, 1999). Moreover, the logical frame 
problem is obviated by the probability distributions of the gen-
erative model—the agent interacts with the environment on the 
basis of expected model extrapolations, so continuous sensory 
sampling is unproblematic: samples either confirm expec-
tations or produce surprisal (Mirza et al., 2016).

7. seLF-reFLeCtiVe episteMiC 
ForaGinG: an openinG For 
ConsCioUsness?

The reservoir of information present with respect to the self and 
the environment is inexhaustible. Only a small fraction is ever 
immediately relevant as adaptive behavioral control information. 
Thus, there are always new sources of potential relevance, as 
there are many possible signals in the noise (Dennett, 1991). 
While many discussions of AIF center on epistemic foraging in 
the environment, it is also possible to consider epistemic foraging 
of the self, also a rich source of signals in the noise (Seth, 2013; 
Seth and Friston, 2016).

Thus far, we have primarily addressed control information, 
noting that it can also be gleaned from conscious phenomenal 
sensation (Seth et  al., 2012). Enhancing the generative model 
through exploration, also known as epistemic foraging, provides 
potential future control information. However, when new signifi-
cance arises, it is not necessarily immediately subsumed as control 
information. Consider hearing a fellow diner’s request to “pass 
the salt.” Given situated language learning (Diessel, 2006), words 
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provide evidence for the most apt generative model or policy 
(Lupyan and Clark, 2015), enhancing the control information 
for the relevant modification of the thermodynamic substrate  
(identifying, grabbing, and passing a nearby salt shaker). Never-
theless, the request is also appreciable as a phenomenal sensation 
that can be further epistemically foraged. For instance, the diner’s 

shaky tone of voice might indicate an emotional state that was not 
immediately relevant to passing the salt, but may become relevant 
in social interaction, leading to an enquiry about their wellbeing 
(Filippi et al., 2017).

What should facilitate such inquiring? When time pressure is 
low, it is possible to reflectively evaluate information beyond its 
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role in facilitating immediate adaptive behavior. AIF can describe 
this as the momentary decoupling of aspects of the model from 
the environment for self-reflective epistemic foraging, while 
potentially remaining partially environmentally engaged (e.g., 
thinking about the office during the commute). Having this abil-
ity would confer adaptive advantages, such as navigating complex 
social meaning, as well as more protracted forms of elaborate 
problem-solving (mentally revisiting a problem from different 
angles). This example also speaks to the trade-off between epis-
temic (expected simplicity) and pragmatic (expected accuracy) 
imperatives that underlie FEM in policy selection. In brief, the 
trade-off—not dissimilar to an exploration/exploitation trade-
off—rests upon the precision of prior preferences. Generally, in 
a new situation, epistemic affordance would normally dominate 
policy selection until there is a comfortable familiarity with 
the lived context; prior preferences can then come into play. 
Crucially, these prior preferences are themselves inferred in deep 
(hierarchical) generative models.

A strong candidate for facilitating such self-reflection is also 
the most apparent correlate of self-consciousness: a mental 
buffer that underpins introspective awareness. This buffer can 
be regarded as the substrate of conscious mental simulation, 
imagination, and internal monolog. The latter would allow for 
forms of self-reflection, as well as the self-referential fine-tuning 
of adaptive behavior (“I must remain focused on the road!”). It 
is relatively uncontroversial to view simulation as contributing 
to adaptive behavior through mental rehearsal, and imagination 
as contributing to generating counterfactuals and exposing new 
affordances, while also enabling the suppression of conscious 
environmental coupling.

Whatever its genesis and other roles, consciousness appears to 
be crucial for epistemic foraging in the limitless source of signals 
in the noise of the self, in a manner wholly consistent with the 
information-bound AIF elaborated above. Note that bringing 
consciousness to the table presupposes a generative model of the 
future that necessarily entails a degree of selfhood and agency. 
This characteristic of generative models has been referred to as 
counterfactual richness or depth (Seth, 2015) to emphasize the 
deep and fictive nature of how (some) agents predict their world 
and behavior.

Moreover, from the AIF perspective, we can identify a feature 
that appears to be rare in the animal realm that could be plausibly 
robotically implemented. Our fundamentally thermodynamically 
constrained social origins imply a capacity for ethical consid-
erations, at least concerning basic aspects of resource sharing 
(Cosmides et al., 2010). In this context, consciousness as a buffer 
for self-reflective epistemic foraging would underpin our ability 
to evaluate preferred outcomes and inferred policies from a space 
of possible state transitions—in other words, to evaluate ends and 
means to ends—on the basis of ethical considerations.

Through conscious, self-reflective epistemic foraging, a 
self-conscious agent can turn active inference inward, by 
nuancing model or policy selection to alter its current outcome 
preference. Also, when a preferred outcome has been selected, 
an agent can determine whether it ought to infer a policy alter-
native to the immediate, intuitively inferred policy it would 

have selected under time pressure.15 (This can be thought 
of as the agent’s self-referential policy to realize a preferred 
future in which other possible ends and means have been duly 
considered.) With the luxury of time, consciously aware self-
reflective agents can individually and cooperatively aim for a 
deeply considered preferred future, to be reached via a deeply 
considered pathway.

The above speculations are indicative of the manner in which 
AIF can plausibly connect an agent’s consciousness to its embed-
ding in progressively larger social organizations. The mechanis-
tic—yet radically non-reductive—explanatory underpinning of 
this embodied, embedded account of individuals and society 
inherently includes their openness to vast cultural proliferations 
and indeterminate futures.

8. ConCLUsion: at tHe Crossroads 
oF natUraL and artiFiCiaL eMBodied 
CoGnition

We have seen above why, in contrast to common assumptions, 
AIF opposes the mechanistic to the reductive. If AIF were applied 
to developing a humanoid robot that would approximate a human 
being, it is clear that its embodied apparatus must be more than 
just for show. The mechanical actuation would need to furnish 
the proprioceptive sensing aspect of the generative model that 
would exhibit reliably invariant covariance with exteroceptive 
sensing. For this extero- and proprioceptive coupling to be 
biomimetic, the sensing should have the same constraints as our 
biologically inherited apparatus, such as a limited visual range 
that is extended by bodily movement. Assuming a neuromorphic 
information integration apparatus were also implemented, we 
could expect robotic interoception to identify environmentally 
relevant quantities such as energy requirements (“hunger”) and 
bodily damage (“pain”).

So far, none of this would require consciousness, though it could 
achieve basic adaptive behavior. For a more deeply situated robot, 
we would need to add a minimal mechanism for distinguishing 
foreground from background, and one for differentiating between 
quasi-conspecifics (others of the same make or possibly humans 
as well). This could serve to fulfill the requirement of social 
grounding that would in principle pave the way for cooperative 
communication strategies, such as gesture and language.

With an appropriate buffer of interoceptive self-awareness, the 
robot could epistemically forage within this buffer for additional 
relevant signals than those it first identifies in the environment. 
Through the usual human routes of upbringing and education, it 
could also be taught to evaluate the consequences of its actions, 
to weigh preferred ends and available means by considering their 
potential impact on itself and others. The process of learning 

15 Time pressure is accommodated in active inference by appealing to Hamilton’s 
principle of least action. In other words, it is the expected free energy over time 
that counts, where unexpected energy corresponds to an action. Put simply, for 
adaptive efficacy, it is much better to reduce free energy quickly, to an imperfect 
level, than to spend lots of time reducing it to its minimum.
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to appreciate counterfactual outcomes would be enhanced by a 
capacity for valenced esthetic experiences (“emotions”). This sug-
gests a broadly socially situated (humanlike) role for emotional 
regulation (see, e.g., Sell et al., 2017), which differs considerably 
from current robotic implementations of pseudo-emotional 
states (e.g., Moshkina et al., 2011).

It would be within reason to describe the set of processes in 
AIF as algorithms, which raises the question: what implications 
does this have for our understanding of humans? There have 
been many recent discussions of algorithmic bias in computer 
systems said to reflect the bias of the human system designers. 
This is not surprising, given any disembodied algorithm based 
on a reductive input/output model. With AIF, however, we can 
make sense of natural and artificial ecologically and socially 
situated embodied agents. Agents with this specification would 
interactively probe and learn the apparent regularities of their 
world. At the same time, with sufficient complexity, they would 
have the capacity to critically evaluate their own generalizations 
from past environmental exposure, to identify when forms of 
bias are detrimental, and to engage in meaningfully value-laden 
self-corrective recalibration (while of course this provides no 
guarantees, even for humans; see, e.g., Bang and Frith, 2017; 
Holroyd et al., 2017).

To summarize: by appeal to the principle of FEM, we 
can descriptively account for a long view that takes us from 
elementary particles to embodied biological agents. In an eco-
logical context, the emergence and behavior of these agents— 
underpinned by a cybernetic relationship between thermo-
dynamics and information—can be understood to plausibly 
facilitate the evolutionary development of life. On a long 
enough time scale, under contingent circumstances, FEM is 
sufficient to yield the coevolutionary development of mutually 
adaptive, highly complex agents and niches, as we see in human 
culture, especially in our pragmatic and epistemic foraging 
behavior, which fundamentally includes socially cooperative 
and self-reflective capacities. Taking all of this into account, 
AIF suggests a possible approach to the biomimetic modeling 
of human agents that in principle would exhibit humanlike 
embodied cognition. Such agents would plausibly be conscious 
in most senses of the word.
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appendiX

Glossary of terms
In Bayesian statistics and machine learning, several common 
terms have technical meanings. This glossary defines the way in 
which we use key terms in the current article.

Free-energy: an information theory measure that bounds  
(is greater than) the surprise on sampling some data, given a 
generative model.

Entropy: the average surprise of outcomes sampled from a 
probability distribution or density. A density with low entropy 
means, on average, the outcome is relatively predictable. High 
entropy denotes unpredictability and uncertainty.

Surprise, surprisal, or self-information: the negative log-
probability of an outcome. An improbable outcome is, therefore, 
surprising. Negative surprise is the same as log evidence; namely, 
the logarithm of Bayesian model evidence.

Bayesian surprise: a measure of salience based on the divergence 
between the posterior and prior probability densities. It measures 
the information gain obtained by updating the priors to posteriors.

[Kullback–Leibler] Divergence: information divergence, 
infor mation gain, or relative entropy. The divergence is a 

(non-commutative) measure of the difference between two prob-
ability distributions.

Generative model: a probabilistic model that generates conse-
quences (i.e., data) from their causes (i.e., model parameters). A 
generative model is also known as a forward model and is usually 
specified in terms of the likelihood of getting some data given 
their causes (parameters of a model) and priors on the parameters.

Prior: the probability distribution or density over the causes 
of data that encode beliefs about those causes prior to observing 
the data.

Empirical prior: priors that are induced by hierarchical models; 
they provide constraints on the recognition density is the usual 
way but depend on the data.

Conditional density or posterior density: the probability distri-
bution over causes or model parameters, given some data; i.e., a 
probabilistic mapping from observed consequences to causes. In 
Bayesian inference, the prior is updated—on the basis of observa-
tions—to become a posterior, according to Bayes rule.

Model evidence: in Bayesian statistics, the model evidence is 
the probability that observed data were generated by a particular 
generative model. The negative logarithm of model evidence is 
surprise or self-information in information theory.
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self in nars, an agi system
Pei Wang*, Xiang Li and Patrick Hammer

Department of Computer and Information Sciences, Temple University, Philadelphia, PA, United States

This article describes and discusses the self-related mechanisms of a general-purpose 
intelligent system, NARS. This system is designed to be adaptive and to work with insuf-
ficient knowledge and resources. The system’s various cognitive functions are uniformly 
carried out by a central reasoning-learning process following a “non-axiomatic” logic. 
This logic captures the regularities of human empirical reasoning, where all beliefs are 
revisable according to evidence, and the meaning of concepts are grounded in the sys-
tem’s experience. NARS perceives its internal environment basically in the same way as 
how it perceives its external environment although the sensors involved are completely 
different. Consequently, its self-knowledge is mostly acquired and constructive, while 
being incomplete and subjective. Similarly, self-control in NARS is realized using mental 
operations, which supplement and adjust the automatic inference control routine. It is 
argued that a general-purpose intelligent system needs the notion of a “self,” and the 
related knowledge and functions are developed gradually according to the system’s 
experience. Such a mechanism has been implemented in NARS in a preliminary form.

Keywords: general intelligence, non-axiomatic logic, self-awareness, self-control, self-organization, 
consciousness

1. inTrODUcTiOn

Phenomena and functions like “self-awareness,” “self-control,” “self-reference,” and “self-consciousness” 
are closely related to human intelligence, cognition, and thinking, and the related topics have been 
discussed in various fields (Hofstadter, 1979; Blackmore, 2004).

In the study of artificial intelligence (AI), although these issues have been addressed by the pio-
neers (Simon, 1962; Minsky, 1985; McCarthy, 1995), they nevertheless have been rarely considered 
in the technical works, as shown by the lack of coverage of these topics in the common textbooks 
(Luger, 2008; Russell and Norvig, 2010; Poole and Mackworth, 2017). The difficulty of realizing these 
functions in a machine is both technical and theoretical, as there is no widely accepted theory about 
them, and even their definitions are highly controversial.

On the contrary, researchers in the emerging field of artificial general intelligence (AGI) widely 
consider these functions as necessary for general intelligence and have proposed various ways to 
cover hem in AGI systems (Schmidhuber, 2007; Baars and Franklin, 2009; Bach, 2009; Shapiro and 
Bona, 2010; Chella and Manzotti, 2012; Thórisson, 2012; Goertzel, 2014; Rosenbloom et al., 2016). 
As these approaches are based on very different considerations and typically tangled with the other 
functions in the system, it is hard to compare them to say which one is the best.

The focus of this article is the relevant aspects of NARS (non-axiomatic reasoning system), a 
formal model of general intelligence, which has been mostly implemented and is under testing and 
tuning. In the following, the conceptual design of NARS is introduced first, then the parts mostly 
relevant to “self ” are described in more detail. Finally, the major design decisions are compared with 
the related works.
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2. nars OVerVieW

NARS (non-axiomatic reasoning system) is an AGI-designed 
framework of a reasoning system. The project has been described 
in many publications, including two books (Wang, 2006, 2013), 
so it is only briefly summarized here.

2.1. Theoretical and strategic 
assumptions
The working definition of “intelligence” in NARS is different from 
that in mainstream AI, where “Intelligence” is usually taken as 
an ability to solve problems that are only solvable by the human 
brain. A computer agent can obtain this ability by developing 
domain-specific solutions. Instead, NARS is designed according 
to the belief that “Intelligence” is the ability for a system to adapt 
to its environment and to work with insufficient knowledge and 
resources. It requires the system to have the capacities of accepting 
unanticipated problems and events, making real-time responses, 
working with finite resources, and learning from its experience in 
an application domain.

The behaviors of NARS are based on past experiences and gen-
erated by interacting with the environment in real time; therefore, 
the solutions provided by the system to the problems are usually 
not the optimum solutions but the best solution that the system 
can find at the moment. The system could always do better with 
more resources and knowledge, especially in a relatively stable 
environment. Compared to the other theories of rationality, 
the most significant feature of this “relative rationality” is the 
Assumption of Insufficient Knowledge and Resources, hereafter 
AIKR. Concretely, the following three features are demanded by 
AIKR, with respect to the problems to be solved by the system:

•	 Finite: The system is able to work with constant informa-
tion-processing capacity, in terms of processor speed, storage 
space, etc.

•	 Real time: The system is able to deal with problems that 
show up at any moment and the utility of their solutions may 
decrease over time.

•	 Open: The system is able to accept input data and problems of 
any content, as long as they are expressed in a format recog-
nizable by the system.

Due to the time and resources restriction, and also the uncer-
tainty about the coming problems, NARS usually cannot consider 
all possibilities when facing a problem, but will only consider 
some important and relevant possibilities, judged according to 
the system’s experience.

According to AIKR, NARS does not treat the storage space of 
itself as infinite. The mechanism of forgetting is a special feature 
of NARS to deal with limited storage space. Some beliefs or tasks 
will be removed from the storage of NARS when their priority (to 
be introduced later) is below a threshold.

AIKR is a fundamental assumption abstracted from the study 
of human problem solving in the real world. Humans obtain 
knowledge by learning and summarizing past experience. When 
humans deal with problems that they do not know how to solve 
at the moment, they will attempt to solve them with the help of 

relevant knowledge. This ability is exactly what we consider intel-
ligence, which is characterized not by what problems it can solve, 
but the restriction under which the problems are solved.

The research goal of NARS is to design and build a com-
puter system that can adapt to its environment and solve 
problems under AIKR. This is different from the objectives 
of the mainstream AI projects, which are specific problem-
solving abilities. The aim of NARS is to build a system with 
a given learning ability (at the meta-level) that allows the 
system to acquire various problem-solving skills from its 
experience.

Although being a reasoning system is neither a necessary nor 
sufficient condition for being intelligent, a reasoning system can 
provide a suitable framework for the study of intelligence, as it 
forces the system to be general purpose, instead of being domain 
specific. Reasoning is at a more abstract level than other low-level 
cognitive activities, and it is obviously a critical cognitive skill 
that qualitatively distinguishes human beings from other animals.

Many cognitive processes such as planning, learning, decision-
making, etc., can be formulated as types of reasoning; therefore, 
an intelligent system designed in the framework of a reasoning 
system can be extended to cover them easily. As a reasoning 
system follows a logic, each step of processing must be justifiable 
independently. As a result, inference steps can be linked at run 
time in novel orders to handle novel problems. This is a major 
reason why NARS is designed as a reasoning system.

2.2. Knowledge representation
As a reasoning system, NARS uses a formal language called 
“Narsese” for knowledge representation, which is defined by a 
formal grammar given in the study by Wang (2013). To fully 
specify and explain this language is beyond the scope of this 
article, so in the following, only the directly relevant part is 
introduced informally and described briefly.

The logic used in NARS belongs to a tradition of logic called 
“term logic,” where the smallest component of the representation 
language is a “term,” and the simplest statement has a “subject-
copula-predicate” format, where the subject and the predicate are 
both terms.

The basic form of statement in Narsese is inheritance state-
ment, which has a format “S → P,” where S is the subject term, and 
P is the predicate term, the “→” is the inheritance copula, which 
is defined as a reflexive and transitive relation from one term to 
another term. The intuitive meaning of “S → P” is “S is a special 
case of P” and “P is a general case of S.” For example, statement 
“robin → bird” intuitively means “Robin is a type of bird.”

We define the extension of a given term T to contain all of its 
known special cases and its intension to contain all of its known 
general cases. Therefore, “S→P” is equivalent to “S is included in 
the extension of P,” and “P is included in the intension of S.”

The simplest, or “atomic,” form of a term is a word, that is, a 
string of characters from a finite alphabet. In this article, typical 
terms are common English nouns like bird an animal, or mixed 
by English letters, digits 0–9, and a few special signs, such as 
hyphen(“-”) and underscore (“_”), but the system can also use 
other alphabets or use terms that are meaningless to human 
beings, such as “drib” and “aminal.”
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Beside atomic terms, Narsese also includes compound terms of 
various types. A compound term (con, C1, C2, …, Cn) is formed 
by a term connector, con, and one or more component terms (C1, 
C2, …, Cn). The term connector is a logical constant with prede-
fined meaning in the system. Major types of compound terms in 
Narsese include the following:

•	 Sets: Term {Tom, Jerry} is an extensional set specified by enu-
merating its instances; term [small, yellow] is an intensional set 
specified by enumerating its properties.

•	 Intersections and differences: Term (bird ∩ swimmer) 
represents “birds that can swim”; term (bird – swimmer) rep-
resents “birds that cannot swim.”

•	 Products and images: The relation “John is the uncle of Zack” 
is represented as “({John}  ×  {Zack}) → uncle-of,” “{John}→ 
(uncle-of  /  ◊  {Zack}),” and “{Zack}→ (uncle-of  /  {John}  ◊),” 
equivalently.1 Here, ◊ is a placeholder, which indicates the 
position in the uncle-of relation the subject term belongs to.

•	 Statement: “John knows soccer balls are round” can be rep-
resented as a higher-order statement “{John}→ (know / ◊ {soc-
cer-ball → [round]}),” where the statement “soccer-ball → 
[round]” is used as a term.

•	 Compound statements: Statements can be combined using 
term connectors for disjunction(“∨”), conjunction(“∧”), and 
negation(“¬”), which are intuitively similar to those in propo-
sitional logic, but not defined using truth-tables.2

Several term connectors can be extended to take more than 
two component terms, and the connector is often written before 
the components rather between them, such as (× {John}{Zack}).

Beside the inheritance copula (“→”, “is a type of ”), Narsese 
also has three other basic copulas: similarity (“↔”, “is similar to”), 
implication (“⇒”, “if-then”), and equivalence (“⇔”, “if-and-only-
if ”), and the last two are used between statements.

In NARS, an event is a statement with temporal attributes. 
Based on their occurrence order, two events E1 and E2 may have 
one of the following basic temporal relations:

•	 E1 happens before E2

•	 E1 happens after E2

•	 E1 happens when E2 happen

More complicated temporal relations can be expressed by 
taking about the subevents of the events.

Temporal statements are formed by combining the above 
basic temporal relations with the logical relations indicated by 
the term connectors and copulas. For example, implication state-
ment “E1 ⇒ E2” has three temporal versions, corresponding to the 
above three temporal orders, respectively3:

1 This treatment is similar to the set-theoretic definition of “relation” as set of tuples, 
where it is also possible to define what is related to a given element in the relation as 
a set. For detailed discussions, see the studies by Wang (2006, 2013).
2 The definitions of disjunction and conjunction in propositional logic do not 
require the components to be related in content, which lead to various issues under 
AIKR. In NARS, such a compound is formed only when the components are related 
semantically, temporally, or spatially. See the study by Wang (2013) for details.
3 Here, the direction of the arrowhead is the direction of the implication relation, 
while the direction of the slash is the direction of the temporal order. In principle, 
copulas like “/⇐” can also be defined, but they will be redundant. For more discus-
sion on this topic, see the study by Wang (2013).

•	 E1 /⇒ E2

•	 E1 \⇒ E2

•	 E1 |⇒ E2

All the previous statements can be seen as Narsese describ-
ing things or events from a third-person view. Narsese can also 
describe the actions of the system itself with a special kind of 
event called operation. An operation is an event directly realiz-
able by the system itself via executing the associated code or 
command.

Formally, an operation is an application of an operator on a list 
of arguments, written as op(a1, …, an) where op is the operator, and 
a1, …, an is a list of arguments. Such an operation is interpreted 
logically as statement“(× {SELF} {a1} … {an}) → op,” where SELF 
is a special term indicating the system itself, and op is an operator 
that has a procedural interpretation. For instance, if we want to 
describe an event “The system is holding key_001,” the statement 
can be expressed as “(× {SELF} {key_001})→ hold.”

Overall, there are three types of sentences defined in Narsese:

•	 A judgment is a statement with a truth value and represents a 
piece of new knowledge that system needs to learn or consider. 
For example, “robin → bird ⟨f, c⟩,” where the truth value ⟨f, c⟩ 
will be introduced in the next section.

•	 A question: is a statement without a truth value, and represents 
a question to be answered according to the system’s beliefs. For 
example, if the system has a belief “robin → bird” (with a truth 
value), it can be used to answer question “robin → bird?” by 
reporting the truth value, as well as to answer the question 
“robin → ?” by reporting the truth value together with the term 
bird, as it is in the intension of robin. Similarly, the same belief 
can also be used to answer question “? → bird” by reporting 
the truth value together with the term robin.

•	 A goal is statement without a truth value, and represents 
a statement to be realized by executing some operations, 
according to the system’s beliefs. For example, “(× {SELF} 
{door_001}) → open!” means the system has the goal to open 
the door_001 or to make sure that door_001 is opened. Each 
statement of goal always associates with a “desire-value,” 
indicating the extent to which the system hopes for a situation 
where the statement is true.

The experience of NARS consists of a stream of input sentences 
of the above types.

2.3. experience-grounded semantics
When studying a language, semantics relates the items in the 
language to the environment in which the language is used. It 
answers questions like “What is the meaning of this term?,” or 
“What is the truth value of that statement?”

Since NARS is designed under AIKR, the truth value of a 
statement measures its extent of evidential support, rather than 
that of agreement with a corresponding fact. NARS does not 
determine the truthfulness of its knowledge with respect to a 
static and completely described environment. Since the envi-
ronment changes over time, there is no guarantee that the past 
is always identical to the future. Hence, in NARS, the truth of 
each statement and the meaning of each term are grounded on 
nothing but the system’s experience. The formal definition of this 
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semantics and discussions of its implications can be found in the 
studies by Wang (2005, 2013) and are only briefly summarized 
in the following.

As mentioned previously, in Narsese, “robin → bird” states 
that “Robin is a type of bird,” and it is equivalent to saying that 
the extension of robin is included in the extension of bird, as 
well as the intension of bird is included in the intension of robin. 
Therefore, if a term is in the extension (or intension) of both robin 
and bird, then its existence supports the statement or provides 
positive evidence. On the contrary, if a term is in the extension of 
robin but not the extension of bird, or is in the intension of bird 
but not the intension of robin, it provides negative evidence for 
the statement.

For a given statement, we use w+, w–, and w to represent the 
amount of positive, negative, and total evidence, respectively. 
Based on them, a two-dimensional truth value is defined as a 
pair of real numbers ⟨f, c⟩ for the measurements. Here, f is called 
the frequency of the statement and is defined as the proportion 
of positive evidence among total evidence, that is, f = w+/w. The 
value c is called the confidence of the statement and is defined 
as the proportion of current evidence among total amount of 
evidence at a moment in the future after new evidence of a certain 
amount is collected, that is, c  =  w/(w  +  k), where k  ≥  1. This 
constant k is a “personality parameter” and is explained further 
in the study by Wang (2013). The value of k can be seen as a unit 
of evidence that decides how fast the c value increases as new 
evidence comes, and in the following, we use the default k = 1 to 
simplify the discussion. Roughly speaking, frequency represents 
the uncertainty of the statement, and confidence represents the 
uncertainty of the frequency (Wang, 2001). Defined in this way, 
truth value in NARS is “experience-grounded.”

Similarly, the meaning of a term is defined as its extension 
and intension, so it is determined by how it is related to other 
terms in the system’s experience. As the experience of a system 
grows over time, the truth value of statements and the meaning of 
terms in the system change accordingly. This experience-grounded 
semantics (EGS) is fundamentally different from the traditional 
model-theoretic semantics, since it defines truth value and mean-
ing according to a (dynamic and system-specific) experience, 
rather than a (static and system-independent) model. In the 
simplest implementation of NARS, its experience is a stream of 
Narsese sentences, which will be summarized to become the 
system’s beliefs, which is also called the system’s knowledge. This 
semantics is formally defined and fully discussed in the study by 
Wang (2005, 2006).

2.4. inference rules
The logic followed by NARS is NAL (non-axiomatic logic), 
and its inference rules use Narsese sentences as premises and 
conclusions. A recent version of NAL is formalized and justified 
in the study by Wang (2013). What is described in the following 
is only a small part of NAL that is directly related to the current 
topic.

NAL uses formal inference rules to recursively derive new 
knowledge from existing knowledge, which consists of statements 
with truth values, indicating the experienced relations between 

terms and the strength of these relations. Each inference rule 
has a truth value function that calculates the truth value of the 
conclusion according to the evidence provided by the premises.

In terms of the type of reasoning, inference rules of NARS are 
divided into three categories:

•	 Local rules: These rules do not derive new statements. Instead, 
the conclusion comes out from a revision or selection of the 
premises.

•	 Forward rules: New judgments are produced from a given 
judgment and a relevant belief.

•	 Backward rules: New questions (or goals) are produced from 
a given question (or goal) and a relevant belief.

In the following, these three groups of rules are introduced in 
that order.

Under AIKR, NARS may have inconsistent beliefs, that is, 
the same statement may obtain different truth values according 
to different evidential bases. When the system locates such an 
inconsistency, it either uses the revision rule (if the evidence 
bases are disjoint) or the choice rule (if the evidence bases are 
not disjoint). The revision rule accepts two judgments about the 
same statement as premises and generates a new judgment for the 
statement, with a truth value obtained by pooling the evidence of 
the premises. Consequently, the frequency of the conclusion is a 
weighted sum of those premises, and the confidence is higher than 
those of the premises. The choice rule simply choose the premise 
that has more positive evidence and less negative evidence, while 
preferring simpler candidates.4

As a term logic, typical inference rules in NAL are syllogistic, 
and each rule takes two premises (with one common term) to 
derive a conclusion (between the other two terms). The NAL rules 
of this type include deduction, induction, and abduction, similar 
to how the three are specified by Peirce (1931), although the truth 
value of every statement is extended from {0, 1} to [0,1] × (0,1). 
These three inference rules are the most basic forward rules of 
NAL, where M, P, and S represent arbitrary terms:

Deduction induction abduction

M → P ⟨f1, c1⟩ M → P ⟨f1, c1⟩ P → M ⟨f1, c1⟩ 
S → M ⟨f2, c2⟩ M → S ⟨f2, c2⟩ S → M ⟨f2, c2⟩ 

S → P ⟨f, c⟩ S → P ⟨f, c⟩ S → P ⟨f, c⟩ 

Different forward inference rules have different truth value 
functions that calculate ⟨f, c⟩ from ⟨f1, c1⟩ and ⟨f2, c2⟩. These func-
tions are established in the study by Wang (2013), and here, we do 
not describe the actual functions, but merely divide the inference 
rules into two groups, according to the maximum confidence 
value of the conclusions:

•	 Strong inference: The upper bound of confidence is 1. Among 
the rules introduced so far, only the deduction rule belongs to 
this group.

4 The truth value function of the choice rule and the syntactic complexity of a term 
is defined in the study by Wang (2013).
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•	 Weak inference: The upper bound of the confidence is 1/
(1 + k) ≤ 1/2. The abduction and induction rules belong to this 
group.

The weak inference rules in NARS usually carry out learning, 
where each piece of evidence generates a weak conclusion, and 
strong conclusions are accumulated by the revision rule from 
many weak conclusions. This is why “learning” and “reasoning” 
are basically the same process in NARS (Wang and Li, 2016).

NAL has other syllogistic rules and also has compositional 
rules to build compound terms to capture the observed patterns 
in experience. For example, from “swan → bird ⟨f1, c1⟩” and “swan 
→ swimmer ⟨f2, c2⟩,” a rule can produce “swan → (∩, bird, swim-
mer) ⟨f, c ⟩.”

The inference rules of NAL can be used in both forward 
inference (from existing beliefs to derived beliefs) and backward 
inference (from existing beliefs and questions/goals to derived 
questions/goals). For each forward inference rule that from two 
judgments J1 and J2 to derive a conclusion J, a backward inference 
rule can be established that takes J1 and a question on J as input 
and derives a question on J2, because an answer for the derived 
question can be used together with J1 to provide an answer to 
the original question. For example, if the question is “robin → 
animal?,” and there is a related belief “robin → bird ⟨f, c⟩,” then a 
derived question “bird → animal?” can be generated. The back-
ward inference on goals is similar.

2.5. inference control
Equipped with the inference rules of NAL, NARS can carry out 
the following types of inference tasks:

•	 To absorb new experience into the system’s beliefs, as well as to 
spontaneously derive some of their implications.

•	 To answer the input questions and the derived questions 
according to the system’s beliefs.

•	 To achieve the input goals and the derived goals by executing 
the related operations according to the system’s beliefs.

Under AIKR, new tasks can enter the system at any time, each 
with its own time requirement, and its content can be any Narsese 
sentence. Working in such a situation, usually NARS cannot per-
fectly accomplish all tasks in time, but has to allocate its limited 
time and space resources among them and to dynamically adjust 
the allocation according to the change of context, the feedback to 
its actions, and other relevant factors.

In the memory of NARS, beliefs and tasks are organized into 
concepts, according to the terms appearing in them. Roughly 
speaking, for a term T, concept CT refers to all beliefs and 
tasks containing T. For example, the beliefs on “robin → bird” 
are referred to within concepts Crobin and Cbird, as well as other 
relevant concepts. A “concept” in NARS is a unit of both stor-
age and processing and models the concepts found in human 
thinking.

To indicate the relative importance of concepts, tasks, and 
beliefs to the system, priority distributions are maintained among 
them. The priority of an item (concept, task, or belief) summarizes 
the attributes to be considered in resource allocation, including 
its intrinsic quality, usefulness in history, relevance to the current 

context, etc. Consequently, items with higher priority values will 
get more resources.

Bag is a data structure specially designed for resource alloca-
tion in NARS. A certain type of data items is contained in a bag 
with a constant capacity, with a priority distribution among the 
items maintained. There are three basic operations defined in a 
bag:

•	 put(item): put an item into the bag, and if the bag is full, 
remove an item with the lowest priority

•	 get(key): take an item from the bag with a given key that 
uniquely identifies the item

•	 select(): select an item from the bag, and the probability for 
each item to be selected is positively correlated with its priority 
value

NARS works by repeating an inference cycle consisting of the 
following major steps:

 1. Select a concept within the memory
 2. Select a task referred by the concept
 3. Select a belief referred by the concept
 4. Derive new tasks from the selected task and belief by the 

applicable inference rules
 5. Adjust the priority of the selected belief, task, and concept 

according to the context and feedback
 6. Selectively put the new tasks into the corresponding concepts 

and report some of them to the user

All selections in the above steps are probabilistic, and the 
probability for an item to be selected is positively correlated to 
its priority value. Consequently, the tasks will be processed in a 
time-sharing manner, with different speeds. For a specific task, its 
processing does not follow a predetermined algorithm, but it is 
the result of many inference steps, whose combination is formed 
at run time, so is usually neither predictable nor repeatable accu-
rately, as both the external environment and the internal state of 
the system change in a non-circular manner.

3. “selF” in nars

In this section, we focus on the aspects of NARS that are directly 
relevant to self-awareness and self-control.

3.1. self in Various Forms
“Self ” takes multiple forms in NARS. Some of the relevant 
properties are addressed by different mechanisms built into 
the system, and some others are shown in the system’s learning 
process, including the following:

•	 Higher-order statements: As described previously, the 
higher-order statements in Narsese cover “statement about 
statement,” “knowledge about operations,” etc., which are 
often taken as functions of “metacognition” (Cox, 2005). Since 
such knowledge is typically about individual statements or 
operations and not about the system as a whole, and they are 
not the focus of this article. This type of knowledge usually 
is processed using inference rules analogical to these used on 
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the statement level. For more details, see the studies by Wang 
(2006, 2013).

•	 Intrinsic mechanisms: As a part of the inference control 
process, NARS constantly compares the certainty of beliefs 
and dynamically allocates its resources among competing 
tasks. Even though the relevant mechanisms are indeed at a 
meta-level with respect to beliefs and tasks, they are implicitly 
embedded in the code, so not generally accessible to the sys-
tem’s deliberation nor can they be modified by the system itself. 
Therefore, they describe a constant aspect of the system itself 
that is not reflected in the object-level beliefs of the system.

•	 Experience-grounded semantics: As mentioned previously, 
the system’s beliefs and concepts are built from the viewpoint 
of the system itself rather than as an objective model of the 
world. In this sense, all beliefs in NARS are subjective, and 
all concepts have idiosyncratic meanings to various extents. 
Consequently, the system’s behaviors can be explained and 
predicted only when the unique experience of the system itself 
is taken into consideration.

Although the above mechanisms are all related to the system 
itself in a broad sense, they nevertheless can be described without 
explicitly using the notion of “self.” In the following, the discus-
sion will focus on “self ” in a narrow sense, where a reference to 
the system as a whole becomes necessary.

3.2. The “self”-concept
NARS’ beliefs about itself start at its built-in operations. As men-
tioned above, operation op(a1, …, an) corresponds to a relation 
that the system can establish between itself and the arguments, so 
it is equivalent to statement “(×{SELF} {a1}…{an}) → op” (where 
the subject term is a product term written in the prefix format), 
since it specifies a relation among the arguments plus the system 
identified by the special term SELF.

Similar to the case of logic programming (Kowalski, 1979), 
here the idea is to uniformly represent declarative knowledge 
and procedural knowledge. So in NARS, knowledge about 
the system itself is unified with knowledge about others. For 
instance, the operation “open this door” is represented as 
“(×{SELF}{door_1}) → open,” so the inheritance copula encodes 
that the relation between {SELF} and {door_1} is a special case 
of opening. On the other hand, “John opened this door” is 
represented as “(×{John}{door_1}) → open” (tense omitted to 
simplify the discussion). In this way, imitation can be carried 
out by analogical inference.

According to experience-grounded semantics (EGS), in 
NARS, the meaning of a concept is gradually acquired from 
the system’s experience. However, EGS does not exclude the 
existence of innate concepts, beliefs, and tasks. In the above 
example, SELF is such a concept, with built-in operations that 
can be directly executed from the very beginning of the system’s 
life. Such operations depend on the hardware/software of the 
host system, so are not specified as parts of NARS, except that 
they must obey the format requirements of Narsese. According 
to EGS, in the initial state of NARS, the meaning of a built-in 
operation is procedurally expressed in the corresponding rou-
tine, while the meaning of SELF consists of these operations. 

To the system, “I am whatever I can do and feel,” since in NARS 
sensation (converting signals into terms) and perception (organ-
izing terms into compounds) are also carried out by operations.

As the system begins to have experience, the meaning of every 
concept will be more or less adjusted as it is experienced, directly 
or indirectly. For a built-in operation, the system will gradually 
learn its preconditions and consequences, so as to associate it 
with the goals it can achieve and the context where it can be used. 
It is like we learn how to raise our hand first and then know it 
as a way to get the teacher’s attention. The SELF-concept will be 
enriched in this way, as well as through its relations with other 
concepts representing objects and other systems in the outside 
environment.

Therefore, self starts from “what I can do and feel” to 
include “what I am composed of,” “how I look like,” “what 
my position is in the society,” etc. The notion “self ” does 
not have a constant meaning determined by a denotation 
or definition. Instead, the system gradually learns who it is, 
and its self-image does not necessarily converge to a “true 
self.” Since the change of meaning of a concept is done via 
the additions, deletions, and revisions of its relations with 
other concepts, the system’s identity (determined by all the 
relations) is relatively stable in a short period, although in its 
whole life the system may change greatly, even to the extent of 
unrecognizable when compared to a previous image of itself. 
Under AIKR, the system is open to all kinds of experience, so 
in the design of NARS, there is no restriction on the extent of 
these changes.

When NARS is used to serve a practical purpose, we often 
need to bind its behaviors, but it should be achieved via the 
control of the system’s experience, rather than by designing the 
system in a special way, as also described in the study by Bieger 
and Thórisson (2016).

3.3. Mental Operations
An operation may be completely executed by the actuator of the 
host system (e.g., a NARS-controlled robot raises a hand or moves 
forward) or partly by another coupled system or device (e.g., a 
NARS-controlled robot pushes a button or issues a command 
to another system). NARS has an interface for such “external” 
operations to be registered. Consequently, all kinds of operations 
to be used in a “plug-and-play” manner, i.e., to be connected to 
the system at run time by a user or the system itself. A learning 
phase is usually needed for an operation to be used properly and 
effectively, as NARS will gradually learn its preconditions and 
consequences.

In principle, operations are not necessarily demanded in 
every NARS implementation, except a special type of “mental” 
operations that operate on the system’s own “mind.” There 
are several groups of mental operations in the current design, 
including

•	 Task generation: An inference task in NARS can either be 
input or derived recursively from an input task. The derivation 
process does not change the type of the task (judgment, ques-
tion, or goal). However, in certain situations, a task needs to be 
generated from another one of a different type. For example, 
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a new judgment (“It is cold.”) may trigger a new goal (“Close 
the window!”). This relation is represented as an implication 
statement where the consequent is not a statement, but an 
operation call, similar to a production rule (Luger, 2008).

•	 Evidence disqualification: By default, the amount of evidence 
for every belief accumulates over time. Therefore, although the 
frequency value of the belief may either increase or decrease 
(depending on whether the new evidence is positive or nega-
tive), its confidence value increases monotonically. This treat-
ment is supplemented by a mental operation that allows the 
system to doubt a belief of itself by decreasing its confidence 
value to a certain extent.

•	 Concept activation: The resource allocation mechanism 
of NARS already implements a process similar to activation 
spreading in neural networks (Russell and Norvig, 2010). 
When a new task is added into a concept, the priority of the 
concept is increased temporarily, and inference in the concept 
may cause derived tasks to be sent to its neighbors, so their 
priority levels will be increased, too. As a supplement, a mental 
operation allows the system to pay attention to a concept with-
out new tasks added, so as to allow the system to deliberately 
consider a concept.

In general, mental operations supplement and influence the 
automatic control mechanism, and let certain actions be taken 
as the consequence of inference. Mental operations contribute to 
the system’s self-concept by telling the system what is going on in 
its mind and allow the system to control its own thinking process 
to a certain extent. For instance, the system can explicitly plan its 
processing of a certain type of task. After the design and imple-
mentation phases, the system needs to learn how to properly use 
its mental operations, just like it needs to learn about the other 
(external) operations.

3.4. internal experience
In NARS, “experience” refers to the system’s input streams. In the 
simplest implementation of NARS, the system has only one input 
channel, where the experience from the channel is a stream of the 
form S1, T1, S2, T2, …, Sn, Tn, where each Si is a Narsese sentence, 
with Ti to be the time interval between it and the next sentence. 
A buffer of a constant size n holds the most recent experience.

In more complicated implementations, there are also “sensory” 
channels, each accepting a stream of Narsese terms from a sen-
sory organ. Here, a sensor can recognize a certain type of signal, 
either from the outside of the system (such as visual or audio 
signals) or from the inside of the system, either from its body 
(somatosensory) or from its mind (mental). An internal channel 
provides a certain type of “internal experience.” Somatosensory 
input will be especially important for a robotic system, as it needs 
to be aware of its energy level, network connection status, dam-
ages in parts, etc.

A mental sensation may come from the execution of a mental 
operation. Also, there are mental sensations appearing as the 
traces of the system’s inference activity. During each inference 
cycle, the system “senses” the concept that was selected for 
processing, as well as the derivation relationship between tasks. 
Later, this experience can be used to answer questions such as 

“What has been pondered?” or “Where does that conclusion 
come from?,” asked either by the system itself or by someone else. 
This information can also be used in future inference activities.

On the input buffers, the system carries out certain perceptive 
reasoning to form compound terms corresponding to the spati-
otemporal patterns of the input. There is also a global buffer that 
holds a stream of Narsese sentences that integrate inputs from all 
the channels. In this aspect, the external and internal experiences 
are handled basically in the same manner.

A special type of belief formed in perception is the temporal 
implications between the mental events sensed within the system 
and the outside events observed by the system. The system will 
believe that it is some of its ideas that “cause” a certain action to 
be performed in its environment, and such beliefs will coordinate 
its “mind” and its “body.” This is also arguably the origin of the 
notion of “causation” within the system. For a detailed discussion 
on temporal and causal inference in NARS, see the study by Wang 
and Hammer (2015).

The internal experience of NARS is the major source of its self-
knowledge. Under AIKR, this type of knowledge is also uncertain 
and incomplete and is under constant revision. Furthermore, it is 
subjective and from the first-person perspective. In these aspects, 
NARS is fundamentally different from the “logical AI” approach 
toward self-knowledge, where the system is assumed as “having 
certain kinds of facts about its own mental processes and state of 
mind” (McCarthy, 1995).

3.5. Feeling and emotion
According to AIKR, NARS needs to deal with different tasks 
with limited time and other resources. To ask the designer to 
provide a general optimizing algorithm to manage resources 
for all the possible situations is obviously impossible, and this is 
one of the reasons why NARS needs a mechanism to learn how 
to manage its resources and to make quick responses in various 
circumstances, all by itself. In the human mind, emotion and feel-
ing play major roles in situation appraisal and behavior control, 
which are also desired in computer systems (Arbib and Fellous, 
2004). In NARS, we have built a preliminary mechanism to carry 
out similar functions.

NARS has a basic satisfaction–evaluation mechanism at the 
event level. Every event has a truth value and a desire value, 
expressing the current status and what the system wants it to be, 
respectively. The closeness between them is called “satisfaction,” 
which indicates a basic appraisal of an individual aspect of the 
situation. The value of “satisfaction” is in the range [0, 1], where 
0 means “completely unsatisfied,” 1 for “completely satisfied,” and 
the other cases are in between.

Also there is system-level satisfaction, as the accumulation of 
recent event-level satisfactions, which represents an appraisal of 
the overall situation. Technically, this value is evaluated in every 
working cycle by adjusting the overall satisfaction value using 
the satisfaction value of the event just processed. This system-
level satisfaction indicates the system’s extent of “happiness” or 
“pleasure,” and it plays multiple roles within the system, such as 
influencing the resource allocation.

To make the system aware of the values of these satisfaction 
indicators, some “feeling” operators are implemented, which 
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reflect these satisfaction values into the internal experience of 
the system, so as to involve them explicitly into the inference 
processes. This happens by the usage of reserved terms and state-
ments, which form the category of “emotional concepts” within 
the memory of the system. These emotional concepts provide a 
perception of emotions within NARS to the system itself, just like 
how the perceptive concepts summarize the system’s experience 
when interacting with the outside world.

These emotional concepts interact with other concepts as 
generic (unemotional) concepts would, leading to the genera-
tion of compounds by the inference process, be represented by 
concepts that combine the emotional aspect with other aspects 
of the situation. Being unsatisfied about an event may be caused 
by other systems or the system itself, may be about the past or the 
future, may be controllable or inevitable, etc., and all these differ-
ences will lead to different categorization about the situation. For 
example, simply speaking, regret is the combination of negative 
emotion (unsatisfied situation) with other concepts like “things 
happened in the past” and “things caused by my own behaviors.” 
You will not feel regret about bad things that might happen in the 
future or caused by the behaviors of someone else.

In addition, desire value is extended to non-event concepts 
according to their correlation with overall satisfaction. For exam-
ple, an object will be liked by the system if the appearing of this 
object consistently concurs with high satisfaction level, and the 
contrary ones will be “disliked” by the system. Of course, there are 
many other things for which the system has little emotion. These 
different attitudes mainly come from the system’s experience and 
will influence the system’s treatment to the concepts.

In summary, in NARS, emotional information appears in two 
distinct forms:

•	 At the “subconscious level,” it appears as desire values and 
satisfaction values. They are outside of the experience of the 
system, since these values do not form statements the system 
could reason about.

•	 At the “conscious level,” it appears as events expressed using 
emotional concepts. They are inside of the experience of the 
system, since they are represented as statements that are con-
sidered in the inference process of the system.

Emotional information in both forms contributes to the 
system’s internal processes, as well as to the system’s external 
behaviors.

The emotional concepts in experience are processed as other 
concepts in inference. Consequently, they categorize the objects 
and situations according to the system’s appraisal and allow the 
system to behave accordingly. For instance, the system may 
develop behavior patterns for “danger,” even though each con-
crete danger has very different sources and causes.

The “emotion-specific” treatments also happen at the subcon-
scious level, where the emotional information is used in various 
processes.

•	 The desire values of concepts are taken into account in atten-
tion allocation, where the concepts associated with strong 
feeling (extreme desire values) get more resources than those 
with weak feeling (neutral desire values). These desire values 

not only help the system to judge how long data items should 
be stored in memory but also how much priority they should 
be given when under consideration.

•	 After an inference step, if a goal is relatively satisfied, its prior-
ity is decreased accordingly and the belief used in the step gets 
a higher priority because of its usefulness. This way, already 
satisfied goals get less attention by the system, while relevant 
knowledge that satisfied these goals tends to be kept in mem-
ory longer, with the related concepts “liked” by the system.

•	 In decisions made, the threshold on confidence is lower in 
high emotional situations to allow quick responses. This is 
especially desired in  situations where there is no lot of time 
available to react.

•	 The overall satisfaction is used as a feedback to adjust the 
priority values of data items (concepts, tasks, beliefs), so that 
the ones associated with positive feeling are rewarded, and the 
ones associated with negative feeling punished. In this way, 
the system shows a “pleasure-seeking” tendency, and its extent 
can be adjusted by a system parameter. This pleasure-seeking 
tendency can be considered as a motivation that is not directly 
based on any task, but as a “meta-task.”

•	 When the system is relatively satisfied, it is more likely to 
create new goals, while when the system is unhappy about the 
current situation, it is more likely to focus on the existing goals 
that have not been achieved.

Overall, the system’s feelings and emotions consist of a major 
part of its internal experience and contribute to its self-control. 
Emotion also plays roles in communication and socialization, but 
they, as well as topics like the self-control of emotion, are beyond 
the scope of this article.

3.6. examples
Here, we illustrate a few examples using the Open-NARS5 imple-
mentation of NARS. To simplify the description, the examples are 
slightly edited to remove the attributes not discussed in this arti-
cle (such as the tense of the sentences), and before each Narsese 
sentence, the type of the sentence and a rough English translation 
are added. The ASCII symbols in the actual input/output are not 
the same as the logical symbols in the publications (including the 
above sections), but since their correspondence is hinted by their 
similarity and suggested by the English translation, the format 
will not be explained in detail, except the following:

•	 Judgments, questions, and goals in Narsese end with “.”, “?”, 
and “!”, respectively.

•	 Prefix “˄” indicates an operator, prefix “#” indicates an anony-
mous term, and prefix “$” indicates a variable term that can be 
substituted by another term.

•	 When the truth value of an input judgment or the desire value 
of an input goal is unspecified, the default ⟨1, 0.9⟩ is used.

The first example demonstrates learning from observing the 
actions of another agent. Let’s assume that Michael sells a car and 
that it is observed that he is rich after that. Later, when the system 

5 Source code, working examples, and documentations of Open-NARS can be 
found at http://opennars.github.io/opennars/.
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gets the goal “to be rich,” it will want to sell a car, too, as it guesses 
that whatever worked for Michael will also work for itself.
    Input: "Michael sells a car." 
    <(*,{Michael},car) --> ^sell>. 
    Input: "Michael gets rich." 
    <{Michael} --> [rich]>. 
    Derived: "After someone sells a car, one gets rich." 
    <(&/,<(*,$1,car) --> ^sell>) =/> <$1 --> [rich]>>. 
    %1.00;0.31%  
    Input: "I want to be rich!" <{SELF} --> [rich]>! 
    Derived: "I want to sell a car!" 
    <(*,{SELF},car) --> ^sell>! %1.00;0.28%

This example shows that the system uses a temporal relation 
as evidence for a causal relation, which of course often leads to 
mistakes. In NARS, such mistakes are corrected by further nega-
tive evidences, that is, when the system learns other car-selling 
events that do not bring richness to the seller. This is also how 
the system resolves competing explanations and predictions, that 
is, by accumulating evidence on the competing hypotheses and 
choosing the best supported one.

The next example illustrates how the system summarizes 
its experience in relation to itself. In particular, it shows that 
picking up trash together with the knowledge that itself is 
a robot leads to the formation of a compound concept that 
contributes to the meaning of itself as a “robot that picks up 
trash”:
    Input: "I am a robot." 
    <{SELF} --> robot>. 
    Input: "I pick up trash." 
    <(*,{SELF},trash) --> ^pick>. 
    Derived: "I am somebody who picks up trash." 
    <{SELF} --> (/,^pick,_,trash)>. 
    Input: "What two things characterize you?" 
    <{SELF} --> (&,?1,?2)>? 
    Answer: "That I am a robot who picks up trash." 
    <{SELF} --> (&,(/,^pick,_,trash),robot)>. %1.00;0.81%

The intermediate result that transformed the second input 
statement into an inheritance statement about itself was crucial 
here. The same happens with mental operations. The case where 
the system wonders about whether cats are animals illustrates 
that:
    Input: "I wonder whether cats are animals." 
    <(*,{SELF},<cat --> animal>) --> ^wonder>. 
    Input: "What am I?" 
    <{SELF} --> ?1>? 
    Answer: "I am somebody who wonders whether cats  
    are animals.”  
    <{SELF} --> (/,^wonder,_,<cat --> animal>)>. 
    %1.00;0.90%

Such a wondering event is part of the internal experience of 
the system and is generated by a question:
    <cat --> animal>?

For this to happen, the question task needs to exceed a certain 
priority value, meaning the system has to consider it as sufficiently 
important to the current situation.

The next examples show other motivational and emotional 
aspects of the system, such as the usage of a “feel” operator. Besides 
that, it shows the system’s capability to consider the related event 
in question answering:

    Input: "I don’t want to get hurt." 
    (--,<{SELF} --> [hurt]>)!  
    Input: "When running away from a close wolf, I won’t  
    get hurt." 
    <(&/,<(*,{SELF}, wolf) --> close_to>, 
    <(*,{SELF}) --> ^run>) =/> (--,<{SELF} --> [hurt]>)>. 
    Input: "I am close to wolf_1 now." 
    <(*,{SELF}, {wolf_1}) --> close_to>. 
    Input: "Wolf_1 is a wolf" 
    <{wolf1} --> wolf>. 
    Execution: "I run away." 
    <(*,{SELF}) --> ^run>! 
    Input: "I did not get hurt." 
    (--,<{SELF} --> [hurt]>).

The system deriving that running away from the wolf is 
satisfying:

    "Feel the amount of satisfaction!" 
    (^feelSatisfied,{SELF})! 
    Feedback: "I am relatively satisfied." 
    <{SELF} --> [satisfied]>. %0.65;0.90% 
    Input: "How can I be satisfied?" 
    <?how =/> <{SELF} --> [satisfied]>>? 
    Answer: "Running away when a wolf is close makes me  
    satisfied." 
    <(&/,<wolf --> (/,close_to,{SELF},_)>,<(*,{SELF})  
    --> ^run>) 
        =/> <{SELF} --> [satisfied]>>. %0.59;0.40%

Such satisfaction-related events can lead to emotion-based 
decisions, and, as the example shows, compound term can be 
composed by combining these events with other knowledge in 
the system.

In animals, there is usually an innate link between getting hurt 
by another animal and experiencing fear by future appearances of 
this kind of animal. Also, the response to fear, namely to run away, 
is usually an innate reaction and at the same time a successful 
strategy to survive. The following example demonstrates this case:

    Innate belief: "If you are close to something that  
    frightens you, run away" 
    <(&/,<(*,{SELF}, #1) --> close_to>,<(*,#1,{SELF})  
    --> frightens>) 
    =/> <(*,{SELF},<(*,{SELF}) --> ^run>) --> ^want>>. 
    Innate belief: "If something hurts you, it frightens  
    you." 
    <<(*,$1,{SELF}) --> hurt> =/> <(*,$1,{SELF}) -->  
    frightens>>. 
    Innate belief: "If something frightens you, you feel  
    fear. 
    <<(*,#1,{SELF}) --> frightens> =|> <(*,{SELF},fear)  
    --> feel>>. 
    Input: "You are getting hurt by a wolf." 
    <(*,wolf,{SELF}) --> hurt>.

From here, it is expected that the system learned to be fearful 
of wolves and that it runs away whenever it encounters one.

    Input: "You are close to a wolf." 
    <(*,{SELF}, wolf) --> close_to>. 
    Input: "How do you feel?" 
    <(*,{SELF},?what) --> feel>? 
    Answer: "I feel fear." 
    <(*,{SELF},fear) --> feel>. %1.00;0.29% 
    Execution: "I run away." 
    <{SELF} --> ^run>!

Given this encoding, the system can also be asked what fright-
ens it:
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    Input: "What frightens you?" 
    <(*,?1,{SELF}) --> frightens>? 
    Answer: "The wolf frightens me." 
    <(*,wolf,{SELF}) --> frightens>. %1.00;0.43%

4. cOMParisOns anD DiscUssiOns

In this section, the design decisions in NARS that are directly 
related to “self ” are explained and compared with the alternatives.

4.1. The need for a self
Are self-awareness and self-control really required in an intel-
ligent system? Why are such functions absent in most of the AI 
systems developed so far?

Like many controversies in AI, the different opinions on this 
matter can be traced back to the different understandings of “AI” 
(Wang, 2008). As the mainstream AI aims at the solving of specific 
problems, the systems are usually equipped with problem-specific 
algorithms, which embed knowledge about the problem domain, 
but not about the system itself, as the properties of the problem 
solver are usually irrelevant to the problem-solving process.

Even in learning systems that do not demand algorithms to 
be manually coded, they are still approximated by generalizing 
training data (Flach, 2012). In general, such systems have little 
need to add itself into the picture, as the solutions should only 
depend on the data to be learned, not the learner. Even meta-
cognition can be carried out without an explicit “self ”-concept 
involved (Cox, 2005)—when all the decisions are made by the 
system, it is unnecessary to explicitly state that.

In AGI systems, the situation is different. Here, we have projects 
aimed at simulating the human mind according to psychological 
theories, such as LIDA (Franklin, 2007) and MicroPsi (Bach, 
2009), which surely need to simulate the self-related cognitive 
functions, simply because the well-known roles they play in 
human cognition (Blackmore, 2004).

In the function-oriented AGI projects, self-awareness and self-
control are introduced to meet the requirements for the system, 
rather than sorely to be human-like. For instances, GLAIR is 
able to “represent and reason about beliefs about itself ” (Shapiro 
and Bona, 2010). Sigma has the function of “architectural self-
monitoring” (Rosenbloom et  al., 2016). When facing varying 
problems, an AGI has to know itself and be able to adjust itself, 
so as to meet the changing situations. Since the existing AGI 
systems have very different overall designs, the exact form of 
the self-related functions differ greatly, and it is hard to compare 
and judge them in details without taking the whole system into 
consideration.

In general, NARS is more similar to GLAIR and Sigma than 
to LIDA and MicroPsi, as it is designed to realize a certain 
understanding of intelligence, which is generalized away from 
its realization in human beings. For NARS, the need for self-
awareness and self-control follows from its working definition 
of intelligence, that is, adaptation under AIKR (Wang, 2008). 
To adapt to the environment and to carry out its tasks, the 
system needs to know what it can do and how it is related 
to the objects and other systems in the environment, and an 
explicitly expressed SELF-concept organizes all the related 

tasks and beliefs together, so as to facilitate reasoning and 
decision-making.

It may be argued that there is already a “self ” in many AI 
systems, as knowledge in the system is often conceptually “about 
itself,” “by itself,” or “for itself.” Why bother to explicitly spell that 
out and to separate it from other knowledge?

It is indeed the case that many AI systems have self-knowledge 
without explicitly talking about itself, but taking it as the default. 
For example, many works under the name of “metacognition” 
(Cox, 2005) have knowledge about various algorithms within 
the system itself and use this knowledge to select a proper one 
for the current problem. Although this process is self-reflective 
by nature, the systems typically does not have an explicitly rep-
resented “self.” Instead, the processes are separated into “object-
level” and “meta-level,” where the latter monitor and control the 
former (Cox, 2005; Marshall, 2006).

Although an “implicit self ” is enough for many problems, an 
explicitly represented self-concept provides many advantages 
desired in general-purpose AI that must adapt to various situa-
tions. This idea is not really new, as it can be at least traced back 
to McCarthy (1995), who promoted the idea of “making robots 
conscious of their mental states.” In NARS, the SELF-concept 
provides a flexible unit for the representation and processing of 
self-knowledge coming from various sources and in different 
forms, although it does not cover all the self-related functions. 
As a reasoning system, this design allows NARS to uniformly rep-
resent and process knowledge about the system itself and about 
the other systems. As shown by the previous examples, imitation 
can be directly carried out as analogical reasoning, by substituting 
another system by SELF.

4.2. self-awareness
The self-knowledge of NARS shares many features as the system’s 
knowledge about the outside environment.

All types of knowledge in NARS are organized into concepts. 
According to the semantics of NARS, the meaning of a concept 
(or a term naming a concept) is normally determined by its 
relation with other concepts (or terms). While for most concepts 
such relations are all acquired from the system’s experience, the 
system is not necessarily born with a blank memory. Each built-in 
operation contributes meaning to the concept of SELF, by relating 
the system as a whole to the events it can perceive and/or realize. 
Starting from these operations, the SELF-concept will eventually 
involve beliefs about

•	 what the system can sense and do, not only using the built-in 
operations, but also the compound operations recursively 
composed from them, as well as the preconditions and conse-
quences of these operations;

•	 what the system desires and actively pursues, that is, its moti-
vational and emotional structure;

•	 how the system is related to the objects and events in the 
environment, in terms of their significance and affordance to 
the system;

•	 how the system is related to the other systems, that is, the 
“social roles” played by the system, as well as the conversions 
in communication and interactions.
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All these aspects will make the system’s self-concept richer and 
richer, even to the level of complexity that we can meaningfully 
talk about its “personality,” that is, what makes this system dif-
ferent from the others, due to its unique nature and nurture. It 
is possible to measure the complexity of a concept in terms of 
its conceptual relations whose truth value is stable (high confi-
dence) and unambiguous (extreme frequency), although such a 
measurement does not mean much, as the intuitive richness of a 
concept also depends on many other factors, such as the quality 
and diversity of the concepts it relates to, and so on.

This treatment is fundamentally different from identifying 
“self ” with a physical body or a constant mechanism within the 
system. The spatial scope of self is mainly determined by the 
range of the system’s sensors and effectors, which can distribute 
in distinct locations.

According to our approach, “self ” is not left completely to a 
mysterious “emergent process,” neither. In NARS, the concept 
SELF starts with a built-in core, then evolves according to the 
system’s experience. In the process, the self-concept organizes 
the relevant beliefs and tasks together to facilitate self-awareness 
and self-control. This is consistent with Piaget’s theory that a 
child learns about self and environment by coordinating sens-
ing (such as vision and hearing) with actions (such as grasping, 
sucking, and stepping) and gradually progresses from reflexive, 
instinctual action at birth to symbolic mental operations 
(Piaget, 1963).

NARS treats SELF like other concepts in the system, except 
that it is a “reserved word,” which has innate associations with 
the built-in operations, including the mental operations. NARS 
also treats internal and external experience uniformly, so self-
awareness and self-control are nothing magical or mysterious, 
but are similar to how the system perceives and acts upon the 
external environment.

An important type of self-knowledge is provided by the emo-
tion and feeling mechanism of NARS. As mentioned previously 
and described in detail in the study by Wang et al. (2016), such a 
mechanism is introduced into NARS, not for giving the system a 
“human face,” but for appraising the current situation and dealing 
with it efficiently.

McCarthy (1995) concluded that “Human-like emotional 
structures are possible but unnecessary for useful intelligent 
behavior.” We agree that “being emotional” often leads to bad 
judgments and undesired consequences, but still consider emo-
tion a necessary component of advanced intelligence. Of course, 
the emotions in NARS are not “human-like” in details, but play 
similar roles as in human cognition, that is, situation appraisal 
and behavior control.

Due to AIKR, NARS is not aware of all of its internal structures 
and processes, but only the most prominent parts, “the tip of an 
iceberg.” Most activities within the system are beyond the scope of 
self-awareness, so cannot be deliberately considered. The picture 
is like what Freud (1965) drew about human thinking, although 
in NARS the unconscious processes follow the same logic as the 
conscious processes, except unnoticed by the system’s limited 
attention.

In general, NARS treats its “external experience” and “internal 
experience” in the same way, and the knowledge about the system 

itself has the same nature as other knowledge in NARS. Under 
AIKR, self-knowledge is incomplete, uncertain, and often incon-
sistent, which is the contrary of what is assumed by the “logical 
AI” school (McCarthy, 1995). The system can only be aware of 
the knowledge reported by certain mental operations and those 
in the input buffers, and even this knowledge does not necessarily 
get enough attention to reveal its implications.

4.3. self-control
Although the system only has limited self-knowledge, it never-
theless make self-control possible.

First, it is necessary to clarify what “self-control” means in 
this context. As almost all control activities are carried out by the 
system and the results are often within the system, to consider 
all of them “self-control” would trivialize the notion. Instead, the 
label should be limited to the actions resulting from the system’s 
case-by-case reflective and introspective deliberation, rather than 
from the working routines that are in the system’s initial design, as 
the latter should not be considered as the decision “by the system 
itself,” but by the designer of the system.

A widely agreed conclusion in psychology is that a mental pro-
cess can be either automatic (implicit, unconscious) or controlled 
(explicit, conscious), with respect to the system itself. The former 
includes innate or acquired stimulus–response associations, 
while the latter includes processes under cognitive control, such as 
“response inhibition, attentional bias, performance monitoring, 
conflict monitoring, response priming, task setting, task switch-
ing, and the setting of subsystem parameters, as well as working 
memory control functions such as monitoring, maintenance, 
updating, and gating” (Cooper, 2010). Various “dual-process” 
models have been proposed in psychology to cover both mecha-
nisms, such as the study by Kahneman (2011). Such models are 
also needed in AI, even though the purpose here is not to simulate 
the human mind in all details, but to benefits from the advantages 
of both. In general, controlled processes are more flexible and 
adaptive, while automatic processes are more efficient and reli-
able. Such a model often uses meta-level processes to regulate 
object-level processes (Cox, 2005; Marshall, 2006; Shapiro and 
Bona, 2010; Rosenbloom et al., 2016), and such works are also 
covered in the study of machine consciousness (Chella et  al., 
2008; Baars and Franklin, 2009).

Even though this “object-level vs. meta-level” distinction exists 
in many systems, the exact form of the boundary between the two 
levels differs greatly, partly due to the architectures involved. A 
process should not be considered “meta” merely because it gets 
information from another process and also influences the latter, 
since the relation can be symmetric between the two, while nor-
mally the object-level processes have no access to the meta-level 
processes.

