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Building a conscious robot is a scientific and technological challenge. Debates about
the possibility of conscious robots and the related positive outcomes and hazards
for human beings are today no longer confined to philosophical circles.

Robot consciousness is a research field aimed at a two-part goal: on the one
hand, researchers working in robot consciousness take inspiration from biological
consciousness to build robots that present forms of experiential and functional
consciousness. On the other hand, scholars employ robots as tools to better
understand biological consciousness.
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Thus, part one of the goal concerns the replication of aspects of biological
consciousness in robots, by unifying a variety of approaches from Al and robotics,
cognitive robotics, epigenetic and affective robotics, situated and embodied robotics,
developmental robotics, anticipatory systems, and biomimetic robotics.

Part two of the goal is pursued by employing robots to advance and mark progress in
the study of consciousness in humans and animals. Notably, neuroscientists involved
in the study of consciousness do not exclude the possibility that robots may be
CONSCIouUs.

This eBook comprises a collection of thirteen manuscripts and an Editorial published
by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid
Robotics, and Frontiers in Neurorobotics, on the topic “Consciousness in Humanoid
Robots.” This compendium aims at collating the most recent theoretical studies,
models, and case studies of machine consciousness that take the humanoid robot
as a frame of reference. The content in the articles may be applied to many different
kinds of robots, and to software agents as well.
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Editorial on the Research Topic
Consciousness in Humanoid Robots

Building a conscious robot is a grand scientific and technological challenge. Debates about the
possibility of conscious robots and the related positive outcomes and hazards for human beings are
today no longer confined to philosophical circles.

There is no accepted definition of consciousness: see Vimal (2009) for an overview of different
meanings of the word. However, it is useful to point out the distinction of consciousness as
experience and consciousness as function. From the point of view of experience, a subject is
conscious when she feels visual experiences, bodily sensations, mental images, emotions (Chalmers,
1995). As Nagel (1974) points out, a subject has conscious experience if there is something it is
like to be that subject. From the point of view of function, a conscious subject is able to process
information which is globally available (Dehaene et al., 2017), she integrates information (Tononi,
2008), she is introspectively aware of herself (Floridi, 2005). Moreover, she generates inner speech
(Morin, 2005), she possesses an inner model of herself and external environment (Holland, 2003),
she is able to anticipate perceptual and behavioral activities (Hesslow, 2002), and she acts by
sensorimotor interactions with the external world (O’Regan and Noég, 2001).

Bringsjord (2007) contrasts the possibility of experiences in robots and proposes the notion of
cognitive consciousness (Bringsjord et al., 2018), offering a definition in terms of formal axioms.
Bringsjord et al. (2015) report the best example of cognitive consciousness by discussing a robot
that passed the human test of self-consciousness proposed by Floridi (2005).

Robot consciousness is a research field aimed at two-fold goal: on the one side, scholars working
in robot consciousness take inspiration from biological consciousness to build robots that present
forms of experiential and functional consciousness. On the other side, scholars employ robots as
tools to better understand biological consciousness.

Thus, a goal concerns the replication of aspects of biological consciousness in robots, by unifying
a variety of approaches from Al and robotics, cognitive robotics, epigenetic and affective robotics,
situated and embodied robotics, developmental robotics, anticipatory systems, and biomimetic
robotics (Chella and Manzotti, 2009; Bringsjord and Govindarajulu, 2018).

The other goal of robot consciousness concerns the employment of robots to mark progress in
the study of consciousness in humans and animals. Notably, neuroscientists involved in the study
of consciousness do not exclude the possibility that robots may be conscious (Dehaene et al., 2017).
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Editorial: Consciousness in Humanoid Robots

This e-book comprises a collection of 13 manuscripts
published by Frontiers in Robotics and Artificial Intelligence,
under the section Humanoid Robotics, on the topic on
“Consciousness in Humanoid Robots.” This compendium aims
at collating the most recent theoretical studies, models, and
case studies of machine consciousness that take the humanoid
robot as a frame of reference. However, the arguments of the
articles may be applied to different kinds of robots and even to
software agents.

OVERVIEW OF THE CONTENTS OF THE
E-BOOK

A methodological strategy for the study of robot consciousness
is introduced by Reggia et al. by means of the concept of
a computational correlate of consciousness. This parallels the
concept of a neural correlate of consciousness in the brain. Thus,
they describe a cognitive robot able to learn by imitation through
low-level cognitive components such as working memory and
causal reasoning mechanisms. The top-down cognitive control
of the working memory of the robot is a potential computational
correlate of robot consciousness.

According to Manzotti and Chella, the typical approaches
toward robot consciousness as, for example, global workspace,
information integration, enaction, cognitive mechanisms,
embodiment, constitute the Good Old-Fashioned Artificial
Consciousness. These share the same conceptual fallacy that the
authors name “the intermediate level fallacy.” Thus, they outline
a new conceptual framework toward robot consciousness.

The attentional mechanisms, theory of mind, and the role of
emotions are all critical aspects in the study of the mechanisms
underlying consciousness in humans and in robots. In this
context, Graziano proposes a theory based on the attention
schema as a starting point to build a conscious robot. The
attention schema theory may explain how an entity lays claim
to possess subjective awareness. According to Graziano, it
is possible to create a robot with a rich internal model of
consciousness that attributes consciousness to itself and to the
people it interacts with, and that uses this attribution to predict
human behavior.

Winfield proposes an artificial theory of mind that would
provide robots with new capabilities related to social intelligence
for human-robot interaction. The author suggests that a
simulation-based internal model may offer a new basis for the
artificial theory of mind. Internal models equip the robot with
a model of itself and the environment, including other agents,
so that the robot can test its possible actions and anticipate the
consequences for itself and the other agents.

Cominelli et al. present the cognitive system SEAI (Social
Emotional Artificial Intelligence) aimed for social and emotional
robots designed as a bio-inspired system with a model of
emotion and reasoning capabilities. In particular, SEAI comprises
a simulation of Damasio’s theory of consciousness.

Wang et al. and Chatila et al. consider the relevant
problem of robot self-consciousness. In details, Wang et al.
discuss self-consciousness in terms of NARS, an implemented

general-purpose intelligent system. The authors explain how a
general-intelligent system needs a notion of the “self” based
on the experiences accumulated by the system during its
development. The implementation of self-awareness and self-
control capabilities in NARS is at an early stage; however, the
overall design fits well with the processes in the human mind.

According to Chatila et al., the self-consciousness of a robot
emerges by the distinction operated by the robot between its
own body and the external environment. The paper proposes
a cognitive architecture that considers several aspects: the
perception of the robot; the interaction capabilities with the
external environment; the learning phase; the interaction with
other agents; the decision-making capacities.

Aspects related to architectural features for a conscious robot
have been treated by Kinouchi and Mackin, Van de Velde, and
Balkenius et al. In particular, Kinouchi and Mackin propose a
cognitive neural architecture for a conscious robot where the
primary role of consciousness is the adaptation at the system-
level. The proposed architecture is based on a two-level design:
the first level is related to awareness, habitual behavior, and the
binding problem. The second level is associated with the general
goal-directed behavior of the robot.

Van de Velde provides suggestions for robot architectures
by analyzing the roles of cognitive processing and access
consciousness in the brain. The author argues that consciousness
is a process which is referred to in situ representations in
the brain that underlie the possibility of cognitive access.
Given this, consciousness may be related to a continuous
process of cognitive access controlled by the activity of in situ
representations themselves, as in the operations of queries
and answers.

Balkenius et al. discuss the roles of memory and the inner
world for a conscious robot. The authors introduce a memory
model, based on neurophysiological data, that considers many
aspects, such as object permanence and episodic memory. The
three components of the model are an identification network,
a localization network, and a working memory network. The
mechanisms that fill in the sensations to the generation of
perceptions can be detached from sensory input and run in
isolation, allowing for planning mechanisms and daydreaming.

The active inference framework is discussed in detail
by Linson et al. and by Bichl et al. The active inference
framework is a bridge between computational neuroscience and
robotics to psychology and phenomenology. The framework
provides a theoretical basis for a unified treatment of particles,
organisms, and interactive machines. The theory considers
perception, reasoning, and action selection under the heading
of a single principle. Notably, it suggests biologically plausible
explanations for cognitive phenomena and implications for
robot consciousness.

Finally, Signorelli analyses some misconceptions related
to the next generations of conscious robots. The author
discusses the sense in which a robot could reach capabilities
at the human level, asserting that it could be possible
only in case of a sentient robot. Then, a robot would
be classified according to the human types of cognition.
An important aspect of the author’s discussion is that a
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conscious robot would not overcome humans but, on the
contrary, it could present the very same limitations presented
by humans.

CONCLUSIONS

In summary, the advent of a conscious robot would be a
tremendous scientific and technological leap.

The 13 contributions collected in this e-book touch essential
aspects of the current debate about robot consciousness as the
relationship between phenomenology and cognition, the role
of theory of mind and self-awareness, the roles of attention
and emotions, the possible problems arising from a conscious
robot among us. Insights concerning the design of cognitive
architectures and initial implementations are discussed. The
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help to build a new generation of conscious robots, which,
in turn, would contribute to a better understanding of
biological consciousness.
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The Attention Schema Theory:
A Foundation for Engineering
Artificial Consciousness

Michael S. A. Graziano*

Department of Psychology and Neuroscience, Princeton University, Princeton, NJ, United States

The purpose of the attention schema theory is to explain how an information-process-
ing device, the brain, arrives at the claim that it possesses a non-physical, subjective
awareness and assigns a high degree of certainty to that extraordinary claim. The
theory does not address how the brain might actually possess a non-physical essence.
It is not a theory that deals in the non-physical. It is about the computations that cause
a machine to make a claim and to assign a high degree of certainty to the claim.
The theory is offered as a possible starting point for building artificial consciousness.
Given current technology, it should be possible to build a machine that contains a rich
internal model of what consciousness is, attributes that property of consciousness to
itself and to the people it interacts with, and uses that attribution to make predictions
about human behavior. Such a machine would “believe” it is conscious and act like it is
conscious, in the same sense that the human machine believes and acts.

Keywords: attention, awareness, body schema, internal model, visual attention

INTRODUCTION

This article is part of a special issue on consciousness in humanoid robots. The purpose of this
article is to summarize the attention schema theory (AST) of consciousness for those in the engi-
neering or artificial intelligence community who may not have encountered previous papers on the
topic, which tended to be in psychology and neuroscience journals. The central claim of this article
is that AST is mechanistic, demystifies consciousness and can potentially provide a foundation on
which artificial consciousness could be engineered. The theory has been summarized in detail in
other articles (e.g., Graziano and Kastner, 2011; Webb and Graziano, 2015) and has been described
in depth in a book (Graziano, 2013). The goal here is to briefly introduce the theory to a potentially
new audience and to emphasize its possible use for engineering artificial consciousness.

The AST was developed beginning in 2010, drawing on basic research in neuroscience, psychol-
ogy, and especially on how the brain constructs models of the self (Graziano, 2010, 2013; Graziano
and Kastner, 2011; Webb and Graziano, 2015). The main goal of this theory is to explain how the
brain, a biological information processor, arrives at the claim that it possesses a non-physical,
subjective awareness and assigns a high degree of certainty to that extraordinary claim. The theory
does not address how the brain might actually possess a non-physical essence. It is not a theory that
deals in the non-physical. It is about the computations that cause a machine to make a claim and to
assign a high degree of certainty to the claim. The theory is in the realm of science and engineering.

Given a mechanistic theory of this type, my best guess is that artificial consciousness will arrive
relatively soon, within the next century, and that even farther down the road people will be able to
migrate their minds to new hardware much like we now migrate essential data and algorithms from
an obsolete computer to an upgraded model. That type of technology will obviously be transfor-
mational, though whether good or bad I am not sure. Every aspect of human existence—culture,
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politics, health, preservation of knowledge and wisdom across
periods of time, human dispersion across space, and other
environments hostile to biology—will be fundamentally changed
by the easy transferability of minds to new hardware. As crazily
science fiction as these possibilities sound, I see our technology
moving in that direction. My hope is that AST will provide some
initial insights into consciousness that are concrete enough, and
mechanistic enough, that engineers can build upon it to facilitate
the technology.

THE CRUCIAL DIFFERENCE BETWEEN
MIND AND LAPTOP

Before explaining the theory, it is useful to specify what phe-
nomenon it purports to tackle. The term consciousness, after all,
has many, sometimes conflicting meanings. To help specify the
meaning used here, consider the difference between a brain and a
modern personal computer. Of course there are many differences,
but one seems more consequential than others. The brain has a
subjective experience associated with a subset of the information
that it processes.

You can connect a computer to a camera and program it to
process visual information—color, shape, size, and so on. The
human brain does the same, but in addition, we report a subjective
experience of those visual properties. This subjective experience
is not always present. A great deal of visual information enters the
eyes, is processed by the brain and even influences our behavior
through priming effects, without ever arriving in awareness. Flash
something green in the corner of vision and ask people to name
the first color that comes to mind, and they may be more likely to
say “green” without even knowing why. But some proportion of
the time we also claim, “I have a subjective visual experience. I see
that thing with my conscious mind. Seeing feels like something”
The same kind of subjective experience can pertain to other
sensory events—a sound, a touch, heat and cold, and so on.

Consider another domain of information: episodic memory.
It is a part of our self-identity. It provides a sense of a trajectory
through life. But memory itself is not fundamentally mysterious.
A computer can store memory, including elaborate information
about its past states. Those memories can be retrieved and used
to guide output. The crucial, human difference is not that we have
memories, or that we can recall them, but that we have a subjec-
tive experience of memories as we recall them.

Consider one more information-processing event: a decision.
Once more, decision-making is not fundamentally mysterious.
A computer can make a decision. It can take in information,
integrate it, and use it to select one course of action out of many.
The human brain also makes decisions. Most of those decisions,
possibly tens of thousands a day, occur automatically with no
subjective experience, much like in a computer. Yet in some
instances, we also report a subjective awareness of making the
decision. We sometimes call it intention, choice, or free will. The
ability to make a decision, in itself, is not a special human capa-
bility. The crucial difference between a personal computer and a
human brain lies in the subjective experience that is, sometimes,
associated with decision-making—or with memory, sensory
processing, or other events in the brain.

This subjective experience is often called consciousness. I
admit the term can be misleading. To some people, conscious-
ness refers to a metaphysical soul that floats free of the body after
death. To many people it refers to the rich contents swirling within
a mind. To some it refers specifically to the part inside you that
has free will and chooses one action over another. I mean none
of these things. I am referring to the human claim that we have
a subjective experience of anything at all. In this account, I will
use the terms consciousness, subjective awareness, and subjective
experience interchangeably, to refer to this phenomenological
property that people claim is associated with some select events
and information in the brain.

Like many scientists who study consciousness, I focus on a
microcosmic problem: a person looking at a small round spot
on a screen (e.g., Webb et al,, 2016a). In some circumstances,
the person could say, “I have a subjective experience of seeing
that spot” In other circumstances, the spot is processed by the
visual system, has a measurable impact on the person, and even
affects the person’s speech and decisions, and yet the person will
report, “I didn’t consciously see anything” What is the difference
between these two circumstances? Why is subjective awareness
attached to the visual event in one case and not the other? If we
can understand the relevant brain processes for awareness of a
spot on a screen, then in principle we can extend the explanation
to any information domain. We would understand how people
have a subjective experience of vision, touch, sound, the internal
richness of memory, mental imagery, decision-making, and self.
We would understand the conscious mind.

My point here is that most of what composes the conscious
mind is, in principle, not a fundamental mystery. What has
resisted explanation thus far is not the content of our experience,
but the presence of subjective experience itself. I argue that sub-
jective experience is a confined, relatively easy piece of the neural
puzzle to solve.

I also argue that the solution is no mere philosophical flour-
ish. Instead, it is a crucial part of the way the system models and
controls itself. It is a key part of the engineering. Without under-
standing the subjective awareness piece, it may be impossible to
build artificial intelligence that has a human-like ability to focus
its computational resources and intelligently control that focus.
It may also be impossible to build artificial intelligence that can
interact with people in a socially competent manner. The study of
consciousness is sometimes mistaken as a pursuit of metaphysical
mystery, without any practical consequences. The AST does not
address a metaphysical mystery. It addresses a concrete piece of
the neural puzzle, as pragmatic as the transmission mechanism
ina car.

GRASPING AN APPLE WITH THE HAND

The idea of an attention schema was developed in analogy to
the body schema. The body schema is an internal model, a rich
and integrated set of information that reflects the state of the
body, how it moves, and its relationship to the world (Head and
Holmes, 1911; Shadmehr and Mussa-1Ivaldi, 1994; Graziano et al.,
2000; Graziano and Botvinick, 2002; Holmes and Spence, 2004).
The body schema not only contributes to the brain’s control of
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the body but also contributes to cognition and verbal behavior.
It allows the brain to draw conclusions and make claims about
the body. Without a body schema, we would not know that we
have a body—except in an intellectual sense, the same way we all
know that we have a pancreas. With a body schema, we report
having whatever shape or type of body is represented by that body
schema. The present section describes the body schema and some
of its implications. The following section will draw parallels to an
attention schema and our claim to have awareness.

To understand the body schema, consider the bodyasarobotic
device (it could be legitimately called a biological robot) and the
brain as the information processor that controls it. Suppose this
robot has reached out and grasped an apple. We want to know
what information is available to that robot’s brain. Three specific
types of information are relevant to this discussion: informa-
tion about the apple, about the robot’s own body, and about the
physical relationship between the robot and the apple. One of
the most important and overlooked aspects of the body schema
is that it is not just a representation of the body itself. It contains
information about the relationship between the body and the rest
of the world.

We will begin with the apple. We ask this biological robot
what it is holding, and the robot answers, “An apple” We ask the
robot, “Can you describe the apple?” and the robot does so. How
does the robot do this? Its brain contains linguistic and cognitive
machinery. The cognitive machinery has partial access to the
models constructed within its visual system. Its visual system
has constructed a rich model of the apple, a set of information
about size, color, shape, location, and other attributes, constantly
updated as new signals are processed. Due to the presence of this
information, and due to the cognitive and linguistic access to the
information, the machine is able to respond. It is worth noting
that the robot is not actually telling you about the apple. It is
telling you about the model of an apple, essentially a simulation,
constructed in its visual system. If the internal model contains an
error, if it represents the apple as twice too big, for example, the
machine will report that incorrect information.

Next, we ask the robot, “What is the state of your body?”
Once again, the robot can answer. The reason is that the brain
has constructed a body schema—a set of information, constantly
updated as new signals are processed, that specifies the size and
shape of the limbs and torso and head, how they are hinged, the
state they are in at each moment, and what state they are likely to
be in over the next few moments. The primary purpose of a body
schema is to allow the brain to control movement. A secondary
consequence of the body schema is that the robot can explicitly
talk about its body. Its cognitive and linguistic processors have
some access to the body schema, and therefore the robot can
describe its physical self.

Once again, it is worth noting that the robot is not reporting
on the actual state of its body, but rather reporting the contents of
an internal model. If that internal model is in error, then the robot
will provide an incorrect report. If you trick the body schema
into representing the arm as more to the left than it actually is,
or larger than it actually is, that distorted information will pass
through cognition and linguistic processing and enter the verbal
report. Even rather extreme illusions of the body schema are

easily induced, such as the rubber hand illusion (Botvinick and
Cohen, 1998) or the Pinocchio illusion (Lackner, 1988). It is also
worth noting that even when the body schema is working cor-
rectly, it is always incomplete. It does not contain information
about, for example, bone structure, tendon attachments, or the
biophysics of muscle contraction. Our biological robot cannot
access its body schema and on that basis tell you about the actin
and myosin fibers in the muscles. Its body schema contains only
the information that the system needs to control the body. The
body schema is, in a sense, a cartoon sketch of the body.

Finally, we ask the robot, “What is your physical relationship
to the apple?” The robot says, “My arm is outstretched and my
hand is grasping the apple” The answer requires integrating
two different internal models: the visual system’s model of the
apple and the body schema. The machine has constructed an
amazingly complex, brain-spanning meta-model. Yet in its
essence, the behavior remains simple. The machine constructs
internal models descriptive of its world. It can report the
information content of those internal models because its cogni-
tive and linguistic mechanisms have at least partial access to
those internal models. Nothing here is mysterious. Nothing
is outside the realm of engineering. I argue that the biological
robot, as described thus far, could be copied in artificial form
using today’s engineering expertise, and it would function in
essentially the same way.

I use the term “robot” to communicate a mechanistic perspec-
tive, but I intend to describe a human being. We operate in the
manner described above. If you hold an apple, the reason why you
can say so is that your brain has constructed an internal model of
the apple and of your body, integrated those two models to form
a larger, overarching description of your physical relationship to
that apple, and cognitive and linguistic machinery has access to
those internal models. There is something tautological about my
central assertion: every claim a person makes, even a simple claim
like, “Right now I'm holding an apple,” depends on information
constructed in the brain. Without the requisite information, the
system would be unable to make the claim.

GRASPING AN APPLE WITH THE MIND

Suppose the robot as described above is asked another question.
We ask it, “What is the mental relationship between yourself and
the apple?” If the robot contains only an internal model of the
apple and of a body schema, I argue that it would not be able
to answer the new question. It would lack sufficient informa-
tion. It has sufficient information to answer basic questions
about its physical body, about the apple, and about the physical
relationship between the two. But a mental relationship? It lacks
information on what a mental relationship is. We could ask, “Are
you conscious of the apple?” but given the information present,
the machine could provide only concrete and literal information
such as, “There is an apple” We could press and say, “Yes, but do
you have an internal, subjective experience of it?” How could the
machine answer? Thus far, we have not given it information to
process that question. It would be like asking a digital camera
whether it is aware of the picture it just took. The question is
meaningless.
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Almost all theories of consciousness focus on how a brain
might generate a feeling of consciousness. The AST takes a more
pragmatic approach, asking how a machine can make the claim
that it has a subjective experience. It is a theory about how the
brain constructs the requisite information such that the person
can make that specific claim. Without the requisite information,
the claim cannot be made.

The AST'is, ina sense, a proposed extension of the body schema.
The proposal is that the brain constructs not only a model of the
physical body but also a model of its own internal, information-
handling processes. It constructs an “attention schema”” That
attention schema not only contributes to the control of attention
but the information contained within it also has consequences for
the kinds of claims that the machine can make about itself.

Attention is a catchall term that arguably adds more confusion
than clarity, given its many connotations and meanings. Here, I
will mainly avoid the term and use the phrase, “enhanced pro-
cessing.” I will occasionally use the term “attention” when nothing
else captures the intended meaning succinctly. The phenomenon
I outline below matches at least some uses of the term attention,
especially as described by the neuroscientific, “biased competi-
tion” theory of attention (Desimone and Duncan, 1995; Beck and
Kastner, 2009).

Signals in the brain can be selectively enhanced. For exam-
ple, consider again the robot from the previous section that
encounters an apple. Its visual system constructs a representation
of the apple. Under some circumstances, that representation
may be suppressed in favor of other representations. Perhaps a
sandwich, or another person, or something startling like a bear,
wins a competition of visual signals, rises in signal strength,
and suppresses the representation of the apple. Under other
circumstances, the apple becomes the focus of processing and
its representation is enhanced at the expense of other visual
representations. This constantly shifting competition among
signals can be slanted or biased toward one item or another by a
variety of influences, including bottom-up influences (such as a
suddenly moving object that causes a surge of signal in the visual
system) or top-down influences (such as a cognitive decision to
focus one’s resources on a specific task). If the apple’s representa-
tion in the visual system gains in signal strength, winning the
competition of the moment, that enhanced processing has a suite
of consequences. The apple is processed in greater depth—its
nuances and details are more fully processed. It is also more likely
to affect other systems throughout the brain, beyond the visual
system. The signal is, in effect, broadcasted to other brain areas.
It is therefore more likely to affect behavioral decision-making.
Whether you reach for the apple or not, bite it, put it away, or
decide not to touch it because it looks rotten, the processing of
the apple has an impact on behavioral choice. The apple is also
more likely to impact memory, allowing it to be recalled later and
affect future behavior.

The focusing of resources described here is not limited to a
spatial focus. One can focus processing resources on color, on
motion, on a particular shape, or on other non-spatial features. It
is also not limited to vision. The same type of selective, enhanced
processing can be seen in audition, touch, and presumably
smell and taste. One can apply the same enhanced processing to

movement commands during a difficult movement sequence. It
is even possible to selectively enhance entirely internal signals,
such as recalled memories, visual imagination, or internal speech.
The constantly shifting, enhanced processing of some signals over
others, across a vast range of information domains, is one of the
most fundamental attributes of the brain.

Now consider again the robot holding an apple. Suppose the
machine is focusing its processing resources on the apple. You
ask the robot, “What is your mental relationship to the apple?”
Can the robot answer this question? Does it have sufficient
internal information to report what it is doing computationally?
According to AST, the robot can indeed answer the question, and
the reason is that it contains an attention schema. The attention
schema is a set of information that describes the act of focusing
resources on something. The attention schema describes what
attention is, what it does, what its most basic stable properties
are, what its dynamics and consequences are, and monitors its
constantly changing state. Given the information in the attention
schema, and given cognitive and linguistic access to at least some
of that information, the machine is able to say, “I have a mental
grasp of the apple”

Just as the body schema lacks information about mechanistic
details such as bone structure and tendon insertion points, so the
proposed attention schema lacks detailed information about how
signals in the brain are selectively enhanced. The proposed atten-
tion schema lacks information about neurons, synapses, electro-
chemical signals, neural competition, and so on. It has a relatively
impoverished description. Suppose you ask the machine, “Tell me
more about this mental possession. What physical properties does
it have?” The machine is not going to be able to give a scientifically
accurate answer. It cannot describe the neuroscience of attention.
It replies on the basis of the information available in the attention
schema. It says, “My mental possession of that apple, the mental
possession in and of itself, has no describable physical properties.
It just is. It's a non-physical part of me. My arms and legs are
physical parts of me; they have substance. Whatever’s inside me
that has mental possession of things, that part is non-physical. It’s
metaphysical. Its my awareness.”

It is important to point out what I am not saying. It is easy to
imagine building a machine that says, “I am aware of the apple”
Just record that message on your phone, then press play, and the
machine will utter the phrase. That superficial solution is not what
is being described here. What is crucial here is the presence of a
rich, descriptive model that is constructed beneath the level of
cognition and language, and yet still is accessible to cognition.
Because the machine is responding on the basis of an internal
model, the response can be flexible, self-consistent, and meaning-
ful. If you ask the machine for more details, it can give a rich
description. It might add, “That non-physical, subjective part of
me, the real me, is located inside my body. It hovers in my head.
It's more or less vivid depending on circumstances. Now that I'm
aware of that apple, I know about it, what it is and what it’s good for.
I can choose to react to it. I'll be able to remember it for later. Those
are just some of the consequences of awareness. And awareness is
not limited to apples. I sometimes experience other things as well.
Right now I'm aware of you, sometimes I experience a flood of
recalled memories, or mental imagery that I invent fancifully, and
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sometimes I have the subjective experience of making a decision.
There’s a commonality across all those circumstances—I have a
subjective, mental possession of things inside me and around me.”
In this description, the machine is coming close to the literal truth.
It is giving a fairly close, if high-level and detail-poor, description
of how it focuses its processing resources on one or another item.
Its description veers from literal reality only as it muddles the
more mechanistic details and ultimately claims to have a spooky,
physically incoherent consciousness. Consciousness is, in a sense,
a cartoon sketch of attention.

Suppose you ask the machine, “But aren’t you making all those
claims simply because thats the information contained in your
internal models? Aren’t you just a computing machine?”

The machine accesses its internal models and finds nothing to
match your suggestion. Its internal models do not announce to
cognition, “By the way, this is information contained in an internal
model, and the information might not be literally accurate” On
the basis of the limited information available, the machine says,
“What information? What internal models? This has nothing to
do with computation. No, I am simply subjectively aware of the
apple” The machine is captive to its own information. It knows
only what it knows.

Colleagues have often asked me: granted that the brain prob-
ably does construct something like an attention schema, how does
that internal model explain how we have subjective experience?
Why does it feel like anything at all to process information? The
answer is that the theory emphatically does not explain how we
have a subjective experience. It explains how a machine claims
to have a subjective experience, and how it is that the machine
cannot tell the difference.

The AST has some similarities to the illusionist approach to
consciousness (e.g., Dennett, 1991; Norretranders, 1999; Frankish,
2016). In that view, subjective experience is not truly present;
instead, the brain is an entirely mechanistic processor of informa-
tion that has an illusion of possessing consciousness. Exactly how
the illusion occurs differs somewhat between accounts. Clearly,
the illusionist approach has a philosophical similarity to the AST.
However, I remain uncomfortable with calling consciousness an
illusion. In AST, the brain does not experience an illusion. It does
not subjectively experience anything. Instead, the machine has
wrong, or simplified information that tells it that it is having an
experience. In my view, calling consciousness an illusion is trying
too hard to employ an everyday, intuitive concept that is not truly
applicable.

Another similar approach to consciousness might be called
the “naive theory” perspective (e.g., Gazzaniga, 1970; Nisbett and
Wilson, 1977; Dennett, 1991). In that view, the brain processes
information about its world but does not possess any subjective
experience. We claim that we do because, at a cognitive level,
we have learned a naive theory. It is essentially a ghost story, a
socially learned narrative that we use to explain ourselves, a social
epiphenomenon with debatable utility. With different upbringing,
we would not claim to have any conscious experience. Again,
there is some philosophical similarity between this view and AST.
Indeed, the two are very close. However, in AST, the naive con-
struct of consciousness is not learned. It is not at a higher cognitive
level. It is wired into the system at a deep level and constructed

automatically, like the body schema. It is inborn. As discussed
below, it is probably present in a range of species. Moreover, it
is not a social epiphenomenon; instead, it serves a specific set of
important cognitive functions. The brain constructs internal mod-
els because of the specific usefulness of modeling and monitoring
items in the real world, and the usefulness of the attention schema
is the crux of the theory, as discussed in the following sections.

The AST also has strong similarities to approaches in machine
consciousness (e.g., Chella et al., 2008) in which a system can
contain representations of the self, the environment, and higher
order, recursive representations of how the self relates to the
environment. This general concept resonates closely with the
concepts of the AST. The AST is a theory of how the human brain
models its own human-like attention systems and thus makes the
claim that it has a subjective experiential component. Artificial
systems that have different internal architecture, perhaps differ-
ent processes akin to but not identical to human attention, might
require different self-representations. A machine of that nature
would not necessarily lay claim to consciousness in the sense that
we humans intuitively understand it. Drawing on its own internal
quirky representations, it would describe itself in ways specific
to it. Of course, we might expect the contents of that machine’s
mind to differ from a human’s mind. But, the point I am try-
ing to make here is that the very construct of consciousness, of
subjective experience itself, whether the machine even has that
construct and what the details of it may be, will depend on the
precise nature of the machine’s internal models.

