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Editorial on the Research Topic

10 Years of frontiers in energy research
s

As Frontiers in Energy Research marks its 10th anniversary, we reflect on
a transformative decade defined by groundbreaking discoveries, interdisciplinary
collaboration, and global efforts to address humanity’s most pressing energy challenges.
Since its inception, this journal has served as a beacon for cutting-edge research, bridging
the gaps challenging the sustainable developments and technological advances of energy.
This commemorative issue not only celebrates our shared achievements but also underscores
the urgency of accelerating the energy transition in an era of climate imperatives and
technological revolutions. In the following pages, we invite readers to explore visionary
contributions that redefine possibilities for a sustainable future.

From theoretical frameworks to practical applications, this issue exemplifies the multi-
scale approach required for energy innovation. Campbell et al. comprehensively examined
the concept of emergy as a thermodynamic metric for evaluating ecological and social
systems, emphasizing its role in quantifying evolutionary competitiveness through the
principle of ‘maximum empower’. Their white-box Geobiosphere model refines emergy
accounting through spatiotemporal boundary expansion, proposing blockchain-enhanced
platforms to improve global ecosystem management via standardized thermodynamic
benchmarking. Complementing this systems-level perspective, Kowalski et al. addressed
electronic correlation challenges in energy materials through advanced computational
methods. Their work demonstrates how DFT + U approaches with Hubbard U parameters
enable accurate predictions of metal oxide properties, bridging theoretical simulations with
electrochemical energy storage design.

The transition from theoretical foundations to material innovation finds expression in
Sankarasubramanian et al. analysis of titanium-based redox flow batteries. With 50-fold
greater crustal abundance and 90% lower cost than vanadium, titanium systems emerge
as high-potential alternatives for grid-scale storage (Sankarasubramanian et al.), contingent
upon advancements in catalyst development. Expanding the electrocatalyst frontier,
Santos et al. reviewed transition metal-based alternatives to precious metal catalysts.
Their analysis highlights how polyoxometalates and metal-organic frameworks enhance
catalytic activity while reducing reliance on scarce materials, accelerating sustainable
energy conversion.

Bioenergy innovations demonstrate nature-inspired solutions across multiple scales.
Igathinathane et al. quantified break-even transportation distances for 14 biomass
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feedstocks, revealing ship transport’s superiority through large cargo
capacities and steady operations. Building on biomass logistics,
Chundawat et al. engineered supercharged enzymes to overcome
lignin inhibition in bioethanol production.Theirwork on ammonia-
pretreated corn stover reveals strategic protein modification as key
to high-temperature biorefining. Ieropoulos et al. further extended
biomass applications through microbial fuel cells that convert
organic matter to electricity, showcasing microalgae’s potential
for carbon-neutral energy cycles despite persistent cultivation
challenges.

Dynamic energy management emerges as critical in evolving
consumption landscapes. Ali et al.’s ANFIS2 model demonstrated
45% error reduction in pandemic-era residential energy use
forecasting, providing adaptive frameworks for uncertain
environments. Zhang et al. further addressed pandemic impacts
through EV charging load models responsive to public health
crises, capturing load shifts between outbreak/non-outbreak periods
via dynamic feature integration. For grid-scale optimization, Lai
et al. developed storage dispatch strategies for China’s deregulated
power markets, balancing renewable integration with multi-market
revenue streams. Pahwa et al. reinforced the economic imperative
for PV-battery hybrids, showing how integrated systems offset
efficiency losses through peak demand reduction.

Converging technological and policy dimensions, Naqvi et al.
synthesized the evolution of net-zero emissions and circular

economy paradigms. Their analysis of carbon capture innovations
and policy frameworks like the EU Green Deal underscores the
need for context-specific solutions to bridge technical potential with
socio-economic realities.

In summary, the Research Topic of 10 Years of Frontiers
in Energy Research highlights scientific and technological
advancements of energy conversion, use, and management. We
sincerely thank authors, reviewers, and readers. Together, we
will continue pioneering sustainable solutions to global energy
challenges.
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Sustainability Research Institute (TSERI), University of Texas at San Antonio, San Antonio, TX,
United States

Market-driven deployment of inexpensive (but intermittent) renewable energy

sources, such as wind and solar, in the electric power grid necessitates grid-

stabilization through energy storage systems Redox flow batteries (RFBs), with

their rated power and energy decoupled (resulting in a sub-linear scaling of cost),

are an inexpensive solution for the efficient electrochemical storage of large

amounts of electrical energy. Titanium-based RFBs, first developed by NASA in

the 1970s, are an interesting albeit less examined chemistry and are the focus of

the present review. Ti, constituting 0.6% of the Earth’s crust and an ingredient in

inexpensive white paints, is amongst the few elements (V and Mn being some

others) which exhibit multiple soluble oxidation states in aqueous electrolytes.

Further, the very high (approaching 10 M) solubility of Ti in low pH solutions

suggests the possibility of developing exceptionally high energy density aqueous

Redox Flow Batteries systems. With these advantages in mind, we present the

state-of the-art in Ti-RFBs with a focus on Ti/Mn, Ti/Fe and Ti/Ce couples and

systems that use Ti as an additive (such as Ti/V/Mn). The inherent advantages of

inexpensive Ti actives and relatively high energy density is contrasted with

potential side-reactions resulting in reduced energy efficiency. Technological

pathways are presented with a view to overcoming critical bottlenecks and a

vision is presented for the future development of Ti-RFBs.

KEYWORDS

energy storage, redox flow batteries, titanium, kinetics, solvation, energy storage
(batteries)

1 Introduction

The rapid, market-driven deployment of economical but intermittent renewable

energy sources such as solar and wind necessitates the integration of reliable energy

storage solutions with the electric grid to ensure grid stability and reliability. Amongst

various energy storage technologies redox flow batteries (RFBs) are an economical

solution at scale due to their characteristic decoupling of energy and power that
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ensures sublinear scaling of cost (Chen et al., 2009; Zhao et al.,

2015). A plethora of possible RFBs have been investigated and

proposed in the literature, such as, Fe-X (X = Cr, Mn, Fe, Zn)

(Fedkiw and Watts, 1984; Skyllas-Kazacos et al., 2011; Gong

et al., 2016; Selverston et al., 2017; Archana et al., 2020; Zhen

et al., 2020), V-X (X = Mn, Ce, Br, V) (Chen et al., 2009; Prifti

et al., 2012; Cunha et al., 2015; Zhao et al., 2015;

Sankarasubramanian et al., 2019; Reynard et al., 2020; Raja

et al., 2021; Wang et al., 2021) and Zn-X (X = Ce, Br, Mn, V)

(Chen et al., 2009; Leung et al., 2011; Dewage et al., 2015; Zhao

et al., 2015; Jiang et al., 2018; Ulaganathan et al., 2019; Naresh

et al., 2021) RFBs. Critically, the translation of these RFBs to the

market hinges on numerous factors, namely - 1) cell potential, 2)

energy density (a function of salt solubility in the electrolyte), 3)

chemical and electrochemical stability of the cell components,

and finally (and possibly most importantly) 4) availability of the

redox active species at low marginal cost and at scale. The energy

storage cost of RFBs hinges on the cost of the electrolyte actives

and their degradation and loss during operation. The loss of

electrolyte due to crossover results in poor coulombic efficiency

at the system level and hinders economical operation. The

crossover of electrolyte species is largely determined by the

nature of the separator employed. Three classes of separators

are typically encountered in RFBs i.e., cation exchange

membrane (CEM), anion exchange membrane (AEM), and

porous membrane (PM) (Varcoe et al., 2014; Barry et al.,

2021). The two classes of ion exchange membranes operate on

the principle of charge-based repulsion and hence exclusion of

redox active species. Selectivity is conferred by the nature of

the charged species attached to the separator backbone and

density of these species. Porous separators, on the other hand,

rely on size-based exclusion of redox active species. Here,

ionic species and chemical species in solution (irrespective of

charge) are prevented from crossing over on the basis of their

size relative to the pores across the separator. CEMs (typically

Nafion®) are relatively expensive and exhibit high ionic

conductivity. Given that most RFBs utilize cationic redox

species, the use of CEMs in these systems results in cation

cross-over and hence a drastic reduction in capacity over time

(Gubler, 2019). This makes CEMs suitable only for systems

employing catholytes and anolytes consisting of different

oxidation states of the same chemical species (e.g., V2+/V3+

and V4+/V5+ in all-V RFBs). AEMs, on the other hand, mitigate

cation crossover but typically exhibit lower ionic conductivity

and chemical stability compared to CEMs (Barry et al., 2021).

PMs allow the cross-over of the ions that have smaller

diameter than the pore size of the separator irrespective of

the nature of the charge they carry and hence show poor ion

selectivity (Lu et al., 2017). All separators may require

mechanical rebalancing to adjust the osmotic pressure

(Bhattarai et al., 2019) and chemical rebalancing to

maintain electrolyte purity (Wu et al., 1983; Fedkiw and

Watts, 1984).

All-V RFBs are the farthest along the commercialization

route and have been reported to operate at typical power

densities of 100 mW cm−2 with cycle life of 10–15 years with

1000 cycle per year (Holland-Cunz et al., 2018). A recent study

has reported small, lab-scale (4cm2 electrode area, 20 ml

catholyte and anolyte) all-V RFB operating for ~20,000 cycles

at 600 mA cm−2 (>8 months) (Jiang et al., 2020). Despite

concerns stemming from component degradation while

operating at such current densities, the demonstration of

similar cycle life (even at lower current density) at a practical,

pilot scale would be a major advancement in commercializing all-

V RFBs. Although the V-X family of RFBs are quite successful in

terms of providing high power densities with stability, the

availability of V in the earth’s crust and its susceptibility to

degradation during cycling is a limiting factor for successful

industrialization. On the other hand, the Ti-X (X = Fe, Mn, Ce)

family of RFBs offer several advantages over the V-X systems as -

1) Ti is ca 50x as abundant as V in the Earth’s crust and is

produced at ca 100x the rate of V (Figures 1A,B).

2) The market price of Ti is 1/10th that of V in the US

(Figures 1A,B).

3) The half-cell potential of Ti4+/Ti3+ redox couple is 0.1 V (vs

SHE) as compared to -0.26 V (vs SHE) for V3+/V2+ which

makes Ti4+/Ti3+ redox couple less prone to hydrogen

evolution side reactions (Figure 1C).

4) The maximum possible storage capacity of Ti-Ce RFBs would

be 9.9 TWh as compared to 6.95 TWh for all-V RFBs

considering all exploitable worldwide reserves of V, Ti,

and Ce.

5) The Ti-X (X = Fe, Mn, Ce) RFBs also meets the DOE cost

target of <100 $/kWh (Dong et al., 2015; Kaku et al., 2016;

Funding opportunity announcement advanced research

projects agency, 2016; Kaku et al., 2019;

Sankarasubramanian et al., 2021).

Given these advantages, in this work we critically review the

developmental state of Ti-X RFBs and chart a course for their

future development.

2 The Ti-X (X = Fe, Mn, Ce) family of
RFBs

A schematic representation of Ti-X RFBs is shown in

Figure 1D. The anolyte is the Ti salt dissolved in an acid and

the catholytes are either Fe or Mn or Ce dissolved in their

appropriate acidic counterparts. As discussed in literature, the

oxidation states of Ti vary from +2 to +4 and the Ti ions exist

stable in the salts as Ti3+ (+3 oxidation state), and TiO2+

(+4 oxidation state) but not as Ti2+. Their stability is confined

to a very narrow region i.e., ~1 pH and lesser, as seen in the

Pourbaix diagram (Pourbaix, 1966). TiOSO4 (titanium
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oxysulfate) and TiCl3 (titanium chloride) with Ti in +4 and

+3 oxidation state are the most widely used salts for Ti-X RFBs

with supporting electrolytes including H2SO4, HCl, HNO3 and

H3PO4. Thus, the solvation and coordination of Ti species in the

strong acidic electrolytes influences the reversibility and stability

of the Ti4+/Ti3+redox couple and impacts the energy density of

the Ti-X RFBs. The following section summarizes Ti solution

chemistry in the context of RFBs.

2.1 Ti4+complexes in acids

Extensive literature report (Lingane and Kennedy, 1956;

Miyanaga et al., 1990; Kavan et al., 1993; Cservenyák et al.,

1996; Sole, 1999; Bahdad, 2020; Tsurumura et al., 2020; Choe

et al., 2021) the solvation behavior of Ti4+/Ti3+ redox couple with

different ligands in various acids solutions like H2SO4, HCl,

HNO3 and H3PO4. The redox stability of Ti
4+/Ti3+ is influenced

by the formation of different reaction/intermediate complexes

that appear in various acids as discussed below. Critically, we are

considering only strong mineral acids in our discussion given

that the Ti4+/Ti3+ redox couple is stable only in low pH (< ca

pH 1.5) conditions.

2.1.1 The H2SO4 system
In case of H2SO4 solution comprising dissolved TiOSO4 salt,

hereafter called the Ti-O-SO4 system, the half-cell reaction is

represented by the following equation,

Ti3+ +H2O#TiO2+ + 2H+ + e− (1)

FIGURE 1
(A)Cost permetric ton, worldwide production, and proven reserves of Ti, and V; (B) Abundance of Ti in the Earth crust (C)Half-cell potentials (vs
SHE); for some redox couple for possible use in RFBs; (D) Schematic diagram of Ti- X (X = Fe, Mn, Ce) RFBs.
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The Ti3+ and Ti4+ (i.e., as TiO2+) species of the redox couple

co-exist in the concentrated Ti-SO4 system. Ti4+ is the most stable

oxidation state of Ti. The high charge density (ratio of charge to

ionic radius) of Ti4+ prevents it from forming simply hydrated

[Ti(H2O)6]
4+ (Miyanaga et al., 1990). Ti4+ appears as

[Ti(OH)2(H2O)4]
2+ in 1 M H2SO4 aqueous solutions (Bahdad,

2020) and in solutions where 0.04 < pH < 1 (Beukenkamp and

Herrington, 1960; Kotsyubynsky et al., 2017), represented in

short as TiO2+. These TiO2+ complexes tend to form oligomers

(Figure 2A) when the oxo-oxygen of the titanyl ion is readily

protonatable through hydrolysis reactions (Shepherd, 2013). The

formation of oligomers is predominant when the concentration

of TiO2+ is between 0.1–0.5 M, the H+ concentration between

1.0–2.5 M, and the temperature between 236–323 K (Comba and

Merbach, 1987). In the presence of H+, SO4
2- and HSO4–ions

(H2SO4 dissociation products in an aqueous solution (Choe et al.,

2021)), Ti4+ forms complexes containing SO4
2- or HSO4

– ligands

exhibiting the possible structures shown in Figure 2B. The

competing coordination of Ti4+ to SO4
2- or HSO4

- depends on

the strength of SO4
2- concentration in the electrolyte [for e.g., 3 M

H2SO4 concentration results in the dominance of Ti4+ to SO4
2-

coordination (Bahdad, 2020)]. The coordination of HSO4
- with

Ti4+ proceeds through a deprotonation pathway wherein H+ is

accepted by a proton acceptor such as H2O to form H3O
+ or

Ti=O+ to form Ti-OH SO4
2- and a Ti4+-SO4

2- complex results. At

higher SO4
2- concentrations (and higher pH values), Ti4+ is

predicted to exist as either mononuclear complexes (chelating

complexes) or multinuclear complexes (bridging bidentate

complexes) (Kotsyubynsky et al., 2017). Mononuclear

complexes are formed by the coordination of Ti4+ ion with

SO4
2- leading to formation of [Ti(OH)2SO4(H2O)3]

0
,

[Ti(OH)2(SO4)2(H2O)2]
2− and [Ti=O(OH)2(H2O)3]

0. The

multinuclear complexes are formed either due to polymerized

Ti4+ complexes formed via oxygen atoms leading to -Ti-O-Ti-O-

zigzag structures (Tsurumura et al., 2018) or via formation of

[Ti2O2(H2O)5(OH)2SO4] (Choe et al., 2021). These Ti4+

complexes are either electrically neutral or anionic in the Ti-

O-SO4 system under high pH conditions. Ti4+ tends to form

multinuclear complexes (nanoscale aggregates) in solutions of

high SO4
2- and Ti4+ concentrations which eventually results in

the nucleation and precipitation to TiO2. Thus, high

pH conditions (typically with high SO4
2- concentrations and

low H+ concentration) are to be avoided when designing

electrolytes for Ti RFBs.

Upon electrochemical reduction of Ti4+ to Ti3+, there occurs

substantial change in the structures of Ti-ion complexes and

nanoscale Ti4+ aggregates are gradually disrupted to yield

mononuclear Ti3+ complexes (Tsurumura et al., 2020). The Ti3+

ion is stable at very low pH (< ca 1.5) as seen through Pourbaix

diagram. In dilute (higher pH) aqueous solutions, Ti3+ usually exists

in the form of [Ti(H2O)6]
3+. Literature also report using EXAFS

(Extended X-ray Absorption Fine Structure) analysis, that Ti-Ti

bond does not exist in Ti3+ solution, and the possibility for Ti-O

bond exists in Ti3+ solution (Miyanaga et al., 1990) with Ti3+ ions

existing in various other forms in aqueous solutions as Ti(OH)2+,

TiO+, Ti(OH)2
+, and other complexes (Sole, 1999). However, with

FIGURE 2
Schematic representation of various Ti4+ complexes under weakly and strongly acidic conditions.
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H2SO4 solution, Ti3+ react with SO4
2- ion to form Ti3+-SO4

2-

complexes (Cservenyák et al., 1996).

2.1.2 The HCl system
In case of HCl solutions containing TiCl3 salt, both the H+,

and Cl− ions play a significant role in the reversibility of Ti4+/Ti3+

redox couple. Ti3+ exist as a TiOH3+ complex in acidified

solutions (pH 2–2.5) and, due to hydrolysis of Ti3+, Ti(OH)2
2+

is formed with proton liberation as shown below (Kavan et al.,

1993; Lokhande et al., 2004),

TiOH3+ +H2O � Ti(OH)2+2 +H+ (Fast Reaction) (2)
Ti(OH)2+2 →Ti(IV)oxo species+ e− → TiO2(Undesired side reaction)

(3)

Unfortunately, Ti(OH)2
2+ leads to the formation of TiO2 by

precipitation as shown above, through an intermediate Ti(iv)oxo

species which limits the reversibility of the redox couple. The

Ti(iv)oxo species consist of partly dehydrated polymeric Ti(IV)

hydroxide (Kavan et al., 1993), which get converted to TiO2

(Lokhande et al., 2005). The Ti4+ ions in HCl exist in the form of

TiOCl+, an oxy-chloro ion which reduces to a Ti3+ chloro

complex, TiCl4
- as shown below,

TiOCl+ + e− + 2H+ + 3Cl− � TiCl4− + H2O (4)

The Ti3+/Ti4+ redox couple was found to be reversible only

in >1 M HCl solution. The irreversibility observed in <1 M HCl

solutions indicates the necessity of Cl− ion for the reversibility

of Ti4+ and Ti3+ as shown in Eq. 4 (Lingane and Kennedy, 1956).

In the presence of HCl and H2O, Ti4+ ions form unstable

[Ti(OH)2(H2O)4]Cl2 which eventually results in the

formation of TiO2. In the context of RFBs requiring high

reversibility of the Ti4+/Ti3+ redox couple, addition of

(unfortunately unstable) organic compounds with oxygen-

containing functional groups, such as acetylacetone, can

partially suppress the hydrolysis reaction owing to the

affinity between TiO2+ and oxygen-containing functional

groups (Wang et al., 1984). HCl concentrations up to 6 M

have been found to mitigate the precipitation of TiO2 (Qiao

et al., 2022). However, it enhances H+ concentration in the

electrolyte and accelerates another undesired side reaction,

namely the hydrogen evolution reaction (HER), thereby

decreasing the RFB efficiency. The choice of the catholyte to

be paired with the Ti anolyte can also preclude the use of HCl

supporting electrolytes due to the occurrence of the chlorine

evolution reaction (+1.36V vs. SHE).

2.1.3 The HNO3 system
In case of HNO3 solutions containing TiOSO4, the salt

dissolves as small clusters as observed through Small-angle

X-ray scattering (SAXS) experiments (Molina et al., 2017).

The analysis of TiOSO4 dissolved in 1 M HNO3 solution,

suggests that the clusters contain a dense 1.2 nm diameter

core (dominated by Ti–oxo) with a dynamic shell of water,

sulfate, and nitrate which also results in precipitation for any

dilution below 0.25 M TiOSO4 (Molina et al., 2017). No

complexation of Ti4+ was observed in dilute HNO3 solutions

(0.73–2.2 mM.L−1) with 0.05 mM.L−1 ortho-titanic acid (TiH4O4)

due to their weak tendency to form nitrato complexes with most

metal ions (Morris et al., 1978). This is markedly different from

the formation of divalent mononuclear species like [Ti(OH)2]
2+

in H2SO4 solutions (Mangold et al., 2021). But, however HNO3 is

not actively used as supporting electrolyte due to the reduction of

NO3− leading to degraded performance during cycling in RFBs

(Xie et al., 2011a).

2.1.4 The H3PO4 system
Studies with H3PO4 solutions containing Ti salts are very

scarce in the literature (Lingane and Kennedy, 1956; Oldenburg

et al., 2018; Mangold et al., 2021) as the solubility and stability

of Ti4+ ions in these systems is a practical limitation (Lingane

and Kennedy, 1956). The reversibility of Ti4+/Ti3+ redox couple

and their stability was studied under different concentrations

(1–10 M) of H3PO4 with 10 mM and lower concentrations of

Ti4+ [as the Ti(OH)4 salt]. It was found that a 10 mM solution of

Ti4+ ions in 1M H3PO4 was unstable and precipitated after 24 h

but stabilized in 4M H3PO4 without any phase separation. But

upon increasing the Ti4+ ion concentrations to >10 mM, the

electrolyte was again unstable in 4M H3PO4 leading to

precipitation. Interestingly, the reversibility of Ti4+/Ti3+

redox couple is more pronounced at 1M H3PO4 as

compared to 4M H3PO4 (Shepherd, 2013). In this electrolyte

system, Ti4+ is present as mononuclear (µ = 1) or polynuclear

(µ > 1) free cation(s), [(TiO)µ]
2µ+ in diluted H3PO4 solutions

(<0.1 mol.L−1). Ti4+ ions progressively form [(TiO)µ(H3-

mPO4)δ]
2µ−δm complexes as the concentration of H3PO4 is

increased to >1 mol.L−1 and [(TiO)µ(H3-mPO4)δ(H3-nPO4)β]
2µ−δm-βn complexes at >6 mol.L−1 H3PO4 (Mangold et al.,

2021). The poor solubility and reversibility of Ti solutions in

H3PO4 precludes their use in RFBs.

2.2 Performance of Ti RFBs
Given the discussion above, reports on the Ti-X family of

RFBs consist predominantly of systems using H2SO4 as the

supporting electrolyte due to the stability and reversibility of

the Ti4+/Ti3+ redox couple at relatively high Ti concentrations

(~0.5–1.5 M). This configuration also avoids any side reactions

(H2-, Cl2-, and NO2- evolution) thereby increasing the overall

energy efficiency of the RFBs.

Ti - Fe RFB: Fe based RFBs (coupled with Ti or Cr) have been

widely investigated by NASA in the early 1970s due to the low

cost and abundant supply of Fe. These RFBs can achieve a

theoretical energy density of nine Wh. L−1 (at 0.67V open

circuit potential (OCP)). Cr-Fe RFBs was initially assessed for

space applications and scale-up studies were conducted, but the

systemwas not commercially developed due to several drawbacks
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like, low energy density of the mixed electrolyte (containing both

Fe and Cr in the anolyte and catholyte), membrane fouling, the

slow Cr redox kinetics requiring expensive noble metal catalysts

and parasitic HER on the Cr side (Skyllas-Kazacos et al., 2011).

The Ti-Fe RFBs was studied by Thaller in aqueous HCl solution

(Thaller and inventor, 1976). In this system, during the charge

cycle, Ti4+ (i.e., TiO2+) reduced to Ti3+ on the negative side and

Fe2+ is oxidized to Fe3+ in positive side. The half-cell charge

reactions of the Ti-Fe RFB are,

Negative Electrode: TiO2+ + 2H+ + e−#Ti3+

+H2O(+0.1Vvs SHE) (5)

Positive Electrode: Fe2+ #Fe3+ + e−(−0.771Vvs SHE) (6)

Initially, TiCl3 and FeCl3 were the salts used at the anolyte

and catholyte respectively in the HCl supported electrolytes.

This system suffered from the formation of TiO2 particles as an

undesired side reaction, decreasing the overall coulombic

efficiency. The maximum current density of these initial Ti-

Fe RFBs with HCl supporting electrolyte was 8.16–14 mAcm−2

with a nominal cell voltage around 0.67V (Savinell et al., 1979).

Recent improvements in Ti-Fe RFBs have consisted of using

H2SO4 as supporting electrolyte instead of HCl and using

TiOSO4 and FeSO4 salts in the anolyte and catholyte

respectively. In the presence of H2SO4, the interaction

between H2O and Ti4+ ions are diminished, thereby

inhibiting the formation of Ti(OH)2
2+ and improving the

stability of the electrolyte. Such as second generation Ti-Fe

RFB with bismuth (Bi) catalyst at the positive electrode and a

carbon felt at the negative electrode exhibited a diffusion

coefficient of 19.18×10–8cm2 s−1 for Fe3+/Fe2+ and

0.36×10–8cm2 s−1 for Ti4+/Ti3+ (Qiao et al., 2022) with a rate

constant of 3.828×10–4cm s−1 for Fe3+/Fe2+ and 0.203×10–4cms−1

for Ti4+/Ti3+ respectively (Qiao et al., 2022). It suggests that

both the diffusion coefficient and rate constant for Fe3+/Fe2+ is

higher than Ti4+/Ti3+ with the reactions of Ti redox couple

being rate limited. The Ti-Fe RFBs in 3M H2SO4 were cycled at

current densities as high as 120 mAcm−2 with the highest energy

efficiency of 85.6% (at 40 mAcm−2). This system showed 80%

discharge capacity after 1000 cycles (30 min per cycle) with a

low-capacity decay of 0.193 Ah. cycle−1 (Qiao et al., 2022).

CEMs like Nafion® 212, sulfonated poly (ether ketone)

(SPEEK) have been used in Ti-Fe RFB. Non-fluorinated

SPEEK is predominantly used as it reduces the cost for

energy production from $165.79/kWh (Nafion® 212) to

$88.22/kWh (SPEEK) (Qiao et al., 2022).

Ti-Mn RFB: Ti-Mn RFBs was first developed by Dong et al,

(2012) where a relatively high OCP of 1.41 V was obtained (as

compared to 0.67 V for Ti-Fe RFBs) resulting in superior power

density (Dong et al., 2015; Kaku et al., 2016). These RFBs can

achieve a theoretical energy density of 18.9 Wh. L−1. The half-cell

charge redox reactions of Ti-Mn RFB are represented by the

following equations.

Negative Electrode: TiO2+ + 2H+ + e−#Ti3+

+H2O(+0.1Vvs SHE) (7)

Positive Electrode: Mn2+#Mn3+ + e−(−1.51Vvs SHE) (8)

Unfortunately, Mn3+ is highly unstable and inclined to form

manganese dioxide (MnO2) via the following reaction-

2Mn3
+ + 2H2O → Mn2

+ +MnO2

+ 4H+(Disproportionation Reaction)
(9)

The precipitated MnO2 particles start to aggregate and hinder

the flow of electrolyte by blocking the pores of the membrane

thereby reducing the columbic efficiency. So, it is required to

reduce the formation ofMnO2 particles as well as to ensure that the

MnO2 particle are small enough to avoid aggregation and prevent

membrane fouling (Kaku et al., 2016). Several approaches have

been proposed for stabilization of Mn3+ such as by increasing the

acidity, by increasing the Mn2+ concentration, or via complex

formation (Davies, 1969). However, increasing Mn2+

concentration necessitates limiting the cycling of the cell to

only 50% state of charge (SOC) to prevent Mn3+

disproportionation, thereby negating any advantages due to

increased reactant concentration. On the other hand, the

formation of Mn complexes (i.e., MnOOH) results in loss of

electro-activity (Dong et al., 2015; Bahdad et al., 2021).

MnO2 +H+ + e− → MnOOH (10)

The disproportionation reaction and the morphology of MnO2

were significantly influenced by addition of H2SO4 solution

containing TiO2+ ions (Kaku et al., 2016). TiOSO4 solutions of

varying molarities was added to 1M MnSO4 and the characteristic

of the composite electrolyte was studied in the context of

suppressing the disproportionation of Mn3+ ions. The MnO2

aggregates were found to be > 1000 nm without adding TiOSO4

or with the addition of 0.25M TiOSO4 inMnSO4. The particles size

reduced to less than 100 nm with addition of 0.5M–1M of TiOSO4

in MnSO4 (Kaku et al., 2016). The optimal composition of 1.5 M

TiOSO4 in the 1 M MnSO4 electrolyte improved the performance

of the Ti-Mn RFB in terms of energy density to achieve ~11.75Wh.

L−1 (accounting for the electrolyte in both tanks) with coulombic

efficiency of 99.8% and energy efficiency of 88.7%, both of which

were stable over 40 cycles (Dong et al., 2015; Dong et al., 2017; Kaku

et al., 2019). Unfortunately, the addition of TiOSO4 with MnSO4

also reduces the cell voltage bymore than 100 mV and increases the

cost of energy components (Kaku et al., 2016). An alternate

approach using V5+ ions to stabilize the Mn electrolyte has also

been proposed (Reynard et al., 2020). These V/Ti/Mn RFB systems

will exhibit higher voltages compared to the Ti/Mn system given the

lower standard electrode potential of the V3+/V2+ couple (-0.26V vs

SHE). But this system is economically unattractive given the

increased cost associated with the use of vanadium and thus we

do not believe this is a viable future direction. Various thicknesses of

Nafion® i.e., Nafion® 115, Nafion® 212, Nafion® 211 have been
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evaluated to investigate their impact on the performance of Ti-Mn

RFBs. The energy efficiency was found to be function of separator

thickness with the energy efficiency being 84%, 83%, and 81% for

Nafion® 211 (25 μm), Nafion® 212 (51 μm), and Nafion® 115

(127 μm) respectively (Kaku et al., 2017).

Ti-Ce RFB: An alternative Ti based RFB which provides a

higher OCP compared to, Ti-Fe and Ti-Mn RFBs, are Ti-Ce RFB.

The OCP of Ti-Ce RFB is 1.61V, which results in higher

operating power density at the same operating current density

and higher energy density for the same electrolyte concentration

compared to Ti-Fe and Ti-Mn systems (Sankarasubramanian

et al., 2021). These RFBs can achieve a theoretical energy density

of 19.4 Wh/L. The half-cell redox reactions of Ti-Ce RFB are

represented by the following equations.

Negative Electrode: TiO2+ + 2H+ + e− #Ti3+

+H2O (+0.1Vvs SHE) (11)

Positive Electrode: Ce3+ #Ce4+ + e− ( − 1.72Vvs SHE) (12)

The Ce Pourbaix diagram shows that cerium ions are soluble in

strong acids but forms stable, insoluble hydroxyl complexes above

pH~7. Given the exceptionally high standard reduction potential for

Ce (the highest amongst all the catholyte candidates considered

here), the stability of the supporting electrolyte is a particular

concern - HCl and HNO3 cannot be used due to their side

reactions that produce Cl2 and NO2 respectively

(Sankarasubramanian et al., 2021). The Ce4+/Ce3+ redox couple

exhibits unusual solubility behavior as a function of the

supporting electrolyte (acid) concentration. The solubility of both

species in this redox couple decreases in inverse proportion to

H2SO4 concentration and the highest concentration achieved was

0.5M Ce in 1M H2SO4 (Xie et al., 2011b). But interestingly, in

CH3SO3H, the solubility of Ce
3+ decreases and the solubility of the

Ce4+ increases with increasing acid concentration and this results in

a solubility maximum of 0.9M Ce in 4M CH3SO3H (Kreh et al.,

1989; Shi et al., 1989; Sankarasubramanian et al., 2021). Thus, the

energy density of this system is circumscribed by the solubility of the

Ce catholyte as TiOSO4 is highly soluble in both H2SO4 and

CH3SO3H (Sankarasubramanian et al., 2021). On the other hand,

the Ti electrode is the rate-limit electrode (relevant for achieving

higher operating current densities) as the rate constants of the Ce4+/

Ce3+ couple is 3x that of the Ti4+/Ti3+ redox couple (Klingler and

Kochi, 1981; Sankarasubramanian et al., 2021). Cyclic voltammetry

shows the anodic to cathodic peak separation for Ti3+/Ti4+ to be 1V

and 0.67V for the Ce4+/Ce3+ couple (Sankarasubramanian et al.,

2021), indicating these reactions are not electrochemically reversible

and suggesting high charge and discharge overpotentials (Bard and

Faulkner, 2000). Nevertheless, in both H2SO4 and CH3SO3H

supporting electrolytes, the Ti-Ce RFB exhibited nearly 100%

coulombic efficiency with over 70% energy efficiency (charging

and discharging at 100 mA/cm2) during 1300 and 700 h of

diurnal cycling, respectively (Sankarasubramanian et al., 2021).

These cells employed highly permselective quaternary cardo-poly

ether ketone (QPEK-C) AEM separators (Yun et al., 2014; Yun et al.,

2015; Yun et al., 2016) which demonstrated negligible crossover

(<0.4%) over 1000 h of operation with 24 h cycle as compared to

commercial CEM which suffers from drastic cation crossover and

loss in capacity early in the cycling of the RFB (Sankarasubramanian

et al., 2021).

3 Future Directions and Prospects
The Ti-X family of RFBs represent an interesting new

direction in the development of aqueous RFB systems given

their high theoretical energy density and economic

competitiveness enabled by the high solubility and low cost of

Ti. We anticipate the following future directions –

1) Unlocking the high energy density of the Ti electrolyte by

pairing it with a stable and high solubility counter electrolyte.

The long-term stability of the low pH Ti electrolytes needs to

be demonstrated.

2) Catalyzing Ti4+/Ti3+ redox kinetics to overcome its nature as

the rate-limiting electrode. The catalysts should be low cost to

preserve the cost advantage enjoyed by the Ti electrolyte.

3) Increasing the thermal stability of the Ti electrolyte to prevent

TiO2 formation by hydrolysis.

4) Using AEM and pore tailored PM instead of CEM to reduce

crossover of the predominantly cationic redox active species,

thereby enabling electrode decoupled RFBs. (Wang et al., 2018).

The continued development of these systems is anticipated to

result in a commercially viable, high-energy density aqueous RFB

that can economically be integrated into the electric grid.
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Efficient electrochemical energy storage and conversion require high

performance electrodes, electrolyte or catalyst materials. In this contribution

we discuss the simulation-based effort made by Institute of Energy

and Climate Research at Forschungszentrum Jülich (IEK-13) and partner

institutions aimed at improvement of computational methodologies and

providing molecular level understanding of energy materials. We focus on

discussing correct computation of electronic structure, oxidation states and

related redox reactions, phase transformation in doped oxides and challenges

in computation of surface chemical reactions on oxides and metal surfaces

in presence of electrolyte. Particularly, in the scope of this contribution we

present new simulated data on Ni/Co and Am/U-bearing oxides, and Pb, Au

and Ag metal surface materials. The computed results are combined with

the available experimental data for thoughtful analysis of the computational

methods performance.

KEYWORDS

atomistic simulations, energy materials, electronic structure, electrodes for batteries,
thermodynamics, electrolyte, electrochemical conditions

1 Introduction

Energy transition requires cost efficient, compact and durable materials for energy
production, conversion and storage (Grey and Tarascon, 2017; Stamenkovic et al., 2017).
There is a race in finding materials with increased energy and/or power density
for energy storage devices (Grey and Tarascon, 2017). Energy fuels of the future
such as hydrogen require efficient electrocatalysts that are economically viable and

Frontiers in Energy Research 01 frontiersin.org

16

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1096190
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1096190&domain=pdf&date_stamp=2021-10-15
mailto:p.kowalski@fz-juelich.de
https://doi.org/10.3389/fenrg.2022.1096190
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1096190/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1096190/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1096190/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kowalski et al. 10.3389/fenrg.2022.1096190

available for mass production of the fuels. Fuel cells used in
conversion of hydrogen to electricity, besides electrocatalyst
material, require durable and efficient electrolytes that can offer
enhanced ionic conduction and withstand different operational
conditions (Wang et al., 2020). Last, but not least, nuclear energy
is still foreseen as clean energy resource. Deep understanding
of behavior of nuclear fuel during and post reactor operation
requires enhanced knowledge of the phase formations, redox
reactions and oxidation states that prevail in uranium oxide
materials. Understanding the phase transitions in uranium
oxides is essential for assuring safety and security of nuclear
technology, including efficient, post operational management of
nuclear waste (Neumeier et al., 2017a; Bosbach et al., 2020).

In the last two decades, atomistic modeling became a
popular research tool in various research fields, including energy
materials (Chroneos et al., 2013; Jahn and Kowalski, 2014;
Wu et al., 2019). Steady advancements in high performance
computing and computational software enable investigation
of complex systems containing hundreds of atoms from
first principles (Jahn and Kowalski, 2014). Over the past
decade, ab initio methods have been intensively applied,
including our own studies, for computational investigation
of various classes of energy materials, including these
of importance in electrochemistry, energy storage and
nuclear energy production, delivering information on:
the structural (Rustad, 2012; Feng et al., 2013; Blanca-
Romero et al., 2014; Beridze et al., 2016; Connor et al., 2021),
the electronic structure (Blanca-Romero et al., 2014;
Kowalski et al., 2017a; Lee et al., 2017; Kowalski et al., 2021;
Murphy et al., 2021; Cui et al., 2022; Tesch and Kowalski, 2022),
the elastic (Wang et al., 2005; Feng et al., 2013; Ali et al., 2016;
Kowalski and Li, 2016; Ji et al., 2017a; Kowalski et al., 2017b),
the thermodynamic (Mogilevsky, 2007; Feng et al., 2013;
Li et al., 2014; Kowalski et al., 2015; Kowalski et al., 2016;
Ji et al., 2017b; Neumeier et al., 2017b; Eremin et al., 2019;
Kowalski et al., 2021), the thermochemical (Rustad, 2012;
Beridze et al., 2016; Kowalski, 2020) parameters, properties
of electrochemical interfaces (Krishnamurthy et al., 2004;
Lee et al., 2017; Tesch et al., 2021) and the radiation damage
resistance (Kowalski et al., 2016; Li et al., 2016; Ji et al., 2017c;
Jolley et al., 2017; Cui et al., 2022), to name but a few. Energy
materials often contain d and f elements (e.g., transition metals
(TM), lanthanides (Ln), actinides (An)), which play an active
part in determining the materials properties. These contain
strongly correlated electrons, which represent a challenge to
the computational quantum chemistry (Vogiatzis et al., 2019).
In a series of papers we have demonstrated that only with
proper accounting for the electronic correlation effects, beyond
standard methods such as the DFT + U approach, one can
deliver correct information on the molecular scale properties
of energy materials (Beridze and Kowalski, 2014; Blanca-
Romero et al., 2014; Kowalski et al., 2015; Li andKowalski, 2018;

Murphy et al., 2021; Tesch and Kowalski, 2022). Among other
aspects, we found the importance of derivation of the Hubbard
U parameter for the cations in different oxidation states and
structural arrangements, and careful choice of projectors for the
estimation of occupancy of d and f orbitals within the DFT +
U scheme (Maxisch and Ceder, 2006; Kvashnina et al., 2018;
Kick et al., 2019; Kowalski et al., 2021; Murphy et al., 2021).
In particular, we apply the linear response method for
computation of the Hubbard U parameter (Cococcioni
and de Gironcoli, 2005) and Wannier-type functions as
representation of d or f orbitals (Kvashnina et al., 2018;
Kowalski et al., 2021). Here we will demonstrate the impact
of these procedures on the correct computation of the TM
oxides materials that are considered as electrodes in energy
storage devices. In addition, we will discuss certain aspects of
computation of electrochemical interfaces, including simulations
under realistic conditions such as presence of aqueous electrolyte
and the applied potential (Tesch et al., 2021).

In this contribution we provide an overview of our
recent atomistic modeling activities on various aspects of
energy materials, focusing on the studies that allowed for
better characterization of these materials, including electronic
structure, interface charging relations and thermodynamics
aspects of surface chemistry in the presence of electrolyte.
Besides such an overview, we present new results on computation
of common TM and actinide oxides, and different aspects of
Au, Ag, Pb and Pt metal surfaces under realistic electrochemical
conditions.

2 Computational approach

Most of the ab initio calculations discussed and performed
here were performed with the density functional theory (DFT)-
based plane wave Quantum-ESPRESSO simulation package
(Giannozzi et al., 2009)1. To represent the core electrons of atoms
we applied the ultrasoft pseudopotentials (Vanderbilt, 1990).The
plane-wave energy cutoff of 50 Ryd was sufficient to obtain
converged results. Because we are specifically interested in
correct computation of structural data, we applied the PBEsol
exchange-correlation functional (Perdew et al., 2008). The
DFT + U calculations were performed with the Hubbard U
parameter values computed from first principles using the linear
response method of Cococcioni and de Gironcoli (2005), as in
our previous studies (Blanca-Romero et al., 2014; Li et al., 2015;
Beridze et al., 2016; Murphy et al., 2021). We applied the
poormanwannier. x tool implemented in Quantum-ESPRESSO

1 In this contribution we call DFT methods an ab initio approach as the
exchange-correlation functionals utilized in our studies were designed
based on pure-theoretical considerations.
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to construct realistic projectors for occupations of d orbitals.This
computational setup was successfully applied in our previous
studies [e.g., Blanca-Romero et al. (2014); Beridze et al. (2016);
Finkeldei et al. (2017); Murphy et al. (2021); Kowalski et al.
(2021)].

For the structural models used in calculations of LixNiO2
in Section 3.2.1 we selected the most favorable arrangement of
Li atoms and vacancies, which give the most negative (most
stable) Coulomb energies among all possible configurations. The
Coulomb energies were calculated using the package designed by
Okhotnikov et al. (2016).

The DFT-based calculations of the 3 × 3 Pb(100) surface
discussed in Section 3.3.2 were performed with the PBE
exchange correlational functional using the VASP package
(Perdew et al., 1996; Kresse and Hafner, 1993; Kresse and
Furthmüller, 1996b; a). We used the projector augmented wave
(PAW) method to describe the core electrons and the plane-
wave cutoff energy was set to 500 eV. The 3 × 3 Pb(100)
surface was represented by a five-layers slab and the model
was created using the atomic simulation environment (ASE)
(Hjorth Larsen et al., 2017). In order to mimic the bulk-like
environment at the bottom of the slab, the two bottom Pb layers
were kept fixed during the geometry optimization, while the
other three layers were allowed to relax. In order to avoid any
undesired interaction between the periodically repeated surface,
in the direction perpendicular to the surface, a 20Å vacuum layer
has been applied. A Monkhorst–Pack 4 × 4 × 1 k-point grid was
used for the structure relaxations (Monkhorst and Pack, 1976).
The calculated equilibrium bulk Pb lattice constant of 5.03Å is
comparable to the measured value of 4.95Å (Fan et al., 2020).
The adsorption energy of HCOO* and COOH* species on the
Pb(100) metal surface was defined as follows:

Eads = EHCOO/COOH+sur face −Esurface −ECO2
− 0.5EH2

, (1)

where EHCOO/COOH+surface, Esurface, ECO2
, EH2

correspond to the
energy of Pb(100) surface with adsorbed HCOO* and COOH*
species, the energy of bare Pb(100) surface and the energies of
gas phase CO2 and H2 species, respectively. The water solvent
was simulated using the VASPsol continuum solvation scheme
(Mathew et al., 2014; 2019).

The effective screening medium reference interaction site
method (ESM-RISM) implementation applied in Section 3.3.3
is that implemented in Quantum-ESPRESSO code. Within
the ESM framework (Otani and Sugino, 2006), a potentiostat
is implemented (Bonnet et al., 2012) that allows to grand-
canonically vary the charge of the electrode, and thus to simulate
it at an applied electrode potential. The RISM setup was identical
to the one applied by Tesch et al. (2021). The DFT calculations
of Au(111) surface were performed with the PBE exchange-
correlation functional (Perdew et al., 1996), with the optimized
lattice constant of 4.17 Å. The surface was modeled with the
single atom 1 × 1 surface unit cell and six layers thick slab

with the positions of two bottom layers fixed to the bulk
configuration. The 12 × 12 × 1 k-point mesh has been applied.
The Lennard-Jonnes parameters for Au atoms required for
the RISM calculations were σ = 2.629, Å and ϵ = 5.29 kcal/mol
(Heinz et al., 2008). These values were selected in a way that
the resulting water density profile matches well the ab initio
molecular dynamics data of Goldsmith et al. (2021).

For the calculation ofmolar entropies ofmolecules presented
in Section 3.3.4 we applied the two-phase thermodynamic
(2PT) method (Lin et al., 2010; 2003; Pascal et al., 2011).
The molecular dynamics (MD) trajectories necessary for
this approach were simulated with the LAMMPS software
package (Plimpton, 1995). The OPLS AA/L (Jorgensen and
Tirado-Rives, 1988) and the Interface Force Field (IFF)
(Heinz et al., 2013) were applied to describe interaction
between the solutes and metal surfaces atoms, respectively.
The SPC water model (Berendsen et al., 1987) was used to
represent water molecules. The random initial configuration
of solvent molecules was created using the PACKMOL package
(Martínez et al., 2009). MD simulations of the solute molecule
(HCOOH) in a solvent were 200 ps long. For the 2PT analysis,
we performed a NPT ensemble equilibration run followed by
a 20 ps NVT ensemble production run. This setup follows
from previous studies of Lin et al. (2003), who have shown
that 20 ps long trajectory is sufficient for obtaining accurate
thermodynamic properties. The longer applied equilibration
runs are essential to assure equilibrated water structure at metal
surfaces (Cheong et al., 2022).

3 Results and discussion

3.1 Computation of electronic structure

Correct computation of the electronic structure
of TM elements bearing materials is a challenge for
computational electrochemistry. This is because the underlying
chemistry is driven by the strongly correlated d electrons
(Vogiatzis et al., 2019). DFT often fails to predict the electronic
structure of these materials, also on the qualitative level.
Wide-band gap materials considered as electrodes in
energy storage, conversion or catalysts devices are often
predicted by DFT or DFT + U methods to be metals. These
include, for instance, NiOOH electrocatalyst (Zaffran and
Caspary Toroker, 2016). Below we discuss specific aspects of
computation of the electronic structure of TM elements-bearing
compounds.

3.1.1 NiO and CoO
As a test case we computed here the simple oxides: NiO

and CoO, both containing TM-cation in + 2 oxidation state.
The Hubbard U parameters derived for TMs and the resulting
band gaps in these two compounds are provided in Table 1.
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CoO and NiO are wide band gap charge transfer Mott insulators
(Zhang et al., 2021). For such materials, the band gap should be
equivalent to half of the Hubbard U parameter (expected shift of
the unoccupied d states). The Hubbard U parameters computed
here for these compounds are large and indicate wide band gaps
(Table 1).Theband gaps computedwith theDFT+Umethod are
consistent with the measurements. This is, however, somewhat
misleading, as it results from incorrect occupations of d states.
Because the atomic orbitals are applied as projectors, these
result in significant, fractional occupations of empty orbitals
(Table 2) and overestimated total occupancy of the d states.
This shortcoming is corrected with the Wannier-functions as
projectors. The resulting occupation matrix and number of d
electrons are also reported in Table 2. These reflect the expected
values, which has also significant impact on the computed
band gaps. In set of previous studies we obtained similar
improvement for occupations of d and f orbitals of various other
elements [e.g., Murphy et al. (2021); Kowalski et al. (2021)]. The
band gaps computed with the DFT + U(WF) method are
larger than the ones predicted with the standard DFT + U
approach. We note that for this case, the hybrid functionals
such as HSE06 also predict correct band gaps of the considered
oxide materials (Seo et al., 2015). This is opposite to the case of
lithiated transition metal oxides, which show significant level
of d elements delocalization and overestimation of the band
gaps of these materials by the hybrid functionals approaches
(Seo et al., 2015).

3.1.2 Metals with DFT + U
Metal phases consisting of transition metal elements

play a key role in the electrochemical devices. The
strong correlation character of d electrons these systems
contain has been illustrated by the computation of large
Hubbard U parameters in a series of computational studies
(Schnell et al., 2002; Nakamura et al., 2006; Şaşıoğlu et al., 2011;
Tesch and Kowalski, 2022). This would imply the importance of
Hubbard model corrections also for these systems. On the other
hand, it has been demonstrated that the standard DFT method
results in very good prediction of metal properties, including
good description of the x-ray photoelectron spectroscopy
(XPS) spectra by the resulting density of states (DOSes)
(Hofmann et al., 2012). This apparent contradiction could
be explained by the delocalized character of d electrons in
metals and inapplicability of the fully localized limit (FLL)
of standard DFT to metals. An “around mean field” (AMF)
version of DFT has been proposed instead for computation
of metals (Czyżyk and Sawatzky, 1994; Petukhov et al., 2003;
Himmetoglu et al., 2014; Ryee and Han, 2018). In this approach,
the occupations are forced to reproduce the mean values, instead
of the preference of fully occupied or unoccupied orbitals, as in
the standard DFT + U approach. This causes no overall change
in the DOSes when the AMF version of the DFT + U method is

applied. Nevertheless, it has been also proposed that the correct
computation of metals should be done with a combination of
the FLL and AMF methods (Petukhov et al., 2003). Having wide
popularity of the FLL version of the DFT +U approach, it is thus
of importance to understand the performance of this method
when applied to metallic systems.

Tesch and Kowalski (2022) derived the Hubbard U
parameters for all the 3d, 4d and 5d transitionmetals applying the
linear response method (Cococcioni and de Gironcoli, 2005).
The values (up to 11 eV) and trends of increasing the U
parameter values with increasing number of valence electrons,
observed in previous studies (Şaşıoğlu et al., 2011), have been
reproduced. These show that the 3d metals exhibit the largest
Hubbard U parameter values, followed by 4d and 5d metals.
Having these results, Tesch and Kowalski (2022) performed a
thoughtful analysis of the performance of the DFT + U method
for metals. When computing transition metals with the DFT +U
approach, they observed a shift of the d-band to lower energies,
comparing to the experimental XPS spectra. Interestingly, they
found a very similar behavior when hybrid functionals (like
PBE0) were applied. As mentioned, this behavior could be
prevented when the AMF approach is applied. However, Tesch
and Kowalski (2022) also demonstrated the importance of the
projectors of d orbitals for the overall results. When the Wannier
functions-based projectors of the occupancy of d states were
applied, the spurious shift of the d-band was prevented. A
correct description of metal d-bands is extremely important,
since they are often used as descriptors for catalytic activity,
like in the famous d-band model (Hammer and Norskov, 1995;
Ruban et al., 1997).

3.2 Voltage of electrode materials

3.2.1 LiNiO2
Layered oxides are the most widely used electrode

materials in rechargeable lithium-ion batteries. Among them,
LiCoO2 (LCO) is one of the successfully commercialized
cathodes (Blomgren, 2016). However, the increased demand
of cobalt resulted in a high cost of such materials, triggering a
widespread research effort to find alternative cobalt-free cathode
materials, applicable especially for automotive applications
(Olivetti et al., 2017). In the past decades, LiNiO2 (LNO)
has been considered as an alternative cathode material for
rechargeable lithium batteries. This is because of its high
availability and associated low cost, as well as safety and
energy-density when compared to the commercial cobalt
counterpart (Kalyani and Kalaiselvi, 2005; Mukai et al., 2010).
If accurately described by first principles methods, a valuable,
molecular-level insight into the properties that determine
the cycle stability and charge capacity, when these materials
are used in electrochemical compounds, could be obtained
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TABLE 1 The Hubbard U parameter and the band gap values (direct band gap) of CoO and NiO compounds computed with different methods, and
measured.We note that for the two compounds we obtained the same Hubbard U parameter values with both considered d orbitals projector types.

Compound Value of Hubbard U (eV) DFT + U DFT + U(WF) exp

CoO 7.6 2.9 4.7 2.7–5.4a

NiO 6.7 3.2 3.5 3.6–4.3b

a(Anisimov et al., 1990; Gillen and Robertson, 2013), b(Gillen and Robertson, 2013; Malik et al., 2020).

TABLE 2 The occupancies of 3d orbitals obtained with the atomic orbital- andWannier functions (WF)-based projectors. The resulting number of d
electrons is reported in the last column.

element spin d1 d2 d3 d4 d5 d electrons

Co ↑ 0.991 0.991 0.999 1.000 1.000 7.4

↓ 0.151 0.151 0.578 0.578 0.992

Co (WF) ↑ 0.992 0.992 0.997 0.998 0.998 7.0

↓ 0.005 0.005 0.005 0.996 0.996

Ni ↑ 0.998 0.998 1.001 1.001 1.001 8.4

↓ 0.203 0.203 0.999 0.999 0.999

Ni (WF) ↑ 0.992 0.992 0.999 0.999 0.999 8.0

↓ 0.009 0.009 0.999 0.999 0.999

FIGURE 1
The partial and total DOSes computed for LNO with the derived (right) and rescaled (left) Hubbard U parameters.

(Chakraborty et al., 2018). There exist several first-principle
studies on LNO [e.g., Yoshida et al. (2019); Zhu et al. (2011);
Chen et al. (2011); Mock et al. (2021))]. However, DFT fails
to correctly predict the electronic structure of these systems:
the band gap is severely underestimated and oxidation
states of cations are incorrectly described (Pavarini et al.,
2012).

The DFT + U method improves the materials description
in the outlined aspects (Seo et al., 2015; Kowalski et al., 2021).
However, even this correction can fail for the TM elements
with more than five d-electrons, such as iron or nickel
(Kowalski et al., 2021). The description of d-electrons in nickel
can be further improved by representing the orbitals with
strongly correlated electrons with Wannier-type functions

(Marzari et al., 2012; Gu et al., 2020; Kowalski et al., 2021;
Murphy et al., 2021).

Here, we computed the Hubbard U parameter for Ni in the
layered rhombohedral (R ̄3m) structure and obtained the value
of 7.96 eV. It is well known that LCO has a stronger covalency
compared to CoO, which induces less charge localization on the
TM (van Elp et al., 1991; Galakhov et al., 1996). Seo et al. (2015)
studied the LCO and LNO compounds with first-principle
calculation using the HSE06 hybrid functional and showed that
the optimal exact exchange admixing parameter α for LCO
and LNO is substantially lower than the default one (α = 0.25),
namely 0.17 for LCO and 0.18 for LNO. We assume here that the
strong covalency in LCO and LNO will also affect the derived
Hubbard U parameter and that the more realistic value should
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FIGURE 2
Computed specific voltage of LixNiO2 as a function of Li content x.

be these rescaled to U = 0.18/0.25 ⋅ 7.96 eV = 5.73 eV. As shown
in Figure 1, comparing to the derived U parameter, the rescaled
parameter describes more accurately the density of states of
LiNiO2 (Chakraborty et al., 2018).

In order to track the effect of delithiation, series of LixNiO2
compounds was computed with different Li concentration,
namely with x = 1.00, 0.75, 0.50, 0.25 and 0.00. The geometries
were relaxed and the Hubbard U parameter was computed
and rescaled for all the considered structures. Beyond the
expected oxidation of Ni3+ into Ni4+ (three atoms at a time
with increasing Li content), no disproportionation of Ni3+ into
Ni2+ and Ni4+ species was observed during delithiation process,
after wannierization scheme was applied. This suggests that the
instability of Ni4+ reported in literature is due to other chemical
forces during the synthesis of the material rather than to an
inherent instability of the final structure itself (Li et al., 2022).
The DFT + U(WF) method resulted in overall more stable
structures, lower in energy by at least 10 kJ/mol, and the correct
occupations of d orbitals, as in the case of NiO and CoO.

The intercalation voltage was estimated using standard
approach (Aydinol et al., 1997; Dixit et al., 2016):

V = −
[E(Lix+dxNiO2)] − [E(LixNiO2) + dx ⋅E(Libcc)]

dx
, (2)

with dx = 0.25 as a step change of Li content, E (LixNiO2) the
total energy per formula unit at Li content x, and E (Libcc) the
total energy per formula unit of Li in the bulkmaterial. As shown
in Figure 2, the average calculated value of 4.17 eV is in good
agreement with the measured value (Ohzuku et al., 1993).

In order to test the performance of the applied method for
predicting the formation enthalpy of LNO, we also computed the
Li2O and NiO compounds, and the molecular O2. Assuming the
following LNO formation reaction:

0.5 Li2O+NiO+ 0.25O2→ LiNiO2, (3)

we estimate the formation energy of LNO from oxide to be
65.12, kJ/mol. When the entropy of gas phase (oxygen) is

FIGURE 3
The Hubbard U parameter obtained with the linear response
approach as a function of Li content. The linear fit to the data is
presented in upper right corner.

considered (S = 205 J/mol/K at 293 K), the resulting free energy
of formation is 50.31, kJ/mol, is in good agreement with the
measured value of 53.35, kJ/mol (Wang and Navrotsky, 2004).

During the delithiation process, as a result of oxidation of
Ni atoms, removal of Li causes a linear increase of the Hubbard
parameter U (Figure 3). Such a dependence of the Hubbard U
parameter on the oxidation state is consistent with our previous
studies [e.g., Beridze et al. (2016); Beridze and Kowalski (2014);
Kowalski et al. (2021)]. The change in the oxidation state of Ni
from + 3 to + 4 results in change in the DOS and the band gap
(Figure 4), and in shortening of the Ni-Ni, Ni-O and O-O bond
lengths, and increase of Ni-Li distances, as shown in Table 3.
The cell parameters of the optimized supercell show excellent
agreement with the crystallographic data.

It is worth noting that, while the applied Wannierization
scheme contributes to the correct description of the oxidation
states of Ni cations, it also replicates the small experimental
band gap of 0.4 eV in LiNiO2 (Laubach et al., 2009; Shishkin
and Sato, 2016), as indicated in Figure 4. On the other hand,
in most of the computational studies, perfect-layered LNO
was computed as half-metal even with the computationally
intensive hybrid functionals (Laubach et al., 2009; Shishkin and
Sato, 2016; Chakraborty et al., 2018). In our studies, the accurate
computation of occupation of d orbitals was prioritized, as the
changes in the oxidation state of Ni are crucial to correctly
describe the delithiation process.

3.2.2 LiCoO2
Similar computations were performed for LiCoO2 in the

layered rhombohedral (R ̄3m) structure. We derived a Hubbard
U parameter of 6.8 eV, which for the same reason as in the
case of LNO, we assume to be overestimated. The computed
Hubbard U parameter value was rescaled, taking the optimal
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FIGURE 4
The partial and total DOSes of LixNiO2 with x = 0.75 (left) and 0.25 (right). The overlap between Ni d-bands and O p-bands is more pronounced
upon delithiation, as expected.

TABLE 3 Different bond lengths computed for LNO compound (LixNiO2)
at different delithiation level. The experimental data are those of
Molenda et al. (2002).

Bond Type Li content (x) Distance (Å)

Ni-Ni x = 1.00 2.8726

0.75 2.8841

0.50 2.8333

0.25 2.8104

0.00 2.7992

Ni-O x = 1.00 1.9496

0.75 1.9504

0.50 1.9292

0.25 1.8710

0.00 1.8758

Ni-Li x = 1.00 2.8917

0.75 2.8920

0.50 2.9181

0.25 2.9677

0.00 –

O-O x = 1.00 2.9203

0.75 2.8999

0.50 2.8529

0.25 2.8122

0.00 2.7992

Cell Parameter computed exp

a (Å) 2.873 2.880

c (Å) 14.214 14.180

V (Å3) 101.58 101.86

TABLE 4 The band Gap of LCO computed with different methods and U
parameters (computed and rescaled). The values are provided in eV.

Value of Hubbard U DFT + U DFT + U(WF)

4.6 (rescaled) 2.4 3.4

6.8 2.8 4.4

mixing parameter α for the exact Hartree-Fock exchange as a
reference (Seo et al., 2015).This procedure gave a value of 4.6 eV.
The computed band gaps with different U parameter values and
with the DFT + U and DFT + U(WF) methods are shown
in Table 4. A good agreement with the experimental value of
2.7 eV (Galakhov et al., 1996) is obtained with the rescaled value
of Hubbard U parameter.

Applying the same computational approach as for LNO,
we also computed the formation energy of LCO from oxides,
following the reaction:

0.5 Li2O+CoO+ 0.25O2→ LiCoO2. (4)

We obtained the value of 128.50 kJ/mol. Though less
accurate than the one obtained for LNO, the computed LCO
formation enthalpy from oxides shows reasonable agreement
with the experimental value of 140.18 kJ/mol (Wang and
Navrotsky, 2004; Takahashi et al., 2007).

3.3 Thermodynamic aspects of energy
materials

3.3.1 Am-doped U3O8
Spent nuclear fuel contains significant amount of fission

products or minor actinides (Np, Am, Cm), elements
which can alter the material structure and performance
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TABLE 5 The Hubbard U parameters derived for Am doped U3O8
compounds. The values are given in eV.

Cation C2mm P62m

U(VI) 3.2 3.0

U(V) 2.7 2.8

Am(III) 5.0 5.1

FIGURE 5
The computed difference in enthalpy between the C2mm and
P62m phases of U3O8. The predicted phase transition is at the
content of Am of 1.2%.

(Bosbach et al., 2020). Doping of a phase with an element
of other oxidation state can trigger a phase transition and
stabilization of the new phase. This is for instance the case of
yttria-stabilized zirconia, where doping of zirconium dioxide
phase with ∼8% of tri-valent element like yttrium, stabilizes the
cubic phase of that compound, which is one of the fastest known
ionic conductors (Kowalski et al., 2021). Here we investigate
the phase transition upon doping U3O8 phase (realized as
a phase with the space group C2mm) with small amount
of Am. This system has been investigated experimentally by
Caisso et al. (2016). They found stabilization of a phase with the
space group P62m phase upon doping with ∼10% of Am. Here
we confirm this finding with the aid of atomistic simulations.

First, we computed the HubbardU parameters for U and Am
in both structures. The resulting values are reported in Table 5.
These are consistent with our previous studies (Beridze and
Kowalski, 2014; Beridze et al., 2016). We notice, however, that
the values derived for U species in U3O8 are larger than the
ones obtained in Kvashnina et al. (2018). This is because in those
studies another structure of U3O8 was investigated.

The computed formation enthalpy difference between the
phases with space groups P62m and C2mm as a function
of Am content are shown in Figure 5. Following studies of
Caisso et al. (2016) we assumed that Am is incorporated as
+3 species on U +5 site and the charge is compensated by the

TABLE 6 The computed andmeasured volumes of pure and Am doped
U3O8 (at Am/U ratio of 1/9). Themeasured data are those of
Caisso et al. (2016). The values are in Å3 per two formula units.

Phase Computed Measured

U3O8 335.6 333.0

Am:U3O8 341.7 (+6.1) 338.1 (+5.1)

conversion of the two U +5 species to the oxidation state of +6.
We predict the phase transition at very low content of Am of
∼1.2%. It is thus not surprising that Caisso et al. (2016)measured
the P62m phase at higher Am content of ∼10%. The obtained
volumes of pure and Am doped U3O8 are also well consistent
with the measurements of Caisso et al. (2016) (see Table 6). The
computed values are within 1% of those measured, and the
computed increase in volume upon doping with Am is also well
consistent with the measured values.

3.3.2 Solvent effects on surface chemistry
To show the importance of solvation for computation of

surface electrochemical pathways, as a test case we investigated
the effect of explicit and implicit solvation on the CO2 reduction
reaction towards CO and HCOOH on the Pb(100) surface. We
considered the following reaction pathways for the formation of
CO and HCOOH species:

CO2 (g) +H+ + e−→ HCOO* (5)

HCOO* +H+ + e−→ HCOOH (g) (6)

CO2 (g) +H+ + e−→ COOH* (7)

COOH* +H+ + e−→ CO (g) +H2O (8)

We assumed that the CO2 forms either a HCOO*
intermediate, which reacts further to formic acid (HCOOH),
or COOH* which further reacts to CO and water.

Figure 6 shows the energy diagram for both pathways
computed in three ways: (M1) assuming no solvation,
(M2) in the presence of explicit solvation and (M3) by
applying the continuum solvation model. In the approach
M2, the aqueous phase was modeled by explicitly adding
12 water molecules. The case M3 was computed using the
implicit solvation model implemented in VASPsol method
(Mathew et al., 2019). The adsorption energies for HCOO*
and COOH* intermediates computed with M1 are -0.45 eV
and 0.73 eV, respectively. In the presence of implicit solvation,
the HCOO* and COOH* adsorption energy increases to
−0.61 eV and 0.52 eV. These indicated bonded HCOO* and
unbonded COOH*. Applying method M2, the adsorption
energy of the two species increases by 0.27 eV and 1.00 eV,
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FIGURE 6
Reaction energy diagram for CO2 reduction towards HCOOH and
CO on the Pb(100) surface, computed in vacuum as well as with
the implicit/explicit/hybrid solvation models.

respectively. These results show the importance of including
solvent effects, when computing chemical pathways on metal
surfaces.

The method M3 is a fast way to include solvent effects in the
DFT calculations. In the considered cases, it results in increase
in the adsorption energies, but significantly smaller than the
explicit solvation schemes. The adsorption energies are changing
by 0.1 eV only.

In Figure 6, we also show the results of hybrid solvation
approach, where on top of the 12 explicit water molecules we
have applied the implicit solvation, to preserve continuity of the
solvent medium. While for the HCOO* intermediate, the effect
of implicit solvation leads to an insignificant change, COOH* is
stabilized by more than 0.2 eV. This shows that for the adsorbed
species, the effect of first hydration shell dominates the solvent
effect on the bonding energy between the adsorbate and themetal
surface. In case of the weak bonding, the long-range interaction
between the species and the solvent plays an important
role.

3.3.3 Metal interfaces with the ESM-RISM
approach

Simulation of electrochemical solid/liquid interfaces at an
applied electrode potential is a challenge in computational
electrochemistry (Schwarz and Sundararaman, 2020). It
requires an approach that can consistently describe charging
of the electrode as well as effects of an electrolyte solution.
Both conditions are realized by the DFT-based effective
screening medium reference interaction site method (ESM-
RISM) (Nishihara and Otani, 2017). The RISM (Chandler
and Andersen, 1972; Hansen and McDonald, 2013) is an
implicit solvent model that relies on the classical theory
of liquids. It computes in a statistical way correlations
between electrolyte species and thus takes into account

the electrolyte structure. Electrolyte–electrolyte as well
as electrode–electrolyte interactions are described by the
parameterized interparticle interaction potentials. The method
requires a choice of classical water model for description of the
aqueous electrolyte solution, a set of Lennard–Jones parameters
for the electrode–electrolyte interaction and the partitioning
of the system into quantum-mechanically and classically
treated parts (i.e., treatment of near-surface water layers at
the level of DFT) (Nishihara and Otani, 2017; Tesch et al.,
2021).

We applied this method in our previous study for
computation of the partially oxidized Pt(111)/electrolyte
interface (Tesch et al., 2021). Taking into account the potential-
dependent oxygen coverage of Pt(111) surface, we were able
to accurately describe the chemisorption and charging state of
the interface, correctly reproducing the chemisorption-induced
non-monotonic charging relation of this specific interface [see
Figure 8 of Tesch et al. (2021)]. Here, we applied the ESM-
RISM approach to model the interface between the Au(111)
electrode and an 0.1 M aqueous HCl solution. Figure 7 shows
the obtained interface structure of the electrolyte solution as
represented by the density distribution functions of water
and electrolyte ions species. The near-surface structure of
water solvent shows alternating shells of water, with the main
peaks positions that agree well with the AIMD simulations
(Goldsmith et al., 2021). The effects of the applied potential
and the resulting surface charge on excess or depletion of
ions near the interface, as expected from the electrostatic
arguments, are clearly seen. This indicates that the electrode
charge is correctly balanced by the arrangement of electrolyte
ions. The relation between the surface charge and the applied
potential is linear (see Figure 8). This is expected because
the Au(111) surface under these conditions (the considered
potential range) is characterized by the formation of double
layer and is not covered by adsorbed species, as indicated by
the cyclic voltammetry (Hamelin, 1996). Other computational
studies have derived very similar charging relation (Letchworth-
Weaver and Arias (2012); Goldsmith et al. (2021), see in
Figure 8). The trends are consistent with the experimental
findings of linearly decreasing (i.e. opposite) charge at
the outer Helmholtz plane (Saha and Zenyuk, 2021). The
double layer capacitance, as derived from the slope of linear
fit, is 23.4 μF/cm2 and compares well to the experimental
(Vasiljevic et al., 2004; Garlyyev et al., 2018) and other
computational (Kastlunger et al., 2018; Hörmann et al., 2019;
Goldsmith et al., 2021) results.

3.3.4 Entropy of solvation
The reliable computation of surface chemical reactions

at electrochemical conditions requires correct estimates of
thermodynamic parameters. In particular, entropy effects
are usually omitted in atomistic modeling studies [e.g.,
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FIGURE 7
Density profiles as a function of distance from the Au(111) surface. Different panels show results for: (A) water molecules, (B) H3O

+ electrolyte ions
and (C) Cl− electrolyte ions. Different lines represent the results computed with the ESM–RISM approach at different electrode potentials. The
potential of zero charge (pzc) is located at 0.5 V vs. SHE.

FIGURE 8
The computed surface charge vs. the applied electrode potential
for the Au(111)/electrolyte interface in 0.1 M aq. HCl solution (our
data), in pure water by Goldsmith et al. (2021) and in an electrolyte
of 1 M ionic strength by Letchworth-Weaver and Arias (2012). The
dashed red line represents a linear fit to our data. The vertical
dashed line shows the pzc assumed here [0.5 V vs. SHE
(Le et al., 2017)].

Klinkova et al. (2016))]. However, most of the electrocatalytic
reactions on a solid catalyst surface happen in the presence
of a dense electrolyte. The entropic contributions from
the solvation effects can have a non-negligible effect on
the reactions free energy. There are ways to compute the
entropy of species in a solvent phase. These are based
either on the theoretical consideration [e.g., Garza (2019)]
or simulation based approaches, such as thermodynamic
integration (Baranyai, 2018) or analysis of the velocity
autocorrelation function (Pascal et al., 2011). Garza (2019)
proposed a simplified approach to the computation of entropy
of liquid phases and obtained agreements with the measured
values within 12 J/mol/K. Regarding entropy at the interfaces,

TABLE 7 Standardmolar entropies of HCOOH in bulk solution and at
the Pb(100) and Ag (100) surfaces. All entropy values except the
experimental value are calculated using the 2PTmethod.

Location of HCOOH Standard molar entropy [J/mol K]

Gas phase (exp) 248.7a

Bulk (exp) 131.8b

Bulk 124.1

Pb(100) 100.7

Ag (100) 91.6

Ref: aMillikan and Pitzer. (1957), bStout and Fisher. (1941).

Jung et al. (2021) applied the two-phase thermodynamics
(2PT) approach (Lin et al., 2010; 2003; Pascal et al., 2011) and
computed entropy of aqueous phase as a function of distance
from the Pt(111) interface. Here we applied the 2PT approach to
evaluate different entropy contributions for HCOOH molecules
submerged in aqueous phase, in the bulk and at the Pb(100)
and Ag (100) surfaces. The so estimated total entropy is given in
Table 7.

The computed molar entropy of HCOOH in bulk water is in
good agreement with the experimental values. For HCOOH on
Pb(100) surface and Ag (100) surface, we observe a reduction in
entropy by∼30 J/mol/K.However, we observe a slightly different
magnitude in entropy reduction at the Ag (100) and Pb(100)
surfaces, with the Ag (100) surface causing larger reduction in
entropy. This can be explained by more hydrophilic character of
Ag (100) surface than that of Pb(100), and thus easier movement
of HCOOH when adsorbed in the latter case. The reduction
of ∼30 J/mol/K, moving a species from the bulk water to the
metal surface, contributes to the reaction free energy by∼0.1 eV,
which is a non-negligible effect. This indicates necessity of
accounting for the solvation entropy effects when computing the
electrochemical reactions under realistic reaction conditions.
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4 Conclusion

In this contribution we presented an overview of the
atomistic modeling research on energy materials we have
performed in the last decade. We focused on discussing various
challenges associated with the computation of molecular-level
materials properties. In particular, we discussed the computation
of electronic structure, phase transitions, surface chemistry
and electrochemical interfaces, focusing on accounting for the
presence of electrolyte phase. For the class of electrode materials
we show the performance of the parameter-free DFT + U
approach as well as the importance of application of realistic
projectors for counting the occupancy of orbitals containing
strongly correlated d and f electrons for obtaining correct
description of electronic structure, and the related parameters,
such as formation energies, specific voltage or phase stability.
Materials important for electrochemistry and energy sector, such
as LCO, LNO, U3O8 or metal surfaces have been considered,
with some parameters essential for understanding of their
performance computed. Last but not least, we discussed the
importance of entropic effects on the computational surface
(electro) chemistry.

Besides discussing various successful applications of
atomistic modeling to computation of atomic-scale properties
of energy materials, we outlined challenges encountered by
computational electrochemistry. We highlight the importance
of thoughtful analysis of the computed results vs. the available
experimental data. Overcoming the challenges faced by
the atomistic simulations of energy materials will lead to
accurate, simulation-based materials design, that will facilitate
development of more efficient materials for fulfilling future
energy demands.
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The future role ofMFCs in biomass
energy

Ioannis Ieropoulos1* and John Greenman2
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Microbial fuel cells (MFC) are an emerging green technology which offers several
comparative advantages over other technologies for utilizing biomass. It is a
technology that treats (cleans) wet organic waste, converting chemical energy
to electricity that is used for connected peripherals and target applications. The
main advantage is the technology’s ability to utilisewet biomass in suspension or in
solution (i.e., too wet to burn) and change the biomass directly into bioenergy in
the form of electricity. All other technologies either combust the biomass directly
(e.g., wood fuel) or change the biomass into refined fuels which are then
combusted or fed to chemical fuel cells to generate heat or electricity.
Excluding methane production from biomass, and fermentation leading to
hydrogen production, all other biomass/biofuel technologies utilize dry plant
matter, which mainly consists of cellulose or lignocellulose and they cannot
directly utilize sludge or slurries of organic detritus material. The substrates
used for MFCs are not traditionally made into organic fuels, as with other
biomass technologies, but are used directly as fuel, recasting the “waste”
suspensions and solutions, and promoting them into fuels themselves. To a
stack of MFCs, a polluted river, landfill leachate or farmland run-off, can all be
reassigned as fuel. This wet fuel is widespread around the planet, the amounts
found and the energy contained within are significant, and the cost as a fuel is
close to zero. This review gives a general overview of biomass energy along with
extraction techniques and compares advantages and disadvantages of MFCs with
other biomass technologies for producing electrical energy.
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GRAPHICAL ABSTRACT

Introduction

Plants and photosynthetic microorganisms are examples of
autotrophs that use sunlight to make their own organic molecules
by fixing carbon dioxide. Because they make their own food by
photosynthesis, they are the main form of primary producers of
biomass, acting as the conduit for energy and bio-matter to enter
food chains or webs (Mestre et al., 2022). A food chain describes which
species feed off which other species whilst a food web describes the food
chains that contribute to making a whole ecosystem. The position of a
species within an ecosystem is referred to as a trophic level in the web or
food chain. The base of the trophic pyramid is made from primary
producers, these being autotrophic species that are nearly always
photosynthetic (plants, bacteria or algae). The next level above the
primary producers are the primary consumers, typically herbivores.
Further levels include secondary and then tertiary consumers typically
omnivores and/or carnivores, with the top level being termed the apex
predators. Each food chain is typically composed of five or six trophic
levels. Trophic level zero refers to species that do not fit into the existing
trophic levels. These species are the detritivores or scavengers. They play
a vital role in the flow of carbon and energy through an ecosystem by
decomposing dead organisms into their constituent organic or
inorganic materials, which become available as nutrients to the
primary producers. The detritivores or scavengers include
earthworms, termites, and millipedes although most decomposers
are fungi, protozoa and bacteria. Bacteria are the energy conversion
drivers inside microbial fuel cells (MFCs), which when employed as
integrated living power sources in robots (Ieropoulos, Greenman and
Melhuish, 2010), introduce a new hybrid system, i.e., bio-robots or
“Symbots,” on trophic level zero.

Allometric scaling

All lifeforms are subject to allometric scaling, which also
determines their position in an ecosystem. With respect to

primary and secondary biomass, smaller organisms (whether
multicellular or unicellular) grow faster than larger lifeforms. The
study of the laws of growth rate versus size originate from the
allometric formula by Otto Snell (Snell, 1892) although the term
“allometric scaling” was introduced by Huxley and Teissier (1936)
following the work of Kleiber (1932). The concept of allometry
extends to all forms of life, although the relationship between growth
rate and size does not apply uniformly, in that the relationship for
prokaryotes is superlinear, for protists is linear and for metazoa is
sublinear (Delong et al., 2010). As recently reported, allometric
scaling can also be applied to hybrid systems, i.e., non-living vessels
containing living microorganisms; here we make specific reference
to Microbial Fuel Cells (Greenman and Ieropoulos, 2017).
Allometric scaling is the metric by which ecosystems operate and
its significance will also be discussed in the Conclusion section.

With regard to biomass transformation, a wide range of
processes can be applied to plants, wood and waste including
direct combustion, co-firing, gasification, pyrolysis, fermentation
and anaerobic decomposition. However, all processes involving heat
or combustion are inefficient if the biomass is too wet, and has been
the motivation for developing efficient biotransformation
techniques, which are listed and discussed below.

Biomass and biofuels

Biomass generation removes an equivalent amount of CO2 from
the atmosphere to that emitted from combustion, which means that
in theory, this is truly a net-zero process (World Bioenergy
Association, 2019). Fossil fuel combustion for heat, electricity,
and transportation fuels, contributed ca. 80% of global GHG
emissions in 2017 (World Bioenergy Association, 2019).
Bioenergy production worldwide reached nearly 584 TWh in
2020 (Black et al., 2021). Globally in 2019, bioenergy accounted
for about 11.6% of total energy consumption. With regard to the
bioenergy-biomass sector, the largest source is from burning wood
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(or wood related products, wood chips, sawdust, coppiced branches,
recycled cardboard and paper) allowing energy to be extracted by
combustion with oxygen, from small fires to large incinerators. The
energy is released in the form of heat, which is converted to
electricity through inefficient generators. Nevertheless, all biomass
reserves are potentially renewable, remove CO2 and produce O2,
although slow growing tree species are not efficient for biomass
growth, as their primary purpose is fruit production for human and
animal consumption. Micro-algae, microbial sludge and microbial
cultures have much higher productivity per unit of biomass than
types of grass or plant and are totally renewable. Plants, wood, and
waste are the most common forms of biomass material for
producing energy. These types of biomass feedstock can be
combusted to create heat (direct energy) which via steam
production (as the driving force for turbines) can be used to
produce electricity. These biomass substrates can also be
processed into biofuels (indirect energy).

Biomass mainly in the form of plants and algae rather than dead
animal matter, is perhaps the only renewable source that can be
converted into ethanol and/or biodiesel. These two
biofuels—currently produced by gasification in the US, Austria
and Sweden-are currently used for transportation. Based mainly
on the biomass, biofuels are classified broadly into three major
generations (Lee and Lavoie, 2013). Biofuels of the first-generation
come from the fermentation of carbohydrates (sugar beet,
sugarcane, corn starch or wheat) to give bioethanol, an alcoholic
fuel that when refined can be used directly in a conventional
chemical fuel cell to produce electricity or serve as an additive to
gasoline. The problem with first-generation fuels is that they are
made from biomass that is generally edible by humans or animals.
Ethanol requires significant land use; an acre of corn, for example,
produces ~400 gallons of ethanol but limits the use of this land to
only corn, which in turn implies intensive use of pesticides. Biodiesel
is produced from oily plants and seeds, including soy, palm and
canola. Alternatively, used edible oils, such as vegetable oil or
recycled cooking fat, can also be used following esterification and
transesterification using methanol.

Second-generation biofuels, can be produced from non-food-
based biomass such as lignocellulosic agricultural waste and
municipal waste. This is an advantage shadowed by economic
uncertainty and technical complexity of the hydrolysis process
required to overcome the chemical barriers and structural rigidity
of lignocellulosic biomass. Lignin and cellulose have been reported
as co-substrates in Microbial Fuel Cells for energy and biofuel
generation, which gives the technology a competitive advantage
and provides a possible alternative to the aforementioned challenges.
When using the right bacteria, the otherwise recalcitrant
lignocellulose is efficiently broken down.

The costs associated with bioethanol production depend mainly
on the costs of feedstock substrates which give different yields
depending on (a) the species of microbes chosen for the
fermentation reactions (b) the addition of cellulase for enzymatic
hydrolysis of cellulose into sugars, and (c) the nature of the pre-
treatment (e.g., yield of sugars available for fermentation). Most
current ethanol production is based on corn, starch and sugars but
their use may not be desirable due to their edible value. In contrast,
the straw of rice, wheat and corn as well as bagasse are now more
commonplace because they contain cellulose, hemicellulose and

lignin rather than edible sugars. In theory, there is sufficient rice
straw in the world to produce 205 billion litres of bioethanol per
year. Physicochemical treatment may include milling, grinding,
cutting, thermal heating, microwaving, steam explosion,
pyrolysing, chemical pre-treatment, wet oxidation, acid or alkali
pre-treatment and the current cost of ethanol is $3.93/gallon,
compared to $4.70/gallon for petrol (Sondhi et al., 2020).

Algae

The third generation of biofuels is based on photosynthetic
organisms that do not require land but live in water, hydroponically,
producing new or “primary” biomass. Microalgae can thrive in non-
fresh i.e., salty, brackish water, contaminated with municipal,
agricultural, industrial or even nuclear run-off. Microalgae are
multiple times more efficient than terrestrial crops used for
producing fuel. Third generation biofuels are also favoured
because of the high growth rate of microalgae (vis allometric
scaling) compared to any larger terrestrial plant; only microalgae
can double their biomass every 1–2 days. The productivity is high
compared to even the fastest of grass species. Moreover, they can
grow in lagoons in marginal areas, which does not impose on the use
of arable land for the production of food. The problem with
microalgae lies when one needs a particular strain or species,
especially strains that have been genetically modified (GM).
Examples include strains capable of producing a high lipid
content to make bio-diesel, and strains capable of synthesizing
sugars, lactate and food supplements such as astaxanthin via
photosynthesis (Shah et al., 2016). In these cases, they must be
grown as a strict monoculture (i.e., be free of contamination) and (in
GM strains) following lipid extraction, their DNA must be rendered
before safe disposal or further utilization of cell debris. These steps
can be very energy intensive, adding to the costs of production
however, not entirely impossible. Sun et al. (2020) reported high
growth rates for Synechococcus elongatus UTEX 2973, in
photobioreactor volumes ranging from 50 mL to 100 L under
non-sterile conditions, without contamination.

Algae (macro- and micro-algae) carry enormous potential for
bio (mass)-energy. Seaweed or Chlorella, photosynthesise up to 30x
faster than crops used for food or fuel, and do not impose on either
land or freshwater. Although algae release carbon dioxide when
burned, the amount is never more than what they fixed from carbon
dioxide in the first place and the biomass can be replenished as a
living organism through cultivation, releasing oxygen and absorbing
pollutants and this would require less land than that needed for
harvesting corn. Algae’s high-value lipids can be converted to
biofuel, which has been the main objective in the race for
alternative fuels, necessitating genetic modification of certain
species for ever higher lipid content. Algal growth requires
carbon dioxide, making the process an excellent CO2 scrubber.
When algae are put under certain stress conditions to produce
the desired by-product (for example, Haematococcus pluvialis
producing astaxanthin; Shah et al., 2016), this comes at a high
cost and still quite far from the current price of biodiesel (not from
algae) of $5.34/gallon (US DoE, 2022).