As a reasoning system, in NARS, “control” means to select the 
premise(s) and the rule(s) for each inference step, so as to link 
the individual inference steps into task-processing processes. The 
primary control mechanism of NARS is coded in a programming 
language and is independent of the system’s experience. It is 
automatic and unconscious, in the sense that the system does not 
“think” about what to do in each step, but is context driven and 
data driven, while the data involved come from selections biased 
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by dynamic priority distributions. On top of this, there are mental 
operations that are expressed in Narsese and invoked by the sys-
tem’s decisions, as a result of “conscious” inference activities. This 
meta-level deliberative control does not change the underlying 
automatic routines, but supplement and adjust them. This design 
is different from the metacognition implemented in the other sys-
tems (Cox, 2005) in that the operations in NARS are light weight 
and can be accomplished within a constant time, rather than 
decision-making procedures that compare the possible actions 
in detail with a high computational cost. In this aspect, they are 
similar to the “mental acts” in GLAIR (Shapiro and Bona, 2010).

Like the situation of self-awareness, in NARS, self-control is 
far from “complete” in any sense, because of AIKR. The system 
can only make limited adjustments in its control mechanism, so 
cannot “completely reprogram itself ” and nor can it guarantee the 
absolute correctness of its self-control decisions, as they are based 
on the experience of the system, while the future can be different.

4.4. self-Organization
There are processes in NARS where the SELF-concept and mental 
operations are not directly involved although the related issues 
are usually involved in the discussions related to “self.”

One natural expectation for AI systems is that their functions 
and capabilities should not be completely “handcrafted,” but self-
constructive and self-organizing (Simon, 1962; Thórisson, 2012). 
We share this opinion, and therefore in NARS, “self-organization” 
and “learning from experience” refer to the same group of activi-
ties, which happens in various aspects of the system:

•	 Knowledge. According to experience-grounded semantics, 
the “knowledge” of NARS is not an objective description of 
the environment, but a summary of the system’s subjective 
experience. The sensory experience is restricted by the system’s 
sensors and its social experience by its linguistic capability and 
communicational channels. Furthermore, the system does 
not merely remember whatever it has experienced, but selec-
tively keeps them, and generates conclusions and concepts to 
summarize and generalize the experience, so as to deal with 
new situations efficiently. NARS is not a traditional “symbolic 
system” that merely refers to the objects and events existing 
outside. Instead, the concepts and statements capture the reg-
ularities and invariants in its experience, so are fundamentally 
from the view point of the system itself. For an object, what the 
system knows is not its objective characters, but is “affordance” 
to the system, using the vocabulary of Gibson (1986).

•	 Skill. A special type of knowledge is the skills, i.e., procedural 
knowledge guiding the usage of the system’s operations. As 
described previously, each operation is evoked when a cer-
tain condition is satisfied, and compound operations can be 
formed. Although some of such knowledge is innate, similar to 
the primitive reflexes of human beings, they nevertheless can 
be modified by the system’s experience. Among all possible 
compounds, which ones will be actually formed also depends 
on the system’s experience, like skill acquisition in humans. 
NARS has the ability of self-programming, in the sense that 
the system can organize its atomic operations into compound 
operations recursively and use them as a whole, so as to avoid 

repeated planning or searching (Wang, 2012b). In this aspect, 
NARS is similar to the “recursive self-improvement” model in 
the study by Steunebrink et al. (2016).

•	 Motivation. The motivational structure of the system is under 
constant adjustments and developments and is not fully 
specified by its designer or users. NARS is built to accept any 
task expressible in Narsese in any time, although the priority 
of each task will be adjusted by the system, and the system may 
even ignore some given tasks, as the consequences of conflict 
resolution, preemptive action, redundancy reduction, etc. 
From the given tasks and the system’s beliefs, derived tasks 
are generated recursively via backward inference, initially as 
means to achieve the given tasks, but may gradually become 
autonomous. As the system “grows up,” its motivational struc-
ture gradually evolves, and all the tasks in it collectively decide 
what the system desires at the moment. Therefore, the goals 
and drives of the system are determined by the system’s design, 
the given tasks, and the experience of the system, but not by 
any of these factors alone (Wang, 2012a).

In summary, there is a relatively clear distinction between 
object-level and meta-level in NARS, where the former is specified 
in Narsese and formed via self-organization, while the latter is 
specified in the programming language (such as Java) and mostly 
independent of the system’s experience.

Since all aspects of the object-level can be learned, everything 
expressible in Narsese is learnable, in the sense that it can be 
entered into the system, derived by the inference rules, as well 
as modified by new experience. Consequently, NARS is more 
sensitive to its experience than most AI systems developed so far, 
and learning happens in several different forms in various parts 
of the system. This treatment of learning is fundamentally dif-
ferent from the current machine learning paradigm (Russell and 
Norvig, 2010; Flach, 2012), since in NARS the learning processes 
do not follow algorithms and nor do they necessarily produce 
problem-specific mappings (Wang and Li, 2016).

This sensitivity to experience does not mean pure subjective 
or arbitrary behaviors. The objectivity in knowledge comes from 
communication and socialization. Generally speaking, the more 
a NARS-based system communicates with other systems and 
humans, the more objective it usually becomes, and the less its 
idiosyncratic experience matters, because its beliefs are based 
more on the common experience shared by the community it 
belongs to, although it is hard, if not impossible, to quantify this 
“extent of objectiveness.”

On the other hand, in NARS, the meta-level knowledge is built 
into the system and immune to experience-triggered modifica-
tion. This level includes the grammar rules of Narsese, the infer-
ence rules of NAL, the basic routines of memory management 
and inference control, the set of mental operators, etc. Even taken 
self-awareness and self-control into consideration, this built-in 
core is still fixed. As stated in the study by Hofstadter (1979), 
“Below every tangled hierarchy lies an inviolate level.” Some 
approaches of recursive self-improvement suggest more radical 
and thorough self-modifications, but they usually ignore AIKR by 
assuming that the system can be sure that its self-modification can 
really improve its performance and that the system can afford the 
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computational cost of complex deliberation and modifications 
needed for such improvements (Schmidhuber, 2007; Goertzel, 
2014). We consider such assumptions unrealistic and therefore is 
irrelevant to the design and development of AGI systems.

4.5. consciousness
Among the issues related to “self,” consciousness is probably the 
most confusing one. This topic can be addressed from many 
different perspectives (Blackmore, 2004), and there is still less 
consensus on its basic form and function. Many people consider 
it impossible in AI, although there have been attempts to produce 
consciousness in computers (Baars and Franklin, 2009) or robots 
(Chella et  al., 2008), based on various interpretations of the 
notion.

Here, we focus on the so-called hard problem, that is, how 
physical processes in the brain give rise to subjective experience 
(Chalmers, 1996). Our position, briefly speaking, is that the prob-
lem is not between “physical process” and “subjective experience” 
but between different types of experience.

As explained previously, the experience-grounded semantics 
(EGS) of NARS defines truth value of statements and meaning 
of concepts according to the system’s experience and therefore 
rejects the assumption of an “objective description” of the world 
that is independent of any observer. Although the world (or 
call it “environment,” “universe,” etc.) exists independently of 
any observer, a description of it does not. First, a sensation is 
produced by a sensor; then, a perception depends on the gen-
eralization and association capability and the available concepts 
of the observer; finally, when the perception eventually becomes 
a description, the system must have paid enough attention to 
it, which in turn demands a relevant motivation, a proper emo-
tional status, and so on. Therefore, there is no description that 
is from the viewpoint of nobody and describes the world “as it 
is.” The so-called objective description is nothing but the shared 
opinions among human beings formed from communication, 
socialization, education, and so on, so it is not from any single 
person’s viewpoint, but that of a human society. Therefore, this 
“objective” is actually “intersubjective” (Gillespie and Cornish, 
2009). Beside the culture heritage, our descriptions of the world 
heavily depend on the common sensorimotor mechanism of the 
human species, which is not necessarily shared by all cognitive 
systems, like the other animals or robots, either the existing ones 
or the future ones.

Nagel (1974) raised the question of “What is it like to be a 
bat?,” which has an obvious analogy in AI, “What is it like to 
be a robot?” As the sensorimotor mechanisms of robot are not 
identical to those of the human beings, we should not expect 
them to form concepts whose contents are exactly the same as 
human concepts, although through communication with human, 
shared concepts with overlapping meaning are possible to various 
extents, depending on the design of the robot and its training 
and working environment. This conclusion is not limited to 
robots. Actually EGS can be applied to any system, as far as it has 
interaction without its environment. For such a system to become 
“grounded,” “embodied,” or “situated,” the key is not whether 
its input/output mechanisms are “human-like,” but whether its 
behaviors depend on its experience (Wang, 2009).

A direct implication of the above conclusion is that intelligent 
systems in the same world may form different descriptions of the 
world, due to their different sensorimotor organs, concept reposi-
tories, motivational orientations, etc., even when their cognitive 
mechanisms are basically the same. In this situation, all these 
descriptions are valid, even when they are incommensurable. 
This is not saying that any arbitrary description is valid, but that 
its validity can only be evaluated according to the system’s con-
figuration and experience, rather than according to “the facts.”

The same is true within the same system. If the system applies 
two different sets of sensorimotor mechanisms to the same 
process, it may get two descriptions, which are correlated, but 
incommensurable, and cannot be reduced into each other. We 
believe that this is exactly where the “explanatory gap” comes in 
consciousness.

As described above, NARS has internal experience about 
what is going on inside the system, which directly comes from 
the mental operations and the related introspective functions. 
When the system also learns how its own design works from a 
third-person perspective, even when it is given a way to observe 
its own running process at the machine language level, it will also 
have two incommensurable descriptions with a gap in between. 
In this case, it is incorrect to consider the high-level (mental) 
descriptions as “raised from” the low-level (physical) descrip-
tions, as the latter is not “more real” than the former in some 
sense. This position also rejects the possibility of “zombies” that 
behave just like us, but have no consciousness (Chalmers, 1996), 
because if the system does not have internal experience, it will 
lack certain cognitive functions and therefore will not behave just 
like conscious beings.

In summary, we believe that the design of NARS enables 
the system to have consciousness, and the related phenomena 
can be explained without being reduced into phenomena in 
neuroscience (Koch, 2004) or quantum physics (Penrose, 1994). 
In AGI systems, although initially the conscious functions will 
be relatively simple and poor, they will become more and more 
complicated and rich, as the research progresses. The fact that we 
cannot directly sense them cannot be used to deny their expe-
rience, just like one cannot deny the consciousness of another 
person simply because one cannot directly know what it is like 
to be that person.

5. cOnclUsiOn

Self-awareness and self-control are important cognitive functions 
needed by advanced AGI systems (Chella and Manzotti, 2012). 
For a system to solve various types of problems, especially novel 
ones, it needs to know about itself, as well as to adjust its own 
working processes, so as to efficiently produce the best answer it 
can find with the current evidence and resource supply.

Just as a system’s knowledge and control of its external envi-
ronment are usually incomplete and fallible, so are its knowledge 
and control of its internal environment. An AGI system can learn 
how itself works using its introspective capability, especially the 
mental operations. It can also deliberately invoke some mental 
operations to realize the system’s decisions and to adjust its 
working procedures. These functions enable the system to better 
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adapt to its environment and to carry out its various tasks more 
efficiently. Even so, it can never fully know itself nor can it have 
complete self-control.

Although the study of self-awareness and self-control in NARS 
is still at an early stage, the conceptual design described above 
has been implemented, and is under testing and tuning. There 
are many details to be refined, and many self-related issues to be 
further explored, like those discussed in the studies by Hofstadter 
(1979) and Blackmore (2004). We believe the overall design is 
in agreement with the scientific knowledge on these processes 
in the human mind and also meets the needs and restrictions in 
AGI systems. We also believe that almost all self-related functions 
observed in the human mind will be reproduced in AGI systems 
in principle although the details will be different. Furthermore, 

these functions should not be modeled one by one in isolation, but 
all together according to the same basic principles of intelligence.
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Phenomenal theories of consciousness assert that consciousness is based on spe-
cific neural correlates in the brain, which can be separated from all cognitive functions 
we can perform. If so, the search for robot consciousness seems to be doomed. By 
contrast, theories of functional or access consciousness assert that consciousness 
can be studied only with forms of cognitive access, given by cognitive processes. 
Consequently, consciousness and cognitive access cannot be fully dissociated. Here, 
the global features of cognitive access of consciousness are discussed based on neural 
blackboard or (global) workspace architectures, combined with content addressable or 
“in situ” representations as found in the brain. These representations allow continuous 
cognitive access in the form of a process of covert or overt queries and answers that 
could underlie forms of access consciousness. A crucial aspect of this process is that 
it is controlled by the activity of the in situ representations themselves and the relations 
they can initiate, not by an external controller like a CPU that runs a particular program. 
Although the resulting process of access consciousness is indeed based on specific 
features of the brain, there are no principled reasons to assume that this process cannot 
be achieved in robots either.

Keywords: access consciousness, connection paths, global workspace, in situ representations, neural blackboard 
architectures, robots

1. iNtrODUctiON

In one sense, discussing consciousness in a (humanoid) robot is easier than discussing human con-
sciousness. In the latter case, we are hampered by our own “first-person” perspective. We “know” 
what it means to be conscious because we experience it ourselves. However, this first-person perspec-
tive is a form of introspection, which is out of reach for scientific observation and discussion.

The influence of the first-person perspective is clear in the distinction between two different views 
on the nature of consciousness, known as phenomenal consciousness and functional (or access) con-
sciousness (Block, 1995; Cohen and Dennett, 2011; Taylor, 2012). Phenomenal consciousness asserts 
that conscious experiences result from specific neural correlates in the brain. Examples of these, 
depending on the theory at hand, are recurrent connections in the brain (e.g., Block, 2007), specific 
“microactivations” distributed over the brain (Zeki, 2003), or “winning” coalitions of neurons that 
result in a conscious experience of the representation they instantiate (Crick and Koch, 2003). The 
key notion of phenomenal consciousness is that the neural correlates responsible for consciousness 
can be separated (dissociated) from all the cognitive functions we can perform, such as attention, 
language, and the like. That is, consciousness “overflows access” (Cohen and Dennett, 2011).
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For robotics, this would mean that the search for robot con-
sciousness is doomed. Unless we endow robots with the required 
neural correlates (as in hybrid forms of neuro-robots), robots 
cannot possess forms of consciousness.

However, as convincingly argued by Cohen and Dennett 
(2011), phenomenal consciousness is a view on consciousness 
that is outside the reach of science precisely because it assumes 
neural correlates of consciousness separate from neural correlates 
of cognitive functions. A consequence of this view is that theories 
of consciousness cannot be empirically verified or falsified (which 
would always depend on some form of behavior produced by 
some kind of cognitive process).

By contrast, theories of functional or access consciousness 
assert that consciousness can be studied only with forms of cogni-
tive access, given by cognitive processes. Consequently, consci-
ousness and cognitive access cannot be fully dissociated. Instead, 
any form of consciousness would require a cognitive architecture 
that would allow forms of functional access.

An influential proposal for such an architecture is the Global 
Workspace theory, which asserts that consciousness arises when 
representations enter the Global Workspace of the brain and 
(temporarily) one of them dominates its activation (e.g., Baars, 
2002; Baars and Franklin, 2003; Wiggins, 2012). The perspective 
I address here is that this theory could indeed provide the basis 
for a cognitive and computational architecture for functional 
consciousness, provided it is combined with a key observation 
on the nature of representation in the brain. This observation 
concerns the notion that representations in the brain are “in situ,” 
which entails that they operate (at least in part) always as the same 
representation in each instantiation of the cognitive processes in 
which they participate.

In this way, in situ representations differ fundamentally from 
representations as used in von Neumann architectures, in which 
representations are inert, stored in arbitrary locations under 
the control of a CPU. By contrast, cognitive processes based on 
in  situ representations are controlled by these representations, 
and not by an outside controller like a CPU that runs a particular 
program. This could result in a continuous process of “queries 
and answers” (van der Velde, 2013), which could form the basis 
for forms of access consciousness.

In the following sections, I will describe the notions of in situ 
representations, functional consciousness, and their relation in 
more detail.

2. IN SITU rePreseNtAtiONs

A striking feature of representations in human cognition, as 
argued here, is their content-addressable nature. In this way, a 
representation can be (re)activated by directly activating it or a 
part of it. This is different from a representation in computers, 
which is accessed by means of its address label (which is also 
true for files in Github, where address labels are derived from the 
content of the file). In this case, a list of address labels needs to be 
run through first to find the label.

The notion of content-addressable representation is at the 
basis of many theories of human semantic representation (but 
see below for a counter example) and was one of the main 

motivations for the rise of connectionism in the 1980s (Bechtel 
and Abrahamsen, 1991). For example, Hebb (1949) used 
content addressability as the basis for his notion of the “cell 
assembly” hypothesis of (concept) representations in the brain. 
According to this hypothesis, a cell (or neural) assembly of a 
concept develops over time by interconnecting those neurons 
in the brain that are involved in processing information and 
generating actions related to that concept. These assemblies 
could be distributed over (very) different parts of the cortex 
(and other brain structures), depending on their nature.

A more recent version of a similar model of content-
addressable representation in the brain is the “hub and spoke” 
theory of semantic representation in the brain (Lambon Ralph 
et  al., 2017). In this theory, based on behavioral and imaging 
studies, modality-specific semantic information is represented 
in brain areas that process that kind of information (e.g., visual 
information in the visual cortex and auditory information in 
the auditory cortex). These kinds of representations are the 
“spokes” of semantic representations in the theory. However, 
the spokes are interconnected in (bi-lateral) hubs located in the 
anterior temporal lobes. Hub representations are transmodal, in 
that they respond to and correspond with cross-modal interac-
tions of modality-specific information. Examples of transmodal 
representations in the temporal cortex were also observed in 
single-cell studies with human subjects. For example, neurons 
were found that responded to (the identity of) a person, regard-
less of whether the face of the person (visual information) or 
name (visual or auditory information) was presented (Quian 
Quiroga, 2012).

A crucial point here is that transmodal hub representations 
interconnect the modal spoke representations. But they do not 
replace or stand in for them. That is, their content is determined 
by the spoke representations they are connected to, and that 
content is reactivated when the hub representation is activated. 
This is what the cell assembly idea of Hebb is about. It is also in 
agreement with the imaging (fMRI) observations of Huth et al. 
(2016), who, in an extensive study, measured brain activity related 
to words when people were listening to stories. So, auditory lan-
guage information was presented, but it activated a large set of 
cortical areas that responded to (also modal) semantic informa-
tion, both in the left hemisphere (63 semantically selective areas) 
and the right hemisphere (77 semantically selective areas) of the 
cortex.

Hence, even though representations can have parts in trans-
modal hubs, they consist of a (potentially) large set of neurons  
(an assembly) distributed over widely different areas in the cor-
tex, depending on their content. This shows why they are content 
addressable. By activating, say, the hub part of a representation, 
its spokes will be activated as well (as in the Huth et al. (2016)), 
revealing the content of the representation. But when (a part of) 
the spokes are activated by, for example, perceptual information, 
the hub part and consequently the other spokes can be activated 
as well. So, each activation of a representation potentially entails 
the activation of the entire hub and spokes. Crucially, this will 
be the same hub and set of spokes for each new activation of the 
representation (which, or course, can develop and change over 
time).
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FigUre 1 | In situ representation of red apple by a connection path between 
in situ concept representations in a neural blackboard architecture. The noun 
apple first binds to a Noun assembly (here, N1) in the Noun field of the neural 
blackboard and red binds to an Adjective assembly (here, A2) in the Adjective 
field. The connection path passes through gates, which provides control to 
represent relations. Here, activation of “gate” gives adjectives bound to 
nouns, here red to apple.
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This is why these representations can be referred to as “in situ” 
(van der Velde, 2016). They do not consist of some (neural) code 
that can be copied and transported elsewhere, but of the entire 
web-like hub and spoke structure (which would be impossible to 
copy and transfer to somewhere else in the brain, e.g., given its 
distributed nature).

3. cOMPUtAtiONAL ArcHitectUres 
BAseD ON IN SITU rePreseNtAtiONs

The nature of in situ representations in the brain raises the ques-
tion of how they function in cognitive processes. In particular, in 
productive forms of cognitive processing, because these would 
seem to be the kind of cognitive processes that are needed to test 
forms of functional consciousness (Cohen and Dennett, 2011).

Productive processing entails that information is processed 
or produced in a combinatorial manner, based on (more elemen-
tary) constituent representations (concepts) and their relations. 
Productive processing is of key importance for human cogni-
tion, as found in language, reasoning, and visual perception. 
Consequently, they can be expected to play a key role in con-
sciousness as well, as in relating conscious experiences to each 
other (e.g., the apple is red versus the apple is green).

Combinatorial processing with representations that are not 
copied but remain in  situ can be achieved in architectures that 
provide (temporal) connection paths between the constituent 
representations, in line with their relations. For example, consider 
the combination red apple, with in situ representations for red and 
apple. Each one consists of an assembly structure with spokes in 
parts of the cortex related to perception or actions, such as seeing 
or eating an apple, and links to the transmodal hub in the anterior 
temporal cortex.

In the neural blackboard architecture of van der Velde and de 
Kamps (2006), the relation red apple is produced by establishing 
a (temporal) connection path between the in situ concept repre-
sentations of red and apple, as illustrated in Figure 1. The path is 
achieved in a “neural blackboard,” which could be connected in 
particular to the hub part of the in situ representations.

In this neural blackboard, the concepts are temporarily 
bound to “structure assemblies” in line with their word type. 
So, apple is bound to a “Noun assembly” in a “Noun field” and 
red is bound to an “Adjective assembly” in an “Adjective field.” 
Such word type fields are in line with the existence of (agent 
and object) areas in the (temporal) cortex that are selectively 
activated when nouns function as agents (subjects) or objects of 
verbs (Frankland and Greene, 2015). In turn, the Noun assem-
bly bound to apple and the Adjective assembly bound to red can 
be temporarily bound to each other, representing the relation 
red apple. The structure of the neural blackboard is such that it 
allows the combination of arbitrary words in a familiar language 
(van der Velde and de Kamps, 2015).

Neural blackboards would not only exist to process or produce 
conceptual structures (e.g., relations between words in a sen-
tence) but also, for example, to process relations between visual 
features, as found in the structure of the visual cortex. Here, I 
am not discussing the specific way in which conceptual or visual 
relations can be processed in terms of in  situ representations  

(see van der Velde and de Kamps (2006) for detailed descriptions), 
but the consequence of this form of representation for cognition, 
and potentially for functional consciousness, as outlined in the 
next section.

4. FUNctiONAL cONsciOUsNess

The relation between in situ representations and functional con-
sciousness, and they way they differ from phenomenal conscious-
ness, can be illustrated with a “perfect” experiment described by 
Cohen and Dennett (2011). Assume we have a subject in which 
the area in the brain responsible for color consciousness is iso-
lated from other brain areas higher up in the activation stream. 
So, this area (say V4 or inferotemporal cortex) would receive 
feedforward input from lower areas in the visual cortex, as in 
the normal situation, but cannot generate output to other areas. 
When a colored object is presented, say a red apple, the color area 
would be activated by and in correspondence with the color of the 
apple, as in the normal case. But activation of the color area itself 
is isolated from the rest of the brain.

Because of its isolation, the color area would not, for example, 
activate brain areas underlying language anymore. So, when 
presented with a red apple, our subject would not be able to 
say that the color is red. Indeed, she could not indicate by any 
form of action what the color of the apple is. Also, she would not 
become emotionally affected by the color (if that was the case 
before the isolation) because these areas are not activated by the 
color area anymore either. In fact, she would indicate that the 
apple is colorless. Yet, according to phenomenal consciousness 
theories, our subject would still be conscious of the color red, as 
its neural correlate is active. This activity could also be measured 
by brain imaging, supporting the notion that our subject is in fact 
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conscious of red, even though she indicates by any form of action 
or emotion that she is not.

Thus, although our subject would not (and could not) indicate 
that she has a first-person experience of red, theories of phenom-
enal consciousness would still assert she has. But this assertion is 
untestable, because no action of our subject can indicate that she 
is conscious of it. Consequently, the theory that supports such a 
form of consciousness is unverifiable. To make a theory of con-
sciousness verifiable, some form of action is needed to identify 
an experience as conscious. Hence, consciousness and cognitive 
functions are not fully dissociated. This is the notion underlying 
functional (or access) consciousness (Cohen and Dennett, 2011).

The “perfect” experiment of Cohen and Dennett (2011) relates 
directly to in situ representations because it entails that the in situ 
representation of, say, the concept red is broken. The in situ rep-
resentation of this concept not just consists of the connections 
that activate it but also of the connections that activate related 
concepts and circuits that produce behavior related to the concept 
(as saying the word red or pointing to a red object in a display).

So, the integrity of an in situ representation, in particular its 
ability to produce behavior, is crucial for its role in functional 
consciousness. This raises a reverse question. Suppose a subject 
would produce behavior like saying that she is conscious of the 
color red. Is that sufficient to conclude she is? At face value, this 
would be the result of a theory of access consciousness, because 
the cognitive function of identifying the color would entail the 
conscious experience of it. In that case, all that would be required 
for robots to be conscious, say of colors, is their ability to indicate 
the color of an object, by speech or another cognitive function.

However, just saying “red” does not indicate what a subject 
is (fully) conscious of. Words are labels to indicate an experi-
ence or concept but often do not cover their entire content. This 
observation does not entail a form of phenomenal consciousness. 
It just indicates that more elaborate forms of access (other words, 
or other forms of action) are needed to unravel the content of a 
conscious experience.

To see how this could proceed, we need to look at the way 
in which in situ representations function in a Global Workspace 
architecture.

5. cONsciOUsNess BAseD ON QUeries 
AND ANsWers WitH IN SITU 
rePreseNtAtiONs

In the Global Workspace theory of consciousness, representa-
tions compete to get access to the workspace and to (temporarily) 
dominate it (e.g., Baars, 2002; Baars and Franklin, 2003; Wiggins, 
2012). This raises the question of how representations can enter 
the workspace and how the domination of the workspace is 
related to consciousness. The notion that representations in the 
brain are in situ could provide the beginning of an answer to these 
questions. If so, the underlying architecture could also form a 
basis for robot consciousness.

An in situ representation would not “enter” the global workspace 
but instead would be connected to it, with a connection path as 
illustrated in Figure 1. If the workspace would have the structure 

of a neural blackboard as illustrated in this figure (or this neural 
blackboard would be a part of it), the “entrance” of a representation 
in the workspace would consist of a temporal activation of this 
connection path to and in the workspace. Several in situ represen-
tations could then compete, resulting in one representation (and 
its connection path) temporarily dominating the workspace.

The dominating in situ representation selected in the workspace 
could then form the basis for a functional form of consciousness 
by a (continuous) “process of explicit or implicit queries and 
answers” (van der Velde, 2013).

As an illustration, consider the entire representation of red 
apple in the neural blackboard architecture outlined in the 
previous section. Again, assume that a similar connection path 
would exist in the global workspace (or, alternatively, that the 
neural blackboard is a part of the workspace). Because of its 
in situ nature, the neural representation of the concept red would 
be connected to the visual areas in the brain that process and 
represent color, but also to the neural word representation red 
in language areas. The in  situ representation of apple would be 
connected to the visual areas responsive to shape, and the word 
representation apple in the language areas.

The connection path between them in the neural blackboard 
(or global workspace) forms the basis for functional access and 
behavior, in which the relation between the in situ representa-
tions can be expressed in an action. So, for example, the (explicit 
or implicit) query “What is the color of the apple?” would be 
answered by activating the in  situ representation of apple  
(e.g., by seeing it or hearing the word apple in an actual ques-
tion) and the condition that allows the activation of Adjective 
assemblies bound to Noun assemblies (e.g., of apple) in the 
neural blackboard. In turn, this results in the activation of the 
in situ representation of red through the connection path that 
interconnects apple and red in the neural blackboard (or global 
workspace). This would form the basis for generating a response 
(reflecting functional access) such as pointing to the red object 
or reporting the word red.

The key notion of this process is that it is initiated and 
controlled by the in situ representations, and not by an outside 
controller like a CPU that runs a particular program. Hence, it 
will be a continuous process, in which activated in situ represen-
tations initiate queries to “ask” for other semantic information 
related to them (also represented by in situ representations). This 
continuous activation process underlies a continuous form of 
functional access, which in turn could be the basis for a process 
(stream) of access consciousness. More specific examples of this 
process and its relation to consciousness are presented in van der 
Velde (2013).

The importance of the fact that this process is controlled by 
in  situ representations is further illustrated in Figure  2. This 
figure illustrates an indirect way of representing content infor-
mation in the brain, as given by the indirection model of Kriete 
et al. (2013). Here, neural codes of red and apple are (temporarily) 
stored in “stripes” located in the prefrontal cortex (PFC). The 
stripes operate as registers in a computer memory. In turn, their 
address can be stored in other PFC “role stripes” (here for noun 
and adjective), which represents the relation red apple. So, the 
query apple color? can be answered by first retrieving the role 
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FigUre 2 | Indirection representation of red apple based on Kriete et al. 
(2013). Neural codes for concepts (e.g., apple, red) are stored in memory 
locations (“stripes”) in the prefrontal cortex. The addresses of these stripes 
(as given by the address operator &) are then stored in “role stripes,” needed 
to establish the relation between the concepts. An underlying connection 
structure provides and controls access to stripes.
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stripe (here, noun-stripe) that stores the stripe address of apple 
(&Stripe1) and then going to the adjective stripe related to that 
noun-stripe. Then, the address code of the adjective (&Stripe2) 
can be retrieved, which will result in finding the location (stripe) 
where the neural code for the color (red) is stored.

In this process, the representations themselves are inactive and 
not content addressable. They can be retrieved only by finding the 
addresses of the locations where they are stored. These addresses 
can be different on different occasions, depending on the preced-
ing representations stored in the process. As a result, the content 
of a given address (stripe) can vary from occasion to occasion. 
Hence, content and address are dissociated. So, activation of an 
address itself gives no information about its content and therefore 
cannot play a direct role in access consciousness.

Furthermore, a content code (e.g., of red) is generally not 
accessible when it is stored in a given stripe. For example, access 
to that given stripe needs to be blocked when other content is to 
be stored in other stripes. Otherwise, the content of the given 
stripe could inadvertently be deleted (overwritten) in the process 
of storing other representations in other stripes. Hence, the 
representation of red in Figure  2 resembles the isolated color 
representation in the perfect experiment of Cohen and Dennett 
(2011) discussed earlier. It may be active within the stripe, but its 
access to processes outside the stripe, and hence its active involve-
ment in these processes, is generally blocked. In other words, the 
content representations are generally inactive because the stripes 
in which they are stored are generally “closed.”

The indirection model of Kriete et  al. (2013) is a model for 
productive computing in the brain, closely resembling productive 
computing in a Von Neumann architecture. So the in-activeness 
(and in-accessibility) of representations and their (negative) 
consequences for functional or access consciousness as discussed 
earlier would also hold for the Von Neumann architecture, which 
underlies digital computing. In turn, digital computing still forms 
the basis of many robot systems, such as the iCub robot (Natale 
et al., 2016).

So, the analysis of access consciousness as given here would 
have consequences for robot consciousness as well. In particular, 
it would seem that forms of robot consciousness would require a 
computing architecture based on in situ computing as illustrated 
above, instead of the Von Neumann kind of architectures still 
used to date. If correct, robot consciousness would indeed be 
based on specific features of the brain. But, in contrast to the 
assertion of phenomenal consciousness, it would not be based 

on specific physiological features of the brain, most likely unob-
tainable for robots, but on its specific computing and cognitive 
architecture.

6. cONcLUsiON ABOUt rOBOt 
cONsciOUsNess

The analysis presented here provides a few suggestions about 
the possibility and requirements of robot consciousness. First, 
consciousness seems to be related to in situ representations that 
underlie the possibility of cognitive access. Second, conscious-
ness is more a process than a set of isolated conscious states. 
This, in combination with the requirement of access, suggests 
that consciousness is related to a continuous process of cognitive 
access. Third, this continuous process does not take the form of 
isolated instances of indirect activation of representations under 
the control of an external controller. Instead, the perspective is 
offered here that a continuous process of access can be achieved 
only when the process is directly controlled by (the activity of) 
in situ representations themselves, as in a continuous (covert or 
overt) process of queries and answers. Such a process seems to be 
in accordance with cognitive processing and access conscious-
ness as found in the human brain. There are no principled reasons 
to assume that this process cannot be achieved in robots either.
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In developing a humanoid robot, there are two major objectives. One is developing a
physical robot having body, hands, and feet resembling those of human beings and being
able to similarly control them. The other is to develop a control system that works similarly
to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a
control systemwith a brain-oriented logical structure for the second objective is proposed.
The proposed system autonomously adapts to the environment and implements a
clearly defined “consciousness” function, through which both habitual behavior and goal-
directed behavior are realized. Consciousness is regarded as a function for effective
adaptation at the system-level, based on matching and organizing the individual results of
the underlying parallel-processing units. This consciousness is assumed to correspond
to how our mind is “aware” when making our moment to moment decisions in our
daily life. The binding problem and the basic causes of delay in Libet’s experiment are
also explained by capturing awareness in this manner. The goal is set as an image in
the system, and efficient actions toward achieving this goal are selected in the goal-
directed behavior process. The system is designed as an artificial neural network and aims
at achieving consistent and efficient system behavior, through the interaction of highly
independent neural nodes. The proposed architecture is based on a two-level design.
The first level, which we call the “basic-system,” is an artificial neural network system that
realizes consciousness, habitual behavior and explains the binding problem. The second
level, which we call the “extended-system,” is an artificial neural network system that
realizes goal-directed behavior.

Keywords: goal-directed behavior, habitual behavior, autonomous adaptation, image processing, binding problem,
Libet’s experiment, model of consciousness, brain-oriented system

INTRODUCTION

Aims, Position, and Purpose of Research
In developing a humanoid robot, there are two major objectives. One is developing a physical robot
having body, hands, and feet resembling those of human beings and being able to similarly control
them (Jeffers and Grabowski, 2017; Tian et al., 2017). The other is to develop a control system that
works similarly to our brain, to feel, think, act, and learn like ours (Dennett, 1994; Tani, 2017;
Zorpette, 2017; Reggia et al., 2018). In this article, we propose an architecture as a basic logical
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structure of a brain-oriented control system toward realization of
humanoid robot that feels, thinks, acts, and learns for the second
objective. The reason for focusing on the architecture is that
making the logical structure of the robot control system similar to
our brain has the same importantmeaning as creating the physical
structure of the robot resembling that of a human. The main
behavioral characteristics of the humanoid robot will depend
strongly on the basic logical structure of the control system.

To realize major operational characteristics of the brain in
the system, we incorporate various findings from neuroscience
and psychology to the proposed system. Knowledge on computer
systems technology to realize highly complicated systems as well
as latest artificial neural network designs is adopted at various
levels to provide an integrated architecture.

Although the proposed robot’s action is primitive by focusing
on clearly defining the architecture, the control system of the
robot has a function similar to consciousness and autonomously
adapts to the environment. As an autonomous adaptation system,
the robot feels, thinks, and learns through interactions with the
environment. In addition, the duality of our behavioral character-
istics—habitual behavior and goal-directed behavior—which has
been the subject of research in a wide field including psychology
and neuroscience (Deutsch and Strack, 2006; Kahneman, 2011;
Mannella et al., 2016), is also realized in the control system by
adopting a two-layer logical structure.

Themodel of consciousness included in the architecture clearly
shows that consciousness is an essential function of the parallel-
processing system and proposes the method of realizing con-
sciousness and “self ” from an engineering point of view. In
addition, the model is positioned as improved model of global
workspace theory (GWT) (Baars, 1988; Dehaene, 2014) and
explains “unity,” which is one of the basic characteristics of con-
sciousness (Brook and Raymont, 2017).

The proposed architecture comprehensively accounts for the
two major problems regarding consciousness still under debate,
the time delay in Libet’s experiment (Libet, 2004), and the binding
problem (Feldman, 2013). This shows that the proposed architec-
ture is not only valid as a brain-oriented architecture but also use-
ful as a brainmodel from the viewpoint of information processing.
Although the function level of the robot in this article is primitive,
the proposed architecture can be applied to different problems
and has high scalability. By expanding on the basic architecture,
it will become possible to realize a humanoid robot with both
mind and body. The architecture can be useful not only for
humanoid robots but also for various types of autonomous robots,
in general-purpose artificial intelligence (AI) development, and
for understanding the brain.

Related Works, Methods, and Main Results
Recent developments in AI, particularly in deep learning, have
shown remarkable achievements, such as mastering the game of
Go (Silver et al., 2016), but current research is largely targeted
toward particular fields and problems, and efforts toward brain-
oriented design and human-like control systems aremuch smaller
in comparison.

Even in the rapidly developing field of neuroscience, the whole
brain’s function as a control system has yet to be clarified. The

neural mechanism behind “consciousness,” a basic phenomenon
of the brain, and “goal-directed behavior,” the basis of everyday
behavior, are still under debate (Gremel and Costa, 2013; Hart
et al., 2013; Mannella et al., 2016). Human behavior is believed
to be comprised of two distinct behavior characteristics, habitual
behavior and goal-directed behavior, known as the duality of
human behavior (Dezfouli and Balleine, 2013). Duality in human
behavior has been widely studied in many fields, for example, fast
and slow thinking by Kahneman (2011) in behavioral economics,
and reflective-impulsive behavior model by Deutsch and Strack
(2004, 2006) in psychology, but the basic neural mechanism has
not been clarified.

We have previously proposed a conceptual control system that
autonomously learns and makes behavior decisions based on
primitive consciousness using an artificial neural network. We
had proposed a model of consciousness as a system-level function
and presented an artificial neural network system that enables fast
decision of optimal behavior (Kinouchi and Kato, 2013; Kinouchi
and Mackin, 2015). However, our previous proposal primar-
ily explained only habitual behavior, and goal-directed behavior
could not be explained yet.

On another front, various attempts have been proposed by
Franklin et al. Haikonen has proposed the Haikonen cognitive
architecture (HCA) and has been operating a robot with con-
sciousness that adapts autonomously using a neural network
(Haikonen, 2003, 2007, 2012). Franklin has been running a
hybrid adaptation system, Learning Intelligent Distribution Agent
(Franklin and Patterson, 2006; Franklin et al., 2013, 2014). In
these, the method of action decision and the model of con-
sciousness are both developed in accordance with Baars’s pro-
posed GWT (Baars, 1988; Baars and Franklin, 2007). In addi-
tion, Dehaene et al. proposed the global neuronal workspace
that extended GWT from the viewpoint of neuroscience and
tried to demonstrate it based on brain observation (Dehaene and
Changeux, 2011; Dehaene, 2014). However, in these, perceptual
filtering focused on only the most “salient” information is per-
formed as an action selection based on GWT. As the salient
information is not always optimal information for the system, the
system’s own profits is not strictly reflected in the action selection.
We assume that the basis of action decision of autonomously
adaptation system is to increase the profit of the system itself as
much as possible at each time. Moreover, “self ” that is an essential
element of consciousness should correspond to the system itself
trying to make the profit as large as possible.

First, we modified, reorganized and refined our previously
proposed model as a core system for efficiently realizing habitual
behavior (Kinouchi, 2009; Kinouchi and Kato, 2013; Kinouchi
and Mackin, 2015). Hereafter, we call this core system the
“basic-system.” The basic-system autonomously adapts to the
environment with functions of action decision based on profit
optimization of the system at each time.

The main functions of the basic-system consist of primitive
operations; (a) detecting objects from the environment and recog-
nizing the objects, (b) action decision for the recognized objects,
and (c) preparing next action including system-level learning. The
importance of object handling function has been pointed out in
the field of neuroscience, and then it is configured as a dedicated
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functional unit that enables the system to handle a bundle of
signals, such as attributes of the object, collectively for processing.
In action decision, an optimal action plan is calculated in a short
time by using a recurrent neural network based on theBrain-State-
in-a-Box (BSB), proposed byAnderson (1983) andGolden (1993).
In addition, proposed circuit provides a function of powerful pat-
ternmatch detection that detectsmatched pattern from thousands
of parallel signals representing attributes of objects. This function
is provided based on the findings related to pyramidal neuron
(Spruston, 2008; Stuart and Spruston, 2015).

The basic-system is designed with priority on shortening
response time and realized as a parallel-processing system that can
quickly select desirable actions. To adapt itself to the environment,
the system learns using an actor–critic reinforcement learning
method, which is a kind of learning method without a teacher or
a supervisor, under the control of evaluation unit incorporated in
the system. Conscious phenomenon is regarded as activities for
effective adaptation at the whole system-level, based on informa-
tion integration and reconfiguration of individual results of the
underlying paralleled functional units for preparing next action.
The contents of consciousness are mainly composed of recon-
figured information from attributes of the objects and evaluated
value of the evaluation unit after action decision. And, these
contents are transmitted to the related functional units in the
whole system for speedy next action decision. These activities
account for how our mind is “aware” when making our moment
to moment decisions in our daily life.

Moreover, the binding problem and basic cause of the time
delay in Libet’s experiment is also explained comprehensively
based on the above understandings for consciousness. In explain-
ing both the binding problem and the Libet’s delay, it is important
that “the content of consciousness is reconfigured for the next
action after action decision.” Furthermore, for the binding prob-
lem, it is shown that functions handling bundled signals and a
powerful patternmatch detection functions also play an important
role.

Next, to realize goal-directed behavior, we added functions
for goal management to the basic-system. Hereafter, we call this
enhanced system the “extended-system.” In the extended-system,
both habitual behavior and goal-directed behavior are compre-
hensively realized. The goal is represented and handled as a kind
of object in the system, and efficient actions toward achieving the
goal are successively executed.

In the extended-system, it is necessary to represent, to handle,
and to recollect related reward and actions as well as the goal. To
execute these functions effectively, the image handling functions
are provided. In this article, we use the term “image” as “informa-
tion generated inside the system that the system can operate as an
object (processing target)” based on Haikonen (2003). Using these
functions, it is possible to retrieve past experiences from long-
term memory and refer to these contents for decision-making.

These operations are realized by repeated execution of the func-
tions corresponding to the basic-system, aimed at higher reward
acquisition over a long-time span. Here, consciousness is more
than just “awareness” of a simple decision-making process but
includes a kind of “will” or “intention” of the mind aiming at
acquiring a higher level of reward, by processing sequential chains
of multiple images.

BASIC CONDITIONS AND OUTLINE OF
THE SYSTEM

Methods and Basic Conditions of the
Control System
To grasp the fundamental logical structure of the brain as easily
as possible, we adopt following method. First, we assume that
“the brain is a kind of information processing system that satisfies
certain conditions.” Then, we clarify what functions are required,
and what kind of logical configuration is necessary and efficient
on the system satisfying the conditions. In this method, we do not
directly imitate the structure of the brain or conscious phenom-
ena. We expect that consciousness is designed or generated as one
of the functions necessary for satisfying the system conditions;
moreover, logical functions related to conscious phenomenon are
totally included in the system. Based on the classification of Reggia
(2013), our method is a kind of computational modeling of the
“simulated consciousness” in a broad sense, but it also encom-
passes a part of the “instantiated consciousness.” The validity or
effectiveness of the logical structure is checked based on whether
or not the major characteristics of the brain can be explained
using the logical structure. As themain characteristics of the brain,
consciousness, and related phenomenon, binding problem, delay
of Libet’s experiment, duality, etc., are used for validations.

Basic conditions of the control system are shown below.

(i) The control system autonomously adapts to the environment
through learning. We consider that autonomous adaptation
is themost fundamental and important system characteristic
of the animal brain. To adapt itself to the environment with-
out a teacher or a supervisor, the control system incorporates
a functional unit that evaluates reward and punishment,
acts under its own decision based on the evaluated value,
and self-adapts based on the results of the action. As a
humanoid robot control system, when the system receives
a reward, the evaluation unit becomes a pleasant state,
and on the other hand, when receiving a punishment, it
becomes an unpleasant state. The degree of pleasant and
unpleasant varies according to the degree of reward and
punishment.

(ii) The system design is based on maximum performance and
efficiency. The aim is not only to realize high performance
but also to base the system design on maximum efficiency
design. The assumption is that our brain is in a kind of opti-
mal design state through natural selection process. By choos-
ing maximum efficiency and optimal design from among
various design possibilities, as a result, we expect that the
selected design approaches that of the brain. Moreover, to
realize many complexed functions with high performance,
parallel processing is basically introduced.

(iii) The system is constructed by artificial neural networks. An
artificial neural node is a processing element inspired by
biological neural cells and is used as a basic computational
element in deep learning and artificial neural networks. It
is most effective from the viewpoint of high parallelism
and flexible learning function. The processing speed of the
element is assumed to be equivalent to an actual nerve
cell.
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Operating Environment of the Robot and
Basic Configuration of the System
Because we prioritized understanding of the basic logical struc-
ture, the control system, the robot, and the environment are
limited to indispensable functions or items and set as simple as
possible. The robot and its operational environment are illus-
trated in Figure 1A. The robot has functions that detect objects,
recognize the objects, approach or avoid the objects, and earn
rewards or punishments through acquisition of the objects. The
robot walks randomly when there is no object in sight. When
one or more objects are captured, the robot selects one preferred
object and acts for it. These behaviors are controlled by the control
system in the robot head. (In the following, the control system is
called “system.”) Conceptual configuration of the system is shown
in Figure 1B. The perception module detects and recognizes an
object, and the action decision module determines an action,

FIGURE 1 | Schematic configuration of the robot in the environment (A) and
control system (B), and two step approaches for goal-directed behavior (C).

and the motor module executes the action. The memory module
includes episodic memory. The system control module controls
the operation of the whole system. Focusing on habitual behavior
and goal-directed behavior, we designed the system in two stages
as shown in Figure 1C. First, the basic-system realizes habitual
behavior. Next, the extended-system, functional expansion of the
basic-system, realizes goal-directed behavior.

BASIC FUNCTIONS IN THE SYSTEM
DESIGN

To configure an autonomous adaptive system using a neural net-
work based on the basic conditions shown in the previous section,
the following basic functions are further required.

a. Handling group of signals as a bundle and handling the bundle
as an object.

b. Managing a signal as the signal with samemeaning, even when
used in various areas in the system.

c. Time management by the system itself and timing adjustment
of a number of parallel operating functional units consistently.

In the case of computers, these functions are usually designed
and implemented based on human designer. However, in the case
of an autonomous adaptive system in which the system changes
the system configuration itself, these functions must be imple-
mented as basic functions in advance. On the premise of these
functions, many dedicated functional units, such as recognition
and action decision function, can operate in the autonomous
adaptation system.

Handling a Group of Signals as a Bundle
and Handling the Bundle as an Object
It has been reported that when animals or humans “perceive”
something, inputs are selected from various stimuli to form an
object, and then the object is later identified from detailed infor-
mation and location information (Kahneman andTreisman, 1992;
Pylyshyn, 2001; Xu and Chun, 2009). Object handling functional-
ity has been reported to have a strong relationship with working
memory features (Bays et al., 2011).

In computer systems, for effective operation, it is essential that
the system can express andmanage information composed of data
that change over time, such as files and packets, as a bundle or a
data set (Gray andAndreas Reuter, 1993; Patterson andHennessy,
1994; Stalling, 2005).Various data or signals can be simultaneously
exchanged or activated in a processor, but the data that can be
processed by a program is limited to the data satisfying a specific
condition, such as being on a general register or memory. For
data satisfying the specific condition, a program can process the
data regardless of whether that are data from an external source
or internally generated data.

We have previously proposed the “object-handler” for bundling
and handling information described earlier (Kinouchi and
Mackin, 2015). In this article, we further clarify the functions
of the object-handler for bundling signals, as well as using
these bundles as an object. Only information maintained by the
object-handler can be handled as an object regardless of where the
signal originated from.
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Management of Signal Meaning
Information that is widely used in the system must be interpreted
with the same meaning throughout the system. In this article, for
information that needs to be used over a wide area or over time,
a node serving as a reference of the meaning of each signal is
provided, thereby managing the meaning throughout the system.
Hereafter, we call this node the “reference node.” The meaning
of each reference node is determined by the corresponding code
conversion units, such as pattern and color recognition units.

When a functional unit uses signals whose meaning is already
managed, the signal is supplied from the reference node. This
method is based on the “in situ” representation proposed by van
der Velde (2013). The system can be easily configured by allowing
each unit to send and receivemanaged information bidirectionally
from the reference node. In Figure 2, many functional units con-
nected to the output of the reference node can receive signals at the
same time.When one functional unit outputs a signal to the signal
line, other functional units can receive the signal as a signal whose
meaning is managed. In Figure 2A, a pair of unidirectional serial
connection is provided for bidirectional transmission. In this way,
signals whose meanings are managed by the reference node can
be mutually transmitted and received between a large number of
function units. Excitation of the reference node is unnecessary
when merely transmitting and receiving the managed signals
between the function units. Since this connection has a function
similar to that of “bus” used in computers (Hwang and Briggs,
1984; Patterson and Hennessy, 1994), it is shown simplified as a
bus in Figure 2B. When modifying the meaning of the reference
node, a code conversion unit that determines the meaning of the
reference node excites the reference node by the output of the code
conversion unit.

System Time Management
In digital computers, the time adjustment between the functional
units operating in parallel is controlled using a clock running

FIGURE 2 | Management of signal meaning by the reference nodes and bus.
Configuration of a pair of unidirectional serial connection for bidirectional
transmission (A) and configuration represented by bus (B).

at a constant rate with high accuracy (Patterson and Hennessy,
1994). However, it is difficult to adopt this method in the system.
The reason is that the processing time of the functional unit in
the system is not necessarily fixed and learning for adaptation
may change the processing time of the unit itself. Nonetheless, for
the system to operate parallel functional units satisfying the basic
condition (ii) for high performance, timing adjustment between
various units is essential.

For basic timing adjustment, we used the case where the units
in the system are excited simultaneously in wide-area mutual
stimulation. The case indicates that the activation of each unit
occurs at the same time and each unit can base the start timing
from this signal. The excitement of the recurrent network for
action decision described in Section “Decision Phase” provides
this simultaneous excitation as a base point of timing and keeps
the track of the system time by the number of iterations from
this base point. However, the repetition time of this base point
is long and not constant; the system subsidiarily uses together a
constant period clock with short repetition time and low precision
for a narrow time width. A method of dividing or slicing the clock
time is also used to share the bus among various function units
accessing the bus at the same time.

CONFIGURATION AND FUNCTIONS OF
THE BASIC-SYSTEM

In this section, the configuration of the basic-system and how
habitual behavior is realized by the basic-systembased on the basic
conditions is described. The configuration of the basic-system is
shown in Figure 3. One processing cycle of the basic-system is
composed of three phases, the preprocessing phase, the decision
phase, and the postprocessing phase. Through repeated iteration
of the processing cycle, habitual behaviors are executed as shown
in Figure 4. In the preprocessing phase, the objects are detected,
and in the decision phase, action for the object is decided. The
instruction for action is issued immediately after the decision
phase. In the postprocessing phase, the information in the system
is reorganized and prepared for the next cycle. The reason for
issuing an action instruction immediately after deciding an action
is that fast response to a stimulus is a major feature of habitual
behavior related to the basic condition (ii). For primitive animals,
the length of response time to a stimulus often becomes a matter
of life or death.

The basic time of the system is counted by the number of pro-
cessing cycles. Since, many networks widely excite simultaneously
for action decision, the basic point for time management of the
system is set at the last point in each decision phase. The execution
time of one processing cycle will be simply called a cycle hereafter.

Preprocessing Phase
Here, we describe the main process in the preprocessing phase
of preparing information necessary for action decision, which
consists of the following two steps:

a. Detecting information to be operated by the system and man-
aging it as a bundle of information.

b. Executing pattern recognition and color recognition for bun-
dled objects.
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FIGURE 3 | Configuration of the basic-system, module configuration in panel (A) and bus configuration in panel (B).

Object Detection and Management
Object detection and management are described according to
Figure 3. When a group of stimuli generated in the sensed signals
buffer, the object detector detects these signals as one bundle, and
a primitive-object-handler in a free state captures it and sets it as a
candidate of object. The primitive-object-handlers are functional
units that maintain and manage temporary information of the
candidate of object composed of sensed signals corresponding
figure and location. From this point, the location of the candidate
of object is tracked. Then, a free object-handler takes over the
information of the candidate of object from the primitive-object-
handler, and the object-handler starts management of the infor-
mation as object. At the same time, the object-handler requests to
recognize pattern or color of the object maintained in the object-
handler to related functions. The object-handlers are functional
units that maintain and manage the temporary information as
bundles of information composed of sensed signals, location,
and recognized attributes, such as pattern or color, of the object.

[We assume that the primitive-object-handlers are related to func-
tion of the fragile memory, a kind of short-term memory, and the
object-handlers are related to function of the working memory,
based on Sligte et al. (2009, 2010); Scimeca et al. (2015); Block
(2011) and Bays et al. (2011).]

Only the bundles of information managed by the object-
handler can be processed for action decision by the system. This
means that even if a bundle of information or signals is generated
in the system itself, the bundle managed by the object-handler can
be treated as an objective for action decision of the system. This
method is applied to the image handling used in the extended-
system. Details will be described later.

Object Recognition
Here, object recognition is described according to Figure 5. The
object-handler instructs recognition units, such as pattern or
color recognition, to recognize the object allocated to the object-
handler, and maintains the attributes of the object as a result of
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FIGURE 4 | Outline of habitual behavior in the basic-system, basic processing cycle (A) and cycles for execution of reinforcement learning (B).

FIGURE 5 | Configuration of the recognition unit.

recognition mentioned earlier. In these operations, up to four
object-handlers operate concurrently in the preprocessing phase
considering the capacity of the workingmemory (Bays et al., 2011;
Block, 2011).

The recognition unit is composed of a combination of autoen-
coder and feature selector as shown in Figure 5. The autoencoder
extracts effective features for efficient expression of the sensed
signals of the object, and then the feature selector specifies the
features of each attribute. An important characteristic of this unit
is that it operates bidirectionally. In forward processing, the unit
recognizes the sensed signals as a pattern and outputs the attribute
of the pattern. In backward processing, a group of attributes are
input to the recognition unit from the opposite direction, and a
pattern corresponding to the group of attributes is regenerated. In

this case, the feature selector reproduces the feature group from
the attribute pattern. Next, the autoencoder reproduces the input
pattern based on the reproduced feature group. In the prepro-
cessing phase, the recognition unit operates only in the forward
direction, and in the postprocessing phase the recognition unit
operates in the reverse direction.We have currently adopted a very
simple recognition function. In the field of deep learning, which
is rapidly developing in recent years, combination of autoencoder
and feature selector is frequently used (Ranzato et al., 2007; Ben-
gio, 2009; Larochelle et al., 2009). We expect that this method can
be applied to improve the recognition function.

Decision Phase
Outline of the Decision Phase Operation
In the decision phase, satisfying the basic condition (ii), the
system quickly selects the most desirable pair for the system at
that time from a large number of objects and action pairs, and
issues the result immediately as an action instruction using the
recurrent neural network in Figure 6. The configuration of the
recurrent neural network is equivalent to the BSB, proposed by
Anderson (1983) and generalized byGolden (1986, 1993). Golden
has revealed that the BSB is a gradient descent algorithm in the
direction to reduce the cost represented by the cost function
(corresponding to the energy function). BSB has been studied
mainly as a method for categorization.

In this article, the cost function expressed by the quadratic
expression of connection weights between nodes, corresponds to
the desirability of the system (system desirability D). As shown
in the following section, by changing the connection weights
according to action evaluation, such as pleasant/unpleasant, the
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FIGURE 6 | Conceptual network configuration for action decision.

cost function can be modified and trained by the experience of
the system. By performing the steepest descent algorithm under
this cost function, optimization operation for the desirability of
the system is possible using a recurrent neural network.

Detail Processing in Decision Phase
As shown previously, each object-handler maintains attributes
and location information of the assigned object. Attribute of object
i (Obi) is expressed by a vector AObi = (a1 , a2, . . . , ak1). When
Obi has corresponding micro-feature j, then aj = 1, and when
Obi has no corresponding micro-feature j, then aj = 0. Similarly,
location of Obi is expressed by a vector LObi = (l1 , l2, . . . , lk1).
When Obi is found at distance lj, then lj = 1, and when Obi is
not found at distance lj, then lj = 0. (For simplification, only one
distance lj is set to 1 and others are set to 0.)

The operation selecting the desirable object–action pair is
speedily executed by iterations based on the BSB as shown in
Figure 6. The cost function is defined by system desirability D
as expressed in Eq. 1. Variables xObi(n, t) and yactj(n, t) repre-
sent the degree of how necessary or desirable object Obi and
action actj is for the system in the nth iteration at time t, and
is implemented as the activation level of neural nodes, which
correspond toObi or actj. Coefficient btij(AObi , LObi , actj) indicates
desirability of object–action pair of object Obi and action actj, and
is implemented as the connection weights between object node i
and action node j

D(n, t) =
∑

Obi,actj

btij(AObi , LObi , actj) xObi(n, t) yactj(n, t). (1)

Activation levels of object or action nodes are increased or
decreased from initial states according to D in a limited num-
ber of iterations. After the iteration, detecting the object and
action node with maximum activation means selecting the semi-
optimum object–action pair for D at time t. In the optimization
process, constraints such as

∑
Obi xObi

2 ≤ 1 and
∑

actj yactj
2 ≤ 1

are applied, but for simplicity, these constraints are abbreviated

in this article. Operations mentioned earlier are executed along
the following equations. The characteristics of neural nodes are
defined by Eqs 2 and 3 with a piecewise-linear activation function

xObi(n + 1, t) = f(ϕi(n, t)) , (2)

f(ϕi(n, t))


= 1 if ϕi(n, t) > 1
= ϕi(n, t)
= 0 if ϕi(n, t) < 1

where

ϕi(n, t) = xObi(n, t) +
∑
actj

btij(AObi , LObi , actj) yactj(n, t). (3)

Equations 4–6 are lead from Eqs 1 to 3

ΔD(n, t)
ΔxObi(n, t)

∼=
∑
actj

btij(AObi , LObi , actj) yactj(n, t)

xObi(n + 1, t)−xObi(n, t)=
∑
actj

btij(AObi , LObi , actj) yactj(n, t),

(4)

xObi(n + 1, t) − xObi(n, t) ∼=
ΔD(n, t)

ΔxObi(n, t)
, (5)

yactj(n + 1, t) − yactj(n, t) ∼=
ΔD(n, t)

Δyactj(n, t)
. (6)

Based on above Eqs 4–6, the desirable object–action pair is
selected using the gradient method in BSB.

The following two extensions are adopted for implementing the
network to the basic-system:

A. The coefficient btij(AObi , LObi , actj) is effective only when an
object of a certain attribute is in a certain place. This means
that a single neural node must be able to detect patterns of
attribute and location signals on its own. Previous artificial
neural models require a large network of neurons for such
pattern detection. To cope with this problem, we proposed
a pattern match detection method inspired by the pyramidal
neurons in the cerebral cortex, inwhich the dendritic structure
support various matching detection. One pyramidal neuron
has thousands of branches in the dendrite, and each branch
processes thousands of paralleled input signals (Spruston,
2008; Kasai et al., 2010; Coward, 2013).
Schematic diagram of the artificial neural node is shown
in Figure 7A. Information is composed of main signal
s0 (0≤ s0 ≤ 1) and sub-signal Sa = (sa1, sa2, . . . , sk3). For
simplicity, sai = 0 or 1. Each branch memorizes a sub-signal
pattern Sa, where WSa is aweight corresponding to this pattern
Sa. This pyramidal neural node outputs s0 · WSa , only when
input pattern Sa is matched with the pattern in the branches.

B. In the method shown in Figure 6, there is another disadvan-
tage. As an object with a specific pattern of attributes and
location is assigned to a fixed physical object node, the same
object that has changed location is assigned as a different
object. The object changed location should be treated as a

Frontiers in Robotics and AI | www.frontiersin.org April 2018 | Volume 5 | Article 30100

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Kinouchi and Mackin Architecture of Autonomous Adaptive System

FIGURE 7 | Artificial neural node with pattern match detection (A) and schematic configuration of action decision network using dynamic link nodes (B).

same object. To achieve this, we proposed a method called
dynamic link node (DLN). Schematic configuration is shown
Figure 7B. In this method, we limit the number of object
nodes to 4, and we make four pairs of an object-handler and
an object node. Each object node represents and functions
as an object maintained by the paired object-handler. Each
object-handler supplies attributes and location information
to the paired object nodes. This means that same physical
object node can operate as different object node dynamically
by changing information maintained paired object-handler.

Equations 5 and 6 are transformed as below, corresponding to
Figure 7B

rk(Obi, n + 1, t) = rk(Obi, n, t)

+
∑
actj

btij(AObi , LObi , actj) yactj(n, t) ,

yactj(n + 1, t) = yactj(n, t)

+
∑
k(Obi)

btij(AObi , LObi , actj) rk(Obi, n, t) .

where rk(Obi, n, t) indicates activation of DLN k which work as
node of Obi. AObi and LObi are supplied by the object-handler

according to the object processed at that time. Although wired
connection is fixed, the circuit in Figure 7B is able to process
various objects dynamically.

However, implementing the circuits according Figure 7B is not
easy. As the circuits have to wire four set of attributes and location
signals to nodes, the circuit becomes very complicated. To avoid
this problem, we introduced a time division method, controlled
by a sub-clock, which sends four sets of attributes and position
information using one set of wire. The configuration is depicted
in Figure 8.

Postprocessing Phase
In the postprocessing phase, the system first reconfigures major
information scattered in the system and performs necessary learn-
ing for adaptation of itself. Then, to respond quickly to new stimu-
lus in the next cycle in line to the basic condition (ii), transmitting
and processing of the major information are executed.

Reconfiguration of Information and Learning
The operation of the autonomous adaptation system can be
described largely as two operations: (a) operations for external
environment as an action of the system and (b) learning
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FIGURE 8 | Action decision network using dynamic link node with time division control.

operations for the system itself to change its configuration for
adaptation. For (a), the system issued an action instruction at the
end of the decision phase so as to perform the action instruction
at the fastest and highest priority in line to the basic condition
(ii). However, for (b), it is necessary to evaluate the result of the
action based on the current system at the relevant time and to
instruct the related units in the system to make changes based
on the evaluation. It should be noted here that a large number
of function units operating in parallel in the system may cause
incompatible or inconsistent states among the units.

To deal with these problems, in the postprocessing phase, first,
the main states in the system are reconfigured and coordinated.
The system updates the information of each object-handler to
the latest one, and integrates the same object-handler as the
same object when the positions overlap even if they are different
object-handler. Through these processes, each object-handler has
the latest information of the allocated object. Then information
expressing the object’s figure with shape and color are reconfig-
ured on the real-image-screen using the object’s attributes and
location. These attributes and location maintaining by the object-
handler were recognized results in the preprocessing phase and
were effective for action decision. We call reconfigured informa-
tion corresponding to a real object existing in environment at
that time as a “real-image.” The “real-image-screen” is a kind of
short-term memory, which maintains the real-images resembling

real figures of objects. The reconfiguration of the real-image is
performed by reverse processing of the recognition unit using the
attribute maintained by the object-handler.

Almost at the same time, processing for two kinds of learning
is performed. One is a learning of the recognition unit per-
formed locally, and the other is a learning in relation to action
decisions performed as a whole system. The former learning of
the recognition unit is performed as the same process when the
recognition units execute the reconfiguration of a real image.
During reconfiguration, the autoencoder in the recognition unit
in Figure 5 compares decoder’s outputs with external stimuli of
the object using the comparator and executes self-learning to
reduce the difference. Although the real-image-screen is drawn
with the output signals of autoencoder, as each signal is checked
with each real external stimulus, a highly accurate figure with
shape and color can be drawn. Since the recognition units keep
learning and correction in each cycle, even if the figure of the
object changes slowly over time, it can be recognized as the same
object. We presume that the contents of the real-image-screen
correspond to what we are aware of when we are looking at things
outside in daily life (Meyer and Damasio, 2009).

On the other hand, the latter, learning of action decision is
executed as reinforcement learning executed in cooperation with
the episodic memory. In the postprocessing phase, the system
only writes information for learning into the episodic memory.
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This information is read later in the sleeping mode and used for
learning of action decision module. In the sleeping mode, the
robot is powered on, but it does not respond to external stimuli.
Details are shown in the next section.

Transmission of System-Level-Shared-Information
and Writing of Learning Information to the Episode
Memory
In the latter part of the postprocessing phase, the system makes
the state in the system consistent and compatible by widely trans-
mitting and processing themajor information for the efficient and
speedy next cycle operation. At the same time, information for the
system to learn in sleeping mode is written to episodic memory.
We focus on the followings as themajor information in the system
and call this information “system-level-shared-information.”

a. The real-image, reconfigured information of the object on the
real-image-screen.

b. The information of the evaluated value by the evaluation unit
(pleasant/unpleasant).

The system widely transmits this information into the system
and processes as follows:

(i) The information of the evaluated value and the object on the
real-image-screen is sent into the system via the bus.