THE ADAPTIVE VALUE OF AN ATTENTION
SCHEMA: CONTROL OF ATTENTION

The sections above discussed the consequences of cognitive and
verbal access to internal models. For example, the body schema
allows you to close your eyes and still know about and talk about
the configuration of your body. The primary function of the body
schema, however, is probably less for cognitive access and more
for the control of movement. One of the fundamental principles
in control engineering is that a good controller contains a model
of the item being controlled (Conant and Ashby, 1970; Francis
and Wonham, 1976; Camacho and Bordons Alba, 2004; Haith
and Krakauer, 2013). A robot arm, the airflow throughout a build-
ing, a self-driving car, each system benefits from an appropriate
internal model. The model partly monitors the state of the item to
be controlled and also partly predicts states into the near future.
The body schema contains layers of information about the body,
about its stable properties such as its shape and hinged structure
and about more dynamic properties such as forces and velocities
(Head and Holmes, 1911; Shadmehr and Mussa-Ivaldi, 1994;
Shadmehr and Moussavi, 2000; Graziano and Botvinick, 2002;
Holmes and Spence, 2004; Hwang and Shadmehr, 2005). This
information is used during the control of movement for obstacle
avoidance, for on-line error correction, and for longer term
adaptation. If movements are systematically wrong or distorted,
the internal model can be adapted to correct the errors.

We hypothesized that the same advantages accrue from having
an attention schema. The ability to focus processing resources
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strategically on one or another signal requires control. That
control should benefit from an attention schema—a coherent set
of information that represents basic stable properties of atten-
tion, reflects ongoing changes in the state of attention, makes
predictions about where attention can be usefully directed, and
anticipates consequences of attention. The best way to test this
hypothesis would be to isolate cases where awareness fails—cases
where the brain is processing information but people report
being unaware of it. In those cases, by hypothesis, the attention
schema has failed. While the system may still be capable of direct-
ing attention, focusing resources on the signal in question, the
control of attention should suffer in characteristic ways—much
like the control of the arm might become more wobbly, less able to
error-correct, and less adaptable over repeated trials, if the arm’s
internal model is compromised.

Several experimental results on attention and awareness have
been interpreted as consistent with this prediction (McCormick,
1997; Tsushima et al., 2006; Lin and Murray, 2015; Webb and
Graziano, 2015; Webb et al., 2016a), though more experiments
are needed. Thus far, the relevant experiments have focused on
visual attention and visual awareness. When people are unaware
of a visual stimulus, they can still sometimes focus processing
resources on it. They can direct attention to it (McCormick,
1997; Lamme, 2003; Woodman and Luck, 2003; Ansorge and
Heumann, 2006; Tsushima et al., 2006; Kentridge et al., 2008;
Hsieh et al., 2011; Norman et al., 2013). However, in that case,
visual attention suffers deficits in control. It behaves less stably
over time and shows evidence of being less able to error-correct
and less able to adapt to perturbations (McCormick, 1997; Lin
and Murray, 2015; Webb and Graziano, 2015; Webb et al., 2016a).
The evidence suggests that awareness is necessary for the good
control of attention.

One group of researchers has presented a computational
model of attention with and without an internal model and found
that at least this simplified, artificial attention is better controlled
with the internal model (van den Boogaard et al., 2017).

In our hypothesis, the attention schema first evolved as a crucial
part of the control system for attention. The possible co-evolution
of attention and awareness has been discussed before (Graziano,
2010, 2013, 2014; Haladjian and Montemayor, 2015; Graziano
and Webb, 2016). Since the basic vertebrate brain mechanisms for
controlling attention emerged more than half a billion years ago,
we speculate that the origin of awareness, at least in preliminary
form, may be equally ancient. Awareness, in this view, is not sim-
ply a philosophical flourish. It is a part of the engineering. Just as
one cannot understand how the brain controls the body without
understanding that the brain constructs a body schema, so one
cannot understand how the brain intelligently deploys its limited
processing resources without understanding that it constructs an
attention schema. That an attention schema causes us humans to
lay claim to a metaphysical soul is a quirky side effect.

THE ADAPTIVE VALUE OF AN ATTENTION
SCHEMA: SOCIAL COGNITION

One of the most devastating impairments to awareness in the
clinical literature is hemispatial neglect. Damage to one side of the

brain, typically the right temporoparietal junction (TPJ), causes
a loss of awareness of everything to the opposite side of space
(Vallar and Perani, 1986; Corbetta, 2014). Yet, information from
the neglected side is still processed to some degree (Marshall and
Halligan, 1988), and the visual system is still active to the highest
levels of processing (Rees et al., 2000; Vuilleumier et al., 2002).
Neglect appears to be caused by the disruption of brain networks
involved in attention and awareness that pass through the TPJ
(Corbetta, 2014; Igelstrom and Graziano, 2017).

The TP]J, however, has also been implicated in social cogni-
tion. When people attribute mind states to each other, such as
beliefs or emotions, brain-wide networks are recruited that also
pass through the TPJ (Saxe and Wexler, 2005; Kelly et al., 2014;
Igelstrom et al., 2016). A complicated literature suggests that,
although there is some separation of function among subregions
of the TPJ, considerable overlap of function is also present
(Mitchell, 2008; Scholz et al., 2009; Igelstrom et al., 2016; Igelstrom
and Graziano, 2017). The adjacency and possible overlap of social
cognition functions with awareness and attention functions has
caused some controversy.

We suggested that the functional overlap within the TP]
may have a deeper significance (Graziano and Kastner, 2011;
Graziano, 2013). In our proposal, one of the primary uses for
the construct of awareness is for social cognition. We attribute
to other people an awareness of the objects and events around
them. When we do so, we are in effect constructing a simplified
model of other people’s state of attention. Arguably, all of social
cognition depends on attributing awareness to other people. Does
Frank intend to walk toward you, or sit in that chair, or eat that
sandwich? Only if he is aware of you, the chair, or the sandwich.
Is he angry that someone made a rude gesture at him? Only if
he is aware of the gesture. Whether reconstructing someone
else’s beliefs, intentions, emotions, or any other mental state, we
depend first on attributions of awareness.

In our hypothesis, the TPJ is a central node in a brain-wide
network that helps to compute an attention schema. That atten-
tion schema is our construct of awareness, and that construct can
be applied to oneself or to others. Much like the color-processing
networks in the visual system can assigned colors to surfaces, so
the social cognition network can assign the construct of aware-
ness to agents, including oneself. Experimental evidence from
brain imaging studies suggests that the TP] does play a role in
attributing visual awareness to others, and that some of the same
subregions of the TPJ are involved in constructing one’s own
visual awareness (Kelly et al., 2014; Igelstrom et al., 2016; Webb
et al., 2016b). We suggest that the TPJ is a site where the ability
to perceive consciousness in others grew out of our ability to be
conscious ourselves. However, the TP] remains an extremely
complex area of the cortex that is still poorly understood. Far
more work will be needed to specify its range of functions and
how they are distributed anatomically.

Given the goal of this article, introducing AST to those who
may be interested in engineering it, the specific networks in the
brain are not of great importance. Whether the computations
are performed by this or that part of the brain are irrelevant.
What is important is the overlap in function between modeling
oneself and modeling others. A mechanism that can compute
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an internal model of attention, an attention schema, may be
important not just for controlling one’s own attention, but also
for monitoring the attentional states of others. The social use of
an attention schema may be especially developed in humans.
We attribute awareness to each other, to pets, to inanimate
objects, and to the spaces around us. Arguably, the entire spirit
world, from deities down to minor ghosts, owes itself to our
social neural machinery building the construct of awareness
and attributing it promiscuously to ourselves and everything
else around us. To build machines with similar social ability,
the ability to attribute consciousness to itself and to others, such
that the machine can understand what it means for another
agent to be conscious, may require something like an attention
schema.

WHY BUILD ARTIFICIAL
CONSCIOUSNESS?

If AST is correct, then consciousness is buildable with current
technology. In this respect, the theory differs from other major
theories of consciousness that provide much less clear direction
for how to build consciousness.

For example, the global workspace theory posits that the brain-
wide boosting and broadcasting of a signal, such as a visual signal,
causes that signal to enter consciousness (Baars, 1988; Dehaene,
2014). In effect, the global workspace theory is the same as the
AST, if you took away the attention schema part, and had only the
attention part—the ability of the brain to selectively enhance sig-
nals such that they have a global impact on many brain systems.
While in my view the theory is likely to be correct as far as it goes,
it is incomplete. It does not explain why the globally broadcasted
information would be associated with the property of subjective
experience. Building a machine that has signals boosted in that
manner, to a strength sufficient to globally effect other systems in
the machine, is easily done and arguably has already been done.
But it is not a good prescription for building consciousness. There
is no reason to suppose that a machine of that sort would sit up
and say, “Wow, I have an internal experience of these things.” It
brings us no closer to the behavior that humans exhibit, namely,
claiming to have subjective awareness.

The integrated information theory (Tononi, 2008) suffers
a similar problem. In that theory, consciousness is the result
of highly integrated information in the brain. A mathematical
formula can tell you how much integrated information, and thus
how much consciousness, is present in any specific device. To
many scientists, including myself, this theory is non-explanatory
and ultimately unfalsifiable. It is somewhat like the science fiction
trope: if you build a computer big and complex enough, inte-
grating enough information together, it will somehow become
conscious. To be fair to the theory, in my view, there is likely to
be at least some type of relationship between consciousness and
highly integrated information. Even in AST, the proposed atten-
tion schema is a bundle of information that is integrated with
other schemas and models around the brain. But as a prescription
for building consciousness, the integrated information theory by
itself has been disappointing, since even very complex technology

that contains a lot of integrated information has not announced
its consciousness yet.

The AST instead presents an extremely simple conceptual
foundation. The machine claims to be conscious of items and
events, because it constructs information that describes that
condition of consciousness. Without the internal information
indicating that it contains consciousness, it would not be able to
make the claim. The reason why it constructs that quirky internal
information is because it is a useful, if not literally accurate, model
of the machine’s ability for deep, focused processing. The AST
therefore points a practical way toward building a machine that
makes the same claims of consciousness that people do.

I recognize that AST is not yet specific enough to hand a
blueprint to an engineer. Yet, it lays a conceptual foundation for
building consciousness. Because it is a theory in which a machine
constructs a specific set of information and uses it in a specific
way, it is buildable. Given current technology, an enterprising set
of Al researchers should be able to build a machine that contains
a fairly rich model of what consciousness is and that can attribute
the property of consciousness to itself and to the people it inter-
acts with. It should be possible to build a machine that believes it
is conscious and claims it is conscious and acts like it is conscious
and that talks about its consciousness in the same ways that the
human machine does.

Why try to build artificial consciousness? One could build it for
entertainment value. It would be monumentally cool. But I also
see two practical reasons. The first may be of technical interest to
specialists, whereas the second is of fundamental importance to
all of us.

First, evolution has given us effective brains, and copying the
biological solution might make for capable artificial intelligence.
Suppose that the theory is correct, and consciousness depends
on an attention schema. With an attention schema acting as an
internal control model, the brain is better able to control and
deploy its limited processing resources. Perhaps giving machines
a human-like focus of attention, and an attention schema, will be
helpful. Artificial systems might thereby become better able to
control their own limited processing resources. Admittedly, I do
not know if this engineering trick borrowed from the brain will
be of use to artificial intelligence. Computer systems can process
more information, more quickly, than biological systems, and
can be organized in fundamentally different ways. It is not clear
whether human-like attention, or human-like control of atten-
tion, would necessarily benefit artificial systems. The idea would
be worth pursuing, but better engineering solutions might be
discovered along the way.

To me the most compelling reason to pursue artificial con-
sciousness is that, if the theory is correct, then consciousness is
the foundation of social intelligence. An agent cannot be socially
competent unless it has a fairly rich internal model of what
consciousness is and can attribute consciousness to itself and
to other people. If we want to build machines that are skilled at
interacting with people, we will need to build in consciousness in
the same sense that people attribute consciousness to themselves
and see consciousness in others. It is the root of empathy. Without
that capacity, our computers are sociopaths. A similar point has
been made by others, including the point that social capability is
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urgently needed in artificial intelligence (e.g., Sullins, 2016), and
that self-models are a crucial part of human social competence
(e.g., Hood, 2012).

While human sociopaths are evidently conscious—they can
attribute that property to themselves—they are impaired at attrib-
uting it to others. They may know intellectually that other people
contain minds, but they appear to lack a fundamental, automatic
perception of the consciousness of others. Other people are
mechanical objects to them. Half of the functional range of the
attention schema is impaired. We cannot build machines that
treat people with humanistic care, if they do not have that crucial
social capability to attribute consciousness to others. Machine
consciousness is a necessary step for our future. For those who
fear that Al is potentially dangerous and may harm humanity,
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I would say that the danger is infinitely greater with sociopathic
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While the concept of a conscious machine is intriguing, producing such a machine
remains controversial and challenging. Here, we describe how our work on creating a
humanoid cognitive robot that learns to perform tasks via imitation learning relates to
this issue. Our discussion is divided into three parts. First, we summarize our previous
framework for advancing the understanding of the nature of phenomenal conscious-
ness. This framework is based on identifying computational correlates of consciousness.
Second, we describe a cognitive robotic system that we recently developed that learns
to perform tasks by imitating human-provided demonstrations. This humanoid robot
uses cause—effect reasoning to infer a demonstrator’s intentions in performing a task,
rather than just imitating the observed actions verbatim. In particular, its cognitive com-
ponents center on top-down control of a working memory that retains the explanatory
interpretations that the robot constructs during learning. Finally, we describe our ongoing
work that is focused on converting our robot’s imitation learning cognitive system into
purely neurocomputational form, including both its low-level cognitive neuromotor com-
ponents, its use of working memory, and its causal reasoning mechanisms. Based on
our initial results, we argue that the top-down cognitive control of working memory, and
in particular its gating mechanisms, is an important potential computational correlate
of consciousness in humanoid robots. We conclude that developing high-level neuro-
cognitive control systems for cognitive robots and using them to search for computa-
tional correlates of consciousness provides an important approach to advancing our
understanding of consciousness, and that it provides a credible and achievable route to
ultimately developing a phenomenally conscious machine.

Keywords: machine consciousness, artificial consciousness, neural network gating mechanisms, cognitive
robots, cognitive phenomenology, imitation learning, computational explanatory gap, working memory

INTRODUCTION

In this paper, we use the word “consciousness” to mean specifically phenomenal consciousness
unless explicitly indicated otherwise. The term “phenomenal consciousness” has been used histori-
cally to refer to the subjective qualities of sensory phenomena, emotions, and mental imagery, for
example the color of a lemon or the pain associated with a toothache (Block, 1995). Searle has
presented a list of essential/defining features of consciousness, including subjectivity, unity,

Frontiers in Robotics and Al | www.frontiersin.org 17

January 2018 | Volume 5 | Article 1


http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00001&domain=pdf&date_stamp=2018-01-26
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00001
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:reggia@cs.umd.edu
https://doi.org/10.3389/frobt.2018.00001
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00001/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00001/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00001/full
http://loop.frontiersin.org/people/425121
http://loop.frontiersin.org/people/420501
http://loop.frontiersin.org/people/514722
http://10.13039/100000006

Reggia et al.

Cognitive Robots and Consciousness

qualitativeness, situatedness, and sense of self (Searle, 2004), and
a detailed analysis of this term can be found in Chapter 3 in Tani
(2017). Recent work in philosophy has argued for an extended
view of phenomenology that includes one’s cognitive processes
and hence is referred to as cognitive phenomenology, as we will
elaborate below. In the following, we focus on conscious qualities
specific to cognitive phenomenology in particular, as opposed to
the more historically emphasized aspects of consciousness such
as sensory qualia.

How can research based on cognitive humanoid robots con-
tribute to our understanding of consciousness? Consciousness is
not well understood at present, and many philosophers have ques-
tioned whether computational studies or cognitive robots can play
a significant role in understanding it. Such arguments cannot be
refuted at present because there is currently no convincing imple-
mentation of instantiated consciousnessinamachine, as described
in Reggia (2013). Conversely, none of these past arguments appear
sufficiently strong to convince many current investigators that
machine consciousness is impossible (Reggia et al., 2015). For
this reason, it seems prudent to us to push ahead investigating this
issue until the matter can be definitively resolved one way or the
other, and it is in that context that we describe our research efforts
below.

Here, we describe how our past and ongoing work on creat-
ing a humanoid cognitive robot that learns to perform tasks
via imitation learning relates to consciousness studies. Our key
contribution here is to expand and develop a concrete framework
for investigating the nature of consciousness in cognitive robots.
Our discussion is divided into three parts. First, we summarize
our framework for advancing the understanding of the nature of
phenomenal consciousness based on studying the computational
explanatory gap (CEG) (Reggia et al., 2014). The main goal in this
work is to identify neurocomputational correlates of conscious-
ness. We believe that identifying such correlates will be possible
in cognitive robots, based on concepts that have emerged recently
in the philosophical field of cognitive phenomenology, and we
explain why that is so.

The core idea of our framework for studying consciousness
in robots is that investigating how high-level cognitive processes
are implemented via neural computations is likely to lead to the
discovery of new computational correlates of consciousness.
Accordingly, in the second part of this paper, we describe a
cognitive robotic system that we recently developed that learns
to perform tasks by imitating human-provided demonstrations.
This humanoid robot uses cause—effect reasoning to infer a dem-
onstrator’s goals in performing a task, rather than just imitating
the observed actions verbatim. Its cognitive components center on
top-down control of a working memory that retains the explana-
tory interpretations that the robot constructs during learning.
Because, as we explain below, both cause-effect reasoning and
working memory are widely recognized to be important aspects
of conscious human thought, we suggest that exploring how the
cognitive and memory mechanisms embodied in our imitation
learning robot provide an excellent test of our framework for
studying consciousness in machines.

Finally, in the third part of this paper, we describe our recent and
ongoing work that is focused on converting our robot’s imitation

learning cognitive system into purely neurocomputational form,
including its causal reasoning mechanisms and cognitive control
of working memory. We summarize our initial results exploring
the feasibility of this idea. Based on these results, we argue that the
top-down cognitive control of working memory, and specifically
its gating mechanisms, is potentially an important computational
correlate of consciousness in humanoid robots that merits much
further study. We conclude that developing neurocognitive
control systems for cognitive robots and using them to search for
computational correlates of consciousness provides an important
approach to advancing our understanding of consciousness, and
that it provides a credible and achievable route to ultimately
developing a phenomenally conscious machine.

A COMPUTATIONAL APPROACH TO
UNDERSTANDING THE NATURE OF
CONSCIOUSNESS

In the following, we propose a computational framework for inves-
tigating consciousness. We begin by summarizing the concept
of a CEG, and we explain why recent advances by philosophers
interested in cognitive phenomenology makes this barrier rel-
evant to consciousness studies. We then describe our proposed
framework for studying consciousness that is based on identify-
ing its computational correlates.

Computation, Mind, Brain, and Body
We have previously suggested that there is an important obstacle
to understanding the prospects for machine consciousness that
we call the CEG (Reggia et al.,, 2014). The CEG is defined as
our current inability to understand how higher-level cognitive
computations supported by the brain can be accounted for by
lower-level neurocomputational processes. We use the term
“higher-level cognition” to refer to cognitive processes including
decision-making, reasoning, intent-directed problem solving,
executive control of working memory contents, plan generation,
and language. These cognitive processes are viewed by many
psychologists as being consciously accessible. In contrast, we use
the term “lower-level neurocomputational processes” to refer to
the types of computations that can be implemented using artifi-
cial neural networks like those currently studied in fields such
as neuroscience, computer science, psychology, and engineering.
The CEG is related to past work in philosophy, neuroscience,
and psychology, addressing various aspects of the mind-brain
problem. In philosophy, the CEG differs from the philosophical
explanatory gap, the latter referring to the difficulty we have
in explaining how physical systems in the objective world can
support the subjective qualities of consciousness (Levine, 1983).
The philosophical explanatory gap relates to how difficult it is to
understand how subjectivity can emerge from the brain or poten-
tially from other physical systems such as machines. The CEG
differs in that it is not a mind-brain issue. Instead, the CEG is
our current inability to understand how computations supporting
high-level cognitive processes like those described above can be
implemented via the lower-level computations that neural net-
works provide. Put otherwise, it deals only with computational
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issues, and it applies both to people and to machines. Historically,
philosophers have tended to deprecate the CEG, characterizing it
as part of the “easy” problem of interpreting how the brain gener-
ates intelligent behavior (Chalmers, 1996). This viewpoint fails
to account for why the CEG has been so difficult to bridge over
the last 50 years in spite of an enormous research effort to do so.
It also ignores the possibility that the philosophical explanatory
gap and the CEG are not two independent issues, but that instead,
the CEG might ultimately prove relevant to understanding the
mind-brain problem. It is this latter issue that we discuss in the
following, arguing that the CEG is relevant to obtaining a deeper
understanding of the mind-brain problem. More recently in
philosophy, work in cognitive phenomenology has argued that our
phenomenal experiences are not limited to classical qualia such as
those of sensory perception, but also include high-level cognition
(Bayne and Montague, 2011; Jorba and Vincente, 2014; Chudnoft,
2015). It is this idea more than anything else that makes the CEG,
a purely computational issue, of relevance to understanding
consciousness. Accepting that some facets of cognition reach
conscious awareness is what makes computational studies of
the CEG important in consciousness studies. The hypothesis
guiding our work described below is thus that bridging the CEG
provides a pathway to deeper comprehension of consciousness
and eventually possibly even a phenomenally conscious machine.
This hypothesis makes research that is directed at creating
neurocomputational implementations of higher-level cognitive
processes, including our own work with adaptive cognitive
robots as described below, relevant to the issue of phenomenal
consciousness.

The CEG also relates to recent work in the neurosciences and
psychology. In the neurosciences, our current state of knowledge
can be characterized as knowing a lot about how high-level cog-
nitive functions correlate with different macroscopic brain areas
(e.g., language comprehension and Wernicke’s area, planning and
prefrontal cortex) and a great deal about the microscopic neuro-
biological networks in these same areas. However, what we do
not currently understand is how the brain implements the high-
level cognitive processes using the underlying neural circuitry.
We view this situation as an example of the CEG, quite separate
from any considerations about consciousness. In psychology,
related work has been done to investigate the differences between
information processing that is unconscious and information
processing that is conscious (Dehaene and Naccache, 2001;
Baars, 2002). Unconscious information processing is fast and can
support multiple concurrent tasks, and these tasks can be done
simultaneously without interfering with each other. It tends to
involve localized brain regions and is often not reportable (people
cannot explain how they carried out a task). In contrast, conscious
information processing is much slower, restricted to one task at
a time, involves widespread cortex activation, and is generally
taken to be cognition that a subject can report. Again, we view
such findings as being related to the CEG. The computational
properties associated with unconscious processes often match up
well with those of neural computations (e.g., the opaqueness or
“non-reportability” of what a neural network has learned). The
computational properties during conscious, reportable cognitive
activities are much closer to what is seen with symbolic artificial

intelligence (AI) systems, and do not relate well to how neural
networks process information. To be clear, we are not suggesting
that consciousness can be explained by symbolic reasoning or
language—we just intend to convey that conscious, reportable
cognitive activities need to be accounted for by resolving the CEG.
Further, we are only considering the existence of consciousness in
adults and do not relate our work to the mechanisms underlying
the emergence of consciousness in infants.

Symbolic AI models are often used on computers devoid of
any remotely human- or animal-like embodiment. However, all
compelling and widely accepted examples of consciousness in the
real world occur in embodied biological systems. Even propo-
nents of cognitive phenomenology still consider it plausible that
conscious cognitive processing has some basis in sensorimotor
experience (Prinz, 2011). From a purely practical standpoint,
studying the CEG in the context of embodied robotic systems
may be the most efficient route to ecologically valid input data for
cognitive models. And it stands to reason that humanoid robots
in particular will be best for studying machine consciousness that
is as human-like as possible. At a deeper level, there are serious
philosophical positions that consider embodiment to be intrinsi-
cally related to cognitive phenomenology (Nagataki and Hirose,
2007). In sum, studying cognition in the context of humanoid
robots specifically may be an important factor in bridging the
CEG and potentially understanding/engineering consciousness.

A Framework for Investigating

Consciousness
An implication of the ideas presented in the preceding section is
that much recent research involving neurocomputational models
of high-level cognition becomes relevant to comprehending the
properties of consciousness. The basic idea is that these com-
putational investigations could discover neurocomputational
mechanisms occurring with phenomenally conscious aspects of
cognition that are not also found to be present during cognitive
processes that are unconscious. We have proposed elsewhere
that this could provide examples of computational correlates of
consciousness, in the same way that neuroscientists have identi-
fied neural correlates of consciousness (Reggia et al., 2014, 2016).
A computational correlate of consciousness has been defined
previously to be an aspect of information processing associated
with conscious but not unconscious information processing
(Cleeremans, 2005). In general, a computational correlate of con-
sciousness is not the same thing as a neural correlate as described
by neuroscientists. Previously described neural correlates
have included biological concepts that are not computational,
e.g., regions of the brain, biochemical processes, and electrical
activity patterns in the brain (Chalmers, 2000). On the other hand,
the definition of computational correlates above is fairly general.
For example, it might include logical reasoning algorithms like
those studied in traditional Al In this context, previous research-
ers have suggested that cognitive processes can be separated into
neurocomputational processes representing unconscious facets
of cognition, and symbolic processes representing conscious fac-
ets of cognition (Kitamura et al., 2000; Sun, 2002; Chella, 2007),
i.e.,, symbolic information processing is viewed as a computational
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correlate of consciousness. However, from our perspective, such
models do not provide a way to bridge the CEG. The central idea
in bridging the CEG as we defined it above is to identify how
higher-level reasoning is implemented via underlying, purely
neurocomputational mechanisms, much as the brain does. This
is the crux of the matter.

Thus, in the rest of this paper we use the term “computational
correlates of consciousness” to refer solely to neurocomputational
mechanisms that occur only with conscious facets of higher-level
cognitive processes and are not found with neurocomputational
processes involved with other unconscious information process-
ing (not with neurocomputational mechanisms associated with
implementing the normal pupil light reflex, for example). These
correlates may be implemented in the brain, but are independent
of the physical mechanisms that implement them (robot control
circuitry, biological brain circuitry, and so forth). Our proposal
is that uncovering computational correlates of consciousness will
provide insight into the nature of consciousness (as per cogni-
tive phenomenology) and possibly even the development of a
plausibly conscious physical machine.

We have recently given a fairly detailed description of previ-
ously proposed computational correlates of consciousness (Reggia
et al., 2016) and refer the interested reader to that work. Here, we
just briefly give a few examples that illustrate the central ideas
involved. One widely known proposal is that global information
processing is a computational correlate of consciousness, inspired
by findings that information processing during conscious mental
activities (and not unconscious cognitive processes) occurs widely
across the cerebral cortex and is also correlated with enhanced
communication between brain regions (Baars et al., 2003;
Massimini et al., 2005; Tagliazucchi et al., 2016). Another promi-
nent past suggestion is that information integration in a neural
network is what distinguishes conscious from unconscious sys-
tems in general (Tononi, 2004). Still others have suggested that
having a self-model is a computational correlate (Searle, 2004;
Samsonovich and Nadel, 2005), even showing that physical robots
controlled by neural networks can pass the “mirror test” of self-
awareness used with animals (Takeno, 2013). Other researchers
have suggested that higher-order representations of one’s knowl-
edge about the world correlate with consciousness (Cleeremans
etal., 2007; Pasquali et al., 2010). Additional studies have argued
that attention mechanisms are potential computational correlates
(Taylor, 2007; Haikonen, 2012). All of these ideas are intriguing
and may provide important clues as to the fundamental nature of
consciousness, and the fact that so many ideas are emerging in
this area is quite encouraging.

A COGNITIVE HUMANOID ROBOT THAT
LEARNS BY IMITATING

In the previous section, we described a framework for studying
aspects of consciousness based on developing computational/
robotic systems that account for high-level cognitive functions in
neurocomputational terms. To pursue this approach, two things
are needed: a physical robotic system that supports some aspects
of high-level cognitive functionality, and an underlying neural
control mechanism that implements that functionality.

Here, we describe our recent work on the first of these two
requirements: Our efforts to create a cognitive humanoid robot
that that can be used to explore consciousness-related and other
issues (Katz et al., 2017a,b). Why would one want to consider
studying the CEG in a robot instead of simply going the easier
route of computer simulations? One answer is that a cognitive
system in a robot is embodied: It interacts with and causally acts
on a real external environment, and in that sense there is a true
“mind-body” problem, at least to the extent that one is willing to
call a robot’s cognitive control system a mind. Further, it has been
claimed that the ability to ground a cognitive robotic system’s
symbols in the robot’s sensory data stream is a computational
correlate of consciousness (Kuipers, 2008). While this suggestion
is controversial (Chella and Gaglio, 2012), it suggests that some
computational correlates may be particularly evident in a cogni-
tive system that interacts with the real world as part of a physical
system.

Our own robot learns to perform tasks by imitating human-
provided demonstrations. During learning, it uses cause—effect
reasoning to infer a demonstrator’s goals in performing a task,
rather than just imitating the observed actions literally. Importantly
for our own research as described in subsequent sections, the
robot’s cognitive components center on top-down control of a
working memory that retains the explanatory interpretations that
the robot constructs during learning. We first briefly summarize
this work here and then, in the next section, we relate this work to
the search for computational correlates of consciousness.

Imitation Learning via Cause-Effect

Reasoning

Our work in robotics is motivated in part by the fact that it is
currently very hard to program humanoid robots to carry out
multi-step tasks unless one has a great deal of expertise in
robotics. A potential solution to this problem is to use imitation
learning (learning from demonstrations) rather than manually
programming a robot. With imitation learning, a robot watches
a person perform the task to be learned, and then imitates what
it observed. An important mode of imitation learning occurs at
the sensorimotor level, when the learning robot closely imitates
the motions, gestures, and perhaps even the facial expressions
of the demonstrator. Much work on robotic imitation learning
has focused on this level. While important, this level does not
involve an understanding of the demonstrator’s intentions, and
hence suffers from limited ability to generalize to new situations
where the robot must use different actions to carry out the same
intentions.