Algal biodiesel (third-generation) is derived from microalgae or
photosynthetic bacteria and has been considered as a viable option
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to the problem of energy insecurity and climate change and
removing the need for fossil fuels. This is particularly important
when taking into account that for every tonne of algal biomass
produced, approximately 1.83 tonnes of carbon dioxide are fixed,
whereas petroleum diesel carries a massive negative balance; this is a
significant competitive advantage in the context of GHG
externalities (Um and Kim, 2009).

The commercialisation of algal biomass production via
aquafarming faces significant economic challenges. The current
annual production is around 38 million litres (Karthikeyan et al.,
2020). Co-production of microalgae is possible, whilst treating
wastewater, or for biogas upgrading, and whilst producing value-
added products (VAPs) including exopolysaccharides, protein or the
pharmaceutical, astaxanthin. This can drastically reduce biodiesel
production costs. For example, the co-production of astaxanthin
and biolipids for diesel can reduce the cost of biodiesel production
from $3.90 to $0.54/L (Rafa et al., 2021). The economic analysis
reveals that although there are technical challenges, the strategy is
cost-effective; both feasible and profitable. The cost of producing
microalgal biodiesel can be lowered to $0.73/kg dry weight when
cultivated in wastewater and $0.54/L when co-produced with
astaxanthin (Rafa et al., 2021). Microalgae-based value-added
products are estimated to rise to $53.43 billion in 2026 (Rahman,
2020). The recent (2022–2023) increase in global fossil fuel prices is
helping to reduce the gap in production costs that persist between
biodiesel and petroleum diesel.

Biomass alongside other combustible renewable sources are
promising alternatives, being the fourth largest energy source
behind fossil fuels (Lam et al., 2019; Hoang et al., 2022), with a
good capacity to address global energy needs (Azevedo et al., 2019).
On the other hand, various types of biodiesel (Mofijur et al., 2021),
mostly produced from biomass sources via transesterification
(Hazrat et al., 2022), make up >80% of total biofuel production
(Yin et al., 2020), but the real advantages can be gained from
microalgal produced biodiesel. This is due to the
microorganisms’ ability to double biomass, through efficient
sunlight, CO2 and water utilisation that results in rapid rates of
lipid accumulation for harvesting all year-round (Mubarak et al.,
2019; Yin et al., 2020). Table 1 shows the advantages and challenges
of microalgae-based fuel.

Cost reduction in microalgal biodiesel production are constantly
developing whether these are improvements in bioreactor design,

optimisation of the physicochemical conditions for cultivation,
choice in the strains and species that are supplied as inoculum
and insights into the processes and factors that affect yield, efficient
harvesting and extraction methods (Peng et al., 2020; Ananthi et al.,
2021; Rafa et al., 2021). Although many cost reduction strategies
have been applied to algal cultivation which can make up a
significant proportion of the cost, other areas, particularly pre-
treatment, harvesting and dewatering have also been considered
(Kang et al., 2019). Scientists worldwide have been elaborating the
case for fuels derived from microalgae to close knowledge gaps; in
particular Um and Kim (Um and Kim, 2009) and Rafa et al. (Rafa
et al., 2021).

Biomethane from biomass

When biomass decays anaerobically it has the tendency to
produce (bio)-methane, following a chain of reactions involving
initially hydrolysis, then acidogenesis and acetogenesis and finally
methanogenesis; this biomethane can replace methane obtained
from fossil fuels. However, methane is a very potent greenhouse
gas and any leakage to the atmosphere is a problem. The first
description of an anaerobic methane digester was in 1859, more than
160 years ago, in India (Marsh, 2008). Despite it being one of the
earliest methods for producing a biofuel, it is not classed as a first-
generation biofuel because it does not utilise edible plants. It can
however be classed as a second-generation biofuel because it uses
biomass sources such as lignocellulosic agricultural and municipal
waste which are non-food-based. Anaerobic digesters were
originally designed for sewage sludge and manure, but units
nowadays operate with two or more types of feedstocks, e.g.,
dairy manure mixed with grass and corn (found on the land)
which can significantly increase gas production (Ma et al., 2017)
as can the addition of kitchen grease (fats and oils) collected from
restaurants or household waste. Animal fat and abattoir waste can
also be used.

Microbial anaerobic digestion produces methane and carbon
dioxide that can be purified into biosynthetic natural gas. This can
then be pressurised into compressed natural gas (CNG) or liquefied
natural gas (LNG) for use in vehicles or injected into the pipeline
network. In general terms, methanogenesis is a slow process,
requiring a retention time of 14–20 days in an anaerobic digester.

TABLE 1 Advantages and challenges (at present) for microalgae-based fuel.

Advantages Challenges

Sustainable, renewable and environmentally friendly resources Still use fossil fuel-based techniques for manufacturing bioreactors, equipment

Non-toxic chemicals; and no competition with edible food Other competing technologies

High photosynthetic energy conversion efficiency Pre-treatment is required to process the biomass

High productivity, rapid growth rate high biomass yield Low lipid extraction efficiency

Ability to adapt in a wide range of climatic conditions High initial capital investment

Abundant and relatively cheap nutrient resources High biofuel production cost

Can grow in arable or marginal land Nutrient-rich water or fertilisers are needed for algal cultivation

Biodegradable products with moderately fast bioremediation Commercialisation
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The process is sensitive to both high and low pH levels, with the
optimum being between pH 6.5 and pH 8.0, as well as to many other
inhibitors, especially oxygen. Substrates must have a high carbon to
nitrogen (C:N) ratio, which usually results in N-rich feedstock
having to be mixed with substrates high in C. Conversion yields
can be up to 75% (usually stays between 60% and 70%) of which
50%–75% is CH4, 25%–45%CO2, 2%–8%water vapour and traces of
H2S, H2, N2, NH3, and O2. This biogas mixture will require
reforming to remove particularly H2S and siloxanes, unless it is
being used for heat, following combustion. Reformed gas can then be
converted to electricity using steam generation (40%) or methane
fuel cells (45%). The effluent from anaerobic digestion still contains
high COD and therefore requires further treatment and the process
requires energy input for pumping water and gas compression.
According to Bhatt et al. (2020), producing biomethane from
carboxylate utilisation can be equal to or greater than biogas
yield, whilst this is comparable with that of chemical plants,
making this economically viable and environmentally friendly as
it is a waste treatment process.

At present (2023) the price of biomethane can actually be 30%
lower than the current natural gas pricing. Biomethane can be
produced starting from €55/MWh, whereas natural gas costs are
around €80/MWh, without considering CO2 prices (European
Biogas Association, 2023). As a renewable gas this will likely
remain cheaper than natural gas in the short- and long-term.
Methane is a very potent greenhouse gas, more than 80 times the
warming power of carbon dioxide over the first 20 years after it
reaches the atmosphere, so methane emissions (via fossil fuel oil and
gas companies) are problematic in a world trying to be carbon
neutral. The problem of methane emissions is not restricted to the
fossil fuel industries and some research has looked into the
characterisation and assessment of GHG emissions from typical
operational biomethane facilities (Adams and McManus, 2019).
This has revealed that there is a wide degree of variability in
potential emission sources throughout the supply chain and there
are several reasons for this. These include anything from weather,
geological conditions, all the way to farming practice and
experimental/measurement error. Biomethane emissions occur
from crops, fertiliser production and application, the latter
resulting in N2O emission, crop yield, methane leakage,
electricity use, and diesel use. It is therefore important for
biomethane to be utilised locally, where it is produced (just like
hydrogen) to avoid high complex systems of high maintenance
thereby rendering biomethane a viable, low carbon fuel.

Hydrogen

The majority of hydrogen production-as much as 95% - is still
predominantly produced from sources derived from fossil-based
fuels, although there is a wider range of green sources that it could be
produced from [Ferraren-De Cagalitan and Abundo, 2021). A large
part of the industrial hydrogen is obtained from steam-methane
reforming (SMR), while oil and coal gasification (CG) follow closely
behind. The production costs are between 2 and 3 $/kg. These
methods of producing hydrogen also generate greenhouse gases,
which are the main drivers of climate change. Alternative methods
of producing hydrogen arise from biological processes—hence the

name “biohydrogen”—but as with any new technology, this is
currently a more expensive process, costing between 3.7 and 7.02
$/kg for photofermentation and MEC respectfully (Ferraren-De
Cagalitan and Abundo, 2021).

Biohydrogen production

Sustainable, carbon-neutral hydrogen fuel cells are only possible
if they are supplied with renewable hydrogen (Taibi et al., 2018). As
with algal biofuel, hydrogen production rates should be
economically comparable with other sources of hydrogen. There
is a number of different ways of producing biohydrogen, including
dark- and photo-fermentation, direct and indirect biophotolysis and
via microbial electrolysis cells (MECs) and microbial
electrosynthesis cells (MES) (Vasiliadou et al., 2018). The
majority of the relevant literature is on bio-hydrogen from
MECs. This is a good way of recovering nutrients from waste
streams in the cathode chamber, by applying an external
potential (using a power source) to recombine electrons and
protons, coming from the anode, to H2 with the help of a
catalyst. In some cases, phototrophic bacteria are used, which
generate true bio-hydrogen when switching from the Krebs cycle
to the Calvin cycle; this is also a neat way of nitrogen removal
(Vasiliadou et al., 2018). An electrode potential still needs to be
applied in order to help accelerate the otherwise sluggish reactions
(by comparison).

In photo-fermentation, strains of photosynthetic purple non-
sulphur bacteria are employed to convert added organic acids
(carboxylate anaerobic fermentation) to CO2 and H2 under
N-limited nutrient conditions (Sinha and Pandey, 2011; Sağır
and Hallenbeck, 2019; Weber and Lipman, 2019). The naturally
occurring organisms used include Rhodobacter, Rhodobium,
Rhodopseudomonas, and Rhodospirillum strains, which are
capable of transforming a whole list of substrates into H2 across
a wide range of light conditions (Das et al., 2014).
Photofermentation (unlike biophotolysis) does not generate
oxygen which inhibits the H2 production. The yield of hydrogen
is comparable to that of biophotolysis although this depends on the
design of the photo-fermenter, light intensity, types of medium
substrates and species of microorganism (Sağır and Hallenbeck,
2019).

Dark fermentation produces hydrogen in the absence of light. It
has been known for many years that Escherichia coli and other
facultative anaerobes (Alcaligenes, Enterobacter and Citrobacter)
and some strictly anaerobic Clostridium species can ferment
sugar substrates into short chain fatty acids including formic
acid, which in turn is split by the formate hydrogen lyase (FHL)
complex to produce hydrogen (Yoshida et al., 2005). It is well
established that the highest theoretical yield for hydrogen is
4 mol of H2 per mole of glucose, as shown below.

C6H12O6 + 2H2O → 2CH3COOH + 2HCOOH + 2H2

2HCOOH → CO2 + 2H2

Green algae and cyanobacteria can utilise light to break up water
into its constituent components O2 and H2, via direct or indirect
biophotolysis. Direct biophotolysis occurs when green algae such as
Chlamydomonas reinhardtii or subspecies of the Synechocystis

Frontiers in Energy Research frontiersin.org05

Ieropoulos and Greenman 10.3389/fenrg.2023.1108389

34

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1108389


cyanobacterium, photosynthesise, i.e., when oxygen is also produced
(Azwar et al., 2014), which can be explosive. Indirect biophotolysis is
possible whereby certain strains of cyanobacteria can be grown
through two distinct stages (Huesemann et al., 2010) a first stage of
photosynthesis where carbon dioxide and water are converted into
organic molecules some of which are used to make new cell material
and oxygen which is evolved. A second phase (which is light
independent) is then capable of breaking down the organic
molecules into hydrogen, carbon dioxide and other soluble
metabolites (Weber and Lipman, 2019). The advantage of the
indirect method is that the hydrogen is free of oxygen, whereas
the disadvantages are, firstly, the low amounts of H2 produced by
this method and secondly, the need for more complex (and more
expensive) two phase cultivation systems (Ferraren-De Cagalitan
and Abundo, 2021).

Microbial carboxylates

Carboxylates is the collective term for short chain fatty acids
including acetate, propionate, lactate and butyrate. These are the
intended “products” of the system and can be separated and used as
feedstocks for other chemical conversions into a wide range of useful
products (e.g., plastics and liquid fuels). The advantages of the
carboxylate system are that they can cope with a wide range of
organic wastes (Agler et al., 2011) as the inputs and the fermentation
steps are far more rapid per gram of mixture than methane
production. The challenge is in finding a way to select against
methanogens and other “slow” pathways in order to maximise
hydrolysis and primary fermentation steps. In conventional
fermentation this is achieved by: 1) controlling hydrogen gas
concentrations in the liquid phase (dissolved hydrogen); by
keeping them low there is no methanogenesis. 2) by removing
acetate or higher acid products as soon as they are formed (by
continuous flow electro-osmosis or other membrane techniques);
this removes the primary substrates (acetate) for methane

production. Another method for controlling methanogenesis is to
introduce oxygen at low partial pressures which inhibits
methanogenesis but has little effect on fermentation to acids by
facultative anaerobes. The pH control may also be critical since
hydrolysis of polymers is less efficient at low pH levels. All the above
factors influence the acetate flux of the system.

The polymeric carbohydrates, lipids, proteins and nucleic acids, of
animal tissues, plant or microbial cells are broken down into smaller
cell-permeable organic molecules by hydrolytic enzymes that are (a)
found widespread in microbes and (b) most often secreted as
extracellular enzymes into the external environment by the bacteria
that are involved. The metabolites from the breakdown of polymeric
substrates are used by heterotrophic species in the synthesis of structural
polymers (minor usage) and for synthesising NADH and ATP (major
usage), obtained either by fermentation (in an anaerobic environment),
anaerobic or aerobic respiration, depending on the microbial species
and the presence of oxygen or other end-terminal electron acceptors
(such as NO3

− or SO4
2−).

All organic feedstocks or wastes can be best described with
regard to their principal carbon-energy polymeric components
which can be generally classified as polysaccharides, proteins,
glycoproteins, lipids, phospholipids and nucleic acids. This
implies the presence of a plethora of corresponding hydrolytic
depolymerising enzymes, including amylases, pectinases,
chitinases, cellulases, proteases (endopeptidases, aminopeptidases
and carboxypeptidases), sialidases, glycosidases, pentosidases,
lipases, phospholipases, esterases, DNAses and RNAses.

Microbial fuel cells technology

The MFC is a platform technology capable for converting wet
biomass directly into electricity. With appropriate redox control, the
technology can simultaneously facilitate green chemistry, whilst also
treating (cleaning) the waste that is used fuel. In a way, the
technology bridges the gap with the aforementioned industrial
processes, thereby offering significant value-add. In their simplest
form, MFCs contain two electrodes, with an electrochemical bridge/
membrane between them. This facilitates the movement of ions that
are dragged during charge (e−) transfer from the anode (e− source) to
the cathode (e− sink). The standard half equations that characterise
the reactions in the two half-cells are:

Anode: C2H4O2 + 2H2O → 2CO2 + 8e−

+ 8H+ for sodium acetate( )
Anode: C12H22O11 + 13H2O → 12CO2 + 48H+

+ 48e− for sucrose( )
Cathode: O2 + 4H+

+ 4e− → 2H2O usingO2 as the oxidising agent( )

Based on electron transfer by microorganisms, MFCs can be
mediator-based and mediator-less. Based on transfer of protons, or
other ions from the anode to the cathode and vice versa, MFCs can
be membrane-based and membrane-less. Some MFCs are truly
membrane-less and rely on sedimentation and the formation of
redox gradients whilst others (termed ‘single chamberMFC’) are not
really membrane-less, but they have very thin membrane open-to-

FIGURE 1
Basic diagram of a standard microbial fuel cell.
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air cathodes without a cathodic chamber; the membrane in this case
forms part of the cathode. Figure 1 illustrates the MFC principle of
operation in a general, non-container-confined manner diagram.

MFC containers can be of cuboid, cylindrical (tubular), “H”-
shaped, flat, large, small or micro-scale embodiment and
depending on the bacterial species used, oxidising agents (in the
form of O2, SO4

2−, NO3−) can also be used as end-terminal electron
acceptors, thereby widening the types of reaction that can take
place and therefore the types of by-product that can be generated.
MFC technology has a number of major advantages over
conventional remediation treatments of pollutants including 1)
adaptation to a wide range of pollutants, organic and inorganic 2i)
reduced sludging 3) requires zero energy input, unless special
conditions require this 4) has not gas treatment requirements 5)
can be operated at ambient temperatures, 6) residence time (HRT)
is in hours rather than days. It is a fast-growing field, as evidenced
by the increasing number of publications globally, especially those
focussing on different types of polluted wastewater. A recent
review by Mandal and Das (2018) covers 25 different types of
wastewater ranging from municipal/domestic wastewater,
recalcitrant pharmaceutical industrial effluent, steroidal drug
production wastewater and petrochemical industry wastewater,
which implies the removal of antibiotics, synthetic dyes, toluene,
polycyclic aromatic hydrocarbons and emerging contaminants,
amongst many others.

Depending on the type of cathode used, water can be abstracted
from wastewater following treatment and can also be synthesised as
a result of the oxygen reduction reaction (ORR) at the cathode,
which can be a source of clean, not-potable water. When configured
as stacks, MFCs can function as domestic electrical generators for
powering small devices, for example, small portable electronic
devices like mobile phones, small lamps, computers, electronic
toys, batteries and supercapacitor charging machines, fridges and
self-feeding robots. The higher the steady state power output, the
wider the potential applications.

Aqueous suspensions (sludge) or solutions (sugar) cannot be
combusted. However, these ubiquitous solvents are still suitable
fuels for microbial fuel cells.

Other types of microbial electrochemical
technologies: Microbial electrolysis cell

As already mentioned, protons (or other cations) and electrons
recombine at the cathode along with an oxidising agent to close the
circuit but under the right conditions, protons and electrons
associate to form H2 at the cathode half-cell (Hua et al., 2019).
The performance of the MEC depends upon the types of
microorganisms in the anodic and cathodic chambers, the type of
feedstock substrate, the applied voltage and the nature of the
electrode materials. The presence of methanogens must be
discouraged since they compete for substrate in the anode and
consume hydrogen at the cathode. Methanogenesis can be
chemically inhibited, although this will increase operational cost
and complexity, so more work needs to be done to improve methane
suppression whilst increasing the H2 yield. The MEC architecture
and the cost of materials also determine the economic success and
operation of the MECs.

MECs require energy input to generate hydrogen from organic
matter. Ideally the electrical power can be supplied by a renewable
source such as an MFC or solar panels. Electroactive
microorganisms in the anode consume an organic energy source
and release electrons and protons. This creates a potential of up to
0.3 V which is used to generate electricity in a conventional MFC. In
contrast with an MFC, an additional voltage from an outside source
is supplied to a working MEC. The combined voltage (providing the
cathodic catalysts are suitable), is sufficient to reduce protons (H+)
and therefore create H2. The total electrical power that has to be
supplied to aMEC is less than for electrolysis of water because a high
fraction of the energy required for this reduction is derived from
organic fuel via microbial activity at the anode. For hydrogen
production, values between 1 and 4 m3H2/m

3d have been
achieved when 0.8 V was externally supplied (Kadier et al., 2016).
The amount of hydrogen production depends on the type of organic
substrates employed. Acetic and lactic acid achieve the highest
efficiency (82%), whilst the values for glucose or non-pretreated
cellulose are significantly lower (63%). It should be noted that the
efficiency of hydrogen production by conventional electrolysis of
water is only 60%–70%. Therefore, the MEC can produce 144%
more energy than they consume in the form of external electrical
inputs.

The high costs of the conventional catalytic cathode material
(platinum) is between 47% and 85% of the total costs, so this must be
overcome (Rozendal et al., 2008). A much cheaper option is to use
biocathodes which are made from less expensive materials colonised
bymicrobial species that can use the electrons to produce H2 (Croese
et al., 2011). The grouping of species which are naturally
photofermentative and can produce H2 (yet do not produce O2)
might be an interesting combination. An MEC design that can
incorporate both high H2 yields and low costs is very much needed
for upscale purposes.

Microbial desalination cells

A microbial desalination cell (MDC) has similarities to MFCs,
but the main operation is in situ desalination of salt-water in a third
chamber sandwiched between the anode and the cathode. The
central chamber interfaces the anode and cathode with a cationic
and anionic exchange membrane (or bipolar membranes),
respectively. This allows mineral ions in the central chamber
(e.g., Na+ and Cl−) to migrate into the cathode or anode
respectively, depending on their charge.

Photo-microbial fuel cells

The type of bioelectrochemical system that combines
photosynthesis and electricity generation is known as a photo-
microbial fuel cell (PMFC) (an alternative term used is bio-
photovoltaics). Such devices utilise the microalgae in the cathodic
chamber where they grow and utilise the carbon dioxide produced
by the microorganisms in the anodic chamber. They also produce
oxygen which improves the cathode electrical output. Such PMFC
may be useful in the future to provide a significant resolution of both
environmental and energy crises at the same time. Both the MDC
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TABLE 2 Energy content of biofuels.

Biofuel (or fuel)3 Energy content (MJ/kg)

Hydrogen (H2)
2 120–142

Methane (CH4)
2 50–55

Natural gasb 52.2

Methanol (CH3OH)2 22.7

Ethanolb 29.8

Dimethyl ether - DME (CH3OCH3)
2 29.0

Petrol/gasolinebtbl2fnb 44–46

Diesel fuelb 42–46

Crude oilb 42–47

Liquefied petroleum gas (LPG)b 46–51

Natural gasb 42–55

Hard black coal (IEA definition)b >23.9

Hard black coalb (Australia & Canada) c. 25

Sub-bituminous coal (IEA definition)b 17.4–23.9

Sub-bituminous coal (Australia & Canada)b 18.0

Lignite/brown coal (IEA definition)b <17.4

Lignite/brown coal (Australia, electricity)b c. 10

Firewood (dry)b 16.5

Sugar cane bagasseb 16.4

Newsprintb 18.6

Celluloseb 17.3

Biodieselb 46.3

Animal Dung/Manureb 10–15

Alfalfa strawa 18.5

Charcoala 30

Coala 28

Coconut husksa 10

Coconut shellsa 18

Coffee husksa 16

Commercial wastesa 16

Cotton hullsa 19.5

Cotton stalksa 17.5

Domestic refusea 9

Dung, drieda 16

Grass, fresha 4

Groundnut shellsa 20

Maize cobsa 19

Maize stalksa 18

(Continued on following page)
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and the PMFC continue to produce usable amounts of electricity
whilst functioning in desalination or recycling of oxygen and carbon
dioxide. Neither of these technologies require an external source of
electricity.

Hydrogen fuel cells

Hydrogen fuel cells carry a high potential for the future energy
needs of our civilisation. As already mentioned, if hydrogen comes
from renewables, of which there are abundant resources, then it can
be a truly clean source of energy. However, the main challenge of the
technology is the flammability of H2 when mixed in either air (4%–
74%) or pure O2 (4%–94%), under atmospheric pressure; hydrogen
will also escape from most containment vessels resulting in leaks
(Rhodes, 2016). The above make storage, containment, and
transportation of hydrogen, challenging which can be overcome
if H2 is used as it is being produced. High cost of materials and
production, as it is common with other technologies, are still to be
addressed. Hydrogen is an important topic for national
governments and the European Commission in particular, giving
emphasis to bio-hydrogen and novel/sustainable ways of
production. Under the current climate and war in Ukraine there
needs to be a real shift from current practices/systems and this shift
needs to be more decentralised to eliminate dependency on
mainstream pipelines that can easily be turned off; biohydrogen
is one way of achieving this. There are fundamental challenges in
storage and containment which in turn implies local and immediate
consumption to avoid having to store it. Hydrogen fuel cells are now
becoming more commonplace for powering transportation (trains,
boats, buses and cars) and they are also being tested on aircraft.

Biomass and the environment

The carbon cycle describes how carbon is distributed around our
planet, on land, in water and in the atmosphere and explains the
processes that involve carbon exchange between the atmosphere,
hydrosphere, biosphere, and lithosphere. As carbon dioxide (and to
a lesser extent carbon monoxide, methane and volatile carbon
compounds), the carbon helps to regulate the amount of sunlight
that enters the planet’s atmosphere. The process by which carbon
dioxide is exchanged from atmosphere to the hydrosphere and
biosphere is by photosynthesis via plants, macro- and micro-
algae or photosynthetic bacteria including cyanobacteria. It is

TABLE 2 (Continued) Energy content of biofuels.

Biofuel (or fuel)3 Energy content (MJ/kg)

Methane from biogasa 55

Paper, newspapera 17

Peata 14.5

Petroleum Oila 42

Rice hullsa 15.5

Rice strawa 15

Soybean stalksa 19

Straw, harvested, baled 15

Sorghum bagassea 19

Sugar cane residuesa 17

Wheat strawa 19

Wood, green with 60% moisturea 6

Wood, air-dried to 20% moisturea 15

Wood, oven-dried to 0% moisturea 18

aEngineering ToolBox, (2001). [online] Available at: https://www.engineeringtoolbox.com [Accessed 25th October 2022].
bFuel Properties Comparison; Alternative Fuels Data Center. US, department of energy, Energy Efficiency and Renewable Energy, Energy’s Vehicle Technologies Office.
cNational Renewable Energy Laboratory at www.nrel.gov/publications.

TABLE 3 The relationship of water content and calorific value (Li et al., 2012).

Water content (%) Calorific value (kcal/kg)

0 1781

10 1,543

20 1,305

30 1,067

40 828

50 591

60 352

70 114

80 −124

90 −362
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exchanged between the land or water biosphere back to the
atmosphere or lithosphere through food chains via
decomposition, plant, animal or bacterial respiration, and human
activity. Carbon (in the form of organic compounds) can be
absorbed by soil from plants via root deposits (rhizodeposition)
or by waste products from animals (urine or excrement) or when
organisms die and are decomposed. Under the right conditions,
carbon can reach the lithosphere via fossilisation, which turns
decomposing biomass into peat or coal or petroleum, before re-
entering the atmosphere via natural or anthropogenic combustion.
Between periods of exchange, carbon is sequestered, or stored either
as fossil fuels or as chalk or limestone. The fossil fuel carbon cycle is
distinct from the exchange events between biosphere and
atmosphere which are caused through respiration, fermentation
or natural oxidation. The former has a half-life of many millions
of years whilst the latter cycling is more immediate and is sometimes
referred to as the immediate carbon cycle. When fossil fuels are
exploited, their carbon content (which may have taken millions of
years to produce) is released into the atmosphere over a relatively
short period of time, mainly just a few hundred years. This
overburdens the planets atmosphere. In comparison with fossil
fuels, biomass carbon exchange can continue via the immediate
carbon cycle. In order for humans to effectively allow Earth to
continue the carbon cycle process they must rely more on the
immediate carbon cycle and leave fossil fuels alone. Moreover,
biomass use and soil conditioning have to be sustainably
balanced to take into account the rate of carbon sequestration
in—for example, - trees and plants.

Humans and biomass

Plants absorb carbon dioxide by photosynthesis and the amount
they absorb is greater than or at least equal to that produced via
conventional fuel processing and usage.

The energy content of biofuels is of some interest. With the
exception of biohydrogen (which has the highest energy content per
kg), all the biofuels are carbon-based. Table 2 presents a list of all the
main biofuels. The fossil fuels (petrol, diesel fuel, crude oil, natural
gas and coal) are also included for comparison. Because of the
significant water content of wet fuels their energy content per kg will
be less than that of wet grass, and significantly less, possibly by as
much as 90% than the combustible biofuels. The relationship
between the water content of sewage sludge and calorific value is
shown in Table 3. The higher the water content, the lower the
calorific value, per unit of mass.

The world’s top ten biofuel crops in order of extent per annum
are: switchgrass, wheat, sunflower, cottonseed oil, soy, jatropha,
palm oil, sugar cane, canola and corn. The planet as a whole,
produces billions of tonnes of wet waste detritus each year from
natural estuarine flow, from run off from rotting processes (leaf
litter, humus, compost, etc.). Organic biomass is an interesting
proposition since globally, it is the most abundant type of fuel.
There is more produced “naturally” each year across the planet than
the total amounts of fossil fuel abstracted and combusted by
humans. The planet produces more than enough biomass to
replace fossil fuels entirely. There is no shortage of potential fuel
or feedstock that a technology such as MFCs can utilise, including

sewage, sludge, farm manure, landfill leachate, black- brown- and
white-water run-off, mine water run-off, algal and seaweed waste
and river sludge.

The overall biomass composition of the planet (all forms of life)
is thought to be ≈ 550 gigatons of carbon (Gt C) (Bar et al., 2018).
Plants, the dominant kingdom, are ≈450 Gt C and are mainly
terrestrial, whilst animals, at around 2 Gt C, are mainly marine.
With regard to microorganisms, these are predominantly located in
deep subsurface environments with bacteria (at ≈70 Gt C)
outnumbering the archaea (≈7 Gt C) (Bar et al., 2018), and fungi
thought to be around 12 Gt C. In terms of annual productivity of
biomass (i.e., new biomass per year) then the total annual primary
production is thought to be just over 100 billion tonnes C/yr, (Field
et al., 1998).

It is expected that by 2050, approximately half of the world’s
energy demand/consumption (about 400 EJ/yr) could be met by
biomass and that 60% of the world’s electricity market could be
supplied by renewables. In energy terms, the production of cereals
(−40 EJ), crop residues (−60 EJ), pasture (−75 EJ) and industrial
roundwood (−20 EJ) was substantially less than the extraction/
production of fossil fuels: gas, (−70 EJ), coal (−40 EJ) and oil
(−170 EJ), (IEA, 2021). If wet organic matter (sludges) were
regarded as a biofuel it would even be possible to meet all the
world’s demand for energy.

The microbes in the MFC (the anodic biofilms) have high affinity
metabolic systems for the transport and uptake of nutrient substrates.
For example, Escherichia coli (considered to be a typical heterotrophic
fermentative species) has a reported ks value of 5.4 μM for acetate
(Gimenez et al., 2003) and 20 μM for the transport of glucose (Hunter
and Kornberg, 1979). For the anodophilic Geobacter sulferreducens, the
Km value for acetate has been reported to range from 2.6 to 0.42 mM
acetate (Korth et al., 2020). The ks value gives the concentration of
substrate that can produce half themaximum rate of substrate uptake. It
should be noted that microbial cells (and therefore microbial fuel cells)
continue to take up substrates at even lower concentrations than
indicated by the ks value, albeit at low transport rates. The high
affinity transport systems for microbes ensure that MFC and related
technology (MDC and PMFC) can efficiently clean up waste streams in
addition to producing electricity and can manage to produce electricity
from very diluted feedstocks (e.g., estuarine river water). Table 4 below
summarises the advantages and disadvantages, as well as the key
biological mechanisms at play for the different types of biofuel and
biotechnology included in this review. The purpose of this summary is
to enable readers to more easily see how biology-based solutions
compare and how well (or not) they can serve a particular purpose
or address a specific problem. As can be seen, BESs show important
advantages over existing, much more mature technologies but are still
lagging in terms of commercialisation. Although generally, this is not
unusual for nascent technologies, human factors i.e., politics, personal
preferences/agenda, lobbying, seem to be affecting progress more than
other technologies by comparison; this is currently an unexplored
research area.

The International Renewable Energy Agency (Irena, 2022) have
described the need for a growth in production and use of modern
bioenergy in order for humanity to make the critical changes
required for ensuring global energy transition from the current
situation (82% use of fossil fuels; 18% renewables) with low, to net
zero carbon emission scenarios. Bioenergy currently contributes the
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TABLE 4 Comparison between different types of biofuel and biotechnology.

Biofuel or
technology

Raw substrates Microbe/plant species Advantages Disadvantages References

Biomethane Abattoir, cheese and food
waste, pig slurry and
wastewater treatment
sludge. (± grass & corn,
i.e., starch, cellulose,
lignocellulose)

Over 50 species of
methanogens have been
described,
e.g.,Methanobacterium spp.
Methanococcus spp.
Methanosarcina
spp. Methanobrevibacter
spp. Methanopyrus spp.

Product (CH4) easy to
separate (insoluble gas).
Some degree of bio-
remediation performed.
Pure methane is a good
fuel

Requires high substrate
loading. Gas must be
purified for many
purposes. Production rate
is slow and easily
disrupted. CH4 is emitted
[potent greenhouse gas.
Waste BOD residues

Allen et al. (2013)

Ma et al. (2017)

Biohydrogen Dark fermentation:
Fermentable substrates
inc. Sugars, carbohydrates
and some amino acids

Dark fermentation:
Enterobacter, Citrobacter,
Klebsiella, Escherichia coli

Dark fermentation: Light
independent. Can process
a wide variety of
substrates

Dark fermentation: Low
levels of H2 produced
compared with other
methods. O2 inhibits

Mishra et al. (2019)

Photofermentation:
Butyrate, succinate,
malate and acetate

Clostridium beijerinckii,
Rhodobacter sphaeroides

Photo fermentation:
Photosynthetic bacteria
exploit wide spectral
energy. Can process a
variety of substrates

Photo fermentation:
Metabolic shift from H2 to
PHB. Efficiency of light
conversion is lower than
photolysis systems

Dutta et al. (2005)

Direct & indirect
photolysis:Water and
solar radiation

Photolysis and
photofermentation

Inc. Dark fermentation
effluent Biomediation is
performed

Direct photolysis: High
light intensity and O2 work
as inhibitors of H2

production. H2 and O2

make explosive mix

Sharma & Arya, (2017)

Cyanobacteria: [Anabaena,
Calothrix Synechococcus,
Nostoc, Microcystis,
Mycrocystis] Green algae:
[Chlorella spp. Dunaliella
spp. Chlamydomonas]

Direct photolysis: Simple
cultivation, H2O is
substrate &: CO2

consumed

Indirect photolysis:
Hydrogenase enzyme
generates CO2 and is low
yielding

Indirect photolysis: Uses
blue-green algae.
Nitrogen-fixation from
air (initially). Separate
stages, O2, then H2

Carboxylates (Volatile
Fatty Acids, VFA,s)

Complex wastewaters
with sugars, starch,
cellulose, hemicellulose or
lignocellulose)

Acetobacter, Clostridium,
Kluyveromyces Moorela
Propionobacterium and mixed
communities

Relatively fast hydrolysis
and fermentation. VFAs
used as precursors in
methane production and
to produce hydrogen in
photofermentation

Lignocellulose biomass
must be pre-treated

Bhatia & Yang, (2017)

Levin et al. (2004)

ethanol Sugar beet, sugarcane,
molasses, whey, starches
(corn, wheat, root crops)
Lignocellulose (following
pre-treatment)

Saccharomyces
spp. Saccharomyces (genetic
engineered strains)
Zymobacter mobilis
Zymobacter palmae

Ethanol Fuel is cost-
effective compared to
other biofuels and is fully
renewable, easily
accessible and has a
variety of sources of raw
material

Requires vast acres of land Bušić et al. (2018)

Distillation process uses
significant energy. Pure
ethanol is hygroscopic.
Water in ethanol is
corrosive to engines

Alternative Fuels Data
Center Fuel Properties
Comparison (2022)
bib_afdcfpc_2022

Biodiesel Biodiesel is produced from
a wide variety of oilseed
crops, (soybeans, mustard,
rapeseed, canola, rice bran
oil, sunflower, jatropha),
animal fats, macroalgae
(e.g., seaweed) and
microalgae

Microalgae: Chlorella,
Dunaliella, Scenedesmus,
Botryococcus Spirulina
Cyanobacteria: Anabaena
Synechocystis Synechococcus

Easy to use: No vehicle
modification required

More expensive than
petroleum diesel

Firoz, (2017)

Power, performance and
economy as good as fossil
fuels. Part of the
immediate CO2 cycle so
does not add to global
warming

Can damage rubber
housings in some engines

Nozzi et al. (2013)

Biodiesel is less toxic than
petroleum

Biodiesel fuel distribution
infrastructure needs
development

Processing required
(transesterification)

(Continued on following page)
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largest share (two-thirds) of renewables utilisation worldwide, when
including the traditional use of biomass. To meet the “1.5°C climate
goal scenario,” bioenergy production would need to increase
significantly by 2050. Achieving this goal may be challenging
without the deployment of sustainable biomass for different
purposes since the current deployment of bioenergy remains well
below what is needed to achieve the energy transition. This is where
collective and interconnected approaches that may include the use of
MFCs, can really make a difference, since if appropriately
engineered, the outcome will always be greater than the sum of
the individual components—a principle well proven in our natural
ecosystems.

The vast majority of people on the planet still rely on the
traditional (yet inefficient) use of biomass for cooking and
heating, affecting health and gender inequality, while leading to
deforestation in many areas of the world and adding to climate
change. Bioenergy is a multidisciplinary complex area, involving a
wide range of stakeholders and issues; more than most other forms
of renewable energy. Bioenergy interacts with many sectors,
including agriculture, forestry, water industry, waste management
and environmental protection. It can have positive impacts if the
supply chain is managed well, or potentially negative impacts if the
supply chain is poorly managed or indeed bioenergy is abused. The
potential sustainability risks of the bioenergy supply chain and its
deployment are linked to land use, air pollution, water and soil
quality, biodiversity, competition with food supply, and effects on
indigenous communities and smallholders.

This is by no means a solved problem, and there is still a lot of
work to be done. Typically, over 50% of biomass is likely to be water
which has to be extracted to make biofuels. Some estimates suggest
that transporting biomass over distances of 100 miles or so from the
processing plant is not economically efficient. In addition to carbon
dioxide, burning biomass releases nitrogen oxides, carbon
monoxide, particulates, and other pollutants. Unless there is use
of special technology to capture and recycle the pollutants, burning
biomass can create smog and atmospheric pollution as bad as, or

even exceeding that of fossil fuels. Biotransformation of biomass
however does not produce the same harmful by-products; this is
where smart solutions exploiting microbial transforming power can
be extremely valuable.

Conclusion

Despite the high water content of sewage sludge, its energy content
is comparable with many types of fuel (ranges from 8 to 21MJ/kg,
depending on water content and origin) (Singh et al., 2020). With
appropriate treatment using MFCs, municipal sewage sludge can be
utilised efficiently and the sludge can be considered as a source of energy
even if highly diluted. For high-demand systems the greater the dilution
of the sludge the higher the number of MFC stacks required for full
utilisation. The finding that small MFCs are more power dense than
large volume systems is important and in line with natural ecosystems
(for example, electric eel ormammalian blood circulation). A large stack
can be built from a few large volume MFCs, or it can be built from a
much larger number of small-scale MFCs. Empirical research suggests
that the latter strategy will be more successful, especially when
considering essential voltage increases and energy density at the
small scale, which is in line with allometric scaling in natural
systems but also with the approaches adopted for other technologies
such as photovoltaics. MFCs work with live microorganisms, which
have their own circadian rhythm. This is an important trait of the
technology, yet it is often wrongly compared with other forms of
electricity sources, such as chemical fuel cells or batteries that are
governed by fast-rate chemical reactions, which in turn implies high
instantaneous power output for a finite/short period of time. This is one
important reason why microbial electrochemical technologies cannot
be directly compared to chemical or other abiotic electrochemical
systems, as they operate on different levels: high energy for
microbial electrochemical technologies vs. high power for chemical
or electrochemical systems. When technologies such as MFC stacks are
employed, then this allows for vertical stacking, much like vertical

TABLE 4 (Continued) Comparison between different types of biofuel and biotechnology.

Biofuel or
technology

Raw substrates Microbe/plant species Advantages Disadvantages References

MEC [Microbial
Electrolysis Cell]

Wide range of carbon-
energy substrates
(carbohydrates, proteins,
Lipids, complex mixtures
or single chemicals)

Exoelectrogens and
heterotrophic fermentative
species at the anode. Can use
hydrogenase containing species
at the cathode

Bioremediation at the
anode Pollution free
hydrogen. Can process
effluent from dark
fermentation. High
recovery of H2. No
requirement for
expensive solar light
photobioreactor

Need for power source
Capital costs can be high
and system suffers from
scalability problems
Technology not yet mature
enough for large scale
commercialisation

Katuri et al. (2019)

Wang et al. (2021)

Call & Logan (2008)

MFC/MDC [Microbial
Fuel Cell/Microbial
Desalination Cell]

Wide range of carbon-
energy substrates
(carbohydrates, proteins,
Lipids, complex mixtures
or single chemicals)

Exoelectrogens and
heterotrophic fermentative
species at the anode

Generate electricity Technology not yet mature
enough for large scale
commercialisation

Obileke et al. (2021)

MDC can be used to
desalinate salty solutions
including sea water and
urine

Al-Mamun et al. (2018)

PMFC [Photo-
Microbial Fuel Cell]

Wide range of carbon-
energy substrates
[including dead algal
biomass] at the anode

Exoelectrogens and
heterotrophic fermentative
species at the anode.
Cyanobacteria or microalgae at
the cathode

Can be used to recycle
CO2, O2, and mineral
elements as well as clean
waste streams and
produce electricity

Technology not yet mature
enough for large scale
commercialisation

Ieropoulos, Greenman
and Melhuish (2010)
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farming, thereby getting around the problem of using a large footprint.
Because MFCs can “treat” organic sludge and lower the BOD as well as
generate electricity this serves a justifiable purpose to start developing
large scale stacks. To fully extract the energy content of the waste-stock
fuel the MFC or PMFC have to be stacked using cascades of
7–9 individual units (empirical finding) in order to fully reduce the
BOD to an acceptable level. In a cascade, the fuel is sequentially treated
and the treatment time to allow for full hydrolysis and digestion of
microbial biomass can be competitively short, with enrichment of the
most efficient microflora. The hydraulic retention time within the
cascades can be appropriately tuned to suit the composition of the
incoming feedstock, rendering the MFC/BES technology suitable for
both highly concentrated and dilute waste streams. For very dilute
feedstocks the uptake and utilisation of substrates depends upon the
affinity values (ks) of the microbial species the macromolecular
structure, the size of molecules and the concentration of the
substrate being digested. The supply rate of substrate is also
important, and this can be actively controlled by changing the speed
of the feedstock pump, or passively by introducing flow-restrictors or
even dynamically by changing the volume of the anodic chambers in
situ, using soft or compliant materials. With the exception of hydrogen,
nearly all fuels used on the planet are carbon-based. In the near future
fossil fuels will be phased out leaving only the biofuels made from
primary plants and microbes. Because these are part of the immediate
carbon cycle, if used responsibly they will not contribute to planetary
overload of methane or carbon dioxide, allowing the climate to
rebalance in time, hopefully before all lifeforms become extinct.
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microgrid storage
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The operational cost of a microgrid is significantly influenced by the response of
storage systems and the complexities of the power market’s tariff structures. This
paper addresses the challenges arising from the coexistence of new market
entries and traditional tariffs, which contribute to a complex market
environment. To tackle this issue, the paper establishes a microgrid market
environment encompassing four types of tariffs. By modeling the response of
electric storage and cold storage in a microgrid, the study formulates a non-linear
mixed-integer optimization problem. Numerical studies are then conducted to
verify the model and analyze market performance. The results reveal a trade-off in
behavior among different market entries when optimizing the total cost of
microgrid operation. These findings shed light on the complexities and trade-
offs involved in microgrid operational cost optimization within a diverse market
environment, offering valuable insights for market participants.

KEYWORDS

coordinated operation, natural gas network, electrical network, credit rank indicator,
microgrid

1 Introduction

Power market deregulation brings competitive trading to generation and consumer
areas. Multiple market participants from both sides are allowed to submit their bids and
are matched by market operators (Tabar et al., 2019; Tian et al., 2023). Unlike a regulated
power market, deregulated trading may contain more uncertainties, which leads to a
higher risk. Thus, a deregulated power market may contain multiple sub-markets to
hedge the risk of uncertainties, such as a wholesale market, spot market, capacity market,
and several ancillary markets in PJM (Rabiee et al., 2016; Fan et al., 2022;
MansourLakouraj et al., 2022). In general, power market deregulation will improve
the entire efficiency of power system operation and management. It can also promote the
latest technologies by constructing specified market structures (He et al., 2016; Chen
et al., 2021; Zhang et al., 2023).

Energy management in a microgrid has become an important issue in recent studies.
Nowadays, energy management strategies are growing rapidly (Zhao et al., 2023). In this
paper, a new energy management strategy has been proposed for a hybrid microgrid,
including demand response and the internal power market (Al-Awami et al., 2017). In this
regard, a configuration of multiple markets is considered in the proposed method, and
interactions between the consumers, microgrid, and incentive strategies are included in the
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presented planning (Garcia-Torres et al., 2020; Huang et al., 2020).
Due to the presence of various types of consumers, such as critical
and normal loads, different power tariffs and contracts are utilized in
energy management. Energy storage is an attractive area for
academic and industrial researchers. It presents significant
capabilities in power system efficiency enhancement, renewable
energy integration, and demand response (Zhao et al., 2012;
Zhao and Ding, 2017; Lin et al., 2019; Wang et al., 2021). It also
improves the stability and reliability of the power grid (Zhao et al.,
2017). Energy storage is also popular in microgrid operations. In
a microgrid, energy storage helps in reducing risks due to the
intermittence of renewable energy (Kwon et al., 2016; Olabi,
2017; Khaloie et al., 2021; Li et al., 2021). A coalitional game
model for the trading of a biomass power plant (BPP) integrated
with PV and wind farms was proposed (Khalilpour and Vassallo,
2016; Zhang et al., 2017a; Lai and McCulloch, 2017). It reported
the need to have a different method to calculate the energy
generation cost due to the installation of energy storage in
solar energy production (Lai and McCulloch, 2016). The
sizing requirements of solar PV and storage systems need to
be considered in relation to biogas power plants. Solar irradiance
could be affected by fluctuations introduced by passing clouds.
The analysis of these fluctuations with regard to solar energy
production could be focused by studying the instantaneous
clearness index.

Demand response is another application of energy storage in
minimizing the difference between peak and valley loads (Hakimi
and Moghaddas-Tafreshi, 2014a; Zhang et al., 2017b; Lai et al.,
2017c). Lai et al. (2017a) and Lai et al. (2017b) reported the future
of energy storage applications with a focus on large-scale solar
energy penetration. Chen et al. (2013), Amrollahi and Bathaee
(2017) and Liu et al. (2018) reported the impact of energy storage
degradation costs. Vehicle to Grid (V2G) technology is also a
popular area for energy storage utilization. As an energy storage
unit, batteries of electric vehicles (EVs) participate in microgrid
peak shaving and frequency modulation (Lai and McCulloch,
2016; Lai et al., 2017a; Lai et al., 2017b). Gough et al. (2017)
proposed an energy storage system (ESS) to minimize the total
operation cost of the microgrid. The proposed model constructs
an ESS with both electrical and cooling storage to simulate
performance in the energy market (Hakimi and Moghaddas-
Tafreshi, 2014b; Zidan et al., 2015; Valinejad et al., 2020;
Rostamnezh et al., 2022).

By reviewing the aforementioned materials, at least three areas
for improvement have been identified:

1. Decision makers in the microgrid and energy storage sectors
face the challenge of choosing from multiple markets while
aiming to minimize operating costs. In order to navigate these
complex market entries, it is crucial to consider both market
opportunities and tariff capability distribution. By assessing
the available market opportunities and understanding the
distribution of tariffs, decision makers can optimize their
strategies for achieving minimum operating costs.

2. Microgrids in China have multiple market entries, including
markets created by recent evolution and existing traditional
tariffs. New regulations may lead to different storage
responses in microgrids.

3. In many research works (Jiang et al., 2022), the cold generation in
a cooling system is linearly modeled with boundary constraints
and a steady coefficient of performance (COP). Chillers of cold
generations operate non-linearly with non-steady-state COP.

The main contributions of this work are as follows:

• This paper presents a complex market environment for the
microgrid with up to four different parallel tariffs. This
environment represents a transition period in the initial
stage of change.

• Both electricity and thermal network operations for storage
response analysis have been considered. A dynamic COP from
historical operational data was developed. Furthermore, this
paper considers the pumping power switching mechanism in a
cooling system with logical variables. These logical variables
create the optimization of a cooling network and formulate a
non-linear mixed-integer programming problem.

• Practically, different tariffs may not prevent the same
economic values from generating multiple minimum points
for optimization. In this case, not all local optimal solutions
have a high industrial potential for change in behavior. This
paper introduces a new regulation term in the objective
function for less behavioral variation to increase the
industrial implementation potential of the model.

• Numerical investigation is implemented for model verification
and further analysis. Three different studies are selected for
impact analysis from different market tariffs. The results show
that trading-off occurs in response to storage toward different
market entries.

This paper is organized as follows: multiple microgrid market
entries are introduced in Section 2. Relevant storage response
modeling and simulation construction are shown in Section 3.
Section 4 gives a numerical study for storage response analysis.
The conclusion is provided in Section 5.

2 Multiple market entries for a
microgrid

2.1 Dynamic daily electricity price

In the retail section of catalog price, time-of-use (TOU) is
implemented.

In the latest power market evolution, trading of contracts for
differences (CFDs) is introduced. For price difference (PD) trading,
bilateral negotiation (BN) and monthly bidding (MB) are constructed.
A BNmarket is a yearlymarket that allows consumers and power plants
to deploy transactions. Their tradingwillingness will be submitted to the
power dispatch center for feasibility verification. The submission of BN
takes place once a year. In anMBmarket, power consumption bids and
generation bids are received. The market operators match bids with the
consideration of dispatch feasibility. The submission of MB takes place
once a month. For a dynamic daily price scheme, such as TOU, PD is
compensated to give prices for each hour so that the shape of TOU
remains the same to fulfill the requirements in catalog price (CP). Eq. 1
gives the power consumption cost with CP based on PD.
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CTOU � ∑T
t�1S · Pnetload t( )·TL·AE

TOU t( ),
Pnetload t( ) � Pload − Pdis

ES − PPV,
AE

TOU,i t( ) � A′ E
TOU,i t( ) − AE

i , i � 1, 2, ..., 5,

⎧⎪⎪⎨
⎪⎪⎩

(1)

S � 1,Pload > PPV,
0,Pload ≤ PPV,

{ (2)

where CTOU represents the cost of power consumption from the
daily dynamic electricity price. Pload represents the total power time
series vector. PPV represents the total power generation vector. TL is
a time step, with a step length of 15 min. A′ E

TOU,i(t) represents the
dynamic daily electricity price vector. AE

i is the bid-matched price
difference. The dynamic daily electricity price in China does not
cover the bi-directional power flow. When electricity storage wins
the bids in MRGPAS, the charging of electricity storage is covered
and will not be charged again in dynamic daily electricity price
calculation.

2.2 Capacity-based charging (CBC)

Two-part tariff is a pricing scheme for electricity in China. The
first part is the daily electricity price mentioned previously. The
second part is the basic price or capacity price, which is charged on
CNY/kVA or CNY/kW. In Hong Kong, basic price is also called
demand charge. The basic price is charged on the monthly
maximum consumer injecting power or the maximum capacity
of a consumer-based local transformer. In recent years, there has
been an evolution in the power market, with the advancement of
new technologies and the implementation of new policies aimed at
promoting sustainable energy practices. Eq. 3 gives the cost
generated from the basic price.

Ccapacity � max S · Pnetload · AE
chr( ), (3)

where Ccapacity represents the cost generated from the basic price.
AE
chr represents the price of capacity-based charging. The function

max( ) receives a vector and returns the maximum value from the
inputted vector.

2.3 Macro-renewable generation promoting
ancillary services (MRGPAS)

The market construction of ancillary services is one of the main
tasks of power market deregulation in China. Unlike traditional
ancillary services, this ancillary service market is specially designed
for power peak shaving in supporting renewable generation. Energy
storage inside consumers can trade mainly with wind power plants
or solar power plants on the ancillary service trading platform to
reduce the amount of abandoned wind/solar generation (Xu et al.,
2012).

Wind/solar generation abandonment is an obvious
phenomenon that occurs in the preliminary stage of renewable
power development. For example, in wind generation, when the
load decreases, the generation capability of thermal power plants is
reduced with higher priority under power dispatch regulation in
China. The reason for this is that the marginal cost of generation in
wind farms is zero, and the government promotes the development

of renewable energy. However, thermal units have lower
operational bounds. The generation of thermal plants cannot be
reduced over this bound for the start and stop of large cost of units.
When a lower bound of thermal units is reached, wind generation
abandonment occurs. As load reduction usually occurs at
nighttime, wind generation abandonment and the trading
chances of MRGPAS for electricity storage usually occur at
night. In some MRGPAS markets, electricity storages of
consumers’ microgrids can only trade with wind/solar power
plants (Kumar and Palanisamy, 2020).

In a MRGPAS market, owners of electricity storages and power
plants should submit their bids to the trading platform. The
information includes the compensation price, trading time and
time length, charging power, and 15-min time step load curves.
The market operator matches bids from electricity storages and
wind power plants with the consideration of grid operational
constraints. When bids are matched, the storage should be
charged with a certain compensation price. MRGPAS markets
in some provinces have upper and lower limits for the
compensation price. The upper and lower limits of the
compensation price in a typical market in China are 0.2 CNY/
kWh and 0.1 CNY/kWh, respectively. Eq. 4 gives the cost
generated from MRGPAS.

Canci � −1( ) ·∑96

t�1 H t( ) · Panci t( )·TL·AE
anci t( )[ ], (4)

H t( ) � 0, fail to bid
1, successful to bid

{ , (5)

where Canci represents the cost generated from MRGPAS. AE
anci

represents the matched compensation price in MRGPAS. H
represents the microgrid chances of MRGPAS participation in a
day. Panci represents the charging range of electricity storage in bids
of macro-renewable-generation promoting ancillary services
(MRGPAS), which will be described later. The element H(t) in
Eq. 5 is a logical variable, with 0 and 1 representing the microgrid’s
failed and successful bids at the time step, respectively.

2.4 Distributed solar generation feedback
tariff

To enhance clean power generation and support relevant local
industries, the Chinese government provides its first bi-directional
tariff for microgrids on distributed PV generation. Consumers with
distributed PV have two sub-tariff selections. The first sub-tariff is
named full feed-in tariff (FFI). The PV operator is required to feed-
in all its capacity to the power grid with specified installed protection
and meters. The connection point of PV is not inside consumers in
FFI, and consumer behavior is fully decoupled with PV generation
variation. Therefore, FFI does not influence operation of the
microgrid. The second sub-tariff is named surplus feed-in tariff
(SFI). In SFI, consumers will consume PV generation as a priority. If
surplus PV generation exists, this surplus capacity can be fed into the
grid. In SFI, consumer behavior and PV time series generation will
influence each other. Consumers with distributed PV can select
either FFI or SFI. This paper mainly focuses on SFI modeling for its
high integration capability with storage response. Eq. 5 gives the cost
generated from SFI.
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PV−cha � Comp + Ben. (6)
In Eq. 6, PV_cha represents the cost generated from the PV

tariff. The cost generated from SFI is constructed in two parts. The
first part, Comp, is from the compensation of governmental policy
(Chen et al., 2013). The Chinese government offers compensation
for all power generated under the full feed-in tariff (FFI) and surplus
feed-in tariff (SFI). The second part, Ben, is the benefit from the
surplus capacity feeding into the grid at the consumer side for SFI
only. Eq. 7 calculates Comp and Ben, where negative 1 represents
customer benefit.

Comp � −1( ) ·∑T
t�1 Ggent · PRsubt · TL( ),

Ben � −1( ) ·∑T
t�1 TL · PRcoal · Gbt{ }.

⎧⎨
⎩ (7)

In Eq. 7, PRsub represents the price of government
compensation. PRcoal represents the local price of electricity
generated from desulfurized fire coal. Gbt represents the PV
generation power (kW) at the tth time step. Details of Gbt are
given in Equations 8 and (9).

Gbt � Min − sele Ggent − Puset( )| · Rt,Ggent[ ], (8)
Rt � | Ggent − Puset | + Ggent − Puset( )

2 · Ggent − Puset( )
, (9)

where the function Min_sele( ) receives two scalar inputs and
outputs the lower value. The reason for choosing the functionMin_
sele is that SFI only admits the power generated from the SFI PV
panel to feed into the grid. If the feed-in power load is larger than
Ggent, the extra section is not admitted. The ratio Rt gives the benefit
from the consumer to the grid.

Turning to microgrid cost with high industrial implementation
potential, the aim of the microgrid is to satisfy the operational
requirements with a minimum cost for industrial and commercial
consumers. The objective function of microgrid operation is given in
Eq. 10.

F � CTOU + Ccapicity + Canci + CPV, (10)

Min : Obj � F + μ ·∑
J

j�1
σj. (11)

It is assumed that there are J periods within 1 day. The dynamic
daily electricity price in each period is the same. Then, σj in (11)
represents the standard deviation of Pload in the jth period. Eq. 11
adds a regulation of fluctuation in the objective function to control
the fluctuation degree.

Tariffs may not prevent all economic equivalence of all daily
time periods. For example, the price value is the same under TOU
for the same period. Even real-time prices may contain periods with
similar price levels. In this period with similar economic
equivalence, different response schemes with the same total
consumption may have the same cost, leading to multiple
optimal points of optimization. Some of these optimal points
may contain high response fluctuation between different time
periods that consumers find difficult to follow. A fluctuation
regulation term is added to the objective function Eq. 11 to reject
the solution with high fluctuation so that the potential for consumer
implementation is increased.

3 Response of electric/thermal storage

3.1 Microgrid electrical network

Figure 1 introduces a typical electrical network of a large group
of consumers.

Figure 1 shows a typical microgrid of a large group of consumers
with the following devices: devices for manufacturing or other
vocational devices, electricity storage, and distributed generation,
including PV and electric-supported equipment in a cooling
network. Eq. 12 gives the total power load from the electrical
network.

Pload � Pother + Pcool + Pchr
ES ,

Pcool � ∑2
n�1 Pch,n t( ) + Ppump,n[ ] · Sw,n t( ),{ (12)

Sw,n t( ) � 0, switched of f ,
1, switched on,

{ (13)

where Pother represents the time series load vector of all devices
except electricity storage and devices in the cooling system. The
element Pch,n(t) represents the value of the nth chiller power at the
tth time step. Ppump,n represents the power of the nth pump. Due to
the scheme of chiller control, the pumping power is usually kept at
the same value. As this work studies storage response, Pother is set to
be an unchangeable boundary condition during optimization. The
pumping power is usually kept at a large constant value, which
ensures a sufficient flow rate for the security of chiller operations. It
will be changed when the pump and chiller are switched off together.
Thus, Sw,n(t) in Eq. 13 represents the on–off status of chiller n and is
between 0 and 1.

3.1.1 Electricity storage response
Naturally, the operation of the electricity storage must be within

its physical limit. The first limit is that the rate of charging or
discharging should satisfy the storage’s security. Eq. 14 introduces
the limit as constraints. In Eq. 15, PESmax represents the maximum
charging rate, and PES

min represents the maximum discharging rate
(negative). Eq. 15 reflects the continuously adjusting capability of
electricity storage performance.

PES
min ≤ PES t( )≤ PES

max, (14)
where PES(t) represents the value of charging power at the tth

time step.
The second limit is that the energy stored in electricity storage

must be within its maximum and minimum limits. Eq. 15 shows this
limit.

EES
min ≤ EES t( )≤ EES

max, (15)
EES t( ) � EES t − 1( )+TL·PES t( ),

where EES(t) represents the value of stored energy at the tth

time step.
If the consumer joins MRGPAS and has contracted with power

plants at the specified time, the power of charging is fixed by the
constraints detailed in the bid and contracts. Eq. 16 introduces this
constraint.

PES t( ) � Panci t( ), if H t( )� 1. (16)
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3.2 Microgrid cooling network

A typical cooling network for a large group of consumers is
shown in Figure 2.

The cooling network is for the generation and transmission of
cold from chillers to consumers’ space. From Figure 2, chiller units
are the only cold generation system in the network. The cold
generated will be passed to the user network to satisfy the
cooling requirement or be stored in cold storage.

3.3 Dynamic transformation rate from
electrical power to cooling power

Cold is initially generated by chillers in a cooling network. COP
is widely preferred to evaluate a chiller’s cold generation efficiency.
Eq. 17 gives this relationship.

ECS,n t( ) � Pch,n t( ) · COPn t( ), n � 1, 2 (17)
COP is not a constant. It will change while Pch changes. Figure 3

shows the operational statistics among COP, Pch, and ECS.
As shown in Figure 3, COP decreases nonlinearly while Pch

increases. Thus, there is a peak point of ECS in the range of Pch. With
curve fitting, the approximation of COP and ECS in Figure 3 is given
by Eq. 20, which is the red line in the figure. The result of Eq. 18 is
based on polynomial approximation.

ECS,i t( ) � ∑
6

m�0αm · Pch,i,j t( ). (18)

Moreover, the power of each chiller should not exceed its rated
working range given in Eq. 19.

Pch
min ≤Pch t( )≤Pch

max. (19)
On a certain day, the requirement of time series indoor

temperature depends on the requirements of vocational work, so
the time series cold requirement is constant. To balance the cold
generation and consumption, the cooling network should satisfy the
requirement given in Eq. 20.

∑
2

n�1ECS,n t( ) · Sw,n t( ) � Qtot t( ) +Qin t( ), (20)

where Qtot(t) represents the cold consuming rate of the
microgrid at the tth time step. Qin(t) represents the cold
charging rate of cold storage at the tth time step. Eq. 17
shows that the generated cold will be either consumed by the
microgrid’s cooling requirements or by charging the cold
storage.

In Figure 2, the power exchanging speed of cold storage can be
controlled by thermal energy exchanging areas through switching
the corresponding valves, so the control of charging/discharging
rate in cold storage can be given by Eq. 21. Qin

max and Qin
min

represent the maximum and minimum charging rates of cold
storage, respectively.

FIGURE 1
Electrical network in a typical large group of consumers.

TABLE 1 Relevant boundary conditions of the numerical study.

TOU in CP Parameter Value

0:00–8:00 0.3461 CNY/kWh Pump power 30 kW

8:00–14:00 0.6473 CNY/kWh PES
min −10,000 kW

14:00–17:00 1.039 CNY/kWh PES
max 10,000 kW

17:00–19:00 0.6473 CNY/kWh EES
min 10,000 kWh

19:00–22:00 1.039 CNY/kWh EES
max 50,000 kWh

22:00–24:00 0.6473 CNY/kWh Pch
max 40 kW

- - Qin
min −8,000 kW

- - Qin
max 8,000 kW

- - COhsmin 3,200 kWh

- - COhsmax 25,500 kWh
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Qin
min ≤Qin t( )≤Qin

max. (21)
Eq. 22 gives the limits for cold storages, where COhst represents

the value of stored cold at the tth time step.

COhs min#COhst#COhs max

COhst � Qin t( )·TL+COhst−1.{ (22)

Eq. 22 shows that cold storage cannot exceed its maximum and
minimum operational limits at any time of the day.

For an electric vehicle charging station, the probability density
function (PDF) of the arrival time of EVs is described by Eq. 23:

f arEV t( ) �
1
����
2πσ1

√ exp − t + 24 − μ1( )
2

2σ21
[ ] 0< t≤ μ1−12,

1
����
2πσ1

√ exp − t − μ1( )
2

2σ21
[ ] μ1−12< t≤ 24,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(23)

where μ and μ1 are the mean values of the time when EVs arrive and
depart from EVCS, respectively, and σ1 and σ2 are the standard
deviations of the time when EVs arrive and leave EVCS, respectively.

The daily load demand of EV charging is related to the daily
driving mileage and charging duration. In general, the daily travel
mile of an EV is considered to obey a normal distribution, and its
PDF is described by Eq. 24:

fM Md( ) � 1
��
2π

√
σMMd

exp − lnMd − μM( )
2

2σ2M
[ ], (24)

where Md represents the daily mileage of EVs and σM and μM are the
standard deviation and the mean value of Md, respectively.

4 Numerical study and analysis

4.1 Material and methods

To analyze the storage impact under multiple market accesses and
verify model feasibility, a numerical study with practical data is
implemented. The device’s power load time series under general
operation is selected from a typical factory. The TOU tariff data used

FIGURE 3
Operational statistics of cold generation in chillers. (A) Operational statistics among Ecs and Pch. (B) Operational statistics among COP and Pch.

FIGURE 2
Cooling network in a typical large group of consumers.
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in this study were sourced from the official website of the Guangdong
Provincial Development and Reform Commission in China. The
compensation bid price of MRGPAS is assumed to be at its lowest
limit, that is, 0.1 CNY/kWh. This assumption ensures the minimum
benefit and the participation of the target factory inMRGPAS.MRGPAS

also provides a bottom limit for participating electricity storage’s
maximum charging/discharging rate, which is 10MW.

The cooling system in this target factory contains three sub-
cooling units. Each unit includes eight chillers connecting together
on the same flowing pipe. Each chiller is associated with an

FIGURE 4
Electric vehicle power consumption.

FIGURE 5
Optimization result of storage performance in case study 1. (A) Dynamic daily electricty Price (B) Daily total load (C) Electricity storage performance
(D) Cold storage performance.
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independent pump. The total cooling requirement is collected from
a typical day in summer in the factory’s historical data.

The target factory has one flywheel electric power storage
group and one phase-changing cold power storage. The relevant
boundary conditions in the numerical study are given in Table 1.
As stochastic optimization is one of the typical methods for
microgrid planning, the genetic algorithm is selected to solve
the optimization. MATLAB GA Global Optimization Toolbox
was used to carry out the study. The crossover rate was set at
0.8, while the mutation rate was at 0.01. The numerical study was
carried out in MATLAB (version R2019a) on a computer with an
AMD Ryzen 71,700 Eight-Core Processor, 3.00 GHz, and 8.0 GB
of RAM.

4.2 Case 1: storage performance on binary
market accesses: TOU with price difference
and capacity-based charging

Case study 1 aims to demonstrate the storage performance when
the microgrid joins dynamic daily electricity price and CBC
together. Figures 5A–D show the optimization results.

From Figures 5A–D, the following three main points are
observed:

Dynamic daily electricity price promotes storages to charge
when the price is low and discharge when the price is high. The
energy stored in both storages increases when the price is low and
decreases when the price is high. The reason for this is that the
cost of the microgrid will be decreased by consuming cheaper
energy.

Different PD values will not influence the storage
performance. As shown in Figure 4, results under different PD
values are nearly the same. The reason for this is that the optimal
cost of the microgrid under TOU only depends on the shape of
the price curve. Because the same PD is added to the price level at
each hour, shifting the price curve entirely will not change the
relationship of price between any two time points. Therefore,
time with a lower price will always be lower in different PD
values, and different PD values will not influence the cost from
CBC. Thus, catalog price with PD will not influence the storage
performance.

The discharging rate of energy storage systems does not
reach its maximum in price-peak time. Figure 4 shows that
the absolute value of the discharging rate is still smaller than the
storage’s maximum discharging rate. There is a remaining

discharging capability in price-peak time. The reason for this
is that the marginal cost from CBC will increase faster than cost
reduction under TOU if the discharging rate increases in price-
peak time.

4.3 Case 2: storage behavior in three-traffic
market accesses: TOU with price difference,
CBC, and MRGPAS

Case study 2 demonstrates the storage performance when the
microgrid is under three-market accesses together. Considering that
MRGPAS has a focus on renewable power generation, the bid of
MRGPAS is assumed to happen at nighttime, for most wind

TABLE 2 Cost analysis under different MRGPAS participation time periods.

Scenario Participation time Cost from TOU (CNY) Cost from CBC (CNY) Cost from MRGPAS (CNY) Total cost (CNY)

0 None 185,363.2 17,989.4 0.0 203,352.6

1 2:00–3:00 183,828.9 17,535.6 1,501.1 202,865.6

2 2:00–4:00 181,374.7 17,453.0 3,002.2 201,830.0

3 2:00–5:00 172,327.2 21,254.3 7,382.9 200,964.4

4 2:00–6:00 168,903.8 21,259.7 9,843.9 200,007.4

5 2:00–7:00 169,888.6 19,037.4 9,843.9 198,770.0

FIGURE 6
Result of storage performance optimization in case study 2. (A)
Daily total load (B) Electricity storage performance.
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FIGURE 7
Marginal cost variation under three-market accesses. (A) Marginal cost of Powepr outside MRGPAS trading time from TOU. (B) Marginal cost from
CBC. (C) Marginal cost of power inside MRGPAS trading time from TOU and compensation. (D) Total marginal cost.

FIGURE 8
Cost variation details under three-market accesses.
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generation abandonment occurs at night. Figures 5A–D and Table 2
give the result of optimization on different time lengths of MRGPAS
participation. From MRGPAS requirements, cold storage is not
allowed to join MRGPAS.

From Figures 6A, B, the following two points can be seen.
At the time of MRGPAS trading, the charging rate of electrical

storage is higher than the charging rate outside of MRGPAS trading
time at night. The reason for this is that charging within the MRGPAS
bid will generate extra revenue from the MRGPAS market other than
charging under the daily dynamic price tariff. Therefore, a greater
amount of charging rate is shifted into MRGPAS trading time in all
scenarios. This means that choosing to release the control of electricity
storage to charge in MRGPAS trading will lead to a lower cost than
charging under the daily dynamic price.

The charging rate of electric storage will rise to a higher level
than the charging rate outside the MRGPAS trading time at night
when the length of trading time is not less than 3 h. When the
length of trading time is larger than or equal to 3 h, the charging
rate within trading time will have a significant increase. This
phenomenon is due to the comparison between the marginal cost
in CBC and that of MRGPAS trading. A detailed analysis is given
in Figures 7A–D.

Due to the compensation from the MRGPAS market, power
shifts from outside the MRGPAS trading time to the trading time,
which can generate extra benefits from MRGPAS. This shifting will
increase the reference power and cost of CBC.

In addition, the load in the target period is limited to a
threshold in case study 1 when the marginal cost of CBC
becomes positive. Therefore, when charging power inside the
MRGPAS trading time increases at night, the threshold of load
limitation in the target period could be increased. Thus, the
remaining capability in price-peak time can be shifted to the
time between 17:00 and 19:00, which can reduce the cost
further. When MRGPAS trading is larger than or equal to 3 h,
the sum of MRGPAS compensation and threshold releasing will be
larger than the cost increase of CBC. Thus, more charging power
can be added inside the MRGPAS trading time. Reflecting on
Figure 7 d), the marginal cost of H≥3 is negative, and so the cost
will be decreased.

Figure 8 show the comparison of optimal cost under different
trading time lengths. It shows that increasing the time length of the
MRGPAS trading time will decrease the microgrid’s cost. Analysis of
this case study shows that the time length of the MRGPAS bid will
influence the cost in all three markets and thus influence the storage
performance.

4.4 Case 3: storage performance in four-
market accesses

When the microgrid is integrated with distributed solar
generation, less power from the grid is needed. This case study
integrates all four-market accesses together for microgrid analysis.
A typical daily generation capacity variation is shown in Figures
9A, B. Figures 9A, B and Table 3 give the results of solar generation.
Scenario 5 from case study 3 is selected for MRGPAS access in this
case study.

From Figures 9A, B, solar generation integration in a large
network of consumers will compensate for an obvious section of
the power consumption between 8:00 and 19:00. Between 14:
00 and 17:00, the price reaches the maximum level in TOU;
therefore, storages and PV panels will output their electricity to
decrease the total load. Finally, the cost from TOU will be
reduced from 169,888 CNY/day to 164,405 CNY/day for solar
generation, and the microgrid will receive approximately
4,000 CNY/day as governmental compensation. Generally,
solar power generation mainly occurs in the daytime. Thus, it
only duplicates with the discharging of storage. The CBC
reference and MRGPAS do not occur within these areas, and
thus, solar power generation will not influence the response
behavior of storage.

FIGURE 9
Microgrid operation under four-market accesses. (A) Daily total
load and generated power. (B) Response behavior of electrical
storage.

TABLE 3 Microgrid cost analysis under four-market accesses.

Market accesses Without PV With PV

Cost from TOU (CNY/kWh) 169,888.60 164,405.05

Cost from CBC (CNY/kWh) 19,037.42 18,988.87

Cost from MRGPAS (CNY/kWh) 9,843.93 9,843.91

Cost from solar generation (CNY/kWh) 0 −3,955.92

Total cost (CNY/kWh) 198,769.95 189,281.91
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5 Conclusion

This paper presents market models with four different types
of tariffs for the microgrid market environment. The
performance of both electricity storage and cold storage
systems is modeled to formulate a non-linear mixed-integer
programming problem. The numerical study shows that
different market accesses will influence the storage system’s
response together. A trade-off of different market
participation occurs on storage performance. However,
generally, a microgrid with energy storage systems will achieve
a reduced cost with more market participation. From the study
and discussion, a better insight was provided into energy trading
within a microgrid, including energy storage. A future work
based on standard development could be considered.
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Optimal sizing of
photovoltaic-battery system for
peak demand reduction using
statistical models

Reza Nematirad, Anil Pahwa*, Balasubramaniam Natarajan and
Hongyu Wu

Electrical and Computer Engineering Department, Kansas State University, Manhattan, KS, United States

Due to increasing environmental concerns and demand for clean energy
resources, photovoltaic (PV) systems are becoming more prevalent.
Considering that in several instances, customers pay for both energy and
power, PV installations not only must reduce the customers’ energy purchases
but also lower their peak demand for maximum financial benefits. However, in
many cases, the peak demand does not coincide with the peak of photovoltaic
generation. To address this issue, excess energy generated during low-demand
periods can be stored in a battery, which can then be used to meet peak demand.
Determining the optimal size of photovoltaic and battery components while
ensuring system performance and financial benefits is significantly challenging.
This study proposes a novel statistical methodology for optimizing PV-battery
system size. In the proposed method, the PV-battery system must meet peak
demand thresholds with a specific probability. Further, cost and benefit functions
are used for financial evaluation. Finally, Monte Carlo simulations, developed using
time series clustering and a Bayesian model are utilized to assess system
performance and financial feasibility.

KEYWORDS

photovoltaic-battery system, peak demand reduction, time series clustering, statistical
analysis, Monte Carlo simulation

1 Introduction

Photovoltaic (PV) systems have been widely used to generate electricity in recent years
due to their advantages over traditional power resources (Mirzapour and Arpanahi, 2018).
Based on the U.S. Department of Energy Solar Energy Technologies Office (SETO) and the
National Renewable Energy Laboratory (NREL) PV vision, solar energy can supply
40 percent of the nation’s electricity by 2035 (Solar Futures Study, 2023). PV systems
play an important role in power systems because they are able to generate clean and
environmentally friendly energy from solar irradiance (Thirunavukkarasu and Sawle, 2021).
Stand-alone, grid-connected PV, hybrid PV systems, and building-integrated PV systems,
are among the most functional types of PV systems (Verma et al., 2011). From an economic
point of view, the utilization of PV systems must be beneficial both for utilities and
customers. In several instances, customers pay for both energy and peak demand.
Consequently, PV system installation not only must reduce electrical energy purchase
but also must reduce peak demand. Electricity energy reduction can be done by PV systems
at any time of PV operations, but peak demand reduction needs more analysis. Because the
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PV generation in many cases does not coincide with peak demand
hours. For example, during winter and partially in spring and fall the
peak demand may occur in the early morning hours when PV
generation is infinitesimal or zero. To tackle this problem, batteries
can be used to store excess energy generated during low-demand
periods, which can then be used to meet peak demand
(Nkuriyingoma et al., 2022). Nevertheless, one of the main
challenges is finding the appropriate size for PV systems and
associated batteries that can meet a specific peak with high
probability, resulting in peak demand reduction while
considering the stochastic nature of both the system peak
demand and solar irradiance. The literature review on PV-battery
systems indicates a few studies focused on PV-battery systems sizing
with consideration of risk analysis for peak demand reduction.

Several studies have been conducted to optimize PV-battery
systems for residential load applications. These studies use various
methodologies and objectives to achieve optimal PV-battery system
performance and financial benefits. Among the most common
optimization methodologies are deterministic optimization,
stochastic optimization, robust optimization, and multi-objective
optimization.

Deterministic optimization approaches involve using
predetermined parameters and mathematical modeling to
determine the optimal size of the PV and battery components
(Okoye and Solyalı, 2017). proposes a deterministic optimization
model to minimize the total cost of PV-battery systems while
satisfying load demand and system constraints. The deterministic
methodology described in (Belfkira et al., 2011) aims to optimize PV
systems by utilizing long-term data. The goal of this methodology is
to determine the optimal component numbers of the system while
minimizing the total cost and ensuring the availability of energy.

Stochastic optimization approaches incorporate uncertainty in
PV generation and other parameters to optimize the sizing of PV
battery systems (Ensslen et al., 2018). presents a stochastic
optimization model for determining the optimal size of a Solar
System with battery storage. The sensitivity analysis shows that the
PV size significantly relates to labor cost and demand, while the
battery size is influenced by battery cost and demand. Further
(Bagheri et al., 2022), presents a two-stage stochastic
programming model that incorporates a conditional generative
adversarial network to generate scenarios for generated PV power
and demand. It aims to minimize costs and highlights the efficiency
of PV-battery systems.

Robust optimization is a new technique in PV-battery sizing that
considers the inherent uncertainty associated with parameters, such
as solar irradiance, ambient temperature, demand, etc. By modeling
the uncertain parameters by specific intervals, robust optimization
seeks to find the optimal solution (Carli et al., 2022). Few studies in
the literature incorporate the robust counterpart in their PV-battery
optimal sizing problems. For example (Aghamohamadi et al., 2021),
proposes an adaptive robust optimization to determine the optimal
size of PV and battery while minimizing operating costs under the
worst-case realization of uncertainties in a residential area. The
10 percent perturbation is considered for the uncertain parameters
around their nominal values. A multi-objective robust optimization
is proposed by (Rodríguez-Gallegos et al., 2018) to minimize the
CO2 emissions, cost of energy, and voltage deviations under the
worst-case scenarios.

Finally, multi-objective optimization approaches in PV-battery
optimization aim to simultaneously optimize multiple conflicting
objectives such as cost, PV-battery size, environmental impact, etc.
(Khezri et al., 2020) proposes a multi-objective optimization scheme
for grid-connected households, where the cost of energy and grid
dependency are considered as the objectives (Emrani et al., 2021).
presents a multi-objective methodology to choose the optimal size of
the PV-battery system using load and solar irradiance profiles. That
study aims to minimize the total cost of the PV-battery system
investment. A multi-objective function is developed in (Kelepouris
et al., 2022) to find the optimal size of a PV-battery system and the
impact of different energy costs and load profiles on the objective
functions are discussed. Authors in (Celik et al., 2020) propose a
multi-objective problem in a grid-connected PV-battery system
where energy autonomy, power autonomy, payback period, and
lifetime capital cost are considered as the objective functions. The
goal of the study in (Alramlawi and Li, 2020) is to minimize energy
costs by using lead-acid batteries and PV panels, maximize battery
depth-of-discharge, and maximize solar panel tilt angle. That study
aims to improve system reliability by accounting for annual power
supply losses and providing accurate battery lifespan estimations for
economic analysis.

Although valuable studies are conducted in terms of long-term
optimal planning of PV-battery system sizing, the robustness to
withstand unpredictable conditions and risks of not meeting their
proposed schemes are not evaluated adequately in most of them.
Since the design of a PV-battery system is based on historical data, it
is necessary to evaluate the capability and robustness of the designed
PV-battery system for the expected load and solar irradiance profiles
in the future.

Once the optimal PV-battery sizing methodologies have been
established, evaluating the performance of the model becomes
crucial. The robustness and risk of the system are critical aspects
to consider when evaluating the performance of the optimized PV-
battery system. Assessing the system behavior under various
scenarios and uncertainties helps determine its ability to
withstand unpredictable conditions and ensure reliable operation.
Monte Carlo simulation, forecasting, historical data analysis, and
stochastic analysis are among the most popular tools for assessing
PV-battery systems. Stochastic approaches, such as stochastic
optimization, often rely on assumptions about probability
distributions or use simplified models to approximate system
behavior. In (Cheng et al., 2018), the authors use clustering
techniques to group wind energy generation and load data into
different sets. This clustering approach helps identify distinct
patterns and characteristics within the data. Monte Carlo
simulation is used to generate various scenarios for planning
purposes. In (Fu, 2022) a statistical machine learning technique
is utilized to generate multi-scenarios in a distribution network.
Besides, forecasting techniques can be used to generate various
demand scenarios (Gonzalez-Briones et al., 2019). For example, a
new method using the clustering technique and the autoregressive
integrated moving average is proposed in (Nepal et al., 2020) to
forecast the load demand for planning. Further (Berriel et al., 2017),
proposes a modified long-short-term memory to forecast the energy
consumption at a residential site. In addition (Morteza et al., 2023),
explores the use of deep neural networks for medium and long-term
energy demand prediction.
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While several studies have been conducted on the long-term
optimal sizing of PV-battery systems, certain gaps still remain. Many
existing studies focus on deterministic approaches, which do not
consider uncertainties in PV generation, load demand, and other
parameters. In addition, some studies utilize stochastic approaches,
but they often rely on simplified models, which may not accurately
capture the complex behavior of PV-battery systems. Similarly, a
robust optimization could be over-conservative since in most cases it
deals with the worst-case scenarios (Aghamohamadi et al., 2021).
Further, several studies are based on synthetic data and they do not
explicitly address the trade-off between peak demand and energy
consumption reduction.

An important problem in power system planning is to reduce
peak demand and flatten demand profiles (Mahmud et al., 2018).
This study aims to introduce a novel methodology for installing PV-
battery systems that explicitly considers peak demand reduction as a
key factor in determining the optimal solution to maximize the
benefits over the life cycle of the project. The methodology is suitable
for those residential, commercial, and industrial customers who pay
for peak demand charges for electricity. Since the problem
formulation has both continuous and discrete variables along
with a search of thresholds with 95% probability of not
exceeding the peak load, it is difficult and complex to use a
conventional optimization approach to solve this problem. To
address these issues, we have proposed a search approach, which
is simple and easy to implement with the capability to integrate
various aspects of the proposed problem. It also has low
computation burden. A case study of a small municipal utility in
the United States is considered in this paper for illustration of the
methodology. Real system data of 3 years is used for cost and benefit
computations over the project lifetime.

The main contributions of this paper can be summarized as
follows:

1) The study recognizes the importance of reducing peak demand
in PV-battery systems and incorporates it as a key objective in the
optimization process. By considering the technical and economic
requirements, the study aims to find the optimal size of the PV-
battery system that can effectively reduce peak demand.

2) The paper introduces a new statistical methodology specifically
designed to address the optimization of PV-battery sizing. This
methodology offers a systematic approach to assess and determine
the optimal size of the PV-battery systemwhile considering the peak
demand reduction effectively. This is a novel contribution as it
provides alternative approaches to be utilized in decision-making.

3) Build a risk-based robust model to determine the optimal PV-
battery system by incorporating advanced techniques including
time series clustering and Monte Carlo simulation based on a
Bayesian model. These techniques are used to generate a large
number of realistic demand and solar irradiance data scenarios,
allowing for a comprehensive evaluation of the system
performance under different conditions.

2 Methodology

This section outlines the techniques employed to achieve the
optimal size of a PV-battery system.