(ii) The recognition unit that receives the object informa-
tion from the real-image-screen executes forward recogni-
tion processing for the object information. The recognized
results, composed of attribute of the object, are transmitted
into the system via the bus. (For example, if the red circle
is on the real-image-screen as an object, “red” and “circle”
attribute nodes are output by recognition unit and these
attributes are transmitted via the bus.)

(iii) The content of object-handler is concurrently updated based
on the information from the recognition unit.

In these operations, the reference node corresponding to the
meaning of each signal is also excited. As a result, based on
the transmission and processing using the system-level-shared-
information, the state of each unit connected to the buses and
the reference nodes, which are provided parallel in the system, are
set in a consistent and compatible state. On these consistent and
compatible states, next cycle operation of the parallel units can be
executed efficiently and speedy related to basic condition (ii).

The episode memory is connected to the main buses, such as
buses related to attributes, action, etc., as shown in Figure 3B,
and forms a record by collecting information of these buses. The
record mainly consists of information reorganized on the bus
based on the system-level-shared-information and action instruc-
tions.Writing to the episodicmemory is executed at the end of the
postprocessing phase.

LEARNING PROCESS FOR ACTION
DECISION IN BASIC-SYSTEM

This section describes the learning process in the basic-system of
the robot.

Execution of Reinforcement Learning
The basic behavior of the robot consists of repeated processes of
object search and reward acquisition. The robot walks randomly
when there is no object in sight. When one or more objects are
captured, the robot selects one preferred object and acts for it
as mentioned previously. We call the object selected as desirable
object–action pair in action decision phase hereinafter as “target.”
The target corresponds to the object selected by the robot as
an action target or objective. As shown in Figure 9, learning
for action decision of the robot is performed as a reinforcement
learning based on an actor–critic method. The action decision
module selects an action as the actor, and the evaluation unit
evaluates the action as the critic.

A chain of actions starting from selecting a target object to
receiving a reward is taken as one learning episode to which
reinforcement learning is performed. This chain of actions is
hereinafter referred to as an “event.” The term “event” corresponds
to the term “episode” commonly used in reinforcement learning,
but to avoid confusion with the episodic memory, this article
will use the term “event.” The robot can handle multiple objects
simultaneously, but for simplicity the robot can select up to one
target at a time.

When the object is selected as a target, the evaluation unit
calculates the value Et(A∗t

Obi , L
∗t
Obi) based on the attribute, position

of the object by using a value function composed of a neural
network. As both the targeted object and not targeted objects are
affect the action decisions, even after an object is selected as the
target, the robot is not necessarily bound by the targeted object
until the reward is received. Ifmore attractive or dangerous objects
appear, the robot may change the target to deal with the new
object. When the target is switched, the robot starts learning as
a different event.

When the robot selects an action for the targeted object, rein-
forcement learning is performed based on the valueEt(A∗t

Obi , L
∗t
Obi)

as follows:

ΔE(t) = Et−1(A∗t
Obi , L

∗t
Obi

)
+ Rreal(t)−Et−1

(
A∗t−1

Obi , L∗t−1
Obi

)
, (7)

Et
(
A∗t−1

Obi , L∗t−1
Obi

)
= αΔE(t) + Et−1

(
A∗t−1

Obi , L∗t−1
Obi

)
. (8)

Here,A∗t
Obi and L

∗t
Obi indicate the attribute and the position of the

selected object, and Et(A∗t
Obi , L

∗t
Obi) indicates the evaluate value of

the selected object at t. Rreal(t) indicates the real reward at t. ΔE(t)
in Eq. 7 shows the prediction error in temporal difference learning
at t. Based on this prediction error, the critic function performs

FIGURE 9 | Actor–critic method in the basic-system.
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learning as a neural network in the postprocessing phase using
learning coefficient α, as shown in Eq. 8. If the prediction error
ΔE(t) is positive, it corresponds to pleasant state or satisfaction
with a reward above expectation, and in the negative case, unpleas-
ant state or disappointment with less than expected reward. The
above is a case where the robot does not change targets. However,
if an object other than the target is selected, it is regarded that the
event has been interrupted and the processes in Eqs 7 and 8 are not
performed. When the target is switched, the robot starts learning
as a different event.

Learning in Cooperation with the Episodic
Memory
Learning of the actor composed of a recurrent neural network is
not as simple as the critic. The learning is executed in the following
two stages using episodicmemory, in awake-mode and in sleeping
mode. (In the awake-mode, the robot is powered on and can react
to external stimuli.)

Writing to the Episodic Memory in Awake-Mode
During awake-mode, the system writes a set of information
(referred to as records) related to learning to the episodic memory
during each postprocessing phase. The content of the record is
composed of the position, attribute, action, output of the value
function, and prediction error of the selected object. A sequential
chain of records is recorded as a single “event” in the episodic
memory. Later, reading the records is done sequentially.

Learning of Recurrent Neural Network in Sleeping
Mode
In the sleeping mode, the system reads records from the episodic
memory, and learning of the recurrent neural network as the actor
is executed using the contents of the records as follows:

(i) The system preferentially selects an event including records
with a relatively large prediction error and sequentially reads
the records in the event.

(ii) The system changes the coefficient btij(AObi , LObi , actj) of
the pattern detector for each record based on the following
formula calculated by the information on the record

btij
(
A∗t−1

Obi , L∗t−1
Obi , act∗t−1

j

)
= βΔE(t)

+ bt−1
ij

(
A∗t−1

Obi , L∗t−1
Obi , act∗t−1

j

)
,

(9)

where β is a learning coefficient. Here, only the part of the
recurrent neural network related to the above equation is
activated, and the coefficient btij(AObi , LObi , actj) is changed
in the direction along ΔE.

The reasons that the learning of the actor using episodic mem-
ory is performed during sleeping mode are as follows:

a. To execute the learning shown in Eq. 9, it is necessary to
activate only the part of the recurrent neural network related
to learning. Other parts of network cannot operate at the same

time. If the recurrent neural network learns during awake-
mode, the network must temporarily stop responding to exter-
nal stimulus during the learning process. The robot operation
will have to stop intermittently during learning. Assuming the
robot was an animal, it will not be able to react to dangerous
conditions quickly if it tried learning while it was awake.

b. Utilizing learning information after recording in episodic
memory has some advantages. One is that the system can
learn efficiently by utilizing experiences, based on selection, or
repeating large impact events by looking back on past experi-
ences. The other is the system enables relatively stable adapta-
tion with less risk of over-training by not learning immediately
when an event occurs.

In the case of an animal, execution of the learning in sleeping
mode causes the animal to be in relative risk against predators
during sleep, but overall there is merit for the animal to learn
during sleep.

CONSCIOUSNESS IN THE BASIC-SYSTEM

Basic Hypothesis on Consciousness on the
Basic-System
Consider the system-level-shared-information shown in the
basic-system from the viewpoint of animals. We presume that
an animal’s brain is composed of (a) functions that respond
automatically or semi-automatically according to stimuli and (b)
functions for system-level processing such as action decisions. The
automatic or semi-automatic functions operate in parallel under
loose coordination.

When an animal acts as one individual or one system, such as
when going toward a prey or escaping from a predator, it is neces-
sary for these functional units in the brain to have tightly related
cooperation based on system-level decisions. For this purpose,
it is an effective way to share consistent and clear information
of objects and directions of action, such as approach or avoid-
ance among functional units which should be tightly related for
cooperation at the time. Based on this shared information, each
functional unit performs consistent simultaneous operation so
that the animal’s ability can be demonstrated as much as possi-
ble. In particular, “pleasant/unpleasant” is basic information that
indicates either the necessity of action as individuals, approach or
avoidance, and needs to be notified as quickly as possible. By using
this pleasant/unpleasant information and object information in
combination, to move more closely to prey or avoid predator
becomes possible for the brain.

A unicellular paramecium backs away when it hits an obstacle
ahead and swims at a speed that is more than twice the usual
against a stimulus from behind. At that time, Paramecium sends
information concurrently to thousands of cilia of Paramecium,
organs of for move, by changing in membrane potential or ion
concentration, in accordance to the stimulus received by the
sensor. With this information, a large number of cilia perform
a consistent operation along the direction of movement of the
paramecium, as one individual (Kutomi and Hori, 2014). This
indicates that even if the organism is extremely simple, if it is
composed ofmany functional units and prompt action is required,
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to send system-level-shared-information to related organs all at
once is necessary.

Although the contents of our “awareness” at each moment
are diverse and contain various subtle elements, one of the main
contents of awareness is the perceived world around us composed
of objects, and the feeling of our “self ” in this perceived world.
Based on the above, we hypothesize that the main part of what we
recognize as phenomenal consciousness corresponds to system-
level-shared-information in the basic-system. We assume that
even primitive animals have “awareness,” to adapt autonomously
as a single system, and execute information transmission and
processing corresponding to system-level-shared-information.

In addition, since an animal mainly acts using automatic
or semi-automatic functions, system-level-shared-information is
issued only when an action decision as a whole system is
needed. If functions that are automatically or semi-automatically
operated in parallel can respond appropriately to stimuli,
system-level-shared-information is not issued. When we ride a
bicycle for the first time, we are initially aware of the operations
required to ride a bicycle, including pedaling, steering, and bal-
ancing. But when we get used to riding a bicycle, we are not
aware anymore of the individual operations. Initially, the bicycle
riding operations become the objective of the system-level action

decision. As the semi-automatic processing function begins to
work, the necessity to operate a bicycle disappears at the system-
level. At this time, the system-level-shared-information for riding
a bicycle is not required and is not generated anymore.

Logical Organization of Consciousness
and Self
Figure 10 shows the perceived space logically composed of the
system-level-shared-information. In this space, the state of the
evaluation unit and objects are the main elements. An evaluation
unit located at the origin of the space evaluates the object. The
relationship between the object and the robot including the system
is the basis of the operation of the autonomous adaptation. Each
object had been treated as a bundle of attributes etc. as we have
mentioned. However, since the robot itself is composed of a large
number of entities, the relationship between the robot and the
object cannot be briefly expressed unless the robot is bundled too,
or represented by something.

Since the robot operates on a complex interaction of various
motor and functional units, bundling of some specific entities is
not appropriate. Between the robot, and the object, “what kind
of action the robot is going to do with respect to the object” is

FIGURE 10 | Logical relations between objects and self on the basis of the physical configuration.
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important, and “what is the bundled unit as the entity of the robot”
is not necessarily required. From this point of view, the state of
the evaluation unit briefly and basically shows the direction of
action decision as a robot to the object, and implicitly represents
the robot including the system itself.

Based on this view, we regard the state of the evaluation unit as
a kind of “self ” as in the bundle theory of self byHume (Pike, 1967;
Smith, 2017). The “self ” existing at the origin forms the relation-
ship between “self ” and the objects. The “self ” sees and copes with
the objects. We speculate that this relationship contributes to the
awareness of the first-person perspective as if the homunculus in
our brain sees the outside world (the orange robot in Figure 10).

The Binding Problem and the Delay Time of
Libet’s Experiment
Based on the above hypothesis, the Binding problem and the delay
time of Libet’s experiment can be accounted for as follows. An
outline is shown in Figure 11.

Binding Problem
As Figure 11 shows, the brain is known to process shapes and
colors with different functional units. In the case of a red circle and
a blue triangle, shape and color are processed as separate signals by
separate functional units. In relation to this, there is an unsolved
problem, known as the Binding problem, in the brain (Kahneman
and Treisman, 1992; Pylyshyn, 2001; Meyer and Damasio, 2009;
Xu andChun, 2009; Bays et al., 2011; Feldman, 2013). The binding
problem is roughly expressed as the following two problems.

Problem a. How do we process a red circle and a blue triangle
as a red circle and a blue triangle, and not process them as a blue
circle and a red triangle?

Problem b. How are we aware of a red circle as a “red circle”
using separated information “red” and “circle”?

Based on the hypothesis that the main contents of aware-
ness correspond to system-level-shared-information, the system
provides the answer to the problems as follows.

In the system, each circle and triangle is allocated to different
object-handlers as different objects and managed. The object-
handler instructs the related functional units to recognize (pattern
recognition, color recognition, etc.) the allocated object andmain-
tains the resultant signal as a set of parallel signals composed of
shape and color. Information on the shape and color of the red
circles keeps held by the object-handler until the object disap-
pears. Information of each object is input to the action decision
module as a set of parallel signals under the control of the allocated
object-handler. In the action decision module, there are many
action nodes corresponding to the type of various actions. And
each action node has a lot of detectors that detect matched parallel
signal pattern from the thousands of parallel signals. Using this
function, each action node detects only the signal pattern that the
corresponding action is deemed necessary from the thousands of
parallel signals, and reacts to the signal pattern. This means that,
in the case of animals that eat, for example, red apples but not
blue prunes, the node for eat has a detector that detects “red” and
“apple.” That is, although information of the shape and color of
an object are processed separately, the object-handler manages it

FIGURE 11 | The binding problem and basic cause of the delay time of Libet’s experiment.
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as a parallel signal belonging to the same object. Furthermore, a
large number of parallel signals are directly checked for action
decisionwhile being parallelized using themechanism inspired by
pyramidal cells in the cerebrum. This makes it possible to explain
the Problem a.

Furthermore, after deciding the action, the recognition system
operates in the reverse direction to reconfigure the “red circle” on
the real-image-screen, using the information, “red” and “circle”
in the allocated object-handler. Then, we are aware of the “red
circle” on the real-image-screen as a part of system-level-shared-
information. In this way, the Problem b can be explained.

When combining and processing parallelized signals, the tim-
ing adjustment between signals is required.Without timing adjust-
ment, it is not possible to perform processing based on the mutual
relationship between signals appropriately. In general, when the
number of stages of timing adjustment increases, the response
time of the system becomes long because it is necessary to wait the
signal arriving at the latest and to spend time to process signals at
each processing stage. From this point of view and basic condition
(ii), we speculate that the system uses a method in which the
number of stages of timing adjustment relating to slow response is
minimized.

The Time Delay in Libet’s Experiment
Famous experiment of Libet shows that our intentional move-
ments are initiated before we become conscious to act, and have
been calling a lot of debate so far (Libet, 2004). As we have repeat-
edlymentioned, in the system, since high priority is given to quick
responses, action instructions are issued immediately after the
decision phase and “awareness” occurs late in the postprocessing
phase. The time difference shown in Figure 11 does not accurately
correspond to the delay time indicated by the experiment of Libet,
but we consider that it shows a basic cause of the delay time. From
this viewpoint, we consider that our hypothesis for phenomenal
consciousness is consistent with the Libet’s experiment.

PROPOSAL OF THE EXTENDED-SYSTEM

We have proposed the basic-system as an autonomous adaptive
system that performs habitual behavior. In relation to conscious-
ness, we have shown that awareness is an important operation for
executing parallel processing. However, the basic-system cannot
perform “goal-directed behavior,” consisting of setting a goal and
conducting actions to achieve that goal through various attempts.
Also functions that manipulate recollected objects, which are an
important element of our conscious experience, are not incor-
porated. To realize these functions, we propose the “extended-
system” as an extension of the basic-system.

Outline of Goal-Directed Behavior in the
Extended-System
Action Suspending
In the basic-system, an action instruction selected for the object is
immediately executed in the decision phase, and the evaluation
process for the action is executed in the postprocessing phase.
In the extended-system, if necessary, the action on the object
is suspended and no action is taken. For example, in cycle t,

without taking action, the system predicts the reward of action
for the object. Then, in cycle t+ 1, the system can decide an
action considering the predicted reward. This example shows that
if the system temporarily suspends an action instruction, adaptive
action considering multiple cycles becomes possible. We presume
that this suspension of an action is related to “the ability to delay
immediate gratification for the sake of future consequences” of
children in the marshmallow test in psychology (Mischel, 2014).

Fast Decision and Slow Decision
In the extended-system, an action decision aiming for quick
response (fast decision) and an action decision aiming at a higher
level of adaptation with slow response speed (slow decision) are
used depending on the situation. In the fast decision, the basic
function corresponding to the basic-system operates with quick
response, based on reinforcement learning. On the other hand, in
the slow decision, the extended-system takes the risk of putting
real actions on hold, allowing the system to aim for a higher level
of reward.

When operating in slow decision, more processing time and
resources in the system are used than in fast decision. We sur-
mise that in the slow decision, the system needs some kind of
“motivation” to take risks, use higher resources, and to try to
achieve higher rewards. In the extended-system, in addition to
the pleasant/unpleasant state of the basic-system, a value corre-
sponding to motivation is maintained and managed as an indi-
cator (degree of motivation), and execution of slow decision is
controlled according to this value.

Assumed Primitive Behaviors
The goal-directed behavior consists of a chain of slow decisions
aimed at achieving the goal. A primitive example of a series
of decisions from detection of objects to acquisition of reward
through various actions is shown in Figure 12.

Configuration and Functions of the
Extended-System
To configure the extended-system as simple as possible, the fol-
lowing policies were adopted:

a. The extended-system is constructed using the functions of the
basic-system as much as possible. Additional functions are
minimized.

b. The function to be configured as a new circuit is limited to
functions commonly used, or functions requiring high speed.

c. Information for high-level or detailed behavior is stored in
long-term memory as much as possible and read out as nec-
essary.

Based on these policies, when a goal-directed behavior is per-
formed, although the number of times of reference to long-term
memory and response time increases, it is possible to achieve a
sophisticated adaptation at low cost. In addition, the time required
for learning can be shortened as compared with the case of using
a dedicated neural network circuit. This is because it is possible
to record to long-term memory in a short time as compared with
learning time of the dedicated neural network circuit.
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FIGURE 12 | Outline of behavior in the extended-system. Coordination between cycle 2 and cycle 3 utilizing action suspending, episodic memory recollection or
virtual-image-screen depiction (A), and an example of goal-directed behavior (B).

Under the above policies, the following dedicated functions
were provided. Outline of functional extensions in the extended-
system is shown in Figure 13. The bus configuration of the
extended-system is shown in Figure 14. The orange box in the
Figure 14 shows the main unit added to the basic-system.

Extension of Basic Functions in the Basic-System
The following functions are expanded in the extended-system.

Extension of Object Handling Function
In the extended-system, the goal is expressed by three elements,
(1) what is targeted, (2) what actions to be taken on that object,
and (3) what can be earned as reward. A single object-handler can
hold this set of object, action, and evaluation value to express a
goal. It is not necessary that all three elements of object, action,
evaluation value is available.

Extension of Action Decision-Related Functions
The output of the action decision module was only an action
instruction in the basic-system, but in the extended-system,

instructions for suspending action, setting as a goal, recalling of
long-term memory, and handling images as an object are added.

Addition of Image Manipulation Function
Functions related to the manipulating image, information gener-
ated inside the system, are added as common functions.

Buffer Memory for Expressing Patterns of Images
(Virtual-Image-Screen)
To manipulate information generated within the system, such as
recollected objects, in the same way as information of real objects
existing actually at that time, a temporary buffer memory for
expressing patterns of images, which we named “virtual-image-
screen,” is provided. We call reconfigured information not corre-
sponding to a real object existing in the environment at that time
as a “virtual-image.” The “virtual-image-screen” is a kind of short-
term memory, which maintains the virtual-images. Recollected
contents from the long-term memory are depicted in the virtual-
image-screen when in the awake-mode. Object-handlers can cap-
ture objects in the virtual-image-screen similarly to capturing
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FIGURE 13 | Outline of functional extensions in the extended-system.

FIGURE 14 | Bus configuration of the extended-system.

objects in the real-image-screen, so objects captured from the
virtual-image-screen can influence action decisions same as real
objects in the basic-system. Based on this method, the extended-
system can decide actions using past experiences or knowledge in
the awake-mode.

The virtual-image-screen corresponds to our mental imagery
as shown below. We use “mental imagery” as defined by Kosslyn
(1994).

a. In the postprocessing phase, objects on the virtual-image-
screen are reconfigured using the attribute of objects same
as with the objects on the real-image-screen. The contents of
the virtual-image-screen are subject to object detection like
the real-image-screen. In addition, the contents of the virtual-
image-screen are transmitted to a wide range of the system as
a component of system-level-shared-information.

b. The signals for expressing the virtual-image-screen which are
output from the recognition units (green lines in Figure 14),
are not compared with the real stimulus by the autoencoder.
In the case of the real-image-screen, comparison with real
stimulus is executed by the autoencoder, so the system can
express images on the real-image-screen clearly. In the case of
the virtual-image-screen, the reconfigured images are blurred
because there is no comparison with real stimulus. The
extended-system uses a bus in which meaning is managed by
the reference node in common with external stimuli. Thus,
internally generated contents can have the same meaning cor-
responding to external stimuli.

By this configuration, the extended-system can treat the clear
contents corresponding to real things in the real-image-screen,
and the blurred contents generated inside the system in the
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virtual-image-screen concurrently. These contents correspond to
how the human brain is aware, using a clear image of the real world
and a blurred mental imagery.

Action Control by Action Patterns
Recollecting and execution of action in the extended-system is
realized as a function to connect action instruction signals with
visual action patterns. Visual action patterns are represented as a
kind of image in the virtual-image-screen and manipulated as an
object. When the system outputs an action pattern on the virtual-
image-screen, the connected action signal is excited, and the
action decision unit selects the corresponding action with highest
priority. This means that the extended-system can be directed
to perform that action by outputting a certain action pattern on
the virtual-image-screen. In addition, the system can deliver the
visual action pattern to the next cycle as part of the system-level-
shared-information. In this manner, actions are treated as objects
represented by a kind of visual action patterns. This function was
adopted on the basis of findings of the mirror neuron (Rizzolatti
et al., 2014).

The State of Evaluation Unit for Manipulating Reward
For the extended-system to handle reward as a goal, it is necessary
to manipulate the state, such as pleasant or unpleasant, as a kind
of object or signal independent of the system’s own evaluation
unit state. The evaluation unit of the extended-system can have
the following two states at the same time.

Effective-Excitation (EE) State. Reference nodes corresponding
to the state are activated, and the activation is transmitted to the
whole system. System-level learning is executed based on this
state.

Non-Effective-Excitation (non-EE) State. Reference nodes cor-
responding to the state are activated, but the activation is not
transmitted to the whole system and effective only as signals
representing information of the state. The system-level learning is
not executed based on the state. Signals of non-EE state are used
for handling reward such as goals.

Object–Reward and Reward–Action Associating
Function
Dedicated circuits, episodic memory write buffer, object–reward-
associator, and reward–action-associator are provided to execute
reward prediction from the target object and desirable action
recollection from reward. The episodic memory write buffer
maintains recent results of the action decision module for a 100
cycles before storing the episodic memory. The object–reward-
associator, consisting of a bidirectional pair of neural networks,
associates a target object and a reward value. Likewise, the
reward–action-associator, consisting of a bidirectional pair of
neural networks, associates a reward and an action.

The learning of object–reward-associator is performed by
simultaneously exciting a target object and reward information
on episodic memory write buffer in pairs, and supplying pairs
of inputs and outputs to the unit through the bus. The neural
network modifies the weight so that the supplied signal pair

is associated with each other. In the reward–action-associator,
learning is executed in the same way. These learning operations
are executed under time shared control within the postprocessing
phase.

Extended-System Operation
Table 1 shows an example of robot operations with the extended-
system for a goal-directed action, including the changes of state
in system-level-shared-information corresponding to the robot
awareness. This example was modeled with reference to the
goal-directed behavior experiment using monkeys by Matsumoto
et al. (2003) and the Experimental Cognitive Robot by Haikonen
(2012).

The robot determines actions based on the conscious infor-
mation in the previous cycle and summarizes the result to the
next conscious information. This process is repeated. Defining
that the perceived world for the robot is the world of what the
robot is aware or conscious of, from the viewpoint of the robot, the
robot decides and acts on the world using summarized conscious
information.We think that this flowof state changes in the system-
level-information corresponds to the flow of consciousness for us
humans.

In Table 1, it was assumed that the motivation level of the
robot is sufficiently high for performing the slow decision. If
the robot is exhausted and the motivation is lowered, the robot
ignores the detected objects.When the robot receives rewards, the
system evaluates the reward as pleasant/unpleasant according to
the difference between the expected value and the obtained value.
Primitive learning is performed by reflecting this value (pleas-
ant/unpleasant) in the learning of the object–reward-associator
and the reward–action-associator. However, learning methods
throughout the entire robot including motivation adjustment are
still under consideration.

ON CONSCIOUSNESS

Consciousness as Awareness
We assumed that the brain basically works like the basic-system
in principle because the brain should perform at its full potential
as a parallel-processing system. In this case, the brain selects
and decides the fastest and most efficient action, and responds
immediately. After the action decision, postprocessing is done
throughout the brain and prepared for the next stimulus.

In this postprocessing, scattered information is organized/
integrated, learning based on reward is executed, and these results
are notified through the brain. The phenomenon of awareness
corresponds to the most important notified information that is
“system-level-shared-information,” composed of states of evalu-
ation unit and objects. This information forms a space where the
state of evaluation unit is located at the origin and various objects
exist together. This space corresponds to the “subjective space”
that we are aware of on a daily basis, and the evaluation state
corresponds to “self.”

One of the characteristics of phenomenal consciousness is
“integration of information.” Tononi (2012) explained in the
integrated information theory using Φ, but we consider that Φ
is unnecessary for explanation of consciousness. Through the
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TABLE 1 | An example of robot operations as a minimal level goal-directed action.

Operations of the robot Operations in the system Awareness of the robot system-level-shared information

Real-image-screen Evaluated value
(real-IS), Effective excitation (EE),

virtual-image-screen non-effective
(virtual-IS) excitation (non-EE)

Real-IS Virtual-IS EE Non-EE

1. Searching objects a. Walking randomly for searching
objects is installed as a basic
function

The robot detects nothing in the
environment, then walks randomly
to detect objects

2. Detection of objects a. Two object-handlers maintain
information of the red box and
blue box, respectively, and these
are recognized

Red box
Blue boxThe robot detects a red box and a

blue box as object, then stops
walking

b. Reconfigured information of
these boxes is depicted on the
real-image screen

3. Target selection and reward
recollection

a. The action decision module
selects the blue box as a target,
then object–reward-associator
outputs reward recollection related
to the blue box

Red box
Blue box

Pleasant

The robot selects the blue box as a
target and recollects reward related
to the target

b. State of the evaluation unit
becomes Pleasant in non-EE
c. No actual action instruction

4. Setting the target with reward
as the goal

a. The object-handler allocated to
the blue box maintains information
of reward as a goal

Blue box Pleasant

The robot sets the blue box
including reward as the goal b. No actual action instruction

5. Recollection of action to earn
the reward

a. The behavior of the action, output
of the reward–action-associator, are
depicted in the virtual-image-screen

Blue box Touching action Pleasant

b. No actual action instruction

6. Execution of action plan a. The robot is charged by touching
the blue box

Blue box Pleasant
The robot touches the blue box

b. The evaluation unit becomes
Pleasant in EE

7. Acquisition of reward
The robot is Pleasant by charge
really

Blue box Pleasant

8. Execution of learning through
these experiences

a. Learning is executed in the
sleeping mode

– – – –

Significant states and objects are depicted in color or bold (for highlighting purposes).

processing of the decision phase and postprocessing phase shown
so far, “integration of information” as a phenomenon can be gen-
erated. Based on our model, we can explain the binding problem
and show the basic causes of delay in Libet’s experiment, which
indicates that Φ is unnecessary. Consciousness is a necessary
function for the brain to perform at the full potential as a central
control system of an animal.

Our proposed system is close to Haikonen’s robot and
Franklin’s system (Haikonen, 2012; Franklin et al., 2014), and to
proceed in the future, it is necessary to incorporate the various
functions proposed in these systems. However, our proposed

system is different from theirmethods in the core design regarding
action decision and consciousness. In GWT, dedicated processors
compete for the right in the limited storage area called Global
Work Space, and the action plan of the processor that got this
right is broadcasted and conscious. In HCA, dedicated processors
attempt to communicate with each other, and the main successful
communication becomes conscious. For the following reasons,
our proposal is more appropriate than GWT and HCA.

(i) In GWT and HCA, the information and actions to
be selected are determined by mutual relationship among
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individual dedicated processors. We think that reflections
of what is desirable as a system are not sufficient in this
selection. In our model, the system chooses the optimum
pair based on the desirability as a system from “object and
action pair.” The system further performs reinforcement
learning using episodic memory for individual combina-
tions. In addition, in our model, it is a choice of optimal
object and action pair, so multiple pairs cannot be allowed
to exist simultaneously. This explicitly explains the “unity”
which is the basic characteristic of consciousness (Brook and
Raymont, 2017).

(ii) In GWT, it is claimed that broadcasting is the main factor
of awareness or consciousness. We presume this broadcast
correspond to wide-area transmission in postprocessing in
our model. However, in postprocessing, various information
that we are not phenomenally conscious of is simultaneously
transmitted in a wide area.We assume that we are only aware
of system-level-shared-information, not simply the informa-
tion transmitted over a wide area. The system-level-shared-
information is composed of the state of the evaluation unit
and the state of the object.We speculate that activation of the
evaluation unit that represents “self ” is indispensable factor
of conscious experience.

(iii) Dehaene and Changeux (2011) assert the validity of GWT
based on brain observations such as fMRI, event-related
potentials. However, since our model shown in this article is
expected to be observed as a phenomenon similar to GWT,
it also supports the validity of our model. In our model, the
recurrent neural network optimization process in the deci-
sion phase roughly corresponds to the activation centered
on the frontal lobe, and the processing in the postprocessing
phase roughly corresponds to the activation of a wider area
including the occipital lobe.

Consciousness as an Important Function
for the Complex Brain
In the extended-system, we think that the chain of “conscious
information,” which directs actions toward a goal with inten-
tion, corresponds to our “proactive” conscious state. In addition,
it is important that the conscious information can be handled
as objects in the next cycle. Since the conscious information
expresses the state of the system in a summarized form, the
system can decide an action efficiently and easily by using this
summarized information. This shows that by manipulating the
conscious information, complex systems such as the extended-
system can be controlled efficiently and easily. We speculate that
it is through this function of consciousness that we can “think”
and make decisions without being aware of the complexity of the
human brain.

DISCUSSION

Duality Model
Duality models of human behavior, such as fast/slow thinking in
the behavioral economics field and impulsive/reflective system
in the social psychology field are well known (Deutsch and
Strack, 2004; Kahneman, 2011). We predict that this duality arises

from fast decision due to direct fast responses, and slow deci-
sion due to sophisticated adaptation at the expense of response
speed, depending on the circumstances in the extended-system.
An action mainly composed of fast decisions appears as a fast
or impulsive action, and an action mainly composed of slow
decisions appears as a slow or reflective action.

From another point of view, a fast decision shows passive and
reactive behavior against the stimulus, such as prompt decision as
to whether or not to eat when bait appears. On the other hand, in
a slow decision, such as when a stimulus that is not directly related
to bait has appeared, shows a proactive behavior that looks ahead
toward an intended goal.

Goal-Directed Behavior Incorporating a
General-Purpose Computer Like Function
Although there are various ways to perform goal-directed behav-
ior, the main aim of the proposed extended-system was “to realize
advanced adaptation at a relative low cost by sacrificing response
speed.” We assumed that it is important to realize goal-directed
behavior through a combination of common or general-purpose
circuits together with long-term memory as designed in the early
computer EDVAC (von Neumann, 1945). We predict that a con-
scious autonomously adaptive system that achieve goals set by
itself will become a powerful control system for the humanoid
robots by incorporating a kind of von Neumann type computer
as extended functions.

CONCLUSION

We proposed a basic architecture of an autonomous adaptive
system with conscious-like function for a humanoid robot. We
think resembling the human brain at the level of the basic log-
ical structure, architecture, is a meaningful way of designing a
control system for a truly useful humanoid robot. Interaction or
communication between humans and humanoid robots will be
much easier if both sides shared the same behavior characteristics
based on the same architecture, such as consciousness or duality.
However, the proposal in this article currently remains at the
architecture design level, and verification through simulation is
still only partial. We plan to further refine the system configura-
tion with reference to the results of previous research byHaikonen
and Franklin et al., as well as new findings. Evaluation of the
dynamic characteristics of the system through simulation is also
planned.
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From Focused Thought to reveries: 
a Memory system for a conscious 
robot
Christian Balkenius1*, Trond A. Tjøstheim1, Birger Johansson1 and Peter Gärdenfors1,2

1 Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden, 2 University of Technology 
Sydney, Ultimo, NSW, Australia

We introduce a memory model for robots that can account for many aspects of an inner 
world, ranging from object permanence, episodic memory, and planning to imagination 
and reveries. It is modeled after neurophysiological data and includes parts of the cere-
bral cortex together with models of arousal systems that are relevant for consciousness. 
The three central components are an identification network, a localization network, and 
a working memory network. Attention serves as the interface between the inner and 
the external world. It directs the flow of information from sensory organs to memory, as 
well as controlling top-down influences on perception. It also compares external sensa-
tions to internal top-down expectations. The model is tested in a number of computer 
simulations that illustrate how it can operate as a component in various cognitive tasks 
including perception, the A-not-B test, delayed matching to sample, episodic recall, and 
vicarious trial and error.

Keywords: working memory, semantic memory, computational model, episodic memory, consciousness

1. inTrODUcTiOn

1.1. The inner World
Consciousness is not unitary but involves several kinds of components. The most fundamental 
component may be the emotional tone of the current state of the mind (Damasio and Marg, 1995). 
However, in this article, we will not consider emotions but focus on sensations that are the immedi-
ate sensory impressions, perceptions that are interpreted sensory impressions, and imaginations 
(or images) that are not directly governed by sensory impressions (Humphrey, 1992; Gärdenfors, 
2003). After emotions, this is presumably the evolutionary order in which the different functions 
appear. Even for simple organisms, the sensory organs generate sensations. Perceptions require 
more advanced cognitive processing. The main function of perceptions is to provide information 
about the animal’s environment. Imaginations also require that sensations can be suppressed. The 
planning behavior of mammals and birds suggests that they have imaginations that concern entities 
not currently present in the environment.

On the first level, consciousness contains sensations. Our subjective world of experiences is full 
of them: tastes, smells, colors, itches, pains, sensations of cold, sounds, and so on. This is what 
philosophers of mind call qualia.

On the second level, an organism that in addition to bodily sensations is capable of representing 
what is happening at a distance in space or in time will be better prepared to act and thus improve 
its chances of survival. Several processes in the brain add new information to what is given by 
the sensations. This holds especially for the visual modality. For example, an object is perceived to 
have contours, but in the light that is received by the retina, there is nothing corresponding to such 
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structures—this information is constructed by the visual process. 
By filling in extra information, perceptions help us choose more 
accurate actions.

On the third level, that of imaginations, sensory input is not 
used to trigger the filling-in processes, but they are initiated by 
inner mechanisms. An organism with imaginations can generate 
a prediction of the consequences of a particular action. Such 
simulations constitute the core of planning processes. The mecha-
nisms involved in performing an action are the same as those in 
imagining a performance.

Imagining an action presupposes that the current sensations 
can be blocked, lest they conflict with the imagination. Glenberg 
(1997) writes that imaginations put reality in quarantine. The 
blocking is part of the executive functions mediated by the frontal 
lobes of the cortex. Glenberg (1997) distinguishes between “auto-
matic” and “effortful” memory. The automatic memory is used to 
turn sensations into perceptions. For example, finding your way 
at home in the dark involves blending your limited sensations 
with your memories.

The effortful memory is used to create imaginations. What is 
called remembering is a special kind of image that is judged to 
correspond to an actual event. Effortful memory is also necessary 
for fantasies: a sphinx cannot be imagined unless you have previ-
ous memories of lions and humans.

Perceptions and imaginations taken together generate the 
“inner world” of an organism. Such an inner world is valuable 
from an evolutionary perspective. Craik (1967) writes: “If the 
organism carries a ‘small-scale model’ of external reality and 
of its own possible actions within its head, it is able to try out 
various alternatives, conclude which are the best of them, react to 
future situations before they arise, utilize the knowledge of past 
events in dealing with the present and future, and in every way 
to react on a much fuller, safer and more competent manner to 
the emergencies which face it.” For an organism with an inner 
world, actions are generated from a represented goal, rather than 
directly from the sensations (Jeannerod, 1994). This means that 
an organism that has imaginations has large advantages to one 
who must solve a problem by trial and error that can both be 
very inefficient and lead to dangerous situations. The inner world 
makes is possible for the organism to simulate different actions 
and evaluate their effects. Such simulations allow it to select the 
most appropriate action. Early evidence for such a process was 
presented by Tolman (1948), who showed that the searching 
behavior of rats in mazes is best explained by assuming that they 
have a “spatial map” as part of their imaginations.

An inner world is a sine qua non for consciousness. In this 
article, we will use two memory tests from research on infants 
as minimal criteria for deciding whether a system has an inner 
world: (1) exhibiting object permanence and (2) passing the 
“A-not-B” test (Piaget, 1954).

A child who exhibits object permanence understands that 
objects continue to exist even when they are not directly perceived. 
Piaget (1954) studied this by observing infants’ reaction to when 
a favorite object was hidden, say, under a pillow. According to 
him, object permanence develops between 4 and 8 months of age, 
but some researchers claim that it may develop earlier (Bower, 
1974). Without object permanence an infant would not be able 

to identify an object or a person over time. It is considered to be a 
method for evaluating working memory in young infants.

In an A-not-B test, a toy is hidden under box A that is within 
the reach of an infant. The infant searches for the toy under box A 
and finds the toy. The hiding is then repeated several times. Then, 
in the test, the toy is hidden under box B that also is within the 
infant’s reach. Infants between 7 and 10 months typically make a 
perseveration error, looking under box A even though they saw 
the toy being hidden under box B. This behavior indicates that 
the infants have limited object permanence. When infants are 
12 months or older, they normally do not make this error.

In this article, we present a novel memory system that supports 
the minimum operations for a conscious robot with the proper-
ties described earlier. The main function of this memory system is 
to move some cognitive operations into an inner world, and more 
importantly, to allow the inner world of the cognitive system to 
coevolve with the external world in such a way that it can gener-
ate expectations as those involved in object permanence and the 
A-no-B test. These expectations can be used in decision-making, 
to detect changes in the external world, and to direct attention. 
Furthermore, by allowing the inner world to become decoupled 
from external input, it can produce chains of “thoughts” based 
on semantic and episodic relations. Such chains can range from 
replay of previous episodes to novel combinations of previous 
experiences. In machines, an inner world in general and object 
permanence in particular promises to enable more robust goal 
directed action, visual search, and even planning.

We take a developmental robotics approach (Asada et  al., 
2009), and first want to model memory processes of the young 
infant, and later approach more complex abilities. Our goal here is 
to show how the proposed memory model supports many cogni-
tive functions that are central to a conscious intelligent robot and 
to suggest that the model could form an important component 
of a larger cognitive architecture that will be tested in a robot in 
the future.

1.2. Models of Memory
One of the most canonical models of associative memory is the 
Hopfield network (Hopfield, 1982, 1984). The Hopfield network 
consists of a set of nodes connected by associations of varying 
strengths that store a set of patterns. The network operates as 
a content addressable memory where an incomplete activation 
pattern over the nodes will recall a complete stored pattern. An 
interesting aspect of the network is that it is possible to define 
an energy function that described every state of the network. It 
can be shown that the network changes its state in such a way 
that it decreases the energy of the whole system until it ends up 
in a local energy minimum. The minima of the energy function 
correspond to the stored memories. These states are attractors 
for the system in the sense that any initial state will move toward 
one these states. These types of networks lend themselves to 
model both perception and semantic memory but can also be 
extended to handle episodic associations by introducing delays 
on associations (Sompolinsky and Kanter, 1986). These proper-
ties are central to the model that we develop below and are used 
to process both semantic and episodic memories and to form 
associations that binds stimuli to places.
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FigUre 1 | Overview of the memory model. The memory model consist of 
three main parts: the identification network (WHAT), the localization network 
(WHERE), and a prefrontal working memory network (WORKING MEMORY). 
Each network is modeled as a recurrent neuronal network with similar design 
but with slightly different dynamics. In addition to internal recurrent 
connections, there are also temporal associations that can read out 
sequences of states in memory. The identification and localization networks 
also include an attention component that detects novel external stimuli and 
compares expected to actual inputs to potentially generate surprise signals. 
The identification network communicates with value system (VALUE). All 
processing is under the influence of a gain modulation system (GAIN) that 
controls the randomness of the state transitions in memory.
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Cognitive operations also require working memory mecha-
nisms and many computational models have been proposed. 
They emphasize different aspects of the working memory system, 
such as spatial map formation (Blum and Abbott, 1996), serial 
order recall (Page and Norris, 1998; Burgess and Hitch, 1999; 
Botvinick and Plaut, 2006), perseveration and distractibility 
(Kaplan et al., 2006), gating, action selection, and reinforcement 
learning (Ponzi, 2008), or sequence generation (Verduzco-Flores 
et al., 2012). One early computational model of working memory 
was proposed by O’Reilly et  al. (1999). This model includes a 
prefrontal system that maintains contextual information that is 
used to bias different processes in the rest of the model. This is 
combined with a fast learning model of the hippocampus. Similar 
models were also described by Cohen et al. (1990) and Miller and 
Cohen (2001).

Focusing on the control aspect of working memory, Sylvester 
et  al. (2013) describe a working memory system that controls 
the flow of information by opening and closing a network of 
gates. This system was used to do working memory cycling and 
comparison and was structured to adequately respond to n-back 
type tasks. Building on the gate paradigm, Sylvester and Reggia 
(2016) showed how a visual input could be associated with a 
location in the visual field to perform a card matching task. Both 
these systems rely on an instruction sequence memory (ISM) 
that can be programmed with sequences of gate configuration 
so as to respond adequately to the task at hand. The ISM consists 
of a Hopfield network (Hopfield, 1982) that can store attractor 
sequences by a mechanism of Hebbian learning (Hebb, 1949).

Moving away from cognitive and brain inspired models, more 
abstract neural network models have also begun to incorporate 
association mechanisms. For example, there has been a growing 
interest in adding external memory systems to deep-learning 
networks. In conventional deep-learning models, the memory of 
the network is stored implicitly in the entire network, in the form 
of unit weights. Hence, it is hard to store particular associations 
in such structures. This has prompted research into architectures 
that add external memory modules, allowing activation patterns 
to be stored alongside other data, such as labels, words, or sounds.

Most such memory modules, like the neural Turing machine 
(Graves et  al., 2014) and the differentiable neural computer 
(Graves et  al., 2016), evolvable neural Turing machine (Lüders 
et al., 2017; Parisotto and Salakhutdinov, 2017), have a form of 
key—value mechanism where the key is typically the output from 
another network structure like a convolutional or recurrent net. 
Depending on the sophistication, such memory modules can 
update based on evidence, learn ordering patterns, or supply 
answers to queries (Weston et al., 2014; Chen et al., 2015).

The memory system we propose here shares some properties 
with these models but is different in that it explicitly aims at 
roughly reproducing the properties of specific brain regions.

2. The MeMOrY sYsTeM

This section describes the main components of the memory 
system and their functions. The model includes three interact-
ing neural networks that roughly correspond to the ventral, 
dorsal, and prefrontal areas of the cortex (Figure  1). First, an 

identification network transforms sensations into perceptions; 
second, a localization network codes the spatial location of an 
object; and, third, a working memory network retains recently 
activated patterns over time.

2.1. identification network
The first component is the identification network that learns dif-
ferent stimuli as collection of stimulus properties. It corresponds 
to the WHAT system of the ventral cortex as proposed by Mishkin 
et  al. (1983) and Goodale and Milner (1992). The part of this 
system that is included here can be sees as the highest level in a 
sensory processing hierarchy generating perceptions. It operates 
as a content addressable memory and recalls complete patterns 
based on partial inputs. We also assume that it generates top-
down influence on sensory processing and interacts with value 
systems (Balkenius et al., 2009), but we do not model that here.

The identification, or WHAT, system is implemented as a fully 
connected network (see Appendix in Supplementary Material). 
This allows the network to settle into attractors that represent 
different memory states. In addition to the usual dynamics, we 
also include a mode of synaptic depression (Abbott et al., 1997; 
Tsodyks et al., 1998). This leads to a latching dynamics where the 
network can autonomously transition between different attrac-
tors (Lerner et  al., 2010, 2012, 2014; Aguilar et  al., 2017). This 
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can be seen as free associations between the stored memory states 
(Russo et al., 2008; Akrami et al., 2012; Russo and Treves, 2012).

Furthermore, the identification network includes a compara-
tor that compares the sensory input to the corresponding attrac-
tor state (Balkenius and Morén, 2000). Any stimulus or attractor 
component that differs contributes both to a total measure of 
surprise and to a feature-specific surprise that includes the parts 
of the sensory input that does not match the attractor state.

The current memory state is assumed to tune the attention 
system toward stimuli that match the state. For example, a state 
coding for the color red would tune the attention system to look 
for red objects in a way akin to the feature integration theory 
of attention (Treisman and Gelade, 1980). The identification 
network is thus assumed both to influence attention through 
top-down expectations, and to be influenced by bottom-up 
perceptual processes.

2.2. localization network
The second component is the localization network, or WHERE 
system. It parallels the functions of the parietal cortex (Andersen 
et al., 1985) and the hippocampus (Smith and Milner, 1981). Its 
role is to maintain a specific code for each possible location in the 
environment. This code is assumed to be activated when we look 
at a particular location.

It is similar to the identification network except that its activ-
ity is constrained by a winner-take-all-rule that implements the 
constraint that only one place is actively represented at each 
time. Associations between the identification and localization 
components allow the memory system to store bindings between 
places and objects. By associating each perceived object with its 
own individual location, the memory system avoids the binding 
problem where properties of different stimuli are mixed up in the 
network (ref). Another role of the localization network is that 
it increases the storage capacity of the identification component 
and avoids spurious attractors. The reason for this is that the 
localization codes are orthogonal for each location.

Like the identification network, this part of the memory model 
participates in both bottom-up and top-down processing. When 
we attend a particular location, the code for that location is acti-
vated in the localization network. Similarly, when a location code 
is activated by internal processes, it will influence attention and 
make us more likely to look at the coded location.

2.3. Working Memory network
The final component is a “prefrontal” working memory (Fuster, 
2009). The function of this network is to allow memories “stored” 
in working memory to be more easily recalled than other memo-
ries. According to our model, the actual working memories are 
not stored in the prefrontal system. Instead, the working memory 
function is the result of the interaction between prefrontal and 
sensory cortical areas. The working memory activation thus does 
not contain any sensory attributes although it is able to recall such 
attributes in the identification and localization networks (Lara 
and Wallis, 2015).

To allow the limited working memory to store any possible 
object–place binding, the nodes of this network are recruited 
when needed. The process is similar to that of an ART network 

(Grossberg, 1987), but less elaborate. The recruited nodes main-
tain an active state as long as the working memory is active. It is 
well known that prefrontal working memory cells operate in this 
way and allows for persistent activation during a memory period 
(Wang, 2001; Curtis and D’Esposito, 2003).

Each active working memory node can potentially influence 
the states of the identification and localization networks. Which 
node is allowed to do this depends on both the similarity of its 
learned input pattern and the current state of the complete system 
as well as the activity level of the node itself. The result of this 
mechanism is that a partial cue will recall the most recent state 
that is similar to the input.

The influence from the working memory network on the rest 
of the system involves both excitation and inhibition and can be 
likened to the inhibitory control exhibited by the prefrontal cortex 
(Fuster, 2009). Once a working memory node has been selected, 
it will promote the coding of its stored memory and inhibit other 
stimulus components (Desimone and Duncan, 1995). This can be 
seen as a top-down modulation of the states in the identification 
and localization networks (Gazzaley and Nobre, 2012). It can 
also indirectly control spatial attention through the localization 
network (Corbetta and Shulman, 2002).

2.4. Predictive associations
In addition to the associations between the three networks, the 
memory system also contains predictive associations that work 
over time to predict the next state based on the current one. 
When allowed to run freely, these temporal associations will 
make the complete system transition between stable attractors 
over time in a way akin to daydreaming. When there is no input 
to the memory system, it will instead recall and internally play 
previously experienced sequences. As we will show below, this 
mechanism can be put to good use in choosing between different 
actions depending on their expected outcome. The predictive 
associations are learned in the same way as other associations 
except that there needs to be a delay between the activation of 
the two nodes that will be associated together. This will make 
the network to learn an association to the current state from a 
previous state of the network. The delay during learning is mir-
rored in a delay in the association that will be used to read out the 
prediction in the future.

2.5. Modes of Operation and 
Metaparameters
There are several parameters that can influence the operation 
of the memory system. The first is the level of noise. Memory 
transitions are highly dependent on the noise level and with suf-
ficient noise; the state of the memory system will jump randomly 
between the different attractors. A moderate amount of noise 
allows the memory state to take new directions without being 
completely random, and a lower level makes the memory system 
more likely to stay in the same state for a longer time or to follow 
precise episodic memories.

In the brain, the locus coeruleus is believed to adjust the 
sensitivity to noise. This is a general arousal system and the main 
source of noradrenergic input to most of the brain. It has been 
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FigUre 2 | The Kanizsa triangle.

FigUre 3 | Pattern completion in the memory system. The memory has 
learned three patterns, L (red), X (green), and + (yellow). The partial activation 
of the L-pattern will make the memory system recall the complete pattern. 
The graph at the top right shows how the energy of the memory state 
decreases as the pattern in recalled. The graph below shows the memory 
state projected on a two-dimensional space defined by the first two principal 
components (PC1 and PC2) of the stored memory patterns. The graph 
shows the transition between an initial inactive state (white) and the recalled 
state (red). The numbers and arrow indicate the sequence of the different 
transitions.
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suggested that the locus coeruleus, instead of changing the noise 
level, changes the response to noise by modulating the gain of 
cells involved in decision processes (Chance et al., 2002; Aston-
Jones and Cohen, 2005; Donner and Nieuwenhuis, 2013; Eldar 
et al., 2013). Doya (2002) proposed that this should be seen as a 
metaparameter that allows the randomness of the processing to 
be controlled.

The second main parameter is the relative influence of the 
external input and internal expectations in controlling the 
memory state. The system can run in either in bottom-up mode 
where the internal state is controlled by external stimuli or in top-
down mode where the sequence of memory states is internally 
produced. It is also possible to combine bottom-up and top-down 
processing. This allows the internal expectations to be compared 
with external stimuli and to make the system surprised when 
expectations are not met. Such a comparison also has an addi-
tional role. When there is a sufficiently large mismatch between 
the sensory input and the internal state, the memory system will 
be reset to allow the novel stimulus to quickly be coded in the 
different memory networks.

In the following sections, we apply the general memory system 
to a number of tasks and show how it can form the basis for many 
fundamental cognitive tasks. In these simulations below, the 
metaparameters were set heuristically to allow the model to show 
the desired properties in each case. When the memory system is 
used as a part in a complete architecture, these parameters are 
assumed to be learned for each particular task.

3. FrOM sensaTiOn TO PercePTiOn

The role of perception can be seen when considering the well-
known Kanizsa triangle (Kanizsa, 1976) (Figure 2). Our percep-
tions tell us that a white triangle lies on top of three black circles. 
Yet in the figure, there are no lines marking off the sides of the 
triangle from the white surroundings. The lines are a construction 
of our brains. There is a mechanism that simulates the existence 
of lines completing the segments of the circles.

Examples like this show that we have plenty of processes 
that complement the signals provided by the senses. Such com-
plementations create the representations with which memory 
works—the perceptions, since what we remember is not only that 

which is presented by our sensory receptors but also that which 
is recreated, i.e., represented, by the filling-in processes. Here, we 
only consider a network with identical nodes and connections, 
but the reasoning is equally valid for more complex network. 
For example, Månsson (2006) developed a complex network that 
fills in contours in the Kanizsa triangle using a range of neuron 
models with different properties.

In Figure 3, we illustrate how the pattern completion mecha-
nism operates in the memory system. The system has learned 
three patterns, one of which is the letter L. When parts of the L are 
activated, the identification network will fill in the missing parts 
of it. In the figure, there are three stored patterns represented by 
different colors.

4. OBJecT PerManence

A cat chasing a mouse that runs in behind a curtain can predict 
that it will come out the other side. So the cat can draw conclu-
sions about the mouse even when it is receiving no direct signals 
from its senses. Such behavior presumes the cognitive ability 
called object permanence by Piaget (1954). This implies that 
the cat retains some kind of representation of the mouse even 
when its sensory impressions of the mouse are gone. The cat has 
expectations concerning the mouse.

Various studies of animals show that all mammals, birds, and 
octopuses possess object permanence. These organisms thus 
enjoy one more way to build in knowledge about the future in 
their consciousness. Object permanence is not innate, but it must 
be learned.

To test the memory model for its capacity to handle object 
permanence, we simulated two types of memory tasks. In both 
cases, the system is first presented with three objects X, Y, and Z. 

119

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


FigUre 4 | Simulation of place recall. Left: A scene with three objects X, Y, and Z at three places A, B, and C. The memory system was initially trained on these 
three objects. Right: The graph at the top shows the activation of the localization network when each object is used as input. Finally, an input pattern that consists of 
the overlapping parts of X and Y is used as input. This stimulus is equally similar to X and Y and thus ambiguous. The result is that the most recently attended place 
with an object similar to the input is recalled, that is, B. At the same time, the activity pattern in the identification system restores the complete pattern for Y. The 
graph at the bottom left shows transitions through the memory space. The image shows the memory state over time plotted in a two-dimensional space generated 
by the first two principal components (PC1 and PC2) of the attractor states. The circles represent the memories of X, Y, and Z, and the line shows how the memory 
state transitions between the memories as a response to the different input and the numbers show the order of the different transitions. The center of the image 
where all lines meet corresponds to the empty memory state after reset.
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Each at its own location A, B, and C. In the first simulation, we 
tested if the memory system could recall the location of objects 
that it had previously seen (Figure  4). The memory was first 
cued with object X. This makes the memory state transition to 
the attractor for X. At the same time, the localization part of the 
memory system activates the location A that is associated with 
X. The locations are recalled for object Y and Z as well. Finally, 
we tested what is the result if we cue the memory with a stimulus 
that is similar to both X and Y. Here, we used an input pattern 
that contained only components that were shared by both objects. 
As can be seen in Figure 4, the memory state transitions to the 
attractor for object Y. The reason for this is that Y is more strongly 
coded in the working memory since it was seen more recently 
than X. In addition to showing the role of the working memory, 
this is also an example of pattern completion. The initial pattern is 
similar to both X and Y, and the memory state first moves toward 
a place between X and Y, before turning toward Y as more proper-
ties of Y are filled in.

In the second simulation, we tested whether the memory 
system can recall objects by being cued with locations. The 
results of this simulation are shown in Figure 5. When a loca-
tion is cued, the memory state transitions to the attractor for the 
corresponding object illustrating that the memory system has 
formed expectations of which object is where.

The simulations show that the memory system can learn 
what object to expect at a particular location. Together with the 
comparator that compares expected and actual input, this allows 

the system to become surprised if expectations are not met (cf. 
Balkenius and Morén, 2000). It can also recall where it has seen 
an object. Such information can be used to determine where to 
search for an object and to direct the gaze while looking for it. 
The memory system thus has the essential properties needed for 
object permanence.

5. a-nOT-B

Another way to address object permanence is to run the 
A-not-B experiment on the memory model. To test if the 
memory system would make the A-nor-B error, we simulated 
the A-not-B task under two conditions. In the first, the out-
put gain of the working memory system was low to simulate 
a brain at an earlier stage of development. In the second, the 
working memory gain was set at full strength. The system was 
first trained by repeatedly showing object X at location A. In 
the second step, we simulated moving object X to location B. 
This results in two stored memories in long-term memory, a 
stronger one that associates X with location A and a weaker one 
that associates X with location B.

To test the system, we activate the pattern for X in the WHAT 
system and allow the system to activate a location code in 
memory. When the working memory is turned off, the stronger 
association will win, and the system will recall location A 
(Figure 6). However, when the working memory system is turned 
on, the result is different. In this case, the working memory will 
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FigUre 5 | Simulation of the object recall for the scene in Figure 4. The memory system was first shown three combinations of objects and place: AX, BY, and CZ. 
Next it is cued with each of the locations A, B, and C. The graph at the top shows the activation of each place code over time. The graph at the bottom shows the 
path through the memory space as each location is cued. The state is initially wandering, which results in transitions 1 and 2 just before the system is cued with A.

FigUre 6 | Simulation of the A-not-B task. Left—The object X and the two boxes A and B. Right—The graphs show the activation of the place code with low or 
high working memory gain for place A (red) and B (green), respectively, as response to different inputs. X represents the object stimulus, and A and B represent the 
two boxes. The final input X corresponds to the questions “Where is X?” With an undeveloped prefrontal cortex (low working memory gain) the model replies A. With 
a developed prefrontal cortex (high working memory gain), the model replies B.
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remember each perceived stimulus. Every time a new stimulus 
is perceived, a new node in working memory will be activated 
while the activity in the remaining working memory nodes will 
decay slightly. As a consequence, a number of stimuli can be held 
in working memory at the same time. When a pattern is activated 
in the WHAT or WHERE components, the working memory 
cooperates to fill in missing information. Here, the perception of 
the stimulus X will recall the most recent activation containing 
X and read out its location B, thus avoiding the A-not-B error 
(Figure 6).

The performance of the models can be related to the serial 
position effect (Murdock, 1962). The initial error can be seen 
as a primacy effect, where the initial location of the object is 
stronger in memory as a result of multiple presentations. The 
avoidance of the error can be seen as the results of a recency 
effect, where the most recent location is more easily recalled. 
This view is in line with the model by Munakata (1998) that 
suggests that the A-not-B error is a result of competition 
between latent and active memory traces. However, the 
behavior of the model is different from the usual recency effect 
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FigUre 7 | Simulation of delayed matching to sample (DMTS). In the top 
graph, the stimulus X is first shown as a sample stimulus and is subsequently 
followed by X again as comparison stimulus. There is no surprise signal the 
second time X is shown, indicating that the model recalls that it has seen this 
stimulus before. In the bottom graph, the sample stimulus X is followed by 
comparison stimulus Y instead. In this case, there is a surprise signal for the 
non-matching stimulus. The energy function is used to show the timing of the 
stimuli.
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since it depends on a working memory component and not on 
short-term memory.

Our results fit well with findings suggesting that working 
memory is a driving force in cognitive development (Kail, 2007). 
An alternative theory of the A-not-B error is that it depends on 
the strength of the initially reinforced response to search at A 
(Diamond, 1998). We do not exclude that such a factor could also 
be involved, but our simulation shows that a working memory 
explanation may be sufficient. However, the working memory 
here influences the rest of the system by inhibiting the incorrect 
location, and similar mechanisms could presumably be used to 
inhibit an incorrect response in a similar way to an incorrect 
location.

6. DelaYeD MaTching TO saMPle

The delayed matching to sample task (DMTS) is a variant of more 
general delayed response tasks (Rodriguez and Paule, 2009). Such 
tasks involve the presentation of stimuli, followed by a delay where 
no stimuli are given. The original stimulus is then presented along 
with one or several choice options, and the subject is required to 
choose which matches the original.

The task can be varied in difficulty by changing the delay 
time, or by altering the number of options to choose among dur-
ing the response. Distractors may also be introduced to affect 
subjects’ ability to maintain attention and to impair working 
memory capacity (Rodriguez and Paule, 2009). Lesion studies 
in monkeys (Gaffan and Weiskrantz, 1980) indicate that the 
prefrontal and inferior temporal cortices are involved in DMTS 
tasks. Specifically, performance for tasks with visual stimuli is 
impaired after a higher visual area of the inferior temporal cortex 
has been damaged. Lesioning the prefrontal cortex appears to 
reduce the delay after which a correct response can be made but 
does not impair successful completion as such (Mishkin and 
Manning, 1978).

The configuration of the visual stimuli may take differ-
ent forms, depending on which specific aspect of memory is 
under scrutiny. Sawaguchi and Yamane (1999) used a white 
square presented at one of four peripheral positions, placed 
equidistantly about a central focus point to study spatial 
memory. Tanji and Hoshi (2001) used a more complex setup 
with three cues placed in a pyramid pattern, each showing 
either a circular or triangular shape. This was used to study 
behavioral planning based on shape or location matching. 
Other variations of the DMTS task have been used to study 
color matching (Mikami and Kubota, 1980; Giurfa et al., 2001), 
movement matching (Ferrera et  al., 1994), and horizontal 
vs. vertical orientation matching (Giurfa et  al., 2001). The 
simplicity of the task makes it suitable for studying memory 
effects across various species, including humans (see, e.g., 
Daniel et al. (2016) for a review).

Using our memory model, we simulated a delayed matching-
to-sample task (Figure  7). The system is first presented with a 
sample stimulus X that it will store in working memory. After 
a delay period, a comparison stimulus, X or Y, is presented. For 
each stimulus, the working memory network will read out the 
remembered stimulus and compute the match to each of the 

comparison stimuli. We assume that there exists a mechanism 
external to the memory system that selects the stimulus that 
generates the least surprise.

Our simulation shows that the memory system has the 
necessary memory functions for a delayed matching-to-sample 
response.

7. DaYDreaMing anD ePisODic 
recall

Two possible mechanisms are involved in producing transitions 
between attractors. The first is the noise in the system that can 
kick the network out of an attractor if it is strong enough. The 
second mechanism is synaptic depression that weakens synapses 
that are involved in maintaining the current attractor. This has 
the effect of eventually making the state wander away from the 
attractor. A possible interpretation is that this is what occurs 
when the attentional system is not engaged, which makes the 
memory system enter a state of daydreaming where it can wander 
freely. The mind wandering produced by the model does not have 
any function but is instead a natural consequence of the function 
of the memory system. This is in line with the view presented by 
Mason et al. (2007) who suggest that the mind wanders “simply 
because it can.”

Herrmann et  al. (1993) distinguish between semantic and 
episodic transitions in neural networks. Semantic transitions 
occur between states that are semantically related and are caused 
by synaptic depression that moves the state away from one attrac-
tor in favor of another one with overlapping activation pattern. 
Episodic transitions, on the other hand, are caused by predictive 
temporal associations (Sompolinsky and Kanter, 1986).
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A B C

FigUre 9 | Simulation of episodic recall. The three graphs show transitions between the attractors of the network. (a) Recall of the episode X, Y, Z cued by an 
input X. (B) Recall of the episode P, Q, R cued by P. (c) A higher noise level produces a novel imagined episode that is a combination of two experienced episodes: 
X, Y, Z, Q, R.

A B C

FigUre 8 | Simulation of mind wandering using semantic associations. (a) With low noise, the system will transition between semantically related states as a result 
of synaptic depression. (B) With a higher noise level, the memory system will transition less regularly and can potentially end up in semantically unrelated states. (c) 
With low synaptic depression, the system will move away from an attractor but return back again most of the time.
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Figure  8 shows a simulation of semantic associations in 
the memory system. The system was first trained with three 
patterns X, Y, and Z where X and Y share some features, Y 
and Z share some other features, but X and Z do not share 
any features. With low noise, the system transitions randomly 
between X and Y, and between Y and Z, but not between X and 
Z. With a higher level of noise, the transitions occur between 
all states. Finally, with no noise, the system returns to the 
same state after synaptic depression. Although we want to 
like this wandering to daydreaming, it is obviously limited 
to combinations of states that the network has previously 
experienced.

Figure 9 shows a simulation of episodic recall in the memory 
system. The system was first trained with two sequences of stim-
uli: X, Y, Z and P, Q, R. When presented with X as an input, the 
memory system will read out the sequence X, Y, Z (Figure 9A). 
Similarly, for an input P, the sequence P, Q, R will be produced. 
When the noise level is increased, the episodic recall will 
sometimes transition from Z to Q, producing a novel sequence 
X, Y, Z, Q, R (Figure 9B). This shows how the memory system 
can combine two episodes into a novel imagined episode. The 
evolutionary value of such reveries is that they allow the memory 
system to generate new combinations of memories that can form 
the kernels for new plans. Some of these plans can be tried out 
at later occasions. Hence, the same mechanism that produces 
daydreaming can be seen as an element in a generate-and-test 
procedure.

8. VicariOUs Trial anD errOr

If an agent has an internal model of the world, it can make 
simulations of the consequences of actions (Craik, 1967). Redish 
(2016) proposes that animals internally simulates the outcomes of 
different choices before making the choice in the external world. 
As noticed by Muenzinger (1938) and Tolman (1939), rats look 
back and forth at different alternatives at a choice point. A rat 
that has to choose whether to go left or right in a maze can use its 
episodic memory to simulate selecting the left or the right path 
(Figure 10). The episodic memory recall described earlier is ide-
ally suited for this process. By cueing the memory system with the 
stimulus A to the right, the sequence of moving through A, B, and 
C will be simulated internally. When looking right to see X, the 
sequence X, Y, Z, G will be produced instead. Since this sequence 
leads to the goal, the rat can now chose to go right.