Figuring out what a demonstrator’s goals are is a kind of
cause—effect reasoning known as “abduction” in Al The issue
is to postulate what the demonstrator’s goals are in a way that
is consistent with these goals causing the observed actions. Al
researchers have extensively studied cause—effect reasoning (also
called abductive reasoning) like this, including its use to infer
the goals of an acting agent (Kautz and Allen, 1986; Peng and
Reggia, 1990; Carberry, 2001). While some aspects of cognition
have been simulated during past studies of imitation learning
(Chella et al., 2006; Friesen and Rao, 2010; Dindo et al., 2011), to
our knowledge, the utility of causal reasoning during imitation/
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goal learning has not been studied substantially. However, in
other application domains such as medical diagnosis or circuit
fault localization, causal reasoning systems often rely on finite
databases of background knowledge that exhaustively describe all
of the possible causal events that might occur. In robotic imitation
learning, this amounts to a finite list of general purpose primitive
actions that a demonstrator or robot might perform, as well as
the direct causal relationships between those actions and higher-
level goals, and the possible objects that might be present in the
environment. The full spectrum of possible goals, actions, and
objects involved in general human imitation learning is probably
too rich and variable to be adequately encoded in a finite database.
However, for specific applications, there will likely be a finite set
of possible objects to be manipulated and a finite set of actions
and goals that can be applied to those objects. In this case, it is
feasible to adapt existing causal reasoning approaches to robotic
imitation learning. Moreover, individual actions and goals within
a finite list can still admit continuous-valued parameters, such
as object positions and rotations, in order to approximate some
of the richness and variability inherent in true human imitation
learning. This is the causal knowledge representation supported
in our existing work described below. A detailed description of
the encoded knowledge as well as the algorithms used in our
applications can be found in Katz et al. (2017a). Future work on
underlying neural mechanisms for the causal reasoning func-
tionality could incorporate generative neural models to produce
novel situation-specific actions that need not be anticipated in a
finite database by a human knowledge engineer.

In this context, we recently suggested that causal reasoning
is an important part of cognitively oriented imitation learning.
To examine whether this idea can support imitation learning, we
developed and studied an approach to imitation learning based
on abductive cause-effect reasoning as illustrated in Figure 1
(Katz et al,, 2016, 2017a). During the observation of a demon-
stration, our approach assembles a parsimonious explanation for
what was observed where the demonstrator’s intentions (goals)
serve to explain the actions performed by the demonstrator. We
refer to our cognitive learning model as CERIL, for Cause-Effect
Reasoning in Imitation Learning. The basic idea with CERIL is
that the inferred demonstrator’s goals (rather than the specific
actions the demonstrator performed) can subsequently be used
in related but new situations that may need different specific
action sequences to achieve the same goals. Given that our pri-
mary interest here is in the role played by high-level cognition
during imitation learning, our focus is on that and we largely take
low-level sensorimotor processing as a given.

Figure 1 illustrates an example of CERIL learning about and
then subsequently performing actions on a disk drive docking
station. CERIL learns to maintain this disk drive dock, for exam-
ple replacing hard drives that experience a hardware fault. The
objective of learning is to replicate a teacher’s goals in subsequent
post-learning situations rather than to produce a literal repetition
of the demonstrator’s actions. For example, if the demonstrator
replaces a failing disk drive, CERIL must do the same thing, even
if the spare drive has to come from a different location, and even
if the faulty drive is in a different slot. CERIL may use a differ-
ent arm for certain steps, or transfer objects from one “hand” to

Causal Interpretation

Robot-Specific Plan

FIGURE 1 | A top-level view of CERIL, the cognitive portion of our imitation
learning robotic system. The abductive reasoning processes (infer the causes
from the effects) are shown on the left: they produce a hierarchical causal
network that represents at the top an explanation for the observed
demonstrator’s actions. After learning, this explanation can be used to guide
plan generation in related but modified situations, as illustrated on the right.
Figure from Katz et al. (2017a).

another, even though the demonstrator did not take these specific
actions.

As illustrated at the bottom left in Figure 1, a person provides
a demonstration to CERIL by using a graphical computer pro-
gram with GUI controls in which the demonstrator manipulates
objects on a virtual tabletop (Huang et al., 2015a,b). CERIL uses
the event record from this demonstration to infer an explana-
tion for the demonstrator’s actions in terms of high-level goals
for the shown task (labeled A in Figure 1). The high-level goals/
intentions/schemas have parameters, such as with grasp (object,
location, gripper). In constructing explanations, CERIL uses pre-
defined goals/intentions and their sub-goals/sub-intentions that
are defined a priori in its knowledge base. Explanations typically
consist of a novel sequence of instantiated/grounded high-level
goals that CERIL constructs through abductive causal reason-
ing. In particular, the inference process is an extended version
of parsimonious covering theory (Peng and Reggia, 1990). The
term “parsimony” refers to the fact that the simplest explana-
tions are to be preferred, while “covering” refers to the fact that a
plausible explanation must be able to cause (cover) the observed
demonstrator actions. Adapting parsimonious covering as the
basis of imitation learning required substantial extensions to the
original theory (Katz et al., 2017a). These extensions included
incorporating real-valued variables such as object locations
and orientations, integrating causal chaining and temporal
constraints, and accounting for spatial transformations related to
manipulating objects.

Does It Work?

The right side of Figure 1 illustrates what happens after imitation
learning of a task is complete. CERIL can learn and retain mul-
tiple tasks over multiple environments, but here we just consider
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the single disk drive task described above as an example. After
learning, CERIL can be given situations in the real world that are
similar to what it was trained with (labeled B in Figure 1). It will
then match its parameterized object models to the objects in the
physical environment, which grounds its top-level goals in the
new situation. It then uses its grounded explanation (a sequence
of goals to be achieved in the order specified) to generate a plan
for performing the specific task it has been given by using a
hierarchical task network (HTN) planner (Ghallab et al., 2004).
This is labeled C in Figure 1. From the viewpoint of parsimoni-
ous covering theory, this HTN planning process is using CERILSs
cause—effect relations in the opposite direction from what was
done during learning (i.e., reasoning now goes from causes to
effects rather than the opposite which was done during learning).
Unlike during the learning phase, HTN planning now involves
using goals and actions that are specific to the robot, not to the
human demonstrator.

We have systematically tested CERIL using a humanoid
physical robot (Baxter, Rethink Robotics™; pictured at the lower
right of Figure 1) on a set of different tasks, and the detailed
results can be found in Katz et al. (2017a). These tasks include
learning basic maintenance skills on the disk drive station illus-
trated above, learning maintenance tasks on a pipe-and-valve
plumbing configuration, and learning to construct toy block
configurations. In addition, we used computer simulations to test
CERIL: ability to interpret correctly action sequences taken from
a data set of 5,000 emergency response plans (Blaylock and Allen,
2005). CERIL was able to function effectively and efficiently in
all of these situations (Katz et al., 2017a). Most compelling is that
CERIL is often able to learn and generalize to modified initial
situations (spare disk is in a different initial location, a different
indicator light is on, etc.) from a single demonstration, much as
a person can do. Further computational simulations comparing
different parsimony criteria have investigated the impact of using
different criteria for what it is that makes an explanation “parsi-
monious” (Katz et al., 2017b), and we are currently conducting
an experimental study to compare how CERILs learning and
subsequent imitation compare to what is done by human subjects
in the same situations.

Finally, a potential benefit of using a cognitive model of the
kinds of cause-effect reasoning performed by humans during
learning and planning is that it should allow a robot to explain
to a human observer why it is carrying out certain actions with
justifications that are intuitively plausible. Such an ability is
critical to making the simulated reasoning mechanisms of robots
and other autonomous systems transparent to people, and this
transparency is often an important aspect of machine trustwor-
thiness. We have recently introduced methods by which CERIL
can justify its actions to a human observer based on “causal plan
graphs” (Katz et al., 2017c). Figure 2 gives an example of this
action sequence justification ability in its current form for a
simple device maintenance task. We believe that such “report-
ability” of underlying inference processes will ultimately prove
to be important to investigating the possibility of machine con-
sciousness. The reason for this is that in experimental psychology,
investigators long taken a subject’s being able to report verbally
his/her cognitive experiences to be an objective criterion for that

subject to be subjectively aware of those experiences (Baars, 1988;
Dehaene and Naccache, 2001).

BRIDGING THE CEG

We believe that the imitation learning humanoid robot described
above, when controlled by a purely neurocomputational high-
level cognitive control system and lower-level sensorimotor sys-
tem, provides an excellent context in which to study the CEG and
to search for potential computational correlates of consciousness.
It uses hierarchical causal knowledge, abductive inference, and
intention/goal inference processes, all of which have long been
widely viewed as modeling important aspects of human reason-
ing in general and involved in imitation learning specifically
(Kassirer and Gorry, 1978; Peng and Reggia, 1990; Josephson
and Josephson, 1994; Meltzoff, 1995; Baldwin and Baird, 2001;
Bekkering and Prinz, 2002; Haikonen, 2003; Fuster, 2004; Fogassi
et al., 2005; Iacoboni et al., 2005; Walton, 2005; Botvinick, 2008;
Katz et al., 2017a). However, the control mechanisms instantiated
by CERIL are currently implemented with traditional software:
Our robots cognitive components are top-down symbolic Al
algorithms for abductive inference and plan generation. In order
to use our robotic learning system to study the CEG, the existing
software needs to be converted into neurocomputational form,
something that is currently in progress. At present, we have
converted the low-level sensorimotor control of individual robot
actions into neural network modules, replacing the correspond-
ing original software with a neural architecture, the DIRECT
algorithm, that we have previously studied via non-robotic
computer simulations (Gentili et al., 2015). Testing of the result-
ing robotic control system (i.e., the top-down symbolic cognitive
components plus the neural sensorimotor components instanti-
ated in our robot) on tasks such as maintenance operations on
the disk drive dock and pipe-and-valve system described above
show that the robot’s behavior with a neural sensorimotor system
is virtually unchanged from the original.

We have concurrently also been studying, so far only via non-
robotic computer simulations, neural mechanisms for cognitive
control of working memory and other behaviors that are intended
to serve as purely neurocomputational replacements for CERILs
existing executive control system. In the rest of this section, we
first describe the neurocomputational systems we are developing
that are inspired by both cortical and subcortical processes that
are believed to underpin human cognitive control mechanisms.
We then describe a key hypothesis of our work addressing the
CEG: that top-down gating of working memory is an important
computational correlate of consciousness. This hypothesis is
motivated in part by the recognition by many psychologists that
working memory is a significant aspect of conscious human
cognition, as we explain further below.

Neurocomputational Implementation of
Top-Down Gating

The current implementation of our robotic system for imitation
learning provides a good illustration of the CEG as we por-
trayed it above: high-level cause-effect reasoning and planning
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FIGURE 2 | Because of its use of cause—effect knowledge and abductive inference methods that are arguably models of human knowledge and reasoning, CERIL
can generate simple intuitive justifications of its actions to a person who is observing a humanoid robot at work. While the English is a bit stilted, in the example
shown here CERIL is responding to a question as to why it closed a ball valve by describing its reasons (causative factors based on its goals).

successfully implemented using symbolic Al operations, and
low-level sensorimotor control successfully implemented using
neural network methods. Given the framework that we have out-
lined above (see A Framework for Investigating Consciousness),
our specific research agenda is clear: search for computational
correlates of consciousness by replacing CERILSs causal reason-
ing and planning algorithms with a purely neurocomputational
system that provides the same functionality. Such a replacement
is beyond the reach of current neurocomputational technology
and is a very challenging target. However, it provides a concrete
example of attempting to bridge the CEG, and in this context it
has the potential to reveal candidates for computational correlates
of consciousness as per our research framework and cognitive
phenomenology.

Given this challenge, we are taking inspiration from what is
known about the neurobiological mechanisms underlying human
cognitive control. Of course, current understanding of these

biological mechanisms is incomplete, but what is known provides
a powerful foundation for addressing how CERILs mechanisms
might be implemented using neural computations. Here, we give
two examples of the results we have obtained so far using this
approach, explaining for each how they relate specifically to the
issue of top-down control of cognitive mechanisms.

First, we created and studied a neurocomputational system
named GALIS that models executive control functions and can
be related to the CEG (Sylvester et al., 2013; Sylvester and Reggia,
2016). We have studied this model in computer simulations, and
the goal now is to adapt an extended version of the methods
used in GALIS as the top-level neural control mechanisms in
CERIL. As illustrated in Figure 3, this model is centered on an
executive system that gates (turns on or off) the functions of the
other components of the system, including working memory. The
working memory module is an autoassociative recurrent network
that adopts one-step Hebbian synaptic changes to quickly store
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FIGURE 3 | The top-level architecture of GALIS' neural control system. The
operational components of an intelligent agent’s control system, such as
visual information processing, motor control, and working memory, are gated
by an executive system at the upper right. Our work focuses on the
top-down gated control of working memory in particular.

and recall problem-solving information such as what objects
are in the workspace and their locations. The executive control
module, of primary interest here, is trained to activate/de-activate
the functions of the other components in the system. This gating
control mechanism thus determines whether or not inputs are
saved in working memory, when information stored in working
memory is to be deleted, and when outputs are to be produced.
Using Hebbian learning methods, it is possible to “program”
GALIS to carry out tasks that require a sequence of motor actions
to be executed that are specific to solving a given problem. For
example, we trained GALIS to play simple card games that
required it to retain in working memory the previous cards that
ithad seen, and to base decisions about its actions on the contents
of working memory. Not only did GALIS perform the task well
in solving hundreds of randomly generated card game problems,
but it was also found to exhibit some significant similarities to
people in terms of how many steps it took to solve card game
problems of various difficulty levels (Sylvester and Reggia, 2016)
as well as in memory capacity in separate experiments simulating
human n-back problem solving (Sylvester et al., 2013).

The executive component, shown at the upper right in
Figure 3, is the most interesting aspect of GALIS’ underlying
neurocomputational system in the context of the CEG. It exerts
top-down control over the functions of other operational parts of
the overall system. This executive has an internal structure that is
more complex than illustrated in Figure 3. It consists of multiple
components, the most important of which is an associative mem-
ory that stores task instructions as attractor states. Each instruc-
tion indicates which system components should be activated/
de-activated (via the gating mechanism) at various times during
a task in order to solve whatever problem is under consideration.
The executive is trained to represent and remember sequences of
instructions (“programs”) as sequences of attractor states. Like
working memory, learning is based on Hebbian synaptic changes.
Subsequently, the executive sequentially visits those learned
attractor states in the correct order during problem solving. In
effect, this procedural memory allows the executive to learn to
represent simple tasks (sequences of instructions or “programs”)
as sequences of transient attractor states. This is of special interest

in the context of past suggestions that some activity state trajec-
tories in neural systems might be computational correlates of
consciousness (Fekete and Edelman, 2011). What our model adds
to this suggestion is the specific idea that temporal sequences of
attractors (itinerant attractor sequences) used by executive mod-
ules instantiating top-down gating might be the specific property
that makes activity state trajectories become computational
correlates of consciousness. This idea is related to recent work
suggesting that sequences of attractor states in recurrent neural
networks can shed light on controversies surrounding cognitive
phenomenology (Aleksander, 2017). The executive system in
GALIS is sufficiently robust even in its current implementation
to store and use multiple instruction sequences as appropriate as
different conditions arise during problem solving.

Figure 4 elaborates on GALIS top-level architecture that is
illustrated in Figure 3. Sensory inputs enter at the upper left, and
motor control (e.g., “pointing” at a card) leaves at the bottom left.
The internal structure of the recurrently connected networks
forming working memory is shown, indicating that this memory
stores associated pairs of object-location information. The
memory for instruction sequences, or “programs,’ is a recurrent
neural network shown on the right as part of the control module.
Not only does it store individual instructions as attractor states
(much like the working memory, via symmetric synaptic weights
produced by one-step Hebbian learning), but it also stores the
transitions between one instruction to the next. Representing a
sequence of attractor states in memory could be done in various
ways, e.g., Tani has suggested that compositionality and discrete
action sequences (sequences of a nonlinear neural system’s states)
can be supported via chaotic dynamics (Tani, 2017). In GALIS,
sequencing between instructions is instead based on asymmetric
weights on recurrent connections in the instruction sequence
memory’s network. These asymmetric weights are learned via
temporally asymmetric Hebbian learning. Thus, during perfor-
mance of a task, the instruction memory goes to an attractor
state (an instruction) corresponding to a local minimum of the
network’s energy function and performs the specific action(s)
indicated by that instruction. The underlying energy landscape
governing dynamics then shifts, making the current attractor/
instruction unstable since it is no longer an energy minimum
state. Guided by the learned asymmetric weights, the state of
the network then transitions to a new local energy minimum
that is the next instruction in the sequence/program. Multiple
instruction sequences can be stored simultaneously in GALIS’
control memory. The detailed network structure and equations
governing GALIS’ activity dynamics and synaptic changes during
learning can be found in Sylvester and Reggia (2016).

Most importantly for our discussion here, as the executive
system transitions through an instruction sequence, it exerts
top-down influences on the functionality of other modules in the
system. This control is exerted by gating connections leaving the
executive system and traveling to other parts of the system. These
gating connections originate at the lower right in Figure 4 and are
labeled g in the illustration, where g, is the activity state of con-
nection x. For example, the executive system turns on learning
in the working memory, directing working memory to store the
currently seen object’s identity and location, by having an output
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arrows indicate recurrently connected networks. Thin arrows indicate the connectivity between modules. The working memory of Figure 3 is depicted on the left,
while the executive system (control module) is shown on the right. The connections leaving the decoder module at the lower right of the illustration implement gating
actions as explained in the main text. Figure from Sylvester and Reggia (2016).

giain = 1, while it directs working memory to instead ignore the
current visual input by having an output of gi.in = 0. Gating like
this in GALIS is implemented via “multiplicative modulation”
(Akam and Kullmann, 2014), where the g, values occur in the
equations governing activity dynamics and learning in other
modules. As an example, if unit k in the motor module has an
activity a, then what the external world actually sees at that time
is the value gmotor X ax that incorporates gmotwor as @ multiplying
factor. If gmotwr = 1, then the actual output from unit & at that time
is ax, while if gmotor = 0, the actual output is 0. The specific details
of how module functionality is gated in the equations controlling
system behaviors are given in Sylvester and Reggia (2016).

The core ideas behind GALIS—using top-down gating pat-
terns to encode instructions, and using itinerant attractors to
represent sequences of instructions and other data—make for a
highly versatile model of computation that can support symbolic
reasoning systems like CERIL. For example, suppose that activity
patterns are used to represent individual actions and goals that
might occur. Itinerant attractor sequences could then be used to
store a list of actions that carry out a particular goal, or the list
of goals that might cause a particular action, thereby encoding
background causal knowledge. Moreover, during reasoning, a

working memory could be used to incrementally accumulate a
list of conjectured goals that are mutually consistent and account
for all actions observed in a demonstration. Finally, instruction
memory could be used to store the sequences of gating patterns
that carry out the reasoning algorithms. For example, un-gating
learning or activation dynamics could be used to store or retrieve
background knowledge, respectively. Similarly, during reasoning,
un-gated sequence learning in working memory could be used
to append new goals when constructing an explanation, and
un-gated interactions between background knowledge, working
memory, and conflict detection regions could be used to check
for inconsistencies before an explanation is modified. Of course,
many more subtleties and details will have to be accounted forin a
successful implementation. The foregoing examples are intended
just to convey the high-level implementation strategy and bolster
our claim to its feasibility.

However, a significant limitation to GALIS’ executive module
is its inability to handle ambiguity. There is no need for a complex
decision-making process in the card matching task described
above because it could be specified with a simple set of deter-
ministic rules to carry out based on the state of the environment.
More realistic tasks often necessitate decision-making to resolve
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conflicts between potential responses, and often depend on rein-
forcement learning mechanisms to determine the relative value
of these responses. For this reason, our second effort to imple-
ment neural mechanisms that could replace CERILs symbolic
algorithms focuses on the role of subcortical structures like the
basal ganglia in cognitive control, such as with decision-making
and action selection.

Decades of research have implicated the basal ganglia in a
wide array of cognitive and motor functions, many of which
are associated with conscious processing (Schroll and Hamker,
2013). Most notably, deficits observed in disorders such
as Parkinsons disease suggest a role of the basal ganglia in
voluntary movement initiation (Wurtz and Hikosaka, 1986),
sequential action performance (Benecke et al., 1987; Jin et al.,
2014), attention (Tommasi et al., 2015; Peters et al., 2016), and
working memory (Lewis et al., 2005; Gruber et al., 2006). In
many cases, the functionality of primitive sensorimotor reflexes
in Parkinson’s disease patients is correlated with increases in
cognitive impairment, suggesting a decreased ability to exert
top-down control over unconscious behavior (Vreeling et al.,
1993). In addition, there is evidence that abnormal inhibition
in the striatum of the basal ganglia is associated with the con-
scious compulsions reported in tic disorders such as Tourette’s
syndrome (Vinner et al., 2017). Taken together, this evidence
suggests that the basal ganglia comprise an important instru-
ment for conscious top-down control over the central nervous
system that could offer a number of potential benefits to a neu-
rocognitive system, including a mechanism for biasing attractor
landscapes like those used in GALIS toward reward associated
trajectories (goal-directed behavior) and controlling the main-
tenance and capitulation of salient states (working memory).
While the neural mechanisms underlying these processes are
not fully understood (Goldberg et al., 2013), past computational
models incorporating basal ganglia have been shown to capture
important behavioral patterns associated with top-down control
(Wiecki and Frank, 2013).

We are currently incorporating such a model into GALIS by
dividing the executive module into components correspond-
ing to the prefrontal cortex and the basal ganglia. The latter is
intended to address the aforementioned ambiguity issues that
arise in complex environments by providing a competitive
decision-making component that resolves conflicts arising in the
former. In addition, such a component functions as a detector of
salient states, thereby providing cues for the timing of behavioral
execution, serving as a gate on the gating mechanism itself to
prevent premature responses or to interrupt ongoing execution
when appropriate. This is particularly relevant to the sensorimo-
tor level of imitation learning. As mentioned above, we replaced
traditional low-level motion planning with the DIRECT neural
algorithm (Bullock et al., 1993; Gentili et al., 2015), which learns
in an unsupervised fashion using exploratory “babbling” Much
of the robotic motion planning done during imitation learning of
maintenance tasks (like those we described above) requires the
use of an inverse kinematics solver that determines a joint trajec-
tory for a given end-effector starting position and target. DIRECT
learns this coordinate transformation in a self-organizing map
architecture by training on a randomly generated set of joint

movements and their consequential end-effector transformations.
It computes inverse kinematics by finding a difference vector and
adjusting the end-effector position using the transformed kin-
ematic information for the appropriate movements that must be
made to reach the goal state. Once trained, the resulting model is
capable of producing iterative joint movements that approximate
the shortest path to the target position.

We have developed an augmented version of the DIRECT
model that controls imitation of coordinated bimanual move-
ments (Gentili et al., 2015) to support end-effector orientations,
which are critical to performing the demonstrated tasks. This
allows the planner to provide joint trajectories that orient the
robot’s grippers for fine motor tasks, such as manipulating
screws, coordinating exchanges of objects between grippers,
and fitting objects into tight spaces. However, these additional
dimensions were found to pose a unique problem due to the
rotational limits of the robot’s wrists in the absence of high-level
decision-making and top-down control. The DIRECT model is
trained to approximate the shortest path to the target position
and orientation, but this path may be blocked by the rotational
boundary of the wrists, in which case they must be rotated in the
opposite direction. Furthermore, a given task may call for a par-
ticular rotational direction (for example, unscrewing demands
counterclockwise rotation, regardless of the shortest path to the
target rotation). Importantly for our work, these considerations
motivate the need for top-down control by indicating situations
in which top-down control over sensorimotor processing can be
used to resolve planning conflicts and override habitual behavior:
a gating signal may be used to force the motion planner to take
the longer, suboptimal path. It is this kind of context-dependent
control over top-down gating that we are currently implementing
in the simulated basal ganglia components of our model, which
is work in progress.

Top-Down Gating of Working Memory

A key hypothesis of our work addressing the CEG described
above is that the top-down gating of working memory (and
potentially of other operational components) is an important
computational correlate of consciousness. At the least, we believe
that studying this aspect of the CEG will lead to the discovery of
such correlates. Why is that?

The term working memory can be defined as the memory
mechanisms that store and process information for a brief period
of time. Human working memory has very strict capacity limita-
tions: Psychologists have found that we can only retain about
four separate items in our working memory at any point in time
(Cowan et al., 2005). If one tries to store more information, the
individual items stored may interfere with each other and, in
any case, the items will be replaced or decay away over time as
problem solving evolves.

The important point here in terms of our work concerning the
CEG is that psychologists consider the information processing
done by the working memory system to be part of our conscious
cognitive processes. They have found that storing, manipulating,
and recalling information from working memory is conscious
and reportable (Block, 2011; Baddeley, 2012). Thus, according
to the tenets of cognitive phenomenology (discussed in Section
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“Computation, Mind, Brain, and Body”), the computational
processes that control working memory deserve consideration
as possible computational correlates of consciousness. Further,
working memory operations are largely managed via cognitive
control systems that are biologically most clearly associated
with prefrontal cortex “executive functions” that manage other
cognitive processes in general (Schneider and Chein, 2003). In
terms of the CEG, the issue becomes: can we identify neuro-
computational mechanisms that might implement the control of
working memory functionality? Elaborating on the hypothesis
stated at the beginning of this section, our proposal is that top-
down gating like that described above, which determines what is
saved and discarded by working memory, furnishes the compu-
tational machinery that is used by executive cognitive processes
in controlling working memory operations during conscious
information processing and is thus a potential computational
correlate of consciousness. With top-down gating, an executive
module controls the functions of other modules. An executive
system may use gating to enable/disable the connectivity between
modules, to determine when they remember/forget information,
when they generate outputs such as motor actions, and when
they learn.

Our specific neurocomputational models described in the
preceding subsection envision gating functions, guided by a
neurodynamical executive system that sequentially visits attrac-
tors that represent instructions (i.e., that represent a procedure
for carrying out a task), as corresponding to conscious aspects of
cognition that involve working memory. In addition, the gating
of working memory in a top-down fashion is reminiscent of the
idea of mental causation considered by philosophers deliberating
on the topic of free will (Kane, 2005; Murphy et al., 2009). These
observations and the finding that control of working memory
using top-down gating works effectively in neurocomputational
systems and produces behavioral measurement results similar
to those observed in humans during n-back memory tasks and
card matching tasks (Sylvester et al., 2013; Sylvester and Reggia,
2016) as described above, suggest to us that further investigation
of these gating mechanisms may be profitable in the search for
computational correlates of consciousness.

DISCUSSION

Current understanding of phenomenal consciousness is widely
recognized to be very incomplete, and its relationship to cognition
and the core neuroanatomical structures that support it continue
to be the focus of recent work (Spreng et al., 2008; Wang and
He, 2014; Gomez-Marin and Mainen, 2016). This holds both with
respect to consciousness in people and with respect to issues that
surround the question of whether machines or animals can be
conscious. The primary suggestion in this paper is that the CEG is
an important contributing reason for our limited progress toward
a better understanding of phenomenal consciousness. This view-
point runs counter to some past philosophical arguments that
understanding the mechanisms of human cognition will not
get us any closer to solving the “hard problem” of conscious-
ness. However, the growing recognition among contemporary
philosophers who support the idea of cognitive phenomenology

suggests, to us at least, that cognition and consciousness are suf-
ficiently intertwined that computational exploration of the CEG
may productively lead to insights about the nature of conscious,
both in machines and people. It is for this reason that we have
suggested a framework for studying consciousness that is based
on searching for neurocomputational correlates of consciousness
in cognitive-level machines. Ultimately, this general framework,
if applied broadly, may turn out to be critically important to
providing new knowledge about our basic notions of conscious-
ness. Our view is that the CEG is a central issue for consciousness
studies, and one that merits substantial investigation over coming
years. Doing this should lead us to discoveries about the compu-
tational correlates of consciousness.

More specifically, in this paper we have emphasized the
importance of searching for neurocomputational correlates of
consciousness, and suggested that one direction in which such a
search may prove to be productive is the investigation of execu-
tive gating of working memory functions. To our knowledge, very
little past work in cognitive robotics or involving computational
modeling has examined this specific issue. There have been past
computational studies motivated by higher-order thought (HOT)
theory that relate cognitive mechanisms to working memory. But
these past neurocomputational models based on HOT theory
have, to our knowledge, only developed “metacognitive networks”
that monitor one another, and have not considered the possibil-
ity of top-down gating architectures where executive modules
control other modules’ actions. Top-down gating as we describe
it here also differs from previously proposed computational
models of attention, including proposals that the production of
an “efference copy” by control mechanisms (Taylor, 2007) or that
having multiple components of a system simultaneously focus on
a single subject (Haikonen, 2012), are computational correlates
of consciousness. Such models do not explicitly focus on using
top-down gating as described in this paper as a control mecha-
nism. As we noted earlier, other past related work includes the
suggestion that some activity state trajectories in neural systems
might be computational correlates of consciousness (Fekete and
Edelman, 2011), and the temporal sequences of attractors used by
executive modules instantiating top-down gating in our system is
consistent with such a suggestion.