2.1 PV-battery system component model

The system under this study consists of PV panels, battery
storage, and inverters. PV panels directly convert solar irradiance
into electrical DC power. If the size of the PV system is X kW, the
overall output power of the PV system can be obtained as follows
(Yan et al., 2019):

PV h( ) � X

G
× I h( ) (1)

where, PV(h) indicates DC output power of the PV system in kW at
hour h, G is the solar constant equal to 1000 W/m2, and I(h)
represents solar irradiance in W/m2. DC to AC inverter model can
be expressed as follows (Yan et al., 2019):

Pinv h( ) � PV h( ).ηinv.K (2)

where, Pinv(h) indicates the output power of the inverter, K is the
oversize coefficient, and ηinv presents the efficiency of the inverter.

2.2 System costs

2.2.1 Investment costs
The investment costs refer to the initial capital cost required to

install the PV-battery system, including PV modules cost (Ndwali
et al., 2020):

Cini
pv�X.Cpv (3)

where, Cini
pv is the total installation cost for the PV modules ($) and

Cpv is the module cost (/W).
Inverter cost (Ndwali et al., 2020):

Cini
inv�X.ηinv.K.Cinv (4)

where, Cini
inv is total installation cost for the inverters ($) and Cinv is

the capital cost of the inverters ($/W).
Labor costs:

Cini
labor�X.Clabor (5)

where,Cini
labor is the total initial human and labor cost ($) andClabor is

the cost of labor ($/W). The total equipment costs including wiring,
racking, and switchgear for installing a photovoltaic system are as
follows:

Cini
eq�X.Ceq (6)

where,Cini
eq is the total initial equipment cost ($) andCeq is the capital

cost of equipment ($/W).
Additionally, PV system installation has overhead costs as

follows:

Cini
over�X.Cover (7)

where, Cini
over is the total initial overhead cost ($) and Cover is cost of

overhead ($/W). Batteries are installed initially and they need to be
replaced after a certain amount of time because they typically last
less than the project lifetime. It should be noted that according to
rapidly growing battery technologies, the cost of the replaced battery
is expected to be less than the current value (Berckmans et al., 2017).
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Accordingly, if the cost of the initial battery is C1
bat, cost of the

secondary battery would be C2
bat. WithM as the lifetime of the initial

batteries, the present worth of battery investment cost is as follows
(Disney et al., 2013):

Cini
bat � C2

bat

1

1 + i( )M[ ] + C1
bat (8)

where i is the discount rate used to compute the present worth of
replacement batteries. C1

bat (similarly C2
bat) can be expressed as

follows:

C1
bat � Y.Cbat (9)

where, Cbat is capital cost of battery ($/kWh) and Y is size of the
battery in kWh.

With Cini
trans as the cost of the transformer needed to connect the

system to the grid, the total installation cost of the PV-battery system
Cini
total can be expressed as follows:

Cini
total�Cini

pv+Cini
inv+Cini

labor+Cini
eq+Cini

over+Cini
trans + Cini

bat (10)

2.2.2 Operation, maintenance, and insurance costs
The total annual operation and maintenance costs of a PV-

battery system are an annuity and they need to be converted to the
present worth as follows (Disney et al., 2013):

Cpresent
O&M � X.Cyear

O&M

1 − 1 + i( )−N
i

[ ] (11)

where, Cyear
O&M is the yearly operation and maintenance costs, Cpresent

O&M

present worth of the operation and maintenance costs over the
project lifetime, and N is the project lifetime. It should be noted that
the yearly insurance cost is included in the operation and
maintenance costs.

2.2.3 Peak demand charge
The peak demand charge is calculated based on the highest level

of power demand typically over a month. Here the peak demand
charge is calculated before and after PV-battery installation. The
present worth of peak demand charges for year n before PV-battery
installation can be expressed as follows (Risbeck and Rawlings,
2020):

PDCHpresent
origianl� ∑Ppeak

m .Cpeak( ).
1

1 + i( )n[ ] (12)

Where, PDCHpresent
origianl represents the present worth of peak demand

charge cost without PV-battery, Ppeak
m indicates the peak demand in

each month (kW), And Cpeak states the peak demand rate ($/W).
However, when the PV-battery system is installed, the present worth
of the yearly peak demand charge for year n can be expressed as
follows (Risbeck and Rawlings, 2020):

PDCHpresent
pv−Bat� ∑max Poriginal

d h( ) − PPV−Bat
d h( ){ }.Cpeak.

1
1 + i( )n[ ]

(13)
Where PDCHpresent

pv−Bat is the present value of peak demand charge with
PV-battery, Poriginal

d (h) is the original demand, and PPV−Bat
d (h) is

demand reduction by PV-battery system.

2.2.4 Energy cost
The present worth of energy cost before PV-battery installation

COEpresent
original and after them COEpresent

PV−Bat for year n can be expressed as
Eqs. 14, 15, respectively (Ndwali et al., 2020).

COEpresent
original � (∑Poriginal

d h( ).Cgrid)
1

1 + i( )n[ ] (14)

COEpresent
PV−Bat � (∑ Poriginal

d h( ) − PPV−Bat
d h( )( ).Cgrid).

1
1 + i( )n[ ] (15)

Where, Cgrid is the energy cost ($/kWh). It is assumed that the
electrical grid Pgrid(h) is used to meet the energy required beyond
that provided by the PV-battery system. Therefore,

0≤Pgrid h( )≤+ ∞ (16)

2.2.5 Benefit
The total benefit over the project lifetime can be expressed as the

difference between the total cost of the system with and without the
installation of the PV-battery system, which can be expressed as
follows:

Benefit � PDCHpresent
original+COEpresent

original{ }

− Cini
total+Cpresent

O&M +PDCHpresent
PV−Bat+COEpresent

PV−Bat{ }
(17)

2.3 Battery operation and updated peaks

In this section, a new simple but efficient algorithm is proposed
to determine daily battery operation. For an X kW PV size, Eq. 1
gives the output power of the PV. Then, an updated daily load
profile, named modified load is generated by subtracting the original
load profiles from the PV generation for all days. The needed battery
size for each day to flatten the load curve is determined by drawing a
horizontal line such that the upper area between the modified load
and the horizontal line is equal to the roundtrip efficiency multiplied
by the lower area between the horizontal line and the modified load
below this line as expressed by:

FIGURE 1
Modified load curve and equalization of areas for the needed
battery.
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Aupper � Alower×ηR (18)

where Aupper and Alower represent the upper and lower areas
between the modified load and the horizontal line, respectively,
and ηR is the battery roundtrip efficiency. For example, in Figure 1,
the modified load curve for a random day is shown, and a horizontal
line has been placed to cut the curve in such a way that the dashed
area above the line is equal to the roundtrip efficiency multiplied by
the gray area below the line. Positioning the horizontal line in this
way ensures that the battery can be charged when the modified load
is below the horizontal line and it is discharged when the modified
load is above the horizontal line while limiting the peak load for the
day at the value corresponding to the horizontal line. These
calculations can be modified to include battery efficiencies during
charging and discharging. The calculated lower area, which
corresponds to energy going to the battery from the grid, is
multiplied by battery charging efficiency and divided by the
battery utilization factor to give the needed battery sizes for the
specific day as follows:

Bneeded � Alower × ηB
UB

(19)

Where Bneeded represents the daily needed battery capacity to flatten
the load curve, ηB represents the battery charging efficiency, and UB

represents the battery utilization factor. Utilization factor is defined
as the range from the minimum recommended charge to the
maximum recommended charge levels for the battery (typically
20%–90%, which gives a utilization factor of 0.7).

Since each day will need a different battery size to flatten the load
curve, the largest needed battery size would be able to flatten the load
curve for all the days. However, choosing the largest battery size is
not prudent because the cost will be prohibitive. Hence, determining
an optimal size for flattening the load curve on most of days while
having the risk of not being able to flatten the load curve on a few
days is important. For these days, a new horizontal line is drawn
such that the upper area between the modified load and the new
horizontal line corresponds to the battery capacity while considering
the battery efficiency and utilization factor. In other words, this is the
maximum peak load reduction that can be obtained by the selected
battery size. It should be noted that considering roundtrip efficiency
in the battery sizing algorithm simulates battery loss. That means
although battery installation is expected to reduce peak demands,
battery operational losses increase the energy purchase from
the grid.

2.4 Statistical modeling

With prior knowledge of daily energy and peak load, a range of
battery sizes from Y1 to Yn can be defined for a given X PV size.
Further, the updated daily peak loads are calculated for battery sizes
Y1 to Yn. Subsequently, for each battery size, a histogram can be
drawn for the daily peak loads. Based on the scaled histogram, an
appropriate probability distribution function (PDF) is fitted for each
histogram. To accomplish this, Gamma and Lognormal
distributions are considered. The general PDF of the Gamma
distribution is as follows (Schellenberg et al., 2005):

f x( ) �
x − μ

β
( )

α−1
exp −x − μ

β
( )

β Γ α( )
where, x≥ α; β, α> 0

(20)

and μ, α, and β are location, shape, and scale parameters,
respectively. The Γ(α) is the Gamma function as follows
(Schellenberg et al., 2005):

Γ α( ) � ∫

∞

0

tα−1 exp −t( )dt (21)

And PDF of the Lognormal is as follows (Chen et al., 2019):

f x( ) � 1
xσ

���
2π

√ exp −1
2

ln x( ) − μ

σ
( )(

2

) (22)

where μ is the mean, and σ indicates the standard deviation. Further,
to evaluate the goodness-of-fit of the fitted PDFs, the Kolmogorov-
Smirnov (KS) statistic test is used that compares the empirical
cumulative distribution function (CDF) of daily peak data with
the CDF of the fitted PDF. Lower KS statistic values indicate better
fits, while higher p-values suggest better fits (Ghatak et al., 2022).
After finding the most suitable PDFs for the daily peak histograms,
the next step involves determining peak demand thresholds with
0.95 probability for all fitted PDFs. For example, for a given X and Y,
the peak demand threshold T associated with the 95% probability for
a fitted PDF can be calculated as follows:

F−1 P� 0.95( )�T (23)
where F−1 is the inverse of the CDF of a fitted PDF. This threshold
indicates the ability of the designed PV-battery system to meet peak
demand from zero to T with a 95% probability. This procedure is
used for all the fitted PDFs and the peak demand thresholds
associated with the 95% probability for each battery size are
calculated.

2.5 Optimal PV-battery sizing

In the proposed heuristic method, the unique demand
thresholds associated with the 95% probability for each battery
size for the given PV size are utilized. Determination of the
optimal battery size for a given X PV size involves identifying a
point where the 95% threshold exhibits a significant change
compared to the other thresholds associated with different
battery sizes. This approach is based on the fact that increasing
battery size leads to reduction in the 95% threshold, but after a
certain size the reduction becomes smaller. Hence, to determine the
optimal battery size, an elbow point in the 95% peak load threshold
versus battery size curve is sought. The elbow point represents a
battery size where the reduction in the 95% threshold is significantly
greater than neighboring points. This indicates a significant
improvement in the ability of the system to meet peak demand.
Besides, this enhances the system performance in meeting peak
demand while maintaining a desired probability. By repeating this
methodology for a range of PV sizes from X1 to Xn, the optimal
battery size for each PV size can be determined.
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The proposed methodology determines multiple combinations
of optimal PV-battery sizes. The optimal PV-battery system size is
chosen based on financial benefit analysis. Besides, it is crucial to test
the system under multiple scenarios to ensure its performance and
effectiveness under various conditions. By subjecting the system to
different scenarios, such as varying solar irradiance and demand its
robustness and risk can be evaluated. For this purpose, time series
clustering, and the Monte Carlo simulation technique is developed
in the following sections.

2.6 Monte Carlo simulation

Monte Carlo simulation is a computational technique used to
model and generate a large number of random scenarios. It relies on
random sampling and repeated experiments to estimate and
understand the range of possible outcomes for a given problem
(Raychaudhuri, 2008). By clustering demand and solar irradiance
data, more realistic scenarios can be created. Additionally, clustering
allows Monte Carlo simulations to take into account the
interdependencies between demand and irradiance, leading to
more meaningful and effective scenarios.

2.6.1 Time series clustering
Time series clustering is a technique that groups similar time

series data into distinct clusters based on their patterns, trends, or
behaviors over time. Electricity demand and solar irradiance are
time series data that include time intervals indicating the timesteps
and corresponding demand and solar irradiance values. Time series
clustering is a complex technique in data analysis and includes data
preprocessing, similarity measures, cluster prototypes, clustering
algorithms, and evaluation metrics (Ali et al., 2019). The
preprocessing may include working with missing data or outliers,
and normalization. This study uses Min-Max normalization to
normalize the time series data (Petegrosso et al., 2020). A
similarity measure quantifies the similarity between time series
datasets. Dynamic time warping (DTW) is utilized in this study
as a similarity measure and its efficiency is proven in several time
series clustering (Aghabozorgi et al., 2015). A prototype is a time
series that represents the characteristics of a cluster. This study
utilized the medoid prototype that is proper for the DTW similarity
measure (Ma and Angryk, 2017). Further, two types of most
practical time series clustering methods including K-medoid and
agglomerative hierarchical clustering algorithms are used. The
K-medoid clustering method is a partitioning clustering
algorithm suitable for building energy analysis. K-medoid
clustering can handle non-Euclidean distance measures,
resistance to outliers, and offers a superior level of computational
efficiency over other partitioning-based clustering methods (Cui
et al., 2023). The K-medoid algorithm utilizes medoids as prototypes
of clusters. It selects medoids by minimizing the dissimilarity or
distance between data points within each cluster. However,
K-medoid requires that the number of clusters must be specified
in advance (Gupta et al., 2021). Agglomerative hierarchical
clustering is a specific type of hierarchical clustering, which offers
a distinct advantage in building energy analysis. This method
eliminates the need to predetermine the number of clusters. This
approach generates a tree-like structure known as a dendrogram,

which serves as a visual representation and helps in determining the
optimal number of clusters (Li et al., 2018). Time series agglomerative
hierarchical clustering organizes time series data into a hierarchy of
clusters using a cumulative approach. It merges clusters based on
similarity measures (Ali et al., 2019). Finally, the quality of time series
clustering algorithms should be evaluated to figure out if the clustering
algorithms are able to capture patterns and trends in the time series
datasets. In this study, the Silhouette coefficient and gap statistic are
used for the evaluation of K-medoid, and dendrogram plot for
hierarchical clustering (Aghabozorgi et al., 2015). It should be
noted that a combination of different time series clustering
algorithms provides robust and reliable results and provides deeper
insights into the underlying patterns.

2.6.2 Bayesian model
By considering the clustering results of the previous section,

conditional probabilities are calculated to assess the relationship
between demand and solar irradiance patterns for a
computationally efficient implementation of Monte Carlo
simulation. These conditional probabilities quantify the likelihood
of a specific demand pattern occurring given a certain solar irradiance
pattern. Figure 2 illustrates the process of determining these
conditional probabilities for a month. C � C1,C2, . . .,CN{ } indicates
the set of solar irradiance clusters and L � L1,L2, . . .,LM{ } is the set of
demand clusters. The simulation starts by randomly selecting the solar
irradiance cluster using the probabilities of each cluster and uniform
distribution. In the next step, a load cluster is randomly selected based
on conditional probabilities of load clusters conditioned on the
selected irradiance cluster using a uniform distribution. Since the
selected irradiance and load clusters may have multiple days, one
irradiance profile and one load profile from these clusters are selected
randomly with equal probability for each profile with the respective
clusters. The selected irradiance profile and load profile represent a
day in the selected month. This process is repeated for each day of all
the months to generate profiles for solar irradiance and demand for a
large number of instances to generate a wide range of scenarios.
Besides, the organizational flowchart of the simulation procedure in
this study is shown in Figure 3.

FIGURE 2
Process of determining the conditional probabilities.
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3 Results and discussion

3.1 Data collection and assumption

In this study, the hourly demand and actual solar irradiance data
of Greensburg, Kansas, United States of America, from 1 January
2019, to 31 December 2021, are collected. The values of different
parameters used in this study are provided in Table 1. Further, the
study is conducted with the assumption that the battery operates on
a daily cycle, which means that the battery is charged and discharged
fully within the same day. A tax credit of 30% for the initial cost of
PV and batteries including the transformer, racking, switchgear, and

wiring is considered. Tax credit is not considered for the
replacement batteries that will be acquired 10 years later.

3.2 Statistical modeling

3.2.1 Proposed methodology
The load demand and PV generation profile of the peak demand day

of January 2019 are shown in Figure 4. The peak demand occurs early in
the day when there is no solar irradiance. Therefore, PV installation does
not help in peak demand reduction, but batteries can be used as a
complement to PV systems. For example, on this day, a battery can be
discharged at the beginning of the day to reduce the peak and be charged
duringmid-day for possible use late in the day.Modified load profiles are
calculated for the entire data of 3 years for PV sizes ranging from200 kW
to 10000 kW in steps of 100 kW. Subsequently, for each PV size,
corresponding battery sizes are selected from 1000 kWh to
10000 kWh in steps of 100 kWh. Next, updated daily peak demand
values for each combination of battery and PV sizes are calculated for the
3-year period. Then, the scaled histograms of peak demands are created,
considering the frequencies of occurrence of different peak demands
over the 3-year period. After fitting the PDFs (lognormal and Gamma)
to the generated histograms, the goodness-of-fit is evaluated using the KS
statistic test. KS statistic test results show the p-values for the Gamma
PDFs are significantly greater than the typical significance level of 0.05,
indicating a good fit for the data. However, for the Lognormal PDFs,
some p-values aremuch less than 0.05, suggesting poor fits. For example,
for PV size of 2000 kWand battery size of 2000 kWh and 3000 kWh, the
p-values are 0.0053 and 0.027, respectively. Furthermore, both PDFs
exhibit relatively small KS statistic test scores. Consequently, the KS
statistic test indicates that the Gamma distribution fits the observed data
better than the Lognormal PDF. These fitted Gamma PDFs for various
combinations of PV and battery size are used in the proposed
methodology to determine optimal PV and battery sizes.

Based on the calculated fitted PDFs, the 95% peak thresholds are
determined for all fitted Gamma PDFs. For example, Figure 5 shows
the 95% peak threshold for a battery size of 4000 kWh and a PV size
of 2000 kW for the corresponding fitted Gamma PDF. The peak
demand threshold with a 95% probability for the given case is

FIGURE 3
Organizational flowchart of the simulation procedure in this study.

TABLE 1 Quantity values used in this study.

PV module ($/W) Inverter ($/W) Equipment ($/W)

0.35 0.04 0.18

Overhead ($/W) O&M ($/kW) Transformer ($)

0.1 15 150,000

Energy cost ($/kWh) Power
cost ($/kW)

Tax credit (%)

0.025 22 30

Initial battery
($/kWh)

Replacement
battery ($/kWh)

Project lifetime

150 100 20 years

Labor ($/W) Discount rate Battery roundtrip
efficiency

0.1 0.08 0.9025

Inverter coefficient Battery efficiency Battery utilization

1.2 0.95 0.7

Inverter efficiency

0.9
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1985 kW. This means that with 95% probability, the PV-battery
system is expected to meet peak demand ranging from 0 kW to
1985 kW. Figure 6 displays the peak load thresholds with a 95%
probability for the PV size of 2000 kW and various battery sizes. It
can be observed that the thresholds for meeting peak demand with
a 95% probability decrease as the battery size increases. This trend
is particularly significant up to a battery size of 4400–4800 kWh,
indicating that increasing the battery size within this range leads to
a substantial reduction in the thresholds. But further increasing
the battery size does not provide significant additional benefits in
terms of improving the system ability to meet peak demand with a
95% probability. Therefore, to determine the optimal battery size
for a PV size of 2000 kW, an elbow point in the 95% peak
threshold versus the battery size curve is sought. The elbow
point represents the size of the battery at which the 95%
threshold is reduced significantly more than its neighboring
points. Figure 7 illustrates the elbow curve (Antunes et al.,
2018) derived from the data presented in Figure 6. By
examining the elbow curve, the point with the highest value

represents the optimal battery size for the given PV size of
2000 kW. Based on the elbow curve depicted in Figure 7, the
maximum value occurs at a battery size of 4600 kWh for the given
PV size of 2000 kW with a peak load threshold of 1971 kW. If this
analysis is repeated for different PV sizes, the optimal battery size
corresponding to each PV size can be obtained. Table 2 provides
selected optimal combinations of PV and battery size with
consideration for the 95% probability. For example, a PV size
of 3600 kW with a battery size of 4400 kWh can meet peak
demand ranging from 0 kW to 1931 kW with 95% probability,
indicating the best combination in terms of peak reduction.
However, the PV size 400 kW can meet the 2167 kW peak with
specified probability with battery size 6200 kWh, indicating a poor
combination. However, to determine the best PV and battery size,
a benefit analysis must be conducted over all the optimal
combinations of PV and battery sizes. The final size of the PV-
battery system is the combination of PV and battery sizes that
yield the highest overall benefit for the system over 20 years.

FIGURE 4
Original load and PV generation on the peak day of January 2019.

FIGURE 5
The 95% peak threshold for a fitted Gamma PDF with a battery
size of 4000 kWh and a PV size of 2000 kW.

FIGURE 6
Thresholds with the 95% probability for the PV size of 2000 kW
vs. various battery sizes.

FIGURE 7
Elbow curve associated with thresholds with the 95% probability
for the PV size of 2000 kW.
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3.3 Benefit analysis

The benefit analysis is conducted to evaluate the financial
profitability of PV and battery size combinations over 20 years.
Data from 3 years, including both demand and solar irradiance, are
grouped on a monthly basis. Energy and peak demand costs are
calculated individually for each month over the 3-year period and
subsequently averaged to obtain the monthly average costs. Table 3
presents the financial benefits associated with each combination of
optimal PV and battery sizes. Figure 8 illustrates the financial benefit
of each optimal PV and battery size combinations. It should be noted
due to the limitation of the plotting, the optimal battery sizes
associated with each PV size are not explicitly shown in the
figure. The best PV and battery size combination among all the
combinations is a PV size of 1200 kW, battery size of 3200 kWh,
peak threshold of 2078 kW, and the financial benefit associated with
this combination is $820,373 over 20 years. Table 4 provides a
detailed financial analysis of the optimal PV-battery system
considering the energy and peak demand costs before and after
PV-battery installation over a 20-year period for this case. The
original energy and peak demand costs (before PV and battery
installation) are $3,788,907 and $6,913,926.51, respectively over the
20-year period. Peak demand charges are approximately twice the
energy cost, indicating the importance of peak demand in reducing
overall costs. The PV installation results in a reduction of 12.9% in
energy costs and 5.58% in peak demand costs. These reductions
indicate that PV installation is more successful at reducing energy
costs than peak demand costs. However, the total cost of PV
installation, in this case, amounts to $1,093,847. The calculated
net benefit, which is -$190,366, indicates that PV installation does
not yield a positive economic outcome. So, although PV reduces

energy and peak demand charges, the high total installation cost
outweighs the cost savings achieved. Therefore, from an economic
perspective, PV installation alone is not profitable. Despite adding
additional costs to the system, the installation of a battery results in a
notable 25.28% reduction in peak demand costs compared to the
original peak demand costs. Furthermore, the difference of
$27,647 in energy costs between PV-only and PV-battery system
is the cost of losses associated with charging and discharging of the
battery. However, incorporating the battery system increases the
overall benefit of the PV-battery system, which indicates that the
combined effect of battery and PV is more advantageous than
relying solely on PV installation. Finally, in order to assess the
performance and effectiveness of the PV-battery system based on
the proposed method, it is necessary to test the designed PV-battery
system under different scenarios and conditions. To generate
multiple scenarios with Monte Carlo simulation, the demand and
solar irradiance profiles must be clustered.

3.4 Monte Carlo simulation

3.4.1 Time series clustering
The first step in the time series clustering is to prepare the

datasets. To achieve this goal, the data is grouped monthly. For
instance, the demand and solar irradiance data for all Januarys in the
3 years are combined, resulting in 93 time series datasets in which,
each time series contains 24 hourly data points. Then, all datasets are
normalized based on Min-Max normalization. Subsequently,

TABLE 2 Selected optimal combinations of PV and battery sizes.

PV size (kW) 400 800 1200 1600 2000 2400 2800 3200 3600

Battery size (kWh) 6200 5000 3200 4400 4600 5400 4600 4200 4400

Threshold (kW) 2167 2090 2078 1995 1971 1952 1958 1955 1931

TABLE 3 Financial benefits for optimal combinations of PV and battery sizes.

PV size
(kW)

400 600 800 1000 1200 1400

Battery
size (kWh)

6200 5500 5000 4800 3200 4200

Benefit ($) 579,970 538,390 563,450 777,510 820,370 783,450

PV size (kW) 1600 1800 2000 2200 2400 2600

Battery
size (kWh)

4400 4600 4600 5000 5400 5000

Benefit ($) 719,810 535,090 719,560 775,570 616,460 647,040

PV size (kW) 2800 3000 3200 3400 3600 3800

Battery
size (kWh)

4600 4400 4200 4800 4400 4400

Benefit ($) 657,760 559,640 600,780 476,670 506,680 426,250

FIGURE 8
Benefit of the various combinations of optimal PV and battery
size.
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K-medoid and agglomerative hierarchical time series clustering
algorithms are utilized to group similar profiles in a cluster using
the DTW similarity measure. Gap statistics and Silhouette scores are
used as evaluation metrics to determine the proper number of
clusters of the K-medoid algorithm. To obtain the gap statistic
and Silhouette scores, the K-medoid algorithm performs clustering
for a range of integer values representing the number of clusters. The
clustering results demonstrate that each cluster represents a group of
similar demand and solar irradiance profiles based on their patterns
allowing for the discovery of distinct monthly variations in
electricity demand and solar irradiance. For example, Figure 9
demonstrates the gap statistic and Silhouette coefficient scores
for different numbers of clusters for July load demand profiles.
Based on Figure 9, the maximum gap statistic score of 0.114 suggests
that 3 clusters are meaningful for July load demand profiles.
Similarly, the Silhouette coefficient peaks at 0.472 with 3 clusters.
These results offer valuable insights into choosing the optimal
number of clusters. These distinct clusters represent high
electricity demand, moderate demand, and relatively low demand
for the month of July. These variations can be attributed to factors
like differences between weekdays, weekends, and weather
conditions.

The agglomerative hierarchical clustering algorithm starts by
treating each individual demand and solar irradiance time series as a
separate cluster. It calculates pairwise distances between these
clusters using the DTW similarity measure. Clusters are then
merged iteratively based on their distances, creating a hierarchy
of clusters. This hierarchy for July load demand profiles is visualized
in Figure 10 as a dendrogram graph. In the dendrogram graph, the
vertical lines indicate clusters at different levels of the hierarchy and
a point where vertical lines merge together demonstrates a cluster
formation. Besides, the height of the vertical lines represents the
dissimilarity or distance between the clusters and longer lines show
significant dissimilarity. Intuitively, if a horizontal line cuts through
the highest vertical lines in a dendrogram, the intersections can
indicate the desired number of clusters. Accordingly, in Figure 10,
the red horizontal line intersects three vertical lines that represent
the largest dissimilarities compared to other clusters. This suggests
that dividing the data into three clusters could be a suitable choice
based on the dendrogram structure. Given that both K-medoid and
hierarchical clustering suggests a similar number of clusters for the
July demand profiles, July load data can be confidently divided into
three distinct clusters. By applying the same clustering methods to
the remaining demand and solar irradiance data, the time series
clustering process is completed for use in the Monte Carlo
simulation.

3.4.2 Bayesian simulation
Based on the mentioned methodology, a Monte Carlo

simulation is performed to generate 10,000 scenarios in which
each scenario contains yearly load and solar irradiance data.
These scenarios are generated based on the conditional
probability between demand and solar irradiance profiles.
Previously selected best PV and battery sizes of 1200 kW and
3200 kWh, respectively, with a peak load threshold of 2078 kW
are used to calculate the benefits for various scenarios. Among the
10,000 scenarios, 20 scenarios are randomly selected to calculate the
benefits over a 20-year period to create one sample benefit in the
Monte Carlo simulation. The process is repeated 500 times to
determine 500 benefit samples without replacement. Figure 11
shows the histogram of these benefit samples. The mean benefit
value is determined to be $822,440, indicating the average benefit
that can be expected from implementing the proposed method with

TABLE 4 Economic analysis of the optimal PV-battery system.

Without PV-
battery

With PV With PV-
battery

Energy cost ($) 3,788,907 3,337,719 3,365,366

Peak cost ($) 6,913,926 6,539,467 5,166,301

Equipment
cost ($)

0 1,016,013 1,350,792

Benefit ($) - −190,366 820,373

FIGURE 9
Gap statistic and Silhouette score for K-medoids algorithm.

FIGURE 10
Dendrogram associated with the hierarchical clustering.
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the determined PV and battery sizes over the 20-year period.
Furthermore, the standard deviation is $7554 indicating the
variability of the benefit around the mean. In this case, the
coefficient of variation (CV), which is the ratio of the standard
deviation to the mean is 0.0092 which is relatively small compared
with the general CV (Chen and Mili, 2013). It suggests that the
benefits obtained from the Monte Carlo simulation are relatively
consistent and close to the mean value. This level of low variability
can be seen as a positive characteristic, indicating a higher level of
predictability and reliability in the benefits obtained from the
simulation. Besides, a Normal PDF is fitted to the histogram. The
KS statistic is calculated to be 0.0235, and the p-value is found to be
0.957. These values indicate a good fit between the Normal PDF and
the benefits data. Moreover, a 95% confidence interval for the mean
of the benefits is computed, resulting in the range [821,773, 823,100].
That means, it is estimated that the average benefit value is likely to
be between $821,773 and $823100 with a 95% confidence. To
perform a risk analysis, three predetermined benefits are
considered as desired benefits to be achieved over the project
lifetime. If the predetermined benefit is less than $821,773, it
suggests that with 95% confidence, the estimated mean benefit is
likely to be higher than the threshold. This indicates a favorable
outcome, as the estimated mean benefit is expected to surpass the
desired threshold. On the other hand, if a predetermined benefit is
higher than $823,100, it indicates with 95% confidence, the
estimated mean benefit may fall below the predetermined
threshold, suggesting a potential failure to meet the desired
benefit. Finally, if the predetermined benefit falls between the
lower and upper bounds of the 95% confidence interval, this
means there is an uncertainty about whether the estimated
average benefit will be higher or lower than the predetermined
threshold. Further, the first and second STDs represent the lower
and upper bounds around the mean benefit value (see Figure 11),
indicating the potential range within which benefits are likely to
occur. Considering the first and second STDs, the benefits will be
within the range of $814,880 to $829,990 and $807,330 to $837,550,

respectively with approximately 68% and 95% confidence. The first
and second standard deviations can provide insight into the range
within which benefits are likely to fluctuate, helping decision-makers
make thorough assessments.

4 Conclusion

This study addresses the significance of peak demand in solar
PV system planning and management. While PV installations
reduce energy flow from the grid, their impact on peak demand
reduction is limited in some cases. Batteries for energy storage are
used to overcome this limitation. An innovative methodology is
proposed for determining the optimal sizes of PV and battery. The
proposed method considers variable peak load thresholds with a
95% probability for all PV and battery sizes and identifies optimal
sizes based on the elbow point. To evaluate various optimal
combinations of PV and battery sizes economically, the total
benefit for these combinations is calculated to identify the best
sizes of the PV and battery for the given system. Finally, a novel
Monte Carlo simulation is used to evaluate the effects of
uncertainties and risk on the results comprehensively by
generating multiple load and solar and irradiance scenarios. Since
many small municipal utilities and rural electric cooperatives buy
electricity from large suppliers for distribution to their customers,
the methodology presented in this paper provides a valuable tool for
them in planning solar PV-battery system installations. However, it
should be noted that the proposed methodology is not suitable for
general sizing of solar PV and batteries, but suitable for only those
utilities with a goal to reduce the peak demand. In future research, an
investigation can be conducted with a fixed peak load threshold for
the PV-battery system. Additionally, various aspects such as demand
response, power system topologies and associated reliability indices
can be included in the analysis.
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A Corrigendum on
Optimal sizing of photovoltaic-battery system for peak demand reduction
using statistical models

by Nematirad R, Pahwa A, Natarajan B and Wu H (2023). Front. Energy Res. 11:1297356.
doi: 10.3389/fenrg.2023.1297356

In the published article, there was an error in Table 1 as published. The top row is not
header for the columns. It includes quantities whose values appear in the next row. Also, the
value in the first column of second row should be 0.35 instead of 0.035. The corrected
Table 1 and its caption appear below.

The authors apologize for this error and state that this does not change the scientific
conclusions of the article in any way. The original article has been updated.
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TABLE 1 Quantity values used in this study.

PV module ($/W) Inverter ($/W) Equipment
($/W)

0.35 0.04 0.18

Overhead ($/W) O&M ($/kW) Transformer
($)

0.1 15 150,000

Energy cost
($/kWh)

Power cost
($/kW)

Tax credit (%)

0.025 22 30

Initial
battery ($/kWh)

Replacement
battery
($/kWh)

Project
lifetime

150 100 20 years

Labor ($/W) Discount rate Battery
roundtrip
efficiency

0.1 0.08 0.9025

Inverter coefficient Battery
efficiency

Battery
utilization

1.2 0.95 0.7

Inverter efficiency

0.9
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Residential load forecasting by a
PSO-tuned ANFIS2 method
considering the COVID-19
influence

S. M. Mahfuz Alam1 and Mohd. Hasan Ali2*
1Department of EEE, Dhaka University of Engineering and Technology, Gazipur, Bangladesh, 2Department
of ECE, The University of Memphis, Memphis, TN, United States

The most important feature of load forecasting is enabling the building
management system to control and manage its loads with available resources
ahead of time. The electricity usage in residential buildings has increased during
the COVID-19 period, as compared to normal times. Therefore, the performance
of forecasting methods is impacted, and further tuning of parameters is required
to copewith energy consumption changes due to COVID-19. This paper proposes
a new adaptive neuro-fuzzy 2 inference system (ANFIS2) for energy usage
forecasting in residential buildings for both normal and COVID-19 periods. The
particle swarm optimization (PSO) method has been implemented for parameter
optimization, and subtractive clustering is used for data training for the proposed
ANFIS2 system. Twomodifications in terms of input and parameters of ANFIS2 are
made to cope with the change in the consumption pattern and reduce the
prediction errors during the COVID-19 period. Simulation results obtained by
MATLAB software validate the efficacy of the proposed ANFIS2 in residential load
forecasting during both normal and COVID-19 periods. Moreover, the
performance of the proposed method is better than that of the existing
adaptive neuro-fuzzy inference system (ANFIS), long short-term memory
(LSTM), and random forest (RF) approaches.

KEYWORDS

Adaptive neuro-fuzzy 2 inference system, COVID-19, load forecasting, residential load,
particle swarm optimization

1 Introduction

The amount of energy consumption in residential buildings creates a huge burden on the
energy-providing utilities. This problem becomes severe during the peak hours of the day
when the utility might have to look for alternative resources of energy. In addition,
consumers have to pay a high electricity price during the peak hours. However, load
forecasting can help overcome this problem from both the grid side and the consumer’s
perspective. From the grid perspective, based on the knowledge of energy demands,
alternative resources of energy can be allocated ahead of time (Kapoor and Sharma,
2018; Almalaq and Edwards, 2019). Moreover, from the consumer’s point of view, the
loads can be scheduled based on the price of energy from the grid, available resources in the
buildings, and energy storage. In addition, it creates an opportunity for the consumers to sell
some of their residential energy to the grid, if possible, during peak hours. Therefore,
researchers have been continuously searching for efficient load forecasting methods.
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Among the various methods of load forecasting, time series or
regression-based predictions are frequently found in the literature.
The autoregressive integrated moving average (ARIMA) model has
attracted scholars for predictions (Kim et al., 2019; Rana et al., 2022).
ARIMA is the improved combination of the auto-regressive (AR)
and moving average (MA) methods. However, without a large
dataset and in changing load conditions, the performance of the
ARIMA model deteriorates. Moreover, regression trees are also
proposed as a forecasting method by many authors (Phyo and
Jeenanunta, 2021; Sun and Bi, 2021). It is a machine learning
tool that sub-divides the total data space into smaller clusters of
data and divides the sub-division into small divisions whenever an
interaction can be managed. Regression trees proceed with decisions
in the form of a tree that starts from the root to the leaf node, where
the leaf node gives the output. Random forest (RF) is the most
popular homogeneous regression tree method found in the literature
(Moon et al., 2018; Wang et al., 2018; Yiling and Shaofeng, 2020)
that provides the decision without having any bias among the
decision trees. The multiple linear regression method is also
recommended by some researchers (Chowdhury et al., 2018;
Oprea and Bâra, 2019). In this method, the dependent variable is
expressed as a sum of non-dependent variables. Furthermore, Zheng
et al. (2019) and Sharma et al. (2020) have investigated predictor
systems that utilize state space models, such as the Kalman filter.
However, the performance of the Kalman filter deteriorates as the
non-linearity of the system increases.

The common problem associated with these above-mentioned
methods is the degradation of performance with the increase in
nonlinearity in the system. The nonlinear nature of residential load
has enforced researchers (Wang and Srinivasan, 2017; Nair et al.,
2018) to search for more robust prediction systems that can predict
well when the system is highly nonlinear. The fuzzy logic system,
which performs on the IF–THEN logic, has been reported in the
literature (Alrizq and Doncker, 2018; Alam and Ali, 2020a) to have
performed well in nonlinear conditions. Moreover, temperature and
historical data are the most considered inputs for the fuzzy systems
that are proposed in the literature (Anoop and Kanchana, 2017;
Shao et al., 2018), although performance can still be improved
further by increasing the input number. However, limited input
numbers are considered because as the input number increases, the
fuzzy rules also increase, which makes the system slower.

Moreover, Shabbir et al. (2019) and Moradzadeh et al. (2022)
have preferred the support vector regression (SVR) method for load
prediction. Although it can perform well for nonlinear systems, the
performance of the SVR system heavily depends on tuning the
parameters properly, and a large amount of data are required for
training purposes. Long short-term memory (LSTM) is another
recommended method (Kong et al., 2019; Wang et al., 2021; Zang
et al., 2021) that can predict well the nonlinearity of the system.
However, like SVR, for the best prediction, it requires a large number
of input features and a huge amount of data for proper tuning of the
parameters.

The artificial neural network (ANN) is another method that has
been reported (Alonso and Chávez, 2017; Khan et al., 2018;
Sulaiman et al., 2019; Banitalebi et al., 2020; Chandran et al.,
2021) in the literature to show better performances under the
nonlinear condition. In ANN, during training of data, hidden
layer parameters such as gains and biases are to be tuned

properly. Moreover, the performance of the ANN method highly
depends on the conditions such as the availability of a huge amount
of previous data or historical data, ensuring a good relationship
between the inputs and output and appropriate tuning of the hidden
and output layers. However, the adaptive neuro-fuzzy inference
system (ANFIS) is reported to show better performance than the
ANN system as it combines the beneficial features of both ANN and
the fuzzy system (Alam and Ali, 2020b). However, like the fuzzy
system, if the number of the input of ANFIS becomes more than
three, a sluggish response due to high computational burden makes
the system practically nonviable. Moreover, with an increase in the
number of membership functions for each input, the computational
burden increases further.

These above-mentioned problems can be alleviated by
implementing subtractive clustering-based ANFIS. Subtractive
clustering is a very efficient way to determine the number of
clusters along with their centers when data characteristics are
unpredictable. Therefore, a new subtractive clustering-based
ANFIS is proposed (Alam and Ali, 2020a) for predicting
residential loads. In that work, temperature is considered the first
input. Moreover, occupancy and day type are used to formulate an
equation to determine R, the second input for ANFIS.

However, the parameters of ANFIS in Alam and Ali (2020b) are
tuned only by the hybrid algorithm that is a combination of
backpropagation of input membership function parameters and
the linear regression method for the output. It is found that
converting the type-1 membership function into type-2
membership functions and tuning the parameters of ANFIS by
particle swarm optimization (PSO) can improve the performance of
ANFIS. Alam and Ali (2020a) proposed an equation-based system
that predicts load consumption by dividing input data into different
ranges and provides an equation to predict data whose parameters
are tuned by the data that fall within that range. Because of this, the
proposed equation-based system performs better than ANFIS.

However, this system is not robust for changing situations as the
energy consumption pattern has changed dramatically during the
COVID-19 situation, as reported in the recent literature. The
COVID-19 impact on residential load consumption in Memphis
City, United States, was investigated by Alam and Ali (2020b). In
this work, the energy consumption in residential buildings during
COVID-19 periods is reported to have increased during office hours
for normal working days for different types of occupants. The overall
per-day energy consumption on working days has also increased.
Similar analyses for both short-time and long-time energy
consumption were done for 87 regions of Zhejiang province,
China (Zhang et al., 2021), where it is reported to have a time
shift in electricity consumption in some regions and a permanent
change in the energy consumption pattern in the rest of the regions.
In Bompard et al. (2020), the impact of COVID-19 on the European
electricity market was analyzed. Another work is found in the
literature where the authors (Sławomir et al., 2020) investigated
the impact of COVID-19 lockdown on energy consumption in
Warsaw city in 2020 and found that the residential users who
stayed at home during lockdown consumed more energy, with a
change in consumption patterns as well. Moreover, pattern changes
in load forecasting, demand, generations, and frequency deviations
were also analyzed by Aviad et al. (2021). In this work, energy
consumption is reported to have changed with load shifts from the
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industrial and commercial sectors to the private sectors. As new
variants of the virus have been emerging, it is difficult to predict how
long this situation will continue. The energy consumption pattern
will be continuously changing, as compared to that before the
COVID-19 period.

Based on the above background, a new subtractive clustering-
based ANFIS2 is implemented in this work for residential load
forecasting. To the best of our knowledge, this method has never
been proposed for load forecasting. The performance of the
proposed ANFIS2 has been compared with that of the subtractive
clustering-based ANFIS proposed by Alam and Ali (2020a), RF and
LSTM methods. The predicted outputs of all systems are simulated
in the MATLAB environment first for normal conditions (before
COVID-19). The same inputs, as proposed by Alam and Ali (2020a,
2020b), are considered for both ANFIS and ANFIS2 methods.
Different prediction errors are computed to analyze the
performance of all the methods and tabulated as performance
indices.

Moreover, the impact on the performance of the proposed
ANFIS2 is investigated for predicting energy consumption during
the COVID-19 period due to changes in energy consumption.
Moreover, one input of ANFIS2, which is determined by the
number of occupants and the day type, is modified to investigate
the improvements in predictions. Finally, with inputs and COVID-
19 data, the parameters of ANFIS2 are tuned to further improve
efficacy in predictions.

To summarize the novelty and contribution, this work does the
following:

• First, it proposes a new subtracting clustering-based
ANFIS2 for energy consumption prediction during the
normal period.

• It investigates the performance of the proposed ANFIS2 in
predicting the energy conduction during the COVID-19
pandemic situation as the residential load consumptions
drastically changed during this time.

• It proposes two modifications in ANFIS2 that can efficiently
predict the energy consumption during the COVID-19
situation.

• It makes a performance comparison between the proposed
ANFIS2 and the conventional ANFIS, LSTM, and RF systems
during both normal and COVID-19 periods.

The rest of the paper is structured as follows: the problem
statement, i.e., the motivation behind the current work, is
represented in Section 2. In Section 3, all the methodologies are
described. Simulation results are analyzed, and performances of all
the methods are provided in Section 4. In Section 5, the paper ends
with the conclusion and is followed by references in Section 6.

2 Problem statement

Electrical load forecasting is a crucial element that can be
effectively used to provide power to consumers by proper
management of energy and keeping the cost of power at a
comfortable level for the consumers. Effective forecasting requires
well-trained models where the model parameters are tuned based on

the parameters (inputs) that contribute to energy consumption
(outputs). However, the performance of the conventional models
deteriorates if there are changes in the input pattern or the system is
not trained with many datasets. Therefore, it is evident that a new
model is required for load forecasting that will predict well under
normal conditions with limited data for training. Moreover, it
should be able to predict well under varying conditions.

As the energy consumption patterns are reported to have
changed significantly during the COVID-19 period, a new
forecasting method has been explored to solve the problem. The
performance of the proposed and existing systems is investigated for
the intermittent conditions with the models tuned with data
available for normal conditions. Moreover, the modifications of
the proposed system that are needed to predict well under varying
consumption patterns are also investigated to utilize the proposed
model for any future epidemic or emergency conditions.

3 Proposed ANFIS2 prediction method

Figure 1 shows the block diagram of the proposed ANFIS2, in
which the type-1 fuzzy system is Sugeno-type, and the considered two
inputs are the same as in Alam and Ali (2020a). In the neural part of
the ANFIS2 section, both temperature and R data on 568 days are
used. The value of R is determined from occupancy and the day type,
as described by Alam and Ali (2020a). When training the data, the
number of membership functions for both inputs is determined by
subtractive clustering, which utilizes a hybrid algorithm.

The number of membership functions, along with tuning of the
membership function, is facilitated by backpropagation methods,
and the linear regression function is tuned for the output section for
predicting data based on the fuzzy rules. Another benefit of
subtractive clustering is that the fuzzy rules are always selected
based on the clustering number by the algorithm during the training
period and are always less than the conventional fuzzy systems.
Therefore, ANFIS runs faster compared to the fuzzy systems.

In subtractive clustering, the input space (Yeom and Kwak,
2018) is divided into several clusters by considering the radius of the
cluster (range of influence). The values of the range of influence can
be from 0 to 1. If the radius (range of influence) is considered to be
small, then the number of clusters increases and so do the fuzzy
rules. The squash factor is a positive scalar that is utilized for grading
the range of influence of the centers of clusters. The accept ratio is a
positive number that indicates the fraction of potential of one
cluster. Another data point can be considered as the center of the
cluster if its fraction of potential value is above the acceptance ratio.
Moreover, any point cannot be considered the center of the cluster if
its fraction of potential value falls below the rejection ratio value.

In this work, when the above stages are completed, the
conventional Sugeno-type fuzzy system is converted into the
type-2 fuzzy system, where the input membership functions are
different from the conventional input membership function as it has
both the upper and lower membership functions with an area
between them considered as the footprint of uncertainty (FOU),
as shown in Figure 2. For the conventional fuzzy system, the
membership function has only the upper membership function,
as will be shown later. Moreover, the output membership functions
of the type-2 fuzzy system remain the same as in the conventional
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fuzzy system, which are linear functions considered for this work
[38]. The parameters of the upper membership functions of type-2
fuzzy systems remain the same as the corresponding membership
functions of conventional fuzzy systems [39].

From Figure 2, it is evident that the type-2 membership function
is defined by the upper and lower membership functions that are
represented by red and blue lines, respectively. The fuzzification of
input values is done by calculating the degree of membership from
both the upper and lower membership functions based on the rule
antecedent. Then, the range of strength firing rules is obtained by
implementing the fuzzy operator to the fuzzified values of the
membership functions. In this case, the maximum value of the
upper membership function and the minimum value of the lower
membership function are considered for the Sugeno-type system. In
the aggregation step, the output level of each rule of the type-2 fuzzy
system remains the same as in the conventional system; however, in
the conventional system, they are done in consequent steps. In
addition, in the aggregation step, the rule output levels are arranged
in an ascending order, which defines the universe of discourse for the
type-2 fuzzy set. The upper and lower membership values for each
output level are chosen based on the maximum and minimum firing
range values of the corresponding rule. Finally, the type-2 fuzzy set is
reduced to type-1 interval fuzzy sets using the reduction method to
obtain the clear output for the inference system. The type-1 interval
fuzzy set considers a range of values with lower (CL) and upper (CR)
limits that are considered centroids and can be approximated by the
following equations (40):

CL ≈
∑L

k�1xkμumf xk( ) +∑N
k�L+1xkμlmf xk( )

∑L
k�1μumf xk( ) +∑N

k�L+1μlmf xk( ) , (1)

CR ≈
∑R

k�1xkμumf xk( ) +∑N
k�R+1xkμlmf xk( )

∑R
k�1μumf xk( ) +∑N

k�R+1μlmf xk( ) , (2)

where N, xk, μumf, and μlmf correspond to the number of samples
considered over the output variable range, kth output sample value,
and upper and lower membership functions, respectively. The
enhanced iterative algorithm with stop condition (EIASC) is used
for this work as it is reported (Wu and Nie, 2011) to be the most
promising method. Finally, after the reduction steps, the input and
output membership function parameters are tuned and updated by
the PSO optimizing algorithm, as recommended by Banitalebi et al.
(2020), based on the input (x) and anticipated output that are
obtained from smart meter data.

3.1 Conventional adaptive neuro-fuzzy
inference system

As already mentioned, in this work, the efficacy of the
proposed ANFIS2 has been verified with the system reported by
Alam and Ali (2020a) in predicting energy consumption data.
Subtractive clustering is also used for the system proposed by Alam
and Ali (2020b), and the block diagram of the system is shown in
Figure 3.

FIGURE 1
ANFIS System.

FIGURE 2
Input membership functions for ANFIS2 system.
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However, for predicting data, different parameters are
determined by the PSO algorithm.

Figure 4 indicates that each input has two membership functions;
therefore, only two fuzzy rules are needed for output predictions. The

Gaussian fuzzy membership functions are tuned by a hybrid algorithm
for both inputs. Then, the fuzzy system, based on the inputmembership
functions, output parameters, and the input (x), as shown in Figure 3,
provides the output, which comprise the energy predictions.

3.2 Long short-term memory (LSTM)
method

To compare the performance of the proposed ANFIS2, the
LSTM system is used as it is a very popular method for heating
load for power plants (Liu et al., 2020; Rafi et al., 2021), household
load forecasting (Ageng et al., 2021), and electrical load forecasting
(Islam et al., 2020; Kim et al., 2020). The block diagram of the LSTM
system is shown in Figure 5 and can be explained by the following
sets of equations from (3)-(8):

f t � σ Wf · ht−1, xt[ ]+bf( ), (3)
it � σ Wf · ht−1, xt[ ]+bi( ), (4)
ot � σ Wo · ht−1, xt[ ]+bo( ), (5)

C̃t � tanh WC · ht−1, xt[ ]+bC( ), (6)
Ct � f tʘCt−1+itʘ C̃t , (7)
ht � ot*tanh Ct( ), (8)

FIGURE 3
Block diagram of ANFIS System.

FIGURE 4
Input membership functions of ANFIS System.

FIGURE 5
Block diagram of the LSTM system.
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where ft indicates the forget gates that regulate the influence of the
previous states on the current states, whereas it and ot correspond to the
input and output gates, respectively. The input gates control howmuch
of new information is to be updated in the cell state, and the output

gates control the output based on the updated cell state. Σ controls the
output values between 0 and 1. Based on current input xt and previous
output ht−1, all the gates change their states. Ct and C̃t correspond to
the cell state and the estimated values of the cell state, respectively.

TABLE 1 ANFIS2, ANFIS, LSTM, and RF parameters.

Method Parameter Value

Subtractive clustering parameter for ANFIS and ANFIS2 Range of influence 0.80

Squash factor 0.95

Accept ratio 0.50

Reject ratio 0.05

ANFIS and ANFIS2 Number of nodes 17

Number of linear parameters 6

Number of nonlinear parameters 8

Total number of parameters 14

Number of training data pairs 568

Number of checking data pairs 0

Number of fuzzy rules 2

LSTM Number of hidden units 250

Fully connected layer 150

Dropout layer 0.5

Maximum number of epoch 550

Mini batch size 3

Initial learn rate 0.01

Learn rate drop period 250

RF Maximum number of split 1

Minimum leaf size 1

Number of learning cycles 324

FIGURE 6
Input occupant data considered for prediction during normal time.
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The ADAM optimization method is utilized for training
parameter optimizations, as proposed by Wang et al. (2019).

3.3 Random forest (RF) method

The random forest method is also popular (Qi et al., 2017; Yin
et al., 2020; Phyo and Jeenanunta, 2021; Sun and Bi, 2021) and
widely used for load forecasting. Random forest is an ensemble
approach that predicts based on the combination of decisions of all
the independent trees. The randomly chosen samples are
incorporated into the trees. The process of incorporation of the
samples into the trees is known as bagging, whereas the chosen
sample is termed a bootstrap, which is continuously changed in each
step. All the decisions from each independent tree are considered
with the same probability value. The classification is done by bagging
algorithms, and the cart algorithm is used for determining the set of

regression trees. The following equation is used to calculate the
average of the output of all the trees:

Ŷ ′ � 1
r
∑
r

i�1
ĥ X′,Sθin( ), (9)

where Ŷ′ is the estimated output based on new inputX′ and ĥ(X′,Sθin )
is the predicted output of the bootstrap sample of Sn. θi indicates a
variable that has an identical distribution. The training parameters of
the rf system are optimized by grid search optimization techniques.

4 Simulation results and discussion

4.1 Simulation data and conditions

The energy consumption data are obtained through the smart
energy meter of an apartment in Memphis, TN, United States. The

FIGURE 7
Input temperature data considered for prediction during normal time.

FIGURE 8
Input day-type data considered for prediction during normal time.
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temperature is collected for Memphis City. Occupancy and day-type
data are obtained from the family members living in the apartment. A
total of 598 days’ data are considered in this work, and 568 days’ data are
used for ANFIS2 and ANFIS network training. The remaining 30 days’
data are used for the performance evaluation of ANFIS, ANFIS2, LSTM,
and RF systems for both normal and COVID-19 conditions. The
parameters used for ANFIS2, ANFIS, LSTM, and RF systems are
summarized in Table 1.

4.2 Efficacy of the proposed ANFIS2
prediction system over ANFIS and other
methods under normal conditions

As previously discussed, in this work, for both prediction
systems, arbitrarily selected 30 days’ data were utilized for
prediction and performance evaluation. For both systems,
input occupancy data for 30 days are shown in Figure 6.
Figure 7 shows input temperature data on the same days. In
addition, input day-type data are shown in Figure 8.

The performance of the ANFIS2 method and the ANFIS-based
prediction systems, and the LSTM and RF methods for energy
consumption data prediction are shown in Figure 9, which validates
the efficacy of the proposed ANFIS2-based prediction system over

ANFIS reported by Alam and Ali (2020b), LSTM, and RF system
during normal times.

4.3 Index calculations for the proposed
ANFIS2 and other prediction methods

The absolute percentage of error, the absolute average error,
root mean square error, and mean average percentage error in
prediction, which can be represented as shown in equations
(10)–(13), respectively, are used for ANFIS2, ANFIS, LSTM,
and RF systems as the performance index.

%Err � Actual − Predicted
Actual

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ × 100. (10)

A.E � 1
N
∑
N

i�1
Actuali − Predictedi| |. (11)

RMSE �

������������������������

1
N
∑
N

i�1
Actuali − Predictedi( )2

√√

. (12)

MAPE � 1
N
∑
N

i�1
%Erri. (13)

Here, N = 30 was used for the equations (10) to (13). Moreover,
from Table 2, it can be seen that the average errors of the
ANFIS2 prediction system are smaller than those of ANFIS
reported in [30], LSTM, and RF systems. In this case, the
performances of the ANFIS2-based system are 0.80%, 33.62%,
and 45.18% better than those of ANFIS, LSTM, and RF systems,
respectively. Moreover, from RMSE values calculations for all
systems, it can be concluded that ANFIS2 performs 4.54%,
3.49%, and 19.82% better than the ANFIS, LSTM, and RF
systems, respectively. In addition, ANFIS2 performs 2.54% better
than ANFIS in terms of MAPE. Therefore, based on the
performance indices tabulated in Table 2, it is obvious that the

FIGURE 9
Performance of ANFIS, ANFIS2, LSTM, and RF systems for energy consumption prediction.

TABLE 2 Prediction errors of all predicted systems.

Errors

AVG (kWh) RMSE (kWh) MAPE (%)

ANFIS 0.8163 1.6756 17.81

ANFIS2 0.8098 1.5995 17.36

LSTM 1.2199 1.6574 39.87

RF 1.4771 1.9949 48.62
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performance of the proposed ANFIS2-based prediction system is
better than that of the ANFIS, LSTM, and RF systems in all cases
during normal conditions.

4.4 Effect of COVID-19 on the load pattern
change and load forecasting

As already mentioned, the energy consumption patterns of
residential consumers changed significantly during the COVID-
19 time. The energy consumption pattern for the residential load in
Memphis city, United States, is shown in Figure 10, which considers

data from August 2018 to June 2021, where the data from August
2018 to 24March 2020 are considered pre-COVID-19 data, and data
from 25 March 2020 to June 2021 are considered COVID-19 data
[32]. Similarly, Table 3 provides an analysis of energy
consumption between pre-COVID-19 and COVID-19
conditions. Moreover, Figure 10 shows that energy
consumption increased significantly for all months except
May, September, and October. The maximum energy
consumption increased for the month of July. In addition,
from Table 3, it is evident that energy consumption has
increased from January to April, ranging from 38.87% to
57.37%. The maximum increase is 60.97%, which is also

FIGURE 10
Daily average energy consumption of consumers in Memphis, United States.

TABLE 3 Analysis of energy consumption between pre-COVID-19 and COVID-19 conditions.

Month Energy consumption (kWh) % increase

Pre-COVID-19 COVID-19

January 3.06 4.81 57.37

February 2.92 4.13 41.54

March 2.79 4.03 44.21

April 3.46 4.81 38.87

May 9.87 9.27 −6.08

June 13.44 17.46 29.96

July 14.57 23.45 60.97

August 18.11 19.84 9.54

September 16.17 14.87 −8.03

October 6.94 6.61 −4.70

November 3.78 4.52 19.73

December 3.72 5.55 49.23
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evident from Figure 10. On the other hand, the minimum
increase in average daily energy consumption between the pre-
COVID-19 condition and the COVID-19 condition was 9.54% in
August. Due to the energy consumption pattern change during
the COVID-19 period, the performance of ANFIS2, ANFIS,
LSTM, and RF systems requires investigations. Therefore, all
systems that were tuned with normal time data are tested for
COVID-19 data prediction, and randomly chosen 30 days’ data
during COVID-19 conditions are used as input to all the systems.

Figure 11 shows the performances of the ANFIS2, ANFIS,
LSTM, and RF systems in predicting daily average energy
consumption during the COVID-19 period, which also
validates the efficacy of ANFIS2 over ANFIS. However, the
LSTM and RF systems perform better than ANFIS and
ANFIS2 in predicting COVID-19 data, as shown in Table 4, as
they predicted higher energy consumption for normal
conditions. Therefore, predicted data by the LSTM and RF
methods are closer to the actual data during COVID-19
periods. Table 4 shows that the absolute mean, RMSE, and
MAPE are less (which indicates improvements of 16.19%,
6.53%, and 20.42%, respectively) for the LSTM system
compared to the proposed ANFIS2.

However, the prediction errors increased for ANFIS2 for
COVID-19 data, as compared to the normal condition data,

which is evident from Table 5. Therefore, the absolute mean,
RMSE, and MAPE of ANFIS2 have increased by 271.17%,
122.85%, and 101.96%, respectively. This means
ANFIS2 should be modified so that it can also predict well for
COVID-19 data.

4.5 Tuning of the ANFIS2 method
parameters to adapt with the changed load
due to COVID-19

To improve the performance of ANFIS2, two situations are
considered. In the first situation, the input of ANFIS2 is changed
to cope with the energy consumption pattern while keeping the
same ANFIS2 that has been tuned with normal condition data. In
the second situation, the changed parameter is considered while
ANFIS2 is tuned with COVID-19 data.

4.5.1 Condition 1
As ANFIS2 has only two inputs, one of them can be changed

to cope with the energy consumption pattern change. Moreover,
the first input is the temperature that cannot be changed.
Therefore, the second input, R, should be changed as
compared to the normal conditions. R is determined from
occupancy and the day type (Alam and Ali, 2020b). The value
of day type (d) is considered to be 0, 1, and 2 for weekdays,
weekends, and special days, respectively. The reason behind

FIGURE 11
Comparison of performance of ANFIS2, ANFIS, LSTM, and RF systems for prediction during COVID-19 conditions.

TABLE 4 Prediction errors of predicted systems for COVID-19 data.

Errors

AVG (kWh) RMSE (kWh) MAPE (%)

ANFIS 3.2955 3.8902 36.78

ANFIS2 3.0057 3.5645 35.06

LSTM 2.5190 3.3317 27.90

Rf 2.6102 3.4819 24.08

TABLE 5 Prediction error comparison of ANFIS2 system.

ANFIS2 Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Pre-COVID-19 0.8098 1.5995 17.36

COVID 3.0057 3.5645 35.06
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choosing these values is that during weekdays, most of the family
members will be out for work, and during the weekend, they will
stay at home. Moreover, during special days, the energy
consumption will be higher than the conventional days.
However, during COVID-19 periods, most of the family
members worked from home on weekdays. Therefore, the
energy consumption changed tremendously for weekdays. As
the number of occupants has not changed during COVID-19
time, the values of d for the weekdays, weekends, and special days
can be considered 2, 1, and 2, respectively, for COVID-19 data.

Finally, based on the changed input R and ANFIS2 that was
tuned with normal time data, the 30 days’ daily average energy
consumption, which are the same as shown in Figure 11, are
shown in Figure 12. Figure 12 indicates that the performance of
the modified1 ANFIS2 has improved by just adjusting R and
without retuning ANFIS2. Moreover, the errors are reduced, as
shown in Table 6. The absolute mean error, RMSE, and MAPE
are reduced by 38.65%, 41.51%, and 25.95%, respectively.

Moreover, the absolute mean error, RMSE, and MAPE are less
than that of the LSTM system that performs better than
ANFIS2 without any modification for COVID-19 data.

4.5.2 Condition 2
Figure 13 shows the modified model for ANFIS2 that can

predict well both normal data and COVID-19 data. All the data
are incorporated into ANFIS2, which separates normal data and

COVID-19 data, and these different data are sent to two
different sections. Normal data are sent to ANFIS2 that was
tuned with normal data. This section will have the same
parameters as shown in Table 1 and Figure 2. Similarly,
COVID-19 data are received by ANFIS2 that was tuned by
COVID-19 data. This section, as tuned by the COVID-19
data, has different parameters, which are shown in Table 7
and Table 8.

Moreover, the membership function is different, as shown in
Figure 14, which has eight membership functions for each input
compared to two membership functions for each input for the
ANFIS2 section that will process normal data. The eight
membership functions are selected based on subtractive
clustering that considers the type of data and correlation
between input and output data during the COVID-19
situation. Similar to the fuzzy-2 system, the membership
function has upper and lower membership functions. All the
membership functions inside a particular figure are tuned based
on the correlation between the input and output for various
ranges of input. Moreover, the output membership functions of
the type-2 fuzzy system remain the same as in the conventional
fuzzy system, which are linear functions considered for this work.
In both sections, the two inputs are kept the same, and the day
type is considered the same for both normal and COVID-19
periods, which were considered for ANFIS2. The data separation
unit provides COVID-19 data input (X1) and normal data input
(X2) to two separate sections. The COVID-19 (e1) and normal
predicted data (e2) are incorporated into the data accumulator,
which will provide predicted data (e) from modified2-ANFIS2.
Therefore, both normal and COVID-19 data can be predicted by
modified2-ANFIS2, and it will be robust for all conditions.

The performance of modified2-ANFIS2 along with modified1-
ANFIS2 and LSTM systems, for the same data prediction, as shown
in Figure 11 and Figure 12, is shown in Figure 15. For the purpose of
performance comparison, the predicted data by modified1-ANFIS2
are also shown in Figure 15. Figure 15 shows that modified2-ANFIS2
performs better than the modified1-ANFIS2 and LSTM systems for

FIGURE 12
Comparison of performances of ANFIS2, modified1-ANFIS2, and LSTM systems for prediction during COVID-19 conditions.

TABLE 6 Prediction error comparison among ANFIS2 and LSTM system.

COVID Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Modified1-ANFIS2 1.8440 2.0846 25.96

ANFIS2 3.0057 3.5645 35.06

LSTM 2.5190 3.3317 27.90
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predicting the same data. Therefore, the error is further reduced,
which is evident from Table 9. The absolute mean error, RMSE, and
MAPE are reduced by 32.77%, 2.15%, and 45.42%, respectively. So
the modified2-ANFIS2 system performs the best in predicting
energy consumption during the COVID-19 situation.

5 Conclusion

In this work, a new ANFIS2 method is implemented for the
prediction of residential energy consumption for both normal days
and COVID-19 conditions. To validate the efficacy of the proposed
ANFIS2, its performance has been compared with the proposed ANFIS

reported in Alam and Ali (2020a), LSTM, and RF systems. For training
purpose of the systems, 598 days’ data are utilized, and data of 30 days
are considered for the prediction of energy consumption.Moreover, the
performances of all the systems are evaluated for COVID-19 situations
as the change in energy consumption is reported in the literature. Two
modifications in terms of the input and parameters of ANFIS2 are
made to cope with the change in the consumption pattern and to
reduce the prediction errors during COVID-19. Based on the obtained
results, the following conclusions can be made:

FIGURE 13
Modified2-ANFIS2 system for prediction during COVID-19.

TABLE 7 Subtractive clustering parameter for COVID-19 data tuning.

Parameter Value

Range of influence 0.50

Squash factor 0.50

Accept ratio 0.50

Reject ratio 0.15

TABLE 8 ANFIS2 parameter for COVID-19 data tuning.

Parameter

Number of nodes 53

Number of linear parameters 24

Number of nonlinear parameters 32

Total number of parameters 56

Number of training data pairs 276

Number of checking data pairs 0

Number of fuzzy rules 8

FIGURE 14
Input membership functions for modified2-ANFIS2 system that
are tuned with COVID-19 data.
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a) The proposed ANFIS2-based prediction system is effective in
forecasting residential loads during both normal and COVID-19
periods.

b) The performance of the proposed ANFIS2 method is better than
that of the existing ANFIS, LSTM, and RF approaches during
both normal and COVID-19 situations.

c) The proposed ANFIS2 can be easily implemented in real practice
for both normal and COVID-19 conditions.

In the near future, other new methods for load forecasting will be
explored. In addition, the performance of those methods will be
compared with that of the proposed ANFIS2. The limitation of the
proposedmodified2-ANFIS2 is that data aremanually separated, which
is done by the consumer. In the future, a more robust system that can
automatically separate the pre-COVID-19 and COVID-19 data by
analyzing the pattern will be explored.
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FIGURE 15
Comparison of performances of LSTM, modified1-ANFIS2, and modified2-ANFIS2 systems for prediction during COVID-19.

TABLE 9 Prediction error comparison among modified ANFIS2 and LSTM
methods.

COVID-19 Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Modified1-ANFIS2 1.8440 2.0846 25.96

Modified2-ANFIS2 1.2396 2.0398 14.12

LSTM 2.5190 3.3317 27.90
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With the rise of electric vehicles and fast charging technology, electric vehicle
load forecasting has become a concern for electric vehicle charging station
planners and operators. Due to the non-stationary nature of traffic flow and the
instability of the charging process, it is difficult to accurately predict the charging
load of electric vehicles, especially in sudden major events. In this article, We
proposes a high-precision EV charging load forecasting model based on mRMR
and IPSO-LSTM, which can quickly respond to the epidemic (or similar
emergencies). Firstly, the missing data in the original EV charging load data
are supplemented, and the abnormal data are corrected. Based on this, a
factor set is established, which included five epidemic factors, including new
confirmed cases, the number of moderate risk areas, the number of high risk
areas, epidemic situation and epidemic prevention policies of the city, and other
factors such as temperature. Secondly, the processed load data and other data in
the influencing factor set are normalized, and the typical characteristic curve is
established for personalized processing of the relevant data of epidemic factors,
so as to improve the sensitivity of load response to epidemic changes and the
ability to capture special data (peak and valley values and turning points of load).
Then the maximum relevant minimum redundancy (mRMR) is used to select the
optimal feature set from the set of influencing factors. Then, the processed load
data and its corresponding optimal selection are input into the IPSO-LSTMmodel
to obtain the final prediction result. Finally, taking the relevant data of EV charging
load in a city in China from November 2021 to April 2022 (the city experienced
two local epidemics in December 2021 and March 2022 respectively) as an
example, the model is evaluated and compared with other models under the
forecast period of 1 h. Meanwhile, the performance of the model under different
foresight periods (2 h, 4 h, 6 h) is compared and analyzed. The results show that
the model has good stability and representativeness, and can be used for EV
charging load prediction under the COVID-19 pandemic.

KEYWORDS

electric vehicle charging load forecast, feature correlation, maximum relevant minimum
redundancy, improved particle swarm optimization -long short term memory, special
event characteristics
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1 Introduction

Effective renewable friendly smart grid technologies contribute
to the development of RWJ projects, indirectly facilitating friendly
interactions between EVs and the grid (Zhong et al., 2014). The
multi-time scale short-term prediction of EV charging load is an
important reference for intraday demand-side response (Li and Pye,
2018), and can provide a reference for the optimal scheduling of the
distribution network with electric vehicles (Zakernezhad et al.,
2022), so accurate multi-time-scale electric vehicle charging load
forecasting is of great significance. At the end of 2019, the spread of
COVID-19 had an impact on the entire electricity industry and
renewable energy in many countries (Liu, 2020), and renewable
energy consumption affects economic growth (The State Council of
the People’s Republic of China). Under the general strategy of “
foreign defense against imports, internal defense against rebound”
and the general policy of “dynamic clearing” in China, people’s
willingness to travel will be reduced when the epidemic occurs, and
travel will be restricted at certain times (Xi’an Municipal People’s
Government, 2022), which will lead to significant changes in the
charging load of electric vehicles. Large-scale use of electric vehicles
can significantly reduce carbon emissions, but the load of large-scale
electric vehicles has strong randomness, which is a huge challenge
for power system security and stability (Leou et al., 2014; SALAH
et al., 2015).

At present, the main research methods of electric vehicle charging
load forecasting can be divided into two categories: model-driven and
data-driven forecasting methods. The former uses mathematical
statistics to establish a probability model, and on this basis uses
Monte Carlo simulation to predict (Iversen et al., 2017; Zhang et al.,
2018; Iwafune et al., 2020). Compared with such methods, relying on
data-driven methods for EV charging load forecasting is more
transferable and can reduce forecasting costs. The development of
IoT technology has driven the development of a large number of cloud-
based electric vehicle services (Atif et al., 2016; Chen and Chang, 2016),
and data integration platforms have been established inmany provinces
in China (Shaanxi Provincial Development and Reform Commission,
2022; State-owned Assets Supervision, 2022; State-owned Assets
Supervision and Administration Commission of the State Council,
2022). In this context, data-driven forecasting methods have received
more attention (Wang et al., 2022). Back Propagation Neural Network
(BPNN) (Dabbaghjamanesh et al., 2021), Auto-Regressive and Moving
Average (ARMA) (Wen et al., 2019), Convolutional Neural Network
(CNN) (Zhang X. et al., 2021), Long Short-Term Memory (LSTM)
(Zhu et al., 2019), and other methods are beginning to be applied to EV
charging load prediction. Since the impact of COVID-19 on EV
charging loads is not instantaneous, this requires predictive models
to remember information delivered over longer periods of time.
Therefore, this paper will continue to take advantage of the LSTM
network’s ability to learn long-range dependencies to build an effective
EV charging load forecasting model (Bayrak et al., 2020).

Under normal circumstances, the electric vehicle charging load
is similar to the power load in terms of data characteristics, and both
show periodic changes. The influence of influencing factors is often
considered in power load forecasting (Lin et al., 2021; Bian et al.,
2022). Therefore, in order to further improve the forecasting
accuracy, factors such as temperature, electricity price, and date
type have also begun to be considered in electric vehicle charging

load forecasting (Abbas et al., 2019; Feng et al., 2021; Zhang et al.,
2022). Among them (Abbas et al., 2019) used meteorological data
and historical load as influencing factors to accurately predict the
load; Literature (Feng et al., 2021) considered two related factors of
electricity price and temperature, using EMGM to predict the
charging load of electric vehicles, and using LSTM for error
correction; Literature (Zhang et al., 2022) using The multi-
channel 1DCNN extracts the load characteristics of different time
scales under the influence factors such as meteorological
characteristics and date characteristics (seasonal type, week type),
and inputs them into the TCN to establish a time-dependent
relationship for each characteristic and improve the forecast
accuracy. But the COVID-19 outbreak is a non-periodic
emergency, and its impact on EV load is contingent and
persistent. As of August 2022, the COVID-19 outbreak is
ongoing, with concentrated outbreaks continuing across China.
The establishment of a forecasting model capable of rapid
response to the epidemic (or similar emergencies) and with high
accuracy is conducive to the development of demand-side response
plans and scheduling plans (National Health Commission of the
People’s Republic of China, 2022). Therefore, during the epidemic
period, electric vehicle load not only needs to consider the impact of
temperature, electricity price and other factors, but also the impact
of epidemic-related factors.

In the process of load forecasting usingmachine learningmethods, it
is necessary to perform feature selection on relevant factors. Commonly
used feature analysis methods include the covariance method, the
Pearson coefficient method, the maximal information coefficient
(MIC) (Reshef et al., 2011) and the MIC-based mRMR (Peng et al.,
2005). Among them, literature (Xie et al., 2022) used Pearson coefficients
to determine the key influencing factors of loads, whichwere regarded as
multivariate information, and then input them into LSTM to obtain a
load prediction model with multi-information fusion. However, the
Pearson coefficient can only reflect the linear correlation, but there may
be a nonlinear relationship between the EV charging load and the related
factors, and it is difficult to describe the change of EV charging load
linearly, so it is more suitable for the MIC and mRMR. Literature (Sun
et al., 2022) for the existing in different moments of each influential
factors to load the same degree of contribution to the problem, the use of
mutual information (MI) to portray differentmoments under the degree
of contribution of each factor, and then use the Bidirectional Long Short-
Term Memory (Bi-LSTM) to get the final prediction results. MIC was
applied to short-term electricity load forecasting, effectively improving
the screening effect of the feature sequence (Ge et al., 2021), and
literature (Zhang et al., 2023) utilized MIC and Akaike information
criterion to select input variables, obtain key information, and reduce the
difficulty of model training. However, the redundancy of epidemic-
related feature sequences in EV charging load in the context of COVID-
19 is high, which is not considered in the MIC, while the mRMR
incorporates the redundancy in the sequences into the screening metrics
(Dai et al., 2014), which ismore suitable for electric vehicle charging load
forecasting under the COVID-19 outbreak.

This paper aims to implement a predictive model that can
quickly respond to an outbreak (or similar emergencies) with
high accuracy. This method fully considers the impact of the
epidemic, establishes five epidemic-related influencing factors,
uses mRMR to select the optimal feature set from the set of
influencing factors including epidemic factors and meteorological
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factors, and uses IPSO-LSTM to predict the short-term load of EV
charging load with multiple foresight periods. The main novelties of
this paper are as follows:

(1) A charging load forecasting model for electric vehicles that
can quickly respond to the epidemic (or similar emergencies)
and has high accuracy is established.

(2) The epidemic-related data are processed to make the data
more suitable for the forecasting of electric vehicle charging
load during the COVID-19 pandemic, and mRMR is used to
select the best input features according to the characteristics
of the epidemic feature sequence.

(3) For the determination of model parameters, IPSO is used to
optimize the training parameters, which improves the forecast
accuracy, and the effectiveness of the proposed model is
verified by an example.

The organization of this paper is as follows: Section 2 introduces
the above methods, including mRMR, IPSO-LSTM prediction
model, and predictive performance evaluation indicators; Section
3 introduces data trends and related characteristics; Section 4 carries
out case studies; Section 5 discusses the results; and Section 6 gives
research conclusions.

2 Methods

2.1Maximum relevantminimum redundancy

In order to consider the correlation between the single feature
variable and the target variable, and consider the linear relationship
and nonlinear relationship at the same time, the MICmethod can be
selected to judge the correlation between the two sequences.

The MIC method was proposed by Reshef in 2011, which can
effectively detect linear or other functional relationships between
two variables (Li et al., 2015). The concept of using mutual
information in the MIC method can be expressed as:

I dx, dy( ) � ∫p dx, dy( )log2
p dx, dy( )

p dx( )p dy( )
(1)

Where: dx and dy are the values of the sequence x and y
respectively; I(·) is the mutual information function; p(·) is the
probability density distribution function. It is relatively difficult to
calculate the joint probability density distribution function.
Therefore, on the basis of mutual information, the MIC method
discretizes the relationship of the two variables into a two-
dimensional space to estimate the probability density function.

MIC can be calculated by formula (2) and (3):

I dx, dy( ) ≈ I dX, dY( ) � ∫p dX, dY( )log2
p dX, dY( )

p dX( )p dY( ) (2)

IMIC x, y( ) � max
ab< 0.6

I dX, dY( )
log2 min a, b( )( ) (3)

In the formula: a and b are the discretized numbers in the dX
and dY directions; IMIC(x, y) is the MIC of the sequence x and y.

The mRMR method can penalize redundant features with high
correlation among the selected features (Zhang et al., 2019). Among
all feature sequences, new feature sequences are incrementally
selected, each time the locally optimal feature is selected.

Defined D(S, y) as the correlation between all features and the
target variable y, R(S) is the redundancy of all features, where is the
feature set composed of all features, that is:

D S, y( ) � 1
m

∑
di∈S

IMIC di, y( ) (4)

R S( ) � 1
m2

∑
di,dj∈S

IMIC di, dj( ) (5)

ImRMR � max
S

D S, y( ) − R S( )( ) (6)

Where: di is the ith feature sequence; m is the number of feature
sequences in the finally selected feature set; ImRMR is the mRMR
value of the feature sequence. The final feature subset can be
obtained by solving the optimization problem shown in Eq. 6.

2.2 Improved particle swarm
optimization–long short term memory
(IPSO-LSTM)

2.2.1 Long short term memory
LSTM is a neural network obtained by improving RNN

(Hochreiter and Schmidhuber, 1997). Compared with RNN,
LSTM can better deal with the problem of gradient
disappearance and gradient explosion. The difference between
LSTM and RNN is that LSTM adds a memory unit Cell and
three gates (input gate, forget gate and output gate) to the
neurons in the hidden layer. The internal structure of LSTM is
shown in Figure 1.

The propagation formula of the LSTM computing node at time t
can be expressed as Eqs 7–11.

it � g Whiht−1 +Wxixt + bi( ) (7)
ct � ft · ct−1 + it · tanh Whcht−1 +Wxcxt + bc( ) (8)

ft � g Whfht−1 +Whfxt + bf( ) (9)
ot � g Whoht−1 +Woxxt +Wcoct + bo( ) (10)

ht � ot · tanh ct( ) (11)

In Figure 1, the input gate controls the information entering the
node, the forget gate controls the retention of the historical state in
the Cell, and the output gate controls the information of the
computing node output.

2.2.2 Improved particle swarm optimization
algorithm (IPSO)

The particle swarm optimization algorithm can be described as:
Assuming that there is a population of particles in the dimension
space, the velocity and position of the ith particle are respectively,
and the optimal position of the individual particle and the optimal
position of the group at time are evaluated by the objective function.
Then iteratively update the velocity and position of each particle by
the following formula (Zhang Y. G. et al., 2021).
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Vk+1
id � wVk

id + c1r1 Pk
id −Xk

id( ) + c2r2 Pk
gd −Xk

gd( ) (12)
Xk+1

id � Xk
id + Vk+1

id (13)

The inertia weight w directly affects the convergence
efficiency of the PSO algorithm. Increasing w can improve the
global convergence ability of the algorithm, and decreasing can
increase the local convergence ability of the algorithm. The
constant of the original w algorithm will not change with the
increase of the number of iterations, which will weaken the global
optimization ability of the algorithm and reduce the convergence
speed of the algorithm. A new nonlinear inertia weight w is
proposed, which makes the algorithm have better global
convergence ability in the initial stage of iteration, and
decreases w in the later stage of iteration, thereby improving
the local convergence ability of the algorithm. The form w is
as follows.

w � a · sin π

2
· 1 − k

Kmax
( )η( ) + b (14)

In the formula: w is the inertia weight; d � 1, 2,/, n;
i � 1, 2,/, m; k is the number of iterations; Vid is the velocity of
the ith particle in the dth dimension; c1 and c2 is a non-negative
constant; r1 and r2 is the maximum number of iterations; k is the
curvature adjustment parameter.

2.2.3 IPSO-LSTM model
The LSTM neural network optimized by the IPSO algorithm is

called the IPSO-LSTM model. Taking the two-layer LSTM network as
an example, the particles in the IPSO algorithm are, which represents the
number of neurons in the first hidden layer of the LSTM network, and
represents the second LSTM network. The number of neurons in the
hidden layer represents the learning rate of the LSTM network.

The flowchart of the IPSO-LSTM network model is shown
in Figure 2.

The specific steps in Figure 2 are as follows:

Step 1: Preprocess the sample data, remove abnormal data, fill in
the incomplete data, convert the input data into matrix form, and
initialize the IPSO algorithm parameters

Step 2:Define fitness. The mean square error of the predicted value
of the LSTM network is used as the particle fitness value fit;

fit � 1
n
∑ ŷ − y( )

2 (15)

Step 3: Using the position information of the particles as the
parameters of the LSTM network, construct multiple LSTM networks

Step 4: Train all networks to get the fitness value of each particle.
Update individual extrema and group extremum

Step 5: Iteratively update particle velocity and position information
with nonlinear inertia weights according to individual extremum
and group extremum

FIGURE 1
The basic LSTM cell.

FIGURE 2
IPSO-LSTM flow chart.
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Step 6: Stop iterating after meeting the conditions or reaching the
maximum number of iterations, otherwise go back to Step 3

Step 7: Get the optimized parameters, increase the number of
iterations to 100, and retrain the LSTM network

Step 8: Predict through the trained IPSO-LSTM network.

2.3 A novel hybrid model based on mRMR
and IPSO-LSTM

Based on the above analysis, this section proposes a forecasting
model based on mRMR and IPSO-LSTM for the short-term
forecasting of EV charging loads during the COVID-19
pandemic, and the overall framework is shown in Figure 3.

The framework shown in Figure 3 can be summarized into three
parts, which are as follows.

Part 1: Data processing. Analyze the basic characteristics of
original data, supplement missing data, and correct extreme data
and abnormal data.

Part 2: Feature extraction. Considering the hysteresis of epidemic
factors, a factor set containing five groups of 20 epidemic factors was
established, and the feature sequence is dimensionless processed, and the
mRMR method is used to obtain the optimal feature set.

Part 3: Final forecast. The optimized LSTMmodel is obtained by
IPSO, and the elements in the optimal feature set are added to
predict the electric vehicle charging load to obtain the final
forecast result.

2.4 Evaluation indicators

In this study, the mean absolute error (MAE), root mean square
error (RMSE) and symmetric mean absolute percentage error
(SMAPE) were selected as the evaluation criteria for evaluating
the forecast accuracy of each model, and the calculation formula is
shown in Eqs 16–18.

MAE � 1
N

∑
N

i�1
yi
∧ − yi

∣∣∣∣∣∣

∣∣∣∣∣∣ (16)

RMSE �

������������

1
N

∑
N

i�1
ŷi − yi( )

2

√√

(17)

SMAPE � 100
N

∑
N

i−1

ŷi − yi

∣∣∣∣
∣∣∣∣

0.5 ŷi

∣∣∣∣
∣∣∣∣ + yi

∣∣∣∣
∣∣∣∣( )

(18)

Where:N is the number of samples, yi is the measured value, ŷi

is the predicted value.

FIGURE 3
Overall framework.

Frontiers in Energy Research frontiersin.org05

Xie et al. 10.3389/fenrg.2024.1341246

89

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341246


3 Analysis of influencing factors of
electric vehicle charging load

The charging load of electric vehicles is mainly affected by travel
willingness, and its daily variation is mainly affected by charging
habits and charging prices. Under normal circumstances, the
production and life in an area have regularity, so the charging
load changes have periodicity, and the fluctuation of adjacent days
will not be very large. However, in some regional special events,
some traffic control measures may be taken, or some policies and
guidelines may be implemented to restrict people’s travel, which
may directly or indirectly affect the user’s travel psychology, thereby
changing the travel route or reducing the travel, and then affecting
the charging load of some regions or the whole region’s
charging station.