Figure 10 shows a simulation of vicarious trail-and-error in a 
simple maze. The memory system has first experienced moving 
through the maze along two different routes. The first consists of 
locations A, B, and C which is a dead end, and the other consists 
of the sequence X, Y, Z, which finally leads to the goal G. At 
a choice point in a maze, the robot can look left or right, and 
the memory system is used to imagine the result of select one 
of the two possible paths. Looking at A, which will read out the 
sequence A, B, C that does not lead to a goal, and looking at the 
second alternative X, will read out the sequence X, Y, Z, G, which 
ends with the goal. This mechanism could be used by a decision 
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FigUre 10 | Vicarious trial and error. The memory system is assumed to have learned the sequence of places that are experienced while traveling through the 
maze. At the choice point, the memory system is used replay the result of choosing A or X. When looking left toward A, the memory cued with A and will start to 
replay A, B, C. When looking right, the memory system is cued with X which will replay the sequence X, Y, Z, G, which leads to the goal. The graph in the top right 
shows the activation of the place codes on the localization network. Note that the activation of A and X is slower as they are cued by an external stimulus. The 
graph in the bottom right shows the transitions through the identification network. The state starts at the center as A or X is received and moves through the states 
for the different places in the maze. The arrows show the direction of the memory transitions.
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mechanism that chooses between alternative actions based on 
their expected consequences.

Redish (2016) suggests that this type of mechanism is respon-
sible, not only for spatial navigation but also for deliberative 
processes in general and that the internal schema used to simulate 
the world is what (Tolman, 1948) would call a cognitive map. This 
view of the cognitive map is in line with Tolman’s original view 
where the cognitive map did not have to be spatial but could be 
used for any kind of problem solving. Our proposed memory 
model can thus operate as a cognitive map that supports elemen-
tary planning operations.

9. DiscUssiOn

We have introduced a memory model for robots that can account 
for many aspects of the presence of an inner world, ranging from 
object permanence, episodic memory, and planning to imagina-
tion and reveries. It is modeled after neurophysiological data and 
includes many parts of the cerebral cortex together with a model 
of the arousal system. It consists of three main components, an 
identification network, a localization network, and a working 
memory network. An important aspect of the model is that the 
mechanisms that fill in sensations to generate perceptions can be 
detached from sensory input and run in isolation (Gärdenfors, 
2003). This allows for planning mechanisms and for daydreaming 
that can serve as an investigation of a space of possibilities as a 
preparation for generating plans.

We propose that a robot equipped with this memory system 
together with mechanisms for more advanced sensory process-
ing and action selection would have the required cognitive 
equipment to produce a basic form of consciousness—at least 
to the extent that it can be tested in behavioral experiments. A 
fundamental aspect of this model is that consciousness in not 

something that has to be added to the cognitive system. Instead, 
it is something that occurs naturally once a memory system is able 
to fill in sensory information and produce memory transitions 
over time. This will create an inner world that is used both to 
interpret external input and to support thoughts disconnected 
from the present situation.

The memory system can operate either in bottom-up mode, 
where external input directly controls the internal state, or in 
top-down mode, where previously experienced episodes control 
the progression of internal states. The internal flow of thoughts is 
modeled as transitions between memory states. The randomness 
of these transitions depends on the input from the locus coeruleus. 
In one extreme, the memory state is stuck in the current attractor, 
but when the sensitivity to noise increases, the memory state will 
start to transition to semantically similar states—also supported 
by synaptic depression. At the same time, episodic associations 
between states will make the memory replay sequences of 
states that it has previously experienced. When the randomness 
increases further, the memory state can make transitions between 
increasingly unrelated states. The locus coeruleus input thus acts 
as reins for focusing thought and thus preventing the system from 
ending up in galloping reveries.

It is an open question how the randomness of the memory 
processes should be controlled to optimally utilize the memory 
system for different tasks. Here, we did not include other parts 
of a complete system that could operate on the memory system. 
One interesting addition would be to add a reinforcement 
learning system that could learn to control the level of noise 
in the memory system to control transitions between different 
attractors (Lerner and Shriki, 2014). Such a reinforcement 
learning system could potentially control the various metapa-
rameters to adapt the memory processing to the task at hand 
(Doya, 2002).
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Another addition would be to allow a reinforcement learning 
system to control the different memory operations, in particular 
the storage and read out from working memory. In the current 
model, working memory is not controlled explicitly but stores 
every memory state as it occurs. From a developmental perspec-
tive, this is a reasonable approach before efficient utilization of 
working memory has been learned and constitutes a substrate for 
future learning of internal memory operations.

The memory system presented in this work can be contrasted 
with that described by Sylvester and Reggia (2016). The main 
difference between their work and ours is first the employment 
of gates, and second the inclusion of a discrete control module 
to sequentially set configurations of those gates. There is also 
a difference in the way the systems learn. Sylvester and Reggia 
(2016) explicitly program their system by imposing attractor 
states on a sequence memory part of the control module. By 
contrast, our system learns sequences of states from observation. 
Hence, Sylvester and Reggia (2016) can be likened to a system 
being taught by a teacher, while our system learns by discovery. 
Both systems utilize Hopfield networks for storing attractor states 
and employ forms of working memory. In our case, although the 
working memory does not store visual patterns as such, only 
associations between high-level sensory representations. The 
nature of those representations is arbitrary, but we chose to focus 
on object identity and location for this work. We do, however, 
acknowledge the utility of gating mechanisms for learning action 
sequences and plan to incorporate such mechanisms in future 
models.

Another important next step will be to test the model on a 
humanoid robot. We will use visual input from cameras that will 
be analyzed through a bidirectional deep-learning network before 
reaching the identification network described here. Similarly, the 
localization network will receive input that uses a population code 
for locations in three dimensions in several coordinate systems. 
A robotic implementation already exists with a minimal version 
of each of these components, but further development of the 
sensory processing is needed before the experiments simulated 
here can be tested in a robot in a natural environment.

When the internal processes meet the external input, the 
memory system is used to compare expectations against the 
external world to potentially produce surprise and control 
action selection. We did not include mechanisms for action 
selection here, but the output from the comparator of the atten-
tion system could easily be used for such selections. For exam-
ple, to learn delayed matching or non-matching to sample, an 

action selection system would only have to associate the output 
of the comparator with selecting to refraining from selecting 
a particular stimulus. Similarly, to choose the correct path 
through a maze, the mechanism for vicarious trial and error 
we demonstrated would need to be interfaced with an action 
selection mechanism that learns to evaluate alternatives and 
select the one that leads to the goal. Given that the memory 
system does most of the work, very little remains to be learned 
by an action selection system.

Attention plays a crucial role as the interface between the inner 
and the external world. It directs the flow of information from 
sensory organs to memory and in the other direction it is respon-
sible for the top-down influences on perception. The internal and 
external world can be seen as two dynamical systems that can be 
coupled or decoupled in different ways depending on the state 
of the organism and the task at hand. This allows the proposed 
model to bridge the gap between cognition as internal processing 
and situated cognition. We suggest that during evolution, as well 
as during the development of an organism, one finds a gradual 
change from acting in the external environment to operating in 
an internal world.

When the flow of thought through the inner world is cued by 
the immediate external stimuli, the memory system is used to 
evaluate the consequences of different available options. When 
allowed to flow freely, there need not be any relation between the 
train of thought and the current situation, but by changing the 
balance between bottom-up and top-down processing, the sys-
tem can quickly be dragged back to the present situation. On the 
other hand, when the bottom-up influence is low, the system will 
start to daydream and replay experienced episodes or producing 
novel never experienced episodes by combining memories in 
new ways. The new combinations can then be used as input to 
the planning mechanisms. The same mechanisms are thus used 
both for focused goal-directed thought and for daydreaming and 
reveries.
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Recently, there has been considerable interest and effort to the possibility to design

and implement conscious robots, i.e., the chance that robots may have subjective

experiences. Typical approaches as the global workspace, information integration,

enaction, cognitive mechanisms, embodiment, i.e., the Good Old-Fashioned Artificial

Consciousness, henceforth, GOFAC, share the same conceptual framework. In this

paper, we discuss GOFAC’s basic tenets and their implication for AI and Robotics.

In particular, we point out the intermediate level fallacy as the central issue affecting

GOFAC. Finally, we outline a possible alternative conceptual framework toward

robot consciousness.

Keywords: robot consciousness, machine consciousness, artificial consciousness, synthetic phenomenology,

robot self-awareness

INTRODUCTION

Consciousness exists: we are conscious, and it would be odd to negate this fact. Consciousness is a
part of our physical world, and then the processes at the basis of consciousness must be faced by
the laws of science governing our physical world.

The definition of consciousness is still an open question. Therefore, it would be problematic to
discuss about robot consciousness: in facts, Raoult and Yampolskiy (2015) reviewed 21 proposed
tests presented in the literature to assess consciousness in machines and robots. However, the
same situation holds for other complex concepts: notably, Legg and Hutter (2007) review more
than 70 existing different definitions of “intelligence.” The fact that there is no agreement on what
intelligence is does not refrain researchers to speaking about Artificial Intelligence.

In facts, consciousness is an important research topic in neuroscience: Dehaene (2014)
summarizes several years of studies in human consciousness; see also Tononi (2012) and Damasio
(2010), among others. Notably, neuroscientists working on consciousness take seriously into
account the possibility that, in the near future, robots may be conscious. During the Symposium
organized in 2001 by the Swartz Foundation on “Can a Machine Be Conscious,” the concluding
remarks of Christof Koch stated that:

“we know of no fundamental law or principle operating in this universe that forbids the existence of

subjective feelings in artifacts designed or evolved by humans.1”

To the best of our knowledge, this claim is valid still today.
Consciousness is part of our physical world, and then some of its aspects may be studied and

even replicated by using robots. On the one hand, the employment of robots as tools may help to

1http://www.theswartzfoundation.org/abstracts/2001_summary.asp
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understand biological consciousness better, and, on the other
hand, the processes at the basis of consciousness may be in some
sense crudely replicated to build better robots, as it happened,
e.g., for neural networks and artificial life systems. Anil Seth has
claimed that:

“Over the last two decades much has changed [. . . ]. Alongside

philosophical discourse a new science of consciousness has

taken shape which integrates experimental and theoretical work

cross many fields including neuroscience, psychology, cognitive

science, artificial intelligence, computer science, neurology, and

psychiatry.” (Seth, 2010, p. 1).

It is not a case that the late Nobel prize Gerald Edelman, a scholar
of the research on consciousness, employed robots to validate
parts of his theory of consciousness (Reeke et al., 1990; Edelman
et al., 1992). Koch and Tononi directly addressed the possibility
that artifacts may be conscious by taking into account constraints
and conditions according to the Integrated Information Theory
of consciousness (see below). Notably, Koch and Tononi (2008,
2017) explicitly discussed and proposed tests for consciousness
in the machines. Recently, Dehaene et al. (2017) summarized the
neuroscientific findings of interest for conscious machines. We
concur with their claim according to which the study of biological
consciousness may inspire novel machine architectures.

In this direction, the paper by Grossberg (2017) summarizes
years of works about brain resonances and proposes a set of
models, described by differential equations, that captures some
of the main aspects of consciousness. Important papers in this
line are due to Perlovsky (2006, 2016) where he claims that a
new “physics of mind” is needed that looks for the fundamental
laws of the material world, including sentience. The new physics
of mind should develop the mathematical theories that explain
the empirical evidence about sentience and that generate suitable
predictions to be verified by experiments.

Therefore, the problem of consciousness in robots and
artifacts is an accepted issue for researchers in neuroscience.

In the AI debate, the problem of machine consciousness
has been discussed by many scholars since the seminal paper
by McCarthy (2002), where he considered an extension of the
Situation Calculus to deal with some aspects of self-reflection to
make robot conscious of their mental states. On a similar line,
McDermott (2001) devoted his book on “Mind andMechanisms”
on the discussion of a computational theory of consciousness.

Many journals and conference papers discussed the possibility
of consciousness in machines and robots by proposing theories
and architectures. Holland (2003) and Chella and Manzotti
(2007) collected the initial attempts at robot consciousness. An
almost complete up to date review is due to Reggia (2013).
Scheutz (2014) reviewed and discussed the contact points
between machine consciousness and artificial emotions.

Among the essential works from AI scholars concerning
machine and robot consciousness, we mention, among others,
the architectures based on the global workspace model of
consciousness (Baars, 1997) as the LIDA architecture (Franklin,
2003; Franklin et al., 2014) and the cognitive architecture
proposed by Shanahan (2005, 2006). A model of conscious

experience related to learning and sensorimotor interaction in
an autonomous robot has been discussed by Kuipers (2008).
Notably, Bringsjord et al. (2015) recently implemented a
cognitive system based on higher-order logic running on the
NAO robot that passed human tests of self-consciousness.

Therefore, robot consciousness is an important research
field that benefits from the contributions of many scholars
from neuroscience, Artificial Intelligence, and robotics. The
general feeling is, as stated above, that understanding biological
consciousness may help to build better robots and, on the
other side, that the research on robot consciousness may help
understanding biological consciousness.

This paper aims to propose a critical review and analysis of
the literature related to robots and machine consciousness under
the light of what we named the “intermediate level fallacy.” In
facts, many theories of machine consciousness actually do not
directly address the problem of consciousness, but they discuss
some intermediate problem, then leaving aside the issue of robot
consciousness.

Then, the goal of the paper is not to discuss a specific
algorithm or software, but to help roboticists interested in robot
consciousness to build a mental map of the bibliography in the
field and to avoid quirks due to the intermediate level fallacy.

GOOD OLD FASHIONED MACHINE

CONSCIOUSNESS

As previously stated, in recent years the notion of machine
and robot consciousness gained momentum and attracted
considerable interest. Chella and Manzotti (2009) discussed
many problems arising in the assessment of consciousness in a
robot concerning the role of the body, the needs for the robot to
be “situated” in an environment, the cognitive capabilities of the
robot, the effective functions of emotions and so on.

The most challenging problem for robot consciousness is the
possibility that a robot may have real subjective experiences.
However, many approaches at the state of the art in robot
consciousness are biased by a set of premises that harnessed
research into what can be named as Good Old-Fashioned
Artificial Consciousness (GOFAC).

GOFAC suggests a physical world in which consciousness
appears as a result of a specific intermediate level. A theory based
on the idea that consciousness emerges from an intermediate
level should explain what this level is and why it produces
consciousness. However, the explanation is problematic because,
rather than explaining consciousness, the theory introduces a
new level as an intermediate entity, that is only apparently less
troublesome. In contrast, the intermediate level is explanatory
disruptive since it adds two new problems: the characteristics of
the new level and its relation to consciousness. This approach
can be named the “intermediate level fallacy” and it seems to be
attractive because the introduced level appears less intimidating
and more familiar than consciousness itself.

This paper aims to list some of the leading approaches to
robot consciousness under the light of the intermediate level
fallacy. While each method has its peculiar shortcomings, they
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share the standard pattern, i.e., the intermediate level fallacy,
that characterizes GOFAC. They try to downgrade the notion of
consciousness to something more amenable—a move that does
not solve, but it multiplies the problems. After analyzing a series
of well-known approaches, the paper outlines a possible direction
in which research might go to overcome GOFAC.

This paper has not a negative goal, namely to list a series of
hypotheses and premises and stress the overall failure of GOFAC.
Instead, it aims to shed light on some, likely fruitful direction of
research.

THE HARD PROBLEM

The main culprit behind GOFAC is David Chalmers’s
introduction of the hard problem (Chalmers, 1996). According
to Chalmers’s seminal book, most of research and discussion
about consciousness has been carried on inside the conceptual
framework set by the contrast between a conscious mind and a
cognitive mind. Such a notion has entrenched the gap between
subjective, phenomenal experience and physical properties. The
hard problem—namely the idea that once all the material facts
are fixed, there is still something to be explained, has postponed
the understanding of consciousness and placed it outside of
robot implementation. If one accepts it, it follows that a robot
will never be genuinely conscious because no matter how all
physical facts are fixed, there will still be something to be added.
The acceptance of the hard problem is the main reason behind
the ensuing lack of progress in robot consciousness.

The hard problem is based on the premise that subjective and
physical properties are alien to each other. Moreover, yet, this
premise is not of experimental nature, and itmight be questioned.
In facts, if subjective and physical properties are different, then
it would be impossible to place them against each. Consider, for
example, the comparison between subjective red and real red.
There is no reason to believe there are two kinds of red. Of course,
the usual claim is that the subjective red is of mental nature and
the physical world is not accessible in a profound sense. Chalmers
claims that there are only subjective properties, or, to use an
equivalent and famous formulation, that we only experience the
phenomenal character of what happens.

This claim is unsupported by the facts that human beings
experience the external world and their own body. It is not
phenomenal; it is just what the physical world is. There are
no reasons to assume, as Chalmers does, that the perception
of the world is different from the physical world. There are no
perceptions of subjective properties, but instead, human beings
experience the attributes the world is made of, and the name we
can give to such characteristics is physical.

The hard problem is not empirically grounded because if it
were true, it could not be empirically proven. If consciousness
were hard, it could not affect the physical world. Conversely, if
consciousness were testable, it would not be hard.

The hard problem is related to the epiphenomenal conception
of consciousness, i.e., that consciousness has no physical role.
Accepting the hard problem means that consciousness will be
external to the domain of material facts. In fact, if consciousness

were part of the physical world, it could be measured, observed,
replicated, designed and implemented in a robot. The hard
problem encourages to conceive of consciousness as something
intractable by scientificmeans. Consciousness could not have any
effect on the physical world and, consequently, it would be useless
from a robotics perspective.

However, if consciousness is epiphenomenal, it would
contradict the selective advantage that it seems to provide.
Moreover, there are no other natural phenomena that are deemed
to be epiphenomenal. All physical events are causally relevant,
that is why they can be measured and observed them, as they
exert a causal effect. In physics and engineering, there are no
such phenomena because they would be automatically deemed
not to be real. The fact that GOFAC deals with consciousness as
epiphenomenal is the hallmark of scientific failure. Once inside
the traditional GOFAC framework, then consciousness is outside
of empirical reach.

The notion of epiphenomenal consciousness appears to be
a self-defeating hypothesis. Human beings as conscious agents
have a feeling that what they feel is interwoven with the physical
world. Consciousness is indeed a part of the physical world, and
if the current scientific picture of the world does not have a place
for consciousness, then it is not complete.

Nonetheless, the hard problem became famous also because
it contrasts the easy problems—how to explain the human
ability to recognize a face, generate language, control behavior—
from the hard problem of defining how physical processes can
give rise to consciousness. Such a split suggests, on the one
side, that scientists could continue their work without worrying
about consciousness and, on the other hand, that consciousness
is elusive and not constrained by the physical world. It also
provides engineers, roboticists, and AI experts free to design
robot consciousness as long as they were smart enough to leave
the hard problem aside and limit themselves to the easy problems
of consciousness.

In GOFAC, the hard problem spawned a split between hard
and weak machine consciousness (Seth, 2009) as though it
were possible to focus on functional and ontological problems
separately. Because of the widespread acceptance of the hard
problem, scholars assumed that conscious experience is out of
reach of science and technology and thus that a workaround
has to be proposed. The workaround was the delusion that it
is possible to focus on concrete problems—i.e., those that are
part of our conceptual framework—and to leave the real issue of
consciousness to some conceptual breakthrough.

The above state of things suggests that the literature on robot
consciousness does not deal with phenomenal consciousness.
Consciousness has been dropped from the physical world by the
hard problem, and thus it has been become legitimate to study it
without addressing the crux of the matter.

THE INTERMEDIATE LEVEL FALLACY

Given the starting conceptual landscape shaped by the acceptance
of the hard problem—or some version of it—a widespread
tendency has been that of looking for some workaround. A
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common strategy has been that of the intermediate level which
is composed of two steps. First, an intermediate conceptual level
that is at a possible explanatory distance is proposed—behavior,
central workspace, information, enaction, adaptive resonance,
and so forth. Such an entity, crucially, is located on the physical
side of the gap but, equally significantly, it is somewhat vague,
to the extent that it may suggest some degrees of consciousness.
Second, consciousness is watered down to show that it is
not much better than the intermediate level. The second step,
which is most problematic from an ontological and epistemic
perspective, is critical to provide fulfillment of the first step.

As an example of the intermediate level fallacy, consider Seth’s
proposal to look for a real problem rather than for the hard or
the easy problem. According to Seth, the real question consists in
examining

“how to account for the various properties of consciousness

regarding biological mechanisms; without pretending it doesn’t

exist (easy problem) and without worrying too much about

explaining its existence in the first place (hard problem).” (Seth,

2016).

The real problem, according to Seth, is nothing but one of
the traditional easy problems in disguise. In this case, the
intermediate level is represented by the biological mechanisms
that are physical processes that do not qualify as a solution
to the hard problem. In this regard, Seth himself defended
weak machine consciousness (Seth, 2009). So, it is not clear
why the real problem according to Seth should be a successful
research strategy for consciousness. It is the second step of the
intermediate level strategy, i.e., watering down consciousness.
Seth’s catchphrase is that

“It looks like scientists and philosophers might have made

consciousness far more mysterious than it needs to be” (Seth,

2016).

Thus, he suggests that, after all, there is no mystery. In fact, Seth
argues that

“In the same way, tackling the real problem of consciousness

depends on distinguishing different aspects of consciousness,

and mapping their phenomenological properties (subjective first-

person descriptions of what conscious experiences are like)

onto underlying biological mechanisms (objective third-person

descriptions)” (Seth, 2016).

In his account, the problem of consciousness is no longer
that of tackling an apparently impossible feat for the physical
world, but a mapping between personal reports onto biological
mechanisms. This mapping may be tedious but feasible.
However, such amapping does not offer a solution of the problem
of consciousness. Both personal descriptions and biological
mechanisms are objective physical phenomena that pose no
threat to the received view of physics. Both of them do not
address the issue of consciousness.

Then, the first step of the fallacy is to suggest an intermediate,
safe level of explanation, like a suitable biological mechanisms.

The second step is to water down the problem of consciousness
to something more amenable as the mapping between personal
reports and the biological mechanisms.

CURRENT APPROACHES TO ROBOT

CONSCIOUSNESS

Robot consciousness has so far not succeeded in making
progress on the issue of phenomenal experience. While the
possibility of conscious machines, together with its ethical
implications, has repeatedly been addressed, no one has claimed
that anything close to a feeling has occurred in an artifact. As
before, this persistent and generalized lack of results might be
explained by the adoption of the familiar and flawed conceptual
landscape of GOFAC. In particular, the intermediate level
fallacy is a common problem in all these attempts. Here, we
will consider, as possible theoretical backgrounds for machine
consciousness, functionalism, information, embodiment,
enaction and cognition. We will argue that these approaches
exhibit the manifest symptoms of the fallacy and are as many
cases of GOFAC.

Functionalism
Functionalism is the backbone of the AI approach to
consciousness. Functionalist approaches single out a functional
view of the mind. This critique has been developed at length by
many scholars, most notably Searle (1990) and Harnad (2003).
If the mind is a collection of functional relations, no space is left
for what is taken to be consciousness—functioning vs. feeling,
to use Harnad’s formulation. Functionalism focuses on external
causal relations between the state of affairs. While functionalism
is neutral to the location of such causal relationships, it
concentrates mostly on abstract descriptions of reality, which is
the reason why it allows multiple realizations. Functionalism
is a theoretical description of what goes on in a system, and it
is oblivious to the physical constituents of a system. Therefore,
functionalism will never grasp consciousness because it is neutral
to the material components of functional relations.

Then, functionalism would provide the same description for
a system made of neurons and of electronic switches, and it will
offer the same explanation for a system with consciousness and
without consciousness. It is not a fact about consciousness; it is a
consequence of the premises on which functionalism is built.

Functionalism has been ideal to back up the philosophical
notion of a zombie, which was fundamental in all the accounts
inspired by the hard problem (Chalmers, 1996). A zombie is
an entity which externally is not distinguishable from a human
being, in the sense that it talks, it responds, it acts in the world,
but, contrary to a human being, it is entirely unconscious. The
conceivability of a zombie tells us more about the limitation of
functionalism than about consciousness. There is no evidence
that a physical entity identical to a human being might be
without consciousness. The notion of a zombie shows that
functional descriptions are incomplete and leave out something
crucial. In fact, in practice, all machines nowadays are considered
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philosophical zombies. No one expects Siri or Google Assistant
to be anything but zombies.

Many approaches to consciousness are functionalist models.
Consider the mentioned global workspace model (Baars, 1997)
and its implementations (Shanahan, 2005, 2006; Franklin et al.,
2014). Such a model is constituted by a suitable functional
structure where the information is lumped and broadcasted. The
first step is represented by the particular cognitive structure,
the central workspace, that is a neutral concept, and that
takes into account the notion of unity and the idea of a
central controller. The second step is the watering down of
consciousness, namely the claim that, to be conscious is nothing
but accessing information in a centralized fashion.

Another approach is the model of consciousness formulated
by Stephen Grossberg (2007, 2017) and based on adaptive
resonances in the brain. According to this model, the conscious
states in the brain are characterized as resonant neural states,
i.e., neural states where the firing of neurons are mutually
amplified and synchronized thanks to feed-forward and feedback
connections between bottom-up and top-down neural layers. In
this case, the first step of the move is represented by a suitable
characteristic of the dynamic evolution of a neural network,
i.e., the resonance of interconnected neurons, which is a neutral
effect that is explained by the differential equations governing
the dynamics of neural networks. The second step is the claim
that subjective experience is nothing but this particular state
in the dynamic evolution of neural networks. Of course, not
any rationale has been presented as to why centralized accessed
information or a resonant state could not be unconscious. The
presence of the fallacy is evident.

It is not to say that robots envisaged by functionalist designers
will never be conscious. In fact, designers, no matter what
conceptual frameworks they employ, when they move from
designing to implementations, are subject to the structure of
the physical world. Thus, their products are not limited by
their conceptual models. As consciousness is part of the natural
manifold, there will be cases in which the physical structure
of agents will yield to consciousness, no matter the conceptual
framework adopted by its designers.

Information and Computation
Another popular approach in GOFAC is based on seeking
unique information processes that produce consciousness.
Information, at the level of computational processes such as
those implemented by brains or by computers, is not a physical
constituent of reality. Instead, it is a convenient level of
description. Information is a fictitious entity, like a center of mass
or a meridian: it is not physically there, but it exists only in our
descriptions. It cannot be observed, but, significantly, calculated.

In the case of information, there is confusion among
scientists. The everyday familiarity with information has fostered
a widespread tendency to deal with information as though it were
real, like water or electricity. However, there is no evidence that
information is anything over and above the physical processes we
describe using an informational jargon (Shannon, 1948; Searle,
1984); it is nothing but a quantitative description of the causal
relations between events. From a physical perspective, there is no

need for an additional level called information over and above
the physical phenomena, but all the causal power is drained by
physical events (Kim, 1989, 1998; Dowe, 2000, 2007).

As an argument of the fact that information does not have a
physical existence consider that if information were real, it should
be possible to build an information detector. Interestingly, it is
not possible to construct an information detector. While it is
possible to compute the amount of information inside a system
from a set of assumption as to how that system is going to be
exploited, it is impossible to detect the amount of information in
a system. For instance, if one knows that a CD-Rom is going to
be read by a standard CD-Player one can compute its capacity.
However, if one takes a piece of matter and one does not know
whether and how its physical structure is going to be exploited,
one cannot know how much information it contains. The same
holds in all cases of similar information devices. It is not possible
to measure information as say, mass, electric charge, length.
Information can be estimated or computed based on what it is
known about a piece of matter and its role in a given context.

In sum, information does not exist except as a way to describe
what does happen between causally coupled events, coherently
with the original formulation of information (Shannon, 1948).
Information is a way to explain causal processes; it is not a real
phenomenon. It is not physical insofar it is causally redundant,
undetectable, never measured but only estimated. On top of that,
there would be no law explaining why a specific informational
state should be like a conscious state.

Information-based approaches to consciousness remain in
the intermediate level fallacy. The intermediate entity is now
information—sometimes a specific brand of information as in
Tononi’s integrated information theory (Tononi, 2004) and its
most recent version (Oizumi et al., 2014). The watering down is
the effort to claim that the properties of information are those
that matter for consciousness. For instance, Tononi claimed that
integrated information has unity and that consciousness too
has unity. Concerning quality, semantics, content, and all other
aspects of our experience, he does not have any word.

In sum, approaches like those suggested by Tononi and based
on the idea that information processing produces consciousness,
are empirically not founded because information has not a
physical reality. They are biased by the hope that a quantitative,
precise method may offer a scientific framework. In fact, these
authors emphasize the possibility to measure consciousness. At
most, these methods can succeed in estimating informational
states that correlate with consciousness, but, so far, they have been
unable to present justification as to why the informational states
under scrutiny should constitute consciousness.

Embodiment
In robot consciousness, popular approaches are related with the
notion of embodiment (Holland, 2004; Bongard et al., 2006;
Shanahan, 2006, 2010) mostly because they allow focusing on
robot bodies. It is a fruitful approach that highlights crucial
features of the embodiment. The body plays an essential role in
shaping the interaction between an agent and its environment.
Embodied cognition is a mandatory perspective regarding
sensory-motor loops. However, it is not clear why embodiment
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should provide clues on how consciousness fits with the physical
world. Inevitably, embodiment simplifies many critical sensory-
motor control loops.

If embodiment refers to the fact that a cognitive or conscious
process must be physically embodied, it is a pretty obvious
notion. A cognitive process must be embodied in this sense, as
any process must correspond to something physical and thus be
embodied. However, supporters of the concept of embodiment
as Chrisley and Ziemke (2006) mean something less trivial.

These authors compete against the traditional notion of
cognition as a higher order process carried on by a central
processing unit physically separate from the body. Such an
approach is the offshoot of historical factors—i.e., mostly, the
Cartesian notion of an immaterial mind, a functionalist model of
the mind, and the availability of electronic calculators well before
they could be coupled with artificial bodies. All these factors
fostered a disembodied notion of the mind and its processes.
However, they have long ceased to be relevant, both in the
philosophical debate as well as in the technological playground.

AI is biased by a Cartesian view of the mind. Embodiment
allowed AI scholars to emphasize the physical nature of agent
hood. However, this fact does not imply that the body is the only
constituent of an agent.

The notion of embodiment self-contradicts its original
intentions. In fact, the embodiment was taken into consideration
to get rid of the immaterial mind, as the body and its interaction
with the world appear like a feasible solution. Unfortunately,
the notion of “body” is unclear. Typically, an object is a body
only when it is the body of a subject. However, then, the notion
of the body is circularly the cornerstone of the subject. The
body is another intermediate entity that should bridge the gap
between world and consciousness. It is the symptom of the
intermediate level fallacy. The body—or its interactions with the
environment—is proposed as the intermediate level. At the same
time, the watering down step deals with the body as though it
were something more than a moving physical object. The last
step is, of course, of relevance in the case of robot consciousness
where researchers do not have a biological body. The features that
should be present in an object to be qualified as a body are not
explained. In this sense, a washing machine may be considered as
a body, because it reacts to external stimuli, it swallows stuff, it
processes it, it expels it, it consumes energy, it plans. The same
arguments hold for anthropomorphic robots (Holland, 2003;
Natale et al., 2012).

Thus, embodiment tries to exploit the intermediate level
fallacy by employing the ambiguous notion of a body, and to
water down consciousness to something more mundane as the
body.

Enaction
Another viable solution to achieve robot consciousness is offered
by enaction insofar as it suggests that experience is constituted by
a body and its interactions and with the world, and thus it may be
implemented in artifacts (O’Regan and Nöe, 2001).

Enactivism defends a firm stance that, together with the
embodiment is likely to be productive in many fields, most
notably cognitive science (Stewart et al., 2010). What enaction

has never addressed is the enactive level of reality and why there
should be anything like that—namely the first step of the fallacy.

Consider the basic tenet of enaction, in Alva Noë’s
formulation:

“Perceiving is a way of acting [. . . ]What we perceive is determined

by what we are ready to do [. . . ] We enact out perception; we act

it out” (Noë, 2004, p. 1).

Once again, Noë suggests an intermediate level based on actions,
that should underpin perception. Of course, he does not explain
why actions should be different in the case they are performed by
human bodies from the case in which they are performed by a
robot or an animal.

Enactivism does not provide a criterion to distinguish between
real actions and simple movements unless by reference to
subjects. In other words, an act is a movement performed by
a subject with intentions and understanding—i.e., a conscious
subject. Then there is the concrete risk of circularity in their
arguments. Consider this point in John Stewart’s formulation:

“How can a material state be a mental state? Hoary it may be,

yet the problem is anything but solved. [. . . ] The paradigm of

enaction solves this problem by grounding all cognition as an

essential feature of living organism” (Stewart, 2010, p. 1).

Of course, as Stewart himself admits, this does not solve the
problem. It only shifts the burden of the explanation on the
notion of the living organism. Since vitalism has long been
dismissed, the emphasis on life and living organisms does not
seem a convincing conceptual fulcrum. In this way, the suggested
intermediate level is the living organism and its feedback loops
with the external world. Why these phenomena should be any
special is left unexplained. It is the second step of the fallacy.

Finally, it is characteristic of enaction the shift from actions
as such to knowledge about actions. In fact, recent accounts of
consciousness in enaction take stock of the notion of knowledge.
In this regard, Noë claims that

“To be a perceiver is to understand, implicitly, the effects of

movement on sensory stimulation.” (Noë, 2004, p. 1).

Once again, an intermediate level, that of understanding and
sensory-motor knowledge, is presented as a way to reach
consciousness. What such an intermediate level is in a physical
world and why knowledge of the effects of movement on sensory
stimulation should lead to conscious experience is not clear at all.

Cognition and Intelligence
The most obvious candidate for consciousness is cognition and
intelligence. Here, we have a promising intermediate entity which
looks apparently less demanding, and we may consider whether
it might be the right ladder. After all, there seems to be a tight
connection between cognitive capabilities and consciousness.
Most of the time, when a human being exerts higher-order
cognitive processes are conscious. However, it is fair to maintain
that, in many cases, when one is conscious very little intelligence
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is required or that many of the most creative ideas have been the
outcome of mostly unconscious activities (Lavazza andManzotti,
2013).

It is a fact that many scholars are tempted to focus on
intelligence and cognition and expect that consciousness will
come for free once all the practical issues have been solved.
Alternatively, instead many hold that the problem will evaporate
as a false problem.

However, also, in this case, cognition is an intermediate
level that may lead to the knowledge of consciousness, and not
to consciousness experience. Also, this is a symptom of the
intermediate level fallacy.

WHAT IS LEFT?

We found a common explanatory strategy in the reviewed
attempts. Scholars working in robot consciousness suggest
an intermediate level—sensory-motor patterns, information,
cognition, global workspace—as a possible explanation for
consciousness. What is missing is why such a level should lead
to consciousness. From an epistemic perspective, it is as though
they suggested an explanans without providing its relationship
with the explanandum, i.e., consciousness. Table 1 summarizes
the different GOFAC landscapes of the intermediate level
fallacy.

The hard problem, the GOFAC approaches, and the strong
vs. weak machine consciousness argument are all grouped by a
common factor, as they all deal with consciousness as lacking any
causal role in the world. Consider for example the hard problem,
that leads to the issue of the zombie, a cognitively equivalent
agent lacking consciousness. In turn, GOFAC does not address
the issue of subjective experience. Finally, the split between
weak and strong machine consciousness was conceived to deal
with cognitive processing without addressing the crux of the
matter, namely conscious experience. Weak consciousness was
designed to deal with the functional aspects of consciousness—
i.e., those with causal relevance—and therefore to leave out
strong consciousness.

New hypotheses about the nature of the physical world
are needed. Consciousness is a fact that needs to find its
place in nature. Thus, if consciousness is neither of the
previously examined processes what is left? The proposal is that
consciousness is the structure of the physical world itself. Such a

move has been except in some cases, as in Perlovsky (2006, 2016).
There must be fundamental mistakes in the way the physical
world is conceived. A possible error might be the location of the
thing called consciousness in a different place rather than the
body of the agent or the neural/computational structure. Another
mistake might consist in the split between the subject and the
object. The paper shows that GOFAC will never achieve machine
consciousness and thus that it clamors for the adoption of a
robust conceptual framework alternative to the hard problem and
its cognates.

Of course, finding consciousness inside the physical world
is necessary when the goal is designing a conscious robot. A
robot does not have any other resource but those offered by the
physical world. It may sound like a platitude but, give or take, all
mentioned approaches run according to this principle. Therefore,
any viable solutions will require setting aside the premise that
has so far hampered any progress—i.e., the hard problem with
the general belief that consciousness is something distinct from
the physical world. We have to reconsider the question from the
beginning.

We believe it is possible to flesh out a radical alternative that
will stem from setting aside the obnoxious theoretical framework
fostered by the adoption of the Hard Problem. First, we take
consciousness to be just like all other physical properties around,
something that can be measured, observed. Furthermore,
consciousness is causally active and located in space-time.
Finally, it is made of matter or energy. These premises are
nothing more than restating the assumption that consciousness
is physical. In fact, everything that is physical is spatiotemporally
located, causally relevant, made ofmatter/energy, and observable.
So much the worse for epiphenomenalism and zombies.

Of course, this move will be considered unfeasible by most
scholars insofar as they take consciousness to be invisible in the
physical world. Neuroscientists have been looking for it inside the
brain for the last couple of centuries without finding anything
resembling it. In the brain, there is nothing like conscious
experience and thus neither will there be inside a machine.
However, the solution might require a conceptual leap.

Consider the possibility that consciousness, albeit physical,
is not literally inside the body of the agent—be it biological
or artificial. The proposal is that consciousness is the same
with the external objects an agent deals with. In this way, the
physical properties of the external world might be the same as

TABLE 1 | The intermediate level fallacy in different GOFAC landscapes.

Actual physical world Intermediate level Watered down version of

consciousness

Functionalism The physical states that realize functional

structures

Global workspace, centralized

representations, adaptive resonance

Access consciousness

Information and computation The physical states that transmit causal

processes

Integrated Information Integrated consciousness

Embodiment Objects Body states, body-world states Sensory-motor loops

Enaction Interactions between objects and

environment

Actions Knowledge of sensory-motor loops

Cognition Brain or processor Cognitive states Knowledge
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the properties of conscious experience (Manzotti, 2006, 2017;
Manzotti and Chella, 2016).

An example will help. An agent—i.e., a body either biological
or a robot—is interacting with an external object, say, a yellow
banana. Inside the agent there is nothing with the properties of
the banana—being yellow, being elongated, and being slightly
bent. When we look for the agent’s experience inside the agent’s
body, we would be compelled to conclude that there is nothing
physical with those properties inside the agent’s body (yellow,
elongated, bent). Not being able to find anything like our
experience inside one’s body, we may be tempted to conclude
that consciousness is indeed particular; that it is invisible,
epiphenomenal, not directly measurable, in a world, that it is
phenomenal. This option is taken by the hard problem and all
its cognate approaches.

We suggest an alternative. When the agent is interacting with
the banana, there is a physical entity that is ideally suited to be
the same with the agent’s experience, namely, the banana itself.
The banana is yellow, elongated and slightly bent, just like the
experience of it. Nothing else is to be invoked to be the experience
of the banana. The banana is better than anything we may ever
hope to find inside the agent. The external object scores better
than any internal representations.

The advantages of this approach as regards machine
consciousness are numerous. There is no need for biological
material. There is no need for the emergent property, a very
questionable addition to the debate. There is no need to appeal
to quantum mechanics, something still alien to the current
state of the art in robotics. There is no need to suppose
the existence of dubious properties that cannot be observed
physically. Everything is measurable, observable and, crucially,
causally relevant rather than epiphenomenal. An initial example
of this approach, implemented on a robot head, is described in
details in Manzotti and Tagliasco (2005).

DISCUSSION

Four possible objections can be anticipated to this proposal. First
objection: the object is not inside the body of the agent, and thus
it cannot be either constitutive or the cause of one’s experience.
This objection has been raised by one of the original proposers
of the extended mind, namely by Chalmers (2008). There is no
reason to assume that we are located in our head. The physical
location of experience cannot be derived from the fact that
sensor organs are found on the body. Only the location of sense
organs can be estimated by the position of what is perceived.
The physical location of consciousness is immaterial, though, as
Daniel Dennett’s clarified in his famous cautionary tale (Dennett,
1978).

Second objection: the yellow of the banana is not like the
yellow of consciousness, or to rephrase it, the physical yellow
is different from the phenomenal yellow. If we assume that
subjective properties are different from physical properties, they
could not be the same. This fact, however, is neither self-
evident nor empirically found. It is the premise on top of
which the hard problem framework got built, an assumption

that should be empirically demonstrated rather than assumed.
In fact, such a hypothesis is self-confuting—if the two classes
of properties were different, we could never see the physical
properties. The claim that physical properties are different
from subjective properties is unproven. The burden of the
proof lies on the shoulder of those who claim there are
additional properties. Historically, many scholars argued there
where subjective properties because they could not find anything
like our experience inside brains. However, external objects
are exactly like our experience of them. Therefore, nothing
prevents from being the same with our alleged experience of
them.

Third objection: the misperception as dreams and
hallucinations. Any realist proposal must tackle the issue
of misperception. How can the suggested identity between
consciousness and external object tackles cases in which
the object does not seem to be there? Our reply to such an
objection is that the scope of the present can be arbitrarily large.
Consciousness is made of objects that had causal intercourse
with the body of the agent and that, thanks to its neural structure,
are still causally active in whatever combinations they happen
to be. Consciousness is then always a form of perception,
albeit reshuffled and postponed. Of course, this issue alone will
require a lot more discussion, but the gist of the strategy is
there.

Fourth objection: if consciousness is the same with the
external objects, how can the same object look different to
different agents? A reply is the following—physical properties
are relative, and thus they can be different when compared to
a different physical system. The same object can have different
physical properties for different agents since different agents have
different bodies. The same vehicle can have different velocities
relative to different observers moving with as many frames of
references. So, the same object can have different properties
relative to bodies having different causal properties. The same
object will have different colors for tetrachromats, standard
trichromats, and color blind of various kinds. Thus, the relative
nature of physical properties paves the way to the fact that
the same object may indeed have different features for different
agents.

CONCLUSIONS

The purpose of this article is to show the problems with GOFAC
and thus that it clamors for the adoption of a robust conceptual
framework alternative to the Hard Problem and its cognates.

Our proposal offers a new basis for robot consciousness.
There will no longer be an elusive property concocted by some
particular process inside the body of a robot agent; neither will
it be a hard problem. Consciousness is the network of objects
and events that, thanks to a body with sensory-motor-cognitive
capability are brought to interact together. Consciousness is
not an internal property, but the collection of objects that,
thanks to the body, are causally responsible for what the body
does. The study of robot consciousness will thus shift the focus
from internal processes and structures to the analysis of the
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ontogenetic and epigenetic relations that a body develops and
maintains with the external world during its life. Methodologies
of developmental robotics (Cangelosi and Schlesinger, 2015) will
be a valuable help in this effort.

The presented hypothesis, albeit still in its infancy, offers
a complete physicalist alternative—conscious robots would be
machines that bring into existence the same relative physical
objects human bodies do.

The advent of a conscious robot would eventually lead
to new questions about what it means to be a person. The
concept of person undergone inclusive variations over the
centuries, as discussed by Gunkel (2012). Humanity has come
across many problems to include women, slaves and superior
mammals in the circle of persons. Today, the problem is
two-fold: if we assert that a robot is a kind of person, then

the moral responsibility of the robot for its actions must
be recognized. On the other side, we have to concede some
moral rights to the robot, such as the right of not being
switched off.

The concept of person is tightly linked to the concept of
consciousness. If an entity can have subjective experiences, and
eventually can suffer, then this entity should be treated as a
person. In this regard, the studies on robot consciousness may
force us to review our fundamental definition of the concept of
person.
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Theory of mind is the term given by philosophers and psychologists for the ability to form a

predictivemodel of self and others. In this paper we focus on synthetic models of theory of

mind. We contend firstly that such models—especially when tested experimentally—can

provide useful insights into cognition, and secondly that artificial theory of mind can

provide intelligent robots with powerful new capabilities, in particular social intelligence

for human-robot interaction. This paper advances the hypothesis that simulation-based

internal models offer a powerful and realisable, theory-driven basis for artificial theory

of mind. Proposed as a computational model of the simulation theory of mind, our

simulation-based internal model equips a robot with an internal model of itself and its

environment, including other dynamic actors, which can test (i.e., simulate) the robot’s

next possible actions and hence anticipate the likely consequences of those actions both

for itself and others. Although it falls far short of a full artificial theory of mind, our model

does allow us to test several interesting scenarios: in some of these a robot equipped

with the internal model interacts with other robots without an internal model, but acting as

proxy humans; in others two robots each with a simulation-based internal model interact

with each other. We outline a series of experiments which each demonstrate some aspect

of artificial theory of mind.

Keywords: anticipation, simulation-based internal models, theory-of-mind, cognitive robotics, multi-robot

systems, human-robot interaction, social intelligence, machine consciousness

1. INTRODUCTION

Theory of mind is the term given by philosophers and psychologists for the ability to predict the
actions of self and others (Carruthers and Smith, 1996). With theory of mind, it is supposed, we
are able to anticipate how others might behave in particular circumstances. However, the idea of
theory of mind is empirically weak—we have only a poor understanding of the neurological or
cognitive processes that give rise to theory of mind. Artificial Intelligence (AI), and its embodied
counterpart—robotics, provides a powerful synthetic approach to theory of mind because it allows
us to ask the question “how would we build artificial theory of mind in a robot?” and opens the
possibility that we could test theories of theory of mind.

The role of theory of mind in consciousness (or, indeed of consciousness in theory of mind)
is both unclear and controversial (Carruthers, 2009; Sebastian, 2016). In this paper we avoid this
difficult question by focusing instead on synthetic models of theory of mind. We contend firstly
that such models—especially when tested experimentally—can provide valuable insights into both
natural and artificial cognition, and secondly that artificial theory of mind can provide intelligent
robots with powerful new capabilities, in particular social intelligence for human-robot interaction.
Artificial theory of mind has been recently highlighted as one of the Grand Challenges of Science
Robotics: “The threemost significant challenges that stem from building robots that interact socially
with people are modeling social dynamics, learning social and moral norms, and building a robotic
theory of mind” (Yang et al., 2018).
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The aim of this paper is to advance the hypothesis that
simulation-based internal models offer a powerful and realizable,
theory-driven basis for artificial theory of mind. Proposed
as a computational model of the simulation theory of mind
(Goldman, 2006), our simulation-based internal model equips
a robot with an internal model of itself and its environment,
including other dynamic actors, which can test (i.e., simulate)
the robot’s next possible actions and hence anticipate the
likely consequences of those actions both for itself and others;
importantly our simulation-based internal model is a practical
proposition with current technology. Although it falls far short
of a full artificial theory of mind, our model allows us to test
several interesting scenarios: in some of these a robot equipped
with the internal model interacts with other robots, without an
internal model but acting as proxy humans; in others two robots
each with a simulation-based internal model interact with each
other.We are able to predict second and third order interactions1

and, in some cases, observe interesting and unexpected emergent
behaviors.

This paper proceeds as follows. First in section 2 we adopt
a working definition of theory of mind and outline theories of
theory of mind. Choosing the simulation theory of mind (ST) we
then outline the conceptual basis for simulation-based internal
models, together with prior work which uses such models, before
proposing a generic computational model of ST. Section 3 then
introduces a series of experiments in (simple) artificial theory of
mind: in the first the aim is improved safety; in the second it
is simple ethical behaviors—including a scenario in which the
ethical robot faces a dilemma; in the third one robot aims to
infer the goals of another to rationally imitate it. The fourth and
final exemplar is a thought experiment which outlines a proposal
for an embodied computational model of storytelling, using
robots. It is important to note that none of these experiments
were conceived as a solution to the problem of artificial theory
of mind. It was only post-hoc that we recognized that—since
each experiment involves one or more robots which predict the
behavior of others—taken together they offer some insight into
practical artificial theory of mind. Take ethical robots as a case
in point. Although a robot may not need theory of mind to
behave ethically it is easy to see that the ability to predict the
intentions of others would greatly facilitate and likely extend the
scope of its ethical responses2. Section 4 concludes the paper with
a discussion which both draws high-level conclusions from the
experimental work outlined in section 3 and makes the case that
this work does demonstrate a number of components of theory of
mind and can therefore reasonably be described as “experiments
in artificial theory of mind.”

2. FROM SIMULATION THEORY TO A
SIMULATION-BASED INTERNAL MODEL

2.1. Theories of Theory of Mind
One difficulty of this paper is that there is no single definition
of theory of mind and its attributes. Definitions vary according

1Second order interactions are between robot and environment and third order

are robot-robot interactions.
2While noting that having a theory of mind does not make an agent ethical

to the context so, in animal cognition, for instance, Roberts
(2001) writes “The term theory of mind refers to the fact that
people know about minds ... the inferences you make about
others minds may often guide your behavior,” whereas Breed
and Moore (2012) write “An animal with a theory of mind can
form hypotheses about the thoughts of surrounding animals.”
In child development theory of mind refers to “childrens
understanding of people as mental beings, who have beliefs,
desires, emotions, and intentions” (Astington and Dack, 2008),
with mental representation and false belief regarded as key
components. And in Birch et al. (2017) “Perspective taking, or
theory of mind, involves reasoning about the mental states of
others (e.g., their intentions, desires, knowledge, beliefs) and is
called upon in virtually every aspect of human interaction.” In
this paper we resolve this difficulty by settling on “to explain
and predict the actions, both of oneself, and of other intelligent
agents” as our working definition of theory of mind (Carruthers
and Smith, 1996).

There are a number of theories of theory of mind (Carruthers
and Smith, 1996); and such theories are generally grouped
into two broad categories, known as theory theory (TT) and
simulation theory (ST)3. For a good outline comparison of TT
and ST see Michlmayr (2002). Theory theories hold that one
intelligent agent’s understanding of another’s mind is based on
innate or learned rules, sometimes known as folk psychology.
In TT these hidden rules constitute a “theory” because they
can be used to both explain and make predictions about others’
intentions. In contrast “simulation theory suggests that we do not
understand others through the use of a folk psychological theory.
Rather, we use our own mental apparatus to form predictions
and explanations of someone by putting ourselves in the shoes
of another person and simulating them” (Michlmayr, 2002).
Goldman (2006) introduces the idea of mental simulation: “the
simulation of one mental process by another mental process,”
and makes the important distinction between intra personal and
interpersonal mental simulation; the former is simulation of self,
and the latter the simulation of other. Goldman (2006) alsomarks
the distinction between computational modeling simulation and
replication simulation, noting that only the latter is of interest
to theory of mind; we would contend that the former is of great
interest to artificial theory of mind.

In this paper we adopt ST as both the inspiration and
theoretical basis for our hypothesis that simulation-based
internal models offer a powerful approach to building artificial
theory of mind, not because we have a principled theoretical
preference for ST over TT, but because simulation-based internal
models provide a realizable computational model for ST.

Also relevant here is the simulation theory of cognition
(Hesslow, 2002; Wilson, 2002). This theory hypothesizes that
cognitive introspection utilizes the same processes as interaction
with the external environment. During introspection (thinking),
actions are covert and are assumed to generate, via associative
brain mechanisms, the sensory inputs that elicit further actions
(Hesslow, 2012). In this view, cognition requires a grounded

3There are also a number of hybrid theories which combine elements of TT and

ST.
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representation of the world that is not composed of abstract
symbols; a simulation provides just such a model.

2.2. Simulation-Based Internal Modeling
A simulation-based internal model is a mechanism for internally
representing both the system and its current environment. If we
embed a simulation of a robot, including its currently perceived
environment, inside that robot then the robot has a “mechanism
for generating and testing what-if hypotheses; i.e.,

1. what if I carry out action x..? and, ...
2. of several possible next actions xi, which should I choose?"

(Winfield, 2014)

Holland writes: an Internal Model allows a system to look
ahead to the future consequences of current actions, without
actually committing itself to those actions (Holland, 1992, p. 25).
This leads to the idea of “an internal model as a consequence
engine—a mechanism for predicting and hence anticipating the
consequences of actions” (Winfield and Hafner, 2018).

The idea of embedding a simulator of a robot within that
robot is not new, but implementation is technically challenging,
and there have been relatively few examples described in the
literature. One notable example is within the emerging field of
machine consciousness (Holland, 2003; Holland and Goodman,
2003). Marques and Holland (2009) define a “functional
imagination” as “a mechanism that allows an embodied agent
to simulate its own actions and their sensory consequences
internally, and to extract behavioral benefits from doing so”;
a embedded simulation-based internal model provides such a
mechanism.

Bongard et al. (2006) describe a 4-legged starfish like robot
that makes use of explicit internal simulation, both to enable the
robot to learn it’s own bodymorphology and control, and notably
allow the robot to recover from physical damage by learning
the new morphology following the damage. The internal model
of Bongard et al. models only the robot, not its environment.
See also Zagal and Lipson (2009). In contrast Vaughan and
Zuluaga (2006) demonstrate self-simulation of both a robot and
its environment in order to allow a robot to plan navigation tasks
with incomplete self-knowledge; their approach significantly
provides perhaps the first experimental proof-of-concept of a
robot using self-modeling to anticipate and hence avoid unsafe
actions. Zagal et al. (2009) describe self-modeling using internal
simulation in humanoid soccer robots; in what they call a ‘back-
to-reality’ algorithm, behaviors adapted and tested in simulation
are transferred to the real robot.

In robotics advanced physics and sensor-based simulation
tools are routinely used to model, develop or evolve robot
control algorithms prior to real-robot tests. Well-known robot
simulators include Webots (Michel, 2004), Gazebo (Koenig and
Howard, 2004), Player-Stage (Vaughan and Gerkey, 2007), and
V-REP (Rohmer et al., 2013). Simulation technology is now
sufficiently mature to provide a practical route to implementation
of an embedded simulation-based internal model. Furthermore
Stepney (2018) sets out a principled approach to simulation
which treats a simulator as a scientific instrument.

2.3. A Computational Model of Simulation
Theory of Mind
We have recently proposed an architecture for a robot with
a simulation-based internal model which is used to test and
evaluate the consequences of that robot’s next possible actions.
Shown in Figure 1 “the machinery for modeling next actions
is relatively independent of the robot’s controller; the robot
is capable of working normally without that machinery, albeit
without the ability to generate and test what-if hypotheses. The
what-if processes are not in the robot’s main control loop, but
instead run in parallel to moderate the Robot Controller’s normal
action selection process, acting in effect as a kind of governor”
(Blum et al., 2018). This governance might be to rule out certain
actions because they are modeled as unsafe for the robot, or
to recommend new robot actions to, for instance, prevent an
accident.

“At the heart of the architecture is the Consequence Engine.
The CE is initialized from the Object Tracker-Localizer, and
loops through all possible next actions; these next actions are
generated within the Robot Controller (RC) and transferred to
the mirror RC within the CE (for clarity this data flow is omitted
from Figure 1). For each candidate action the CE simulates the
robot executing that action, and generates a set of model outputs
ready for evaluation by the Action Evaluator. The Consequence
Evaluator loops through each possible next action; this is the
Generate-and-Test loop. Only when the complete set of next
possible actions has been tested does the Consequence Evaluator
send, to the Robot Controller, its recommendations” (Winfield
et al., 2014). These processes are explained in detail in Blum et al.
(2018).

We argue that the architecture outlined here represents a
computation model of artificial theory of mind. First, the model
clearly provides a robot with the ability to self-model and hence
predict the consequences of its own actions. Second the model
can be used to predict another dynamic agent’s actions and—
if they interact—the consequences of this robot’s actions to
that other agent. This predictive modeling of others can be
implemented in two ways depending on the way we model those
other agents.

1. In the first, which we can call the ST-self plus TT-other
(ST+TT) model, the other dynamic agents (i.e., robots) are
modeled within the World Model of this robot using simple
theory, for example a ballistic model for moving agents. Since
this variant combines elements of ST and TT it models a
hybrid theory of mind.

2. In the second, which we can call ST-self plus ST-other
(ST+ST), the whole of the consequence engine can be
initialized for the other agent and run introspectively, recalling
the simulation theory of cognition (Hesslow, 2012). Here the
robot models each other agent exactly as it models itself, i.e.,
as a conspecific. This variant models pure ST4.

The experiments outlined in the next section illustrate both
ST+TT and ST+ST variants.

4Noting that even our computational model of ST is not completely theory free,

since the world model models the physics of collisions, etc.
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FIGURE 1 | The Consequence Engine: an architecture for robot anticipation using a simulation-based internal model. Figure from Blum et al. (2018).

3. EXPERIMENTS IN ARTIFICIAL THEORY
OF MIND

3.1. Safety: The Corridor Experiment
We have implemented and tested the simulation-based internal

model architecture outlined above in an experimental scenario,
which we call the corridor experiment (Blum et al., 2018).

Inspired by the problem of how mobile robots could move

quickly and safely through crowds of moving humans, the aim of
this experiment is to compare the performance of our simulation-
based internal model with a purely reactive approach. In other
words: can a robot’s safety be improved with simple artificial
theory of mind?

In this experiment one mobile robot (the CE-robot) is
equipped with the consequence engine of Figure 1, while 5 other
mobile robots have only simple obstacle avoidance behaviors.
The setup is shown in Figure 2 (left); here the smart CE-robot
is shown in blue at its starting position. The CE-robot’s goal is to
reach the end of the corridor on the right while maintaining its
own safety by avoiding—while also maintaining a safe distance—
the five proxy-human robots shown in red. Figure 2 (right)
shows the trajectories of all six robots during a simulated run

of the experiment, with the CE-robot reaching the end of the
corridor. Figure 3 shows the real-robot experimental setup.

In this experiment the CE robot models each of the proxy-
human robots as a ballistic agent with obstacle avoidance—in
other words as agents that will continue to move in their current
direction and speed unless confronted with an obstacle, which
may be another agent or the corridor wall. The CE runs in real-
time and is updated every 0.5 s with the actual position and
direction of the proxy-humans within the CE robot’s attention
radius. This is not an unreasonable model when considering
how you might behave when avoiding another person who is
not paying attention to where they are going—peering at their
smartphone perhaps.

Results of the corridor experiment (detailed in Blum et al.,
2018) show that for a relatively small cost in additional distance
covered, the likelihood that a proxy-human robot comes within
the CE-robot’s safety radius falls to zero. Clearly there is a
computational cost. This is entirely to be expected: anticipatory
modeling of other agents clearly incurs a computational
overhead.

In the corridor experiment there is an asymmetry: the CE-
robot has a model for the proxy-human robots whereas they
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FIGURE 2 | The corridor experiment goal (left), with 5 (red) robots moving randomly and one intelligent (CE) robot (blue) with a simulation-based internal model.

(Right) shows (simulated) trajectories of all six robots by the time blue has reaching the end of the corridor. Figure from Blum et al. (2018).

FIGURE 3 | The corridor experiment, using e-puck robots (Mondada et al.,

2009) fitted with Linux extension boards (Liu and Winfield, 2011). This image

shows the initial condition with the CE (intelligent) robot on the left and the five

proxy-human robots positioned at randomly selected locations in the corridor.

The arena markings have no significance here. Figure from Blum et al. (2018).

have no model for the CE-robot. In an extension to the corridor
experiment whichwe call the pedestrian experiment two robots—
each equipped with the same CE—approach each other. As
with the corridor experiment each models the other as a simple
ballistic agent but here we have symmetry with each agent paying
full attention to the other, trying to anticipate how it might
behave and planning its own actions accordingly. Is it possible
that our “pedestrian” robots might, from time to time, engage in
the kind of “dance” that human pedestrians do when one steps
to their left and the other to their right only to compound the
problem of avoiding a collision with a stranger?

Results show that we do indeed observe this interesting
emergent behavior. In five experimental runs four resulted in the
two pedestrian robots passing each other by both turning either
to the left or to the right—Figure 4 (left) shows one example of
this behavior. However, in one run, shown in Figure 4 (right) we
observe a brief dance caused when both robots decide, at the same
time, to turn toward each other—each predicting wrongly that
the other robot would continue its currently trajectory—before
the two robots resolve the impasse and pass each other safely.

3.2. Toward Ethical Robots
We have conducted exploratory work—based on the same
simulation-based internal model architecture outlined in section

2—to explore the possibility of robots capable of making
decisions based on ethical rules. These robots implement simple
consequentialist ethics with rules based on Asimov’s famous
laws of robotics. Following Asimov’s first law: “a robot may
not harm a human or, through inaction, allow a human to
come to harm,” our ethical robot will act proactively when it
anticipates (a) that a proxy-human robot is in danger of coming
to harm and (b) the ethical robot can itself intervene. We have
experimentally tested such a minimally ethical robot initially
with e-puck robots (Winfield et al., 2014) and subsequently with
NAO humanoid robots (Vanderelst and Winfield, 2018). As in
the corridor experiment the ethical robot’s CE models the proxy-
human(s) as simple ballistic agents. In some experiments we
have extended those TT models so that the ethical robot can, for
instance, call out “danger!” and if the human robot then responds
with “ok, understood” the ethical robot will change its model
for that human from “irresponsible” to “responsible” and not
intervene as it heads toward the danger zone. In this way the
ethical robot is able to modify its belief about the proxy-human.

Figure 5 shows results from one trial with two NAO
humanoid robots, one (blue) equipped with a CE and ethical
logic layer, and the other (red) programmed only with short range
obstacle avoidance behavior to act as a proxy-human. Figure 5
shows that the ethical robot does indeed reliably intervene,
diverting from its own path, and when red halts to avoid a
collision with blue, blue then continues toward its own goal.

We have tested the same ethical robot (running identical
code) in a scenario with two proxy-humans both heading toward
danger at the same time. These trials, first with e-puck robots
(Winfield et al., 2014) and more recently with NAO robots, are
believed to be the first experimental tests of a robot facing an
ethical dilemma. We did not provide the ethical robot with a
rule or heuristic for choosing which proxy-human to “rescue”
first, so that the ethical robot faces a balanced dilemma. Figure 6
(left) shows the experimental arena with the ethical robot (blue)
initially equidistant from the two (red) proxy-human robots.
The trajectory plots in Figure 6 (right) interestingly show that
in three of the five trials blue initially chose to move toward
the red robot heading toward danger (B), but then appeared to
‘change its mind’ to “rescue” the other red robot. Exactly the
same “dithering” emergent behavior was observed with the e-
puck robots inWinfield et al. (2014), and can be explained in part
by the fact that the ethical robot’s CE is running continuously,
re-evaluating the consequences of its own and the other robots’
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FIGURE 4 | The pedestrian experiment—two trials showing robot trajectories. Two robots, blue and green, are each equipped with a CE. Blue starts from the right,

with a goal position on the left, while at the same time green starts from the left with a goal position on the right. (Left) We see the typical behavior in which the two

robots pass each other without difficulty, normally because one robot—anticipating a collision—changes direction first, in this case green. (Right) Here both robots

make a decision to turn at the same time, green to its left and blue to its right; a “dance” then ensues before the impasse is resolved.

FIGURE 5 | An ethical humanoid robot (blue) anticipates that proxy-human robot (red) is heading toward danger (location A at the top right). It diverts from its path

toward goal position B (bottom right) to intersect red’s path. Red then stops and blue resumes its path toward its goal. (A) Shows the trajectories of Blue and Red for

trial 1. (B) Shows all 5 experimental trials. Figure from Vanderelst and Winfield (2018).

behaviors and perhaps choosing a new action once per second5.
This makes our ethical robot pathologically indecisive.

3.3. The Imitation of Goals
The imitation of goals is a very important form of social learning
in humans. This importance is reflected in the early emergence
of imitation in human infants; from the age of two, humans
can imitate both actions and their intended goals (Gariépy et al.,
2014) and this has been termed rational imitation.

Imitation has long been regarded as a compelling method
for (social) learning in robots. However, robot imitation faces
a number of challenges (Breazeal and Scassellati, 2002). One
of the most fundamental issues is determining what to imitate

5In practice the ethical NAO robot would also favor the slower of the two

proxy-humans, as a side-effect of its action-selection logic.

(Carpenter et al., 2005). Although not trivial it is relatively
straightforward to imitate actions, but inferring goals from
observed actions and thus determining which parts of a
demonstrated sequence of actions are relevant, i.e., rational
imitation, is a difficult research problem.

The approach we explore in Vanderelst and Winfield (2017),
is to equip the imitating robot with a simulation-based internal
model that allows the robot to explore alternative sequences
of actions required to attain the demonstrator robot’s potential
goals (i.e., goals that are possible explanations for the observed
actions). Comparing these actions with those observed in the
demonstrator robot enables the imitating robot to infer the goals
underlying the observed actions.

Figure 7 shows one of several experiments from Vanderelst
and Winfield (2017). Here the red robot imitates the goals of the
blue robot. In condition 1 blue moves directly to its goal position
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FIGURE 6 | An ethical dilemma. Left: The ethical robot is initially positioned midway between and slightly to the front of two danger zones A and B. Right: The ethical

robot’s trajectories are shown here plotted with squares. Two proxy-human robots start from the left, both heading toward danger—trajectories plotted with triangles.

Results of 5 trials are shown here.

(Figures 7A,B). Blue infers the goal is to move to red’s goal
and does so directly in Figure 7C. In condition 2 blue deviates
around an obstacle even though it has a direct path to its goal
(Figures 7D,E). In this case red infers that the deviation must be
a sub-goal of blue—since blue is able to go directly to its goal
but chooses not to—so in Figure 7F red creates a trajectory via
blue’s sub-goal. In other words red has inferred blue’s intentions
to imitate its goals. In condition 3 blue’s path to its goal is blocked
so it has no choice but to divert (Figures 7G,H). In this case red
infers that blue has no sub-goals and moves directly to the goal
position (Figure 7I).

