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Objective: According to the 2020 data from the World Health Organization (WHO), cancers stand as one of the foremost contributors to global mortality. Revealing novel cancer risk factors and protective factors is of paramount importance in the prevention of disease occurrence. Studies on the relationship between chemokines and cancer are ongoing; however, due to the coordination of multiple potential mechanisms, the specific causal association remains unclear.
Methods: We performed a bidirectional Mendelian randomization analysis to explore the causal association between serum chemokines and pan-carcinoma. All data is from the GWAS catalog and IEU Open GWAS database. The inverse-variance weighted (IVW) method is primarily employed for assessing the statistical significance of the findings. In addition, the significance threshold after the multiple hypothesis test (Bonferroni) was 0.0013, and the evidence of a potential association was considered if the p-value < 0.05, but remained greater than Bonferroni’s threshold.
Results: The results indicate that CCL1 (odds ratio, OR = 1.18), CCL2 (OR = 1.04), CCL8 (OR = 1.36), CCL14 (Colorectal, OR = 1.08, Small intestine, OR = 0.77, Lung, OR = 1.11), CCL15 (OR = 0.85), CCL18 (Breast, OR = 0.95, Prostate, OR = 0.96), CCL19 (Lung, OR = 0.66, Prostate, OR = 0.92), CCL20 (Lung, OR = 0.53, Thyroid, OR = 0.76), CCL21 (OR = 0.62), CCL22 (OR = 2.05), CCL23 (OR = 1.31), CCL24 (OR = 1.06), CCL27 (OR = 1.49), CCL28 (OR = 0.74), CXCL5 (OR = 0.95), CXCL9 (OR = 3.60), CXCL12 (Breast, OR = 0.87, Small intestine, OR = 0.58), CXCL13 (Breast, OR = 0.93, Lung, OR = 1.29), CXCL14 (Colon, OR = 1.40) and CXCL17 (OR = 1.07) are potential risk factors for cancers. In addition, there was a reverse causal association between CCL1 (OR = 0.94) and CCL18 (OR = 0.94) and breast cancer. Sensitivity analysis results were similar. The results of the other four MR Methods were consistent with the main results, and the leave-one-out method showed that the results were not driven by a Single nucleotide polymorphism (SNP). Moreover, there was no heterogeneity and pleiotropy in our analysis.
Conclusion: Based on the two-sample MR Analysis method, we found that chemokines might be upstream factors of cancer pathogenesis. These results might provide new insights into the future use of chemokines as potential targets for cancer prevention and treatment. Our results also provide important clues for tumor prevention, and changes of serum chemokine concentration may be recognized as one of the features of precancerous lesions in future clinical trials.
Keywords: causal association, pan-carcinoma, GWAS, Mendelian randomization, chemokine
INTRODUCTION
A substantial number of new cancer cases are diagnosed annually, and most of them die from the disease. A significant proportion of cancer patients, such as those with pancreatic cancer, were diagnosed at an advanced stage due to a poor prognosis, high mortality rates, and rapid disease progression (Halbrook et al., 2023). Fortunately, due to the progress and improvement of treatment methods, there has been a significant reduction in the incidence of cervical cancer among vaccinated women. Similarly, advancements in immunotherapy and targeted therapy have led to a significant reduction in mortality rates for melanoma, kidney cancer, and other types of cancer. However, the incidence of breast, uterine, and prostate cancers continues to exhibit an upward trend year after year (Siegel et al., 2023). In order to reduce the incidence of cancer, the discovery of risk factors in precancerous lesions is particularly important. So far, prospective studies have identified several factors that can interfere with cancer risk (Kliemann et al., 2023; Lagou and Karagiannis, 2023; Wang et al., 2023). For example, processed food intake and obesity can influence changes in a range of cancer risk indicators. In addition, a meta-analysis investigated the complexity of aging and cancer risk (López-Otín et al., 2023). A growing number of factors are proving to be associated with cancer risk. The discovery of risk factors may provide potential value for cancer prevention.
In recent years, more and more studies have confirmed the potential value of chemokines for cancer progression and treatment (Märkl et al., 2022; Propper and Balkwill, 2022). Chemokines are a class of cytokines that transport immune cells and are associated with lymphoid tissue (Schulz et al., 2016; Cambier et al., 2023). In cancer, however, they promoted the migration of immunosuppressive cells, such as Tregs, M2 macrophages, and so on (Moreno Ayala et al., 2023; Zhou et al., 2023). Furthermore, chemokines promoted cancer progression by mediating tumor-related pathways such as PI3K/AKT and ERK1/2 (Zhao et al., 2017). However, it should be noted that not all chemokines are implicated in tumor progression; indeed, certain chemokines exhibit anti-tumor effects (Korbecki et al., 2020). Some studies had found that high-expression chemokines are more sensitive to cancer immunotherapy (Limagne et al., 2022). Non-small cell lung cancers with high CXCL10 expression had a better response when treated with immune checkpoint suppression. In addition, the chemokine CXCL10 recruited CD4+ and CD8+ T cells to the tumor via CCR6+ type 3 innate lymphoid cells (Bruchard et al., 2022). Surprisingly, CXCL10 also promoted tumor cell migration in mouse models (Hirth et al., 2020), and CXCL10 secreted by mesenchymal stem cells promoted tumor growth (Timaner et al., 2018). In addition, the relationship between other chemokines and tumors is particularly complex. Curiously, if there is a causal association between chemokines and cancers. Although several meta-analyses had been conducted to explore causal associations between chemokines and cancer (Cho and Kim, 2013; Liu et al., 2018), there had not been a systematic comprehensive study.
The above studies are fuzzy about the association between chemokines and cancers, which may be influenced by environmental and other factors. Therefore, it is necessary to conduct a Mendelian randomization (MR) study between chemokines and tumors. MR uses genetic variation as instrumental variables (IVs) to measure potential causal associations between exposures and outcomes (Cheng et al., 2022). Single nucleotide polymorphisms (SNPs) were obtained from genome-wide association studies. The advantage of MR is to establish a causal association between exposures and outcomes from a genetic perspective, excluding other external environmental and confounding factors (Timaner et al., 2018). So, the association between chemokines and the risk of 14 types of malignancies were evaluated using two-sample MR Analysis in our study.
MATERIALS AND METHODS
Study design
We conducted a two-sample MR Analysis between cancers and chemokines using publicly available online data. Including GWAS Catalog (https://www.ebi.ac.uk/gwas/) and IEU OpenGWAS (https://gwas.mrcieu.ac.uk/) (Buniello et al., 2019). These databases have received ethical approval and informed consent, so no additional instructions are required. Three preconditions must be met when performing MR analysis (Guyatt et al., 2023). First, the association hypothesis: IVs must be strongly associated with chemokines, and F-value is considered as measure indicator of association. Second, the independence hypothesis: IVs and confounding factors were independent of each other. In short, chemokines IVs were not associated with other factors that had a causal association with the tumors. Third, the exclusivity hypothesis: IVs influence tumors only through chemokines (Figure 1).
[image: Figure 1]FIGURE 1 | A flowchart for analyzing causal associations between chemokines and tumors based on Mendelian randomization (MR).
Exposure and outcome data
Chemokines data came from a study on serum proteins in the GWAS catalog. To explore associations between genetic variants and serum proteins, Gudjonsson et al. (2022) conducted a GWAS study involving 5,368 European individuals. We downloaded 38 serum chemokine protein-associated SNPs from the study as exposure factors.
The outcome factors were 14 cancers, including breast cancer, lung cancer, gastrointestinal cancer and some other site-specific tumors. IVs for Breast Cancer were derived from the Breast Cancer Association Consortium [BCAC (Oncoarray, N = 106,776) (iCOGS, N = 89,677), FinnGen database (N = 123,579) (Michailidou et al., 2017; Kurki et al., 2023). IVs for prostate cancer were obtained from Schumacher’s GWAS data (N = 140,254) (Schumacher et al., 2018). Malignant neoplasm of ovary (N = 123,579) and all other tumor IVs (N = 218,792) were derived from the FinnGen database. All sources of tumor GWAS information are provided in the Supplementary Table S1.
Instrumental variable selection
First, the selection of instrumental variables cannot violate the first hypothesis of Mendelian randomization, so we used the threshold of p < 5E-8 to screen the IVs strongly related to serum chemokines. However, some chemokines did not have SNPs with this threshold, and then the threshold of significance was eased to p < 5E-6 (Luo et al., 2022; Yu et al., 2023). And the SNPs with F values less than 10 were excluded (Luo et al., 2021). SNPs with F statistic >10 are considered to be strongly associated with exposure. Secondly, there may be linkage disequilibrium (LD) between SNPs. The LD phenomenon implies non-random transmission of different alleles to offspring, and it is crucial to maintain LD between various SNPs prior to conducting MR analysis (Yarmolinsky et al., 2023). To eliminate LD, the TwoSample MR package was employed in this study with specific parameters set as r2 = 0.001 and kb = 10,000. The variable r2 represents the association of LD between SNPs, while kb represents the region range of LD between SNPs. Third, information about the SNPs in the outcome was matched according to the SNPs screened during exposure. In this process, in the absence of SNP information, substitute proxy SNPs are not utilized. Finally, SNPs with palindromic structure were removed.
MR analysis
To determine the causal association between serum chemokines and cancers, a two-sample MR Analysis was performed. A total of three common MR Analysis methods have been used, including inverse-variance weighted (IVW) (Huang et al., 2022), MR-Egger regression (Wu et al., 2020), weighted median (Li et al., 2022), weighted mode and simple mode methods are supplemented. According to the survey, the IVW test exhibits superior advantages compared to additional methods (Lin et al., 2021). And it has been used as the primary MR Analysis method in most studies (Yang M. et al., 2023; Yang Y. et al., 2023; Ding et al., 2023; Li et al., 2023). Similarly, IVW was used as the main test method in our study, while other methods were used as references. In addition, the MR-Egger regression test and MR-Presso were used to verify the existence of horizontal pleiotropy, and p-value < 0.05 is considered to be horizontal pleiotropy. To ensure the validity of our findings, we conducted leave-one-out sensitivity analysis to ascertain whether a single SNP is responsible for driving the results. Based on the causal relationship between 38 chemokines and cancer, the more conservative Bonferroni method was used to correct for significance results. Before correction, p < 0.05 was a significant result, and after correction, p < 0.0013 was a significant result. Results with p < 0.05 but higher than 0.0013 were considered for potential causal associations (Sedgwick, 2014; Larsson et al., 2017). All statistical tests were performed in two-sample MR and MR-PRESSO packages. Moreover, Heterogeneity test results were significant (p < 0.05), which was considered to be heterogeneity among IVs.
To investigate the bidirectional causal relationship between cancer and chemokines, we performed a bi-directional Mendelian randomization (bi-MR) analysis. Cancers were used as exposure variable and chemokines as outcome variable.
RESULT
SNP data
First, significant SNPs were screened by p-value. Some chemokines did not detect SNPs with p-values less than 5E-8, in addition, CCL24 had less than 3 SNPs below this threshold. So, a significance threshold of 5E-6 was set. After significance screening (p < 5E-6) and LD filtering (r2 = 0.001, kb = 10,000), a total of 828 SNPs of serum chemokine proteins were obtained. F values of 828 SNPs were calculated, and the values were > 10, suggesting that there was no weak instrument bias. Information on all SNPs with a threshold of 5E-6 was shown in Supplementary Table S2 (including F values). IVW test was used as the main MR Analysis method for all chemokines. The statistical results between 38 chemokines and pan-carcinoma were shown in Supplementary Table S3. Similar results were obtained for all sensitivity analyses. The results of heterogeneity analysis and pleiotropy analysis were shown in Supplementary Table S4.
Bi-MR Analysis was performed for all results that met the significance threshold. To ensure sufficient SNPs were available for MR Analysis, the SNPs threshold was set at 5E-8 for breast cancer (excluding finn-b-C3_BREAST) and prostate cancer, and 5E-6 for other malignancies.
In addition, for the results of significance, the p-values of the heterogeneity test were all > 0.05 and there was no pleiotropy, Including MR-egger and MR-Presso methods. Moreover, the leave-one-out sensitivity analysis did not find that causality was determined by a single SNP (Supplementary Table S5).
Breast cancer
For breast cancer, we investigated the causal association between chemokines and the disease using three breast cancer GWAS datasets. The results of MR analysis showed significant causal association between CXCL13 [OR (95%CI), 0.93 (0.88–0.99), p = 0.021] and breast cancer (ieu-a-1129), CCL2 [OR (95%CI), 1.04 (1.01–1.07), p = 0.021] and breast cancer (ieu-a-1130), and CCL1 [OR, (95%CI), 1.18 (1.02–1.38), p = 0.030], CCL18 [OR (95%CI), 0.95 (0.90–0.99), p = 0.031], CXCL5 [OR (95%CI), 0.95 (0.91–1.00), p = 0.030], CXCL12 [OR (95%CI), 0.87 (0.79–0.96), p = 0.004] and breast cancer (finn-b-C3_BREAST) (Figure 2). The results were not consistent across different GWAS data, which might be due to different IVs.
[image: Figure 2]FIGURE 2 | Forest plot for the causal association of chemokines on the risk of tumors derived from IVW. The OR value > 0 is considered a risk factor for tumor. The OR value < 0 is considered a protective factor for tumor. OR, odds ratio; CI, confidence interval.
Cochrane’s Q test did not provide evidence of heterogeneity between CCL1 (p = 0.227), CCL2 (p = 0.982), CCL18 (p = 0.221), CXCL5 (p = 0.533), CXCL12 (p = 0.977), and CXCL13 (p = 0.520) and breast cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL1 (p = 0.779), CCL2 (p = 0.519), CCL18 (p = 0.141), CXCL5 (p = 0.639), CXCL12 (p = 0.800) and CXCL13 (p = 0.643). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL1 p = 0.223, CCL2 p = 0.943, CCL18 p = 0.413, CXCL5 p = 0.497, CXCL12 p = 0.968, CXCL13 p = 0.569). These results suggest that the serum proteins CCL18, CXCL5, CXCL12, and CXCL13 are protective factors for breast cancer, while CCL1 and CCL2 are risk factors for breast cancer.
Intestinal cancer
For intestinal cancer, we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL14 [OR (95%CI), 1.083 (1.010–1.161), p = 0.03] and colorectal cancer (finn-b-C3_COLORECTAL), CXCL14 [OR (95%CI), 1.397 (1.150–1.698), p = 7.98E-04] and colon cancer (finn-b-C3_COLON), CCL22 [OR (95%CI), 2.051 (1.350–3.116), p = 7.58E-04], CCL28 [OR (95%CI), 0.741 (0.562–0.977), p = 0.03], CCL14 [OR (95%CI), 0.766 (0.607–0.967), p = 0.03] and CXCL12 [OR (95%CI), 0.576 (0.351–0.946), p = 0.03] and small intestinal malignant neoplasm (finn-b-C3_SMALL_INTESTINE) (Figure 2).
Cochrane’s Q test did not provide evidence of heterogeneity between CCL14 (p = 0.768, p = 0.808), CCL22 (p = 0.502), CCL28 (p = 0.175), CXCL12 (p = 0.530) and CXCL14 (p = 0.534) and intestinal cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL14 (p = 0.713, p = 0.399), CCL22 (p = 0.220), CCL28 (p = 0.278), CXCL12 (p = 0.938) and CXCL14 (p = 0.867). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL14 p = 0.858, p = 0.817, CCL22 p = 0.577, CCL28 p = 0.182, CXCL12 p = 0.549, CXCL14 p = 0.547). These results suggest that the serum proteins CCL14 is a protective factor for colorectal cancer, CXCL14 is a risk factor for colon cancer, CCL14, CCL28 and CXCL12 are protective factors for malignant neoplasm of small intestine, while CCL22 is a risk factor for malignant neoplasm of small intestine.
Lung cancer
For lung cancer, we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL14 [OR (95%CI), 1.111 (1.018–1.220), p = 0.03] and CXCL13 [OR (95%CI), 1.286 (1.047–1.579), p = 0.02] and non-small cell lung cancer (finn-b-C3_LUNG_NONSMALL), CCL27 [OR (95%CI), 1.493 (1.118–1.994), p = 0.007] and CCL19 [OR (95%CI), 0.660 (0.438–0.993), p = 0.046] and adenocarcinoma (finn-b-C3_NSCLC_ADENO), CXCL9 [OR (95%CI), 3.597 (1.182–10.953), p = 0.02], CCL20 [OR (95%CI), 0.527 (0.300–0.925), p = 0.03], and CCL21 [OR (95%CI), 0.619 (0.438–0.877), p = 0.01] and small cell lung cancer (finn-b-C3_SCLC) (Figure 2).
Cochrane’s Q test did not provide evidence of heterogeneity between CCL14 (p = 0.916), CCL19 (p = 0.446), CCL20 (p = 0.130), CCL21 (p = 0.878), CCL27 (p = 0.762), CXCL9 (p = 0.340) and CXCL13 (p = 0.770) and lung cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL14 (p = 0.247), CCL19 (p = 0.696), CCL20 (p = 0.732), CCL21 (p = 0.373), CCL27 (p = 0.963), CXCL9 (p = 0.455) and CXCL13 (p = 0.686). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL14 p = 0.923, CCL19 p = 0.481, CCL20 p = 0.124, CCL21 p = 0.898, CCL27 p = 0.764, CXCL9 p = 0.239, CXCL13 p = 784). These results suggest that the serum proteins CCL14, CCL27, and CXCL13 are risk factors for non-small cell lung cancer, while CCL19 is a protective factor for non-small cell lung cancer, CXCL9 is a risk factor for small cell lung cancer, while CCL20 and CCL21 are protective factors for small cell lung cancer.
Other cancer
For prostate cancer, we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL18 [OR (95%CI), 0.961 (0.939–0.984), p = 1.13E-03], CCL19 [OR (95%CI), 0.920 (0.875–0.968), p = 1.20E-03], CCL24 [OR (95%CI), 1.058 (1.009–1.109), p = 0.02] and CXCL17 [OR (95%CI), 1.074 (1.020–1.132), p = 7.83E-03] and prostate cancer (ebi-a-GCST006085) (Figure 2).
Cochrane’s Q test did not provide evidence of heterogeneity between CCL18 (p = 0.767), CCL19 (p = 0.093), CCL24 (p = 0.935), CXCL17 (p = 0.210) and prostate cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL18 (p = 0.429), CCL19 (p = 0.790), CCL24 (p = 0.886) and CXCL17 (p = 0.886). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL18 p = 657, CCL19 p = 0.090, CCL24 p = 0.937, CXCL17 p = 0.228). These results suggest that the serum proteins CCL24, CXCL17 are risk factors for prostate cancer, while CCL18 and CCL19 are protective factors for prostate cancer.
For liver cancer, we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL15 [OR (95%CI), 0.848 (0.730–0.985), p = 0.03] and CCL23 [OR (95%CI), 1.306 (1.020–1.673), p = 0.03] and malignant neoplasm of liver (finn-b-C3_LIVER_INTRAHEPATIC_BILE_DUCTS) (Figure 2).
Cochrane’s Q test did not provide evidence of heterogeneity between CCL15 (p = 0.698) and CCL23 (p = 0.978) and liver cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL15 (p = 0.440) and CCL23 (p = 0.672). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL15 p = 0.784, CCL23 p = 0.994). These results suggest that the serum proteins CCL23 is a risk factor for malignant neoplasm of liver, while CCL15 is a protective factor for malignant neoplasm of liver.
For Diffuse large B-cell lymphoma (DLBL), we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL8 [OR (95%CI), 1.360 (1.065–1.734), p = 0.01] and Diffuse large B-cell lymphoma (finn-b-C3_DLBCL) (Figure 2). Cochrane’s Q test did not provide evidence of heterogeneity between CCL8 (p = 0.293) and Diffuse large B-cell lymphoma. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL8 (p = 0.099). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (p = 0.286). These results suggest that the serum proteins CCL8 is a risk factor for DLBL, For thyroid cancer, we investigated the causal association between chemokines and the disease. The results of MR analysis showed that significant causal association between CCL20 [OR (95%CI), 0.763 (0.614–0.949), p = 0.02] and Malignant neoplasm of thyroid gland (finn-b-C3_THYROID_GLAND) (Figure 2). Cochrane’s Q test did not provide evidence of heterogeneity between CCL20 (p = 0.357) and thyroid cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL20 (p = 0.887). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (p = 0.442). These results suggest that the serum proteins CCL20 is a protective factor for malignant neoplasm of thyroid gland.
In addition, the causal association between chemokines and other tumors had also been analyzed, such as malignant tumors of the brain, stomach, pancreas, kidney, ovary, skin, and acute lymphoblastic leukemia. However, there was no causal association between them.
Bi-causal effects between chemokines and tumor risk
To explore whether there was reverse causality in the significant results obtained, we regarded cancer as the exposure factor, chemokines as the outcome, and cancer-related SNPs (p < 5E-8 or p < 5E-6) as the IVs. In bi-MR, the causal association between CCL1 [OR (95%CI), 0.94 (0.89–0.99), p = 0.020] and CCL18 [OR (95%CI), 0.94 (0.89–1.00), p = 0.034] and breast cancer (finn-b-C3_BREAST) was found (Figure 3). Cochrane’s Q test did not provide evidence of heterogeneity between CCL1 (p = 0.675) and CCL18 (p = 0.336) and breast cancer. The intercept of MR-Egger test did not detect pleiotropy of SNPs for CCL1 (p = 0.382) and CCL18 (p = 0.964). The MR-Presso test did not detect abnormal SNPs and there was no pleiotropy between SNPs (CCL1 p = 0.595, CCL18 p = 0.297). In addition, MR Analysis showed no causal association between other significance result (p > 0.05).
[image: Figure 3]FIGURE 3 | Forest plot for the reverse causal association of chemokines on the risk of tumors derived from IVW. The OR value > 0 is considered a risk factor for tumor. The OR value < 0 is considered a protective factor for tumor. OR, odds ratio; CI, confidence interval.
DISCUSSION
This was the first comprehensive MR analysis to investigate the causal association between chemokines and pan-carcinoma. In two-sample MR Analysis, we initially investigated the causal association between CCL and CXC chemokines and breast, intestinal, lung, and other cancers. Based on the genetic variation of serum protein chemokines and cancers in the publicly available database, it was found that causal association between chemokines and cancer susceptibility. Interestingly, there were also causal association between cancers and partial chemokines. These clues suggest that some chemokines are upstream to drive or hinder the development of cancers.
In our results, there was causal association between 20 chemokines and cancers, as shown in Figure 2. Some studies on chemokines were consistent with our findings. For CCL chemokines, previous studies had shown that CCL1 mainly recruits Tregs to change the tumor microenvironment and promote the progression of breast cancer stem cells (Xu et al., 2017; Kuehnemuth et al., 2018). Surprisingly, there was causal association between CCL1 and breast cancer in bi-MR analysis. The immunosuppressive mechanism of CCL1-recruited Tregs had been widely recognized, but Tregs were also key regulators of CD8+ T cells initiation (Pace et al., 2012). In addition, tissue-resident memory T cells were marker of good prognosis for early triple-negative breast cancer (Byrne et al., 2020). At the same time, other studies had shown that CCL1 was also present in human memory CD8 T cells (Brinza et al., 2016). Although CCL1 promotes tumor progression through Tregs, Tregs may also trigger the accumulation of CD8+ T cells. It could be concluded that CCL1 was upstream of breast cancer, and that breast cancer might also act on CCL1 through negative feedback. For other chemokines, according to recent research reports, CCL2 recruits monocytes to generate vascular endothelial growth factors, thereby facilitating breast cancer cell extravasation (Qian et al., 2011). There was a potential association between CCL8 and DLBL, where CCL8 was involved in the polarization of M2 macrophages and affected patient survival (Lou et al., 2022). Both CCL22 and CCL23 were immunosuppressive chemokines derived from macrophages, which had a unique role in inhibiting anti-tumor immunity (Kamat et al., 2022; Lecoq et al., 2022). In addition, CCL24 was involved in the biological process of cancer through various functions such as angiogenesis and M2 macrophage polarization (Lim, 2021). Moreover, there were some evidences that CCL27 was associated with development of tumors (Martínez-Rodríguez and Monteagudo, 2021). As shown in MR Results, CCL1 and CCL2 were risk factors for breast cancer. CCL8 was a risk factor for DLBL. CCL22 was a risk factor for small intestine malignancy. CCL23 was a risk factor for liver and bile duct malignancy. CCL24 was a risk factor for prostate cancer, and CCL27 was a risk factor for non-small cell lung cancer. Interestingly, CCL14 was a risk factor in lung cancer and colorectal cancer and a protective factor in small intestine tumors. As a chemokine that activates immune cells, studies had found that CCL14 was strongly correlated with a variety of anti-tumor immune cells, including CD8+ T cells, in cancers (Gu et al., 2020). However, other studies had shown that the CCL14 chemokine signaling pathway promotes cancer progression, and inhibiting the expression of CCL14 could reduce the ability of breast cancer to metastasize (Li et al., 2011). Therefore, CCL14 might have different causal associations between different cancers.
Besides, six factors had inverse causal associations with cancer, including CCL15, CCL18, CCL19, CCL20, CCL21, and CCL28. The study found that the chemokine CCL15 recruits CCR+ CD14+ monocytes in hepatocellular carcinoma, driving multiple tumor-promoting factors (Liu et al., 2019). In addition, CCL18 had been reported as a cancer risk factor in both breast and prostate cancer (Chen et al., 2011; Xu et al., 2014). However, there was an inverse association between CCL15 and CCL18 and cancers in our analysis. For other chemokines, the study had demonstrated that CCL19 exerts a potential stimulatory effect on the response of CD8+ T cells (Yan et al., 2021). In non-small cell lung cancer, CCL19 and CXCL11 reduced the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an indicator of osteoclast stimulation (Kim et al., 2015). In addition, CCL19 and CCL21 migrated dendritic cells in prostate cancer to inhibit cancer progression (Youlin et al., 2018). The same trend was found in our analysis. CCL19 was a protective factor for prostate and lung cancer. The roles of CCL20 and CCL28 in small intestinal and thyroid cancer remain insufficiently investigated, while our findings demonstrate their potential as protective factors, which might provide valuable insights for future research endeavors.
Among CXC chemokines, the causal association with cancer had three positive factors and two negative factors. CXCL9 derived Th1 responses and limited Th2 infiltration, and it was associated with favorable prognosis in small cell lung cancer (Yang L. et al., 2023), however, other studies have reported that CXCL9 binds to CXCR3 in tumors to promote EMT and cancer cell migration (Neo and Lundqvist, 2020). In addition, multiple meta-analyses showed that CXCL12 expression improved the prognosis of breast cancer patients, which was consistent with our results that CXCL12 had a reverse causal association with breast cancer (Samarendra et al., 2017; Liu et al., 2018). Moreover, the studies had shown that CXCL13 drives an anti-tumor immune response to limit tumor progression in mouse breast cancer cells (Ma et al., 2021). And TFH cells that produce CXCL13 played a key role in reversing the immunosuppressive environment induced by Tregs (Gu-Trantien et al., 2017). However, another study suggested that CXCL13 may inhibit tumor growth in breast cancer through CXCR5/ERK signaling (Xu et al., 2018). Simultaneously, in the context of lung cancer, CXCL13 was considered to be a carcinogenic cytokine with significantly enhanced expression levels and facilitating cancer cell invasion through the epithelial-mesenchymal transition (EMT) process (Kazanietz et al., 2019). In our results, CXCL13 was a protective factor in breast cancer and a risk factor in lung cancer. The expression of CXCL14 in colorectal cancer tissues was correlated with TNM stage and poor prognosis. In addition, the invasion ability of cancer cells was also regulated by CXCL14 expression (Zeng et al., 2013), which suggests the pathogenicity of CXCL14 in colorectal cancer. One study reported ventral prostate hyperplasia in estrogen receptor β−/− mice with a possible increased incidence of prostate cancer, while genetic analysis found a significant increase in CXCL17 (Wu et al., 2017). Therefore, CXCL17 might also be a potential carcinogen of prostate cancer.
Based on previous studies, some of our results were supported, but partial studies were not consistent with our results, for example, the causal association of CCL15 and CCL18 with tumors incidence. In cancer, the cancer-promoting mechanism of CCL15 was mainly dependent on the monocytes it recruits, and MR Analysis was to analyze the causal association between CCL15 and cancer alone, without involving other factors. The cancer-promoting effect of monocytes recruited by CCL15 might mask the causal association between CCL15 and cancer. In addition, CCL18 mainly recruits Tregs, Th2 and immunosuppressive cells. The effect of immunosuppressive effects on tumors may be larger than the causal association between CCL18 and cancer. In our study, the chemokine concentrations we used were located in the serum, and different locations of cytokine proteins might also cause different causal associations.
In previous analyses, there had not been a comprehensive study to analyze the causal association between chemokines and cancer. One of our strengths is to extract the genetic variation of CCL and CXC chemokines and cancers from a public database for MR Analysis. Based on our analysis, a variety of chemokines were risk factors and protective factors for cancers, and there was no heterogeneity and pleiotropy. Sensitivity analysis also obtained similar results, indicating that our results are credible and accurate. Despite the inherent advantage in MR analysis, it was important to acknowledge its limitations as well. First, we only analyzed the GWAS data of chemokines in serum, and did not analyze the chemokine concentrations in other liquid/tissue samples, which might be biased due to different sites. Secondly, chemokine and cancer GWAS data were obtained from publicly available databases, and subgroup analyses were not possible due to the lack of detailed clinical patient information. Third, the GWAS data are from European populations, and the results may not apply to non-European populations. Finally, the results of this study should still be treated with caution, and more investigations and studies should be conducted to verify the results and consider their application to clinical trial diagnosis.
CONCLUSION
In summary, since the causal association between chemokines and cancer remains uncertain, and there had not been a comprehensive study to analyze the causal association between chemokines and cancer in previous studies, hereon, we performed a comprehensive two-sample MR Analysis.
As mentioned above, our results showed that causal associations of some chemokines were consistent with previous studies, including CCL2, CCL14, CCL27, CCL19, CCL21, CXCL13, CXCL14 and CXCL17. These chemokines possess the potential to serve as serum diagnostic markers. However, a large number of clinical trials are needed to verify them. In addition, some results were interesting. CCL23 was a risk factor in liver cancer and a protective factor in biliary tract cancer. In colorectal cancer, CCL14 was a risk factor, while in small intestine tumors it was a protective factor. In addition, as widely cognitive tumor-suppressor factor, CXCL9 in small cell lung cancer might be a risk factor. Further study of the underlying mechanisms of these chemokines may provide new insights into targeted therapies for tumors. Moreover, our results also provided new potential targets for tumors, including CCL8, CCL20, CCL28 and CXCL12.
Chemokines in MR results might contribute to tumor prevention and targeted therapy. At present, the detection of serum and plasma markers is crucial for cancer prevention and diagnosis. Based on our results, the serum chemokine concentrations may become new serum markers and parts of chemokines may become the potential therapy targets. Therefore, our results might provide new insights into the future use of chemokines as potential targets for cancer prevention and treatment.
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Objective: Numerous studies have highlighted an association between the gut microbiota (GM) and thyroid tumors. Employing Mendelian randomization methodology, we seek to elucidate the causal link between the gut microbiota and thyroid neoplasms.
Methods: We procured data from the Mibiogen database encompassing 211 distinct gut microbiota taxa, alongside extensive genome-wide association studies (GWAS) summary data for differentiated thyroid carcinoma (DTC). Our principal analytical approach involved the application of the Inverse-Variance Weighted method (IVW) within the framework of Mendelian randomization. Simultaneously, we conducted sensitivity analyses to assess result heterogeneity, horizontal pleiotropy, and outcome stability.
Results: IVW analysis revealed a dual role of the GM in thyroid carcinoma. The phylum Actinobacteria (OR, 0.249 [95% CI, 0.121–0.515]; p < 0.001) was associated with a decreased risk of DTC. Conversely, the genus Ruminiclostridium9 (OR, 11.276 [95% CI, 4.406–28.860]; p < 0.001), class Mollicutes (OR, 5.902 [95% CI, 1.768–19.699]; p = 0.004), genus RuminococcaceaeUCG004 (OR, 3.831 [95% CI, 1.516–9.683]; p = 0.005), genus Paraprevotella (OR, 3.536 [95% CI, 1.330–9.401]; p = 0.011), and phylum Tenericutes (OR, 5.902 [95% CI, 1.768–19.699]; p = 0.004) were associated with an increased risk of DTC.
Conclusion: Our findings underscore that the presence of genus Ruminiclostridium9, class Mollicutes, genus RuminococcaceaeUCG004, genus Paraprevotella, and phylum Tenericutes is associated with an elevated risk of DTC, whereas the presence of the phylum Actinobacteria is linked to a decreased risk. These discoveries enhance our comprehension of the relationship between the GM and DTC.
Keywords: gut microbiota, differentiated thyroid carcinoma, heterogeneity assessment, Mendelian randomization study, causal relationship
1 INTRODUCTION
Thyroid carcinoma, a common endocrine neoplasm of the head and neck, has experienced a steady increase in incidence, currently ranking as the fifth most prevalent cancer globally (Bray et al., 2018; WHO, 2020). Projections suggest that following its current trajectory, thyroid malignancies will become the fourth most common cancer in the United States by 2030 (Gonçalves et al., 2017). In 2020, global age-standardized incidence rates for thyroid cancer were 10.1 cases per 100,000 females and 3.1 cases per 100,000 males, with corresponding mortality rates of 0.5 and 0.3 cases per 100,000, respectively (Pizzato et al., 2022). An epidemiological survey covering 24% of the population in China (Yao et al., 2023) revealed that in 2019, the age-standardized incidence and mortality rates for thyroid cancer were 2.05 and 0.39 per 100,000, respectively. Over the last 30 years, the International Agency for Research on Cancer has noted an increasing incidence of thyroid cancer in diverse populations worldwide. In the United States, from 1970 to 2013, the annual growth rate of thyroid cancer incidence was reported to be 3% (Lim et al., 2017). Fortunately, the mortality rates for both males and females in most countries exhibit a stable or declining trend (Huang et al., 2023). DTC accounts for over 90% of all pathological diagnoses, with papillary carcinoma being its predominant histological subtype (Gu et al., 2014).The etiology of thyroid tumors is multifactorial, involving chromosomal mutations, genetic predisposition (Bonnefond and Davies, 2014), estrogen levels (Luo et al., 2016), ionizing radiation exposure (Bonnefond and Davies, 2014), autoimmune thyroid disorders (Khatami, 2009), and other factors. However, the risk factors for thyroid tumors are not fully understood, requiring additional research to uncover their pathogenic mechanisms.
Currently, the National Comprehensive Cancer Network (NCCN) guidelines recommend primary surgical intervention for DTC, reserving radioactive iodine-131 treatment for specific patient subsets (Haddad et al., 2022). Considering the global prevalence of thyroid tumors and their healthcare burden, as well as their profound impact on the wellbeing of affected individuals, our research is dedicated to uncovering the etiological underpinnings of this affliction.
Humans have coexisted with microorganisms throughout their existence, hosting a diverse array of microbes within various bodily niches, including the oral cavity, respiratory tract, gastrointestinal tract, genitourinary tract, and skin. Among these, the gut harbors the most intricate microbial ecosystem (Jiang et al., 2022). The human gut, in particular, teems with an assembly of microbial denizens numbering in the billions, with bacteria occupying the central stage (Gill et al., 2006). Such a vast consortium of GM also fulfills distinctive roles. Presently, microbiota are acknowledged for their substantial contributions to vitamin synthesis (B-complex vitamins, folate, vitamin K, among others) (Gu et al., 2016; Fang et al., 2017), facilitation of dietary fiber digestion, and regulation of immune responses (Bastiaanssen et al., 2019). Beyond these functions, microbiota also exhibit intricate associations with various diseases, encompassing gastrointestinal disorders, psychiatric illnesses, respiratory maladies, autoimmune conditions, and significantly, diverse malignancies, including lung, breast, colorectal, and esophageal cancers (Stebbings et al., 2002; Wang et al., 2016; Ishaq et al., 2021; Vitale et al., 2021).
A plethora of evidence has pointed toward the association between GM and thyroid malignancies, including thyroid carcinoma (Stebbings et al., 2002; Ishaq et al., 2021). (Ejtahed et al., 2020) Thyroid cancer patients exhibit dysbiosis in the gut microbiota, characterized by a reduction in the relative abundance of Faecalibacterium prausnitzii. Interestingly, an increase in the abundance of Faecalibacterium prausnitzii is observed after Radioactive Iodine Therapy (RAIT) (Fernandes et al., 2023). Lu et al. have identified significant alterations in the composition of the gut microbiota in thyroid cancer patients, with the Bacteroides enterotype emerging as the predominant bacterial type (Lu et al., 2022). Furthermore, gene sequencing results indicate a higher abundance of Firmicutes (Liu et al., 2021). In a study encompassing 74 patients, high-throughput sequencing was utilized to compare the microbial structural characteristics of 20 thyroid carcinoma patients, 18 thyroid nodule patients, and 36 healthy controls. The results underscored a close relationship between thyroid carcinoma, thyroid nodules, and altered microbiota (Zhang et al., 2019). Despite numerous indications suggesting an association between GM and thyroid malignancies, our understanding of this relationship remains incomplete, as these studies have not yet established causal links between thyroid tumors and GM.