3.1 The influence of conventional factors on
charging load

Conventional factors mainly consider the impact of time, date
type, weather and so on.

3.1.1 Influence of time factor on charging load
Time factors mainly include seasonal, holiday and cyclical

factors. Cyclical factors can be divided into daily cyclical factors,

weekly cyclical factors, monthly cyclical factors and annual
cyclical factors. The data selected in this paper is from
November 2021 to April 2022, a total of 6 months, so only the
influence of daily cyclical factors and weekly cyclical factors are
considered. The correlation between time factor and charging
load is shown in Figure 4.

Figure 4 shows the degree of correlation between the load of
the previous day and the load of the previous week and the
current load at the current time, in which the load of the previous
day and the current load show an obvious positive correlation,
while the correlation between the previous week and the current
load is not obvious, and the three factors also have
mutual influence.

3.1.2 The impact of date type on charging load
The user’s travel habits may be affected by the date type, and

there is a difference between non-working days such as weekends or
holidays and working days, which will cause changes in the charging
load. Load statistics are collected fromMonday to Sunday, as shown
in Table 1.

As can be seen from Table 1, the load varies from Monday to
Sunday. The maximum load from Monday to Friday is 218000 kW
(Tuesday), which is larger than the load on Sunday, while the
minimum load is 159000 kW (Monday), which is smaller than
the load on Saturday, with no obvious difference. Therefore, the
effect of date type on charging load needs further study.

FIGURE 4
Correlation between time factor and charging load.
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3.1.3 The influence of meteorological factors on
the charging load

The charging load of electric vehicles will be affected by users’
willingness to travel. For example, when encountering extreme
weather, users will reduce unnecessary travel, leading to a
decrease in charging load, while weather types will affect
temperature, relative humidity and air quality index. For
example, when there is heavy rain, it may cause a decrease in
temperature, an increase in relative humidity, a decrease in air
quality index and a decrease in wind. The temperature will affect the
driving range of electric vehicles, the longest driving range when the
temperature is moderate, the shortest driving range when the
temperature is too high or too low, and the temperature will also
affect the use of air conditioning in the car, the use of air
conditioning will increase power consumption. Figure 5 shows
the correlation between temperature, relative humidity, wind, air
quality index, and charging load.

As shown in Figure 5, there is a strong positive correlation
between temperature and load. As the temperature rises, the use of
air conditioning in the car increases the load. However, it can also be
seen that when the temperature is low, the load is also at a higher
level due to the increase in vehicle power consumption. There is a
strong negative correlation between relative humidity and load,
because the change of humidity is related to precipitation in
many cases, when the weather is not good, it will affect the
desire to travel, avoid unnecessary travel and lead to load
reduction. When the weather is particularly good, travel
enthusiasm is strong, and the increase of vehicle frequency leads
to the increase of load. There was no significant correlation between
wind and air quality index and charging load.

3.1.4 Influence of time-of-use price on
charging load

Most of the public charging stations in the city adopt time-
of-use (TOU), and the implementation of TOU is of great
significance to guide the orderly charging of electric vehicles
and reduce the pressure on the grid. The charging price of
charging stations using TOU is mostly divided into 6 periods
(the price may be different), each period and the corresponding
price are shown in Table 2. The price in the table is electricity,
excluding service fee.

As can be seen from Figure 6, the peak daily load of electric
vehicle charging load appears at 0, and the trough price is just from
23 to 6. During this period of time, the load is high inmost cases, and
the charging price during the time of 11:00–18:00 is medium, but
after a morning of power consumption, some vehicles that need to
supplement the power during the day will choose to charge at this
time, and after 18:00 is the rush hour, some commuter cars will

TABLE 1 Date type and charging load statistics.

Date type Maximum load/ Average load/

Monday 1.59 5.59

Tuesday 2.18 6.22

Wednesday 1.49 5.14

Thursday 1.48 5.24

Friday 1.93 5.98

Saturday 1.62 4.97

Sunday 2.00 5.56

FIGURE 5
Correlation between temperature, relative humidity, wind, air quality index and charging load.
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charge at this time, so the load is larger. However, on the whole, it
basically conforms to the characteristics of large load when the price
is high and small load when the price is low.

3.2 The influence of unconventional factors
on charging load

In addition to the routine factors mentioned in 3.2, taking into
account the key events in recent years in China, the novel
coronavirus epidemic, which has had a huge impact on people’s
production and life in the past 3 years, is selected as the main
unconventional factors to study from four aspects: the number of
new confirmed cases, the number of high-risk areas, the number of
medium-risk areas, and epidemic prevention policies. The
correlation between epidemic factors and charging load is shown
in Figure 7.

As can be seen from Figure 7, the number of newly confirmed
cases, the number of high-risk areas, the number of medium-risk
areas, and epidemic prevention policies are negatively correlated
with the charging load. The more new confirmed cases, the more
serious the outbreak. The greater the number of high risk areas
indicates the greater the number of areas seriously affected by the
epidemic, which indicates the depth of the development of the
epidemic to a certain extent. The more at-risk areas, the more areas

affected by the epidemic, to a certain extent indicates the breadth of
the epidemic development, and the more stringent epidemic
prevention policies, indicating that the more areas are sealed and
controlled, the more restrictions on people’s travel, all of which will
reduce the load. The new confirmed cases were negatively correlated
with the epidemic prevention policy, indicating that the epidemic
prevention policy has been dynamically adjusted in strict accordance
with the development of the epidemic situation, and the epidemic
prevention policy has indeed prevented the further spread of the
epidemic, which is in line with the development law of the epidemic,
and is suitable for epidemic prevention and control. The number of
high-risk areas and the number of medium-risk areas is positively
correlated with epidemic prevention policy. According to China’s
epidemic prevention policy, according to the number of newly
confirmed cases, regions can be divided into high-risk areas and
medium-risk areas, and at some times, they are also divided into
prevention areas, while high-risk areas will be banned or restricted to
go out (by time or by number of people), indicating that the more
the number of medium-risk areas, the more the number of high-risk
areas, the more the number of high-risk areas. The more stringent
the epidemic prevention policy. Therefore, when making
predictions, it is very necessary to consider such unconventional
factors as the epidemic.

4 Case analysis

4.1 Data sources

In this paper, the load of electric vehicles under the influence of
COVID-19 in a city in China is taken as the research object. In recent
years, the city’s new energy vehicle industry has developed rapidly.
The province’s electric power company built a new energy vehicle
intelligent monitoring platform in July 2019, which can monitor the
operation of charging piles in real time. This article obtained the
electric vehicle load data for a total of 181 days in the capital city of
the province from 1 November 2021 to 30 April 2022 through this
platform, and obtained meteorological data such as temperature on
the website of the city’s meteorological bureau. The data sampling
interval for 1 h, a total of 4,344 samples were collected. The
epidemic-related data was obtained on the website of the
Provincial Health and Health Commission. The data sampling
interval was 1 day, and a total of 181 samples were collected. In
this process, there may be data missing and data mutation. In this
paper, the interpolation method is used to ensure the smoothness of
the data. When it is judged that the original data is 0 or abrupt, the
data average of the previous time and the next time is used to replace
the missing data. If the continuous data is 0, the data of the previous
moment will be uniformly used instead.

d′
t �

0.5 dt−1 + dt+1( ) dt � 0, dt+1 ≠ 0
dt+1 dt � 0, dt+1 � 0
dt dt+1 ≠ 0

⎧⎪⎨
⎪⎩

(19)

Where: dt−1 is the data at the previous moment; dt+1 is the data
at the next moment; dt and d′t are the data before and after the
correction at the current moment, respectively.

During this period, the city experienced two local outbreaks in
December 2021 and March 2022 respectively, among which the

TABLE 2 Electric vehicle charging station price information.

Time Price (Yuan/degree)

0:00–6:00 0.25

6:00–8:00 0.60

8:00–11:00 0.95

11:00–18:00 0.60

18:00–22:00 0.95

22:00–24:00 0.25

FIGURE 6
Time division tariff and its corresponding load change.
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outbreak on 9 December 2021 was the most severe outbreak in the
city since the COVID-19 outbreak in 2019. The load in the period
with and without confirmed cases is shown in Figure 8.

It can be seen from Figure 8 that COVID-19 has a significant
impact on EV load, and the two impacts have different degrees, with the

impact of the December epidemic being greater than that of the March
epidemic. COVID-19 indirectly affects EV load by affecting people’s
travel conditions to a certain extent. Compared with other factors, this
impact is more complex, irregular, non-cyclical and has a lag. Table 3
shows the electric vehicle load and epidemic statistics in the city.

FIGURE 7
Correlation between epidemic factors and charging load.

FIGURE 8
The load in the period with and without confirmed cases.
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The data presented in Table 1 can be seen as follows: (1) For the
charging load of electric vehicles, its maximum value is large,
indicating that the city has a high ownership of electric vehicles.
There is a huge difference between the maximum value and the
minimum value, and the standard deviation is large, and the ratio to
the average value is also large but less than 1, indicating that the load
is volatile. (2) For the new confirmed cases and the number of
medium-risk areas, the two types of data had a large maximum
value, indicating that there was a large-scale epidemic in the city in
some periods. There is a big difference between the maximum value
and the minimum value, and it has a large standard deviation. The
ratio of the standard deviation and the average value is between two
to three, indicating that these two types of data are highly volatile,
which can reflect the impact scope of the epidemic to a certain
extent, and their changes may cause some epidemic prevention
policy changes. (3) For the number of high-risk areas, the maximum
value is not large, and there is little difference between the minimum
value and the maximum value. The standard deviation is also small,
but the ratio to the average is large, which indicates that the data is
highly volatile and reflects the severity of the epidemic to a certain
extent. The change of the data may also cause some epidemic
prevention policy changes.

4.2 Feature selection based on mRMR

There are many kinds of feature sequences in EV load
forecasting, and it is necessary to calculate the correlation
between these feature sequences and the load series to be
predicted, and select an appropriate set of feature sequences as
the input of the forecasting model. The influence of meteorological
factors such as temperature and date types are usually considered in
the prediction of power load. It is assumed that these factors will also
have a certain impact on the charging load of electric vehicles.
Therefore, these influencing factors and the impact of COVID-19
are taken into account in this paper. Considering the hysteresis of
epidemic factors, it is assumed that EV charging load will be affected
by epidemic factors 1–3 days before the current day, and the
influencing factor set is established as shown in Table 4.

Take Pt、 DLt and CCt in the table as examples, P0 represents
the current electricity price, P1 represents the electricity price 1 h
ago; DL1 represents the load value at the same time 1 day ago, DL2
represents the load value at the same time 2 days ago,CC0 represents
the new confirmed cases of the day, CC1 represents the new
confirmed cases of the day before.

Before feature selection, data should be processed dimensionless
to make the data have the same specification and accelerate the
convergence of neural network. Electric vehicle load, meteorological

series and electricity price data can be normalized to the interval
[−0.5, 0.5] to achieve dimensionless. Different from the common [0,
1] interval, neural networks tend to input data centered on 0.
Therefore, setting the center of the normalized interval as 0 is
conducive to the convergence of neural networks, and
normalization is shown in Eq. 20.

d � d − dmax+dmin
2

dmax − dmin
(20)

Where: dmax and dmin are the maximum andminimum values of
d respectively.

The date type sequence defines working days as 0, weekends as 1,
and holidays as 2 to identify the load characteristics of different
date types.

Since the time granularity of epidemic data was inconsistent
with EV charging load data, MIC was first used to analyze the
correlation between epidemic data and daily average load. The
results showed that MIC values of 20 epidemic related
information were all above 0.8, showing strong correlation. In
order to improve the sensitivity of intra-day load to epidemic
information, the charging load of electric vehicles was divided
according to whether there was an epidemic (the first confirmed
case was regarded as the beginning of an epidemic, and the 7-day
absence of new cases was regarded as the end of an epidemic). The
average value of the two groups of data was respectively taken as the
typical characteristic curve of epidemic period and non-epidemic
period. Thus, the proportion of load at eachmoment in the total load
of a day can be obtained, that is, the proportion of epidemic period
and non-epidemic period. Then, multiply the epidemic information
to get the epidemic data with unified time granularity. For such data,
if the interval −[−0.5, 0.5] is used, the discrimination degree is low.
Therefore, the interval of epidemic data is mapped to [0,10] to
improve the sensitivity to epidemic information with a larger
interval range.

In order to consider the correlation between the single characteristic
variable and the target variable, as well as the linear and nonlinear
relationships, MIC method can be chosen to judge the correlation
between two sequences. The correlation between each sequence is
shown in Figure 9.

The MIC value of some sequences in Figure 9 and itself is not 1,
because it is necessary to grid dX and dY when calculating the MIC.
When the series is discrete data and the distribution is very uneven,
the MIC value of the same series is likely to be different from 1,
which is a normal situation and does not affect the conclusion. The
feature set with MIC values greater than 0.6 were selected from high
to low according to the MIC, as shown in Table 5.

As can be seen from Figure 9, the feature subset selected
according to the MIC method in Table 3 have a lot of redundant

TABLE 3 Statistics of electric vehicle load and epidemic situation.

The data type Data length Maximum value Minimum value Average value Standard deviation

Electric vehicle load 4,344 283871.68 51.04 41961.76 34491.67

New confirmed cases 181 255 0 13.34 39.15

Number of moderate risk areas 181 150 0 11.03 26.85

Number of high risk areas 181 3 0 0.31 0.76
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TABLE 4 Influencing factor set.

Factors type Influencing factors Display method

Meteorological factors Temperature T

Relative humidity H

Wind W

Air quality index A

Electricity prices Current time and previous 1 h electricity price Pt

The date type Date type D

Historical load value Load value 1–3 h before the current time HLt

Load value 1–3 days before the current time DLt

Load value 1–3 weeks before the current time WLt

Epidemic factors New confirmed cases in the city on that day and the previous 1–3 days CCt

Number of medium risk areas in the city for the day and the previous 1–3 days NMt

Number of high risk areas in the city for the day and the previous 1–3 days NHt

Whether the city was infected on that day and 1–3 days before YNt

Epidemic prevention policy of the City for the day and the previous 1–3 days (Lockdown/No-lockdown) EPt

FIGURE 9
MIC between each sequences.
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information. For example, the correlation of: YN1 and YN0、

YN2, YN3 and YN2 are very high (0.83), and the information is
almost completely repeated. They should not exist in the feature

subset at the same time. Therefore, in order to reduce the
redundancy of feature sequences, mRMR method is selected
on the basis of MIC to achieve feature selection (Xie et al., 2017).
The feature subset selected by mRMR is shown in Table 5.

4.3 Electric vehicle charging load forecast
based on IPSO-LSTM

Set the data according to 6: 2: 2 is divided into training set,
validation set and testing set, where the data of training set is the first
109 days (data volume is 2,616, accounting for 60.22%), validation
set is the middle 36 days (data volume is 864, accounting for
19.89%), and testing set is the last 36 days (data volume is 864,
accounting for 19.89%), as shown in Figure 10.

In Figure 10, blue is the training set, green is the validation set, and
red is the testing set. Both the training set and the testing set included
epidemic period and non-epidemic period, which ensured the accuracy
of the model establishment and the reliability of the test. The validation
set is used to determine the number of input features and the input
parameters in the IPSO-LSTM model.

The initial parameters in the IPSO-LSTM model were set as:
the number of individuals in the population was 10; The iteration
number Kmax is 20; The value range of neuron number l1i and l2i
in hidden layer of particle Xi(l1i, l2i, εi) is (The State Council of
the People’s Republic of China; Peng et al., 2005); The value range
of learning rate ε is [0.005,0.05]; The value range of velocity of
each dimension is [−1,1], [−1,1], [−0.002,0.002]; a � 0.6; b � 0.3;
η � 1.7; The optimizer is Adam; The number of input neurons is
three load values and their corresponding characteristics; The
number of output neurons is 1 (Zhang Y. G. et al., 2021). IPSO
was used to optimize the three parameters in LSTM, and the

FIGURE 10
The load value of training and testing data set ranged from 1/11/2021 to 30/4/2022.

TABLE 5 Feature sets obtained by feature selection (MIC and mRMR).

The sorting Feature selection method

MIC mRMR

1 YN2 DL1

2 YN1 DL2

3 DL1 YN2

4 YN3 HL1

5 YN0 EP3

6 NH0 NH3

7 NH2 NM3

8 DL2 CC3

9 NH3 T

10 NH1 DL3

11 DL3 EP0

12 EP3 A

13 EP2 H

14 EP1 WL1

15 HL1 WL2

16 EP0 HL2
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fitness function was set to the minimum MAE. The curves of
fitness, the number of neurons in the two hidden layers and the
learning rate obtained in the optimization process were shown
in Figure 11.

As can be seen from Figure 11, the fitness value tends to be
stable at the eighth iteration after two declines, and the optimal
parameter after IPSO optimization is as follows: the number of
neurons in hidden layer 1 is 27, the number of neurons in hidden
layer 2 is 28, and the learning rate is 0.0064.

The influencing factors in Table 5 were input into the forecasting
model one by one in order, and the minimum number of input
features of SMAPE was taken as the optimal feature set. The
relationship between the error on the validation set and the
number of input features is shown in Figure 12.

In Figure 12, SMAPE values are different under different
number of input features. When the number of input features is
1–12, the SMAPE value fluctuates continuously, and when the

number of input features is 6, the SMAPE value is the smallest.
When the number of input features is greater than 12, the SMAPE
value increases rapidly, which indicates that the more input features
is not the better, and too much input will make the model not
selective. Therefore, the number of input features is chosen to be 6.

Finally, the optimal feature set of the forecasting model is
DL1, DL2, YN2, HL1, EP3, NH3{ }. The electric vehicle load
forecast results of the city based on the IPSO-LSTM model and
the optimal feature set considering the impact of the epidemic are
shown in Figure 13.

As can be seen from Figure 13A, the forecast effect at the peak
is poor, while the prediction effect at other points is good. In
Figure 13B, when the load value is greater than 120000 kW, the
point is far away from the dashed line, which also verifies the
deficiency of peak prediction. When the load value is less than
120000 kW, the predicted point falls near the dashed line, which
has good accuracy.

FIGURE 11
Adaptation and hyperparameter variation curves. (A) Fitness. (B) Learning rate. (C) Hidden layer 1. (D) Hidden layer 2.
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5 Comparative analysis and discussion

In order to verify the forecast accuracy and stability of the
proposed model in multiple dimensions, three experiments are
compared in this section.

5.1 Comparison of forecasting models

In order to verify the forecast accuracy and stability of the
proposed model, four different forecasting models, namely, BPNN,
ARMA, LSTM and IPSO-LSTM, are used for comparison. Figure 14
shows the forecast results of the four forecasting models.

It can be seen from Figure 14 that the IPSO-LSTM model is
better than BPNN, ARMA and LSTM. However, in general, the
errors of the four models are larger when the load value is greater
than 100000 kW. As a whole, the forecast effect increases with the

increase of the load value, and the forecast effect further decreases
when the peak value is large.

Table 6 shows the forecast performance indexes when the four
forecasting models are adopted.

According to the forecast performance index results in Table 4, it can
be seen that IPSO-LSTM>LSTM>ARMA>BPNNas awhole in terms
of forecast effect. In terms of MAE value, IPSO-LSTM decreased by
25.02%, 18.63% and 2.41% compared with BPNN, ARMA and LSTM,
respectively. In terms of RMSE and SMAPE, IPSO-LSTM is also 2%–
13% lower than BPNN, ARMA and LSTM, respectively. This shows that
LSTM can better learn the long-distance dependence relationship
depending on its own advantages, which is suitable for application in
EV charging load forecasting.

5.2 Comparison of different sets of
influencing factors

To measure the influence of COVID-19 epidemic related factors
on EV load forecasting, this paper divides the influencing factor set
into two categories: one is all factors except epidemic factors in
Table 2, which is represented byΩ1 for convenience; One category is
all the factors shown in Table 2, which is denoted by Ω2 for
convenience. Figure 15 shows the forecast results of EV charging
load in the city under different influencing factor sets.

It can be seen from Figure 15 that the forecast effect is not
significantly improved when the influencing factor set is Ω1,
compared with that without considering the influencing factors.
However, when the influencing factor set is Ω2, the forecast effect of
the high-load area is significantly improved. Figure 10B clearly
shows that in the region of 15000KW-21000 kW load value,
there is a significant gap with the influencing factor set Ω1.
Compared with Figure 10A, it can be seen that the load in this
range is the peak load point of non-epidemic period after the
epidemic ended in March. These results show that: (1) adding
epidemic factors to EV charging load forecasting can improve the
forecast effect; (2) Adding epidemy-related factors can improve the
forecast effect from areas with high load values, the essence of which

FIGURE 12
SMAPE with different number of input features.

FIGURE 13
Final forecast results. (A) Forecast result chart, (B) Forecast scatter plot.
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is to identify the sudden change point of load by quantifying the
influencing factors of epidemic.

Table 7 shows the forecast performance indexes under different
sets of influencing factors.

As can be seen from Table 5, when the influencing factor set isΩ1,
MAE, RMSE and SMAPE are reduced by 6.50%, 0.26% and 10.70%,
respectively, compared with when the influencing factors are not
considered. When the influencing factor set is Ω2, MAE, RMSE and

SMAPE are reduced by 16.45%, 38.43% and 6.57%, respectively,
compared with that when the influencing factor set is Ω1. These
results show that: (1) adding influencing factors to EV charging load
forecasting can improve the forecast effect; (2) The improvement of the
forecast effect by adding traditional influencing factors may be
universal, that is, it is reflected in the low-load value area without
mutation. That is, the top two-thirds of Figure 15A, and the lower load
in the bottom third, but it is difficult to capture the turning point from

FIGURE 14
Comparison of the forecast results of the four forecasting models. (A) Forecast result chart, (B) Forecast scatter plot.

TABLE 6 Forecast performance indexes of the four forecasting models.

Forecasting model MAE RMSE SMAPE

BPNN 14446.80 23083.79 36.95

ARMA 13312.23 22606.67 31.64

LSTM 11099.78 20332.21 27.80

IPSO-LSTM 10831.79 20259.53 27.10

TABLE 7 Forecast performance indexes under different sets of influencing
factors.

Set of influencing factors MAE RMSE SMAPE

— 10831.79 20659.53 27.10

Ω1 10127.67 20604.54 24.20

Ω2 8461.82 12686.39 22.61

FIGURE 15
Comparison of forecast results under different influence factor sets. (A) Forecast result chart, (B) Forecast scatter plot.
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epidemic to non-epidemic period; (3) The addition of epidemic factors
significantly improved the forecast effect.

The above research shows that the model proposed in this
paper has a satisfactory effect on single-step forecasting.
However, in addition to focusing on the accuracy of the
forecast, the forecast results of different foresight periods are
of great significance for the intraday demand-side response with
EV charging loads.

5.3 Comparison of different forecast periods

The model proposed in this study is taken as an example to
illustrate the impact of different forecast periods on the forecast
results. Figure 16 shows the forecast results for the different forecast
periods (2 h, 4 h, 6 h).

As can be seen from Figure 16, with the growth of the foresight
period, the deviation on the peak and valley value gradually
increases. This is due to the gradual accumulation of errors as
the forecast period increases, which reduces the forecast accuracy. In
addition, the accuracy of the forecasting at the turning point of the
epidemic also decreased, which may be because the sensitivity of the
quantitative treatment of epidemic factors for longer time changes is
not obvious. Table 8 lists the evaluation index values of the
forecasting model for the different forecast periods.

In Table 8, the MAE, RMSE and SMAPE all increase with the
growth of the foresight period, which is consistent with the results
in Figure 16.

6 Conclusion

The main purpose of this study is to design an EV charging load
forecasting model with high accuracy that can quickly respond to
epidemic situations (or similar emergencies). In the case study, we
test the performance of the proposed model using measured data
during the COVID-19 in a city in China. The results show that:

(1) Aiming at the determination of hidden layer parameters and
learning rate in LSTM, IPSO was used to optimize the training
parameters, and the best parameters suitable for such data
were determined in the validation set, which improves the
prediction accuracy. The example showed that the accuracy of
the LSTMnetwork optimized by IPSO can be improved by 2%
compared with that before optimization, which proves the
effectiveness of the proposed model.

(2) By affecting travel, the epidemic has affected charging loads of
electric vehicles. The charging load of electric vehicles in the
two epidemic periods showed great changes compared with
the non-epidemic period, but the changes were different. It
can be considered that COVID-19 has a very important
impact on the charging load of electric vehicles, and the
impact results are related to the severity and spread of the
epidemic. It is therefore reasonable to take epidemic factors
into account in such forecasting problems in the context of
the COVID-19 pandemic.

(3) In the process of data processing, the epidemic factors were
personalized, and the proportion coefficient of the
corresponding moment was obtained by taking the typical
characteristic curves of the epidemic period and the non-
epidemic period to unify the time granularity. Increasing the
range of the mapping interval to improve the sensitivity of
epidemic information is conducive to capturing the amount
of mutations, improving the forecast effect of peak and valley
values and turning points, focusing on improving the
prediction ability of high-load areas in non-epidemic
periods, and thus achieving the purpose of overall forecast
accuracy. Compared with the forecasting model without

FIGURE 16
The forecast results of themodel proposed in this paper in different forecast periods (2 h, 4 h, 6 h). (A) Forecast result chart, (B) Forecast scatter plot.

TABLE 8 Evaluation index values of the forecast model proposed in this
paper in different forecast periods.

Forecast period (h) MAE RMSE SMAPE

2 87846.89 13204.91 24.39

4 10078.42 15342.53 28.85

6 11760.03 17500.07 34.26
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considering the influencing factors, MAE, RMSE and SMAPE
decreased by 21.88%, 38.59% and 16.57%, respectively, and
were more consistent with the current social background.

(4) The measured data of interaction changes between epidemic
and non-epidemic periods in a city in China were selected to
test the forecast effect of the model in epidemic and non-
epidemic periods. Compared with other forecasting models,
the model proposed in this paper achieves better and more
stable forecast results in both epidemic and non-epidemic
periods, with MAE, RMSE and SMAPE all reduced by more
than 20%, it showed that the forecasting model is consistent in
improving the forecast effect of data with different
characteristics. In addition, real-time demand-side response
is carried out based on the forecast results of multiple
foresight periods, which can alleviate the problem of large
load variation during the epidemic to a certain extent.

In addition, how to more reasonably unify the time granularity
of the feature series and load series, and how to more effectively
dimensionless the data to improve the sensitivity to the epidemic
situation are the focus of the next research when the hour-level
epidemic related data cannot be obtained. In future work, the
electric vehicle charging load forecasting method proposed in this
paper will be applied to the smart Internet of vehicles system in the
city in combination with the GPS road network system and
regional special event characteristics, and the real-time updated
multi-time scale forecasting results will provide reference for the
demand-side response under the background of epidemic
prevention and control.
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Nomenclature

BPNN Back Propagation Neural Network

ARMA Auto-Regressive and Moving Average

CNN Convolutional Neural Network

LSTM Long Short-Term Memor

MIC Maximal Information Coefficient

mRMR Maximum Relevance Minimum Redundancy

MI Mutual Information

Bi-LSTM Bidirectional Long Short-Term Memory

IPSO Improved Particle Swarm Optimization Algorithm

IPSO-LSTM Improved Particle Swarm Optimization-Long Short Term Memory

MAE Mean Absolute Error

RMSE Root Mean Square Error

SMAPE Symmetric Mean Absolute Percentage Error

TOU Time-of-use
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The distance a solid biomass feedstock could be used to transport the feedstock
when used as biobased fuel is critical information for transportation analysis.
However, this information is not available. The break-even transportation
distance (BTD) of various fuels from biomass feedstocks and fossil sources
was analyzed for truck, rail, and ship transport modes based on bulk density,
moisture content, and specific energy. Fourteen different biomass feedstocks,
such as crop residues (e.g., corn stover), woody biomass (e.g., wood chips),
including thermally pretreated (torrefied) and densified forms (pellets), cattle
feedlot compost, and three standard fossil fuels, namely, coal, lignite, and
diesel, were considered for BTD analysis and comparison. The BTD values
were derived by comparing the energy content of biomass feedstocks with
the energy expended in transporting the fuels through selected transportation
modes. For ready reference, an alternative derivation of BTD equations and
example calculations were also presented. Among the biomass feedstocks,
torrefied pellets had the highest BTD (4.16× 104, 12.47× 104, and 54.14× 104 km),
and cattle feedlot compost had the lowest BTD (1.29× 104, 3.88× 104, and
9.23× 104 km), respectively, for truck, rail, and ship. Higher bulk density and
higher specific energy of the biomass feedstocks increased the BTD for all
modes of transport. Transport is most efficient when mass-limited. Biomass
feedstock bulk densities where transportation becomes mass-limited are 223,
1,480, and 656 kg/m3 for truck, rail, and ship, respectively. Truck transport is
typically mass-limited (payload limit restriction; increased BTD), whereas rail
transport is entirely volume-limited (cargo space restriction; decreased BTD),
and ship transport is mostly volume-limited for biomass feedstocks and mass-
limited for densified biomass feedstocks. Ship transport is the most efficient,
followed by rail and truck; on average for the materials (17) studied, rail is 3.1
times and ship is 9.2 times the truck’s BTD. Based on the bulk density and
higher specific energy of the biomass feedstocks, regardless of the refinery
location, interstate truck transport of these feedstocks is not a limiting factor in
the bio-refining process., with the studied biomass feedstock BTD per truckload
representing between 0.89 and 2.88 times the US perimeter.
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GRAPHICAL ABSTRACT

Illustration of the concept of BTDs of biomass feedstocks as bio-based fuel and the modes of transportation studied (Note: A−F are model bio-based fuels
of varying energy contents. The length of the horizontal arrows symbolically represents the BTD of the selected bio-based fuels).

1 Introduction

Biomass feedstock is gaining importance due to its increased
usage as a bio-based fuel in power plants and biorefineries to
produce liquid and gaseous fuels. A major challenge facing the
biomass industry is viable transport options for the various biomass
feedstocks and products. The distance a given amount of biomass
feedstock can be transported while still providing a net energy
yield is crucial to the long-term implementation of biomass-related
technologies. Understanding the trends associated with various
biomass feedstock types is vital for biomass resource managers,
transportation companies, producers, and other players in the
supply chain, which has been the topic of recent investigations
(Mahmudi and Flynn, 2006; Wiegmans and Konings, 2015). As
ultimately energy translates to cost, energy saved leads to increased
profits and subsequently promotes increased biomass feedstock
usage, which in turn leads to reduced dependence on fossil fuels and
a reduction of greenhouse gas emissions.

Biomass is currently the largest provider of domestic renewable
energy (accounting for 47%) and supplies over 3% of total
energy consumption in the United States (Perlack et al., 2011).
Biomass feedstocks derived from agricultural resources, such as
cereal crops and oilseeds, as well as from perennial crops as
potential feedstocks for idle acres and dedicated energy crops
represent an abundant feedstock resource. Given this status, the
United States is well poised to make biomass a sustainable
and significant part of domestic renewable energy production
feedstock. Furthermore, the recent United Nations Paris Framework
Convention on Climate Change called for mitigating global annual
emissions of greenhouse gasses by 2020 and to hold the increase
in the global average temperature to well below 2 °C from the
pre-industrial levels by aggregating emission pathways (FCCC,
2015). Recently, the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report framed the context, knowledge
base, and assessment approaches used to understand the impacts of
1.5 °C global warming above pre-industrial levels and related global
greenhouse gas emission pathways (Allen et al., 2018). Among the
various renewable resources available, biomass could significantly
meet global energy demands and greenhouse gas mitigation goals.

The vast inventory of biomass feedstocks derived from agricultural
and forestry activities can be processed through established
pathways to produce biofuels, bioenergy, and bioproducts, with low
greenhouse gas emissions, unlike fossil fuels.

Bio-based fuels derived from various biomass feedstocks are to
be transported from processing plants/refineries/fueling stations to
the location of use. With fixed energy contents of different biomass
feedstocks, it will be necessary to evaluate how far these feedstocks
can be transported, with reference to their energy content—the
proposed concept of break-even transportation distance (BTD),
through various modes of transport while using the fossil fuel
as transportation energy in the analysis. Given the low energy
content of the biomass, one general concern/question from the
user is “whether more energy is expended in transporting the
biomass than the energy it contains?” Therefore, we define the
BTD of biomass feedstocks (various raw biomass feedstocks and
preprocessed products considered in this study) as the distance
these feedstocks as bio-based fuel can travel utilizing its total
available energy in a given mode of transport (e.g., truck, rail,
and ship). Graphical Abstract illustrates the concept of BTD and
modes of transportation considered in the study. Knowing the
BTDs of different biomass feedstocks, the bio-based fuel producers
or transportation logistics firms can select the suitable mode of
transportation based on the available energy.

Moisture content, bulk density (kg/m3), and energy content
(specific energy, J/kg) affect the biomass feedstock quality
significantly; hence, transportation logistics decisions should be
made based on these quality attributes. When transporting high-
moisture biomass feedstocks, the water content adds to the mass
and/or volume restrictions, and the moisture also reduces the
specific energy. Therefore, higher and lower heating values (HHV
and LHV, respectively), which are functions of moisture contents,
should be used when calculating the biomass energy potential
(Bradley et al., 2014). As both bulk density and specific energy
rationally have a significant impact on the BTDs, improving these
properties allows transportation costs to be reduced.

Mechanical densification and thermal treatment processes, such
as torrefaction, were shown to improve the bulk density and
specific energies of the biomass feedstocks (Tumuluru et al., 2011;
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2021; Tumuluru, 2015; Pradhan et al., 2018; Picchio et al., 2023;
Tumuluru, 2023). Torrefied and densified biomass reduced the
shipping costs due to increased bulk density and specific energy
(Searcy et al., 2014). It was also found that the torrefied biomass
costs less to transport per unit energy compared to wood chips and
white pellets in ship transport. The International Energy Agency
(IEA) report concludes that currently, only wood pellets are traded
over a long distance in large volumes, and substantial cost reduction
can be realized in the wood pellet supply chain compared to raw
biomass transport (Bradley et al., 2014). For example, wood pellets,
torrefied wood, and pyrolysis oil have different physical, chemical,
and energy characteristics, and changes in these properties impact
their transportation distances.

Every mode of transport has its own overall efficiency of
transporting the payload, which is taken into account via the
fuel efficiency values (e.g., truck km/L or mpg), and this reflects
on the biomass feedstocks’ BTDs. The standard container volume
limitations and prevailing roadway mass limitations (e.g., truck
transport) will impose further restrictions on the transport.
Therefore, the two situations arise, namely, i) volume-limited:
when the entire transport container volume was used, and
its mass did not exceed the permissible limit; and ii) mass-
limited: when the allowed mass limit was reached before the
transport container was completely filled, are to be considered in
the analysis.

The BTDs of biomass feedstocks directly influence the cost of
transportation and are crucial to enable the further growth of the
bioprocessing industry.Themajor limitations of road transportation
are environmental problems, such as air pollution, congestion, and
accidents, whereas inland waterway transportation is a more cost-
efficient and environmentally friendly alternative (Lu and Yan,
2015). Furthermore, it was observed that usually the most critical
factors in selecting the mode of freight transportation and road
congestions are issues when biomass feedstock is transported,
especially by trucks (Mahmudi and Flynn, 2006). Therefore,
researchers suggested that rail transport can help overcome
transportation costs and congestion issues (Mahmudi and Flynn,
2006; Lu and Yan, 2015).

An earlier study focused on the economics of shipping
biomass feedstocks from truck to rail in a North American
setting and discussed the minimum economic shipping distance
for selected feedstocks (Mahmudi and Flynn, 2006). However,
literature specifically relating to the concept of BTDs of
various biomass feedstocks and the effect of biomass quality
attributes, such as moisture content, bulk density, and energy
content, on transportation logistics are not currently available,
hence worth an investigation. Therefore, the overall objective
of the present study was to evaluate the BTDs for various
forms of biomass feedstocks based on their energy contents.
Specific objectives of this research were to i) evaluate and
compare the BTDs of various raw and preprocessed biomass
feedstocks, such as herbaceous and woody raw biomass
feedstocks, and thermally and mechanically preprocessed products
with respect to the fossil fuels used in various respective
standard modes of transport and ii) determine the feasibility of
transporting these biomass feedstocks around the United States
with a truck.

2 Materials and methods

2.1 Materials considered

For this work, 17 bio-based fuels comprising 14 potential
biomass feedstocks (raw, densified, and torrefied and densified)
along with three traditional fossil fuels for comparison (Table 1)
were considered. It should be noted that these biomass feedstocks
cannot be directly used in modern transportation vehicles, but
the study is concerned about the energy content of these biomass
feedstocks for the BTD calculation. All these 17 bio-based fuels
are solid fuels, except diesel fuel which is a drop-in liquid fuel
with reference to which the BTDs of the rest (16) were calculated.
Reported values for bulk densities and specific energies of biomass
feedstocks often differ (e.g., baled biomass); therefore, averages of
published values were used. Referenced bales were rectangular with
dimensions of 0.91× 1.22× 2.44 m.

Specific energies (energy per unit mass) for some biomass
feedstocks were calculated to maintain consistency throughout
similar materials and mitigate discrepancies. Corn stover pellet
(6.2% wet basis (w.b.) moisture) was used as the necessary reference
material in specific energy calculation for the corn stover pellet (26%
w.b.) and corn stover briquettes (Table 1). Similarly, corn stover bale
(10% w.b.) was used as a reference for the other three corn stover
bales with varying moisture contents (20–50% w.b.). Wood chips-
50% were used as the reference for wood chips-12% and torrefied
wood chips. Cattle feedlot compost was taken as the soil-surfaced
feed pen, code HA-FB (Sweeten et al., 2006). Mass densities of
Central Appalachian coal andNorthDakota lignitewere taken as the
average values reported for bituminous coal and lignite, respectively
(Engineering ToolBox, 2018).

2.2 Bulk density and specific energy
calculations based on biomass moisture

Relevant biomass feedstock properties considered in this work,
such as the bulk densities and specific energies at specific moisture
contents, derived from published reports are presented in Table 1.
Among the various biomass feedstocks, corn stover is one of the
major feedstocks currently used for bio-based fuel production.
Therefore, corn stover bales with different moisture contents were
considered in the present study as different harvesting methods
such as single- and multi-pass and wet and dry storage systems
result in corn stover with moisture content in the range of 10–50%
w.b. (Shinners et al., 2007). Furthermore, corn stover bales with
moisture content in the range of 10–33% (w.b.) can be processed
and used for pellet production (Tumuluru, 2023). In the case
of pellets, two different types of pellets were considered: i) the
conventional pelleting process produces pellets with a moisture
content of about 6% w.b. (Tumuluru et al., 2010), whereas ii) the
high-moisture pelleting process developed by the Idaho National
Laboratory produces wood pellets with higher moisture content
of typically approximately 26% w.b. before low-temperature drying
(Tumuluru, 2016).

For some of the biomass feedstocks at several moisture contents,
the material properties were calculated from the reported values by
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TABLE 1 Bulk density and specific energy data for different biomass feedstocks and fossil fuels used in the analysis.

Material Moisture content
(MC) [% w.b.]

Bulk density
(BDbio) [kg/m

3]
Reference Specific energy

(SEbio) [MJ/kg]
Reference

Wood chips-12% 12 265 Tumuluru et al. (2015a) 18.48 a

Wood chips-50% 50 320 Tumuluru et al. (2012) 10.5 Tumuluru et al. (2012)

Corn stover bales-10% 10 166 Yancey (2016) 16.17 Mani et al. (2004)

Corn stover bales-20% 20 208 Yancey (2016) 14.37 a

Corn stover bales-30% 30 270 Yancey (2016) 12.577 a

Corn stover bales-50% 50 341 Yancey (2016) 8.983 a

Corn stover briquettes 10 489 Tumuluru et al. (2015b) 16.33 Tumuluru et al. (2015b)

Wood briquettes 10 422 Tumuluru et al. (2015b) 17.64 a

Corn stover pellets-6% 6.2 645 Yancey et al. (2013) 17.02 Yancey et al. (2013)

Corn stover pellets-26% 26 520 Tumuluru et al. (2015b) 13.42 a

Wood pellets 7 700 Tumuluru et al. (2012) 19 Tumuluru et al. (2012)

Torrefied wood chips 1.8 225 Tumuluru et al. (2015b) 20.62 a

Torrefied wood pellets 5 800 Tumuluru et al. (2012) 24 Tumuluru et al. (2012)

Cattle feedlot compost 4.95 750 Sweeten et al. (2006) 7.46 Sweeten et al. (2006)

Central Appalachian coal 7.2 800 Engineering ToolBox
(2018)

28.17 Tumuluru et al. (2012)

North Dakota lignite 27 750 Engineering ToolBox
(2018)

17.7 Tumuluru et al. (2012)

Diesel fuelb 0.02 832 DieselNet (2018) 43.1 DieselNet (2018)

aIndicates the values were calculated.
bRelated to the reference diesel fuel (BDf and SEf).
All energy values presented are based on calorific values (higher heating values, HHVs).

following the two steps: i) converting properties from the reference
to bone dry moisture content (Eq. 1) and ii) obtaining the desired
property through conversion from the bone dry to the desired
moisture content (Eq. 2).

In such calculations, a simple linear variation of the properties
with moisture was assumed without considering biomass’s volume
swell/shrinkage due to moisture variation. The logic followed in the
calculation was that the bone dry matter bulk density is considered
directly proportional and the specific energy is considered inversely
proportional to the dry matter component of biomass (1−MCref)
(Boundy et al., 2011) as expressed in the following relationship:

BDdry = BDref × (1−MCref) ; SEdry =
SEref

(1−MCref)
, (1)

where BDdry is the bone dry bulk density (kg/m3), BDref is the
reference bulk density (kg/m3), MCref is the reference moisture
content (w.b., decimal), SEdry is the bone dry specific energy
(MJ/kg), and SEref is the reference specific energy (MJ/kg). Then,
thesematerial properties at the required newmoisture content using
Eq. 1 are calculated as

BDbio =
BDdry

(1−MC)
; SEbio = SEdry × (1−MC) , (2)

where BDbio is the biomass feedstock bulk density at the new
moisture content (kg/m3), MC is the new moisture content (w.b.,
decimal), and SEbio is the specific energy of the biomass feedstock at
MC (MJ/kg). From Eq. 2, the effect of moisture content on biomass
feedstocks can be observed as the higher moisture contents result in
higher mass densities and lower specific energies.

Biomass feedstock properties (Table 1) remain unchanged for
the calculations with eachmode of transportation. For each biomass
feedstock, the energy in the feedstock was compared to the energy
of the conventional fuel required to transport the biomass feedstock.
The BTD is unique for each biomass feedstock andmust incorporate
the volume and mass limitations, as outlined previously, for each
mode of transportation. The energy content of the transported
biomass feedstock is calculated as

Ebio =min(V×BDbio,PL) × SEbio, (3)

whereEbio is the energy content of the biomass feedstock transported
(MJ),V is the volume limit of the transportation mode (m3), and PL
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is the legal payload limit (kg). Eq. 3 appropriately selects the right
quantity of biomass feedstock transported based on existing volume
or mass limitations.

2.3 Derivation of BTDs for different
transportation modes

The bulk densities and specific energies of the considered
biomass feedstocks (BDbio and SEbio, respectively) and those of the
transportation diesel fuel (BDf and SEf, respectively) were used
to derive the energy required and BTDs of the selected modes
of transport. Characteristic to the particular transport, different
units were employed for the parameters (e.g., km/L for truck fuel
consumption). Each mode of transport has a payload limit, and
even though more mass can be transported in the available volume,
this payload limit comes into effect based on the biomass feedstock
transported. In this study, we have selected the truck and ship
configurations that are commonly used for biomass transport. The
focus of this research is to derive equations and understand BTD for
various modes of transport. Although different units were employed
for different parameters, the units of transport energy and BTDs
were evaluated as “MJ” and “km,” respectively, for consistency.
An alternative way of deriving the BTD, while showing the units,
involved is presented in Supplementary Section S1.

2.3.1 Truck transport
Many types, makes, and models of tractor-drawn trucks are

used to transport goods. In general, the road type, areas, and
weather have a great impact on fuel economics. The study
conducted by Anttila et al. (2022) evaluated fuel consumption
and CO2 emissions for 13 typical log trucks under operating
conditions in Finland. These authors modeled the effects of season,
transportation distance, mass, vehicle and road properties, and
weather conditions on fuel consumption. They found that the fuel
consumption and emissions of 68,000–76,000-kg trucks were at
the same level per ton-kilometer and concluded that the highest
fuel consumption was measured in January and the lowest in
July. In the present study, we have used trucks with specific
dimensions that are very commonly used for the transportation
of various goods and meet the US Department of Transportation
(DOT) payload requirements (Truckers Report Jobs, 2018). While
considering specific fuel consumption efficiency, the impact of road
types, geographical locations, and weather on fuel consumption is
not considered in this initial study.

We have, in this study, selected the truck and ship configurations
that are commonly used for biomass feedstock transport. There
are seven main types of trucks, namely, semi-trailers, flatbeds,
step decks, dry vans, reefers, box trucks, and tankers, used for
transporting different types of cargo (https://drstrucks.com/7-
common-types-of-freight-trucks-what-they-haul/). Flatbeds are
commonly used for transporting biomass bales, but trailers with
hopper bottoms can also be used for biomass transport. In the case
of densified biomass such as pellets, we expect that these hopper
bottom trailers can be more efficient for transport and unloading.

In the present study, a common wedge trailer with dimensions
similar to a flatbed trailer in length (1.46 m or 48 feet) with DOT
payload limit was considered for analysis. For this analysis, the

volume of a tractor-drawn truck was set at 101 m3. This is consistent
with the average trailer dimensions for a 14.6-m wedge trailer
(Mode Transportation, 2018). In the present study, we have assumed
that the truck’s fuel consumption was 2.76 km/L when fully loaded
with amaximumpayload of 22,500 kg (Davis et al., 2014), where the
gross vehicle weight is in the range of 14,969 to 36,287 kg. In general,
a heavier truck encounters a greater rolling friction, but the truck
is more profitable when cargo capacity is high; hence, the weight of
the vehicle is critical. Franzese and Davidson (2011) investigated the
relationship between the weight of the vehicle and the fuel efficiency
and found that fuel efficiency decreases with an increase in the
vehicle weight. For vehicle weight in the range of 9,072–22,680 kg,
the fuel efficiency is approximately 4.04 km/L, whereas increasing
the vehicle weight from 22,680 kg to 36,287 kg, the fuel efficiency
decreases from 3.66 km/L to 3.36 km/L.

Therefore, in this study, the equipment weight of the trailer
was assumed to be 13,787 kg, which makes the payload limit of
22,500 kg according to the US DOT limit of 36,287 kg combined
weight for tractor-drawn trucks (Truckers Report Jobs, 2018).
Using this information, the energy required for truck transport is
derived as

Etruck =
D× SEf ×BDf

ηt × 1000
, (4)

where Etruck is the energy consumed in truck transportation using
conventional fuel (MJ),D is the transported distance (km), SEf is the
specific energy of the diesel fuel (MJ/kg), BDf is the bulk density of
the diesel fuel (kg/m3), ηt is the fuel efficiency of the truck (km/L),
and 1000 is the conversion factor involved in the fuel volume in L
and m3 to have the Etruck unit as MJ.

Equating both the biomass feedstock and diesel fuel energies
(Eqs 3, 4) and solving for D derive the BTD for truck transport of
biomass feedstocks, BTDtruck (km), as

BTDtruck =
min(V×BDbio,PL) × SEbio × ηt × 1000

SEf ×BDf
. (5)

The payload limit (22,500 kg) is critical in road transport. The
mass of material that can be fitted in the truck volume can easily
exceed the payload limit. So most often the mass of material
transported by the truck is restricted by this limit, which also makes
the truck transport a “full-capacity” operation.

2.3.2 Rail transport
For rail transport, it was assumed that each railcar can carry

104,780 kg and has a volume capacity of 70.8 m3 (CFCL Co, 2018).
The 2014 reported fuel efficiency of 186,284 kg km/L is used to
calculate the diesel fuel consumption (CSX Corporation, 2018).This
large value is a result of large quantities of freight moved over
large distances, and rail transport is mass-limited. Rail transport
can use as little as 5 gal/h and up to 200 gal/h depending on the
grade they are traveling on, the weight of items being transported,
wind speed and direction, and how many engines are being used
to pull the load. The efficiency reported by Chessie Seaboard
Consolidated (CSX) Corporation is given in units of kg km/L as
the systemwide network distances and mass of material moved
are available (CSX Corporation, 2018). The energy required for
transporting biomass feedstocks using rail is expressed as

Erail =
D× SEf ×BDf ×min(V×BDbio,PL)

ηr × 1000
, (6)
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where Erail is the energy consumed in rail transport using
conventional fuel (MJ) and ηr is the fuel efficiency of the rail
transport (kg km/L). As done previously, equating the biomass
feedstocks and rail energies (Eqs 3, 6) and solving for the
distance D derive the BTD of rail transport of biomass feedstock,
BTDrail (km), as

BTDrail =
SEbio × ηr × 1000

SEf ×BDf
. (7)

It should be noted that the BTD equation for rail transport does
not have the same form as the BTD equation for truck and ship
transport. The reason for this is the difference in the fuel efficiency
of rail transport and its units (ηr).

The term “min(V×BDbio,PL)” in the energy equation for
rail transport (Eq. 6) will subsequently cancel out when Erail is
substituted by equivalent energy of biomass feedstock transported
by railcar Ebio, as shown in Eq. 3. Furthermore, ηr contains the
mass component. The same treatment is not considered for truck
transport in this work because i) the reported truck fuel efficiency
is in the units of “km/L” and ii) the fluctuation in fuel efficiency
for a semi-truck loaded with low-bulk-density material (e.g., corn
stover bales at 10% w.b. with bulk density = 166 kg/m3) vs. high-
bulk-density material (e.g., torrefied wood pellets with bulk density
= 800 kg/m3) is negligible. It should be noted that railcars can carry
a heavy load limit of 104,780 kg, based on the volume limitations
and low bulk densities of materials, and the payload transported is
always smaller than the mass-based load limit.

2.3.3 Ship transport
Ships were considered for transporting biomass feedstocks (bulk

material transport) across the sea or along a coastline. The fuel
efficiency and consumption of a ship depend on many stochastic
variables that are impossible to state with exact precision. Such
variables are wind speed, current flow, and parasitic drag, among
others. Simplifying assumptions were made for this analysis that
made the problem tractable; however, amore detailed future analysis
can be very beneficial for a better understanding of the actual fuel
usage for this mode of transportation.

In general, bulk products such as wood pellets from North
America are transported to Europe using Panamax class ship (Portz,
2016). The ship has a fuel consumption (ηs) of 1,500 kg/h (36 t/d)
at a vessel velocity of 27.78 km/h (15 knots) (Goulielmos, 2021).
The study concluded that by increasing the speed of a Panamax
ship from 11 to 15 knots (36.4% increase in speed), the fuel
consumption has increased by 157% (from 14 to 36 t/d). According
to the American Association of Port Authorities (AAPA, 2009),
the physical dimensions of Panamax vessels are, in general, 294 m
long, 32 m beam (vessel width that is critical to passing through the
Panama Canal), and 12 m draft (vessel submerged depth).

According to the Soy Transportation Coalition (STC, 2023), the
Panamax vessel has a deadweight of 55,000–80,000 metric tons,
seven cargo holds, and each holds 300,000 bushels of soybean.
However, the cargo intake of Panamax is usually restricted to
52,500 metric tons on the Panama Canal draft (Loyd’s Register,
2023). The bulk density of four cultivars of soybean ranged
from 691 kg/m3 to 739 kg/m3, with a moisture content range of
0.12–0.32 (d.b.) (Hauth et al., 2018). From these data, the mass
of soybean transported in the seven cargo holds is 57,152,550 kg

(300,000 bushel/hold × 27.2155 kg/bushel × 7 holds), and the range
of volume available to transport the bulk material of equivalent
mass, based on soybean bulk densities range (Hauth et al., 2018), is
77,338–82,710 m3, with an average volume of 80,024 m3. However,
based simply on the physical dimensions of the vessel (AAPA, 2009),
the vessel volume is 121,896 m3, and the cargo volume available for
transporting bulk material should be less. This is to accommodate
the vessel’s structural and functional components, members, fuel
storage, and other crew amenities.

In this study, this Panamax class ship was considered for the bulk
transport of selected biomass feedstock’s BTD calculation with the
aforementioned data.

Eship =
D× ηs × SEf

v
, (8)

where Eship is the energy consumed in ship transportation using
conventional fuel (MJ), ηs is the fuel consumption of the ship (kg/h),
and v is the velocity of ship transport (km/h). Similarly, using the
component equations (Eqs 3, 8) and solving for the BTD of ship
transport, BTDship (km) is evaluated as

BTDship =
min(V×BDbio,PL) × SEbio × v

ηs × SEf
. (9)

It should be noted that ships have large volumes, but with
an allowed payload limit of 67.5 × 106 kg, several materials
could exceed this limit, and more often this payload limit will
become the allowable mass transported. This also means that ships
and trucks are most often operated at full payload capacities,
unlike railcars.

2.4 Fuel efficiency data

The fuel efficiency and consumption values considered for each
mode of transportation in the analysis along with their sources
are provided in Table 2. The fuel efficiency data taken in the study
incorporate the vehicle weight, air drag, and rolling friction for
trucks and rails, or skin friction for ship transport. The rolling
friction between asphalt and rubber was significantly higher than
that for steel on steel; thus, rail transport gained efficiency by lower
steady-state resistances and not stopping for long stretches. Larger
rail freight capacities operate for a much longer stretch without
stopping, improving fuel efficiency and making the rail transport
of the cargo more efficient. These factors were considered when
taking the fuel consumption of the transportation modes tested in
this study.

2.5 Limiting transportation factors

The common modes of biomass feedstock transport are ship,
train, truck, barge, ocean carrier, or a combination of various
transportation modes. For example, when transporting biomass
feedstocks over land, railroads tend to offer a lower cost per ton-
mile, can handle large volumes, and can be themost environmentally
responsible transportation mode. Exporting biomass feedstocks
requires more than one shipping mode. Oftentimes, railroads will
ship these products to ports where they are loaded onto ocean

Frontiers in Energy Research 06 frontiersin.org109

https://doi.org/10.3389/fenrg.2024.1347581
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Tumuluru et al. 10.3389/fenrg.2024.1347581

TABLE 2 Assumptions for each mode of transportation considered in this study and transport limitations for selected feedstocks.

Transportation
mode

Parameter Value Reference Example
material
transporteda

Potential
mass

transported
[kg]b

Transport
limitationc

Bulk
density
limit
[kg/m3]d

Truck

Fuel efficiency 2.76 [km/L] Davis et al. (2014) Corn stover
bales (10% w.b.;
166 kg/m3)

16,766 Volume-limited

223

Payload limit 22,500 [kg]e Truckers Report Jobs
(2018)

Wood chips
(50% w.b.;
320 kg/m3)

32,320 Mass-limited

Volume 101 [m3] Mode Transportation
(2018)

Wood pellets
(7% w.b.;
700 kg/m3)

70,700 Mass-limited

Trailer
type—wedge

6.1 [m] Mode Transportation
(2018)

Central
Appalachian
coal (7.2% w.b.;
800 kg/m3)

80,800 Mass-limited

Rail

Fuel efficiency 186,284 [kg km/L] CSX Corporation
(2018)

Corn stover
bales (10% w.b.;
166 kg/m3)

11,753 Volume-limited

1,480

Payload limit 104,780 [kg]e CFCL Co. (2018) Wood chips
(50% w.b.;
320 kg/m3)

22,656 Volume-limited

Volume per car 70.8 [m3] CFCL Co. (2018) Wood pellets
(7% w.b.;
700 kg/m3)

49,560 Volume-limited

Central
Appalachian
coal (7.2% w.b.;
800 kg/m3)

56,640 Volume-limited

Ship (Panamax)

Speed 27.78 [km/h] Goulielmos (2021) Corn stover
bales (10% w.b.;
166 kg/m3)

13,283,951 Volume-limited

656

Payload limit 52,500,000 [kg] Loyd’s Register
(2023)

Wood chips
(50% w.b.;
320 kg/m3)

25,607,616 Volume-limited

Volume total
holds

80,024 [m3]e STC (2023) Wood pellets
(7% w.b.;
700 kg/m3)

56,016,660 Mass-limited

Vessel volume 121,896 [m3] AAPA (2009) Central
Appalachian
coal (7.2% w.b.;
800 kg/m3)

64,019,040 Mass-limited

aRefer Table 1 for details on the example materials.
bPotential mass transported [kg] = volume of transport [m3] × bulk density of example material [kg/m3].
cTransport limitation obtained by comparing the payload allowedd and potential mass transportedb

dVolume of total seven holds of bulk transport Panamax calculated based on soybean transportation and soybean average bulk density [m3].
eBulk density limit [kg/m3] was derived from the ratio of the assumed values of payload [kg] and volume [m3] parameters.

carriers for transport overseas. For example, wood pellets from the
production site are transported to shipping terminals by rail and
further transported to various domestic and international markets
by ships (Searcy et al., 2014). The location of the biorefinery has a
great impact on the supply chain logistics. Some of the biorefineries
that use agricultural residues which are low in bulk density and

specific energy are close to biomass production areas to reduce
transportation costs, whereas some of the biomass feedstocks such
as pellets which are high in bulk density and specific energy are
not close to biomass production areas, but the higher bulk density
and specific energy make them economical to transport to longer
distances by truck, ship, or rail.
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Volume and mass legal restrictions influence the transportation
logistics. When the available transport volume is completely filled
with feedstock and the weight limit has been reached or exceeded,
then the transportation is said to be mass-limited, and the mass
transported must be reduced. Conversely, when the available
transport volume is completely filled with feedstock and the mass
limit has not been exceeded, then the transportation is volume-
limited as there is no room for more material despite the payload
limit allowing to carry more. Therefore, in general, mass-limited
transport (fully utilized) has greater potential for payload transfer,
as it utilizes the maximum allowed payload, than volume-limited
transport (underutilized).

The type of transport limitation is predominantly influenced
by the bulk density of the transported material because the
volume available and the allowed payloads are typically fixed
for each type of transport. Thus, any biomass feedstock bulk
density smaller than these limits will make the transport volume-
limited and greater than these limits will make it mass-limited.
It can be seen that a transport mode can be both mass- and
volume-limited based on the biomass feedstocks transported, as
illustrated by truck and shipmodes presented in Table 2.Thederived
“bulk density limit” of the material transported from the payload
allowed and volume data available as 223, 1,480, and 656 kg/m3

for truck, rail, and ship, respectively, can be used to readily
identify the type of transport limitations given the bulk density
of a biomass feedstock. Therefore, based on the rail bulk density
limit of 1,480 kg/m3, which is greater than any biomass feedstock’s
bulk density (Table 1), the rail transport will always be volume-
limited (underutilized), while the truck and ship will be mass-
limited for biomass feedstocks having moderate or higher densities
(e.g., ≤410 kg/m3).

3 Results and discussion

3.1 Evaluated BTDs for the three modes of
transportation

From the evaluated BTDs using Eqs 5, 7, 9 (example BTD
calculations are shown in Supplementary Section S2), the ship was
by far the most energy-efficient, despite being mass-limited for
dense biomass feedstocks, with the largest BTDs (approximately
two orders of magnitude difference) among transportation modes
considered (Figure 1). This might be counterintuitive due to the
large size of cargo used in ship transport (Table 3). The energy
efficiency of ship transport was due to the freight capacity and the
extended time taken for the trip. Ship transport takes significantly
longer time than truck or rail, during which biomass feedstocks may
degrade, and this time effect was not considered in the analysis. The
results also show that rail transport was more efficient than trucks
from the BTD standpoint.

Biomass feedstock properties, such as specific energy and bulk
density, affect the BTD to a varying extent (Figure 1). Among all
the transportation modes, the specific energy showed the obvious
trend of direct variation with the BTD. However, the increased bulk
density of the biomass feedstocks only contributed positively to the
BTD in the initial range for truck (approximately ≤223 kg/m3) and
ship (approximately ≤656 kg/m3) as these transports are both mass-

and volume-limited depending on the bulk density of the biomass
feedstock being transported. Rail transport, however, being only
volume-limited, the BTD is not affected by bulk densities (Figure 1).
This can also be seen from the unit of “kg km/L” for rail transport
efficiency. The figure for rail transport shows no dependence on
bulk density for BTD. This goes back to the explanation given
previously that the BTD for rail transport does not depend on
payload mass due to the mass being included in the efficiency
term. Based on Eq. 7, only specific energy will affect the BTD for
rail transport.

3.2 Bulk density and specific energy impact
on BTD

The surface plot of bulk density to specific energy and its impact
on the BTD of the truck indicated that with an increase in the bulk
density of the biomass feedstock up to 300 kg/m3, the BTD is higher,
whereas further increasing the bulk density does not affect the BTD.
On the other hand, increasing the specific energy increases the BTD
at different bulk densities of the biomass feedstocks. In the case of rail
transport, which is volume-limited, the bulk density does not impact
the BTD, but the specific energy significantly impacts the BTD. The
results for ship transport indicated that both bulk densities and
specific energies significantly impact the BTDof biomass feedstocks,
where increased bulk densities and specific energy increased the
BTD transportation of the material.

The BTD profiles and patterns of the different biomass
feedstocks and fossil fuels in the three modes of transportation
show that truck and rail BTD profiles were similar, but these
were different from the BTD profiles for ship, as shown in
Figure 2. These BTD profiles clearly show the scale (how the three
transportation modes compare among themselves—showing the
dominance of ship) and the pattern (how studied biomass feedstocks
compare with others—similarity between truck and rail) with each
transportation mode.

On average, the rail can transport approximately 3 times
farther and the ship can transport approximately 10 times farther
than the truck. Compared to trucks, the larger rail freight
capacities and their operation for a much longer stretch without
stopping contribute to their efficiency. Given that the “start-
up” after each “stop” was the most energy-intensive part of
any transport and building momentum also consumed energy,
rail transport reduced these energy losses better than trucks.
However, maintaining momentum was much less energy-intensive
and only involved overcoming the steady-state resistances. These
include air drag and rolling friction for trucks and rails, or
skin friction for ship transport. It follows the intuition that
rolling friction between asphalt and rubber was significantly
higher than that for steel on steel; thus, rail transport gained
efficiency by lower steady-state resistances and not stopping for
long stretches.

Given the results and overall ranking of the BTD of different
biomass feedstocks and their properties (Figure 2; Table 2), the
efficient transportation between the start and end destinations
should be a combination of modes of transportation based on
feasibility (geographical and existing transportation network). It
makes sense that rail transport is not ideal for only a few

Frontiers in Energy Research 08 frontiersin.org111

https://doi.org/10.3389/fenrg.2024.1347581
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Tumuluru et al. 10.3389/fenrg.2024.1347581

FIGURE 1
Overall trend of BTDs of biomass feedstocks and fossil fuels tested as a function of specific energy and bulk densities for all three modes of
transportation. Note that the scales of y-axis are different.

miles of transport. It should be realized that with the ship,
and sometimes with the rails, truck transport may be added to
deliver the biomass feedstocks to the biorefinery. Future analysis is
needed to optimize the transportation methods by integrating the
three modes of transportation based on their availability and the
distance the biomass feedstocks is transported involving the existing
transportation network.

3.3 Moisture impact on BTD

In order to quantify the effect of changing moisture of
biomass feedstocks on the BTDs (Figure 3), the case of corn
stover bales between 10% and 50% w.b. moisture contents was
considered (Table 1). The corn stover bales data were further
analyzed to understand the impact of moisture on BTD using
trucks, rail, and ships. Figure 3 shows how the BTD changes
with the moisture content for the corn stover bales in the
moisture content range of 10–50% w.b. The changes in the
bulk density (BDbio) and specific energy (SEbio) in the corn
stover bales were calculated based on Eqs 1, 2. These equations

calculate the bulk density and specific energy based on simple
linear variation with respect to moisture content but do not
consider the biomass’s volume swell/shrinkage due to moisture
variation. It is clear from Table 1 that the bulk density of the
corn stover biomass increases with an increase in the moisture
content, whereas the specific energy decreases. These changes in
the bulk density and specific energy with moisture (considered in
the calculation) have impacted the BTD of the corn stover bales
(Figure 3).

From the results, it is very clear that for the ship, which is
volume-limited, the BTD increases with an increase in the moisture
content of up to 30% w.b. (an increase of approximately 26%),
whereas further increasing the corn stover bale moisture content
to 50% w.b. decreases the BTD values (a decrease of approximately
9.8% from the moisture content of 30–50% w.b.). Regarding rail,
which is volume-limited, the BTD decreases by approximately 45%
with an increase in the corn stover bale moisture content from
10 to 50% w.b. For truck transportation, which is mass-limited,
the increase in the corn stover bale moisture content from 10 to
40% w.b. increases the BTD values from 20,866 to 21,780 km (4.3%
increase), and further increasing the corn stover bale moisture
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TABLE 3 BTDs of the bio-based and fossil fuels tested for each mode of transportation at their reference capacity limits and moisture contentsa.

Materiala Truck [1×104 km] Rail [1×104 km] Ship [1×104 km]

Wood chips-12% 3.20 9.60 16.84

Wood chips-50% 1.82 5.45 11.55

Corn stover bales-10% 2.09 8.40 9.23

Corn stover bales-20% 2.32 7.47 10.28

Corn stover bales-30% 2.18 6.53 11.68

Corn stover bales-50% 1.56 4.67 10.53

Corn stover briquettes 2.83 8.48 27.46

Wood briquettes 3.05 9.16 25.60

Corn stover pellets-6% 2.95 8.84 37.75

Corn stover pellets-26% 2.32 6.97 24.00

Wood pellets 3.29 9.87 42.86

Torrefied wood chips 3.57 10.71 15.95

Torrefied wood pellets 4.16 12.47 54.14

Cattle feedlot compost 1.29 3.88 16.83

Central Appalachian coal 4.88 14.63 63.55

North Dakota lignite 3.07 9.19 39.93

Diesel fuel 7.46 22.39 97.23

aThe moisture contents of these materials expressed in wet basis and are the same as presented in Table 1.

content to 50% w.b. decreases the BTD values to approximately
15,556 km [a decrease of approximately 28% compared to BTD
values at 10% w.b. moisture content]. The BTD data calculated
with respect to moisture should be further cross-validated with the
actual bulk and specific energy of the corn stover bales at different
moisture contents.

Since trucks and ships were influenced by bothmass and volume
limitations, with moisture content affecting these, an optimum
moisture content might exist for efficient biomass feedstock
transport. For these modes with corn stover, when the moisture
is too low, the transport is volume-limited, and the total material
transported is lower than the full payload capacity. When the
moisture is too high, the transport is mass-limited for truck
and ship transport, where the material transported is lower than
the full volume capacity of the transportation mode. Overall,
efficient transportation occurs when the mass- and volume-limited
transportation modes coincide, maximizing the amount of material
that is being transported.

Rail transport is impacted by moisture due to the inclusion of
mass in the efficiency (units: kg km/L) as high moisture increases
the overall mass and reduces the net dry matter transported and
the biomass feedstock energy content. Thus, the rail transport
being volume-limited, a specified volume of biomass feedstock will

represent a certain mass and its corresponding BTD, based on the
nature of the biomass feedstock, irrespective of the bulk density.
By increasing the moisture of the biomass feedstock, the specific
energy (SEbio) is reduced (Table 1), which eventually reduces the fuel
efficiency of rail transport (ηr). According to Eq. 7, the BTD or rail
decreases linearly with decreased rail transport efficiency.

As observed with corn stover bales (Figure 3), similar results
for other biomass feedstocks with moisture variation can be
expected. The corn stover bale moisture content and BTD were
further modeled, which can help predict the BTD values of
corn stover bales in the moisture content range of 10–50% w.b.
The fitted polynomial models (Table 4) have adequately described
(R2 ≥ 0.92) the BTD with the three transportation modes as a
function of moisture content. These models can be useful in
calculating the BTD of the corn stover, most abundant agricultural
feedstock, at commonly occurring moisture contents of this
feedstock.

3.4 Limiting transportation factors

The limiting factors for each combination of moisture, biomass
feedstock, and transportation method influence the logistics
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FIGURE 2
BTD (km) profiles of various biomass feedstocks and fossil fuels showing the scale and pattern among the modes of transportation. The numbers after
the biomass feedstocks indicate moisture content in % w.b. In the scale, 100% corresponds to the maximum distance of 63.6 × 104 km, and 25%
corresponds to 15.9 × 104 km.

FIGURE 3
Effect of the moisture content of corn stover bales on BTD of different modes of transportation.

decision (Figure 4). For example, corn stover bales are volume-
limited for moisture contents less than 20% w.b., whereas above
this moisture content for truck transport, the transportation is
mass-limited. Torrefied wood chips, however, are mass-limited for

truck transport and volume-limited for ship and rail transport.
All feedstocks considered were volume-limited for rail transport.
This was because of the large payload limits on railcars. In the
case of commercial wood pellets and torrefied wood pellets, both
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TABLE 4 Models for BTD for corn stover bales with varying moisture contents.

Mode of transportation Model Model’s R2

Truck BTD (km) y = 13965+ 9002.7x–2148.2x2 0.99

Rail BTD (km) y = 86344–482.6x–2329.9x2 0.99

Ship BTD (km) y = 67629+ 32702x− 5487.8x2 0.86

Note: y is the BTD in km, and x is the moisture content in percent w.b. ranging between 10 and 50.

FIGURE 4
Mass-limited or volume-limited transport for the combinations of biomass feedstocks and fossil fuels and transportation modes. Lowered bars/tiles are
mass-limited, and tall bars are volume-limited.

the truck and ship are mass-limited, whereas the rail is volume-
limited. Fossil fuels such as different coals (Central Appalachian
coal and North Dakota lignite) and diesel fuel also have similar
trends like commercial and torrefied wood pellets. For instance, a
railcar can carrymaterials with a bulk density of up to approximately
1,500 kg/m3, and no biomass feedstocks will reach this density and
thus represent the underutilization of rail transport. For volume-
limited transport, any pretreatment (e.g., torrefaction) resulting
in higher densities will increase the BTD, representing a logistic
opportunity. The underutilized transportation space needs to be
optimized for better logistics advantage.

3.5 Truck transport analysis of the biomass
feedstocks in the US

Biomass feedstock is typically grown in regions with low
population densities. These regions can be far from the refineries or
power plants. A comparison of the BTDs of truck transport for a
truck filled to its allowable limit using various biomass feedstocks
within the perimeter of the US was performed. This analysis was
useful for understanding the feasibility of transporting various

biomass feedstocks to the stakeholder’s processing facility locally
within a state or transported interstate (Figure 5). For this analysis,
the US perimeter was considered 14,452 km (Beaver, 2018), which is
the approximate coastline of the 48 contiguous US states excluding
Alaska and Hawaii. The results present the BTD pattern for 1 US
ton as well as a whole truckload of bio-based fuels considered in
terms of direct distance (km) andUS perimeter to allow for easy unit
mass (1 US ton and whole truckload) comparison. Interestingly, the
BTD pattern was different for cases of the volume-limited biomass
feedstocks, such as corn stover bales-10% w.b. and -20% w.b. (low
bulk density materials), compared to a similar pattern (Figure 5)
otherwise for mass-limited transport.

Among the biomass feedstocks considered, the torrefied pellets
had the highest BTD and therefore can be transported around
the US perimeter the most, namely, 2.88 times. This was mainly
due to the relatively high specific energy and high bulk density of
torrefied pellets. As bales, pellets, and briquettes have nearly the
same specific energies, the driving factor in their comparison was
the bulk density. Feedlot compost has the lowest specific energy
and was mass-limited for trucks as shown previously (Figure 4).
Even with these considerations, feedlot compost can be transported
approximately 0.9 times around theUS perimeter before reaching its
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FIGURE 5
BTDs for transporting biomass feedstocks and fossil fuels with trucks, both for 1 metric ton of biomass feedstock and diesel and for whole truck
transport. Changes in profile shapes are marked with an arrow due to volume-limited transportation.

BTD. This means that the feedlot compost originating in the Central
US can be transported anywhere in the US and still have a net
calorific value.

Overall, for the biomass feedstocks considered (14), excluding
coal, the equivalent US perimeter transport distance varies from 0.9
to 2.88 times (Figure 5). This conceptual result also demonstrates
that interstate biomass feedstock transport is highly practical based
on the BTDs as interstate distances are significantly lower than the
US perimeter. Thus, biomass-derived bio-based fuels in loose and
all densified forms considered could be transported practically to all
48 contiguous US states. Furthermore, the location of biorefineries
can be optimized to minimize the hauling distances, resulting in
increased net energy in logistics. Regardless of the location of
the biorefinery, interstate truck transport, as a single mode of
transportation based on net energy in the biomass feedstock, was
found not to be a limiting factor.

In the present study, the estimated BTDs presented for
various biomass feedstocks and fossil fuels were based on inroad
transportation logistics only. The inclusion of other energies of
related biomass harvesting, preprocessing, and pretreatments

like baling, densification, torrefaction, storage, handling, and
biofuel conversion will make the analysis more comprehensive
and reflective of the whole supply chain. The results of the
present study may not provide rational upper bounds on the
distances that biomass feedstocks may be economically transported;
however, these data should help in making informed decisions
as transportation economics are directly influenced by BTDs.
In addition, the results should help identify limitations on
biomass feedstock transport, leading to biomass utilization
feasibility.

Based on this research, it can be concluded that each biomass
feedstock has an optimum bulk density for transportation. If
the biomass feedstock is dried too much (less bulk density), the
transportation is volume-limited, and when the material is too
wet (higher bulk density), the transportation is mass-limited.
Mass-limited transportation, satisfying the payload limitation,
is the most efficient mode. Therefore, the material should be
processed (e.g., densification) so as to make the transportation
mass-limited, whereas the volume-limited transportation represents
underutilization of the allowable payload. Thoreson et al. (2014)
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suggested that bulk densities of approximately 270–370 kg/m3

are necessary to fill the truck full to its load capacity. The
conventional pelleting process which produces pellets with
densities of approximately 650–700 kg/m3 may not be the
right technology to transport pelleted biomass using trucks.
Although it reduces the transportation cost, it may not offset the
pelleting costs incurred during the conventional pelleting process
(Schill, 2014).

To overcome these limitations, novel energy-efficient biomass
preprocessing and pretreatment technologies should be developed
to reduce the preprocessing cost and make transportation more
energy-efficient. Tumuluru (2023) recently tested high-moisture
pelleting at pilot and commercial scales on corn stover bales and
found that the process reduces the pelleting production energy by
approximately 70% compared to conventional technology followed
by the industry but can help produce pellets which can meet
the transportation requirements by trucks. This will coincide with
the concept of minimum energy required to dry the material in
preparation for transport. Furthermore, the thermal pretreatment
technologies, such as torrefaction, pyrolysis, and gasification, which
make bio-based fuels high in specific energy, can help improve
transportation efficiencies. Future research should consider the
optimum moisture and density the raw biomass material should
have and incorporate factors such as material degradation and
storage time requirements.

Knowledge and understanding of the transportation BTD of
various biomass feedstocks help plan the layout of the biorefineries
to increase sustainability and optimize the cost of transportation
during their design phase. The BTD analysis provided in this paper
can help the policymakers understand how the energy content in
the biomass and transportation BTD calculation can be factored
into the net-zero emissions in the complete supply chain analysis.
The BTD of various biomass feedstocks can help plan the carbon
debt that can be incurred by the transportation of biomass-based
material from managed forests, cropland, and other preprocessing
satellite locations.

3.6 Future research opportunities

To make better sense of the truck-based BTD results, they
have to be overlaid on the existing road network, and this may
constitute another practical future study. Likewise, rail transport
should be evaluated on the existing railway infrastructure.
Combining modes of transportation will provide a more accurate
transportation profile that can then be optimized. Future studies
should include the energy required for preparing the biomass
materials, including processes such as harvesting, drying, chipping,
grinding, densification, torrefaction, and other preprocessing
and pretreatment technologies that are used to make the
biomass into a ready-to-convert feedstock for bio-based fuels
and biopower generation. Future studies on BTD calculations
should also be focused on the material losses due to material
degradation, and combining the different modes of transport
can help maximize the distance transported with minimum
energy. Furthermore, the impact of fuel efficiency of trucks as

well as specific road conditions, weather, and truck size should
be evaluated in the future. Studies related to how trucks and ships
with varying sizes and efficiencies impact the BTD can be part of
future studies.

In this initial study, we have designed the framework for
understanding the transportation BTD of various biomass
feedstocks. It is believed that the introduction of the concept
and understanding of BTD, developed in this study, serves the
purpose of the initial outcome. Future analysis should include
how biomass preprocessing and pretreatment technologies impact
the transportation BTD and sensitivity analysis of significantly
influencing factors. Regarding truck transport, specific types
of trucks (semi-trailers, flatbeds, step decks, dry vans, reefers,
box trucks, and tankers) will be best suited to a specific type
of biomass feedstock (e.g., loose crop residues, wood chips vs.
densified pellets, and briquettes), and a more complete analysis
of the combinations of truck and biomass feedstock types should be
considered for future research. Another aspect of practical interest
is the economics component; similar to BTD, a break-even cost can
be derived for the different biomass feedstocks. Such a logistical
economic analysis will eventually influence the decision on the
biomass feedstock selection, and the mode of transport should be
considered for future research. A full-scale sensitivity analysis that
incorporates inter-variable dependence, such as fuel properties and
fuel efficiency, needs to be performed to understand the sensitivity
of the various factors influencing the BTDs of various biomass
feedstocks.

4 Conclusion

The BTDs of 14 biomass feedstocks and three fossil fuels,
the distance at which the energy in these bio-based fuels equals
the energy in the conventional fuel used for transportation, were
evaluated for various modes of transport (truck, rail, and ship).
The various biomass feedstock properties (bulk density and specific
energy) and transporting parameters (fuel efficiency, payload
limits, volume, and velocity of transport) affected the BTD of the
biomass feedstocks and fossil fuels tested. Overall, the mass-limited
transportation is more efficient than the volume-limited mode.
From the fuel efficiency and the cargo volume available, the biomass
feedstocks’ bulk density limits from which the transportation
becomes efficient mass-limited are 223, 1,480, and 656 kg/m3 for
truck, rail, and ship, respectively. The torrefied wood pellets and the
Central Appalachian coal in solid fossil fuels had the highest BTDs,
whereas feedlot compost and corn stover bales with 50% w.b. had
the least BTDs for all modes of transportation. The results indicated
high bulk density and specific energy of biomass feedstocks, as
well as low moisture content, increased the BTD values. Polynomial
models for corn stover (most abundant agricultural feedstock)
bales have adequately described (0.86 ≤ R2 ≤ 0.99) the BTD as a
function of moisture content (10–50% w.b.) for all three modes of
transportation.

Ranking of the different transportation modes based on their
BTDs indicated that truckwas the least efficient, followed by rail, and
ship was the most efficient mode of transportation. On average, the
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rail gives 3.1 times and ship gives 8.4 times the BTD with respect to
the least efficient truck for values were 3.1 and 9.2 for all the biomass
feedstocks including the three fossil fuels. The US perimeter-based
logistical results indicate that interstate transport of various biomass
feedstocks was highly viable based on BTDs as the energy available
in a truckload of feedstock was sufficient to go around the perimeter
of the US for approximately 0.9–2.88 times for different biomass
feedstocks studied. Future studies might look into the effects of
overlaying the roadnetwork, road conditions, weather, varying truck
or ship sizes, material degradation, preprocessing energy, impact
of pretreatment technologies, optimum moisture, and sensitivity
analysis on fuel efficiency as well as economic considerations in the
BTD analysis.
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Nomenclature

BDbio Reference dry bulk density [kg/m3]

BDdry Bone dry bulk density [kg/m3]

BDref Reference dry bulk density [kg/m3]

BTD Break-even transportation distance [km]

BTDrail Break-even transportation distance of rail transport [km]

BTDship Break-even transportation distance of ship transport [km]

BTDtruck Break-even transportation distance of truck transport [km]

D Transported distance [km]

Ebio Energy content of biomass feedstock [MJ]

Erail Energy consumed in rail transport [MJ]

Eship Energy consumed in ship transport [MJ]

Etruck Energy consumed in truck transport [MJ]

MC Moisture content [%, w.b.]

MCref Reference moisture content [w.b. decimal]

PL Legal payload limit [kg]

SEbio Specific energy of biomass feedstock [MJ/kg]

SEdry Specific energy of bone dry biomass feedstock [MJ/kg]

SEf Specific energy of the diesel fuel [MJ/kg]

SEref Specific energy of reference biomass feedstock [MJ/kg]

v Velocity of ship transport [km/h]

V Volume limit of the transportation mode [m3]

Greek symbols

ηr Fuel efficiency of rail transport [kg km/L]

ηs Fuel efficiency of ship transport [kg/h]

ηt Fuel efficiency of truck transport [km/L]
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In the past decade, global sustainability efforts have increasingly focused on two
critical paradigms: achieving net zero emissions (NZE) and advancing the circular
economy (CE). This article provides a detailed examination of the challenges and
breakthroughs in harmonizing these approaches, drawing from a broad range of
academic discussions, technological innovations, policy developments, and
practical implementations. We identify specific obstacles, such as
technological limitations, policy inertia, and economic and social barriers, that
hinder progress towards NZE and CE. The paper then outlines targeted solutions,
including cutting-edge technologies like carbon capture and storage, policy
frameworks that incentivize sustainable practices, and examples of successful
circular economy models. Through a critical analysis of both the synergies and
tensions between NZE and CE, the article highlights the necessity for cross-
sector collaboration, robust policy support, and ongoing innovation to overcome
these challenges. Concluding with a forward-looking perspective, we emphasize
strategic pathways for integrated sustainability efforts, advocating for a multi-
faceted approach that combines technological advancement, policy reform, and
stakeholder engagement. By offering a more nuanced understanding of the
interplay between theoretical goals and practical realities, this revised abstract
aims to inspire action and foster a collective move towards a sustainable
global future.

KEYWORDS

net zero emissions, circular economy, sustainability, policy development,
socioeconomic impact

1 Introduction

In an epoch marked by accelerating ecological degradation and growing concerns
surrounding climate change, the entwined paradigms of net zero emissions (NZE) and the
Circular Economy (CE) have emerged as beacon concepts for global sustainable
transformation. Both of these frameworks, though distinct in their specifics, share a
profound interconnectedness rooted in the need to address our anthropogenic impacts
on the environment.

Net zero emissions, a term now echoing in international policy chambers and
boardrooms alike, encapsulates the aspiration to strike a balance, wherein
anthropogenic greenhouse gas outputs are neutralized by equivalent removals or offsets
(Davis et al., 2018; Rahman and Wahid, 2021). The momentum behind this target is not
solely driven by environmental urgency. As elucidated by numerous studies over the past
decade, this balance embodies multifaceted implications, spanning economic, social, and
geopolitical spheres (Rogelj et al., 2021). The daunting reality of sea-level rise, the increasing
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volatility of climate patterns, and the subsequent socio-economic
ramifications have reinforced the cruciality of this emission
equilibrium (Van Soest et al., 2021; Bergero et al., 2023).

Concurrently, the circular economy offers a profound shift from
the entrenched linear model that has long dominated our
production and consumption habits. Eschewing the traditional
“take, make, dispose” approach, the circular paradigm
emphasizes a regenerative design, underpinned by reduction,
reuse, and recycling. It challenges the very ethos of our
consumption-driven economies, urging a transition towards
systems that harmoniously coexist with ecological cycles and
prioritize resource efficiency (Naqvi et al., 2017; Mies and Gold,
2021; Corvellec et al., 2022; Dzhengiz et al., 2023; Munaro and
Tavares, 2023; Tunio et al., 2024).