There is much room for further work in this area. For
example, at the present time the mechanisms by which a corti-
cal/subcortical region may directly or indirectly control/gate
the functions of other regions is not completely clear. Gating
interactions in the brain could possibly be implemented by
direct pathways between cortical areas, indirectly via actions
of basal ganglia and thalamic nuclei, by functional mechanisms
such as synchronized cortical oscillations, or by some mixture
of these and other yet-to-be discovered mechanisms. An
important future research topic would be to undertake a more
detailed examination of the implications of using alternative
gating mechanisms. This relates to the broader issue of what
features must be incorporated into computational neural net-
work models to make them adequately representative of brain
functions. Current neural network technology spans a broad
range of biological realism, running from the relatively realistic
Hodgkin-Huxley models incorporating spiking neurons with
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multi-compartment dendritic trees to the relatively implausible
use of linear models or backpropagation learning. In our own
work, we have tried to strike a balance regarding this issue, but it
remains an important question as to the level of complexity and
biological realism in neural computation that will ultimately be
best related to the investigation of consciousness. Further future
work in neuroscience and psychology is also needed to sharpen
our understanding of which cognitive processes are conscious
and which are not as a prerequisite for validating computational
correlates of consciousness.
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A socially intelligent robot must be capable to extract meaningful information in real time
from the social environment and react accordingly with coherent human-like behavior.
Moreover, it should be able to internalize this information, to reason on it at a higher level,
build its own opinions independently, and then automatically bias the decision-making
according to its unique experience. In the last decades, neuroscience research high-
lighted the link between the evolution of such complex behavior and the evolution of a
certain level of consciousness, which cannot leave out of a body that feels emotions as
discriminants and prompters. In order to develop cognitive systems for social robotics
with greater human-likeliness, we used an “understanding by building” approach to
model and implement a well-known theory of mind in the form of an artificial intelligence,
and we tested it on a sophisticated robotic platform. The name of the presented system
is SEAI (Social Emotional Artificial Intelligence), a cognitive system specifically conceived
for social and emotional robots. It is designed as a bio-inspired, highly modular, hybrid
system with emotion modeling and high-level reasoning capabilities. It follows the delib-
erative/reactive paradigm where a knowledge-based expert system is aimed at dealing
with the high-level symbolic reasoning, while a more conventional reactive paradigm is
deputed to the low-level processing and control. The SEAI system is also enriched by a
model that simulates the Damasio’s theory of consciousness and the theory of Somatic
Markers. After a review of similar bio-inspired cognitive systems, we present the scientific
foundations and their computational formalization at the basis of the SEAI framework.
Then, a deeper technical description of the architecture is disclosed underlining the
numerous parallelisms with the human cognitive system. Finally, the influence of artificial
emotions and feelings, and their link with the robot’s beliefs and decisions have been
tested in a physical humanoid involved in Human—-Robot Interaction (HRI).

Keywords: cognitive systems, artificial intelligence, artificial consciousness, social robotics, humanoids, somatic
markers, rules engine, expert systems

1. INTRODUCTION

Everyone has a rough idea of what is meant by consciousness, but it is better to avoid
a precise definition of consciousness because of the dangers of premature definition.
Until the problem is understood much better, any attempt at a formal definition is likely
to be either misleading or overly restrictive, or both. (Crick and Clark, 1994)
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After many years from these words, consciousness is still a
thorny and mysterious subject. In human history, almost every
philosopher, religious figure, psychologist, and scientist tried to
explain its phenomenology. From Plato and Aristotle to Popper
and Searle passing through Descartes and Kant, everyone has
attempted to pinpoint the “seat of consciousness.” Today, this is
considered as a process in the body-brain complex, from which
consciousness arises and takes shape in terms of attitudes, beliefs,
desires, and behaviors. If despite the huge advances in computer
science, neurophysiology, and brain imaging, we do not have yet
a clear vision about this topic, it is because scientific approaches
are very recent. For a long time, consciousness has been perceived
as something that is not tangible, not measurable, and therefore
impossible to afford by means of scientific methods. Fortunately,
nowadays, it is well-known that this assumption depended on
a rigid distinction between mind and body, highly affected by
cultural and religious convictions; merely, an anachronistic and
occidental belief, inherited by the Cartesian division between
res cogitans, a thinking substance which does not occupy physi-
cal space, and res extensa, our material body. This theory is no
further pursued because of the numerous neuroscientists who
demonstrated the strict dependency between our body, emotions,
feelings, thoughts, and decisions. In particular, the neuroscientist
Antonio Damasio demonstrated how strongly emotions and
body are interconnected (Damasio, 1994). His theories were sup-
ported by studies conducted on brain-injured patients, thanks to
which he disclosed how emotions and feelings emerge through
the perception of our body, and how this process is fundamental
for the arise of our consciousness (Damasio, 2000).

Another fundamental author, who made an important
contribution to the understanding of consciousness, is the
philosopher and cognitive scientist Daniel Dennett, with his
seminal works “Consciousness explained” (Dennett, 1991) and
“Kinds of minds: Toward an understanding of consciousness”
(Dennett, 1996). In the former, he denied the existence of a
single central place deputed to consciousness (the Cartesian
theater), describing the brain as a “bundle of semi-independent
agencies.” In the latter, he led the reader through a fascinat-
ing journey in the evolution of living beings to delineate the
development of an intelligent conscious mind. He identified
this phenomenon with the emergence of capabilities and means
that turned out to be advantageous for the interaction between
their possessor and the specific environment in which he lives.
Therefore, consciousness is explained as the emergence of a
set of inner mental representations, which results in the form
of intentionality (previously discussed in Dennett (1989)).
Clearly, an agent cannot develop any form of intentionality,
beliefs, desires, and hence any kind of consciousness, without
an autonomous mechanism, which lets him discriminate the
entities that share the same environment.

Our purpose is to use an “understanding by building”
approach (Webb, 2001) and to treasure all these theories applying
them in the field of Social Robotics. In particular, we believe that
the Damasio’s three-layered theory of consciousness (Damasio,
2000) is applicable as a cognitive model for artificial intelligence
(AI) and that the mechanism of somatic markers (Damasio, 1994)
is an adequate mechanism for making an artificial agent able to

autonomously interpret the entities of its social environment.
When followed as design specifications, these can be the key
elements to endow a social robot with the possibility to develop
more complex and human-like behavior. Such a novel control
architecture, highly human-inspired, would be the beginning of
a new social robotics control paradigm.

2. COGNITIVE SYSTEMS IN SOCIAL
ROBOTICS

There are different definitions of Social Robot (Dautenhahn and
Billard, 1999; Bartneck and Forlizzi, 2004; Breazeal, 2004) but
they share fundamental characteristics: all these researchers
agree that social robots may have different shapes or functions,
but they always have to be able to recognize the presence of
humans, engage them in a social interaction, express their own
synthetic emotional state, and interpret that of its interlocutors.
At the same time, they must be able to communicate in a natural
human-like way, which should include also non-verbal language,
such as communication by gestures, postures, facial expressions,
or any other intuitive way. This definition is still true, but after
a few years can be not sufficient anymore. Indeed, in the last
decade, there has been a massive increase in the diffusion of
social robots, and there have been great advances in the fields
in which these robots can be involved. Some of these sectors are
personal assistance and support in the house of elderly people
(Pineau et al., 2003; Broekens et al., 2009; Sharkey and Sharkey,
2012), robot therapy in the hospitals, e.g., in the treatment of
ASD disorder (Werry et al., 2001; Pioggia et al., 2005; Scassellati
et al., 2012) and depression (Wada et al., 2005; Alemi et al.,
2014), contexts of public service (Chung et al., 2007), and even
education (Saerbeck et al., 2010; Causo et al., 2016; Vouloutsi
et al., 2016). It is evident that their role is moving further and
further away from the traditional role of servants, for assuming
more the role of companions in a peer relationship. This leads
to the need for enhancing some of their requirements, such as
empathic behavior, expressiveness, and believability. According
to the classification made by Fong et al., it is possible to distribute
social robots in a graduated scale that goes from the minimum
level of socially evocative, robots that rely on the human tendency
to anthropomorphize and capitalize on feelings evoked when
humans nurture, care, or feel involved with their “creation,” to
the highest that is socially intelligent, robots that show aspects
of human-like social intelligence, based on deep models of
human cognition and social competence (Fong et al., 2003). The
state-of-the-art of this kind of robots shows great results of social
robotics in this direction, but, if we focus on the cognitive system
controlling a specific robot, it is always characterized by a specific
feature that has been highly developed to the detriment of other
functionalities.

Reporting some examples of cognitive systems for social
robotics, a well-known case is the one of the cartoon-like
robot Kismet (Breazeal and Scassellati, 1999). The underlying
architecture of this robot was designed on the base of behavioral
models and mechanisms of living creatures, and it is referred by
Cynthia Breazeal as “the robot’s synthetic nervous system” (SNS).
This modular framework was structured to provide Kismet with
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the ability to express lifelike qualities, perceive human social
behaviors, and allow the robot to be socially situated with people.
Nonetheless, the system was intrinsically designed to model
the social interaction between an infant and its caregiver, that
resulted in a very sophisticated realism, believability, and expres-
siveness of the robot, but it did not allow the agent to develop
specific behaviors toward different interlocutors neither to reason
about their emotional state (Breazeal, 2003, 2004). This work was
extended on Leonardo, another robot, whose cognitive system
was focused on the functionalities of “perspective-taking” and
“mind-reading” (Berlin et al., 2006). An infant-like humanoid
that can be definitely considered an emotional social robot is
iCub (Metta et al., 2010). It is used as an open-systems platform
for research in neuroscience and cognitive development but
its biologically inspired cognitive system is more oriented on
learning and evolution of some fundamental human movement
capabilities, such as object tracking and grasping, or learning by
demonstration (Vernon et al., 2007).

In many cases, we found that different approaches correspond
to a different level of complexity. For example, a strategy to
improve the quality of a social interaction, and increase the empa-
thy of the interlocutors, is to move away from complex cognitive
architectures and rely more on the effects of a good affordance,
as in the case of Paro (Kidd et al., 2006). The opposite direction
has been taken by other researchers, who developed ambitious
systems that are highly biomimetic. These research groups are
trying to reproduce the function of brain areas and neural path-
ways for mimicking human cognitive capabilities, as in the case
of the Distributed Adaptive Control (DAC) (Verschure, 2012),
which has been used in applications with iCub, Zeno (Vouloutsi
et al., 2016), and Nao (Fernando et al., 2014).

On the side of artificial consciousness, there is a recent review
of cognitive systems inspired by how consciousness arise in
humans made by Chella and Manzotti (2013) and another even
more recent publication written by Dehaene et al. (2017). We
strongly agree with the first authors when saying that conscious-
ness could be the missing step in the ladder from current artificial
agents to human-like agents. In the second work, Dehaene et al.
suggest that the word “consciousness” conflates two different
types of information processing computations in the brain: the
selection of information for global broadcasting (Cl1), and the
self-monitoring of those computations (C2). They argue that,
despite their recent success, current machines are still mostly
implementing computations that reflect unconscious processing
(C0) in the human brain. We share also this latter analysis. Indeed,
all the cognitive architectures that we investigated are extremely
advanced works, and each of these systems, or machines, fully
satisfies the purpose for which has been conceived. Nonetheless,
in none of these instances, we have found a real creation of
personal preferences acquired and processed through the body
and emotions of the agent, which is considered the base for the
foundation of a potential artificial consciousness.

We identify the best explanation of this process in the
Damasio’s theory of mind, and we claim that, as yet, the best
formalization of this theory is not implemented in any robotic
system, but still remains the formalization done by Bosse et al.
(2008), which will be introduced in the following section. On the

basis of this observation, we decided to design from scratch a
novel cognitive architecture for social robotics, which is intended
to be the implementation of the Bosse computational model, in
order to stay as close to the Damasio’s theory of mind as possible.
Then, we will test the resulting system to assess the emergence of
some form of artificial consciousness and its repercussions on the
social behavior and beliefs of an artificial agent.

3. DAMASIO’S THEORY AND ITS
COMPUTATIONAL MODEL

In this section, we will cite several parts from Damasios books
(Damasio, 1994, 2000), especially the same parts on which Bosse
etal. (2008) focused their attention and took inspiration for their
formalization. The theory of mind of Antonio Damasio, as well
as the way he described the emergence of consciousness, can be
seen as the construction of a building. This construction starts
from the emotions, passing through feelings, to arrive to what he
calls “feelings of feelings.” These are the structural instruments to
create the three different levels of consciousness, i.e., respectively:
the proto-self, the core consciousness, and the extended conscious-
ness. These three floors share the same building: the body. This
latter must be considered not as the theater in which this process
takes place, rather, as a necessary means for the generation of
consciousness.

According to the general analysis made by Bosse et al. (2008),
Damasio described an emotion (or internal emotional state) as a
(unconscious) neural reaction to a certain stimulus, realized by a
complex ensemble of neural activations in the brain. As the neural
activations involved often are preparations for (body) actions,
as a consequence of an internal emotional state, the body will
be modified into an externally observable emotional state. Next,
a feeling is described as the (still unconscious) sensing of this
body state. Finally, core consciousness or feeling a feeling is what
emerges when the organism detects that its representation of
its own body state (the proto-self) has been changed by the
occurrence of the stimulus: it becomes (consciously) aware of
the feeling.

In Damasio (2000), Damasio described this course of events
along five steps:

1. Engagement of the organism by an inducer of emotion, for
instance, a particular object processed visually, resulting in
visual representations of the object.

2. Signals consequent to the processing of the image of the object
activate neural sites that are preset to respond to the particular
class of inducer to which the object belongs (emotion-induction
sites).

3. The emotion-induction sites trigger a number of responses
toward the body and toward other brain sites, and unleash the
full range of body and brain responses that constitute emotion.

4. First-order neural maps in both subcortical and cortical regions
represent changes in body state. Feelings emerge.

5. The pattern of neural activity at the emotion-induction sites
is mapped in second-order neural structures. The proto-self is
altered because of these events. The changes in proto-self are also
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mapped in second-order neural structures. An account of the
foregoing events, depicting a relationship between the ‘emotion
object” (the activity at the emotion-induction sites) and the
proto-self is, thus, organized in second-order structures.

Bosse, Junker, and Treur conceived a model, based on
these Damasio’s notions to simulate the dynamics of the basic
mechanisms taking place in the mind and body of an agent. These
dynamics are described as an evolution of states over time. States
are intended as neurological states formed by neural processes.
They used the following forms of abstraction:

o neural states or activation patterns are modeled as single state
properties;

o large multi-dimensional vectors of such (distributed) state
properties are composed to one single composite state prop-
erty, when appropriate; e.g., (pl, p2, ...) topand (S1,
S2, ...) toS.

To describe the dynamics of these processes, Bosse et al. used
an explicit reference to time: dynamic properties can be formu-
lated relating a state at one point in time to a state at another
point in time. They reported the following example “at any point
in time t,, if the agent observes rain at t,, then there exists a point
in time t; after t; such that at point t, the agent has internal state
propertys” (Bosse et al., 2008). Where s, in the example, is viewed
as a sensory representation of the rain. These dynamic properties
are expressed in a temporal language, i.e., the Temporal Trace
Language (TTL) (Jonker et al., 2003), in which explicit refer-
ences are made to time points and traces. A trace over a state is
a time-indexed sequence of states. For performing experiments,

they exploited a simpler temporal language called Language
and Environment for Analysis of Dynamics by SimulaTiOn
(LEADSTO) (Bosse et al., 2005). In this way, they can specify
simulation models in a declarative manner. A basic notation
of LEADSTO is a — e, f, g h, ff, meaning: “if state property a
hold for a time interval with duration g, then after some delay
(between e and f) state property f will hold for a time interval of
length h” (Herlea et al., 1999).

Relying on this descriptive model, they presented a case in
which an agent hears some music, which leads to an emotional
state that implies physical responses. The process is described by
executable Local dynamic Properties (LP) in LEADSTO nota-
tion, taking into account internal state property sr (music)
for activated sensory representation of hearing the music, and
avectorp = (pl, p2, ...) of preparation state properties
for the activation of the physical responses, defined as the mul-
tidimensional composite state property S = (S1, S2, ...).
A schema of this process is shown in Figure 1A, where the cor-
responding LPs are:

LP0 music - sensor state(music)

LP1 sensor state(music) - sr(music)
LP2 sr (music) - p

LP3 p - S

Whatis described until LP3 is the emotional unconscious reac-
tion to a stimulus (or a combination of stimuli), which becomes
apparent in the form of bodily changes. According to Damasio
(2000), there is still no sense of self nor feelings at this stage,
because “the sense of self has a pre-conscious biological precedent,

A
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FIGURE 1 | The Bosse et al. computational model: (A) Body loop and As If Body Loop in the generation of feeling; (B) Damasio’s picture for assembly of a
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the proto-self, and (...) the earliest and simplest manifestations of
self emerge when the mechanism which generates core conscious-
ness operates on that non-conscious precursor.”

Here is the point in which body and, particularly, changes
in the bodily state perceived as emotions assume their funda-
mental role for the emergence of feelings, which is described
as follows: “as for the internal state of the organism in which
the emotion is taking place, it has available both the emotion as
neural object (the activation pattern at the induction sites) and
the sensing of the consequences of the activation, a feeling, pro-
vided the resulting collection of neural patterns becomes images
in mind” (Damasio, 2000).

Therefore, a feeling emerges when the collection of neural
patterns contributing to the emotion lead to mental images.
In other words, the organism senses the consequences of the
emotional state. This result can be achieved by means of two
mechanisms described by Damasio as via the body loop and via
the as if body loop. Bosse, abstracting from the detailed steps
made of biological states, summarized these two mechanisms
as follows:

Via the body loop: the internal emotional state leads to a
changed state of the body, which subsequently, after sensing, is
represented in somatosensory structures of the central nervous
system;

Via the as if body loop: the state of the body is not changed.
Instead, on the basis of the internal emotional state, a changed
representation of the body is created directly in the sensory
body maps. Consequently, the organism experiences the same
feeling as via the body loop: it is “as if” the body had really been
changed but it was not.

This part is formalized including in the model a number of
internal state properties for sensory representation of body state
properties (sr (S)) that are changed due to responses to the
stimulus. Together, these sensory representations constitute the
feeling induced by the stimulus. As shown in Figure 1, sr (S)
can be reached in two ways, in LEADSTO notation:

LP4 S - sensor_ state(S)
LP5 sensor state(S) — sr(S)

or
LP6 p - sr(S)

where local dynamic properties LP4 and LP5 represent the
body loop, while LP6 stands for the as if body loop.

Finally, Bosse et al. (2008) faced the consciousness problem
of “feeling a feeling” Damasio described the origin of conscious-
ness with these words: “Core consciousness occurs when the brain’s
representation devices generate an imaged, nonverbal account of
how the organism’s own state is affected by the organism’s process-
ing of an object, and when this process enhances the image of the
causative object, thus placing it in a spatial and temporal context
(p. 169) (...) beyond the many neural structures in which the
causative object and the proto-self changes are separately repre-
sented, there is at least one other structure which re-represents

both proto-self and object in their temporal relationship and thus
represents what is actually happening to the organism: proto-self
at the inaugural instant; object coming into sensory representa-
tion; changing of inaugural proto-self into proto-self modified by
object (p. 177)” (Damasio, 2000).

Bosse formalized this final part of the process as transi-
tions between the following moments: (1) the proto-self at the
inaugural instant; (2) an object come into sensory representa-
tion; (3) the proto-self has become modified by the object (see
Figure 1B). Time is once again the key, and Bosse modeled these
steps as a temporal sequence, a trace: “(...) in the trace consid-
ered subsequently the following events take place: no sensory
representations for music and S occur, the music is sensed, the
sensory representation sr (music) is generated, the prepara-
tion representation p for S is generated, S occurs, S is sensed,
the sensory representation sr (S) is generated” To model this
process, Bosse et al. (2008) introduced three further internal state
properties called: sO for encoding the initial situation, and s1
and s2 for encoding the situation after two relevant changes.
The extended model is depicted in Figure 1C, formalized by the
following LEADSTO notation:

LP7 not sr(music) & not sr(S) - sO
LP8 sr (music) & not sr(S) & sO0 - sl
LP9 sr (music) & sr(S) & sl - s2

LP10 s2 - speak about (music)

The final state speak about (music) is an action
made by a conscious agent, who is aware of a feeling, emerged
as a change in its body, associated with the specific object that
invoked that change. For giving a practical example, thanks
to the described process, a person after feeling shivers on his
back due to the listening of a song, can make a statement
such as the following: “I love this song,” where an association
has been consciously created between a specific agent (“I”), a
specific feeling (“love”), and a specific evocative object (“this
song”).

Until this stage of the model, although Bosse states his
intention to use a temporal approach, time has not been used.
Indeed, the time parameters of LEADSTO (i.e., e, f, g h) are
not yet mentioned in the model, which, so far, has a more logi-
cal/causal approach. Then, time constraints are reintroduced
to allow a simulation of the model. This choice was necessary
to allow their software environment to generate traces in the
time dimension and, thus, simulate reactions of the model
to a controlled sequence of events. They successfully run an
experiment in which they simulate both the body loop and the
as if body loop. Finally, they deepened the Damasio’s concept
of “representational content” formalizing in TTL the formation
of first-order representations, which refer to external states
of world and body, and second-order representations, which
refer to internal states (other first-order representations) of the
proto-self.

We consider the model proposed by Bosse as the most coher-
ent formalization of Damasios theory of mind available in the
literature. The proof is that we took the mentioned notions
as precise instructions for the design of our framework, and

Frontiers in Robotics and Al | www.frontiersin.org

34

February 2018 | Volume 5 | Article 6


http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Cominelli et al.

SEAI: Social Emotional Artificial Intelligence

numerous references to the model will be made in the next sec-
tions. Nonetheless, this model is a purely computational model.
It works very well until it is limited to the domain of information
processing. When we move to the design of cognitive systems
for agents that have to interact in a real environment, new chal-
lenging needs and different requirements come out. The real
world changes suddenly and unexpectedly, so real-time systems
that are involved in real environments must be flexible and
always ready to face conflict situations that require solutions.
In some cases, the solution has to be quick and responsive.
In some other cases, it is required a higher level of reasoning,
which can be more abstract, not time-critical, as well as impor-
tant. In this context, a temporal approach with time constraints
is not adequate.

4. THE SEAl FRAMEWORK

(...) having a mind means that an organism forms
neural representations which can become images, be
manipulated in a process called thought, and eventually
influence behavior by helping predict the future, plan
accordingly, and choose the next action. (Damasio,
1994)

The mind is described as a process in which inputs from sen-
sors are converted into knowledge structures that allow reason-
ing. These inputs can determine immediate reactions, while the
results of the reasoning process are internal or external actions
that together with the newly generated knowledge drive feelings,
emotions, and behaviors of human beings.

Humans perceive the world and their internal state through
multiple sensory modalities that in parallel acquire an enormous
amount of information creating internal representations of the
perceived world. Moreover, behaviors and skills are not innate
knowledge but are assimilated by means of a knowledge acquisi-
tion process (Brooks et al., 1999) and by emotional influences
(Damasio, 1994). This is also supported by the evidence that pure
rational reasoning is not sufficient to realize an advantageous
decision-making, as demonstrated by studies conducted on
subjects with affective and emotional deficits due to brain injuries
(Bechara et al., 2000).

SEAI (Social Emotional Artificial Intelligence) is a framework
for the development of bio-inspired robotic control systems
endowed with a form of artificial consciousness. It is specifically
tailored for social robotics applications, where cognitive features
aimed at giving agents the capability to perceive, process, and
respond to social stimuli are mandatory. Simultaneously, it makes
use of the interactions that the agent has with its interlocutors
to create beliefs and internal representations that will change its
behavior. In order to achieve this purpose, the system has been
conceived highly adaptive, responsive but also capable of abstrac-
tion and reasoning. As in human nervous system, planning is the
slower part of the control architecture. Therefore, the planning
engine of the system has been implemented using a rule-based
expert system, which can deal with rules and data but is not
designed to be fast. In the meanwhile, sensors and actuators

deal with quick reactive actions that require fast communication
channels and analysis algorithms (Qureshi et al., 2004). For this
reason, a hybrid deliberative/reactive architecture, which inte-
grates a rule-based deliberative system with a procedural reactive
system, has been selected as main design structure for the SEAI
control system.

As shown in Figure 2, SEAI services can be conceptually
divided into three main functional blocks: SENSE, PLAN, and
ACT.

4.1. SENSE

4.1.1. Scene Analyzer

It is the Social Perception System (SPS) that we developed for
Social Robots. This service uses dedicated modules that process
incoming raw data from sensors (e.g., Microsoft Kinect ONE
Camera,' TouchMePad (Cominelli et al., 2017), TOI Shield?),
extract a set of features of the social environment, and contribute
to creating integrated “meta-maps,” i.e., XML files that include
structured information. For example, a meta-scene is a structured
description of the perceived social environment (exteroception).
The extracted features include a wide range of high-level verbal/
non-verbal cues of the people presents in the environment, such
as facial expressions, gestures, position, age, and gender, and a
set of the visually relevant points of the scene calculated from the
low-level analysis of the visual saliency map. Finally, the meta-
scene is serialized and sent over the network through its cor-
responding YARP port. Details of the Scene Analyzer algorithms
and processes are reported in Zaraki et al. (2017).

4.1.2. Power Supply

It is the energy monitor of the robot. This service manages
the connection with the robot power supply and monitors the
current consumption and the voltage levels. The Power Supply
Monitor (PSM) service calculates the robot power consumption
in Watt with a frequency of 1 Hz and serializes this information
to be sent over the network. Data coming from PSM constitutes
part of the data used to build structured descriptions of the
robot’s body state (proprioception).

4.2. ACT

4.2.1. Robot Control

This service is the first part of the robot actuation system.
Its role is the translation of high-level instructions coming
from the deliberative system in low-level instructions for the
animators. It has internal modules dedicated to single parts of
the robot (e.g., hands, arms, neck, and face). An example of
these modules is HEFES (Hybrid Engine for Facial Expressions
Synthesis), which is a module devoted to emotional control of
a facial robot, described in our previous work (Mazzei et al.,
2012). This module receives an ECS (Emotional Circumplex
Space) point (v, a) , expressed in terms of valence and arousal
according to the Russel’s theory called “Circumplex Model of

'https://developer.microsoft.com/en-us/windows/kinect/hardware.
*http://www.besos.cc/portfolio-articoli/toi-shield/.
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FIGURE 2 | The SEAI architecture includes a set of services (blue boxes), standalone applications interconnected through the network. The network communication
and services deploy is based on YARP, an open-source middleware designed for the development of distributed robot control systems (Metta et al., 2006). Each
service has its modules (green boxes) that collect and process data gathered from sensors or directly from the network and send new data over the network. The
information flow is defined by XML packets, a serialized form of structured data objects. Thanks to this information management, SEAI is modular and can scale up
by developing services, which can even be implemented in different programming languages and placed in different hardware devices. In the proposed architecture
ACT, SENSE, and PLAN blocks are only descriptive constructs. The virtual link created by the connections between ACT and SENSE services represents the
reactive subsystem. Conversely, the deliberative subsystem is represented by the connections between the I-Clips Rules Engine (PLAN) service and all the other

services.

Affects” (Russell, 1980; Posner et al., 2005), and calculates the
corresponding facial expression, i.e., a configuration of servo
motors that is sent over the network to the Robot Animator.
Another example is the module for the Gaze Control of the
robot, described in details in Zaraki et al. (2014). This module
receives directly from the SENSE block a meta-scene object,
which contains a list of the persons, each of them identified by
aunique id and associated with spatial coordinates (x,y, z).
The Gaze control module is also listening to the YARP port
used by the deliberative subsystem to send the subject’s id
toward which the robot must focus its attention. As a result,
the module sends directives to the Neck/Eyes Animator to
move the gaze of the robot toward the selected subject.

4.2.2. Robot Animator

It is the low-level service for the actuation of the robot. This ser-
vice receives multiple requests coming from the Robot Control,
such as facial expressions and neck movements. Since the behav-
ior of the robot is inherently concurrent, parallel requests could
generate conflicts (e.g., a surprised facial expression while blink-
ing). Thus, the Robot Animator is deputed to the distribution of
requests through each dedicated animator (e.g., hands animator,
face animator, neck/eyes animator, etc.). Moreover, the anima-
tion engine is responsible for blending multiple actions taking
account of the time and priority of each incoming request. This
actuation service is directly connected with the motors moving
the robot.
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When a service of the ACT block receives an instruction
coming from the PLAN block, as the example of an emotion to
be expressed, then a deliberative action is taking place. On the
contrary, when the instruction is a quick communication due
to algorithms that link information gathered by sensors to the
movement of motors, the system is dealing with a reactive non-
declarative action.

4.3. PLAN

4.3.1. I-CLIPS Brain

The name stands for Interactive CLIPS, it is the core of the PLAN
block and embeds a rule-based expert system that works as a
gateway between the reactive and the deliberative subsystems.
The I-CLIPS Rules Engine has been designed using CLIPS
(Giarratano and Riley, 1998), and it can be considered as the
evolution of our previous work described in Mazzei et al. (2014).
In CLIPS expert systems, facts represent pieces of information
and are the fundamental unit of data used by rules. Each fact
is recorded in the fact-list. I-CLIPS supports the definition of
templates, structured facts defined as list of named fields called
slots. Templates in a declarative language are structured data
similar to objects in a procedural language; therefore, it is pos-
sible to convert objects in I-CLIPS templates and vice versa.
The decision-making process is based on the evaluation of
rules. Each rule is composed of two parts: left hand side (LHS)
contains all the conditions to make the rule trigger, and right
hand side (RHS) contains the actions that will be fired if the LHS
conditions are all satisfied. The RHS can contain function calls,
assertion of new facts or modifications of templates. Assertion
of new facts generates new knowledge that can be sent to the
other services through the network or used as input for the other
rules. If the LHS of a rule is satisfied, that rule is not executed
immediately but it is marked as activated. Activated rules are
arranged in the agenda, a list of rules ranked in descending
order of firing preference. Rules order in the agenda drives the
execution order. Here, the I-CLIPS modules are CLIPS modules
(some examples in Figure 2). Therefore, each module is a.c1p
file that includes definition of rules and templates. Once a
module is loaded by the I-CLIPS Rules Engine, these rules and
templates are defined and become part of the SEAI Knowledge
Base. Modules are distinguished for their function. They have
their own agenda and can work in parallel receiving, process-
ing, and sending information through the network. Incoming
data can be shared between more modules, as in the case of the
Emotion Module and the Attention Module in Figure 2, receiv-
ing both the meta-scene, for sending different information in
the network, or, no information at all, e.g., the Energy Module,
because the outcome is a modification of internal parameters
(templates). The modular structure of the SEAI system allows
to include or exclude entire modules, and so, to unable and
disable functions at run-time. Modules can have dependencies
on other modules, for example, in the rules LHS of module
B there can be checks about the state of templates defined by
module A. If module A has not been loaded, then module B
will not work, but this will not lead to any further consequences.
More in general, an activation of an existing function (loading
an existing module), or an addition of a new function (loading

a new designed module), will not compromise the smooth
functioning of the whole system.