Mendelian randomization represents an analytical framework harnessing genetic variation as instrumental variables (IV) to infer causal relationships between specific risk factors (i.e., exposures) and particular phenotypes (i.e., outcomes). Genetic variation, in this context, predominantly alludes to single nucleotide polymorphisms, signifying variations in specific nucleotides within the genetic material. In the realm of clinical investigation, myriad confounding factors often obscure the precision of our conclusions, rendering causal inferences tentative at best. The intrinsic merit of Mendelian randomization lies in its capacity to circumvent the impracticability of randomized controlled trials, such as the random allocation of microbiota to study individuals. Instead, this method leverages the natural grouping of single nucleotide polymorphisms (SNPs) and employs statistical techniques to ascertain the influence of SNPs on exposure and outcomes. nsequently, it helps to clarify causal associations between exposures and outcomes. Notably, owing to the even distribution of SNP loci, Mendelian randomization outcomes remain comparatively impervious to the interference of confounding factors, thereby conferring results akin to those derived from randomized controlled trials (Davies et al., 2018).
We utilize Mendelian randomization to disentangle the impact of confounding factors, enabling a precise evaluation of the causal relationship between GM and DTC., and Figure 1 provides an overview of the main research approach in this paper. This study’s overarching goal resides in employing Mendelian randomization as a methodological prism, utilizing genetic variation as instrumental variables to elucidate the causal nexus between microbiota and DTC. In doing so, we aspire to contribute novel evidence to the etiological and therapeutic paradigms within the domain of thyroid pathology.
[image: Figure 1]FIGURE 1 | Study design concept and framework.
2 METHODS
2.1 Ethics statement
As the data used in this study comes from publicly available databases, after obtaining ethical approval from the Affiliated Hospital of Northwest University, Xi’an NO.3 hospital, the committee deemed formal ethical approval unnecessary. This decision was predicated upon the utilization of publicly accessible data devoid of identifiable patient information.
2.2 Study design
In this study, we define exposure as the GM, the outcome as malignant thyroid neoplasms, and instrumental variables as single nucleotide polymorphism (SNP) loci. In accordance with this premise, we discerned GM significantly associated with malignant thyroid neoplasms and subsequently proceeded with Mendelian randomization analysis. Throughout the course of MR analysis, we adhere to the following assumptions.
1. Associational Hypothesis: That is, SNP loci under investigation and GM demonstrate robust correlations. In our study, the significance threshold for the associational hypothesis is set at P < 1E-5.
2. Independence of SNPs and Confounding Factors: Among the SNPs ultimately incorporated into the MR study, those SNP loci exhibiting associations with either tumors or GM were excluded.
3. Exclusivity of Instrumental Variables’ Impact on Outcomes through Exposure: Instrumental variables should solely affect outcomes through the exposure and remain inert to other pathways, such as confounding. In essence, there should be no pleiotropy.
2.3 Data collection
The data pertaining to GM emanates from the consortium’s whole-genome association study summary data, Mibiogen. This dataset encapsulates 211 distinct taxonomic groups within the GM, spanning six taxonomic levels: kingdom, phylum, class, order, family, and genus. Access to this data can be procured from the website (https://mibiogen.gcc.rug.nl/). Notably, eight unidentified bacterial species were excluded from subsequent microbiota SNP locus analyses, leaving a total of 203 microbial SNPs for further investigation.
Thyroid tumor data, on the other hand, was sourced from Aleksandra Köhler et al.‘s prospective study (Köhler et al., 2013), which conducted a comprehensive genome-wide association study encompassing 701 patients afflicted with DTC. Diagnoses of thyroid tumors were ascertained through pathological results furnished by the Cisanello Hospital in Pisa, a prominent Italian referral center for thyroid disorders.
2.4 Variable selection
To assess the correlation between instrumental variables and microbiota, a filtration process for employed instrumental variables was enacted, involving the following steps:
1. The GM data, having been downloaded from the Mibiogen website, was validated and subsequently imported into R for analysis.
2. SNP loci exhibiting a stronger correlation with exposure were identified and filtered out based on a threshold of P < 1E-5 in the initial filtration process.
3. Instrumental variables demonstrating linkage disequilibrium were excluded. A standard of r2 > 0.001 and a physical distance (Kb) of 10,000 were employed for the removal of SNP loci exhibiting r2 values exceeding 0.001 with the most significant SNP within a 10,000 Kb range.
4. F-statistics were computed to assess the strength of instrumental variables. The calculation of F-statistics was predicated on beta values and standard errors (SE) for SNPs and exposure. In our study, all instrumental variables exhibited F-statistics exceeding 10.
5. SNP loci not conforming to the independence assumption were eliminated. We accessed the Phenoscanner database to identify secondary phenotypes associated with each SNP, verifying their correlation with confounding factors. SNP loci associated with both exposure outcomes were discarded based on criteria of p-value: < 1E-8 and r^2 > 0.8. Naturally, SNP loci directly correlated with thyroid tumors were also excluded. Following this comprehensive filtration, we gathered information regarding instrumental variables in outcomes and amalgamated effect sizes, commencing the MR analysis.
2.5 Statistical analyses
In the course of Mendelian randomization analysis, six distinct methodologies were employed, namely, IVW, IVW random-effects model, MR-Egger, MR-Egger bootstrap, Weighted Median, and Simple Median. Of these, the IVW analysis results, which calculated both the unadjusted p-values and the False Discovery Rate (FDR)-corrected p-values for each SNP locus, served as the primary analytical approach for this study. Multiple sensitivity analyses were additionally conducted, serving three primary objectives: firstly, to assess the robustness of the outcomes; secondly, to evaluate the potential presence of biases, including pleiotropy and data heterogeneity; and thirdly, to appraise the scenario where a specific instrumental variable unduly influenced the outcome.
To quantify heterogeneity in individual causal effects, Cochran’s Q was computed and subjected to examination, with a significance threshold of p ≤ 0.05 indicating the presence of pleiotropy. Within the context of heterogeneity testing, MR-Egger’s intercept and the Mendelian randomization residual sum and outlier (MR-PRESSO) method were employed. If the p-value exceeded 0.05, it indicated the absence of horizontal pleiotropy. All results underwent comprehensive visualization. To evaluate the scenario where a specific instrumental variable significantly impacted the outcome, a leave-one-out analysis was conducted by systematically excluding each SNP locus and observing the remaining SNPs’ Mendelian randomization. Finally, a reverse Mendelian randomization analysis was performed to ascertain the causal direction.
All statistical analyses were executed using the R programming language (https://www.r-project.org, R version 4.2.1). Statistical significance was deemed at p < 0.05. The initial date of analysis commenced in May 2023.
3 RESULTS
3.1 Instrumental variable selection and initial MR results
Following our criteria, an initial set of 14,569 instrumental variable loci was established. Supplementary Table S1 provides a comprehensive breakdown of all microbiota details. By matching SNPs with thyroid tumor data, we obtained a subset of 3,302 SNPs.
Initial Mendelian randomization analysis yielded insights into the relationships between 203 GM and thyroid function, as presented in Supplementary Table S2. Based on the IVW-derived p-values, an initial selection identified 13 microbiota entities, namely,: Genus Ruminiclostridium 9 (ID:11357), Class Mollicutes (ID 3920), Phylum Tenericutes (ID:3919), Genus Ruminococcaceae UCG004 (ID:11362), Genus Paraprevotella (ID:962), Genus Ruminococcaceae UCG003 (ID:11361), Family Victivallaceae (ID:2,255), Genus Candidatus Soleaferrea (ID:11350), Phylum Actinobacteria (ID:400), However, through rigorous heterogeneity testing, horizontal pleiotropy assessments, and the exclusion of loci indirectly or directly related to thyroid tumor diseases, we ultimately distilled the selection down to six GM entities and 47 SNP loci as instrumental variables: Genus Ruminiclostridium 9 (ID:11357), Class Mollicutes (ID:3920), Genus Ruminococcaceae UCG004 (ID:11362), Genus Paraprevotella (ID:962), Phylum Actinobacteria (ID:400), Phylum Tenericutes (ID:3919).
The secondary features of these aforementioned SNPs were queried using PhenoScanner and are documented in Supplementary Table S3. It is noteworthy that these features have been confirmed as non-pleiotropic factors contributing to thyroid tumor etiology.
3.2 Detailed Mendelian randomization analysis results
We conducted Mendelian randomization analysis on the final set of six GM and 47 SNP loci. IVW results revealed significant associations as follows: genus Ruminiclostridium9(OR, 11.276, [95% CI, 4.406–28.860 ]; p < 0.001), class Mollicutes (OR, 5.902, [95% CI, 1.768–19.699]; p = 0.004), genus RuminococcaceaeUCG004(OR, 3.831, [95% CI, 1.516–9.683 ]; p = 0.005), genus Paraprevotella (OR, 3.536, [95% CI, 1.330–9.401 ]; p = 0.011), phylum Tenericutes (OR, 5.902 [95% CI, 1.768–19.699 ]; p = 0.004)exhibited an elevated risk of thyroid tumors, whereas phylum actinobacteria (OR, 0.249 [95% CI, 0.121–0.515]; p < 0.001)demonstrated a decreased risk of thyroid tumors. These findings are graphically depicted in the forest plot (Figure 2). Additional MR analysis outcomes are presented in Supplementary Table S4. In our findings, IVW and IVW-MRE methods demonstrated consistency, while other methodologies may yield differing results compared to IVW and IVW-MRE. We posit that the IVW approach derives an overall effect by weight-averaging estimates across distinct loci, whereas IVW-MRE additionally accounts for measurement error, employing a random-effects model to estimate the total effect. Discrepancies among other methods may be attributed to sample size, skewness, or heterogeneity. In case of inconsistencies, pay particular attention to the results from IVW and IVW-MRE methods, considering the unique attributes of alternative methodologies.
[image: Figure 2]FIGURE 2 | Forest Plot of Primary MR Analysis Results. NSNP = number of SNPs; OR = odds ratio; P = significance p-value; IVW = Inverse-Variance Weighted method.
To visualize our findings comprehensively, we presented all results in a scatter plot (Figure 3), where each data point represents an SNP, the upper and lower lines delineate confidence intervals, and the horizontal and vertical axes respectively denote the SNP’s effects on GM and thyroid tumor outcomes. The colored lines signify the fitting effects of the MR. Intriguingly, IVW and IVW-MRE methods exhibited remarkable consistency across all results.
[image: Figure 3]FIGURE 3 | Scatter Plot of MR Analysis for the Influence of 6 Gut Microbiota on Thyroid Tumors. (A) = genus Ruminiclostridium; (B) = class Mollicutes; (C) = genus Ruminococcaceae; (D) = genus Paraprevotella; (E) = phylum Actinobacteria; (F) = phylum Tenericutes; MR Test = Statistical analysis methods.
3.3 Sensitivity analysis
Initially, we conducted heterogeneity checks on the results obtained from the selected six bacteria and 47 SNP loci. We observed that all I2 values for the microbiota were <50%, and the p-values obtained using two different methods were both greater than 0.05 (Table 1). This suggests that our results exhibited minimal heterogeneity. Additionally, the MR-PRESSO outlier test did not identify any anomalies (Table 1). To assess the horizontal pleiotropy of SNP loci, we utilized the global test from MRPRESSO and the MR-Egger intercept test. The p-values for all tests of horizontal pleiotropy exceeded 0.3, signifying that the impact of instrumental variables on thyroid cancer is unlikely to be influenced by factors other than the microbiota (Table 1).
TABLE 1 | Heterogeneity and horizontal pleiotropy test results for gut microbiota.
[image: Table 1]In addition to MR-Egger and MR-PRESSO, we conducted individual SNP MR estimates (Supplementary Figure S1) and systematically removed individual SNPs to compute the remaining SNPs’ Mendelian randomization effects (Figure 4). Leave-one-out analysis, where each SNP is excluded in turn, showed that all error bars were consistently on the right or left of zero in Figure 4. This indicates minimal variation in the overall error bars, signifying high robustness in the results. The causal estimates were not driven by any single SNP. In the forest plot of Supplementary Figure S1, each solid horizontal line represents the results estimated using the Wald ratio method for individual SNPs, while the red line represents the composite outcome, reflecting the risk of thyroid cancer for each microbiota under the IVW method.
[image: Figure 4]FIGURE 4 | MR Analysis Results Using Leave-One-Out for Different SNP Loci of the 6 Gut Microbiota. (A) = genus Ruminiclostridium; (B) = class Mollicutes; (C) = genus Ruminococcaceae; (D) = genus Paraprevotella; (E) = phylum Actinobacteria; (F) = phylum Tenericutes; MR Test = Statistical analysis methods.
3.4 Reverse MR analysis
In the reverse MR analysis, exposure and outcome were interchanged. However, we did not observe any significant causal relationship between the outcome and exposure, except in the case of the Phylum Tenericutes using the MR Egger method, where the p-value exceeded 0.05 (Table 2).
TABLE 2 | Reverse MR analysis of the main results.
[image: Table 2]We conducted a global test for horizontal pleiotropy using the MR-PRESSO method, and no evidence of horizontal pleiotropy was detected among the SNPs. Moreover, no outliers were detected in the outlier test. Hence, we have reasonable grounds to posit that these various bacteria are causative factors for thyroid tumors, rather than being outcomes of the condition.
4 DISCUSSION
In spite of the prior research on the relationship between the GM and thyroid cancer, the concept of the association between DTC and the GM remains relatively uncharted (Samimi and Haghpanah, 2020). To the best of our knowledge, this study represents the first causal investigation into the link between the GM and DTC. Through a Mendelian randomization analysis involving two-sample datasets, we report that five microbiota entities, namely, genus Ruminiclostridium 9 (p < 0.001), class Mollicutes (p = 0.004), genus Ruminococcaceae UCG004 (p = 0.005), genus Paraprevotella (p = 0.011), and phylum Tenericutes (p = 0.004), are associated with an increased risk of developing non-differentiated thyroid carcinoma. Additionally, phylum Actinobacteria (p < 0.001) appears to be associated with a lower the risk of non-differentiated thyroid carcinoma. We utilized various sensitivity analysis techniques to affirm the reliability and robustness of our findings.
The GM is known to be influenced by a multitude of factors. Notably, infants born via cesarean section exhibit lower diversity in their GM(31). Throughout one’s life, the GM remains under the continual influence of various factors including diet, medication, genetics, environment, disease, and the use of antibiotics (Maslowski and Mackay, 2011). This substantiates the significance of the GM as a potential therapeutic target for diseases.
Most of the research concerning the GM has been concentrated on gastrointestinal diseases, such as colorectal cancer and inflammatory bowel disease. In the context of colorectal cancer, gut bacteria may promote tumorigenesis by influencing bile acid secretion or undergoing changes in their taxonomic composition. Decreased bile acid secretion results in gut dysbiosis, accelerating inflammation and DNA damage, thereby directly contributing to tumorigenesis (Louis et al., 2014; Ridlon et al., 2014). Furthermore, an increase in Fusobacterium nucleatum, a type of gut bacteria, can promote colon tumorigenesis through its metabolites and cytotoxicity, (Wu et al., 2004; Wu et al., 2009), thereby affecting signaling pathways such as E-cadherin, NF-κB, and STAT3 (Maslowski and Mackay, 2011; Rautava et al., 2012). These studies suggest that the role of microbiota in tumorigenesis seems to be associated with DNA damage and the regulation of local inflammation via metabolic products.
Microbes can impact thyroid disease through various pathways. The GM may influence the secretion of thyroid-stimulating hormones via the hypothalamus-pituitary axis, thereby playing a role in thyroid diseases (Fröhlich and Wahl, 2019). For instance, in studies of patients with Hashimoto’s thyroiditis (HT), a form of hypothyroidism, researchers observed dysbiosis in the patients’ GM, along with overgrowth of certain microbes (Ishaq et al., 2017; Zhao et al., 2018). This influence is thought to occur because thyroid-related nutrients need to be acquired through the gut (Knezevic et al., 2020). Furthermore, in Graves’ disease patients, there is a higher abundance of Bacteroidaceae and Prevotellaceae and a lower abundance of Veillonellaceae, Enterobacteriaceae, and Lachnospiraceae compared to healthy individuals (Ishaq et al., 2018). In the realm of researching the relationship between the GM and thyroid cancer, the first study proposing a potential connection between thyroid cancer and the GM was published in 2017. Shen et al. employed gas chromatography-time-of-flight mass spectrometry to analyze the serum of thyroid cancer patients with and without distant metastases. They found elevated levels of serum ammonia, pyruvic acid, and γ-aminobutyric acid in patients with distant metastases, suggesting a potential connection to differences in GM or diet (Shen et al., 2017). The first study to specifically investigate the relationship between thyroid cancer and the GM was conducted by Jing Feng in 2019 (Feng et al., 2019). Feng reported higher gut microbial richness and α-diversity in patients with TC compared to healthy controls, but the sample size was limited (30 patients from Harbin, China, versus 35 healthy controls), and the study design was observational. In other observational studies, GM taxa that were found to be increased in abundance in thyroid cancer patients included Clostridiaceae, Nesterenkonia, and Streptococcus (Zhang et al., 2019), while decreased taxa primarily included Lactobacillus (Zhang et al., 2019), Bacteroides, Clostridium, and Prevotella. These studies shed light on the potential link between the GM and thyroid cancer.
Our study highlights the significance of five specific microbiota entities—genus Ruminiclostridium 9, class Mollicutes, genus Ruminococcaceae UCG004, genus Paraprevotella, phylum Tenericutes, and phylum Actinobacteria—in relation to DTC.
Genus Ruminiclostridium 9, formerly known as Ruminoclostridium, is a characteristic bacterium found in the colon. Research indicates that interactions among colonic microorganisms are more intricate compared to the duodenum (Wu et al., 2020). This bacterium is associated with various diseases; it can reduce the risk of Alzheimer’s disease (OR 0.969, 95% CI 0.943–0.996, p = 0.009) (Ning et al., 2022). Furthermore, it has a positive correlation with cognitive function (Guo et al., 2021). In tumor immunology studies, Ruminiclostridium has shown a negative correlation with CD8+ T cells (Singh et al., 2023). In an autoimmune model of the central nervous system, medium-chain fatty acids (MCFAs) produced by this genus counteract the anti-inflammatory effects of short-chain fatty acids (SCFAs) by enhancing TH1 and TH17 cell differentiation (Haghikia et al., 2015).Therefore, certain genera, such as Ruminiclostridium 9, may contribute to the initiation of DTC through analogous mechanisms, potentially by reducing short-chain fatty acidsand modulating the immune response.
Class Mollicutes, representing the smallest self-replicating bacteria without cell walls, belongs to the phylum Tenericutes (Chernova et al., 2021). Mollicutes exhibit versatility, as they have been associated with both decreased relative abundance in severe depression patients (Zhu et al., 2019) and as a risk factor for Graves’ disease (Cao et al., 2023). Phylum Tenericutes has also been linked to various diseases, such as breast cancer (Niccolai et al., 2023), Crohn’s disease (Russo et al., 2022), lower risk of intrahepatic cholestasis of pregnancy (Li et al., 2023), and polycystic ovary syndrome (Li et al., 2023). However, research on the mechanisms underlying these associations remains limited. Genus Ruminococcaceae, like Ruminiclostridium, is present in the colonic mucosa. A decrease in Ruminococcaceae has been associated with various inflammatory bowel diseases, including ulcerative colitis and Crohn’s disease (Sokol et al., 2008; Joossens et al., 2011; Morgan et al., 2012). This bacterium produces short-chain fatty acids (SCFAs) and other small molecules, which serve as an energy source for colonic epithelial cells. A deficiency in these SCFAs may lead to disturbances and dysfunction in colonic mucosa (Young and Schmidt, 2004; Wong et al., 2006). SCFAs, particularly butyrate, are known to influence immune regulation and possess anti-inflammatory properties (Köhling et al., 2017), and butyrate can inhibit the activity and life cycle of cancer cells (Davie, 2003). This knowledge, seemingly at odds with our study results, suggests the involvement of unknown mechanisms. Interestingly, it has also been identified as a potential etiological factor contributing to Graves’ Disease (GD) (Cao et al., 2023). This association may be attributed to the ability of short-chain fatty acids (SCFA) to inhibit histone deacetylases (HDAC) and activate the re-expression of transport proteins in thyroid cancer cells, thereby inducing the differentiation of tumor cells and enhancing iodine uptake (Zhou et al., 2018; Rathod et al., 2020). Genus Paraprevotella has been the subject of several studies. It is a polymorphic, anaerobic, non-spore-forming Gram-negative rod isolated from human feces (Morotomi et al., 2009). This bacterium exhibits complex effects. On one hand, it is more abundant in individuals with genetic longevity (Liu et al., 2023) and correlates with small intestinal mucosal healing in Crohn’s disease patients (Hattori et al., 2020). On the other hand, it is more abundant in patients with heart failure and depression (Gutiérrez-Calabrés et al., 2020) and positively correlates with the severity of depression (Liśkiewicz et al., 2021). Previous studies have indicated its utility in distinguishing untreated primary hypothyroidism patients from healthy individuals.Currently, Paraprevotella is considered to have a positive correlation with plasma butyrate and valerate concentrations and contributes to the regulation of colonic motility, possibly through regulating fecal butyrate levels and serum IL-8 concentrations. The Paraprevotella strain proves to be an efficient pancreatic protease-degrading symbiont. The autolysis of pancreatic proteases facilitates bacterial invasion and destruction, potentially culminating in inflammation and injury, thereby creating a conducive environment for the onset of thyroid cancer.In summary, Paraprevotella is associated with various diseases, but its potential impact on human health remains unclear (Morotomi et al., 2009), and its specific mechanisms are yet to be explored. Phylum Actinobacteria is one of the most diverse bacterial phyla in nature (Lewin et al., 2016). Due to its diversity, it has both positive and negative effects on human health. Actinobacteria includes many bacteria that produce antibiotics, such as Streptomyces, which is known for synthesizing eptomycin, kanamycin, chloramphenicol, and erythromycin (Bérdy, 2005). It also encompasses several human health-threatening pathogens, such as Mycobacterium tuberculosis, which causes pulmonary tuberculosis. In the order Bifidobacteriales, members like Bifidobacterium are known for their beneficial effects on host health. A lower abundance of these bacteria has been associated with various diseases (Binda et al., 2018). Some researchers propose that species of Bifidobacterium in the human gut may contribute to host health by exerting antibacterial activity against pathogens and possibly by aiding in the development and function of the immune system as defensive symbionts (Servin, 2004). This aligns with our research findings. We also postulate that Actinobacteria may indirectly inhibit the occurrence of thyroid cancer by suppressing the processes of inflammation and oxidative stress.
What mechanisms might bacteria employ to induce DTC? Carcinogenesis primarily relies on two mechanisms: DNA damage and cell apoptosis, as well as the immune surveillance against tumor growth (Docimo et al., 2020; Liu et al., 2022). Intestinal bacteria can impact tumor proliferation through both of these mechanisms. New mechanisms involving bacteria and their metabolites or toxins causing direct DNA damage and carcinogenic mutations have been identified. For instance, infection with Enterococcus can lead to an increase in hydroxyl free radical production, resulting in DNA damage (Wang and Huycke, 2007). Additionally, oxidative stress can disrupt the homeostasis of the host gut microbiota (Riaz Rajoka et al., 2021). Therefore, drugs targeting both oxidative stress and gut microbiota may hold prognostic and therapeutic significance for thyroid cancer.Concerning immune surveillance, the gut microbiota significantly regulates the balance within the body and the development of immune cells. It modulates both innate and adaptive immune systems, particularly outside the intestinal tract (Maslowski and Mackay, 2011), making it a potential immune modulator (Pitt et al., 2016). As it is widely known, more than 70% of the entire immune system is associated with the gastrointestinal lymphoid tissues, and the gut microbiota can regulate immune balance and cell development (Maslowski and Mackay, 2011; Docimo et al., 2020). Certain metabolic products can also induce autoimmune reactions, leading to an imbalance in endocrine homeostasis and the occurrence of autoimmune diseases (Liu et al., 2022). Microbial dysbiosis can stimulate CD8 (+) T cells to promote chronic inflammation and early T-cell exhaustion, thereby diminishing the immune capacity against tumors (Yu et al., 2020). Therefore, the gut microbiota holds significant potential as a biomarker for predicting immune-related adverse events (Von Itzstein et al., 2020) and may influence the progression of thyroid cancer through immune modulation.In the future, we can develop novel strategies for diagnosing, predicting prognosis, actively monitoring, and intervening in DTC by studying the correlation between different bacterial enterotypes and thyroid cancer.This study also presents certain limitations. Firstly, we solely analyzed common microbiota and SNP loci, leaving unidentified microbiota and SNPs unexamined, thereby limiting our analysis. Secondly, our GWAS data was derived from individuals of European descent, and we did not identify other patient characteristics, which may restrict the generalizability of our conclusions to other populations, given the varying compositions of microbiota across different countries and ethnicities. Additionally, while we employed different SNP loci as “natural groupings,” it is essential to acknowledge the numerous unknown or potential interactions among distinct SNP loci. Finally, it is essential to note that this study is an observational investigation, lacking foundational research to mechanistically substantiate the observed outcomes. In the future, in addition to requiring more Genome-Wide Association Studies (GWAS) and microbiota data, further in-depth research is warranted to elucidate the mechanisms underlying the association between gut microbiota and thyroid tumor development. These studies will contribute to enhancing our understanding of the causal link between thyroid cancer and the gut microbiota.
In conclusion, our findings indicate a bidirectional role of GM in thyroid cancer. Genus Ruminiclostridium9, class Mollicutes, genus RuminococcaceaeUCG004, genus Paraprevotella, and phylum Tenericutes were associated with an increased risk of undifferentiated thyroid cancer, while phylum Actinobacteria (p < 0.001) was associated with a reduced risk of undifferentiated thyroid cancer. However, the underlying processes involved are intricate, necessitating further mechanistic research.
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Aims/hypothesis: The association between gastroesophageal reflux disease (GERD) and rheumatoid arthritis (RA) has been reported by many observational studies in the Asian population. This study aimed to examine the bidirectional causal effects between GERD and RA by two-sample Mendelian randomization (MR) analyses using genetic evidence.
Methods: Two-sample Mendelian randomization analyses were performed to determine the causal effect of GERD (129,080 cases vs. 602,604 control participants) on RA (6,236 cases vs. 147,221 control participants) and RA on GERD, respectively. The inverse-variance weighted (IVW) method was used as the primary analysis. Weighted median and MR-Egger regression were taken as supplementary analyses. Cochran’s Q test evaluated the heterogeneity. Horizontal pleiotropy was detected by estimating the intercept term of MR-Egger regression. Furthermore, multivariable MR analyses were performed to exclude the influence of confounding factors, including the years of schooling, BMI, and time spent watching television, between GERD and RA.
Result: Both univariate MR (UVMR) and multivariable MR (MVMR) provided valid evidence that RA was causally and positively influenced by GERD (UVMR: OR = 1.49, 95% CI = 1.25–1.76, p = 6.18*10−6; MVMR: OR = 1.69, 95% CI = 1.24–2.31, p = 8.62*10−4), whereas GERD was not influenced by RA (UVMR: OR = 1.03, 95% CI = 1.00–1.06, p = 0.042; MVMR: OR = 1.04, 95% CI = 1.00–1.07, p = 0.0271).
Conclusion: Our comprehensive bidirectional MR analysis found that for the European population, GERD can induce the occurrence of RA (OR = 1.69, p < 0.00125), whereas RA only has no significant influence on GERD. In particular, patients with GERD are suffering a 69% increased risk of RA occurrence, which means GERD is a substantial risk factor for RA.
Keywords: rheumatoid arthritis, gastroesophageal reflux disease, Mendelian randomization, education, BMI
INTRODUCTION
Rheumatoid arthritis (RA) mainly affects the joints, with extra-articular tissues being involved (Smolen et al., 2016). The incidence of RA is estimated to be approximately 0.1–0.5 per 1,000 person/year, which varies according to the ethnic group (Tobón et al., 2010). The extra-articular manifestations revealed the existence of systemic inflammation in RA (Smolen et al., 2022). Apart from inherited susceptibility, low socioeconomic status, periodontal diseases, and microbiome are also the risk factors of RA (Millar et al., 2013; Scher et al., 2016; Li et al., 2017). Those risk factors may influence systemic inflammation to induce RA.
Gastroesophageal reflux disease (GERD) is a common disease that results from the reverse flow of stomach acid into the esophagus (Vakil et al., 2006). Nearly one-fifth of North American people are suffering from GERD, which is nearly four times more prevalent than in Asian populations. This disease causes distressing symptoms, such as heartburn, inappetence, nausea, and susceptibility to pharyngitis, and some other diseases (Punjabi et al., 2015). Mechanically, GERD is primarily caused by abnormal physiology and anatomy changes in the stomach and esophagus. These changes include an increased pressure gradient between the abdomen and thorax, dysmotility of the esophagus, hiatus musculature, and/or the stomach. As a result, the normal reflux barrier of the LES breaks down (Mikami and Murayama, 2015).
In addition to anatomical and physiological factors, inflammation occurring in the stomach and esophagus plays a crucial role in the development of GERD (Punjabi et al., 2015; Souza et al., 2017; Surdea-Blaga et al., 2019). Consistently, an association between GERD and systemic inflammatory diseases has been reported (Chen, 2015; Linz et al., 2017), particularly for RA (Cryer et al., 2011; Nampei et al., 2013; Lin et al., 2017). In detail, some observational research found a higher incidence of GERD in patients with RA (Cryer et al., 2011; Lin et al., 2017). In Japan, more than 2-fold higher incidence of GERD in patients with RA than that in normal people has been reported (Lin et al., 2017). Meanwhile, it has also been reported that patients with GERD exhibit a nearly 3-fold higher risk of RA than those in the control group in the Taiwan population (Lin et al., 2017). The bidirectional association between GERD and RA has been identified. One cohort study performed on the Asian population reported an HR of 1.49 for RA in patients with GERD and 1.46 for GERD in patients with RA (Kim et al., 2021).
Mendelian randomization (MR) analysis utilizes single-nucleotide polymorphisms (SNPs) to find the causality between risk factors and outcomes (Lawlor et al., 2008). The superiority of MR lies in the fact that SNPs are determined before the intervention of the environment. Thus, they can be used as proxies for phenotypes and diseases (Davey Smith and Hemani, 2014). Due to its reduced susceptibility to reverse causation and confounding, MR conclusions are considered more reliable than those of conventional observational studies (Davey Smith and Hemani, 2014).
The prerequisites for MR are based on three assumptions: first, IVs should be strongly associated with exposure; second, IVs should influence the outcome only through the exposure (no horizontal pleiotropy); and third, IVs should not be associated with confounders. The two-sample MR tests the causality based on the GWAS data risk factors, and outcomes are measured in their respective samples (Boef et al., 2015). After searching in reference databases, we found that MR has not been applied to explore the causal effects between GERD and RA.
However, the relationship between GERD and RA has not been observed in European population and evaluated using the MR method. In this study, univariate and multivariable bidirectional two-sample MR analyses were performed to test the reciprocal causal relationship between GERD and RA.
METHODS
Study design
As shown in Figure 1, first, the univariate bidirectional MR analysis of the causal relationship between GERD and RA was performed. When exposure was set as GERD, RA was considered to be the outcome. When exposure was set as RA, GERD was considered to be the outcome. Furthermore, confounding factors between GERD and RA were retrieved. In detail, the mutual potential exposure relationship between GERD and RA was found by batching the processing TwoSample-MR R script. Then, three confounding factors were included through the automatic exposure finding R script. Finally, three confounding factors are selected: years of schooling, BMI, and time spent watching television.
[image: Figure 1]FIGURE 1 | Workflow of this study design is shown in the sketch map.
For UVMR, the exposure SNPs (p < 5 × 10−8, r2 < 0.001, F > 10 for GERD and p < 1 × 10−5, r2<0.001, F > 10 for RA) were selected as instrumental variables. Furthermore, sensitivity and pleiotropy analyses were performed to ensure the robustness of the results. For multivariable MR (MVMR), the selection threshold of the mv_extract_exposures function in the TwoSample-MR package was set as default.
Data source
All data involved are publicly available. The RA GWAS data including 153,457 European individuals (6,236 cases vs. 147,221 control participants) retrieved from the IEU database (id: finn-b-M13_RHEUMA) were originally derived from the Finn-gen Consortium [Trait: Duration of vigorous activity – IEU OpenGWAS project. 2021. https://gwas.mrcieu.ac.uk/datasets/ukb-b-13932/ (1 December 2020, date last accessed), n.d.]. The GERD GWAS data including 129,080 cases and 602,604 control of European individuals were also retrieved from the IEU database (id: ebi-a-GCST90000514) originally derived from the EBI Consortium. The F-statistic of SNPs was calculated by the formula to select strong IVs (F = R2× (N−2)/(1−R2) (Chen et al., 2022). Then, we selected SNPs with an F-statistic larger than 10 to prevent potential weak instrument bias. Three confounding factors from GWAS data were retrieved from the IEU website: body mass index (id:ieu-a-94), years of schooling (id:ieu-a-1239), and time spent watching TV (id:ukb-b-5192).
Instrumental variable selection
SNPs were filtrated by the TwoSampleMR packages of R software. Genome-wide SNPs that are closely associated with education duration were acquired by the extract_instruments function (thresholds were set as p < 5 × 10−8, r2 < 0.001, window size = 10000 kb for GERA, and p < 1 × 10−5, r2<0.001, window size = 10000 kb for RA).
Statistical analyses
The inverse variance-weighted (IVW) method was considered as the main MR analysis to initially estimate the causal relationship of education duration on joint pain and sciatica with lumbago. The IVW method’s robustness depends on IV’s pleiotropy. Furthermore, another two MR analyses, namely, weighted median (WM) and MR-Egger, were selected as supplementary analyses to detect causalities. The WM method can estimate unbiased causality, with more than 50% of the weight coming from valid instrumental variables (Bowden et al., 2016), whereas MR-Egger estimates consistently account for pleiotropy when all IVs are invalid with the lowest power (Bowden et al., 2015). Our MR estimates of the risk of GERD or RA were presented as follows: odds ratio (OR), 95% confidence interval [CI]. A two-sided value of p < 0.05 is considered statistically significant for UVMR and p < 0.0125 for MVMR (four exposures).
Sensitivity analysis
Cochran’s Q test, MR-Egger intercept tests, leave-one-out (LOO) analyses, and funnel plots were performed to examine the presence of pleiotropy in the results. In particular, Cochran’s Q test was applied to evaluate heterogeneity, which was detected if the p-value was less than 0.05. The horizontal pleiotropy of both UVMR and MVMR was appraised by estimating the intercept term derived from MR-Egger regression. The LOO analysis was performed to detect any pleiotropy driven by a single SNP. All these MR analyses were performed using the TwoSampleMR package in R.
RESULTS
Univariate MR result of GERD on RA
The UVMR results of education duration on joint pain are shown in Figures 2, 3. A total of 75 SNPs were selected as instrumental variables. Given the IVW method, RA was casually influenced by GERD (OR = 1.49, 95% confidence interval [CI] = 1.25–1.76, p = 6.18*10−6), suggesting that patients with GERD are suffering a 49% increased risk of RA occurrence. This result was consistent with the weighted median (OR = 1.49, 95% CI = 1.20–1.86, p = 4.00*10−4). Heterogeneity was not found in the effect of GERD on RA using Cochran’s Q test (p = 0.794), and directional pleiotropy is not existent in the SNPs associated with GERD via MR-Egger regression (intercept = −0.023 p = 0.3531). The result of leave-one-out analyses shows that the global effect of GERD on RA was not dependent on any single IV. The symmetrical funnel plots suggested that there was no significant bias in SNP selection.
[image: Figure 2]FIGURE 2 | Effects of GERD on RA. (A) Forrest plot, (B) scatterplot, (C) leave-one-out plot, and (D) funnel plot.