Over the last 10 years, profound transformations have
punctuated the global sustainability landscape, offering a rich
tapestry of insights, challenges, and achievements. Examining this
decade allows us a deeper understanding of the pivotal shifts in both
perception and actions related to NZE and the CE. This examination
transcends pure academic analysis; it serves as a platform to assess
past milestones, discern challenges, and inform future approaches.

The primary objective of this article is to provide an exhaustive
exploration of the interconnected evolution of two paramount
sustainability paradigms that have dominated the last decade’s
discourse: NZE and the CE. By traversing through a diverse
landscape of academic literature, technological breakthroughs,
policy shifts, and tangible applications, we aim to elucidate the
fundamental principles of these paradigms, chronicle their historical
trajectory, critically assess the challenges and roadblocks they’ve
encountered, and undertake a comparative analysis of regional
adaptations and outcomes. Furthermore, we seek to unearth the
intricate dance of synergies and tensions between these two
paradigms, leveraging real-world case studies for in-depth
insights, and gauge their broader socio-economic reverberations
on the global stage.

The novelty of this article lies in its ambitious integrated
approach. While many analyses have delved deep into either
NZE or the CE, few have ambitiously attempted to meld the two
into a singular, coherent narrative. Our article embarks on this
interdisciplinary journey, marrying these seemingly distinct
paradigms to reveal their overlapping trajectories, mutual
reinforcements, and occasional areas of discord. Moreover, by
weaving theory with practicality, our narrative also bridges the
chasm between academic postulations and the gritty realities of
on-the-ground implementation, presenting a fresh and pragmatic
perspective on a decade’s worth of sustainability endeavors.

2 Literature review and critique

The multifaceted conversation surrounding NZE and the CE
over the last decade underscores the growing global emphasis on
sustainability. The literature has evolved from rudimentary
understandings to intricate discussions on feasibility,
mechanisms, challenges, and the interconnectedness of these
frameworks. The subsequent detailed exploration endeavors to
provide a comprehensive overview of the academic discussions
and their critiques.

2.1 Net zero emissions

A considerable part of the literature accentuates the urgency and
pathways to achieving net zero. Ürge-Vorsatz et al. (2020) reviewed
recent advances in key options and strategies for converting the
building sector to be climate neutral. Table 1 provides a
comprehensive literature review on the Net Zero Emissions
(NZE) concept from 2013 to 2024. It initiates with the
fundamental principles of NZE, highlighting the urgency due to
increasing carbon levels and foregrounding pivotal international
agreements such as the Paris Agreement. The table subsequently
delves into the Paris Agreement’s central role in advancing NZE,
accentuating the crucial merger of global politics with
environmental science. The technological routes to achieving
NZE are explored, emphasizing the significance of innovations
like renewable energy and carbon capture. Additionally, the
economic prospects and socio-political dimensions are
illuminated, indicating a potential surge in GDP growth and
accentuating the necessity for aligned global policies. The table
further scrutinizes the challenges and potential hindrances in the
NZE trajectory, advocating for a holistic approach. Concluding, the
literature review offers a forward-looking perspective, underlining
the essentiality of persistent research, novel technologies, and
synchronized international efforts.

2.2 Circular economy

Similarly, Table 2 provides a comprehensive literature review on
the Circular Economy (CE) from 2013 to 2024. It begins by
introducing CE’s foundational principles, advocating for a move
away from linear models. The table then delves into circular business
models, highlighting their benefits and challenges.

Key technological advancements supporting CE, such as innovative
recycling methods and bio-based materials, are discussed. The
economic impact of CE, including a potential 1.8% rise in global
GDP by 2045, and its socio-cultural implications are emphasized,
underscoring the role of education. The table also examines policy
frameworks, with a spotlight on the EuropeanUnion’s Action Plan, and
outlines global cooperative initiatives. Challenges, including
technological gaps and policy fragmentation, are addressed. The
review concludes by projecting future trends in CE, emphasizing
continuous innovation, collaboration, and adaptive policy-making.

2.3 Intersections

Table 3 explores the intersection of Net Zero Emissions (NZE)
and Circular Economy (CE).

They are vital environmental approaches in the 21st century.
While CE aids NZE by reducing waste, and lessening the need for
energy-intensive processes, challenges arise, like potential emission
increases and balancing renewables. Economically, CE benefits
support NZE, but transition costs may be problematic. Policies
promoting CE can accelerate NZE, though some CE practices
may conflict with NZE objectives. Case studies show industries
like fashion and cities using CE principles effectively
reduce emissions.
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TABLE 1 Literature review on net zero emissions (2013–2024).

Section Summary References

Introduction to the NZE
Concept

Foundational concepts of NZE introduced, with a focus on rising carbon levels and
upcoming international agreements like the Paris Agreement

De Jong et al. (2015); Anderson and Peters (2016);
Davis et al. (2018)

The Paris Agreement and the
Rise of NZE

Analysis of the Paris Agreement’s emphasis on NZE, examining the convergence of
international politics and environmental science during a pivotal climate moment

Anderson and Peters (2016); Anika et al. (2022);
Fankhauser et al. (2022)

Technological Avenues to
Achieve NZE

Overview of technological solutions, including renewables, carbon capture, and
storage, with a call for swift implementation

Rogelj et al. (2015); Meys et al. (2021); Zhao et al.
(2022)

Economic and Socio-Political
Dimensions

Investigation into NZE indicates a potential 2.5% GDP growth by 2050, addressing
economic concerns and emphasizing socio-political challenges with
recommendations for global policy alignment

Geels et al. (2016); Geels (2018); Fankhauser et al.
(2022)

Challenges and Potential
Setbacks

A critical look at the obstacles in the NZE journey, encompassing technological,
economic, and policy challenges. An integrated approach is advocated

Bridge et al. (2013); Geels (2018); Zhao et al. (2022)

Looking Forward Future-oriented exploration projecting the next 3 decades of NZE, emphasizing
innovative technologies, global collaboration, and the need for continual research
and dynamic policy adjustments

Mohan and Katakojwala (2021); Hale et al. (2022);
van der Spek et al. (2022)

TABLE 2 Literature review on circular economy (2013–2024).

Category Key findings/Highlights References

Fundamentals of CE Introduced basic principles and strategies of CE, advocating for a shift from
linear models

Stahel (2016); Shirvanimoghaddam et al. (2020); Diamantis et al.
(2021)

Business Models and
Implementations

Examined the benefits of circular business models using case studies and
assessed corporate adoption, highlighting both challenges and positive
outcomes for sustainability and profitability

Lewandowski (2016); Rizos et al. (2016); Urbinati et al. (2017)

Technological Innovations
for CE

Evaluated key technological advancements like recycling technologies and
bio-based materials that furthered CE.

Smol et al. (2017); Kouhizadeh et al. (2020); Ranta et al. (2021)

Economic and Socio-Cultural
Impacts

Highlighted a potential 1.8% rise in global GDP by 2045 from CE models,
addressing economic myths, and emphasized societal shifts and the
importance of education in CE adoption

Kapsalis et al. (2019); Friant et al. (2020); Corvellec et al. (2022)

Policy Frameworks and
Global Initiatives

Examined policies supporting CE, focusing on the European Union’s
Action Plan, and explored global initiatives highlighting international
collaborations and policy alignment

Pomponi and Moncaster (2017); Domenech and
Bahn-Walkowiak (2019); Padilla-Rivera et al. (2020)

Challenges and Critiques Enumerated potential challenges in global CE adoption like technological
gaps and policy fragmentation

Millar et al. (2019); Kovacic et al. (2020); Corvellec et al. (2022)

The Road Ahead Projected future CE trends and emphasized the need for innovation,
cooperation, and adaptive policymaking

Patwa et al. (2021); Ding et al. (2023); Todorović and Obradović
(2023)

TABLE 3 Intersection of net zero emissions and circular economy (2013–2024).

Section Key findings References

Introduction NZE and CE are major 21st-century paradigms with converging principles for climate
mitigation

Arsic et al. (2023); Okorie et al. (2023)

CE’s Role in NZE CE reduces waste and energy-intensive extraction, aiding NZE. Bonsu (2020); Mulvaney et al. (2021)

Challenges in Merging NZE
& CE

CE processes can raise emissions; balancing renewables with reused tech is hard Bonsu (2020); Meys et al. (2021); Khalifa et al.
(2022)

Economic Considerations CE offers economic benefits supporting NZE. Transition costs might pose challenges Lee et al. (2017); Okorie et al. (2023)

Policy Synergies & Conflicts CE-promoting policies can boost NZE, but some CE practices might conflict with NZE goals Domenech and Bahn-Walkowiak (2019);
Bonsu (2020)

Case Studies: NZE & CE Fashion industries highlight CE’s emission reduction capabilities; cities with CE principles
show decreased carbon footprints

Meys et al. (2021); Govindan (2023); Okorie
et al. (2023)
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2.4 Critique

Upon examining the depth and breadth of this literature, certain
critical gaps emerge. One such chasm is the occasional lack of
context specificity in proposed solutions. While many frameworks
appear effective in Western contexts, their applicability in
developing or transitional economies remains underexplored.
Moreover, while there’s an increasing confluence of net zero and
CE literature, there remains a siloed approach in many studies,
highlighting the need for more interdisciplinary research that
explicitly explores their intersections.

To sum up, the past decade has witnessed an expansive growth
in literature centered on NZE and the CE. While it has laid a solid
foundation, offering invaluable insights, there are pressing areas that
need further exploration, especially as the world seeks to
operationalize these ambitious yet crucial paradigms. As scholars
and practitioners continue to navigate this space, future research
must ensure a holistic, inclusive, and context-specific approach.

3 Methodology

Embarking on this journey to understand the intertwined realms
of NZE and the CE over the past decade necessitated a rigorous
methodological framework. Our data collection strategy was
twofold. First, academic databases such as JSTOR, Scopus, and
Google Scholar were scoured to glean peer-reviewed articles,
conference proceedings, and white papers. In parallel, gray
literature was incorporated into our dataset, drawing from
reports of international bodies like the UN and IPCC,
publications from various governments, and contributions from
notable NGOs. This approach was taken to ensure we were
capturing not just theoretical and empirical studies, but also real-
world applications and policy directives.

With the vastness of available literature, establishing clear
selection criteria became paramount. We initiated our screening
process by filtering studies published between 2013 and 2023 using
specific keywords related to our focal themes. This was followed by
setting inclusion and exclusion benchmarks. Pertinent to our
analysis were studies that directly engaged with our themes,
showcased clear research methodologies, and bore relevance to
either global or regional policy implications. Conversely, we
sidestepped studies with tangential relevance or those without
rigorous methodological outlines, making exceptions for
recognized gray literature. Through this meticulous process, we
curated a diverse dataset that encapsulated various geographies,
sectors, and academic disciplines.

The analytical lens we adopted was tripartite. We embarked on a
temporal analysis, meticulously charting the ebbs and flows in the
research frequency, technological innovations, and policy shifts over
the years. This allowed us to identify discernible trends and pivotal
moments that shaped the decade. Next, our evaluation of successes
was rooted in both quantitative metrics, such as actual reductions in
emissions and adoption rates of circular practices, and qualitative
insights gleaned from transformative case studies. Lastly, we delved
into a gap analysis, merging content analysis with a meta-review to
spotlight overlooked areas, persistent challenges, or emergent
domains warranting attention.

In essence, our methodology, by synthesizing diverse sources
and adopting a multifaceted analytical approach, sought to provide
an encompassing, objective, and nuanced exploration of the past
decade’s developments in NZE and the CE.

4 Conceptual framework

As we navigate the complex web of research, practices, and
policies encompassing NZE and the CE, it becomes paramount to
first anchor our understanding in a robust conceptual framework.
This not only offers clarity but also ensures consistency in the
interpretations and implications drawn throughout this study.

4.1 Net zero emissions

At its core, the concept of net zero emissions revolves around
achieving a balance between the greenhouse gases put into the
atmosphere and those taken out. It does not insinuate a complete
cessation of emissions but emphasizes offsetting any emissions
produced through practices like carbon capture, reforestation,
and the use of sustainable energy sources. The guiding principle
here is equilibrium; the goal is to ensure that anthropogenic activities
don’t increase the net amount of greenhouse gas concentrations in
the atmosphere, thus mitigating the impacts of climate change
(Delafield et al., 2021; Stern and Valero, 2021; Okorie et al., 2023).

Figure 1 delineates the strategic roadmap towards achieving
global net-zero carbon emissions by 2050. It charts the decline in
CO2 emissions in gigatons (Gt CO2) over 3 decades, segmented by
sectors: Buildings, Transport, Industry, Electricity and Heat, and
Others (Naqvi et al., 2016; Rehan et al., 2017). Key milestones are
pinpointed throughout this timeline, highlighting vital shifts such as
the cessation of new coal plant approvals in 2021, the target for 60% of
global car sales to be electric by 2030, and the aim for 50% of heating
demand to bemet by heat pumps by 2045. Cumulatively, these actions
guide a global trajectory towards sustainable energy consumption and
carbon neutrality by mid-century (Bouckaert et al., 2021).

4.2 Circular economy

Traditionally, our economic systems have largely followed a
linear model: extract, produce, consume, and discard (Naqvi M.
et al., 2017; Naqvi et al., 2021). In stark contrast, the CE champions a
regenerative approach. It’s grounded in three foundational
principles: design out waste and pollution, keep products and
materials in use, and regenerate natural systems. This model
posits that economic growth can be decoupled from resource
consumption. By emphasizing sustainable production, prolonging
product lifespans, promoting reuse and recycling, and driving
innovations that harness waste as a resource, the CE strives for a
system where nothing goes to waste. Figure 2 delineates the
transformative journey from a linear to a CE, spotlighting the
strategic progression to boost product circularity. Initiating with
“Refuse” (R0), the model advocates for the discontinuation or
innovative substitution of certain products. As we ascend,
strategies like “Rethink” (R1) promote more intensive product
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utilization, such as shared use, and “Reduce” (R2) emphasizes
conservation in resource utilization. The continuum further
underscores the significance of product longevity through
“Reuse” (R3), “Repair” (R4), and “Refurbish” (R5). Transitioning
towards repurposing, “Remanufacture” (R6) and “Repurpose” (R7)

champion the ingenious reincarnation of discarded products or
components. Lastly, the framework accentuates the sustainable
reprocessing and energy retrieval through “Recycle” (R8) and
“Recover” (R9). Collectively, the represented strategies serve as a
blueprint for embedding sustainability at the core of consumption

FIGURE 1
Roadmap to 2050: Key milestones and interventions for global carbon dioxide emission reduction across sectors (Bouckaert et al., 2021).
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and production (Kirchherr et al., 2017; Potting et al., 2017;
Kristoffersen et al., 2020).

4.3 Inherent connection

While on the surface, NZE and the CE might appear as distinct
paradigms, a deeper exploration reveals a symbiotic relationship. The CE,
with its emphasis on reducing waste, inherently reduces emissions tied to
waste management, product production, and resource extraction.
Meanwhile, the push for net zero directs industries towards
sustainable energy sources, which further aligns with the circular
philosophy of sustainable resource use. For instance, an industry
adopting circular practices might prioritize recycled materials, which
often have a lower carbon footprint than new materials. Similarly, in
striving for net zero, industries could adopt technologies that have circular
benefits, like biogas production from organic waste. This interwoven
relationship suggests that the pathways to achieving NZE can be both
complemented and accelerated by embracing the principles of the CE
(Mohan and Katakojwala, 2021; Di Vaio et al., 2023; Mallick et al., 2023).

4.4 Progress and pathways: evaluating our
journey towards 2050

In our critical assessment of the current position towards
achieving the 2050 sustainability goals, we meticulously analyze
the latest data on key indicators such as greenhouse gas emissions,
recycling rates, and renewable energy adoption. This analysis aims

to objectively evaluate our progress relative to the milestones
delineated for 2025, 2030, and further, utilizing Figure 1 as a
benchmark to identify both advancements and shortcomings. We
also acknowledge various hurdles since the roadmap’s initiation,
including technological constraints, financial barriers, policy
stagnation, and significant global disruptions, critically examining
how these factors shape our path towards 2050. This leads to an
informed evaluation of the feasibility of meeting our 2050 goals,
incorporating scenarios and models that consider different levels of
intervention, policy reforms, and technological developments. To
navigate these challenges, we propose strategic recommendations
focused on closing the identified gaps and propelling forward
momentum. These include urging greater investment in green
technologies, advocating for more robust policy support, fostering
international collaborations for climate action, and encouraging
stronger partnerships between public and private sectors. The
culmination of this analysis in the manuscript’s conclusion
underscores the critical need for immediate and collective efforts
to realign our trajectory with the ambitious targets for 2050,
highlighting the urgency of adopting these strategic
recommendations to ensure a sustainable future (Naqvi et al.,
2013; Mont et al., 2014; Gielen et al., 2019; Moustakas et al.,
2020; Moyer and Hedden, 2020; van Vuuren et al., 2022).

5 Milestones and achievements

Over the last decade, the convergence of NZE and CE principles
has led to a plethora of notable milestones and achievements. This

FIGURE 2
Strategies for transitioning from linear to CE: From smart product usage to material recovery (Kirchherr et al., 2017; Potting et al., 2017; Kristoffersen
et al., 2020).
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section delves into some of the key advancements across
technological, policy, and practical domains, which have not only
showcased the potential of these paradigms but have also set the
stage for further evolution.

5.1 Technological innovations

The nexus of net zero and circularity has been a crucible for
numerous technological innovations. Carbon capture and storage
(CCS) technologies, for instance, have matured significantly,
offering a viable avenue for industries to mitigate their emissions
(Meys et al., 2021; Sankaran, 2023). Furthermore, the rise of
Industry 4.0 technologies, such as the Internet of Things (IoT)
and artificial intelligence, has facilitated the tracking, management,
and optimization of resources within circular supply chains,
ensuring minimal waste and efficient recycling or repurposing
(Fraga-Lamas et al., 2021; Bag and Pretorius, 2022).

Another breakthrough has been in the realm of renewable
energy storage. The advent of advanced battery technologies and
green hydrogen solutions has not only accelerated the shift towards
renewable energy sources but also embedded circular principles by
emphasizing the recyclability and longevity of storage mediums
(Naqvi et al., 2012; Cusenza et al., 2019; Bonsu, 2020; Raza Naqvi
et al., 2023).

Lastly, innovations in bio-based materials have provided
sustainable alternatives to traditional plastics and other non-
degradable products. These materials, often derived from
agricultural waste or algae, align with both the net zero objective
(by sequestering carbon) and the circular notion of leveraging waste
as a resource (Leipold and Petit-Boix, 2018; Thakker and
Bakshi, 2023).

A recent pilot project in the UK, involving the use of hydrogen-
powered domestic condensing boilers, has showcased significant
potential for reducing residential carbon emissions. This project,
involved retrofitting existing gas networks to accommodate
hydrogen fuel, demonstrating a scalable solution for urban and
suburban households aiming for net-zero emissions (Al-Mufachi
and Shah, 2022; Roy et al., 2024).

5.2 Policy developments

Policies form the backbone of systemic change, and the past
decade has witnessed several landmark policy developments.
Numerous countries have announced their net zero targets,
bolstered by comprehensive roadmaps that factor in circular
principles. For instance, the European Union’s Green Deal
envisions a climate-neutral continent by 2050 and has embedded
circularity as a core strategy, fostering a regulatory environment that
promotes sustainable production and consumption (Bonciu, 2020;
Jesic et al., 2021).

Many nations have also introduced incentives for industries
adopting circular practices, such as tax breaks for companies
engaging in sustainable sourcing or extended producer
responsibility (EPR) schemes that mandate manufacturers to
manage the end-of-life phase of their products (Ghisellini et al.,
2016; Ramasubramanian et al., 2023). Furthermore, the rise of cross-

border coalitions and partnerships, like the Circular Economy 100
(CE100) initiative, has facilitated knowledge exchange, setting
international best practices and promoting collaborative policy-
making (Howard et al., 2019; Velenturf and Purnell, 2021).

A prime example of policy-driven innovation is the European
Environmental Agency’s “ammonia Adoption Act,” a pioneering
policy designed to expedite the transition of power plants to
ammonia fuel in gas turbines. By offering financial incentives
and regulatory support, this Act aims to reduce carbon emissions
significantly, with a target of converting 30% of the EU’s gas-
powered plants to ammonia by 2030, thereby potentially cutting
annual CO2 emissions in the power sector by up to 20 million tons.
This initiative highlights the EU’s proactive approach in leveraging
ammonia, a carbon-free fuel, to achieve substantial strides towards
its net-zero emissions goals, setting a precedent for global energy
policy (Sciences et al., 2016; Rahman and Wahid, 2021).

5.3 Case studies

The synthesis of net zero and circular principles has yielded
tangible results across various sectors:

Automotive: Companies like Tesla have championed not only
electric vehicles but also the circular use of materials. Their battery
recycling program aims to recover critical metals and reintroduce
them into the production cycle, embodying circularity while pushing
for net zero transportation (Bonsu, 2021; Song and Zhou, 2023).

Fashion: Brands such as Patagonia have integrated circularity by
promoting repair, reuse, and recycling of their products. Their
commitment to reducing carbon footprint goes hand-in-hand
with initiatives like sourcing organic materials and encouraging
consumers to buy used products (Bocken et al., 2016; Dezi
et al., 2022).

Urban Development: Cities like Amsterdam have embarked on a
mission to become fully circular by 2050. This entails waste-to-
resource initiatives, sustainable infrastructure development using
recycled materials, and promoting green energy sources, all
converging towards a net zero, circular urban landscape
(Kurniawan et al., 2021; Mutezo and Mulopo, 2021).

By charting these milestones and achievements, it becomes
evident that the marriage of NZE and CE principles has not only
been conceptually enriching but has also led to tangible, impactful
advancements across the global sustainability landscape.

6 Challenges and limitations

While the previous section celebrated the milestones, it’s equally
vital to critically engage with the challenges and setbacks that have
surfaced over the decade. Integrating NZE and CE principles, despite
its potential, has been a journey marred with multifaceted obstacles,
ranging from technological bottlenecks to socio-political constraints.

6.1 Technological challenges

The realm of technology, although bustling with innovation, has
had its share of hurdles. For instance, while Carbon Capture and
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Storage (CCS) emerged as a promising avenue, its scalability and
economic viability remain concerns. High operational costs and
concerns about the long-term storage integrity have made
widespread adoption slow. Similarly, while bioplastics hold
promise, their decomposition rate, under certain conditions, is
not as rapid as anticipated, posing waste management challenges.

6.2 Economic limitations

Transitioning to a CE often requires significant upfront
investments. Small and medium enterprises (SMEs), in particular,
find it challenging to invest in sustainable and circular innovations
due to limited capital and perceived economic risks. Moreover, the
global market still predominantly rewards linear economic practices,
creating a competitive disadvantage for early circular adopters.

6.3 Policy and regulatory setbacks

Although many policies support circular and net zero initiatives,
they sometimes exist in silos, lacking an integrated approach.
Furthermore, the enforcement of these policies is inconsistent
across regions. For instance, Extended Producer Responsibility
(EPR) regulations vary widely, leading to discrepancies in their
effectiveness. International trade policies, at times, inadvertently
promote linear practices, creating barriers for circular products
and services.

6.4 Socio-cultural barriers

The shift towards circularity and net zero requires a significant
behavioral change. Consumerism, fueled by a culture of
disposability, often clashes with the principles of the CE. The
allure of “newness,” whether in gadgets, fashion, or even vehicles,
often supersedes the appeal of sustainable, long-lasting, or
recycled products.

6.5 Supply chain complexities

As businesses aim to embed circularity into their operations,
they grapple with the complexity of ensuring sustainability
throughout the supply chain. Tracking the origin, lifecycle, and
end-of-life of products and materials is an intricate task, often
exacerbated by a lack of transparency and standardization in
global supply chains.

6.6 Geopolitical challenges

Climate change, NZE, and circularity are global issues.
However, geopolitical tensions can sometimes stall collaborative
efforts. Differences in economic development, priorities, and
capabilities mean that nations approach these paradigms at
varied paces, leading to coordination challenges at
international forums.

In assessing these challenges and setbacks, it’s evident that the
journey towards integrating NZE and CE principles is not linear.
The myriad obstacles encountered underscore the need for
continued innovation, robust policies, global collaboration, and a
shared vision to navigate this transformative path.

7 Synergies and tensions

The interplay between NZE and the CE has undeniably forged
powerful synergies, yet it has also unveiled certain tensions. This
dynamic relationship, oscillating between collaboration and friction,
has been instrumental in shaping the trajectory of sustainable
development over the decade.

7.1 Synergies

Resource Efficiency and Emissions Reduction: CE practices
emphasize the efficient use of resources, which directly translates
to reduced energy consumption and consequently, lesser emissions.
For example, recycling aluminum saves up to 95% of the energy
required to produce it from raw materials, thus drastically reducing
associated emissions.

7.2 Waste-to-energy

The principles of the CE advocate for harnessing waste as a
resource. This aligns seamlessly with net zero ambitions when
organic waste is transformed into bioenergy, providing renewable
energy while diverting waste from landfills.

7.3 Sustainable product design

Products designed with circular principles in mind tend to have
extended lifespans, are easier to repair, and are built for recycling or
composting. This approach directly reduces the carbon footprint
associated with frequent manufacturing of disposable products.

7.4 Case study—the ellen MacArthur
foundation’s jeans redesign initiative

This project brought together major fashion brands to produce
jeans that last longer, can be easily recycled, and are made in ways
that are better for the environment and the health of garment
workers. The reduced need for constant production, owing to the
durability of these jeans, complements net zero targets.

7.5 Tensions

Bio-based Materials vs. Carbon Sequestration: While bio-based
materials, like those used in some bioplastics, are hailed in the CE for
their potential to decompose, their production might involve the use
of plants that could otherwise sequester carbon. There’s a balance to
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strike between using plants for materials and allowing them to act as
carbon sinks.

7.6 Recycling energy intensity

Some recycling processes, though circular, are energy-intensive.
For instance, certain e-waste recycling procedures, while recovering
valuable materials, consume significant amounts of energy, thus
posing challenges for net zero objectives.

7.7 Carbon offsetting and natural land use

Net zero often involves carbon offsetting practices like
afforestation. However, if not managed with a circular mindset,
these can conflict with natural land uses, potentially displacing
agriculture or natural ecosystems.

7.8 Case study—palm oil biofuels

Once celebrated as a renewable alternative to fossil fuels, palm oil
biofuels have come under scrutiny. While they align with the circular
idea of using organic matter for energy, their production has led to
deforestation, biodiversity loss, and ironically, increased greenhouse
gas emissions due to the clearing of carbon-absorbing forests.

By examining these synergies and tensions, it becomes evident
that while the pathways of NZE and the CE frequently converge,
they sometimes also diverge. It’s this intricate dance between
alignment and divergence that necessitates an integrated,
nuanced approach to sustainability, ensuring that in our pursuit
of one objective, we don’t inadvertently compromise the other.

8 Socio-economic impact

The intertwined journey towards NZE and the CE has far-
reaching socio-economic implications. From the creation of new
industries and the obliteration of some traditional sectors to
redefining economic hierarchies globally, the transformation has
been profound. A thoughtful assessment reveals both commendable
strides and formidable challenges on this socio-economic frontier.

8.1 Job creation

The transition to net zero and circular models has been a catalyst
for new employment opportunities. Renewable energy sectors, such as
wind, solar, and bioenergy, have witnessed significant job growth.
Additionally, as companies increasingly adopt circular practices, roles
centered around sustainable product design, resource management,
and waste-to-resource technologies have burgeoned. According to the
International Renewable Energy Agency (IRENA), the renewable
energy sector alone could employ up to 42 million people globally
by 2050, a vast leap from around 12 million in 2020.

Skill Transition and Job Displacement: While new opportunities
emerge, there’s an undeniable displacement in traditional sectors,

particularly fossil fuels. This transition, if not managed inclusively,
poses the risk of socio-economic disparities. It necessitates reskilling
programs and policy frameworks that ensure workers from
declining industries find avenues in the burgeoning green sectors.

8.2 Inequality

The shift towards net zero and circularity, if not executed
equitably, can exacerbate existing inequalities. On a global scale,
while developed nations have the capital and technology to
transition swiftly, developing nations might grapple with the
costs and complexities of overhauling their systems. Within
nations, there’s a risk of a “green divide” where only the affluent
sections of society can access and afford sustainable, circular
products and services, leaving the marginalized further behind.

8.3 Economic paradigm shift

The move towards net zero and circularity is gradually
redefining economic success parameters. Gross Domestic Product
(GDP), traditionally a measure of success, might not encapsulate the
full story anymore. New metrics that account for sustainable
practices, resource efficiency, and carbon neutrality are gaining
traction. Countries and companies are increasingly being
evaluated based on their sustainability credentials, potentially
leading to shifts in global economic power dynamics.

8.4 Local economies and decentralization

CE principles advocate for localized production and
consumption cycles, reducing the dependency on global supply
chains. This approach can rejuvenate local economies, fostering
innovation and entrepreneurship at the grassroots level. Similarly,
decentralized renewable energy systems, like microgrids, empower
local communities, ensuring energy sovereignty and resilience.

8.5 Consumer behavior and costs

As companies transition to sustainable practices, there’s often an
associated cost—at least initially. This transition can lead to premium
pricing for green products and services, influencing consumer buying
behavior. Over time, however, as sustainable technologies scale and
become mainstream, costs are likely to decrease.

In essence, the March towards NZE and a CE is reconfiguring
the socio-economic tapestry globally. While the trajectory promises
a sustainable and equitable future, it’s laden with complexities that
demand meticulous planning, global collaboration, and an
unwavering commitment to inclusivity and equity.

9 Global and regional perspectives

The global ethos surrounding NZE and the CE is as diverse as
the countries and cultures that embody it. Different regions, based
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on their socio-economic contexts, historical legacies, and
geopolitical considerations, have adopted varied trajectories. A
comparative lens reveals both a rich tapestry of localized
approaches and a foundational bedrock of global cooperation.

9.1 Europe

Regarded as a front-runner in sustainability initiatives, Europe’s
transition is characterized by robust policy frameworks, aggressive
carbon neutrality targets, and a commitment to circularity. The
European Green Deal and the Circular Economy Action Plan are
testament to the region’s proactive approach. The embrace of these
paradigms is also seen as a strategy to bolster European economic
competitiveness in the global arena (Smol et al., 2020; Friant et al.,
2021; Johansson, 2021).

9.2 Asia

Asia presents a mosaic of approaches. Countries like China and
Japan have made significant strides in integrating CE principles,
with China’s “eco-civilization” vision and Japan’s “Society 5.0”
strategy. However, rapid urbanization, population density, and
developmental pressures pose challenges. In contrast, countries
like India juggle developmental imperatives with ambitious
renewable energy targets and grassroots circular innovations
(Fukuyama, 2018; Hansen et al., 2018).

9.3 Africa

While Africa has a lower carbon footprint historically, its
vulnerability to climate change effects is profound. The
continent’s approach to net zero and circularity is intertwined
with developmental, energy access, and resilience objectives.
Innovations like decentralized solar projects and community-
based circular initiatives are gaining ground. Yet, the need for
infrastructural development often competes with these
sustainability goals (Filipović et al., 2022; Kalantzakos et al., 2023).

9.4 The Americas

North America, particularly the U.S., has witnessed a pendulum
swing in climate policies, with the recent years indicating a renewed
commitment to net zero. Advanced industries in the region are also
pioneering circular innovations. Latin America, rich in biodiversity,
faces the dual task of conservation and development. Countries like
Chile and Costa Rica have set commendable renewable energy and
conservation benchmarks (Anika et al., 2022; Da Zhu, 2022).

9.5 Oceania

Regions like Australia and New Zealand, blessed with vast
renewable resources, are gravitating towards net zero targets.
However, challenges like reliance on coal exports and agricultural

pressures create tensions. Indigenous knowledge systems,
particularly in New Zealand, are also influencing a unique flavor
of circularity (Ranson and Stavins, 2016; Hall, 2021).

Global Cooperation and Knowledge Exchange: Despite diverse
regional approaches, global cooperation remains the linchpin.
Platforms like the United Nations Framework Convention on
Climate Change (UNFCCC) and the World Circular Economy
Forum facilitate knowledge exchange, technology transfer, and
financial collaboration. Such global synergies are vital, ensuring
that the move towards net zero and circularity is not just swift
but also equitable (Joss et al., 2013; Bataille, 2020).

In conclusion, the journey towards NZE and the CE, when
viewed through a global-local prism, underscores the richness of
regional innovations and the indispensability of global solidarity. As
the world navigates this transformative phase, it’s this delicate dance
between localized strategies and global cooperation that will shape
the sustainability narrative for generations to come.

10 Theoretical and practical
implications

The last decade’s discourse surrounding NZE and the CE has
been underpinned by a rich tapestry of theoretical models and
practical implementations. Rooted in interdisciplinary foundations,
the theoretical paradigms around these subjects aspire for a holistic
transformation where economic systems operate in harmony with
our planet’s ecological boundaries. They propose a world that thrives
on sustainable resource loops, minimizes waste, and champions
inter-generational equity. But how seamlessly does this theoretical
vision translate into on-the-ground realities?

In the labyrinth of real-world implementations, myriad
challenges arise. Economic imperatives, for instance, often pull
businesses in two directions: the pursuit of short-term profits and
the longer-term sustainability vision. While CE frameworks
advocate a decoupling of growth from resource exploitation,
many enterprises grapple with the immediate financial
implications of such a transition. Similarly, technological
constraints can pose significant hurdles. Although academic
models sometimes presuppose the ubiquitous presence of cutting-
edge technologies, many regions, especially in the developing world,
find themselves navigating a technological chasm.

Equally significant are the socio-cultural dimensions. The
sustainability path isn’t just carved by economic and
technological considerations; it’s deeply influenced by societal
norms, traditions, and behavioral inclinations. A practice that
gains rapid acceptance in one cultural milieu might encounter
resistance in another, emphasizing the need for context-specific
solutions. The policy landscape further adds to this complexity.
Theoretical constructs often rest on the bedrock of strong policy and
regulatory support, but the oscillating realities of political will,
regulatory frameworks, and bureaucratic dynamics can either
propel or hinder progress.

Yet, amid these challenges, the gap between theory and practice
also spawns innovation. There have been myriad instances where
constraints have catalyzed out-of-the-box solutions, adaptive
strategies, and grassroots innovations. However, a critical
reflection suggests caution in overly romanticizing these success
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stories. Scalability remains a pertinent concern. Models that flourish
in a controlled, small-scale environment might not necessarily
replicate their success on a larger canvas, owing to amplified
complexities.

In essence, the journey towards NZE and a CE, as viewed
through the lens of the past decade, underscores the intricate
dance between theoretical aspirations and practical challenges. To
forge a path that’s both visionary and pragmatic, a collaborative,
adaptive, and context-sensitive approach is paramount. Only by
bridging the chasm between what we envision in theory and what we
execute in practice can we hope to steer our global systems towards a
more sustainable, resilient, and equitable trajectory.

11 Future pathways

Reflecting on a decade of grappling with the intertwining
paradigms of NZE and the CE reveals as much about our past as
it does about the possibilities ahead. If history has shown us the
challenges, it has equally illuminated pathways of promise. By
understanding where we have been, we can better chart where
we need to go, ensuring that the next decade is not just a
continuation but an elevation.

As we stand on the cusp of this new era, several potential
pathways emerge. First, the integration of digital technologies
with circular principles is ripe with promise. Technologies such
as Artificial Intelligence, Blockchain, and the Internet of Things
could redefine how we track, manage, and optimize resource loops,
creating a transparent and efficient circular system. There’s a vast
potential in smart grids, digital twins, and AI-driven supply chains
to usher in a new age of circularity that’s both effective and scalable.

Secondly, transitioning to a truly CE requires rethinking our design
philosophies. The future will demand products designed not just for use,
but also for reuse, refurbishment, and recycling. This concept, often
termed as “Design for Circularity,” will be a linchpin. Encouragingly,
educational institutions are already beginning to incorporate these
principles into their curricula, suggesting a new generation of
designers and engineers equipped to meet these challenges.

However, while technology and design provide tools, it’s the
policy landscape that often paves the way. The next decade will
require more robust, comprehensive, and globally harmonized
policies that incentivize circular practices. Financial instruments,
such as green bonds and sustainability-linked loans, can also play a
pivotal role in funneling capital towards sustainable ventures.

Yet, even as we tread these pathways, areas requiring further
exploration become evident. There’s a pressing need to delve deeper
into the socio-cultural dimensions of circularity, understanding how
different communities perceive and adapt to circular principles.
Behavioral economics, thus, might offer invaluable insights.
Similarly, the intersection of biodiversity and circularity remains an
under-explored terrain. As we harness resources, how dowe ensure that
we’re not inadvertently compromising on the planet’s biodiversity?

Furthermore, the decade ahead must focus on forging stronger
global collaborations. The challenges posed by climate change and
resource constraints are borderless, and our solutions must mirror
that universality. Platforms for knowledge exchange, technology
transfer, and capacity building, especially in regions lagging in the
sustainability transition, will be paramount.

As we set our sights on the next decade, pinpointing and
implementing specific, impactful strategies, projects, partnerships, and
policy frameworks is essential for advancing toward our sustainability
ambitions. Envisioning green technology parks that amalgamate
renewable energy, sustainable water management, and waste recycling
presents a blueprint for industrial evolution, while urban reforestation
stands out as a key strategy for carbon sequestration and enhancing
urban habitats. Crucial to this journey are strategic alliances that bridge
governments, the private sector, and NGOs, enabling large-scale
sustainability initiatives, such as the deployment of smart grid
technologies for improved energy efficiency and renewable energy
integration. Furthermore, adopting comprehensive policy frameworks,
including a global carbon pricing mechanism and national mandates for
sustainablematerials, alongside policies that champion circular economy
principles like extended producer responsibility (EPR) and zero-waste
regulations, will drive businesses towards minimizing their
environmental impact. This integrated approach, focusing on
innovation, collaboration, and policy support, is pivotal for
transforming the next decade into a period of significant progress
towards our comprehensive sustainability goals.

In summary, the future pathways for NZE and the CE are as
much about evolution as they are about revolution. While the last
decade has laid the foundation, the next must build upon it, ensuring
that the interplay between technology, policy, design, and
collaboration crafts a world where sustainability is not an
afterthought but the very ethos of our existence. The journey
ahead is challenging but brimming with the potential of possibility.

12 Conclusion

Over the last decade, the journey towards net zero emissions
(NZE) and the circular economy (CE) has revealed a rich blend of
ambition, achievement, and innovation, highlighting a growing
symbiosis between NZE and CE that enhances our approach to
sustainability. This period has underscored the importance of
adaptable, context-aware strategies that respect local nuances,
and the critical role of technological advancements in fostering
inclusive progress without widening social disparities. The
collaborative efforts of policymakers, industry, academia, and
civil society have proven essential in navigating the complexities
of global sustainability efforts. Looking forward, we face a landscape
filled with both challenges and opportunities, requiring us to refine
our strategies, foster new partnerships, and expand our innovations.
As we propose actionable steps for individuals, organizations, and
policymakers, our collective endeavor towards a sustainable future is
clear. Emphasizing collaboration and innovation, we aim to
continue our progress towards our sustainability goals,
showcasing the resilience and adaptability of humanity. The
lessons learned offer guidance for future efforts, underscoring
that achieving a sustainable, harmonious future is a collective
journey that demands ongoing commitment and cooperation.

For effective action towards net zero emissions and a circular
economy, a collective effort from all societal sectors is essential. We
propose actionable steps to transform theoretical insights into
meaningful outcomes. Individuals are encouraged to lower their
carbon footprint via mindful decisions and recycling efforts, and
organizations are called to implement circular economy strategies,
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prioritizing resource efficiency and achieving carbon neutrality.
Policymakers should facilitate this shift through enabling policies
and fostering global cooperation. United in these endeavors, we can
expedite our journey towards a sustainable future, anchored by a
shared commitment to innovation and ecological responsibility,
aiming to fulfill our significant sustainability goals.
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Climate change is showing its impacts now more than ever. The intense use of
fossil fuels and the resulting CO2 emissions aremainly to blame, accentuating the
need to develop further the available energy conversion and storage
technologies, which are regarded as effective solutions to maximize the use
of intermittent renewable energy sources and reduce global CO2 emissions. This
work comprehensively overviews the most recent progress and trends in the use
of transition metal-based electrocatalysts for three crucial reactions in
electrochemical energy conversion and storage, namely, the oxygen evolution
(OER), oxygen reduction (ORR), and hydrogen evolution (HER) reactions. By
analyzing the state-of-the-art polyoxometalates (POMs) and metal-organic
frameworks (MOFs), the performance of these two promising types of
materials for OER, ORR, and HER is compared to that of more traditional
transition metal oxides and alloy-based electrocatalysts. Both catalytic activity
and stability are highly influenced by the adsorption energies of the intermediate
species formed in each reaction, which are very sensitive to changes in the
microstructure and chemical microenvironment. POMs and MOFs allow these
aspects to be easily modified to fine-tune the catalytic performances. Therefore,
their chemical tunability and versatilitymake it possible to tailor such properties to
obtain higher electrocatalytic activities, or even to obtain derived materials with
more compelling properties towards these reactions.

KEYWORDS

hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction,
electrocatalysts, polyoxometalates, metal-organic frameworks
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1 Introduction

The world is facing an environmental crisis due to the overuse of
carbon-emitting energy sources, namely, fossil fuels, for
transportation or energy generation to power industry and
domestic households, for example. This increases global
greenhouse gas emissions, namely, CO2, consequently increasing
the global temperature.

This fact comes with devastating consequences, such as more
intense and extreme weather events (droughts, heat waves, flooding,
and heavy rainfall), and it also brings about a rise in sea levels (IPCC,
2018). As such, it was identified that it is necessary to effectively
reduce carbon dioxide emissions to a net-zero level to limit the
temperature increase to 1.5 °C as ambitioned by the Paris Agreement
signed by the United Nations (UN) members. Regarding the current
global energy matrix, fossil fuels are a major contributor in many
countries. They play a key role in supplying the energy necessary for
proper economic and technological operations, accounting for over
80% of global energy consumption (Amin et al., 2022; Ritchie et al.,
2022). However, the reduction in greenhouse gas emissions is
mainly dependent on substituting fossil fuels (which are
responsible for around 75% of these emissions) for cleaner and
renewable energy sources, such as wind, solar, and hydropower
energy, presenting themselves as powerful tools to combat the
current climate crisis and to pave the way for a greener future.

Unfortunately, these renewable energy sources, especially wind
and solar energy, which are the most abundant, have a highly
intermittent character, meaning that there are periods where
energy production peaks and periods where it declines (Amin
et al., 2022; Chatenet et al., 2022). One solution to this
intermittent character of renewable energy sources comes in the
form of energy storage methods, generally via the use of batteries,
which can store the surplus of electric energy during periods of low
electricity demand and later release it during periods of high
demand. This excess renewable energy can also be stored as
green hydrogen (H2) produced via water electrolysis, a concept
known as Power-to-X. The produced green H2 can be used for a
panoply of applications, directly replacing typical grey H2 produced
from steam-methane reforming, or even act as an energy carrier for
electricity generation in fuel cells during periods when energy
production does not meet the total energy demand.

Thus, H2 is seen as a promising energy carrier due to its high
energy density, around 33 kWh/kg. Furthermore, the combustion of
H2 merely releases water vapor and energy, a crucial factor when
considering its use as a green energy source. Specifically, green H2

production is based on the electrochemical splitting of water
powered by renewable energy sources. This process generates H2

gas in the cathode through the hydrogen evolution reaction (HER)
and oxygen (O2) gas in the anode through the oxygen evolution
reaction (OER), with no greenhouse gases emitted during the whole
production process (Amin et al., 2022; Arcos and Santos, 2023). For
this reason, green H2 production and its use are widely considered a
natural solution to end the energy and climate crisis, establishing the
so-called hydrogen economy.

From the perspective of batteries and fuel cells, even though they
have already been shown to work safely and effectively, there is an
increasing need for the development of bifunctional materials that
can be utilized to make them rechargeable and reversible. This

becomes relevant due to the need to reduce waste generation from
the production and use of disposable batteries (Arcos and Santos,
2023). The relevant chemical reactions for rechargeable batteries and
regenerative fuel cells are the oxygen reduction reaction (ORR) and
the OER, which happen during the discharging and charging
processes, respectively. Still on the topic of bifunctionality,
materials with activity towards both the HER and the OER are
also highly desired for alkaline water electrolysis technologies,
mainly due to stability concerns.

However, the three aforementioned electrochemical reactions
exhibit sluggish reaction kinetics (particularly the OER and ORR),
meaning efficient electrocatalysts are needed to accelerate
production. The best-performing ones are carbon-supported
platinum (Pt/C) for HER and ORR, and iridium and ruthenium
oxides (IrO2 and RuO2) for OER. These benchmark catalysts are
expensive since they are based on scarce and precious metals, which
increases total production costs. Much scientific effort is devoted to
finding efficient, inexpensive, and stable electrocatalysts for the cited
reactions, based mostly on common transition metals such as Ni,
Co, Mn, and Cu.

Many strategies have been followed to produce effective
electrocatalysts. Carbon supports have been widely applied, mainly
due to the enhancement in electric conductivity and surface area,
directly impacting performance. Examples of commonly tested
supports are multi-walled carbon nanotubes (MWCNTs), single-
walled carbon nanotubes (SWCNTs), reduced graphene oxide
(rGO), graphene flakes (GFs), and carbon fiber paper (CFP)
(Fernandes et al., 2018a; Liu et al., 2019; Jawale et al., 2022;
Marques et al., 2022; Rehman et al., 2022). On the topic of organic
supports, an exciting aspect to be aware of is the capability of including
heteroatoms, such as N, in the final catalyst structure; this generally
means carrying out an N-doping process on the support (Sun et al.,
2015; Zhu et al., 2018;Wang C. et al., 2019; Jeong et al., 2020; Peng et al.,
2020). AlthoughN is themost popular dopant, other heteroatoms, such
as F, S, P, andmetals, are also applied (Zhang S. et al., 2017; Abdelkader-
Fernández et al., 2019; Bhuvanendran et al., 2021).

Another method used to impact electrocatalytic activity is by
modifying the catalyst composition. This can be done by adding
other metals, mainly via alloying. An example is the reduction of Pt
content in Pt-based electrocatalysts by alloying it with Ni or Fe (Vij et al.,
2017; Zhang C. et al., 2017). This modifies the catalyst’s electronic
structure, combining the advantages of the alloyed metals, and
enhancing the overall activity. The modifications in composition may
also impact the catalysts’ morphology. The production of octahedral
(111) alloy PtNi nanoparticles, more effective for ORR than their cubic
(100) Pt counterpart, has been shown to be dependent on composition
when a solid-state chemistry method is utilized (Zhang et al., 2014). Still,
on the topic of morphology-dependent activity, NiFe alloys are yet
another example of howmorphology can impact activity; alloys of those
metals with hexagonal close-packed and face-centered cubic structures
present quite different OER activities. Different morphologies have
different surface areas, influencing the amount and type of exposed
active sites and thus affecting catalytic activity.

Traditionally, oxide and alloy-based electrocatalysts are produced
and tested, but new material classes, such as metal-organic frameworks
(MOFs) and polyoxometalates (POMs) have been gaining interest
recently due to their inherent advantages, mainly higher surface area
due to their porous structures and their ability to be tailored for each
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specific application due to the ease in modifying their structures (Jiang
et al., 2016; LuoW. et al., 2017; Lu et al., 2017;Horn et al., 2021; Gusmão
et al., 2022; Jia et al., 2022; Tseng et al., 2022). Briefly, MOFs are known
to have a high abundance of metal active sites and can also act as
templates to form other electrocatalysts. POMs have a high abundance
of redox sites that can act as both acidic and basic sites and possess high
thermal stability. Structurally, MOFs are formed by the linkage of
inorganic metal ions/clusters and organic ligands, generating a 3D
structure with long-range crystallinity, and POMs are metal (e.g., V, W,
andMo) oxide ion clusters linked together by oxygen atoms with a high
number of redox centers.

This review summarizes the recent progress of transition
metal-based POM (classic POM structures shown in Figure 1)
and MOF electrocatalysts for the OER, ORR, and HER. It
compares their advantages over the more traditional transition
metal-based oxide and alloy electrocatalysts, which mainly reside
in their higher chemical tunability and versatility, as shown in
Figure 2 for MOFs. This allows, for example, tailoring properties,
such as adsorption energy, to obtain higher electrocatalytic
activity. For each relevant reaction, a series of electrocatalysts
belonging to a different material class are analyzed, with
advantages and disadvantages being highlighted regarding the
class as a whole. General innovations brought by each reviewed
work include the use of carbon and non-carbon materials as POM
or MOF electrocatalyst supports, modifications in POMs’ and
MOFs’ morphology stemming from varying the synthesis
method and applying different precursors (leading to the
production of bimetallic or even polymetallic electrocatalysts),
and the introduction of dopants in the final catalyst structure,
directly impacting their composition and providing different
synergistic effects between the utilized elements, thus
improving the catalytic activity as a whole.

2 Oxygen evolution reaction (OER)

The OER is an anodic reaction that can be carried out in
alkaline (Equation 2.1) and acidic (Equation 2.2) media, releasing
O2 gas.

4OH− → 4e− + O2 + 2H2O (2.1)
2H2O → 4e− + O2 + 4H+ (2.2)

The equilibrium potential at standard conditions is ca. 1.23 V
against the reversible hydrogen electrode (RHE). Still, to perform

FIGURE 1
Polyoxometalates (POM) structures in polyhedral representations (Gusmão et al., 2022).

FIGURE 2
The classification and operation of MOF-basedmaterials: pristine
MOFs, MOF composite, and their derivatives.
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this reaction at reasonable rates requires applying higher overpotentials
(η) than those needed for the hydrogen evolution reaction (HER). This
happens due to the sluggish kinetics of the OER caused by its inherent
reaction mechanism that involves 4 proton-coupled electron transfer
steps, as seen in Figure 3, resulting in higher activation energy (Xu et al.,
2019; Chatenet et al., 2022; Gusmão et al., 2022). The reaction kinetics
also differ depending on the pH: the OER presents more sluggish
kinetics in acidic media when compared to alkaline media, which in
turn causes the overpotential to achieve the same reaction rate to be
higher in acidic media than in alkaline media (Tahir et al., 2017;
Chatenet et al., 2022).

The need for a higher overpotential for the OER is also a
bottleneck for alkaline water electrolysis, metal-air batteries
(MAB), and regenerative fuel cells (RFC) since it is a main
component of those technologies, and thus the high
overpotentials contribute to higher energy consumption (Tahir
et al., 2017; Chatenet et al., 2022). To reduce the high
overpotentials associated with this reaction, electrocatalysts are
applied to lower activation energies, increasing the reaction kinetics.

The most effective OER electrocatalysts to date are the noble-
metal-based Ru and Ir oxides due to their remarkable activity, low
overpotential, and excellent dissolution resistance in acidic
conditions (Nakagawa et al., 2009; Jiang et al., 2018; Chatenet
et al., 2022). This does not discard their use in alkaline
conditions since they show good stability at all pH values
(Katsunaros et al., 2014; Tahir et al., 2017). However, their main
problem resides in their noble nature, meaning they are scarce
metals with a high price, compromising their applicability on an
industrial scale (Katsunaros et al., 2014; Tahir et al., 2017; Chatenet
et al., 2022; Gusmão et al., 2022; Zeb et al., 2023). Because of these
limitations, extensive efforts have been made to find cheaper
alternatives to these noble-metal catalysts, mainly by utilizing
more abundant transition metals such as Ni, Co, Cu, and Mn.
These metals are more affordable, which facilitates their use in
industrial conditions. Still, one should also be aware of the stability
of these transition-metal-based electrocatalysts, which, in acidic
conditions, is generally low (Goberna-Ferrón et al., 2015; Sun
et al., 2015; Lu et al., 2019; Zand et al., 2023), hence why there
are fewer studies on this type of media.

2.1 Transition metal oxides for OER

Metal oxides are commonly used electrocatalysts for OER due to
their compositional and structural diversity, flexible tunability, low
cost, abundance, and environmental friendliness (Mladenović et al.,
2023a). Although pristine metal oxides are generally unsatisfactory
for practical applications due to stability issues and unfavorable
binding strength, mixed metal oxides are seen as a possible
workaround due to the synergy of the properties of their pristine
counterparts (Xu et al., 2022; Mladenović et al., 2023a; Pratama
et al., 2023).

Moshkowitsch et al. studied NixFeyOz aerogels with different Ni/
Fe ratios for OER activity in 1 M KOH. The best-performing
material, NiFeOx AGHT1, surpassed the activity of the
benchmark IrO2 electrocatalyst (Figure 4). The Ni/Fe ratio
greatly affected the catalytic performance, and the best-
performing sample had 6 at% Fe, surpassing the NiOx aerogel
and showing that Fe has synergistic effects in the nickel oxide

FIGURE 3
OER mechanism in both acidic (A) and alkaline (B) media (adapted from Yan et al., 2020).

FIGURE 4
Cyclic voltammograms of NiFeOx AG1, NiFeOx AGHT1, and
NiFeOOH in deaerated 1 M KOH solution at a scan rate of 50 mV/s
(adapted from Moschkowitsch et al., 2022).
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structure and that aerogels, which were initially only thought to act
as supports, could also act as electrocatalysts (Moschkowitsch
et al., 2022).

A phosphorus-modified hollow porous nickel-cobalt oxides
nanocube with varying P content was tested for OER in 1 M
KOH. The optimum P-NiO/NiCo2O4 sample was stable and
presented an overpotential of 290 mV for a current density of
10 mA/cm2 and a Tafel slope of 49.6 mV/dec, outperforming
even the benchmark RuO2 electrocatalyst. The superior
performance was attributed to the effect of P-doping, which
decreased the energy barrier, optimized the adsorption of
intermediates, and changed the rate-determining step, and to the
hollow porous hybrid structure and oxygen vacancies that increased
the amount of exposed surface area (Zhang L. et al., 2022).

Similarly, Luo X.-F et al. tested, in alkaline medium (1 M KOH),
MnOx oxides grown directly on Ti foil via electrodeposition with
different morphologies obtained at different reaction temperatures:
cotton wool structure, nanowire arrays, and nanosheet arrays. The
nanowire arrays proved to be the best-performing material in the
study, presenting an OER onset potential of 1.546 V vs RHE, a Tafel
slope of 106 mV/dec, and a current density of 44.7 mA/cm2 when an
overpotential of 538 mV is applied. The performance of the
nanowire arrays was attributed to a larger surface area due to the
direct growth of the nanostructure on the Ti foil support, which
enhanced conductivity (Luo et al., 2017b). Alternatively, Zand et al.
tested MnOx and silicate-stabilized MnOx in acidic medium (0.1 M
H2SO4) and demonstrated that the poor stability of the Mn oxide in
acidic conditions can be significantly improved by adding silicate to
the structure of the Mn oxide. The results showed that the catalytic
activity was less than optimal since the overpotential needed to
achieve 10 mA/cm2 was 640 mV, and the OER onset potential was
1.757 V vs RHE. On the other hand, the stability was greatly
improved because the modified Mn oxide showed higher current
retention and virtually no structural changes after OER (Zand
et al., 2023).

Zhang et al. evaluated copper-doped cobalt oxides deposited via
a reactive DC magnetron sputtering process as electrocatalysts for
OER in alkaline medium (1 M KOH). The mixed oxides
demonstrated relevant activity and showed that copper doping
improved the electrocatalytic performance with respect to the
single metal cobalt and copper oxides. The best-performing
mixed oxide, Cu1.97CoO3, demonstrated a performance close to
that of RuO2. The increase in activity was attributed to changes in
crystal structure and morphology that increased the surface-active
area (Zhang et al., 2012). Later, Park et al. tested a nanosized
synthetic Cu0.7Co2.3O3 oxide prepared using a thermal
decomposition method in alkaline medium (1 M KOH) for OER.
The overpotential necessary to obtain a 10 mA/cm2 current density
was around 491 mV (Park et al., 2016). Xu et al. studied a cerium-
doped cobalt oxide (CoOx(Ce)) in the form of an amorphous film
deposited through an electrostatic spray deposition method. It
presented an OER onset potential of 1.315 V vs RHE, an
overpotential of 261 mV to achieve a 20 mA/cm2 current density,
and a Tafel slope of 65.7 mV/dec for OER in 1 M KOH, exhibiting
higher performance than regular CoOx, other cerium doped OER
catalysts and even commercially available RuO2. The better
performance was attributed to the increase in the electrochemical
active surface area (ECSA) caused by the resulting sample’s

amorphous nature and the formation of cerium-related oxygen
vacancies without modifying the cobalt species (Xu et al., 2019).

Roy et al. tested a self-supported copper oxide electrocatalyst
grown on Ni foam substrate via an electrodeposition method,
demonstrating suitable activity for OER in a 1 M KOH solution.
The best-performing material, CuO/Ni@400, presented an
overpotential of 364 mV and 508 mV to achieve a 10 mA/cm2

and a 100 mV/cm2 current density and a Tafel slope of 90 mV/
dec, while also presenting stability in alkaline medium by
maintaining constant current density. The superior performance
of CuO/Ni@400 was attributed to its microstructure, which made an
even way for electron tunneling (Roy et al., 2019). Likewise, Wang
et al. tested an in situ-produced copper foam-supported copper
oxide (CuO-A/CF) sample prepared via the oxidation of copper
selenide (Cu2Se) at OER conditions in 1 M KOH. The as-prepared
electrocatalyst presented an overpotential of 297 mV to achieve a
current density of 10 mA/cm2 and a Tafel slope of 72.8 mV/dec,
pointing to fast electron and mass transfer between the catalyst and
the electrolyte. The superior performance relative to CuO produced
from calcination of Cu(OH)2 supported in copper foam is attributed
to the nanoplate structure of CuO-A/CF, which increased the
available electrochemical surface area. The catalyst stability was
also stated by testing over 50 h in 1 M KOH at a constant
10 mA/cm2 current density, maintaining a constant overpotential
over this period and showing no structural changes (Wang
et al., 2020).

Ye et al. tested various iron-copper oxides with different Cu/Fe
ratios for OER in 1 M KOH. The oxide that demonstrated the best
performance was 6CuO2-Fe2O3, with an overpotential of 510 mV
for 10 mA/cm2. All the samples were stable in the reaction
conditions. The performance was attributed to the coexistence of
the metal oxides, but the overpotentials are still high, which shows
that further improvements can be made (Ye et al., 2022). Similarly,
Bai L. et al. tested amorphous ternary Fe-Co-Ni oxides, FeNiCoOx,
in alkaline medium (1 M KOH). The tests were made by depositing
the material on a glassy carbon electrode and on a Ni foam electrode,
which resulted in overpotentials of 240 and 203 mV and Tafel slopes
of 45 and 75 mV/dec, respectively, showing a much better
performance than the mono or binary metal oxides of those
elements and showcasing good stability properties. This increase
in catalytic performance was attributed to the synergistic
interactions between the three employed metals in the oxide,
which greatly reduced the charge transfer resistance and their
homogeneous distribution in the oxide (Bai L. et al., 2019).

The OER performance parameters of the above-cited transition
metal oxide-based catalysts are shown in Table 1. However, due to
the generally high overpotentials presented by the metal oxides
(Park et al., 2016; Xing et al., 2018; Sivakumar et al., 2019; Ye et al.,
2022; Zand et al., 2023) and their generic instability in acidic
medium (Zand et al., 2023), scientists have also tested another
traditional catalyst class: transition metal alloys.

2.2 Transition metal alloys for OER

Alloy compounds are sought out due to their low cost and high
OER/HER catalytic activity. Their high versatility by including
different metals (forming binary, ternary, or multicomponent
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alloys) also allows for selectivity and activity enhancement in the
final alloy. Another advantage of alloying is that Pt-based materials
can be synthesized with similar or higher catalytic activity while
lowering Pt content, which inevitably lowers production costs on a
large-scale perspective (Mladenović et al., 2021; Mladenović et al.,
2022; Mladenović et al., 2023b; Xu et al., 2023).

Lim et al. reported the synthesis of bimetallic NiFe alloy
nanoparticles used as electrocatalysts for the OER in alkaline
medium (1 M KOH). The produced alloy presented much better
activity than its unary metal Ni and Fe counterparts, having an
overpotential of 298 mV for 10 mA/cm2 and a Tafel slope of
51.9 mV/dec, surpassing the performance of state-of-the-art RuO2

electrocatalyst. This performance was attributed to the synergistic
effects between the metals and the modification of redox properties
of Ni sites and the electronic structure of Ni atoms due to the
presence of the Fe atoms, as well as the partial oxidation of the alloy
into metal oxyhydroxides (Lim et al., 2020). Wang C. et al. reported
the synthesis of a hexagonal close-packed (hcp) crystal structure in
NiFe alloys and its use as an OER catalyst in alkaline medium (1 M
KOH). The samples of different Fe/Ni ratios were supported on
N-doped carbon shell structures. The electrocatalytic performance
of the best sample (with Fe/Ni ratio of ca. 5.4 at.%) surpassed that of
regular face-centered cubic (fcc) NiFe and commercially available
RuO2, needing an overpotential of 226 mV to achieve 10 mA/cm2

and a Tafel slope of 41 mV/dec, and showed promising stability
properties. The performance was attributed to the interaction
between the intrinsic crystal structure and the carbon shell,
resulting in different electronic properties at its surface that
favored the OER process (Wang C. et al., 2019).

From another perspective, Jeong et al. determined the effects of
using graphene-encapsulated porous NiMo alloys and compared
them to bare porous NiMo alloys for OER in an alkaline medium
(1 M KOH). The results showed that the graphene encapsulation
enhanced the catalytic performance of the alloy by lowering the
overpotential necessary to achieve 10 mA/cm2 and the Tafel slope
from 396 to 351 mV and 101 to 69 mV/dec, respectively, resulting in
a performance similar to RuO2. The stability in 1 M KOH also

increased when supported in nickel foam by impeding the
degradation of the metals into oxides and hydroxides. The better
performance was assigned to synergistic effects between N-doped
graphene and NiMo alloy that impacted the adsorption of
intermediates, optimizing the free adsorption energies and
accelerating the OER rate-determining step (Jeong et al., 2020).

Dai et al. studied a MnFeCoNi high entropy alloy activated for
OER through a cyclic voltammetry treatment in an alkaline medium
(1 M KOH). The activated alloy exhibited an overpotential of
285 mV to reach a 10 mA/cm2 current density, presented a Tafel
slope of 83.7 mV/dec, and showed good stability properties,
surpassing the benchmark RuO2 catalyst. The catalytic activation
of the high entropy alloy was attributed to the formation of
monometallic oxides of the metals dispersed as nanosheets
throughout the particle’s surface, which acted as the true catalyst
for OER and exposed more active sites (Dai et al., 2019).

Li et al. tested the use of 3D hierarchical flower-like materials
composed of ultrathin cobalt-based bimetallic phosphide nanosheets
(CoM-P-3DHFLMs, M = Mn, Cu, Ni) in a 1 M KOH solution for
OER catalysis. The CoNi-P-3DHFLM, CoMn-P-3DHFLM, and
CoCu-P-3DHFLM samples presented an overpotential of 292, 318,
and 307 mV to reach 10 mA/cm2 and Tafel slopes of 84, 98, and
88 mV/dec, respectively, along with good stability. The enhanced
performance compared to Co-P-3DHFLM was attributed to a
synergistic interaction between the metals and to the exposition of
more active sites in the bimetallic samples (Li et al., 2019).

Bai X. et al. used Co-Fe-based spherical nanoparticles coated
with an amorphous carbon shell, whose active species was a Co7Fe3
alloy, for OER in alkaline medium (1 M KOH). This material
showed an overpotential of 272 mV for 10 mA/cm2 and a Tafel
slope of 40 mV/dec, surpassing most of their monometallic-based
counterparts while remaining stable under the reaction conditions.
The performance was attributed to the synergy between Co and Fe
due to their strong electronic interaction, which lowered the
activation energy for OER, favoring the reaction kinetics (Bai X.
et al., 2021). Liu et al. presented the synthesis of a P-modified hollow,
highly porous, and conductive CoFe alloy (Fe-Co-P) nanosphere

TABLE 1 OER electrocatalysts and their key performance indicators: transition metal oxides.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

NiFeOx AGHT-1 380 - 1 M KOH Moschkowitsch et al. (2022)

P-NiO/NiCo2O4 290 49.6 1 M KOH Zhang et al. (2022b)

MnOx nanowire arrays 538@44.7 mA/cm2 106 1 M KOH Luo et al. (2017b)

SiO4/MnO2 640 - 0.1 M H2SO4 Zand et al. (2023)

Cu1.97CoO3 - 70.15 1 M KOH Zhang et al. (2012)

Cu0.7Co2.3O3 491 - 1 M KOH Park et al. (2016)

CoOx(Ce) 261@20 mA/cm2 65.7 1 M KOH Xu et al. (2019)

CuO/Ni@400 364 90 1 M KOH Roy et al. (2019)

CuO-A/CF 297 72.8 1 M KOH Wang et al. (2020)

6CuO2-Fe2O3 510 - 1 M KOH Ye et al. (2022)

FeNiCoOx/GC 240 45 1 M KOH Bai L. et al. (2019)

FeNiCoOx/NF 203 75 1 M KOH Bai L. et al. (2019)
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structure and tested it for OER in alkaline medium (1 M KOH). It
was determined that the optimized alloy for OER had a 3:2 Fe/Co
ratio and showed an overpotential of 252 mV to reach 10 mA/cm2

and a Tafel slope of 33 mV/dec, while also presenting very good
stability in the reaction conditions. The enhanced performance of
the electrocatalyst was attributed to the high valent state of Fe
stabilizing the low valent state of Co and the alloy formation being
able to fine tune the energetics of all the intermediates involved in
the water oxidation mechanism (Liu et al., 2018).

Zhang et al. reported the application of a coral-like carbon-
wrapped NiCo alloy (Co0.5Ni0.5/rGO) for OER at alkaline
conditions (1 M KOH). The sample showed an overpotential of
288 mV to achieve 10 mA/cm2 and a Tafel slope of 103 mV/dec,
while demonstrating stability in the tested conditions, surpassing their
monometallic counterparts and the benchmark RuO2 catalyst in the
same conditions. The improved performance is attributed to the
graphene sheets introducing a more homogeneous metal
distribution, thus exposing more active sites, and to the synergistic
interaction between Ni and Co, with Ni regulating the electronic
structure of Co, favoring the OER performance (Zhang et al., 2020).

Kumar et al. described the use of bimetallic copper-nickel alloy
nanorods textured nanoparticles supported on graphitic carbon
(Cu3.8Ni@C) samples for OER in alkaline conditions (1M KOH).
The best-performing sample presented an overpotential of 233 mV
for 10 mA/cm2 and a 114mV/dec Tafel slope and good stability
properties, which fared well against state-of-the-art IrO2 (Kumar
et al., 2020). Zhu et al. disclosed the use of a Cu nanoparticles-
embedded N-doped carbon nanowire array on copper foam (Cu-N-
C NA/CF) as an OER electrocatalyst in alkaline medium (1M KOH).
The sample presented an overpotential of 314mV to reach 20mA/cm2,
a Tafel slope of 115mV/dec, andwas demonstrated to be a stable catalyst
in OER conditions for at least 16 h. The performance was attributed to
the in-situ formation of CuO nanoparticles, which acted as the true OER
catalyst, and to the increased electrochemical surface area, which exposed

more active sites (Zhu et al., 2018). Jiang et al. tested a series of Cu-based
alloys (CuM,M = Fe, Co, Ni; FeCo, FeNi, CoNi; FeCoNi) for OER in an
alkaline electrolyte (1M KOH). The FeCoCu and FeCoNiCu samples
presented, after optimization, an overpotential of 265 and 269 mV for
10 mA/cm2 and Tafel slopes of 49 and 48.9 mV/dec, respectively, along
with proper stability properties, outperforming the benchmark RuO2

electrocatalyst. The enhanced performance relative to Cu was attributed
to synergistic effects between the highly conductive Cu and the OER
active Fe, Co, and Ni elements (Jiang et al., 2021).

Table 2 presents the performance parameters for each
analyzed OER alloy-based catalyst. Metals and alloys often
cannot survive in harsh acidic or basic environments mainly
due to the strongly corrosive media, meaning they have to
frequently be embedded or decorated in relatively stable hosts,
such as carbon materials (Wu et al., 2020). This, amongst other
reasons, fueled researchers to investigate more compelling and
innovative materials, such as MOFs.

2.3 Transition MOFs and MOF-derived
electrocatalysts for OER

MOFs are a class of porous organic-inorganic hybrid materials
formed by the linkage of inorganic metal ions/clusters and organic
ligands, generating a 3D structure with long-range crystallinity.
Recently, MOFs have gained attention from scientists due to
their inherent properties, including high surface area, low
density, high porosity, and tunable structure. Additionally, they
are known for their abundance of metal active sites, utility as
templates to generate other materials, and the high adjustability
of chemical components (Jiang et al., 2016; Lu et al., 2017; Jia et al.,
2022; Tseng et al., 2022). MOFs have found numerous applications,
such as in catalysis, gas storage and separation, optics, drug delivery,
adsorption, and chemical sensing (Lu et al., 2017; Li et al., 2020; Jia

TABLE 2 OER electrocatalysts and their key performance indicators: transition metal alloys.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

NiFe NPs 298 51.9 1M KOH Lim et al. (2020)

Hep-phase NiFe NPs 226 41 1 M KOH Wang C. et al. (2019)

NiMo-FG 351 69 1 M KOH Jeong et al. (2020)

MnFeCoNi 285 83.7 1 M KOH Dai et al. (2019)

CoNi-P-3DHFLM 292 84 1 M KOH Li et al. (2019)

CoMn-P-3DHFLM 318 98 1 M KOH Li et al. (2019)

CoCu-P-3DHFLM 307 88 1 M KOH Li et al. (2019)

Fe1Co3Ox@C-800 272 40 1 M KOH Bai X. et al. (2021)

Fe-Co-P 252 33 1 M KOH Liu et al. (2018)

Co0.5Ni0.5/rGO 288 103 1 M KOH Zhang et al. (2020)

Cu3.8Ni@C 233 114 1 M KOH Kumar et al. (2020)

Cu-N-C NA/CF 314@20 mA/cm2 115 1 M KOH Zhu et al. (2018)

FeCoCu 265 49 1 M KOH Jiang et al. (2021)

FeCoCuNi 269 48.9 1 M KOH Jiang et al. (2021)
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et al., 2022). As such, research efforts have also been dedicated to
producing cost-effective and high-performance electrocatalysts
based on pristine MOFs or MOF-derived materials for
applications in the OER, HER, and ORR.

Ma et al. reported the in-situ synthesis of MOF-encapsulated
bimetallic nanoparticles by etching Ni-Cu alloy nanoparticles
without additional metal precursors and its performance for
alkaline OER (1 M KOH). The bimetallic encapsulated MOF had
better activity than its monometallic counterparts, showing a current
density 1.6 and 71 times higher than for the Ni encapsulated and Cu
encapsulated MOFs, respectively, at an overpotential of 624 mV and
a Tafel slope of 98 mV/dec, and good stability. The higher activity
was attributed to a higher number of exposed active sites and to
synergistic effects between the Ni and Cu metals (Ma et al., 2019).

Tseng et al. disclosed the use of NiFe bimetallic MOFs deposited on
pretreated nickel foam (NF) and processed by low-pressure plasmaswith
different composition atmospheres as OER electrocatalysts in alkaline
electrolyte (1 M KOH). The electrocatalytically optimized sample, NiFe-
MOFs/NF-AH, treated with a 95% argon +5% H2 atmosphere,
presented an overpotential of 149mV to achieve 10mA/cm2 and a
Tafel slope of 54 mV/dec, along with good stability (Tseng et al., 2022).
MOFs are often used as precursors for low-cost highly-active
electrocatalysts. One example comes from Jiang et al., who used Fe-
Ni-based MOFs as self-templates to synthesize several Fe-Ni-Ox oxide
architectures with different Fe/Ni ratios and tested those for OER in
alkaline medium (0.1M KOH). The obtained results indicated that the
performance was closely related to the Fe/Ni ratio, and the optimized
sample, Fe0.5Ni0.5Ox, needed a 584 mV overpotential to achieve 10 mA/
cm2 and had a Tafel slope of 72 mV/dec, with good stability properties
and performance comparable to that of benchmark RuO2 catalyst. The
performance is attributed to the in-situ formation of NiOOH and to the
presence of spinel NiFe2O4 species, which act as the active phases for
OER (Jiang et al., 2016).

Ji et al. detailed the synthesis of a marigold flower-like MOF-
aided manganese vanadium oxide and its OER performance in
alkaline medium (1 M KOH). The MOF MnV oxide microflower
required a 310 mV overpotential to reach 50 mA/cm2 and had a
Tafel slope of 51.4 mV/dec, comparing its performance to the
benchmark RuO2 electrocatalyst and outperforming the
monometallic MOF Mn and MOF V oxide microflower
counterparts while also being able to sustain OER for over 50 h
at a current density of 50 mA/cm2. The activity was attributed to a
higher number and exposition of active sites (Ji et al., 2023).

Zhao et al. assembled CoNi-based ultrathin MOF nanosheets
(NiCo-UMOFNs) and tested them for OER in alkaline conditions
(1 M KOH). The bimetallic MOF nanosheets presented an
overpotential of 250 mV to reach 10 mA/cm2, a Tafel slope of
42 mV/dec, and good stability properties, outperforming its
monometallic counterparts and the benchmark RuO2

electrocatalyst, especially when supported in copper foam, since
the overpotential to reach 10 mA/cm2 reduces to 189 mV. The
performance was attributed to the existence of unsaturated metal
sites and to the coupling effect between Ni and Co metals (Zhao
et al., 2016). Zhou et al. designed a series of isostructural hierarchical
bimetallic CoNi MOF nanostructures (CTGU-10a2-d2) with
different Co/Ni ratios and tested them towards OER in an
alkaline electrolyte (0.1 M KOH). The best performing MOF,
CTGU-10c2, presented an overpotential of 240 mV to achieve
10 mA/cm2, a Tafel slope of 58 mV/dec, and was stable in the
OER conditions, surpassing the performance of the benchmark
RuO2 electrocatalyst. This performance was attributed to
synergistic effects between the metal atoms, the hierarchical
nanobelt structure, and the presence of unsaturated metal sites
(Zhou et al., 2019).

Li et al. produced a Cu-basedMOF directly supported on copper
foam (MOF [Cu(OH)2]/CF) and tested its activity towards OER in
alkaline medium (1 M KOH). The resulting material used an
overpotential of 330 mV to achieve 10 mA/cm2 and had a Tafel
slope of 108 mV/dec, with activity comparable to the RuO2

electrocatalyst, while presenting good durability. The
performance is attributed to the exposition of more active sites
and to the in-situ formation of Cu oxide species, which act as active
electrocatalysts towards OER (Li et al., 2020). Cheng et al. studied a
bimetallic Cu-Co-based MOF nanobox as an OER electrocatalyst in
alkaline medium (1 M KOH). The material required an
overpotential of 271 mV to reach 10 mA/cm2 and presented a
Tafel slope of 63.5 mV/dec, all while being stable in the OER
conditions, outperforming the monometallic counterparts and the
benchmark RuO2 electrocatalyst. The improved performance was
attributed to the in situ formation of the bimetallic oxyhydroxide,
which acts as the true catalyst with intrinsically higher
electrocatalytic performance, synergistically enhanced by the Cu
sites, while the Co sites act as the active ones (Cheng et al., 2021).

Table 3 presents a compilation of the analyzed MOFs OER
performance parameters. In general, MOFs present poor electrical
conductivity, poor stability, low mass permeability, and blockage of

TABLE 3 OER electrocatalysts and their key performance indicators: transition MOFs.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

Ni-Cu@Cu-Ni-MOF - 98 1 M KOH Ma et al. (2019)

NiFe-MOFs/NF-AH 149 54 1 M KOH Tseng et al. (2022)

Fe0.5Ni0.5Ox 584 72 1 M KOH Jiang et al. (2016)

MOF MnVO microflower 310@50 mA/cm2 51.4 1 M KOH Ji et al. (2023)

NiCo-UMOFNs 250 42 1 M KOH Zhao et al. (2016)

CTGU-10c2 240 58 0.1 M KOH Zhou et al. (2019)

MOF[Cu(OH)2]/CF 330 108 1 M KOH Li et al. (2020)

CoCu-MOF-NBs 271 63.5 1 M KOH Cheng et al. (2021)
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metal centers by organic ligands (Zhao et al., 2016; Lu et al., 2019;
Ma et al., 2019), limiting their use in electrocatalytic applications. A
way to circumvent this is the utilization of MOF-derived
electrocatalysts, normally via calcination, to generate carbon
materials with enhanced conductivity and stability. In spite of
this, POMs have been studied as an alternative to MOF and
MOF-derived electrocatalysts.

2.4 Transition metal POMs for OER

Amidst the collective effort to find alternatives to the noble
metal-based electrocatalysts, POMs have appeared as a viable and
highly sought-out alternative. POMs are inorganic redox-active
transition metal (e.g., V, W, and Mo) oxide ion clusters linked
together by oxygen atoms with a high number of redox centers,
which grants them significant advantages when multi-step electron
transfer reactions are involved (Horn et al., 2021; Gusmão et al.,
2022). Other positive aspects of POMs include stability under
oxidative OER conditions, thermal stability, rapid and highly
reversible electrochemical activity, and finely tunable structures to
suit the specific application needs (Luo W. et al., 2017; Horn et al.,
2021; Gusmão et al., 2022).

They possess an ordered 3D framework structure that can be
easily tailored to introduce redox-active transition metals (that can
act as redox centers) into the framework. POMs can serve as
structural agents to form nanostructures with other types of
materials, such as oxides. Additionally, they can be encapsulated
in various materials, such asMOFs, to derive the so-called POMOFs.
These examples showcase the versatility that POMs offer (Horn
et al., 2021). Still, one cannot overlook the conductivity and stability
problems present in POMs, which can fortunately be circumvented
by combining themwith appropriate supports, such as carbon-based
supports, organic supports, or by confining them in MOFs or
Covalent Organic Frameworks. The incorporation of POMs in a
more conductive support with adequate binding strength can
prevent leaching problems and inhibit agglomerations, both
increasing stability and maximizing the number of active sites
present (Wang C. et al., 2023). Relative to the catalysis
application, the Keggin variation structure is best suited due to

its proton binding sites and electron-rich oxygen sites, which
participate in acid and base-catalyzed reactions, respectively. A
variation of the Keggin structure is the lacunary Keggin structure,
which results from removing a M=O moiety, and M can be
substituted by a transition metal such as Ni, Mn, Co, or Cu to
increase the redox catalytic properties (Horn et al., 2021; Gusmão
et al., 2022).

Imani et al. produced a Keggin tungsten POM containing organic-
inorganic hybrid composite material directly on a carbon paste
electrode and later incorporated Ni and Fe ions (Ni-Fe/oA-POM/
CPE). Afterward, they tested its performance towards OER in an
alkaline electrolyte (0.1 M NaOH). The resulting composite required
a 330 mV overpotential to reach 10 mA/cm2 and had a Tafel slope of
113 mV/dec. It presented good stability in alkaline OER conditions,
since after 10 h at a constant overpotential of 300 mV, it lost almost no
activity, with a minor decrease after 500 cycles (Imani et al., 2018).

Sood et al. constructed a rare POM cluster-based solid,
(C5H7N2)6[NiW12O44], whose structure is shown in the center
section of Figure 5, and tested its performance towards OER in
alkaline medium (1M KOH). The synthesized POM was able to
provide 10mA/cm2 at 347 mV of overpotential and showed a
130 mV/dec Tafel slope. It maintained a current density of 10 mA/
cm2 for up to 96 h, indicating good stability and outperforming state-of-
the-art RuO2 electrocatalyst. The observed performancewas attributed to
the in situ formation ofWOx (x = 1,2) and NiO, Ni(OH)2, and NiOOH,
which act as active phases in the electrocatalyst (Sood et al., 2022).

Al-Oweini et al. were the first ones to report the activity of a
tetramanganese [MnIII3MnIVO4(CH3COOH)3(A-αSiW9O34)]

6- POM
towards photocatalytic OER in acid conditions (a pH 5 buffer was
used) (Al-Oweini et al., 2014). Goberna-Ferrón et al. researched the
electrocatalytic activity of a tetramanganese [Mn4(H2O)2(PW9O34)2]

10-

sandwich-type POM towards OER in neutral conditions. The tested
POM showed considerable activity for OER, although it reached
negligible levels after 30 min. This was owed to the formation of
MnO2, which is inactive for water oxidation, indicating degradation
and instability of the POM under harsh oxidative reaction conditions.
The same effect was observed when the POM was used as a
heterogeneous catalyst (Goberna-Ferrón et al., 2015).

Imani et al. designed aMn-containing POM-based composite that
was later deposited onto a rotating carbon paste electrode by two

FIGURE 5
Different hetero-polyoxometalates belonging to the 1:12 series of POMs with various heteroatoms (adapted from Sood et al., 2022).
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immobilization methods: direct formation and physical mixing. The
resulting electrodes were tested for OER in basic medium (1MKOH),
attaining a 380 and 440 mV overpotential to reach 10 mA/cm2 and a
Tafel slope of 111 and 133 mV/dec, respectively. In terms of stability
and durability, they were able to perform for over 10 h while retaining
93.6% and 93.3% of current density, showing a small increase in
overpotential (18 and 20 mV, respectively) after 600 cycles to keep
10 mA/cm2 (Imani et al., 2021).

Zhai et al. disclosed the synthesis of FeCoPMo12 POM through a
room-temperature coprecipitation method, resulting in a porous
and amorphous compound tested for OER in alkaline electrolyte
(1 M KOH). The POM presented an overpotential of 258 mV to
reach 10 mA/cm 2, a Tafel slope of 33 mV/dec, and stability for over
10 h of OER with a current loss of 8.3%, surpassing FePMo12,
CoPMo12 and hydroxide counterparts, and benchmark RuO2

electrocatalyst. The performance was attributed to the synergistic
effects of Fe incorporation, which activates the active sites (Zhai
et al., 2017).

Kang et al. reported the synthesis and use of dodecahedral Co, N,
and C co-doped POMs with a frame-like yolk-shell nanostructure as
OER electrocatalysts in an alkaline solution (1 M KOH). After
optimization, the best-performing sample required an
overpotential of 241 mV to achieve 10 mA/cm2, while also having
a Tafel slope of 75.8 mV/dec and long-term electrochemical stability
(over 24 h with only a slight change in the output current density),
outperforming the benchmark IrO2 electrocatalyst. The
performance is credited to uniform N, C, and Co doping and a
higher exposition of active sites (Kang et al., 2022).

Luo W. et al. described the deposition of Dexter-Silverton POM
microcrystals, Co6.8Ni1.2W12O42(OH)4(H2O)8, in a nickel foam
substrate and its use as an OER electrocatalyst in alkaline medium
(0.1 MKOH). The resulting composite needed a 360 mV overpotential
to reach a 10 mA/cm2 current density and showed a Tafel slope of
126 mV/dec, while also retaining 85% of its current density in a 10 h
test at a 440 mV overpotential test with no degradation of its crystal
structure and morphology (Luo W. et al., 2017).