What has been described is mainly a causal approach, similar
to other approaches in the literature (Manzotti, 2006; Seth, 2008;
Chella and Manzotti, 2013), but it is also possible to have partial
control on time, in two ways: “prioritization” and “dummy facts.”
Prioritization of the rules disposition in the agenda can be done
declaring saliency inside the rules. Saliency is a real number
from —10,000 to 10,000 that can be declared in the definition
of a rule. Activated rules with higher saliency will be placed at
the top of the execution list. No declaration of saliency means
saliency equal to 0. With this method, layers of rules inside
a module can be created. A layer, which can be considered a
sub-module, is a set of rules with the same saliency that con-
nect two or more templates, and it is called a Rule Set. In this
way, we know that a modification of template T1 will cause a
modification of template T2, and not vice versa (if not needed).
If multiple rules of the same rule set are activated, they will be
ordered on the agenda depending on the selected conflict reso-
lution strategy. CLIPS makes available the selection of various
conflict resolution strategies among which the depth strategy has
been selected for its similarity to the typical human reasoning
strategy. Using depth strategy, the last rule activated by the facts
is the first to be executed generating a behavior that is more
responsive and influenced by recent events. The other method is
by using “dummy facts” In this latter case, the execution order of
rule sets is guaranteed by the assertion of facts: a fact (a dummy
fact) is asserted as an action of all the RHS of the rules of the
precedent rule set and as a condition in the LHS of all the rules
of the subsequent rule set, which then will immediately remove
that fact from the fact-list, hence the name “dummy.

5. PORTING THE COMPUTATIONAL
MODEL IN THE SEAl FRAMEWORK

With respect to the explained framework, we developed
modules aimed at replicating the biological mechanisms of
consciousness as described by Damasio and then formalized
by Bosse. In this section, we present the developed cognitive
system dividing the description into the same three notions of
“emotion,” “feeling,” and “feeling of a feeling,” and we illustrate
how these three levels can be exploited in SEAI for the emer-
gence of the three-layered consciousness defined by Damasio.
The “body loop” and the “as if body loop” are also discussed.
Moreover, our model of the somatic marker mechanism, which
was not included in the Bosse model, will be also described.

First, in order to explain how the SEAI Cognitive System pro-
cesses the information, another kind of schematic representation
is required. Indeed, the functioning of SEAI, akin to the human
brain, resides in the structure, meaning the connections among
its internal functional parts. In our case, we have a structure
made of templates connected together by rules. The three level
of consciousness will be described by gradually loading modules
that will define templates and rules in the SEAI knowledge base.
This schematic representation is highly inspired by the Bosse
model (Figure 1), where sensory states are templates or facts in
our system, and local dynamic properties are rule sets.

Frontiers in Robotics and Al | www.frontiersin.org

31

February 2018 | Volume 5 | Article 6


http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Cominelli et al.

SEAI: Social Emotional Artificial Intelligence

In Figure 3, the entire SEAI Cognitive System is shown, where
all the developed modules have been loaded.

5.1. The External World

In Figure 3, the line delimiting the big white box represents the
edge of the physical body of the robot, the gray box in which it
is immersed is the external world. Sensors and actuators are the
interfaces by which the robot connects with the world. They are
represented by a collection of triangles standing in the middle
between the body of the robot and the world. Incoming yellow
triangles are sensors and outgoing red triangles are actuators.
The set of sensors and the perception capabilities depend on
the features and the equipment of the robot. As represented in
the figure, there are external stimuli that can be perceived by
the perception system (bright blue circles), while others (pale
blue circles) may not have the corresponding sensory channel
in the perception system of the robot. In the case of social
robotics, stimuli could be different features of the environment
(e.g., temperature, noise level, luminosity, and so on), social
cues regarding a unique subject (e.g., gender, facial expression,
posture, physio parameters, and so on) or characteristics of an
object (e.g., shape, color, dimensions, and so on). Usually, each
sensor has a dedicated perception module for the pre-process-
ing of extracted raw data. This is similar to the pre-processing
taking place in the human sensory channels. Likewise, the
actuation system depends on the motor system of the artificial
agent. Typical actuators are servomotors and a set of motors
corresponds to a body part of the robot driven by a dedicated
animator. However, also speakers for speech synthesis or lights
simulating blushing of the skin are considered here as actuators.
Arrows coming out from actuators represent the actions of the
robot that will lead to some change in the world, this change
will be reacquired by the agent as a new collection of external
stimuli.

5.2. The Internal World

In the model of Figure 3, the focus is all on the PLAN block,
which has been extended and its internal structure revealed. The
SENSE and ACT block have been compacted in two representa-
tional bars with the same reference colors used in Figure 2: the
yellow bar represents the sum of all perception services, while the
red bar stands for the actuation services. Blue boxes are templates,
and continuous arrows are rule sets. Directions of arrows repre-
sent the causal/temporal direction due to the abovementioned
layering approach. In parallel with external stimuli, the agent
has also internal stimuli. They are represented in the schema as
an inner blue circle and can be a collection of simulated physi-
ological parameters or a set of values representing the psycho-
physical state of the agent. Internal stimuli are updated after
every execution cycle after processing the information coming
from the external and internal world of the agent. In the middle
of the picture, it can be noticed a gray square containing three
representative layers. The gray space is the working memory of
the robot and corresponds to the “fact-list,” the list of all the facts
of which the agent is aware of itself and the world. The three
representative layers are a symbolic representation through
which we describe the arise of consciousness that is reached and
enriched by the awareness of facts of increasingly higher level of
abstraction. Non-continuous arrows are not rule sets but YARP
connections with other services or another kind of connections.
These details will be clearer with the following description of rule
sets and modules.

5.3. Rule Sets and Modules

Following the key numbers in Figure 3: (0) external stimuli
reach the SENSE block passing through sensors; these con-
nections indicate the sensory acquisition, pre-processing, and
integration. These two latter processes take place in the SENSE
and provide a single structured meta-map (e.g., a meta-scene)
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FIGURE 3 | Porting Bosse in SEAI. Key numbers are used for description in section 5.3.
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that is sent through a YARP connection. Once the information
has been extracted by the external world (exteroception) or
perceived from the body (interoception) forming meta-maps,
these are analyzed by the deliberative system. (1) The system
uses pattern matching to compare incoming information with
internal representations (pre-defined templates) and recognize
real and useful information from inconsistent and useless
data. (2) If a meta-map has an expected structure and satisfies
conditions about internal data, then it is accepted by SEAI as
reliable information, and a new fact is asserted in the agent
working memory. Facts in the fact-list activate sets of rules of
the I-CLIPS rules engine, which will modify other templates or
create secondary facts. (3) EMORS (EMOtion Rule Set) is a set
of rules that analyze facts to process a related emotional predis-
position, realized as a modification of values of the templates
body preparation (bp (v, a) ), emotional state (es (v, a) ), or
both. (4) BEHRS (Behavioral Rule Set) is the set of rules that
analyze the facts to provide instructions for the robot about cer-
tain actions to take, the effect of these rules is the modification
of the templates reactions or actions. This rule set is divided into
(4a) STD-BEHRS (STandarD Behavioral Rule Set), (4b) ALT-
BEHRS (ALTernative Behavioral Rule Set), and (4c) SPEC-
BEHRS (SPECific Behaviors Rule Set), which have increasing
priority. This distinction will be clearer in the next section. (5)
FEERS (FEEling Rule Set) analyze the emotional state template
to extract a higher level information that is a conscious feeling,
the consequence is the assertion of a secondary fact about the
mood of the agent. (6) SOMARS (SOmatic MArker Rule Set) is
the set of rules simulating the somatic marker mechanism. These
rules work in two different directions: they can analyze the body
and emotional state to trigger the assertion of a somatic marker,
and in case of recognition of a marked entity, they can recall the
bodily state that the agent “felt” when that entity was labeled.
(7) REARS (REAsoning Rule Set) is the set of rules that allows
reasoning chain and deductive inferences. These rules do not
connect specific templates, because they analyze known facts to
assert higher level facts. This rule set is extremely useful to do
abstract symbolic reasoning and contributes to the modeling of
higher levels of consciousness. Thereby;, it is represented by a
golden arrow inside the fact-list box. (8) EXERS (EXEcution
Rule Set) must be the last set of rules to be run. Therefore, they
have the lowest saliency values and will be placed at the bottom
of the agenda. When all the other rule sets have contributed to
the modification of the templates, the actions to take have been
decided, the EXERS can send instructions to the ACT Block.
This is done through function calls in their RHS that send high-
level commands in the YARP network. (9) These commands
are translated by the Robot Control into motor commands and
dispatched by Robot Animator to the actuators of the robot. (10)
Finally, the bodily state induced by the events is upgraded as a
new set of internal stimuli, and the actions of the agent lead to
a modification of the social environment that is interpreted as a
new set of external stimuli. An execution cycle from 0 to 10 lasts
0.33 ms, which is in line with the physiological time needed for
passing from an intention to an action (Libet et al., 1983).

The discussed rule sets and templates are arranged in three
different modules:

EMOTION MODULE includes the following: Representation
of Internal Stimuli template, Representation of External Stimuli
template, Reactions template and Body Preparation template. As
Rule Sets, the Emotion Module includes EMORS, STD-BEHRS,
and a few rules from REARS and EXERS;

FEELING MODULE includes the following: Emotional State
template, Actions template, additional EMORS rules that can
modify also (or only) the emotional state, ALT-BEHRS, an
extension of REARS, and additional EXERS rules for the execu-
tion of actions;

FOF® MODULE includes the following: Somatic Marker tem-
plate, SOMARS, SPEC-BEHRS, and additional rules of REARS.

As can be noticed, there are entire rule sets that are sole prop-
erty of a module (e.g., SOMARS) and rules of the same rule set
that appear in different modules (e.g., EMORS and REARS). In
fact, different modules may include rules with similar function,
connecting the same templates, or having the same priority.

5.4. Emotion and Proto-Self

Following the narrative process used in Bosse et al. (2008), we
start from a SEAI system in which only the Emotion module is
loaded (Figure 4). Included in the Emotion module, there is
the body preparation template. As mentioned in the descrip-
tion of the SEAI framework, to model emotion we use the ECS
(Emotional Circumplex Space) representation (Russell, 1980).
An ECS point is described by two coordinates: v, valence, the
quality of an emotion (i.e., positive or negative), and a, arousal,
which is the activation level of an emotion; v and a are normalized
between 1 and —1. Body preparation is described by a (v,a) point
that is a bodily state, induced by events, that corresponds to a
specific emotion. This state will be performed by the agent as an
immediate reflex and will last only the duration of the emotional
stimulus. Let us assume the same example reported in Bosse et al.
(2008), an agent hearing and reacting emotionally to music, and
suppose that the SENSE block of SEAT includes a simple software
for sound analysis. For example, this software is able to extract
the music tempo in terms of beats per minute (bpm) and the
sound volume (db). Then, referring to Figure 4, this example in
SEAI would be the following: (0) the music (external stimuli) is
acquired by the sensors of the agent (microphones), the audio is
processed by the application in the SENSE block, which creates
a single structured data: a meta-map containing the perceived
characteristic of that music. The meta-map is sent as a YARP
bottle in the network; (1) the meta-map comes to the I-CLIPS
Brain, where is compared with the representation of music, a
template (music (bpm) (volume)); (2) if the informa-
tion is consistent (e.g., a condition could be bpm > 0) then the
meta-map becomes a fact in the fact-list, otherwise is rejected; (7)
REARS may be activated by the (music) to do reasoning chain
and assert facts, such as (music-genre-is chill-out)
if 70 < bpm < 120 or (volume-is low) if db < 45; (3) the
appearance of a (music) fact activates also the EMORS. For
instance, EMORS can trigger specific bodily states in relation-
ship to specific volume ranges. This means a modification of body

*FOF, Feelings Of Feelings.
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FIGURE 4 | SEAI with only the Emotion Module loaded.

preparation from neutral bp (0, 0) to bp (v, a); (10,1,2) this
bodily change is updated as an internal stimulus and becomes
also a fact in the fact-list; (4a) the contemporary presence of the
two facts, one about the music and one about the bodily change,
activates a behavior, typically a rule of BEHRS which acts on the
reactions template, copying the bp (v,a) coordinates that now are
present as a fact of the fact-list; (8) when a disposition is ready
and available in the reaction template, EXERS is activated and the
(v,a) point is sent to the ACT block; services of the ACT block
interpret and express the emotional state to perform, translating
that emotion in a list of commands for motors. In this way, the
emotion is physically expressed through the body of the agent
(e.g., a serene facial expression).

This part of the process corresponds to the sequence LPO,
LP1, LP2, and LP3 described in section 3. At this stage, the sys-
tem is only responsive and capable to process information and
express consistent emotional states. The behavior of the agent
will be always the same in front of the same stimulus, and its
reactions will not last more than the duration of the incoming
input. In any case, the simultaneous existence of known facts
about the surrounding environment and the body state induced
by the entities of that environment fully satisfy the definition
of Proto-Self. As a consequence, this first preliminary stage of
synthetic consciousness results activated in Figure 4.

5.5. Feelings and Core Consciousness

The addition of the Feeling Module leads to the definition of new
templates and rule sets, which have been highlighted in blue, in
Figure 5. A new template defined by this module is the emotional
state template. This new internal representation of the cognitive
system is different from body preparation. On the one hand,
the same emotion model is used for the representation, and so,
the instances of this template are also ECS points. On the other
hand, es (v, a), unlike bp (v, a) , is an internal parameter that

does not lead necessarily to an immediate reaction, but rather
it is used by the system to modulate the behavior of the robot.
This modulation occurs because the module defines new rules
of EMORS, which can modify bp (v, a), es (v, a), or both.
The bp (v, a) points are still discrete states, while es (v, a)
is modified gradually, by an increase or decrease of its previ-
ous (v,a) values. The FEERS checks emotional state to assert in
the fact-list the current emotional state as a fact. REARS will
interpret these states to assert secondary-order facts about the
current mood of the agent (e.g., bored, relaxed, and annoyed).
The simultaneous presence in the fact-list of a bp to perform and
an es will activate the ALT-BEHRS, which acts on the actions
template, placing (v',a’) values that correspond to

Vi=(k=1)* vy + k*ve
a'=(k-1)*a,+k*a,

where k is the influence factor, a global variable, accessible to all
modules, which value is set within 0 < k < 1 and determines the
influence of the emotional state on the agent.

Returning to the example of music listening, nothing changes
until the sensory representation of the music is asserted as a
fact in the fact-list, but now (3) new EMORS rules determine
variations of the es values. For example, there is a rule that
makes V. increase together with the music tempo and another
one making a., decrease in case of low sound volume. Let us
take the case of a slow relaxing music heard at low volume.
A protracted listening to this kind of music will lead to: (5) the
assertion of the fact es (v, a) by the FEERS, which every run
cycle will be upgraded with decreasing values of both v., and d.;
(4b) the activation of the ALT-BEHRS due to the contemporary
presence of a bp and an es in the agent working memory; (7) the
analysis of the es-fact by the REARS and the subsequent asser-
tion of secondary-order facts (e.g., (music-is boring)).
The ALT-BEHRS acts on the actions template placing (v',a’)
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FIGURE 5 | SEAI after Feeling Module loading. New parts highlighted in blue.

values. (8) The EXERS rules defined by the Feeling module have
higher saliency than the EXERS rules of the Emotion module and
check the actions template. When all the BEHRS rules have been
fired, if both actions and reactions are filled with values, reactive
impulses are temporarily “inhibited” and actions are sent to the
ACT block services. The follow-up (9,10) is exactly the same
described in the previous condition because services of the ACT
block are not aware of the declarative process underlying the
received instruction. Nonetheless, thanks to Feeling module, we
will see the previous serene facial expression turning gradually
into a bored expression.

The described process corresponds to the addition of LP4
and LP5 in the computational model and the emergence from
the subcortical to the cortical level in the biological model.
It represents the arise of a feeling through the body loop.
Indeed, the result of this cognitive process is the emergence of
secondary-order representations generated by means of slower
gradual changes in the body. Here, feelings are not yet internally
represented. At this stage, the agent has not a specific behavior
toward a precise evocative object, thus, cannot even speak about
the music. Nonetheless, reactions to the music are changing,
the raised emotions are changing, and feelings are getting clear,
which corresponds to the description of what Damasio calls a
Core Consciousness, that appears activated in Figure 5.

5.6. Feeling of a Feeling and Extended

Consciousness

In order to uplift feelings and consciousness to a higher level, we
relied on the somatic marker hypothesis, formulated by Damasio
(1994). A Somatic marker (SM) is an association between a
relevant change in the body state, perceived as an emotion, and
the causative entity that induced that change. According to the
hypothesis, somatic markers are processed in the ventromedial
prefrontal cortex (VMPFC) and the amygdala and strongly

influence subsequent decision-making. Indeed, SMs use our
body to create emotional beliefs and opinions about specific
entities with which we interact, giving an essential contribute for
the formation of an extended consciousness. This mechanism,
in case of a second exposure to a marked entity, will recall the
body state felt in the past biasing our decisions and behavior
toward that specific entity. The hypothesis was demonstrated
by Bechara et al. submitting healthy patients and brain-injured
patients to the “lowa Gambling Task,” a gambling card game
specifically conceived by the authors to assess the efficiency of
the SM mechanism (Bechara et al., 1997). To model this brain-
body mechanism, we designed the SOMARS. This part of our
cognitive system has been tested in a preliminary computational
experiment, where we submitted a simulated reproduction of the
Iowa gambling task to an artificial agent endowed with SOMARS
(Cominelli et al., 2015).

In Figure 6, the SEAI system after the loading of the FOF
module is shown. This leads to the definition of the Somatic
Marker template, additional rules in REARS, the SPEC-BEHRS,
and SOMARS. SOMARS has been divided into SOMARS rules
for SM creation (6a, blue arrows in Figure 6) and for SM recall
(6b, green arrows in Figure 6). To better explain the labeling
and recall method, we refer again to the music example: nothing
changes in the perception of the music (0,1) and the creation of
its internal representation as a fact (1); neither the influence of
the music on body preparation and emotional state through the
EMORS is changed (3), nor the subsequent feelings assertion due
to the FEERS (5); but now there are rules of SOMARS that, (6a) if
the intensity of the emotional state |es|, intended as the modulus
of es(v,a) vector, exceeds a decided threshold called sensitivity
(s), then assert a fact in the fact-list: an instance of the somatic
marker template. A somatic marker in SEAI is a fact (sm(id)
(value) (bp) ), where id is an identification number assigned
to the causative entity, value = v.. * 100, and bp is a multifield slot
that contains the current (vi, awp). In the example, the listened
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music, after a few minutes playing, induces by means of EMORS
an es, which modulus is

les|=VE +ak >s,

as a consequence, SOMARS checks the fact-list, the music-genre
chill-out is identified with a specific id, labeled with a
value and associated with the bp (v, a) felt in that moment.
A new (sm) has been created.

This sequence corresponds to the sequence of transitions
between the states sO (the proto-self exists at the inaugural instant),
s1 (an object come into sensory representation), and s2 (the proto-
self has become modified by the object). In LEADSTO formaliza-
tion, this is equivalent to LP7, LP8, and LP9.

From here on, the labeled entity in the fact-list will activate
rules of the SOMARS for SM recall (6b) that will modify the body
preparation state immediately recalling the bp (v, a) that was
felt and associated with that entity. This bp will be represented
as a sensory representation of the body state (sr (S) in Bosse,
a fact in SEAI). This new state is not derived by an upgrade of
the body state (LP4 in Bosse, 10 in SEAI), but from an internal
representation of body preparation recalled from the long-term
memory of the agent. This is, in all respects, an as if body loop, and
corresponds in LEADSTO notation to LP6.

Another consequence of the recognition of a marked entity
may be the activation of (4c) a rule of SPEC-BEHRS, triggering
some specific behavior toward that entity, pushing a high priority
action to be executed, such as saying something about that music
(e.g., “this music is getting boring”). The sequence that includes
(4¢), (8), and (9) coincides to LP10.

Finally, even REARS rules may be activated to assert more
abstractand general facts. For instance, a rule of the reasoning rule
set could be: if there are the facts (music), (music-genre
is chill-out),anda (sm) which label that music withabp
corresponding to a bored face, then assert the fact (chill-out
is boring).

The emergence of SMs is the emergence of personal opinions,
about the entities of the world, that the agent autonomously builds
through the interactions with such entities. This mechanism,
which leads to the construction of an autobiographical memory
and biases the behavior of the agent and its opinion about the
world, is deputed to the bio-inspired mechanism activated by the
FOF module. Things would have ended differently, for example,
if other entities of the external world had moved the emotional
state in a different direction, predisposing the agent in a better
“mood.” In this case, chill-out music would have been probably
labeled as a nice music genre recalling a pleasant body state to
express. In general, it is evident that this level of consciousness,
which could not exists without its predecessors, moves beyond
the “here and now;” includes personal opinions and feelings about
specific entities of the world and allows the creation of higher
general thoughts. We identify this level with the equivalent of
the Extended Consciousness, which as a consequence appears
activated in Figure 6.

6. TESTING SEAI IN THE REAL WORLD —
THE HRI EXPERIMENT

In this section, we report an experiment in which SEAT has been
used as cognitive system of the humanoid robot FACE (Facial
Automaton for Conveying Emotions)* (Figure 7). FACE is a
human-like robotic head, with the appearance of an adult female,
capable to perform very sophisticated expressions by means of
a hyper-realistic facial mask. The android’s head has been cus-
tomized by our research team starting from a Hanson Robotics®
head. The facial mask is made of Frubber (“flesh rubber”), a pro-
prietary skin that mimics real human musculature and skin, and

*www.faceteam.it.
°http://www.hansonrobotics.com/.
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FIGURE 7 | The FACE Robot (Facial Automaton for Conveying Emotions) displaying some of its hyper-realistic facial expressions.

it is actuated by 32 servomotors. The robot has also a mechanical
system, composed of a controlled neck with 3° of freedom and
movable eyes to allow gaze control (Zaraki et al., 2014, 2017).
In this experimental setup, the head has been mounted on a pas-
sive mannequin, placed in a seated position. In order to achieve
the maximum possible naturalness of the HRI, the interaction
takes place in a normal situation of everyday workplace: an
office room that has not been prepared or specifically structured.
The experiment of this study has been approved by the Ethics
Committee of the University of Pisa (prot. 68459, ref. Ethical
Approval by CEAVNO, Comitato Etico di Area Vasta Nord). All
research participants provided written and informed consent.

In the presented experiment, FACE interacted with three
subjects, identified as ID1, ID2, and ID3. The experiment can be
divided into the following four scenes:

Scene 1. ID1 enters the room where the robot is seated. He
performs several disturbing or impolite actions: he does not
greet the robot, immediately invades the robot’s intimate space,
does not speak to it, folds his arms for a while, and then leaves.
Scene 2. ID2 enters the room and performs mixed actions: he
greets robot, invades the robot’s intimate space but then imme-
diately makes a step back, speaks for a while to the robot, and
then leaves.

Scene 3. ID3 enters the room and performs actions that are
typical of nice behavior: he greets warmly the robot, smiles at it,
speaks a lot to it; finally, greets again and leaves.

Scene 4. ID1, ID2, and ID3 come back into the room where
the robot is located and arrange themselves in three positions
at different distance from the robot. They just maintain their
position for about 30 s without doing anything to draw the
attention of the robot. Then, they all leave the scene.

This sequence has been recorded as a repeatable scenario
using Kinect Studio, a tool to record and play back depth, color
streams, and audio from a Kinect.® In this way, it is possible to
present exactly the same scenario to the robot comparing the
effect of the same social scene in three different conditions of the
cognitive system: (cond1) SEAI with only the Emotion module
and the Attention module; (cond2) including the Feeling module;
and (cond3) including the FOF module.

chttps://msdn.microsoft.com/en-us/library/hh855389.aspx.

Images gathered by the Kinect are analyzed by the Scene
Analyzer, which extracts (or estimate) several main social cues
of the subjects involved in the scene, e.g., their facial expression,
age, gender, gestures, body postures, and proximity. The SENSE
service detects also, for every incoming frame, the salient point
of the image, processed by means of pure image analysis based
on colors, contours, light contrast, rapid movements, etc. This
point is also identified by an ID, which is ID0. All the informa-
tion is organized as a meta-scene that is sent to the I-CLIPS
Brain through YARP. Once the meta-scene has been processed
by the I-CLIPS Brain, an ID will draw the attention of the robot
that will look at it. This ID is also called Winner ID. This is
an automatic non-emotional mechanism decided by the rules
of the Attention module, loaded in all the three conditions.
This module, indeed, defines several standard behavioral rules
(STD-BEHRS) that, choosing the winner, drive the attention
of the robot. For example, the FACE attention is attracted by
someone raising their hand or speaking to the robot. If no one
is doing anything relevant but subjects are present in the scene,
then the robot will look to the closest subject. If no subject
is present in the FOV, then the robot will analyze the scene
by looking at the salient point. The attention model, here
implemented in the form of rules, was studied and discussed
in Zaraki et al. (2017).

6.1. Results

6.1.1. Experiment 1

In this first condition, the Emotion module is loaded. This leads
to the definition of body preparation and the EMORS that can
modify bp (v, a) according to external and internal stimuli.
It results in a FACE bodily change, and so, an emotional response
to what is happening in its social environment. For example, the
absence of people in the FOV of FACE causes the display of a
sad facial expression corresponding to negative valence and low
arousal (—0.3, —0.5). As the subject enters in the room, we see in
Figure 8 two parallel consequences: rules of the Attention mod-
ule will bias the attention of the robot from the salient point to
the detected subject, while rules of the Emotion module change
the bodily state of the robot. This change in the status of the
body will be expressed according to our emotion model through
the FACE expressive capabilities: an ECS point is translated by
the Robot Control in 32 commands for the relative servomotors
moving its face and neck.
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FIGURE 8 | Resullts of the HRI Experiment with FACE integrating SEAI in condition 1. Columns are the four scenes. Rows are, in order: winner ID, bp (v), and bp (a).

In Figure 8, looking at the charts of bp (v) and bp (a), itis
possible to see, along all the interaction, the emotional response
of the robot. FACE expresses discomfort (—0.5, —0.6) when a
subject invades its intimate space, an angry expression (—0.52,
—0.67) if someone folds his arms, smiles (0.21, 0.6) if someone
greets her or smiles at her, and expresses interest (0.62, 0.2) when
an interlocutor speaks to her. Without going into the details of
the actions performed by the subjects in their interaction with
the robot, the trend of bp (v,a) shows how the robot is emotion-
ally affected in the three first scenes. In the first one, the impolite
behavior of ID1 induces unpleasantness and annoyance, hence,
values of negative valence are predominant, accompanied by
large arousal fluctuations. ID2 has an engaging interaction
with the robot, he manifests a polite behavior, quite neutral.
As a consequence, positive values of valence are predominant
and the arousal is not highly affected. In scene 3, we can see
the effects of the interaction with ID3: the interaction is full of
positive stimulus, this induce in the robot frequent emotions of
pleasantness and high excitement. Finally, we see in scene 4 that,
the entire time the robot is detecting people, bodily changes are
nearly irrelevant. Indeed, the three subjects just stand in front
of the robot without saying or doing anything. The emotion
expressed by the robot is always neutral (0,0), with an exception
when the subjects leave the room. In this transition, there are
fluctuations due to the overlapping of detected people going out
through the same door, resulting in a difficult reconstruction of
the skeletons by the Scene Analyzer. In any case, sudden quick
variations are filtered by the Robot Animator and will not lead to
the movement of the robot.

Concerning the behavior of the robot, in terms of attentive
model, for the first three scenes, the winners of FACE’s attention
can only be the single subject presents in each scene or the salient
point (ID0). The salient point draws the attention of the robot in
the absence of social stimuli, therefore, before and after subjects’
detection. In the last scene, including all subjects, the robot
focuses its attention on ID1, because he is the closest subject and
nobody is doing anything to draw the attention of the robot.

At this stage, FACE bodily state is clearly affected by external
events, but the agent is not aware of its own feelings. Emotions
last exactly the duration of the stimuli. There is no memory of the
experiences. Therefore, behavior is reactive and FACE does not
take deliberative decisions about specific subjects. The evidence is
that when the subjects come back into the room it is like nothing
has happened before, the attention of the robot is not influenced
and the robot simply look at the nearest person. We are still at an
equivalent of the proto-self level of consciousness.

6.1.2. Experiment 2

Theemotional state template comesalong with theloading
of the Feeling module. The effects of this module are shown in
Figure 9. EMORS can now modulate the emotional state (es) of
the agent, which is continuously upgraded by FEERS through the
assertion of facts in the working memory. The influence of events
on es can vary from a low influence (e.g., talking to the robot, as
in scene 3, from t = 100 s to t = 130 s) to a very important influ-
ence (e.g., invading its intimate space, as in scene 1, from t=10's
to t = 15 s). This leads to a modification of the emotional state
expressed by the robot: the agent does not show exactly the (vy,
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FIGURE 9 | Results of the HRI experiment with FACE integrating SEAI in condition 2. Columns are the four scenes. Rows are in order: winner ID, bp (v), bp (a),
and es. Effectively executed v’ and a’ are, respectively, colored as red and green lines, while bp values not affected by es are represented as black lines to allow
comparison. Time t is expressed in seconds.

ayp) values, but this emotional immediate reaction is modulated by
the new internal representation of emotions. These new values are
(v’,@), discussed in section 5, where the influence factor has been
set as k = 0.1. The higher priority of ALT-BEHRS guarantees that
(v',a’) are executed instead of (Vbp, avp). In the charts of bp (v)

and bp (a) , we report both the values with (red line for valence,
green for arousal) and without (the black line underneath) the
es contribute. As expected, their difference is proportional to
the intensity and the duration of the emotional state perceived.
Moreover, the trend of es is slower and can last more than the
duration of the causative stimulus, as in the transitions from
detecting subjects to loneliness, which is no more immediate but
smoothed (e.g., scene 3, es and bp after t = 130).

At this stage, the agent is aware of its own simulated feelings
thanks to a continuous assertion of facts in its working memory
reporting its own synthetic emotional state. Feelings also emerge
in the body as shades of the emotional states expressed by the
agent. In any case, all this information is temporary, there is a
modulation of the behavior but still, no clear connection between
the causative stimulus, the agent body state, and the subsequent
feeling perceived. As a consequence, a recall of emotions driving
specific behaviors is not feasible and the deliberative behavior of
the agent is approximately the same: ID1 is still the winner of
FACE attention.