[image: Figure 3]FIGURE 3 | Univariate two-sample MR analysis between GERD and RA.
Univariate MR result of RA on GERD
The UVMR results of RA on GERD are shown in Figure 3. Only 15 SNPs were available as instrumental variables. Even the IVW method results show a p-value that is slightly lower than 0.05; effect value β is very small (0.03–0.04) in all three methods. For the IVW method, the GERD was slightly casually influenced by RA (OR = 1.03, 95% [CI] = 1.00–1.06, p = 0.0844), suggesting that both weighted median (OR = 1.03, 95% CI = 1.00–1.06, p = 0.2793) and MR Egger (OR = 1.04, 95% CI = 0.97–1.12, p = 0.2793) analyses did not support the above results. Heterogeneity was not found in the effect of RA on GERD using Cochran’s Q test (p = 0.0.52), and directional pleiotropy is non-existent in SNPs associated with RA via MR-Egger regression (intercept = −0.0016, p = 0.7486). In other words, there is no strong enough evidence to support that RA can induce the occurrence of GERD.
Confounding factors and their effects
For further MVMR analysis, confounding factors are retrieved through automatic exposure finding the R script, and the two-sample MR results of those confounding factors are shown in Figure 4. It implies that all the three factors that were selected are potential confounding factors with positive two-sample UVMR analysis results.
[image: Figure 4]FIGURE 4 | Univariate two-sample MR analysis of confounding factors’ effects on RA and GERD.
Multivariable MR analysis between GERD and RA
The bidirectional MVMR results are shown in Figure 5. After removing the influence of confounding factors, the causal relationship of GERD on RA still exists (OR = 1.69, 95% CI = 1.24–2.31, p < 0.0125). Consistent with UVMR, RA only has slight effects on GERD (OR = 1.04, 95% CI = 1.00–1.07, p = 0.0271). It is worth mentioning that the years of schooling is an effective protective factor for GERD (OR = 0.36, 95% CI = 0.31–0.41, p < 0.0125), but BMI (OR = 1.27, 95% CI = 1.18–1.37, p < 0.0125) and time spent watching TV (OR = 1.72, 95% CI = 1.33–2.24, p < 0.0125) are risk factors for GERD. Directional pleiotropy was not detected in both MVMR of GERD (intercept = −0.002, p = 0.668) on RA and RA on GERD (intercept = 0.001, p = 0.130).
[image: Figure 5]FIGURE 5 | Result of MVMR analysis between GERD and RA.
DISCUSSION
In order to examine the potential reciprocal causal relationship between GERD and RA, bidirectional two-sample Mendelian randomization analyses were conducted. The results suggested that GERD can induce the occurrence of RA, whereas RA has no significant impact on GERD. In particular, individuals with GERD are at a 69% higher risk of developing RA, highlighting GERD as a significant risk factor for this condition. In addition, the impact of three confounding variables, namely, educational attainment, BMI, and duration of television viewing, on both GERD and RA has also been identified.
The association between GERD and RA has been reported by many observational studies, as mentioned in the Introduction part. Those observational studies reported bidirectional causal relationships between GERD and RA. However, our bidirectional two-sample Mendelian randomization analyses only identified the causal effects of GERD on RA and not vice versa.
There are some potential common risk factors for both GERD and RA. Inclusion bias may arise when the observational studies fail to exclude those mutual factors (Thombs et al., 2011). In order to incorporate confounding factors effectively, this study conducted a preliminary two-sample MR analysis with GERD and RA as separate outcomes. This step aimed to screen for common risk factors before proceeding to the MVMR analysis. Considering the evidence level of observational studies, MR analysis, and the superiority of MVMR (Zhou et al., 2023), results of this study are influenced by fewer confounding factors. When cross-sectional and cohort studies found the reciprocal association between GERD and RA, those known and unknown confounding factors are often not excluded.
For instance, a cohort study identifying the reciprocal association between GERD and RA only matched factors, including age, group, sex, income group, income group, and region of residence (Kim et al., 2021). However, smoking, BMI, diabetes, etc., are not taken into account, which can result in selection bias (Punjabi et al., 2015). The control group selected in those studies often exhibits fewer risk factors of GERD that are not caused by RA. Coincidentally, the HR (1.49) of RA in patients with GERD calculated by one cohort study was approximate to our UVMR result, but the HR (1.46) of GERD in patients with RA is not found in our study (Kim et al., 2021). Recently, a meta-analysis research based on cohort studies has also reported an OR of 1.98 for GERD in patients with RA (Thongpiya et al., 2023). It is important to note that the observational studies utilized in the meta-analysis were predominantly conducted on the Asian population, whereas our MR analysis is based on the European population. In addition, the prevalence of GERD in North America is nearly 4-fold in the Asian population (Chen, 2015). This difference in population may also account for the difference between our study and former observational research.
On the other hand, patients with RA tend to take more NSAIDS than their control groups because of the symptom of RA (Burmester and Pope, 2017; Aletaha and Smolen, 2018; Ben Mrid et al., 2022). Meanwhile, the common adverse reaction of NSAIDS is gastrointestinal, which may induce GERD (Altman et al., 2015; García-Rayado et al., 2018; Bindu et al., 2020). As a result, it is natural to hypothesize about the causal effects of RA on GERD. However, our results found no significant effect of RA on GERD, unlike the obvious effect reported by previous observational studies.
Similarly, for the causal effect of GERD on RA, ORs 1.49 and 1.69 calculated in this study were smaller than the HRs reported by other observational studies. For instance, a nearly 3-fold risk of RA susceptibility in patients with GERD than their control groups was reported by a nested case–control study in the Asian population (Lin et al., 2017). Even this study has considered many known confounding factors, including hypertension, diabetes, smoking, hyperlipidemia, obesity, stroke, and coronary heart disease; when those factors (p > 0.1 between patients with GERD and their controls) combined, inclusion bias may also derive.
Mechanistically speaking, the physiological and anatomical changes, which may not appear directly associated with RA, have the potential to increase the risk of developing RA due to the persistent inflammation and immune dysregulation observed in GERD. However, further basic and clinical studies are required to substantiate these assumptions. In addition, the MVMR analysis also revealed that years of schooling is an effective protective factor for GERD (OR = 0.36, 95% CI = 0.31–0.41, p < 0.0125). Conversely, BMI (OR = 1.27, 95% CI = 1.18–1.37, p < 0.0125) and time spent watching TV (OR = 1.72, 95% CI = 1.33–2.24, p < 0.0125) are identified as risk factors for GERD. The education duration has been consistently reported as a protective factor for many diseases and phenotypes, including low back pain, RA, and lifestyle (Jiang et al., 2015; Saper et al., 2017; Davies et al., 2019; Kari et al., 2020; Zhao et al., 2022), while excessive high BMI and longer time spent watching TV have been found to be detrimental to health in many studies (Antonopoulos et al., 2016; Caballero, 2019; Raichlen et al., 2022; Sun et al., 2023). Although the effects of BMI and education on RA are detected in the search of confounding factors by UVMR searching, the MVMR analysis did not find significant effects of them on RA. This finding may support the notion that the previously reported effects of BMI and education on RA were also generated by bias factors.
The strength of this study is that the confounding factors are included in the identification of bidirectional causal relationships between GERD and RA through MR analysis. To the best of our knowledge, it is the first time to investigate their association using genetic evidence, despite previous observational studies reporting a bidirectional association between RA and GERD (Miura et al., 2014).
However, there are several limitations to this study. The GWAS data used in this study were derived from the European population, whereas most previous observational studies on the topic are based on the Asian population. Whether our findings are generalizable to non-European populations still needs to be confirmed. In addition, even though the sample of GWAS data used in this study was large, more extensive and new GWAS data may produce different conclusions.
CONCLUSION
In conclusion, our bidirectional MR analysis found that for the European population, GERD can induce the occurrence of RA (OR = 1.69, p < 0.00125), whereas RA only has no significant influence on GERD (OR = 1.04, p > 0.0125). In particular, European GERD patients are suffering a 69% increased risk of RA occurrence, which means GERD is a substantial risk factor for RA.
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Background: The causation of Glycemic Traits and risks of Melanoma remains unknown. We used Mendelian Randomization (MR) to assess the links between Glycemic Traits and Melanoma.
Method: Pooled data from Genome-Wide Association Studies (GWAS) were utilized to examine the relationships that exist between Fasting Insulin (n = 26), 2-h Glucose (n = 10), Fasting Glucose (n = 47), HbA1c (n = 68), and Type-2 Diabetes (n = 105) and Melanoma. We evaluated the correlation of these variations with melanoma risk using Two-Samples MR.
Result: In the IVW model, Fasting Glucose (OR = 0.99, 95%CI = 0.993–0.998, p < 0.05, IVW), Type-2 Diabetes (OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW) and HbA1c (OR = 0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally associated with a lower risk of Melanoma. In all models analyzed, there was no apparent causal relationship between Fasting Insulin and Melanoma risk. There was no obvious causal difference in the IVW analysis of 2-h Glucose and Melanoma, but its p < 0.05 in MR Egger (OR = 0.99, 95%CI = 0.9883–0.9984, p < 0.05, MR Egger), and the direction was consistent in other MR analyses, suggesting that there may be a causal relationship.
Conclusion: The results of this study suggest that a higher risk of Fasting Glucose, Type-2 Diabetes, 2-h Glucose, and HbA1c may be associated with a lower risk of Melanoma. However, no causal relationship between fasting insulin and melanoma was found. These results suggest that pharmacological or lifestyle interventions that regulate plasma glucose levels in the body may be beneficial in the prevention of melanoma.
Keywords: two-sample mendelian randomization, glycemic traits, melanoma, genome-wide association study, causality
1 INTRODUCTION
Melanoma is a malignant tumor produced by the malignant transformation of melanocytes, which has a high probability of local spread and metastatic spread. Studies have shown that its incidence increases linearly in young and middle-aged people aged 25 to 50, and is high in people aged 57 (Carr et al., 2020). It is less common than other types of skin cancer but accounts for 73 percent of skin cancer-related deaths (Gershenwald and Guy, 2016). Studies have shown that in the next 10 years, the incidence and mortality of melanoma will continue to rise (Whiteman et al., 2016). The intervention effect of early surgical treatment and late radiotherapy and chemotherapy on the prognosis of patients is not satisfactory, and the results of several clinical trials have shown that the objective remission rate of patient’s symptoms after treatment is less than 1% (O'Neill et al., 2006; Atzpodien et al., 2008; Bhatia et al., 2012). It is particularly important to look for risk factors to prevent the occurrence of Melanoma.
Several recent studies have shown that obesity is positively associated with the risk of melanoma (Dusingize et al., 2020; Larsson and Burgess, 2021). Obese adults have a higher prevalence of metabolic problems, such as insulin irregularities, hyperglycemia, and Type-2 Diabetes. Some researches has found that Type-2 Diabetes may be associated with an increased risk of Melanoma (Harding et al., 2015; Yuan et al., 2020). However, other cohort studies and case-control studies have found the opposite results (Qi et al., 2014; Malavolti et al., 2017). Previous prospective studies have shown that higher Fasting Glucose is closely related to the occurrence and development of Melanoma (Stattin et al., 2007). Recent studies have demonstrated a positive association between Glycemic Traits and the risk of colorectal cancer (Murphy et al., 2022a). But the MR studies of the associations between various Glycemic Traits and melanoma have not yet been reported.
This study used MR to explore the causal relationship between Glycemic Traits and Melanoma risk. MR is a comparable method to randomization in randomized controlled trials. When parents with two or more pairs of qualities cross when alleles are separated, genes on non-homologous chromosomes operate as free combinations, according to the law of independent assortment. Since germline genetic variation, and the random nature of allelic segregation is fixed at conception, MR analysis is less susceptible to traditional confounding and reverse causation. In this study, we used GWAS related to Fasting Glucose, Fasting Insulin, 2-h Glucose, HbA1c, and Type-2 Diabetes, GWAS data on Melanoma from risk on United Kingdom Biobank cohort study and FinnGen cohort study (Mahajan et al., 2018; Chen et al., 2021). Two-sample MR was used to explore the potential causal influence of the Glycemic Traits on the risk of Melanoma.
2 METHODS
2.1 Study design
MR investigates the link between exposure and illness by employing genetic variation Single Nucleotide Polymorphisms (SNPs) as Instrumental Variables IV). IV was extracted from a disease-specific Genome-Wide Association Studies (GWAS) dataset for this investigation. The IV in this work should fulfill three criteria: there should be a high connection between IV and exposure, IV should only affect the outcomes through exposure, and IV should not have horizontal pleiotropy. Appropriate SNPs for usage as IVs must be strongly linked to malignancy (p < 5 × 10−8). To ensure independence, SNPs were restricted by low linkage disequilibrium (LD, r2 < 0.001, window size = 10,000 kb) using clumping. By MR GWAS data. from different sources were analyzed to assess the causal relationship between glycemic signature and melanoma risk. Assess the strength of IV using the F statistic (F = beta2/se2), where β is the effect size of the allele and SE is the standard error (Feng et al., 2022). If F > 10, the correlation between IV and exposure was considered strong enough to protect the results of MR analysis from weak instrument bias. Meanwhile, it will ensure no confounders like UV radiation, light skin type, the presence of multiple atypical nevi, and a positive family history using the Phenoscanner (http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner) website to have a search over each SNP (Rastrelli et al., 2014; Ugurel and Gutzmer, 2023).
2.2 Data source
Glycemic Traits data come from the largest GWAS to date (Glucose And Insulin-related Traits Consortium). A GWAS study of 2 h Glucose, Fasting Glucose, and Fasting Insulin included 63,396 (SNPs= 27,330,879), 200,622 (SNPs= 31,008,728), and 151,013 (SNPs= 29,664,438) participants of European ancestry, respectively (Chen et al., 2021). The GWAS for Type-2 Diabetes included 74,124 individuals with Type-2 Diabetes and 824,006 controls of European ancestry (SNPs= 21,000,000) (Mahajan et al., 2018). The HbA1c GWAS from the United Kingdom biobank (http://www.nealelab.is/uk-biobank) included 361,194 participants of European ancestry (SNPs= 1,048,575). The GWAS of Melanoma were obtained from United Kingdom biobank (https://www.ukbiobank.ac.uk/) and FinnGen (https://www.finngen.fi/en/access_results), the GWAS of United Kingdom biobank included 3,598 patients and 459,335 for controls (SNPs= 9,851,867) of European ancestry, the GWAS of FinnGen included 393 patients and 180,622 controls (SNPs= 16,380,337) of European ancestry. All study participants gave written informed consent, and the ethics committee approved all studies. SNPs data can be found in Supplementary Table S1.
2.3 Method selection
We estimated the relationship between Glycemic Traits and Melanoma risk using MR Egger, Inverse Variance Weighting (IVW), weighted Median, Simple Mode, and Weighted Mode MR methods. The IVW method assumes that all SNPs do not have horizontal pleiotropy (The impact of genetic variation on results is solely influenced by exposure of interest) and that all SNPs are effective tools. The fixed-effect inverse variance weighting (IVW) method was mainly used as the main analysis method (Kamiza et al., 2022). The intercept of the MR-Egger test was used to examine potential pleiotropic effects. Scatterplots are used to display the findings of several MR procedures. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to represent the causal effects of overall and Melanoma. We utilized scatterplots to show the genetic relationship between glycemic characteristics and melanoma risk, and funnel plots to visually analyze the consistency of MR estimations and potential related biases. R software was used for these analyses, where the “Two-Sample MR” and “MR-PRESSO” R packages were used.
2.4 Sensitivity analysis
Pleiotropy was investigated using the MR-Egger approach, which was used to determine if a single locus impacts numerous phenotypes. Second, the Leave-one-out sensitivity test was used to gradually remove the SNPs to ensure that the results were credible. The Cochran Q statistic was used to standardize heterogeneity analyses. In addition, MR PRESSO was used to detect and eliminate anomalous instrumental factors.
3 RESULTS
3.1 MR assessment of glucose traits and melanoma risk
After a quality control process, we obtained 10 SNPs strongly associated with 2-h Glucose, 47 SNPs strongly associated with Fasting Glucose, 26 SNPs associated with Fasting Insulin, and 105 strongly associated with Type-2 Diabetes from GWAS and 68 SNPs closely related to Fasting Glucose. The F-statistics of these SNPs were all greater than 10, indicating that our instrumental variables were closely related to Glucose Traits. Furthermore, our instrumental variables were not directly associated with the risk of Melanoma (Table 1).
TABLE 1 | Power calculation for Mendelian randomization analyses for glycemic traits in relation to Melanoma risk.
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IVW provides accurate estimates since the lack of heterogeneity and directional pleiotropy between exposure and outcome variables. Focusing primarily on the results of the IVW analysis, we assessed the causal relationship between these SPNs and melanoma risk with the Glycemic Traits (Table 2). The results showed that Fasting Glucose (OR = 0.99, 95%CI = 0.993–0.998, p < 0.05, IVW), Type-2 Diabetes (OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW) and HbA1c (OR= 0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally associated with a lower risk of Melanoma. Its orientation is consistent with several other MR analysis methods (Figures 1A–C). The 2-h Glucose and Fasting Insulin results showed no apparent causal relationship with Melanoma risk. Among them, no obvious causal difference was found in the IVW analysis of 2-h Glucose, but its p < 0.05 in MR Egger, and the direction was consistent in other MR analyses, suggesting that there may be a causal relationship (Figure 1D).
TABLE 2 | Associated between the Glycemic Traits and risk of Melanoma using two-sample MR.
[image: Table 2][image: Figure 1]FIGURE 1 | Scatter plot of genetic causality between Glycemic Traits and Melanoma using different MR methods. (A) Fasting Glucose (B) Type 2 Diabetes (C) HbA1c (D) 2-h Glucose. The dark blue line represents MR Egger, the light green line represents simple mode, the dark green line represents Weighted median, the light blue line represents IVW, and the red line represents Weighted mode.
3.3 Sensitivity analysis
In MR Egger, the p-values of MR Egger intercepts in each instrumental variable of Glycemic Traits were greater than 0.05, suggesting that the intercept does not exist, indicating fasting There was no horizontal pleiotropy for Fasting Glucose, 2-h Glucose, Fasting Insulin, HbA1c, and Type-2 Diabetes (Table 3). However, we found evidence of heterogeneity between HbA1c and melanoma risk with a p-value of 0.03442561 for the Q statistic. As we used the random-effects IVW as main result in MR of HbA1c, heterogeneity is acceptable (Burgess et al., 2019). No heterogeneity was found in the other analyses. Then we performed the Leave-one-out (Figures 2A–D) method and MR-PRESSO (Figures 3A–D) to identify and delete abnormal instrumental variables. The results showed that no abnormal instrumental variables were found, and the above results suggested that the MR analysis results were relatively stable.
TABLE 3 | Estimates of Egger intercept to evaluate evidence for directional pleiotropy in MR association.
[image: Table 3][image: Figure 2]FIGURE 2 | Forest map of Melanoma based on Glycemic Traits. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Black dots represent estimates of causal effects of Glycemic Traits on Melanoma (beta coefficients). The black line represents the estimated 95% confidence interval.
[image: Figure 3]FIGURE 3 | Funnel plot of Melanoma based on Glycemic Traits genetic variants. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Overall causal estimates (beta coefficients) of Glycemic Traits and Melanoma estimated by the IVW (light blue line) and MR-Egger (dark blue line) methods are shown.
4 DISCUSSION
Melanoma is a malignant tumor caused by melanocytes that is also a very deadly disease due to its high metastatic potential, accounting for 75% of skin cancer deaths (Davis et al., 2019). People who have a family history of skin cancer, have a high amount of common or underdeveloped nevi, or are excessively exposed to UV light are at high risk for melanoma (Dummer et al., 2009; Guo et al., 2016). It is still unknown whether endocrine factors can also affect the occurrence of melanoma (Guo et al., 2016). This study used the MR method for the first time to explore the causal relationship between the characteristics of Fasting Glucose (including 2-h Glucose, Fasting Glucose, Fasting Insulin, Type-2 Diabetes, and HbA1c) and the risk of Melanoma from the perspective of genetics. Overall, we found that Fasting Glucose, Type-2 Diabetes, and higher HbA1c levels were negatively associated with the risk of Melanoma. The results of MR Egger suggest that 2-h Glucose may be negatively related to the risk of Melanoma. But there is no evidence that gene-predicted Fasting Insulin levels increase the risk of Melanoma. Due to the use of suitable genetic instrument tools (F-statistics>10 and r2<0.001) in this study, no significant SNP was detected in the retention method or MR-PRESSO, and the results were highly consistent among the 5 MR algorithms. Therefore, we believe that the results of this study are to some extent reliable. The results of this study suggest that people with higher Glycemic Traits levels may be at low risk for melanoma. Patients and high-risk populations may reduce the risk of melanoma by adjusted dietary structure regulating Glycemic Traits.
In previous studies, we have noticed that Glycemic Traits exhibit different causal relationships among different tumors. There is a positive correlation between plasma glucose index and disease risk in lung cancer, but there is no significant correlation with colon cancer (Murphy et al., 2022b; Du et al., 2022). A meta-analysis shows that glycemic index will increase the overall risk of cancer, increase the risk of breast cancer (Long et al., 2022), and is positively correlated with the risk of bladder cancer and gastric cancer (Zhu et al., 2020; Kim et al., 2022). Relevant studies have shown that higher HbA1c levels are associated with an increased risk of colorectal cancer, pancreatic cancer, respiratory cancer, and female reproductive tract cancer, and are not associated with an increased risk of breast cancer, gastrointestinal or urinary system malignancies (Hong et al., 2009; Lu et al., 2015; Hope et al., 2016; Murphy et al., 2022b), but are linearly associated with overall cancer-related deaths (Yoo et al., 2022). A study shows that Type-2 Diabetes will increase the risk of colorectal cancer (Murphy et al., 2022b). The cohort study and case-control study in Melanoma suggest that Type-2 Diabetes may be negatively related to the risk of Melanoma (Harding et al., 2015; Yuan et al., 2020), but the opposite results have appeared in other studies (Qi et al., 2014; Malavolti et al., 2017). The above studies suggest that the specific relationship between Glycemic Traits and Melanoma is still contradictory.
The results of this study suggest that 2-h Glucose (OR = 0.99, 95% CI = 0.984–0.998, p < 0.05, MR Egger), Fasting Glucose (OR = 0.99, 95% CI = 0.993–0.998, p < 0.05, IVW), Type-2 Diabetes (OR = 0.998, 95% CI = 0.998–0.999, p < 0.01, IVW) and higher HbA1c level (OR = 0.19, 95% CI = 0.0415–0.8788, p < 0.05, IVW) are all possible negatively related to the risk of Melanoma. This is different from the manifestation of Glycemic Traits in causal relationships with other tumors. This may be due to the reduction of melanocytes in Diabetes patients, whose melanin content is related to plasma glucose control in diabetes and obesity (Mackiewicz-Wysocka et al., 2014). Research shows that people with light skin are about 30 times more likely to suffer from Melanoma than people with dark skin (Doepner et al., 2022). This is because the pigmentation of human skin is determined by the transfer of mature melanin synthesized by epidermal Melanoma cells to the surrounding keratinocytes. Human Chromatophores synthesize two types of melanin, namely, eumelanin (EM) and phaeomelanin (PM). The content of eumelanin is directly related to skin pigmentation and has a photoprotective effect, which can protect the skin from ultraviolet rays, thereby reducing the incidence rate of Melanoma (Upadhyay et al., 2022). Moreover, a high level of plasma glucose is often associated with high BMI and obesity. Studies have shown that obesity is associated with elevated circulating estradiol levels due to the aromatase activity of adipose tissue converting androgens into estrogen compounds (Schneider et al., 1979). In primary Melanoma, there may be high expression of estrogen receptors β with anti-melanoma-proliferative, and sending non-classical estrogen signals through G protein-coupled receptors (de Giorgi et al., 2013; Marzagalli et al., 2015). This may explain the different causal relationships between Glycemic Traits in Melanoma and other tumors.
Insulin is a protein hormone secreted by cells stimulated by endogenous or exogenous substances such as glucose, lactose, ribose, arginine, glucagon, etc. Related research suggests that it may be related to the development of tumors. Lilalutide, an analog of glucagon-like peptide 1, is a molecule that regulates glucose by increasing insulin production and inhibiting glucagon secretion. It can significantly reduce the formation of NET in tumor mice by improving the plasma glucose of patients, inhibiting tumor progression, and enhancing the anti-tumor effect of PD-1 inhibitors (Chen et al., 2022). Insulin is also an important cell growth factor that can promote cell growth, proliferation, and migration (Leitner et al., 1997). Higher fasting insulin is positively correlated with the risk of colorectal cancer (Murphy et al., 2022b). Extracellular vesicles secreted by breast cancer cells inhibit insulin secretion through miR-122, thereby damaging systemic glucose homeostasis and promoting tumor growth (Cao et al., 2022). However, in this study, the results suggest that there is no correlation between insulin level and the risk of Melanoma (OR = 0.99, 95% CI = 0.994–1.005, p = 0.91, IVW). Therefore, the causal relationship between Insulin and the risk of Melanoma requires more research.
There are still limitations to this study. Firstly, we restricted the relevance of the findings to other groups by concentrating on research subjects with European populations. Secondly, this study did not consider the impact of gender on MR analysis and did not conduct further subgroup analysis. Thirdly, to verify the findings, this study does not analyze additional data sources. Finally, This study used Mendelian Randomization analysis, which has the potential for weak instrument bias and pleiotropy. Future research is needed to address these limitations and to confirm the findings of this study.
Although previous observational studies can identify the relationship between Glucose, Type-2 Diabetes, Insulin and the risk of Melanoma, however, because of research confounding variables, a causal association cannot be established. In conclusion, this study used MR technology for the first time to analyze the causal relationship between Glycemic Traits and Melanoma and found that there is a negative correlation, and the underlying mechanism may provide valuable insights for carcinogenesis.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
Y-CZ: Conceptualization, Data curation, Project administration, Writing–original draft, Writing–review and editing. C-DL: Conceptualization, Formal Analysis, Investigation, Resources, Validation, Writing–review and editing. Q-YL: Data curation, Formal Analysis, Methodology, Project administration, Validation, Writing–original draft. J-NS: Conceptualization, Data curation, Investigation, Methodology, Writing–original draft. JS: Data curation, Funding acquisition, Investigation, Resources, Software, Supervision, Visualization, Writing–original draft, Writing–review and editing. MY: Conceptualization, Formal Analysis, Methodology, Project administration, Supervision, Writing–original draft, Writing–review and editing, Funding acquisition.
FUNDING
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was funded by a Research Assistance Project of the Second Affiliated Hospital of Zhejiang Chinese Medicine University.
ACKNOWLEDGMENTS
Thanks for the sharing of datasets provided by public databases.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1260367/full#supplementary-material
REFERENCES
 Atzpodien, J., Terfloth, K., Fluck, M., and Reitz, M. (2008). Cisplatin, gemcitabine and treosulfan is effective in chemotherapy-pretreated relapsed stage IV uveal melanoma patients. Cancer Chemother. Pharmacol. 62 (4), 685–688. doi:10.1007/s00280-007-0655-9
 Bhatia, S., Moon, J., Margolin, K. A., Weber, J. S., Lao, C. D., Othus, M., et al. (2012). Phase II trial of sorafenib in combination with carboplatin and paclitaxel in patients with metastatic uveal melanoma: SWOG S0512. PLoS One 7 (11), e48787. doi:10.1371/journal.pone.0048787
 Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M., et al. (2019). Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 4, 186. doi:10.12688/wellcomeopenres.15555.2
 Cao, M., Isaac, R., Yan, W., Ruan, X., Jiang, L., Wan, Y., et al. (2022). Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat. Cell Biol. 24 (6), 954–967. doi:10.1038/s41556-022-00919-7
 Carr, S., Smith, C., and Wernberg, J. (2020). Epidemiology and risk factors of melanoma. Surg. Clin. North Am. 100 (1), 1–12. doi:10.1016/j.suc.2019.09.005
 Chen, D., Liang, H., Huang, L., Zhou, H., and Wang, Z. (2022). Liraglutide enhances the effect of checkpoint blockade through the inhibition of neutrophil extracellular traps in murine lung and liver cancers. FEBS Open Bio . doi:10.1002/2211-5463.13499
 Chen, J., Spracklen, C. N., Marenne, G., Varshney, A., Corbin, L. J., Luan, J., et al. (2021). The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53 (6), 840–860. doi:10.1038/s41588-021-00852-9
 Davis, L. E., Shalin, S. C., and Tackett, A. J. (2019). Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 20 (11), 1366–1379. doi:10.1080/15384047.2019.1640032
 de Giorgi, V., Gori, A., Gandini, S., Papi, F., Grazzini, M., Rossari, S., et al. (2013). Oestrogen receptor beta and melanoma: a comparative study. Br. J. Dermatol 168 (3), 513–519. doi:10.1111/bjd.12056
 Doepner, M., Lee, I., Natale, C. A., Brathwaite, R., Venkat, S., Kim, S. H., et al. (2022). Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. Sci. Adv. 8 (35), eabn4007. doi:10.1126/sciadv.abn4007
 Du, H., Zhang, T., Lu, X., Chen, M., Li, X., and Li, Z. (2022). Glycemic index, glycemic load, and lung cancer risk: a meta-analysis of cohort and case-control studies. PloS One 17 (9), e0273943. doi:10.1371/journal.pone.0273943
 Dummer, R., Hauschild, A., and Pentheroudakis, G. (2009). Cutaneous malignant melanoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 20 (Suppl. 4), 129–131. doi:10.1093/annonc/mdp152
 Dusingize, J. C., Olsen, C. M., An, J., Pandeya, N., Law, M. H., Thompson, B. S., et al. (2020). Body mass index and height and risk of cutaneous melanoma: mendelian randomization analyses. Int. J. Epidemiol. 49 (4), 1236–1245. doi:10.1093/ije/dyaa009
 Feng, R., Lu, M., Xu, J., Zhang, F., Yang, M., Luo, P., et al. (2022). Pulmonary embolism and 529 human blood metabolites: genetic correlation and two-sample Mendelian randomization study. BMC Genom Data 23 (1), 69. doi:10.1186/s12863-022-01082-6
 Gershenwald, J. E., and Guy, G. P. (2016). Stemming the rising incidence of melanoma: calling prevention to action. J. Natl. Cancer Inst. 108 (1), djv381. doi:10.1093/jnci/djv381
 Guo, J., Qin, S., Liang, J., Lin, T., Si, L., Chen, X., et al. (2016). Chinese guidelines on the diagnosis and treatment of melanoma (2015 edition). Chin. Clin. Oncol. 5 (4), 57. doi:10.21037/cco.2015.12.02
 Harding, J. L., Shaw, J. E., Peeters, A., Cartensen, B., and Magliano, D. J. (2015). Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diabetes Care 38 (2), 264–270. doi:10.2337/dc14-1996
 Hong, S. K., Lee, S. T., Kim, S. S., Min, K. E., Byun, S. S., Cho, S. Y., et al. (2009). Significance of preoperative HbA1c level in patients with diabetes mellitus and clinically localized prostate cancer. Prostate 69 (8), 820–826. doi:10.1002/pros.20932
 Hope, C., Robertshaw, A., Cheung, K. L., Idris, I., and English, E. (2016). Relationship between HbA1c and cancer in people with or without diabetes: a systematic review. Diabet. Med. 33 (8), 1013–1025. doi:10.1111/dme.13031
 Kamiza, A. B., Fatumo, S., Singini, M. G., Yeh, C. C., and Chikowore, T. (2022). Hepatitis B infection is causally associated with extrahepatic cancers: a Mendelian randomization study. EBioMedicine 79, 104003. doi:10.1016/j.ebiom.2022.104003
 Kim, S. Y., Eun, C. S., Han, D. S., Kim, Y. S., Song, K. S., Choi, B. Y., et al. (2022). A high glycemic index and glycemic load increased the risk of gastric cancer: a case-control study in Korea. Nutr. Res. 105, 11–19. doi:10.1016/j.nutres.2022.06.001
 Larsson, S. C., and Burgess, S. (2021). Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med. 19 (1), 320. doi:10.1186/s12916-021-02188-x
 Leitner, J. W., Kline, T., Carel, K., Goalstone, M., and Draznin, B. (1997). Hyperinsulinemia potentiates activation of p21Ras by growth factors. Endocrinology 138 (5), 2211–2214. doi:10.1210/endo.138.5.5240
 Long, T., Liu, K., Long, J., Li, J., and Cheng, L. (2022). Dietary glycemic index, glycemic load and cancer risk: a meta-analysis of prospective cohort studies. Eur. J. Nutr. 61 (4), 2115–2127. doi:10.1007/s00394-022-02797-z
 Lu, Y., García Rodríguez, L. A., Malgerud, L., González-Pérez, A., Martín-Pérez, M., Lagergren, J., et al. (2015). New-onset type 2 diabetes, elevated HbA1c, anti-diabetic medications, and risk of pancreatic cancer. Br. J. Cancer 113 (11), 1607–1614. doi:10.1038/bjc.2015.353
 Mackiewicz-Wysocka, M., Araszkiewicz, A., Schlaffke, J., Kuczynski, S., Micek, I., and Zozulinska-Ziolkiewicz, D. (2014). Lower melanin content in the skin of type 1 diabetic patients and the risk of microangiopathy. Exp. Clin. Endocrinol. Diabetes 122 (4), 231–235. doi:10.1055/s-0034-1367003
 Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W., et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50 (11), 1505–1513. doi:10.1038/s41588-018-0241-6
 Malavolti, M., Malagoli, C., Crespi, C. M., Brighenti, F., Agnoli, C., Sieri, S., et al. (2017). Glycaemic index, glycaemic load and risk of cutaneous melanoma in a population-based, case-control study. Br. J. Nutr. 117 (3), 432–438. doi:10.1017/S000711451700006X
 Marzagalli, M., Casati, L., Moretti, R. M., Montagnani Marelli, M., and Limonta, P. (2015). Estrogen receptor β agonists differentially affect the growth of human melanoma cell lines. PLoS One 10 (7), e0134396. doi:10.1371/journal.pone.0134396
 Murphy, N., Song, M., Papadimitriou, N., Carreras-Torres, R., Langenberg, C., Martin, R. M., et al. (2022a). Associations between glycemic traits and colorectal cancer: a mendelian randomization analysis. J. Natl. Cancer Inst. 114 (5), 740–752. doi:10.1093/jnci/djac011
 Murphy, N., Song, M., Papadimitriou, N., Carreras-Torres, R., Langenberg, C., Martin, R. M., et al. (2022b). Associations between glycemic traits and colorectal cancer: a mendelian randomization analysis. J. Natl. Cancer Inst. 114 (5), 740–752. doi:10.1093/jnci/djac011
 O'Neill, P. A., Butt, M., Eswar, C. V., Gillis, P., and Marshall, E. (2006). A prospective single arm phase II study of dacarbazine and treosulfan as first-line therapy in metastatic uveal melanoma. Melanoma Res. 16 (3), 245–248. doi:10.1097/01.cmr.0000205017.38859.07
 Qi, L., Qi, X., Xiong, H., Liu, Q., Li, J., Zhang, Y., et al. (2014). Type 2 diabetes mellitus and risk of malignant melanoma: a systematic review and meta-analysis of cohort studies. Iran. J. Public Health 43 (7), 857–866.
 Rastrelli, M., Tropea, S., Rossi, C. R., and Alaibac, M. (2014). Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo 28 (6), 1005–1011.
 Schneider, G., Kirschner, M. A., Berkowitz, R., and Ertel, N. H. (1979). Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 48 (4), 633–638. doi:10.1210/jcem-48-4-633
 Stattin, P., Björ, O., Ferrari, P., Lukanova, A., Lenner, P., Lindahl, B., et al. (2007). Prospective study of hyperglycemia and cancer risk. Diabetes Care 30 (3), 561–567. doi:10.2337/dc06-0922
 Ugurel, S., and Gutzmer, R. (2023). Melanom. J. Dtsch. Dermatol Ges. 21 (4), 343–347. doi:10.1111/ddg.15053
 Upadhyay, P. R., Starner, R. J., Swope, V. B., Wakamatsu, K., Ito, S., and Abdel-Malek, Z. A. (2022). Differential induction of reactive oxygen species and expression of antioxidant enzymes in human melanocytes correlate with melanin content: implications on the response to solar UV and melanoma susceptibility. Antioxidants (Basel) 11 (6), 1204. doi:10.3390/antiox11061204
 Whiteman, D. C., Green, A. C., and Olsen, C. M. (2016). The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J. Invest. Dermatol 136 (6), 1161–1171. doi:10.1016/j.jid.2016.01.035
 Yoo, T. K., Lee, M. Y., Lee, S. A., Cheong, E. S., Seo, M. H., and Sung, K. C. (2022). Association of glycosylated hemoglobin level and cancer-related mortality in patients without diabetes. J. Clin. Med. 11 (19), 5933. doi:10.3390/jcm11195933
 Yuan, S., Kar, S., Carter, P., Vithayathil, M., Mason, A. M., Burgess, S., et al. (2020). Is type 2 diabetes causally associated with cancer risk? Evidence from a two-sample mendelian randomization study. Diabetes 69 (7), 1588–1596. doi:10.2337/db20-0084
 Zhu, H., Mo, Q., Shen, H., Wang, S., Liu, B., and Xu, X. (2020). Carbohydrates, glycemic index, and glycemic load in relation to bladder cancer risk. Front. Oncol. 10, 530382. doi:10.3389/fonc.2020.530382
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Zhang, Lu, Li, Shi, Shi and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