Abdelkader-Fernández et al. reported the synthesis of two
POM@MOFs hybrids, SiW9Co3@ZIF-8 and SiW9Co3@ZIF-67,
and tested their activities towards OER in 0.1 M KOH

electrolyte. It is demonstrated that the SiW9Co3@ZIF-67 hybrid
has a more effective electron transfer process due to the presence of
Co2+ nodes in the ZIF-67 skeleton, resulting from a synergistic
interaction between the Co-based-POM encapsulated in the Co-
based-MOF. This effect increases performance greatly: the
resulting SiW9Co3@ZIF-67 presented a performance that well
exceeded benchmark RuO2 and IrO2 electrocatalysts even
though these benchmark materials exhibit higher “intrinsic”
non-area dependent performances towards the OER in the
roughness-corrected polarization curves (Abdelkader-Fernández
et al., 2020).

Yu et al. studied the activity of the sandwich-type
[Cu3(SbW9O33)2(H2O)3]

12- POM towards OER in neutral
conditions and as a homogeneous catalyst. The tested POM
presented good overall stability properties and a Tafel slope of
113 mV/dec, and it was demonstrated that the POM acted as the
real catalyst in the OER conditions (Yu et al., 2018).

Table 4 summarizes the discussed POM-based electrocatalysts
and their main OER performance parameters.

3 Oxygen reduction reaction (ORR)

The ORR converts molecular oxygen to water via electron
acceptance, which can occur through a 4e− direct formation path
or through a two-step 2e− pathway that produces a peroxide as an
intermediate. Similar to the OER, there are slight differences in the
reaction intermediates when the reaction proceeds in alkaline media
versuswhen it proceeds in acidic media, as shown below in equations
2.3 through 2.8 for:

Alkaline conditions
4e− pathway:

O2+2H2O + 4e− #4OH− (2.3)
2e− pathway:

O2 +H2O + 2e−#HO−
2 + OH− (2.4)

HO−
2 +H2O + 2e−#3OH− (2.5)

TABLE 4 OER electrocatalysts and their key performance indicators: transition metal POMs.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

Ni-Fe/oA-POM/CPE 330 113 0.1 M NaOH Imani et al. (2018)

(C5H7N2)6[NiW12O44] 347 130 1 M KOH Sood et al. (2022)

Mn/oMA-PW/RCPE 380 111 1 M KOH Imani et al. (2021)

Mn-oMA-PW + RCPE 440 133 1 M KOH Imani et al. (2021)

FeCoPMo12 258 33 1 M KOH Zhai et al. (2017)

CNCP-6 241 75.8 1 M KOH Kang et al. (2022)

NiCo-POM/Ni 360 126 0.1 M KOH Luo et al. (2017a)

SiW9Co3@ZIF-67 470 113.6 0.1 M KOH Abdelkader-Fernández et al. (2020)

SiW9Co3@ZIF-8 - 69.4 0.1 M KOH Abdelkader-Fernández et al. (2020)

[Cu3(SbW9O33)2(H2O)3]
12- - 113 80 mM Tris–HCl solution Yu et al. (2018)
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Acidic conditions
4e− pathway:

O2 + 4H+ + 4e− #2H2O (2.6)
2e− pathway:

O2 + 2H+ + 2e− #H2O2 (2.7)
H2O2 + 2H+ + 2e− #2H2O (2.8)

The main applications of ORR are in fuel cells and metal-air
batteries, occurring during discharge at the cathode. Like OER, it
presents sluggish kinetics and thus requires high overpotentials
(Horn et al., 2021), emphasizing the need for highly active
electrocatalysts. Furthermore, from an ideal perspective, the
electrocatalyst would be bifunctional, i.e., it would also show
good activity towards OER, as the reaction occurs during the
charging process in these applications.

Generally, the 4e− pathway is preferred because it has higher
reaction kinetics and efficiency (Lu et al., 2019). Additionally,
peroxide formation is avoided, which is particularly critical
because it is a strong oxidant that can lower the electrode
performance over time and damage the structure of fuel cells
via degradation of the polymer electrolyte membrane (Lee and
Popov, 2007). However, the 2e− pathway can be preferred if the
objective is peroxide production, since the electrochemical
process may be more cost-effective than conventional technologies
(Zheng et al., 2021).

The best metal electrocatalyst for ORR is Pt, as it shows high
activity and selectivity towards the 4e− pathway. However, Pt is scarce
(more than gold and silver) (Zhang C. et al., 2017), and thus an
expensive noble metal, while also having durability issues, especially
when Pt-basedmaterials are concerned (Zhang C. et al., 2017; Lu et al.,
2019). This encourages researchers to seek out more cost-effective,
highly active, and durable electrocatalysts based on cheaper and earth-
abundant early transition metals (Ni, Co, Cu, Mn, etc.) to make these
applications economically viable at an industrial scale.

3.1 Transition metal oxides for ORR

Cui et al. prepared porous NiO/NiCo2O4 nanotubes and tested
their activity for the ORR in alkaline conditions (0.1 M KOH). The
prepared composite performs similarly to state-of-the-art Pt/C
electrocatalysts, having close onset potentials but with the oxides
having a higher limiting current density. Additionally, the tested
electrocatalyst showed higher stability than Pt/C (87% of current
retention after 40,000 s vs 70% for Pt/C) and exhibited resistance to
methanol crossover. The obtained Tafel slope was 61.8 mV/dec,
and the reaction mechanism followed the 4e− direct reduction
path. The activity was attributed to the unique porous tubular
structure with homogeneous oxide distribution along the surface
(Cui et al., 2014).

Sidhureddy et al. disclosed the synthesis of NixCo3-xO4

mesoporous spinel nano-oxides with different morphologies
based on the Ni/Co ratio and tested their activities towards the
ORR in alkaline electrolyte (0.1 M KOH). The best-performing
sample, NCO-1 (1:2.06 Ni/Co ratio), presented an onset potential
of 0.9 V vs RHE and was three times more active than its mono-
metal oxide counterparts, while also exhibiting great tolerance to

methanol crossover (higher than benchmark Pt/C electrocatalyst),
good general stability (94% current retention after 300 min) and a
selective 4e− reduction pathway. The performance was attributed to
the abundance of octahedral site cations and defective oxygen sites
in the structure (Sidhureddy et al., 2019).

Liu and Qin tested graphene-supported β-MnO2 nanoparticles
(MnOx/graphene) for the ORR using an alkaline electrolyte (6 M
KOH). The composite showed a Tafel slope of 91 mV/dec and an
average number of exchanged electrons of 2.5, meaning that the
composite was more selective towards the 2e− peroxide forming
path. The activity was attributed to the synergistic interactions
between MnO2 and graphene sheets (Liu and Qin, 2015).

Swetha et al. designed manganese oxide samples with
different morphologies (nanowires, nanoflowers, and
nanoparticles) and tested them towards the ORR in alkaline
medium (0.1 M KOH). The best-performing Mn oxide
morphology was the nanowire structure, which showed an
onset potential of 0.83 V vs RHE and a 1.75 mA/cm2 current
density. This increased activity was attributed to the higher
surface area contained by the nanowire structure, which
increases active site exposition (Swetha et al., 2018).

Draskovic and Wu tested a series of cuprous delafossite oxides
(CuBO2; B = Sc, Y, La) supported on carbon black towards the
ORR in an alkaline electrolyte (0.1 M KOH). The results
demonstrated superior activity in the presence of carbon support.
The oxides exhibited similar onset potentials and diffusion limiting
currents, with a number of exchanged electrons in the range of
2.1–2.2 for CuScO2 and CuYO2 and in the range of 2.3–2.9 for
CuLaO2, indicating that the first two oxides prefer the 2e− peroxide
pathway while CuLaO2 tends for the 4e− pathway. In addition, the
samples had Tafel slopes of −59, −55, and −56 mV/dec for CuScO2,
CuYO2, and CuLaO2 (Draskovic and Wu, 2017).

Saianand et al. reported the use of dispersed Cu/CuO
nanospecies on mesoporous fullerenes (Cu-MFC60) samples for
the ORR in alkaline conditions (0.1 M KOH). The optimized
electrocatalyst, Cu(15%)-MFC60, presented an onset potential of
0.86 V vs RHE, a half-wave potential of 0.76 V vs RHE a diffusion
limiting current density of −5.18 mA/cm2, Tafel slope of 82 mV/dec,
high selectivity towards the 4e− transfer path, and improved stability,
a performance comparable to that of benchmark commercial Pt/C
electrocatalyst. The activity of the composite was attributed to the
well-defined mesoporous features, abundant active sites, moderate
surface area, and synergistic interactions between the metal and the
support matrix (Saianand et al., 2020).

Table 5 compares the ORR performance parameters for the
discussed oxide-based electrocatalysts.

3.2 Transition metal alloys for ORR

Sun et al. disclosed the synthesis and use of a 3D low-cost Co3Fe7
nanoparticles/nitrogen, manganese-codoped porous carbon
(Co3Fe7/N, Mn-PC) as an ORR electrocatalyst in an alkaline
electrolyte (0.1 M KOH). The composite material exhibited an
onset and half-wave potential of 0.98 and 0.87 V and a Tafel
slope of 86.9 mV/dec, outperforming the mono and bimetallic
counterparts and the benchmark Pt/C electrocatalyst.
Additionally, the average number of exchanged electrons was
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4.01, and impressive methanol crossover resistance and stability
were exhibited (i.e., current almost unchanged after adding 1 M
CH3OH and negative shift of 9 mV to the onset potential after
2,000 CV scans). The performance was attributed to a higher
number of active sites and nitrogen ligands chelated with Fe and
Co, increasing the charge transfer kinetics, and to the synergistic
effects of Mn and N doping, which adjusted the electronic structure,
thus favoring catalysis (Sun et al., 2021).

Sun et al. studiedMo-Co alloyed nitrides supported on nitrogen-
doped carbon nanocages (CoxMo1-xNy/NCNCs) as an
electrocatalyst for ORR in acidic medium (0.5 M H2SO4). The
best-performing electrocatalyst, Co0.5Mo0.5Ny/NCNCs, combined
the advantages of high activity of Co nitride and good stability of
Mo nitride in acidic conditions, which translated into an onset
potential of 0.81 V vs RHE, good selectivity to the 4e− reduction
pathway, high stability (>80% current retention after 100 h and
immunity to methanol crossover. The activity was attributed to the
cobalt active reaction sites, smaller particle size that inhibited
agglomeration, thus exposing more sites, and the synergistic
effects between the metals (Sun et al., 2015).

Sajeev et al. synthesized a trimetallic NiCoSn alloy and tested
its electrocatalytic properties towards the methanol oxidation
reaction and the ORR in alkaline medium (1 M KOH).
Regarding the ORR, the trimetallic sample presented an onset

and half-wave potential of 0.80 and 0.72 V vs RHE, respectively.
Additionally, it had good selectivity for the 4-electron reduction
pathway and exhibited good stability under ORR conditions and
during methanol crossover. The verified performance was
attributed to a higher abundance of metal redox active sites,
larger surface area, and enhanced electron transport (Sajeev
et al., 2023).

Zhang L. et al. disclosed the use of 50 nm Cu/Pd tetrapod as an
ORR electrocatalyst in alkaline medium (0.1 M KOH). The material
exhibited a half-wave potential of 0.90 V vs RHE and a 54 mV/dec
Tafel slope, performing closely to state-of-the-art Pt/C
electrocatalyst. The reduction was verified to follow the 4e− direct
reduction mechanism, and accelerated durability tests showed
excellent retention of both current and morphology after
10,000 cycles at ORR conditions. This performance was
attributed to the synergistic effects of the alloy and sharp-tip
effects, which enabled negative charge accumulation on Pd atoms
at the tetrapod tips (Zhang L. et al., 2018).

Table 6 contains the performance indicators for the analyzed
ORR alloy-based electrocatalysts. Transitionmetals tend to leach out
of alloy catalysts under fuel cell operating conditions, causing a
reduction of the catalytic activity for ORR (Lee and Popov, 2007). As
such, other types of materials are also being investigated for this
reaction, including MOFs and POMs.

TABLE 5 ORR electrocatalysts and their key performance indicators: transition metal oxides.

Electrocatalyst Onset potential
(V vs RHE)

Tafel slope
(mV/dec)

Number of
exchanged e-

Electrolyte Source

NiO/NiCo2O4 nanotubes 0.92 61.8 3.9 0.1 M KOH Cui et al. (2014)

NCO-1 0.90 - 3.96 0.1 M KOH Sidhureddy et al.
(2019)

MnOx/graphene - 91 2.5 6 M KOH Liu and Qin (2015)

MnOx nanowires 0.83 - - 0.1 M KOH Swetha et al. (2018)

CuScO2 - 59 2.1–2.2 0.1 M KOH Draskovic and Wu
(2017)

CuYO2 - 55 2.1–2.2 0.1 M KOH Draskovic and Wu
(2017)

CuLaO2 - 56 2.3–2.9 0.1 M KOH Draskovic and Wu
(2017)

Cu(15%)-MFC60 0.86 82 3.99 0.1 M KOH Saianand et al. (2020)

TABLE 6 ORR electrocatalysts and their key performance indicators: transition metal alloys.

Electrocatalyst Onset potential
(V vs RHE)

Half-wave
potential
(V vs RHE)

Tafel slope
(mV/dec)

Number of
exchanged e-

Electrolyte Source

Co3Fe7/N, Mn/PC 0.98 0.87 86.9 4.01 0.1 M KOH Sun et al.
(2021)

Co0.5Mo0.5Ny/NCNCs 0.81 - - 3.65–3.85 0.5 M H2SO4 Sun et al.
(2015)

NiCoSn 0.80 0.72 - 3.9 1 M KOH Sajeev et al.
(2023)

50 nm CuPd tetrapod - 0.90 54 4 0.1 M KOH Zhang L. et al.
(2018)
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3.3 Transition MOFs and MOF-derived
electrocatalysts for ORR

Qin et al. designed a series of nanocomposites derived from
bimetallic iron/nickel MOFs and nitrogen-doped graphene denoted
as Fe/Ni-MOFs/NG, which was tested in alkaline electrolyte for the
ORR (0.1 M KOH). The best performance was shown by Fe/Ni-
MOF/NG-20, which had an onset potential of 1.09 V, exchanged an
average of 3.93 electrons, a Tafel slope of 58.2 mV/dec, methanol
crossover resistance, and good stability features at ORR conditions.
The performance was attributed mainly to the unique structure,
which has Fe/Ni-MOF acting as catalyst and NG acting as cocatalyst,
and high exposed surface area due to the hierarchical porous
structure (Qin et al., 2019).

Rehman et al. synthesized Ni-N carbon nanotubes (Ni-N-
CNTs) derived from ZIF-8 MOF crystals and tested their
activities for ORR at alkaline conditions (0.1 M KOH). The
electrocatalyst presented an onset and half-wave potential of
0.87 and 0.75 V vs RHE, a Tafel slope of 84 mV/dec, a
transferred number of electrons around 3.9, and good stability
properties. It also presented a −5.51 mA/cm2 limiting-current
density, outperforming state-of-the-art Pt/C electrocatalyst, which
showed a limiting-current density of −5.2 mA/cm2 (Rehman
et al., 2022).

Tong et al. reported the synthesis of a series of cobalt
nanoparticles/N-doped carbon catalysts derived from ZIF/CNT
nanonecklaces and tested their use for the ORR in alkaline
electrolyte (0.1 M KOH). The best-performing sample had an
onset potential of 0.92 V vs RHE, exchanged 4 electrons during
the reaction, and showed good stability after 1,000 cycles at ORR
conditions. The verified performance was attributed to the
synergistic effect of cobalt content and the well-dispersed one-
dimensional structure (Tong et al., 2020).

Feng et al. developed a N-doped porous graphitized carbon-
supported cobalt disulfide derived from ZIF-67 MOF and tested its
activity towards ORR in alkaline conditions (0.1 M KOH). The
sample showed an onset and a half-wave potential of 0.86 and 0.79 V
vs RHE, a Tafel slope of 56 mV/dec, and a number of transferred

electrons in the 3.62–3.72 range, exhibiting similar performance to
the benchmark Pt/C ORR electrocatalyst, while showing better
stability properties in methanol crossover conditions and after
prolonged exposure to ORR conditions (1,000 cycles). The
performance was attributed to N-doping, enhanced conductivity
given by the porous graphitized carbon support, and the presence of
active N-Co sites (Feng et al., 2019).

Mani et al. produced a Cu-based MOF [(Cu4Cl)3(H0.5BTT)8
(H2O)12]·3MeOH·9DMF with tetrazole ligand (H3BTT = 5,5’-(1,4-
phenylene) bis(1H-tetrazole)) and tested its performance in alkaline
medium (0.05 M KOH). The MOF showed an onset and half-wave
potential of 0.94 and 0.78 V vs RHE, a number of transferred
electrons of approximately 4, exceptional methanol crossover (no
changes after addition of 1 M MeOH), and good cycling stability
(84% of current retained after 12 h), with no changes to the porous
morphology detected after ORR. The high activity was attributed to
the formation of nascent copper(I) moiety from copper (II), which is
also surrounded by nitrogen-rich tetrazole moiety, thus increasing
ORR activity (Mani et al., 2019).

Kim et al. reported the use of a Cu(II)-MOF-derived Cu@CuO2

core-shell nanocatalyst obtained via reduction with borohydride as
an electrocatalyst for the ORR in alkaline medium (0.1 M KOH).
The material presented an onset and half-wave potential of 0.93 and
0.86 V vs RHE, and an average of 3.97 electrons exchanged, as
shown in Figure 6, thus demonstrating good selectivity towards the
preferred ORR pathway. The activity was attributed to the
synergistic morphological effects of the core-shell structure, high
dispersion of CuO2, and strong adsorption of O2 on the catalyst
surface (Kim et al., 2018).

Table 7 compiles the key ORR performance parameters for the
MOF and MOF-derived electrocatalysts shown in this section.

3.4 Transition metal POMs for ORR

Zhang S. et al. designed a series of carbonaceous supported
(thermalized triazine-based frameworks (TTF), fluorine-doped TTF
(TTF-F), reduced graphene oxide or carbon Vulcan XC-72)

FIGURE 6
(A) Steady-state voltammograms of the ORR profiles at Cu@Cu2O core-shell nanocatalyst in O2-saturated 0.1 M KOH solution at different rotation
rates and scan rate of 20 mV/s and (B) the corresponding Koutecky–Levich (K–L) plots (adapted from Kim et al., 2018).
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precious-metal free POMs (based on Ni, Co, and Cu) and tested
their activities for ORR in alkaline medium (0.1 M KOH). The best-
performing composite, Cu6Ni7/TTF-F, presented an onset potential
of 0.91 V vs RHE and had an electron transfer number in the
3.92–3.94 range, while also presenting excellent stability (negligible
changes after 6,000 cycles). They also tested the influence of the
POM-core in the electrocatalyst, concluding that the Ni and Cu-
based POMs (either individually or having both metals in the POM)
induce higher activity when compared to the Co-POMs (Zhang S.
et al., 2017).

Zheng et al. produced a new Ni-POM compound, NiP4Mo6, and
later vulcanized it, testing both materials’ electrocatalytic activity
towards the ORR in alkaline conditions (0.1 M KOH). The materials
presented different selectivities for the ORR, with NiP4Mo6 being
selective to the 4e− path and its vulcanized counterpart being
selective to the 2e− path. The vulcanized material also presented
higher half-wave potential and lower Tafel slope: 0.77 and 0.73 V vs
RHE, and 98.1 and 106.2 mV/dec, respectively, for vulcanized and
unvulcanized samples. Both materials also presented excellent
stability with virtually no change after 8,000 cycles. The change
in the ORR mechanism was attributed to the vulcanization process,
which substituted O2- atoms with S2- atoms, affecting the adsorption
energies, thus weakening it in such a way that H2O2 production
would be favored (Zheng et al., 2021).

Sanji et al. reported the use of a POM-modified Pd8Ni2/rGO
(Pd8Ni2/rGO-POM) as an ORR electrocatalyst in alkaline
conditions (0.1 M KOH). It presented an onset potential of
~0.83 V vs RHE, a Tafel slope of 59.8 mV/dec, and an average of
3.9 electrons exchanged during the ORR. Furthermore, the
composite exhibited excellent methanol crossover tolerance and
better current retention properties after 10 h at ORR conditions,
outperforming the Pt/C state-of-the-art electrocatalyst. Lastly, the
performance was attributed to the Pd-Ni alloy interaction (their
interactions modify their electronic structures, contributing to
enhanced ORR performance), the rGO support (improves
conductivity and mass transfer), and the synergistic effects
between them and the POM (Sanji et al., 2021).

Ammam et al. performed cyclic voltammetry tests on the Mn-
substituted dissymmetrical Dawson-sandwich type and the Keggin

sandwich banana-shaped POMs, [MnII
4(H2O)2(H4AsW15O56)2]

18-

and [((MnIIOH2)MnII
2PW9O34)2(PW6O26)]

17- (Mn4As2W30 and
Mn6P3W24). Subsequently, they evaluated their activity towards
the ORR at pH 5 and pH 3, respectively. The results indicated that
both catalysts demonstrated activity towards the ORR, but a
deposited layer of Mn oxides (mainly MnO2) acted as the true
catalyst. This was further corroborated by performing additional
CV cycles, revealing an increase in the thickness of the oxide layer
and a corresponding enhancement in ORR activity (Ammam
et al., 2011).

Fernandes et al. disclosed the use of the Co-based sandwich
(TBA)7H3[Co4(H2O)2(PW9O34)2] POM, TBA-Co4(PW9)2, supported
on different carbon-based materials such as single-walled carbon
nanotubes (SWCNT), graphene flakes (GF), nitrogen-doped carbon
nanotubes (N-CNT), and nitrogen-doped few-layer graphene (N-FLG),
as ORR electrocatalysts in alkaline medium (0.1 M KOH). The
electrocatalysts had onset potentials ranging from 0.77 to 0.9 V vs
RHE, Tafel slopes ranging from 68 to 96 mV/dec, and electron
exchange numbers ranging from 2.7 to 4. POM@N-CNT is shown
to have an activity that surpasses the state-of-the-art Pt/C
electrocatalyst. Additionally, the electrocatalysts presented a cyclic
stability similar to that of commercial Pt/C and much higher
methanol stability. Lastly, all composite materials performed better
than their isolated supports, with Co4(PW9)2@N-CNT catalytic activity
outperforming Pt/C (Fernandes et al., 2018a).

Song et al. confined a cobalt-centered POM, [CoPW12]
6-, in the

void space of the ZIF-8 MOF and later prepared a Co-POM@MOF-
derived N-doped porous carbon composite via pyrolysis treatment to
test its performance towards ORR in alkaline electrolyte (0.1 M KOH).
The material presented a half-wave potential of 0.84 V vs RHE, a Tafel
slope of 63 mV/dec, an electron transfer number of 4.1, and good
stability properties (retains activity after 1,000 cycles) (Song et al., 2022).

Rousseau et al. synthesized a noble metal-free Co/Zn POM
complex supported on Vulcan carbon XC-72 (Co7Zn/C) and tested
its activity towards the ORR in alkaline medium (0.1 M KOH). The
material had an electron exchange number between 3.6 and 4,
signifying its selectivity towards the 4e-reduction path. It
presented activity comparable to commercial Pt/C, showing
higher stability after 11 h at ORR conditions and much higher

TABLE 7 ORR electrocatalysts and their key performance indicators: transition MOFs and MOF-derived electrocatalysts.

Electrocatalyst Onset potential
(V vs RHE)

Half-wave
potential
(V vs RHE)

Tafel slope
(mV/dec)

Number of
exchanged e-

Electrolyte Source

Fe/Ni-MOF/NG-20 1.09 - 58.2 3.925 0.1 M KOH Qin et al.
(2019)

Ni-N-CNTs 0.87 0.75 84 3.9 0.1 M KOH Rehman et al.
(2022)

ZIF/CNT-800-AL (Zn/Co =
2/8)

0.92 - - 4 0.1 M KOH Tong et al.
(2020)

CoS2@NC 0.86 0.79 56 3.62–3.72 0.1 M KOH Feng et al.
(2019)

[(Cu4Cl)3(H0.5BTT)8 (H2O)12]·
3MeOH·9DMF

0.94 0.78 - 4 0.05 M KOH Mani et al.
(2019)

Cu@CuO2 core-shell 0.93 0.86 - 3.97 0.1 M KOH Kim et al.
(2018)
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methanol crossover tolerance. The material also showed good
activity in neutral medium, compared to commercial Pt/C, but
with higher stability (Rousseau et al., 2015).

Liu et al. disclosed a top-down approach to deposit POM-like
metal oxo clusters by using the solution-stable Keggin-type
polyoxomolybdate H3PMo12O40 (PMo12) as a precursor to deposit
[Mo-oxo]n (n = 1–20) cluster on mesoporous carbon, synthesizing
three different composites, whose synthesis processes are presented
schematically in Figure 7. Their electrocatalytic activity for the ORR in
alkaline electrolyte (0.1 M KOH) was tested. The composites had an
onset potential in the range of 0.75–0.93 V vs RHE, Tafel slopes in the
range of 44.2–109 mV/dec, and the first two composites favored the
2e− reaction path, while the third composite favored the 4e− reaction
pathway. Additionally, the third composite demonstrated an
activation behavior during chronoamperometric tests to determine
its stability, showing an increase in current after 20 h and no further
changes after a total period of 50 h, and demonstrated high methanol
crossover tolerance, outperforming the commercial Pt/C
electrocatalyst both in activity and stability. The activity was
attributed to good dispersion of the [Mo-oxo]n clusters, high
surface area, and N-doping of the carbon substrate (Liu et al., 2019).

Zhao et al. combined a lacunary Keggin POM cluster, [PW11O39]
7-,

with 3D ordered microporous graphitic carbon nitride (3DOM g-C3N4)
to generate an electrocatalyst with favorable selectivity for the 2 electrons
ORR pathway, testing it electrochemically on neutral medium and via
light-driven reaction. The synthesized composite showed activity for the
light-driven production of H2O2, with a production rate of 2.4 μmol/h,
and electrochemical tests demonstrated that it had an electron transfer
number around 2.3, indicating its selectivity towards the intended ORR
mechanism (Zhao et al., 2017).

Table 8 summarizes the ORR performance parameters for the
discussed POM-based electrocatalysts.

4 Hydrogen evolution reaction (HER)

The HER is the cathodic reaction occurring in water electrolysis.
The HER kinetics differ according to pH: at acidic conditions, it has
higher kinetics, while in alkaline and neutral conditions, it has

slower kinetics (around 2 to 3 orders of magnitude slower),
constituting a disadvantage for alkaline water electrolysis
technologies. The reason lies in the inherent HER mechanism,
which differs from acid to alkaline/neutral conditions (Chatenet
et al., 2022; Pratama et al., 2023), as shown in Figure 8.

Interestingly, the choice of alkaline electrolytes relative to acidic
ones for water electrolysis comes down to the high cost of noble
metal electrode materials and equipment limitations, since acid
conditions cause equipment corrosion, lowering its lifetime (Zeb
et al., 2023). Additionally, the reaction products, akin to OER and
ORR, change slightly depending on the pH, as can be seen in
equations 2.9 and 2.10 for acidic and neutral/alkaline medium,
respectively:

2H+ + 2e− → H2 (2.9)
2H2O + 2e− → H2 + 2OH− (2.10)

Furthermore, the inherent HER mechanism only involves two
electron transfers, meaning it has fewer thermodynamic demands
(resulting in a lower activation barrier) (Horn et al., 2021; Chatenet
et al., 2022). Thus, lower overpotentials are generally needed to reach
reasonable reaction rates compared to the OER.

Regarding the state-of-the-art electrocatalysts, the one with the
highest performance is, akin to ORR, commercial Pt/C, which shows
the ideal adsorption energies (not too high and not too low), and
thus presents high performance for the HER (Chatenet et al., 2022;
Zeb et al., 2023). However, given the noble nature of Pt, it is an
expensive and scarce material, and this limits the potential for large-
scale applications due to cost-related reasons, meaning that much
interest and investment has been applied in the discovery of stable,
low-cost, and high-performance alternative electrocatalysts,
generally based on early transition metals such as Ni, Mn,
Co, and Cu.

4.1 Transition metal oxides for HER

Mukherjee et al. designed a reduced graphene oxide embedded
nickel ferrite oxide (rGO-NiFe2O4) and tested its electrocatalytic
activity for the HER in acidic medium (0.5 M H2SO4). The observed

FIGURE 7
Fabrication route of composites with high ORR activity. The composites were based on Keggin-type polyoxomolybdate H3PMo12O40 (PMo12) as a
precursor to deposit [Mo-oxo]n (n = 1–20) cluster on mesoporous carbon (adapted from Liu et al., 2020).
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onset overpotential and the necessary overpotential to achieve
current densities of 10, 30, and 100 mA/cm2 were 5, 42, 87, and
158 mV, respectively. Additionally, the obtained Tafel slope was
58 mV/dec. The electrocatalyst also presented great stability, with
virtually no change in the cathodic current after 5,000 cycles and a
stable current after 12 h of operation at HER conditions. The activity
was attributed to the strong chemical-electronic coupling between
rGO and NiFe2O4, the formation of non-agglomerated small
nanoparticles, and the creation of oxygen vacancies in the
electrocatalyst structure (Mukherjee et al., 2018), Chu et al.
prepared and tested a hybrid Ni/NiO@C/GR-t-w (derived from
the carbonization of Ni-MOF-74 and graphene oxide composites at
different temperatures (t) and with different graphene oxide

contents (w)) for the HER reaction in acid electrolyte (0.5 M
H2SO4). The best-performing sample, Ni/NiO@C/GR-900-8,
presented an onset potential of −34.7 mV vs RHE and an
overpotential of 108 mV to reach 10 mA/cm2, a Tafel slope of
44 mV/dec, and good stability properties, with no observed
relevant change after 24 h of operation at 10 mA/cm2 and after
1,000 HER cycles. The performance was attributed to the synergistic
interactions at the Ni/NiO interface and the high surface area due to
graphene incorporation (Chu et al., 2018).

Zeng et al. synthesized a series of NiMnO oxides with differing
structures by adjusting the crystallization process via the addition of
polyethylene glycol (PEG) in varying quantities and tester their
properties towards the HER in alkaline medium (1 M KOH). The

TABLE 8 ORR electrocatalysts and their key performance indicators: transition metal POMs.

Electrocatalyst Onset potential (V
vs RHE)

Tafel slope
(mV/dec)

Number of
exchanged e-

Electrolyte Source

Cu6Ni7/TTF-F 0.91 - 3.92–3.94 0.1 M KOH Zhang S. et al. (2017)

NiP4Mo6 - 98.1 3.86–3.88 0.1 M KOH Zheng et al. (2021)

S-NiP4Mo6 - 106 2.02–2.08 0.1 M KOH Zheng et al. (2021)

Pd8Ni2/rGO-POM 0.83 59.8 3.9 0.1 M KOH Sanji et al. (2021)

Co4(PW9)2@N-CNT 0.90 92 4 0.1 M KOH Fernandes et al.
(2018a)

Co4(PW9)2@SWCNT 0.77 68 3.9 0.1 M KOH Fernandes et al.
(2018a)

Co4(PW9)2@GF 0.89 71 2.7 0.1 M KOH Fernandes et al.
(2018a)

Co4(PW9)2@N-FLG 0.89 63 3.6 0.1 M KOH Fernandes et al.
(2018a)

Co-W-NC - 63 4.1 0.1 M KOH Song et al. (2022)

Co-Zn/C - - 3.6–4 0.1 M KOH Rousseau et al.
(2015)

MoOx@P-C 0.75 109 2 0.1 M KOH Liu et al. (2020)

[Mo-O]x@P-C, X = 1–20 0.88 68.1 2 0.1 M KOH Liu et al. (2020)

[Mo-O]x@N,P-C, X = 1–20 0.93 44.2 3.8–3.9 0.1 M KOH Liu et al. (2020)

3DOM g-C3N4 - - 2.3 0.1 M PBSa Zhao et al. (2017)

a) PBS, phosphate buffer solution.

FIGURE 8
HER mechanisms in acidic (A) and alkaline (B) media (Gusmão et al., 2022).
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best-performing oxide was NMO-PEG-3g, which presented an onset
potential of −36.3 mV vs RHE and an overpotential of 140 and
256 mV to reach 10 and 100 mA/cm2, respectively. Additionally, it
presented a Tafel slope of 94 mV/dec, great stability properties with
stable current after 24 h of HER, and activation with increased
activity after 2,000 cycles. The enhanced performance was attributed
to the petal-like scales in the structure, which increased surface area
and thus exposed more active sites (Zeng et al., 2020).

Huang et al. produced a nanosized spinel Co-Mn oxide strongly
coupled with ultrathin Ti3C2Tx Mxene nanosheets (MnCo2O4/
Ti3C2Tx) with different oxide loadings and tested its
electrocatalytic potential toward the HER in acidic medium
(0.5 M H2SO4). The best-performing sample had 50% oxide
content, presented an onset overpotential of 51 mV, an
overpotential to reach 10 mA/cm2 of 177 mV, and a Tafel slope
of 79 mV/dec, along with good stability and cyclic properties (nearly
unchanged current after 16 h of operation and after 2,000 cycles).
The activity was attributed to high electric conductivity and
electronic structure optimization due to the incorporation of
Mxene nanosheets, thus enhancing the intrinsic catalytic activity
and higher surface area with more exposed active sites (Huang
et al., 2022).

Wu Y. et al. reported the synthesis of octahedral cobalt oxide
particles via a hydrothermal method and tested its capacities
towards catalyzing the HER in basic medium (1 M KOH). The
material presented an overpotential of 112 mV to achieve 20 mA/
cm2, and a Tafel slope of 94 mV/dec. It also had good cyclic and
stability properties, with little observed difference after
2,000 cycles and after 20 h of operation. The activity was
attributed to a higher surface area, which exposes more active
sites (Wu Y. et al., 2020).

Flores-Lasluisa et al. studied the Cu-doping of Co spinel oxides
supported on high porosity activated carbon and their activity for
the HER electrocatalysis in alkaline medium (0.1 M KOH). The
obtained results indicate that the best-performing sample, AC-
CuCo20, presented a Tafel slope of 300 mV/dec and −14.6 mA/
cm2 for 400 mV of overpotential. The higher activity was attributed
to better particle agglomeration control and higher electrical
conductivity caused by the supporting activated carbon,
substitution by Cu atoms at the octahedral position, and a higher
number of oxygen vacancies and Co3+ sites, creating synergistic
effects that enhanced catalytic activity (Flores-Lasluisa et al., 2019).

Muralikrishna et al. disclosed the production of graphene oxide
and Cu hybrid (GO-Cu2+) by controlling pH and Cu2+

concentrations during synthesis. They tested their ability to
electrocatalyze the HER in an acidic medium (0.1M H2SO4). The
results indicated that the optimal synthesis was done at neutral
pH and with a concentration of 30 mM of Cu2+. The hybrids had
Tafel slopes around 120 mV/dec, along with moderate cyclic
properties, with a brief reduction in current after 100 cycles
(Muralikrishna et al., 2015).

Katubi et al. evaluated the performance of a hybrid
nanocomposite comprising mixed metal oxides (Cu and W) and
reduced graphene oxide (WO3/CuO/rGO nanohybrid) towards
HER in alkaline medium (1 M KOH). The composite presented
an overpotential of 400 mV to achieve 200 mA/cm2 and a Tafel slope
of 44 mV/dec, along with good stability properties showing only a
slight reduction in current after 12 h of operation, outperforming the
unsupported and mono-metallic oxide counterparts. The verified
activity was attributed to the high conductivity of rGO, higher
number of exposed catalytic sites, and the synergistic interactions
between the WO3 and CuO nanoparticles (Katubi et al., 2023).

Table 9 condenses the performance indicators for the discussed
oxide-based HER electrocatalysts.

4.2 Transition metal alloys for HER

Zhang et al. designed porous nickel-supported nanostructured
Ni-Co electrodes with different morphologies that depended on the
electrodeposition current and tested their activities towards the HER
in alkaline electrolyte (1 MKOH). The results demonstrated that the
best-performing morphology were the Ni-Co nanocones, which
presented an onset potential of −14 mV vs RHE, an overpotential
of 86.7 mV to achieve 10 mA/cm2, and a Tafel slope of 69.8 mV/dec.
Additionally, catalyst morphology was unchanged, and the
overpotential to reach 10 mA/cm2 only increased slightly after
10 h of operation at HER conditions. Finally, the activity was
attributed to the synergism between the catalytic properties of Ni
and Co, and the hierarchical morphology and sharp edges structure
(Zhang et al., 2019).

Cao et al. fabricated radially aligned NiMo alloy microtubes on
nickel foam (NiMo MT/NF) and verified its performance towards
the HER in basic conditions (1 M KOH). The electrocatalyst

TABLE 9 HER electrocatalysts and their key performance indicators: transition metal oxides.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

rGO-NiFe2O4 42 58 0.5 M H2SO4 Mukherjee et al. (2018)

Ni/NiO@C/GR-900–8 108 44 0.5 M H2SO4 Chu et al. (2018)

NMO-PEG-3g 140 94 1 M KOH Zeng et al. (2020)

MnCo2O4/Ti3C2Tx 177 79 0.5 M H2SO4 Huang et al. (2022)

Octahedral CoOx particles 112@20 mA/cm2 94 1 M KOH Wu Y. et al. (2020)

AC-CuCO20 - 300 0.1 M KOH Flores-Lasluisa et al. (2019)

GO-Cu2+ - 120 0.1 M H2SO4 Muralikrishna et al. (2015)

WO3/CuO/rGO nanohybrid 400@200 mA/cm2 44 1 M KOH Katubi et al. (2023)
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presented an overpotential of 119 mV to reach 10 mA/cm2 and a
Tafel slope of 119 mV/dec. Additionally, the material shows good
cyclic and stability properties, since a negligible current density is
lost after 1,000 cycles, and it can retain its activity for at least 10 h.
The verified performance is attributed to a higher number of active
sites and facilitated electron transport because of the unique tubular
structure and low boundary resistance (Cao et al., 2019).

Liu et al. synthesized Ni-Mn-P electrocatalysts via
electrochemical deposition method and tested their abilities
towards HER catalysis in a basic electrolyte (1 M KOH). The
results demonstrated that the best sample presented an
overpotential of 113 mV to achieve 10 mA/cm2 and a 74 mV/dec
Tafel slope. Additionally, good stability properties were verified
since the structural integrity was maintained after 20 h of HER
operation (at 10 mA/cm2 and 60 mA/cm2), and only a slight current
drop was observed. The activity was attributed to Mn doping, which
promoted the formation of a coral structure, and the synergistic
effects between Ni, Mn, and P (Liu et al., 2021).

Ge et al. usedMnmetal as a dopant to enhance theHER activity of
urchin-like CoP electrocatalysts at alkaline and acidic media (1 M
KOH and 0.5 M H2SO4). The results demonstrated that the best
performance in both media was attained by the sample with 15 wt%
Mn. Accordingly, the overpotentials needed to reach 10 mA/cm2 were
100 and 65 mV, and Tafel slopes were 53 and 32 mV/dec, respectively,
in alkaline and acid conditions, thus performing closely to benchmark
Pt/C electrocatalyst and outperforming pristine CoP. Additionally,
after 20 h of operation, the electrocatalyst showed a very small
increase in overpotential (2.4 mV and 1.1 mV for alkaline and acid
media, respectively) at 10 mA/cm2 and no morphological changes,
thus demonstrating good stability properties. The observed activity
was attributed to a reduction in the hydrogen adsorption energy with
the Mn doping, which enhanced the HER rate (Ge et al., 2018).

Wang H. et al. proposed preparing a nitrogen-doped porous
carbon-supported cobalt material with a high graphitization degree
and different dispersant content as a HER electrocatalyst in alkaline
medium (1M KOH). The best-performing sample, Co@NPC-F4,
exhibited an overpotential of 259 mV to achieve 10 mA/cm2 and a
Tafel slope of 99 mV/dec. It also showed good stability properties,
retaining 83% of current after 6 h of operation. The performance was
attributed to the high surface area of the NPC and the optimization of
the porous bundle structure during synthesis (Wang H. et al., 2019).

Guan et al. prepared Co-Ni alloys supported on N-doped carbon
nanofibers via in-situ growth and tested their activity towards the
HER in basic medium (1 M KOH). The material presented an
86 mV overpotential to reach 10 mA/cm2 and a Tafel slope of
152.3 mV/dec, alongside good cyclic and stability properties, with
almost no change in activity after 1,000 cycles and 25 h of operation,
respectively, performing closely to the state-of-the-art Pt/C
electrocatalyst. The enhanced activity is related to more useable
active sites due to the N-doped carbon nanofibers’ 3D structure, the
NiCo alloy’s synergistic effects, and the presence of smaller and
more uniform alloy nanoparticles (Guan et al., 2021).

Butt et al. deposited a layer of metallic Cu on thermally
synthesized CuO nanowires via a dielectric barrier discharge
method and tested its performance towards the HER in 0.1 M
K2SO4 electrolyte. The best-performing sample, Cu500
(indicating that the CuO synthesis temperature was 500°C),
presented an overpotential of 210 mV to achieve 10 mA/cm2, a
Tafel slope of 178 mV/dec, and an exchange current density of
0.6 mA/cm2, along with good stability properties after almost 4 h of
operation. The performance was attributed to the presence of the
metallic Cu nanowires alongside the CuO nanowires (Butt
et al., 2021).

Shen et al. produced a series of Ni-Cu alloy nanoparticles
encapsulated into graphitic shells with different shell thicknesses
and tested their performances toward HER electrocatalysis in
different pH values (0, 7, and 14). The catalysts showed, in
general, better performance on acidic media, and the best-
performing sample (NiCo@C-1) presented an overpotential of
48 mV to achieve 10 mA/cm2 and a Tafel slope of 63.2 mV/dec
under these conditions. Furthermore, accelerated durability tests
demonstrated good cyclic properties, with virtually negligible
differences after 2,000 HER cycles, and chronoamperometric tests
showed good stability properties, with a current retention of around
63% and no structural changes. The performance was much better
than the pristine NiCu alloy and closely resembled that of the
benchmark Pt/C electrocatalyst. This was attributed to the
interactions between the alloy and the carbon shell, which
affected the electronic structure and adjusted the hydrogen
adsorption energy to enhance activity (Shen et al., 2017).

Table 10 summarizes the performance indicators for the
considered Alloy-based HER electrocatalysts.

TABLE 10 HER electrocatalysts and their key performance indicators: transition metal alloys.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

Ni-Co nanocones 86.7 69.8 1 M KOH Zhang et al. (2019)

NiMo MT/NF 119 119 1 M KOH Cao et al. (2019)

Ni-Mn-P 113 74 1 M KOH Liu et al. (2021)

15Mn-CoP 100 53 1 M KOH Ge et al. (2018)

15Mn-CoP 65 32 0.1 M H2SO4 Ge et al. (2018)

Co@NPC-F4 259 99 1 M KOH Wang H. et al. (2019)

Co-Ni/NCNFs 86 152.3 1 M KOH Guan et al. (2021)

Cu500 210 178 0.1 M K2SO4 Butt et al. (2021)

NiCO@C-1 48 63.2 acidic electrolyte Shen et al. (2017)
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4.3 Transition MOFs for HER

Dao et al. developed graphene-doped Ni-MOFs via the
solvothermal method with different graphene contents and tested
their HER electrocatalytic properties in alkaline electrolyte (1 M
KOH). The best-performing sample, MOF(Ni)-GR(4%), needed an
overpotential of 268 mV to reach 10 mA/cm2 and had a Tafel slope
of 108 mV/dec. Furthermore, chronopotentiometric tests indicated
that the MOF catalyst had better stability than the benchmark Pt/C
electrocatalyst, and the activity was attributed to a higher surface
area, which contributed to exposing more active sites and to the
better electronic conductivity of graphene, which facilitated charge
transfer and thus enhanced HER catalysis (Dao et al., 2022).

Wu et al. designed Ni (II) based MOFs, [Ni(bib)2(SO4)]n; bib =
1,4-bis(1-imidazoly)benzene via hydrothermal method and
calcination at different temperatures. These MOFs were tested for
HER electrocatalysis in acid medium (0.5 M H2SO4). The best-
performing sample, Ni-MOF-800, presented an overpotential of
356 mV to achieve 10 mA/cm2 and a Tafel slope of 127.3 mV/dec.
The catalyst stability was also tested, and it was verified that
after 2,000 cycles, the HER activity was almost unchanged, and
the morphology was completely intact. The performance was
attributed to the enhanced conductive properties, which
increased charge transfer kinetics and thus incremented HER
rate (Wu et al., 2022).

Duan et al. prepared peony petal-like CoMnP nanoparticles
supported on nickel foam via solvothermal growth route on CoMn-
MOF-71 nanosheets and tested its HER electrocatalytic properties in
acid and basic media (0.5 M H2SO4 and 1 M NaOH). The sample
presented overpotentials of 66.6 and 53.9 mV to reach 10 mA/cm2

and Tafel slopes of 38.8 and 63 mV/dec for acid and alkaline
medium, respectively, which had close performance to Pt/C
benchmark electrocatalyst. Additionally, in acid conditions, the
current retention after 12 h only shows a small decrease, and the
performance after 1,000 cycles slightly increased, while no
morphological changes were observed after 1,500 cycles. The
same results were observed for alkaline conditions. The enhanced
performance was attributed to higher specific surface area, exposing
more active sites and facilitating electrolyte diffusion, and to
synergistic effects between Mn and Co that can modulate the
electronic structure to optimize the adsorption energies and
enhance the HER process (Duan et al., 2022).

Liu et al. described a phosphorization process to create carbon
fiber paper-supported CoP species in a Co-MOF, thus originating a
CoP/Co-MOF/CF hybrid, and tested its catalytic activity toward the
HER in acidic (0.5 M H2SO4), neutral (pH 7 PBS buffer solution)
and alkaline (1 MKOH)media. The overpotential needed to achieve
a 10 mA/cm2 was 27, 34, and 49 mV, and the Tafel slope was 43, 56,
and 63 mV/dec, for acidic, basic, and neutral conditions,
respectively, performing closely to the benchmark Pt/C
electrocatalyst. Additionally, the material demonstrated good
cyclic and stability properties in acid, neutral, and alkaline
conditions, with negligible differences in performance after
2,000 cycles. It showed a slight morphology degradation in
alkaline medium but remained intact in the other testing
conditions. The performance was attributed to the electronic
interactions of CoP and Co-MOF, which modulated H2O and H
adsorption energies to more optimal values, thus enhancing HER,

and to the MOF porous network, which exposes more active sites
and facilitates gas release (Liu et al., 2019).

Pan et al. reported a method to develop a Co,N-doped graphitic
carbon electrocatalyst (Co-MOF-800) based on a flower-like MOF
({[Co(BIPA)(5-OH-bdc)](DMF)}n; BIPA = bis(4-(1H-imidazole-1-
yl) phenyl)amine and 5-OH-bdc = deprotonated 5-
hydroxyisophthalic acid) and tested its HER electrocatalysis
properties in acidic medium (0.5 M H2SO4). An onset potential of
ca. −120 mV vs RHE, an overpotential of 193 mV to achieve 10 mA/
cm2, and a Tafel slope of 77.1 mV/dec were determined for those
conditions, along with appreciable current retention after 20 h of
operation and only a slight loss in performance after the elapsed time.
The activity was attributed to synergistic interactions between Co and
N, which optimized adsorption energies and modified the electronic
structure of carbon, enhancing the HER rate (Pan et al., 2019).

Nivetha et al. synthesized a Meso-Cu-BTC MOF and tested its
performance towards HER electrocatalysis in an alkaline electrolyte
(1 M NaOH). The catalyst demonstrated an onset overpotential of
25 mV, an exchange current density of 6 mA/cm2, and a Tafel slope of
33.4 mV/dec, but still underperformed the benchmark Pt/C
electrocatalyst. After 1,000 cycles, there was no observable change
in performance, confirming the good stability properties of the
material. The observed activity was attributed to the highly porous
network of the octahedral MOF, which enhanced electronic and ionic
transfer, thus increasing the HER rate (Nivetha et al., 2020).

Zhang et al. disclosed the synthesis of three different porous
MOFs based on different transition metals, Ni, Co, and Cu, and on
H3BTC (benzene-1,3,5-tricarboxylic acid), originating rhombic
octahedral Cu-BTC, rod-shaped Co-BTC, and spherical Ni-BTC
materials, which were tested towards HER electrocatalysis on acidic
medium (0.5 MH2SO4). Thematerials presented an overpotential to
reach 10 mA/cm2 of 53, 123, and 270 mV and Tafel slopes of 62, 100,
and 155 mV/dec for Ni-BTC, Co-BTC, and Cu-BTC, respectively,
with Ni-BTC performing similarly to Pt/C state-of-the-art
electrocatalyst. The MOFs demonstrated different stability
properties, with Ni-BTC demonstrating no current retention
drops and Co-BTC and Cu-BTC showing 60% and 72% current
retention, although no structural or morphological changes were
detected after the tests. The performance was attributed to structural
features such as large surface area, porous and adjustable structure,
and transition metal center regulation (Zhang et al., 2020).

Table 11 compiles the relevant HER performance parameters for
the discussed MOF electrocatalysts.

4.4 Transition metal POMs for HER

Sun et al. prepared an electrocatalyst of Ni and Mo2C nanoparticles
painted with N-doped carbon layers (Ni/Mo2C@NC) based on giant
POM clusters of ((NH4)42[Mo132O372(CH3COO)30(H2O)72].

10CH3COONH4.300H2O) (Mo132) and tested its activity towards HER
electrocatalysis in basic and acid media (1M KOH and 0.5M H2SO4).
Thematerial had an overpotential of 107 and 125mV at 10mA/cm2 and
a Tafel slope of 88 and 117mV/dec, outperforming its monometallic
counterparts and performing similarly to Pt/C benchmark electrocatalyst.
The durability and stability properties were similar in acidic and alkaline
conditions, with only a slight current drop after 48 h of operation and no
structural or morphological changes after HER stability tests. The
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performance was attributed to the improved electronic structure with
nickel doping and the higher exposition of active sites due to the
mesoporous structure (Sun et al., 2023).

Jia et al. reported the production of nickel foam-supported Dexter-
Silverton-type bimetallic POMs NiM-POMs (M = Co, Zn, Mn) using
Keggin POM clusters as building blocks and tested their catalytic
activities towards HER in basic conditions (1 M KOH). The POMs
HER polarization curves are presented in Figure 9. These materials
exhibited overpotentials at 10 mA/cm2 of 64, 68, 74, and 83mV, and
Tafel slopes of 75, 79, 87, and 98mV/dec, respectively for NiCo-POM/
Ni, NiMn-POM/Ni, NiZn-POM/Ni, and Ni-POM/Ni. The
performance was correlated to the microcrystal size, with the range
between 2–4 μm associated with the highest activity. The stability of
NiCo-POM/Ni was also demonstrated, as no reasonable differences in
performance or morphology were observed after 2,000 cycles. The
good performance was attributed to the intrinsic reactivity of POM
microcrystals with abundant active sites (Jia et al., 2019).

Zhang Z. et al. have designed Ni-modified PW12 clusters with
3D nanoflower structure grown on Ni foam (NF) and tested its
electrocatalytic potential towards HER in alkaline medium (1 M
KOH). The study demonstrated that the overpotential needed to
reach 10 mA/cm2 was 75 mV and that the Tafel slope was 86 mV/
dec, slightly underperforming the benchmark Pt/C electrocatalyst.
Additionally, there was practically no activity loss after 2,000 cycles,
being kept for at least 30 h with no morphological or structural
changes. The activity was attributed to the synergistic effect between
Ni and W, the electric conductivity of the NF support, and the
enhanced number of exposed active sites due to the unique micro-
nanostructure (Zhang et al., 2022).

Zhang Z. et al. synthesized a two-fold interpenetrating POMOF
compound, [(Ni3(bpp)3·(H2O)11(PW9

VIW3
VO40)]·2H2O (bpp = 3,

5′-bis(pyrid-4-yl)pyridine), and tested it for HER in basic electrolyte
(1 M KOH). The produced electrocatalyst presented an
overpotential of 74.6 mV to achieve 10 mA/cm2 and a Tafel slope

TABLE 11 HER electrocatalysts and their key performance indicators: transition MOFs.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

MOF(Ni)-GR(4%) 268 108 1 M KOH Dao et al. (2022)

Ni-MOF-800 356 127.3 0.5 M H2SO4 Wu et al. (2022)

CoMnP/NF 66.6 38.8 0.5 M H2SO4 Duan et al. (2022)

CoMnP/NF 53.9 63 1 M NaOH Duan et al. (2022)

CoP/Co-MOF/CF 27 43 0.5 M H2SO4 Liu et al. (2019)

CoP/Co-MOF/CF 34 56 pH 7 PBSa buffer Liu et al. (2019)

CoP/Co-MOF/CF 49 63 1 M KOH Liu et al. (2019)

Co-MOF-800 193 77.1 0.5 M H2SO4 Pan et al. (2019)

Meso-Cu-BTC MOF - 33.41 1 M NaOH Nivetha et al. (2020)

rhombic octahedral Cu-BTC 53 62 0.5 M H2SO4 Zhang et al. (2020)

rod-shaped Co-BTC 123 100 0.5 M H2SO4 Zhang et al. (2020)

spherical Ni-BTC 270 155 0.5 M H2SO4 Zhang et al. (2020)

a) PBS, phosphate buffer solution.

FIGURE 9
(A) Polarization curves of NiM-POM/Ni electrode, commercial Pt/C, and Ni foam in 1.0 m KOH at a scan rate of 5 mV/s. (B) Tafel plots of NiM-POM/
Ni electrodes, Ni foam, and Pt/C (adapted from Jia et al., 2019).
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of 111 mV/dec, slightly underperforming the benchmark Pt/C
electrocatalyst, but demonstrating great stability properties due to
no apparent decline in activity after 2,000 cycles and stable activity
for more than 48 h. The activity was attributed to the synergistic
effects between the enclosed POM andMOF complex and the highly
exposed surface area (Zhang et al., 2023a).

Jawale et al. immobilized Ni-containing Dawson and sandwich-
type POMs on the surface of carbon nanotubes and later tested their
electrocatalytic properties towards HER in acid conditions (0.5 M
H2SO4). It was verified that the Tafel slopes were in the
121–125 mV/dec range, but the catalysts still underperformed the
Pt/C benchmark electrocatalyst. The enhanced performance was
attributed to the number of Ni centers in the structure (a higher
number of centers implied higher performance) and to the structure
of the POM itself (the sandwich structure was able to contain a
higher number of Ni centers) (Jawale et al., 2022).

Ahmad et al. immobilized a Mn sandwich POM, Na10
[Mn4(H2O)2(VW9O34)2].26H2O, on the surface of CoSe2
nanobelts (CoSe2-NB) and tested its catalytic activity towards
HER in acidic medium (0.5 M H2SO4). The composite attained a
187 mV overpotential at 10 mA/cm2 and a Tafel slope of 55 mV/dec,
with no difference in performance or morphology after 2,000 cycles
and no noticeable current drop after 24 h of operation. The
performance was attributed to the 3D structural framework, high
conductivity and surface area of the support, and the synergistic
effects in the microenvironment induced by decorating sandwich-
type POMs on the surface of CoS2-NBs (Ahmad et al., 2020).

Xu et al. designed a cobalt and tungsten-based bimetallic
electrocatalyst based on a bimetallic POM,
[Co9(OH)3(H2O)6(HPO4)2(PW9O34)3]

16- via a one-step
calcination process, Co/WC@NC, and tested its properties
toward HER electrocatalysis in acid and basic solutions (0.5 M
H2SO4 and 1M KOH). The results demonstrated that Co/WC@NC
presented an overpotential of 129 and 142 mV to reach 10 mA/cm2 and
a Tafel slope of 93 and 91 mV/dec for acid and basic conditions,
respectively, outperforming the catalyst’s monometallic counterparts.
Furthermore, the activity shows only a small decline after 2,000 cycles,
with no significant decrease after 24 h of continuous operation in both
solutions, and no morphological or structural changes. The activity was
attributed to the synergistic interactions between the two metals, which
regulate the electronic structure of the catalyst and enhance conductivity
and activity, as well as the protective effect of the carbon layers, which
prevents metal corrosion, and N-doping, contributing to a faster charge
transfer (Xu et al., 2021).

Chen C. et al. disclosed the use of a POMOF-derived bi-
transition metal carbide (MoxCoxC) confined in uniform carbon
polyhedrons synthesized via calcination after the formation of a
POMOF-based on PMo12 Keggin POM and ZIF-67MOF as an HER
electrocatalyst in basic conditions (1 M KOH). Regarding the
cathodic water splitting reaction, the material, PMo/ZIF-67-6-6N,
needed an overpotential of 83 mV to deliver 10 mA/cm2 and had a
Tafel slope of 50 mV/dec. Additionally, there was a negligible change
in activity after 1,000 cycles, and the performance remained stable
for 22 h. The activity was attributed to the small particle size of the
formed carbides, which exposed more active sites, to the N-doped
carbon coating that stabilized the carbides, the synergistic effects
between the metals and the support structure, and the porous
structure itself (Chen C. et al., 2018).

Wang et al. reported the synthesis of 2D CoMo-POMOF
nanopillar arrays on a conductive Ni foam substrate and its
electrocatalytic activity in acid medium (0.5 M H2SO4). The results
demonstrated that it needed an overpotential of 137 mV to attain
10 mA/cm2 and that it had a Tafel slope of 59 mV/dec, slightly
underperforming the state-of-the-art Pt/C electrocatalyst.
Additionally, good stability was verified, since the performance was
practically unchanged and the morphological and structural
characteristics were well maintained after 2,000 cycles. The activity
was attributed to the self-supported open construction of nanopillar
arrays, optimized Gibbs free energy of hydrogen adsorption, and the
2D nanosheets of CoMo-POMOF (Wang et al., 2022).

Shen et al. studied the HER performance of a new XC-72 carbon
black supported Lindqvist POM-based inorganic-organic
compound with a porous intercalation structure,
[Cu2(bimb)2(ox)](W6O19)·4H2O [bimb = 1,3-bis(1-imidazoly)
benzene, ox = oxalic acid] in acid conditions (0.5 M H2SO4). The
material needed an overpotential of 146 mV to reach 10 mA/cm2

and had a Tafel slope of 69 mV/dec, performing closely to
benchmark Pt/C HER electrocatalyst. The performance was
attributed to the higher electronic conductivity of the carbon
black support, hexatungstate fragments originating from the
Lindqvist structure that act as active sites, and the porous
intercalation structure present in the material (Shen et al., 2019).

Zang et al. disclosed the synthesis of Anderson-type POM-modified
Cu nanomaterials on TiO2 nanotube array and tested their potential as
HER electrocatalysts in acid medium (0.5 M H2SO4). The best
composite material, NiMo6O24@Cu/TNA, presented a 215 mV
overpotential to attain 10 mA/cm2 and presented a Tafel slope of
89.2 mV. Furthermore, there was a negligible shift in performance
after 500 cycles, and no apparent current decrease after 3 h of operation.
The activity was attributed to the synergy between the utilized POMs
and Cu to produce a dendrite morphology that exposed more active
surface area and modified the local electrochemical environment of the
active sites, enhancing the HER (Zang et al., 2019).

Fernandes et al. prepared a series of nanocomposites based on
three different POMs supported on reduced oxidized graphene
flakes, P2W18@rGF_ox, P5W30@rGF_ox, and P8W48@rGF_ox,
and tested their HER electrocatalytic properties in acid medium
(0.5 M H2SO4). The materials showed an overpotential for 10 mA/
cm2 of 35, 33, and 44 mV, and a Tafel slope of 37, 33, and 41, for
P2W18@rGF_ox, P5W30@rGF_ox, and P8W48@rGF_ox, respectively,
with performances that closely resembled that of benchmark Pt/C
electrocatalyst. However, stability tests were only made for P5W30@
rGF_ox and showed no significant changes after 1,000 cycles. The
activity was attributed to the well-known POM property of
undergoing reversible multi-electron reduction/oxidation without
structural changes and the high electronic conductivity and porous
network of the support, enhancing charge transfer rate and catalyst
loading capabilities (Fernandes et al., 2018b).

Table 12 contains the HER key performance indicators for the
analyzed POM-based electrocatalysts.

5 Bifunctional materials for OER/ORR

Wu et al. produced mesoporous NiO and NiCo2O4 using a
hydrothermal template-free synthesis and tested them as
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bifunctional catalysts for the OER/ORR reactions pair in alkaline
medium (0.1 M KOH). Concerning the OER, NiCo2O4 showed a
lower Tafel slope, indicating better kinetics towards this reaction.
NiCo2O4 also showed a better performance towards the ORR, which
is confirmed by a higher onset potential and higher number of
exchanged electrons, demonstrating higher selectivity towards the
4e− reduction pathway. This is further corroborated by the lower
observed local yield of H2O2, 20% for NiO, against 5% for NiCo2O4.
Additionally, NiCo2O4 showed good stability properties, with only
~50 mV potential loss during 50 h of operation. The exhibited
performance was attributed to the higher number of surface
hydroxyl adsorbates that can promote the 4e− ORR path in
NiCo2O4, as well as the synergistic effects of having a bimetallic
Co and Ni oxide composition (Wu et al., 2023).

In a more innovative fashion, Sivakumar et al. tested three
ternary Ni-Co-Mn oxides as bifunctional catalysts for OER/ORR
in alkaline medium (0.1 M KOH), NiCoMnO4, Ni1.5Co0.75Mn0.75O4

and Ni2Co0.5Mn0.5O4. They all presented good stability, and the
best-performing material, Ni1.5Co0.75Mn0.75O4, showed similar
behavior to IrO2 for OER. Although its ORR activity was still far
behind Pt/C, its bifunctional activity was higher than both IrO2 and
Pt/C (Sivakumar et al., 2019).

Xing et al. tested OER/ORR bifunctionality of two
nanoparticulate manganese vanadium oxide deposited on a
nitrogen-doped reduced graphene oxide in alkaline medium
(0.1 M KOH). The samples differed in the total time they were
subjected to a thermal treatment. The OER study showed that the
composites had good stability under the reaction conditions and

good electrocatalytic performance, as they could achieve a 10 mA/
cm2 current density at overpotentials of 440 and 420 mV. However,
the materials had a Tafel slope of 286 and 271 mV/dec, indicating
that there is still much room for improvement in terms of OER
performance. For the ORR, both electrocatalysts demonstrated a 4e−

pathway and stability over at least a 4-h period, as well as superior
activity when compared to the benchmark Pt/C electrocatalyst (Xing
et al., 2018).

Belkessam et al. synthesized spinel structure Ni and Co mixed
metal transition oxides by using a facile sol-gel method with
different metal salt precursors, namely, their chlorides (Cl-
NiCoO), sulfates (S-NiCoO), and nitrates (N-NiCoO), and tested
their activity for OER and ORR in alkaline conditions (0.1M KOH).
Regarding the OER, the best-performing electrocatalyst was
S-NiCoO. This was linked to the presence of Ni3+ as the main
oxidation state for Ni and to the presence of sulfide, which increased
the number of active sites and the coordination of Ni/Co. Relative to
the ORR, the results showed Cl-NiCoO had the highest activity,
albeit its selectivity to the 2e− pathway. These different activities were
attributed to the different morphologies obtained for each sample
and to the presence of the precursor anion, which could act as a
doping element (Belkessam et al., 2020).

Wang et al. designed iron, nickel, and nitrogen-doped carbon
nanofibers (Fe/Ni-N-CNFs) via an electrospinning technique and
tested their activities for the OER/ORR pair in alkaline conditions
(0.1 M KOH). The best-performing composite, with a 1:1 Fe to Ni
ratio, performed better than the mono-metallic composites and
compared itself to the benchmark Pt/C electrocatalyst,

TABLE 12 HER electrocatalysts and their key performance indicators: transition metal POMs.

Electrocatalyst η10 (mV) Tafel slope (mV/dec) Electrolyte Source

Ni/Mo2C@NC 107 88 1 M KOH Sun et al. (2023)

Ni/Mo2C@NC 125 117 0.5 M H2SO4 Sun et al. (2023)

NiCo-POM/Ni 64 75 1 M KOH Jia et al. (2019)

NiMn-POM/Ni 68 79 1 M KOH Jia et al. (2019)

NiZn-POM/Ni 74 87 1 M KOH Jia et al. (2019)

Ni-POM/Ni 83 98 1 M KOH Jia et al. (2019)

Ni-WO/NF 75 86 1 M KOH Zhang et al. (2022a)

Ni3W9
VIW3

V 74.6 111 1 M KOH Zhang Z. et al. (2023a)

Mn4V/CoSe2 187 55 0.5 M H2SO4 Ahmad et al. (2020)

Co/WC@NC 129 93 0.5 M H2SO4 Xu et al. (2021)

Co/WC@NC 142 91 1 M KOH Xu et al. (2021)

CoMo-POMOF nanopillar arrays 137 59 0.5 M H2SO4 Wang et al. (2022)

PMo/ZIF-67–6-6N 83 50 1 M KOH Chen et al. (2018)

Cu2W6 146 69 0.5 M H2SO4 Shen et al. (2019)

NiMo6O24@Cu/TNA 215 89.2 0.5 M H2SO4 Zang et al. (2019)

P2W18@rGF_ox 35 37 0.5 M H2SO4 Fernandes et al. (2018b)

P5W30@rGF_ox 33 33 0.5 M H2SO4 Fernandes et al. (2018b)

P8W48@rGF_ox 44 41 0.5 M H2SO4 Fernandes et al. (2018b)
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exchanging an average of 3.97 electrons during the reduction
process. This electrocatalyst also demonstrated the best OER
performance, with the lowest Tafel slope and higher currents for
the tested OER polarization region, and it was determined to have
the best bifunctional characteristics towards those reactions. The
electrocatalyst also demonstrated stability after 2,000 CV cycles, and
its performance was attributed to the metal alloying synergistic
interactions, N doping, structural defects, and the 3D porous cross-
linked microstructure (Wang et al., 2017).

Abdelkader-Fernández et al. reported the synthesis of noble-
metal-free dual N,S-doped MOF-74-derived nanostructured
carbon-based materials, outlining the effects of the type of
doping and the metal composition in the MOF-74 template in
the OER and ORR performances in 0.1 M KOH. They found
that, individually, N,S-dual-doping (mainly in the Co-based
MOF-74) and the use of two metals (Ni and Co) in the MOF-74
template structure were able to enhance the OER activities, making
them comparable to state-of-the-art IrO2 and other similar reported
materials. However, they demonstrated an adverse effect when used
simultaneously. This was explained by the fact that the bimetallic
dual-doped sample involves CoxNi1-xS sulfide instead of CoS,
present in the purely dual-doped sample and more active for
OER, and that it does not show “active” core/shell
nanostructures, unlike the purely bimetallic sample. For the ORR,
the dual-doping strategy increased the exhibited performances,
albeit in a more limited manner, while the metal composition
showed no significant effect on performance (Abdelkader-
Fernández et al., 2019).

Yusinova et al. performed the pyrolysis of a mixed metal Mn/Co
MOF (TAL-42) to produce an electrocatalyst active towards ORR
and OER in alkaline medium (0.1 M KOH). The best-performing
composite material towards ORR, TAL-42-900, presented an
activity comparable to Pt/C, and superior stability properties.
TAL-42-900 also exhibited the lowest overpotentials and Tafel
slopes for the OER, performing better than the RuO2 benchmark
electrocatalyst and being classified as the best bifunctional material
amongst the tested electrocatalysts. The activity was attributed to the
mesoporous structure, large surface area, and the presence of M-Nx

species (M = Mn,Co) (Yusibova et al., 2023).
Wahab et al. reported the use ofMn-MOF@rGO nanocomposite

as a bifunctional catalyst for both ORR and OER in alkaline
conditions (0.1 M KOH and 1 M KOH, respectively). Regarding
the ORR, the best-performing sample, MnBDC@75%rGO,
compared itself to the benchmark Pt/C electrocatalyst and
presented good methanol crossover resistance. Relatively to the
OER, the electrocatalyst demonstrated better activity than Pt/C,
with a 610 mV overpotential to achieve 10 mA/cm2 and a Tafel slope
of 83 mV/dec The good performance was attributed to the
synergistic effects between the mesoporous 3D framework and
the transition metal-organic composition (Wahab et al., 2020).

Zhang M.-C. et al. synthesized a bimetallic CuCo MOF to work
as a bifunctional electrocatalyst for OER/ORR in alkaline (0.1 M
KOH) and neutral media. Regarding the alkaline OER, the material
needed a 400 mV overpotential to achieve 10 mA/cm2 and had a
Tafel slope of 122.3 mV/dec with good current retention properties.
Regarding the neutral OER, the overpotential needed to reach
10 mA/cm2 was 550 mV, and the obtained Tafel slope was
276.1 mV/dec, also with good retention properties. In both cases,

the bimetallic MOF had better performance than the monometallic
Cu MOF. The ORR performance followed the same trend: the
bimetallic MOF performed better than the monometallic Cu
MOF, and the performance of both materials was higher in
alkaline conditions, with the bimetallic MOF being ultimately
considered the best bifunctional material. The higher activity was
attributed to a higher exposition of active sites and the synergistic
effect of the bimetallic active sites, which increased charge transfer
efficiency at the catalyst electrode/electrolyte interface (Zhang
et al., 2023c).

Lu et al. reported the synthesis of metallic Co nanoparticles
embedded in N-doped porous carbon layers (Co@NPC-T, T = 800,
900, or 1,000°C), using macroscale Co-MOF crystals as a precursor,
and its use as a bifunctional electrocatalyst for ORR and OER in
alkaline medium (0.1 M KOH). For the OER, the best-performing
material, Co@NPC-900, needed 380 mV of overpotential to achieve
10 mA/cm2 and presented good stability properties. Regarding the
ORR, the activity was comparable to that of benchmark Pt/C with
higher stability properties, and it was determined that Co@NPC-
900 and Co@NPC-1,000 have similar bifunctional characteristics
that are superior to those of Co@NPC-800. The verified
performance was attributed to the improved electron transfer due
to the graphitic carbon structure and to the synergistic effects
between the metal and the graphitic carbon structure (Lu
et al., 2017).

Marques et al. assembled sandwich-type Dawson family POMs
anchored in N-doped multi-walled carbon nanotubes (MWCNT_
N6) and tested their electrocatalytic properties towards OER and
ORR in alkaline medium (0.1 M KOH). Regarding the OER, the
three POMS@MWCNT_N6 (Ni4, Fe4, and Ni2Fe2) composites
presented overpotentials of 580, 460, and 360 mV to achieve
10 mA/cm2 and Tafel slopes of 102, 54, and 45 mV/dec for Fe4@
MWCNT_N6, Ni4@MWCNT_N6, and Ni2Fe2@MWCNT_N6,
respectively. Furthermore, tests at 500 mV of overpotential for
12 h showed that Fe4 and Ni4 retained 80% and 87% of their
current and Fe2Ni2 retained 64%, indicating that the bimetallic
Fe-Ni composite had the worst stability properties, even though
it was the best-performing material. Relative to the ORR, the results
indicate that an onset potential of ~0.8 V vs RHEwas obtained for all
materials, and Tafel slopes of 35.4, 34.7, and 37.9 mV/dec were
obtained for Fe4, Ni4, and Fe2Ni2, respectively. Lastly, the number of
transferred electrons is around 3, thus suggesting a mixed regime
between the 4 and 2 electrons pathway, and good stability for the Fe4
and Ni2Fe2 (84% and 80% of current retention after 12 h) was
observed at ORR conditions (Marques et al., 2022).

Limani et al. prepared a series of Co-POMs anchored on doped
carbon materials (MWCNT_N8_Co4, GF_N8_Co4, GF_ND8_Co4,
and GF_NS8_Co4) and tested their performance for ORR and OER
at alkaline conditions (0.1 M KOH). The ORR results demonstrated
that the best-performing material (MWCNT_N8_Co4) had a
performance comparable to that of benchmark Pt/C and good
stability properties, along with high methanol crossover tolerance,
indicating its durability. Relative to the OER results, the catalysts
demonstrated activities that very closely resembled those of
benchmark IrO2 and RuO2 electrocatalysts, with the best-
performing material, GF_N8_Co4, outperforming IrO2 and
showing relatively good stability after almost 10 h of operation.
No metric was calculated to determine the best bifunctional
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electrocatalyst, but all the tested materials presented bifunctionality
towards those two reactions (Limani et al., 2022).

Table 13 groups the aforementioned bifunctional OER/ORR
electrocatalysts and their performance parameters.

6 Bifunctional materials for OER/HER

Zhou et al. described the use of trimetallic MOF-74 (MnxFeyNi-
MOF-74) films grown on nickel foam as bifunctional electrocatalysts
for OER and HER in alkaline medium (1 MKOH). The OER activity
of the optimized film, Mn0.52Fe0.71Ni-MOF-74, surpassed its
bimetallic counterparts, Mn2.67Ni-MOF-74 and Fe1.88Ni-MOF-74,
as well as the state-of-the-art IrO2 electrocatalyst. HER activity of the
same optimized film was superior to its bimetallic counterparts and
comparable to the benchmark Pt/C electrocatalyst, and the film
showed good stability in both OER and HER polarization
conditions. The enhanced performance was attributed to Mn
doping, which exposed more active sites, regulated charge
transfer, and formed oxyhydroxides, acting as active phases in
the electrocatalyst. Finally, a 2-electrode water electrolyzer (1 M
KOH) with the optimized film as both cathode and anode was built

to test the material’s overall water splitting capabilities, with 10 mA/
cm2 being achieved at a 1.48 V and overall stability for over 100 h at
200 mA/cm2 being observed (Zhou et al., 2020).

Chen et al. reported the synthesis of a carbon-coated Co-doped
selenide nanomaterial derived from nickel-cobalt bimetallic MOF,
NiCoSe/C, and tested it as an overall water splitting electrocatalyst in
alkaline medium (1MKOH). The OER tests demonstrated a superior
performance, with a low overpotential of 249 mV at 10 mA/cm2, and
good stability properties, outperforming the benchmark RuO2

electrocatalyst. HER results, albeit not superior to benchmark Pt/C,
were still significantly lower than otherNiCo-basedmaterials, with the
material presenting excellent stability properties. Finally, a two-
electrode cell was constructed to verify the overall water-splitting
activity, with NiCoSe/C acting as both cathode and anode. The
resulting cell was able to deliver 10 mA/cm2 at 1.68 V and showed
stability both for over 20 h of operation and after 1,000 operation
cycles. The performance was attributed to the synergy between Ni and
Co, which modulated the material’s electronic structure, and to the
highly porous and high specific surface area structure inherited from
the parent MOF (Chen Z. et al., 2019).

Zhao et al. prepared Mo-CoS2 nanoparticles embedded in a
hierarchically porous carbon hollow sphere, Mo-CoS2/NC (H),

TABLE 13 MOF and POM(-derived) bifunctional OER/ORR electrocatalysts.

Electrocatalyst OER η10 (mV) OER Tafel
slope (mV/dec)

ORR Tafel slope (mV/dec) ΔEb (V) Electrolyte Source

NiCo2O4 340 50 - - 0.1 M KOH Wu et al. (2023)

NiO 380 56 - - 0.1 M KOH Wu et al. (2023)

Ni1.5Co0.75Mn0.75O4 570 68 - 0.79 0.1 M KOH Sivakumar et al. (2019)

MnVOx@N-rGO–440 440 286 66.6 - 0.1 M KOH Xing et al. (2018)

MnVOx@N-rGO–900 420 271 130.9 0.85 0.1 M KOH Xing et al. (2018)

N-NiCoO - - - - 0.1 M KOH Belkessam et al. (2020)

S-NiCoO 340 - - - 0.1 M KOH Belkessam et al. (2020)

Cl-NiCoO - - - - 0.1 M KOH Belkessam et al. (2020)

Fe/Ni-N-CNFs 372 106.1 61.2 0.80 0.1 M KOH Wang et al. (2017)

TAL-42–900 410 71 45 0.80 0.1 M KOH Yusibova et al. (2023)

MnBDC@75%rGO 610 83 93.5 - 1 M KOH Wahab et al. (2020)

CuCo-HITP 400 122.3 96.4 0.94 0.1 M KOH Zhang M.-C. et al., 2023

CuCo-HITP 550 276.1 319.3 1.41 0.1 M PBSa Zhang M.-C. et al., 2023

Co@NPC-900 380 - - 0.85 0.1 M KOH Lu et al. (2017)

Ni4@MWCNT_N6 580@0.1 mA/cm2 102 34.7 - 0.1 M KOH Marques et al. (2022)

Fe4@MWCNT_N6 460@0.1 mA/cm2 54 35.4 - 0.1 M KOH Marques et al. (2022)

Ni2Fe2@MWCNT_N6 360@0.1 mA/cm2 45 37.9 - 0.1 M KOH Marques et al. (2022)

MWCNT_N8_Co4 400 55 41 - 0.1 M KOH Limani et al. (2022)

GF_N8_Co4 340 67 50 - 0.1 M KOH Limani et al. (2022)

GF_ND8_Co4 490 68 90 - 0.1 M KOH Limani et al. (2022)

GF_NS8_Co4 460 62 40 - 0.1 M KOH Limani et al. (2022)

a) PBS, phosphate buffer solution.

b) ΔE, means the difference between the ORR, half-wave potential and the OER, potential to attain 10 mA/cm2. Lower values indicate a better material in terms of bifunctionality. The ORR,

potential to achieve 3 mA/cm2 may be used instead of the half-wave potential.
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derived from ZIF-67 MOF, phosphomolybdic acid POM and
polystyrene sphere. The resulting composite was tested as an overall
water-splitting electrocatalyst in 1 M KOH. The OER results
demonstrated that the produced nanoparticles outperformed the
benchmark RuO2 electrocatalyst and exhibited good stability
properties. Regarding HER, the material presented activity
comparable to that of state-of-the-art Pt/C, alongside good stability.
Regarding the overall water splitting activity, an electrolyzerwhereMo-
CoS2/NC (H) acted as both cathode and anode was constructed, and it
delivered 10 mA/cm2 at 1.59 V vs RHE, which is comparable to other
state-of-the-art water splitting catalysts. The enhanced activity was
attributed to strengthened chemical adsorption of H and O, higher
electrical conductivity due to Mo incorporation, and the micro/meso/
macro porous structure, which offers a large specific surface area and a
high number of active sites (Zhao et al., 2023).

Zhao et al. disclosed the use of a Ni-Fe bimetallic MOF-derived
electrocatalyst, Fe-Ni@NC-CNTs, as an overall water-splitting
electrocatalyst in alkaline solution (1 M KOH). The OER results
indicated a good overall activity, with a 274 mV overpotential at
10 mA/cm2 and a 45.5 mV/dec Tafel slope. Relative to the HER, the
tested material exhibited a performance comparable to that of
benchmark Pt/C, and also demonstrated good stability properties at
HER and OER polarization conditions. The performance of Fe-Ni@
NC-CNTs as an overall water-splitting electrocatalyst was tested in an
electrolyzer where it acts both as the cathode and as the anode, attaining
a 145 mA/cm2 current density at 1.98 V vs RHE, which is comparable to
the performance of an electrolyzer containing Pt/C as the cathode and
Ir/C as the anode. The observed performance was attributed to the high
conductivity and hierarchical pore structure, which resulted in both
high activity and fast mass transport (Zhao et al., 2018).

Gao et al. deposited a mixed Cu, Co, and W metal oxide
nanostructure onto a copper foam electrode by using [SiW11O39]

8-

POM as a structure directing agent and tested its performance towards
OER and HER in alkaline conditions (0.1 M KOH). Regarding the
OER, the obtained electrocatalyst needed an overpotential of 313 mV to
reach a current density of 10 mA/cm2. The HER results show that a
103 mV overpotential was needed to achieve 10 mA/cm2, and the
material presented stability for over 10 h in both HER and OER
polarization conditions. The material was also tested as an overall
water-splitting bifunctional material in a 2-electrode water electrolyzer

(0.1 MKOH electrolyte), with sustained gas evolution being observed at
1.8 V vs RHE (Gao et al., 2019).

Zhang Z. et al. derived CoMoO4 hollow tubes (HT) from the
annealing of a PMo12@Co-BTC POMOF hybrid and tested its ability
to act as an overall water-splitting electrocatalyst in 1 M KOH. The
OER activity proved superior to benchmark RuO2, and the material
exhibited excellent stability properties. The HER activity was
comparable to state-of-the-art Pt/C but did not surpass it, and
CoMoO4 HTs also demonstrated excellent stability properties.
Finally, a two-electrode cell with the CoMoO4 HTs acting as
both cathode and anode was constructed to test the overall
water-splitting capabilities and was compared to a similar cell
constructed with Pt/C as the cathode and RuO2 as the anode.
The results indicated that a current density of 10 mA/cm2 was
attained at 1.57 V vs RHE for the first cell and 1.50 V vs RHE
for the second cell, demonstrating that the material presented
impressive overall water-splitting capabilities. The superior
performance was attributed to the presence of a hollow and
rough surface, which increased specific surface area, the
mesoporous structure, which increased mass-transfer and charge-
transfer rates due to more access points, and the inherent
conductivity of Co-based materials (Zhang Z. et al., 2023b).

Gautam et al. designed a POM-anchored zinc cobalt sulfide
nanowires on 3D Ni foam substrate (POM@ZnCoS/NF, POM =
PW12) to be used as an overall water splitting electrocatalyst in
alkaline electrolyte (1 M KOH). The material presented better OER
activity than benchmark RuO2, and also had good stability properties,
maintaining activity for over 20 h without structural changes. It also
presented impressive HER activity, surpassing even benchmark Pt/C,
and good stability, being able to consistently demonstrate activity for
over 20 h without structural changes. A 2-electrode water splitting cell
using POM@ZnCoS/NF as both cathode and anode was tested: it
delivered 10 mA/cm2 at 1.55 V vs RHE, outperforming a similar cell
that used Pt/C as cathode and RuO2 as anode (1.64 V vs RHE at 10 mA/
cm2). The observed performance was attributed mainly to the
mesoporous hierarchical heterostructure, which improved the
conductivity and increased both the number of available active sites
and the electrochemical surface area (Gautam et al., 2021). The
discussed bifunctional materials for OER/HER are summarized in
Table 14, along with the relevant performance indicators.

TABLE 14 MOF and POM(-derived) bifunctional OER/HER electrocatalysts.

Electrocatalyst OER
η10 (mV)

OER Tafel slope
(mV/dec)

HER
η10 (mV)

HER Tafel slope
(mV/dec)

Electrolyte Source

Mn0.52Fe0.71Ni-
MOF-74

267@
100 mA/cm2

36.7 190@
100 mA/cm2

103.8 1 M KOH Zhou et al. (2020)

NiCoSe/C 249 54 143 104.8 1 M KOH Chen Z. et al.
(2019)

Mo-CoS2/NC (H) 296 65 158 150 1 M KOH Zhao et al. (2023)

Fe-Ni@NC-CNTs 274 45.5 202 113.7 1 M KOH Zhao et al. (2018)

CuCoWOx 313 162 103 335 0.1 M KOH Gao et al. (2019)

CoMoO4 HTs 210 80.3 75 89.1 1 M KOH Zhang et al.
(2023b)

POM@ZnCoS NWs 200@20 mA/cm2 67.7 170 53.5 1 M KOH Gautam et al.
(2021)

Frontiers in Energy Research frontiersin.org25

Araújo et al. 10.3389/fenrg.2024.1373522

159

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373522


The future perspective of transition metal-based catalysts as a
whole is one of optimism. There are dozens of studies highlighting
the advantages of combining those abundant metals to replace
current state-of-the-art noble metals in electrochemical energy
conversion and storage, be it in the form of the more traditional
oxide and alloy catalysts or in the form of the more modern POM
and MOF catalysts (and their derivatives). Additionally, the
versatility of transition metal catalysts is not limited to those four
material classes, as other transition metal-based materials are also
reviewed herein, including carbides, phosphides, and nitrides, which
can also be derived from POMs and MOFs. Finally, the high
tunability and structural versatility of POMs and MOFs means
that there are multiple combinations to be applied in
electrocatalyst materials, each with its own catalytic prowess, and
some of them are yet to be studied. As such, this review’s main scope
was to analyze some of those combinations for those two classes and
compare them to the traditional electrocatalyst classes to bring a
comprehensive understanding of the real catalytic capabilities of
POMs and MOFs.