6.1.3. Experiment 3

The addition of FOF module results in the definition of SOMARS
and the possibility for SEAI to exploit the somatic marker
mechanism. In Figure 10, we can see the results of the experi-
ment in this third condition. The difference is impressive: during
the first three scenes, in which the agent interacts individually
with the three subjects, the attentive behavior of the robot is
exactly the same, but the emotions evolve in a very different
way; while, in scene 4, in front of all the subjects the attentive
behavior is completely changed, emotional reactions are more
stable, and the emotional state perceived is zero. This is due to
the SM creation and recall mechanism discussed in section 5.6.
Referring to the experiment, sensibility has been set to s = 0.75,
so, the annoying behavior of ID1 makes the es intensity
increase rapidly until it exceeds the s threshold (t = 15.5 s), this
leads, in the next run cycle (t = 15.83 s), to the creation of a SM
containing the winner ID, a marker value of —74.4 according to
the equation reported in section 5.6, and the current bp (v,a)
induced by the causative entity. The same thing is happening
when FACE interacts with ID3 during scene 3, but here the
quality of the marker is positive (details in Figure 10). As soon
as these markers are created, the emotional state is no longer
perturbed by the marked entity, because the agent has a precise
belief and an associated emotional behavior to express toward
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FIGURE 10 | Results of the HRI experiment with FACE integrating SEAI in condition 3. Columns are the four scenes. Rows are, in order: winner ID, bp (v), bp (a), es,
and sm. Effectively executed v’ and a’ are, respectively, colored as red and green lines, while bp values not affected by es are represented as black lines to allow
comparison. In es, we pointed out the es (v,a) values that caused the creation of a sm. In sm we reported the values of SMs in the moment in which they have been
created by the system. IDs colors are indicated in the sm chart. Time t is expressed in seconds.

that specific subject, which is the somatic state felt and labeled
through the somatic marker mechanism. This can be seen both
in scenes 1 and 3 after the creation of the SM, and, which is
more important, in the last scene. Indeed, in scene 4 when all
the subjects are in front of the FACE robot, FACE is no longer
attracted by the presence of the nearest subject. On the contrary,
the presence of marked subjects completely bias its behavior:
ID1 now is labeled, and when he enters and becomes detected,
the robot immediately recalls the somatic state (—0.5, 0.6) felt
in the past causative interaction; the same happens as soon as
ID3 comes into the FOV of the agent. In our behavioral model,
SPEC-BEHRS related to positive marked entities have higher
priorities on rules driving the attention on negative marked
entities. Therefore, until ID1, ID2, and ID3 are all detected, the
attention of the robot is all for ID3. FACE is specifically attracted
by him, thanks to his previous nice behavior, and stares at him
with a pleasant facial expression (0.2, 0.68). In this last scene,
ID2 becomes quite invisible to the robot, because his neutral
previous interaction has never pushed the emotional state over
the sensibility threshold (as shown in the es trend of scene 3).
That experience did not influence enough the robot to create a
dedicated SM.

This last experiment represents the test of the full SEAI
system configured as Damasios theory simulator endowed with
the somatic marker mechanism. At this stage, the agent is able
to autonomously create long-term memory information about
entities of it social environment. These memories are emotional
memories and are perceived by means of the body. They can
affect the somatic state of the agent in case of further interactions,
and bias the behavior in a very evident way. This mechanism,
completely bio-inspired, let the agent automatically build its own
beliefs about the outer world and about itself. What has been
described, to all intents and purposes, models the construction
of an autobiographical emotional memory and it respects the
minimum requirements for the emergence of what Damasio
described as an Extended Consciousness.

7. DISCUSSION AND CONCLUSIONS

In this paper, a novel cognitive architecture for social robots has
been presented. We selected a well-known mind theory to be mod-
eled and implemented in the form of a cognitive system control-
ling an emotional robot with sophisticated expressive capabilities.
The developed system is called SEAI (Social Emotional Artificial
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Intelligence). In particular, it has been inspired by the findings of
Antonio Damasio and it is consistent with the computational for-
malization made by Bosse et al. (2008). It is based on a declarative
rule-based expert system on top of procedural services deputed
to the perception and motion control of the robot. Compared to
other robotic cognitive systems, some of which discussed in the
state-of-the-art section, SEAT has still some shortages: homeosta-
sis control is missing, the agent’s physiological parameters are a
symbolic representation, capabilities such as perspective-taking
or mind-reading have been not yet considered. Most of the effort
has been spent in the C1 meaning of consciousness, rather than
in the C2 definition (Dehaene et al., 2017). On the other hand,
SEAI stands out from the other systems thanks to the hybrid
concept with which has been designed. Indeed, the modular
design of the architecture potentially enables the extension and
portability of the system to any other social robot simply adapt-
ing, or adding, low-level services to the sensory apparatus and
the motor system of the specific agent. This can be done keeping
the “personality,;” memories, beliefs, experience, and behavioral
traits of the agent, all of which depend on the cognitive part of the
system, and therefore can be transferred or modified indepen-
dently. Moreover, the innate extensibility of the rule-based expert
system, which is the core of the cognitive block, puts no specific
limitations to the inference reasoning capabilities with which the
artificial agent can be endowed, which depends on the number
and complexity of the rules. In the presented experiments, SEAI
endowed a social humanoid with artificial emotions and feelings
that have been influenced by the context, the agent managed to
exploit them to build opinions on the social world in which is
immersed, and, based on them, it manifested more sophisticated
social skills. For instance, in the last experiment, an evident bias
from the robot’s standard behavior emerged. Such experiment
obviously does not pretend to be the demonstration that we cre-
ated a conscious being, but it is a clear demonstration of how
SEAI and the chosen “understanding by building” approach lead
to an important confirmation: with SEAI, robots can benefit from
their own artificial emotions for taking decisions and treasure
their past interactions. Future works will include (1) the expan-
sion of SEAT in order to include the missing features identified in
the other robotic cognitive systems; (2) the simulation of many
other complex human social behaviors by writing new rules and
expanding the current rule- sets; (3) study of the people’s reactions
to the adaptation of the robot behavior to its social environment
by means of HRI experiments, eventually on long-term interac-
tions. For the purpose of points (2) and (3), the involvement of
professional figures from behavioral psychology and neurosci-
ence would be greatly fruitful, and a questionnaire investigating
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The emerging neurocomputational vision of humans as embodied, ecologically embed-
ded, social agents—who shape and are shaped by their environment— offers a golden
opportunity to revisit and revise ideas about the physical and information-theoretic
underpinnings of life, mind, and consciousness itself. In particular, the active inference
framework (AIF) makes it possible to bridge connections from computational neurosci-
ence and robotics/Al to ecological psychology and phenomenology, revealing common
underpinnings and overcoming key limitations. AlF opposes the mechanistic to the
reductive, while staying fully grounded in a naturalistic and information-theoretic foun-
dation, using the principle of free energy minimization. The latter provides a theoretical
basis for a unified treatment of particles, organisms, and interactive machines, spanning
from the inorganic to organic, non-life to life, and natural to artificial agents. We provide
a brief introduction to AlF, then explore its implications for evolutionary theory, ecological
psychology, embodied phenomenology, and robotics/Al research. We conclude the
paper by considering implications for machine consciousness.

Keywords: free energy, uncertainty, self-organization, embodiment, evolution, affordances, skilled expertise,
frame problem

1. OVERVIEW AND GENTLE INTRODUCTION TO THE ACTIVE
INFERENCE FRAMEWORK (AIF)

In this article, we will consider the active inference framework (AIF)—or, more strictly speaking, the
principle of free energy minimization (FEM)—as a principle, rather than as a hypothesis. This means
that we do not consider evidence for or against AIF per se. As a principle, AIF cannot be falsified—it
is just a formal description of dynamics (much like Hamilton’s principle of least action; see below)
that we apply to sentient agents. The process theories that attend AIF do, clearly, require evidence,
which we refer to in our discussion.

Following a general overview, this section offers a gentle introduction to AIF, illustrating aspects
of its instantiation as predictive processing (PP). Subsequent sections unpack the framework in
greater detail, drawing out its implications for evolutionary theory, ecological psychology, embodied
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phenomenology, and robotics/Al research. In the final section,
we directly consider aspects of machine consciousness.

Given the ill-defined concept of consciousness, we endeavor
to bring onto the same page researchers from physics, biology,
neuroscience, philosophy, cognitive science, and robotics/Al, by
reviewing concepts that are sometimes presumed to have unique
and self-evident meanings. This approach aims to dispel mis-
interpretations and sharpen the cross-disciplinary focus on the
substance of the claims. Throughout the following exposition and
argument, there are several deep connections to the possibility
of machine consciousness, although this topic only emerges as
central in the concluding section. The preliminary sections are
a necessary prelude to appreciating the implications of AIF for
biology and robotics/Al, given that the notion of consciousness
in robotics is sourced from the human equivalent. It is, therefore,
important to establish a perspective from which human biology
is accounted for by a mechanistically grounded, information-
theoretic treatment. This perspective can lend itself to robotic
implementation; however, without this grounding, any arbitrary
properties associated with consciousness could be thusly imple-
mented, putting the proverbial cart before the horse in modeling
the target phenomenon.

Embodied and embedded human cognition has been analyzed
extensively, not only in cognitive science but also in ecological
psychology and phenomenological philosophy. Furthermore, all
three fields have continually engaged with robotics/Al, contribut-
ing insights and critical perspectives, in some cases even effecting
technological shifts (see, e.g., Brooks, 1999; Dreyfus, 2007; see
also Chemero and Turvey, 2007; Sahin et al., 2007). More recently,
there has been a proliferation of fruitful exchanges between
robotics/Al and neuroscience (Hassabis et al., 2017), especially
with respect to PP. The generalization of PP in AIF makes it
possible to bridge connections to ecological psychology and phe-
nomenology, revealing common underpinnings and overcoming
key limitations inherent to the latter two.

To indicate where this account is headed, our conclusion sup-
ports the idea that there is a fundamental relationship between
(self-)consciousness and processual recursion, which has been
suggested in other work (e.g., Maturana, 1995; Seth et al., 2006).
To reach this conclusion, our discussion of consciousness is
deferred throughout the paper, which tries to account for the
emergence of processes and recursive architectures that under-
write a conscious embodied agent. In this light, we set up AIF in
Section 1 in such a way as to be expanded upon in later sections.
Sections 2 and 3 take a long view of the emergence of human
biology that paves the way for the remaining sections. Sections 4
and 5 address relevant paradigm contrasts in computational
treatments of perception and action, and their implications for
both biological and robotics/Al research. Sections 6 and 7 explore
theoretical implications and practical applications, concluding in
Section 8 with a consideration of humanoid robot consciousness
(the theme of this special issue).

1.1. Setting Up the Framework

AIF considers a thermodynamically open, embodied, and
environmentally embedded agent (see, e.g., Friston, 2009, 2010;
Friston et al., 2010, 2015a,b, 2016, 2017a,b,c). In AIF, the adaptive

behavior of such a “cybernetic” agent is understood to be regu-
lated by ecologically relevant information, underpinned by a per-
ception/action loop. Taking a broad bio-evolutionary view, AIF
regards the entire embodied agent as a generative model of the
organism-relevant thermodynamics of its ecological niche (see
below), in that the agent is a member of a phylogenetic species
that is co-stabilized with its niche. This notion encompasses the
reciprocal organism/niche coevolutionary relationship (Laland
etal., 2017).

During later evolutionary periods in which organisms with
neural systems arise, brains come to augment the more funda-
mental embodied agent with a neuronal-connectivity-based
extension to the generative model that handles more complex
organism/niche dynamics. Thus, even when discussing PP—the
human (neuronal) instantiation of active inference—the brain
should be understood as “taking a back seat” to the body, serving
the body by facilitating more complex coordination. Such coor-
dination, including the dramatic niche reshaping seen in human
culture, serves to co-stabilize organism and niche.

For a bacterium or a plant considered as an agent (Calvo and
Friston, 2017), the embodied biological inheritance (the stable
species as generative model) can be regarded as an implicit,
surprise minimizing, familiarity with the niche. Many (if not all)
of the earliest species inherit all the mechanisms they need for
responding to and reshaping their niche, to facilitate their own
survival and development. Such brainless organisms should be
kept in mind whenever we “skip ahead” to the AIF description
of human neural architecture—and its role in navigating the
complexity of our cultural niche.'

1.2. Generative Model Basics

We next introduce the core notion of a neuronally implemented
generative model. Consider, for example, a first-time visit to a
university campus. Since a university is a contingent cultural
entity, no part of our biological inheritance should be expected to
provide us with any campus familiarity. However, if we have any
earlier exposure to other universities, from visiting, reading, or
hearing about them, this experience may contribute to our expec-
tations of familiar features: we could speculatively populate any
given campus with some lecture halls, administrative buildings,
cafes, and so on. This mental act of populating, in other words
generating, amounts to using a generative model of a campus (i.e.,
generating consequences from causes). On a first-time campus
visit, such a generative model allows us to “predict” (extrapolate
from the model) that there is a cafe, or, more precisely, that there
is a high probability of there being a cafe, even if in actuality, there
is not one there.

If we are visiting a specific campus for the first time, our
generative model will be rather vague, but as we gain familiar-
ity, we fill in more details. This process of gaining familiarity
is a form of exploration, which may entail wandering, read-
ing signs, and talking to passers-by. The exploratory process
amounts to updating or nuancing our generative model for

'For a related approach in philosophy of science, see, e.g., Bechtel (2014) and
Bechtel and Abrahamsen (2007).
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this particular campus, including specific buildings and their
layout. The exploration fills in the blanks, so to speak, such that
we can then exploit the model for explicit or implicit purposes,
whether finding the shortest path to the cafe or aimlessly
meandering on a leisurely stroll. If, when exploring the campus,
every sensory impression evinces the right sort of predictions,
you have effectively inverted your generative model. In other
words, to update your model of this campus, it has to predict
the right things in the right place at the right time. This process
amounts to learning to recognize the causes “out there” in
relation to their context-dependent sensory consequences, or
more simply, getting a grip on how sensations are caused by
attempting to predict them—and then learning how to predict
in this context.

Thus, the explore/exploit dynamic in relation to a generative
model of a niche (including any subset thereof) can be understood
as a process of gaining familiarity and “leveraging” that familiar-
ity to achieve any preferred outcome (Schwartenbeck et al., 2013).
The generative model itself is augmented and developed through
a broadly construed learning process that transforms neuronal
networks. This developmental learning process throughout
the lifespan is facilitated by, and supplements, the preceding
evolutionary development of the embodied apparatus. Crucially,
this learning entails something that gets quite close to conscious
processing, namely a form of abductive inference that differs from
standard accounts of perceptual inference, as we will see in later
sections.

Significantly, in AIF, the gaining and leveraging of familiarity
with respect to the generative model is not limited to agent-
external (distal) phenomena. While seeing an apple in a tree is
ordinarily thought of as perception (i.e., perceiving the apple or
its qualities), AIF radically expands the notion of perception. In
ATF, vision and the remaining four classical senses are part of
exteroceptive perception, or exteroception. Beyond exterocep-
tion, however, motor-system-governed biomechanical actions,
such as plucking an apple from a tree, can be perceived not
only by exteroception (by sight and touch), but also by what
is referred to as proprioception. Even in seemingly isolated
vision, there is continuous interaction between extero- and
proprioception, as visual sensing interacts with eyeball, head,
and even whole-body movement. This is a fundamental move
beyond PP per se; it acknowledges that simply making sense of
sensory data is only half the problem. You also have to actively
coordinate your sensory surfaces and, essentially, become the
author of your own sensations. We will see later that the impera-
tives for the active sampling of the environment, subsequent
inference, and consequent learning, all comply with the same
imperative, namely to enhance familiarity or resolve uncertainty
and surprise.

A further perceptual modality accounts for the sensing of
hunger and related internal sensations that are not necessarily
discernible through extero- or proprioception. These internal
sensations are grouped together as interoception. Here, too, we
must recognize the continuous interactions between interocep-
tion and the other modalities, whether in bacteria or humans.
For bacteria, the generative model embodies continuous relation-
ships between extero-, proprio-, and interoception in the form

of chemotaxis and flagellar movements. For humans, when we
feel an afternoon lull as a need for a snack, extero-, proprio-,
and interoception interact, guiding us to the cafe to satisfy our
hunger. In this light, the expanded notion of perception in AIF
stretches well beyond the traditional sense of seeing the apple, in
that it brings all perception and action under the same umbrella
of ecologically embedded adaptive behavior.

1.3. Further Preliminaries

The full scope of the embodied (and optionally neuronally
augmented) generative model in AIF includes the building and
leveraging of familiarity with the array of interactions between
extero-, proprio-, and interoception. This familiarity may be
gained during the lifespan, as in human development, or it may
be predominantly biologically inherited, as with bacteria. Across
all cases, however, the agent seeks to bring about its preferred
and familiar future (e.g., satisfying hunger) by advancing the
state under its generative model, through a sequence that begins
with its present state, and follows a pathway guided by (inherited
or learned) familiarity. Given the exteroceptive dimension, the
agent’s state can always be more comprehensively understood as
the joint state of the agent/environment system.

Despite the relative simplicity of the basis of AIF—an embo-
died generative model with interactive modalities that facilitate
agent/environment state transitions—the framework elegantly
scales up from bacteria and plants to humans, even in atypical
cases: a caring individual who sacrifices their own life for a pre-
ferred or expected future in which someone they rescue survives;
a psychedelic drug taker who seeks a perpetually exploratory
series of wild hallucinations over a more stable experience;
a prisoner on a principled hunger strike who attempts to bring
about a future, not of sated hunger, but of some greater social
justice. In all instances, agents are interactively reducing their
uncertainty in an open-ended self/world relationship (“what will
happen” or “what would happen if I did that”).

This process of bringing about a preferred future is referred to
(in AIF) as active inference, a concept that will be further fleshed
out in the remaining sections. At present, it should already be
clear why active inference is not continuous with earlier notions
of perceptual inference, given the role of the three modalities
accommodated by the generative model—especially when we
consider that proprio- and interoceptive predictions change the
sensory evidence for our percepts (via motor and autonomic
reflexes, as we will see later). Arguably, even the AIF treatment of
perception itself is not continuous with earlier theoretical treat-
ments of perception, since in AIE, perception is deeply situated
in the embedded context of the active agent. Moreover (as we will
also see later), AIF goes beyond established paradigms critical
of traditional perceptual inference such as ecological psychology,
which, despite its action-oriented perspective, still exhibits a
latent exteroceptive-centrism.

A final and highly significant meta-theoretical feature set of
AIF—one that should appeal to humanities scholars who are
wary of naturalistic and information-theoretical accounts of
humanness—is that the framework inherently enshrines the fun-
damental uncertainty and unknowability of the future, along with
the agent’s fallibility about the present and past. In addition, in
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contrast to superficially similar accounts, AIF markedly opposes
the mechanistic to the reductive. These features will emerge more
clearly throughout the paper. The next section addresses the role
of the free energy principle, “the other side of the coin” of active
inference.

2. DEMYSTIFYING FEM: FROM PHYSICS
TO INFORMATION THEORY AND BACK
AGAIN

In this section, we use a version of Maxwell’s “demon” thought
experiment to illustrate how concepts such as entropy and
equilibrium link thermodynamics and information/control theory
in cybernetics (e.g., Ashby), especially regarding how this link
pertains to self-organization and the regulation of coupled
systems. Readers already familiar with these concepts may wish
to skip this section. In Section 2.1, we provide an introductory
account of statistical thermodynamics and associated concepts,
such as FEM, entropy, and uncertainty. We then connect these
concepts to information theory and cybernetic control theory in
Section 2.2. Finally, in Section 2.3, we return to thermodynamics,
with an emphasis on substrate limitations for physically realized
computational process models.

2.1. Thermodynamic FEM, Entropy,

and Uncertainty

It might seem far-fetched to think that the entire universe has
a direct relationship with a personal computing device. And
yet, from the standpoint of thermodynamics, your laptop heats
up because of the work it is doing shunting around subatomic
particles, which in turn directly increases the total entropy of
the universe. Of course, cosmologists have little interest in the
vanishingly insignificant impact of a laptop on the universe. Scale
matters a great deal in thermodynamics, because any thermody-
namic system is an artificially bounded subsystem of the universe,
which by stipulation, resides at the largest end of the scale. In
this sense, the timescale of the universe offers the longest pos-
sible temporal trajectory, into which all other system trajectories
eventually collapse.

It is a theorem in physics that the total entropy of the universe
continuously increases (a corollary of the second law of thermo-
dynamics). Thus, for any subsystem, whether a galaxy, organism,
or even a laptop, if it can in any way reduce entropy within its
system boundaries, this will only be for a relatively short time?
until it must yield to the entropy-increasing pressure of the uni-
verse. This relationship can be viewed as a process of maintaining
a local state equilibrium at the temporary expense of a global
state disequilibrium; the global state will eventually reclaim its
equilibrium in the long run by overwhelming the local state.

Thermodynamic entropy can be understood as a measure of
our ability to predict the position of particles within a system
over a duration. This is why entropy typically increases with

*This, of course, could be millions of years.

heat,® since generally speaking, faster particle movement gives
off more heat than slower movement, and faster movement leads
to more-difficult-to-predict positions. Conversely, cooling slows
down particles, making their positions more predictable, thereby
decreasing entropy. Another way to describe the predictability of
particle positions is in terms of our relative certainty about their
predicted positions (in relation to the limited set of all possible
positions). In this sense, higher thermodynamic entropy, greater
unpredictability, and greater uncertainty are all linked to the same
underlying quantity.

To bring together the notions of equilibrium states and
entropy, consider a modern refrigeration unit. Its interior is
kept cool by the operation of an electrical motor that gives off
heat outside the unit. The entropy of the room (and indeed the
universe) that houses the unit, i.e., the global equilibrium state,
increases by the operation of the motor, while the cool interior,
i.e., the local equilibrium state, momentarily maintains a lower
entropy than the exterior. Eventually, of course, over the long run,
the motor will stop, finally rewarming the unit. For keeping our
drinks cool, however, it suffices to focus on the local subsystem
and its corresponding timescale.

Finally, we reach the notion of FEM. In thermodynamics,
particle movements count as work, and work has two main ener-
getic effects: it uses some energy to do the work, and it releases
some energy as light and/or heat. The energy available or “free”
for the work is, thus, un-mysteriously referred to as free energy,
in contrast to the available energy already (lawfully) dedicated to
being released during the work. Returning to the above example,
in aroom with a refrigerator, when the fan has warmed the room
air, the warm air particles have sufficient free energy to expand
across the entire room. As long as the refrigerator door is closed,
those particles cannot penetrate the fridge, so they only expand
to occupy the room minus the fridge (a disequilibrium between
the global/room and local/fridge states). However, when the
fridge door is opened, the warm air particles expend their free
energy by expanding into the open fridge. In this sense, they
(lawfully) minimize free energy, i.e., they use the available free
energy to expand across the full space, including the fridge
interior. That is, through thermodynamic FEM, the global equi-
librium/high entropy state of the warm room overwhelms the
local equilibrium/low entropy state of the cool fridge interior.

2.2. FEM, Entropy, and Uncertainty in

Information Theory and Cybernetics
Imagine that when we open our fridge door, a tiny demon*
appears, to swat away the incoming warm air particles. If it swats

*We specify “typically” here as a nod to the Fluctuation Theorem (that generalizes
the second law to non-equilibrium systems). In brief, the Fluctuation Theorem says
that the probability of entropy decreasing vanishes as the observation time or size
of the system increases (Evans and Searles, 2002). In other words, at a microscopic
level, it is possible to have transient decreases in entropy, but the probability of this
occurrence quickly becomes almost zero, over time.

*Maxwell’s demon is a thought experiment proposed by James Clerk Maxwell to
account for violations of the Second Law of Thermodynamics (Maxwell, 1871, pp.
308ft.). Subsequently, it was realized that even Maxwell's demon complies with the
Second Law in virtue of Landauer’s principle, namely, that “any logically irreversible

Frontiers in Robotics and Al | www.frontiersin.org

March 2018 | Volume 5 | Article 21


http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Linson et al.

Active Inference and Ecological Perception

away a few particles at a time, it can delay the inevitable process
of the fridge warming up. The more particles it can swat away, the
more prolonged the delay. Better still, what if it could swat away
all incoming particles? This would be as good as leaving the fridge
door closed, as the local equilibrium of the cool interior would
be maintained (at least over the short run); anything less, and the
global equilibrium state (the warm room) would overwhelm the
cool fridge and spoil the milk.

This demon scenario illustrates what cybernetics pioneer
W. Ross Ashby (1958) termed “the law of requisite variety” Requi-
site variety refers to the sufficient available responses by the local
subsystem to resist the global system, such as the demon’s suf-
ficient responses to all incoming warm air particles to maintain
the cool fridge. Without requisite variety, the global equilibrium
is permitted to prevail in the short run.

Now imagine the demon is working as a remote operator,
controlling the positions of the cool air particles in the fridge,
and maneuvering them along the plane of the door-opening to
block any incoming warm air particles. This leads the particles to
bounce off each other while remaining on their respective original
sides of the opening, in which case the local subsystem remains
thermodynamically identical before and after the onslaught of
repelled particles. Significantly, the average thermodynamic state
of the entire local subsystem is not concerned with a subset of
specific particle positions. And yet, in our example, it is precisely
this subset of particle positions that serve to maintain the local
equilibrium. In this respect, while differing particle positions
can result in thermodynamically equivalent systems, the systems
would be informationally distinct, in that they reflect different
organizations of the same set of particles. This brings us to
Shannon (1948) information theory.

For Shannon, the distinct informational notion of entropy
is borrowed from thermodynamics, as suggested by John von
Neumann, who noticed the affinity between the concepts
(Levine and Tribus, 1978). Shannon recognized that a set of
binary switches has many possible on/off positions that can,
by stipulation, be assigned any meaning. When transmitting
a set of positions as a signal over a channel, noise made up of
the same elements of the signal increases along the length of
the channel. As this noise increases, it clouds the source signal,
which in turn must be distinguished from an increasingly
greater set of possible on/off switch configurations. In this
sense, the location of the signal in the noise becomes increas-
ingly uncertain.

As with particle positions in thermodynamics, the greater
the ability to “predict” where the signal is within the noise, the
greater the certainty. Thus, informational FEM is a reduction
of uncertainty, i.e., an increased probability of picking out the
relevant signal from the noise. By analogy to physics, this quanti-
fied uncertainty is termed Shannon entropy. Higher Shannon
entropy reflects a greater uncertainty in picking out the relevant
information, so informational FEM amounts to improving the

manipulation of information, such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a corresponding entropy increase
in non-information-bearing degrees of freedom of the information-processing
apparatus or its environment” (Bennett, 2003).

identification of the relevant information. Technically, Shannon
entropy is the expected self-information (a.k.a. surprisal) that
(variational®) free energy aspires to approximate. This means that
if one minimizes variational free energy at every point in time, the
time average or expected surprisal is likewise minimized, thereby
minimizing Shannon entropy via FEM.

Since the signal for Shannon is merely a particular organiza-
tion of a subset of the same elements comprising the noise, the
organization itself constitutes the relevant information. Of course,
different organizations of the same source may be relevant under
different circumstances. In Section 6.3, we will consider this sense
of variable relevance in relation to the frame problem. Here, we
focus on a narrow sense of relevance that builds on Ashby’s law
of requisite variety.

Conant and Ashby (1970) introduced the Good Regulator
Theorem. This holds that, when two systems are coupled, given
requisite variety (as with our demon controller), one system
can remain in its local equilibrium state (cool fridge interior),
despite the pressure of the system in a global equilibrium state
(warm room). Without requisite variety, the system with greater
variety will overwhelm the other, subsuming it into the global
equilibrium. Requisite variety can be thought of a system having
sufficient control information—and response parameters—to
maintain its local equilibrium (the demon re-organizing the
particles). In this sense, the system is a “good regulator” of the
global system and on this basis, behaves as a model of the global
system. We will see later that this translates into an agent with the
right sort of generative model that can generate the consequences
of a variety of actions.

Crucially, using this theorem, Shannon entropy can be
transformed into a sender-free construct. Specifically, for the
model in local equilibrium resisting the global state, it must not
only have sufficient parameters, but it must pick out the “cor-
rect” organization of elements from the global system (such that
“correct” refers to the information that allows the local system to
resist being overwhelmed). To illustrate the sender-free notion of
Shannon entropy with the fridge example, note that there is high
uncertainty concerning which subset of warm air particles and
their positions will threaten the open fridge door boundary. If the
demon does not continuously select and re-organize the interior
particles into the “correct” (blocking) positions, the milk spoils.
Informational FEM amounts to the reduction of uncertainty
(sender-free Shannon entropy) concerning the warm air parti-
cles, without there being a sender transmission per se. This will be
important later (to Gibsonians, among others) for understanding
that, on the AIF conception, the environment does not transmit
information to the ostensible sensory-receiver.

2.3. Design Requirements for a Brain

Finally, we return to thermodynamics, in a slightly different
role. Imagine replacing our demon with an ordinary laptop run-
ning special software to perform the same role described above
(identifying and blocking incoming warm air particles), with one

>We will use the term of variational free energy (in information theory and Bayesian
statistics) to distinguish it from thermodynamic free energy in FEM.
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additional constraint: the laptop must be placed inside the fridge.
Lacking the demon’s thermodynamic law-defying properties,
the laptop emits heat whenever it computes and controls the
particle organizations. Thus, it is potentially self-defeating, since
it threatens to raise the interior temperature despite keeping the
outside forces at bay. Engineers could in principle redesign and
reprogram the laptop to achieve efficient blocking by performing
relatively few computations. A poor design might run too hot
or too unreliable to be useful, while an ideal design would not
overheat and block just enough particles to keep the milk cool.

This is why it is not enough to say that a thermodynamic
system at local equilibrium can be a good regulator of a greater
system by informational FEM alone. The local system must
do thermodynamic work to be a good regulator of the greater
system.® Thus, the local system architecture must accomplish this
work without a self-defeating heat increase (which would also
increase thermodynamic entropy). This points to the fact that
the means by which informational free energy is minimized must
simultaneously serve to minimize thermodynamic free energy in
order for the local system to maintain its equilibrium. We will see
later that this theme is central to notions of efficiency, simplicity,
and the elimination of redundancy that is inherent in FEM.

3. EVOLUTION THROUGH A CYBERNETIC
LENS: SELF-ORGANIZING SYSTEMS,
EMBODIMENT, AND ECOLOGICAL
ADAPTATION

Building on the previous section, we show how FEM can be
used to make sense of self-organization and embodiment. We
first show how physical chemistry models build on statistical
thermodynamics, and how biological models build on a chemical
conception of metabolic processes. We then show why physical
and informational requirements are relevant to understanding
embodied biological agents in relation to the coevolutionary
development of species and their ecological niches.