SYSTEMATIC REVIEW

published: 04 January 2024

doi: 10.3389/fonc.2023.1323812

[image: image2]


Absence of causal relationship between Parkinson’s disease and subsequent prostate cancer: evidence from meta-analysis and Mendelian randomization studies


Li Wang 1†, Jing-ya Deng 2†, Xi-yue Fan 2, Dan Yang 2, Ping-yu Zhu 1* and Xiao-ming Wang 2,3*


1 Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China, 2 Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China, 3 Department of Neurology, Institute of Neurological Diseases of North Sichuan Medical College, Sichuan, Nanchong, China




Edited by: 

Xuanye Cao, University of Texas MD Anderson Cancer Center, United States

Reviewed by: 

Wenchao Xu, Huazhong University of Science and Technology, China

Hsiuying Wang, National Yang Ming Chiao Tung University, Taiwan

*Correspondence:
 Ping-yu Zhu
 zhupingyu@nsmc.edu.cn 

Xiao-ming Wang
 wangnsmc@163.com


†These authors have contributed equally to this work



Received: 01 November 2023

Accepted: 08 December 2023

Published: 04 January 2024

Citation:
Wang L, Deng J-y, Fan X-y, Yang D, Zhu P-y and Wang X-m (2024) Absence of causal relationship between Parkinson’s disease and subsequent prostate cancer: evidence from meta-analysis and Mendelian randomization studies. Front. Oncol. 13:1323812. doi: 10.3389/fonc.2023.1323812






Background

Numerous observational studies have investigated the risk of prostate cancer (PCa) in patients diagnosed with Parkinson’s Disease (PD). However, the existence of a definitive association remains uncertain.





Methods

Systematic searches were performed on PubMed, Web of Science, Scopus, and Google Scholar for studies published up to October 1, 2023. For Mendelian randomized (MR) causal inference, we employed pooled data from the IPDGC and PRACTICAL Consortium. The inverse variance weighted (IVW) method served as the principal technique for estimating odds ratios (ORs) and 95% confidence intervals (CIs) for the associations under investigation.