7 Conclusion

The electrochemical reactions involved in the main energy
conversion and storage systems, OER, ORR, and HER, are
sluggish, and their electrocatalysts are expensive since they are
based on scarce noble metals. As alternatives to these benchmark
electrocatalysts, transition metal-based POM and MOF-derived
electrocatalysts are being studied. Their main advantage resides
in the tailorability these structures present, meaning that one can
easily modify it in the desired manner, normally through simple
adaptations in the synthetic process. This means that when one of
those materials is faced with performance or stability issues, they can
be easily adapted, for example, by adding moieties that can enhance
these aspects, thus generating a better-performing material.
Additional strategies include inducing the formation of a core-
shell nanostructure, where the active material in the core is
protected by the external shell, enhancing stability, and
anchoring POMs or MOFs on conductive supports, which can
both enhance the activity and stability of the utilized materials.
Their performance is comparable to that of the more traditional

transition metal-based oxide and alloy electrocatalysts, meaning
they show a promising future in the electrocatalysis application.
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enhanced activity towards
pretreated biomass and cellulose
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Non-productivebindingof cellulolytic enzymes to variousplant cellwall components,
such as lignin and cellulose, necessitates high enzyme loadings to achieve efficient
conversion of pretreated lignocellulosic biomass to fermentable sugars. Protein
supercharging was previously employed as one of the strategies to reduce non-
productive binding to biomass. However, various questions remain unanswered
regarding the hydrolysis kinetics of supercharged enzymes towards pretreated
biomass substrates and the role played by enzyme interactions with individual cell
wall polymers such as cellulose and xylan. In this study, CBM2a (from Thermobifida
fusca) fusedwith endocellulaseCel5A (fromT. fusca) was used as themodelwild-type
enzyme andCBM2awas supercharged using Rosetta, to obtain eight variantswith net
charges spanning −14 to +6. These enzymeswere recombinantly expressed in E. coli,
purified from cell lysates, and their hydrolytic activities were tested against pretreated
biomass substrates (AFEX andEA treated corn stover). Although thewild-type enzyme
showed greater activity compared to both negatively and positively supercharged
enzymes towards pretreated biomass, thermal denaturation assays identified two
negatively supercharged constructs that perform better than the wild-type enzyme
(~3 to 4-fold difference in activity) upon thermal deactivation at higher temperatures.
To better understand the causal factor of reduced supercharged enzyme activity
towardsAFEXcorn stover,weperformedhydrolysis assaysoncellulose-I/xylan/pNPC,
lignin inhibition assays, and thermal stability assays. Altogether, these assays showed
that the negatively supercharged mutants were highly impacted by reduced activity
towards xylan whereas the positively supercharged mutants showed dramatically
reduced activity towards cellulose and xylan. It was identified that a combination of
impaired cellulose binding and lower thermal stability was the cause of reduced
hydrolytic activity of positively supercharged enzyme sub-group. Overall, this study
demonstrated a systematic approach to investigate the behavior of supercharged
enzymes and identified supercharged enzyme constructs that show superior activity
at elevated temperatures. Future work will address the impact of parameters such as
pH, salt concentration, and assay temperature on the hydrolytic activity and thermal
stability of supercharged enzymes.
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Introduction

The future circular economy is based on conversion of wastes
from a variety of streams to useful products that are currently
produced from fossil fuels (Tuck et al., 2012; Ubando et al., 2020).
Bioethanol is one such product that can be produced from
lignocellulosic biomass such as agricultural residues (e.g., corn
stover, wheat/rice straws, sugarcane bagasse) and forest residues
(e.g., wood chips) (Chundawat et al., 2011a). The versatility of
available biomass sources and the variety of bioproducts that can
be generated, lends itself to development of customized
conversion strategies tailor-made for various feedstocks in an
integrated biorefinery (Kokossis et al., 2014; Maity, 2015). One
conversion strategy that has received significant attention is the
enzymatic conversion of cellulose and hemicellulose to C6/
C5 based mixed sugar streams (Chundawat et al., 2011a),
while employing tailored valorization strategies for extracted
lignin based on the pretreatment strategy (Ragauskas et al.,
2014; Wang et al., 2019). These sugars can be converted to a
variety of platform chemicals such as ethanol, organic acids, or
polymer-precursors in an integrated biorefinery (Takkellapati
et al., 2018).

Various techno-economic analyses have been performed to
assess the feasibility of producing bioethanol in a cost-effective
and sustainable manner from biomass (Humbird et al., 2011;
Scown et al., 2021). These studies have highlighted the role of
high enzyme costs prohibiting commercialization of biofuels
(Klein-Marcuschamer et al., 2012). Hence, there is a need to
develop enzyme engineering strategies to improve the overall
conversion of lignocellulosic biomass to reducing sugars, while
reducing biomass recalcitrance via thermochemical pretreatment
(McCann and Carpita, 2015; Holwerda et al., 2019). Non-productive
binding of enzymes to lignin and cellulose along with limited
enzyme accessibility to the substrate are considered the key
factors that limit enzyme activity towards pretreated biomass
substrates (Studer et al., 2011; Zeng et al., 2014; Strobel et al.,
2015; Nemmaru et al., 2021). As a result, pretreatment efforts
have focused on extraction of lignin for valorization while also
improving overall enzyme accessibility to the residual
polysaccharides (Narron et al., 2016; Galbe and Wallberg, 2019).

However, most modes of pretreatment technologies (e.g., dilute
acid, extractive ammonia, alkaline, deacetylation and mechanical
refining or DMR) only extract lignin partially, leaving behind
residual lignin that can still deactivate or inhibit enzymes
(Chundawat et al., 2011b; Chen et al., 2016). Lignin has been
shown to deactivate cellulases through various mechanisms, the
most significant of which involves protein conformational changes
upon adsorption to lignin driven via hydrophobic interactions (Salas
et al., 2013; Guo et al., 2014; Sammond et al., 2014). Broadly
speaking, the three strategies that have been employed to reduce
cellulase non-productive binding to lignin include: (i) addition of
sacrificial proteins such as BSA (Yang and Wyman, 2006) or soy
protein (Luo et al., 2019), (ii) inclusion of negatively charged groups
such as acetyl groups on the surface of enzymes via chemical
conjugation (Nordwald et al., 2014), and (iii) enzyme surface
supercharging via computational re-design (Haarmeyer et al.,
2017; Whitehead et al., 2017). Although the first two strategies
have been shown to reduce lignin inhibition, they require an

additional reagent (BSA or soy protein) or treatment procedure
(acetylation), which increases the operating or capital cost of the
bioconversion process. On the other hand, enzyme supercharging is
an inexpensive method of genetically engineering enzymes to alter
their surface electrostatic properties (Lawrence et al., 2007; Der
et al., 2013).

Protein supercharging has been used to accomplish a variety of
useful applications including but not limited to macromolecule or
drug delivery into mammalian cells (Thompson et al., 2012), DNA
detection and methylation analysis (Lei et al., 2014), complex
coacervation with polyelectrolytes (Obermeyer et al., 2016), self-
assembly into organized structures (Simon et al., 2019) such as
protein nanocages (Sasaki et al., 2017) and Matryoshka-type
structures (Beck et al., 2015) and encapsulation of cargo proteins
into such higher-order structures (Azuma et al., 2016). Previously,
we have utilized a supercharging strategy based on Rosetta (Das and
Baker, 2008; Alford et al., 2017) and FoldIt standalone interface
(Kleffner et al., 2017) for engineering green fluorescent protein
(GFP) (Haarmeyer et al., 2017) and CelE (from
Ruminiclostridium thermocellum) (Whitehead et al., 2017). We
found that net negative charge was correlated weakly with
reduced lignin binding capacity for GFP supercharged mutants,
whereas the charge density was not found to have a clear impact on
lignin binding capacity (Haarmeyer et al., 2017). In our follow-up
study (Whitehead et al., 2017), a cellulase catalytic domain CelE was
fused with CBM3a and both domains were individually negatively
supercharged. Negatively supercharged CBM3a designs showed
relatively improved hydrolysis yields on model amorphous
cellulose in the presence of lignin, compared to the wild-type
enzyme. However, all tested designs showed reduced absolute
activity than wild-type controls on amorphous cellulose
substrates (and with no data reported on pretreated
lignocellulosic biomass) which was hypothesized to be due to
reduced binding to cellulose induced by electrostatic repulsions.

Although these studies show proof-of-concept for the potential
beneficial impact of cellulase negative supercharging on biomass
hydrolysis, there remain multiple unanswered mechanistic
questions to fully leverage the potential of enzyme supercharging
for lignocellulosic biomass hydrolysis. Broadly speaking, there are
three unanswered questions: (i) how does supercharging impact
enzyme kinetics on pretreated biomass substrates? (ii) how can
biomass hydrolysis performance of mutant enzymes be rationalized
by understanding the activity and binding on individual polymers
(cellulose, xylan, and lignin)? (iii) how does supercharging impact
thermal stability and cellulase function at elevated temperatures?
Here, we sought to address these questions in greater detail, using a
model endocellulase enzyme Cel5A from T. fusca (Thermobifida
fusca), which has been well-characterized in our lab previously (Liu
et al., 2020). T. fusca is a thermophilic microbe that secretes cellulase
enzymes belonging primarily to glycosyl hydrolase (GH) families 5,
6, 9, and 48, with most cellulase CDs tethered to a type-A CBM2a
(Wilson, 2004). Testing the protein supercharging strategy on a
model Cel5A enzyme and its CBM2a from this cellulolytic enzyme
system will also allow for extension of these design principles to
other enzymes, potentially leading to a supercharged cellulase
mixture with superior performance.

More specifically, we computationally designed a library of eight
CBM2a designs spanning a net charge range of −14 to +6. These
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CBM2a designs were fused with the Cel5A catalytic domain and
green fluorescent protein (GFP) separately, to study the hydrolysis
activity and binding behavior of the constructs on a variety of
substrates, respectively. Firstly, we characterized the hydrolysis
yields of CBM2a-Cel5A fusion constructs at various reaction
times (2–24 h) on ammonia fiber expansion (AFEX) and
extractive ammonia (EA) pretreated corn stover substrates. To
further rationalize the activity of supercharged enzymes towards
pretreated biomass substrates, we assayed enzyme activity towards
cellulosic substrates and xylan. Moreover, we performed binding
assays to study the binding of GFP-CBM2a fusion constructs to
cellulose using previously established QCM-D assay procedures
(Haarmeyer et al., 2017; Nemmaru et al., 2021). We followed it
up with thermal shift assays to measure melting temperatures of
supercharged enzymes and tested enzyme activity upon thermal
deactivation at elevated temperatures. Overall, this study presents a
rational approach to understand the mechanistic underpinnings of
supercharged enzyme action on pretreated biomass substrates by
deconvoluting the impact of cellulose and xylan hydrolysis and
thermal stability.

Experimental section

Reagents

AFEX and EA pretreated corn stover were prepared and
provided in kind by Dr. Rebecca Ong’s lab (Michigan
Technological University, Houghton) and Bruce Dale’s lab
(Michigan State University, East Lansing), according to
previously established protocols (Da Costa Sousa et al., 2016;
Sousa et al., 2019; Chundawat et al., 2020). Avicel (PH 101,
Sigma-Aldrich, St Louis) was used to prepare cellulose-III
allomorph with the following pretreatment conditions (90°C, 6:
1 anhydrous liquid ammonia to cellulose loading, and 30 min of
total residence time) and phosphoric acid swollen cellulose (PASC)
as described previously (Chundawat et al., 2011c). Sarvada Chipkar
from the Ong lab kindly prepared and provided cellulose-III used in
this study. Lignin extracted from corn stover was prepared using the
organosolv extraction process (Bozell et al., 2011) and kindly
provided by Stuart Black of the National Renewable Energy
Laboratory (NREL). All other chemicals and analytical reagents
were procured either from Fisher Scientific or Sigma Aldrich, or as
noted in the relevant experimental section.

Mutant energy scoring using rosetta

Creation of computational designs carrying a certain net
charge necessitated computing the change in energy scores
upon mutation of a native amino acid residue to either a
positively charged (K, R) or a negatively charged residue (D,
E). These mutations were scored using Rosetta. The wild-type
protein PDB file is obtained either via homology modeling using
Rosetta CM49 or via the protein data bank (Burley et al., 2021).
PyMOL (Schrodinger) was used to generate the desired mutation
in amino acid sequence of a given protein and exported as a PDB
file that represents the mutated protein. Customized scripts were

developed in Rosetta to perform fast relax (Khatib et al., 2011) of
any input PDB file. PDB files of both the wild-type and mutated
proteins were relaxed separately using ten fast relax operations at
a time. Each round of energy minimization enabled by ten fast
relax operations was repeated until the Rosetta energy score of
protein equilibrated and did not vary by more than 0.1 Rosetta
Energy Units (REU) between one round of energy minimization
(comprising of 10 fast relaxes) to another. The mutation energy
score for a given mutation was calculated by measuring the
difference between Rosetta energy scores of the wild-type
protein and the mutant after energy minimization.

Plasmid generation, protein expression and
purification

Thermobifida fusca native Cel5A (Watson et al., 2002; Jung et al.,
2003) (UniprotKB–Q01786) gene was cloned into pET28a(+)
(Novagen) and was kindly provided by Nathan Kruer-Zerhusen
(from late Prof. David Wilson’s lab at Cornell University). An
N-terminal 8X His tag was inserted and the native signal peptide
removed from the original gene construct. The gene was then
cloned into our in-house expression vector pEC to optimize
protein expression yields as described previously (Blommel
et al., 2009; Lim et al., 2014). The plasmid maps for pEC-
CBM2a-Cel5A and pEC-GFP-CBM2a are provided in
Supplementary Figures S1, S2 respectively. The full nucleotide
sequences with color coding for each gene segment are reported in
the Supplementary Material titled SI_Appendix_Sequences.docx.
CBM2a mutant designs were ordered from Integrated DNA
Technologies, Inc (IDT) as custom-synthesized gBlocks. These
CBM2a design gBlocks were then swapped with wild-type CBM2a
to generate mutant CBM2a-Cel5A fusion constructs using
standard sequence and ligation independent cloning (SLIC)
protocols. A similar approach was used to insert CBM2a
designs into previously reported pEC-GFP-CBM vector (Lim
et al., 2014). Molecular cloning for T. fusca β-glucosidase
(UniprotKB–Q9LAV5) gene These colonies were then
inoculated in LB medium and grown overnight to prepare 20%
glycerol stocks for long-term storage at −80°C. These glycerol
stocks were then used to inoculate 25 mL of LB media with
50 μg/mL kanamycin and incubated at 37°C, 200 rpm for 16 h.
These overnight cultures were then transferred to 500 mL auto-
induction medium (TB + G) (Studier, 2005) and incubated at 37°C,
200 rpm for 6 h to allow optical density to reach the exponential
regime. Protein expression was then induced by reducing the
temperature to 25°C for 24 h at 200 rpm. Cell pellets were then
harvested using Beckman Coulter centrifuge and JA-14 rotor by
spinning the liquid cultures in 250 mL plastic bottles at 30,100 g for
10 min at 4°C. All the cell culturing experiments were performed
using an Eppendorf Innova™ incubator shaker. Cell pellets were
lysed using 15 mL cell lysis buffer (20 mM phosphate buffer,
500 mM NaCl, 20% (v/v) glycerol, pH 7.4), 0.5 mM
Benzamidine (Calbiochem 199,001), 200 µL protease inhibitor
cocktail (1 µM E-64 (Sigma Aldrich E3132), 15 µL lysozyme
(Sigma Aldrich, USA) and 1 mM EDTA (Fisher Scientific
BP1201)) for every 3 g wet cell pellet. The cell lysis mixture was
sonicated using Misonix™ sonicator 3,000 for 5 min of total

Frontiers in Energy Research frontiersin.org03

Nemmaru et al. 10.3389/fenrg.2024.1372916

167

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1372916


process time at 4.5 output level and specified pulse settings to avoid
sample overheating (pulse-on time: 10 s and pulse-off time: 30 s).
An Eppendorf centrifuge (5810R) with F-34-6-28 rotor was then
used to separate the cell lysis extract from insoluble cellular debris
at 15,500 g, 4°C for 45 min. Immobilized metal affinity
chromatography (IMAC) using His-Trap FF Ni+2-NTA column
(GE Healthcare) attached to BioRad™ NGC system, was then
performed to purify the his-tagged proteins of interest from the
background of cell lysate proteins. Briefly, there were three steps
involved during IMAC purification: 1. equilibration of column in
buffer A (100 mM MOPS, 500 mM NaCl, 10 mM imidazole,
pH 7.4) at 5 mL/min for five column volumes, 2. Soluble cell
lysate loading at 2 mL/min, and 3. His-tagged protein elution using
buffer B (100 mM MOPS, 500 mM NaCl, 500 mM imidazole,
pH 7.4). The purity of eluted proteins was validated using SDS-
PAGE before buffer exchange into 10 mM sodium acetate (pH 5.5)
buffer for long-term storage after flash freezing at −80 °C and/or
follow-on activity characterization.

Pretreated lignocellulosic biomass
hydrolysis assays

AFEX and EA corn stover (milled to 0.5 mm) were suspended in
deionized water to obtain slurries of 25 g/L total solids
concentration. All biomass hydrolysis assays were performed in
0.2-mL round-bottomedmicroplates (PlateOne™), with at least four
replicates for each reaction condition. Reactions quenched at
different time points (2, 6 and 24 h) were performed in different
microplates. Each reaction was composed of 80 μL biomass slurry
(25 g/L), 20 μL sodium acetate buffer (0.5 M), 50 μL cellulase
enzyme (at appropriate concentration), 25 μL β-glucosidase (at
appropriate concentration), and 25 μL of deionized water to
make up the total reaction volume to 200 μL. For reaction
blanks, the enzyme solutions were replaced with deionized water
while biomass slurry and buffer volumes remained the same. The
cellulase enzyme loading was maintained at 120 nmol per Gram
biomass substrate and the β-glucosidase enzyme loading was
maintained at 12 nmol per Gram biomass substrate (leading to
10% of cellulase enzyme concentration). Since supercharged
constructs have varying molecular weights, a molar basis was
used for all hydrolysis assays to keep concentrations between
enzymes normalized. A conversion of enzyme loading for each
concentration to a mass basis can be viewed in the
Supplementary Appendix SA1. Upon addition of all the requisite
reaction components, the microplates were covered with a plate mat,
sealed with packaging tape, and incubated at 60°C for the specified
time duration (2, six or 24 h) with end-over-endmixing at 5 rpm in a
VWR hybridization oven. Upon reaction completion, the
microplates were centrifuged at 3,900 rpm for 10 min at 4°C to
separate the soluble supernatant (comprised of soluble reducing
sugars) from insoluble biomass substrate. The supernatants were
then recovered and dinitrosalicylic acid (DNS) assays were
performed as previously described to estimate total soluble
reducing sugars (Liu et al., 2020). This data was fitted to a two-
parameter kinetic model that was previously deployed to study
reaction kinetics of T. fusca cellulases on biomass substrates
(Kostylev and Wilson, 2013). Origin software was used to

perform the curve fitting analysis and obtain the pseudo-kinetic
time-dependent parameters ‘A’ and ‘b’ which represent the net
activity of bound enzyme and the time-dependent ability of
enzyme to overcome recalcitrance, respectively. An increase in b
might indicate the ability of enzyme to sample new substrate sites as
reaction progresses, thereby reducing substrate recalcitrance.

Cellulose hydrolysis assays and lignin
inhibition assays

The cellulose hydrolysis assays were performed in a similar
manner as biomass hydrolysis assays, except for the reaction
composition. Avicel PH101 derived cellulose-I and cellulose-III
were suspended in deionized water to form slurries of 100 g/L total
solids concentration. A 0.2-mL round-bottomed microplate
(PlateOne™) was used for each discrete reaction timepoint (2,
6 and 24 h) and each reaction was performed with at least four
replicates. Each reaction was composed of 40 μL cellulose slurry
(100 g/L), 20 μL sodium acetate buffer (0.5 M, pH 5.5), 50 μL
cellulase enzyme (at appropriate concentration), 25 μL β-
glucosidase (at appropriate concentration) and 65 μL of deionized
water to make up the total reaction volume to 200 μL. The cellulase
enzyme loading was maintained at 120 nmol per Gram biomass
substrate and the β-glucosidase enzyme loading was maintained at
12 nmol per Gram biomass substrate (leading to 10% of cellulase
enzyme concentration). Upon reaction completion, supernatants were
removed, andDNS assays were performed as described in the previous
section on biomass hydrolysis assays. The reaction mixture for
lignin inhibition assays was composed of 20 μL cellulose slurry
(100 g/L), 40 µL lignin slurry (20 g/L), 20 μL sodium acetate
buffer (0.5 M, pH 5.5), 50 μL cellulase enzyme (at appropriate
concentration), 25 μL β-glucosidase (at appropriate
concentration) and 65 μL of deionized water to make up the
total reaction volume to 200 μL. The enzyme loadings and all the
follow-on steps were conducted in a similar manner to cellulose
hydrolysis assays. 24 h was used as the preferred reaction time for
lignin inhibition assays, owing to the prevalence of lignin and
cellulose non-productive binding at longer reaction times.

Xylan hydrolysis assays

The xylan hydrolysis assays were performed in a similar manner
as biomass hydrolysis assays, with a slight change to the reaction
composition. Beechwood xylan suspended in deionized water to
form slurries of 100 g/L total solids concentration. Equipment,
procedures and reaction timepoint remained the same. Each
reaction was composed of 20 μL xylan slurry (100 g/L), 20 μL
sodium acetate buffer (0.5 M, pH 5.5), 50 μL cellulase enzyme (at
appropriate concentration), 25 μL β-glucosidase (at appropriate
concentration) and 85 μL of deionized water to make up the total
reaction volume to 200 μL. The cellulase enzyme loading was
maintained at 120 nmol per Gram xylan substrate and the β-
glucosidase enzyme loading was maintained at 12 nmol per Gram
biomass substrate (leading to 10% of cellulase enzyme
concentration). All the follow-on steps were conducted in a
similar manner to biomass hydrolysis assays.
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pNPC kinetic hydrolysis assays

The pNPC hydrolysis assays were adapted from previously
established protocols laid out in Whitehead et al. (2017). The
assay was conducted in a 0.2-mL flat-bottomed clear
microplate (PlateOne™) and the enzyme activity was tested
at pH 5.5 and pH 7.5. Each reaction was composed of 100 µL
pNPC slurry (2 mM), 7.5 µL 1 M sodium acetate buffer
pH 5.5 or 7.5 µL 1 M MOPS (pH 7.5), 42.5 µL cellulase
enzyme (at an appropriate concentration to constitute five
ug of enzyme per g pNPC). The reaction was performed for
a duration of up to 700 min and the progress of hydrolysis
reaction was tracked via pNP absorbance through a UV-vis
spectrophotometer.

Quartz crystal microbalance with dissipation
(QCM-D) based binding assays

Preparation of cellulose and lignin films for characterization of
GFP-CBM binding, was performed as described elsewhere
(Brunecky et al., 2020; Nemmaru et al., 2021). Quartz sensors
functionalized with nanocrystalline cellulose or lignin were
mounted on the sensor holder of QSense E4 instrument and
equilibrated with buffer (50 mM sodium acetate, pH 5.5 with
100 mM NaCl) for 10 min at a flow rate of 100 μL/min using a
peristaltic pump. The films were left to swell in buffer overnight and
the films were considered stable if the third harmonic reached a
stable baseline after overnight incubation. GFP-CBM2a protein
stocks were then diluted to a concentration of 2.5 μM using
50 mM sodium acetate (pH 5.5) and flown over the sensors at a
flow rate of 100 μL/min for 10–15 min until the system reached
saturation, as observed by the third harmonic. The system was then
allowed to equilibrate for at least 30 min and protein unbinding was
then tracked by flowing buffer (50 mM sodium acetate, pH 5.5 with
100 mM NaCl) over the sensors at a flow rate of 100 μL/min for at
least 30 min. Data analysis for QCM-D traces was performed as
described previously (Nemmaru et al., 2021). However, for lignin,
binding was observed to be mostly irreversible (Gao et al., 2014) and
hence, only the maximum number of binding sites and percent
irreversible protein bound, calculated based on the maximum
number of binding sites and the amount of protein bound
towards the end of unbinding regime.

Pretreated biomass/cellulose hydrolysis
assays with thermally treated enzymes

This assay was performed in a similar way to the pretreated
lignocellulosic biomass hydrolysis assays and the cellulose
hydrolysis assays described above. However, the enzyme
dilution used in those assay procedures was exposed to 70°C
in an Eppendorf thermocycler for 30 min followed by 10°C for
10 min directly before being added into the microplate for
reaction. The reaction was incubated for 60°C for 24 h only.
The initial assay used all the enzyme designs with a denaturation
temperature of 70°C. From this the thermally stable enzyme
designs, D1, D2 and the WT were exposed to temperatures of

73°C, 76°C, and 79°C for 30 min prior to incubation at 60°C
for 24 h.

Cellulase thermal shift assay

The protocol for thermal shift assays was similar to that reported
previously (Whitehead et al., 2017). Briefly, 5 µL 200X SYPRO
reagent, 5 µL 0.5 M sodium acetate buffer (pH 5.5), enzyme
dilution to make up an effective concentration of 5 µM and
deionized water to make up the total volume to 50 µL were
added to MicroAmp™ EnduraPlate™ 96-well clear microplate
(Applied Biosystems™). QuantStudio3 (Applied Biosystems™)
was then used to measure the fluorescence using the channel
allocated to FAM dye (excitation: 470 nm, emission: 520 nm)
under a temperature ramp from 25°C to 99°C at a rate of 0.04°C
per second. The melting curves obtained were then analyzed using
an open-source tool called SimpleDSFViewer (Sun et al., 2020).

Results and discussion

Selection of a wild-type construct fromCBM
family two for supercharging

CBM family two comprises a large collection of mostly bacterial
CBMs, with ~11,000 entries and 10 solved structures. T. fusca, an
industrially relevant cellulolytic microbe, secretes multi-modular
cellulase enzymes comprised of CBMs from family 2. Cel5A
(endocellulase from GH5) was chosen as the model cellulase and
tested for expression and activity, both with its native CBM2a and
CBM2a from exocellulase Cel6B. The objective was to fuse each
CBM to the Cel5A catalytic domain and identify the fusion enzyme
that shows greater thermal stability as a target for supercharging.
These two fusion cellulases are labeled as CBM2a (native) Cel5A and
CBM2a (Cel6B) Cel5A from hereon. Supplementary Figure S3
shows the hydrolytic activity of both enzyme constructs towards
AFEX corn stover and cellulose-I. Surprisingly, CBM2a (Cel6B)
Cel5A showed 1.8 to 2.5-fold improvement in activity towards both
substrates compared to CBM2a (native) Cel5A, across all timepoints
considered. This experiment was followed up with a measurement of
enzyme activity upon thermal treatment at 70°C, as reported in
Supplementary Figure S4. CBM2a (Cel6B) Cel5A loses ~60% of
activity towards both substrates (AFEX corn stover and cellulose-I)
whereas CBM2a (native) Cel5A loses up to ~90% activity. The fusion
of the cellulose binding module CBM2a from Cel6B with the
catalytic domain from Cel5A showed the greatest hydrolytic
activity and thermal resistance. As a result, we chose CBM2a
(Cel6B) Cel5A as the wild-type construct to be engineered in this
study. CBM2a (Cel6B) Cel5A will be referred to as wild-type CBM2a
Cel5A or WT for the remainder of this paper.

Design of supercharged CBM2a library

A homology model was constructed for the target CBM2a (Cel6B)
wild-type protein using Rosetta CM tool (Song et al., 2013) based on
templates from CBM family 2a with at least 50% sequence identity.
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Surface residues were then identified using an appropriate residue
selector in Rosetta. Previous studies have shown that 10% of the
total amino acid sequence length of globular proteins can be
mutated using the supercharging strategy, while still allowing the
proteins to fold properly (Lawrence et al., 2007). Given that CBM2a
is 100 amino acids long and has a net charge of −4, we sought to
generate designs that spanned a net charge range of −14 to +6 using
10 mutations of polar uncharged amino acid residues. Overall, 31 polar
uncharged amino acid residues were identified on the protein surface
and these residues were scored individually for mutations to lysine (K),
arginine (R), aspartic acid (D) and glutamic acid (E).

The mutation energy scores were then averaged for any given
position and surface polar uncharged residues were sorted based on
these averagemutation energy scores. From the original pool of 31 polar
uncharged residues, three categories of residues were considered
immutable due to their potential implications for protein folding or
interaction with cellulose as follows: 1. residues within 10 Å distance
from evolutionarily conserved planar aromatic residues (Georgelis et al.,
2012) essential for CBM function, 2. residues on the CBM binding face
(Nimlos et al., 2012), and 3. residues with a positive average mutation
energy score (predicting structural instability upon mutation). Upon
exclusion of these three categories of residues, 11 mutable polar
uncharged residues were identified and sorted into two spatially
distinct clusters and sorted based on their mutation energy scores
from highest to lowest. The individual and average mutation energy
scores of mutable residues are reported in Supplementary Table S1.
Eight designs were then generated to have net charges of −14 (D1), −12
(D2), −10 (D3), −8 (D4), −6 (D5), −2 (D6), +2 (D7) and +6 (D8) as
shown in Figure 1. Negatively supercharged space was sampled more
granularly because negative supercharging has been shown to reduce
lignin inhibition in our previous work (Whitehead et al., 2017). The
mutations used to generate each design, are reported in Supplementary
Table S2 whereas the full amino acid sequence for wild-type CBM2a
with these mutable residues highlighted in red font, are reported in a
separate file titled ‘SI_Appendix_Sequences.docx’.

Hydrolytic activities of supercharged
CBM2a-Cel5A constructs towards
pretreated biomass

All CBM2a-Cel5a designs were cloned, expressed, and purified
as described in the experimental procedures section. The hydrolytic
activity of the supercharged and wild type cellulases were tested
against pretreated biomass, namely, AFEX corn stover. The
hydrolysis yields are reported in the form of glucose equivalent
reducing sugars released at three time points (2 h, 6 h and 24 h)
resulting in reaction progress curves shown in Figure 2. Based on the
raw hydrolysis data reported in Figure 2A, the negatively
supercharged and positively supercharged mutants were
separated into two groups and their average hydrolysis yields
were reported in Figure 2B.

From Figure 2A, it is evident that the wild-type enzyme (WT)
has the highest activity compared to any supercharged mutant. The
wild-type showed ~1.2 to 1.8-fold greater activity compared to
negatively supercharged mutants and ~1.5 to 24.1-fold greater
activity compared to positively charged mutants. D6 was an
outlier amongst the positively supercharged group, showing

higher activity compared to D7 and D8 across all timepoints
considered. Similar trends were observed with EA corn stover,
another model pretreated biomass substrate, for which the
hydrolysis yields are reported in a similar format in
Supplementary Figure S5. To further compare the hydrolysis
yields of mutants on AFEX and EA corn stover, T-tests were
performed between each mutant pair within the negatively
supercharged (D1-D5) and positively supercharged (D6-D8)
groups, as reported in Supplementary Table S3. On AFEX corn
stover, mutants within D1–D5 group were found to not show
statistically significant differences at 2 h although certain mutant
pairs showed p < 0.05 at 6 h and 24 h. Within D6–D8, D6 showed
statistically significant differences from D7 and D8 at most
timepoints. To understand the behavior of each group compared
to the wild-type, the activities of negatively supercharged mutants
(D1–D5) and positively supercharged mutants (D6–D8) were
averaged separately and reported in Figure 2B. Positively
supercharged mutants ranked the least as a group, at every time
point considered, followed by negatively supercharged mutants with
the wild type consistently ranking higher than both.

The reaction kinetic data on AFEX and EA corn stover for each
individual mutant was then fit to a two-parameter model as
described previously (shown in Supplementary Table S4).
Parameter ‘A’ represents the net activity of the bound enzyme
whereas parameter ‘b’ represents the enzyme’s ability to reduce
biomass recalcitrance over time. On AFEX corn stover, the wild-type
showed ~0.8 to 1.5-fold improvement in parameter ‘A’ over the
negatively supercharged enzymes and ~2 to 6-fold improvement
over positively supercharged enzymes. D1 was the only mutant to
show an improvement in ‘A’ over wild-type indicating that the net
activity of bound enzyme for this mutant may have been greater
than the wild-type but the mutant perhaps lacks the ability to access
new binding sites that can reduce recalcitrance of the enzyme.
Similar trends were observed for EA corn stover, with D1 being
the only mutant to show improvement in A.

Since electrostatic interactions between supercharged mutants
and biomass may be influenced by the presence of salt, a
hydrolysis assay was run at the 2-h timepoint in the presence of
100 mM NaCl (see Supplementary Figure S6). The presence of salt
showed little to no impact for most mutants, except in the case of
D7 on AFEX corn stover for which the presence of salt improved
activity by more than 2-folds.

Overall, the wild type showed improved activity compared to all
the supercharged mutants. The trends observed for the different
cellulases towards pretreated biomass could arise from a
combination of various factors: (i) cellulolytic activity, (ii)
xylanolytic activity, (iii) lignin interactions, or (iv) thermal
stability. We designed specific assays to understand each of these
contributions to pretreated biomass hydrolysis as discussed below.

Hydrolytic activities of supercharged
CBM2a-Cel5A constructs towards cellulosic
substrates

Hydrolysis yields for cellulose-I were measured in terms of
reducing sugar release at three time points (2 h, 6 h and 24 h)
using 120 nmol enzyme per Gram substrate loading, resulting in

Frontiers in Energy Research frontiersin.org06

Nemmaru et al. 10.3389/fenrg.2024.1372916

170

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1372916


reaction progress curves shown in Figure 3A for Avicel Cellulose-I
and Supplementary Figure S7A for Avicel Cellulose-III. Cellulose-I
and Cellulose-III were chosen as the target substrates because these
are the predominant cellulose allomorphs that comprise AFEX corn
stover and EA corn stover respectively. The wild-type showed
activity that was ~0.8 to 1.2-folds compared to negatively
supercharged mutants (D1–D5) and ~0.9 to 4.5-folds that of
positively supercharged mutants (D6–D8). Unlike the trends
observed towards pretreated biomass in the previous section,
negatively supercharged mutants (D1–D5) show either increased

or comparable activities to the wild type. On cellulose-III, most
negatively supercharged mutants performed better than the
wildtype, as observed in Supplementary Figure S7A. T-tests
revealed that there were no statistically significant differences
between each mutant pair in the negatively supercharged group
(D1–D5) or within the negatively supercharged group (D6–D8),
with a few exceptions (see Supplementary Table S5). To understand
the behavior of each group compared to the wild-type, the activities
of negatively supercharged mutants (D1–D5) and positively
supercharged mutants (D6–D8) were averaged separately and

FIGURE 1
Computational design of supercharged CBM2a mutants and generation of fusion protein constructs. Rosetta was used to identify amino acids on
the surface of CBM2a wild-type protein which are amenable to positively charged (K, R) or negatively charged (D, E) amino acid mutations to achieve a
target net charge spanning the −14 to +6 range. (A) CBM2a designs were fused with Cel5A and GFP separately. (B) Electrostatic potential maps of the
8 CBM2a designs and their wild-type (represented as WT) are generated using APBS Electrostatics Tool in PyMOL. The name of each construct
(D1–D8 and WT) is followed by the net charge of each design in parenthesis.

FIGURE 2
Hydrolytic activity of supercharged cellulases towards AFEX Corn Stover. 80 μL of 25 g/L AFEX Corn Stover was hydrolyzed using an enzyme loading
of 120 nmol CBM2a Cel5A fusion enzyme per Gram biomass substrate with 12 nmol β-glucosidase enzyme (10% of cellulase loading) per Gram biomass
substrate for reaction times of 2, 6, and 24 hrs. The solubilized reducing sugar concentrations in the supernatant after hydrolysis were determined by the
DNS assay (A) Glucose equivalent reducing sugar release (mg/mL) as a function of time (2, 6, and 24 h) for the hydrolysis of AFEX Corn Stover by
D1–D8 CBM2a Cel5A and WT CBM2a Cel5A. Error bars represent standard deviation from the mean, based on at least four replicates. (B) Based on the
data reported in (A), CBM2a Cel5A fusion constructs with negatively supercharged CBMs (D1–D5) were grouped together and average hydrolysis yields
were obtained for the group, with the error bars representing standard deviation from themean. Similarly, CBM2a-Cel5A fusion constructs with positively
superchargedCBMs (D6–D8) were grouped together and average hydrolysis yields were obtained. Trend curves have been added to represent the kinetic
profiles of the hydrolysis reaction. Wild-type CBM2a-Cel5A is referred to as WT throughout this figure.
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reported in Figure 3B and Supplementary Figure S7B for Cellulose-I
and Cellulose-III respectively. The two-parameter kinetic model fits,
achieved as described for biomass, are reported for cellulose-I and
cellulose-III in Supplementary Table S6.

Overall, positively supercharged mutants (D6–D8) consistently
ranked below wild type and negatively supercharged mutants
(D1–D5) across both substrates. On the other hand, negatively
supercharged mutants showed comparable performance to wild type
in the case of cellulose-I and outperformed the wild type in the case of
Cellulose-III. Combining these results along with trends observed
towards pretreated biomass substrates in the previous section, it is
evident that the reduced activity of negatively supercharged mutants
towards AFEX and EA corn stover may be resulting from one of the
other factors such as xylanolytic activity, interactions with lignin or
thermal stability. Similar results were obtained in previous works where
a decrease in hydrolytic activity towards PASC was observed for
negatively supercharged mutants (Whitehead et al., 2017). However,
the lower activity of positively supercharged mutants towards cellulose
may be one of the causal factors behind their overall lowered activity
towards pretreated biomass.

Hydrolytic activities of supercharged
CBM2a-Cel5A constructs towards xylan
and pNPC

Certain cellulases like Cel5A aremultifunctional and exhibit activity
on xylan, thus the mutants were screened for their activity towards
beechwood xylan and the raw data is reported in Figure 4A These
results show that the negatively supercharged mutants show reduced
activity compared to the wild-type, with the difference becoming more
prominent at longer hydrolysis durations such as 24 h. Upon averaging
the activities of all supercharged mutants of the same type (negative
(D1–D5) vs. positive (D6–D8)) as shown in Figure 4B, it is evident that
the negatively supercharged mutants collectively show greater than

1.5-fold reduction in activity. The positively supercharged mutants also
show a reduction in activity compared to the wild-type but their activity
is very similar to that of negatively superchargedmutants. This is unlike
the case of insoluble substrates such as AFEX corn stover or cellulose-I
where the positively supercharged mutants showed demonstrably
reduced activity compared to the wildtype and negatively charged
subgroup. Surprisingly, the mutant D8 showed improved activity
compared to the wild-type, despite showing drastically activity
amongst the cohort, towards AFEX corn stover and cellulose-I. This
trend could likely be due to the reduced significance of CBM function
for soluble substrates such as Xylan. Summarizing the results of activity
towards biomass, cellulose and xylan, it can be inferred that the reduced
activity of negatively supercharged mutants (D1–D5) towards biomass
arises predominantly from reduced activity towards Xylan. Positively
supercharged mutants D7 and D8 show consistently reduced activity
towards all substrates tested although they show activity similar to
that of the.

To validate these trends towards anothermodel soluble substrate, we
tested hydrolytic activity towards pNPC (see Supplementary Figure S8).
This assay was originally designed to test activity at pH 7.5 (as reported
byWhitehead et al. (2017)); however, we adapted the assay to pH 5.5 to
keep the pH consistent across all substrates tested in this study. The raw
data reported in Supplementary Figure S8A was analyzed further to
obtain averages for each individual group (D1–D5 and D6–D8), which
is reported in Supplementary Figure S8B. At pH 5.5, all mutants show a
negligible reduction in activity towards pNPC (Supplementary Figure
S8B) whereas at pH 7.5, negatively supercharged mutants on average
showed improved activity compared to the wild-type (Supplementary
Figure S8D). Mutant D8 was amongst the top performers in the pNPC
assay at pH 7.5, performing distinctly better than the other positively
supercharged enzymes. Overall, the activity towards pNPC shows that in
the case of positively superchargedmutants (D7 andD8 specifically), the
structural integrity of cellulase enzyme may not have been affected in an
adverse manner and that the reduced activities observed towards
pretreated corn stover or cellulosic substrates may be a result of

FIGURE 3
Hydrolytic activity of supercharged cellulases towards Avicel cellulose-I. 40 μL of 100 g/L Avicel cellulose-I substrate was hydrolyzed using an
enzyme loading of 120 nmol CBM2a Cel5A fusion enzyme per Gram cellulose substrate supplemented with 12 nmol of β-glucosidase enzyme (10% of
cellulase loading) per Gram cellulose substrate for reaction times of 2, 6, and 24 hrs. The solubilized reducing sugar concentrations in the supernatant
after hydrolysis were determined by the DNS assay (A) Glucose equivalent reducing sugar release (mg/mL) as a function of time (2, 6, and 24 h) for
the hydrolysis of Cellulose-I by D1–D8CBM2a Cel5A andWTCBM2a Cel5A. Error bars represent standard deviation from themean, based on at least four
replicates. (B) Based on the data reported in (A), CBM2a Cel5A fusion constructs with negatively supercharged CBMs (D1–D5) were grouped together and
average hydrolysis yields were obtained for the group, with the error bars representing standard deviation from the mean. Similarly, CBM2a-Cel5A fusion
constructs with positively supercharged CBMs (D6–D8) were grouped together and average hydrolysis yields were obtained. Trend curves have been
added to represent the kinetic profiles of the hydrolysis reaction. Wild-type CBM2a-Cel5A is referred to as WT throughout this figure.
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reduced binding interactions of CBMs to cellulose/lignin or an impact to
thermal stability caused due to supercharging.

Binding of mutants to cellulose and lignin

To fully understand the role of CBM binding interactions on the
activities of supercharged mutants towards cellulose and thereby
pretreated biomass, we performed QCM-D assays (see
Supplementary Figure S9 for raw data in the form of sensorgrams)
which capture the total number of binding sites and the desorption rate
constant (koff). As reported in Table 1, all mutants except for D5 and
D6 showed comparable or a reduced number of binding sites (up to 1.5-
fold as observed for D1) with respect to the wild-type. D6 shows the
highest binding of all mutants, showing up to 1.5-fold improvement,
which could partially explain the higher activity seen for this mutant
towards cellulose-I (see Figure 3) compared to other positively
supercharged mutants D7 and D8. On the other hand, all mutants
except for D5 and D8 show an improvement in (koff), with
D2 showing the most improvement (~1.3-fold). The most dramatic
reduction was observed for D8, which has ~ 9-fold reduction in koff.
These results could explain the large decrease in activity observed for
D8 CBM2a-Cel5A toward cellulose-I and thereby AFEX corn stover.

Lignin is a key polymer in pretreated biomass, which has the
potential to restrict access to cellulose binding sites and thereby reduce
overall biomass hydrolysis yields. QCM-D assays were performed to
understand the binding of supercharged CBM2a mutants to lignin (see
Supplementary Figure S10 for raw data). As reported in Supplementary
Table S7, all mutants show an improvement in the percentage of protein
recovered, indicating that superchargingmay have resulted in increased
reversibility of interactions between lignin and the CBM. Interestingly,
D6 shows the highest percentage of protein recovered amongst all
mutants, in stark contrast to D7 and D8, which could partially explain
the reason for D6 outperforming its positively supercharged peers

(D7 and D8) towards pretreated biomass and cellulose. Lignin
inhibition assays were then performed to understand the inhibitory
potential of lignin towards hydrolysis of cellulose-I and cellulose-III (see
Supplementary Figure S11 for hydrolysis results and Supplementary
Table S8 for T-tests comparing mutant activities in lignin inhibition
assays). Results from lignin inhibition assays were not too instructive
due to the high level of error observed in this assay although the overall
trends of negatively supercharged mutants outperforming positively
supercharged mutants (with the exception of D6) still
remained the same.

Overall, the binding assays to cellulose and lignin shed some light
on the behavior of D6 as an outliar from the rest of the positively
supercharged sub-group, due to increased binding to cellulose-I and
reduced irreversible binding to lignin. In addition, D8 shows a
dramatic reduction (~9-fold) in desorption rate constant towards
cellulose-I, indicating that the mutant may struggle with accessing
binding sites on cellulose during hydrolysis. However, these results do
not explain the reduced activity of D7 toward cellulose-I and AFEX
corn stover. It is to be noted that these binding assays are performed at
25 °C as opposed to the hydrolysis assays which are performed at
60 °C. Hence, to understand the potential role of thermal stress on
enzyme activity, we subjected these constructs to thermal exposure at
elevated temperatures (70 °C), followed by testing of hydrolytic
activities at 60 °C.

Hydrolysis of pretreated biomass/cellulose
by CBM2a-Cel5A mutants upon
thermal treatment

Exposure of the enzymes to 70°C prior to hydrolysis of AFEX
corn stover or cellulose-I revealed differences in thermal stability of
the cellulase variants (see Figure 5 for AFEX Corn Stover and
Cellulose-I and Supplementary Figure S12 for EA Corn Stover

FIGURE 4
Hydrolytic activity of supercharged cellulases towards Beechwood xylan. 20 μL of 100 g/L Beechwood xylan substrate was hydrolyzed using an
enzyme loading of 120 nmol CBM2a Cel5A fusion enzyme per Gram xylan substrate supplementedwith 12 nmol of β-xylosidase enzyme (10%of cellulase
loading) per Gram xylan substrate for reaction times of 2, 6, and 24 hrs. The solubilized reducing sugar concentrations in the supernatant after hydrolysis
were determined by theDNS assay (A)Reducing sugar release (mg/mL) as a function of time (2 h, 6 h and 24 h) for the hydrolysis of Beechwood xylan
by D1–D8 CBM2a Cel5A andWT CBM2a Cel5A. Error bars represent standard deviation from themean, based on at least four replicates. (B) Based on the
data reported in (A), CBM2a Cel5A fusion constructs with negatively supercharged CBMs (D1–D5) were grouped together and average hydrolysis yields
were obtained for the group, with the error bars representing standard deviation from themean. Similarly, CBM2a-Cel5A fusion constructs with positively
superchargedCBMs (D6–D8) were grouped together and average hydrolysis yields were obtained. Trend curves have been added to represent the kinetic
profiles of the hydrolysis reaction. Wild-type CBM2a-Cel5A is referred to as WT throughout this figure.
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and Cellulose-III). To quantify this trend, we calculated the percent
reduction in activity caused due to thermal treatment which is
reported in Supplementary Table S9. While all enzymes showed
decreased reducing sugar release, D3, D6 and D7 showed the most
reduction in activity (~80–99%) towards all substrates tested. On
the other hand, D1 and D2 showed better activity upon thermal
treatment compared to the wildtype and show the least percent
reduction in activity compared to all other mutants.

To build on this trend further, D1, D2 and WT were analyzed
further by exposing them to a wider range of temperatures (70°C, 73°C,
76°C and 79 °C) as shown in Figure 6. D1 andD2 outshine the wild type
especially at higher temperatures such as 76°C and 79°C towards AFEX
corn stover (see Figure 6A) where the wildtype shows practically no
activity. For instance, after thermal treatment at 73°C, D1 and
D2 showed ~ 3-fold and ~ 4-fold improvement in activity
compared to WT respectively. This difference is even starker at 76°C

FIGURE 5
Impact of enzyme thermal denaturation at 70°C on reducing sugar yields from AFEX corn stover (A) and Avicel cellulose-I (B) Cellulase enzyme
(0.0048 nmol/μL concentration) was thermally denatured at 70°C for 30 min using an Eppendorf thermocycler. 50 μL of denatured cellulase enzymewas
added to either 80 µL of 25 g/L AFEX Corn Stover (A) or 40 µL of Cellulose-I (B) to establish an effective enzyme loading of 120 nmol enzyme per Gram
AFEX Corn Stover or Cellulose-I substrate. 12 nmol of β-glucosidase enzyme (10% of cellulase loading) per Gram substrate was added to the
reaction mixture and incubated at 60°C for 24 h. A control reaction was performed with enzyme that was incubated on an ice bath (0°C) for 30 min. The
results of enzyme activity upon thermal denaturation at 70°C are labelled as ‘With heat exposure’ and those without thermal denaturation are labelled as
‘Without heat exposure’. At least three replicates were run for each condition and the error bars represent standard deviation from the mean. Reducing
sugar yields from hydrolysis of AFEX Corn Stover are reported in (A) and those from Avicel cellulose-I are reported in (B).

FIGURE 6
Impact of thermal denaturation at varying temperatures (70°C, 73°C, 76°C and 79°C) on reducing sugar yields from AFEX Corn Stover (A) and Avicel
cellulose-I (B). Cellulase enzyme (0.0048 nmol/μL concentration) was thermally denatured for 30 min at one of the following temperatures (70°C, 73°C,
76°C, 79°C) using an Eppendorf thermocycler. 50 μL of denatured cellulase enzyme was added to either 80 µL of 25 g/L AFEX Corn Stover (A) or 40 µL of
Cellulose-I (B) to establish an effective enzyme loading of 120 nmol enzyme per Gram AFEX Corn Stover or Cellulose-I substrate. 12 nmol of β-
glucosidase enzyme (10% of cellulase loading) per Gram substrate was added to the reaction mixture and incubated at 60°C for 24 h. A control reaction
was performed with enzyme that was incubated on an ice bath (0°C) for 30 min. At least three replicates were run for each condition and the error bars
represent standard deviation from the mean. Reducing sugar yields from hydrolysis of AFEX Corn Stover are reported in (A) and those from Avicel
cellulose-I are reported in (B) under each of the denaturation temperatures (70°C, 73°C, 76°C and 79°C).
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although the wild-type activity is closer to the detection limit thereby
making activity improvements harder to quantify. However, on
cellulose-I (see Figure 6B), D1 and D2 showed a steep decrease in
activity when the thermal exposure temperature was reduced from 70°C
to 73°C, which continues to decline at higher temperatures. This may
likely be caused by the fact that the reducing sugar release from biomass
may be arising from xylan at higher temperatures, which is easily
accessible compared to cellulose which requires CBM binding for the
catalytic domain to be engaged.

The thermal stability was also measured using a thermal shift
assay with SYPRO reagent, and the melting temperatures are
reported in Supplementary Table S10 (the raw thermal shift
assay data is reported in Supplementary Figure S13). There was
not an appreciable difference seen in the melting temperatures.
This assay measures the melting temperature of the enzyme as a
whole and hence these results may be more biased towards the
melting temperature of the catalytic domain as opposed to that
of the CBM.

Overall, functional hydrolysis assays after thermal treatment of
enzymes indicated that supercharging strategy gave rise to thermally
stable mutants (D1 and D2) that find direct applications in industry
in high-temperature biomass conversion processes. The structural
basis of what renders certain supercharged mutants superior to
others, still needs to be understood at greater detail which will be the
subject of future studies.

Conclusion

Carbohydrate-binding modules (CBMs) play a crucial role in
targeting appended glycoside hydrolase enzymes to plant cell wall
polymers such as cellulose and hemicellulose (McLean et al., 2002;
Herve et al., 2010; Fox et al., 2013; Reyes-Ortiz et al., 2013).
However, recent studies have shown that CBMs can also play a
role in non-productive binding of appended cellulase catalytic
domains to cellulose surface (Karuna and Jeoh, 2017; Nill and
Jeoh, 2020; Nemmaru et al., 2021). In addition, CBMs can bind
non-productively to lignin via hydrophobic interactions, leading to
deactivation of the enzymes on biomass surface (Haarmeyer et al.,
2017). To address these bottlenecks, a previous study from our lab
has used selective supercharging of cellulase enzymes to reduce
lignin inhibition although the mechanistic details were yet to be
elucidated (Whitehead et al., 2017). In this study, we expanded the
supercharging approach to address mechanistic questions
surrounding the impact of CBM supercharging on the hydrolysis
of real-world pretreated biomass substrates.

This study is the first comprehensive study to test the impact of
enzyme supercharging on activity towards various pretreated
biomass substrates and systematically deconvolute the
interactions of supercharged enzymes with cellulose, xylan and
lignin. Although negatively and positively supercharged enzymes
showed reduced activity compared to the wild-type, it was identified
that some of these mutants show up to 4-fold improved activity
upon exposure to higher temperatures. The reduced activity for
negatively supercharged mutants was found to be predominantly
driven by reduced activity towards xylan, whereas positively
supercharged mutants showed reduced activity towards both
cellulose and xylan. Future studies should focus on

understanding the structural basis of hydrolytic activity and
binding of supercharged mutants to lignocellulosic substrates.
Recent work has shown that supercharging CBMs may improve
catalytic activity on cellulosic biomass due to improved binding, but
this outcome may be dependent on supercharging design strategy
and the choice of enzymes (DeChellis et al., 2024). Moreover, the
role of solution pH and salt concentration also need to be studied in
greater detail due to their outsized impact on the net charge of the
protein and alteration of electrostatic potential of
supercharged proteins.
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Emergy is a concept that is important for understanding problems in accounting
for the health and integrity of ecological and social systems. Success in the
evolutionary competition among systems depends on maximizing the emergy
captured by a system that is then fed back to bring inmore exergy. For this reason,
“emergy” in the form of maximum empower (i.e., maximum emergy flow
measured in solar emjoules or sej/unit time) provides a unified,
thermodynamically controlled decision criterion by which the behavior of all
systems is constrained. The fact that maximum empower and not maximum
profit is nature’s decision criterion makes it critical that more people become
familiar with emergy evaluations and how to use the results of these analyses in
decision-making. A new approach to emergy evaluation is proposed that focuses
on developing more accurate assessments of the spatial and temporal emergy
accounting required for the creation of products and services. These emergy
evaluations include the accumulated past action of exergy in creating key system
components such as vegetation biomass and the accumulated knowledge of
workers in the economy, which will result in emergy assessments that better
reflect the capacity of the products and services to do work in their systems. An
analysis of the Geobiosphere is presented as a “white box” model of the
secondary and tertiary flows of wind and water in the global system. The key
factors identified are the separation of wind into two components: a factor
controlling vertical diffusion with transformity of ≈715 sej J−1 and a second
transformity governing surface friction of ≈1,215 sej J−1. Also, water systems
are fully defined with transformities of 302,900 sej J−1 to 1,440,000 sej J−1 for
geostrophic flows. Past emergy analyses show that managers should develop
policies that will maximize the empower flowing through their systems. The
problem of maximizing the empower captured occurs within the context of a set
of forcing functions impinging on a system from the next larger system, and since
these forcing functions are always changing, maximum power should not be
thought of as a fixed endpoint but rather as a constant state of seeking this goal.
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1 Introduction

The importance of emergy as an accounting quantity and its
physical basis in the laws of equilibrium and nonequilibrium
thermodynamics that govern all phenomena are considered in
this article and by Odum (1996). The overview perspective on
emergy accounting presented here is to be used with the existing
emergy accounting rules (Brown and Herendeen, 1996; Odum,
1996) and the further modification of those rules proposed in
this article. The modifications of the emergy methodology
proposed here build on the strong foundation of four articles
establishing the solar equivalent exergy (SEE) baseline for the
Geobiosphere, measured as solar equivalent joules, seJ (Brown
et al., 2016; Brown and Ulgiati, 2016; Campbell, 2016; De Vilbiss
et al., 2016) and on the earlier work of Campbell and Lu (2009) on
the recursive structure of the formal education system of the
United States (Campbell et al., 2014a), on examining educational
attainment and its role in determining value in the US economy
(Campbell et al., 2011), and on the method for attaining closure on
the emergy balance sheet and emergy income statement of systems,
e.g., a state or a nation (Campbell, 2013). Further consideration of
the nature of emergy leads to proposed modifications of the
methodology and disagreements faced in calculating solar
transformities for secondary and tertiary emergy inflows to the
Earth, and from further thought on determining the SEEs of the
primary SEE inflows to the Geobiosphere (Campbell, 2016) that has
also led to proposed changes. The major focus of this article is to

present detailed new calculations for the emergy of the secondary
and tertiary exergy flows of the Earth’s air and water systems, which
is the logical next step in emergy accounting after establishing a
strong scientific determination of the planetary SEE baseline for
emergy calculations. Exergy from the three primary sources of
exergy to the Earth: sun, S, earth’s deep heat, E, and solar and
lunar tidal attractions, G, enter the Earth’s Geobiosphere (Figure 1).
These exergies are then transformed into additional flows that are
derived from the original flows as secondary or tertiary inputs to the
Geobiosphere, depending on the number of transformations that the
original exergy flows experience as they move away from their
sources, i.e., one transformation yields a secondary flow and two
transformations a tertiary flow. For example, secondary flows of
exergy to the Geobiosphere include wind, rain on land, rain on the
sea, and tidal dissipation in coastal areas, etc. and tertiary flows are
found in waves, wind driven currents, runoff, evapotranspiration,
infiltration, etc.

1.1 Emergy and its importance

Emergy is a scientifically powerful yet an often poorly
understood concept that has great importance in understanding
many important problems in accounting for the health and integrity
of ecological systems (Campbell, 2000; Berrios et al., 2018), and in
the analysis and understanding of causality in all kinds of systems
(Odum, 1971; Odum, 1996). Emergy is important because success in

FIGURE 1
An Energy Systems Language “white box” model of the Geobiosphere tracing the SEE, input from each of the three primary sources (circles) and
showing how they interact to support the exergy flows of the system (solid lines with arrowheads). The interconnections among the SEE sources and the
system components, i.e., atmosphere, oceans, and continents, show the SEE sources required for the secondary emergy flows of the Geobiosphere
(i.e., the labeled pathways) as defined in Table 1. SEEs are given in bold, exergy flows in italics, and water volumes in plain text.
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the evolutionary competition among systems and designs depends
onmaximizing the emergy flow captured by a system and then being
fed back to bring in more available energy (Odum, 1996; Campbell,
2001). For this reason, “emergy” in the form of maximum empower
(i.e., maximum emergy flow measured in solar emjoules or sej/unit
time) provides a unified, comprehensive, thermodynamically
controlled decision criterion by which the behavior of all systems
is ultimately constrained. The fact that maximum empower and not
maximum profit is nature’s decision criterion makes it critical that
more people become familiar with emergy evaluations and how to
use the results of these analyses in decision-making. Thus, managers
responsible for the success of their systems should have as a primary
goal the development and implementation of policies that will
maximize the empower (emergy/unit time) flowing through their
systems, and thereby maximize their system’s functional integrity or
health, i.e., the system’s competitiveness in the competition among
all systems to capture the available energy of resources from the
Geobiosphere (Odum, 1996; Campbell, 2000). The relative empower
generated provides managers a general criterion to use in choosing
among alternative systems. The problem of maximizing the
empower captured always occurs within the context of a set of
forcing functions impinging on a system from the next larger
system, and since these forcing functions are always changing at
faster or slower rates, the maximum power should not be thought of
as a fixed endpoint to be attained but rather as a constant state of
seeking this goal, thus maximum empower is a moving target
(Campbell, 2001). This property of maximum empower makes it
essential to consider the temporal boundaries of the system under
evaluation. Quantifying the flows of available energy (i.e., exergy) in
a network over time provides data on system condition to support
decision-making by managers responsible for the wellbeing of their
respective ecological and socioeconomic systems. Some examples of
the use of the Energy Systems Theory in the management of
ecological and social systems are found in Odum et al. (1998) in
the “Environment and Society in Florida” and in Campbell et al.
(2005a) that provide examples of the application of Energy Systems
Theory in the management of a US state. Kangas (2004) gives
examples of the use of the Energy Systems Theory and other key
articles in the development of a new discipline of ecological
engineering. Campbell et al., 2014a provide a discussion of the
use of the Energy Systems Theory in the analysis of energy use in the
United States from 1900 to 2011 with a particular emphasis on
understanding the “Great Recession of 2008”.

1.1.1 Emergy and empower
Emergy is of universal importance because the transformation of

energy potentials underlies and is responsible for all actions that
have been observed in the universe. Emergy has been operationally
defined (Odum, 1996) as the available energy (i.e., the exergy)1 of
one kind that has been used-up, both directly and indirectly, in the
process of producing a product (i.e., a quantity of mass, energy, and

information) or a service (i.e., the provision of a flow of mass,
electricity, human labor, horsepower, and information). Emergy is a
quantitative property of the evolution of system networks over time
that can be derived directly from the requirements of the first2 and
second3 laws of thermodynamics and the proposed fourth4 law or
the maximum empower principle and its corollaries, e.g., the
proposed fifth law or the principle of energy hierarchy5 (Odum,
1996). As mentioned above, emergy derives its explanatory and
predictive power from the fact that maximizing empower (emergy
flow) in a process, system, or network has been hypothesized to be
nature’s decision criterion (Lotka, 1922a; Lotka, 1922b; Odum, 1996;
Campbell, 2000; 2001). Thus, in the competition among systems
(mineral, human, animal, ecological, or socioeconomic), success at
all hierarchical levels of an organization depends on maximizing
empower at the level within the universal hierarchy of natural
phenomena at which the system exists and this condition
radiates or propagates to all other levels in the hierarchy.

The suite of emergy inputs, or the emergy signature of forcing
functions driving system behavior, is derived from the system
operating at the next higher level of the organization, and these
inputs are constantly changing, whether at a faster or slower rate. As
a result, a system at the level in the hierarchy receiving these inputs
will be constrained to adjust its structure and function to
outcompete its competitors (i.e., other system designs) in
capturing the available energy in the signature. This must be true
if a system is to prevail in competition or fails to persist as part of the
mix of systems that survive. In general, persistence is only possible
under the constraint to maximize empower because of the variability
present in systems at all hierarchical levels. This variability opens the
way for redundancy to be built into systems, for which additional
choices provide the flexibility to maximize empower at other times
and places; therefore, entities that can only persist under one set of
forcing functions may prevail under a future forcing regime. Nature
through its laws does not respect species, per se, only the
functionality of a species is respected, which is demonstrated by
its ability to maximize empower within the context of the system’s
current emergy signature (Campbell et al., 2009).

Based on the arguments given above, it is easy to see the
importance of knowing the expected change in emergy flow
(empower) through a system before choosing among possible
alternatives or changes to be made to the system. More exactly,

1 Available energy or exergy is energy with the potential to do work against a

background state and is degraded in this process. It hasmeasurable units of

joules, kilocalories, etc.; however, the energy potential is relative to

conditions in the designated reference environment.

2 The energy conservation principle, i.e., energy is neither created nor

destroyed in its circulation and transformations within a system.

3 Some available energy must be degraded to an unusable form, whenever

energy is stored or transformed in a system, resulting in an increase in

entropy of the whole system.

4 Under the evolutionary competition among systems, those with self-

organizing processes (e.g., systems with autocatalytic or positive

feedback) and network designs (e.g., hierarchy) that maximize

empower will prevail (Odum, 1996).

5 Energy flows of the universe are organized into hierarchical structures as

the result of energy transformations taking place under the second law.

The position of storage or flow within the hierarchy is measured by its

transformity (Odum, 1996).
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maximizing empower is nature’s decision criterion, and we ignore
such natural laws at our own peril. While a manager who
understands the importance of the arguments given above to the
future of a system will surely want to know the changes in the
emergy flow that may result from a management action that has
been authorized, making the decision to evaluate these changes will
lead to a set of further considerations.

1.1.2 Emergy is an accounting quantity
First, unlike many easily measurable holistic indicators of a

system’s condition, such as the body temperature of a human being
the summary measure of health, emergy cannot be measured
directly. Emergy is not an observable state variable; therefore,
there is no place in the universe where an instrument can be
placed to make a direct measurement of the emergy of a stored
quantity or flow. Emergy and changes in emergy flow can only be
measured using an accounting process, for example, the available
energy that is used in the production process of a product or service
can be tracked and then summed over the time and path used to
form the output (Tennenbaum, 1988). By contrast, the output or
product of these exergy transformations is observable and can be
directly measured in energy, mass, or information units. Also, the
available energy or exergy of a quantity is not a state variable because
its value is defined relative to a background energy level or its
environmental context, which can change, and therefore it must be
specified by measuring the quantity, e.g., the geopotential energy of
water is measured by the elevation of water on the landscape relative
to the sea level, the specified ground state. Once the background
reference has been chosen, the available energy of an entity can be
quantified in a uniform manner, i.e., measured relative to the
background. Thus, the major emphasis in emergy quantification
has always been laid on the rules that are used to perform the
accounting, because maximum emergy flow is a predictive universal
quantity that can only be measured through an accounting process
(Brown and Herendeen, 1996; Odum, 1996). These accounting rules
can be expressed in somewhat different terms depending on the
method used to quantify the emergy of storages and flows for
example, Le Corre and Truffet (2012) and Le Corre and Truffet
(2015) formulated the rules somewhat differently, but in a consistent
manner with past rules, to allow making emergy calculations in a
network using the graph theory. This focus on the accounting rules
has, at times, led to some confusion and sometimes a tendency
toward blind obeisance due to the failure of investigators to keep in
mind the deeper meaning of emergy, i.e., what it is.

1.1.3 The deeper meaning of emergy
The deeper meaning of emergy arises from its identity as a

thermodynamically controlled variable that quantifies nature’s
decision criteria within the context of evolutionary competition.
Specifically, hypothesizing to maximize the empower captured by a
process or system to determine its success in the competition among
alternative system designs that are competing for the use of available
resources, given that all processes are operating at maximum power
efficiencies. An exergy flow from a given system or component to an
exploiting process can allow the capture of more energy in available
resources, because it provides a higher quality feedback (i.e., entities
with higher emergy per unit of available energy, seJ J−1) than an
equivalent quantity of feedback from other components with which

it is in competition. The underlying assumption for such
comparisons to be valid is that all the processes are operating at
their maximum power states. Under this condition, more effective
feedback can do more work per unit of available energy dissipated.
This is a fundamental prerequisite in determining the existence of an
increase in the emergy of a component or process in a system,
i.e., exergy with higher quality per unit quantity must have an
increased ability to do useful work6 in its system, with all other
factors being equal. This condition serves as a fundamental
constraint on the calculation of emergy and on its accounting
rules, i.e., the quality, or the ability to do work, of the quantity of
available energy must increase, if the emergy delivered per unit
exergy of the component or process increases, given that all
processes are operating at their maximum power points. This
profound connection between maximizing emergy flow and
success in the evolutionary competition for resources and the
role of high-quality available energy feedback in this
maximization is explored in this article as the basis for
promulgating an emphasis on the deeper meaning of emergy as a
guiding context for performing emergy calculations and for applying
the existing rules of emergy algebra to carry out these calculations
(Tennenbaum, 1988; Brown and Herendeen, 1996; Odum, 1996)
more effectively. In this article, the existing emergy accounting rules
are modified to incorporate some important aspects of the emergy
accounting methods mentioned in Odum (1996) and later
considered further by Brown (2005) and Brown and Brandt-
Williams (2011), but these possible innovations, though pointed
out, are not fully applied in most emergy accounting studies. In this
article, we expand the rules of emergy accounting using a meta
framework that includes the broader temporal and spatial emergy
flows required to account for the development of system structures
essential to bring about the emergy flows of concern in an
evaluation. This approach often results in including temporal
boundaries that are required for the creation of certain items that
are broader and those usually included in a typical emergy analysis.
The effects of this approach can bemost clearly seen in the role of the
emergy required for the creation of biomass accumulations in
determining present emergy flows that are required for different
plant processes, such as growth and reproduction. Other examples
of the meta framework are seen in the inclusion of the emergy
required for the education and training of workers in the evaluation
of human labor use in economic systems. The foremost macroscopic
modification of the accounting rules proposed here is that the first
consideration in all emergy analyses should be the recognition that
there must be a fundamental connection between the ability of an
entity to do work in its system and its emergy intensity or
transformity and vice versa. In this regard, the emergy
accounting rules should lay their primary emphasis on an exact
accounting, neither overcounting nor undercounting, of the emergy
required for creating an entity and understanding the actions that
will result from its use.

6 “Useful work” can capture additional exergy from external resources for

use in building or operating system structures that, in turn, facilitates the

further use of available resources within the system.
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1.2 Objectives of this study and preliminary
information

The reader should note that critical material and ideas for
understanding this study are given in Supplementary Material A
and B, which should not be neglected in obtaining an understanding
of the origins of the material presented in this article. First, the
effects of the radiation of the emergy methodology on the
accounting process are considered (Supplementary Section
A1.0—Radiation of the Emergy Methodology). Next, the
development of the emergy methodology during the period from
2002 to 2016 (fromH.T. Odum’s death to the publication of the four
key baseline articles) is considered in Supplementary Section
A1.1—Environmental Accounting: Past Problems and Current
Advances. In the context of this study, the SEE basis for the
Earth system was reexamined to ensure greater methodological
consistency in Supplementary Section A1.2—A reexamination of
the solar equivalences of the Earth’s primary exergy inflows is
presented. This reexamination of the baseline yielded data that
further supported our estimate of 12.0E24 seJ y−1 as the value for
the SEE baseline for Earth in Supplementary Section A1.3 giving
further support for 12.0E+24 seJ y−1 as the value of the SEE
Geobiosphere baseline. Finally, differences between the
determinations of the baseline carried out by Brown and Ulgiati
(2016) and Campbell (2016) are examined and a commentary on the
significance of the differences is given in Supplementary Section
A1.4—Differences between the Geobiosphere models used by Brown
and Ulgiati (2016) and Campbell (2016).

The immediate objectives of this study are (1) to reexamine the
emergy evaluation of the flows of air and water within their
thermodynamic context in the global Geobiosphere and to
develop a meta framework with expanded spatial and temporal
boundaries within which the rules used to calculate emergy flows for
a given system can be applied more accurately, i.e., more exactly, in
determining all the exergy required for a particular flow or storage;
(2) to propose self-consistent solar equivalence ratios for tidal exergy
dissipated in oceans and by Earth’s deep heat flow based on refined
baseline calculations (Supplementary Section A1.2); (3) the data
given in Campbell (2016) are reexamined to reaffirm the value
calculated for the SEE baseline of the Geobiosphere (Supplementary
Section A1.3), and we present a “white box” Energy Systems
Language (ESL) model for calculating the exergy in the most
important secondary and tertiary wind and water emergy flows
of the Geobiosphere; and (4) to carry out the new calculations of the
transformities of the major secondary and tertiary emergy flows
using the “white box” framework for applying the calculation rules
proposed under (1) mentioned above. A refinement of the flows of
materials on Earth, such as rocks and minerals, is not considered in
this article but can be found in a new United States Environmental
Protection Agency (USEPA) publication mentioned below.

2 Advances in modeling the
Geobiosphere

In this section, we consider the primary theoretical advances
presented in this article that are related to the determination of the
secondary emergy flows of the Geobiosphere. The first innovation is

to examine the Geobiosphere and develop calculation methods for
the major secondary exergy flows within an explicit “white box”
model of the major planetary processes. The “white box” modeling
approach has been used in emergy analyses in earlier studies when
details of an interacting system were of interest (Odum, 1983;
Odum, 1994). For example, see Figure 25-9, simulation of a
coastal county with an oyster fishery from Boynton (1975). In
this article, a white box model will be applied in modeling and
calculating the secondary (Figure 1) and tertiary exergy flows of the
Geobiosphere (Section 4). The second advance is to examine the
premise that methodological self-consistency in determining spatial
and temporal boundaries is the primary characteristic required to
ensure a valid emergy evaluation. If followed, this approach will
guarantee that future emergy analyses will be transparent, self-
consistent, and reproducible.

2.1 A “white box”model of the Geobiosphere

The theoretical model used by Odum (1996) to calculate
transformities for the secondary and tertiary emergy flows of the
Geobiosphere is shown in Figure 3.2 of Odum (1996). In this model,
all emergy inputs, solar insolation, Earth’s deep heat, and tides are
connected to all system components: air, ocean, and crust, which are,
in turn, all connected to one another. Odum’s premise for the
calculation of the transformities of flows in the global web of
processes follows from this model, i.e., in the global network,
everything is assumed to be connected to everything else, thus
the total inflow of solar equivalent exergy (formerly emergy
inflow) to the Geobiosphere is required for all pathways in the
model. This is a “black box”model, and the details of the interactions
among sources and components in the model were not specified or
evaluated by Odum (1996). Campbell (2000) and Campbell (2016)
recognized that while this model might be valid in the long run, it
may not be valid on the scale of annual processes that occur over
periods of approximately 1 year, which is the scale upon whichmany
transformities are calculated and most emergy evaluations are
carried out. The ESL model of the Geobiosphere given in
Figure 1 shows the major connections within the global network
and how the primary inputs: S, solar exergy; E, exergy of Earth’s deep
heat; and G, exergy of ocean tides interact to produce the secondary
planetary emergy flows. Table 1 includes first-order estimates of the
transformities of these global flows in the notes, which can be
calculated from the flows given in Figure 1; see
Supplementary Section 2.3.

2.2 Evidence for relationships shown in the
“white box” model of the Geobiosphere

The ESL model in Figure 1 shows the primary SEE inflows
supporting the major secondary exergy flows of the Geobiosphere
on the time scale of 1 year. The model pathways are defined in
Table 1 and here below. Although some secondary flows require the
entire Geobiosphere baseline, as hypothesized by Odum (1996),
others may not. By diagraming and defining the connections within
a simplified web of the primary and secondary planetary processes,
the connectivity of the network can be explicitly defined compared
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to the “black box”model used by Odum (1996). In Figure 1, flows J1,
J2, and J3 are the primary inflows of solar radiation that are absorbed
by the atmosphere, oceans, and earth, respectively. If the
atmosphere, oceans, and earth are all passive receptors, nothing
other than solar energy (S) is required to cause this heating. The
flows, J2 and J3, represent heating of the atmosphere over oceans and
land, respectively. In this case, both the solar radiation to cause the
initial heating and the presence of the oceans and earth to reradiate
heat and warm the atmosphere are required for these processes;
thus, these flows require the fractions of solar exergy, S, falling on
land or water and the emergy input from E or G, respectively. The
role of G in heat transfer from the surface of oceans may not be
immediately apparent. However, tidal energy influences the heating
and cooling of oceans through mixing cooler bottom waters to the
surface, lowering the temperature there and decreasing heat transfer

to the atmosphere. While tidal mixing often affects surface
temperatures in coastal and shelf areas (Tokinaga and Xie, 2009),
it may also be important in mixing deeper ocean waters7, thereby
lowering the surface temperature and reducing heat transfer to the
atmosphere. Also, tidal exergy, J4, directly affects oceans where it is
dissipated in mixing and through tidal currents, mostly in the shelf

TABLE 1 The solar equivalent exergy (SEE) base for the major primary and secondary exergy flows of the Geobiosphere (Figure 1), where S is the exergy of
solar radiation, E, is the exergy of earth’s deep heat, and G, the exergy of the gravitational attraction of the Moon and sun causing the ocean tides. Oceans
constitute 70.95% of Earth’s surface area and the land 29.05%. The SEE base for the global flows is explained in the text.

Note Flow Definition SEE base SEE base, seJ y−1 Exergya, J y−1, unit−1

1 J1 Solar radiation absorbed heating the atmosphere S 3.84E + 24 3.84E + 24

2 J2 Solar radiation absorbed by the oceans: heating SO 2.72E + 24 2.72E + 24

3 J2’ The oceans transferring heat to the atmosphere SO, G 6.63E + 24 5.45E + 23

4 J3 Solar radiation absorbed on land: heating, etc. SL 1.12E + 24 1.12E + 24

5 J3’ Land heating the atmosphere SL, E 5.32E + 24 2.23E + 23

6 J4 Tidal energy absorbed: mixing and currents G 3.91E + 24 1.11E + 20

7 J5 Molten rock injected to the surface as hot spots E 4.20E + 24 8.30E + 19

8 J6 Wind generated by latitudinal heat gradients SEG 12.0E + 24 9.60E + 21

9 J7 Wind energy absorbed on land, frictional T. 4b 2.67E + 24 2.18E + 21

10 J8 Wind energy driving land evaporation, v. diffusion T. 4b 2.67E + 24 3.72E + 21

11 J9 Wind energy absorbed by the oceans, frictional T. 4b 9.33E + 24 7.61E + 21

12 J10 Wind energy driving sea evaporation, v. diffusion T. 4b 9.33E + 24 1.30E + 22

13 J11 Ocean influences on evaporation: heating, mixing SO, G 6.63E + 24 2.72E + 24

14 J12 Evaporation from the sea to the atmosphere, m3 T. 4b 9.33E + 24 4.15E + 14

15 J13 Evapotranspiration from land to atmosphere, m3 T. 4b 2.67E + 24 7.31E + 13

16 J14 Precipitation falling on the sea, m3 T. 4b 9.33E + 24 3.75E + 14

17 J15 Precipitation falling on land, m3 SEG 12.0E + 24 1.13E + 14

18 J16 Runoff from the land to the sea, m3 T. 5c 8.32E + 24 3.97E + 13

19 J17 Sediments carried from land to the sea T. 5c 8.32E + 24 8.86E + 16d

20 J18 Deep heat contributions to isostasy and uplift E 3.86E + 24 9.20E + 20d

21 J18’ Isostasy and uplift of the continents SEG 12.0E + 24 8.86E + 16d

22 J19 Tidal energy dissipated in coastal and shelf waters G 3.91E + 24 5.21E + 19

Definition of the row notes 1–22 can be found in Supplementary Table A3.
aUnless otherwise defined in column 3.
bTable 4 notes a and b and Figure 1. The emergy of wind energy doing work over the sea and land is treated as a split, when the specific process, e.g., evaporation, occurring in each place is largely

dependent on the work done in that regime and not on work in the other regimes, i.e., land vs sea. The emergy base for precipitation over the sea, J14, can also be seen as SEG; see note 16 in

Supplementary Material A.
cTable 5, note 15 in Supplementary Material A. The emergy required to deliver runoff to the sea is the emergy of the chemical exergy of runoff minus the emergy of the chemical exergy lost to

surface water evaporation and deep groundwater infiltration, plus the emergy of the geopotential exergy used up in delivering the chemical exergy of runoff to sea level.
dCampbell (2016). Sediment lost is from the Pleistocene or before the modern age, when erosion is affected by agriculture and other human activities. Deep heat flow does not include hot spots.

Uplift is assumed to balance erosion from the continents.

7 Brierley and Fedorov (2011) model tidal effects on ocean circulation and

show that “an increase in such mixing could cause changes in the ocean

thermal structure, such as a ~1°C warming of the ocean surface in the

eastern equatorial Pacific and a similar cooling in thewest. Themechanism

of these changes involves mixing the relatively cold waters of the

Equatorial Undercurrent with warmer surface waters.”
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and coastal areas, and also in deep oceans, especially near sea
mounts (Egbert and Ray, 2000).

An additional, direct input of exergy from the mantle to crust
that was not considered by Campbell (2016) and Brown et al.
(2016a) is the molten rock or magma, J5, emerging as “hot spots”
interspersed over the oceans and continents. The formation of hot
spots is assumed to be due to plumes of magma arising from
somewhere in the mantle and being driven by the same gradient
of the Earth’s deep heat that drives uplift and isostasy (Morgan,
1971). Although there has been much debate over the depth in the
mantle at which these flows originate (Kerr, 2013a), the physical
evidence indicates that their origin within the mantle is below
660 km or the boundary between the upper and lower mantle
(Smith et al., 2009) and possibility as deep as the core–mantle
boundary (Kerr, 2013b). In the mantle plume hypothesis, hot spots
arise from the dynamics of the mantle alone, thus the SEE basis for
hot spots is E alone.

2.3 Generation of secondary flows in the
Geobiosphere

Solar heating is differentially distributed over Earth, as shown in
Figure 1, where the heat gradient between the higher level (HL) and
lower level (LL) latitudes is shown. The first major class of secondary
planetary energy flows, i.e., the winds are generated by the pressure
differences between the atmosphere at high and low latitudes,
causing global atmospheric circulation or winds, J6. The winds
are a secondary energy flow generated on a planetary basis; thus,
all primary solar exergy inflows contribute to their formation, and
the SEE base for the winds is S, E, G, or 12.0E+24 seJ y−1. Wind
energy flows intersect with the planetary hydrological cycle through
mediating evaporation from the land, J8, and from the sea, J10. Wind
energy affects evaporation from the water surface by transporting
water vapor away from the surface, thereby maintaining the water
vapor gradient and to a lesser degree by disturbing the water surface,
with winds increasing the surface area and further enhancing
evaporation. Evaporative processes require the entire baseline of
the Geobiosphere, since they are mediated by the actions of the
wind. The calculations of emergy driving vertical diffusion and
frictional work over land and sea and their exergies were determined
using the data from Boville and Bretherton (2003), who provided a
means to separate the work done by the wind in driving vertical
diffusion from that done in frictional work on the surface. As already
mentioned, wind is also absorbed over the land and water surfaces, J7
and J9, respectively, where it supports tertiary exergy flows doing
work on land, e.g., erosion, and on water, i.e., generating waves and
currents. Influences of waterbodies on evaporation from oceans, J11,
include solar heating of the water surface modified by tidal mixing,
which provides a vast amount of heat to drive the hydrological cycle,
but it double counts the wind emergy supporting evaporation from
the sea. The global hydrological cycle is shown by the next five flows,
which are given as volumes of water in 1E+14 m3. The cycle begins
with flow, J12, evaporation from the sea to atmosphere, followed by
flows, J13, J14, J15, and J16, which are, respectively, evapotranspiration
from the land to atmosphere, precipitation falling on the sea,
precipitation falling on land, and runoff from the land to sea.
The next three coefficients refer to the earth cycle of uplift and

subsidence, with J17 showing the exergy of sediments carried to the
sea (Campbell, 2016), J18 giving the contribution of deep heat to
drive isostasy and uplift continents, and J18’ giving the exergy
required to support isostasy and uplift the land mass of
continents, which, over a long time, is assumed to balance the
exergy of erosion, e.g., over millions of years (Campbell, 2016).
Finally, flow J19 gives the tidal exergy dissipated in coastal and
shelf waters.

Only the knownmajor pathways supplying substantive amounts
of SEE to a global process over a period of approximately 1 year are
included in Figure 1. In each emergy evaluation, the investigators are
responsible for determining the forcing functions and components
that are relevant for answering their research questions. Thus, not all
pathways may be included initially in an analysis, and missing
pathways that are essential or important on the scale chosen for
an emergy evaluation may have to be evaluated to complete a
particular study as they are revealed. For example, when
planetary systems or processes are evaluated over longer time
scales (e.g., >10,000 years) other factors that are relevant at those
scales must be included in the analysis (Campbell, 2016).

3 Methods

Consider the definition of emergy in Odum (1996) as a starting
point for deliberations on the emergy methods presented in this
article: “EMERGY is the available energy of one kind of [energy]
previously used up directly and indirectly to make a service or
product. Its unit is the emjoule (Odum, 1986; Odum, 1988;
Scienceman, 1987).” In this article, the deeper thermodynamic
meaning of emergy and emergy methods as they are connected
to the proposed 4th law of nonequilibrium thermodynamics defined
as the maximum 4th empower principle8 (Odum, 1996) and the
modifications to these methods that are required to accurately
determine the transformities of the secondary and tertiary exergy
flows of the Earth’s Geobiosphere are presented.