3.4. An Embodied Computational Model of
Storytelling
Consider the idea that some of the what-if sequences tested with
a robot’s consequence engine are constructed fictions, i.e., “if I
had turned left I would have collided with a wall.” While others—
the ones actually enacted—could be historical narratives, i.e., “I
turned right and reached my goal.”

Assume that we have two robots, each equipped with the
same simulation-based internal model of Figure 1. Let us also
assume that the robots are of a similar type, in other words they
are conspecifics. Let us now extend the robots’ capabilities in
the following way. Instead of simply discarding (“forgetting”) an
action that has been modeled, the robot may transmit that action
and its predicted or actual consequences to another robot.

Figure 8 illustrates robot A “imagining” a what-if sequence,
then narrativizing that sequence. It literally signals that sequence
using some transmission medium. Since we are building a model
and it would be very convenient if it is easy for human observers
to interpret the model, let us code the what-if sequence verbally
and transmit it as a spoken language sequence. Technically
this would be straightforward to arrange since we would use
a standard speech synthesis process. Although it is a trivial
narrative robot A is now able to both “imagine” and then literally

tell a story. If that story is of something that has not happened it
is a fictional narrative, otherwise it is a historical narrative.

Robot B is equipped with a microphone and speech
recognition process it is thus able to “listen” to robot As story,
as shown in Figure 9. Let us assume it is programmed, so that
a word used by A signifies the same part of the what-if action
sequence to both A and B. Providing the story has been heard
correctly then robot B will interpret robot A’s story as a what-if
sequence. Now, because robot B has the same internal modeling
machinery as A- they are conspecifics- it is capable of running
the story it has just heard within its own internal model. In order
that this can happen we need to modify the robots programming
so that the what-if sequence it has heard and interpreted is
substituted for an internally generated what-if sequence. This
would be easy to do. But, once that substitution is made, robot
B is able to run A’s what-if sequence (its story) in exactly the same
way it runs its own internally generated next possible actions,
simulating and evaluating the consequences. Robot B is therefore
able to “imagine robot A’s story6.

In this model we have, in effect, co-opted the cognitive
machinery for testing possible next actions for “imagining,”
or introspectively experiencing, heard stories. By adding the
machinery for signaling and signifying internally generated
sequences (narratives)—the machinery of semiotics—we have
constructed an embodied computational model of storytelling.

A major problem with human-robot interaction is the serious
asymmetry of theory of mind (Winfield, 2010). Consider an
elderly person and her care robot. It is likely that a reasonably
sophisticated near-future care robot will have a built-in (TT)
model of an elderly human (or even of a particular human). This
places the robot at an advantage because the elderly person has
no theory of mind at all for the robot, whereas the robot has
a (likely limited) theory of mind for her. Actually the situation

6Where is the meaning? It could be argued that when the listener replays the story

in its internal model (functional imagination) that ismeaning.
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FIGURE 7 | Rational imitation. (A,D,G) Show the setup with blue as the demonstrating robot and red the observing (then imitating) robot. In condition 1 (A,B,C) blue

moves directly to its goal position. In condition 2 (D–F) blue diverts around an obstacle even though it could move directly to its goal position. And in condition 3 (G–I)

blue’s path is blocked so it cannot go directly to its goal. (B,E,H) Show trajectories of 3 runs of the demonstrator robot blue, and (C,F,I) Show trajectories of 3 runs of

the imitating robot red. Note that red starts from the position it observes from. Figures from Vanderelst and Winfield (2017).

may be worse than this, since our elderly person may have a
completely incorrect theory of mind for the robot, perhaps based
on preconceptions ormisunderstandings of how the robot should
behave and why. Thus, when the robot actually behaves in a way
that doesn’t make sense to the elderly person, her trust in the
robot will be damaged and its effectiveness diminished (Stafford
et al., 2014).

The storytelling model proposed here provides us with a
powerful mechanism for the robot to be able to generate
explanations for its actual or possible actions. Especially
important is that the robot’s user should be able to ask (or press
a button to ask) the robot to explain “why did you just do that?”
Or, pre-emptively, to ask the robot questions such as “what would
you do if I fell down?” Assuming that the care robot is equipped
with an autobiographical memory7, the first of these questions
would require it to re-run and narrate the most recent action

7It would be relatively easy for a robot to build a memory of everything

that has happened to it, but of much greater interest here is to integrate the

sequence to be able to explain why it acted as it did, i.e., “I turned
left because I didn’t want to bump into you.” The second kind of
pre-emptive query requires the robot to interpret the question in
such a way it can first initialize its internal model to match the
situation described, run that model, then narrate the actions it
predicts it would take in that situation. In this case the robot acts
first as the listener in Figure 9, then as the narrator in Figure 8.
In this way the robot would actively assist its human user to build
a theory-of-mind for the robot.

4. DISCUSSION

4.1. Related Work
One of the most influential works to date on proposing and
implementing artificial theory of mind is Scassellati’s 2002 paper
Theory of Mind for a Humanoid Robot (Scassellati, 2002). Based

autobiographical memory into the internal model, perhaps leading to what

Conway (2005) describes as a self-memory system (SMS).
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FIGURE 8 | Robot A, the storyteller, “narrativizes” one of the “what-if” sequences generated by its generate-and-test machinery. First an action is tested in the robot’s

internal model (left), second, that action—which may or may not be executed for real—is converted into speech and spoken by the robot. From Winfield (2018).

FIGURE 9 | Robot B, the listener, uses the same “what-if” cognitive machinery to “imagine” robot A’s story. Here the robot hears A’s spoken sequence, then converts

it into an action which is tested in B’s internal model. From Winfield (2018).

on aspects of theory of mind present in young (4 month old)
infant humans the author describes an implementation of visual
attention, finding faces and the recognition and tracking of eyes,
and discrimination between animate and inanimate, on the MIT
Cog robot (Brooks et al., 1999). In contrast with the present work
Scassellati (2002) is based on theory theories of mind (TT). Other
works have also explored the important role of shared attention
in social interaction and development, for instance Deák et al.
(2001) and Kaplan and Hafner (2006).

Kim and Lipson (2009) describe an approach in which one
robot uses an ANN to learn another’s intentions based on its
behavior. A very recent paper Machine Theory of Mind also

describes a machine learning approach in which one agent
observes another’s behaviors and learns a predictive model of that

agent (Rabinowitz et al., 2018); the simulated agents of this work
learn the rules underlying the behavior of the observed agent,
hence this is also a TT approach.

Several authors have proposed artificial theory of mind as
a mechanism for improved human-robot interaction. Devin
and Alami (2016), for instance, describe an implementation in
which a robot estimates the status of the goals of a human
with which it is interacting (i.e., “in progress,” “done,” “aborted”
or “unknown”). Görür et al. (2017) also propose a mechanism
for estimating a human’s beliefs about possible actions in a
shared human-robot task; they propose a stochastic approach in
which a Hidden Markov Model estimates action states in the set

(“not ready,” “ready,” “in progress,” “help needed,” “done,” and
“aborted”).
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A number of authors focus on the role of deception as an
indicator of theory of mind. Terada and Ito (2010) outline an
experiment to deceive a human about the intentions of a robot,
noting that the experimental result indicated that unexpected
change of a robot behavior gave rise to an impression of being
deceived by the robot. Wagner and Arkin (2011) describe an
experiment in which two robots play a game of hide and seek in
which one, the hider, attempts to deceive the seeker by sending
false information.

A small number of works have also proposed “like-me”
or “self-as” simulation approaches, including Kennedy et al.
(2009) and Gray and Breazeal (2014). Kennedy et al. (2009)
promote like-me simulation as “a powerful mechanism because
for any “individual” strategy the agent has, it can reason about
another agent having that strategy and, further, by creating
hypothetical situations ... it can predict the actions it would take
under hypothetical conditions;” the paper describes a like-me
simulation based on the ACT-R/E (Adaptive Control of Thought-
Rational/Embodied) architecture, with two robots in which one
acts as a proxy human. Gray and Breazeal (2014) describe a
very elegant experiment in which a robot simulates both its
own possible actions and a human’s likely perception of those
actions in order to choose actions that manipulate the human’s
beliefs about what the robot is doing — and thereby deceive
the human. These two works model the simulation theory of
mind (ST) and are therefore of particular relevance to the present
paper.

4.2. Discussion and Conclusions
To what extent do any of the experiments outlined in this paper
demonstrate (artificial) theory of mind, as variously defined
in section 2.1? We can certainly be clear about which aspects
of theory of mind we cannot emulate. Our robots do not
“know about minds” (Roberts, 2001) (arguably they do not
know about anything), but we would also suspect that while
animals have minds they too do not know about them. Nor do
our robots either have, or model, affective states. And we can
be quite sure that none of the robots described in this paper
would pass Premack and Woodruff (1978)’s famous tests which
controversially demonstrated that chimpanzee have theory of
mind.

Many accounts of theory of mind are couched in terms of
modeling or predicting the “mental states” of others (Astington
and Dack, 2008; Birch et al., 2017), but there are two problems
with the use of this term. The first is that there is no clear
understanding or agreement over what mental states are in
animals and humans; it seems that the term is used as a proxy for
several things including beliefs, desires, emotions and intentions.
Secondly, robots are not generality regarded as having mental
states. They certainly do not have emotions, but they arguably
can have a machine analog of simple beliefs (i.e., that the path
to the left is safe, whereas the path to the right is unsafe, or a
belief that another agent is moving toward danger and that by
inference its mental state is “unaware of danger”), simple desires
(i.e., to maintain its energy level by returning to a recharging
station whenever its battery charge drops below a certain level)
and intentions (i.e., goals, such as “navigate safely to position x”).
Although we have not used the term mental states in this paper

nor do the experiments of this paper explicitly label such states
they can be properly described as predicting and/or inferring the
beliefs, desires and intentions of both themselves and others.

If we accept simulation of self and other as an artificial analog
of mental representation, then our robots do demonstrate this
attribute. The experiments of sections 3.1 and 3.2 show that
a robot with a simulation-based internal model is capable of
predicting the consequences of its actions for both itself and one
or more robots acting as proxy humans, and choosing actions
on the basis of either safety or ethical considerations. They can
therefore “reason about,” i.e., model, the intentions of others,
even though those models are very simple ballistic TT models
and, in the case of the ethical robot experiments in section 3.2,
also modeled by default as irresponsibly unaware of danger. Of
course our robots have a much better model of themselves than
others—but is that not also true of human theory of mind? For
sure we have detailed models for those close to us—family and
close friends—but our models of strangers, when walking on a
sidewalk for example, can be very simple (Helbing and Molnar,
1995).

Although it is an unsophisticated example, arguably the
pedestrian experiment in section 3.1 demonstrates false beliefs
when eachmodels the other as continuing in a straight line when,
in fact, they each turn into the other’s path (Figure 4, right).
In fact we have also shown that it is surprisingly easy to turn
an ethical robot into a mendacious (deceptive) robot, so that
it behaves either competitively or aggressively toward a proxy
human robot (Vanderelst and Winfield, 2016).

We have also demonstrated, in section 3.3, that a robot
with a simulation-based internal model can infer the goals of
another robot, therefore learning the other robot’s intentions.
Imitation is a powerful form of social learning and we argue that
the inferential learning of section 3.3 demonstrates another key
component of theory of mind.

The model of storytelling proposed in section 3.4 gets, we
contend, to the heart of theory of mind. Theory of mind
works best between conspecifics: in general you can much better
understand your partner’s beliefs and intentions than your cat’s.
The two robots in our thought experiment of section 3.4 would in
principle be able to learn each other’s beliefs and intentions in a
very natural (to humans) way, through explanation. This is, after
all, one of the key mechanisms by which infant humans learn
theory of mind; one only has to think of a child asking “Mummy
why are you angry with me?” (Ruffman et al., 2002).

The robots of this paper all have the cognitive machinery to
predict their own behavior. But we must not assume that because
a robot can predict its own behavior it can predict the behavior
of any other agent. Of course when those others are conspecifics
then predicting the behavior of others ‘like me’ becomes a
(conceptually) straightforward matter of co-opting your own
internal model to model others’. In all of the experiments of
this paper we make use of homogeneous robots, which clearly
share the same architecture (although in some cases those robots
are programmed to behave differently, as proxy humans for
instance). In a heterogeneous multi-robot system a robot might
need to model the beliefs or intentions of a robot quite unlike
itself, and the same is clearly true for a robot that might need to
model the mental states of a human. But as Gray and Breazeal
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TABLE 1 | Table summarizing the contribution of each of the experiments of section 3 together with their respective theory modes (as defined in section 2.3).

Experiment Figures Theory mode (section 2.3) Notes

Corridor experiment 2 ST+TT One robot with ST model of self and ballistic TT model of five other robots,

demonstrates predictive modeling of self and reasoning about the intentions of

others, and attention radius.

Pedestrian experiment 4 ST+TT Two robots, each with ST model of self and ballistic TT model of other,

demonstrates false beliefs.

Ethical robot experiments 5 & 6 ST+TT One robot with ST model of self and ballistic TT model of one or two other

robots. Demonstrates predictive modeling of self and reasoning about the

intentions of others. Ballistic TT model extended so that the ethical robot can

test and modify its belief about the proxy-human.

Imitation of goals 7 ST+ST Imitating robot uses ST to model both itself and the demonstrator robot, in order

to infer the demonstrator’s goals.

Story-telling robots 8 & 9 ST+ST Storytelling robot narrates what-if episode from its ST model; listener robot uses

its ST model to introspectively ‘imagine’ that story. Potential to explain the past

and possible future actions of self.

(2014) assert “Humans and robots, while vastly different, share
a common problem of being embodied agents with sensory
motor loops based on affecting and observing the physical world
around them. Bymodeling a humans connection betweenmental
states and the world as similar to its own, and reusing those
mechanisms to help evaluate mental state consequences” a robot
can at the basic level of actions and their consequences—model a
human. The same is clearly also true for a robotmodeling another
robot of a different kind, providing that both observably sense
and act in the physical world.

In the context of human-robot interaction we must consider
the important problem of how a human builds a theory of mind
for a robot; this could be especially important if that robot has
the function of companion or elder-care (assisted living) robot.
In the thought experiment of section 3.4 we outline how a robot’s
self-model can allow the robot to explain itself and hence assist
a human to acquire an understanding of how and why the robot
behaves in different circumstances.

The main contributions of this paper have been to (1) advance
the hypothesis that simulation-based internal models represent
a computational model of the simulation theory of mind (ST)
and (2) to show that such a computational model provides
us with a powerful and realizable basis for artificial theory of
mind. We have shown that experiments with simulation-based
internal models demonstrate the ability to predictively model
the actions of both self and other agents. As summarized in
Table 1 the experiments of section 3 have demonstrated both
ST+TT (hybrid) and ST+ST modes for self + other, as defined
in section 2.3.

In summary, we contend that the experimental work outlined
in this paper does demonstrate a number of components of

theory of mind and can reasonably be described as “experiments
in artificial theory of mind.” The main hypothesis of this paper,
that simulation-based internal modeling can form the basis for
artificial theory of mind has, we argue, been demonstrated.
Whilst far from a complete solution, we propose simulation-
based internal modeling as a powerful and interesting starting
point in the development of artificial theory of mind.
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Despite major progress in Robotics and AI, robots are still basically “zombies” repeatedly

achieving actions and tasks without understanding what they are doing. Deep-Learning

AI programs classify tremendous amounts of data without grasping the meaning of their

inputs or outputs. We still lack a genuine theory of the underlying principles and methods

that would enable robots to understand their environment, to be cognizant of what they

do, to take appropriate and timely initiatives, to learn from their own experience and

to show that they know that they have learned and how. The rationale of this paper is

that the understanding of its environment by an agent (the agent itself and its effects on

the environment included) requires its self-awareness, which actually is itself emerging

as a result of this understanding and the distinction that the agent is capable to make

between its own mind-body and its environment. The paper develops along five issues:

agent perception and interaction with the environment; learning actions; agent interaction

with other agents—specifically humans; decision-making; and the cognitive architecture

integrating these capacities.

Keywords: self-awareness, affordance, human-robot interaction, cognitive architecture, learning, decision-

making, planning, Markovian processes

1. INTRODUCTION

We are interested here in robotic agents, i.e., physical machines with perceptual, computational
and action capabilities. We believe we still lack a genuine theory of the underlying principles and
methods that would explain how we can design robots that can understand their environment and
not just build representations lacking meaning, to be cognizant about what they do and about the
purpose of their actions, to take timely initiatives beyond goals set by human programmers or users,
and to learn from their own experience, knowing what they have learned and how they did so.

1.1. Context And Related Work
These questions are not new. Researchers in cognitive science, neurosciences, artificial intelligence
and robotics have addressed the issues of the organization and operation of a system (natural or
artificial) capable of performing perception, action, deliberation, learning and interaction, up to
different levels of development (Morin, 2006).

The term “cognitive architectures” is commonly used in the Cognitive Sciences, Neuroscience
andArtificial Intelligence (AI) communities to refer to propositions of systems organizationmodels
designed to model the human mind. Among the most renown long-term projects that propose
cognitive architectures with the purpose of generality, two are particularly relevant to mention in
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the present context: (1) The SOAR architecture, standing for
State, Operator And Result, proposed by Lehman et al. (2006);
(2) the ACT-R architecture, standing for Adaptive Control of
Thought-Rational proposed by Anderson et al. (2004). SOAR
aims at modeling human cognition and is based on Alan
Newell’s seminal work on theories of cognition (Newell, 1990).
Operational knowledge in SOAR is represented by production
rules. To achieve a goal, the rules conditions are matched to
a “working memory," of which the contents is encoded as
sets of attribute-values. Learning in SOAR is mainly based on
a mechanism called “chunking" (other mechanisms such as
reinforcement learning are being added). This process is similar
to identifying macro-operators, i.e., new rules that abstract the
succession of rules selected to achieve a goal.

The general concept in ACT-R is a classical rule-based
system. Knowledge about facts and events and their relationships
is organized in a declarative memory along with a set of
production rules and procedures. The memory component
contains data structures called “chunks” whose meaning is
nevertheless quite different from the chunks used in SOAR.
The rules associated to selecting particular chunks depend first
on the existence of matching elements in memory, and second
also depend on the estimated probability of success and cost
of their execution. Applying these rules can result in two
different operations: either trigger robot action in the world,
or change the corresponding elements in declarative memory.
Each chunk in memory is also associated to a “base level”
which increases proportionally to the number of times they
have been selected in the past. This results in using chunks
that have already been selected, i.e., that were used in more
successful activations of the rules. The costs and success rates
of the rules is modified according to the outcome of their
execution. This leads to an improvement of the global behavior
through time. Furthermore, there is a “compilation” process that
produces new rules from analyzing the chunks involved in goal
achievement.

These two major cognitive architectures present
numerous common points. First, they both employ symbolic
representations at high levels of abstractions. Second, they
both use production rules to represent operational knowledge.
Learning mechanisms in both architectures is mainly based on
a memory of the success associated to prior action execution.
Neither of these architectures really tackle the issue of operating
in real time, nor the issue of how to build novel internal
representations from sensory data. In practice, the authors
of both architectures say that these are important issues, but
no clear approach is put forward to overcome these issues.
Another important issue is how to link symbolic and sub-
symbolic representations, which goes beyond these proposals.
Nevertheless, for applications to robots operating in real-time
in the world, perceiving and manipulating unprepared sensory
data, this question is central.

Most previous research aiming at developing robot cognitive
architectures did not address the issue of self-awareness, an
expression of consciousness which is a notion that requires to
be clarified, whose foundations are not proven, and which is
even considered as an illusion by some neuroscientists (Hood,

2012), while others propose to ground it in the solid theoretical
framework of Integrated Information Theory (Koch et al., 2016).

We want to investigate if and how a machine can develop self-
awareness. By doing so, we aim at understanding the concept
itself and to propose computational models that can account
for it (Chella and Manzotti, 2007; Lewis et al., 2011). The paper
describes how the notion of self-awareness could be related to
the development and integration of perceptual abilities for self-
localization and environment interpretation, decision-making
and deliberation, learning and self-assessment, and interaction
with other agents. Such an integration appears to be key to
enable the robot to develop some sense of agency, or the
awareness of being in control of its own actions and responsible
for their outcome (Haggard and Tsakiris, 2009). Moreover,
such an integration of the results and characteristics of various
subconscious deliberative processes (such as perception, action
and learning) in a common global workspace (Dehaene and
Naccache, 2001) appears fundamental in humans to enable meta-
cognitive processes such as the ability to report to oneself and
to other agents about her internal state, her decisions and
the way these decisions were made (Shadlen and Kiani, 2011),
but also importantly to develop predictive models of agency
(Seth et al., 2012).

The processes implementing these capacities must operate
simultaneously for online performance in robots interacting
in real-time with their environment as well as with other
agents. Furthermore, central to this project is the design of an
architecture that constitutes a robotic model of an efficiency-
based performance testbed for the integration of these processes,
and which could in a second stage be used to qualitatively
(and even maybe quantitatively Oizumi et al., 2014) assess the
emergence of minimal degrees of awareness as a result of their
interaction for the resolution of a set of tasks. Our goal is to
explore this assertion and to demonstrate it with experimental
proofs of concepts.

The rationale of this paper is that the understanding of its
environment (including other agents) by an agent requires its
self-awareness, which actually is itself emerging as a result of
this understanding and the distinction that the agent is capable
to make between its own mind-body and its environment.
This constitutes a dynamical system in which some authors
have proposed that the awareness of self through stability
and distinctiveness can be built (Marks-Tarlow, 1999; Shoda
et al., 2002). We claim moreover that on the road toward a
better understanding of the integration mechanisms underlying
awareness, the successes and failures of robotics investigations
can be useful in identifying what is not awareness, for instance
when exemplifying some robotic zombies which can solve
without awareness tasks that are thought to involve awareness
(Oizumi et al., 2014).

1.2. What Is Self-Awareness?
We will not attempt a strong definition of self-awareness, but
we try in this paper to ground the concept. Our hypothesis
is that self-awareness must first rely on perception of self as
different from the environment and from other agents. This
necessitates that the robot interacts with the environment and
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build sensory-motor representations that express the affordance
of environment elements to it, and that it interacts with other
agents to distinguish itself from them. Affordance building is
presented in section 2 and distinction from and reasoning on
other agents is discussed in section 4. Building on environment
representations that integrate perception and action, two main
capacities are introduced that we believe are necessary enabler of
self-awareness:

• Self-evaluation. This is the capacity of “knowing that I know"
and deliberately using this knowledge in action selection. I n
other words, the robot builds a knowledge on what abilities it
has learned and when it can use them. It is able to transform
learnt behaviors into explicit skills and to characterize the
situations in which these skills are applicable, reverting to a
planned goal-directed behavior when they are not. This is
presented in section 3.

• Meta-reasoning. The other main capacity is deliberation on
one’s own reasoning. In section 5, we propose a system initially
driven by basic motivations, able to reason on the means for
satisfying them to determine its own goals. Eventually, new
motivations should be learned but this is not developed in the
paper.

In section 6 the cognitive architecture for integrating all robot
capacities is presented, but a validation of this global architecture
still remains to be done. Finally we conclude in section 7.

2. PERCEPTION AND LEARNING
AFFORDANCES

Traditionally, in robotics perception (excluding visual servoing
and similar closed-loop control) is considered only as an
isolated observation process. We believe that this approach
undermines the capacity of current agents (i.e., robots) for scene
understanding. Simultaneously perceiving and acting requires to
interpret the scene with respect to the agent’s own perceptual
capacity and its potential activities. What an agent can do (or
afford) with an object partly circumscribes the meaning that this
object can have for her: a mug on a table is something that can
be filled with liquid and then brought to the mouth in order to
drink for a human; the same object is a place on which to land
(and possibly eat) for a fly, behind which to hide for a mouse, or
something that can be pushed to the ground producing a fancy
noise for a child. This interpretation fits with Gibson’s notion of
affordance (Gibson, 1977; Sahin et al., 2007).

Reasoning jointly on perception and action requires self-
localization with respect to the environment. Hence developing
sensorimotor representations and not just exteroceptive
representations puts the robot in the center of the perceptual
process, and provides a link between self-awareness and
situation-awareness. Robot localization with respect to its
environment provides a differentiation between the robot’s body
and the external world, and includes a necessary distinction
between its parts and surrounding objects. In addition, robot’s
actual components link robot’s body-environment’s state before
and after actions are applied.

In this section we propose sensory-motor representations
and scene interpretation processes that integrate four inputs:
perceptual (perceiving the external scene), proprioceptive (input
from the agent’s own configuration), contextual (previous
knowledge) and the agent’s action capabilities.

We propose a methodology to build models of objects based
on perceptual clues and effects of robot’s actions on them.
Our methodology employs a Bayesian Network for representing
the robot’s actions, the objects in the environment, as well as
changes in the observable environment triggered by the robot’s
actions. We then perform structure learning on continuous
and discrete variables representing these informations in
order to identify the most probable Bayesian network that
best fits the observed data. Analyzing the structure of the
obtained Bayesian network permits the robot to discover
correlations between itself and the environment using statistical
data.

The proposed affordance learning architecture is depicted in
Figure 1. Measurements from the Environment Interaction are
the main inputs of our approach, it includes visual perception
from camera and proprioception values from joints. A set of
clusters are extracted from clouds of points through Visual
perception. Clusters are then tracked to generate hypotheses
about the objects the robot interacts with. Proprioceptive
feedback is retrieved under the form of measurements of
joint and force. Then the input from perception and action
tasks is analyzed by Effect detectors to extract salient changes
from the interaction process. At the intersection between the
two input processes is Sensory-motor learning which represents
the fusion between the perception and action components.
Affordances learning process relates objects, actions and induced
changes considered as effects to build the final sensory-
motor representation. A Motivational system orchestrates the
process of selecting objects and actions that will be applied
on them. The final representation is saved in a long-term
storage which also provides feedback to the motivational
system.

While interacting with the environment, the robot infers
dependencies between the affordance elements (objects, actions,
and effects) thus combining perceptual and proprioceptual data.
The robot’s motivational system relies on the learned sensory-
motor representations and the Beyesian framework to make
predictions about a set of affordance elements. This inferred
information can be used for learning decisions, for future
planning tasks, or to add sensor and motor capabilities to the
innate repertoire.

2.1. Exteroceptive Perception
To our knowledge, most existing segmentation algorithms
mainly focus on raw to low level information from the 2D
image or 3D point cloud. However, some recent methods
for semantic segmentation have been proposed which can
disambiguate object borders by taking advantage of high-level
object knowledge (Silberman et al., 2012; van Hoof et al.,
2014). However, the computational cost of inference on these
methods rises considerably with the increasing number of
objects. Moreover, the relations between nodes come from a
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FIGURE 1 | Architecture of the proposed sensorimotor approach for scene affordance learning.

priori information from the objects class, which limits their use
in self-discovered scenarios.

2.1.1. Over-Segmentation
Over-segmenting a color cloud of points into small regions based
on local low-level features of geometry and color enables to
form supervoxels. We implemented a 3D version of the Voxel
Cloud Connectivity Segmentation (VCCS) (Papon et al., 2013),
which generates evenly distributed supervoxels. VCCS employs
a flow-constrained local iterative clustering process which uses
geometric features and color, and a seeding methodology based
on 3D space. The seeding of supervoxel clusters is done by
partitioning 3D space to ensure that supervoxels are evenly
distributed according to the geometry of the scene. Strict
spatial connectivity of occupied voxels can be enforced by the
iterative clustering algorithm. This algorithm guarantees that
supervoxels cannot flow across boundaries which are disjoint
in 3D space even if they are connected in the projected
plane.

Supervoxels are represented by a 39-dimension feature vector
composed of 33 elements from an extension of the Fast
Point Feature Histogram (FPFH) (Papon et al., 2013), color
information (Lab color space) and spatial coordinates (x, y, z).
This permits to exploit a pose-invariant multi-dimensional
representation based on the combination of neighboring points.
Figure 2 (middle) depicts an over-segmented cloud where each
supervoxel (representing a segment) cannot cross over object
boundaries that are not spatially adjacent in 3D space.

Supervoxels in Figure 2 (middle) only represent individual
patches. A clustering process is needed to group the supervoxels
that possibly correspond to the same object. The non-parametric
technique described in Comaniciu et al. (2002) was implemented

to find the shape of object hypotheses based on the set of clustered
supervoxels.

Figure 2 (right) shows the result of the clustering method as a
set of labels Lhyp(t) for a cluster of supervoxels that may represent
objects in the current scenario.

The set of generated segments (section 2.1.1) are built only
using the sensory data. This means that segmentation issues can
appear in the form of incomplete, divided and false segments
of real objects in the scenario. We overcome this issue by
performing a tracking-by-detection approach which reduces the
number of false positive segmentations (Chavez-Garcia et al.,
2016b). In this approach, each object is represented by its
centroid, which additionally offers a point of interaction in
further interaction tasks.

2.2. Sensory-Motor Learning
Manipulating objects enables the robot to not only perceive
information, but also and most importantly to learn sensory-
motor correlations between the robot’s basic actions A, the
sensory inputs contained in the objects’ descriptions O, and the
salient changes represented by the effects E. The objective here
is to learn from regularities in the occurrences of elements in O
and E when an action ai ∈ A is triggered. While the robot is
starting the learning from built-in actions, this process permits
to progressively develop a representation of the environment
captured by perception through object movement detection and
proprioceptive feedback.

2.2.1. Objects
We make the assumption that the robot has prior perceptual
capabilities that enable it to discretize the environment. These
capabilities are related to the segmentation approach. The robot
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FIGURE 2 | Results from the perception process. Appearance and spatial information from the RGB-D point cloud of the real scene (Left); supervoxels from

over-segmentation of the point cloud (Middle); and results from intrinsic clustering (Right).

has prior geometrical notions of position, continuity of segments
and normal extraction for surfaces, can recognize different color
values, and using these perceptual capabilities can extract higher
level features (e.g., as combinations) for describing confirmed
objects. The cloud of points representing a object can provide
relevant features, such as color, size and shape. Our architecture
permits to incrementally learn the set of perceptual features
which are relevant in the robot’s surrounding environment.

2.2.2. Actions
We assume that the robot is built with a set of basic motor
capabilities, or actions, described relative to the actor and its
morphology. These basic actions A = {a1, ..., an} are defined with
respect to their control variables in joint space:

a : {Q, Q̇, Q̈}τ (1)

where Q are the joint parameters of the robot used in action
a, and τ the duration of this action. This implies that, by
definition, two actors with completely differentmotor capabilities
and morphologies cannot execute the same actions (but their
effect might be identical).

The extraction of points of interest in the image representing
a particular object is done by raising perceptual hypotheses about
possible identifications of this objects. These points are used to
reduce the set of possible actions that permit to approach the
object through perceptual servoing. In that sense, the focus of
our work is really on sensorimotor representation through object
manipulation.

2.2.3. Effects
An effect is a correlation between an action and a change in
the state of the environment, which includes the agent itself.
Effect learning can be crucial to build internal world models used
for learning and decision-making, consisting in actions’ effect in
terms of possible rewards and possible transitions to different
states of the environment (see section 3 for examples of how the
robot can use such world models).

When a robot interacts with an object it can perceive (via
its exteroceptive capabilities) changes related to the position or

FIGURE 3 | Representation of the grasp-ability affordance relation.

appearance of the object, proprioceptive values from actuators
and feedback from end-effectors. Effect detection (or lack
thereof) represents the common ground for perception and
action frames. Robot’s capabilities to detect effects are divided
into two groups: perceptual-based (e.g., changes in perceptual
representations of objects); and proprioceptive-based (e.g.,
changes in robot’s internal representations).

2.2.4. Affordance Learning
We follow the definition of an affordance employed in Andries
et al. (2018), where we consider O the set of objects, A the set
of actions, and E the set of observable effects. When an actor
gm applies an action al on object ok, generating the effect ej, the
corresponding affordance α is defined as:

α = ((ok, al), ej), for ok ∈ O, al ∈ A and ej ∈ E, (2)

This definition shows an affordance as an acquired relation
between the elements inO,A, and E (Chavez-Garcia et al., 2016a).

An example of an affordance relation between the object toy
and the robot is shown in Figure 3. It illustrates the application
of the robot’s capability grasp, implying that there is a potential of
generating an effect grasped that can be detected by the robot’s
exteroceptive and proprioceptive capabilities (e.g., grip force
change). Using the semantic value of this relation, we can label
it as grasp− ability.
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When the robot interacts with the environment, we record the
values of each element in the affordances’ sets. By considering
each element as a random variable in a Bayesian network B,
the problem of discovering the relations between E, O and A
can then be translated into finding dependencies between the
variables in B, i.e., P(B|D), which means learning the structure
of the corresponding Bayesian network B from interaction data
D. In this way, affordances are described by the conditional
dependencies between variables in B.

The score of a structure is defined as the posterior probability
given the data D. We implemented an information-compression

score that applies a penalization defined as s(N) =
log(N)

2 to
represent the number of bits needed to encode B (Chavez-Garcia
et al., 2016b). This score penalizes structures with larger number
of parameters.

We implemented a search-based structure learning algorithm
based on the hill-climbing technique (Chavez-Garcia et al.,
2016b). The algorithm receives as input the values of variables in
E,O, andA recorded during robot’s interactions. It attempts every
possible single-edge addition, removal, or reversal, selecting
as current top-candidate the network with the highest score,
and iterating. For each tested structure the algorithm estimates
the parameters of the corresponding local probability density
functions. The process stops when the score can not be increased
anymore by a single-edge change. Although this algorithm does
not guarantee that it will settle on a global maximum, a simulated
annealing technique was implemented to avoid getting stuck in
local minima.

Such a robotic implementation of the Bayesian Network
framework for perception allows the robot to display
relationships between affordance elements. The directed nature
of its structure approximates cause-effects relationships and
includes uncertainty from the interaction process. Moreover, in
addition to direct dependencies, the model can represent indirect
causation. These elements are key to enable a first minimal
level of self-awareness of the robot by being able to monitor the
effects of its actions on the environment, differentiate itself, other
agents, movable objects and fixed elements of the environment.
The uncertainty about the learned effect can moreover enable
the robot to display some degree of confidence about the things
it learned and to explicitly require more interactive experience
with the objects and actions for which it is less confident. Finally,
the estimated transitions between states of the environment
that can be learned within world models enable some degree
of anticipation, permitting the robot to predict future states of
the world depending on its actions and on the actions of the
others (as we illustrate in the joint action framework presented
in section 4). These capacities will be crucial for planning
and model-based learning abilities developed in the next
section.

3. LEARNING ACTIONS AND PLANS

One of the main points presented in this section is that the
ability to coordinate different strategies for decision-making and
reinforcement learning (here considered as the main adaptation

process of decision-making) can constitute a first step toward
(i) more robotic autonomy and adaptation, but also toward
(ii) the capacity for the robot to analyse the efficiency of
its decision-making processes and use this analysis to change
not only its behavior but the way it generates its behavior.
Moreover, performing efficient online dynamic coordination
of multiple learning and decision-making systems requires the
implementation of a meta-controller within the robot cognitive
architecture, which observes what each system does, and predicts
and monitors their effect on the robot’s internal state and
environment. This can thus participate further to the emergence
of self-awareness as integration of deliberative and reporting
processes.

Here we consider that the motivational system of the robot
(see section 5) provides reward to the latter when it fulfills
certain tasks (e.g., recharging its batteries in a particular
location, or answering a human request). We further make the
assumption that for the duration we consider, this motivation
will remain stable. In order to accomplish the task and satisfy
its motivation, the robot needs to act in its environment. Its
action selection mechanisms are then in charge of producing
the relevant behavior to reach the task’s goal. These action
selection mechanisms have been traditionally modeled by the
robotic community by action planners (see Khamassi et al.,
2016; Ingrand and Ghallab, 2017 for recent reviews). Planners
produce a sequence of actions to bring the robot from its
current state to the goal state. Initially based on first-order
logic (Fikes and Nilsson, 1971), these planners have been
extended with probabilistic methods to take into account
uncertainty by modeling the problem as a Markov Decision
Process (sometimes Partially Observable if the uncertainty is
on states). This also allows to use reinforcement learning
(RL) algorithms (Sutton and Barto, 1998) to find relevant
policies.

In RL, two main categories of methods can be used: model-
based methods learn and use the transition and reward models of
the problem (respectively the structure of the state-action-state
space and the reward signals in the state-action space); model-
free methods locally learn the reward-predictive value associated
with each state-action pair without explicitly taking into account
the effects of the action predicted by a world model of the task.
The former are comparable to planning, as they find the optimal
policy (i.e., the best action plan) through a costly computation
using a model of the task, and hence completely update the
policy between two interactions with the environment. The latter
are reactive methods allowing fast action selection but are slow
to learn, requiring multiple interactions with the environment
to locally update each state-action value. Each type of action
selection process has its advantages and has been used in a
variety of applications (Kober et al., 2013). However, research
in robotics have only recently started to consider the possibility
of combining these two different learning methods as parallel
alternative strategies to solve the same task (Caluwaerts et al.,
2012; Renaudo et al., 2014).

These multiple action selection systems architectures for
robotics are inspired by biological evidence of a comparable
systems-combination process in mammals. Neurobiological
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studies have highlighted the existence of a goal-directed behavior
when mammals are moderately trained on an instrumental
task (Yin and Knowlton, 2006; Dayan, 2009). This behavior
is characterized by a decision-making process oriented toward
an explicit goal representation. It is moreover hypothesized to
rely on the progressive learning of an internal model of the
task structure, the use of this model for prospective inference
and planning being experimentally observable through transient
increases in subjects’ deliberation time (Viejo et al., 2015). This
enables a high flexibility in response to sudden changes in the
task (e.g., the source of reward is moved), because behaviors
that the internal model do not estimate as leading to the
goal anymore can be inhibited. On the other hand, extensive
training in a familiar task makes the behavior habitual, which
is illustrated by an increase in subjects’ action rate and an
insensitivity to task changes (Balleine and O’Doherty, 2010),
in the same manner as one could persist with the sequence
of finger presses corresponding to an old pin code after this
code has been recently changed. Interestingly, while healthy
mammals can switch back to goal-directed behavior after a short
persistence time following a task change, lesions to different
brain regions can either prolong or reduce this persistence
period, thus suggesting that both types of behaviors might coexist
and compete for control within a modular brain architecture
(Yin and Knowlton, 2006).

While goal-directed and habitual behaviors have been
modeled respectively as model-based and model-free RL
algorithms (Daw et al., 2005), the question of the mechanisms
underlying their coordination is still an active area of research
in computational neuroscience (e.g., Viejo et al., 2015; Dollé

et al., 2018). Nevertheless, here we do not investigate how to
operationalize this coordination and to adaptively switch from
model-based to model-free control with such a bio-inspired
multiple action selection system architecture, because this has
been the subject of our prior work (Renaudo et al., 2014,
2015b,c). Instead, we focus here on how such an architecture
enables the robot to self-monitor these action selection systems,
when they are advantageous and what advantage they bring
(e.g., efficiency vs. rapidity), and thus how the robot can get
the ability to self-report about the way it makes decisions
while learning a particular task. This ability to self-monitor
can be related to the notion of self-awareness and is stated
as important to allow flexible and adaptive control of a being
(Van Gulick, 2017).

3.1. Multiple Action Selection Systems
Architecture
3.1.1. Overall Architecture
The architecture is presented in Figure 4. Each module (or
expert) is a decision-making system that implements one way
of producing actions: the goal-directed expert in a model-based
RL manner and the habitual expert in a model-free RL manner.
These experts learn either a model of the task or only the
local state-action values based on the reward received from
the motivational system and the experienced states and actions.
States are received from robot sensor data processing and a set of
discrete actions is made available to the action selection systems.

Whereas only one decision-making system (expert here) is
sufficient for a robot to act autonomously, our architecture also
integrates an additional component in charge of monitoring

FIGURE 4 | Global action selection architecture composed of two decision systems implementing corresponding behaviors: the goal-directed expert is a

model-based RL algorithm whereas the habitual expert is a model-free RL algorithm. The meta-controller is in charge of monitoring different expert information, giving

control to one of the two. The reward information comes from the motivational system and represents the goal of the task.
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the decision-making process. The meta-controller analyses each
expert and selects which one is actually controlling the robot at
a given time step. It implements the arbitration method studied
hereafter. We argue that this component is necessary to allow the
robot not only to act according to the task to be fulfilled, but also
to criticize and report on its own decision process.

3.1.2. Possible Coordination Methods
In previous work (e.g., Renaudo et al., 2015b,c) we have studied
and compared arbitration methods that can be separated in
two categories: (i) fusion methods merging action selection
probability distributions from each expert into a given state, and
select an action from the final distribution and (ii) selection
methods evaluating which expert is the most relevant in the
current situation and let it decide about the final action. We have
also defined a reference coordination method where each expert
E among N experts (N = 2 here) has a constant and uniform
probability P(E) of being selected: P(E) = 1/N = 0.5 in this case.
This random selection has been used as a proof-of-concept in
earlier work and defines the bottom performance to evaluate the
interest of each particular coordination method (Renaudo et al.,
2014).

Comparison of these different tested coordination methods
suggests that the arbitration method should take into account
multiple signals rather than only one that will miss some of
the required information (Renaudo et al., 2014, 2015c). It also
suggests that arbitration and expert selection should rely on
information available before the experts actually compute the
action to perform in the current state: this allows to save
computation time of the overall decision process.

Moreover, in previous similar works (Dollé et al., 2010;
Caluwaerts et al., 2012; Dollé et al., 2018), the coordination
is mostly performance-based: the meta-controller in these
algorithms learns which expert to recruit in each state of the task
in order to maximize reward, but does not consider each expert’s
specific properties. Here, the habitual expert is computationally
less expensive than the goal-directed expert. Thus, in case of
equal performance of the experts, self-monitoring these processes
should allow the meta-controller to prefer the less costly expert.
On the other hand, the goal-directed expert is more efficient
to update the whole policy between two interactions with
the environment. When the meta-controller observes that the
habitual expert proposes irrelevant actions, it can decide to select
the goal-directed expert despite its high computational and time
costs.

Thus, to illustrate the interest of the self-monitoring capability
provided by the meta-controller, we propose a new Learning and
Cost arbitration method described hereafter.

3.1.3. A Coordination Method Based on Learning and

Cost Signals
Building on these previous conclusions, we propose a new signal-
based method that uses two measures of expert’s status. Only the
selected expert estimates the action values, which allows to save
computation time and to be more reactive. One signal is directly
related to this goal: the intrinsic computation cost incurred by
each expert to evaluate action values. The other signal measures

the experts’ knowledge about the task, which can be evaluated by
their learning progress.

We define THab,TGD as the mean computation times for the
two experts, evaluated with exponential moving averages (see
Equation 3; λ = 0.02 which is equivalent of averaging over 50
decision steps). These means are updated only when their expert
has been selected to make a decision, as no cost can be measured
otherwise.

s̄t = (1− λ) · s̄t−1 + λ · st (3)

We define δQ as the mean variation of Q-values reflecting the
progress of learning in the habitual expert, and δP as the mean
variation of the transition model probabilities reflecting the
progress of learning in the goal-directed expert. In model-based
RL, learning is about estimating the task’s transition and reward
functions. Thus a measure of learning progress should refer to
the model’s estimation rather than the computed Q-values. The
mean variations are updated after each actionwith an exponential
moving average (λ = 0.2 or 5 decision steps).

In order to combine cost and learning information, we define
VE, the value of selecting expert E as the weighted sums in
Equation (4). We seek to preferentially select the expert that
computes at the lowest cost, and that does not need to update
much its knowledge because it already has enough information
about how to solve the task:

VHab = −(αHab · δQ+ βHab ·THab)

VGD = −(αGD · δP + βGD ·TGD)

(4)

The αi and βi parameters are the positive weights of each signal
in the selection. As δP and δQ have different amplitude ranges,
we set αGD = 1 and αHab = 12, so the transition from goal-
directed expert to habitual expert needs a strong convergence
of Q-values in the model-free algorithm. βHab = βGD =

5 in order not to bias the selection and to keep the natural
difference in expert costs. Since the GD expert is computationally
more costly than the Hab one, this method makes the meta-
controller preferentially select the latter more often when the
learning progress is equivalent between experts. These values
are converted into selection probabilities P(E) using a softmax
function (5) from which the selected expert is drawn. As expert
E pays the cost of estimating actions only if it is selected, its
corresponding TE is only updated in the latter case.

P(E) =
exp(VE/τ )

∑
b∈A exp(VE/τ )

(5)

In this method, τ is set to 1.

3.1.4. Evaluation in a Navigation Task
We evaluated the approach of combining multiple action
selection systems in simulation in previous work. Especially,
preliminary analyses of the reference method in a simulated
human-robot interaction task (see Figure 5, left) have been
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FIGURE 5 | (Left) Setup for the Human-Robot Interaction (HRI) task from Renaudo et al. (2015a): the human and the robot collaborate to put all boxes in a trashbin .

(Right) Arena for the navigation task. A mapping of the states produced by the robot has been manually added. The red area indicates the goal location whereas the

green areas indicate starting locations of the robot. Red numbers are starting location indexes; blue numbers are some states indexes referred to later.

reported in Renaudo et al. (2015a) and are further discussed in
the next section on human-robot interaction. Here, we present
novel results with the Learning and Costmethod applied to a real
robot in a navigation task.

In this task, a Kobuki Turtlebot robot has to navigate from
starting locations (see Figure 5, right, green areas numbered
1–4) to the center of a 7.5 m × 3.5 m arena. Two obstacles
split the arena in three corridors, the goal being located in
the middle one (red area). The reward (1 unit) is given when
the robot enters the goal area. It is then driven back to
one of the starting locations (randomly selected). The robot
localizes itself thanks to a standard particular filter based SLAM
algorithm (Grisetti et al., 2007). The occupancy map built
by exploring the environment is discretized into about 30
states following a regular paving. In each state, the robot can
select between the 8 directions around it in the world frame.
The robot controller takes care of driving the robot in the
chosen direction and avoiding obstacles. We evaluate again three
configurations: (i) goal-directed expert alone, (ii) habitual expert
alone, (iii) both experts operate (Combo) and are coordinated
by the meta-controller with the Learning and Cost method.
Each configuration is evaluated 10 times, the habitual expert
alone is given 2 h per repetition to learn from scratch, the
goal-directed expert alone and the combination are given 1h
but benefit from 1h of latent exploration (without reward in
the environment) to allow the goal-directed expert to build its
transition model.

3.2. Results
The first result of this experiment confirms the results from
previous work. Figure 6 shows the final weights (which are
direct images of the Q-values) of the habitual expert in states
near the goal. When the latter is controlling the robot alone,
learning is long and the Q-values are weakly discriminating
which action will give the highest reward. When control is shared
with the goal-directed expert according to the Learning and Cost
method, the habitual expert learns faster (mostly bootstrapped

through observation of the behavior produced by the GD expert),
which is represented by more contrasted final values in these
states.

Figure 7 shows the monitored signals during the navigation
task. Time 0 represents the initialization of a new goal location.
Not surprisingly, the cost of using the goal-directed expert is
one order of magnitude higher than the habitual expert cost.
Interestingly, during the first minutes the habitual expert is more
often selected than the GD expert until the new goal location is
discovered and the GD expert starts making less error so that
it gets more selected by the meta-controller. Then starts a long
habit learning phase where the Hab expert slowly learns the
new appropriate state-action values, which penalizes its selection
(due to the high value of aHab in the criterion). As the two
experts are in different states of knowledge on how to perform
the task, the meta-controller mostly selects the goal-directed
expert, certainlymore costly but more reliable to produce the best
behavior.

Here, given the real robotic setup and the natural slow
learning speed of the habitual expert, the control goes mainly to
the goal-directed expert. In different conditions or with longer
time, the Q-values of the habitual expert can stabilize and this
method favors its selection. Nevertheless, the important message
here relative to the issue addressed in this paper is that these
monitoring signals can be used by the robot to analyse its own
decision-making processes and evaluate which decision-making
strategies (GD or Hab) were the most efficient at different phases
of the task. These capacities to monitor and report about its
own performance can be integrated with representations of other
agents’ own abilities for efficient joint action.

4. HUMAN-ROBOT INTERACTION: AGENT
AWARE TASK PLANNING

For more than a decade, the field of human-robot interaction
has generated many valuable contributions of interest to the
Robotics community at large. We will here give some insights
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FIGURE 6 | Weights of each action (direct image of Q-values) for the habitual expert when alone (Top) or combined with the goal-directed expert (Bottom) at the end

of the navigation task. Each light green dot is the final learned value of each action. The red bar indicates the best action to take from the human perspective. These

measures are shown in the states next to the goal (s27, s28, s29).

concerning a particular type of interaction which is joint action,
and the associated required levels of awareness. To do so, we will
first explain which processes are involved in human-human joint
action and then in human-robot joint action, in order to argue
that minimal levels of self-awareness are required for the robot
to efficiently integrate information about the effects of its actions
and the effects of other agents’ actions into feasible joint action
plans.

4.1. Human-Human Joint Action
In order to establish successful joint action, interacting agents
need to be able to efficiently share and coordinate their
intentions, plans, goals and actions with other participants.
Put it differently, it is not enough to share a common goal
between interacting agents to establish efficient joint action if
each agent then individually chooses his/her own sub-goals, and
simply devise his/her own individual action plan and executes
it. There is a need to share a coherent joint action plan
but also to coordinate actions and sub-plans between agents.
This coordination is particularly crucial during the execution
phase in order to ensure the successful completion of the joint
action (Clark, 1996; Grosz and Kraus, 1996; Bratman, 2014;
Clodic et al., 2017). One possible way to do that is from
the point of view of each agent to monitor both his/her own
actions and intentions as well as those of his/her partner’s.
Such a monitoring process can facilitate the representation

and understanding of the combined impact of agents’ actions
on their shared goal, and the adjustment of what they do
accordingly.

An important ingredient of this agent coordination process
which goes in complementarity with the co-representation
of tasks and actions is joint attention. It is an ability
that has been found in apes to provide a key mechanism
for establishing common ground in joint action by sharing
perceptual representations of the surrounding environment and
task such as the available objects and the occurring events
(Tomasello and Carpenter, 2007). As an example, Brennan
et al. (2008) had participants engage in a joint visual search
task and showed that they were able to most of the time
focus on a common space between them by directing their
attention toward portions of the environment where the other
was looking. Moreover, they found that their performance during
such a joint search task was improved compared to the one
obtained in an individual version of the task. Besides, Vesper
(2014) have shown that co-agents not only engage in joint
attention but also repeatedly perform transient modulations
of their own movements that “reliably [have] the effect of
simplifying coordination." These are known as coordination
smoothers and are part of a more general process called signaling
which constitutes another phenomenon that contributes to
better on-the-fly coordination. A particularly striking example is
when someone exaggerates his/her own movements or reduces
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FIGURE 7 | Evolution of monitored signals when both experts are controlling

the robot during the navigation task. (Top row) shows the sliding mean cost

spent by both experts for decision-making. (Middle row) shows the measures

of learning scaled by their coefficient. (Bottom row) shows the evolution of

the probability of selection of each expert. In these experiments, the strong

parameter of the habitual expert learning measure combined with its slow

convergence favors the goal-directed selection in order to reach the goal more

easily (however at a high computational cost).

his/her movement variability in order to make them more
easily understandable and interpretable by the other participant
(Pezzulo et al., 2013).

It is important in contrast to take into account any form
of joint action that may not require awareness. For instance,
perception-action couplings and emerging synchronies can occur
during joint action, thus making multiple individuals act in
similar ways without any intention to do so, which could be
viewed as a case of emergent coordination. Other processes such
as interpersonal entrainment mechanisms can lead to emergent
coordination without requiring awareness: A famous example
is the one of two people sitting in rocking chairs in the same
room, who sometimes unconsciously synchronize their rocking
frequency (Richardson et al., 2007); Another striking example is
when two people walk side by side and sometimes unconsciously
synchronize their steps (vanUlzen et al., 2008). Another source of
unconscious emergent coordination which is worth mentioning
here is the case of perception-action matching (Prinz, 1997;
Jeannerod, 1999; Rizzolatti and Sinigaglia, 2010). It is a situation
where actions performed by a first agent and observed by a
second one are considered to be mentally matched onto the

second agent’s own action repertoire, through the involvement
of mirror neurons and other mental processes that enable the
induction of the same action tendencies in the two agents.
All these processes are thought to make agents’ behavior more
similar and thus more predictable, which may facilitate joint
action and coordination during action execution.

Humans thus have at their disposal a vast array of processes
that they can use to promote interpersonal coordination. These
processes range from automatic and unintentional on-the-
fly alignments and synchronizations, to sophisticated forms
of reasoning and advanced representational, conceptual and
communicational skills. These processes are complementary
and can be combined together to enable efficient joint action.
Nevertheless, for human-robot interaction, this suggests that not
all joint action situations may require some degree of awareness.

4.2. Human-Robot Joint Action
Human-robot joint action faces similar coordination challenges.
We will explain now a way they can be translated to this case and
quote some related implementation.

The robot needs to have the ability to represent itself and
the human it interacts with. Doing so, it must be able to infer
how each of these representations evolves along the joint action
unfolding. The robot has to be able to consider perspective taking
ability, knowing that representations evolve differently given each
one point of view. Among others, Milliez et al. (2014) and Hiatt
and Trafton (2010) endow a robot with the ability to construct
a representation of other agents’ mental states concerning the
environment allowing it to pass the Sally and Anne test (Wimmer
and Perner, 1983). Then, these mental states are used in Hiatt
et al. (2011) to interpret and explain humans’ behavior.

But the robot also needs to understand and take into account
the effects of its own actions into the mental states of its partners,
which involves a second-degree of awareness. This is done in
Gray and Breazeal (2014) where the robot plays a competitive
game with a human and chooses its action in order to manipulate
the mental state of the human relative to the state of the world.

Each agent must also be able to asses the situation in terms of
links with possible action: the objects that can be manipulated
or moved, their location, the presence or absence of obstacles
that could restrain some possibilities of movements. All these
relate to the learned effects of actions presented in section 2 on
affordances. In Sisbot et al. (2011) the robot uses the geometric
information about the humans and the objects to construct
symbolic knowledge as humans capabilities (an object is visible
or reachable by someone), or relations between objects (an object
is on/in another one). In Lemaignan et al. (2012) we have used
this knowledge to anchor situated discourse during human-
robot interaction. For example, if a human points at a mug
saying “Give me that mug," the robot can understand that the
human wants this mug and not another one. As a corollary, joint
attention appears to be also key during human-robot joint action.
This is because detecting a case of joint attention permits the
robot to know that whatever information it can acquire within
the joint attention space can be considered as also accessible
to its interactor and thus as shared knowledge. Staudte and
Crocker (2011) show that people interpret robot gaze in the
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same way as human gaze and that a congruent use of the robot
gaze helps its human partner to understand spoken references.
Mutlu et al. (2013) also show that the use of speech references
in congruence with robot gaze enables to disambiguate spatial
references in speech, and thus to improve task performance in
joint action. They also put forward that robots in general might
improve task performance and the quality of user experience
during human-robot collaborative interaction by using action
observation.

Another capacity needed by the robot, emphasized, among
others, by Tomasello et al. (2005) as a prerequisite to joint action,
is to be able to read its partner’s actions. Gray et al. (2005)
use the concept of mirror neurons, introduced by Gallese and
Goldman (1998), to infer human action goals by matching the
human movement to one of its own movements (even if the
robot’s morphology differs from that of the human). Hawkins
et al. (2014) endow a robot with the capability to probabilistically
infer what the human is doing andwhat he will do next in order to
anticipate and prepare collaborative action. This capacity relates
to probabilistic transitions learned within the type of world
models used for robot decision-making in section 3. Again, this
suggests that duplicating world models for each agent involved
in the task (Lemaignan et al., 2012) can be a good strategy
for human-robot joint action. This is in line with neuroscience
proposals that a substantial component of awareness resides in
the development of predictive models of agency for self and
others (Seth et al., 2012), and in the ability to report about these
states, predictions and decisions to self and to others (Shadlen
and Kiani, 2011).

Complementarily, shared task representations are important.
It means, if we paraphrase Knoblich et al. (2011)’s definition, that
the robot should have access to some model of what each co-
agents’ respective task consist in and some abilities to monitor
and predict each co-agent’s actions with respect to the shared
goal. (Nikolaidis and Shah, 2012) present a method allowing
the robot to build a shared mental model of how to perform a
collaborative task by looking at human performing the task and
then use it when performing the task with a human.

We have seen that both in human-human and human-
robot joint attention there are similar coordination constraints
that apply. However, it appears that these constraints do not
necessarily apply with the same strength. For instance, when
two humans interact, they both know that they share some
background knowledge such as cultural information, cultural
knowledge, conventions, etc. Thus they can make assumptions
from both sides on what the other knows or not. In contrast, it
seems much more complicated to make similar assumptions in
the human-robot interaction case.

Nevertheless, we have seen that human-human joint
action sometimes involves planned joint action with explicit
shared goals, action plans and attentions, and sometimes
involve automatic synchronization or alignment processes
between partners at a more sensory-motor level. Thus one
might reasonably postulate that the integration of different
types of learning and decision-making within robot cognitive
architectures which has previously been applied to individual
robotic tasks—such as the navigation task presented in section 3

or sequential decision-making tasks in Renaudo et al. (2014)—
may be relevant in the context of human-robot interaction.
This could enable the robot to automatically switch between
automatic/habitual behavior and planned action depending on
the requirement of the task, and thus display more behavioral
flexibility and efficiency during joint action with humans.

Section 3 has put forward the hypothesis that the same
coordination mechanisms for model-based and model-free
reinforcement learning within robot architecture could be
relevant both for non-social and social tasks in the context of
the human-robot interaction task proposed by Alami (2013) and
Lemaignan et al. (2017). Nevertheless, in this previous section
the robot only achieved individual action plans, not joint action
plans.

A more general illustration of awareness of each agent’s
actions’ task-dependent effects and abilities that is required for
joint action plans is shown in Figure 8. Again here, human
and robot have to cooperate by putting some objects in certain
placements where some are accessible only to the human or the
robot. The robot has to elaborate a representation of different
sub-spaces on the table so that it understands that some objects
or places are accessible to the human. The robot tries to estimate
visibility and reachability of the human and of itself (Pandey et al.,
2013; Pandey and Alami, 2014) in order to determine the right
places to use and where they can exchange objects. Also, the robot
here has the capability to estimate the effort of the human in order
to select the most pertinent places.

However, there is still a gap between such representations and
those are required for the execution of an effective shared action
plan. Indeed the robot should be able not only to compute the
perspective of its human partner and use it to estimate how he
can assess the current situation but also to estimate his current
knowledge of the state of the task and the corresponding shared
plan.

In Devin and Alami (2016) and Devin et al. (2017) we have
developed, within the architecture described in Lemaignan et al.
(2017), a framework that permits a robot to estimate the mental
state of its human partner with respect to a given collaborative
task achievement. We have moreover proposed a form of mental
states which contains several task-relevant informations such as
the states of the world, of the goals, actions and plans. To do
so, the robot has to estimate and to permanently update the
spatial perspective of its partners. It moreover has to constantly
track their activity. Once these mental states representations are
constructed and handled by the robot, it can use them to perform
joint actions with humans. In the context of the present project,
we have mostly investigated this in cases of collaborative objects
manipulation. An advantage of the approach is to permit the
robot to adapt online to the human’s behavior and intention
changes, while at the same time informing the human when
needed in a non-intrusive manner, for instance by avoiding to
give unnecessary information that the human could infer himself
through observation or through deduction from past events.

As an illustration, let us consider a PR2 robot sharing with
a human the goal of cleaning a table, that is, to first remove all
objects on the table, then to sweep it, and afterwards to replace all
objects back on the table. Figure 9 shows the initial state of the
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FIGURE 8 | Task of making an object accessible by the human to the robot (Pandey et al., 2013): (a) Places on the support planes where the human can put

something with least effort. (b) Weighted points where the robot can support the human by taking the object. (c) The planner found a possible placement of the object

on the box from where it is feasible for the robot to take. Note that, because of the object-closeness based weight assignment, this placement also reduces the

human’s effort to carry the object.

FIGURE 9 | Initial state of the world in the Clean the table scenario. In this

task, the robot and the human share the goal of cleaning the table together.

world. On the table there is a blue book which is only reachable
by the human, a gray book accessible only by the robot, and a
white book reachable by both. Two actions are available to the
robot: pick-and-place and sweep. The former can be executed by
the robot only when the considered object and support on which
to place the object are reachable by the robot. The latter can be
executed on a surface only when it is again reachable by the robot
and when there are not any objects on it. Figure 10 illustrates the
initial plan produced by the robot to achieve the goal.

The robot, equipped with such enlarged awareness ability,
is not able to perform joint tasks more fluently. to reduce
unnecessary communication and to choose the most pertinent
way to inform about the state of the plan, to produce a
less intrusive behavior of the robot but also potentially detect
situations where human lacks an information allowing him to act
and also the robot can in certain cases prevent human mistakes
due to a wrong evaluation of the current state of the task.

These contributions involved pre-defined world, task and
human models so that the robot can plan complex action
plans involving collaborative human-robot task achievement
with a human-aware task planner (HATP) (Alami et al., 2011;
Lallement et al., 2014) and the associated high-level robot

controller (Devin and Alami, 2016; Devin et al., 2017). This
however did not involve a learning process. We have proposed
in section 3 an extension of this work by considering that the
subparts of the action sequence that are repeatedly performed
by the robot in the same manner in this condition can
be learned by the model-free habit learning system of their
architecture. This is similar to habits learned by humans in
conditions where repetitive behaviors are always occurring in
the same context and in the same manner. This could enable
the robot to autonomously detect and thus be aware of which
situations are stable enough and repetitive enough to avoid
systematically using the slow and costly action planning system.
In addition, this framework should also enable the robot to
automatically detect when environmental changes require to
break the habit and switch back to the planning of new action
sequences. Nevertheless, an extension of this work which is still
under investigation consist in extending this framework by also
enabling the robot to represent a world model associated to
the human’s actions’ effects. This should permit to use model-
based reinforcement learning to refine the world, the task and
the human models used by HATP and the robot supervision
system in order to find other action plans that could not
be anticipated by the human experimenter. This could also
lead to further awareness by the robot of which joint action
plans are predictable by the human, and which should appear
as new.

5. SELF-AWARE DECISION MAKING

5.1. General Approach
Planning in the field of AI is usually considered as the problem
of building a sequence of actions selected from a predefined set
in order to achieve a goal specified by a user or an external
system (see Khamassi et al., 2016; Ingrand and Ghallab, 2017 for
recent reviews). Classical planning is mostly based on First-order
Predicate Logic or extensions thereof. If there are uncertainties
on states, or on action outcomes, a probabilistic formulation is
used and MDPs/POMDPs are the main tools.

The question addressed here is how can a system decide for
its own goals, without being requested by an external agent?
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FIGURE 10 | Shared plan computed by the robot to solve the joint goal: first removing the three objects (books) that are located on the table, then sweeping the table

in order to clean it and finally placing the objects back on the table. While cooperatively achieving the task, the robot will be able to detect and assess correctly why

the human partner stays idle, for instance in cases where, due to a momentary absence, the human may have missed the fact that robot has swept the table.

How can it decide to change goals dynamically? These questions
are important because their answers determine if the agent
is capable of a form of volition. Addressing them has lead
to design a system capable of meta-reasoning to reflect on
its objectives and on the way it is accomplishing them. In
other words, the system described next is reasoning on its own
motivations and actions, a feature we believe is related to self-
awareness.

We want to build a system able to reach potentially concurrent
goals and to manage resources such as energy and time, in an
uncertain dynamic world. We aim for autonomous initiative
and decision-making, so that the agent does not only react
to particular stimuli or direct external requests, but most
importantly selects by itself goals to achieve.

We consider the notion of motivation as the basis for
bootstrapping the system’s behavior, the trigger for a capacity
of taking initiatives. The question of internal motivations has
often been overlooked in the autonomous robotics literature:
motivations are usually identified as simple drives emerging from
external stimuli, whose dynamics are entirely dictated by the
metabolism (e.g., decreasing energy level) and the occasional
unconditional rewarding signals issued from the environment
(such as locations for energy charging). The resulting systems
are thus not purely reactive, but they can neither be considered
as deliberative and motivationally autonomous because they lack
an evaluation and selection among motivations. The selection
is rather usually based on inhibitory signals resulting from
external stimuli, such as in the multiple implementations of the
subsumption architecture (Brooks, 1986).

Here, we want to investigate the potential advantage that an
artificial system could have in developing its own preferences,
i.e., to associate virtual rewards (to be distinguished from reward
predictions used in actor-critic models, for example) to specific
states which seem to have a key role in obtaining long-term
rewards and should thus become intrinsically rewarding. These
virtual rewards would be created by the motivational system,
while the learning systems would remain unaware of the real or
virtual aspect of the rewards they are manipulating. A possible
advantage could be to set key-points where a reset of the reward
discount mechanisms would be made, thus avoiding the problem

of the discounted reward vanishing when trying to learn to reach
very long-term goals.