Results

Cumulative analysis of nine studies revealed no significant association between patients diagnosed with PD and the subsequent incidence of PCa ([relative ratio] RR = 0.89, 95%CI = 0.73 to 1.08, P = 0.237). However, subgroup analyses indicated a reduced occurrence of PCa in Caucasian patients with PD (RR = 0.81, 95%CI = 0.69 to 0.95, P = 0.011). MR analyses failed to establish a significant link between increased genetic susceptibility to PD and the risk of PCa (IVW OR = 1.025, 95%CI = 0.997 to 1.054, P = 0.082). Sensitivity analyses further corroborated the robustness of these results.





Conclusion

Both observational meta-analysis and MR analysis based on genetic variation do not support an association between PD patients and the subsequent risk of PCa. Further research is warranted to unravel the potential underlying mechanisms linking these two diseases.





Systematic review registration

https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023473527.





Keywords: Parkinson’s disease, prostate cancer, Mendelian randomization, genetic variants, meta-analysis




1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and increases with age (1). In individuals with PD, there is a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to resting tremors, rigidity, motor dysfunction, and postural instability (2). Numerous cellular pathways, including mitochondrial dysfunction, excitotoxicity, compromised autophagic processes, oxidative stress, the accumulation of misfolded proteins, and genetic mutations, have been postulated as interlinked contributors to the neurodegenerative processes observed in PD (3).

Epidemiological evidence reveals a noteworthy correlation between PD and cancer (4–6). One hallmark of tumors is unbridled cell proliferation and a deficiency in apoptosis, whereas individuals with PD exhibit an augmented inclination toward cellular apoptosis (7). Certain studies postulate shared genetic and biological pathways between PD and cancer. Conversely, males demonstrate greater susceptibility to PD, implying a hormonal regulatory influence on PD (8). On the other hand, prostate cancer (PCa), as the second most common malignancy worldwide, is regulated by sex hormones and ranks as the sixth leading cause of cancer-related deaths in males (9). Previous studies on the incidence of PCa in patients with PD have yielded contentious outcomes (4, 10, 11), and observational studies cannot infer a causal relationship between PD and prostate cancer, as this might be influenced by reverse causation or confounding factors.

Mendelian randomization (MR) emerges as a method of instrumental variable (IV) analysis that harnesses single nucleotide polymorphisms (SNPs) derived from genome-wide association studies (GWAS) as tools to deduce causal associations between two traits (12). MR approximates the inherent attributes of a RCT and exhibits a reduced susceptibility to the impact of covariates. Moreover, its operational simplicity and cost-effectiveness enhance its appeal (13). Consequently, we conducted an updated meta-analysis and integrated MR studies to investigate the causal relationship between PD and PCa.




2 Methods



2.1 Meta-analysis

This study adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines (Supplementary Table 1) and has been registered with PROSPERO (CRD42023473527) (14).




2.2 Search strategy

We conducted a comprehensive search of the published literature for associations between PD and prostate cancer in MEDLINE via the Cochrane Library, PubMed, Web of Science, Scopus and Google Scholar databases, up to October 1, 2023. The following strings were constructed using a combination of medical subject terms and keywords: [(Parkinson OR Parkinson disease OR PD) AND (prostate cancer OR prostate carcinomas OR prostate neoplasm)].




2.3 Eligibility criteria

Inclusion criteria were defined as follows: (1) Population-based study of patients with diagnostic criteria for PD. (2) Cohort or case-control studies of PD diagnosis prior to PCa; (3) studies that reported either an odds ratio (OR), relative risk (RR), hazard ratio (HR), or standardized incidence ratio (SIR) along with the corresponding confidence interval (CI); (3) original research published in English. The exclusion criteria comprised: (1) studies lacking relevant exposures (PD) and outcomes (Pca); (2) studies without meta-analysis data; (3) reviews, letters, case reports or conference reports. If study populations overlap, select the newest or most informative published studies.




2.4 Data acquisition and quality evaluation

Two investigators (JY, WL) employed EndNote X9 to identify and remove duplicate records. They subsequently reviewed both the titles and full texts of the remaining records for further screening. Relevant data were extracted and recorded in an Excel spreadsheet, including the following information: first author, year of publication, geographical region, duration of follow-up, method of PD diagnosis, number of cases and controls, adjusted covariates, risk values for outcome estimates. Two reviewers (XY and YD) evaluated the risk of bias using the Cochrane Collaboration Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool (15). Moreover, we assessed study quality using the Newcastle-Ottawa Scale for cohort and case-control studies, with scores ranging from 0 to 9 (16). The included studies were categorized into two groups based on their mean quality score: a low-quality group (<7) and a high-quality group (≥7). In addition, the level of evidence (LOE) was graded according to the criteria of the Oxford Centre for Evidence-Based Medicine (17). In cases of disagreements, these were resolved through negotiation.




2.5 Statistical analysis

Given the low absolute incidence of prostate cancer, the four types of measurements were estimated to have similar RR values. In conjunction with previously published meta-analyses, we present the results using RR (18, 19). Due to the unavoidable high degree of heterogeneity between publications (P < 0.05, I2 > 50%), pooled effect sizes were calculated using random effects models. Otherwise, a fixed-effects model was used (P > 0.5, I2 < 50%). Egger’s test and funnel plots were utilized to evaluate publication bias. Sensitivity analyses assess the reliability of results by removing each study in turn. Furthermore, we performed subgroup analyses considering time to cancer diagnosis, study type, study quality, population, and year of publication. Meta-analyses were conducted using Stata 16.0 and considered statistically significant at p < 0.05.




2.6 Mendelian randomization

The study rigorously adhered to the guidelines outlined in the Strengthening the Reporting of Observational Studies in Epidemiology Mendelian Randomization (STROBE-MR) framework (20). MR relies on three essential assumptions: IVs demonstrate strong correlation with PD, remain unaffected by confounding variables, and impact Pca solely through the exposure under investigation. The basic assumptions and MR design flow are depicted in Figure 1. Since publicly available pooled data were utilized, ethical approval was not necessary for this study.




Figure 1 | The three main assumptions of Mendelian randomization.






2.7 Data source and SNP selection

Summary data for PD were obtained from the comprehensive GWAS meta-analysis conducted by the International Parkinson’s Disease Genomics Consortium (IPDGC), encompassing 33,674 cases and 449,056 controls of European descent (21). GWAS data for Pca from Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) Consortium (79,148 cases and 61,106 control cases) (22). To ensure the stability of the causal relationship between exposure and outcome, IVs were selected based on the following principles: (1) We established genome-wide significance thresholds for PD at p < 5×10-8. (2) Cluster analysis was conducted to address linkage disequilibrium (LD) among the selected IVs (r2 < 0.001, kb = 10,000). (3) Only SNPs with a minor allele frequency (MAF) exceeding 0.01 were considered. (4) To mitigate bias from weak IVs. the strength of the IVs was quantified using the F value (β2/SE), with those having F < 10 being excluded (23). Here, β represents the effect size of exposure and SE represents the standard error of the effect size. we also used Phenoscanner to examine potential confounders (such as body mass index, smoking, alcohol consumption and vitamin D supplementation) (24) (Table 1).


Table 1 | Characteristics of the included GWAS summary studies in Mendelian randomization.






2.8 Statistical analysis

The primary analysis employed the robust inverse-variance weighted (IVW) method (25). This method has the strongest statistical efficacy, but it must be satisfied that all genetic variation is a valid instrumental variable, and therefore we employed the weighted median, MR-Egger regression, maximum likelihood and simple weighted mode methods as validation approaches (26, 27). Sensitivity analysis assumes a vital role in the assessment of heterogeneity and potential biases within MR studies. Firstly, heterogeneity was evaluated through the application of Cochran’s Q test, which involved calculating the weighted sum of squared differences between specific variability estimates and the overall IVW estimate (28). To address potential outliers, the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method was employed during data analysis (29). Furthermore, MR-Egger regression was utilized, and intercepts were assessed to identify potential horizontal pleiotropy (p < 0.05 was judged significant). in addition, we performed a leave-one-out analysis to test the stability of the results. We evaluated heterogeneity among variant-specific causal estimates and pinpointed outliers through scatter and funnel plots. Finally, we identified potential bidirectional links between SNPs related to the PD and PCa using the MR Steiger Filtering Test (30). In addition, we performed multivariate MR (MVMR) analyses to observe the effect of confounding factors on PCa.

Statistical analyses were executed using R version 4.2.2 with the “TwoSampleMR” and “MRPRESSO” packages. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantify the MR analysis, and statistical significance was defined as P < 0.05.





3 Result



3.1 Meta−analysis results



3.1.1 Study characteristics and quality evaluation

After a rigorous examination of online databases, 9 articles (5, 10, 31–37)(8 cohort and 1 case-control) from 2007 to 2019 were included in the final analysis. Figure 2 illustrates the selection process, and Table 2 provides detailed information on the included literature. 6 studies received high-quality ratings. however, all studies were at low to moderate risk of bias (Supplementary Table 2).




Figure 2 | Flow chart for meta-analysis and Mendelian randomization analysis.




Table 2 | Baseline characteristics of the included studies.






3.1.2 PCa risk in PD

Pooled analyses overall showed no significant association between patients with PD and the subsequent risk of PCa (RR = 0.89; 95% CI: 0.73 to 1.08; p = 0.237) (Figure 3A). This result held true across different types of studies (Figure 3B). Interestingly, within the Caucasian population, patients with PD were found to have a lower risk of PCa (RR = 0.81; 95% CI: 0.69 to 0.95; p = 0.011) (Figure 3C).




Figure 3 | Forest plot of PCa risk in patients with PD and subgroup analysis. (A) overall effect; (B) subgroup analysis of study type; (C) subgroup analysis of different ethnicities.






3.1.3 Sensitivity analysis

Summarized effects remain stable through the successive exclusion of each study (Supplementary Figure 1). Furthermore, evidence of significant bias was not found in funnel plots or through Egger’s (p = 0.963) and Begg’s test (p = 0.297) (Supplementary Figure 2).





3.2 Mendelian randomization results

The a priori calculation of statistical power was conducted meticulously (38). By setting α at 5%, we attained a substantial statistical power exceeding 80% in scenarios where the expected OR concerning PCa were either at or below 1.04 within the context of PD.



3.2.1 Effect of PD on PCa

The associations between the 21 designated SNPs and PCa are meticulously delineated in Supplementary Table 3. The range of variance expounded upon by these SNPs in relation to the exposure variables extended from 0.004 to 0.02. Furthermore, the IVs demonstrated robust statistical significance (F > 10). After a rigorous Steiger filtering process, no signs of reverse causality were found. There is no apparent association between genetic predisposition to PD and the occurrence of PCa (OR = 1.025; 95% CI: 0.997 to 1.054; P = 0.082), which is consistent with the overall effect results of the meta-analysis. No heterogeneity was observed in the sensitivity analysis, and there was no horizontal pleiotropy detected in the MR-Egger analysis. Additionally, the MR-PRESSO test did not identify any outliers (Global test p = 0.315) (Figure 4; Supplementary Figure 3). Results between genetic susceptibility to PD and PCa remained robust in MVMR adjusted for relevant confounders (Table 3).




Figure 4 | MR analysis results from PD to PCa risk.




Table 3 | Complete MVMR results of PD in relevant prostate cancer risk factors.








4 Discussion

This study has undertaken a comprehensive assessment of the risk of PCa in patients diagnosed with PD. The results of cumulative analysis and MR analysis have confirmed the lack of significant correlation between PD and PCa under genetic prediction. The co-occurrence of two distinct diseases within the same individual may stem from shared environmental or genetic factors. Previous studies have yielded conflicting evidence regarding the relationship between PD and cancer (5, 37), and several potential explanatory mechanisms have been proposed.

PD, a neurodegenerative disorder, is characterized by the demise of dopaminergic neurons, distinguishing it from PCa, which is typified by unrestricted cellular proliferation and a lack of apoptosis. Interestingly, cells in PD patients exhibit a greater propensity to undergo apoptosis, which may serve as a defensive mechanism against cancer progression.

Smoking is recognized as a significant risk factor for various types of tumors while seemingly reducing the risk of developing PD (39). Nicotine has been observed to stimulate the release of dopamine and demonstrate neuronal protection in various experimental models (40). Although PCa is not typically associated with smoking, earlier investigations have reported a decreased risk of PCa among individuals with PD (4, 41). It’s worth noting that patients diagnosed with PD typically have higher mortality rates than the general population. Furthermore, those who do survive are less likely to die from subsequent cancers (42).

One of the therapeutic strategies for individuals with PD involves increasing dopamine levels within the central nervous system, thereby stimulating the sympathetic nerves. Concurrently, anticholinergic drugs might act on parasympathetic nerves to alleviate symptoms (43). The stroma of the prostate is heavily innervated by branches of the autonomic nervous system, which play a significant role in the growth and sustenance of the prostate gland (44). A study by Magnon et al. (45) discovered that sympathetic neurons foster tumor genesis at an early stage, while parasympathetic fibers drive the dissemination of cancer. Consequently, medications targeting branches of the autonomic nervous system could potentially offer therapeutic advantages.

Levodopa and other dopaminergic drugs may be administered following a diagnosis of PD. Current studies indicate that L-Dopa decarboxylase (DDC) is an androgen receptor co-activator, its expression increases with the progression of the disease, and its co-expresses with receptors in prostate cancer cells. The related drugs enhance anti-tumor activity by inhibiting the DDC pathway (46). Interestingly, our findings indicate that Caucasian populations exhibit a lower prevalence of PCa following the onset of PD. Lin et al. (5)discovered that Taiwanese men diagnosed with PD had an elevated risk of PCa, a phenomenon attributed to a confluence of distinctive genetic backgrounds, habits, and/or environmental exposures. However, in MR analyses conducted on European populations, no significant causal association was observed between PD and the risk of subsequent PCa occurrence. This appears to suggest that the results of meta-analyses may have been influenced by bias and confounding factors.



4.1 Strength and limitation

Our study possesses several strengths. Firstly, we adhered strictly to PRISMA guidelines in our literature screening and conducted subgroup analyses and bias assessments. Secondly, our MR study adhered to the three key hypotheses and utilized a two-sample approach to explore the causal relationship between PD and PCa. Sensitivity analyses confirmed the reliability of our results, while MVMR analyses helped to eliminate confounding bias. Despite these strengths, our study is not without limitations. For one, the MR analysis validated results solely for the European population, which might have resulted in a more homogeneous association. Furthermore, we did not perform a gender-stratified analysis, which may have introduced some bias. Moreover, the results of the meta-analysis were inevitably highly heterogeneous. Finally, the insufficient sample size may lead to instability in subgroup effects, and future studies with larger sample sizes are needed to enhance the reliability of the results.