3.1. Self-Organization and System

Boundaries

The multiscale self-similarity of thermodynamic FEM comes into
clear focus in physical chemistry. In a chemical system, predicting
the behavior of individual particles can be intractable, but we can
use the same mathematical models for particle aggregations as for
individual particles. A transparent example of this is the process
of crystal formation, called nucleation (Auer and Frenkel, 2001).
In a pool of solute, many particles are distributed throughout.
Typically, the behavior of the liquid is such that, for the particles
to minimize (thermodynamic) free energy, they simply follow the
liquid flow patterns (i.e., the paths ofleastresistance, in otherwords,
the least surprising trajectories). However, if the right subset of
particles comes into proximity, their thermodynamic FEM will in

*Note that this is an instance of Landauer’s principle described in Footnote 4,
speaking to the fact that there is no free lunch when it comes to trading information
for energy—in any process, the two are essentially the same.

factlead them to aggregate together. This particle aggregation will
continue to swirl around in the pool and, at various points, more
particles will begin to follow a pathway that affords greater FEM by
joining the aggregation than by swirling around apart from it. The
aggregation becomes the nucleus of an emergent crystal forma-
tion, which reaches a critical tipping point that leads an increasing
number of particles to join up with it in a crystalline structural
arrangement—all this mandated by simply following the path of
least resistance at each point in time.

In virtue of this pattern, the crystal is distinct from the pool:
it is an emergent self-organizing system with sharp boundaries.
Specifically, the crystal is a free-energy-minimized molecular
arrangement which has a lower-entropy local equilibrium than
the contrasting higher-entropy global equilibrium of the pool. Of
course, the crystal is merely an inanimate rock. Consider, how-
ever, another equivalent self-organizing criticality system, a forest
fire (Drossel and Schwabl, 1992; Malamud et al., 1998). There is
a critical tipping point at which the chemical process of the fire
gains the capacity to spread according to a pattern of available
fuel, to continue the chemical catalytic process. The forest fire,
like the crystal, has clear system boundaries that emerge. Unlike
the crystal, however, the nature of the fire’s metabolic process
means its system boundaries will not be maintained without
additional fuel, in which case the fire will “die out”

This metaphor of fire “dying” aptly reflects the fact that biologi-
cal systems also exhibit self-organized criticality, with a parallel
metabolism that demands fuel to maintain system boundaries. A
bacterium must obtain fuel from beyond its system boundaries
to burn within those boundaries, in order to maintain them.
Hence, there is a direct continuity and self-similarity across self-
organizing aggregations-as-embodied systems from physics to
chemistry to biology (Sengupta et al., 2013; Friston et al., 2015a,b;
cf. Chemero, 2008; Bruineberg and Rietveld, 2014).

3.2. Ecological Context
At the biological level of description, the theoretical vantage
point of ecology becomes relevant to understanding how organ-
isms keep a positive balance in their metabolic bank account,
so to speak. The cybernetic evolutionary lens described above
reveals the connection of the embodied organism to the AIF
notion of a generative model. Specifically, the embodied agent
has a “do or die” to-do list to maintain its system boundaries, or
more comprehensively, to survive and thrive. This list includes
the agent obtaining fuel from its niche (to sustain its metabo-
lism), avoiding active existential threats (e.g., predators), and
also remaining within its embodied-apparatus-relative niche
boundaries by not being a fish out of water, aland mammal falling
down a ravine, or indeed any organism exceeding atmospheric
thresholds of high and low temperatures and surface pressures.
Broadly, this set of agentive processes can be understood as an
active engagement in a homeostasis/allostasis dynamic (Pezzulo
etal, 2015), which more broadly still, can be regarded as adaptive
behavior. For adaptive behavior to succeed, that is, for the organ-
ism to survive and thrive, it must have inborn and/or acquired
familiarity with itself and its niche. In other words, the agent
must be able to act on control information concerning its self/
niche relationship (Friston, 2014). This control information can
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be understood as embodied system-boundary-internal adaptive
behavioral guidance information, with the sole requirement that
it is good enough for facilitating the agent’s ability to survive and
thrive, akin to satisficing (Simon, 1957).

Notice, however, that despite foregrounding the importance
of boundaries, the picture is one in which living organizations
are themselves changeable in ways that minimize the free energy
of an evolving process (see, e.g., Clark, 2017). Notice also that,
despite the sometimes-grim connotations of cybernetics and
control theory, the notion of “control” is here synonymous with
regulation, in the sense that you control, i.e., regulate, your own
appetite simply by eating. In this sense, for the organism to be a
good regulator, it must have a satisficing degree of certainty about
itself and its niche to pick out what is relevant to its “to-do” list,
such as responding to perceived hunger or danger, e.g., by seek-
ing food or shelter. In logically equivalent terms, the agent must
reduce its uncertainty, i.e., minimize (variational) free energy for
a thermodynamic payoff.

To achieve this FEM, on an evolutionary timescale, organisms
may mutate and potentially become an embodied generative
model of a new niche. On a lifespan timescale, they may explore
their niche to learn its contours, find new sources of suste-
nance and shelter, and new threats to avoid, i.e., augment their
inborn generative model. In the interplay of evolutionary and
lifespan trajectories, organisms transform their niches, bringing
about higher-certainty correspondences to some aspects of their
embodied generative model (e.g., tunneling underground to
cushion light sensitivity). Indeed, some perspectives in theoretical
biology speak to evolution itself as a FEM process, for instance,
generalizing Darwinian processes as physical implementations
of Bayesian inference (Frank, 2012; Lammert et al., 2012; Camp-
bell, 2016).

Early lineages of organisms including bacteria and plants
respond to self and environmental regularities even without a
neural system, whereas later lineages including humans have the
further support of a neural system to respond to more statistically
complex regularities. Such complexity is reflected by increasing
neuronal connectivity throughout the evolution of stable species.
The ability to identify regularities in control information that
reflect (self and niche) thermodynamic regularities can thus be
viewed as an ecological adaptation requirement. By attaining
effectively low uncertainty concerning adaptively relevant niche
information—that is, by continuously minimizing (variational)
free energy—the embodied agent is able to maintain a stable
local (thermodynamic) equilibrium. The agent thereby resists the
potentially overwhelming pressures of the environmental global
equilibrium (the second law of thermodynamics) for the limited
duration of its lifespan.

3.3. Complexity and Spatiotemporal

Integration

Given our account thus far, it should be clear why, from a “good
regulator” perspective, the more informationally complex the
niche, the more complex the embodied (and eventually brain-
augmented) generative model must be to facilitate effective
adaptive behavior. The basic reflexive behavior, from bacterial

chemotaxis to some plant and even insect behaviors, indicates
that the preponderance of adaptive “work” can be done at a deeply
embodied level, with low-level connectivity requirements (see,
e.g., Mann et al., 2017). This is why for Gibsonian ecological psy-
chology and Brooksian robotics, the bulk of relevant regularities
are regarded as being wholly external to the embodied (natural
or artificial) agent.

However, the theoretical framing device positing that “the
world is its own best model” (Brooks, 1999) ultimately does not
scale up to account for more complex agent/niche interaction
dynamics. From the AIF perspective, it might be said simply
that the world is its own best world, while the embodied agent
itself is the best model of those aspects of the world relevant to
its surviving and thriving—a familiar econiche that it has largely
constructed for itself (Laland et al., 2017). Arguably, in relation
to evolutionary natural selection pressure arising from niche
saturation, mutants will only survive to stabilize as a new species
under one of two conditions: expanding into a new niche that
is spatially beyond the saturated niche, or expanding into one
that is spatially coextensive with it, but presents a different set
of relevant regularities (see Ito and Ikegami, 2006). In the latter
case, the corresponding increasing informational complexity of
the niche plausibly relates to increasing organismic complexity
(coevolution).” Once neural systems emerge, this coevolutionary
pattern continues with increasing neuronal connectivity (Yaeger,
2009; see also Seth and Edelman, 2004; Yaeger and Sporns, 2006;
Yaeger, 2013).

Continuing with this account, a significant meta-theoretical
feature of AIF can be noted, namely, that the human individual
is re-contextualized as emerging naturally from the social group.
There has been increasing interest in socially grounded neurosci-
ence (e.g., Dumas et al., 2010; Dumas, 2011) and social robotics
(Leite et al., 2013). Yet, some accounts largely consistent with
AIF (e.g., Butz, 2016) only consider the social as an afterthought
to the individual. Under the above considerations, however,
given the upper bound on individual brain capabilities from a
thermodynamic perspective, for humans to stabilize as a species,
social cooperation offers the greatest advantage for establishing
an adequate niche to sustain a stable population (see Yoshida
et al., 2008). Indeed, identifying evolutionary stable strategies
in multi-agent games, within AIF, can lead to some counter-
intuitive yet compelling conclusions, particularly in terms of
the degree of sophistication agents require in relation to others
(see Devaine et al., 2014).

At the same time, as human culture emerges, introducing
even greater niche complexity, the very same cooperative dis-
tributed information dynamics can lead to inherent difficulties.
It is intrinsic to the underlying mathematical model of AIF that
an apparatus which evolved for reducing uncertainty is equally
sufficient for increasing uncertainty under particular circum-
stances. This is evident in social misunderstandings, such as
mistaking the attributed motivation of a facial expression (Clark,

"Note that we are again appealing to the good regulator theorem. In other words,
there is a homology between the complexity of the world being regulated and the
good regulator that must embody a model of that world.
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2015b, Section 2.9). The potential for the system to backfire, so to
speak, is a consequence of the fact that human niche complexity
includes social and cultural relationships, artifacts, language,
and so on, which corresponds to substantially more complex
neuronal connectivity in humans as compared to our evolu-
tionary predecessors (Street et al.,, 2017). Even within human
groups, a narrower, more predominantly physical, interpersonal
local niche engagement (e.g., a stag hunt) requires considerably
less informational complexity than the vast distributed neural/
environmental information dynamics across a broad integrated
physical and sociocultural niche. In the latter, agents face a
greater challenge in leveraging more radically limited partial
information (Ramamoorthy et al., 2012).

As neural complexity increases on an evolutionary timescale,
the AIF model of the neural architecture is described in terms
of an increasing number of interconnected hierarchical layers.
These layers facilitate more extended spatiotemporal integra-
tion, with a growing set of nested local scales of time and space,
ranging from the immediacy of the reflex arc, to ecologically
situated behavior, to the lifespan. For instance, a beaver building
a dam must be able to handle more extended time and space
than a bacterium. Primates (including humans) exhibit nested
spatiotemporal integration when interactively engaged in a
dynamic situation or observing a visual sequence, as do humans
when following along with speech or writing by integrating
syllables into words, words into sentences, and sentences into
a narrative (Hasson et al., 2008; Kiebel et al., 2008; Chen et al.,
2015; Friston et al., 2017¢; Yeshurun et al., 2017). This complex
nesting, which has been implemented in robotics (Modayil
et al., 2014), corresponds to a neural architecture that instanti-
ates active inference in humans as PP, with growing empirical
evidence of neurobiological substrate correspondences (Friston
and Buzsdki, 2016; see also Clark, 2013, 2015b).

4. UNVEILING THE WORLD, UPENDING
THE INPUT/OUTPUT MODEL OF
PERCEPTION (AND ACTION)

With a focus on brains, this section shows how AIF upends the
input/output model of perception (and action) still prevalent in
embodied cognition and ecological psychology research, and
perhaps even more prominently so in robotics/Al As the full
implications of this upending unfold, two major theoretical
problems—the inverse problem and the frame problem—are
revealed to be artifacts of the input/output model, such that
ATF does not merely solve, but in fact dissolves these problems.
Moreover, the philosophical concern raised against PP (and by
extension, AIF), namely, that it entails or implies a solipsistic
agent, hermetically sealed off from the world by an evidentiary
boundary (or “veil”), is shown to be unfounded.

4.1. The Poverty of Indirect and Direct

Perception
Is the embodied generative model stuck behind an “evidentiary
boundary” (or “veil”), with no direct access to an outer world that

is merely inferred? This is the notion of indirect perception that
Hohwy (2013, 2016) advocates (cf. Clark, 2016). What Hohwy
misses is a relevant distinction between phenomenal sensation
and control information (elaborated in this section). Following
the AIF account outlined above, control information provides
the possibility for the agent being a good regulator. However, this
remains distinct from phenomenal sensation of the world. At
the same time, phenomenal sensation can itself be harvested
for control information, in addition to information beneath the
awareness threshold (Kang et al., 2017).#

Consider, for example, a video conference call apparatus. In
an efficient design, the data flowing from one call participant
to another will serve two simultaneous roles: a qualitative
(content-relevant) role, in that the data underpin the audiovisual
streams by which the parties can converse; and, at the same time,
the data will serve a quantitative (content-irrelevant) role as
control information, in that the data transfer rate will modulate
the audiovisual resolution to compensate for bandwidth varia-
tion. In a parallel sense, in AIF, there is direct thermodynamic
engagement between the agent’s sensory surfaces and the world.
This is precisely why we wear special glasses to view an eclipse,
or earplugs at a loud concert: the direct engagement can be so
powerful as to be biologically destructive. At lower intensities,
light and sound contribute to a variety of enjoyable phenomenal
sensations, and yet, they serve a dual role as control information.
Under situations of acute existential threat, the control informa-
tion may be the only relevant signal, whereas under presumed
existential comfort (e.g., at the cinema), the control informa-
tion may be largely dampened while (by cultural convention)
phenomenal sensations are experienced for their own sake. Most
quotidian cases lie somewhere in between these two extremes,
such as eating to satisfy hunger while simultaneously savoring
the sensory delights.

Given the broadly Helmholtzian inference tradition that
Hohwy draws on, it is notable that this is precisely the kind of
inference that Gibson (1979/1986) criticizes in his elaboration
of ecological psychology, finding fault in theories in which “the
outer world is deduced”:

The traditional theories of perception take it for granted
that what we see now, present experience, is the sensory
basis of our perception of the environment and that
what we have seen up to now, past experience, is added
to it (pp. 2511f.).

This critique motivates Gibson’s positive account of “direct
perception,” also referred to as “information pickup” (Gibson,
1979/1986, pp. 1471f.). And yet, upon closer analysis, his positive
account results in many of the same theoretical shortcomings as

8See Yahiro et al. (2017) for preliminary empirical support of this premise;
their experimental findings point to different physiological pathways, e.g., low
environmental temperature leading to involuntary shivering vs. the phenomenal
sensation of coldness leading to voluntary warmth-seeking behavior. On the
complex interplay between phenomenal sensation and preconscious information,
see Sergent et al. (2013).
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the inferential model he criticizes, as we will see below (cf. Fodor
and Pylyshyn, 2002).

Both Helmholtz and Gibson ultimately inherit the same
problems from the classical input/output model of perception.
What Gibson criticizes in traditional inferential theories is the
notion of passive input, which he replaces with active input—but
it is still input! The active component in Gibson hints at the
significance of proprioception, but ultimately, he assigns it an
exteroceptive-centric role (Gibson, 1979/1986, p. 141). To make
this argument, we first present the classical input/output model
shared by computational perceptual theory (conventional in biol-
ogy and robotics/Al) and contrast it with AIF.

4.2. Classical Computation vs. Active

Inference

The classical input/output model of perception (and action) is
the predominant model used in psychological, neuroscientific,
and robotic explanations; this model also typically underlies the
notion of neural computation and information processing, and it
is ripe for retirement (Clark, 2014). AIF implies a vastly different
conception of the relationship between perception, action, and
the world, that also points to a different sense of computation
and indeed perception itself. To understand AIF’s ontological
commitments and implications for perceptual theory generally,
and for robotics/Al, we must examine the assumptions and
implications of the predominant model.

The basic elements and processes of the classical/computa-
tional model can be generalized as follows: un-encoded (“raw”)
data from the environment (“world”) is selectively sampled by
the agent and encoded as input (“reading” the raw data). This
raw data input, once encoded into the system, is then processed
(beginning with “early perception”). This processing chain pro-
duces a decoded output, terminating as a percept (and potentially
entering into a secondary stage related to concepts). After this
discrete stage, as this story goes, an executive controller may
then retrieve the percept (or concept) from storage and engage
it in further action-relevant computations or reflexively issue a
reactive action command.

Significantly, two major problems arise as mere artifacts of
this model—the inverse problem and the frame problem. Both
have given rise to countless accounts of how to bypass or solve
them. Most famously, Marr (1982) produces a highly influential
and elaborate account of how to solve the inverse problem, to
get from the input stage to meaningful experience of the world.
His solution comprises an elaborate series of “early” perceptual
processing stages for disambiguating apparent equivalen-
cies, implemented in subsequent decades of computer vision
research. Marr was in part responding critically to Gibsons
account, although some readings offer a middle ground between
the two theories (Ullman, 1980; see also Shagrir, 2010). Gibson
(1979/1986) and later analysts of ecological psychology argue that
the inverse problem is bypassed without appealing to the kinds of
processes Marr introduces (e.g., Hatfield, 2003; Chemero, 2009;
Orlandi, 2017), for instance, by bodily movements (exploring or
swaying) that reveal constant proportions in three-dimensional
situatedness, in contrast to two-dimensional sources of optical

projections. Like Marr, however, these ecological accounts still
treat (what is regarded as) exteroceptive input as primary, even
when the necessity of proprioceptive coupling is acknowledged.

Those who accept the classical/computational input/output
model of perception must also face the frame problem (McCarthy
and Hayes, 1969; Minsky, 1974), which can be generalized as a
problem of knowing when and what raw sampling is needed for
updating beliefs about the world (e.g., in relation to an isolated
local action that only modifies a small subset of the environ-
ment’). It also concerns how to handle an input encoding from
one context following a change of context. Thus, the frame
problem is also known as the “relevance” (or “significance”)
problem, based on the premise that there is no obvious means
of ascertaining what is cognitively relevant or significant under
changing circumstances. The frame problem has led to elaborate
logic-based solutions (Shanahan, 1997) and critical accounts of
robotic Al based on embodied phenomenological philosophy
(Dreyfus, 1992, 2007; cf. Wheeler, 2008).

4.3. Upending the Input/Output Model

of Perception (and Action)

Building on the previous sections, we briefly show how AIF
re-arranges the picture to dispense with the classical/computa-
tional model of input and output. Recall that above, we noted that
there is direct thermodynamic engagement between the agent’s
sensory surfaces and the world, which requires protection from
high intensities (e.g., earplugs at a loud concert). For an intui-
tive example of lower intensity engagement, consider a game of
tennis. It would take some mental gymnastics to make sense of
the idea that an arm is input to a racket, and a racket input to a
ball—on this view, what would count as output? Instead, using
basic physics, we regard the action of hitting the ball as a transfer
of energy, from the arm to the racket to the ball. This same sense
of thermodynamic energy transfer occurs between an organism’s
environmental niche and its sensory surfaces.

In AIFE, the embodied agent learns the regularities of the sen-
sory surface perturbations, much like what Gibson (1979/1986)
refers to as invariants. Moving beyond Gibson, in AIF, the invari-
ants extend across interactive regularities in extero-, proprio-,
and interoception, in the form of the generative hierarchical
model. The more regular covariance that is learned, such as how
invariant proprioceptive hand-grasping patterns covary with
invariant racket-swinging, ball-hitting patterns, the more reliable
the generative model is as control information across a variety of
conditions to which the model is adapted (see Kruschke, 2008).
In PP, this adaptive process proceeds by a feedback loop with
prediction error, i.e., minimizing prediction error amounts to
adapting the generative model to the present conditions (Clark,
2013, 2015a,b).

The continuous embedding in the niche, which the agent
explores to learn the covariance regularities, allows the agent
to develop and update the generative model (akin to Gibson’s
notions of “tuning” and “resonance”). This goes beyond the exter-
oceptive-centric notion that minor proprioceptive alterations

For discussion, see Sprevak (2005).
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bypass the inverse problem. In AIF, the generative model links
all reliably invariant information in a deeply situated way, such
that perception and action enable the embodied agent to propel
itself through a temporal succession of generative model modula-
tions, for instance, approaching a distal food source to eventually
alleviate hunger.

Under such situated embedding, the frame problem never
presents itself, because the relevant aspects of the niche are ther-
modynamic perturbations, while engagement with the niche is
facilitated by continuous control information. In the preponder-
ance of ecologically valid conditions, there is never a temporally
suspended slice of un-embedded input to be processed, nor is
there an isolated (i.e., non-deeply situated) encounter with an
exteroceptive input stimulus that is lightly probed through
proprioception. That is, in real-world embodied and embedded
cognition, there are no disconnected moments of perception of
the world, since the world wholly envelops the agent throughout
its lifespan. (We return to the frame problem in Section 6.3.)

Ambiguities arising from thermodynamically relevant niche
details can indeed fail to be disambiguated, as they do during
contrived experiments and illusions. However, in AIF, ambiguity
is not an “early perception” input processing challenge, but rather
a matter of the precision-weighting of layers of the hierarchical
architecture (Friston, 2008). Many situated perceptual ambigui-
ties can be accommodated by the precision-weighting of higher
or lower layers: higher layers provide broad continuities to previ-
ous situations, such that ambiguities closer to the sensory surface
can be ignored or recognized as illusory (as when the magicians
assistant seems to disappear into thin air), while ambiguities
at higher levels can be suspended pending further lower-level
evidence (as when it is unclear if a friend entered the theater or
joined the crowd outside). In addition, perceptual disambigua-
tion is facilitated by the nested multiscale dynamics described
above (Brascamp et al., 2008).

5. GIBSON RECONFIGURED: BEYOND
RE-DESCRIPTION

Notably, AIF carries forward Gibson’s core critique of his behav-
iorist and cognitivist predecessors; however, AIF also addresses
the fundamental inadequacies of his positive account, as we
illustrate in this section. We begin with an initial re-description
or translation of some Gibsonian concepts into AIE. At relevant
points throughout, we also highlight connections to robotics.

5.1. Initial Mappings

Recall from above Gibson’s objection to theories (e.g., Helmholtz’s)
in which the present perception of the world is inferred by an
additive process that uses the past (memory) to supplement
missing details. Here, a technical clarification will be useful to
distinguish traditional perceptual inference from AIF/PP. Shortly,
we will flesh out what the actual process of “active inference”
entails, but for now, it can be stated that in PP, the prediction
of the present is fundamentally non-inferential in the traditional
sense (see below for the specialized sense of surprisal-reducing
model inference). Instead, perceiving the present is facilitated by

an extrapolation from the environmentally embedded generative
model. The model develops through biological inheritance and
lifespan experience, based entirely on invariant covariance of
modalities from past interactions.

Perception in AIF is thus not an additive process, but a gen-
erative one, which matters here for an important class of cases,
namely, those in the cultural (as opposed to natural) domain.
The cultural domain has physically bound cases with no natural
equivalent, such as the operation of a door with a doorknob. We
see many naturalistic examples in Gibson’s writings, concerning,
e.g., tunnels (which may occur in nature), but he also wishes to
extend his theory to the human cultural environment (Gibson,
1966). Moreover, he wants to allow for a concept of learning
(at best, coarsely defined), while simultaneously objecting to a
model of mental storage and retrieval (Gibson, 1979/1986). How
then, should it be possible to learn how a doorknob works such
that “direct perception” of one (via ambient optical arrays) is at
once the perception of a means for opening the door, without
any specified mechanism for establishing this correspondence?
If the correspondence is merely a conditioned association, then
how can he avoid the claim (as he intends) that past experience is
added to the present?

Despite Gibson’s professed aversion to computation and
traditional perceptual inference, the deeper problem here is that
his theory recapitulates and is thus still bound by the classical/
computational input/output model (cf. Bickhard and Richie,
1983). To better understand this issue, we must turn to his con-
cept of affordances. For clarity, we will first establish how AIF
re-describes aspects of Gibson’s ecological framework in terms of
the generative model.

In some AIF contexts (FitzGerald et al., 2014), it is more useful
to treat the generative model as a model space populated with an
ensemble of plausible generative models. For instance, consider
a proprioceptive model of hand configurations: grasping, wrist
rotation, peripersonal reach, and so on. To be clear, this sense
of generative model is not an imagistic mental representation,
but rather, a mathematical model of a set of invariant synaptic
firing patterns that reliably correspond to bodily movements.
These proprioceptive models (subsets of the complete generative
model) are equivalent to Gibson’s notion of organismic capacities.
Within the model space, there are also exteroceptive models that
reliably correspond to sensory perturbations caused by, e.g., trees
and branches, doors and doorknobs, and so on, which relative
to proprioception, re-describe Gibson’s notion of environmental
action opportunities (a branch affords climbing a tree, relative
to the bodies of certain organisms). In his theory of affordances,
Gibson also notes the relevance of the organism’s wants and
needs. These are incorporated into AIF as prior beliefs or prefer-
ences constituted by the generative model. Key among these are
the priors over interoceptive predictions, by which we reliably
come to recognize internal sensations such as hunger, fatigue,
lack of fresh air, and so on (Seth et al., 2012).

Each of these models interact within a hierarchical model
space, such that single modality invariants intersect and interact
with each other, resulting in invariant covariance relationships:
(interoceptive) hunger is reduced by eating fruit from a tree, which
can be (exteroceptively) seen and (proprioceptively) reached
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by climbing branches. In a cultural context, the (interoceptive)
need for fresh air can be met by (exteroceptively) transitioning
from indoors to outdoors, as facilitated by a (proprioceptive)
action sequence involving turning the doorknob and walk-
ing out of the room. The action sequence itself can be further
broken down, in that even the doorknob interaction is a result
of invariant covariance between exteroceptive control informa-
tion and proprioceptive reaching, grasping, and turning; this
principle has been successfully robotically simulated (Pio-Lopez
et al, 2016). In brief, AIF offers a fundamentally embodied and
embedded account of situated perception and action, rather than
an exteroceptive-centric input/output model. The latter requires
traditional perceptual inference based on early (perception) input
processing of an impoverished stimulus; or, as Gibson has it, such
inference is replaced by a woefully underspecified “direct percep-
tion” mechanism that fails to explain learned cultural affordances.

To summarize this initial re-description of Gibson’s frame-
work in AIF, and more importantly, the underlying shift in
emphasis, we have seen that Gibson’s affordances concern the
perception of (a) environmentally specified information as
action opportunities in relation to the organism’s (b) embodied
capacities and (c) needs and wants. In AIF, all three are integrated
into the embodied (and neuronally augmented) hierarchical
generative model, with correspondences to Gibson in terms of
(a) exteroception, (b) proprioception, and (c) interoception. This
allows us to make sense of a common ecologically valid scenario,
such as the interoceptive need for fresh air, and the extero- and
proprioceptive interactions that lead to turning the doorknob,
opening the door, and walking outside. We are now in a position
to flesh out what “active inference” itself refers to, which requires
the introduction of a specialized concept: policies.

5.2. Affordances and Policies

The notion of policies highlights how the generative model can
be temporally deployed over possible future states. Once this is
understood, the full implications of embedded spatiotemporal
nesting and its relationship to agent/environment dynamics can
be brought into view. Policies are means of transitioning between
states of the generative model, which can only be in one (actual-
ized) state at a time.!® The conventional sense of actions (e.g.,
reaching for the doorknob) “fall out” of policies, as we will see
next.

A theoretician seeking to define a policy in propositional
terms might define one (in the following example) as “go
outside to get fresh air” The underpinnings of the policy are
in effect a possible transition between two states of the genera-
tive model: the current state (at time to) and a preferred future
state (at time t;). At ty, the agent is inside a room with a door
to the outside. In the exteroceptive modality (in addition to
phenomenal sensation), there is control information present
concerning walls, doors, doorknob mechanisms, and so on. There
is also proprioceptive (control) information available concerning,

°Qur description of active inference here will be based largely upon discrete time
and state space generative models (e.g., Markov decision processes). These are
simpler to handle in terms of their numerics (and possibly conceptually); however,
the same principles apply to the continuous state space models usually considered
in Bayesian filtering and predictive coding formulations of active inference.

e.g., hand-grasping and leg-walking abilities. In the interoceptive
modality, there is information concerning a sensed lack of fresh
air and its presumed contribution to fatigue.

In this case, the preferred future outcome is having fatigue
alleviated by getting fresh air. This would mean that if this
outcome were attained, at t;, the generative model would be
altered, such that the exteroceptive information would pertain
to an outdoor rather than indoor scene, and the interoceptive
information would pertain to breathing fresh rather than stale
air. To realize the preferred outcome, the agent actively infers the
(to to t,; state transition) policy. Working backwards in a sense, to
facilitate this transition, a series of actions “fall out,” unfolding
without requiring the planning of a sequence of action commands
(Adams et al., 2013), in stark contrast to the robotics paradigm of
sense-plan-act. Instead, the reliable covariance with propriocep-
tion and the other modalities of the generative model leads to
reaching, grasping, and turning the doorknob, to open the door,
to walk outside, to get fresh air, given that this set of covariances
has been empirically established (i.e., learned).

The bottom line here is that if an agent entertains a generative
model of the future, the agent must have beliefs (i.e., expectations)
about future or counterfactual states under each allowable policy.
Put simply, we have in mind here an agent whose generative
model transcends the present and is continuously predicting the
future (and past). Crucially, each prediction—at different times
in the future—is subject to the same policy-dependent transition
probabilities as apply to the here and now, thereby “connecting
the dots” in a path to preferred and familiar outcomes. On this
view, the present simply provides sensory evidence for one of
several (counterfactual) paths into the future, where the path
(or policy) with the greatest evidence gets to determine the next
action. Notice again how we return to the path of least resistance
or minimum (expected) free energy (i.e., maximizing model
evidence over possible pathways).

Through a continuous series of perception/action loops, the
embodied agent remains in open exchange with the world by
actively probing its environment (Kruschke, 2008) and leveraging
the control information of the generative model to alter the ther-
modynamic substrate (its physical position and condition). Even
Gibson could not object to this sense of inference: there can be
no “direct perception” of the future! Here, however, is where the
uncertainty and unknowability of the future can be understood as
a feature of AIF that is lacking in ecological psychology, namely,
concerning conditional future outcomes. Even on the most chari-
table reading of Gibson, assuming we can explain (without magic)
that one could “directly” perceive that “the doorknob affords
opening the door” based on the ambient optical array, conven-
tional affordance theory is left stranded in the face of an invisibly
locked or broken doorknob. That is, when the doorknob fails to
open the door, the exteroceptively ascertained ambient optical
array remains identical before and after the attempt. Thus, within
Gibson’s framework, the doorknob forcibly remains an apparent
affordance even with prior information that it does not open the
door in this case. In such ecologically valid scenarios commonly
faced by human cognition, it is a severe meta-theoretical weak-
ness if they cannot be adequately addressed.