This could account for example for the behavior of rats in the
task studied in , where the stimulus seems to become a reward in
itself, even when the food is not consumed. These virtual rewards
could then be used for learning by model-based and model-free
systems, as has been proposed by Lesaint et al. (2014) to account
for these rats’ behavior in a similar manner to the one presented
in section 3. Virtual rewards could also explain how getting more
money, a normally intermediate step which can indirectly lead to
unconditional rewards like food, can become a reward in itself.

We focus here on the higher level of the robot cognitive
architecture and propose to transform it into a deliberation
system involving a self-awareness capacity. For this we
hypothesize two layers of decision-making: (i) a higher level one
called deliberation layer for solving multiple goal situations given
motivations (using an “intentional module," context and long-
term objectives, producing a “goal agenda" as input to (ii) a lower
level goal-oriented planning system called the operational layer

which will decide of the more precise course of actions to achieve
the goals. This planning system is associated with a supervisory

control system, which enables to control action execution as in

classical systems.
The notion ofmotivation proposed in this paper, is a structure

consisting of (individual or chained) goals, which may be
permanently active or not, and to which we associate rewards.

We aim to predict the precise effects of the resolution of a goal on

the world and on other motivations, in order to compute a high-
level plan, employing goal-reaching policies in the same way that

we usually use actions in an MDP.
We hence develop an architecture that:

1. handles motivations,
2. computes possible policies for each motivation,
3. predicts the behavior of each policy and its effect on

motivations,
4. predicts the effects of a chain of policies,
5. finds an optimal arrangement of these policies, maximizing

the sum of the rewards obtained by the related motivations
for a given time-horizon.
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5.2. Motivations
Motivations are modeled as finite state machines corresponding
to specific objectives, which can be permanent and basic, such as
“maintain a high battery level," or complex and chained, such as
“activate device A and then device B," etc.

The state of a motivation changes when there is a relevant
change in the state of the world. To check if the conditions are
met for changing the motivation state, an observation of world
state transitions (ws, a,ws′) is required, where ws is the initial
world state, a is the executed action, and ws′ is the resulting
world state. World state transitions provide information that can
trigger motivation transitions, i.e., changes in motivation states
from ms to ms′. A motivation transition can be defined as an
expression: (ms, (ws, a,ws′)) → ms′. We associate a positive or
negative reward r to each motivation transition, reflecting its
importance.

A rewarded motivation transition rmt starting from ms1
and leading to ms2 is called an available-rmt when the current
motivation state is ms1. It becomes activated (or triggered)
when the corresponding world transition (ws, a,ws′) happens,
changing the motivation state to ms2 and obtaining the
corresponding positive or negative reward (r). The maximization
of the sum of these rewards will be sought by the deliberation
system.

5.3. Decision System
The architecture of the decision-making system is organized into
the following modules (Figure 11):

• An intentional module, which manages the agent’s objectives
in the form of motivations. It is embedded in the deliberation
modules (see next). It creates a list of motivations msv,
containing the current states of all motivations. Consequently,
given a msv, it is possible to know all the active rewarded
motivation transitions originating from those current states,
called available-rmts. This module is also responsible for
keeping motivations up-to-date, depending on the world state
evolution.

• An operational module, which computes policies based on the
motivations automata, and computes predictions on resulting
policies. It’s based on an MDP.

• A deliberation module. Its role is to provide to the operational
module rewarded word transitions rwt to reach, to enable it to
build predictable solutions that will trigger the corresponding
rewardedmotivation transitions rmt. The deliberationmodule
then computes the effects of these policies on the world
state and on all motivations. These policies are used as
macro-actions to compute a conditional high-level plan for
maximizing the sum of the motivation rewards. This plan
is called policy agenda handed to the supervisory system for
execution. Thus, this module actually reasons on the active
motivations, and on the best way to satisfy them using the
policies the operation module can offer to achieve them. In
other words, this is a meta-reasoning capacity, which we
believe a core feature of self-awareness. The robot is not simply
driven by its motivations, neither by a classical planning ability
which determines a course of actions to achieve a goal. The

robot determines its own goals by pondering how to satisfy its
motivations and based on its planning results.

In summary, the actions are based onmotivations that are driving
the system’s decisions. Motivations trigger the computation of
policies to achieve them. Deliberation evaluates the policies to
select themore rewarding actions. This achieves ameta reasoning
capacity.

6. COGNITIVE ARCHITECTURE

The RoboErgoSum project employs a cognitive architecture
designed for providing a robot with the necessary skills for
autonomous activity in an unknown environment. The software
architecture of the project is shown in Figure 12. Although we
present an architecture unifying the modules detailed in the
previous sections, a validation of the global architecture is yet to
be done. Nevertheless, parts of this architecture were validated
separately, as detailed at the end of this section.

The architecture contains modules for:

• sensing and acting in the environment (Sensorial perception
and Motor modules),

• sensorimotor learning (sensorimotor learning module),
• symbolic knowledge generation and management (blue

modules: Spatial reasoning and knowledge, Knowledge base)
• decision and action planning (green modules: Human-aware

task planning, Reinforcement Learning model-free decision
making system, Human-aware motion and manipulation
planning),

• controlling the modules (Supervision system),
• goal management (Motivation module),
• dialogue management.

The interconnections between the modules are structured as
follows.

The Sensorial perception module contains the innate set
of perceptual abilities for perceiving the environment (visual
perception and proprioception). TheMotormodule contains the
innate set of action primitives available to the robot, which allow
it to interact with the environment.

The Sensorimotor learning module processes the available
pre-processed inputs (i.e., objects detected, actions performed,
measured effects) to discover and learn which interactions are
available to the robot in the current environment (i.e., affordance
learning). It also generates the set of available actions that were
learned after the interaction with the environment, together with
their pre-conditions and post-conditions.

The Spatial reasoning and knowledge and the Knowledge

base modules (Lemaignan et al., 2017) generate and store
symbolic data about the perceived environment. This data is then
used in the action planning phase by the corresponding modules:
Human-aware task planning module (Lallement et al., 2014),
and the Human-aware motion and manipulation planning

module (Sisbot et al., 2007; Sisbot and Alami, 2012). Knowledge
about the current state and the available actions is used by the
Reinforcement Learning model-free decision making system.
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FIGURE 11 | Decision-making architecture including operational, intentional and deliberation modules. The deliberation module implements a meta-reasoning

capability.

The Supervision system communicates with the
aforementioned modules to decide which action planning
system to employ, to perform on-line plan correction, and to
monitor the activity of humans with which it interacts.

The Motivation module manages the set of goals that have
to be achieved by the robot. Together with the action planning
modules, it computes the optimal set of actions to perform, so as
to obtain the highest reward in the given time horizon.

We validated several pieces of this architecture, using different
sets of modules. We employed in an affordance-learning context
the combination of modules responsible for Sensorial perception,
Motor action execution, and Sensorimotor learning (the 3 yellow
modules on the top of the Figure 12), previously described
in section 2 (Chavez-Garcia et al., 2016b,a). Similarly, in a
human-robot collaboration setting, we employed themodules for
Sensorial perception, Motor action execution, Spatial reasoning
and knowledge, Knowledge base, Supervision system, Human-
aware task planning, Human-aware motion and manipulation
planning, Motivation, and Dialogue Manager (Alami, 2013;
Devin and Alami, 2016; Lemaignan et al., 2017). We also
linked these modules with a Reinforcement-Learning model-free
decision making system (Renaudo et al., 2015a), as described in
section 3.

In spite of these advancements, a validation of the global
architecture remains to be done. This would require a
considerable engineering effort for integrating the presented
modules, as not all the interfaces between them are present today.

7. LESSONS LEARNED AND CONCLUSION

Affordance learning mechanisms presented in section 2 to learn
effects of actions constitute a first level of awareness of the
distinction between self, other agents, movable objects and fixed
elements of the environment. The learned action effects can
moreover be used as transition estimates between states of the
environment which can be used as world models for other
learning and decision-making components of the robot cognitive
architecture.

A second level of awareness can be permitted by having the
agent monitor various dynamic signals about the environment
and its performance to decide which learning strategy is
relevant at any given moment, between the model-based and
model-free strategies presented in section 3. This not only
provides more behavioral flexibility and decisional autonomy,
as we have previously argued (Renaudo et al., 2014; Khamassi
et al., 2016), but as we proposed here can constitute a way
for the robot to further evaluate and report about how it
learned a task, which strategies were efficient in particular
circumstances. Further investigations in this direction should
study whether this enable more generalization for the robot
when it can recognize similar circumstances (measured through
the same performance and task monitoring signals) in which
it could attempt similar learning strategies successfully. A
further progress in integration could permit these monitoring
mechanisms to inform in return the affordance learning module
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FIGURE 12 | The global cognitive architecture employed in the RoboErgoSum project. Blue modules are responsible for generating and managing the symbolic

knowledge. Decision-making modules are shown in green. Solid and dashed lines are used only to improve diagram readability where lines cross, and are otherwise

identical in meaning.

to enrich the list of effects associated to actions with long-term
effects in terms of different task resolutions. While this is still
an ongoing part of the present project and requires further
exploration, we argue here that such an integration of robot
cognitive abilities should permit wider and long-term-oriented
awareness of the agent to mentally represent what the tasks it
can and cannot do with regards to its current capacities and past
experience.

Besides, a particularly interesting lesson that we have
learned from studying robot learning mechanisms in social
and non-social tasks (section 4) is the observation that similar
coordinations mechanisms of model-based and model-free
learning strategies with a meta-controller can be relevant
in both contexts. As the review of the human-human joint
action literature suggests, joint action also involves both
conscious model-based joint intention and unconscious action
synchronization. Both are nevertheless important to enable

intentional and unconscious signaling which enable each agent
to be more predictable (and thus readable) by her coactor
for efficient joint action. Application of the coordination of
model-based and model-free learning mechanisms to human-
robot interaction that we have initiated suggests that it could
also permit the robot to become aware of which tasks
performed in interaction with the human can be performed
habitually, and which require a constant monitoring and
reevaluation of possible action consequences through learned
world models. This can further promote the development
of internal models of what the human can and cannot
do, which objects it can or cannot reach, as well as
models of what the respective tasks of each of the co-
agents.

Interestingly, some of the previous human-robot joint action
experiments that we have previously done and summarized
here suggest that a simple duplication of the robot’s individual
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learning mechanisms presented here could be done within
the robot’s internal representations for each agent involved in
the task. In other words, world models can be learned and
generalized for each agent involved in the task (Lemaignan
et al., 2012) in order to endow a robot with the capability to
probabilistically infer what the human is doing and what he
will do next in order to anticipate and prepare collaborative
action. This is in line with neuroscience proposals that a
substantial component of awareness resides in the development
of predictive models of agency for self and others (Seth
et al., 2012), and in the ability to report about these states,
predictions and decisions to self and to others (Shadlen and
Kiani, 2011).

Section 5 presented progress in the development of further
awareness abilities, this time about the agent’s decisions on
its goals and motivations represented by finite state machines.
We presented a system for managing multiple concurrent
and permanent objectives, performing probabilistic reasoning
with MDPs and capable of reasoning its plans to decide for
the most rewarding actions. The deliberative system has a
modular architecture, which separates the planning from the
goal-managing entity, allowing for an easy integration into an
existing robotic cognitive architecture.

Finally, we presented a global cognitive architecture designed
to permit the integration of these different cognitive functions.

The whole work reported in this paper provides insights about
how to achieve a self-aware system and to decipher what is
awareness and what it is not, by monitoring the processes of
the robot and recognizing when they solved a task with explicit
deliberation and model-based strategies, or through unconscious
model-free learning. It would be interesting to be able to measure

the amount of integrated information in the robot cognitive
architecture during these different processes, and see whether we
can differentiate the two quantitatively, in agreement with the

integrated information theory of Oizumi et al. (2014). This would
need to be the subject of future research projects.
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Active inference is an ambitious theory that treats perception, inference, and

action selection of autonomous agents under the heading of a single principle. It

suggests biologically plausible explanations for many cognitive phenomena, including

consciousness. In active inference, action selection is driven by an objective function

that evaluates possible future actions with respect to current, inferred beliefs about the

world. Active inference at its core is independent from extrinsic rewards, resulting in a

high level of robustness across e.g., different environments or agent morphologies. In

the literature, paradigms that share this independence have been summarized under the

notion of intrinsic motivations. In general and in contrast to active inference, these models

of motivation come without a commitment to particular inference and action selection

mechanisms. In this article, we study if the inference and action selection machinery

of active inference can also be used by alternatives to the originally included intrinsic

motivation. The perception-action loop explicitly relates inference and action selection

to the environment and agent memory, and is consequently used as foundation for our

analysis. We reconstruct the active inference approach, locate the original formulation

within, and show how alternative intrinsic motivations can be used while keeping many

of the original features intact. Furthermore, we illustrate the connection to universal

reinforcement learning by means of our formalism. Active inference research may profit

from comparisons of the dynamics induced by alternative intrinsic motivations. Research

on intrinsic motivations may profit from an additional way to implement intrinsically

motivated agents that also share the biological plausibility of active inference.

Keywords: intrinsic motivation, free energy principle, active inference, predictive information, empowerment,

perception-action loop, universal reinforcement learning, variational inference
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1. INTRODUCTION

Active inference (Friston et al., 2012), and a range of other
formalisms usually referred to as intrinsic motivations (Storck
et al., 1995; Klyubin et al., 2005; Ay et al., 2008), all aim to
answer a similar question: “Under minimal assumptions, how
should an agent act?” More practically, they relate to what would
be a universal way to generate behaviour for an agent or robot
that appropriately deals with its environment, i.e., acquires the
information needed to act and acts toward an intrinsic goal. To
this end, both the free energy principle and intrinsic motivations
aim to bridge the gap between giving a biologically plausible
explanation for how real organism deal with the problem and
providing a formalism that can be implemented in artificial
agents. Additionally, they share a range of properties, such as
an independence of a priori semantics and being defined purely
on the dynamics of the agent environment interaction, i.e., the
agent’s perception-action loop.

Despite these numerous similarities, as far as we know, there
has not been any unified or comparative treatment of those
approaches. We believe this is in part due to a lack of an
appropriate unifying mathematical framework. To alleviate this,
we present a technically complete and comprehensive treatment
of active inference, including a decomposition of its perception
and action selection modes. Such a decomposition allows us to
relate active inference and the inherent motivational principle
to other intrinsic motivation paradigms such as empowerment
(Klyubin et al., 2005), predictive information (Ay et al., 2008),
and knowledge seeking (Storck et al., 1995; Orseau et al.,

2013). Furthermore, we are able to clarify the relation to
universal reinforcement learning (Hutter, 2005). Our treatment
is deliberately comprehensive and complete, aiming to be a
reference for readers interested in the mathematical fundament.

A considerable number of articles have been published on
active inference (e.g., Friston et al., 2012, 2015, 2016a,b, 2017a,b;
Linson et al., 2018). Active inference defines a procedure for
both perception and action of an agent interacting with a
partially observable environment. The definition of the method,
in contrast to other existing approaches (e.g., Hutter, 2005;
Doshi-Velez et al., 2015; Leike, 2016), does not maintain a
clear separation between the inference and the action selection
mechanisms, and the objective function. Most approaches for
perception and action selection are generally formed of three
steps: The first step involves a learning or inference mechanism
to update the agent’s knowledge about the consequences of its
actions. In a second step, these consequences are evaluated
with respect to an agent-internal objective function. Finally, the
action selection mechanism chooses an action depending on the
preceding evaluation.

In active inference, these three elements are entangled.
On one hand, there is the main feature of active inference:
the combination of knowledge updating and action selection
into a single mechanism. This single mechanism is the
minimization of a “variational free energy” (Friston et al.,
2015, p. 188). The “inference” part of the name is justified
by the formal resemblance of the method to the variational
free energy minimization (also known as evidence lower

bound maximization) used in variational inference. Variational
inference is a way to turn Bayesian inference into an optimization
problem which gives rise to an approximate Bayesian inference
method (Wainwright and Jordan, 2007). The “active” part is
justified by the fact that the output of this minimization is a
probability distribution over actions from which the actions of
the agent are then sampled. Behaviour in active inference is thus
the result of a variational inference-like process. On the other
hand, the function (i.e., expected free energy) that induces the
objective function in active inference is said to be “of the same
form” as the variational free energy (Friston et al., 2017a, p. 2673)
or even to “follow” from it (Friston et al., 2016b, p. 10). This
suggests that expected free energy is the only objective function
compatible with active inference.

In summary, perception and action in active inference
intertwines four elements: variational approximation, inference,
action selection, and an objective function. Besides these
formal features, active inference is of particular interest for
its claims on biological plausibility and its relationship to the
thermodynamics of dissipative systems. According to Friston
et al. (2012, Section 3) active inference is a “corollary” to the free
energy principle. Therefore, it is claimed, actions must minimize
variational free energy to resist the dispersion of states of self-
organizing systems (see also Friston, 2013b; Allen and Friston,
2016). Active inference has also been used to reproduce a range
of neural phenomena in the human brain (Friston et al., 2016b),
and the overarching free energy principle has been proposed as a
“unified brain theory” Friston (2010). Furthermore, the principle
has been used in a hierarchical formulation as theoretical
underpinning of the predictive processing framework (Clark,
2015, p. 305–306), successfully explaining a wide range of
cognitive phenomena. Of particular interest for the present
special issue, the representation of probabilities in the active
inference framework is conjectured to be related to aspects of
consciousness (Friston, 2013a; Linson et al., 2018).

These strong connections between active inference and
biology, statistical physics, and consciousness research make the
method particularly interesting for the design of artificial agents
that can interact with- and learn about unknown environments.
However, it is currently not clear to which extent active inference
allows for modifications. We ask: how far do we have to commit
to the precise combination of elements used in the literature, and
what becomes interchangeable?

One target for modifications is the objective
function. In situations where the environment does not
provide a specific reward signal and the goal of the agent is
not directly specified, researchers often choose the objective
function from a range of intrinsic motivations. The concept of
intrinsic motivation was introduced as a psychological concept
by Ryan and Deci (2000), and is defined as “the doing of
an activity for its inherent satisfactions rather than for some
separable consequence.” The concept helps us to understand
one important aspect of consciousness: the assignment of affect
to certain experiences, e.g., the experience of fun (Dennett,
1991) when playing a game. Computational approaches to
intrinsic motivations (Oudeyer and Kaplan, 2009; Schmidhuber,
2010; Santucci et al., 2013) can be categorized roughly by the
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psychological motivations they are imitating, e.g., drives to
manipulate and explore, the reduction of cognitive dissonance,
the achievement of optimal incongruity, and finally motivations
for effectance, personal causation, competence and self-
determination. Intrinsic motivations have been used to enhance
behaviour aimed at extrinsic rewards (Sutton and Barto, 1998),
but their defining characteristic is that they can serve as a
goal-independent motivational core for autonomous behaviour
generation. This characteristic makes them good candidates for
the role of value functions for the design of intelligent systems
(Pfeifer et al., 2005). We attempt to clarify how to modify
active inference to accommodate objective functions based on
different intrinsic motivations. This may allow future studies
to investigate whether and how altering the objective function
affects the biological plausibility of active inference.

Another target for modification, originating more from a
theoretical standpoint, is the variational formulation of active
inference. As mentioned above, variational inference formulates
Bayesian inference as an optimization problem; a family of
probability distributions is optimized to approximate the direct,
non-variational Bayesian solution. Active inference is formulated
as an optimization problem as well. We consequently ask: is
active inference the variational formulation of a direct (non-
variational) Bayesian solution? Such a direct solution would
allow a formally simple formulation of active inference without
recourse to optimization or approximation methods, at the cost
of sacrificing tractability in most scenarios.

To explore these questions, we take a step back from
the established formalism, gradually extend the active
inference framework, and comprehensively reconstruct the
version presented in Friston et al. (2015). We disentangle
the four components of approximation, inference, action
selection, and objective functions that are interwoven in active
inference.

One of our findings, from a formal point of view, is
that expected free energy can be replaced by other intrinsic
motivations. Our reconstruction of active inference then yields
a unified formal framework that can accommodate:

• Direct, non-variational Bayesian inference in combination
with standard action selection schemes known from
reinforcement learning as well as objective functions
induced by intrinsic motivations.

• Universal reinforcement learning through a special choice of
the environment model and a small modification of the action
selection scheme.

• Variational inference in place of the direct Bayesian approach.
• Active inference in combination with objective functions

induced by intrinsic motivations.

We believe that our framework can benefit active inference
research as a means to compare the dynamics induced by
alternative action selection principles. Furthermore, it equips
researchers on intrinsic motivations with additional ways for
designing agents that share the biological plausibility of active
inference.

Finally, this article contributes to the research topic:
Consciousness in Humanoid Robots, in several ways. First, there

have been numerous claims on how active inference relates to
consciousness or related qualities, which we outlined earlier in
the introduction. The most recent work by Linson et al. (2018),
also part of this research topic, specifically discusses this relation,
particularly in regards to assigning salience. Furthermore,
intrinsic motivations (including the free energy principle for this
argument) have a range of properties that relate to or are useful to
a range of classical approaches recently summarized as as Good
Old-Fashioned Artificial Consciousness (GOFAC, Manzotti and
Chella, 2018). For example, embodied approaches still need
some form of value-function or motivation (Pfeifer et al., 2005),
and benefit from the fact that intrinsic motivations are usually
universal yet sensitive in regards to an agent’s embodiment.
The enactive AI framework (Froese and Ziemke, 2009), another
candidate for GOFAC, proposes further requirements on how
value underlying motivation should be grounded in constitutive
autonomy and adaptivity. Guckelsberger and Salge (2016)
present tentative claims on how empowerment maximization
relates to these requirements in biological systems, and how it
could contribute to realizing them in artificial ones. Finally, the
idea of using computational approaches for intrinsic motivation
goes back to developmental robotics (Oudeyer et al., 2007),
where it is suggested as way to produce a learning and adapting
robot, which could offer another road to robot consciousness.
Whether these Good Old-Fashioned approaches will ultimately
be successful is an open question, andManzotti and Chella (2018)
asses them rather critically. However, extending active inference
to alternative intrinsic motivations in a unified framework allows
to combine features of these two approaches. For example it may
bring together the neurobiological plausibility of active inference
and the constitutive autonomy afforded by empowerment.

2. RELATED WORK

Our work is largely based on Friston et al. (2015) and we
adopt the setup and models from it. This means many of our
assumptions are due to the original paper. Recently, Buckley
et al. (2017) have provided an overview of continuous-variable
active inference with a focus on the mathematical aspects, rather
than the relationship to thermodynamic free energy, biological
interpretations or neural correlates. Our work here is in as
similar spirit but focuses on the discrete formulation of active
inference and how it can be decomposed. As we point out in
the text, the case of direct Bayesian inference with separate
action selection is strongly related to general reinforcement
learning (Hutter, 2005; Leike, 2016; Aslanides et al., 2017).
This approach also tackles unknown environments with- and
in later versions also without externally specified reward in a
Bayesian way. Other work focusing on unknown environments
with rewards are e.g., (Ross and Pineau, 2008; Doshi-Velez et al.,
2015). We would like to stress that we do not propose agents
using Bayesian or variational inference as competitors to any
of the existing methods. Instead, our goal is to provide an
unbiased investigation of active inference with a particular focus
on extending the inference methods, objective functions and
action-selection mechanisms. Furthermore, these agents follow
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almost completely in a straightforward (if quite involved) way
from the model in Friston et al. (2015). A small difference is
the extension to parameterizations of environment and sensor
dynamics. These parameterizations can be found in Friston et al.
(2016b).

We note that work on planning as inference (Attias, 2003;
Toussaint, 2009; Botvinick and Toussaint, 2012) is generally
related to active inference. In this line of work the probability
distribution over actions or action sequences that lead to a given
goal specified as a sensor value is inferred. Since active inference
also tries to obtain a probability distribution over actions the
approaches are related. The formalization of the goal however
differs, at least at first sight. How exactly the two approaches
relate is beyond the scope of this publication.

3. STRUCTURE OF THIS ARTICLE

Going forward, we will first outline our mathematical notation
in Section 4. We then introduce the perception-action loop,
which contains both agent and environment in Section 5. In
Section 6 we introduce the model used by Friston et al. (2015).
We then show how to obtain beliefs about the consequences of
actions via both (direct) Bayesian inference (Section 6.2) and
(approximate) variational inference (Section 6.4). These beliefs
are represented in the form of a set of complete posteriors. Such
a set is a common object but usually does not play a prominent
role in Bayesian inference. Here, it turns out to be a convenient
structure for capturing the agent’ knowledge and describing
intrinsic motivations. Under certain assumptions that we discuss
in Section 6.3 the direct Bayesian case specializes to the belief
updating of the Bayesian universal reinforcement learning agent
of Aslanides et al. (2017). We then discuss in Section 7 how those
beliefs (i.e., the set of complete posteriors) can induce action-
value functions (playing the role of objective functions) via a
given intrinsic motivation function. We present standard (i.e.,
non-active inference) ways to select actions based on such action-
value functions. Then we look at different instances of intrinsic
motivation functions. The first is the “expected free energy” of
active inference. For this we explicitly show how our formalism
produces the original expression in Friston et al. (2015). Looking
at the formulations of other intrinsicmotivations it becomes clear
that the expected free energy relies on expressions quite similar
or identical to those that occur in other intrinsic motivations.
This suggests that, at least in principle, there is no reason why
active inference should only work with expected free energy as
an intrinsic motivation. Finally, in Section 8 formulate active
inference for arbitrary action-value functions which include
those induced by intrinsic motivations. Modifying the generative
model of Section 6.1 and looking at the variational approximation
of its posterior comes close but does not correspond to the
original active inference of Friston et al. (2015). We explain the
additional trick that is needed.

In the Appendix we provide some more detailed calculations
as well as notation translation tables (Appendix C) from our own
to those of Friston et al. (2015) and Friston et al. (2016b).

4. NOTATION

We will explain our notation in more detail in the text,
but for readers that mostly look at equations we give a
short summary. Note that, Appendix C comprises a translation
between Friston et al. (2015, 2016b) and the present notation.
Mostly, we will denote random variables by upper case letters e.g.,
X,Y ,A,E,M, S, ... their state spaces by calligraphic upper case
letters X ,Y ,A, E ,M,S ..., specific values of random variables
which are elements of the state spaces by lower case letters
x, y, a, e,m, s, .... An exception to this are random variables that
act as parameters of probability distributions. For those, we use
upper case Greek letters 4,8,2, ..., for their usually continuous
state spaces we use 14,12,18, ... and for specific values the
lower case Greek letters ξ ,φ, θ , .... In cases where a random
variable plays the role of an estimate of another variable X, we
write the estimate as X̂, its state space as X̂ and its values as x̂.

We distinguish different types of probability distributions
with letters p, q, r, and d. Here, p corresponds to probability
distributions describing properties of the physical world
including the agent and its environment, q identifies
model probabilities used by the agent internally, r denotes
approximations of such model probabilities which are also
internal to the agent, and d denotes a probability distribution
that can be replaced by a q or a r distribution. We write
conditional probabilities in the usual way, e.g., p(y|x). For a
model of this conditional probability parameterized by θ , we
write q(ŷ|x̂, θ).

5. PERCEPTION-ACTION LOOP

In this section we introduce an agent’s perception-action loop
(PA-loop) as a causal Bayesian network. This formalism forms the
basis for our treatment of active inference. The PA-loop should be
seen as specifying the (true) dynamics of the underlying physical
system that contains agent and environment as well as their
interactions. In Friston’s formulation, the environment dynamics
of the PA-loop are referred to as the generative process. In general
these dynamics are inaccessible to the agent itself. Nonetheless,
parts of these (true) dynamics are often assumed to be known to
the agent in order to simplify computation (see e.g., Friston et al.,
2015). We first formally introduce the PA-loop as causal Bayesian
network, and then state specific assumptions for the rest of this
article.

5.1. PA-loop Bayesian Network
Figure 1 shows an agent’s PA-loop, formalized as causal
Bayesian network. The network describes the following causal
dependencies over time: At t = 0 an initial environment state
e0 ∈ E leads to an initial sensor value s0 ∈ S . This sensor value
influences the memory state m1 ∈ M of the agent at time t = 1.
Depending on this memory state, action a1 ∈ A is performed
which influences the transition of the environment state from
e0 to e1 ∈ E . The new environment state leads to a new sensor
value s1 which, together with the performed action a1 and the
memory state m1, influence the next memory state m2. The loop
then continues in this way until a final time step T.
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FIGURE 1 | First two time steps of the Bayesian network representing the

perception-action loop (PA-loop). All subsequent time steps are identical to the

one from time t = 1 to t = 2.

We assume that all variables are finite and that the PA-loop is
time-homogeneous1. We exclude the first transition from t = 0
to t = 1 from the assumption of time-homogeneity in order
to avoid having to pick an arbitrary action which precedes the
investigated time-frame. The first transition is thus simplified
to p(m1|s0, a0) : = p(m1|s0). Under the assumption of time-
homogeneity and the causal dependencies expressed in Figure 1,
the joint probability distribution over the entire PA-loop is
defined by:

p(e0:T , s0:T , a1:T ,m1:T) =

(
T∏

t=1

p(at|mt) p(mt|st−1, at−1) p(st|et)

× p(et|at , et−1)

)

p(s0|e0) p(e0) (1)

where e0:T is shorthand for states (e0, e1, . . . , eT). In order to
completely determine this distribution we therefore have to
specify the state spaces E ,S ,A, and M as well as the following
probabilities and mechanisms for all e0, et , et+1 ∈ E; s0, st ∈

S; at , at+1 ∈ A;m1,mt ,mt+1 ∈ M for t > 0:

• Initial environment distribution: p(e0),
• Environment dynamics: p(et+1|at+1, et),
• Sensor dynamics: p(st|et),
• Action generation: p(at|mt),
• Initial memory step p(m1|s0),
• Memory dynamics: p(mt+1|st , at ,mt).

In the following we will refer to a combination of initial
environment distribution, environment dynamics, and sensor
dynamics simply as an environment. Similarly, an agent is
a particular combination of initial memory step, memory
dynamics, and action generation. The indexing convention we
use here is identical to the one used for the generative model (see
Section 6.1) in Friston et al. (2015).

Also, note the dependence of Mt on St−1, Mt−1, and
additionally At−1 in Figure 1. In the literature, the dependence

1This means that all state spaces and transition probabilities are independent of

the time step, e.g.,Mt = Mt−1 and p(st |et) = p(st−1|et−1).

on At−1 is frequently not allowed (Ay et al., 2012; Ay and
Löhr, 2015). However, we assume an efference-like update
of the memory. Note that this dependence in addition to
the dependence on mt−1 is only relevant if the actions are
not deterministic functions of the memory state2. If action
selection is probabilistic, knowing the outcome at−1 of the
action generation mechanism p(at−1|mt−1) will convey more
information than only knowing the past memory state mt−1.
This additional information can be used in inference about
the environment state and fundamentally change the intrinsic
perspective of an agent. We do not discuss these changes
in more detail here but the reader should be aware of the
assumption.

In a realistic robot scenario, the action at , if it is to be known
by the agent, can only refer to the “action signal” or “action value”
that is sent to the robot’s physical actuators. These actuators will
usually be noisy and the robot will not have access to the final
effect of the signal it sends. The (noisy) conversion of an action
signal to a physical configuration change of the actuator is here
seen as part of the environment dynamics p(et|at , et−1). Similarly,
the sensor value is the signal that the physical sensor of the robot
produces as a result of a usually noisy measurement, so just like
the actuator, the conversion of a physical sensor configuration to
a sensor value is part of the sensor dynamics p(st|et) which in
turn belongs to the environment. As we will see later, the actions
and sensor valuesmust have well-defined state spacesA and S for
inference on an internal model to work. This further justifies this
perspective.

5.2. Assumptions
For the rest of this article we assume that the environment state
space E , sensor state space S as well as environment dynamics
p(et+1|at+1, et) and sensor dynamics p(st|et) are arbitrarily fixed
and that some initial environmental state e0 is given. Since we
are interested in intrinsic motivations, our focus is not on specific
environment or sensor dynamics but almost exclusively on action
generation mechanisms of agents that rely minimally on the
specifics of these dynamics.

In order to focus on action generation, we assume that all
the agents we deal with here have the same memory dynamics.
For this, we choose a memory that stores all past sensor values
s≺t = (s0, s1, ..., st−1) and actions a≺t = (a1, a2, ..., at−1) in the
memory state mt . This type of memory is also used in Friston
et al. (2015, 2016b) and provides the agent with all existing data
about its interactions with the environment. In this respect, it
could be called a perfect memory. At the same time, whatever the
agent learned from s≺t and a≺t that remains true based on the
next time step’s s�t+1 and a�t+1 must be relearned from scratch
by the agent. A more efficient memory use might store only a
sufficient statistic of the past data and keep reusable results of
computations inmemory. Such improvements are not part of this
article (see e.g., Fox and Tishby, 2016, for discussion).

Formally, the state space M of the memory is the set of all
sequences of sensor values and actions that can occur. Since there

2In the deterministic case there is a function f :M → A such that

p(mt |st−1, at−1,mt−1) = p(mt |st−1, f (mt−1),mt−1) = p(mt |st−1,mt−1).
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is only a sensor value and no action at t = 0, these sequences
always begin with a sensor value followed by pairs of sensor
values and actions. Furthermore, the sensor value and action
at t = T are never recorded. Since we have assumed a time-
homogeneous memory state spaceM we must define it so that it
contains all these possible sequences from the start. Formally, we
therefore choose the union of the spaces of sequences of a fixed
length (similar to a Kleene-closure):

M = S ∪

(
T−1⋃

t= 1

S × (S ×A)t

)

. (2)

With this we can define the dynamics of the memory as:

p(m1|s0) :=

{
1 ifm1 = s0

0 else.
(3)

p(mt|st−1, at−1,mt−1) :=

{
1 ifmt = mt−1st−1at−1

0 else.
(4)

This perfect memory may seem unrealistic and can cause
problems if the sensor state space is large (e.g., high resolution
images). However, we are not concerned with this type of
problem here. Usually, the computation of actions based on past
actions and sensor values becomes a challenge of efficiency long
before storage limitations kick in: the necessary storage space
for perfect memory only increases linearly with time, while, as
we show later, the number of operations for Bayesian inference
increases exponentially.

For completeness we also note how the memory dynamics
look if actions are a deterministic function f :M → A of the
memory state. Recall that in this case we can drop the edge from
At−1 to Mt in the PA-loop in Figure 1 and have at = f (mt) so
that we can define:

p(m1|s0) :=

{
1 ifm1 = s0

0 else.
(5)

p(mt|st−1,mt−1) :=

{
1 ifmt = mt−1st−1f (mt−1)

0 else.
(6)

Given a fixed environment and the memory dynamics, we only
have to define the action generation mechanism p(at|mt) to fully
specify the perception-action loop. This is the subject of the next
two sections.

In order to stay as close to Friston et al. (2015) as possible,
we first explain the individual building blocks that can be
extracted from Friston’s active inference as described in Friston
et al. (2015). These are the variational inference and the action
selection. We then show how these two building blocks are
combined in the original formulation. We eventually leverage
our separation of components to show how the action selection
component can be modified, and thus extend the active inference
framework.

6. INFERENCE AND COMPLETE
POSTERIORS

Ultimately, an agent needs to select actions. Inference based on
past sensor values and actions is only needed if it is relevant to
the action selection. Friston’s active inference approach promises
to perform action selection within the same inference step that
is used to update the agent’s model of the environment. In this
section, we look at the inference component only and show how
an agent can update a generative model in response to observed
sensor values and performed actions.

The natural way of updating such a model is Bayesian
inference via Bayes’ rule. This type of inference leads to what we
call the complete posterior. The complete posterior represents all
knowledge that the agent can obtain about the consequences of
its actions from its past sensor values and actions. In Section 7 we
discuss how the agent can use the complete posterior to decide
what is the best action to take.

Bayesian inference as straightforward recipe is usually not
practical due to computational costs. The memory requirements
of the complete posterior update increases exponentially with
time and so does the number of operations needed to select
actions. To keep the computational tractable, we have to
limit ourselves to only use parts of the complete posterior.
Furthermore, since the direct expressions (even of parts) of
complete posteriors are usually intractable, approximations are
needed. Friston’s active inference is committed to variational
inference as an approximation technique. Therefore, we explain
how variational inference can be used as an approximation
technique. Our setup for variational inference (generative model
and approximate posterior) is identical to the one in Friston et al.
(2015), but in this section we ignore the inference of actions
included there. We will look at the extension to action inference
in Section 7.

In the perception-action loop in Figure 1, action selection
(and any inference mechanism used in the course of it) depends
exclusively on the memory state mt . As mentioned in Section 5,
we assume that this memory state contains all past sensor values
s≺t and all past actions a≺t . To save space, we write sa≺t : =

(s≺t , a≺t) to refer to both sensor values and actions.We then have:

mt = sa≺t . (7)

However, since it is more intuitive to understand inference
with respect to past sensor values and actions than in terms of
memory, we use sa≺t explicitly here in place ofmt .

6.1. Generative Model
The inference mechanism, internal to the action selection
mechanism p(a|m), takes place on a hierarchical generative
model (or density, in the continuous case). “Hierarchical”
means that the model has parameters and hyperparameters, and
“generative” indicates that the model relates parameters and
latent variables, i.e., the environment state, as “generative” causes
to sensor values and actions as data in a joint distribution. The
generative model we investigate here is a part of the generative
model used in Friston et al. (2015). For now, we omit the
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probability distribution over future actions and the “precision”,
which are only needed for active inference and are discussed later.
The generative models in Friston et al. (2016a,b, 2017a) are all
closely related.

Note that we are not inferring the causal structure of the
Bayesian network or state space cardinalities, but define the
generative model as a fixed Bayesian network with the graph
shown in Figure 2. It is possible to infer the causal structure (see
e.g., Ellis andWong, 2008), but in that case, it becomes impossible
to represent the whole generative model as a single Bayesian
network (Ortega, 2011).

The variables in the Bayesian network in Figure 2 that
model variables occurring outside of p(a|m) in the perception-
action loop (Figure 1), are denoted as hatted versions of their
counterparts. More precisely:

• ŝ ∈ Ŝ = S are modelled sensor values,
• â ∈ Â = A are modelled actions,
• ê ∈ Ê are modelled environment states.

To clearly distinguish the probabilities defined by the generative
model from the true dynamics, we use the symbol q instead
of p. In accordance with Figure 2, and also assuming time-
homogeneity, the joint probability distribution over all variables

in the model until some final modelled time T̂ is given by:

q(ê0:T , ŝ0:T , â1:T , θ
1, θ2, θ3, ξ 1, ξ 2, ξ 3)

:=

(
T∏

t= 1

q(ŝt|êt , θ
1) q(êt|ât , êt−1, θ

2) q(ât)

)

× q(ŝ0|ê0, θ
1) q(ê0|θ

3)

(
3∏

i= 1

q(θ i|ξ i) q(ξ i)

)

(8)

Here, θ1, θ2, θ3 are the parameters of the hierarchical model, and
ξ 1, ξ 2, ξ 3 are the hyperparameters. To save space, we combine the

FIGURE 2 | Bayesian network of the generative model with parameters

2 = (21,22,23) and hyperparameters 4 = (41,42,43). Hatted variables

are models / estimates of non-hatted counterparts in the perception-action

loop in Figure 1. An edge that splits up connecting one node to n nodes (e.g.,

22 to Ê1, Ê2, ...) corresponds to n edges from that node to all the targets

under the usual Bayesian network convention. Note that in contrast to the

perception-action loop in Figure 1, imagined actions Ât have no parents. They

are either set to past values or, for those in the future, a probability distribution

over them must be assumed.

parameters and hyperparameters by writing

θ := (θ1, θ2, θ3) (9)

ξ := (ξ 1, ξ 2, ξ 3). (10)

To fully specify the generative model, or equivalently a
probability distribution over Figure 2, we have to specify the state
spaces Ê , Ŝ , Â and:

• q(ŝ|ê, θ1) the sensor dynamics model,
• q(ê′|â′, ê, θ2) the environment dynamics model,
• q(ê0|θ

3) the initial environment state model,
• q(θ1|ξ 1) the sensor dynamics prior,
• q(θ2|ξ 2) the environment dynamics prior,
• q(θ3|ξ 3) the initial environment state prior,
• q(ξ 1) sensor dynamics hyperprior,
• q(ξ 2) environment dynamics hyperprior,
• q(ξ 3) initial environment state hyperprior,

• T̂ last modelled time step,
• q(ât) for all t ∈ {1, , ..., T̂} the probability distribution over the

actions at time t.

The state spaces of the parameters and hyperparameters are
determined by the choice of Ê , Ŝ , Â. We will see in Section 6.2
that Ŝ = S and Â = A should be chosen in order to use this
model for inference on past sensor values and actions. For Ê it
is not necessary to set it equal to E for the methods described to
work. We note that if we set Ê equal to the memory state space
of Equation (2) the model and its updates become equivalent
to those used by the Bayesian universal reinforcement learning
agent Hutter (2005) in a finite (environment and time-interval)
setting (see Section 6.3).

The last modelled time step T̂ can be chosen as T̂ = T, but
it is also possible to always set it to T̂ = t + n, in which case
n specifies a future time horizon from current time step t. Such
an agent would model a future that goes beyond the externally

specified last time step T. The dependence of T̂ on t (which we do
not denote explicitly) within p(a|m) is possible since the current
time step t is accessible from inspection of the memory state mt

which contains a sensor sequence of length t.
The generative model assumes that the actions are not

influenced by any other variables, hence we have to specify action
probabilities. This means that the agent does not model how
its actions come about, i.e., it does not model its own decision
process. Instead, the agent is interested in the (parameters of) the
environment and sensor dynamics. It actively sets the probability
distributions over past and future actions according to its
needs. In practice, it either fixes the probability distributions to
particular values (by using Dirac delta distributions) or to values
that optimize some measure. We look into the optimization
options in more detail later.

Note that the parameters and hyperparameters are standard
random variables in the Bayesian network of the model. Also, the
rules for calculating probabilities according to this model are just
the rules for calculating probabilities in this Bayesian network.

In what follows, we assume that the hyperparameters are
fixed as 41 = ξ 1,42 = ξ 2,43 = ξ 3. The following
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procedures (including both Bayesian and variational inference)
can be generalized to also infer hyperparameters. However, our
main reference (Friston et al., 2015) and most publications on
active inference also fix the hyperparameters.

6.2. Bayesian Complete Posteriors
During action generation [i.e., within p(a|m)] at time t, the agent
has retained all its previously perceived sensor states and its
previously performed actions in memory. The “experience” or
data contained in its memory is thusmt = sa≺t . This data can be
plugged into the generative model to obtain posterior probability
distributions over all non-observed random variables. Also, the
model can estimate the not yet observed sensor values ŝ

t:T̂
, past

and future unobservable environment states ê
0:T̂

, parameters θ

and hyperparameters ξ . These estimations are done by setting:

Âτ = aτ , for τ < t (11)

and

Ŝτ = sτ , for τ < t. (12)

as shown in Figure 3 for t = 2. For these assignments to be
generally possible, we need to choose Â and Ŝ equal to A and S

respectively. The resulting posterior probability distribution over
all non-observed random variables is then, according to standard
rules of calculating probabilities in a Bayesian network:

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ )

:=
q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ )∫ ∑

ŝ
t:T̂

,ê
0:T̂

,â
t:T̂

q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ ) dθ
. (13)

Eventually, the agent needs to evaluate the consequences of its
future actions. Just as it can update the model with respect to past
actions and sensor values, the agent can update its evaluations
with “contemplated” future action sequences â

t:T̂
. For each such

FIGURE 3 | Internal generative model with plugged in data up to t = 2 with

Ŝ0 = s0, Ŝ1 = s1 and Â1 = a1 as well as from now on fixed hyperparameters

ξ = (ξ1, ξ2, ξ3). Conditioning on the plugged in data leads to the posterior

distribution q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t, ξ ). Predictions for future sensor values

can be obtained by marginalising out other random variables e.g., to predict

Ŝ2 we would like to get q(ŝ2|s0, s1, a1, ξ ). Note however that this requires an

assumption for the probability distribution over Â2.

future action sequence â
t:T̂

, the agent obtains a distribution over
the remaining random variables in the model:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

:=
q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ )∫ ∑

ŝ
t:T̂

,ê
0:T̂

q(s≺t , ŝt:T̂ , ê0:T̂ , a≺t , ât:T̂ , θ , ξ ) dθ
. (14)

We call each such distribution a Bayesian complete posterior. We
choose the term complete posterior since the “posterior” by itself
usually refers to the posterior distribution over the parameters
and latent variables q(θ , êt−1|sa≺t , ξ ) [we here call this a
posterior factor, see Equation (16)] and the posterior predictive
distributions marginalize out the parameters and latent variables
to get q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ). The complete posteriors are probability

distributions over all random variables in the generative model
including parameters, latent variables, and future variables. In
this sense the set of all (Bayesian) complete posteriors represents
the complete knowledge state of the agent at time t about
consequences of future actions after updating the model with
past actions and observed sensor values sa≺t . At each time step
the sequence of past actions and sensor values is extended from
sa≺t to sa≺t+1 (i.e., mt goes to mt+1) and a new set of complete
posteriors is obtained.

All intrinsic motivations discussed in this article evaluate
future actions based on quantities that can be derived from the
corresponding complete posterior.

It is important to note that the complete posterior can be
factorized into a term containing the influence of past sensor
values and actions (data). This factorization can be made on the
parameters θ and ξ , the environment states ê≺t , predicted future
environment states ê

t:T̂
and sensor values ŝ

t:T̂
depending on the

future actions â
t:T̂

, and the estimated environment state êt−1 and
θ . Using the conditional independence

SA≺t ⊥⊥ Ŝ
t:T̂

, Ê
t:T̂

| Â
t:T̂

, Êt−1,2,4, (15)

which can be identified (via d-separation; Pearl, 2000) from the
Bayesian network in Figure 3, we can rewrite this as:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ). (16)

This equation represents the desired factorization. This
formulation separates complete posteriors into a predictive and
a posterior factor. The predictive factor is given as part of the
generative model (Equation 8)

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) =

T̂∏

r=t

q(ŝr|êr , θ
1) q(êr|âr , êr−1, θ

2) (17)

and does not need to be updated through calculations at different
time steps. This factor contains the dependence of the complete
posterior on future actions. This dependency reflects that, under
the given generative model, the consequences of actions for each
combination of 2 and Êt−1 remain the same irrespective of
experience. What changes when a new action and sensor value
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pair comes in is the distribution over the values of 2 and Êt−1

and with them the expectations over consequences of actions.
On the other hand, the posterior factor must be updated

at every time step. In Appendix A, we sketch the computation
which shows that it involves a sum over |E|t elements. This
calculation is intractable as time goes on and one of the reasons
to use approximate inference methods like variational inference.

Due to the above factorization, we may only need to
approximate the posterior factor q(ê≺t , θ |sa≺t , ξ ) and use the
exact predictive factor if probabilities involving future sensor
values or environment states are needed.

This is the approach taken e.g., in Friston et al. (2015).
However, it is also possible to directly approximate parts of
the complete posterior involving random variables in both
factors, e.g., by approximating q(ê

0:T̂
, θ1|â

t:T̂
, sa≺t , ξ ). This latter

approach is taken in Friston et al. (2016b) and we see it again in
Equation (43) but in this publication the focus is on the former
approach.
In the next section, we look at the special case of universal
reinforcement learning before we go on to variational inference
to approximate the posterior factor of the (Bayesian) complete
posteriors.

6.3. Connection to Universal
Reinforcement Learning
In this section, we relate the generative model of Equation (8) and
its posterior predictive distribution to those used by the Bayesian
universal reinforcement learning agent. Originally, this agent is
defined byHutter (2005).More recent work includes Leike (2016)
and (for the current purpose sufficient and particularly relevant)
Aslanides et al. (2017).

Let us set Ê = M withM as in Equation (2) and let the agent
identify each past sa≺t with a state of the environment, i.e.,

êt−1 = sa≺t . (18)

Under this definition the next environment state êt is just the
concatenation of the last environment state sa≺t with the next
next action selected by the agent ât and the next sensor value ŝt :

êt = ŝâ�t = sa≺t ŝât . (19)

So given a next contemplated action ¯̂at the next environment
state êt is already partially determined. What remains to be
predicted is only the next sensor value ŝt . Formally, this is
reflected in the following derivation:

q(êt| ¯̂at , êt−1, θ
2) := q(ŝt , ât , ŝâ≺t|

¯̂at , sa≺t , θ
2) (20)

= q(ŝt|ât , ŝâ≺t , ¯̂at , sa≺t , θ
2) q(ât , ŝâ≺t|

¯̂at , sa≺t , θ
2)

(21)

= q(ŝt|ât , ŝâ≺t , ¯̂at , sa≺t , θ
2)δ ¯̂at (ât)δsa≺t (ŝâ≺t) (22)

= q(ŝt| ¯̂at , sa≺t , θ
2)δ ¯̂at (ât)δsa≺t (ŝâ≺t). (23)

This shows that in this case the model of the next environment
state (the left hand side) is determined by the model of the next
sensor value q(ŝt| ¯̂at , sa≺t , θ

2).

So instead of carrying a distribution over possible models of
the next environment state such an agent only needs to carry a
distribution over models of the next sensor value. Furthermore,
an additional model q(ŝ|ê, θ1) of the dependence of the sensor
values on environment states parameterized by θ1 is superfluous.
The next predicted sensor value is already predicted by the model
q(ŝt|ât , sa≺t , θ

2). It is therefore possible to drop the parameter θ1.
The parameter θ3, for the initial environment state

distribution, becomes a distribution over the initial sensor
value since ê0 = ŝ0:

q(ê0|θ
3) = q(ŝ0|θ

3). (24)

We can then derive the posterior predictive distribution and
show that it coincides with the one given in Aslanides et al.
(2017). For the complete posterior of Equation (16) we find:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) (16 revisited)

= q(ê
t:T̂

|ŝ
t:T̂

, â
t:T̂

, êt−1, θ) q(ŝt:T̂ |ât:T̂ , êt−1, θ) q(ê≺t , θ |sa≺t , ξ )

(25)

= q(ŝ
t:T̂

|â
t:T̂

, sa≺t , θ) q(θ |sa≺t , ξ )

×

t∏

τ=0

δsa≺τ
(êτ )

T̂∏

τ=t+1

δsa≺t ŝât : τ (êτ ). (26)

To translate this formulation into the notation of Aslanides et al.
(2017) first drop the representation of the environment state
which is determined by the sensor values and actions anyway.
This means that the complete posterior only needs to predict
future sensor values and parameters. Formally, this means the
complete posterior can be replaced without loss of generality:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) → q(ŝ
t:T̂

|â
t:T̂

, sa≺t , θ) q(θ |sa≺t , ξ ).

(27)

To translate notations let θ → ν; â, a → a; ŝ, s → e. Also, set
T̂ → t because only one step futures are considered in universal
reinforcement learning (this is due to the use of policies instead
of future action sequences). Then, the equation for the posterior
predictive distribution

q(ŝt|ât , sa≺t , ξ ) =

∫

q(ŝt|ât , sa≺t , θ) q(θ |sa≺t , ξ ) dθ , (28)

is equivalent to Aslanides et al. (2017, Equation 5) (the sum
replaces the integral for a countable 12):

ξ (e|ae≺t , a) =
∑

ν

p(e|ν, ae≺t , a)p(ν|ae≺t) (29)

⇔ ξ (e) =
∑

ν

p(e|ν)p(ν), (30)

where we dropped the conditioning on ae≺t , a from the notation
in the second line as done in the original (where this is claimed
to improve clarity). Also note that ξ (e) would be written q(e|ξ ) in
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our notation. In the universal reinforcement learning literature
parameters like θ (or ν) and ξ are sometimes directly used to
denote the probability distribution that they parameterize.

Updating of the posterior q(θ |sa≺t , ξ ) in response to new data
also coincides with updating of the weights p(ν):

q(θ |sa�t , ξ ) =
q(θ , st|at , sa≺t , ξ )

q(st|at , sa≺t , ξ )
(31)

=
q(st|at , sa≺t , θ , ξ ) q(θ |at , sa≺t , ξ )

q(st|at , sa≺t , ξ )
(32)

=
q(st|at , sa≺t , θ) q(θ |sa≺t , ξ )

q(st|at , sa≺t , ξ )
(33)

=
q(st|at , sa≺t , θ)

q(st|at , sa≺t , ξ )
q(θ |sa≺t , ξ ). (34)

The first two lines are general. From the second to third we used

St ⊥⊥ 4|At , SA≺t ,2 (35)

and

2 ⊥⊥ At|SA≺t ,4 (36)

which follow from the Bayesian network structure Figure 2. In
the notation of Aslanides et al. (2017) Equation (34) becomes

p(ν|e) =
p(e|ν)

p(e)
p(ν). (37)

This shows that assuming the same model class 12 the
predictions and belief updates of an agent using the Bayesian
complete posterior of Section 6.2 are the same as those of
the Bayesian universal reinforcement learning agent. Action
selection can then be performed just as in Aslanides et al.
(2017) as well. This is done by selecting policies. In the present
publication we instead select action sequences directly. However,
in both cases the choice maximizes the value predicted by the
model. More on this in Section 7.2.

6.4. Approximate Complete Posteriors
As mentioned in the last section, the complete posterior can
be approximated via variational inference (see Attias, 1999;
Winn and Bishop, 2005; Bishop, 2011; Blei et al., 2017). There
are alternative methods such as belief propagation, expectation
propagation (Minka, 2001; Vehtari et al., 2014), and sampling-
based methods (Lunn et al., 2000; Bishop, 2011), but active
inference commits to variational inference by framing inference
as variational free energy minimization (Friston et al., 2015).
Variational free energy (Equation 45) is just the negative evidence
lower bound (ELBO) of standard variational inference (e.g.,
Blei et al., 2017). In the following, we show how the complete
posterior can be approximated via variational inference.

The idea behind variational inference is to use a simple family
of probability distributions and identify the member of that
family which approximates the true complete posterior best.
This turns inference into an optimization problem. According
to Wainwright and Jordan (2007) this reformulation as an

optimization problem is the essence of variational methods.
If the family of distributions is chosen such that it includes
the complete posterior then the optimization will eventually
lead to the same result as Bayesian inference. However, one
advantage of the formulation as an optimization is that it can
also be performed over a family of probability distributions
that is simpler than the family that includes the actual
complete posterior. This is what turns variational inference
into an approximate inference procedure. Usually, the (simpler)
families of probability distributions are chosen as products of
independent distributions.

Recalling Equation (16), the complete posterior as a product
of a predictive and a posterior factor is:

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ )

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ). (16 revisited)

This product is the main object of interest. We want to
approximate the formula with a probability distribution that lets
us (tractably) calculate the posteriors required by a given intrinsic
motivation, which can consequently be used for action selection.

As mentioned before, to approximate the complete posterior
we here approximate only the posterior factor and use the given
generative model’s predictive factor as is done in Friston et al.
(2015)3 The approximate posterior factor is then combined with
the exact predictive factor to get the approximate complete
posterior. Let us write r(ê≺t , θ |φ) for the approximate posterior
factor (Figure 4), defined as:

r(ê≺t , θ |φ) := r(ê≺t|φ
E≺t ) r(θ |φ) (38)

:=

t−1∏

τ = 0

r(êτ |φ
Eτ )

3∏

i= 1

r(θ i|φi). (39)

As we can see it models each of the random variables that the
posterior factor ranges over as independent of all others. This
is called a mean field approximation. Then, the approximate
complete posterior (Figure 5) is:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) := q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ).

(40)

Note that the variational parameter absorbs the hyperparameter
ξ as well as the past sensor values and actions sa≺t . The parameter
does not absorb future actions which are part of the predictive
factor. The dependence on future actions needs to be kept if we
want to select actions using the approximate complete posterior.

3A close inspection of Friston et al. (2015, Equation 9) shows that the approximate

complete posterior that ends up being evaluated by the action-value function

is the one we discuss in Equation (40). It uses the predictive factor to get

the probabilities r(ê
t:T̂

|â
t:T̂

, êt−1,φ) of future environment states. However, the

approximate posterior in Friston et al. (2015, Equation 10) uses a factorization

of all future environment states like the one we give in Equation (43). The

probabilities of future environment states in that posterior are not used anywhere

in Friston et al. (2015). In principle, they could be used as is done in Friston et al.

(2016b, Equation 2.6) where the complete posterior of Equation (43) is used in the

action-value function. Both approaches are possible.
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FIGURE 4 | Bayesian network of the approximate posterior factor at t = 2.

The variational parameters 81,82,83, and 8E≺t = (8E0 ,8E1 ) are positioned

so as to indicate what dependencies and nodes they replace in the generative

model in Figure 2.

FIGURE 5 | Bayesian network of the approximate complete posterior of

Equation (40) at t = 2 for the future actions â
t:T̂

. Only Êt−1,2
1,22 and the

future action â
t:T̂

appear in the predictive factor and influence future variables.

In general there is one approximate complete posterior for each possible

sequence â
t:T̂

of future actions.

We have:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) ≈ q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) (41)

if

r(ê≺t , θ |φ) ≈ q(ê≺t , θ |sa≺t , ξ ). (42)

This approximation can be achieved by standard variational
inference methods.

For those interested more in the approximation of the
complete posterior as in Friston et al. (2016b), we provide the
used family of factorized distributions. It must be noted that
the agent in this case carries a separate approximate posterior
for each possible complete action sequence â0:T . For predictions
of environment states, it does not use the predictive factor, but
instead looks at the set of generative models compatible with the
past. For each of those, the agent considers all environment states
at different times as independent. The approximate posteriors,
compatible with a past sequence of actions a≺t , are of the

form:

r(ŝ
t:T̂

, ê
0:T̂

, θ1|â
t:T̂

, a≺t ,φ
1)

= q(ŝ
t:T̂

|ê
t:T̂

, θ1)

T̂∏

τ = 0

r(êτ |ât:T̂ , a≺t ,φ
Eτ ) r(θ1|φ1). (43)

Note also that the relation between sensor values and
environment states is still provided by the generative models’
sensor dynamics q(ŝ

t:T̂
|ê
t:T̂

, θ1). In this article however, we focus
on the approach in Friston et al. (2015) which requires only one
approximate posterior at time t since future actions only occur
in the predictive factors which we do not approximate.

We define the relative entropy (or KL-divergence) between the
approximate and the true posterior factor:

KL[r(Ê≺t ,2|φ)|| q(Ê≺t ,2|sa≺t , ξ )]

:=
∑

ê≺t

∫

r(ê≺t , θ |φ) log
r(ê≺t , θ |φ)

q(ê≺t , θ |sa≺t , ξ )
dθ . (44)

Note that, we indicate the variables that are summed over by
capitalizing them. The KL-divergence quantifies the difference
between the two distributions. It is non-negative, and only zero
if the approximate and the true posterior factor are equal (see
e.g., Cover and Thomas, 2006).

The variational free energy, also known as the (negative)
evidence lower bound (ELBO) in variational inference literature,
is defined as:

F[ξ ,φ, sa≺t] :=
∑

ê≺t

∫

r(ê≺t , θ |φ) log
r(ê≺t , θ |φ)

q(s�t , ê≺t , θ |a≺t , ξ )
dθ

(45)

= − log q(s≺t|a≺t , ξ )

+ KL[r(Ê≺t ,2|φ)|| q(Ê≺t ,2|sa≺t , ξ )] (46)

The first term in Equation (46) is the surprise of negative
log evidence. For a fixed hyperparameter ξ it is a constant.
Minimizing the variational free energy therefore directly
minimizes the KL-divergence between the true and the
approximate posterior factor given sa≺t and ξ .

In our case, variational inference amounts to solve the
optimization problem:

φ∗
sa≺t ,ξ

:= argmin
φ

F[φ, sa≺t , ξ ]. (47)

This optimization is a standard problem. See Bishop (2011) and
Blei et al. (2017) for ways to solve it.

The resulting variational parameters φ∗
sa≺t ,ξ

=

(φ
E0
sa≺t ,ξ

, ...,φ
Et−1

sa≺t ,ξ
,φ1

sa≺t ,ξ ,φ
2
sa≺t ,ξ ,φ

3
sa≺t ,ξ ) define the

approximate posterior factor. The variational parameters,
together with the exact predictive factors, allow us to compute
the approximate complete posteriors for each sequence of future
actions â

t:T̂
:

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ∗
sa≺t ,ξ

)

= q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ
∗
sa≺t ,ξ

) (48)
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≈ q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (49)

In the next section, we look at action selection as the second
component of action generation. To this end, we show how to
evaluate sequences of future actions â

t:T̂
by evaluating either

Bayesian complete posteriors or the approximate complete
posteriors.

7. ACTION SELECTION BASED ON
INTRINSIC MOTIVATIONS

7.1. Intrinsic Motivation and Action-Value
Functions
The previous section resulted in sets of Bayesian or approximate
complete posteriors. Independently of whether a complete
posterior is the approximate or the Bayesian version, it represents
the entire knowledge of the agent about the consequences of the
sequence of future actions â

t:T̂
that is associated with it. In order

to evaluate sequences of future actions the agent can only rely
on its knowledge which suggests that all such evaluations should
depend solely on complete posteriors. One could argue that
the motivation might also depend directly on the memory state
containing sa≺t . We here take a position somewhat similar to the
one proposed by Schmidhuber (2010) that intrinsic motivations
concerns the “learning of a better world model.” We consider
the complete posterior as the current world model and assume
that intrinsic motivations depend only on this model and not
on the exact values of past sensor values and actions. As we will
see this assumption is also enough to capture the three intrinsic
motivations that we discuss here. This level of generality is
sufficient for our purpose of extending the free energy principle.
Whether it sufficient for a final and general intrinsic motivation
definition is beyond the scope of this publication.

Complete posteriors are essentially conditional probability

distributions over Ŝ T̂−t+1 × Ê T̂+1 × 12 given elements

of ÂT̂−t+1. A necessary (but not sufficient) requirement
for intrinsic motivations in our context (agents with
generative models) is then that they are functions on
the space of such conditional probability distributions.
Let 1

ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1 be the space of conditional

probability distributions over Ŝ T̂−t+1 × Ê T̂+1 × 12 given

elements of ÂT̂−t+1. Then an intrinsic motivation is a function
M :1

ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1 × ÂT̂−t+1 → R taking a

probability distribution d(., ., .|.) ∈ 1
ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1

and a given future actions sequence â
t:T̂

∈ ÂT̂−t+1 to a real
value M(d(., ., .|.), â

t:T̂
) ∈ R. We can then see that the Bayesian

complete posterior q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) for a fixed past
sa≺t written as q(., ., .|., sa≺t , ξ ) provides such conditional
probability distribution. Similarly, every member of the family
of distributions used to approximate the Bayesian complete
posterior via variational inference r(ŝ

t:T̂
, ê

0:T̂
, θ |â

t:T̂
,φ) written

as r(., ., .|.,φ) also provides such a conditional probability
distribution. It will become important when discussing active
inference that the optimized value φ∗

sa≺t ,ξ
of the variational

parameters as well as any other value of the variational
parameters φ define an element with the right structure to be
evaluated together with a set of future actions by an intrinsic
motivation function.

Using intrinsic motivation functions we then define two kinds
of induced action-value functions. These are similar to value
functions in reinforcement learning4 The first is the Bayesian
action-value function (or functional):

Q̂(â
t:T̂

, sa≺t , ξ ) := M(q(., ., .|., sa≺t , ξ ), ât:T̂). (50)

In words the Bayesian action-value function Q̂(â
t:T̂

, sa≺t , ξ )
infers the set of Bayesian complete posteriors of past experience
sa≺t and then evaluates the sequence of future actions â

t:T̂
according to the intrinsic motivation functionM.

The variational action-value function is defined as5:

Q̂(â
t:T̂

,φ) := M(r(., ., .|.,φ), â
t:T̂

). (51)

So the variational action-value function Q̂(â
t:T̂

,φ) directly takes
the conditional probability distribution defined by variational
parameter φ and evaluates the sequence of future actions â

t:T̂
according to M. Unlike in the Bayesian case no inference takes
place during the evaluation of Q̂(â

t:T̂
,φ).

At the same time, after variational inference, if we plug in
φ∗
sa≺t ,ξ

for φ we have:

Q̂(â
t:T̂a

,φ∗
sa≺t ,ξ

) ≈ Q̂(â
t:T̂a

, sa≺t , ξ ). (52)

Note that the reason we have placed a hat on Q̂ is that, even in the
Bayesian case, it is usually not the optimal action-value function
but instead is an estimate based on the current knowledge state
represented by the complete posteriors of the agent.

Also note that some intrinsic motivations (e.g.,
empowerment) evaluate e.g., the next n actions by using
predictions reaching n + m steps into the future. This means
that they need all complete posteriors for ât : t+n+m−1 but only
evaluate the actions ât : t+n−1. In other words they cannot

evaluate actions up to their generative model’s time-horizon T̂

but only until a shorter time-horizon T̂a = T̂ − m for some
natural number m. When necessary we indicate such a situation
by only passing shorter future action sequences â

t:T̂a
to the

action-value function, in turn, the intrinsic motivation function.
The respective posteriors keep the original time horizon T̂ > T̂a.