5 Conclusion

This comprehensive MR and meta-analysis did not demonstrate an association between PD and PCa risk. The potential biological pathways contributing to the co-morbidity between these two diseases certainly warrant further exploration.
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Background: Glioblastoma (GBM) is the most prevalent malignant brain tumor, significantly impacting the physical and mental wellbeing of patients. Several studies have demonstrated a close association between gut microbiota and the development of GBM. In this investigation, Mendelian randomization (MR) was employed to rigorously evaluate the potential causal relationship between gut microbiota and GBM.
Methods: We utilized summary statistics derived from genome-wide association studies (GWAS) encompassing 211 gut microbiota and GBM. The causal association between gut microbiota and GBM was scrutinized using Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median (WM) methods. Cochrane’s Q statistic was employed to conduct a heterogeneity test. MR-Pleiotropic Residuals and Outliers (MR-PRESSO) were applied to identify and eliminate SNPs with horizontal pleiotropic outliers. Additionally, Reverse MR was employed to assess the causal relationship between GBM and pertinent gut microbiota.
Results: The MR study estimates suggest that the nine gut microbiota remain stable, considering heterogeneity and sensitivity methods. Among these, the family.Peptostreptococcaceae and genus.Eubacterium brachy group were associated with an increased risk of GBM, whereas family.Ruminococcaceae, genus.Anaerostipes, genus.Faecalibacterium, genus.LachnospiraceaeUCG004, genus.Phascolarctobacterium, genus.Prevotella7, and genus.Streptococcus were associated with a reduced risk of GBM. Following Benjamini and Hochberg (BH) correction, family.Ruminococcaceae (OR = 0.04, 95% CI: 0.01–0.19, FDR = 0.003) was identified as playing a protective role against GBM.
Conclusion: This groundbreaking study is the first to demonstrate that family.Ruminococcaceae is significantly associated with a reduced risk of GBM. The modulation of family_Ruminococcaceae for the treatment of GBM holds considerable potential clinical significance.
Keywords: glioblastoma, gut microbiota, gut-brain axis, Mendelian randomization, causality
1 INTRODUCTION
Glioblastoma (GBM) is one of the most prevalent types of malignant brain tumors, with an annual incidence ranging from 3 to 6.4 per 100,000 individuals. It constitutes approximately 23.3% of central nervous system tumors and 78.3% of malignant brain tumors. The 5-year mortality rate ranks second only to that of pancreatic cancer and lung cancer (Sung et al., 2021; Ostrom et al., 2023). Typically arising from glial cells or precursor cells, its clinical manifestations encompass increased intracranial pressure, neurological and cognitive impairment, as well as seizures (Omuro and DeAngelis, 2013). According to the World Health Organization (WHO) classification, gliomas are categorized into four grades, with a direct correlation between higher grade and poorer prognosis. Notably, GBM stands out as the most malignant subtype. Characterized by a suppressive immune microenvironment and a grim prognosis, GBM stands as one of the most challenging tumors, prone to recurrence and imposing a substantial societal burden (Chen et al., 2021).
There is mounting evidence that the immunosuppressive environment of GBM is not only mediated by the immunosuppressive cells and molecules described above but also has many connections to the gut microbiota that contribute to the development of GBM (5). The human gut microbiota contains microbes with diverse properties and functions. Imbalance in the gut microbiota refers to the inability of bacteria in the human environment to maintain a dynamic balance, resulting in an imbalance of gut microbiota. Bacteria in the human environment are unable to maintain homeostasis, leading to inflammation and immunosuppression, and the gut microbiota is particularly responsive to the presence of tumors (Ferreiro et al., 2018; Sepich-Poore et al., 2021). In recent years, the role of the gut microbiota in tumors has been extensively studied. In neurodegenerative diseases and tumors of the central nervous system (CNS), the gut microbiota establishes interactions between the gut and the CNS in complex and as yet unclear ways (Fung et al., 2017).
Given the ethical issues and costs associated with clinical trials, determining causation becomes challenging (Bothwell and Podolsky, 2016). Many studies investigating the relationship between the gut microbiota and tumors have primarily employed case-control designs, introducing difficulty in establishing the temporal sequence between changes in the composition of the gut microbiota and the onset of tumors (de Clercq et al., 2021; Bellerba et al., 2022; Reichard et al., 2022). In light of these challenges, Mendelian randomization (MR) emerges as a robust approach, utilizing single nucleotide polymorphisms (SNPs) as instrumental variables (IV) derived from genome-wide association studies (GWAS) to ascertain causality between exposure and outcome (Sekula et al., 2016). Consequently, our present study employs Mendelian randomization methods to analyze the causal association between gut microbiota and glioblastoma multiforme (GBM), providing insights for potential clinical interventions for GBM.
2 MATERIALS AND METHODS
2.1 Study population
As illustrated in Figure 1, our study outlines the two-sample MR investigation employed to explore the causal association between the gut microbiota and GBM. Subsequently, rigorous quality controls, including heterogeneity and gene pleiotropy tests, were executed to validate the dependability of the causal findings. In enhancing the precision of causal effect estimation, adherence to three crucial assumptions is imperative when utilizing SNPs as IVs in MR analysis (Sung et al., 2021): IVs must be closely aligned with the exposure factor; (Ostrom et al., 2023) IVs should exhibit no correlation with confounding factors; (Omuro and DeAngelis, 2013); IVs must exclusively influence outcomes through exposure, avoiding other pathways (Figure 2).
[image: Figure 1]FIGURE 1 | The study design of the present MR study of the associations of gut microbiota and GBM. Abbreviations: GBM, glioblastoma; LD, linkage disequilibrium, which used to measure the correlations between SNPs; IVW, Inverse Variance Weighted, the main analyses to evaluate the relationship between exposure and outcome; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic biases in the SNPs and correct the pleiotropic effects; MR, Mendelian randomization; SNP, single nucleotide polymorphism, as instrumental variables for the exposures and outcomes.
[image: Figure 2]FIGURE 2 | The study design of the present MR study of the associations of gut microbiota and GBM. Abbreviations: GBM, glioblastoma; LD, linkage disequilibrium, which used to measure the correlations between SNPs; IVW, Inverse Variance Weighted, the main analyses to evaluate the relationship between exposure and outcome; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic biases in the SNPs and correct the pleiotropic effects; MR, Mendelian randomization; SNP, single nucleotide polymorphism, as instrumental variables for the exposures and outcomes.
The main exposure factor in our study is the gut microbiota, and we investigate human genetics within the context of studying the gut microbiota. This investigation is conducted as part of an international consortium known as MiBioGen (Kurilshikov et al., 2021). Our study encompasses data from the human gut microbiota of 18,340 European individuals derived from 24 population-based cohorts. After adjustment for age, sex, technical covariates, and genetic principal components, spearman’s correlation analysis was performed to identify genetic loci that affected the covariate-adjusted abundance of bacterial taxa. Following the exclusion of 15 genera lacking specific species names, we identified 196 bacterial taxa, comprising 9 phyla, 16 orders, 20 orders, 32 families, and 119 genera.
The outcome variable we focus on is GBM, and the GWAS dataset associated with GBM came from a publicly available GWAS meta-analysis that included 91 cases and 218,701 controls of European ancestry (Sudlow et al., 2015). The GWAS meta-analysis, a prospective cohort study, systematically gathers comprehensive genetic and phenotypic data from approximately 500,000 individuals across the UK. Each participant contributes a wealth of phenotypic and health-related information. Genome-wide genotype data were collected for all participants by linking health and medical records to provide comprehensive follow-up information.
2.2 Selection of instrumental variables
Single nucleotide polymorphisms (SNPs) are the most frequently utilized genetic variations in MR Analysis, which mainly refers to the DNA sequence diversity caused by a change in a single nucleotide at the genomic level. In this study, SNPs significantly associated with the relative abundance of 196 gut microbiota were selected as the available instrumental variables (IVs). Previous studies have shown that the inclusion of multiple instrumental variables enhances the explanatory power of the observed variation and enhances the accuracy and reliability of the analyzed results. Therefore, in this study, the selection of IVs was based on the results of correlation analysis where significance was determined at P < 1 × 10−5. The criteria for linkage disequilibrium were set at R2 < 0.001 and a genetic distance of 10,000 kb, whereby highly correlated SNPs were excluded to ensure the independence of the included SNPs from each other. Finally, SNPs associated with the relative abundance of gut microbiota were projected to the GWAS pooled data of GBM, and the corresponding statistical parameters were extracted. Utilizing statistical parameters associated with identical loci in the relative abundance of gut microbiota and the GWAS results for GBM, the data were harmonized. This harmonization ensured that the effect values for both exposure and outcome corresponded to the same effect allele.
2.3 Statistical analysis
In this study, Inverse Variance Weighted (IVW), MR-Egger, Weighted Median (WME) were used to estimate the dependent effects. The IVW method operates under the assumption that all genetic variants are valid IVs. It employs the ratio method to calculate the causal effect values for individual instrumental variables, subsequently summarizing each estimate through a weighted linear regression to derive the total effect value. Notably, the main divergence between the MR-Egger method and the IVW method lies in the regression, which takes into account the presence of an intercept term. Conversely, the WME method strategically leverages the intermediate effects of all available genetic variants, obtaining estimates by weighting the inverse variance of the correlation of each SNP with the outcome.
Since the IVW method exhibits higher test efficacy compared to other MR methods, we chose it as the preferred method for estimating causal effects in this study. Additionally, for enhanced result interpretation, the study transformed Beta (β) values obtained from the results into Odds Ratios (OR), while simultaneously calculating the 95% confidence intervals (CI). To assess the association of effect estimates for causality, which might be influenced by weak instrumental bias, the strength of IV was evaluated using the F statistic. This statistic was calculated using the following equation: F = R2 (n-k-1)/k (1-R2), where R2 represents the variance explained by IV (for each gut microbiota), and n is the sample size. The value of R2 was estimated using the minor allele frequency (MAF), and b values were determined by the equation: R2 = 2 × MAF × (1-MAF) × b2.
In addition, for the purpose of further testing the stability and reliability of the results, quality control included sensitivity analysis and heterogeneity testing, as well as a gene multiplicity test. Sensitivity analysis was performed using the leave-one-out method, where the combined effect values of the remaining SNPs were calculated by sequentially deleting individual SNPs, and the effect of each SNP on the results was assessed. Heterogeneity testing was conducted using the Cochran Q test to determine the heterogeneity of the SNPs, aiming to assess the possible bias in the estimation of the causal effect due to the measurement error of SNPs caused by different analysis platforms, experimental conditions, and analyzing populations. Horizontal gene pleiotropy tests were employed to assess whether IVs affected outcomes through pathways other than exposure, utilizing intercept terms from MR-Egger regression. Finally, reverse MR was performed to analyze whether there was a reverse causal relationship between GBM and meaningful gut microbiota. MR analyses and quality control for this study were conducted using version 4.0.3 of R and additionally version 0.5.6 of the TwoSampleMR software package.
3 RESULTS
3.1 Two-sample Mendelian randomization
The results of this study involving gut microbiota associated with GBM are presented in Supplementary Table S1. After a series of quality control steps, 136 independent SNPs from 9 gut microbiota were associated with GBM. The F-statistics for the gut microbiota ranged from 14.58 to 88.42, and all met the threshold of greater than 10, suggesting that they are unlikely to be affected by weak instrumental bias (Supplementary Table S2). Briefly, we identified nine gut microbiota associated with GBM. After undergoing BH correction, the family.Ruminococcaceae was found to play a protective role against GBM (Table 1). Details of the IVs used are listed in Supplementary Table S3.
TABLE 1 | Effect estimation of the association between meaningful gut microbiota and risk of GBM in MR analysis. Abbreviations: GBM, glioblastoma; MR, Mendelian randomization analysis; SNPs, Number of single nucleotide polymorphism. CI, confidence interval; OR, odds ratio; P FDR, p-value was calculated by the Benjamini-Hochberg method.
[image: Table 1]3.2 Causal effects of gut microbiota on GBM
Nine gut microbiota were screened for correlation with GBM according to the IVW (Figure 3). Among them, family.Peptostreptococcaceae (OR: 3.83, 95% CI: 1.02–14.35, p = 0.046) and genus.Eubacterium brachy group (OR: 2.85, 95% CI: 1.16–7.01, p = 0.023) were found to increase the risk of GBM, while family.Ruminococcaceae (OR: 0.04, 95% CI: 0.01–0.19, p = 9.51E-05), genus.Anaerostipes (OR: 0.16, 95% CI: 0.03–0.83, p = 0.029), genus.Faecalibacterium (OR: 0.16, 95% CI: 0.04–0.65, p = 0.011), genus.Lachnospiraceae UCG004 (OR: 0.20, 95% CI: 0.04–0.96, p = 0.045), genus.Phascolarctobacterium (OR: 0.16, 95% CI: 0.03–0.76, p = 0.021), genus.Prevotella7 (OR: 0.30, 95% CI: 0.13–0.68, p = 0.004), and genus.Streptococcus (OR: 0.21, 95% CI:0.05–0.97, p = 0.046) showed a negative correlation with GBM. However, only family.Ruminococcaceae was found to be negatively associated with the risk of GBM after strict BH correction (PFDR = 0.003).
[image: Figure 3]FIGURE 3 | Scatter plots for the causal association between gut microbiota and GBM. Abbreviations: GBM, glioblastoma; OR, odds ratio; CI, confidence interval.
The WME method has suggested that family.Peptostreptococcaceae (OR: 6.42, 95% CI: 1.09–37.71, p = 0.040) and genus.Eubacterium brachy group (OR: 4.70, 95% CI: 1.46–15.14, p = 0.009) are associated with an increased risk of GBM, while family.Ruminococcaceae (OR: 0.08, 95% CI: 0.01–0.79, p = 0.031) and genus.Prevotella7 (OR: 0.28, 95% CI: 0.10–0.84, p = 0.023) show a negative correlation with GBM. However, there was no observed association between genus.Anaerostipes, genus.Faecalibacterium, genus.Lachnospiraceae UCG004, genus.Phascolarctobacterium, genus.Streptococcus and GBM (Figures 3, 4).
[image: Figure 4]FIGURE 4 | Scatter plots for the causal association between 9 gut microbiota and GBM. (A) A. family.Peptostreptococcaceae; (B) family.Ruminococcaceae; (C) genus.Anaerostipes; (D) genus.Eubacterium brachy group; (E) genus.Faecalibacterium; (F) genus.Lachnospiraceae UCG004; (G) genus.Phascolarctobacterium; (H) genus.Prevotella7; (I) genus.Streptococcus.
Additionally, the MR-Egger regression intercept did not show evidence of pleiotropy of the gut microbiota with GBM (All intercept p > 0.05) (Table 2; Supplementary Table S3). MRPRESSO regression did not identify outliers (All intercept p > 0.05).The results of heterogeneity analysis confirmed the accuracy of the findings (Table 2; Supplementary Table S4). Meanwhile, the data’s robustness was further confirmed by the leave-one-out results, which demonstrated a consistent negative association between family_Ruminococcaceae and GBM risk (Figure 5; Supplementary Table S5).
TABLE 2 | Heterogeneity and sensitivity analyses of MR. Abbreviations: MR, Mendelian randomization analysis; SNPs, Number of single nucleotide polymorphism; GBM, Glioblastoma; IVW, Inverse Variance Weighted; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier.
[image: Table 2][image: Figure 5]FIGURE 5 | Scatter plots for the causal association between 9 gut microbiota and GBM. (A) family.Peptostreptococcaceae; (B) family.Ruminococcaceae; (C) genus.Anaerostipes; (D) genus.Eubacterium brachy group; (E) genus.Faecalibacterium; (F) genus.Lachnospiraceae UCG004; (G) genus.Phascolarctobacterium; (H) genus.Prevotella7; (I) genus.Streptococcus.
3.3 Inverse MR analysis
In the reverse MR, GBM was selected as an exposure factor. However, the results of the MR study did not support a causal relationship between GBM and altered gut microbiota (IVW, OR = 1.012, 95% CI: 0.807–1.268, p = 0.921) (Supplementary Table S6).
4 DISCUSSION
Our study is the first to identify the existence of a direct causal association between gut microbiota and GBM, indicating that an elevated abundance of gut microbiota, such as the family.Ruminococcaceae, is associated with a reduced risk of developing GBM. Ruminococcus was one of the first gastrointestinal bacteria to be discovered and plays a crucial role in metabolism (Mizrahi et al., 2021). A study on the inflammatory properties of the family.Ruminococcaceae found that it produces metabolites in the form of glucomannan polysaccharides, and that these polysaccharides can prime immune system cells (Teng et al., 2022). During the development of GBM, when the BBB is disrupted in the body and circulating immune cells are suppressed in a immunosuppressive environment, gut microbiota such as C. tumefaciens can further enhance the stimulation of immune system cell production. Thus, this bacterium may be a potential protective factor in the development of GBM.
Genus Faecalibacterium has been reported as one of the major butyrate producers found in the intestine (Lopez-Siles et al., 2017). In vitro studies have demonstrated that butyrate exhibits antitumor effects, such as inhibiting tumor growth by reducing tumor necrosis factor (TNF) secretion in intestinal epithelial cells and inducing differentiation and apoptosis of tumor cells. Butyrate, as a short-chain fatty acid, serves as a histone deacetylase (HDAC) inhibitor, thereby impeding the activity and life cycle of cancer cells (Modoux et al., 2022). Moreover, butyrate, as a short-chain fatty acid and HDAC inhibitor, enhances CPT1A activity to promote induced regulatory T-cell (iTreg) differentiation. iTreg plays a pivotal role in immunosuppression and maintaining immune homeostasis in brain tissue (He et al., 2022). Genus.Anaerostipes also belongs to butyrate-producing bacteria and exhibits anti-inflammatory and immunomodulatory functions (Zhang et al., 2016). Within the genus_LachnospiraceaeUCG004 can reduce tumorigenesis by modulating the function of tumor immunosurveillance (Carasso et al., 2021). However, further studies are needed to explore its potential in terms of GBM risk protection.Therefore, we suggest that these gut microbiota may play a role in GBM development by modulating immunity.
A growing body of evidence underscores the pivotal role of the gut microbiota in tumor therapy, highlighting its key involvement in both local gut immunity and systemic immunity (Park et al., 2022). A robust microbiota employs direct and indirect mechanisms to resist the colonization and invasion of harmful microorganisms, emerging as an integral component of the human defense against external threats. With this in mind, we focused on exploring whether changes in gut flora abundance are linked to the development of GBM as the central theme of this MR. The brain, characterized by a unique immune environment, establishes a crucial link between the gut microbiome and brain tumors through the gut-brain axis. The principal immune privilege in this connection arises from the presence of the blood-brain barrier (BBB), a highly specialized membrane barrier comprised of endothelial cells. The BBB regulates the entry of soluble substances, including antibodies, metabolites, signaling molecules, and immune cells, into the CNS (Obermeier et al., 2013). Experimental studies have elucidated bidirectional communication pathways linking the gut and the brain, encompassing diverse mechanisms such as neural, endocrine, and inflammatory pathways. These pathways are subject to modulation by alterations in gut wall integrity and BBB permeability. Comparable mechanisms are observed between the gut flora and GBM. Notably, when GBM manifests, it disrupts the BBB, facilitating the infiltration of immune cells from the body into the brain parenchyma. Within this specific microenvironment, these immune cells might experience a context where their functionality becomes suppressed (Oberoi et al., 2016; Zhou et al., 2017). This immunosuppression potentially hampers the efficacy of GBM immunotherapy. Hence, there arises a critical consideration: balancing the composition and abundance of gut microbiota could attenuate immunosuppression within the microenvironment surrounding GBM. This modulation may, in turn, potentiate specific therapeutic effects of GBM.
Gut microbiota may regulate astrocyte activity through microbial metabolism that activates the astrocytic aromatic hydrocarbon receptor (AHR). It has been demonstrated that gut commensal microbiota degrade ichthyosine, producing metabolites that reach the CNS and activate the AHR in astrocytes, thereby limiting CNS inflammation (Rothhammer et al., 2018). Aromatic hydrocarbon receptor signaling intricately regulates peripheral T cell differentiation. Additionally, peripheral T cells recruited to the CNS exert control over astrocytic and microglial responses (Rothhammer and Quintana, 2019). Gramarzki et al. reported that aromatic hydrocarbon receptors in GBM cells drive TGF-B expression. Moreover, they highlighted that aromatic hydrocarbon receptor signaling promotes an immunosuppressive microenvironment in GBM (Gramatzki et al., 2009). These findings collectively suggest that gut microbiota may wield a pivotal role in GBM immune evasion by modulating AHR and, consequently, glioma development. Furthermore, they propose the potential of gut microbiota as therapeutic targets for GBM. The microbiota can regulate local and systemic intestinal immunity, particularly in the induction and maturation of immune cells in the nervous system. Gut microbiota dysregulation has been reported to down-regulate granulocyte macrophage colony-stimulating factor (GM-CSF) signal transduction, leading to significant expression of reactive oxygen species (ROS) in activated immature myelocytes, thereby increasing the inhibitory activity of MDSC against T cells (Deh et al., 2019). In addition, dysregulation of the gut microbiota affects the balance between anti-inflammatory Tregs and pro-inflammatory Th17 cells (Chen and Tang, 2021), downregulates Foxp3 expression on tumor cells (Fan et al., 2022), and leads to inhibition of glioma cell growth and apoptosis.
Changes in the gut microbiota composition alter gut immune-brain communication and promote GBM development by creating a tumor-tolerant microenvironment in the CNS (DAlessandro et al., 2020). Recent studies have shown that after the development of GBM, a significant increase in the structure of the bacterial flora is observed, with a significant increase in Bacteroidetes, a decrease in the level of Bacteroidetes thickeniensis, an increase in the number of Ackermannia and Verrucomicrobia, and a decrease in the intestinal metabolites propionic, butyric, and acetic acids (Dono et al., 2020). Disruption of the gut microbiota further alters the tumor microenvironment and affects the antitumor efficacy of chemotherapy (Viaud et al., 2013; Daillère et al., 2016). The effects of chemotherapy have been shown to be remarkable in the treatment of tumors. Notably, the microbiota changes differently at different stages after temozolomide treatment. Specifically, there is an increase in the number of Ackermannia, Bifidobacterium, and Verrucomicrobium 7 days after the first temozolomide treatment. Additionally, an increase in the number of Ackermannia is observed in patients who responded positively to immunotherapy with PD-1 blockade, suggesting its potential role in mediating the tumor response to immunotherapy (Routy et al., 2018).
The strength of this study lies in the identification of a causal relationship, providing potential gut microbiota candidates for subsequent functional studies. However, several limitations should be considered: (Sung et al., 2021): the MR analysis utilized GWAS data from a European population, necessitating replication in diverse populations; (Ostrom et al., 2023); the study included a limited range of gut microbiota; obtaining GWAS data from additional gut microbiota was crucial for a more comprehensive exploration of their association with GBM; (Omuro and DeAngelis, 2013); while MR is a highly efficient causal analysis method, validating the potential causal link between gut microbiota and GBM requires animal experiments. Finally, (Chen et al., 2021), the causal relationship between gut microbiota and GBM is multifaceted; exploring the etiology and pathogenesis demands a multi-perspective investigation.
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Genetic causality and site-specific relationship between sarcopenia and osteoarthritis: a bidirectional Mendelian randomization study
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Background: Previous studies demonstrated a controversial relationship between sarcopenia (SP) and osteoarthritis (OA) and their genetic causality is unclear. Thus, we conducted a Mendelian randomization (MR) analysis to evaluate the possible causal association between sarcopenia-related traits (appendicular lean mass (ALM), grip strength, usual walking pace) and OA.
Method: We used pooled genetic data from the UK Biobank for ALM(n = 450,243), left-hand grip strength (n = 461,026), right-hand grip strength (n = 461,089) and usual walking pace (n = 459,915). Moreover, summary statistics for OA were obtained from the latest study conducted by the Genetics of Osteoarthritis Consortium, including all OA (n = 826,690), hand OA (n = 303,7782), hip OA (n = 353,388) and knee OA (n = 396,054). The primary method for estimating causal effects was the inverse-variance weighted (IVW) method, with the utilizing of false discovery rate adjusted p values (PFDR). Additional MR methods such as MR-Egger regression, MR pleiotropy residual sum and outlier (MR-PRESSO), weighted median were employed as supplementary analyses.
Results: We discovered ALM (odds ratio (OR) = 1.103, 95% confidence interval (CI) = 1.052–1.156, PFDR = 2.87E-04), hand grip strength (left, IVW OR = 0.823, 95% CI = 0.712 to 0.952, PFDR = 0.020; right, OR = 0.826, 95% CI = 0.718 to 0.950, PFDR = 0.020), and usual walking pace (OR = 0.339, 95% CI = 0.204 to 0.564, PFDR = 2.38E-04) were causally associated with OA risk. In the reverse MR analysis, we identified a causal effect of OA on ALM (β = −0.258, 95% CI = −0.369 to 0.146, PFDR = 0.6.07E-06), grip strength (left, β = −0.064, 95% CI = −0.104 to 0.024, PFDR = 0.002; right, β = −0.055, 95% CI = −0.095 to 0.014, PFDR = 0.008), and usual walking pace (β = −0.104, 95% CI = −0.147 to 0.061, PFDR = 1.61E-05).
Conclusion: This present study suggests an obvious causality of SP on OA, with condition exhibiting site-specific effects, while evidence was also provided for the causal effect of OA on SP.
Keywords: sarcopenia, osteoarthritis, Mendelian randomization, degenerative musculoskeletal diseases, causal relationship
INTRODUCTION
Sarcopenia (SP) and osteoarthritis (OA) as degenerative musculoskeletal diseases (DMD) emerged as major challenges for the aging population (Yin et al., 2023). SP is a muscle disease (muscle failure) (Cruz-Jentoft et al., 2019), characterized by an accelerated loss of muscle mass and function (Cruz-Jentoft and Sayer, 2019). Currently, about 50 million people worldwide suffer from SP, and its prevalence increases with age (Hida et al., 2014). Some studies have shown that the global prevalence of SP in people over 60 years old ranges from 10.00% to 27.00%, and in people over 80 years old is as high as 50.00% (Therakomen et al., 2020; Petermann-Rocha et al., 2022). OA is a degenerative disease with clinical manifestations of chronic pain, joint stiffness, and swelling (Cho et al., 2021), which afflicts more than 500 million people worldwide and has become the leading cause of chronic pain and disability in older adults (Wen and Xiao, 2022). As SP and OA are often diagnosed as comorbidities clinically, epidemiologic studies are increasingly examining the relationship between these two prevalent diseases.
Several studies have demonstrated a significant interaction between SP and OA. SP or its related traits are likely to be associated with outcomes in OA (predominantly OA of the knee). James S Andrews et al. showed that ALM and grip strength may be related to the development of KOA in older men (Andrews et al., 2021). On the other hand, a systematic review and meta-analysis showed that the prevalence of sarcopenia was more than twice as high in patients with osteoarthritis of the knee compared with controls (Pegreffi et al., 2023). However, there are also some studies do not agree with the aforementioned notion, and they consider the interconnection of the two to be highly controversial (Jones et al., 2021; Mezian et al., 2021; Tzartza et al., 2023). In addition, for ethical and practical purposes, a causal association between the two diseases could not be proved by a randomized controlled trial (RCT).
Mendelian randomization (MR) is a data analysis technique used to evaluate etiologic inferences in epidemiologic studies. The technique utilizes genetic variation as an instrumental variable (IV) to estimate reliable causal associations between exposures and outcomes (Burgess et al., 2019; Richmond and Davey Smith, 2022). Based on a two-sample bidirectional MR framework, we examined the potential causality of all OA, hand OA, hip OA, and knee OA with SP-related traits (appendicular lean mass (ALM), hand grip strength (left), hand grip strength (right), and usual walking pace).
MATERIALS AND METHODS
Study design overview
Figure 1 illustrates the design of our bidirectional MR study. We first estimated the causal effect of SP-related traits on OA and then assessed the causal effect of OA on SP-related traits. Genetic variants were considered as IVs only if they met the following three strict core assumptions. First, genetic variants were highly correlated with exposure. Second, genetic variants are not associated with confounding factors. Finally, genetic variation cannot act directly on the outcome, its effect on the outcome can only be reflected by exposure.
[image: Figure 1]FIGURE 1 | Generalized diagram of the study process. Abbreviations: OA: osteoarthritis; MR: Mendelian randomization;PFDR: The inverse-variance weighted (IVW) method with false discovery rate (FDR) adjusted p values.
Data sources for sarcopenia-related traits
All summary-level genetic data for three SP-related traits were obtained from the UK Biobank (UKB). UKB is a large-scale repository of biomedical genes and information resources, containing about half a million people. The repository includes samples of volunteers’ genetic information, lifestyle choices, and pedigree data (Sudlow et al., 2015). Identification of ALM, hand grip strength, and usual walking pace as consensus diagnostic criteria for SP was based on the report of the European Working Group on Sarcopenia in Older People (EWGSOP) (Cruz-Jentoft et al., 2010). In terms of the ALM, pooled data were analyzed for 450,243 UKB cohort participants, and ALM-related values were quantified and adjusted (Pei et al., 2020). Grip strength data were obtained from UKB’s summary of hand grip strength (left and right) for 461,026 and 461,089 European ethnicity (Mitchell et al., 2019), calibrated to hand size, and adjusted for factors such as age and sex. Finally, for the “usual walking pace”, data was similarly summarized from the GWAS summary data collected by the UKB for 459,915 European populations (Mitchell et al., 2019).
Data sources for all and site-specific OA
Summary statistics for all OA and its specific sites were obtained from the Genetics of Osteoarthritis (GO) Consortium’s GWAS meta-analysis involving 826,690 individuals (177,517 patients with OA and 649,173 controls) from nine different populations (Boer et al., 2021). OA was defined by the GO based on self-reported status, hospital diagnosis, the 10th edition of the International Classification of Diseases (ICD-10) code, or TREAT-OA Consortium-defined radiology definition. The study identified 100 independently associated risk variants in 11 OA phenotypes and is the most recent and comprehensive GWAS analysis known for OA. We selected four phenotypes for analysis based on research needs: all OA (n = 826,690), hand OA (n = 303,782), hip OA (n = 353,388) and knee OA (n = 396,054).
Table 1 shows additional details such as phenotypes of all study participants.
TABLE 1 | Data sources used in this study.
[image: Table 1]Selection of IVs
We first ensured that the SNPs of the three SP-related traits were genome-wide significant (p < 5E-08). Furthermore, to exclude the SNPs of strong linkage disequilibrium, we carried out an aggregation with r2 < 0.001 and kb = 10,000 processes. Then, we also assessed the strength of IVs based on calculated R2 [R2 = 2 * MAF*(1-MAF) *beta (Cruz-Jentoft et al., 2019)] and F-statistics [F = R (Cruz-Jentoft et al., 2019)/(1-R2) * (N-K-1)/K] for each SNP (Burgess et al., 2011). In order to reduce bias, the IVs with F-statistics less than 10 were excluded (Hemani et al., 2018a), and the SNPs and their related data such as F-statistics and R2 for subsequent causal analysis are listed in Supplementary Table S1. In the reverse MR analysis, the SNP screening process was consistent with the aforementioned procedure.
MR analysis
This study used R software (Version 4.3.0) and the two-sample MR package (Version 0.5.7) for data analysis (Yavorska and Burgess, 2017). We used the random-effects IVW method as the primary analytical method for MR estimation. This method was considered the most reliable in the absence of indications of directional pleiotropy in the selected IVs (Holmes et al., 2017). In addition, several sensitivity analyses were carried out, including weighted median (WM), MR-Egger, MR pleiotropy residual sum, and outlier (MR-PRESSO) test. Within this framework, the WM selected the median estimate to calculate the causal effects (Burgess et al., 2017). The MR-Egger regression method effectively tests the null causality hypothesis and gives consistent estimates of causality even if no genetic variation is valid. Additionally, the MR-Egger regression method is robust to horizontal pleiotropy (Bowden et al., 2015). The MR-PRESSO method detects pleiotropy, removes potentially pleiotropic IVs (outliers), and provides outlier-adjusted estimates (Verbanck et al., 2018). In order to correct the problem of multiple testing relatively gently, the p-value was adjusted using the false discovery rate (FDR) which is also called q value in the main IVW MR analysis, and the significance of causal inference was set to less than 0.05 (Chen et al., 2021). In addition, the statistical power was calculated with an online sample size and power calculator for MR (https://sb452.shinyapps.io/power/), and the results are shown in Supplementary Table S4.
Heterogeneity was assessed using Cochran’s Q test, and p < 0.05 was considered statistically significant (Bowden et al., 2016). Moreover, we performed pleiotropic tests using MR-Egger intercept test and MR-PRESSO global testing to ensure that IVs do not influence the risk of outcome through other confounding factors or other biological pathways unrelated to exposure (Hemani et al., 2018b). Furthermore, we performed leave-one-out analyses to ensure the reliability of associations with individual SNPs.
RESULTS
Overview
Based on the inverse-variance weighted (IVW) method, we observed significant evidence of a bi-directionally causal relationship between SP and OA. After FDR correction, most of the meaningful results were still retained. Additionally, the results were corroborated using other MR analysis methods.
The causal effects of SP-related traits on OA
After accounting for the independence of the genetic variation, none of the IVs for ALM, hand grip strength (left), hand grip strength (right), and usual walking pace that we obtained were without linkage disequilibrium (kb > 10,000 and r2 < 0.001). Furthermore, all IVs reached genome-wide significance (p < 5E-08). Additionally, IVs with an F-statistic of less than 10 were considered weak instruments and were omitted from the MR analysis thus reducing the bias in the estimation of the IVs. Ultimately, we selected 583 SNPs, 127 SNPs, 144 SNPs, and 47 SNPs as IVs for ALM, hand grip strength (left), hand grip strength (right), and usual walking pace, respectively. Details of the IVs for SP-related traits are displayed in Supplementary Tables S1, S2.
As displayed in Table 2, a portion of Cochran’s Q test was used to detect heterogeneity (p < 0.05), hence we used the IVW method in the random effects model. In the IVW model, adjusted for the FDR, genetically elevated SP-related traits levels were causally associated with all OA, ALM (Odds ratio (OR) = 1.103, 95% confidence interval (CI) = 1.052–1.156, PFDR = 2.87E-04), hand grip strength (left, OR = 0.823, 95% CI = 0.712 to 0.952, PFDR = 0.020; right, OR = 0.826, 95% CI = 0.718 to 0.950, PFDR = 0.020), and usual walking pace (OR = 0.339, 95% CI = 0.204 to 0.564, PFDR = 2.38E-04). The results of the WM and MR-PRESSO were consistent with the IVW (Table 3). No evidence of directional pleiotropy in the MR-Egger intercept test was observed for all IVs (p for intercept >0.05) (Table 2). Leave-one-out test indicated that SNPs without large effect sizes skewed the estimates (Supplementary Figure S1).
TABLE 2 | Sensitivity and IVW analysis of the causal effects of sarcopenia-related traits on osteoarthritis.
[image: Table 2]TABLE 3 | Weighted median, MR Egger and MR PRESSO analysis of the causal effects of sarcopenia-related traits on osteoarthritis.
[image: Table 3]In the site-specific OA analysis, considering the results of the heterogeneity test, the IVW in the random effects model was used. In the IVW model, we observed that genetically determined levels of ALM were causally associated with knee OA (OR = 1.246, 95% CI = 1.151 to 1.350, PFDR = 9.71E-07), usual walking pace was negatively correlated with hip OA (OR = 0.474, 95% CI = 0.272 to 0.827, PFDR = 0.020) and knee OA (OR = 0.299, 95% CI = 0.136 to 0.659, PFDR = 0.011) (Table 2). Moreover, WM and MR-PRESSO reached similar causal conclusions, and the MR-Egger effect estimate was in the same direction as IVW, which was considered supportive (Table 3). Further, no directional pleiotropy was detected for our selected IVs on MR-Egger analysis (Table 2). Leave-one-out test results were consistent with the above (Supplementary Figures S2–S4).
The causal effect of OA on SP-related traits
After similar screening criteria, 25 SNPs, 8 SNPs, 28 SNPs, and 22 SNPs were obtained as IVs for all OA, hand OA, hip OA, and knee OA, respectively (Supplementary Tables S1, S3). As Table 4 illustrates, heterogeneity was observed (p < 0.05) between the IVs of all the selected OA and the traits associated with SP. Therefore, we used the random effects model of IVW. The results of our analysis showed that the onset and progression of OA could lead to the worsening of sarcopenia-related traits [ALM (IVW β = −0.258, 95% CI = −0.369 to −0.146, PFDR = 0.6.07E-06), grip strength (left, β = −0.064, 95% CI = −0.104 to −0.024, PFDR = 0.002; right, β = −0.055, 95% CI = −0.095 to −0.014, PFDR = 0.008), and usual walking pace (β = −0.104, 95% CI = −0.147 to −0.061, PFDR = 1.61E-05)]. The WM and MR-PRESSO suggested similar findings, and the beta values of the MR-Egger are in the same direction (Table 5). MR-Egger intercept test did not demonstrate directional pleiotropy for our selected IVs (Table 4). The results of the leave-one-out- test displayed that SNPs without large effect sizes resulted in biases in the estimates (Supplementary Figure S5).
TABLE 4 | Sensitivity and IVW analysis of the causal effects of osteoarthritis on sarcopenia-related traits.
[image: Table 4]TABLE 5 | Weighted median, MR Egger and MR PRESSO analysis of the causal effects of osteoarthritis on sarcopenia-related traits.