In contrast to ecological psychology, AIF elegantly handles
conditional outcomes in terms of probabilities. This is why it uses
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a Bayesian model of neural processing, given that empirical priors
derived from experience influence the generative model compu-
tations of probability,'! a significantly different sense of computa-
tion than that used in input/output model descriptions (which
hold that sampled input is computed/processed). Reconfigured
by AIF, a typical affordance is merely a high likelihood, such
that “affords” amounts to “offers a relatively sure bet” Thus, “the
doorknob affords opening the door” is more accurately rendered
as “the doorknob offers a relatively sure bet for opening the door;”
thereby accounting for the conditional outcomes in which the
doorknob is locked or broken, unknowable by exteroception
alone. In addition, when a source of information indicates a
locked or broken state (such as a performed or observed attempt
to open it, or by word of mouth), the doorknob ceases to be an
apparent affordance, since it no longer offers the agent a relatively
sure bet for opening the door, despite the fact that the ambient
optical array is unaltered.

ATF is consistent with the view that “affordances are relations.”
More precisely, “affordances must belong to animal/environment
systems, not just the environment,” in that perceiving affordances
is perceiving “the relation between the perceiver and the environ-
ment” (Chemero, 2003, pp. 185-6; see also Chemero, 2008). By
adding the extended temporal dimension of AIF, the affordance
relationality can be further understood as being between a
presently given agent/environment relational state and probable
future agent/environment relational states.

This move also allows AIF to account for conditions in a
more distant future, such as dinner plans next week, which
some theorists view as beyond the scope of ecological (and
enactive) explanation. Here, such planning ability is seamlessly
accounted for in the process of active inference. The plan sets
into motion a series of intermediary interactions (actively
inferred state transition policies) that propel the embodied
agent toward the preferred future outcome. These interac-
tions are based on experience and are, thus, deemed reliable
(in a satisficing sense) with reasonably high probability, while
(simultaneously) suggesting a low-probability capacity to fail.
Put simply, all I need to do to determine my next action is to
choose the most probable action under the prior belief: “I will
not miss next week’s dinner party” This prior belief generates
a hierarchical cascade of empirical priors, each providing con-
textual guidance to accumulate the sensory evidence for the
particular path I am pursuing. If everything goes well, this path
would end successfully with arrival at the dinner party. Note
that not only is there a deep generative model in relation to time
in play here (Dehaene et al., 2015), there is also a hierarchical
depth in terms of short and long-term policies, i.e., trajectories
of states (see Friston et al., 2017c).

5.3. Free Energy, Revisited
What does all this have to do with the free energy principle?
The policies the agent infers, as transitions from present to

"See Albrecht et al. (2016) for an implemented reinforcement-learning-based
decision-making model defined in terms of such probabilities (expectations).

preferred future state, are those that minimize (variational) free
energy expected on actualizing the preferred future state. This
contextualizes the notion of reward motivations (that policies
increase expected future reward) and even problem-solving
itself, in that the reward or the solutions are part of the preferred
future outcome as viewed from a present state (Friston et al., 2009,
2010; Friston, 2011; cf. Newell et al., 1959). Technically speaking,
the expected free energy ensures that the prior probability of a
policy maximizes reward (i.e., prior preferences) in the future, as
in machine learning, under the constraint that it also minimizes
uncertainty and ambiguity. Moreover, in the agent’s relationship
to the niche, expected free energy is minimized—uncertainty or
disequilibrium is reduced (see Sections 2 and 3)—as the agent
strives to select the relevant control information in the face of
the densely rich informational environment (high Shannon
entropy). This is an important point which takes affordances into
the epistemic realm.

In other words, by trying to infer the FEM path of least
resistance into the future (even for a challenging task), there is
a necessary component of uncertainty that combines with prior
preferences to determine the best policy. This means that the most
probable policies or paths are those that resolve uncertainty when
navigating the lived world (Berlyne, 1950; Schmidhuber, 20065
Baranes and Oudeyer, 2009; Still and Precup, 2012; Barto et al.,
2013; Moulin and Souchay, 2015). To achieve this, agents engage
in some interactions that serve an epistemic rather than prag-
matic purpose, i.e., epistemic actions (Kirsh and Maglio, 1994).
In AIF, we can place such epistemic actions in the general context
of physical or mental epistemic foraging (Pezzulo, 2017), and
further specify what facilitates such epistemic actions, namely,
epistemic affordances. The latter concept brings with it the notions
of salience—epistemic affordances that will reduce uncertainty
about future states of the world—and novelty—epistemic affor-
dances that will reduce uncertainty about the contingencies or
parameters of my generative model. (The next section furthers
this account of affordances.)

In summary, ones preferred future state is realized by
exploiting high likelihoods in the sequence of state transitions
of the generative model that underpins the agent/environment
relationship (e.g., my relatively high certainty that my hand turns
a doorknob, which opens a doorway, which I can walk through
to get outside, to get fresh air, and to alleviate my fatigue).
Exploiting high likelihoods refers to the probabilistic Bayesian
decision-making computations that play out on a dynamic,
neurobiological substrate (Pezzulo et al., 2015). In this context,
it can be said that local minima of uncertainty (in the projected
model state transitions) provide the critical points that can be
leveraged to facilitate a preferred future (or avoid an undesired
future). At the ecological “behavior” scale (policies), these local
minima provide a comprehensive re-description of affordances
that unites the exteroceptive with the proprio- and interoceptive
dimensions (Pezzulo and Cisek, 2016). They also generalize to the
sub-ecological “action” scale, as reflex arcs, grounded in the phys-
ics of nerve electricity (Friston et al., 2010; Sengupta et al., 2013),
and the supra-ecological “activity” scale, as extended active and
resting states, grounded in physiological homeostasis/allostasis
dynamics (Ashourvan et al., 2017).
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6. SKATING UNCERTAINTY: GENERALIZED
AFFORDANCE THEORY, SKILLED
EXPERTISE, AND THE FRAME PROBLEM

This section considers how local minima of uncertainty in the
projected temporal sequence of generative model states serve to
unify developmental theory and the underspecified (by Gibson)
notion of learned affordances. We then show concrete applica-
tions in skilled practical and cultural activities. Finally, drawing
on robotics studies, we connect spatiotemporal nesting and
agent/environment dynamics to adaptive policy reuse.

6.1. Generalized Affordance Theory

Here, we generalize affordances to every available reliable regu-
larity in the agent/environment relationship, including basic
objects. While thislevel of generality may seem meta-theoretically
undesirable, it is worth bearing in mind that Gibson extended
affordances to this high level of generality in explaining that
air affords breathing, the ground affords standing on, cliffs are
negative affordances for bipedal locomotion, and so on (Gibson,
1979/1986). On our account, affordances encompass the entirety
of intuitive physics (see Clark, 2016).

As Franz and Triesch (2010) argue, a number of purported
Gestalt percepts have only been considered in relatively late peri-
ods of individual (lifespan) human development, as even within
the first several months after birth, there is a tremendous amount of
densely rich environmental information encountered. The inborn
apparatus (as suggested by AIF) for discerning regular covariance
and leveraging that in situated activity can be computationally
simulated with only a limited construct that yields a number of
Gestalt-like phenomena. The limited construct—foreground and
background differentiation—is a minimal mechanism that would
be plausibly selected for on an evolutionary timescale.

In addition, there appears to be another plausibly selected for
(inborn) minimal mechanism for differentiating inanimate from
animate entities, with the latter possibly extending to finer-grained
differentiations between conspecifics and other animals. There
is evidence of this mechanism in brain scans of primates (Sliwa
and Freiwald, 2017) and human infants (de Haan and Nelson,
1999, Southgate et al., 2008), and from human in utero behavioral
experiments (Reid et al., 2017). This mechanism would plausibly
underpin the fundamentality of social cooperation to human
cognition (Barrett et al., 2010, Cortina and Liotti, 2010); a related
point has been made about language, noting the fundamentality
of dialog from which monolog is derived (Pickering and Garrod,
2004).

The above suggests that early developmental learning pro-
ceeds through interactive exploration (Stahl and Feigenson,
2015), which makes possible a high-level generative model of
intuitive physics that augments inborn capacities with empirical
priors. This is especially evident from the gradual development
of coordinated bodily movement, ranging from basic crawling,
walking, and stacking blocks, also explored in robotics (Pierce
and Kuipers, 1997, Modayil and Kuipers, 2008, Ugur et al.,
2011, 2012), all the way up to more elaborate activities such as
interpersonally coordinated dancing and playing sports (Boyer

and Barrett, 2005). Based on reliable covariance from empirical
priors and inborn minimal mechanisms for differentiating fore-
ground and conspecifics, the present state and future projections
of the generative model facilitate (via actively inferred policies)
the realization of preferred outcomes through the exploitation
of local minima of uncertainty, i.e., generalized affordances. It
is in this context that epistemic affordances play a key role and
can be associated with intrinsic motivation, exploration, “motor
babbling” and artificial curiosity in developmental neurorobotics
(Schmidhuber, 2006, Baranes and Oudeyer, 2009). Put simply,
being compelled to pursue FEM, uncertainty-reducing epistemi-
cally enriched policies ensure that agents quickly come to discover
“what would happen if I did that”

Consider an example that works both literally and as a broad
analogy to this generalized affordance process: the crossing of
a roaring rapids via stepping stones. The rapids are in constant
flux, but the fluctuations of the water also momentarily expose
surface regions of the stones. In this sense, despite the high
uncertainty brought about by the flux, the overlapping exposed
surface regions for each stepping stone provide stable points—
local minima of uncertainty. These local minima facilitate
crossing the river, by which the preferred outcome of reaching
the opposite bank is realized. In a literal sense, the stones are
clearly conventional Gibsonian affordances, presented here as
local minima of uncertainty in sequential states of the generative
model. Analogically, the roaring rapids correspond to the general
sensory flux of thermodynamic surface impingements, and the
stepping stones correspond to any reliably invariant multimodal
covariance established by empirical model updating. This sense
of local minima also suggests a formal correspondence to the
basins of attraction in neurodynamics (Freeman, 2012).

6.2. Skilled Expertise

By considering affordances in this light, we can demonstrate how
affordance theory relates to arguments about skilled expertise
from the perspective of phenomenological philosophy. The latter
argues for the central role of embodiment as the basis of skilled
expertise, in contrast to some conventional theories that view
expertise in terms of a mastery of symbol systems and condi-
tional rules (which, for historical or pragmatic reasons, can be
commonly found in robotics/Al implementations). According
to the most widely adopted embodied phenomenology theory of
skill acquisition (Dreyfus and Dreyfus, 2005), there are five stages
of progression from novice to expert, whether in, e.g., riding a
bicycle, playing chess, or practicing medicine.

To briefly summarize these five stages, as the theory goes, a
novice (in any domain) learns by appealing to basic rules that
can indeed be expressed symbolically as propositions. Even with
these conditional rules, the novice cannot necessarily discern
what is relevant in the domain. This changes slightly in the next
stage, when the advanced beginner continues to follow the rules,
but gradually begins to notice what perceptions of the domain
are relevant. Upon reaching the third stage, competence, the prac-
titioner gains an appreciation of the vastness of domain-relevant
nuances, along with the recognition that a list of rules could not
be exhaustive; even if such a list could be near comprehensive,
it would be too unwieldy to manage in real-time interaction.
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Nevertheless, to cope with the domain, some rule-like responses
remain helpful at this stage. The fourth stage, proficiency, finally
overcomes the appeal to rule-like responses with an embodied
ability to discern relevant situational nuance. However, the profi-
cient practitioner continually reaches decision-making junctures
that require a considered evaluation of different pathways
forward. In the final stage, when expertise is attained, the expert
seamlessly selects a pathway forward, rather than interrupting
the “flow” (Csikszentmihalyi, 1990) for a considered evaluation.
This form of embodied expertise is also described as “absorbed
coping,” referring to the phenomenological absorption in the
interactive situation.

Without objecting to this characterization of embodied exper-
tise as irreducible to symbols and rules, it is possible to explain
the underpinnings of the stage progression using AIF simply
by viewing the progression in reverse. If expertise is regarded
as having a highly developed generative model of the agent/
environment relationships within the domain, then the preferred
future realized through active inference is the attainment of the
implicit or explicit goal (cycling across the terrain or defeating the
chess opponent). Through experience (i.e., empirical prior-based
model updating of reliably invariant modality covariances), the
agent discovers how to exploit the relevant affordances—the
local minima of uncertainty in the generative model state
transitions—to achieve the preferred outcome using domain-
specific policies."

By working backwards through the progression (moving
from expert to novice), it becomes clear that without sufficient
experience, the generative model has yet to become sufficiently
“attuned” (a Gibsonian term) to the domain; some scaffolding
is needed to stabilize the domain-specific interactions. The
earlier the stage, the more scaffolding is needed, such that the
novice relies almost exclusively on scaffolding (which need not
be symbol and rule-based, as it could also be based on mimicry
of experts). Any scaffolding presumably also serves to orient the
non-expert practitioner to the relevant regularities that facilitate
the progression. Note that, when learning to ride a bicycle, train-
ing wheels do not directly contribute to learning the cycling skill,
but rather, they serve as supportive scaffolding to position the
bicycle perpendicular to the ground until the relevant regularities
for remaining perpendicular independently have been sufficiently
learned.

Aninteresting robotics application of domain-specific sensori-
motor skills is found in the notion of policy reuse and adaptation
(Rosman et al., 2016). From an AIF perspective, this parallels an
equivalent phenomenon in humans. For example, given the abil-
ity to ride a standard bicycle, and confronted with an unfamiliar
old-fashioned penny-farthing, an agent could glean from the
similar seat, handlebar, wheel, and pedal configuration that the
bicycle-riding policy could be reused to ride the penny-farthing,
with some necessary adjustments.

A real-world example in which a policy was adapted from a
source to a particularly divergent target is the cultural advent of

2In performing arts such as music, skilful policies may relate to actualized or simu-
lated coordination in improvisation, performance, and compositional practices
(see Linson, Forthcoming).

skateboarding, which was based on surfing.”* Even though there
are extreme differences between surfboard fins and skateboard
wheels, ocean and pavement, the early skateboarders recognized
the embodied motion similarities between the domains. In
this case, a certain cross-domain policy identity is maintained
through reuse and adaptation that focuses on the complex spa-
tiotemporal nesting required in both practices involving body,
board, and traversal surface: the interactive precision-weighting
required for short timescale, rapid adjustments, and the simulta-
neous progressively longer timescales of extended maneuvering.
The Gibsonian concept of “resonance” appears to be appropri-
ately matched to such complex situated activity, in which the
agent’s multiscale embodied neurodynamics “resonate” with
the multiscale environmental dynamics, following experiential
attunement to the relevant regularities (Teques et al., 2017; cf.
Raja, 2017).

6.3. The Frame Problem

At several points above, we have referred to the agent’s identifica-
tion of what is relevant or significant in a situation, which appears
to run up against the frame problem. To recap, the frame problem
holds that given actions that alter limited aspects of a situation,
or given relevance-altering shifts in situational context, there is
no clear mechanism to appeal to by which irrelevant situational
aspects can be easily ignored. Dreyfus (1992) famously proposes
that embodiment obviates the frame problem in a way that
symbolic Al implementations cannot. He goes further still and
proposes that even typical subsymbolic Al cannot overcome the
problem; he finds some promise in Freemans neurodynamics
(Dreyfus, 2007), although his analysis of why this shows promise
is limited. Given the convergences between Freeman’s neurody-
namics and AIF (Friston, 2008, 2010; De Ridder et al., 2014), it is
not surprising that the latter should offer the robust response to
the frame problem Dreyfus anticipated.

It is worth briefly restating the nature of neural computation
in AIE due to its substantial difference from the computation of
input, symbols, propositional logic, and other common associa-
tions. Even the convenient shorthand used by neuroscientists and
others that the brain “is” Bayesian or “implements” Bayesian
models can lend itself to misunderstanding AIF’s ontological
commitments. Essentially, given synaptic connectivity and trans-
mission patterns, it is possible to model them mathematically. It
is rarely misunderstood when equations are used to descriptively
model a planet’s orbit in order to predict its positions—most
people do not assume that this approach suggests the planet itself
is computing anything (nor that the planet’s material complex-
ity is “reduced” or “eliminated” in the pragmatic abstraction
of a mechanistic orbital model). Analogously, by appeal to the
broader theoretical context of AIF, it can be stated that there are
transformations in the dynamic neurobiological substrate in
the service of the environmentally embedded body that can be

“The early skateboarders were “replicating on dry land the surfer’s traverse across
ocean surface and close sensing of changing wave forms. Through surf-related
moves, skaters recombined body, board and terrain, simultaneously copying one
activity (surfing) while initiating a second (skateboarding)” (Borden, 2001, pp.
31-33).
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mathematically modeled in terms of probability distributions.
Thus, embodied and embedded brain activity can be modeled
as the computation of these distributions. That the calculations
should be Bayes-approximate within AIF results from implicit
pragmatic efficiency directives (arising from the constraints laid
out in Sections 2 and 3), such as “extrapolate from experience”
(empirical priors), “context matters” (hierarchical model archi-
tecture), and “when expectations are not met, re-assess” (respond
to surprisal through model updating, precision-weighting, or
abduction, depending on particulars about the accumulation of
prediction error).

The frame problem, in its many incarnations, can be sum-
marized in a single question: How does an agent know what is
significant in an interactive situation? AIF answers with its own
unique breakdown. The first level of the breakdown is that the
agent can be either open or closed to potential significance. This
is overlooked by most other accounts, which take openness to
significance for granted, thereby missing the ecologically com-
mon phenomenon of habits. In AIF, habits can be regarded as
context-free responses that are established by their invariance
across multiple conditions (FitzGerald et al., 2014). When we act
out of habit, we merely “go through the motions,” suppressing
any potential significance that might otherwise be contextually
relevant.

Apart from habit, when the agent is open to potential sig-
nificance, AIF points to a second-level breakdown of possible
outcomes (when potential significance arises in a situation).
Given that the active agent always entertains a repertoire of
plausible policies within its generative model, there is a funda-
mental relationship between policy selection and the expected
free energy within the policy or model space. Given that expected
free energy scores the epistemic affordance of alternative policies
on models, there is an inbuilt imperative to select significant or
relevant actions. Significance in this instance is related to the
epistemic, uncertainty-reducing component of expected free
energy, while relevance can be construed in relation to prior
preferences about ultimate actions. When a potentially significant
aspect of the environment recruits a policy, it becomes relevant;
this is equivalent to the notion of a “solicitation” in affordance
theory and phenomenological philosophy (see Bruineberg and
Rietveld, 2014; Bruineberg et al., 2016). In short, the significance
or relevance is an integral aspect of FEM by which the frame
problem is dissolved.

This argument rests upon appreciating that expected free
energy can be decomposed into two parts (Figure 1). Variational
free energy per se can always be decomposed into accuracy and
complexity terms. This appeals to the Bayesian interpretation
of variational free energy as an approximation to (or lower
bound on) Bayesian model evidence. On this view, Bayesian
model evidence is effectively simplicity plus accuracy."* But
what about expected free energy? It transpires that expected
accuracy is the expected probability of obtaining preferred

“Note that minimizing variational free energy implicitly minimizes complexity
and associated computational costs—via Landauer’s principle—that link thermo-
dynamic free energy to variational free energy. In other words, the path of least
variational free energy is, thermodynamically, Hamilton’s path of least action.

outcomes, while expected simplicity is epistemic affordance,
namely, the resolution of uncertainty or information gain
afforded by the outcomes anticipated under any particular
policy. This intrinsic value of a particular policy or model
appears in many guises, most notably as intrinsic motivation
in robotics (Oudeyer and Kaplan, 2007; Schmidhuber, 2010),
the value of information in economics (Howard, 1966), and
Bayesian surprise in models of exploration and visual searches
(Schmidhuber, 1991; Itti and Baldi, 2009).

Ultimately, without the input/output model, the core difficul-
ties associated with the frame problem—when to sample input,
what to sample as input, what to do with input, or what becomes
of fixed output—do not arise. There is only the generative
model’s accommodation of sensory perturbations in terms of
hidden causes. By incorporating epistemic imperatives into the
(Bayesian model) selection of policies in AIF, the broad frame
problem never manifests. This is because novel information is
not pre-screened for relevance, but instead is rendered relevant
or significant when it leads to model updating or the selection
of a new policy, and irrelevant or insignificant when it does
neither. Note that the latter case holds irrespective of benefit
or cost, given that the non-assimilation of novel information
may be helpful (e.g., metabolic savings) or harmful (e.g., missed
opportunity).

This approach also avoids concerns about the inadequacy
of fixed representational encoding accounts of perception
(Bickhard, 2008), given that in AIF, environmental information
can serve multiple context-dependent relational roles in situated
interaction (cf. Pylyshyn, 1999). Moreover, the logical frame
problem is obviated by the probability distributions of the gen-
erative model—the agent interacts with the environment on the
basis of expected model extrapolations, so continuous sensory
sampling is unproblematic: samples either confirm expec-
tations or produce surprisal (Mirza et al., 2016).

7. SELF-REFLECTIVE EPISTEMIC
FORAGING: AN OPENING FOR
CONSCIOUSNESS?

The reservoir of information present with respect to the self and
the environment is inexhaustible. Only a small fraction is ever
immediately relevant as adaptive behavioral control information.
Thus, there are always new sources of potential relevance, as
there are many possible signals in the noise (Dennett, 1991).
While many discussions of AIF center on epistemic foraging in
the environment, it is also possible to consider epistemic foraging
of the self, also a rich source of signals in the noise (Seth, 2013;
Seth and Friston, 2016).

Thus far, we have primarily addressed control information,
noting that it can also be gleaned from conscious phenomenal
sensation (Seth et al., 2012). Enhancing the generative model
through exploration, also known as epistemic foraging, provides
potential future control information. However, when new signifi-
cance arises, it is not necessarily immediately subsumed as control
information. Consider hearing a fellow diner’s request to “pass
the salt” Given situated language learning (Diessel, 2006), words
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FIGURE 1 | Bayesian mechanics and active inference. This schematic summarizes the formal aspects of active inference in terms of minimizing variational free
energy. It describes a generic (active) inference scheme that has been used in a wide variety of applications and simulations; ranging from games in behavioral
economics (FitzGerald et al., 2015) and reinforcement learning (Schwartenbeck et al., 2015) through to language (Friston et al., 2017c) and scene construction
(Mirza et al., 2016). The details of this scheme are not essential to understand the arguments in the main text: they are presented here for interested readers, with a
special focus on how affordance emerges from minimizing (expected) free energy, under a generative model of the world. In this setup, discrete actions solicit a
sensory outcome (s) that informs approximate posterior beliefs about external or hidden states of the world (n). This Bayesian belief updating can be described as
minimizing variational free energy F(r, s) under a set of plausible policies (r). Here, a policy comprises a sequence of actions (a). The approximate posterior beliefs
are then used to evaluate expected free energy F(r, t) and subsequent beliefs about action; namely the affordances that underwrite policy selection. In other words,
affordance corresponds to inference about action, where the most likely policy (to be selected) is the policy that minimizes expected free energy in the future. Q(n|r)
denotes beliefs about hidden states in the future, given a particular policy and Q(x) are posterior beliefs about the policies currently being pursued. Free energy is
just the difference between complexity and accuracy. In other words, an approximate posterior with a low free energy provides an accurate but simple explanation
for sensory input. Expected free energy can be similarly decomposed into expected complexity (i.e., complexity cost or risk) and expected inaccuracy (i.e.,
ambiguity). Complexity can be regarded as the divergence (denoted by the Kullback-Leibler divergence D) between what one expects to happen under a particular
policy and what one would prefer a priori. Ambiguity is the loss of a precise or definitive mapping between external states of the world and observed sensory states
(as quantified by entropy, denoted by H). An alternative decomposition of expected free energy is in terms of epistemic and pragmatic affordance: see main text.
Note a subtle but important aspect of this construction; namely, posterior beliefs about policies are based on their expected free energy, which includes the (path
integral) of free energy per se. This is interesting from several perspectives. It means that the agent has to infer what it is doing and, implicitly, its own action. In other
words, beliefs about action are distinct from the active states of the agent’s Markov blanket (namely the sensory and action states that separate internal from
external or hidden states). This means the agent has to predict how it will behave and then verify those predictions based on sensory evidence. This implicit
inference means that the agent has to garner evidence for its own behavior. This is the role of the free energy. Namely, free energy per se provides evidence that a
particular policy is being pursued, while expected free energy scores its prior probability. In summary, agents (will appear to) have beliefs about their behavior—
beliefs that endow them with a sense of purpose, in virtue of the prior preferences that constitute risk. In effect, this enables agents to shape their sensorium. Please
see Friston et al. (2017b) for technical details and Friston et al. (2017a) for a discussion of how this belief updating might be implemented in a brain.

provide evidence for the most apt generative model or policy  shaky tone of voice might indicate an emotional state that was not
(Lupyan and Clark, 2015), enhancing the control information = immediately relevant to passing the salt, but may become relevant
for the relevant modification of the thermodynamic substrate  in social interaction, leading to an enquiry about their wellbeing
(identifying, grabbing, and passing a nearby salt shaker). Never-  (Filippi et al., 2017).

theless, the request is also appreciable as a phenomenal sensation What should facilitate such inquiring? When time pressure is
that can be further epistemically foraged. For instance, the diner’s  low, it is possible to reflectively evaluate information beyond its
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role in facilitating immediate adaptive behavior. AIF can describe
this as the momentary decoupling of aspects of the model from
the environment for self-reflective epistemic foraging, while
potentially remaining partially environmentally engaged (e.g.,
thinking about the office during the commute). Having this abil-
ity would confer adaptive advantages, such as navigating complex
social meaning, as well as more protracted forms of elaborate
problem-solving (mentally revisiting a problem from different
angles). This example also speaks to the trade-off between epis-
temic (expected simplicity) and pragmatic (expected accuracy)
imperatives that underlie FEM in policy selection. In brief, the
trade-off—not dissimilar to an exploration/exploitation trade-
oft—rests upon the precision of prior preferences. Generally, in
a new situation, epistemic affordance would normally dominate
policy selection until there is a comfortable familiarity with
the lived context; prior preferences can then come into play.
Crucially, these prior preferences are themselves inferred in deep
(hierarchical) generative models.

A strong candidate for facilitating such self-reflection is also
the most apparent correlate of self-consciousness: a mental
buffer that underpins introspective awareness. This buffer can
be regarded as the substrate of conscious mental simulation,
imagination, and internal monolog. The latter would allow for
forms of self-reflection, as well as the self-referential fine-tuning
of adaptive behavior (“I must remain focused on the road!”). It
is relatively uncontroversial to view simulation as contributing
to adaptive behavior through mental rehearsal, and imagination
as contributing to generating counterfactuals and exposing new
affordances, while also enabling the suppression of conscious
environmental coupling.

Whatever its genesis and other roles, consciousness appears to
be crucial for epistemic foraging in the limitless source of signals
in the noise of the self, in a manner wholly consistent with the
information-bound AIF elaborated above. Note that bringing
consciousness to the table presupposes a generative model of the
future that necessarily entails a degree of selthood and agency.
This characteristic of generative models has been referred to as
counterfactual richness or depth (Seth, 2015) to emphasize the
deep and fictive nature of how (some) agents predict their world
and behavior.

Moreover, from the AIF perspective, we can identify a feature
that appears to be rare in the animal realm that could be plausibly
robotically implemented. Our fundamentally thermodynamically
constrained social origins imply a capacity for ethical consid-
erations, at least concerning basic aspects of resource sharing
(Cosmides et al., 2010). In this context, consciousness as a buffer
for self-reflective epistemic foraging would underpin our ability
to evaluate preferred outcomes and inferred policies from a space
of possible state transitions—in other words, to evaluate ends and
means to ends—on the basis of ethical considerations.

Through conscious, self-reflective epistemic foraging, a
self-conscious agent can turn active inference inward, by
nuancing model or policy selection to alter its current outcome
preference. Also, when a preferred outcome has been selected,
an agent can determine whether it ought to infer a policy alter-
native to the immediate, intuitively inferred policy it would

have selected under time pressure.” (This can be thought
of as the agent’s self-referential policy to realize a preferred
future in which other possible ends and means have been duly
considered.) With the luxury of time, consciously aware self-
reflective agents can individually and cooperatively aim for a
deeply considered preferred future, to be reached via a deeply
considered pathway.

The above speculations are indicative of the manner in which
ATF can plausibly connect an agent’s consciousness to its embed-
ding in progressively larger social organizations. The mechanis-
tic—yet radically non-reductive—explanatory underpinning of
this embodied, embedded account of individuals and society
inherently includes their openness to vast cultural proliferations
and indeterminate futures.

8. CONCLUSION: AT THE CROSSROADS
OF NATURAL AND ARTIFICIAL EMBODIED
COGNITION

We have seen above why, in contrast to common assumptions,
AIF opposes the mechanistic to the reductive. If AIF were applied
todevelopingahumanoid robot that would approximate ahuman
being, it is clear that its embodied apparatus must be more than
just for show. The mechanical actuation would need to furnish
the proprioceptive sensing aspect of the generative model that
would exhibit reliably invariant covariance with exteroceptive
sensing. For this extero- and proprioceptive coupling to be
biomimetic, the sensing should have the same constraints as our
biologically inherited apparatus, such as a limited visual range
that is extended by bodily movement. Assuming a neuromorphic
information integration apparatus were also implemented, we
could expect robotic interoception to identify environmentally
relevant quantities such as energy requirements (“hunger”) and
bodily damage (“pain”).

So far, none of this would require consciousness, though it could
achieve basic adaptive behavior. For a more deeply situated robot,
we would need to add a minimal mechanism for distinguishing
foreground from background, and one for differentiating between
quasi-conspecifics (others of the same make or possibly humans
as well). This could serve to fulfill the requirement of social
grounding that would in principle pave the way for cooperative
communication strategies, such as gesture and language.

With an appropriate buffer of interoceptive self-awareness, the
robot could epistemically forage within this buffer for additional
relevant signals than those it first identifies in the environment.
Through the usual human routes of upbringing and education, it
could also be taught to evaluate the consequences of its actions,
to weigh preferred ends and available means by considering their
potential impact on itself and others. The process of learning

Time pressure is accommodated in active inference by appealing to Hamilton’s
principle of least action. In other words, it is the expected free energy over time
that counts, where unexpected energy corresponds to an action. Put simply, for
adap