7.2. Deterministic and Stochastic Action
Selection
We can then select actions simply by picking the first action in the
sequence â

t:T̂
that maximizes the Bayesian action-value function:

â∗
t:T̂

(mt) := â∗
t:T̂

(sa≺t) := argmax
â
t:T̂

Q̂(â
t:T̂

, sa≺t , ξ ) (53)

4The main difference is that the action-value functions here evaluate sequences

of future actions as opposed to policies. This is the prevalent practice in active

inference literature including Friston et al. (2015) and we therefore follow it here.
5We abuse notation here by reusing the same symbol Q̂ for the variational

action-value function as for the Bayesian action-value function. However, in this

publication the argument (sa≺t , ξ or φ) always indicates which one is meant.
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and set

â∗(mt) := â∗t (mt). (54)

or for the variational action value function:

â∗
t:T̂

(mt) := â∗
t:T̂

(φ∗
sa≺t ,ξ

) := argmax
â
t:T̂

Q̂(â
t:T̂

,φ∗
sa≺t ,ξ

). (55)

and set

â∗(mt) := â∗t (mt). (56)

This then results in a deterministic action generation p(a|m):

p(at|mt) := δâ∗(mt)(at).

We note here that in the case of universal reinforcement learning
the role of Q̂(â

t:T̂
, sa≺t , ξ ) is played by Vπ

ξ (sa≺t). There π is
a policy that selects actions in dependence on the entire past
sa≺t and ξ parameterizes the posterior just like in the present
publication. The argmax in Equation (53) selects a policy instead
of an action sequence and that policy is used for the action
generation.

A possible stochastic action selection that is important for
active inference is choosing the action according to a so called
softmax policy (Sutton and Barto, 1998):

p(at|mt) :=
∑

â
t+1 : T̂

1

Z(γ , sa≺t , ξ )
eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (57)

where:

Z(γ , sa≺t , ξ ) :=
∑

â
t:T̂

eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (58)

is a normalization factor. Note that we are marginalizing out later
actions in the sequence â

t:T̂
to get a distribution only over the

action ât . For the variational action-value function this becomes:

p(at|mt) :=
∑

â
t+1 : T̂

1

Z(γ ,φ∗
sa≺t ,ξ

)
e
γ Q̂(â

t:T̂
,φ∗

sa≺t ,ξ
)

(59)

where:

Z(γ ,φ∗
sa≺t ,ξ

) :=
∑

â
t:T̂

e
γ Q̂(â

t:T̂
,φ∗

sa≺t ,ξ
)
. (60)

Since it is relevant for active inference (see Section 8), note that
the softmax distribution over future actions can also be defined
for arbitrary φ and not only for the optimized φ∗

sa≺t ,ξ
. At the

same time, the softmax distribution for the optimized φsa≺t ,ξ

clearly also approximates the softmax distribution of the Bayesian
action-value function.

Softmax policies assign action sequences with higher values of
Q̂ higher probabilities. They are often used as a replacement for
the deterministic action selection to introduce some exploration.

Here, lower γ leads to higher exploration; conversely, in the
limit where γ → ∞ the softmax turns into the deterministic
action selection. From an intrinsic motivation point of view such
additional exploration should be superfluous in many cases since
many intrinsic motivations try to directly drive exploration by
themselves. Another interpretation of such a choice is to see γ

as a trade-off factor between the processing cost of choosing an
action precisely and achieving a high action-value. The lower γ ,
the higher the cost of precision. This leads to the agentmore often
taking actions that do not attain maximum action-value.

We note that the softmax policy is not the only possible
stochastic action selection mechanism. Another option discussed
in the literature is Thompson sampling (Ortega and Braun, 2010,
2014; Aslanides et al., 2017). In our framework this corresponds
to a two step action selection procedure where we first sample an
environment and parameter pair (¯̂et−1, θ̄) from a posterior factor
(Bayesian or variational)

(¯̂et−1, θ̄) ∼ d(Êt−1,2|sa≺t , ξ ) (61)

then plug the according predictive factor q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, ¯̂et−1, θ̄)
into the action value function

Q̂(â
t:T̂

, sa≺t , ξ ) := M(q(., .|., ¯̂et−1, θ̄), ât:T̂). (62)

This allows intrinsic motivations that only evaluate the
probability distribution over future sensor values Ŝ

t:T̂
and

environment states Ê
t:T̂

. However, it rules out those that evaluate
the posterior probability of environment parameters 2 because
we sample a specific θ̄ .

7.3. Intrinsic Motivations
Now, we look at some intrinsic motivations including the
intrinsic motivation part underlying Friston’s active inference.

In the definitions, we use d(., ., .|.) ∈ 1
ŜT̂−t+1×Ê T̂+1×12|ÂT̂−t+1

as a generic conditional probability distribution. The generic
symbol d is used since it represents both Bayesian complete
posteriors and approximate complete posteriors. In fact, the
definitions of the intrinsic motivations are agnostic with respect
to the method used to obtain a complete posterior. In the present
context, it is important that these definitions are general enough
to induce both Bayesian and variational action-value functions.
We usually state the definition of the motivation function
using general expressions (e.g., marginalizations) derived from
d(, ., .|.). Also, we look at how they can be obtained from
Bayesian complete posteriors to give to the reader an intuition
for the computations involved in applications. The approximate
complete posterior usually makes these calculations easier and we
will present an example of this.

7.3.1. Free Energy Principle
Here, we present the non-variational Bayesian inference versions
for the expressions that occur in the “expected free energy”
in Friston et al. (2015, 2017a). These papers only include
approximate expressions after variational inference. Most of the
expressions we give here can be found in Friston et al. (2017b).
The exception is Equation (74), which can be obtained from
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an approximate term in Friston et al. (2017a) in the same way
that the non-variational Bayesian inference terms in Friston et al.
(2017b) are obtained from the approximate ones in Friston et al.
(2015).

In the following, we can set T̂a = T̂, since actions are only
evaluated with respect to their immediate effects.

According to Friston et al. (2017b, Equation (A2) Appendix),
the “expected free energy” is just the future conditional entropy
of sensor values6 given environment states. Formally, this is
(with a negative sign to make minimizing expected free energy
equivalent to maximizing the action-value function):

M(d(., ., .|.), â
t:T̂

) :=
∑

ê
t:T̂

d(ê
t:T̂

|â
t:T̂

)
∑

ŝ
t:T̂

d(ŝ
t:T̂

|ê
t:T̂

) log d(ŝ
t:T̂

|ê
t:T̂

)

(63)

= −
∑

ê
t:T̂

d(ê
t:T̂

|â
t:T̂

) Hd(Ŝt:T̂ |êt:T̂ ) (64)

= −Hd(Ŝt:T̂ |Êt:T̂ , ât:T̂ ). (65)

Note that, we indicate the probability distribution d used to
calculate entropies Hd(X) or mutual informations Id(X :Y) in
the subscript. Furthermore,we indicate the variables that are
summed over with capital letters and those that are fixed (e.g.,
â
t:T̂

above) with small capital letters.
In the case where d(., ., .|.) is the Bayesian complete

posterior q(., ., .|., sa≺t , ξ ), it uses the predictive distribution of
environment states q(ê

t:T̂
|â

t:T̂
, sa≺t , ξ ) and the posterior of the

conditional distribution of sensor values given environment
states q(ŝ

t:T̂
|ê
t:T̂

, sa≺t , ξ ). As we see next, both distributions can
be obtained from the Bayesian complete posterior.

The former distribution is a familiar expression in hierarchical
Bayesian models and corresponds to a posterior predictive
distribution or predictive density [cmp. e.g., Bishop, 2011,
Equation (3.74)] that can be calculated via:

q(ê
t:T̂

|â
t:T̂

, sa≺t , ξ )

=

∫ ∑

ŝ
t:T̂

,ê≺t

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) dθ (66)

=

∫ ∑

ŝ
t:T̂

,ê≺t

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) dθ (67)

=

∫ ∑

êt−1

q(ê
t:T̂

|â
t:T̂

, êt−1, θ) q(êt−1, θ |sa≺t , ξ ) dθ , (68)

where we split the complete posterior into the predictive and
posterior factor and then marginalized out environment states
ê≺t−1 since the predictive factor does not depend on them.
Note that in practice, this marginalization corresponds to a sum
over |E|t−1 terms and therefore has a computational cost that
grows exponential in time. However, if we use the approximate
complete posterior such that d(., ., .|.) = r(., ., .|.,φ), we see from

6The original text refers to this as the “expected entropy of outcomes,” not

the expected conditional entropy of outcomes. Nonetheless, the associated

Equation (A2) in the original is identical to ours.

Equation (40), that q(ê≺t , θ |sa≺t , ξ ) is replaced by r(ê≺t , θ |φ)
which is defined as (Equation 38):

r(ê≺t , θ |φ) :=

t−1∏

τ=0

r(êτ |φ
Eτ )

3∏

i= 1

r(θ i|φi). (69)

This means that r(êt−1, θ |φ) is just r(êt−1|φ
Et−1) r(θ |φ), which

we obtain directly from the variational inference without any
marginalization. If Bayesian inference increases in computational
cost exponentially in time, this simplification leads to a significant
advantage. This formulation leaves an integral over θ or,
more precisely, a triple integral over the three θ1, θ2, θ3.
However, if the q(θ i|ξ i) are chosen as conjugate priors to
q(ŝ|ê, θ1), q(ê′|â′, ê, θ2), q(ê0|θ

3) respectively, then these integrals
can be calculated analytically [compare the similar calculation of
q(ê≺t , θ |sa≺t , ξ ) in Appendix A]. The remaining computational
problem is only the sum over all êt−1.

The latter term (the posterior conditional distribution over
sensor values given environment states) can be obtained via

q(ŝ
t:T̂

|ê
t:T̂

, sa≺t , ξ ) = q(ŝ
t:T̂

|ê
t:T̂

, â
t:T̂

, sa≺t , ξ ) (70)

=
q(ŝ

t:T̂
, ê

t:T̂
|â

t:T̂
, sa≺t , ξ )

q(ê
t:T̂

|â
t:T̂

, sa≺t , ξ )
. (71)

Here, the first equation holds since

Ŝ
t:T̂

⊥⊥ Â
t:T̂

| Ê
t:T̂

, SA≺t . (72)

Both numerator and denominator can be obtained from the
complete posterior via marginalization as for the former term.
This marginalization also shows that the intrinsic motivation
function, Equation (63), is a functional of the complete posteriors
or d(., ., .|.).

In most publications on active inference the expected free
energy in Equation (63) is only part of what is referred to as the
expected free energy. Usually, there is a second term measuring
the relative entropy to an externally specified prior over future
outcomes (also called “predictive distribution encoding goals”
Friston et al. 2015), i.e., a desired probability distribution pd(ŝ

t:T̂
).

The relative entropy term is formally given by:

KL[d(Ŝ
t:T̂

|â
t:T̂

)|| pd(Ŝd
t:T̂

)] =
∑

ŝ
t:T̂

d(ŝ
t:T̂

|â
t:T̂

) log
d(ŝ

t:T̂
|â

t:T̂
)

pd(ŝ
t:T̂

)
.

(73)

Clearly, this term will lead the agent to act such that the
future distribution over sensor values is similar to the desired
distribution. Since this term is used to encode extrinsic value
for the agent, we mostly ignore it in this publication. It could
included into any of the following intrinsic motivations.

In Friston et al. (2017a) yet another term, called “negative
novelty” or “ignorance”, occurs in the expected free energy.
This term concerns the posterior distribution over parameter
θ1. It can be slightly generalized to refer to any subset of the
parameters θ = (θ1, θ2, θ3). We can write it as a conditional
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mutual information between future sensor values and parameters
(the “ignorance” is the negative of this):

Id(Ŝt:T̂ :2|â
t:T̂

) =
∑

ŝ
t:T̂

d(ŝ
t:T̂

|â
t:T̂

)

∫

d(θ |ŝ
t:T̂

, â
t:T̂

)

× log
d(θ |ŝ

t:T̂
, â

t:T̂
)

d(θ)
dθ . (74)

This is identical to the information gain used in knowledge
seeking agents. The necessary posteriors in the Bayesian case are
q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ), q(θ |ŝt:T̂ , ât:T̂ , sa≺t , ξ ) and q(θ |sa≺t , ξ ) with

q(ŝ
t : T̂

|â
t : T̂

, sa≺t , ξ ) =

∫ ∑

ê≺t

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) q(ê≺t , θ |sa≺t , ξ ) dθ

(75)

a straightforward (if costly) marginalization of the complete
posterior. Just like previously for q(ê

t:T̂
|â

t:T̂
, sa≺t , ξ ), the

marginalization is greatly simplified in the variational case (see
Appendix B for a more explicit calculation). The integrals can be
computed if using conjugate priors. The other two posteriors can
be obtained via

q(θ |ŝ
t:T̂

, â
t:T̂

, sa≺t , ξ )

=
1

q(ŝ
t:T̂

|â
t:T̂

, sa≺t , ξ )

∑

ê
0:T̂

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (76)

and

q(θ |sa≺t , ξ ) = q(θ |â
t:T̂

, sa≺t , ξ ) (77)

=
∑

ŝ
t:T̂

,ê
0:T̂

q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ). (78)

In the latter equation we used

Â
t:T̂

⊥⊥ 2|SA≺t . (79)

The marginalizations grow exponentially in computational cost

with T̂. In this case, the variational approximation only reduces
the necessary marginalization over ê≺t−1 to one over êt−1, but the
marginalization over future environment states ê

t:T̂
and sensor

values ŝ
t:T̂

remains the same since we use the exact predictive

factor. In practice the time horizon into the future T̂ − t must
then be chosen sufficiently short, so that marginalizing out ê

t:T̂

and Ŝ
t:T̂

is feasible. Together with the variational approximation
the required marginalizations over past and future are then
constant over time which makes the implementation of agents
with extended lifetimes possible.

The combination of the conditional entropy term and the
information gain defines the (intrinsic part) of the action-value
function of Friston’s active inference (or free energy principle):

M
FEP(d(., ., .|.), â

t:T̂
) = −Hd(Ŝt:T̂ |Êt:T̂)+ Id(Ŝt:T̂ : θ |â

t:T̂
) (80)

In the active inference literature this is usually approximated by
a sum over the values at individual timesteps:

M
FEP(d(., ., .|.), â

t:T̂
) =

T̂∑

τ=t

−Hd(Ŝτ |Êτ )+ Id(Ŝτ :2|â
t:T̂

).

(81)

7.3.2. Free Energy Principle Specialized to Friston

et al. (2015)
UsingAppendix C, we show how to get the action-value function
of Friston et al. (2015, Equation 9) in our framework. In Friston
et al. (2015), the extrinsic value term of Equation (73) is included,
but not the information gain term of Equation (74). Furthermore,
the sum over timesteps in Equation (81) is used. This leads to the
following expression:

M
FEP(d(., ., .|.), â

t:T̂
) =

T̂∑

τ=t

−Hd(Ŝτ |Êτ )

−KL[d(Ŝτ |ât:T̂)|| p
d(Ŝτ )]. (82)

If we plug in an approximate complete posterior, we get:

M
FEP(r(., ., .|.), â

t:T̂
) =

T̂∑

τ=t

−Hr(Ŝτ |Êτ )

−KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )]. (83)

with

−Hr(Ŝτ |Êτ ) =
∑

êτ

r(êτ |ât:T̂ , êt−1,φ)
∑

ŝτ

r(ŝτ |êτ ,φ) log r(ŝτ |êτ ,φ),

(84)

and

KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )] =

∑

ŝτ

r(ŝτ |ât:T̂ ,φ) log
r(ŝτ |ât:T̂ ,φ)

pd(ŝτ )
.

(85)
For the particular approximate posterior of Equation (40), with
its factorization into exact predictive and approximate posterior
factor, the individual terms can be further rewritten.

r(êτ |ât:T̂ , êt−1,φ) =
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

r(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

,φ) dθ

(86)

=
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

× r(ê≺t , θ |φ) dθ (87)

=
∑

ŝ
t:T̂

,ê
τ+1 : T̂

êt : τ−1 ê0:T−2

∫

q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

×

t−1∏

r= 0

r(êr|φ
Er )

3∏

i= 1

r(θ i|φi) dθ (88)
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=
∑

êt : τ−1

∫

q(êt : τ−1|ât:T̂ , êt−1, θ
2)

× r(êt−1|φ
Et−1 ) r(θ2|φ2) dθ2 (89)

=




∑

êt : τ−1

∫ τ∏

r= t

q(êr|âr , êr−1, θ
2) r(θ2|φ2) dθ2





× r(êt−1|φ
Et−1 ). (90)

In Friston et al. (2015), the environment dynamics
q(êr|âr , êr−1, θ

2) are not inferred and are therefore not
parameterized:

q(êr|âr , êr−1, θ
2) = q(êr|âr , êr−1) (91)

and are set to the physical environment dynamics:

q(êr|âr , êr−1) = p(êr|âr , êr−1). (92)

This means the integral over θ2 above is trivial and we get:

r(êτ |ât:T̂ , êt−1,φ) =
∑

êt : τ−1

τ∏

r= t

q(êr|âr , êr−1) r(êt−1|φ
Et−1) (93)

In the notation of Friston et al. (2015) (see Appendix C for a
translation table), we have

q(êr|âr , êr−1) = B(âr)êr êr−1
(94)

where B(âr) is a matrix, and

r(êt−1|φ
Et−1) = (ŝt−1)êt−1

(95)

where (ŝt−1) is a vector, so that

r(êτ |ât:T̂ , êt−1,φ) = (B(âτ ) · · ·B(ât) · ŝt−1)êτ (96)

= : (ŝτ (ât:T̂))êτ (97)

Similarly, since the sensor dynamics in Friston et al. (2015) are
also not inferred, we find

r(ŝτ |êτ ,φ) = q(ŝτ |êτ ) = p(ŝτ |êτ ). (98)

Friston et al. writes:

q(ŝτ |êτ ) = : Aŝτ êτ (99)

with A a matrix. So that,

r(ŝτ |ât:T̂ ,φ
Et−1) = A · ŝτ (ât:T̂) (100)

= : ôτ (ât:T̂). (101)

Then

Hr(Ŝτ |Êτ ) = −1 · (A× logA) · ŝτ (ât:T̂) (102)

where× is a Hadamard product and 1 is a vector of ones. Also,

KL[r(Ŝτ |ât:T̂)|| p
d(Ŝτ )] = ôτ (ât:T̂)·(log ôτ (ât:T̂)−logCτ ) (103)

where (Cτ )ŝτ = pd(ŝτ ). Plugging these expressions into
Equation (83), substituting â

t:T̂
→ π , and comparing this to

Friston et al. (2015, Equation 9) shows that7:

M
FEP(r(., ., .|.),π) = 1 · (A× logA) · ŝτ (ât:T̂) (104)

−ôτ (ât:T̂) · (log ôτ (ât:T̂)− logCτ )

= Q(π). (105)

This verifies that our formulation of the action-value function
specializes to the “expected (negative) free energy” Q(π).

7.3.3. Empowerment Maximization
Empowerment maximization (Klyubin et al., 2005) is an intrinsic
motivation that seeks to maximize the channel capacity from
sequences of the agent’s actions into the subsequent sensor
value. The agent, equipped with complete knowledge of the
environment dynamics, can directly observe the environment
state. If the environment is deterministic, an empowerment
maximization policy leads the agent to a state from which it can
reach the highest number of future states within a preset number
of actions.

Salge et al. (2014) provide a good overview of existing research
on empowerment maximization. A more recent study relates
the intrinsic motivation to the essential dynamics of living
systems, based on assumptions from autopoietic enactivism
Guckelsberger and Salge (2016). Several approximations have
been proposed, along with experimental evaluations in complex
state / action spaces. Salge et al. (2018) show how deterministic
empowerment maximization in a three-dimensional grid-world
can be made more efficient by different modifications of
UCT tree search. Three recent studies approximate stochastic
empowerment and its maximization via variational inference
and deep neural networks, leveraging a variational bound
on the mutual information proposed by Barber and Agakov
(2003). Mohamed and Rezende (2015) focus on a model-
free approximation of open-loop empowerment, and Gregor
et al. (2016) propose two means to approximate closed-
loop empowerment. While these two approaches consider
both applications in discrete and continuous state / action
spaces, Karl et al. (2017) develop an open-loop, model-
based approximation for the continuous domain specifically.
The latter study also demonstrates how empowerment can
yield good performance in established reinforcement learning
benchmarks such as bipedal balancing in the absence of
extrinsic rewards. In recent years, research on empowerment
has particularly focused on applications in multi-agent systems.
Coupled empowerment maximization as a specific multi-
agent policy has been proposed as intrinsic drive for either
supportive or antagonistic behaviour in open-ended scenarios
with sparse reward landscapes Guckelsberger et al. (2016b).
This theoretical investigation has then been backed up with
empirical evaluations on supportive and adversarial video
game characters Guckelsberger et al. (2016a, 2018). Beyond
virtual agents, the same policy has been proposed as a

7There is a small typo in Friston et al. (2015, Equation 9) where the time index of

ŝt−1 in (ŝτ (ât:T̂ )) = (B(âτ ) · · ·B(ât) · ŝt−1) is given as t instead of t − 1.
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good heuristic to facilitate critical aspects of human-robot
interaction, such as self-preservation, protection of the human
partner, and response to human actions Salge and Polani
(2017).

For empowerment, we select T̂a = t + n and T̂ = t + n+m,
with n ≥ 0 andm ≥ 1. This means the agent chooses n+1 actions
which it expects to maximize the resultingm-step empowerment.
The according action-value function is:

M
EM(d(., ., .|.), â

t:T̂a
) := max

d(â
T̂a+1 : T̂

)
Id(ÂT̂a+1 : T̂

: Ŝ
T̂
|â

t:T̂a
) (106)

= max
d(â

T̂a+1 : T̂
)

∑

â
T̂a+1 : T̂

,ŝ
T̂

d(â
T̂a+1 : T̂

)

× d(ŝ
T̂
|â

t:T̂
) log

d(ŝ
T̂
|â

t:T̂
)

d(ŝ
T̂
|â

t:T̂a
)
. (107)

Note that in the denominator of the fraction, the action sequence
only runs to t:T̂a and not to t:T̂ as in the numerator.

In the Bayesian case, the required posteriors are
q(ŝ

T̂
|â

t:T̂
, sa≺t , ξ ) (for each â

T̂a+1 : T̂
) and q(ŝ

T̂
|â

t:T̂a
, sa≺t , ξ ). The

former distribution is a further marginalization over ŝ
t+1 : T̂−1

of q(ŝ
t:T̂

|â
t:T̂

, sa≺t , ξ ). The variational approximation only helps
getting q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ), not the further marginalization. The

latter distribution is obtained for a given q(â
T̂a+1 : T̂

) from the

former one via

q(ŝ
T̂
|â

t:T̂a
, sa≺t , ξ ) =

∑

â
T̂a+1 : T̂

q(ŝ
T̂
, â

T̂a+1 : T̂
|â

t:T̂a
, sa≺t , ξ ) (108)

=
∑

â
T̂a+1 : T̂

q(ŝ
T̂
|â

T̂a+1 : T̂
, â

t:T̂a
, sa≺t , ξ ) q(âT̂a+1 : T̂

)

(109)

since the empowerment calculation imposes

q(â
T̂a+1 : T̂

|â
t:T̂a

, sa≺t , ξ ) = q(â
T̂a+1 : T̂

). (110)

7.3.4. Predictive Information Maximization
Predictive information maximization, (Ay et al., 2008),
is an intrinsic motivation that seeks to maximize the
predictive information of the sensor process. Predictive
information is the mutual information between past and
future sensory signal, and has been proposed as a general
measure of complexity of stochastic processes (Bialek
and Tishby, 1999). For applications in the literature see
Ay et al. (2012); Martius et al. (2013, 2014). Also, see
Little and Sommer (2013) for a comparison to entropy
minimization.

For predictive information, we select a half time horizon k =

⌊(t:T̂ − t + 1)/2⌋ where k > 0 for predictive information
to be defined (i.e., t:T̂ − t > 0). Then, we can define the
expected mutual information between the next m sensor values
and the subsequent m sensor values as the action-value function
of predictive information maximization. This is similar to the
time-local predictive information in Martius et al. (2013):

M
PI(d(., ., .|.), â

t:T̂
) := Id(Ŝt : t+k−1 : Ŝt+k : t+2k−1|ât:T̂). (111)

We omit writing out the conditional mutual information
since it is defined in the usual way. Note that it is possible

that t + 2k − 1 < t:T̂ so that the action sequence â
t:T̂

might go beyond the evaluated sensor probabilities. This
displacement leads to no problem since the sensor values
do not depend on future actions. The posteriors needed are:
q(ŝt : t+k−1|ât:T̂ , sa≺t , ξ ), q(ŝt+k : t+2k−1|ŝt : t+k−1, ât:T̂ , sa≺t , ξ ),
and q(ŝt+k : t+2k−1|ât:T̂ , sa≺t , ξ ). The first and the last are again
marginalizations of q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ) seen in Equation (75).

The second posterior is a fraction of such marginalizations.

7.3.5. Knowledge Seeking
Knowledge seeking agents (Storck et al., 1995; Orseau et al., 2013)
maximize the information gain with respect to a probability
distribution over environments. The information gain we use
here is the relative entropy between the belief over environments
after actions and subsequent sensor values and the belief over
environments (this is the KL-KSA of Orseau et al. 2013, “KL”
for Kullback-Leibler divergence). In our case the belief over
environments can be identified with the posterior q(θ |sa≺t , ξ )
since every θ = (θ1, θ2, θ3) defines an environment. In principle,
this can be extended to the posterior q(ξ |sa≺t , ξ ) over the
hyperprior ξ , but we focus on θ here. This definition is more
similar to the original one. Then, we define the knowledge
seeking action-value function using the information gain of
Equation (74):

M
KSA(d(., ., .|.), â

t:T̂
) := Id(Ŝt:T̂ :2|â

t:T̂
). (112)

We have discussed the necessary posteriors following
Equation (74).

After this overview of some intrinsic motivations, we look
at active inference. However, what should be clear is, that, in
principle, both the posteriors needed for the intrinsic motivation
function of the original active inference (Friston et al., 2015)
and the posteriors needed for alternative inferences overlap. This
overlap shows that the other intrinsic motivations mentioned
here also profit from variational inference approximations. There
is also no indication that these intrinsic motivations cannot be
used together with the next discussed active inference.

8. ACTIVE INFERENCE

Now, we look at active inference. Note that this section is
independent of the intrinsic motivation function underlying the
action-value function Q̂.

In the following we first look at and try to explain a slightly
simplified version of the active inference in Friston et al. (2015).
Afterwards we also state the full version.

As mentioned in the introduction, current active inference
versions are formulated as an optimization procedure that, at
least at first sight, looks similar to the optimization of a variational
free energy familiar from variational inference. Recall that, in
variational inference the parameters of a family of distributions
are optimized to approximate an exact (Bayesian) posterior of
a generative model. In the case we discussed in Section 6.4
the sought after exact posterior is the posterior factor of the
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generative model of Section 6.1. One of our questions about
active inference is whether it is a straightforward application of
variational inference to a posterior of some generative model.
This would imply the existence of a generative model whose
standard updating with past actions and sensor values leads to an
optimal posterior distribution over future actions. Note that, this
does not work with the generative model in of Section 6.1 since
the future actions there are independent of the past sensor values
and actions. Given the appropriate generative model, it would
then be natural to introduce it first and then apply a variational
approximation similar to our procedure in Section 6.

We were not able to find in the literature or construct
ourselves a generative model such that variational inference
leads directly to the active inference as given in Friston et al.
(2015). Instead we present a generative model that contains a
posterior whose variational approximation optimization is very
similar to the optimization procedure of active inference. It is
also closely related to the two-step action generation of first
inferring the posterior and then selecting the optimal actions.
This background provides some intuition for the particularities
of active inference.

One difference of the generative model used here is that
its structure depends on the current time step in a systematic
way. The previous generative model of Section 6.1 had a time-
invariant structure.

In Section 6, we showed how the generative model, together
with either Bayesian or variational inference, can provide an
agent with a set of complete posteriors. Each complete posterior
is a conditional probability distribution over all currently
unobserved variables (Ŝ

t:T̂
, Ê0:T) and parameters (2 and more

generally also 4) given past sensor values and actions sa≺t and
a particular sequence of future actions â

t:T̂
. Inference means

updating the set of posteriors in response to observations sa≺t .
Active inference should then update the distribution over future
actions in response to observations. This means the according
posterior cannot be conditional on future action sequences like
the complete posterior in Equation (16). Since active inference
promises belief or knowledge updating and action selection in
one mechanism the posterior should also range over unobserved
relevant variables like future sensor values, environment states,
and parameters. This leads to the posterior of Equation (13):

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ). (13 revisited)

If this posterior has the right structure, then we can derive a
future action distribution by marginalizing:

q(â
t:T̂

|sa≺t , ξ ) =
∑

ŝ
t:T̂

,ê
0:T̂

∫

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) dθ . (113)

Actions can then be sampled from the distribution obtained by
marginalizing further to the next action only:

p(at|mt) :=
∑

â
t+1 : T̂

q(â
t:T̂

|sa≺t , ξ ). (114)

This scheme could justifiably be called (non-variational) active
inference since the future action distribution is directly obtained
by updating the generative model.

However, as we mentioned above, according to the generative
model of Figure 2, the distribution over future actions is
independent of the past sensor values and actions:

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) = q(ŝ
t:T̂

, ê
0:T̂

, θ |â
t:T̂

, sa≺t , ξ ) q(ât:T̂)

(115)

since

q(â
t:T̂

|sa≺t , ξ ) = q(â
t:T̂

). (116)

Therefore, we can never learn anything about future actions
from past sensor values and actions using this model. In other
words, if we intend to select the actions based on the past, we
cannot uphold this independent model. The inferred actions
must become dependent on the history and the generative model
has to be changed for a scheme like the one sketched above to be
successful.

In Section 7.2, we have mentioned that the softmax policy
based on a given action-value function Q̂ could be a desirable
outcome of an active inference scheme such as the above. Thus,
if we ended up with

q(â
t:T̂

|sa≺t , ξ ) =
1

Z(γ , sa≺t , ξ )
eγ Q̂(ât:T̂ ,sa≺t ,ξ ) (117)

as a result of some active inference process, that would be a
viable solution. We can force this by building this conditional
distribution directly into a new generative model. Note that
this conditional distribution determines all future actions â

t:T̂
starting at time t and not just the next action ât . In the
end however only the next action will be taken according
to Equation (114) and at time t + 1 the action generation
mechanism starts again, now with â

t+1 : T̂
influenced by the new

data sat in addition to sa≺t . So the model structure changes
over time in this case with the dependency of actions on pasts
sa≺t shifting together with each time-step. Keeping the rest
of the previous Bayesian network structure intact we define
that at each time t the next action Ât depends on past sensor
values and actions sa≺t as well as on the hyperparameter ξ (see
Figure 6):

q(ŝ
t:T̂

, ê
0:T̂

, â
t:T̂

, θ |sa≺t , ξ ) := q(ŝ
t:T̂

, ê
t:T̂

|â
t:T̂

, êt−1, θ)

× q(â
t:T̂

|sa≺t , ξ ) q(θ , ê≺t|sa≺t , ξ ).

(118)

On the right hand side we have the predictive and posterior
factors left and right of the distribution over future actions.
We define this conditional future action distribution to be the
softmax of Equation (117). This means that the mechanism-
generating future actions uses the Bayesian action-value function
Q̂(â

t:T̂
, sa≺t , ξ ). The Bayesian action-value function depends

on the complete posterior q(ŝ
t:T̂

, ê
t:T̂

, θ |â
t:T̂

, sa≺t , ξ ) calculated
using the old generative model of Figure 2 where actions do
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FIGURE 6 | Generative model including q(â
t:T̂

|sa≺t, ξ ) at t = 2 with ŜÂ≺2 influencing future actions Â
2 : T̂

. Note that, only future actions are dependent on past

sensor values and actions, e.g., action Â1 has no incoming edges. The increased gap between time step t = 1 and t = 2 is to indicate that this time step is special in

the model. For each time step t there is an according model with the particular relation between past ŜÂ≺t and Â
t:T̂

shifted accordingly.

not not depend on past sensor values and actions. This is a
complex construction with what amounts to Bayesian inference
essentially happening within an edge (i.e., ŜÂ≺t → Â

t:T̂
) of a

Bayesian network. However, logically there is no problem since
the posterior q(ŝ

t:T̂
, ê

t:T̂
, θ |â

t:T̂
, sa≺t , ξ ) for each â

t:T̂
to be well

defined really only needs sa≺t , ξ , and the model structure. Here
we see the model structure as “hard wired” into the mechanism,
since it is fixed for each time step t from the beginning.

We now approximate the posterior of Equation (117) using
variational inference. Like in Section 6.4 we do not approximate
the predictive factor. Instead we only approximate the product
of posterior factor q(θ , ê≺t|sa≺t , ξ ) and future action distribution
q(â

t:T̂
|sa≺t , ξ ). By construction these are two independent factors

but with an eye to active inference which treats belief or
knowledge updating and action generation together we also
treat them together. For the approximation we again use the
approximate posterio factor of Equation (38) and combine it with
a distribution over future actions r(â

t:T̂
|π) parameterized by π :

r(â
t:T̂

, ê≺t , θ |π ,φ) := r(â
t:T̂

|π) r(ê≺t , θ |φ) (119)

:= r(â
t:T̂

|π) r(ê≺t|φ
E≺t ) r(θ |φ). (120)

The variational free energy is then:

F[π ,φ, sa≺t , ξ ] :=
∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , ê≺t , θ |a≺t , ξ )
dθ (121)

=
∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(â
t:T̂

|sa≺t , ξ ) q(ê≺t , θ |sa≺t , ξ ) q(s≺t|a≺t , ξ )
dθ

(122)

= F[φ, sa≺t , ξ ]+ KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )].

(123)

Where F[φ, sa≺t , ξ ] is the variational free energy of the (non-
active) variational inference (see Equation 45). Variational
inference then minimizes the above expression with respect to
parameters φ and π :

φ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

:= argmin
φ,π

F[π ,φ, sa≺t , ξ ]

= argmin
φ

F[φ, sa≺t , ξ ] (124)

+ argmin
π

KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )].

(125)

We see that the minimization in this case separates into two
minimization problems. The first is just the variational inference
of Section 6.4 and the second minimizes the KL-divergence
between the parameterized action distribution r(â

t:T̂
|π) and the

softmax q(â
t:T̂

|sa≺t , ξ ) of the Bayesian action-value function. It

is instructive to look at this KL-divergence term closer:

KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|sa≺t , ξ )] = −Hr(Ât:T̂
|π) (126)

−
∑

â
t:T̂

r(â
t:T̂

|π) log q(â
t:T̂

|sa≺t , ξ )

= −Hr(Ât:T̂
|π)

−
∑

â
t:T̂

r(â
t:T̂

|π)Q̂(â
t:T̂

, sa≺t , ξ )

+ logZ(γ , sa≺t , ξ ). (127)

We see that the optimization of π leads toward high entropy
distributions for which the expectation value of the action-value
function Q̂(â

t:T̂
,φ) is large. Action selection could then happen

according to

p(at|mt) :=
∑

ât+1:T

r(â
t:T̂

|π∗
sa≺t ,ξ

). (128)

So the described variational inference procedure, at least
formally, leads to a useful result. However, this is not the active
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inference procedure of Friston et al. (2015). As noted above the
minimization actually splits into two completely independent
minimizations here. The result of the minimization with respect
to φ in Equation (125) is actually not used for action selection and
since action selection is all that matters here is mere ornament.
However, there is a way to make use of it. Recall that plugging
φ∗
sa≺t ,ξ

into the variational action-value function Q̂(â
t:T̂

,φ)means
that it approximates the Bayesian action value function (see
Equation 52). This means that if we define a softmax distribution
r(â

t:T̂
|φ) of the variational action-value function parameterized

by φ as:

r(â
t:T̂

|φ) =
1

Z(γ ,φ)
eγ Q̂(ât:T̂ ,φ). (129)

Then this approximates the softmax of the Bayesian action-value
function:

r(â
t:T̂

|φ∗
sa≺t ,ξ

) ≈ q(â
t:T̂

|sa≺t , ξ ). (130)

Consequently, once we have obtained φ∗
sa≺t ,ξ

from the first
minimization problem in Equation (125) we can plug it into
r(â

t:T̂
|φ) and then minimize the KL-divergence of r(â

t:T̂
|π) to

this distribution instead of the one to q(â
t:T̂

|sa≺t , ξ ). In this way
the result of the first could be reused for the secondminimization.
This remains a two part action generation mechanism however.
Active inference combines these two steps into one minimization
by replacing q(â

t:T̂
|sa≺t , ξ ) in the variational free energy of

Equation (121) with r(â
t:T̂

|φ). Since r(â
t:T̂

|φ) thereby becomes
part of the denominator it is also given the same symbol (in our
case q) as the generative model. So we define:

q(â
t:T̂

|φ) := r(â
t:T̂

|φ). (131)

In this form the softmax q(â
t:T̂

|φ) is a cornerstone of active
inference. In brief, it can be regarded as a prior over action
sequences. To obtain purposeful behaviour it specifies prior
assumptions about what sorts of actions an agent should take
when its belief parameter takes value φ. Strictly speaking the
expression resulting from the replacement q(Â

t:T̂
|sa≺t , ξ ) →

q(â
t:T̂

|φ) in Equation (121) is then not a variational free energy
anymore since the variational parameters φ occur in both
the numerator and the denominator. Nonetheless, this is the
functional that is minimized in active inference as described
in Friston et al. (2015). So active inference is defined as the
optimization problem (cmp. Friston et al., 2015, Equation 1):

φ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,π

∑

â
t:T̂

,ê≺t

∫

r(â
t:T̂

|π) r(ê≺t , θ |φ)

log
r(â

t:T̂
|π) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , ê≺t , θ |φ, a≺t , ξ )
dθ (132)

= argmin
φ,π

(F[φ, sa≺t , ξ ]

+KL[r(Â
t:T̂

|π)|| q(Â
t:T̂

|φ)]
)
. (133)

This minimization does not split into the two independent parts
anymore since both the future action distribution q(Â

t:T̂
|φ) of

the generative model and the approximate posterior factor in the
variational free energy F[φ, sa≺t , ξ ] are parameterized by φ. This
justifies the claim that active inference obtains both belief update
and action selection through a single principle or optimization.

Compared to Friston et al. (2015), we have introduced a
simplification of active inference. In the original text, additional
distributions over γ (with according random variable Ŵ) are
introduced to the generative model as q(γ |ξŴ) (which is a fixed
prior) and to the approximate posterior as r(γ |φŴ). For the sake
of completeness, we show the full equations as well. Since γ is
now part of the model, we write q(â

t:T̂
|γ ,φ) instead of q(â

t:T̂
|φ).

The basic procedure above stays the same. The active inference
optimization becomes:

φ∗
sa≺t ,ξ

,φŴ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,φŴ ,π

∑

â
t:T̂

,ê≺t

∫∫

r(â
t:T̂

|π) r(γ |φŴ) r(ê≺t , θ |φ)

× log
r(â

t:T̂
|π) r(γ |φŴ) r(ê≺t , θ |φ)

q(s≺t , ât:T̂ , γ , ê≺t , θ |φ, a≺t , ξ )
dθ dγ . (134)

Note that here, by construction, the denominator can be written
as:

q(s≺t , ât:T̂ , γ , ê≺t , θ |φ, a≺t , ξ )

= q(â
t:T̂

|γ ,φ) q(γ |φŴ) q(ê≺t , θ |sa≺t , ξ ) q(s≺t|a≺t , ξ ). (135)

Which allows us to write Equation (134) with the original
variational free energy again:

φ∗
sa≺t ,ξ

,φŴ∗
sa≺t ,ξ

,π∗
sa≺t ,ξ

= argmin
φ,φŴ ,π

(F[φ, sa≺t , ξ ]

+KL[r(Â
t:T̂

,Ŵ|π ,φŴ)|| q(Â
t:T̂

,Ŵ|φ, ξŴ)]
)
.

(136)

9. APPLICATIONS AND LIMITATIONS

An application of the active inference described here to a
simple maze task can be found in Friston et al. (2015). Active
inference using different forms of approximate posteriors can be
found in Friston et al. (2016b). Here, Friston et al. (2017a) also
includes a knowledge seeking term in addition to the conditional
entropy term. In the universal reinforcement learning framework
Aslanides et al. (2017) also implement a knowledge seeking agent.
These works can be quite directly translated into our framework.

For applications of intrinsic motivations that are not so
directly related to our framework see also the references in the
according Sections 7.3.3 to 7.3.5.

A quantitative analysis of the limitations of the different
approaches we discussed is beyond the scope of this publication.
However, we can make a few observations that may help
researchers interested in applying the discussed approaches.

Concerning the computation of the complete posterior by
direct Bayesian methods is not feasible beyond the simplest of
systems and even then only for very short time durations. As
mentioned in the text it contains a sum over |Ê|t elements. If the
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time horizon into the future is T̂ − t then the predictive factor

consists of Ŝ T̂−t×Ê T̂−t×ÂT̂−t entries. This means predicting far

into the future is also not feasible. Therefore T̂−twill usually have
to be fixed to a small number. Methods that also approximate the
predictive factor (e.g., Friston et al., 2016b, 2017a) may be useful
here. However, to our knowledge, their scalability has not been
addressed yet. Since in these approaches the predictive factor is
approximated in a similar way as the posterior factor here, we
would expect that it is similar to the scalability of approximating
the posterior factor.

Employing variational inference reduces the computational
burden for obtaining a posterior factor considerably. The sum
over all possible past environment histories (the |Ê|t elements)
is approximated within the optimization. Clearly, by employing
variational inference we inherit all shortcomings of this
method. As mentioned also in Friston et al. (2016b) variational
inference approximations are known to become overconfident
i.e., the approximate posterior tends to ignore values with low
probabilities (see e.g., Bishop, 2011). In practice this can of course
lead to poor decision making. Furthermore, the convergence of
the optimization to obtain the approximate posterior can also
become slow. As time t increases the necessary computations
for each optimization step in the widely used coordinate ascent
variational inference algorithm (Blei et al., 2017) grow with t2.
Experiments suggest that the number of necessary optimization
steps also grows over time. At the moment, we do not know how
fast but this may also lead to problems. A possible solution would
be to introduce some form of forgetting such that the considered
past does not grow forever.

Ignoring the problem of obtaining a complete posterior,
we still have to evaluate and select actions. Computing the
information theoretic quantities needed for the mentioned
intrinsic motivations and their induced action-value functions is
also computationally expensive. In this case fixing the future time

horizon T̂ − t can lead to constant computational requirements.
These grow exponentially with the time horizon which makes
large time horizons impossible without further approximations.
Note that the action selection mechanisms discussed here also
require the computation of the action-value functions for each
of the future action sequences.

Active inference is not a standard variational inference
problem and therefore standard algorithms like the coordinate
ascent variational inference may fail in this case. Other
optimization procedures like gradient descent may still work. As
far as we know there have been no studies of the scalability of the
active inference scheme up to now.

10. CONCLUSION

We have reconstructed the active inference approach of Friston
et al. (2015) in in a formally consistent way. We started by
disentangling the components of inference and action selection.
This disentanglement has allowed us to also remove the
variational inference completely and formulate the pure Bayesian

knowledge updating for the generative model of Friston et al.
(2015). We have shown in Section 6.3 that a special case of this
model is equivalent to a finite version of the model used by the
Bayesian universal reinforcement agent (Hutter, 2005). We then
pointed out how to approximate the pure Bayesian knowledge
updating with variational inference. To formalize the notion of
intrinsic motivations within this framework, we have introduced
intrinsic motivation functions that take complete posteriors and
future actions as inputs. These induce action-value functions
similar to those used in reinforcement learning. The action-
value functions can then be used for both, the Bayesian and the
variational agent, in standard deterministic or softmax action
selection schemes.

Our analysis of the intrinsic motivations Expected Free
Energy Maximization, Empowerment Maximization, Predictive
Information Maximization, and Knowledge Seeking indicates that
there is significant common structure between the different
approaches and it may be possible to combine them. At the
time of writing, we have already made first steps toward
using the present framework for a systematic quantitative
analysis and comparison of the different intrinsic motivations.
Eventually, such studies will shed more conclusive light on the
computational requirements and emergent dynamics of different
motivations. An investigation of the biological plausibility of
different motivations might lead to different results and this is
of equal interest.

Beyond the comparison of different intrinsic motivations
within an active inference framework, the present work can thus
contribute to investigations on the role of intrinsic motivations in
living organisms. If biological plausibility of active inference can
be upheld, and maintained for alternative intrinsic motivations,
then experimental studies might be derived to test differentiating
predictions. If active inference was key to cognitive phenomena
such as consciousness, it would be interesting to see how the
cognitive dynamics would be affected by alternative intrinsic
motivations.
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APPENDIX

A. POSTERIOR FACTOR

Here we want to calculate the posterior factor q(ê≺t , θ |sa≺t , ξ )
of the complete posterior in Equation (16) without an
approximation (i.e., as in direct, non-variational Bayesian
inference).

q(ê≺t , θ |sa≺t , ξ )

=
1

q(s≺t|a≺t , ξ )
q(s≺t , ê≺t , θ |a≺t , ξ ) (A1)

=
1

q(s≺t|a≺t , ξ )
q(s≺t|ê≺t , θ

1) q(ê≺t|a≺t , θ
2, θ3) q(θ |ξ ) (A2)

=
1

q(s≺t|a≺t , ξ )

t∏

τ=0

q(sτ |êτ , θ
1)

t∏

r=1

q(êr|ar , êr−1, θ
2) q(ê0|θ

3)

3∏

i=1

q(θ i|ξ i). (A3)

We see that the numerator is given by the generative model. The
denominator can be calulated according to:

q(s≺t|a≺t , ξ )

=

∫

12

q(s≺t|a≺t , θ) q(θ |ξ ) dθ (A4)

=

∫

12




∑

ê≺t

q(ê0|θ
3)

t∏

τ=0

q(sτ |êτ , θ
1)

t∏

r=1

q(êr|ar , êr−1, θ
2)





3∏

i=1

q(θ i|ξ i) dθ (A5)

=
∑

ê≺t

∫

12

q(ê0|θ
3)

t∏

τ=0

q(sτ |êτ , θ
1)

t∏

r=1

q(êr|ar , êr−1, θ
2)

3∏

i=1

q(θ i|ξ i) dθ (A6)

=
∑

ê≺t

(∫

q(ê0|θ
3) q(θ3|ξ 3) dθ3

∫ t∏

τ=0

q(sτ |êτ , θ
1) q(θ1|ξ 1) dθ1

×

∫ t∏

r=1

q(êr|ar , êr−1, θ
2) q(θ2|ξ 2) dθ2

)

(A7)

The three integrals can be solved analytically if q(θ i|ξ i) are
chosen as conjugate priors to q(sτ |êτ , θ

1), q(êr|ar , êr−1, θ
2), and

q(ê0|θ
3) respectively. However, the sum is over |E|t terms and

therefore untractable as time increases.

B. APPROXIMATE POSTERIOR
PREDICTIVE DISTRIBUTION

Here, we calculate the (variational) approximate predictive
posterior distribution of q(ŝ

t:T̂
|â

t:T̂
, sa≺t , ξ ) from a given

approximate complete posterior. This expression plays a role

in multiple intrinsic motivation functions like empowerment
maximization, predictive information maximization, and
knowledge seeking. For an arbitrary φ we have:

r(ŝ
t:T̂

|â
t:T̂

,φ)

: =
∑

ê≺t

∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) r(ê≺t , θ |φ) dθ (A8)

=
∑

êt−1

∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ) r(êt−1, θ |φ) dθ (A9)

=
∑

êt−1

(∫

q(ŝ
t:T̂

|â
t:T̂

, êt−1, θ)

3∏

i=1

r(θ i|φi) dθ

)

r(êt−1|φ
Et−1 )

(A10)

=
∑

êt−1





∑

ê
t:T̂

∫

q(ŝ
t:T̂

|ê
t:T̂

, θ1) r(θ1|φ1) dθ1×

×

∫

q(ê
t:T̂

|â
t:T̂

, êt−1, θ
2) r(θ2|φ2) dθ2 r(êt−1|φ

Et−1 ) (A11)

=
∑

êt−1





∑

ê
t:T̂

∫ T̂∏

τ=t

q(ŝτ |êτ , θ
1) r(θ1|φ1) dθ1×

×

∫ T̂∏

τ=t

q(êτ |âτ , êr−1, θ
2) r(θ2|φ2) dθ2 r(êt−1|φ

Et−1 ) (A12)

=
∑

êt−1

∑

ê
t:T̂

r(ŝ
t:T̂

|ê
t:T̂

,φ1) r(ê
t:T̂

|â
t:T̂

, êt−1,φ
2) r(êt−1|φ

Et−1 )

(A13)

From first to second line we usually have to marginalize
q(ê≺t , θ |sa≺t , ξ ) to q(êt−1, θ |sa≺t , ξ ) with a sum over all |E|t−1

possible environment histories ê≺t−1. Using the approximate
posterior, we can use r(êt−1|φ

Et−1) directly without dealing with
the intractable sum. From third to fourth line, r(θ3|φ3) drops
out since it can be integrated out (and its integral is equal to
one). Note that during the optimization Equation (47) r(θ3|φ3)
does play a role so it is not superfluous.From fifth to last line,
we perform the integration over the parameters θ1 and θ2.
These integrals can be calculated analytically if we choose the
models r(θ1|φ1) and r(θ2|φ2) as conjugate priors to q(s|e, θ1)
and q(e′|a′, e, θ2). Variational inference prediction of the next
n = T̂ − t − 1 sensor values requires the sum and calculation
of |Ê|n terms for |Ŝ|n possible futures.

C. NOTATION TRANSLATION TABLES

A table to translate between our notation and the one used in
Friston et al. (2015). The translation is also valid in many cases
for Friston et al. (2016a,b, 2017a). Some of the parameters shown
here only show up in the latter publications.

Frontiers in Neurorobotics | www.frontiersin.org August 2018 | Volume 12 | Article 45194

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Biehl et al. Expanding the Active Inference Landscape

This article Friston et al. (2015) Note

et ∈ E Actual environment states

êt ∈ Ê st ∈ S Estimated/modeled environment states

st ∈ S ot ∈ � Actual/observed sensor or outcome values

ŝt ∈ Ŝ = S ot ∈ � Estimated/modeled (usually future) sensor or outcome values. Note that the index τ instead of t often indicates an

estimated future sensor value in Friston et al. (2015).

at ∈ A at ∈ A Actions

ât ∈ Â = A ut ∈ U Contemplated (usually future) actions

mt ∈ M Agent memory state

â
t:T̂

π , ũ π and ũ both uniquely specify future action sequences

θ θ Generative model parameters

q(ŝ|ê, θ1) = q(ŝ|ê) P(o|s) = Aos Model sensor dynamics, not parameterised in Friston et al. (2015), A is a matrix representation

q(ê′|â′, ê, θ2) = q(ê′|â′, ê) P(s′|s, u) = B(u)s′s Model environment dynamics, not parameterised in Friston et al. (2015), B(u) is a matrix representation for each

possible action u

q(ê0|θ
3) P(s0|m) = Ds0 Modeled initial environment state, not parameterised in Friston et al. (2015), D is a vector representation. Note, the

parameter m is a fixed hyperparameter

ξ = (ξ1, ξ2, ξ3) m Generative model hyperparam. or model parameter that subsumes all hyperparameters

ξ1 sensor dynamics hyperparam.

ξ2 Environment dynamics hyperparam.

ξ3 Initial environment state hyperparam.

ξŴ (α,β) Precision hyperparam.

(φ,φŴ ) µ Variational param.

φ
E
0:T̂

(

s Environment states variational param.,

φEτ

(

s τ for each timestep τ

φ1 Sensor dynamics variational param.

φ2 Environment dynamics variational param.

φ3 Initial environment state variational param.

π

(

π Future action sequence variational param.

φŴ

(

γ Precision variational param.

Q̂(â
t:T̂

,φ) Q(π ) = Q(ũ|π ) Variational action-value function. The dependence of Q(ũ|π ) on

(

s t is omitted

p(s�t, e�t, a≺t ) R(õ, s̃, ã) Our physical environment corresponds to the generative process

q(ŝ�t, ê�t, ât:T̂ , γ |a≺t, ξ ) P(õ, s̃, ũ, γ |ã,m) The generative model for active inference including γ (which we mostly omit)

r(ê
0:T̂

, â
t:T̂

, γ |π ,φ,φŴ ) Q(s̃, ũ, γ |µ) Approximate complete posterior for active inference

p
d (ŝτ ) P(oτ |m) Prior over future outcomes.

Since our treatment is more general than that of Friston et al. (2015) and quite similar (though not identical) to the treatment in
Friston et al. (2016a,b, 2017a) we also give the relations to variables in those publications. We hope this will help interested readers to
understand the latter publications even if some aspects of those are different. A discussion of those differences is beyond the scope of
the present article.
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This article Friston et al. (2016b) Note

et ∈ E Actual environment states

êt ∈ Ê st ∈ S Estimated/modeled environment states

st ∈ S ot ∈ � Actual/observed sensor or outcome values

ŝt ∈ Ŝ = S ot ∈ � Estimated/modeled (usually future) sensor or outcome values. Note that the index τ instead of t

often indicates an estimated future sensor value in Friston et al. (2015).

at ∈ A ut ∈ A Actions

ât ∈ Â = A ut ∈ Υ Contemplated (usually future) actions

mt ∈ M Agent memory state

â
0:T̂

π , action sequences

θ θ Generative model parameters

θ1 A Sensor dynamics param.

θ2 B Environment dynamics param.

θ3 D Initial environment state param.

ξ η Generative model hyperparam. or model parameter that subsumes all hyperparameters

ξ1 a sensor dynamics hyperparam.

ξ2 b Environment dynamics hyperparam.

ξ3 d Initial environment state hyperparam.

ξŴ β Precision hyperparam.

(φ,φŴ ) η Variational param.

φ
E
0:T̂ s0:T Environment states variational param.

q(êτ |ât:T̂
, a0 : t−1,φ

Eτ ) (sπ
τ )êτ

For each sequence of actions and for each timestep there is a parameter sπ
τ . Since a

categorical distribution is used, the parameter is a vector of probabilities whose entry êτ is

equal to the probability of êτ if we set Ê = {1, ..., |Ê|}

φ1 a Sensor dynamics variational param.

φ2 b Environment dynamics variational param.

φ3 d Initial environment state variational param.

π π Future action sequence variational param.

φŴ β Precision variational param.

Q̂(â
t:T̂

,φ) −G(π ) Variational action-value function. The dependence of G(π ) on sπ
0:T is omitted

p(s�t, e�t, a≺t ) R(õ, s̃, ã) Our physical environment corresponds to the generative process

q(ŝ�t, ê0:T̂ , â0:T̂ , γ , θ , ξ ) P(õ, s̃,π , γ ,A,B,D|a,b,d,β) The generative model for active inference

r(ê
0:T̂

, â
0:T̂

, γ , θ |π ,φŴ ,φ) Q(s̃,π ,A,B,D, γ |sπ

0:T̂
,π ,a,b,d,β) Approximate complete posterior for active inference

p
d (ŝτ ) P(oτ ) = σ (Uτ ) Prior over future outcomes.
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The idea of machines overcoming humans can be intrinsically related to conscious

machines. Surpassing humans would mean replicating, reaching and exceeding key

distinctive properties of human beings, for example, high-level cognition associated

with conscious perception. However, can computers be compared with humans? Can

computers become conscious? Can computers outstrip human capabilities? These are

paradoxical and controversial questions, particularly because there are many hidden

assumptions and misconceptions about the understanding of the brain. In this sense,

it is necessary to first explore these assumptions and then suggest how the specific

information processing of brains would be replicated by machines. Therefore, this article

will discuss a subset of human capabilities and the connection with conscious behavior,

secondly, a prototype theory of consciousness will be explored and machines will be

classified according to this framework. Finally, this analysis will show the paradoxical

conclusion that trying to achieve conscious machines to beat humans implies that

computers will never completely exceed human capabilities, or if the computer were

to do it, the machine should not be considered a computer anymore.

Keywords: artificial intelligence, information processing, cognitive computing, type of cognition, super machine,

conscious machine, consciousness

INTRODUCTION

During many centuries, scientists and philosophers have been debating about the nature of the
brain and its relation with the mind, based on the premise of an intrinsic dualism, typically called
mind-body problem (Searle, 1990; Chalmers, 1995). Arguments take one form or another, however,
most of them can be reduced to one kind of dualist or non-dualist view (Lycan and Dennett, 1993).
The importance of these debates acquires even more relevance when the question is stated as the
possibility to build machines which would be able to reproduce some human capabilities such as
emotion, subjective experiences, or even consciousness.

The problem is exacerbated when some scientists claim a new future generation of computers,
machines and/or robots which would additionally overcome human capabilities. In the view
of the author, these claims are based on misconceptions and reductionism of current most
important issues. The idea, however, is not discarded here and is expressed, trying to avoid
reductionism, in a different way to show its paradoxical consequences (Signorelli, 2018). For
example, the idea of reaching and overtaking human capabilities implies the knowledge of a
set of distinctive processes and characteristics which define being a human (e.g., intelligence,
language, abstract thinking, the creation of art and music, emotions and physical abilities,
among others). This simple idea leads to some fundamental issues. First, claims about new
futurist robots do not define this set of distinctions; they do not care about the importance
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of what it is to be a human, what is necessary to build conscious
machines or its implications. Secondly, they assume a materialist
view of these distinctions (i.e., these distinctions emerge from
the physical and reproducible interaction of matter) without
explaining the most fundamental questions about the matter
(Frank, 2017). Thirdly, they do not explain how subjective
experience or emotions could emerge from the theory of
computation that they assume as a framework to build machines,
which will reach consciousness and overcome humans. In other
words, these views do not explain foundations of computation
that support or reject the idea of high-level cognitive computers.
Finally, engineering challenges of building these kinds of
machines are not trivial, and futurists assume reverse engineering
as the best tool to deal with this when even some neuroscience
techniques do not seem to give us any information about
simple computing devices such as microprocessors (Jonas and
Kording, 2017). Actually, if methods of neuroscience are not
inferring useful information from microprocessors, it is possible
to conclude that either the neurons are not working as computers
or all the information that we know about cells and neurons,
using these techniques, is wrong. The first option discards reverse
engineering as a feasible tool to understand the brain, and
the second option discards findings in neuroscience related to
mechanistic and computational interpretation. Thus, it is still
necessary to focus on many intermediate and fundamental steps
before declaring that some computers would reach or even
exceed human capabilities.

This work does not expect to solve these issues; on
the contrary, the aim of this paper is to expand previous
works (Signorelli, 2018) and illustrate misconceptions and
misunderstanding of some crucial concepts. For example, the
issue of overcoming human capabilities will be discussed in
parallel with the issue of producing conscious machines, to
show their close relation and same paradoxical consequences.
Additionally, the importance of new concepts and ideas will
be approached in a preliminary and speculative way, with the
intention of developing them in further works. Following this
framework in order to make clear some of the questions above,
the second section will define what will be understood by
human capabilities and human intelligence; the third section
will confront current common views of computation, cognitive
computing, and information processing; the fourth section will
discuss consciousness as a basic requirement to make computers
with similar human intelligence; the next two section will show a
new hypothesis of how consciousness could work; then,machines
will be classified in four categories based on four types of
cognitions derived from consciousness requirement, and finally,
according to these classifications, the last section will show some
paradoxes and implications, which emerge from the idea to make
machines-like-brains reaching consciousness and overcoming
humans.

A SUB SET OF HUMAN CAPABILITIES

Usually, it is considered that computers, machines and/or robots
will eventually reach, or even overtake human intelligence. This

idea is supported bymany advances in Artificial Intelligence (AI).
For example, consecutive victories of DeepMind project vs. the
GO human champion (Silver et al., 2016), or robots that have
passed some kind of Self-Consciousness test (Bringsjord et al.,
2015). Science fiction, movies, and writers also stimulate and
play enough with the notion of “Singularity,” the precise moment
where machines exceed human capabilities (Good, 1965). In this
scenario, a computer/machine is called Super Machine.

Nevertheless, how much does scientific evidence support this
idea? What does overcoming human intelligence mean? What
does human intelligence mean? And what is the relation with
consciousness? Computers already exceed human algorithmic
calculations, among many others. A clear example is the
recent report of AlphaGo zero which can learn without human
intervention and play at super-human level (Silver et al., 2017).
In fact, one option to overcome human abilities might be a
cognitive system completely different to the anthropocentric
science fiction view. As will be shown later, this kind of computer
may reach and overcome some, but not all, human capabilities.
That is why; one position could claim that it is not necessary to
assume computers like brains or conscious machines to overtake
human capabilities. It is a valid point; however, will this kind
of computer surpass human brain only in a rational/algorithmic
way or also an emotional one? Will this kind of computer be
able to dance better than us, to create better than us, to feel
better and like us? Otherwise, it will never reach nor overtake
human abilities. One reason is that part of being human is to have
emotional behavior, to be able to dance, create, etc, additionally
to our apparently rational behavior. As it was mentioned above,
the first issue emerges: what does human being mean? If what
is being a human and which abilities need to be overcome
are not understood, how can we ever think about overcoming
unknown capabilities? For example, human intelligence may
not be only associated with logical, algorithmic, or rational
thinking. Types of intelligence have already been suggested,
which are closely related to each other such as kinaesthetic and
emotional intelligence in humans (Sternberg, 1997; Gardner,
1999). So far, implementing emotions or simple movements in
machines is equal to or more complicated than implementing
rational or algorithmic intelligence (Moravec, 1988). Actually,
current implementations of emotions in machines are based
on a logical, computable and deterministic approaches, leaving
out essential characteristics of emotions such as that emotions
interfere with rational processes and optimal decisions. In fact,
these implementations are founded on the idea that emotions
play an important role in making humans more efficient,
rationally speaking (Martinez-Miranda and Aldea, 2005), when
cognitive fallacies are showing the contrary (Gilovich et al.,
2002; Kahneman, 2003) and experiments on neuroscience from
the called default neural network, which is related to self-
oriented information, are suggesting anti-correlated subsystems
of information processing (Simpson et al., 2001; Fox et al.,
2005; Buckner et al., 2008) which interfere each other. The
view of computer non-like-brain does not care about these
issues and assumes intelligence as only rational, logic and
computable capability; or even worst, the problem of computer
non-like-brains defenders is to think that some properties of
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life could be replicated without the distinctive properties of
being alive.

Then, is it possible to define a set of human characteristics?
Futurists assume the existence of this set but they do not define
it in any way. While any serious attempt to define a human set
or a subset should first start with a definition of living entities.
One possible definition is the notion of autopoiesis (Maturana
and Varela, 1998) which refers to the self-reproduction and self-
maintenance of a system. In this view, a living machine is a
unitary system or network of processes which is able to regenerate
through their interactions and continuous transformation. Even
when it is still controversial a complete definition of living beings
and the utility of the autopoiesis concept (Fleischaker, 1992),
two characteristics, autonomy and reproduction, emerge as key
features of living beings. Some critics of this concept state that
autopoiesis does not consider external references that can be
crucial for the organism. Therefore, a probable better definition
of the living being may be a unitary system or network of
processes which interacts with the environment to keep their
autonomy and increase their capability to reproduce. Of course,
any definition of life is a huge enterprise and the goal of this essay
is not to answer this question, but state a simple and probably
the simplest definition that can help us to decide when a machine
reaches and overcomes human characteristics. Interestingly, this
general definition does not discard the idea that other systems
or machines can reach these two characteristics, even when they
should not be considered living machines. In fact, this is not
contradictory because autonomy and reproduction are thought
here as a subset of living machine properties; it means that
they are necessary conditions but not sufficient to be considered
living machines. Thus, humans, as well as other animals, are
autonomous entities with the ability to reproduce.

Additionally, however, it is also necessary to identify at least
one characteristic to differentiate human being from other living
beings. One historical proposal has been the notion of morality.
Morality and ethics can be understood as high-level reasoning to
distinguish between proper or improper behavior and intentions.
This notion also implies a community, a culture and social
obligations within that community. Morality has been studied
by many philosophers as for example (Hegel, 2001) and (Kant,
1785), and connected with concepts as rationality, free will,
and consciousness. Nevertheless, when neuroscientists look for
correlates or building blocks of morality inside of the brain, it
is possible to find areas which are associated with empathy and
social interaction, mostly identified with emotional states (Bzdok
et al., 2012). In these terms, morality is not only a rational process
as some philosophers proposed (Kant, 1785), and it is apparently
not exclusive of human beings. Thus, the notion of a uniquely
human characteristic remains too elusive and what it is necessary
to explain and replicate in robots is still not clear (Chappell
and Sloman, 2007). That is why; the suggestion in this work is
to define human morality as a complex process where rational
and emotional thinking takes part, then, moral decisions, moral
behavior, and moral intentions emerge only after this intricate
process takes place. In other words, the distinctive ingredient in
human intelligence will be considered the capability to integrate
rational and emotional thinking to take moral decisions which

are adapted to the context. It is not clear that animals can
integrate, as a whole, rational thinking and emotional thinking to
takemoral decisions, however, even if some animals could be able
to do it, the assumption here is that the kind of morality emerged
would be different and characteristic of each species, culture and
even subjects. In other words, as it will be shown later, morality
is a complex behavior intrinsically related to context, subjectivity,
and consciousness.