[image: Table 5]In the site-specific analysis, the results of using the IVW method in the random effects model pointed to a negative causal relationship between hand OA and grip strength (left, β = −0.102, 95% CI = −0.149 to −0.055, PFDR = 7.23E-05; right, β = -0.104, 95% CI = −0.152 to −0.057, PFDR = 7.23E-05). Hip OA (β = −0.025, 95% CI = −0.038 to −0.013, PFDR = 2.62E-04) and knee OA (β = −0.064, 95% CI = −0.087 to −0.04, PFDR = 1.37E-06), remained significantly causally and negatively correlated with usual walking pace (Table 4). In addition, we identified that only knee OA was causally related to ALM in the available site-specific cohorts (β = −0.179, 95% CI = −0.281 to −0.076, PFDR = 0.001), the results of all other MR analysis methods were similar to those of the IVW (Table 5). Heterogeneity for the associations between the selected IVs of the knee OA and ALM was not observed, as in the study above no directional pleiotropy was detected (Table 4). The results of the leave-one-out test were also consistent with the aforementioned results (Supplementary Figures S6–S8).
DISCUSSION
We investigated the potential causality between SP-related traits and OA. Following the FDR correction, the results demonstrated a possible causal relationship between SP-related traits and all OA, the usual walking pace and hip OA, the usual walking pace and knee OA, the ALM and knee OA, respectively. In addition, we found evidence of their previous reverse causation with each other. The results also indicated a causal relationship between hand OA and hand grip strength.
Firstly, SP increases the risk of OA. In recent years, studies have demonstrated a correlation of varying intensity between SP and OA (Jin et al., 2017; Vlietstra et al., 2019; Dalle and Koppo, 2020; Godziuk et al., 2021). Decreased muscle strength is the main feature of SP and previous experiments have demonstrated that decreased muscle strength or muscle weakness is a risk factor for the development and progression of OA (Tanaka et al., 2019; Xu et al., 2020). Andrews et al. discovered that in men only, the likelihood of knee OA was reduced for each standard deviation (SD) reduction in ALM (OR per SD reduction: 0.68; 95% CI: 0.47–0.97) (Andrews et al., 2021). Similarly, another study noted significant ALM or total lean mass and increased fat mass (FM) were associated with radiographic knee OA (Azuma et al., 2017). Optimizing medial femoral size is important in clinical management to reduce the progression of OA and subsequent knee arthroplasty, which in part reflects the important impact of SP on the development of OA (Wang et al., 2012).
In addition, OA has been noted as a risk factor for increasing the incidence of SP (Kemmler et al., 2015; Dharmakulsakti et al., 2022). A previous foundational experimental study provided some mechanistic insights, indicating that knee osteoarthritis induced by anterior cruciate ligament transection promotes remodeling and atrophy in the neuromuscular junctions of the quadriceps and tibialis anterior muscles. These changes were associated with signs of inflammation and alterations in muscle gene and protein expression (Cunha et al., 2019). Besides, some studies have indicated a strong relationship between OA and low skeletal muscle mass (Berenbaum and van den Berg, 2015; Jeon et al., 2019). A significant association between OA of the knee and walking pace was observed (p < 0.001, OR:0.073) (Nakamura and Ogata, 2016). A recent study conducted a more comprehensive analysis, revealing that the OA group had statistically significantly worse SP parameters than the control group, with lower appendicular skeletal muscle mass (p = 0.041), impaired performance on the 40-m fast walk test (p = 0.020), and reduced right (p < 0.01) and left (p < 0.01) hand grip strength. The findings suggest an early onset of sarcopenia in these individuals (de Almeida et al., 2020).
According to previous studies, bone, muscle, and fat tissue are connected and interact with each other through molecules. And SP seems to have a bidirectional relationship with the maintenance or destruction of joint structures (Spanoudaki et al., 2023). SP and OA elevate the risk of mutual development, which is one of the most important reasons for their frequent coexistence (Peng and Zeng, 2022). A new concept of “sarcopenic knee OA” has also been proposed (Iijima and Aoyama, 2021). The study by Jiyong Yang et al. identified a common network of genetic interactions between KOA and SP, including 14 common differentially expressed genes, 4 hub genes, and 10 potential chemical compounds, among other important findings, which have updated the research results of the mechanism between OA and SP (Yang et al., 2023).
These previous studies support our view to some extent. Our study’s methodology thus has some advantages. Firstly, the MR method can effectively avoid the drawbacks of traditional observational research methods such as residual confounding uncertainty and reverse causality. Secondly, the IVs for SP-related traits were obtained from the existing large GWAS, and the IVs for OA were obtained from the most recent GWAS. This allowed for a more precise assessment of effect sizes than would be possible with individual-level data or findings from studies with limited sample sizes. Lastly, we performed an analysis of the specific relationships between individual SP-related traits and the different sites of OA, which led to a more comprehensive understanding of the potential link between them.
Nevertheless, our study also has some limitations. Firstly, due to the lack of data on the large GWAS concerning SP, we could only use the related traits to analyze the relationship with OA. Secondly, selecting SNPs from the different large-sample GWAS studies may increase the risk of sample overlap between exposure and outcome variables, which may bias the results. Furthermore, due to the complexity of biological systems, bidirectional MR assumes that causality happens in one direction, and feedback loops may exist between the exposure and the outcome, which might affect the accuracy of the results. Finally, since a majority of the participants included in the study were of European ancestry and were not representative of other racial groups, further magnetic resonance studies are needed to verify causality.
CONCLUSION
This present study suggests an obvious causality of SP on OA, with condition exhibiting site-specific effects, while evidence was also provided for the causal effect of OA on SP. It presents some evidence of reciprocal interaction between SP and OA, which may facilitate the development of novel treatment strategies for both diseases. However, the causal relationship between the two conditions still necessitates further investigation and substantiation through a multitude of studies.
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Background: Epidemiological research has established associations between various inflammatory cytokines and the occurrence of oral cancer and oropharyngeal cancer (OCPC). We performed a Mendelian randomization (MR) analysis to systematically investigate the causal relationship between inflammatory cytokines and OCPC.
Methods: We performed a bidirectional two-sample MR analysis using OCPC from 12 studies (6,034 cases and 6,585 controls) and genome-wide association study (GWAS) results for 41 serum cytokines from 8,293 Finns, respectively. Inverse variance weighting was used as the primary MR method and four additional MR methods (MR Egger, Weighted median, Simple mode, Weighted mode) were used to examine genetic associations between inflammatory traits and OCPC, and Cochran’s Q test, MR-Egger intercept, leave-one-out analysis, funnel plot, and multivariate MR (MVMR) analysis were used to assess the MR results.
Results: The results suggested a potential association between high gene expression of Macrophage inflammatory protein-1α (MIP1α/CCL3) and an increased risk of OCPC (Odds Ratio (OR): 1.71, 95% Confidence Interval (CI): 1.09–2.68, p = 0.019). Increasing the expression levels of the interleukin-7 (IL-7) gene by 1 standard deviation reduced the risk of OCPC (OR: 0.64, 95%CI: 0.48–0.86, p = 0.003). In addition, multivariate Mendelian randomization analysis also showed the same results (MIP1α/CCL3, OR: 1.002, 95% CI: 0.919–1.092, p = 0.044; IL-7, OR: 0.997, 95% CI: 0.994–0.999, p = 0.011). Conversely, there was a positive correlation between genetic susceptibility to OCPC and an increase in Interleukin-4 (IL-4) (OR: 1.04, 95%CI: 1.00–1.08, p = 0.027).
Conclusion: Our study systematically assessed the association between inflammatory cytokines and the risk of OCPC. We identified two upstream regulatory factors (IL-7 and CCL3) and one downstream effector factor (IL-4) that were associated with OCPC, offering potential avenues for the development of novel treatments.
Keywords: oral cavity and pharyngeal cancer, inflammation factors, cytokines, mendelian randomization, HNSCC, genome-wide association study
1 INTRODUCTION
Based on the latest estimates from Global Cancer Statistics 2020, Head and Neck Squamous Cell Carcinoma (HNSCC) ranks as the seventh most prevalent cancer worldwide, with an annual incidence of over 890,000 new cases and a mortality of over 450,000 (Sung et al., 2021). Among HNSCC cases, Oral Squamous Cell Carcinoma (OSCC) and Oropharyngeal Squamous Cell Carcinoma (OPSCC) are predominant, contributing to a global incidence of over 260,000 cases and over 128,000 deaths, respectively (Siegel et al., 2020). Despite some advances in the treatment of oral and oropharyngeal cancer (OCPC), the 10-year survival rate remains low at below 60%. Even if the treatment is successful, patients may still experience severe functional impairments, including compromised abilities in feeding, swallowing, and speech. Additionally, the recurrence rate remains high (Sung et al., 2021).
Earlier investigations in preclinical settings have indicated that inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, promote the growth, invasion, and spread of cancer cells. Additionally, the transcription factors associated with these cytokines such as NF-kB and STAT3 show increased expression in most cancer types (Voronov et al., 2003; Pikarsky et al., 2004; Bierie and Moses, 2006; Luo et al., 2007). For example, inhibiting the activity or expression of IL-1β can prevent the occurrence of oral cancer by regulating specific key node genes in the tumor microenvironment (TME) (Wu et al., 2016). Moreover, mounting evidence indicates an increased risk of OCPC in the presence of inflammation, and inflammation commonly accompanies the development of OCPC (Leon et al., 2015). These observations suggest that the pharmacological targeting of additional inflammation biomarkers identified in the epidemiological literature through observational studies could offer a potentially effective approach for treating OCPC (Todoric et al., 2016). Nevertheless, the investigations conducted thus far have primarily concentrated on a limited range of inflammatory elements and have failed to acknowledge the impact of additional factors on the changes in inflammation levels. Hence, it is crucial to ascertain whether the changes in inflammatory factors cause the onset of tumors or if the tumors themselves modify the microenvironment, leading to differences in inflammatory factors. Due to the limited comprehension of the cause of OCPC, investigating the exact characteristics of the connections between inflammatory factors and OCPC has considerable clinical significance.
The dynamic nature of the inflammatory response suggests that a specific time point’s measurement, whether high or low, might not precisely represent the overall trend of inflammatory factor variations. Epidemiological, genetic, and biological investigations have confirmed the link between inflammatory factors and OCPC. However, the outcomes derived from these investigations may be distorted by unforeseen confounding variables or reverse causal associations, thus complicating the establishment of clear causal relationships.
Observational studies may hinder an exhaustive comprehension of the connection between OCPC and inflammation due to their intrinsic research limitations. Thus, a detailed understanding of the role of circulating cytokines and their association with OCPC risk may aid in the development of prevention, prediction, and treatment strategies. Researchers may achieve a more comprehensive understanding of the connection between inflammation and OCPC by addressing these limitations.
Mendelian randomization (MR) is a commonly used tool in genetic epidemiology (10), which utilizes instrumental variable IV) variation derived from non-experimental data to assess the causal impact of exposure (e.g., circulating cytokines) on an outcome (e.g., OCPC) (Lawlor et al., 2008). Given the random allocation of alleles during meiosis, MR can mitigate confounding variables and reverse causality, thereby offering more robust evidence for causal inferences (Burgess et al., 2015). The use of two-sample MR analysis allows researchers to evaluate the associations between the instrument-exposure and instrument-outcome in two distinct population samples, thereby improving the applicability and efficiency of testing (Hartwig et al., 2016). In this study, we performed an analysis of the genome-wide association study (GWAS) summary data of 41 inflammatory cytokines to identify relevant genetic variations. These variations were then further investigated in relation to OCPC. Specifically, we examined the correlations between these genetic variations and OCPC by reversing the exposure and outcome. Our research results not only provided substantial Supplementary Data for previous epidemiological investigations but also offered fresh perspectives on the development and prevention of OCPC.
2 METHODS
2.1 Study design
This study used a bidirectional MR approach to assess the causal relationship between the circulating cytokines and OCPCs. The study’s overall design is illustrated in Figure 1. To assess the causal relationship between circulating cytokines and OCPCs, MR analysis was performed to test the following three hypotheses: 1) Genetic instruments have a strong association with exposure; 2) Genetic instruments are not affected by any potential known confounding factors; 3) The association between the genetic instrument and the outcome is solely influenced by the exposure (Smith and Ebrahim, 2003). Simultaneously, the reverse MR method is used to examine potential reverse causal effects. The data used in this study were obtained from publicly available large-scale GWAS which can be accessed through the GWAS Catalog service (https://www.ebi.ac.uk/gwas/home). The studies included in the initial GWAS had obtained approval from their respective institutional review boards.
[image: Figure 1]FIGURE 1 | Illustration of the research design in the bidirectional Mendelian randomization (MR) analysis. Important instrumental variables, including 41 inflammatory cytokines and OCPC, were selected to explore the bidirectional causal relationships. This method is used to detect correlations (solid line) and violations of the Mendelian randomization assumption (dashed line). This figure was created using BioRender.com.
2.2 Genetic instrumental variables for inflammatory factors
The research used an extensive meta-analysis of GWAS on the circulating levels of 41 cytokines. This analysis combined information from three separate cohort studies: FINRISK 1997, FINRISK 2002, and the Young Finns Study on Cardiovascular Risk (YFS). This study included a total of 8,293 participants. The genomic and cytokine data were contributed by 4,608 individuals from FINRISK 1997, while another 1,705 participants from FINRISK2002 also provided their cytokine data. Cytokine quantification was performed by analyzing the EDTA-treated plasma of FINRISK 1997, the heparinized plasma of FINRISK 2002, and the serum samples from YFS. To control for potential confounding factors, such as age, sex, body mass index, and genetic variations, genetic associations were properly adjusted. Specifically, the top 10 genetic principal components were included using genomic control correction. Bio-Rad’s pre-mixed Bio-Plex Pro Human Cytokine 27-plex Assay and 21-plex Assay were used to measure a total of 41 cytokines in YFS and FINRISK 2002, respectively. The measurements were performed by the Bio-Plex 200 reader equipped with Bio-Plex 6.0 software. However, it is important to note that, out of the 41 cytokines, 7 had to be excluded due to the presence of missing values exceeding 90% (Ahola-Olli et al., 2017; Kalaoja et al., 2021). A detailed overview of the GWAS data for the cytokines used in the MR analysis is presented in Table 1.
TABLE 1 | Sample size for each cytokine analyzed in this study acquired from the GWAS.
[image: Table 1]2.3 Genetic instrumental variables for OCPC
Using data from the most extensive GWAS to date, we investigated the impact of inflammatory elements on the vulnerability to OCPC. By extracting specific variations in single-nucleotide polymorphisms (SNPs) linked to exposure, we assessed a total of 6,034 cases and 6,585 controls enrolled in 12 different epidemiological studies (Lesseur et al., 2016). The Genetic Associations and Mechanisms of Oncology (GAME-ON) network is responsible for conducting these studies. Every participant has provided informed consent, and the relevant institutional review boards have approved this study. Furthermore, the study includes data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, and the Health and Nutrition 5,000 (HN5000) study, which specifically examines the health and lifestyle of 5,000 United Kingdom participants. Extensive information about the study, as well as the genotyping and imputation methods used, has been previously documented (Lesseur et al., 2016). The study sample comprised individuals from Europe (45.3%), North America (43.9%), and South America (10.8%). The study encompasses diverse types of cancer identified through the specific International Classification of Diseases, 10th Revision (ICD-10) codes, such as oral cancer (C02.0–C02.9, C03.0–C03.9, C04.0–C04.9, C05.0–C06.9) and oropharyngeal cancer (C01.9, C02.4, C09.0–C10.9). Exclusion criteria led to the removal of 954 individuals with hypopharyngeal cancer, unidentifiable codes, or overlapping cancers. To mitigate the effects of heterogeneity in these regions, GWAS studies were conducted exclusively on individuals with European ancestry, totaling 11,117 participants. Among these, there were 5,133 cases, comprising 2,700 cases of oral cancer and 2,433 cases of oropharyngeal cancer. In addition, there were 5,984 control cases (Supplementary Table S1).
2.4 Assessing common risk factors for OCPC
The cytokines-OCPC pathway is a potential target for cancer prevention and treatment. To identify the possible mediators of this pathway, we applied MR methods to examine the causal links between cytokines and common risk factors for OCPC. We used an existing database to investigate the following risk factors that have been widely recognized as associated with OCPC: smoking, drinking, body mass index, type 2 diabetes, hypertension, and HPV16/18 infection (Argiris et al., 2008; Leemans et al., 2018). Supplementary Table S2 lists the GWAS summary data for the above risk factors.
2.5 Selection of genetic instrumental variables
To ensure that the conclusion regarding the causal relationship between cytokines and the risk of OCPC is authentic and accurate, we implement various quality control measures in the selection of optimal genetic instrumental variables. Our approach involves the selection of SNPs that are closely associated with inflammatory factors and demonstrate genome-wide significance with a p-value lower than 5 × 10−8. By focusing on these specific SNPs, we establish robust instrumental variables for our study (Burgess et al., 2011). We proceeded to eliminate linkage disequilibrium (LD). Our criteria for removal included an r2 value below 0.001 and a distance of 5,000 kb. SNPs exceeding the r2 threshold of 0.001, which includes the most significant SNP within a 5,000 kb range, were excluded. After aligning the chosen SNPs with the outcome data, we found that only ten out of the 41 systemic inflammation factors available exhibited two or more independent SNPs at a significance level of p-value less than 5 × 10−8. Additionally, it was found that nine of them displayed three or more independent SNPs. Since inflammatory cytokines are a class of cytokines with multiple functions and interactions, and they may involve multiple genes and SNPs, a less stringent criterion is needed to capture their genetic variation. When selecting instrumental variables, we established A less stringent p-value threshold (5 × 10−6) to capture more SNPs of inflammatory cytokines (Li et al., 2021; Pan et al., 2023). If there is an insufficient number of exposure-associated SNPs detected in the GWAS findings, proxy SNPs exhibiting high LD with a correlation coefficient (r2 > 0.90) will be employed as alternative substitutes. These proxy SNPs can be accessed through LDlink (https://ldlink.nci.nih.gov/) as a resource (Machiela and Chanock, 2015). To exclude all SNPs associated with exposure and avoid potential pleiotropic effects, we performed a comprehensive investigation using the PhenoScanner V2 tool (http://www.phenoscanner.medschl.cam.ac.uk/) (Staley et al., 2016). Through the aforementioned steps, we acquired 41 cytokines associated with inflammation. As an instrumental variable with a significance threshold of F < 10 is considered weak, we will exclude it from our study. Detailed information on the identified SNPs is listed in Supplementary Tables S3 and S4. Furthermore, to uphold the fundamentals of MR, we shall examine the desired SNPs to exclude any that exhibit associations with the resulting outcomes.
2.6 MR statistical analysis
To explore the causal relationship between inflammatory regulators and OCPC, we utilized GWAS data and employed two-sample MR and multivariate MR methods. Statistical analysis was conducted using R software (v4.1.3) and the “MendelianRandomization”, “MVMR” and “MRPRESSO” software packages. Multivariable MR (MVMR) is mainly used to evaluate the impact of multiple potential exposures on overall outcomes and identify potential risk factors (Tian and Burgess, 2023). The relationship between inflammatory factors and OCPC was examined using the inverse variance weighted (IVW) method. The instrumental variable method was used to estimate the mean effects of SNPs by regressing SNP-inflammatory factors on SNP-OCPC. Additionally, we utilized the weighted median estimator (WME) and the MR-Egger regression. WME is a statistical method that applies weights to the empirical distribution function of ratio estimates for SNPs within the study range, minimizing biases in estimating causal effects. MR-Egger regression employs weighted linear regression to estimate the effect of SNP-OCPC, considering SNP-inflammatory factors, and provides an evaluation of causal effects, even in the presence of invalid instruments (Bowden et al., 2015). If the directions of the β-values of other methods are the same, it may be interpreted as a positive result (Chen et al., 2020). Moreover, the “Leave-one-out” strategy was employed to visually illustrate whether a single SNP substantially influences the causal association. To ensure the dependability of the MR findings, we performed diverse evaluations of diversity and sensitivity. We employed Cochran’s Q test to assess heterogeneity among SNPs. If no indications of heterogeneity were observed, we utilized a fixed-effect model; otherwise, a random-effects model was implemented. The Egger-intercept test was carried out for horizontal pleiotropy examination (Verbanck et al., 2018; Song et al., 2022). The results of the study were presented using odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Any results with a p-value less than 0.05 were considered statistically significant. We applied the FDR method to correct for multiple testing, which is a method implemented by the q-value program. It is a commonly used method for multiple testing correction, which can control the proportion of false rejections of the null hypothesis among multiple hypothesis tests. We chose a q-value of less than 0.1 as the significance level, which is a reasonable choice because it can reduce the false positive rate while maintaining the statistical power. When the p-value is less than 0.05 but the q-value is greater than or equal to 0.1, we consider it a suggestive association result (Storey and Tibshirani, 2003; Li et al., 2022). The analysis of the MR study adhered to the guidelines set forth by the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) statement, which emphasizes the scientific rigor and reporting standards for observational studies in epidemiology (Skrivankova et al., 2021).
3 RESULTS
3.1 Causal impact of systemic inflammation factors on the risk of OCPC
The association between systemic inflammation factors and OCPC was revealed through gene prediction, supported by the following findings (Figure 2). The IVW method uncovered a significant surge in OCPC risk, linked to higher levels of Macrophage inflammatory protein-1α (MIP1α/CCL3) (OR: 1.71, 95% CI: 1.09–2.68, p = 0.019). Both the MR-Egger heterogeneity test and Cochran’s Q test failed to identify any signs of heterogeneity, indicating an absence of variation (p > 0.05). Additionally, by utilizing the IVW method, increased Interleukin-7 (IL-7) levels were associated with a decreased likelihood of OCPC(OR: 0.64, 95%CI: 0.48–0.86, p = 0.003). No evidence of heterogeneity or horizontal pleiotropy was discovered (p > 0.05) (Table 2). Figures 3, 4 show forest plots and scatter plots illustrating the genetic association of MIP1α/CCL3 and IL-7 SNPs with OCPC. The funnel plot demonstrates overall symmetry, indicating little evidence of heterogeneity (Supplementary Figure S1). A sensitivity analysis, using a leave-one-out approach, provided evidence of the lack of a single SNP with substantial impact on the overall effect. This verifies the dependability and consistency of the estimation of the causal effect (Supplementary Figure S3).
[image: Figure 2]FIGURE 2 | Using SNPs with a significance level of p < 5 × 10−6, we predicted the potential impact of inflammation regulatory factors across the genome on OCPC. To establish a causal link between circulating cytokine levels and OCPC, we conducted a two-sample Mendelian randomization (MR) analysis employing the IVW method. By estimating the odds ratio of OCPC for every 1-SD rise in predicted circulating cytokine levels, as determined by genetic prediction, we derived a 95% confidence interval (CI) value. This approach primarily determines the causal relationship between OCPC and the levels of circulating cytokines. A detailed overview of cytokines is provided in Table 1.
TABLE 2 | Our research examined whether there is a causal relationship between the levels of MIP1α/CCL3 and IL-7 in the circulatory system and OCPC. To achieve this, we employed genetic prediction techniques. To assess the variation in estimates of individual SNP effects, we used Cochran’s Q test, and we employed the MR-Egger intercept test to evaluate horizontal pleiotropy.
[image: Table 2][image: Figure 3]FIGURE 3 | MIP1α/CCL3 and IL-7 related SNPs are depicted in the forest plot for OCPC risk. (A) Forest plot for MIP1α/CCL3 exposure. (B) Forest plot for IL-7 exposure. The X-axis represents the effect estimates of MIP1α/CCL3 and IL-7 on OCPC analyzed using MR. The Y-axis represents the MR effect values for each SNP site.
[image: Figure 4]FIGURE 4 | Using various MR methods, the scatter plots demonstrate the genetic correlation between SNP and OCPC for MIP1α/CCL3 and IL-7. (A) The exposure of MIP1α/CCL3 is illustrated in the scatter plot. (B) The exposure of IL-7 is illustrated in the scatter plot. Each scatter plot illustrates the associations between the alleles and the risk of the outcome, plotted against the association with one standard deviation of exposure. The effects are represented by the gray error bars, which indicate the 95% confidence intervals. The IVW, MR Egger, Weighted median, Simple mode, and Weighted mode were employed for the analysis. The estimated MR effect of each method can be determined by the slope of each line.
Supplementary Table S5 presents the MR outcomes concerning the prediction of genetic susceptibility to systemic inflammation factors and OCPC risk assessment. Furthermore, it contains summaries of the analyses conducted to assess heterogeneity, pleiotropy, and sensitivity.
3.2 Causal impact of OCPC on the risk of systemic inflammation factors
To evaluate the reverse causal effects, we conducted a study in which we identified 12 SNPs that have a significant and independent association with OCPC. The association reached a significance level of p < 5 × 10–6. We used a varying number of SNPs for each cytokine due to the lack of certain SNPs to be used universally. Detailed information about the number of SNPs used for each cytokine can be found in Supplementary Table S6. A suggestive association was observed between genetic susceptibility to OCPC and increased levels of Interleukin-4 (IL-4) based on the IVW method (OR: 1.04, 95%CI: 1.00–1.08, p = 0.03). No other significant associations were found, except for IL-4 (Figure 5). Furthermore, significant results of the MR and sensitivity analysis of OCPC and cytokines are shown in Table 3. Figures 6, 7 present forest plots and scatter plots illustrating the causal impact of OCPC-associated SNPs on IL-4.
[image: Figure 5]FIGURE 5 | The influence of OCPC gene estimation on systemic inflammatory regulators (SNPs reaching p < 5 × 10−6) can lead to causal consequences. The connection between OCPC and levels of circulating cytokines can be predominantly ascertained through a two-sample Mendelian randomization (MR) analysis using the IVW technique. The estimated range of the 95% confidence interval (CI) reflects the odds ratio of circulating cytokines for each 1-SD rise in genetically anticipated OCPC levels. A detailed overview of cytokines can be found in Table 1.
TABLE 3 | We evaluated the effects of genetic prediction (OCPC) on the levels of circulating IL-4. To assess heterogeneity between individual SNP estimates, we utilized Cochran’s Q test. The MR-Egger intercept test was employed to investigate horizontal pleiotropy.
[image: Table 3][image: Figure 6]FIGURE 6 | Forest plot of OCPC-related SNPs and IL-4 risk (The effect estimates of OCPC on IL-4 analyzed through MR are represented on the X-axis. Each SNP site’s MR effect values are represented on the Y-axis).
[image: Figure 7]FIGURE 7 | The scatter plot in this passage shows the genetic associations between SNPs related to OCPC and IL-4 using different MR methods. The gray error bars represent the 95% confidence intervals of the effects. These scatter plots represent the associations between each allele and the risk of the outcome, plotted against the association with one standard deviation of exposure. The analysis was conducted using IVW, MR Egger, Weighted median, Simple mode, and Weighted mode. The slope of each line represents the estimated MR effect of each method.
3.3 Other factors and MVMR
In univariate MR analysis, while examining the causal relationship between cytokines and OCPC, we also found that after removing SNPs associated with confounding factors, there were still some SNPs that were not only associated with OCPC but also strongly associated with other risk factors. Therefore, assessing the causal relationship between cytokines and common risk factors for OCPC is beneficial to identifying interfering factors that may mediate the association between cytokines and OCPC. We combined all SNPs related to MIP1α/CCL3 and IL-7 as cytokine instrumental variables to find the greatest genetic confounding. Preliminary results show a potential causal relationship between cytokines and common OCPC risk factors (including smoking, drinking, body mass index, and hypertension) (Figure 8, Supplementary Table S7). To control for pleiotropic pathways, when we further applied the MVMR model, the results showed that cytokines still have a potential causal effect on OCPC (MIP1α/CCL3, OR: 1.002, 95% CI: 0.919–1.092, p = 0.044; IL-7, OR: 0.997, 95% CI: 0.994–0.999, p = 0.011) (Table 4).
[image: Figure 8]FIGURE 8 | Causal effects of MIP1α/CCL3 and IL-7 on common risk factors for OCPC.
TABLE 4 | MVMR results for OCPC.
[image: Table 4]4 DISCUSSION
Numerous observational studies have found that the levels of circulating cytokines are related to the occurrence of OCPC. However, observational studies may be subject to bias due to inadequate sample size and confounding factors, resulting in skewed results. Moreover, there is insufficient genetic evidence to support this relationship in this field. Therefore, we utilized the latest GWAS data and adopted a systematic analysis approach to explore the causal effects of 41 different cytokines on OCPC. Unlike traditional MR studies, we not only focused on single cytokines but also performed bidirectional MR analysis, which can simultaneously test whether two factors have a causal relationship and what the causal direction is. In this way, we can identify the cytokines before or after the disease pathway. In addition, we also used various MR methods to enhance the robustness of the study and minimize the interference of pleiotropic effects. The objective of this study was to systematically assess the potential causal relationship between 41 circulating cytokines and OCPC risk using bidirectional MR analysis.
The tumor microenvironment and the malignant properties of tumor cells are crucial factors in shaping the biological behavior of tumors, directly driving their growth, invasion, and metastasis (Hanahan and Coussens, 2012). Systemic cytokines are a group of molecules that play a broad role in controlling inflammation throughout the body. These cytokines maintain the balance between pro- and anti-inflammatory processes in the TME, thereby ensuring that the immune system functions effectively during infection, injury, or disease while avoiding excessive damage to body tissues (Zhang et al., 2020; Ozga et al., 2021; Bhat et al., 2022). Accumulating evidence indicates that chemokines may exert pro-tumor effects in different types of cancer (Soria and Ben-Baruch, 2008; Levina et al., 2009; Hwang et al., 2012). Our findings show a positive association between high levels of CCL3 and an elevated risk of OCPC. CCL3, a chemokine that belongs to the CC chemokine subfamily, is synthesized by monocytes/macrophages, lymphocytes, neutrophils, as well as various immune cells including eosinophils, mast cells, fibroblasts, and dendritic cells. It is also called as macrophage inflammatory protein-1α (MIP-1α) (Hanahan and Coussens, 2012). CCL3 plays a pivotal role in recruiting inflammatory cells under both homeostatic and pathological conditions. CCL3 may contribute to cancer progression by stimulating leukocyte accumulation, angiogenesis, and tumorigenesis. OCPC cells and tissues exhibit overexpression of CCL3, which correlates with poorer survival rates among OCPC patients (Silva et al., 2007; da Silva et al., 2017). CCL3 can stimulate cancer cell growth and migration (da Silva et al., 2017; Hsu et al., 2013), whereas blocking CCL3 can suppress tumor growth, and angiogenesis, and increase cell sensitivity to therapeutic drugs (Liao et al., 2016; Kim et al., 2017). These mechanisms could elucidate the role of CCL3 in driving the pathophysiology of OCPC.
Research has shown that inflammation in specific organs can affect the risk of cancer, and inflammatory factors also exist in the tumor microenvironment to alter the proliferation, survival, and metastasis of malignant cells. An association between OCPC and inflammatory cytokines, wound-healing genes, growth factors, and cell cycle genes has been reported (Perez-Sayans et al., 2009; Mantovani, 2010). Interestingly, our study suggests that an increase of 1 standard deviation (SD) in the predicted levels of the IL-7 gene is related to a decreased risk of OCPC. IL-7, an indispensable cytokine for the adaptive immune system, is primarily secreted by the bone marrow, thymus, and lymph nodes. IL-7 plays a crucial role in lymphocyte development and survival, contributing to the maintenance of immune self-stability in the body (Fry and Mackall, 2002; Jiang et al., 2005; Hong et al., 2012; Barata et al., 2019). This effect may be due to the potential role of active inflammatory responses in decreasing the incidence of OCPC. Due to the powerful biological effects of IL-7, specifically, its role in promoting T cell longevity, growth, replication, and preservation of memory, various scientific groups have used IL-7 as a molecular enhancer to improve the immune response generated by cancer vaccines and maintain long-lasting memory reactions against cancer (Zhao et al., 2022). In conclusion, our study suggests a possible relationship between IL-7 and inflammatory tumors in OCPC, which may have some clinical significance for exploring the pathogenesis of OCPC and reducing its incidence.
We also explored potential mediators in the cytokines-OCPC pathway. Previous MR studies have shown that MIP1α/CCL3 and IL-7 are associated with OCPC risk. In observational studies, smoking, drinking, body mass index, type 2 diabetes, hypertension, and HPV16/18 infection have been suggested as risk factors for the development of OCPC. To account for the above potential mediating factors, the MVMR model was further applied to examine the possibility of the observed confounders introducing horizontal pleiotropy. However, MVMR analysis showed that OCPC was no longer significantly associated with these factors at the conventional 5% level. Therefore, it seems unlikely that these factors play a substantial role in the pathway of inflammatory exposure. Notably, MIP1α/CCL3 and IL-7 still have estimated causal effects on OCPC even if mediating factors are excluded.
Bidirectional MR analysis during the OCPC stage suggested that OCPC is potentially associated with alterations in IL-4 levels in blood, despite the limited available evidence on their correlation. Hypotheses propose that elevated levels of IL-4 might signify the presence of analogous immune-suppressing mechanisms within the microenvironment of OCPC. These mechanisms potentially facilitate the expansion of tumors and evasion of immune vigilance. Previous studies have reported significant IL-4 expression in the tumor microenvironment (Setrerrahmane and Xu, 2017; Gao et al., 2021). Inhibiting it can alter inflammation and improve the tumor’s response to immunotherapy (Ito et al., 2017). To sum up, the complex interactions between the immune system and the tumor are reflected by the varying IL-4 levels in the blood of patients with OCPC. These results highlight the importance of immune regulation and the imbalance of cytokines in the development of OCPC. Therefore, additional research is necessary to understand the exact mechanisms behind these changes in cytokines and how they impact the occurrence, advancement, and treatment strategies for OCPC.
This study is remarkable for its novel use of large-scale GWAS data to investigate multiple exposure factors related to OCPC risk, which enhances the stability and accuracy of estimating the effects. Second, the bidirectional MR design is employed to mitigate confounding factors and eliminate reverse causality. Third, the MVMR model was further applied to examine the possibility of introducing horizontal pleiotropy by common confounders of OCPC. Finally, this study comprehensively investigates the association between OCPC and 41 circulating cytokines, making it the most extensive MR study to date on this topic. They may provide oncologists and therapists with new perspectives and implications for designing more personalized and effective treatments for patients who may develop or suffer from OCPC. For example, host genotype could be exploited to enable more precise diagnosis and treatment by investigating inflammatory exposure factors in clinical patients. The use of monoclonal antibodies to reduce the concentration of certain inflammatory factors or exogenous supplementation of specific inflammatory factors can also be studied to prevent or treat OCPC. While the MR design offers advantages, this study also has limitations. First, although GWAS statistical data of European ancestry were used to mitigate population bias, the generalizability of our findings across different populations remains uncertain. Additional GWAS with larger sample sizes are necessary to validate and update the findings of this study. Moreover, the results of these studies may be confounded by various factors, including the production and interplay of cytokines. Despite conducting a MVMR analysis, it seems that the estimates of time-varying exposure may not accurately reflect the causal effects within a specific time period. When the exposure only affects the outcome at a few distinct time points and the risk factors in the MVMR analysis are the exposure values at these specific time points, it is possible to obtain a reliable estimation of the causal effect during these time points. However, if these time points are not correctly identified, estimates obtained from ambiguous models will be incorrect. This can mislead any inferences made about the magnitude, existence, or direction of the causal effects. Finally, it is important to note that all research findings require validation in clinical and basic research. As a result, caution should be exercised in interpreting potential causal relationships, and further investigation of potential physiopathological mechanisms is needed.
5 CONCLUSION
Our comprehensive MR analysis revealed potential causal relationships between 41 circulating cytokines and OCPC, providing new insights into their interactions. The following conclusions were drawn: MIP1α/CCL3 and IL-7 may be potential factors driving OCPC. And susceptibility to OCPC may also increase IL-4 levels in prognosis. However, due to the limitations of our study, including the relatively small number of OCPC cases and the use of only a single ancestry population, our findings should be validated in a larger cohort and the exact underlying biological mechanisms require further investigation.
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Background