3.1 Energy systems language diagrams

The primary tool developed by Odum (1971), Odum (1983) and
Odum (1994) to understand and model systems of all kinds is the
ESL. Odum (1996) extended the ESL and the models derived from it
to characterize and simulate the variations of emergy in all kinds of
systems. The ESL is a diagrammatic language in which all symbols
and relationships have mathematical definitions. It is a universal
language that uses an open set of symbols to add a thermodynamic
(energetic) and kinetic context to the representation of systems and
their interactions. Odum (2007) extended the ideas set forward in

8 Several energy principles have been defined as the fourth law of

thermodynamics. Without entering this debate, we have used Odum

(1996) as the basis for assigning the maximum empower principle

(MEmP) this role. Essentially, the MEmP is the thermodynamic principle

determining success in the evolutionary competition that exists for

capturing and using exergy or available energy in a system.
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the seminal book Environment, Power, and Society (Odum, 1971) to
include the insights from the Energy Systems Theory and emergy
analysis that developed during the intervening 30 years. In this
article, the ESL is used to construct models of the secondary and
tertiary available energy (exergy) flows of the Geobiosphere and
their concomitant emergy flows. The ESL and its use have been
extensively documented and illustrated in Odum (1983, 1994) and
many additional publications, thus further description and
explanation will not be repeated in this article.

3.2 What is emergy?

Although emergy has been defined above using the definitions in
Odum (1996), it is sometimes easiest to understand a complex
quantity like emergy by stating what it is not. Emergy, per se, is not a
quantitatively observable or directly measurable quantity, i.e., there
is no place in the universe where one can measure emergy with an
instrument or sensor. Nevertheless, it is qualitatively observable in
the range of properties that exists in all things. For example, the
element carbon appears in many forms of increasing “quality,”
i.e., emergy density and transformity or specific emergy (emergy
intensity)—e.g., peat, lignite, subbituminous coal, bituminous coal,
anthracite or amorphous carbon, graphite, and diamond describe a
series of materials of increasing quality or transformity for the
element carbon, all of which are not necessarily directly
connected. As the potential to do work or the special properties
of an entity increase along a chain of exergy transformations, the
emergy of that entity must also increase. In some cases, increased
emergy and the concomitant ability to do work is manifested by the
special properties that an item, often a mass, has when compared
with other variations of the same material. For example, diamond is
a form of concentrated carbon like coal, but it is not generated from
coal, rather it is formed from carbon under conditions of extreme
heat and pressure deep in the earth, and as a result, it is resistant to
chemical reactions and has the highest thermal conductivity of any
natural material, which makes it useful as a cutting tool. Although
diamond is not derived from coal, because of its properties, one
would expect it to have a much higher transformity or specific
emergy than that of coal, and in fact it does, 4.9E+04 seJ J−1 or
1.42E+09 seJ g−1 for coal (Odum, 1996; Campbell and Ohrt, 2009)
versus 3.4 E+10 seJ g−1 for diamonds found stored ubiquitously in
deep earth (~180 km below the surface) as determined by estimates
of changes in global seismic wave velocities (Garber et al., 2018) and
a rough estimate of 6.07E+19 seJ g−1 for the diamonds extracted
from earth (Haggerty, 1999; Janse, 2007) during roughly the last
5,000 years, or since recorded human settlement.

3.2.1 Determination of emergy
The emergy required for any item at a point in time can be

quantified, if the production process for that product or service is
known. This quantification is performed by integrating the available
energy transformed directly and indirectly in the process that was
responsible for the development of that item with its special
properties. Because the transformation of available energy occurs
within the milieu of evolutionary competition among processes,
when a product emerges from this competition as the “winner,” that
product will be of higher “quality,” i.e., be of higher transformity, in

that the itemwill have special properties; e.g., it will be rarer, or it will
have a greater capacity to do work (i.e., a higher empower density)
than it did before the available energy was transformed and
subjected to the competition among production processes in
making the item. The emergy required for any item can be
quantified by summing up the transformations of the available
energy used up, directly and indirectly, in the production process
after converting all the different kinds of available energy input to
units of the same kind, e.g., to solar joules (Odum, 1996). In this case,
the solar emjoule (sej) is the unit of emergy, where the prefix “em-”
denotes the past use of exergy in the production process.

3.2.2 Transformity is a universal measure of quality
Solar emergy is usually taken as the base for determining

transformities or the emergy required per unit of exergy flow (sej
J−1). Using transformities, the relative quality of all things can be
measured and compared on a universal scale by summing up the
solar emjoules required to produce any storage or flow within a
system and then dividing by the joules of exergy in the product. This
ratio, the emergy per unit of exergy (sej J−1) is called transformity,
which is a universal measure of quality9 (Odum, 1996).

The EST indicates that all production processes are constrained
by the operation of the maximum empower principle (Odum, 1996;
Campbell, 2001) so that to remain competitive in the long run, the
emergy flows generated by the feedback from the process to its
system must be, at least, as great as the emergy required for the
generation of the process or product in the first place. This condition
is enforced by the unavoidable evolutionary competition among
entities and processes, which ensures that the entities or processes
that fail to generate greater empower flow in their networks will be
outcompeted by their rivals that do. Figure 7.8 in Odum (1994)
demonstrates this condition with mathematical models of
competition among the systems where feedback is mediated by
linear, autocatalytic, and hierarchical processes.

3.2.3 The meaning of an increase or decrease
in emergy

While emergy is not a directly measurable quantity, it is always
associated with quantities that are measurable, e.g., the enthalpy of a
biomass, such as a mass of fish eggs, and if that physical quantity is
removed or destroyed, the emergy associated with it is also removed
or destroyed (Odum, 1996). A common misunderstanding about
emergy is the failure to recognize that the emergy per unit or the
transformity of a quantity must be a direct measure of the quality of
that product or its service, e.g., it must be a measure of the work that
a storage, flow, or process can do in its system, and the rules for
calculating this work must meet this constraint. For example, the
emergy of a female fish will increase with an increase in length;

9 Even though, in theory, transformity is a universal measure of quality,

emergy accounting can only yield a comparative measure of quality. Thus,

two storages or processes may have the same emergy or transformity, yet

very different physical properties. The equivalence of their emergy inputs

tells us that the system must invest an equivalent quantity of emergy in

resources to have each storage or process as a functional part of the

system, although the same resources are not necessarily invested.

Frontiers in Energy Research frontiersin.org08

Campbell and Lu 10.3389/fenrg.2024.1392634

185

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1392634


however, even at the maximum length, its emergy will continue to
increase, if its fecundity increases with age. Once the length and
fecundity (i.e., the special useful property of the female fish) reaches
the maximum, the emergy of the fish and, by extension, her
transformity will no longer increase, regardless of the available
energy transformed to maintain the fully developed female fish
and its eggs. This understanding of emergy as an accounting
quantity that tracks the relationship between the quality or
transformity of a product and the exergy transformed to attain
that product is seen in the rules for simulating emergy given in
Odum (1996). His accounting rules used in simulation do not allow
the emergy of a fully formed product to increase indefinitely, even
though exergy still may be used to maintain the form of the product
against entropic degradation. This is true because the transformity of
an item must be an exact measure of the work that an entity can do
in its system.

3.2.4 Determining the emergy base for a system by
concentrating resources in space and time

It is clear from the ESL models in Odum (1996) that the emergy
inflowing to a local system from other areas or other times is to be
counted in the emergy base for that local system, i.e., this additional
emergy flow is counted along with the share of the Geobiosphere
emergy received by the local system’s area (Figure 3.7 in Odum,
1996). The total emergy inflow to the system in the present is
responsible for the order and organization being produced there,
i.e., the order created within its defined spatial and temporal
boundaries. A river flowing across the boundary of a territorial
system is an example of emergy supplied to the system through the
spatial concentration of renewable resources from outside the
system’s boundaries. Imported minerals, fuels, goods, services,
and people are all valuable resources that bring emergy into a
system from other areas and times to augment the emergy that
can be used to produce order and organization in the system under
evaluation at the present time. Fossil fuels are a clear example of
resources formed at an earlier time that are being used in the present
to support the system structure and function, and thus all agree that
they are to be counted in the emergy supporting a system under
evaluation. With the publications of Campbell and Lu (2009, 2014a)
and Campbell et al. (2011), the necessary time delay for the
formation of human knowledge and experience prior to the
possibility of its application in operating a system was the basis
for proposing that educational attainment of the population be
considered as part of the emergy supporting the system, e.g., in the
United States. In the present study, the temporal separation between
resource formation and its application to support system operations
is allowed on even shorter time scales than was previously
considered, when determining the emergy basis for transpiration
of various vegetation types.

The time scale for an evaluation of network energy and material
flows in most emergy evaluations is >1 year. In this regard, resources
generated on the scale of 1 year or less can be double counted, if the
inputs are coproducts. However, if resources require longer times for
their generation, the temporal separation might be great enough that
these resources created in the past should be counted in the emergy
supporting the exergy flows of the system in the present. For
example, this new rule was applied to calculate the transformity
of transpiration in several types of ecosystems of the world.

Specifically, the time that it takes to generate biomass with its
spatial structure was quantified as part of the emergy base for
evapotranspiration in systems, i.e., those systems that take several
years or longer to generate the biomass required to support the
evapotranspiration that is realized in the present year. For example,
if the contribution of biomass structure to annual crop growth falls
within the 1-year time boundary of the evaluation, it would not
augment the emergy basis for evapotranspiration. However, a
tropical rainforest with structural biomass that takes 30 years or
longer to be formed would have the emergy base for this structure
quantified and prorated over the replacement time of the forest to
determine the support required from the forest biomass for
rainforest evapotranspiration within the temporal boundary of a
single year.

3.2.5 The emergy associatedwith different exergies
in water

In addition to better quantify the concentration of emergy from
different spaces and times in determining the emergy basis for a
system, the study of hydrological systems over a long period of time
(Odum, 1996; Odum et al., 1998; Campbell, 2003) has made it clear
that a refinement is required in accounting for the emergy associated
with the various forms of exergy in water. Odum (1986) originally
defined emergy in terms of its association with the available energy
of a storage or flow. Initially, the conceptualization of available
energy in emergy evaluations focused on a single type of energy,
such as the energy of combustion in biomass, even though biomass
also has another form of available energy associated with it, i.e., the
available chemical potential energy in the bonds of its constituent
compounds that can be used in chemical reactions. While this form
of available energy in biomass might be relevant in certain chemical
processes, it is, in general, irrelevant in the use of biomass as food in
a trophic web. Exergy is a concept like the available energy that was
applied by Szargut et al. (1988) for use in evaluating chemical and
industrial processes, and in this approach, care is taken to quantify
all the forms of available energy (i.e., exergy) that exist in a quantity.
Both available energy and exergy indicate the energy potential
available to do work against a ground or background state, which
must be defined. Odum (1971, 1983, p.105) originally used the term
potential energy to refer to the aspect of energy that is used up in
performing work, which he associated with the thermodynamic
term “availability”. Afterward the term available energy was used to
refer to this concept in the literature, but in Odum (1996), emergy
was defined based on exergy instead of on available energy. However,
this change in definition has only been partially integrated into the
emergy methodology.

As mentioned above, in all cases, emergy must be associated
with an underlying quantity of exergy; therefore, it is logical to
assume that each source of exergy in an entity has an available
energy (potential to do work) associated with it. This must be true
because emergy must track the capacity to produce order and
organization in a system, and this capacity can only be and
always is derived from the transformation of an energy potential,
i.e., a quantity of available energy that has the potential to do work.
Furthermore, the two different forms of exergy in water do different
kinds of work in the system, and the work done is not always
mutually exclusive. The existence of two forms of exergy in a single
quantity does not satisfy the definition of a coproduct, which is

Frontiers in Energy Research frontiersin.org09

Campbell and Lu 10.3389/fenrg.2024.1392634

186

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1392634


defined as two different quantities with non-substitutable functions
and uses that are products of the same production function. In this
case, two different capacities to do work, i.e., exergies, reside in the
same quantity of water. A different accounting scheme is required
for this situation. A logical solution is to assign to each quantity,
i.e., the geopotential or chemical potential energy, the emergy
required to give a quantity of water that exergy. This accounting
scheme leads to the potential for the two different types of exergies in
water to interact over the landscape with the geopotential energy, in
general, serving as themeans of concentrating the chemical potential
emergy at places within a watershed. The complex interactions of
these two different types of exergies and their associated emergy on
the landscape was considered by Romitelli (1997). The most
important result of this accounting concept is that both the
chemical potential energy delivered to a location and the
geopotential energy of water used in transporting and
concentrating water flows at that location contribute to the
transformity of water entering the sea or arriving at various
locations in the watershed.

These proposed changes in the rules for calculating the
emergy supporting a system are required because according to
the fundamental accounting rule emphasized above, emergy
must be a measure of the capacity to produce order and
organization within the defined spatial and temporal
boundaries of a given system. Since each type of exergy in
water is a separate and independent source for creating order
and organization, both must be considered when they are
mutually reinforcing such as in the case of landscape water
flows. The emergy inputs to a system must be fully
documented in accounting to accurately reflect the capacity
for organizing the system inherent in the inputs. Thus, both
the emergy of resources concentrated in a system from different
space and time domains and the emergy associated with different
exergies found within a single material must be fully accounted
for in determining the emergy base of a system. Strict balances are
maintained in first-law diagrams of the underlying energy
measures upon which emergy is based on, but emergy itself is
not a conservative quantity nor could it be or still track the
transformations of available energy required for current exergy
storages and flows. Instead, emergy is an accounting quantity that
tracks the concentration and transformation of energy potentials
that have the capacity to produce order and organization when
used in a system. Therefore, emergy always follows the
underlying energy potentials as they are formed or removed
by destruction, use, or transfer out of the system. The
underlying energy quantities always satisfy the conservation
principle and are observable and measurable, whereas emergy
is defined by exact accounting rules, but it is neither directly
observable nor measurable as explained above.

3.3 The emergy accounting rules applied
within the context of the deeper meaning
of emergy

The present rules of emergy accounting are primarily designed
to make accurate determinations of the emergy of any product or
service by avoiding double counting. They are important because, as

pointed out above, the quantification of emergy is fundamentally an
accounting problem, and thus its value and the accuracy and
comparability of results depend upon the consistent application
of the rules and assumptions used in its determination. The rules of
emergy algebra (Scienceman, 1987; Brown and Herendeen, 1996;
Odum, 1996) as given in Li et al. (2010) are as follows:

(1) For a system at steady state, all the emergy inflows to a
production process are assigned to the outputs.

(2) When an output pathway splits into two or more pathways of
the same type, the emergy input is assigned to each “leg” of the
split on the basis of its fraction of total available energy or
material flow on the pathway; therefore, the transformity or
specific emergy of each branch of the split is the same.

(3) For a process with more than one unique output,
i.e., coproducts, each output pathway from the process
carries the total emergy input to the process, i.e., the entire
emergy required for a process is also required for each of its
functionally different products.

(4) No emergy input to a system can be counted twice. Thus, if
an input or feedback flow to a component is derived from
itself, i.e., it carries emergy already counted in the emergy
required for the component, then the input or feedback
flow is not added to the emergy required for that
component, i.e., input emergy is not double-counted. A
corollary to the prohibition against double counting (i.e.,
counted twice) is that coproducts of the same production
process when reunited cannot be added to obtain an
emergy input greater than the original emergy input.
Thus, when adding emergy inflows or outflows that are
coproducts, only the largest one should be considered.

The primary purpose of the emergy accounting rules is to allow
the accurate determination of the emergy of a product or service
within a network of available energy transformations. The meta
framework proposed in this article states that regardless of the exact
form of the rules for the calculation of emergy, the general context
within which the rules are carried out is the same, i.e., exergy use
always increases the quality of the product of or service provided to
the system given that the product is being made in its process of
formation; however, these actions will occur with greater or lesser
efficiency, which results in higher or lower transformity products as
a result. For processes making equivalent products, a lower
transformity for an equivalent product indicates a higher
efficiency process, and it is the one that will ultimately maximize
empower in the network (Tilley, 2015). Therefore, attaining
maximum empower in a network is an endeavor of the whole
system that is also hierarchical in its nature, so while less-
efficient processes are ultimately less competitive, they are also
secondary contributors to the competitiveness of the whole
network. The main result of applying a deeper understanding of
emergy is to balance the prohibition to avoid double counting with
an equal weight on avoiding undercounting, the reason being that
we want to obtain more accurate assessments of the emergy required
for an item, which should be closely related to its action and
effectiveness upon use in the network. Often the missing piece in
this chain of causality is the verification of the improvements made
in system structure or function that result from the use of exergy in
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the system. The goals of developing and demonstrating a more
accurate accounting method will require more research to document
the relationships between increasing transformity and the resulting
greater performance observed for all kinds of quantities and
processes within their networks. In general, in scientific studies,
too little attention has been given to documenting the changed
relationships that result from the use of exergy in a system. This
concern to avoid undercounting manifests itself in two ways: one is
through the separate accounting for the actions of different exergies
in creating the same product or service, when both are used together.
The second is through performing a more exact accounting of the
emergy contributions made from temporal and spatial regimes that
are separated from the annual and local scales of the production of
products and services in the evaluated system by times longer than
the period of evaluation or territories beyond the local system
boundaries.

4 Results

The primary results of this emergy accounting study are presented
in the form of a set of evaluated models with pathways identified and
quantified in a series of tables with explanatory notes, where
calculations of the transformities of the secondary and tertiary
exergy flows of the Geobiosphere derived from wind and water
can be found along with the necessary assumptions and
supporting references. The article also presents a new approach to
quantifying exergy inputs, the meta framework, which more exactly
documents past exergy inputs required for quantifying some system
storages and flows. The ultimate result of this study will be to allow
emergy accountants to produce more accurate assessments of the
wind and water emergy inputs to many systems and document other
inputs that are dependent on stored emergy more accurately, e.g.,
products of some stored biomass and educational expertise. Once the
solar equivalent exergy for the primary emergy inflows has been
established (Brown et al., 2016), the emergy of the secondary exergy
storages and flows can be calculated within the system boundaries of
the Geobiosphere. In Section 2.1, a “white box” model of the
Geobiosphere was presented as an ESL diagram, which shows the
major secondary exergy flows of the system and their interactionswith
explicit formulations as documented in Sections 2.1 and 2.2. Since the
model is documented extensively in Table 1, these descriptions will
not be repeated in the text, except as specifically called for as a context
for discussion. A similar approach using ESL diagrams documented
with detailed notes and calculations is used to present the evaluation
of transformities of the major tertiary exergy flows of the
Geobiosphere, as presented in this section.

4.1 Secondary flows: wind

The white box model of the Earth’s Geobiosphere as presented
in Figure 1 outlines the major interactions of the primary exergy
inflows to the Geobiosphere, showing how exergy is transformed
and secondary emergy flows are developed. The emergy basis for
these flows is given in Table 1. The largest secondary exergy flow of
the Geobiosphere is the wind, and for this reason, we will consider
ways to determine its transformity first.

4.1.1 Transformity of wind energy determined from
a general circulation model of the atmosphere

Wind energy dissipation in the atmosphere below the 100 mb
surface [i.e., the elevation of the planetary boundary layer (PBL)]
was determined from the general atmospheric circulation model of
Wiin-Nielsen and Chen (1993); see Supplementary Figures A1, A2,
Table A4. Their estimates ranged from 0.95 W m−2 (Northern
Hemisphere summer) under conditions shown in Supplementary
Figure A1 to 2.95 W m−2 (Northern Hemisphere winter) under
conditions shown in Supplementary Figure A2. Supplementary
Table A4 shows the transformities of the wind in the PBL and
Geobiosphere boundary layer (GBL), i.e., the layer below the 900 mb
(≈1,000 m) surface for maximum and minimum estimates of
summer and winter winds taken from the general circulation
model of Wiin-Nielsen and Chen (1993) and for maximum and
minimum estimates of the amount of kinetic energy in the GBL that
are given by Ellsaesser (1969).

4.1.2 Determination of the transformity of the wind
from observations of average wind velocity

The transformity of the wind was determined from the global
average wind velocity measurements taken at 10 m over the
continents and oceans from 1998 to 2002, as compiled by Archer
and Jacobson (2005). They reported global average velocities at
10 m, V10, of 6.64 m s−1 over the oceans and 3.28 m s−1 over land.
These average velocities, V10, were substituted into Eq. 2 given in
Supplementary Material A after first converting them to the
geostrophic velocity, Vg, or the wind velocity predicted at the top
of the boundary layer, GBL ≈ 1,000 m. A range of plausible values
was substituted into Eq. 2 for determining the factor relating V10 to
Vg and for the geostrophic drag coefficients over land and water to
estimate the transformity of the global wind (Table 2).

Table 2 shows the results of 11 different determinations of the
transformity of the global wind calculated from seven different
studies that were based on different assumptions about the
factors relating V10 to Vg. We used these studies to determine
the best values for the geostrophic drag coefficients to use over
land and water. Column notes a–h in the table explain the origin and
derivation of the numbers in the columns representing each
calculation method used by the different authors and the
assumptions supporting their calculations (see Supplementary
Table A5). The estimates are divided into two sets as noted in
the table, one representing the minimum transformity found at the
maximum power generated by the wind using the assumptions of
the method and the other representing the average value for the
method. The row notes, Numbers 1–7, explain the variables and
parameters, which are defined in Column 2. Row 8 reports the
average transformity of global wind energy found by each
calculation method for average and maximum power conditions.
Rows 9–15 present statistical analyses of the determinations, such as
the mean, standard deviation, and range, the geometric mean
velocity, and the geometric mean of the model (i.e., the formulae
for wind energy given in Notes 5–7). The maximum power estimate
of the transformity of the wind from the global atmospheric
circulation model of 1,047 seJ J−1 was combined with the four
maximum power estimates of the wind transformity from the
empirical determinations (Table 2) to give an estimate of
1,245 seJ J−1 for the transformity of wind energy dissipated in the
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TABLE 2 Estimation of the transformity of thewind frommodels and empirical data. Constants used in the calculation: ρ, density of air, 1.225 kgm−3 at 1 atm pressure, and 15°C; Aocean, ocean surface area, 3.62E+14m2;
Aland, land surface area such as freshwater lakes, 1.48E+14 m2; average ocean wind velocity, OV10, 6.6 m s−1; and average land wind velocity, LV10, 3.28 m s−1 (Archer and Jacobsen, 2005), both measured at 10 m;
number of seconds in a year, T = 3.16E+07 s y−1. Geobiosphere solar equivalent exergy baseline, GEB, is 12.0E+24 seJ y−1. See explanatory notes appended below.

Note Variable or
parameter

Units Campbell and
Erban (2017)
considers
atmospheric
stability

Odum’s
average
values, e.g.,
Campbell
et al. (2005b)b

Campbell and
Erban (2017)
with global
momentum
balance

DeVilbiss and
Brown (2015)
corrected

Garratt
(1977), his
Table 4

Garratt (1977) his
Table 4 considering
mountain area

Kara et al. (2007),
corrected for
mountains, and
atmospheric
stability

1 KGW geostrophic drag
coefficient, ocean

dimless 5.9E-04 1E-03 4.1 E-04 1.26 E-03 1.25 E-03 1.25 E-03 1.25 E-03

2 KGL geostrophic drag
coefficient, land

dimless 1.79E-03 2 E-03 1.64 E-03 1.64 E-03 1.80 E-03 1.94 E-03 2.20 E-03

3 Vocean geostrophic wind vel.
max. pwr.h

m s−1 9.49 11.1 9.49 9.73 9.96 9.96 9.49

Vocean geostrophic wind vel.,
ocean, avg. v.

m s−1 9.49 9.49 9.49 9.49

4 Vland geostrophic wind vel
max. pwr.h

m s−1 10.91 5.47 10.9 7.97 7.29 7.29 10.9

Vland geostrophic wind vel.,
land avg. v.

m s−1 6.98 6.98 6.98 6.98

5 Eocean = ½
ρ*KGW*Vocean

3*Aocean*T, m.
pwr.h

J y−1 3.05E+21 9.48 E+21 2.45 E+21 8.12 E+21 8.64 E+21 8.64 E+21 7.47 E+21

Eocean = ½
ρ*KGW*Vocean

3*Aocean*T,
avg. v.

J y−1 3.05E+21 5.97 E+21 2.45 E+21 7.47 E+21

6 Eland = ½
ρ*KGL*Vland

3*Aland*T, max.
pwr.h

J y−1 6.54 E+21 9.35 E+20 6.13 E+21 2.38 E+21 1.99 E+21 2.44 E+21 8.23 E+21

Eland = ½
ρ*KGL*Vland

3*Aland*T,
avg. v.

J y−1 1.70 E+21 1.94 E+20 1.59 E+21 2.14 E+21

7 Total exergy = Eocean + Eland,
max. pwr.h

J y−1 9.59 E+21 10.4 E+21 8.58 E+21 10.5 E+21 10.6 E+21 11.1 E+21 1.57 E+22

Total exergy = Eocean + Eland,
avg. v.

J y−1 4.75 E+21 7.92 E+21 4.04 E+21 9.54 E+21

8 Wind transformity, max
pwr.h

seJ J−1 1,250 1,150 1,400 1,140 1,130 1,080 760

seJ J−1 2,530 1,520 2,970 1,250

(Continued on following page)
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TABLE 2 (Continued) Estimation of the transformity of thewind frommodels and empirical data. Constants used in the calculation: ρ, density of air, 1.225 kgm−3 at 1 atm pressure, and 15°C; Aocean, ocean surface area,
3.62E+14m2; Aland, land surface area such as freshwater lakes, 1.48E+14m2; average ocean wind velocity, OV10, 6.6 m s−1; and average landwind velocity, LV10, 3.28m s−1 (Archer and Jacobsen, 2005), bothmeasured
at 10 m; number of seconds in a year, T = 3.16E+07 s y−1. Geobiosphere solar equivalent exergy baseline, GEB, is 12.0E+24 seJ y−1. See explanatory notes appended below.

Note Variable or
parameter

Units Campbell and
Erban (2017)
considers
atmospheric
stability

Odum’s
average
values, e.g.,
Campbell
et al. (2005b)b

Campbell and
Erban (2017)
with global
momentum
balance

DeVilbiss and
Brown (2015)
corrected

Garratt
(1977), his
Table 4

Garratt (1977) his
Table 4 considering
mountain area

Kara et al. (2007),
corrected for
mountains, and
atmospheric
stability

Wind transformity,
average v.

Max. powerh Average v. Combined values

9 Mean transformity from
mean exergy

seJ J−1 1,098 1,436 1,288

10 Mean transformity, μ, of n
determinations

seJ J−1 1,130, n = 7 1,660, n = 7 1,470 (n = 11)

11 Std dev. seJ J−1 ± 180 ± 712 ± 637

12 Range seJ J−1 950–1,310 948–2,372 834–2,108

13 Geometric mean
transformity, μgeo

seJ J−1 1,310 1,520 1,480

14 Geometric mean of model,
μgeo of model

seJ J−1 1,640 2,150 1930

15 Atmospheric circulation
model, μacm

seJ J−1 1,047 1,241 1,144

16 Average of five means seJ J−1 1,245 1,601 1,462

See Supplementary Table A5 for the definition of column head notes and for the definitions of row notes (1–16).
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GBL at maximum power. Using NCAR’s CAM2 model, Boville and
Bretherton (2003) have provided another analysis of the
transformity of the wind that allows us to distinguish the wind
energy dissipated in frictional effects on the surface (1,226 seJ J−1)
from the wind energy dissipated in diffusion (715 seJ J−1).

4.1.3 The tertiary exergy inputs to the oceans
derived from the wind

The major tertiary emergy flows derived from the wind are
shown in Figure 2 and include waves on the ocean surface, waves
transmitted to the shore, geostrophic wind-driven currents
(i.e., currents at the scale of the ocean basins), Ekman layer
transport (local surface currents affected by the Coriolis force),
Stoke’s transport (local currents moving in the direction of the
wind), and near-inertial motions. In Figure 2, the wind blowing on
the ocean surface, J1, generates waves, J3, and drives geostrophic
currents, J4, as well as Ekman transport, J5. Some of the wind energy
passing over the oceans, J2, continues to be dissipated over the land.
Wave energy drives Stokes drift, J6, and generates near-inertial
motions, J7. Water movements driven by Stokes drift interact
with Ekman transport, J8, to augment the wind energy basis for
total surface water flow and because of the Coriolis force alters its
direction away from a 90° displacement from the wind direction as
expected for surface currents. In other words, the current direction is
commonly displaced less than 90° from the wind direction. Surface
currents in the Ekman layer interact with the wind-driven wave field,
J9, to help move wave energy shoreward, J10. Some fraction of the
wave energy is dissipated in the surf zone, J11; here, we assume it is

100%, when the entire continental shelf is considered. Wave energy
is also dissipated in the oceans as white caps in breaking, along with
other processes, J12. The energy dissipated in friction by the wind
energy driving water movements—i.e., geostrophic currents, J13,
Ekman transport, and Stokes drift, J14, wave energy transmitted to
the shore, J15, and near-inertial motions, which appear in the total,
J16—is assumed to balance the exergy inflows to these storages over a
year’s time. The exergy flows of some ocean currents are evaluated in
Figure 2 and are shown in blue italics. Geostrophic currents, J17, and
Ekman transport, J18, are affected by the Coriolis force with the
direction of the flow shown by arrows directed into or out of the
page, indicating the flow in the Southern and Northern
Hemispheres, respectively. Stokes drift, J18, is wave-driven
transport that moves in the direction of the wind part of which
J19 augments Ekman transport. The combined surface water flow
(Ekman transport augmented by Stokes drift) is shown as, J20, and
this combined water flow helps transmit wave energy to the shore.

4.2 Secondary flows: water and the
hydrological cycle

The white boxmodel of Earth’s Geobiosphere (Figure 1) outlines
the major interactions of the primary exergy inflows to the
Geobiosphere, showing how the secondary emergy flows related
to water within the hydrological cycle are developed. The secondary
exergy flows related to the hydrological cycle are the second category
of major biophysical flows generated by the primary SEE inputs to

FIGURE 2
An Energy Systems Language “white box”model of the world oceans tracing the SEE input from the global winds (circle) and showing the way that
windwork on the ocean surface that generates tertiary emergy flows in the oceans. Themajor storages and flows of exergy generated by thewind energy
dissipated in the oceans are shown in the model, but only the exergy flows are evaluated in this study (Table 3). Water flows are shown in blue with the
arrows directed into the page (X) or out of the page (•), showing the effects of the Coriolis force in the Southern and Northern hemispheres,
respectively. Stokes drift (➡) moves water in the direction of the wind. Emergy flows (seJ y−1) are given in bold, and exergy flows (J y−1) are in italics.
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the Geobiosphere. The determination of the transformities of the
secondary flows of the hydrological cycle is considered in this
section. Some of the transformities calculated as in the notes to
Table 1, such as the quotient of the SEE and exergy flows on the
pathways, may be somewhat different from the values obtained from
the tertiary analysis of global wind and water flows described in
Figure 2 and Table 3, and in Figure 3 and Table 4 (see the footnotes
to Table 1).

The water flows of the hydrological cycle were determined using
the three methods described in Supplementary Section
A3.0—Methods for calculating the secondary available energy
inputs to the Geobiosphere: Supplementary Section
A3.1—Equations governing the wind, Supplementary Section
A3.2—Methods for determining the exergy of water flows in the
hydrological cycle, and the method for evaluating the transformity of
the tides, which is described in the Supplementary Section
A3.3—Methods for determining the transformity of tides.
Supplementary Section A3.4 describes Calculating transformities
for the secondary and tertiary exergy flows of the Geobiosphere. In
Supplementary Section A4.0—Uncertainty in the calculations, we

consider three kinds of uncertainties that are relevant to the
calculations of the secondary and tertiary available emergy flows
of the Geobiosphere. Supplementary Section A4.1 considers
Uncertainty in the determination of the fraction of wind energy
dissipated over the oceans.

4.2.1 Quantification of the global hydrological
cycle

Supplementary Table B1 gives 10 global hydrological budgets
reported in studies carried out from 1974 to 2015, nine of which
were reported in Marcinek (2007). A 10th study by Rodell et al.
(2015) was added, and the mean, standard deviation, coefficient of
variation, and the maximum and minimum of these estimations are
reported in the table. The global flows of water in the hydrological
cycle used in this study are from Adler et al. (2003), assuming a
hydrological balance over the annual cycle. The statistical
parameters from this study were compared to similar values
obtained by analyzing the 10 global budgets mentioned above
(see the last row in Supplementary Table B1). The estimates of
Dai and Trenberth (2002) were chosen to complete the hydrological

TABLE 3 The emergy basis for the tertiary exergy flows in the world oceans are generated by wind (a secondary flow) and are used for the empirical
determination of the drag coefficient over the oceans (Kara et al., 2007). They result in the oceans absorbing a larger fraction of the total wind energy.
Definitions of the pathways shown in Figure 2 are given in this table along with the annual flows of the exergy of the wind in the world oceans driving waves
and surface currents of various kinds and showing the SEE basis for these flows. Also, the exergy and transformities of some surface currents and motions
are shown. All flows are coproducts, and coproducts are recombined in several flows.

Note Flow Definition SEE base seJ y−1 Exergy J y−1 Transformity sej J−1

a J1 Wind energy absorbed over the oceans 9.33E + 24 7.61E + 21 1,226

b J2 Wind energy that is not absorbed over the oceans 2.67E + 24 2.18E + 21 1,226

c J3 Wind energy absorbed in creating ocean waves 9.33E + 24 2.21E + 21 4,220

d J4 Wind energy driving geostrophic currents 9.33E + 24 3.08E + 19 302,900

e J5 Wind energy driving surface ageostrophic (Ekman) currents 9.33E + 24 7.57E + 19 123,000

f J6 Wave energy driving Stokes drift and dissipation 9.33E + 24 7.89E + 19 118,300

g J7 Wave energy generating near-inertial wave motion 9.33E + 24 1.85E + 19 505,000

h J8 Stokes drift augmenting Ekman transport (a split) 1.97E + 24 1.67E + 19 118,300

i J9 Wind energy driving Ekman transport including Stokes drift 9.33E + 24 9.24E + 19 101,000

j J10 Wave energy transmitted to the shoreline 9.33E + 24 1.17E + 20 79,800

k J11 Wave energy dissipated on the shoreline 9.33E + 24 1.17E + 20 79,800

l J12 Wave energy dissipated in the oceans 9.33E + 24 2.00E + 21 4,700

m J13 Wind energy dissipated in driving geostrophic currents 9.33E + 24 3.08E + 19 302,900

n J14 Wind energy dissipated in near inertial and Stokes motions 9.33E + 24 8.07E + 19 115,600

o J15 Wind energy dissipated by Ekman transport plus Stokes drift 9.33E + 24 9.24E + 19 101,000

p J16 Total ageostrophic energy dissipated in the surface layer 9.33E + 24 1.73E + 20 53,900

Wind-driven ocean currents

Q J17 Wind-driven geostrophic currents 9.33E + 24 6.46E + 18 1,444,000

R J18 Wind-driven Ekman transport 9.33E + 24 1.59E + 19 588,000

S J19 Wave-driven Stokes drift 9.33E + 24 1.65E + 19 564,000

T J20 Wind-driven surface flow (Ekman transport and Stokes drift) 9.33E + 24 2.88E + 19 324,000

See Supplementary Table A6 for the explanatory notes for Table 3.
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cycle by supplying a value for global runoff from the land to oceans.
After accounting for infiltration into the deep groundwater, this
number is 39.7 1,000 km3 y−1. Assuming closure of the hydrological
budget, these choices lead to estimates in 1,000 km3 y−1 of 113, 73.1,
39.9, 414.9, and 375 for precipitation on land, evaporation on land,
runoff to the sea, evaporation over the sea, and precipitation over the
sea, respectively.

4.2.2 The tertiary available energy flows of the
terrestrial hydrological cycle

The tertiary emergy flows of the terrestrial hydrological cycle
derived from precipitation on land are shown in the model given in
Figure 3, and the data sources, values, assumptions, and methods of
calculation for these flows are given in Table 4. The exergies of the
tertiary emergy flows derived from the rain were determined based
on studies in the literature, and the descriptions of these calculations
and the sources for the values used are given in Table 4, following the
network of relationships described in Figure 3.

The ESL diagram of the tertiary flows of the hydrological cycle
(Figure 3) is briefly described as follows: the diagram shows that
rainfall, J1, from Figure 1 can be intercepted, J2, before being
absorbed by the land surface, after which it can evaporate from
the surface of the vegetation, J3, or it can be absorbed and can
contribute to supporting the productive processes of the plants, J4.
The precipitation not intercepted, J5, reaches the ground surface and
can be absorbed there. Precipitation absorbed by the land surface is
handled as a split between water that infiltrates into the soil, J6, and
that which runs off at or close to the surface, J7. Runoff includes the
surface water flows, which are subject to evaporative losses, J8, and
contribute to stream flows, J9, e.g., rivers. The fate of water that

infiltrates into the soil, J6, is shown by another split that occurs
within the soil. This split includes water that is evaporated from the
soil, J10, water that is absorbed by vegetation, J11, and water that
infiltrates deeper into the ground, J12. Water that infiltrates below
the soil can return to the streams and rivers as base flow, J13, or can
infiltrate into the deep groundwater, J14. The chemical potential
energy delivered to the sea is J15, if only the concentration of
chemical potential energy in the hydrological network is
considered in determining the emergy of river water delivered to
the sea (Table 4). However, if the geopotential energy used up in
bringing the river water to sea level is also considered, the value is
given by J15’. Total evaporation from the system, J16, includes
intercepted water and surface water evaporated along with
evaporation from the soil surface. Total transpiration, J17,
includes the portion of intercepted water contributing to plant
growth and plant transpiration. Flows J18 to J25 quantify the
inputs from the sun and wind used to support evaporation and
transpiration. These flows are not counted in the emergy base for the
water flows because they are not larger than the inputs from the
hydrological cycle, and if included, they would double count the
emergy inflows supporting the water cycle (see Table 4).

4.2.2.1 Estimating interception in the ecoregions of
the world

Interception is one of the tertiary water flows listed in Figure 3
and Table 4. Interception is the rainfall captured by the vegetation,
e.g., tree canopy, stems, and forest floor, before it can seep into the
soil; it has not been commonly evaluated in past emergy assessments
of the hydrological cycle. Supplementary Table B2 gives an estimate
of the average value for interception in the global hydrological cycle

FIGURE 3
An Energy Systems Language “white box”model of the terrestrial hydrological cycle tracing the SEE input from precipitation falling on land, the wind
dissipated over land, and solar radiation incident on the land (circles) and showing the emergy and chemical exergy of tertiary water flows generated in the
terrestrial hydrosphere. Table 4 gives the definitions of the pathways, storages, and the annual flows of emergy, volume, mass, and chemical and
geopotential exergy in each pathway, as well as, the transformities of the flows of chemical and geopotential exergy and their specific emergy. See
Supplementary Table A7 for the explanatory notes for Figure 3.
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TABLE 4 Definitions of the pathways and storages in Figure 3; the annual flows of emergy, volume, mass, and chemical and geopotential exergy are given on each pathway, as well as, the transformities of the flows of
chemical and geopotential exergy and specific emergy. The emergy and flows of solar and wind exergy supporting the water flows of the hydrological cycle are also given.

Note Flow Definition Emergy,
E + 24 seJ

Volume,
E + 03 km3

Mass,
E + 18 g

Exergy,
chemical,
E + 18 J

Exergy,
geopotential,
E + 18 J

Transformity,
chemical potential,
sej J−1

Transformity
geopotential,
sej J−1

Specific
emergy,
sej g−1

Global water flow

1 J1 Precipitation on
land

12.00 113 113 534 887 22,490 13,530 106,195

2 J2 Interception 1.41 13.3 13.3 62.7 22,490 106,195

3 J3 Interception
evaporated

0.704 6.63 6.63 31.3 22,490 106,195

4 J4 Interception used
by vegetation

0.704 6.63 6.63 31.3 22,490 106,195

5 J5 Precipitation
reaching the land

10.59 99.7 99.7 471 783 22,490 13,530 106,195

6 J6 Water infiltrating
into the soil

8.35 78.7 78.7 371 606 22,490 13,790 106,195

7 J7 Water running off
the land

2.24 21.1 21.1 99.2 166 22,560 13,530 106,195

8 J8 Evaporation from
surface water

0.090 0.849 0.849 3.99 22,590 106,195

9 J9 Stream flow 2.15 20.3 20.3 95.3 159 22,560 13,530 106,195

10 J10 Water evaporated
from the soil

3.26 30.7 30.7 144 22,680 106,195

11 J11 Soil water
transpired by
plants

5.09 48.0 48.0 225 22,680 106,195

12 J12 Water infiltrating
below soil

2.09 19.7 19.7 92.0 148 22,680 14,060 106,195

13 J13 Base flow returning
to streams

2.07 19.4 19.4 91.1 135 22,680 15,250 106,195

14 J14 Infiltration to deep
groundwater

0.022 0.0204 0.0204 0.95 1.30 22,800 16,650 106,195

15 J15 Chem. exergy
delivered to the sea

4.22 39.7 39.7 186 22,620 106,195

(Continued on following page)
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TABLE 4 (Continued) Definitions of the pathways and storages in Figure 3; the annual flows of emergy, volume, mass, and chemical and geopotential exergy are given on each pathway, as well as, the transformities of
the flows of chemical and geopotential exergy and specific emergy. The emergy and flows of solar and wind exergy supporting the water flows of the hydrological cycle are also given.

Note Flow Definition Emergy,
E + 24 seJ

Volume,
E + 03 km3

Mass,
E + 18 g

Exergy,
chemical,
E + 18 J

Exergy,
geopotential,
E + 18 J

Transformity,
chemical potential,
sej J−1

Transformity
geopotential,
sej J−1

Specific
emergy,
sej g−1

15′ J15’ J15 with necessary
geopotential

8.41 39.7 39.7 186 293 45,120 14,380 211,840

16 J16 Total evaporation
from land

4.05 38.1 38.1 179 22,640 106,195

17 J17 Transpiration and
interception

5.80 54.6 54.6 256 22,660 106,195

Verification that solar and wind exergy supporting global water flows are secondary coproduct emergy inflows

Emergy, E + 24 seJ Exergy, E + 18 J

18 J18 Wind exergy
absorbed on land

2.67 2,140

19 J19 Wind evaporating
soil water

1.04 834

20 J20 Wind evaporating
surface water

0.036 25.5

21 J21 Wind facilitating
transpiration

1.61 1,290

22 J22 Solar exergy
absorbed on land

1.11 1,100,000

23 J23 Sun evaporating
soil water

0.429 429,000

24 J24 Sun evaporating
river water

0.013 13,000

25 J25 Sun supporting
transpiration

0.671 671,000

26 J26 Feedback from
biomass to GPP

variable variable

See Supplementary Table A7 for data and references explaining the origin of the numbers in Notes 1–26. Table 4 accompanies Figure 3.
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TABLE 5 Determination of the emergy base for long-term structural biomass and transpiration of vegetation found in the ecoregions of the world as defined by Schlesinger and Jasechko (2014). Data on transpiration
as a percent of evapotranspiration and the percent of terrestrial precipitation falling on each ecoregion were used to determine the emergy required for transpiration of vegetation in the ecoregions.

Note Flow Ecoregion Emergy inflow in
precipitation,
E + 24 seJ y−1

Emergy of
transpiration,
E + 24 sej y−1

Fraction of
GPP
building
long-term
structure

Emergy
building
long-term
structure,
E + 24 sej y−1

Biomass
turnover time
(n −1) yrs.

Emergy of long-
term structure,
E + 24 sej

Total emergy for eco-
regional transpiration,
E + 24 sej

26 J26a Tropical
rainforest

4.2 1.55 0.325 0.505 15.2 7.672 9.225

27 J26b Tropical
grassland

1.68 0.835 0.400 0.334 10.6 3.540 4.375

28 J26c Temperate
deciduous forests

1.2 0.485 0.375 0.182 16.1 2.929 3.414

29 J26d Boreal forest 0.96 0.425 0.400 0.170 16.6 2.822 3.247

30 J26e Temperate
grassland

0.6 0.293 0.400 0.117 3.7 0.433 0.726

31 J26f Desert 0.48 0.273 0.388 0.106 6.4 0.678 0.951

32 J26g Temperate
coniferous forest

0.48 0.128 0.400 0.051 16.1 0.827 0.956

33 J26h Steppe 0.24 0.093 0.400 0.037 5.75 0.215 0.308

34 J26i Mediterranean
shrubland

0.12 0.0476 0.388 0.018 9.3 0.171 0.219

35 J26j Barren land 2.04 0.0 0.0 0.0 0.0 0.0 0.0

Total 12.0 4.13 1.52 19.29 23.42

Notes:

Data on the 9 ecoregions listed in notes 26–34 and the definition of these regions are found in Schlesinger and Jasechko (2014). The remainder of the Earth’s surface, which includes surface water, is assumed to be barren land (note 35). The flows J26a to J26i refer to

pathway J26 in Figure 3, which represents the feedback from structural biomass that supports annual primary production of the vegetation in an ecoregion. The methods for obtaining the numbers in columns 4 through 10 are as follows.

The emergy inflow to each ecoregion (column 4) is determined bymultiplying the percent of terrestrial precipitation falling on an ecoregion (from Table 1, column 5 in Schlesinger and Jasechko, 2014) by the emergy base for terrestrial precipitation 12.0E+24 seJ y−1. The

volume of water evapo-transpired in each ecoregion is determined using the United Nations Food and Agriculture Organization (FAO) data for the percent of terrestrial ET accounted for by each ecoregion (numbers in parentheses in column 7 of Table 1 in Schlesinger

and Jasechko, 2014) multiplied by total global evapotranspiration. Total global ET is found by subtracting runoff from total precipitation (113 − 39.7 = 73.3 103 km3 y−1, Supplementary Table B1). This gives an estimate of the volume of ET for each ecoregion. Using data

from Schlesinger and Jasechko (2014) on the percent of terrestrial precipitation falling in each ecoregion and the total terrestrial precipitation given above, the volume of rain falling in each ecoregion was determined.

Next, using the volume of ET and the volume of rainfall for each ecoregion, we calculated ET as a fraction of the total precipitation. This number was multiplied by the emergy base for the ecoregion (column 4) determined above to find the emergy base for ET in the

ecoregion. This number was multiplied by transpiration as a fraction of ET (column 2 in Schlesinger and Jasechko, 2014) to find the emergy base for ecoregional transpiration (column 5).

The annual emergy of transpiration building long-term biomass (column 7) was found bymultiplying the emergy base for transpiration by the fraction of GPP allocated to build long-term biomass (woody structure plus fine roots), column 6 in this table. Data in column

6 are estimated from the unperturbed case in Figure S4 of the supplement to Bloom et al. (2016), where values for tropical broadleaf forests, W, temperate forests, T, grasslands, D, and boreal forests, B, are reported. In this table, similar ecoregions are assumed to have

ratios like those reported in Bloom et al. (2016) or to be averages of two of the reported systems, e.g., Mediterranean shrubland and desert are assumed to be approximated by the average of grasslands and deciduous forests.

The turnover time of biomass, n, in the ecoregions (column 8) comes from Table S11, column 3, in the supplement to Erb et al. (2016). The biomes in this table are defined in Olsen et al. (2001) and are approximately equivalent to the ecoregions defined by Schlesinger

and Jasechko (2014), except that we averaged Olsen’s montane grassland and tundra category with his grassland category to estimate the turnover time of Schlesinger and Jasechko’s steppe category. Estimated potential turnover times minus 1 year (n − 1) are reported to

account for the fact that current annual transpiration has not yet contributed to the existing stock of long-term biomass.

The emergy required for building long-term structure of the vegetation in each ecoregion (column 9) is found by multiplying the turnover times of the vegetation minus 1 year (n − 1) by the annual emergy used for building the long-term structure of the vegetation in

each ecoregion. The emergy of this year’s transpiration plus the emergy required for building long-term structure gives the total emergy required for the transpiration of the vegetation of each ecoregion in each year (numbers in column 10).
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using values from the ecoregions of the world as defined by
Schlesinger and Jasechko (2014).

4.2.2.2 Estimating the contributions of structural biomass
to transpiration

In Figure 3, flow J26 represents the feedback from stored plant
biomass to facilitate plant production processes such as
transpiration. These flows are evaluated in Table 5 and 6 where
the emergy base for long-term structural biomass and the
transpiration of vegetation found in the ecoregions of the world
(Schlesinger and Jasechko, 2014) is determined (Table 5). Table 6
shows the emergy base for transpiration from Table 5 and estimates
the water transpired by the ecoregion. These values are reported and
are used to calculate the transformity and specific emergy of
transpiration of the major vegetation types by the ecoregion.

Some important transformities derived from this work and
rounded to the closest 10 seJ J−1 are precipitation and the related
surface water flows: chemical potential energy of 22,490 seJ J−1 and
geopotential energy of 13,530 seJ J−1. The specific emergy of

precipitation is 106,200 seJ g−1. The transformity of water
evaporated from the soil surface or transpired by plants is
22,680 seJ J−1, and the transformity of total evapotranspiration
which includes that from the surfaces of the soil, plants, and fresh
water is 22,640 seJ J−1, while the transformity of all water used to
support plant growth such as transpiration and intercepted water
absorbed by plants is 22,660 seJ J−1. The number for evapotranspiration
(22,680 seJ J−1) is a base number applicable to processes with structure
built on the scale of 1 year, such as annual crop growth. For ecosystems
with vegetation that require at least several years to develop, the
structure required to facilitate transpiration, the transformities of
plant processes such as transpiration and gross primary production
(GPP) are higher (Tables 5, 6), e.g., the transformity of tropical
rainforest transpiration is estimated to be 167,500 seJ J−1, which is
more than 7 times higher than that of annual crops). A complete
description of the calculations required to determine all the
transformities and specific emergy evaluations of the tertiary exergy
flows of the hydrological cycle is given in Tables 4–6 and in the
explanatory notes associated with these tables.

TABLE 6 Determination of the transformity and specific emergy of transpiration of the vegetation found in the ecoregions of the world as defined by
Schlesinger and Jasechko (2014). Transformities and specific emergy evaluations include the effects of accumulated biomass and are rounded to the
nearest 100 seJ.

Note Flow Ecoregion Emergy base
transpiration,
E + 24 seJ

Water
transpired,
m3 y−1

Chemical exergy
of transpiration,
J y−1

Transformity
transpiration,
sej J−1

Specific emergy
of transpiration,
sej g−1

36 J26a Tropical
rainforest

9.225 1.20E + 13 5.61E + 19 167,500 769,800

37 J26b Tropical
grassland

4.375 6.44E + 12 3.02E + 19 147,700 679,100

38 J26c Temperate
deciduous
forests

3.414 3.74E + 12 1.75E + 19 198,400 912,000

39 J26d Boreal forest 3.247 3.28E + 12 1.53E + 19 215,400 990,100

40 J26e Temperate
grassland

0.726 2.26E + 12 1.06E + 19 69,900 321,400

41 J26f Desert 0.951 2.11E + 12 9.87E + 18 98,100 451,000

42 J26g Temperate
coniferous forest

0.956 9.91E + 11 4.64E + 18 209,800 964,200

43 J26h Steppe 0.308 7.21E + 11 3.37E + 18 93,000 427,700

44 J26i Mediterranean
shrubland

0.219 3.67E + 11 1.72E + 18 129,800 596,600

45 J26j Barren land 0.0 0.0 0.0 0.0 0.0

Total average
value

23.42 3.19E + 13 1.47E + 20 159,700 734,300

Notes 36–45: the same definitions given for notes 26–35 of Table 5 applies to notes 36–45 of Table 6.

The numbers in column 4 of Table 6 are transferred from column 10 in Table 5 and give the emergy required for annual transpiration in each ecoregion.

The water transpired in each ecoregion is calculated as a fraction of total ET, which can be calculated based on Figure 3 as the water infiltrating into the soil, J6, minus the water infiltrating below

the soil, J12 (or 78.7–19.7 = 59E + 03 km3) and from ecoregional ET as a fraction of terrestrial ET (61.1E + 03 km3) using the numbers in parentheses in column 7 of Table 1 in Schlesinger and

Jasechko (2014) giving an average estimate of 60 × 103 km3. This value is multiplied by the fraction of total ET occurring in each ecoregion (i.e., the numbers in parentheses in column 7, Table 1

in Schlesinger and Jasechko, 2014) times the ratio of transpiration to total ET in each ecoregion (column 2 in Schlesinger and Jasechko, 2014) to find the volume of water transpired in each

ecoregion (values in column 5).

The chemical exergy of water transpired (J y−1) is calculated bymultiplying the volume of water transpired by its density (1.0 g cc−1) times the chemical exergy per gram for soil water (4.684 J g−1),

i.e., for water of 305 ppm solute concentration (Note 3, Table 7).

The transformity of transpiration in each ecoregion (column 7) is found by dividing the emergy base for transpiration (column 4) by the chemical exergy of the water transpired (column 6). In a

similar manner, the specific emergy of the water transpired in each ecoregion (column 8) is the emergy base for eco-regional transpiration (column 4) divided by the mass of the water transpired

(the values in column 5 multiplied by 1.0E6 g m−3).
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TABLE 7 Transformities and specific emergy evaluations of the annual flows ofwater passing through themajor storages of the hydrosphere and the stored natural capital in theGeobiosphere. The emergy required for
all flows is 12.0E + 24 seJ y−1, as all flows and storages listed are ultimately dependent on terrestrial precipitation. Most numbers are from Babkin et al. (2003) and given in Shiklomanov and Rodda (2003) except as
noted.

Note Major water
storages

Volume,
1,000 km3

Turnover
time, y

TDS,
ppm

Exergy,
J g−1

Mass flux,
g y−1

Chemical exergy
flux, J y−1

Specific
emergy, sej g−1

Transformity,
sej J−1

Natural capital
stored, sej

1 World ocean 1,338,000 2,500 35,000 0.0000 5.35E + 20 0.00E + 00 2.24E + 04 0.00E + 00 3.00E + 28

2 Groundwater (salt and
fresh)

25,400 1,400 1.81E + 19 6.61E + 05

3 Predominantly fresh
ground water

11,530 1,400 305 4.6826 8.24E + 18 3.86E + 19 1.46E + 06 3.11E + 05 1.68E + 28

4 Soil moisture 16.5 1 305 4.6826 1.65E + 19 7.73E + 19 7.27E + 05 1.55E + 05 1.20E + 25

5 Glaciers, permanent
snow

24,604 9,686 7.10 4.7221 2.48E + 18 1.17E + 19 4.83E + 06 1.02E + 06 1.19E + 29

6 –Antarctica 21,600 9,700 7.12 4.7221 2.23E + 18 1.05E + 19 5.39E + 06 1.14E + 06

7 –Greenland 2,340 9,700 7.12 4.7221 2.41E + 17 1.14E + 18 4.97E + 07 1.05E + 07

8 –Arctic Islands 83.5 9,700 7.12 4.7221 8.61E + 15 4.07E + 16 1.39E + 09 2.95E + 08

9 –Mountainous
regions

40.6 1,600 7.19 4.7221 2.54E + 16 1.20E + 17 4.73E + 08 1.00E + 08 1.92E + 28

10 Ground ice: permafrost 300 10,000 950 4.5971 3.00E + 16 1.38E + 17 4.00E + 08 8.70E + 07 1.20E + 29

11 Lakes 176.4 17 13,000 2.9884 1.04E + 19 3.10E + 19 1.16E + 06 3.87E + 05

–Fresh 91 207 4.6956 5.35E + 18 2.51E + 19 2.24E + 06 4.78E + 05 2.04E + 26

–Salt 85.4 13,000 2.9884 5.02E + 18 1.50E + 19

12 Swamp and bogs 11.47 5 51 4.7163 2.29E + 18 1.08E + 19 5.23E + 06 1.11E + 06 6.00E + 25

13 River/stream 2.12 0.104 120 4.7072 2.03E + 19 9.57E + 19 5.91E + 05 1.25E + 05 1.25E + 24

14 Biological 1.12 0.0027 9,000 3.5246 4.09E + 20 1.44E + 21 2.93E + 04 8.30E + 03 3.28E + 22

15 Atmosphere 12.9 0.022 10 4.7218 5.89E + 20 2.78E + 21 2.04E + 04 4.30E + 03 2.63E + 23

Total water storage 1,388,511

Total fresh water storage 36,555

See Supplementary Table A8 for the explanatory notes accompanying Table 7.
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4.3 The emergy of water flows in the
hydrological cycle estimated from global
storage and turnover time

Table 7 gives values for the major storages of water in Earth’s
hydrological cycle as identified by Babkin et al. (2003). Four
estimates of the volume of the major water storages on Earth are
reported in Supplementary Table B3 for comparison to Babkin et al.
(2003). The sources for the water volumes, turnover times, solute
concentrations, and density of the various storages of water in the
hydrosphere are given in Table 7, and the exergy, mass flux, and
exergy flux are calculated from these data. The specific emergy
evaluations and transformities of the water fluxes are also
determined from the data and shown in the table as are the
estimates of the value of the natural capital of the various water
storages. The key values that result from this analysis are the
transformities of predominantly fresh groundwater, 311,000 sej
J−1, fresh water in lakes, 478,000 sej J−1, water in swamps and
bogs, 1,100,000 sej J−1, and permafrost, 87,000,000 sej J−1. Among
the natural capital storages of water in the Geobiosphere, permafrost
has the highest value, 1.20E+29 sej, followed closely by permanent
ice cover, such as that found in the Arctic and Antarctic,
1.16E+29 sej. The next largest natural capital water storage in the
Geobiosphere is predominantly fresh groundwater, 1.68E+28 sej.

4.4 Comparison of new calculations of the
secondary and tertiary emergy flows of wind
and water with earlier values in Odum

The primary existing source of calculations for secondary and
tertiary emergy flows of the Geobiosphere is Folio #2 of the
Handbook of Emergy Evaluations (Odum, 2000a). In this small
pamphlet, Tables 2 and 6, respectively, report emergy analyses of
the energetics of atmospheric circulation and ocean circulation, both
of which are considered in this study. Supplementary Table B4 gives
the solar emergy base, the exergy flows, and the transformities
associated with each of the flows in Odum (2000a) that were
reexamined in this article along with some recalculations of
existing flows and new calculations of missing flows that were
performed as additional examples to check the existing estimates.
Tables 3 and 4 in Odum (2000a) present an analysis of the exergy
and transformities of latent heat and continental rainfall as a
function of height (these data are reported in the “Altitude” class
in Figure 4 and in Supplementary Table B4). These functions are
combined, checked, and where necessary recalculated in
Supplementary Table B5. Odum (2000a) also considered the
emergy of Earth processes, but a reexamination of these and
other analyses in Odum (2000a) is left for a later time. The table
notes document the data sources and assumptions used in making

FIGURE 4
Plot of all transformities (sej J−1) of the secondary and tertiary exergy flows (J y−1) of the Geobiosphere that were evaluated in this study. The
transformities of the flows are plotted by functional analysis groups as defined below. The functional groups refer to tables in this article and in Odum
(2000a) and are as follows: global flows, Table 1; ecosystem ET, Table 6; turnover of storages, Table 7; wind flows (Odum, 2000a), his Table 2 and
Supplementary Table B4; ocean currents, Odum (2000a), Table 3 and Supplementary Table B4 in this study; wind-driven flows, Table 3 in this study;
and “Altitude” in Odum (2000a), Tables 3 and 4. The data plotted in this figure are summarized in Supplementary Table B6.
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the calculations. Unlike in the folios, mathematical errors in the
original calculations are noted and corrected in the table.
Recalculated values are marked with a (’) and new values that
represent alternate estimates using different data or those that
consider flows that are not formerly determined are indicated by
an (*). In both cases, an additional superscript is added for each new
calculation.

4.5 Transformity as a function of exergy
flows in the Geobiosphere

Data on the secondary and tertiary exergy flows of the
Geobiosphere and the resulting transformities associated with these
flows are compared and summarized using a master plot of
transformities of all the phenomenon examined in this study vs
exergy flow (Figure 4). The data for this figure are reported in
Supplementary Table B6. The well-defined diagonal in this figure is
created by Geobiosphere processes that require the entire baseline for
their formation. Off-diagonal flows are based on regional processes,
have temporal components affecting their formation, or have other
formation conditions, requiring less than the full Geobiosphere baseline
to produce the flows, e.g., molten rock ejected to Earth’s surface (J5
in Table 1).

4.6 The relationship of the transformity of ET
with exergy flow for ecoregional
functional groups

The group of red dots in Figure 4 give an analysis of ecosystem
evapotranspiration, ET, examined by ecological functional groups. These

systems form a group for which exergy flow and transformity appear to
have a different relationship from the general pattern observed for global
processes. These relationships are examined in detail in Supplementary
Table B7 and Figure 5 below, where the ecoregions of the world are
divided into three functional groups: tropical systems, temperate systems,
and a constructed category, i.e., conifers and Mediterranean shrublands.
Each of the three groups includes a grassland ecoregion (Supplementary
Table B7) with steppe included in the constructed category. Figure 5
shows that the transformity of ET in tropical ecoregions has a strong
logarithmic relationship (R2 = 0.9938) with exergy flow, whereas both
temperate ecoregions and the constructed category have strong linear
relationshipswith exergyflow. The relationships between exergyflow and
the variables account for the departure or conformance of the relationship
between transformity and the exergy of ecoregional transpirationwith the
diagonal. The relationship between the transformity of tropical rainforest
ET and its exergy flow is closest to the relationship of transformity to
global exergy flows in global processes.

5 Discussion

The emergy basis for systems is better defined by expanding the
time frame of its quantification to include the work done by the
system in the past that is required for the creation of components
that are actively used in the present evaluation, e.g., vegetation
biomass created over many years in the past is used in creating plant
processes in the present. The operation of the maximum empower
principle is observable in the hierarchy of quality observed in all
phenomena, but its defining quantity, emergy intensity, is not
directly measurable, as it depends on the history of past use of
available energy. For this reason, the rules of emergy accounting in
space and time become very important and must be continually

FIGURE 5
A plot of the transformity of transpiration in the ecoregions of the world (Supplementary Table B7) as a function of exergy flow. The vegetation falls
into three functional groups defined by different relationships of transformity with exergy flow. The transformities of tropical systems have a logarithmic
relationship of transpiration with exergy flow, whereas the transformities of transpiration in temperate systems and in the constructed category “Conifers
and Mediterranean Shrublands” exhibit more linear relationships with exergy flow.
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tested and refined to increase the accuracy of emergy quantifications.
This article focuses on the further development and testing of the
rules by which the emergy of storages and flows within a system can
be determined with greater fidelity to the underlying
thermodynamic processes and the time required for their
development. In this regard, we consider the importance of self-
consistency in the use of the emergy methodology as the primary
characteristic of a cogent emergy evaluation, and therefore ways to
ensure that an emergy evaluation will be self-consistent and become
of paramount importance. Building on the firm foundation of the
four articles to determine a new planetary baseline for emergy
analyses, we have taken the next step in verifying and revising
the transformities and other emergy evaluations per unit value of the
secondary and tertiary exergy flows of the Geobiosphere that will be
required to perform self-consistent and cogent emergy evaluations
of all of Earth’s phenomena. Specifically, in this article, we have
documented the emergy flows of the secondary and tertiary exergy
flows of wind and water as they are derived from the network of
exergy flows in the Geobiosphere. These revised data provide the
input required to perform more accurate emergy evaluations.

5.1 Application of the primary rule of emergy
accounting

The primary rule of emergy accounting superseding all other rules
is that when an increase in the emergy of a component or process in a
system is determined by the chosen accounting method, i.e., the quality
or emergy per unit of the evaluated quantity increases, then this
quantity must have an increased ability to do useful work in its
system. Also, the converse of the rule must be true. This rule places
the emphasis on obtaining an accurate accounting of all past use of
exergy required for the product or service being evaluated, neither over
nor under counting exergy in the evaluations. In pursuit of greater
accuracy in accounting, the separation distance between the use of the
required emergy in space and time is reduced, but it cannot be equal to
or smaller than the evaluation limit for an annual evaluation. In the
limit, the evaluation can consider as potential inputs all entities that are
separated by more than the period of the evaluation, usually 1 year in
most emergy analyses. Brown and Brandt-Williams (2011) called for
consideration of both space and time domains in evaluating the emergy
inputs to all systems. This rule accomplishes this, although other
alternatives might be put forward. Several examples of the
application of this rule are given above, but perhaps the most
significant for overall emergy evaluations is the requirement to
consider the emergy of educational attainment in the evaluation of
systems such as human work. The integral of the emergy required to
accomplish the past years of schooling (Campbell and Lu, 2014b) is
required in the evaluation of national systems to allow the accurate
determination of the emergy basis for national economies and to
determine the emergy balance in the equity of trade.

5.2 The evolution of the emergy
methodology

The International Society for the Advancement of Emergy
Research, also known as the Emergy Society, was formed in July

2007. Soon after this organization was established, which included a
Standards Committee, the society recognized the tension that would
inevitably develop between establishing a standard method of
analysis and the intellectual creativity required by a young
methodology that continues to be under development. Campbell
et al. (2005a) identified this and several additional problems that the
emergy methodology was facing at that time, and chief among them
was the problem of disagreement on the value of the planetary
baseline to be used in emergy accounting. Now, the baseline
questions have been resolved for the time being with the
publication of the four strong articles mentioned in the
Introduction section that converge on the value of 12.0E+24 seJ
y−1. Furthermore, the additional data and analysis in Supplementary
Material A of this article further strengthen the evidence supporting
this number.

A solution of the conflict between intellectual creativity and
standardization of the emergy methods can be resolved through
insights in this article because the fundamental characteristic of the
measurement of emergy depends on the fact that it is an accounting
quantity, and therefore, its quantification depends on the suite of
accounting rules chosen to govern the evaluations. As a result, the
most important characteristic in determining the emergy of an item
is the self-consistency of the accounting method. Furthermore, the
validity of the quantification of emergy can be judged by how
accurately the emergy of the item represents the observed
properties and actions of the item in the system of which it is a
part. The integrity of any proposed rules can be judged by their
conformance to scientific laws and the principles of the Energy
Systems Theory (Odum, 1983, 1994). To further ensure the self-
consistency of the methodology, an open access database of
transformities and other emergy evaluations per unit factors
could be set up, using a blockchain accounting model (Tapscott
and Tapscott, 2016). The entries would include the emergy per unit
factors (also called “Unit Emergy Values” or “Emergy
Characterization Factors”) and the ESL model required to
produce each item, such as the references for all sources and
antecedents. The use of the database would be free after
registration, but all users would be required to add their new
calculations, ESL diagrams, and documentation to the website
once these are complete. The Emergy Society offers a dataset last
worked on by Tilley et al. (2012) that can be accessed from http://
www.emergysociety.com/emergy-society-database/ and might be
suitable to build upon.

Most recently, the USEPA has just completed a new database
(De Vilbiss et al., 2024) of Emergy Characterization Factors (ECFs),
i.e., emergy per unit values or transformities, which if expressed in
energy units, can serve as a basis for creating consistent emergy
analyses and evaluation models (https://www.epa.gov/water-
research/uev-library). This database not only covers most of the
air and water flows given in this article but also provides data on
Earth processes and other systems important for completing emergy
analyses. This new publicly accessible database of ECFs, if adopted
internationally, will greatly improve the consistency and reliability
of emergy evaluations around the world. Science is not fixed and
improvements to knowledge are constant, so we still require a
system like the blockchain accounting model of database
construction proposed above to help emergy evaluation develop
at a maximum rate.
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5.3 Use of “white box” models of the
Geobiosphere, global wind–driven
circulation, and hydrological cycle

As mentioned above, Odum (1996) used a black box model to
determine the transformities of the global secondary and tertiary
exergy flows. An innovation in this article is that we used “white”
box models to evaluate the exergy flows of the Geobiosphere
(Figure 1), the wind-driven circulation system (Figure 2), and the
hydrological cycle of Earth (Figure 3). The primary difference
between these two accounting models is that in the former
(Odum, 1996), the network is assumed to be completely
interconnected, and thus, the entire SEE base for system flows is
necessary to support every flow in the network, whereas in the later,
the requirements for any flow or process must be traced through the
network from the points of use to the points of origin (this study).
Some flows in the “white” box system require all the SEE inputs to
support them, but other flows do not. The advantage of “white” box
models is that they provide a chance to use all the knowledge that we
have about a system to obtain a more accurate determination of the
system’s exergy flows and the relative transformities of these flows. A
disadvantage is that if we increase the information required to
evaluate the system, the chance to introduce errors into the
calculations increases. Despite the use of different models for the
emergy evaluation of secondary and tertiary exergy flows of wind
and water, the transformities determined in this article correspond
well (Supplementary Table B4) to the transformities determined for
some similar flows in Odum (2000a). “White” box models are easier
to check for errors because more specific information on the
mechanisms of interaction is provided, therefore they are
subjected to more verification and subsequent correction, if
shown to be wrong.

5.4 Examples of the proposed methods for
determining the chemical potential energy
of water

Under the method proposed in this article, determining the
transformity or specific emergy of an exergy flow in the system
requires an estimate of all the types of exergies present in that flow
that must be used up in the process of creating it, along with an
estimate of the emergy required for the existence of the types of
interacting exergies. This new method of accounting for interactions
when more than one type of exergy is required for the same flow is
applied to determine transformities for water flows in the
hydrological cycle. The proposed changes make the
determination of the emergy of water more consistent with our
knowledge of the two exergies required for a given chemical
potential exergy flow to be used at a particular location on the
landscape. In this study, accounting for the emergy of water in the
hydrological cycle is performed under the assumption that both the
chemical potential of the water flow and the geopotential of the same
water flow that is used up in the process of delivering the chemical
potential in the water to its point of use are required to accurately
capture the emergy required for the water flow to be used at a
location. For example, the chemical potential energy of fresh water
delivered to sea carries both the emergy of its chemical potential and

that of the geopotential used up in the process of delivering the water
parcel to sea level. Similarly, the emergy of runoff augments the
emergy of water pooling in places such as floodplain forests and
augments transpiration there, above that supported by local rainfall
alone. In both cases, the test of accuracy of the altered accounting
scheme is in the observations that the organizing power of exergy
flows is greater than expected from the use of the base transformity
for chemical potential energy alone. Floodplain forests are complex
systems that may be governed by the subsidy–stress gradient as
proposed by Odum et al. (1979). The emergy of the chemical
potential of water, concentrated there, depends on both local
rainfall and on the water transported to that location from
higher in the watershed. To determine whether or not the
concentration of the emergy of chemical exergy in floodplain
forests results in a greater order and organization than is found
in an upland forest requires the study of the whole system in all its
aspects (biological, chemical, physical, and geological) and may not
be indicated by the comparison of a single parameter such as forest
productivity, which because of the role of water as a stressor, a
subsidy, or both may not tell the whole story (Odum et al., 1979;
Megonigal et al., 1997). In the case of the water debouched into the
sea at river mouths, the importance of river discharge to maintain
the thermohaline circulation of the oceans has been recently
demonstrated through model simulations (Huang and
Mehta, 2010).

The proposed meta framework of emergy evaluation put
forward in this article requires that the assessed value of the
emergy of a product or service must be a true reflection of the
ability of that entity to do work in its system and vice versa. In other
words, if the ability of an entity to do work increases, then its emergy
must also increase. If this second condition does not hold, then the
method of calculating emergy of an entity must be modified to better
reflect the change in its ability to do work in the system. An example
of this principle begins with the observation that different types and
qualities of plant production are observed in the various ecological
regions of the world, and these various forms of plant structure
require various time periods to develop to their mature state. Thus,
there is a temporal separation between the past use of exergy to
create structural biomass and its use in the present to produce the
exergy flows associated with various kinds of plant production. This
fact leads to the realization that the historical emergy flows that
create the structural biomass of plants over periods longer than
1 year (Table 6) should be accounted for as an input in determining
the transformity of the present emergy flows of different vegetation
types, e.g., transpiration, gross primary production, etc.

5.5 Significance of the proposed changes in
determining the emergy required for items

Implementation of the proposed changes in the methods for
determining the emergy of items may make a difference in many
transformities and may or may not make large differences in the
overall results, depending on the specific processes evaluated
(i.e., historically, emergy analyses have been extremely robust in
the face of errors and omissions). Odum (2000b) examined the
ecological–economic process of salmon pen culture in the Pacific
Northwest section of the United States and found that the buyer of
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pen-raised salmon received twice the emdollar value compared to
the dollars paid for the fish. The most significant fundamental
principle of emergy analysis is the recognition that the most
important characteristic of a valid emergy evaluation is self-
consistency in the methods and models used to perform the
calculations. Odum (2000b) showed that once the salmon are
processed and used by consumers, seven emdollars from the
outside economy are attracted for each emdollar of local
environmental product. In this study and in Campbell (2016), a
functional approach to emergy evaluations has been proposed and
used. This approach is like the original work on emergy evaluations,
which is tied to quantify a series of functional processes creating
order and organization in a system within defined spatial and
temporal boundaries (Tennenbaum, 1988; Odum, 1996). The
thread of self-consistency in these analyses is the tracking and
summing of all the directly and indirectly required emergy
inflows (i.e., exergy × transformity) necessary to make a
new exergy flow.

In this article, we have urged that additional attention be placed
on quantifying the extended spatial and temporal boundaries
required to account for all necessary inflows producing activities
in the present system. From this perspective, determining the
emergy of an item is performed by tracing the path of all its
inputs and ensuring the independence of each one. Emergy
evaluations that are most likely to experience changes in their
evaluations are vegetation assessments that include plants with
large older biomass accumulations and human systems where the
education of people is considered in the evaluation of exchanges.
This article focuses on advancing the emergy accounting
methodology, clarifying it, and ensuring that more accurate
assessments can be made, especially regarding the emergy flows
of wind and water.

5.6 Comparison with other methods of
determining emergy

In general, determining the emergy of an item requires the
identification of secondary and tertiary emergy flows that are
responsible for organizing the exergy flow or storage of interest
within the system. Thus, the exergy flows that are directly and
indirectly used up in producing the exergy of another item or
process are determined and then multiplied by their
transformities and summed to determine the emergy necessary
for creating an exergy flow or storage. Approaches such as the
use of primary SEE inflows on a proportionate basis over the surface
of Earth, an idea called the “tripartite” by Brown and Brandt-
Williams (2011), and using them to assign emergy values would
not make sense in the accounting scheme proposed here, although
this idea could be used in other accounting schemes. The reason that
this method is not consistent with a process-based approach to
quantify is that it does not follow identified and verified lines of
interaction from the emergy sources to the products made.

Emergy evaluation covers all the sciences, and it was left in a
certain state of development by Odum (1996) and Odum and Odum
(2000). One point of contention has been the way that Odum
characterized the equations for describing changes in emergy
over time (i.e., dynamic emergy). Odum’s conceptualization of

emergy and of the problem of describing it dynamically was that
it is not a state variable and therefore requires a different set of
equations centered on the emergy accounting rules to describe its
temporal changes accurately. In Odum’s (1996, pp. 9–13) view, three
phases are required to accurately describe the change in emergy over
time. In the first phase, while emergy is being stored, i.e., the emergy
of the product is increasing, but the formation process is not yet
complete, the emergy of the product increases and this includes the
emergy lost to the heat sink in the formation process, as this emergy
use is also required for building the product. In the second phase, the
product is built and there is no change in its emergy (Odum, 1996,
Figures 1–7), and thus the rate of change of the emergy stored is 0.
In the third stage of emergy simulation, the product is made but
suffers a net loss, either from removal of the product to another
system or from the depreciation of the stored product’s mass, i.e., the
loss of its ability to do work. In both cases, the stored emergy of the
product declines. Odum and Odum (2000, p. 157) make it clear that
both changes in the emergy stored or a change in its nature, i.e., its
ability to do work, can be responsible for a change in the stored
emergy of the product. All emergy calculations are based on a
correspondence with a real quantity of exergy represented in the ESL
model. The dynamic rules governing the transformations of the
emergy in a storage are always subject to these real processes.
Emergy has no existence when it is separated from the real
quantities (e.g., enthalpy) that it is associated with.

In another case, Odum and Odum (2000) propose a solution for
dealing with the question of when a product is fully formed. This is a
key question for simulations of the development of a product. In the
case of an industrial process, it is apparent when the product is
available, e.g., the time when a chair or table built from wood is
completed. There is no question about the existence of the product,
even though it may be characterized in terms of the quality of its
construction, durability, etc. However, the completion of a product
within an ecosystem may be somewhat more difficult to determine.
Odum and Odum (2000) proposed a solution to this problem by
assuming that such products are generated within a spectrum of
natural variability that will set statistical boundaries on the quantity
of emergy generated in the final product. Despite this modeled
solution, there are many quantities in nature where the emergy of a
product can be easily determined. For example, the transformity of a
female fish will continue to increase, if her capacity to produce eggs
increases. This capacity may increase up to the maximum size of the
fish. Again, the key to any emergy assessment goes back to the
system that is responsible for producing the item of concern. Given
the system or item of concern, variables can always be found that
capture the development of quality within that item. Theoretical
constructs can be chosen when better real variables are not available.

Although models can be created and simulated using Odum’s
rules (Campbell et al., 1998), in most cases, these rules do not make
simulation easy. In a series of articles, Tilley (2014, 2015) proposed a
set of alterations to the Odum equations that make them easier to
simulate. In my view, it is valid and reasonable to use different
methods to try to get a better understanding of dynamic emergy
accounting. Tilley has developed a productive method that has been
used by others (Lee, 2014) to investigate important problems such as
the role of resource pulses in power acquisition by ecosystems.
Tilley’s articles yield interesting insights into the method and
possible nature of emergy when viewed dynamically; however,
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the redefinition of terms in his modeling scheme removes the main
constraint on Odum’s definition of emergy, i.e., emergy is not a state
variable and requires different rules and a different set of equations
for its simulation to be accurately represented. However, despite
these rule changes, Tilley’s simulations and analyses give what
appear to be reasonable and interesting results.

In conclusion, neither Brown and Brandt-Williams (2011)
approach to emergy evaluation using manipulations of the
tripartite (solar equivalent exergy baseline) nor Tilley’s
redefinition of the rules governing dynamic emergy flows are
entirely consistent with the understanding of path-based emergy
evaluations put forward in this article. However, these approaches
are from the same tree of knowledge as are the proposals for
evaluating emergy presented here, and are therefore not
incompatible with one another.

5.7 Expansion of emergy analysis of the wind

Wind is a complex quantity that is often the second most
important environmental emergy input to a system found on the
surface of the Earth. Under certain conditions, it can be the largest
emergy inflow, and in other cases, it is responsible for the largest
negative environmental impact on system wellbeing, e.g., the effects
of wind causing erosion affecting agriculture (Asgharipour, et al.,
2020). The properties of the wind are determined by pressure and
temperature gradients in the atmosphere, which in turn determine
the stability of the fluid and govern its mixing properties. Wind is
often considered only superficially in emergy analyses, nevertheless,
it can be the most important variable in determining certain
environmental impacts, such as land erosion and the vertical
mixing and distribution of pollutants. Supplementary Section
A5.7.1 considers the effects of atmospheric stability on the
transfer of wind energy to Earth’s surface, and Supplementary
Section A5.7.2 gives an estimate of the transformity of the energy
dissipated in the GBL by wind.

5.8 The choice of the best transformity for
wind for a given study

There is uncertainty in all our calculations, especially in the
values reported for wind and the calculations made using these
values (Table 2; Supplementary Table A3). Nevertheless, all the
studies converge on numbers that are self-consistent and give a
reasonable approximation even though they may be superseded by
more accurate or authoritative values in the future. One
understanding that emerges from this examination of the wind
and its transformity is that the transformity of wind energy differs
depending on the aspect of wind energy that is of interest in a
particular study. For this reason, it is important to understand the
purpose of wind transformity values that have been calculated in the
past and the appropriate value to use for any research project in the
future. For example, Boville and Bretherton (2003) showed that
wind energy doing frictional work on Earth’s surface (Table 3, notes
a and b) has a different and higher transformity (1,226 seJ J−1) than
the wind work dissipated in driving atmospheric vertical diffusion
(715 seJ J−1). The aggregate work in the boundary layer is a

combination of these two values, but consideration of wind
exergy may lose this practical context of its application in synthesis.

5.9 The importance of scientific accuracy

Both wind and sun are important and necessary inputs to the
hydrological processes of evaporation and transpiration; however,
these inputs would double count the evaluation of transformities
based on global water flows if included in the calculation of the
transformities without first checking to see if they are the largest
inputs of emergy to the processes. In Table 4, a comparison of the
emergy of flows J19, J20, and J21 for wind and J23, J24, and J25 for sun
with flows J9, J10, and J11 based on the hydrological cycle shows that
the sun and wind are secondary sources of emergy supporting the
processes of evaporation and transpiration from the soil and
vegetation. The feedback from structural biomass to current plant
production (e.g., GPP and transpiration) is a necessary input
required to account for the variations in the different qualities of
plant production, e.g., grasslands vs forests.

5.10 Data choices and uncertainty

The estimates of global precipitation given in Adler et al. (2003)
were thought to be themost accurate because they used a combination
of low-orbit microwave satellite data and geosynchronous-orbit
satellite infrared data adjusted with surface rain gauge observations
to make their estimates of global precipitation over land and water as
part of version 2 of the Global Precipitation Climatology Project. The
estimates of Dai and Trenberth (2002) of runoff from the land to
oceans were chosen to complete the hydrological model because they
estimated global river flow at the points of discharge to the sea and
used several methods to check their estimate. Further discussion of
uncertainty in the model can be found in Supplementary Sections
A.3.0 and A. 3.1.

Values from Trenberth et al. (2007) in Supplementary Table A2
were not chosen, but they illustrate plausible variations from the
generally accepted values. For example, they report a slightly smaller
total volume of the world oceans due to an ostensibly more accurate
account obtained by using the National Geophysical Data Center’s
terrain database with 5-min ocean depth data and land elevations.
Other departures from Babkin et al. (2003) seen in Supplementary
Table A2 were not used, e.g., the volume of permafrost reported by
Trenberth et al. (2007) is markedly lower than that reported by the
other three global budgets.

6 Conclusion

Thework done by exergy transformed over time and concentrated
within the spatial and temporal boundaries of the global system is
responsible for the order and organization observed in wind andwater
systems found within those boundaries. One of the main products of
this study is to provide updated values for the wind and water flows of
the Geobiosphere, so that they can be used to create more accurate
and consistent emergy evaluations. The numbers presented here are
self-consistent and have been calculated using common accounting
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rules and perspectives given in the article, such as the inclusion of
resources necessary to quantify emergy storages accumulated from the
past use of resources yet necessary to support present flows. An overall
plot of the transformities of the wind and water flows evaluated in this
study is given as a global comparison plot (Figure 4). Wind and water
flows are defined here with functional definitions, requiring specific
biophysical processes and the underling exergy transformations with
the emergy of the products that they deliver explaining the order and
organization observed within the global system. Furthermore, in this
study, we propose the use of a meta framework for the determination
of transformities. This framework extends the spatial and temporal
boundaries for systems that include components that require
additional development times to produce important energy flows
in the system under analysis. Many ecosystems include components,
such as plant biomass and the accumulated knowledge of workers and
many others in social systems. The consideration of this larger
window to capture the essential exergy inputs to key system
components may result in major changes to the results of some
emergy analyses. We have presented a functional approach to the
accounting problem of determining the emergy required for any
product or process using a meta framework or filter for recognizing
important inflows that provides an updated analysis of the inputs
from the wind and water flows of the global system. Emergy
evaluations are accounting problems and the accounting rules and
body of values required to determine accurate transformities of
emergy flows are key pieces of information to allow emergy
accounts to be accurately constructed. These flows are self-
consistent and are clarified, extended, and further evaluated in this
article. Also, they are consistent with a new USEPA database that
provides the potential to create better emergy evaluations throughout
the world. From this perspective, the order and organization observed
in a system in the present depends solely on the biophysical processes
operating within these spatial and temporal boundaries or
concentrated there from other spatial and temporal realms and on
the useful work (emergy) that they deliver to the organizing processes
within a system.
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