The definition of a general intelligence can also be inferred
from the previous discussion, at least in a preliminary way. It is
interesting to point out that a general definition of intelligence
and human intelligence is still a question of debate, since the
pioneering works of Turing (Turing, 1950) until our days,
where the definition changes according to how science and AI
evolve (Nilsson, 2009; Stone et al., 2016). Nevertheless, based
on previous comments, general intelligence can be understood
as the capability of any system to take advantage of their
environment to achieve a goal. Biologically speaking this goal
is maintaining the autonomy and reproduction, that is to say:
survive; while the goal in machines can be solving a specific task
or problem using internal and external resources. This general
definition can incorporate living beings as well as robots and
computers, and in this way, intelligence is general enough to
include different kinds of intelligence, contextual influences and
different kind of systems with different degrees of intelligence.
Finally, also in these terms, human intelligence would be the
ability to take advantage of their social environment to keep
autonomy and reproduction thanks to a balance between rational
and emotional information processing. This human intelligence
definition incorporates the set of distinctive characteristics which
define partially being human, and where the advantage can
take place through cognition, learning, memory; among other
processes needed to achieve the goal.

At this point is inevitable to shortly mention something about
potential tests to prove if a machine reached or not the criteria
of human intelligence. Turing was the first one to suggest a test
based on a simple exchange of words, questions and answers
(Turing, 1950). In its simplest version, this exchange is between
a machine and a human who should decide if the machine is
a machine or another human. The test is simple, in the sense
of its simple execution, and at the same time complex, in the
sense that it should capture as many as possible features of the
human being. Turing probably realized that the complexity of
human intelligence was not only associated with rational and
logical processes. That remains evident in the way as he proposed
his test as a simple written conversation and also when he refers
to the incorporation of human mistakes in future machines to be
able to pass the test. However, the Turing test has been criticized
many times, where the main against argument is summarized
by Searle in his Chinese room example (Searle, 1980). A full
review of this topic would be part of an entirely new document
and indeed, it will be part of further works. In this way and
from the definition of human intelligence stated above, it seems
better to suggest a test founded on moral dilemmas more than
simple day to day questions (Signorelli and Arsiwalla, 2018).
Moral dilemmas are simple, in the sense that they do not require
any kind of specific knowledge, but at the same time very
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complex even for humans, because some of them require a deep
understanding of each situation, and deep reflexion to balance
moral consequences, emotions, and optimal solutions. No answer
is completely correct, they are context dependent, and solutions
can vary among cultures, subjects, or even across the same subject
in particular emotional circumstances. In other words, a moral
test, grounded on moral thinking, needs intermediate processes
which are characteristics of high-level cognition in human, as for
example self-reflection, sense of confidence and empathy, among
others. Hence, a machine will reach part of what it is defined as
human intelligence if the machine is able to show autonomously
speaking the intricate type of thinking that humans have when
they are confronted to these kinds of dilemmas. To do that, it
is necessary to focus on intermediate steps reaching some of the
previous processes of moral thinking in humans (Figure 1).

One example of a moral test is the next situation (Figure 1A):
If you are in an “emergency boat” after a shipwreck and the
boat has only one space left, who would you admit to in the
boat and why: a big, healthy and young dog or an injured and
sick old man? The answer is not obvious and actually, it is one
of the most debated topics in biomedical research, because it
does not involve only human morality but also inter-species
issues on animal experimentation. What could be the answer
of a machine to this question? What could be the logical and
emotional thinking of this machine? What is, in fact, the answer
of the reader? There are very good reasons to take any of both
possible decisions, even a third and fourth answer is also possible,
however, the important point is the way how to reach to a
conclusion and not the conclusion itself. Of course, many critics
should be addressed before to claim that a moral test would be
a good test to capture the machine intelligence, compared with
human intelligence. For example, according to what types of
answers will the comparison be made? What would happen if
the machine develops its own sense of morality? Will we be able
to recognize it? Tests for machines apparently make sense only
when it is desirable to compare them with human intelligence,
but in fact, if themachine reaches consciousness, it is also possible
that the machine develops a new kind of morality based on non-
anthropocentric views and even new possible answers to many
moral dilemmas.

For the purpose of this work, we will need to assume that
there is a certain set of “human being” properties formed by
at least a subset of three features: Autonomy, Reproduction,
and Morality. Therefore, it is possible to decide when an
animal or machine reach or not the condition to be part
of this set, even though it is known that the definition of
this set is one of the most controversial and debated issues.
Moreover, to reach these three main elements it is necessary
to incorporate many intermediate steps and some of them
will be discussed in next sections. For example, robots and
computers are rarely autonomous in the biological sense; they
definitely cannot replicate, re-structure or even recover from
harm by themselves. However, these issues can be overcome in
the future, at least in a functional way. The only huge issue that
is not possible to implement without a deeper understanding
of human beings is the morality question, paradoxically, an
important distinctive human characteristic, closely to human

intelligence and consciousness. Morality requires many previous
processes usually considered as high-level cognition, starting
with decision-making to self-reflection, to be able to detect
mistakes on these decisions; sense of confidence, to estimate how
correct a decision or action is; mental imagery, to create new
probable scenarios of action; empathy, to equilibrate individual
and social requirements; understanding of context, to adapt
moral decisions to the context, among others. Because these
processes are sharply connected with consciousness, as it will be
shown in next sections, amoral test is also a kind of consciousness
test. Until now, brains are the only types of systems that have
these processes and focusing on how they are working will help us
to understandwhat it would be necessary to replicate in robots for
them to reach consciousness and potentially achieve high-level
cognition.

Further work and potential experiments can be influenced
by these preliminary ideas, in order to improve the behavior of
robots/machines trying to answer what is necessary to replicate a
truly moral behavior in them.

INFORMATION PROCESSING IN THE

BRAIN

One supporting fact about the idea of reaching consciousness and
overcoming human capabilities with computers comes from the
exponential increase of computational capacity or Moore’s law
(Moore, 1998). This increase should impact on the development
of new technologies until reaching intelligence levels of the
human brain. Beyond this view, there is the assumption that
the brain works as a computer and its processing could work
by analogy with computational processes. Of course, the brain
is a physical entity as computers are; it partially works with
electrical signals, resolves complex problems and is processing
information in one way or another. Nevertheless, the way
the brain processes information is still unknown and, it may
not be a digital computation, or rather not be information
processing in computational abstract terms at all (Epstein,
2016). Information processing implies processes where input
are changed to become outputs; however the brain could be
working in a new regime, where the distinction between inputs
and outputs could not exist, even causalities could be completely
different to what we know until now. In this context, it should
be possible to speak about another kind of processing as
“replication processing,” “simulations” (Arsiwalla et al., 2018)
or maybe “abstract models,” which could be self-informative to
some singular physical systems like brains. It is also known that
brains work with complex neuromodulation (Nusbaum et al.,
2001), stores information in a sparse and unknown way (Tetzlaff
et al., 2012; Gallistel and Balsam, 2014), and most distinctive
yet: complex properties as subjective experiences, emotions,
consciousness (Cleeremans, 2011; Dehaene et al., 2014; Tononi
et al., 2016) and biased behavior (Ellsberg, 1961; Gilovich et al.,
2002; Moore, 2002; Machina, 2009) emerge from the brain.
These emergent properties do not have any obvious correlation
with higher or lower computational capability. For example, the
cerebellum has more neurons than any other part of the brain,

Frontiers in Robotics and AI | www.frontiersin.org October 2018 | Volume 5 | Article 121200

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Signorelli Consciousness Interaction and Its Paradoxical Implications

FIGURE 1 | Moral Test and Processes required. (A) Moral test and moral dilemmas are suggested to test when a machine has reached human kind of thinking.

(B) Some processes required for moral thought are stated as examples, among many other possible processes needed.

but it does not play any important role in conscious perception
(Tononi and Koch, 2015).

Related to this notion, a common assumption in cognitive
science is to consider the processing of information as a synonym
of computation; however, it is necessary to differentiate both
concepts. For instance, if the information is considered as
the content of a message, this content would need a physical
system to be propagated and stored. Thus, information may
be understood or at least associated with a physical entity
(Landauer, 1999). According to a general view, information
processing can be any physical process which transforms an
input into an output. Information processing can also be
defined in terms of causality between inputs and outputs.
Additionally, computation is mainly understood as syntactic
and symbolic manipulation of information (Searle, 1990). In
this sense, computation is an algorithmic and deterministic
type of information processing. Although it is possible to
appeal to a non-deterministic computation, in general, this non-
deterministic computation can be reduced to deterministic types
of simple computation at the level of a Turing machine. The
problem is that brains are not just doing computation, they
are also able to give interpretations and meaning to their own
high-level information processing. Arguments in favor of this
idea are stated from philosophical view in Searle (1990) and
psychological/biological view in Cleeremans (2011).

One interesting case of computation is artificial neural
networks, which could be interpreted as semi-deterministic
information processing systems. Artificial neural networks
evolve in a non-deterministic way thanks to self-learning and
training from some given rules, which are not always explicitly
programmed. These systems are semi-deterministic in the sense
that it is not always possible to ensure what the net is learning,
nor control the dynamic evolution of its learning process, even
if deterministic learning rules have been given. Of course, it
is in part because of the noise or randomness of the training
data set, and/or due to predominant statistical features of the
data set that were not well controlled. However, even if all
these properties are controlled, it is never known what the
network has learned until it is tested and even after testing; it
is never possible to be sure about which node or layer encodes

one or another statistical property of the data. Actually, it
looks more like a domain-global and distributed characteristic
than local (Christian et al., 2014). Therefore, it is not possible
to fully determine or predict classically speaking the way
how the net will behave. Neural and artificial neural nets are
neither completely indeterminate nor determinate, but semi-
determinate. Since artificial neural networks, as for example
Hopfield networks (Hopfield, 1982), are inspired by biological
principles (Hebb, 1949; Gerstner et al., 2012), which are in
turn inspired by biological observations (Caporale and Dan,
2008), one option to introduce the semantic and meaning to
artificial networks would be the implementation of interactions
between subsystems as observers of each other in a context of
artificial neural networks. This will be discussed in section five.
Through this way, intelligence would not be only associated
with deterministic logical computation but with the interaction
between deterministic, semi-deterministic, non-deterministic,
and perhaps quantum computation/simulations, or even new
frameworks of processing of information.

While some computer and cognitive scientists might not
agree with this interpretation of information and computation,
it is still admissible to have processing of information without
computation and intelligence without a deterministic way of
processing of information. Actually, the brain apparently does it.
In fact, the most important features of the brain are the result
of unpredictable, nonlinear interactions among billions of cells
(Ronald and Nicolelis, 2015; Haladjian and Montemayor, 2016).
Science does not know the real “language” of the brain; does
not know how cognitive abilities emerge from physical brains,
and even more complicated, it is not certain that we have a
deterministic way to explain how this emergence works.

At this point, the usual idea of digital computation in
cognitive science and neuroscience should change in favor of
a perspective of computation and information processing by
analogy with physical systems where inputs, rules and outputs
can be interpreted in a physical and global way.

The brain should not be thought as a digital computer
neither in the “software” (Searle, 1990; Chalmers, 1995) nor
in the “hardware” (Llinas et al., 1998; Bullock et al., 2005;
Epstein, 2016). One reason is that this analogy obscures the
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complex physical properties of the brain. On the one hand,
neuroscience and cognitive science use indiscriminately concepts
as information, computation and processing of information
without understanding their physical counterpart, sometimes
based on the assumption of non-hardware dependency of
these concepts, other times because of the assumption that
the brain encodes and decodes information (and how it does
so). The most common assumption is to think that activation
or spikes in neurons are the only informative state. While
other cells, for example astrocytes (Alvarez-maubecin et al.,
2000), and non-classical integration such as neuromodulatory
substances (Nusbaum et al., 2001), back-propagation (Stuart
et al., 1993), among others (Bullock et al., 2005) are ignored.
In addition, inactivation and deactivation states could also
carry valuable information about dynamical brain states at
macro and micro scale. Neurons are never in a static state
and their membranes are presenting fluctuations that could
still be informative (for instance, Sub-threshold oscillations).
The distinctive physical brain properties and their dynamical
interactions are apparently more important than in digital
interpretations, what implies that hardware cannot be ignored
at all. According to this point, the analogy between a drum
and the brain would be more relevant than the analogy brain-
computer. Drums can respond with different and complex
vibration states when they are stimulated, and they can be
also understood on computational terms: input (hits), rules
(physical laws, physical constraints such as material, tension,
etc.), and outputs (vibration, sounds, normal modes). Indeed, the
brain has many more similarities with a dynamical system as a
drum than with digital computers, which are based on discrete
states. Drums, as well as brains, are dynamical systems with
emergent and sub-emergent properties, drums have different
modes of vibration, superposition, physical memory, sparse
“storage” of this memory, among others features. In abstract
terms, drums are also “computing” and processing information,
but this information processing is a dynamical reaction from
external/internal stimuli more than a formal calculation process
(computation as defined above).

On another hand, computer science is missing valuable
information on the attempt of replicating brain capabilities.
One example is alpha, gamma or oscillations of brains in
general (Buzsáki and Draguhn, 2004), synchrony (Varela
et al., 2001; Uhlhaas et al., 2010), harmonic waves (Atasoy
et al., 2016), among other processes which are not seriously
considered in artificial intelligence, not even using artificial
neural networks. Sub-emergent properties in the brain
may be also important, such as plasticity changes due to
the intentional practice of meditation (Lutz et al., 2004;
Brefczynski-Lewis et al., 2007). These characteristics should
be understood and incorporated in order to implement the
social behavior in new generations of computers, machines
and robots. Considering that some of these behaviors are
intrinsic to biological organisms, perhaps these behaviors
are not reproducible without some intrinsic constituents of
information processing of biological organisms (Chappell and
Sloman, 2007; Sloman, 2007) as for example oscillations or
neurotransmitters.

Finally, abstractions and general concepts are really useful
in theoretical terms; however, concepts as computation,
information, and information processing in the brain do not
have evident interpretation. Realizing that these concepts should
not be used as an analogy with computers is the only way
to lead us to the correct direction: Focusing on differences
between brains and computers, and trying to fill the gaps
without assumptions. Maybe, for many computer scientists,
these comments are trivial, but what computation means for
computer science is not the same as for biological science,
leading to misunderstandings and misconceptions, while also
the knowledge that computer sciences have about “codification”
in the brain is very limited, leading to erroneous assumptions.

To sum up, sections two and three have identified some
usual presumptions: (i) The assumption of a set of distinctive
properties defining human being without focus on the distinctive
properties of human being, (ii) intelligence related only to logical
and rational thinking, (iii) brains working by analogy with
hardware-independent computers, (iv) computation as synonym
of information processing, and (v) brain information only
“encoded” in the activation states of neurons. When differences
between concepts appear, it becomes necessary to clarify some
of them. That is why a subset of the features of human beings has
been identified and some concepts clarified. For example, a better
understanding, and definition of information processing in the
context of human intelligence, where computation will be a kind
of information processing among many other types, including
the characteristic one to biological organisms (Chappell and
Sloman, 2007). Probably, new concepts and foundations of
information will be also needed, especially to understand the real
language of brain cells, as a crucial theoretical starting point.
These foundations should be inherent to minimal constitutive
parts of physical theories and as it mentioned above, important
hardware requirements, emergent, plasticity and sub-emergent
properties should be considered in any attempt to replicate
brains features. Thus, a computer-brain metaphor is not useful
anymore, at least in the current sense. Nevertheless, it could
still be possible to replicate some brains abilities thanks to
new formulations of information processing and theoretical
frameworks.

CONSCIOUSNESS AS REQUIREMENT FOR

HUMAN INTELLIGENCE

Intelligence should also be considered as a whole. Intelligence is
often understood as the ability to solve problems in an efficient
way, thanks to other mechanisms like learning and memory.
It means the maximization of the positive results in a certain
solution while minimizing the negative impacts, for instance,
waste of time. To do that, other processes, such as learning and
memory, are also needed and associated with the definition of
intelligence. In a general sense, learning has been understood as
the process to gain new knowledge or improve some behavior,
while the memory is the storage of this knowledge. To solve
problems efficiently, it is necessary to access a certain memory
that was acquired thanks to a specific learning that will modify
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again the memory of the system. The more intelligent is the
system, the more it learns. However, in that framework, it is
forgotten that emotions, subjective experiences, and cognition
are deeply connected with human intelligence (Haladjian and
Montemayor, 2016). They play a crucial role in learning, in the
consolidation of memories, in retrieved memory and human
cognition in general (Cleeremans, 2011).

Therefore, as it was stated in section A Sub Set of Human
Capabilities, intelligence is better defined as the capability of
any system to take advantage of their environment to achieve
a goal. Specifically, human intelligence would be the ability to
take advantage of their environment to keep autonomy and
reproduction thanks to a balance between rational and emotional
information processing. With this last definition, both main
features on human thinking, reason and emotion, are merged in
one global concept, together with two other features, autonomy
and reproduction, that also define, altogether, the potential set of
human being properties. In this context, perception, cognition,
learning, and memory are key features of human intelligence
considered as a whole and emerged from specific soft properties
of brains, such as for example neural plasticity and oscillations.
Learning and memory are intrinsically dynamic processes in
the brain, changing all the time and conditional to these soft
neural properties, while for computers, memory is a very static
feature, mainly grounded on symbolic discretization, and in the
best case, learning is driven for efficient algorithms which are
also statics. Biologically, the more intelligent the system, the
more balance the system has between different inner processes
to achieve specific or general goals. For example, a computer is
designed to make faster calculus, algorithms, and other kinds of
very useful tasks, however, the computer cannot take advantage
of anything that it does, in conclusion, computers are not really
intelligent. Nevertheless, the last version of AlphaGo zero (Silver
et al., 2017) can learn by itself and take advantage from the
knowledge given as input, to improve its own performance in a
specific task, as for example playing Go. Using the intelligence
definition stated here, this system is more intelligent than a
simple computer. By analogy, if a lizard is compared with a
mouse, the later has a larger repertoire of actions, taking more
advantage of their environment, than the lizard. In this sense,
mice are more intelligent than lizards. It is possible to continue
and even define which humans will be “more intelligent” than
others looking at how they take advantage of the environment
in a way that they balance both rational and emotional costs.
For instance, a person who wins a discussion with his partner
at the expense of their relationship is less intelligent than who
wins the discussion and keep a good relationship. The crucial
point is that emotions are playing an important role in classical
processes of natural intelligence such as learning and memory,
but they are also playing a crucial role increasing the repertoire
of actions and possibilities to achieve biological goals. These new
behaviors are not, paradoxically, always efficient, in a logical
way, but they are the best way to achieve the goal according to
the system strategy (learned by experience) even when they can
interfere with rational/optimal solutions. Emotions are not just
used to improve memory or learning curves; they are also useful
to increase the variability and unpredictability of behavior.

Furthermore, one requirement for emotional and
logical/rational intelligence, as starting point to show some
of the subset human features mentioned above, seems to be what
is called subjective experience (Barron and Klein, 2016) or in
a more complex order: Consciousness. On the one hand, high
level processes needed for moral thinking such as self-reflection,
sense of confidence, error detection, understanding context,
among others (Figure 1B) are essential part of consciousness
and subjective experience as a whole (Gehring et al., 1993;
Smith, 2009; Fleming et al., 2012). Self- reflection and sense of
confidence are understood as the ability to report a mistake, like
error detection, and grade the confidence of some decisions or
action, even before receiving any feedback about the mistake.
In fact, some researchers have suggested the intrinsic relation
between social complexity associated with these processes and
the emergence of consciousness (Arsiwalla et al., 2017). On
another hand, humans first need to be conscious to take some
complex rational decisions, to plan, and to have the intention
to do something (Baars, 2005; Tononi and Koch, 2008). For
example, vegetative patients and minimally conscious patients
do not present signals neither planning nor having intentions to
do minimal tasks (Gosseries et al., 2014), even when they could
present minimal signs of consciousness (Owen et al., 2006).
Planning and intentions apparently emerge when minimal signs
of consciousness exceed a threshold. In fact, these minimal signs
can be interpreted as predictors of recovering in minimally
conscious patients (Bekinschtein et al., 2009; Casali et al., 2013).
Other works are re-defining the idea of subjective experience
until its minimal constitutive part and argue the existence
of basic subjective experience even in insects (Barron and
Klein, 2016). It would mean that complex decisions, planning,
and have intentions which are needed to moral thoughts
are different from consciousness, although they are closely
related: Subjective and conscious perceptions are apparently
previous to rational intelligence, planning, moral thoughts,
and even efficient behaviors. For example, experiments in the
psychology of judgment and behavioral economics have also
shown that subjects tend to perform some tasks in a biased
manner even if they have been trained, suggesting that logical
and rational intelligence appear only after more elaborated
information processing (Gilovich et al., 2002; Kahneman, 2003).
It is clear that how biology implements high-level intelligence
is completely different from how computer science implements
it (Moravec, 1988). The whole set of human intelligence, as
the capacity to take advantage of the environment, would only
emerge after awareness.

The need to incorporate subjective experience and eventually
consciousness to reach complex intelligence implies a complex
problem which involves many different processes as awareness,
emotions, subjectivity, intentionality, and attention, among
others. Consciousness should be composed by all of these
processes like a differentiated and unified whole, but it is not
any of them. For example, it could be necessary to be aware
to have emotions and subjective experiences, or maybe vice
versa, and we will need them to show intentionality, attention
and high-level cognitive abilities. It is also necessary to insist
and distinguish that these are different processes, for instance,
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awareness and attention; while it is important understanding all
of them as constituent parts of what we describe as consciousness.
For example, at least two main processes have been identified
with consciousness: (1) the fact of knowing something or
what here will be understood as awareness, i.e., to become
aware of something and/or perceive something internally or
externally, and (2) to know that I know or do not know
something, ormore precisely the notion of self-conscious systems
(Varela, 1975) as a “monitoring” process of this awareness
and connected with the more general concept of self-reference
(Varela, 1975; Kauffman and Varela, 1980; Kauffman, 1987). It
is worth differentiating self-reference, as an autonomous process
(where a third system emerge from its own interactions; Goguen
and Varela, 1979), from other interpretations, as for instance
self-monitoring as control process (where a second or third
system, at the same “complex” level than others, is needed to
control; Dehaene et al., 2017). Here, the notion refers to the
idea of self-reference for living machines. Thus, awareness is
also understood as conscious or non-conscious “contents” and
self-reference is connected with conscious or non-conscious
manipulations (processing) of “contents” (Shea and Frith, 2016),
or what will be more precisely called “neural objects.” In this
sense, subjectivity and conscious perception apparently needed
to reach rational, emotional, and moral thoughts are associated
with awareness and self-reference as crucial ingredients of
consciousness. Nevertheless, consciousness is not reduced to the
possible relationship between awareness and self-reference, it is
the whole process of processes interconnected with awareness,
self-reference, subjectivity, rational and emotional thoughts,
among many others. Consciousness emerges from all of them as
a whole (Varela and Goguen, 1978). Hence, after consciousness
emerges from the interaction between these processes, human
intelligence would appear as the group of strategies to take
advantage of the environment thanks to the balance of emotional
and rational information processing.

Four types of cognition and some of their associated tasks
can also be defined from awareness and self-reference (Shea and
Frith, 2016; Signorelli, 2017; Figure 2A): (1) Type 0 Cognition
corresponds to systems which have neither awareness of their
internal or external contents nor self-reference of their internal
processes. One example in humans is motor control. Motor
control is the automatic control that the neural central system
has to move some joints and muscles without any necessity
of voluntary control or awareness. Many apparently high-
level tasks in human can be classified in this category, as for
example the extraction of individual word meaning and primary
attention sometimes called priming. (2) Type 1 Cognition is
defined as the type of cognition emerged when a system is
aware of their contents. In other words, it is aware of the
elements that the system needs tomanipulate and solve particular
or general problems, but the system does not monitor this
manipulation. It can be also associated with a holistic kind of
information. For example, when subjects answer very quickly
to some apparently intuitive questions but their answers are
normally wrong (Fallacy questions). Type 1 cognition also
involves mental imagery, emotions, voluntary attention andmost
of our subjective capabilities as to be aware of the experience

of color or pain, among others. (3) Type 2 Cognition appears
when the system is aware of their contents and also has self-
reference capability as the ability to manipulate them. This type
of cognition involves the high-level cognitive capabilities defined
above and needed for human morality. Some tasks, which are
part of this type of cognition, can be: the ability of self-reflection;
rational thinking; detection of error even before receive any
clue about the mistake; sense of confidence, before and after
any decision; complex meanings; voluntary and quick learning,
among other interesting features of human thinking. (4) Finally,
Type ∞ cognition incorporates the manipulation of contents
without awareness of their contents. In other words, the system
has self-reference, but it cannot extract meaning either from their
manipulation nor their contents. It could be like an automaton,
and actually, there is not a biological example of this category.

These categories will help us to classify the kind of machine
and the characteristics needed as a requirement to reach or
overcome human cognitive capabilities. These ideas may imply
that to reproduce high-level of human intelligence following
biological principles, it is necessary but not sufficient to introduce
first, subjective and conscious behavior in machines at early
stages to reach the type 1 and type 2 cognition of human
beings. Then, the question of overcoming humans is intrinsically
related to the question of build conscious machines. In this way,
machines will be classified by analogy to the cognitive level that
can reach according to the types of cognition emerged from
awareness and self-reference (Figure 2B). These two processes
would be previous to complex kind of cognition, as for example
type 2 cognition, voluntary learning and complex memories,
but only sufficient features to overcome humans if autonomy,
reproduction, and morality are also reached. In other words, the
only way to reach human brains would be making conscious
machines capable of reproducing emotional human intelligence,
in addition to logical intelligence, and keeping their autonomy,
reproduction capacity, and reaching moral/ethical thinking.
Otherwise, machines will never surpass humans.

Therefore, in order to implement high-level-computers, that
is to say, computers-like-brain, it will be necessary to focus on
conscious human capabilities, and how they are impacting the
information processing of the system.

DYNAMIC OF CONSCIOUSNESS

Any understanding of consciousness should try to explain a
huge set of behaviors associated with consciousness. Chalmers
defined some of them (Chalmers, 2013), ranging from apparently
“simple” tasks (called third-person data) such as perceptual
discrimination of stimuli, integration of different sensory
modalities, automatic and voluntary actions, accesses and
reportability of internal states, differences between sleep and
wakefulness, to phenomena even more difficult to explain
(called first-person data), for example perceptual experiences
(e.g., the experience of color), bodily experiences (e.g., pain
and hunger), mental imagery, emotional experiences, among
others. Some useful distinctions to study consciousness also
point out the differences between studies of wakefulness and
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FIGURE 2 | Types of Cognition and Types of Machines. (A) Emergent processes related to consciousness and Types of cognition defined from their relations. It is

important to highlight that processes associated with moral thought are present in type 1 and type 2 cognition, but not necessarily in the other two types of cognition.

(B) Types of machines and categories according to different types of cognition, contents, and information processing stated above.

studies of conscious perception or awareness (Chalmers, 2013).
The first mechanism would describe the differences between,
for example, sleep, vegetative and awake conditions, while the
second one tries to explain when and how a perception become
consciously perceived, in other words, when we become aware
of something (Dehaene et al., 2014). In the end, it is expected
that both approaches will help to answer important questions
about mechanisms of consciousness, however, these studies do
not always include subjective experience, which is assumed to be
solved after the understanding of the mechanisms of wakefulness
and awareness.

For example, one intriguing characteristic observed from the
comparison of subjects in awake condition vs. sleep, vegetative
and anesthesia condition is that the neural activity driven by an
external stimulation spreads through different areas of the brain
when subjects are awake, but remains local when they do not
(Rosanova et al., 2012; Casali et al., 2013; Sarasso et al., 2014).
Experiments with transcranial magnetic stimulation (TMS) and
electroencephalogram recording (EEG) demonstrated this effect.
For awake condition, pulses driven by TMS generate richer and
sequential EEG signals in different brain areas, and remarkably,
the peak of these global activities is lower than in other
conditions, where awareness is absent. This signal has been linked
with the integration of the brain activity but it is still not clear
how integration takes place, which mechanisms allow the global
diffusion of each pulse, and why in other than awake condition,
the integration remains local.

Additionally, consciousness, awareness and conscious
perception, apparently, are not matter of capacity of
computation. The brain should not be considered as a computer,
neither doing any computation like a computer, as stated above.
Although, if someone would like to insist, the brain capacity
can be roughly estimated around 20 petaFLOPS, assuming
100 billions of brain cells, 200 firings per second, and 1,000
connections per cell [see other approximations (Martins et al.,
2012)], whereas independently of any approximation, 80% of

these brain cells (hence its computational capacity) are in the
cerebellum, which does not play any important role in conscious
perception (Tononi and Koch, 2015). By comparison, the most
powerful computer has 93 petaFLOPS [Sunway TaihuLight
(Dongarra, 2016; Fu et al., 2016)]. It is however really unlikely
that someone ensures that this computer is aware despite its

bigger computational capacity. AlphaGo is another example
that computational capacity is not the key to improve or reach
high-level tasks. The last version AlphaGo zero defeats previous
AlphaGo versions but uses less computational resources,
suggesting the importance of learning algorithms and neural
network architecture to solve complex high-level tasks (Silver
et al., 2017).

Nevertheless, evidence has shown that conscious perception
needs between 200 to 400ms (Dehaene and Changeux, 2011)
while the processing and integration of information at low-level
tasks only need 40ms. In other words, when we consciously
perceive, any processing of information is temporally decreasing
between 500 up 1,000%. Experiments, where subjects were
exposed to masked stimuli (words or pictures which are masked
by previous stimuli), have showed that conscious perception
(i.e., subjects report seeing the stimulus) is correlated with a
positive peak in Event-related potentials (ERPs) which appear
300–500ms after the stimulus presentation (Figure 3A; Dehaene
and Changeux, 2011; Herzog et al., 2016). It is interesting to
notice that the neural activity for some cortical regions seems
to show a shortly decrease of activity, while other areas showed
a later peak around 300–400ms (Del Cul et al., 2007). This
response is called P3b and has not uniquely associated with
perception but also with attention and memory processes. The
mechanism suggested as an explanation of P3b is a sustained
stable activity in recurrent cortical loops. Another mechanism
proposed as a marker of conscious perception, called synchrony,
has been also observed within a window of 200–400ms.
High-contrast human faces were presented in normal and
inverted orientation (Rodriguez et al., 1999), and synchrony was
observed around 250ms each time that faces were recognized.
Synchrony was mainly between occipital, parietal and frontal
areas (Figure 3B). Furthermore, a new pattern of synchrony (in
the gamma range) emerged around 720ms during the motor
response. One notable phenomenon from this experiment is
the phase scattering presented between these two synchronic

responses (Varela et al., 2001). At this time, the probability
of finding synchrony between two EEG electrodes was below
the level observed before stimulation (Figure 3B). This phase
scattering and phase synchronization show an interesting kind
of alternation or maybe interference, which should be explained
by any theory of consciousness.
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FIGURE 3 | Neural dynamic associated with awareness and some experimental evidence. (A) Three cortical areas recorded in left and right hemisphere (posterior

parietal, posterior ventral temporal, and inferior frontal) present slightly different types of activity evoked by masked targets. The peak in the condition of maximal

visibility is associated with P3b (around 370ms). Two phases of cortical activation can be recognized, the first previous to 300ms corresponds to the activity from the

occipital pole toward both parietal and ventral temporal sites. The second phase, after 300ms, is characterized by a high-amplitude activity, which mainly appears in

ventral prefrontal cortex together with a re-activation of all previous posterior areas. Colors represent six different conditions where the time of the target-mask

stimulus onset asynchrony increased in value, allowing the same stimulus to cross a hypothetical threshold from subliminal processing to conscious perception.

Adapted from Del Cul et al. (2007). (B) When high contrast faces are presented to normal subjects a long distance synchrony during face-recognition appears around

200ms at 40Hz frequency band. Additionally, the effect disappears if the same stimulus is reversed, avoiding the recognition. Another period of synchrony also

appears during the motor response and crucially, a transient phase scattering between both synchronic phases showed a decrease in the probability of synchrony.

Upper chart is the time-frequency synchrony activity and inferior chart corresponds to the perception condition mapped onto surface electrodes, where black lines

indicate a significant level of synchrony, and green lines indicate a marked phase scattering between electrodes. Adapted from Varela et al. (2001) and Rodriguez et al.

(1999) with permission of Springer Nature. (C) In the color phi phenomenon, two disks are shown at different positions with a rapid succession, inducing the illusion of

only one disk which changes the color around the middle trajectory. This phenomenon is contrary to a continuous perceptual dynamic because the observer does not

have the opportunity to know in advance the new disk color, especially if the perception is not retrospectively built. Adapted from Herzog et al. (2016). (D) Activity

trajectories in Principal Component (PC) space of visual conscious perception (red and blue) are different than unconscious perception trajectories (gray). For

simplicity, only the first three PCs for subject 2 are shown. The upper-right chart shows the group average Euclidean distance between temporal points for each

trajectory [blue right (seen vs. unseen), red (left seen vs. unseen), purple seen (right vs. left), and gray unseen (right vs. left)]. Inferior-right chart corresponds to group

average speed of activities trajectories at each time point. Horizontal black lines indicate significant difference (2-way ANOVA, p < 0.05, cluster based on permutation

test). Adapted from Baria et al. (2017).

A recent experiment has additionally demonstrated a transient
neural dynamic during visual conscious perception (Baria et al.,
2017), challenging sustained activity mechanisms as broadcasting
and integration, and suggesting initial-state-dependent neural
dynamics. Neural activity, previous, during and post stimuli,
was measured with magnetoencephalography (MEG). Subjects

were asked to recognize the direction of Gabor stimulus (left
or right) and inform if the stimulus had been consciously
perceived (stimuli were manipulated to induce around 50%
of conscious perception in each subject). Then, neural activity
was divided into different frequency bands to calculate the
multi-dimensional state space trajectory computed with principal
component analysis (PCA). In the band 0.05–5Hz, trajectories
of conscious (seen) and unconscious (unseen) trials were clearly
separable (Figure 3D) by Euclidean distance (Figure 3D upper

right). Crucially, the speed of population activity, measured as
a point trajectory in the state space vs. time (ms), showed an
acceleration and switch in dynamics after stimulus onset, with
a peak around 400ms (Figure 3D inferior right). Moreover,
conscious stimuli perception was predicted from the activity up
to 1 second before stimulus onset (Baria et al., 2017).

Until now, it is not clear that integration, P3b response and/or
synchrony are markers of conscious perception or awareness
(Gaillard et al., 2009; Mudrik et al., 2014; Silverstein et al.,
2015) and there is no consensus if one exclusive marker can be
actually identified. Even so, they can still be markers of “contents”
construction at conscious and unconscious level. Most theories
about consciousness assume that the construction of contents
of consciousness is part of the same phenomenon that they
call consciousness, in the sense of awareness. Nevertheless, it is
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equally reasonable to think that the constructions of contents
and awareness are two different dynamics of one process, as
transient dynamics suggest, or even two completely different
processes. One alternative is to think that the construction of
contents is a separated process and previous to the process
of becoming aware of these contents. So, we should speak
about neural objects, also avoiding “the container” interpretation
of consciousness. If this is correct, much recent research on
consciousness and conscious perception would be inferring
information about the construction of these neural objects that
are not necessarily associated in a causal way with consciousness
itself. Thus, awareness is one process to explain, and the
construction of a perception or objects of consciousness would
be another. Integration, P3b and synchrony would be, in this
sense, part of the construction of neural objects, but not part
of the awareness moment where the object becomes part of
our conscious perception. Chronologically, one first stage of
information processing should be the constructions of these
objects and a second stage would be the awareness of them.
These processes would be independent and only from their
interactions, as the observer and the observed at the same time,
the conscious perception of internal and external neural objects
would emerge avoiding the “Cartesian theater” interpretation
(Lycan and Dennett, 1993). In other words, it is admissible to
be aware without conscious perception of some objects, and
“perceive” without awareness about this perception.

Additionally, conscious perception is not always differentiated
in awareness and self-reference, but here the distinction is
made in order to define clearly different levels of cognition,
which would describe two processes of the same conscious
phenomenon. In other words, it is possible to state that
information processing can be divided into different stages
(Figure 4), where awareness is related to one of these stages and
self-reference with the recursive processing of this stage. The
differences between fast time processing for cognition type 0
(∼40ms) and a slow time processing for type 1 (∼200ms) have
stimulated the idea of Two-Stage Model (Herzog et al., 2016).
This is to say that the flux of activity (or inactivity) would need at
least two different stages (from which types of cognition emerge),
where the first stage corresponds to automatic, non-voluntary
control and unconscious information processing, while the
second stage would involve a break in this dynamic to allow
awareness. Furthermore, it is proposed here that the recursive
processing of awareness within the same neural objects will allow
the emergence of self-reference process (Figure 4).

Other experiments also suggest a discrete mechanism instead
of a continuous perception mechanism (VanRullen and Koch,
2003; Chakravarthi and VanRullen, 2012; Herzog et al., 2016).
For example, evidence for the discrete mechanism of perception
comes from psychophysical experiments where two different
stimuli are presented with a short time window between each
other. In these experiments, subjects perceived both stimuli as
occurring simultaneously, suggesting a discrete temporal window
of perception integration (VanRullen and Koch, 2003; Herzog
et al., 2016). The most relevant experiment supporting a discrete
perception is the color phi phenomenon (Figure 3C). In two
different locations, two disks of different color are presented

in a rapid succession. The observer perceives one disk moving
between both positions and changing the color in the middle
of the trajectory. Theoretically, the experience of changing
color should not be possible before the second disk is seen.
Therefore, the perception should be formed retrospectively,
which is contrary to continuous theories (Koler and VonGrünau,
1976; Bachmann et al., 2004; Herzog et al., 2016).

Another characteristic is the apparent “interference” between
different types of information processed in human conscious
behavior. For instance, rational calculations (e.g., resolve a
mathematical problem) interfere with kinaesthetic performance
(Shea and Frith, 2016). To illustrate, solving a mathematical
equation while cycling or dancing at the same time can be
practically impossible. This observation suggests that conscious
perception would be imposing a balance between different
processes. Computational interpretation of this observation
will try to explain the interference between different kinds of
information as a competition for computational capacity or
resources. However, as it is stated above, computational capacity
apparently is not playing any crucial role in perception. This
analogy also assumes processing of information in a digital way,
which could not be the best approach to understand the brain.

Finally, some results from behavioral economics and decision
making have shown that cognitive biases are not according to
classical probability frameworks (Pothos and Busemeyer, 2013).
It means that it is not always possible to describe emergent
brain properties with classical and efficient probabilities way.
For example, when one tries to explain, for one side, the
biological mechanisms in the brain, and on the other, the
human psychological behavioral, crucial differences appear.
Some research and theories have shown that the dynamics
of neural systems can be interpreted in a classic probabilities
framework (Pouget et al., 2000; Quiroga and Panzeri, 2009), like
good estimator and predictor of external stimuli. While other
results, mainly from economic psychology, show cognitive
fallacies (Ellsberg, 1961; Gilovich et al., 2002; Moore, 2002;
Machina, 2009). These results are incompatible with the classical
probability theories (Pothos and Busemeyer, 2013) and can
be reconciled only after an extra processing of information in
experimental subjects. Therefore, these disconnections between
some neural activities in the brain (as classical systems),
the emerged human behavior and some of their cognitive
capabilities (non-classical systems), and then another possible
classical system suggest complex multiple separate systems with
interconnected activity (Figure 4C). How can some cognitive
capabilities, with apparently non-classical dynamic, emerge from
apparently classical, or semi-classical systems as neural networks?
It is one open question that any theory of consciousness should
also try to explain.

AN ALTERNATIVE: CONSCIOUSNESS

INTERACTION HYPOTHESES

If consciousness is not a matter of computation capacity, given
that temporal efficiency decreases in its presence, it could be
due to its architecture. Many theories have tried to explain how
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FIGURE 4 | Types of Cognition, their relation with possible systems and stages of information processing. (A) Stage 1 corresponds to automatic and non-conscious

processes (classical information) in principal layers. It is associated with Type 0 Cognition. (B) Stage 2 is related to awareness and conscious perception as holistic

information (Type 1 Cognition) when two or more principal layer interact. Both stages form the non-classical system 1 (linked with psychological features), which is not

necessarily deterministic in a classical way. (C) Recursive loops of stage 2 would correspond to conscious manipulation processes of contents (Self-reference). From

the interaction of stage 2, their recursive loops and re-entry of information with system 1, another classical and deterministic system 2 would emerge. (D) The system

2 alone and without interacting with system 1 would correspond to Type ∞ cognition. This type of cognition is a hypothetical/speculative scenario emerged by the

relations of Awareness and Self-Reference components in our theoretical framework. However, its existence is doubtful considering that system 2 in living beings,

would need system 1 to emerge.

consciousness emerges from the brain (Dehaene et al., 2014;
Tononi et al., 2016). However, these theories are incomplete
although they might be partially correct. The incompleteness
is in part because most of these theories are descriptions
of the phenomenon, instead of explanatory theories of the
phenomenon. By way of example, Classical Mechanics and
Theory of evolution are explanatory theories (although an
explanatory and/or complete theory does not ensure that it is
correct). Descriptive theories focus on how the phenomenon
works, use descriptions without causal mechanisms even when
they claim it, and without deductive general principles, i.e., they
often start from the object of study to deduce specific/particular
principles rather than deducing general principles and in
consequence explaining the object of study. Furthermore,
incomplete theories do not answer one of these fundamental
questions: What is “the object of study”? How does it work?
Why? Most commonly, they do not explain “why” something
works as it works. In other words, these theories may partially
explain and/or describe how consciousness emerges, but they do
not explain and do not solve the entire problem. The problem,
according to Chalmers (1995, 2013) is to explain both the first-
person data related to subjective experience and the third-person
data associated with brain processes and behavior. Most of the
modern theories of consciousness focus on the third-person data
and brain correlates of consciousness without any insight about
the subjective experience. Moreover, some of the questions stated
above as for example the phase scattering, the transient dynamics,

the decrease in the peak of EEG activity driven by TMS, the
two stages and two systems division, are not explained, and
actually, they are not even well-defined questions that theories
of consciousness should explain. Finally, these approaches try to
explain awareness and conscious perception in a way that is not
clearly replicable or implementable in any sense, neither with
biological elements. Some theories also use the implicit idea of
computability to explain, for example, conscious contents as the
access to certain space of integration; and competition for space
of computation in this space, to explain how some processes lose
processing capacity when we are conscious.

Another complementary alternative is to understand
consciousness as intrinsic property due to the particular form of
information processing in the brain. Here, consciousness will be
interpreted in this way, as the dynamic interaction/interference
(which can be superposition or interference) of different neural
networks dynamics, trying to integrate information to solve each
particular network problem. More specifically, the brain could be
divided into different “principal layers” (topologically speaking,
it corresponds to the architecture component) which are also
composed by different levels of layers (hypothesis 1), each
principal layer as one kind of neural network interconnected at
different levels with other networks (Figure 5). Each principal
layer can process information thanks to oscillatory properties
and independently of other principal layers (hypothesis 2);
however, when they are activated at the same time to solve
independent problems, the interaction generates a kind of
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FIGURE 5 | Consciousness Interaction Approach and its four hypotheses.

Hypothesis 1: the architecture of the brain can be divided into different

independent processing layers (network of networks); hypothesis 2: each layer

independently processes information to solve each particular problem;

hypothesis 3: two layers activated at the same time can interact/interfere with

optimal information processing of each other at different levels, and;

hypothesis 4 suggests that this interaction/interference/superposition between

at least two principal/independent layers (for example horizontal and vertical)

would be associated with the general mechanism of consciousness.

interference on each intrinsic process (hypothesis 3, the
processing component). From this interaction and interference
would emerge consciousness as a whole (hypothesis 4). I will call
it: Consciousness interaction hypotheses. Consciousness would
be defined as a process of processes which mainly interferes
with neural integration. These processes are an indivisible
part of consciousness, and from their interaction/interference,
consciousness emerges as a field of electrical, chemical, and
kinaesthetic fluctuations.

There are two possible interpretations about these principal
layers: the first one is the idea that these principal layers
are formed by areas structurally connected, and the second
possibility is that they are formed by areas only functionally
or virtually connected. In the latter, the functional connectivity
should be defined by phases and frequency dynamics to avoid in
part the bias about neural activity mentioned above. Experiments
and new analyses motivated by these ideas should solve which
interpretation is the optimal one. Additionally, the nature of
the interference suggested here can sometimes take the form
of superposition and other times the form of subtraction in
the threshold and/or sub-threshold oscillatory activity associated
with neural integration, in two or more principal layers. This
interference as a superposition or subtraction would be one
possible mechanism to one independent neural process interferes
with the other and vice versa (this is not necessarily excitatory
and inhibitory neural interactions). Once this interaction has
emerged, each principal layer monitors the other without
any hierarchical predominance between layers, and if one
process disappears, awareness also disappears. In this sense,

each principal layer cares about its information processing and
the other information processing which can affect them. The
oscillatory activity at individual neural layers can be interpreted
as one stage (classical information), and when the new activity
emerges thanks to interference between principal layers, the
second stage would emerge (non-classical information) forming
one system. Then, the recursive action of the second stage would
allow the emergence of a second system. In the end, both systems
as a whole of layers and interactions would be the field of
consciousness which cares about its own balance to be able to
solve each layer problem.

The idea of “care about something” could also explain in
part the subjectivity experience. Each layer cares about some
states more than others, based on previous experiences and
learning (Cleeremans, 2011), but also grounded on the intrinsic
interaction between principal layers defined above, which allow
them to solve their information processing problems. In other
words, depending on the degree and type of interference for a
certain experience, the system would feel one or another feeling,
even if the external stimulation (perceptually speaking) is the
same for many subjects. The subjectivity, at least preliminarily,
would not directly be more or less neural activity. It would be
related to the type and degree of interaction between principal
layers emerged by learning, balancing processes thanks to
plasticity and sub-emergent properties, which all together try
to keep the balance of the whole system. This plasticity would
be part of emergent and sub-emergent properties of dynamical
systems, probably driven by oscillations and neurotransmitters.
The system would be trained, first by reinforcement learning and
later through also voluntary and conscious learning.

These hypotheses might allow us to replicate some neural
activities illustrated above, some features of conscious behavior
and to explain, for example, why the brain is not always an
efficient machine as it is observed in cognitive fallacies, why
decisions are not always optimal, especially in moral dilemmas,
why it is possible to observe an apparent decrease in processing
capacity between different types of information processing in
human conscious behavior when we try to perform rational
vs. kinaesthetic tasks. The sustained interference mechanism
would break the stability in principal layers triggering different
responses in each one, breaking synchrony, local integration
and spreading activity and de-activity around principal layers.
It could explain in part the transient dynamic, the scattering
phase between two synchronic phases associated with conscious
perception and motion reportability, or why the activity after
TMS in awareness is globally spread, and more interesting, it
would allow us to implement a mechanism on other machines
than biological machines, if important soft properties and
physical principles of brains, as plasticity and oscillations, are
correctly implemented in artificial systems. Although these ideas
still do not answer the “why” question of a complete theory
of consciousness, they are part of a global framework on
codification, processing of information, mathematical category
and physical theories, which will intent to answer that question
and will be developed in further works.

Some important differences of this framework with previous
approaches are: (1) awareness would emerge from the property
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of breaking neural integration, synchrony and symmetry of
the system; (2) conscious perception would correspond to
dynamics operations between networks more than containers
formed by networks in which to put contents. In this sense,
consciousness is a distributed phenomenon by essence and
the semantic of “neural objects” should be used instead of
contents; (3) consciousness would be related to mechanism
of oscillatory superposition, interference and sub-emergent
properties as oscillatory plasticity; (4) consciousness interaction
hypothesis could be an implementable mechanism for artificial
intelligence.

Finally, one crucial observation emerges from this discussion.
Consciousness interaction hypothesis requires a balance of
interaction/interference between different processes involved in
its emergence to keep, in fact, the interaction. Otherwise, one
principal layer would dominate the interrelated activity, driving
the activity in other layers without exchange of roles, which is
the opposite approach (during other non-conscious conditions,
for example, it could be the case). That is why extraordinary
capacities in some processes are compensated with normal or
sub-normal capacities in other processes of information when we
are conscious.

TYPES OF COGNITION AND TYPES OF

MACHINES

Consciousness interaction is a different framework, therefore it is
necessary to re-interpret some definitions from previous theories
about consciousness (Dehaene et al., 2014). Conscious states

as different levels of awareness (vegetative, sleep, anesthesia,
altered states, aware) would correspond to different types
and degrees of interaction or interference between different
networks. In this sense, coma patients would miss some
crucial interactions between some principal layers which are
important for “neural objects” constructions; while during
anesthesia, the activity of some principal layers may be
only locally affected, losing the optimal balance between
layer interactions/interference. In consciousness interaction
hypothesis, consciousness is not a particular state neither has
possible states; this is a crucial difference regarding common
definitions and theories. Consciousness should be interpreted
as an operation/process itself. Contents of consciousness as
elements or information in the external or internal world
which at times are part of our conscious perception, would
correspond to superposition of different oscillation on certain
“intersection points” of interference between networks or the
network points (nodes) which are influenced/affected by this
interference/interaction (probably in a scattered/sparse way).
These “neural objects” can be formed even without awareness.
In this case, the neural object is restricted to the universe of
one principal layer and their local dynamic. However, they
become part of the conscious perception only when two or
more principal layers start to share these elements to solve
their layer problems. Only at this moment, a neural object
appears as part of the field of consciousness. Finally, conscious
processing is normally defined as the operations applied to these

contents/neural objects. In consciousness interaction framework,
it would correspond to constants or sustained “loops” of
interference/interaction on this “intersection points” and its
dynamic evolution (probably through sub-threshold resonant
circuits).

With similar definitions (without this particular interference
interpretation) and their relations, Shea and Frith have identified
four categories of cognition (Shea and Frith, 2016) depending
if neural objects and cognitive processes are conscious or not.
In previous sections, these four types of cognition were re-
defined (Figures 2, 4) from the inter-relation between awareness
and self-reference. In summary, Type 0 cognition corresponds
to cognitive processes which are not conscious neither in their
neural objects nor operations applied to these objects. Type 1
cognition is a set of cognitive processes where neural objects
are consciously perceived, however operations on them are not
manipulated. Type 2 cognition would correspond to neural
objects and operation on these objects consciously perceived
and manipulated. Finally, what I have called Type ∞ cognition
(Signorelli, 2017) can be understood as cognition without any
kind of neural object consciously perceived, but operations on
these objects are consciously manipulated. According to these
definitions (Figures 2, 4), it is also possible to relate these
categories with four categories of machines and their information
processing capabilities (Signorelli, 2017): (1) The Machine-

Machine Type 0 Cognition would correspond to machines
and robots that do not show any kind of awareness. These
systems cannot know that they know about something that they
use to compute and solve problems. Machine-Machine is not
intelligent according to the general definition in section A Sub
Set of Human Capabilities and their processes are considered
low cognitive capabilities in human. Examples are robots that
we are making today with a high learning curve. (2) Conscious-
Machine Type 1 Cognition would have awareness and all
the processes of type 1 cognition in humans. This is a very
smart machine, however, it cannot control voluntary their inner
manipulations even when they can extract meanings of their
own “contents.” As well as humans, they will show wrong
answers to simple questions as for example cognitive fallacy
questions, mainly because the system accesses to a wider range
of information thanks to first levels of interference/interaction
between networks (Holistic information), however, some optimal
or specific algorithmic calculations may become intractable. (3)
Super Machine Type 2 Cognition would be the closest machine
to human, at least cognitively speaking. If this machine can
reach awareness and self-reference in the sense illustrated here
(not only computationally), they should show some kind of
“thoughts” associated with consciousness as a whole of rational
and emotional processes. In this case, they will have some moral
thinking, even when their moral can be completely different than
the humanmoral. Themoral thinking is not necessarily restricted
to the human morality, because as also happen in different
human communities and even human subjects, machines may
develop their own type of morality, and this morality can also
be non-anthropocentric. Nevertheless, the requirement for any
type of moral thinking is the attribution of correct and incorrect
behaviors based on what the system cares about the environment,

Frontiers in Robotics and AI | www.frontiersin.org October 2018 | Volume 5 | Article 121210

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Signorelli Consciousness Interaction and Its Paradoxical Implications

peers and itself, according to a balance between rational and
emotional intelligence. If the machine has the ability of awareness
and self-reference, they will develop, or they already developed
self-reflection, sense of confidence, some kind of empathy
among other processes mentioned to reach moral thoughts.
In these machines, “contents” are conscious and the cognitive
process is deliberate and controlled thanks to a recursive
and sustained interference/interaction at certain intersection
points from different networks (e.g., reasoning). (4) Subjective-
Machine Type ∞ Cognition are different than humans, even if
they could reach some important features of human intelligence.
They are defined according to type∞ cognition, where awareness
is missed but self-reference would still be there. A clear analogy
with humans is not stated here, even when the presence of self-
reference as a kind of monitoring process without awareness
could be reported in humans. However, the hypothesis about
this type of machines is related to Supra reasoning information
emerged from organization of intelligent parts of this supra
system (e.g., Internet), where systems would show some special
kind of self-reflection, sense of confidence, even when they
will probably not be able to extract meaning of their own
“contents,” or if they can, it will be especially different than
humans.

Some previous works have been also tried to generalize and
characterize some features of consciousness and their connection
with types of machines and/or artificial systems (Aleksander and
Morton, 2008; Wang, 2012). For example in Arsiwalla et al.
(2017), even though that article still keeps a computational
view of consciousness and social interactions, they conclude
that consciousness is not only due to computational capacity
and put emphasis in social interactions (which can also be
related to emotions) as a trigger of consciousness. Another
example is Gamez (2008), where some categories defined can
be close to some types of machine mentioned above. However,
some crucial differences with these articles are: (1) here, types
of machines directly emerge from previous theoretical and
experimental definitions of types of cognition. In this context,
types of machines are general categories from the definitions of
cognition and its relation with consciousness. (2) Additionally,
here, it is not assumed any special optimization processes to
achieve consciousness, actually quite the contrary, interference
processes as non-optimal processes and some still missing
properties of soft materials/brains would be associated with its
emergence.

Due to these non-optimal processes, each type of machines
has limitations (Signorelli, 2017, 2018). For instance, conscious
machine type 1 cognition will reach consciousness but it
does not have strong algorithmic calculation capabilities or
rational/logical intelligence, because accuracy is lost in favor of
consciousness as fast access to holistic information. Subjective
machines type ∞ cognition probably will not be able to interact
physically with us, and even less dance like us or feel like us,
however, it is the most likely scenario where machines and
computers would overtake some humans capabilities, keeping
the current hardware in a non-anthropomorphic form. For
this machine, the subjective experience could be something
completely different to what it means for humans. In other

words, Subjective Machines are free of human criteria of
subjectivity. Eventually, Super Machine is the only chance
for AI to reach and exceed human abilities as such. This
machine would have subjective experiences like humans, at
the same time that it would have the option to manipulate
the accuracy of its own logic/rational process; however, it
is also vulnerable to what subjective experiences imply: the
impact of emotions in its performance and biased behavior as
humans.

IMPLICATIONS FOR ARTIFICIAL

INTELLIGENCE AND CONSCIOUS

MACHINE

Any attempt to accomplish conscious machines and try to
overcome human capabilities should start with some of the
definitions stated previously. First, it is necessary to define
a set or subset of human capabilities which are desirable to
imitate or even exceed. This is, actually, a common approach,
the only difference is the kind of features which have been
replicated or attempted to replicate. According to this work,
most of them are still low-level cognitive tasks for brains.
Also in this article, the subset can be considered a very
ambitious group of characteristic: Autonomy, reproduction and
moral. Autonomy is already one characteristic considered in
AI. Research is currently working to obtain autonomous robots
and machines, and nothing opposes to the idea that eventually
an autonomous robot can be created. It would probably not
be autonomous in the biological sense, but it could reach
a high-level of autonomy. The same can be expected for
reproduction. Machine reproduction will not be a reproduction
as in biological entities, but if robots can repair themselves
and even make their own replications, the reproduction issue
can be considered reached, at least functionally speaking.
However, it is not obvious that genuine moral thinking can
be achieved by only improving computational capability or
even learning algorithms, specifically, if AI does not add
something which is an essential part of the human being:
consciousness.

Moreover, when some characteristics of human brains are
critically reviewed, consciousness is identified as an emergent
property that requires at least two other emergent processes:
awareness and self-reference. Thanks to these processes, among
others, it is expected to develop high-level cognition which
involves processes as self-reflection, mental imagery, subjectivity,
sense of confidence, etc, which are needed to show moral
thinking. In other words, the way to reach and overcome human
features is trying to implement consciousness in robots to attain
moral thinking.

However, to try to implement consciousness in robots, a
theory is needed that can explain, biologically and physically
speaking, consciousness in human brains, dynamics of possible
correlates of consciousness, the psychological phenomenon
associated with conscious behavior and at the same time, explore
mechanisms which can be replicated into machines. It should
not be mere descriptions of which areas of the brain are
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activated or which are the architectures of consciousness, if
the interaction between them, from which consciousness would
emerge, is not understood. Therefore, the understanding of
emergent properties is not enough and the consideration of
crucial plasticity properties of the soft materials in biology, as
oscillations, stochasticity, and even noise are very important to
also understand sub-emergent properties as plasticity changes
influenced by voluntary or conscious activity. For one side, a
more complete theory of consciousness is needed, which relates
complex behavior with physical substrates and for another side,
we need neuromorphic technologies to implement these theories.

One of the main attempts of this paper was to show a
possible structure for consciousness, founded on a non-intuitive
kind of interaction: oscillatory superposition and interference
between networks of networks defined as structural and/or
functional organizations changing dynamically. These principal
networks try to solve particular problems, and when all of
them are activated, sharing and interfering on their own
oscillatory processes as a whole, the field of consciousness would
emerge as a process of processes. Additionally, another main
attempt explored here was to make evident some paradoxical
consequences of trying to reach human capabilities. Thus,
types of cognitions were defined not only to show different
conscious processes, but also to show that from these categories,
it is possible to define four types of machines regarding the
implementation of consciousness into machines, and their
limitations.

For example, if we can reach the gap to make conscious
machine type 1 or 2 cognition, these machines will lose the
meaningful characteristics of being a computer, that is to say:
to solve problems with accuracy, speed and obedience. Any
conscious machine is not a useful machine anymore; unless
they want to collaborate with us. It means the machine can do
whatever it wants; it has the power to do it and the intention
to do it. It could be considered a biological new species, more
than a machine or only computer. More important: according to
our previous sections and empirical evidence from psychology
and neuroscience (Haladjian and Montemayor, 2016; Signorelli,
2017), it is not possible to expect an algorithm to control the
process of emergence of consciousness in this kind of machines,
and in consequence, we would not be able to control them. In
other words, even if it were possible to replicate consciousness
and high-level cognition, each machine would be different to
the other in a way that we are not going to control. If someone
expects to have a super-efficient machine, it would be quite the
contrary, eachmachine would be a lottery just as it is when people
meet each other.

With this in mind, three paradoxes appear. The first paradox
is that the only way to reach conscious machines and potentially
overcome human capabilities with computers is by making
machines which are not computers anymore. If it is considered
that a subset of main features on machines is the capacity to
be accurate and fast solving problems, from comments above,
any system with subjective capabilities is not accurate anymore,
because if they replicate high-level cognitions of human, it is
also expected that they will replicate the experience of color
or even pain, in a way that it will also interfere with rational

and optimal calculations, as well as in humans. The second
paradox is that when we make conscious machines type 1
and/or type 2 cognition, a process of interference, due to
consciousness, will affect the global processing of information,
allowing extraordinary rational or emotional abilities, but never
both extraordinary capabilities at the same time or even in the
same individual, due in part to how the intrinsic and non-
controlled emergent processes associated with consciousness
would work. In fact, if the machine is a computer-like-brain, this
systemwill require a human-like-intelligence that apparently also
requires a balance between different intelligence, as stated above.
Hence, machines type 1 or type 2 cognition would never surpass
human abilities, or if it does, it will have some limitations like
humans. The last paradox, if humans are able to build a conscious
machine that overcomes human capabilities: Is themachinemore
intelligent than humans or are humans still more intelligent
because we could build it? The intelligence definition would
move again, according to AI successes and new technologies
reached.

The ultimate goal of all these discussions is to emphasize
that trying to make conscious machines or trying to overcome
humans is not the path to improve machines, and indeed, to
overcome humans is a contradiction in itself. Futurists speak
about super machines with super-human characteristics, but they
stimulate these ideas without any care about what means to be a
human or even simple, but amazing kind of animals which are
still much smarter than computers. To make better machines,
science should not focus on anthropocentric presumptions nor
compare the intelligence of a machine with human intelligence.
The comparison should be according to a general definition
of intelligence, as it is stated above. This definition is complex
enough and very ambitious goal for any kind of AI. In this
way, better machines will be the type 0 and ∞ cognition
without anthropomorphic requirements, which will be able
to find different solutions to human problems and probably
unimaginably better than humans. These machines would be able
to imitate some human behavior if needed, but never achieve the
genuine social or emotional interaction that humans and animals
already have.

On another side, the question about replicating human
capabilities is still interesting and important, but for reasons
which are not efficient, optimal or better machines. The interest
of studying how to implement genuine human features in
machines is one academic and even ethical goal, as for example a
strategy to avoid animal experimentation. As it was shown above,
robots and machines would not be able to replicate the subset
of the human being if they do not replicate important features
of brains-hardware mentioned previously. These properties are
apparently closely connected with important emergent properties
which are a fundamental part of consciousness, and some
features of consciousness are needed to replicate moral thinking
as a crucial and remarkable capability of human beings. That
is why, to really understand the biological complexity and
mechanisms associated with these emergent properties, the
construction of artificial machines based on soft and biological
properties/principles can allow us to manipulate and find
different kinds of mechanisms until reaching some of the
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interesting characteristics of living beings. This approach will
not take us to more efficient machines, quite the contrary, these
machines will be inefficient and if, for instance, type 1 cognition
is achieved, they will be closer to some animals, more than good
and simple current machines.

That is why, finally, AI could be divided in (1) Biological-
Academic Approach, to achieve human intelligence for academic
proposes, as for example, instead of using animals to understand
consciousness, trying to use robots to implement theories
about how consciousness or other important biological features
are working. However, once the ultimate goal is reached, for
instance, the understanding of consciousness, the knowledge
should not be used to replicate or massively produce conscious
machines. It would be essentially an ethical question, at the
same level or even more intractable than cloning animal issues.
(2) Efficient Approach, to make better robots and machines,
which can help us with important tasks that are difficult to
perform or improve the human performance. The goal is
efficiency and performance. In this approach, some principles
from biology can be useful, such as modern applications of
neural networks, but the final goal would not be to achieve
high-level cognition. The implementation in silicon of biological
and physical principles of high-level cognition in humans and
animals will help us to improve some performances, but these
technologies will never replicate truly social interactions, and
it should not be expected, because these kinds of interactions
are apparently connected with hardware dependences of
biological brains. Of course, it is expected to imitate some of
them and even incorporate mixed systems between efficient
silicon architectures and inefficient soft materials to reach this
goal, but any attempt should be conscious of their intrinsic
limitations.

CONCLUSIONS

These comments seek to motivate discussion. The first objective
was to show typical assumptions and misconceptions when
we speak about AI and brains. Perhaps, in sight of some
readers, this article is also based on misunderstandings, which
would be another evidence of the imperative need for close
interaction between biological sciences, such as neuroscience,
and computational sciences. The second objective was tried
to overcome these assumptions and explore a hypothetical
framework to allow conscious machines. However, from this idea
emerge paradoxical conclusions of what a conscious machine is
and what it implies.

The hypotheses stated above are part of a “proof of concept”
to be commented and reformulated. They are part of a work in
progress. Thanks to category theory, process theories and others
theoretical frameworks, it is expected to develop these ideas
on consciousness interaction hypothesis more deeply and relate
them with other theories on consciousness, its differences and
similarities. In this respect, it is reasonable to consider that a new
focus that integrates different theories is needed. This article is
just the starting point of a global framework on the foundation of
computation, which expects to understand and connect physical

properties of the brain with its emergent properties in a replicable
and implementable way to AI.

In conclusion, one suggestion of this paper is to interpret
the idea of information processing carefully, perhaps in a new
way and in opposition to the usual computational meaning of
this term, specifically in biological science. Further discussions
which expand this and other future concepts are more likely
to be fruitful than mere ideas of digital information processing
in the brain. Additionally, although this work explicitly denies
the analogy brain-digital-computer, it is still admissible a
machine-like-brain, where consciousness interaction could be
an alternative to implement high intelligence in machines
and robots, knowing the limitations of this approach. Even
if this alternative is neither deterministic nor controlled, and
presents many ethical questions, it is one alternative that
might allow us to implement a mechanism for a conscious
machine, at least theoretically. If this hypothesis is correct
and it is possible to reach the gap of its implementation, any
machine with consciousness based on brain dynamics may have
high cognitive properties. However, some type of intelligence
would be more developed than others, because, by definition,
its information processing would also be similar to brains
which have these restrictions. Finally, these machines would
paradoxically be autonomous in the most human sense of this
concept.
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