Previous research has indicated that there may be a link between Crohn’s disease (CD) and breast cancer (BC), but the causality remains unclear. This study aimed to investigate the causal association between CD and BC using Mendelian randomization (MR) analysis.





Methods

The summary data for CD (5,956 cases/14,927 controls) was obtained from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). And the summary data for BC (122,977 cases/105,974 controls) was extracted from the Breast Cancer Association Consortium (BCAC). Based on the estrogen receptor status, the cases were classified into two subtypes: estrogen receptor-positive (ER+) BC and estrogen receptor-negative (ER−) BC. We used the inverse variance weighted method as the primary approach for two-sample MR. MR-PRESSO method was used to rule out outliers. Heterogeneity and pleiotropy tests were carried out to improve the accuracy of results. Additionally, multivariable MR was conducted by adjusting for possible confounders to ensure the stability of the results.





Results

The two-sample MR indicated that CD increased the risks of overall (OR: 1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95%CI: 1.006-1.034; p=0.006) and ER− BC (OR: 1.019; 95%CI: 1.000-1.037; p=0.046) after removal of outliers by MR-PRESSO. This result was reliable in the sensitivity analysis, including Cochran’s Q and MR-Egger regression. In multivariate MR analyses, after adjusting for smoking and drinking separately or concurrently, the positive association between CD and the risks of overall and ER+ BC remained, but it disappeared in ER− BC. Furthermore, reverse MR analysis suggested that BC did not have a significant impact on CD risk.





Conclusion

Our findings provide evidence for a possible positive association between CD and the risk of BC. However, further studies are needed to fully understand the underlying mechanisms and establish a stronger causal relationship.
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1 Introduction

Crohn’s disease (CD) is a chronic and progressive inflammatory disease characterized by alternating periods of remission and relapse (1, 2). CD primarily affects the gastrointestinal tract with extraintestinal manifestations and related immune dysregulation (3). Patients with CD are more susceptible to cancer, depression, and infection (4).

Breast cancer (BC) is the most prevalent malignancy among women globally, with 684,996 deaths reported in 2020, representing a substantial threat to their health (5–7). Patients with CD have an increased risk of digestive tract, skin, bladder, and lung cancers (8, 9), but the association between CD and BC remains unclear. Chronic inflammation characterized by sustained immune activation is associated with promoting the occurrence, growth, and progression of BC (10–12). Several researchers have investigated the association between CD and BC. Riegler et al. found first-degree relatives of patients with CD have a higher risk of developing BC (13). Further, a study by Pellino et al. showed that CD was an independent risk factor for BC (OR: 2.76; 95% CI: 1.2-6.2; p=0.017) (14). In contrast, Gong et al. reported no significant association between CD and BC risk (15). Hence, there is controversy regarding the relationship between CD and BC risk. In addition, immunosuppressive medications are the cornerstone of long-term maintenance treatment for CD (16). Due to the decreased immune surveillance, immunosuppression may potentially increase the risk of cancer (17). A retrospective study attributed the development of BC in CD patients to immunosuppressive therapy (18). Thus, the association between CD itself and BC needs to be further investigated. Moreover, assessing the true causal association between CD and BC is challenging due to the interference of common residual confounders and reverse causality in traditional observational studies.

To overcome these challenges and gain a more nuanced understanding of the causality between CD and BC, we turned to Mendelian randomization (MR). MR is a robust statistical method that harnesses genetic variants as instrumental variables (IVs) to explore causal connections between exposure and outcome (19, 20). By capitalizing on the natural random assortment of genetic variants during conception, MR effectively mimics the randomized controlled trial (RCT) setting, thereby mitigating issues like confounding and reverse causation that often plague observational studies (21–23).




2 Materials and methods



2.1 Study design

In order to assess the potential causal association between CD and BC, we conducted a two-sample MR study. The single nucleotide polymorphisms (SNPs) selected as IVs were required to adhere to three following key premises (24): (1) SNPs must be intensely linked to CD; (2) SNPs must not be linked to confounding factors; and (3) SNPs should not be directly linked to BC (Figure 1).




Figure 1 | Schematic for the MR study design.






2.2 Data source

The summary data for CD (5,956 cases/14,927 controls) was obtained from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) (25). And the summary data for BC (122,977 cases/105,974 controls) was extracted from the Breast Cancer Association Consortium (BCAC). Based on the estrogen receptor status, the cases were classified into two subtypes: estrogen receptor-positive (ER+) BC and estrogen receptor-negative (ER−) BC (26). Table 1 presents details of the exposure and outcomes.


Table 1 | Detailed information on the exposure and outcomes.






2.3 SNP selection

First, we screened for SNPs that were strongly associated with exposure at a genome-wide significance level (p < 5×10–8). Second, we implemented a criterion (r2 < 0.001, kb=10000) to select SNPs that were independent of linkage disequilibrium (LD) (27). Third, we excluded SNPs that were not found in the BC dataset and palindromic SNPs that may cause bias. Next, we harmonized the exposure and outcome data, ensuring that the effect of the SNP on the exposure corresponded to the same allele as the effect on the outcome. Subsequently, we evaluated the possibility of weak instrumental bias by calculating F-statistics and excluded SNPs with F-statistics less than 10 (28, 29). The F statistic was calculated as F = beta2/se2 (30, 31). Finally, the MR-PRESSO method was conducted to detect outlier SNPs (32), and after excluding these outlier SNPs, the remaining SNPs were used for subsequent MR analysis. Figure 2 shows the selection flowchart.




Figure 2 | Flowchart of our MR study.






2.4 Two-sample MR analysis

Three commonly used MR methods were applied to estimate causal effects: inverse variance weighted (IVW) (24), weighted median (33), and MR-Egger (34). The IVW method is considered to be the most effective method for assessing causality (35); therefore, the results were mainly based on the IVW method. We used odds ratios (ORs) to express the effects of CD on BC risk. If the result of the IVW method is significant (p < 0.05), even if no significant result is obtained by the other methods, it can be considered as a positive result as long as the ORs of the other methods are in the same direction and there is no heterogeneity or pleiotropy (36).




2.5 Sensitivity analysis

Cochran’s Q test was employed to assess heterogeneity, with p > 0.05 representing the absence of heterogeneity (37). The MR-Egger regression test was applied to detect horizontal pleiotropy, with a zero intercept signifying the absence of pleiotropy (p > 0.05) (38).




2.6 Multivariable MR analysis

Based on the search results on the PhenoScanner website and possible confounders between CD and BC, we performed multivariable MR (MVMR) analyses with the addition of smoking and drinking separately or together to adjust for causal impacts between exposure and outcome (39).




2.7 Reverse MR analysis

To explore whether BC has any causal effect on CD, we also conducted a reverse MR analysis (i.e., BC as the exposure and CD as the outcome) using SNPs related to BC as IVs.




2.8 Statistical analyses

All analyses were performed in R software (version 4.2.3) using the “TwoSampleMR” (version 0.5.6), “MRPRESSO” (version 1.0), and “MendelianRandomization” (version 0.7.0) packages (40).





3 Results



3.1 SNP selection

Initially, we extracted 53 genome-wide significant (p<5×10-8) SNPs associated with CD. No SNPs were ruled out due to LD. Next, during the extraction of information on IVs and outcome, we excluded rs11564236 due to the lack of corresponding outcome data. Additionally, we excluded one palindromic SNP (rs12692254) while harmonizing the exposure and outcome data. Furthermore, we removed rs7543234 from the analysis of overall BC due to its association with the outcome. Finally, potentially outlier SNPs were excluded using MR-PRESSO. Specifically, rs12194825, rs1873625, rs2188962, and rs3091315 were excluded from the analysis of overall BC; rs12194825, rs1873625, rs2188962, and rs7543234 were excluded from the analysis of ER+ BC, and rs1873625 and rs3091315 were removed from the analysis of ER− BC. The F-statistics of all SNPs were greater than 10. After removing these SNPs, 46 SNPs, 47 SNPs, and 49 SNPs were included in the analysis of overall, ER+, and ER− BC, respectively (Supplementary Sheet).




3.2 Analyses using the Two-sample MR

Using existing SNPs as IV, the results of the IVW method showed that CD was positively associated with the risks of overall (OR: 1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95% CI: 1.006-1.034; p=0.006), and ER− (OR: 1.019; 95% CI: 1.000-1.037; p=0.046) BC (Figure 3). The scatterplot depicts the causal estimates obtained from every SNP (Figure 4). Although the weighted median and MR-Egger methods did not obtain significant results (p > 0.05), the direction of the ORs was consistent with the IVW method (OR > 1). Furthermore, Cochran’s Q and MR-Egger regression analyses demonstrated that there was no heterogeneity or horizontal pleiotropy affecting the stability of the results. The same result was also suggested by the symmetry of the funnel plots (Figure 5). Therefore, based on the significant IVW results (p < 0.05), we can conclude that there is a causal effect of CD on BC. The details of the results are presented in Table 2.




Figure 3 | Forest plot of the impact of Crohn’s disease on breast cancer risk using IVW method (after removing outliers). Het.p refers to the p-value for heterogeneity; Ple.p refers to the p-value for pleiotropy; OR, odds ratio; CI, confidence interval.






Figure 4 | Scatterplots for effects of Crohn’s disease on breast cancer risk (after removing outliers). (A) overall BC; (B) ER+ BC; (C) ER− BC.






Figure 5 | Funnel plots for effects of Crohn’s disease on breast cancer risk (after removing outliers). (A) overall BC; (B) ER+ BC; (C) ER− BC.




Table 2 | Assessing the effects of Crohn’s disease on breast cancer risk (after removing outliers).






3.3 Analyses using the MVMR

After adjusting for current tobacco smoking and alcoholic drinks per week separately or together, MVMR analysis revealed that the positive association between CD and the risks of overall and ER+ BC remained, but it disappeared in ER− BC. In addition, no potential horizontal pleiotropy was discovered for the MR-Egger intercept (Table 3). Results of MVMR suggested that the observed effects of CD on overall and ER+ BC were stable and not influenced by potential confounders.


Table 3 | Assessing the effects of Crohn’s disease on breast cancer using IVW multivariable MR.






3.4 Reverse MR analysis

In the reverse study (BC on the risk of CD), no genetic effects of overall BC (OR: 1.082; 95% CI: 0.989-1.183; p=0.085), ER+ BC (OR: 1.039; 95% CI: 0.950-1.136; p=0.405), and ER− BC (OR: 1.033; 95% CI: 0.924-1.156; p=0.567) on the risk of CD were detected (Table 4). In all of the analyses, MR-Egger regression did not show IVs had horizontal pleiotropy. Therefore, genetically predicted BC exerts no impact on the risk of CD.


Table 4 | Assessing the effects of breast cancer on Crohn’s disease using IVW method.







4 Discussion

In this study, we carried out two-sample MR analyses to appraise the causal relationship of CD with overall, ER+, and ER− BC for the first time. The results showed that CD increased the risks of overall, ER+, and ER− BC. We further assessed the robustness of the results by MVMR analysis. However, in MVMR analysis, CD only increased the risks of overall and ER+ BC, but not ER− BC. This suggested a potential impact of smoking and alcohol drinking on the correlation between CD and ER− BC. Additionally, reverse MR analysis revealed that BC did not have a significant impact on CD risk.

However, a recent MR study found no association between CD and BC risk (41). We analyzed possible reasons for the discrepancy. Their study included only 732 cases of CD, whereas our study included 5,956 cases. They used a significance threshold of p<5×10-6 for SNP selection, but re-running MR on their data at p<5×10-8 revealed a positive association of CD on BC risk (p=0.016). Furthermore, we conducted subtype analyses based on estrogen receptor status and performed MVMR to adjust for possible confounding factors.

This MR study provides some insights into the association between CD and BC. Some studies have also revealed an elevated risk of BC in patients with CD (13, 14). The result of a 20-year follow-up study indicated that CD patients have a higher risk of developing BC (42). In addition, a study from Denmark showed BC patients with CD have a more advanced stage and a worse chemotherapy prognosis than patients without CD (43).

Several possible factors may account for the association between CD and BC. Existing studies indicated that CD and BC may share common molecular mechanisms. Recent evidence suggested that there are 53 overlapping differentially expressed genes between the CD and BC, with enrichment analyses showing that both diseases are related to NF-κB signaling pathways and interleukin-17 (IL-17) (44). It has been shown that inflammation is involved in the process of development and progression of malignant tumors (45). T helper 17 (Th17) cells are important inflammatory mediators in CD, and when Th17 cells reach breast tumor tissues, they upregulate a variety of cytokines including IL-17 and tumor necrosis factor-α (TNF-α) (46). IL-17 can upregulate the expression of chemokine CXCL1 in BC cells. This chemokine increases the activation of the AKT/NF-κB signaling pathway to promote BC growth and metastasis (47). Furthermore, previous studies have indicated that TNF-α is involved in epithelial-mesenchymal transition (EMT), thereby promoting tumor metastasis (48). A study conducted on patients with inflammatory BC demonstrated a direct association between TNF-α and the presence of tumor cells expressing EMT markers (49). In addition, there is another potential point of association between CD and BC that lies in the involvement of estrogen and the G protein-coupled estrogen receptor (GPER) (50, 51). GPER has been shown to regulate intestinal function, inflammation, and immune responses, and promote the occurrence and progression of BC (52, 53).

There is growing interest in the role of the microbiome in health and disease. Studies in human subjects have revealed distinct differences in the gut microbiome between patients with CD and healthy control subjects (54). Notably, the gut microbiome also affects the risk of developing BC (55). Dysbiosis of the intestinal flora has been found to have a direct effect on the dissemination of breast tumors (56, 57). The gut microbiome may also be involved in the correlation between CD and the risk of BC, and more relevant research is needed to confirm this in the future.

Research has demonstrated that chronic psychological stress can inhibit the anti-tumor effects of the immune system in CD (58). Intestinal inflammation in CD can activate the hypothalamic–pituitary–adrenal (HPA) axis through the opposite action of the brain-gut axis, thereby inducing anxiety and depression (59, 60). Several studies have shown that patients with BC also experience varying degrees of anxiety and depression (61). Hence, the mechanisms behind the effects of mental and emotional factors on CD and BC need to be further explored. The possible mechanisms for the effect of CD on BC risk are depicted in Figure 6.




Figure 6 | Diagram of possible mechanisms for the effect of Crohn’s disease on breast cancer risk.



The strength of our study is that it explored the causality between CD and BC risk by MR analysis. Compared to previous observational studies that found CD to be associated with BC, MR studies are less susceptible to confounders and reverse causation. Besides, our study utilized a large sample size and SNPs from GWAS, providing sufficient statistical validity to estimate causality. Furthermore, sensitivity analyses enhanced the credibility of our results.

Nevertheless, this study has several limitations. First, the GWAS data for this study included only European populations, which limits the application of our findings to other populations. Hence, future studies are required to verify the applicability of our results to different populations. Second, we cannot stratify the analysis by sex due to the lack of sex-specific GWAS data. Third, the OR of CD on BC risk is relatively small, indicating that the enhanced risk is just modest. Therefore, we don’t recommend that patients with CD be screened for BC more frequently or earlier than the routine screening. Finally, MR also has its limitations. (1) SNPs are generally considered to have lifetime effects, but in specific situations, the effects of SNPs may vary due to an individual’s physiological status, environmental factors, or interactions with other genetic variations. If the genetic variants used in MR analysis change over time, it could potentially affect the validity of the causal estimates. (2) Additional adjustments for smoking and alcohol consumption may lead to collider bias. (3) The MR study can only analyze the causality and cannot explain the mechanism of CD on BC risk. Further research is necessary to investigate the mechanisms behind the link between CD and the risk of BC.




5 Conclusion

Our findings provide evidence for a potential positive association between CD and the risk of BC. However, further studies are needed to fully understand the underlying mechanisms and establish a stronger causal relationship.
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Background: Sepsis, a global health challenge, necessitates a nuanced understanding of modifiable factors for effective prevention and intervention. The role of trace micronutrients in sepsis pathogenesis remains unclear, and their potential connection, especially with genetic influences, warrants exploration.
Methods: We employed Mendelian randomization (MR) analyses to assess the causal relationship between genetically predicted blood levels of nine micronutrients (calcium, β-carotene, iron, magnesium, phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and sepsis susceptibility, severity, and subtypes. The instrumental variables for circulating micronutrients were derived from nine published genome-wide association studies (GWAS). In the primary MR analysis, we utilized summary statistics for sepsis from two independent databases (UK Biobank and FinnGen consortium), for initial and replication analyses. Subsequently, a meta-analysis was conducted to merge the results. In secondary MR analyses, we assessed the causal effects of micronutrients on five sepsis-related outcomes (severe sepsis, sepsis-related death within 28 days, severe sepsis-related death within 28 days, streptococcal septicaemia, and puerperal sepsis), incorporating multiple sensitivity analyses and multivariable MR to address potential heterogeneity and pleiotropy.
Results: The study revealed a significant causal link between genetically forecasted zinc levels and reduced risk of severe sepsis-related death within 28 days (odds ratio [OR] = 0.450; 95% confidence interval [CI]: 0.263, 0.770; p = 3.58 × 10−3). Additionally, suggestive associations were found for iron (increased risk of sepsis), β-carotene (reduced risk of sepsis death) and vitamin C (decreased risk of puerperal sepsis). No significant connections were observed for other micronutrients.
Conclusion: Our study highlighted that zinc may emerges as a potential protective factor against severe sepsis-related death within 28 days, providing theoretical support for supplementing zinc in high-risk critically ill sepsis patients. In the future, larger-scale data are needed to validate our findings.
Keywords: micronutrients, Mendelian randomization, sepsis, susceptibility, severe sepsis-related death within 28 days, zinc
INTRODUCTION
Sepsis is a critical health concern marked by an exaggerated immune response to infection, presenting a global public health challenge (Cecconi et al., 2018). It routinely precipitates multi-organ dysfunction, with high incidence and mortality rates (Evans et al., 2021), thereby imparting a substantial encumbrance upon societal and global healthcare infrastructures. Notwithstanding, the susceptibility and severity of sepsis are influenced by a multitude of factors (Rhee et al., 2017), accentuating the imperativeness of discerning modifiable factors for the prevention, timely diagnosis, and efficacious intervention in sepsis.
In recent years, although some factors potentially influencing sepsis have been identified, such as blood metabolites (Wei et al., 2023), body mass index (BMI) (Wang et al., 2023), insomnia (Thorkildsen et al., 2023), lifetime smoking (Zhu et al., 2023), the role of trace elements in the pathogenesis of sepsis remains unclear. Simultaneously, understanding the dysregulation of trace element metabolism in the pathogenesis of sepsis is not comprehensive (Guo et al., 2023). Numerous micronutrients have been reported to play a crucial role in the immune system, and their deficiency may severely impair host immunity, increasing the risk of infection (Gombart et al., 2020). Some studies emphasize vitamin C as a biological and theoretical basis for sepsis treatment (Spoelstra-de Man et al., 2018); however, a randomized controlled trial found no significant improvement in sepsis-related inflammation and vascular damage with vitamin C (Fowler et al., 2019). The disparity between these two study results may be influenced by factors such as sample size, follow-up time, and confounding variables. Due to the cost and practical difficulties, conducting sufficiently large randomized controlled trials is challenging, and there is limited research providing substantial support for the relationship between micronutrients and sepsis.
Mendelian randomization (MR) is an approach used to evaluate the relationship between risk factors and diseases in terms of causality. When there are no randomized controlled trials (RCTs) or new RCTs being conducted, MR becomes a valuable alternative approach that can provide dependable evidence on the causal connection between exposure and the risk of disease (Zuccolo and Holmes, 2017). In observational studies, MR utilizes genetic variation as an instrumental variable (IV) to successfully mitigate the influence of confounding factors that are difficult to control and reduces the likelihood of reverse causation.
In this study, we employ MR method to estimate the relationship between genetically predicted blood micronutrient levels and the risk of sepsis-related outcomes. We have selected nine micronutrients associated with infection [calcium (Ca), β-carotene, iron (Fe), magnesium (Mg), phosphorus, vitamin C, vitamin B6, vitamin D, zinc (Zn)] and assessed the infection risk of sepsis and its susceptibility and severity.
MATERIALS AND METHODS
Research design
The inquiry follows the principles specified in the STROBE-MR guidelines (Supplementary Table S1). Refer to Figure 1 for an illustrative representation of the study design. In brief, we performed a comprehensive investigation of MR using data from 16 publicly accessible genome-wide association studies (GWAS) to obtain summary statistics. The objective was to elucidate the relationship between circulating micronutrient levels and sepsis. Of the 16 studies, 9 contributed exposure data, while 7 furnished outcome data. To reduce potential biases caused by population stratification, only individuals of European ancestry were included in the study for both the exposure and outcome data. For the primary MR analysis, sepsis data were procured from two independent GWAS consortia, utilized for preliminary and replicative analyses, culminating in a meta-analysis for result amalgamation. In secondary MR analyses, we scrutinized the causal nexus between micronutrients and the severity, as well as subtypes, of sepsis. Our analytic approach was bidirectional, initially scrutinizing the influence of circulating micronutrients on the susceptibility to sepsis and its associated maladies, followed by an exploration of reverse causality. A schematic overview of the study methodology is delineated in Figure 1.
[image: Figure 1]FIGURE 1 | Flow chart for the Mendelian randomized analysis. (A) Data sources. (B) Mendelian randomization analysis. Abbreviations: IVW, inverse-variance weighted; Ca, Calcium; Fe, Iron; Mg, Magnesium; Zn, Zinc.
The data used in this investigation were obtained from studies with the explicit consent and ethical endorsement of participants, eliminating the need for ethical approval from an institutional review board for the present study.
Data sources for circulating micronutrient
By searching on pubmed website (https//www.ncbi.nlm.nih.gov/pubmed) (last accessed on 1 March 2023), we obtained GWAS data related to micronutrients in the European population. To prevent sample overlap between the exposures and outcomes in our research, we excluded micronutrients sourced from these two databases during our micronutrient search. No genomic studies were found for vitamin B1, B2, B3, B5, B7, fluoride, chloride, sulfur, and iodine. Exclusion of global genomic investigations on vitamin K, cobalt, chromium, sodium, potassium, and molybdenum was based on the lack of significant findings across the entire genome (Meyer et al., 2010; Dashti et al., 2014; Ng et al., 2015). A preliminary identification of 15 potential micronutrients was established: Ca (O'Seaghdha et al., 2013), copper (Evans et al., 2013), Fe (Benyamin et al., 2014), Mg (Meyer et al., 2010), selenium (Cornelis et al., 2015), Zn (Evans et al., 2013), phosphorus (Kestenbaum et al., 2010), beta-carotene (Ferrucci et al., 2009), folate (Grarup et al., 2013), vitamin A (Mondul et al., 2011), vitamin B6 (Hazra et al., 2009), vitamin B12 (Grarup et al., 2013), vitamin C (Zheng et al., 2021), vitamin D (Jiang et al., 2018), and vitamin E (Major et al., 2011). However, Vitamin A and vitamin E were not considered in these GWAS because they were controlled for body mass index (BMI), which could lead to biased genetic effects caused by BMI adjustments (Aschard et al., 2015). Detailed information about the GWAS for the 13 candidate exposures was provided in Supplementary Table S2.
Data sources for sepsis-related outcomes
We used ICD-coded linked secondary care data to identify sepsis and sepsis-related outcomes. In the UK Biobank (Bycroft et al., 2018), sepsis and the severity were identified using ICD-10 codes A02, A39, A40, and A41. In the FinnGen database (Kurki et al., 2023), codes A40.9, A41, and O85 were used to identify sepsis and its subtypes, in line with recent literature (Hamilton et al., 2023). Cases were included if the code appeared in either the primary or secondary diagnostic position in Hospital Episode Statistics (HES) data or similar datasets in the devolved nations, as provided by the UK Biobank.
For our primary MR analysis, we chose sepsis as the primary outcome. For our study, we used summary statistics data from two separate cohorts of European ancestry, namely the UK Biobank and the FinnGen Release 9, which were employed as the outcomes. To ascertain the association of genetic variations with sepsis, we initially employed the latest version of sepsis GWAS summary data (10,154 cases and 454,764 controls) from the UK Biobank. To validate through replication and meta-analysis, we employed an additional collection of sepsis summary data (12,301 cases and 332,343 controls) obtained from the FinnGen consortium.
For secondary analyses, we opted for five sepsis-related outcomes, which encompassed three data points on sepsis severity obtained from the UK Biobank, severe sepsis (1,380 cases and 429,985 controls), and sepsis-related death within 28 days (1896 cases and 484,588 controls) and severe sepsis-related death within 28 days (347 cases and 431,365 controls). Moreover, the FinnGen cohort provided two variations of sepsis information, namely streptococcal septicaemia (2,348 cases and 332,343 controls) and puerperal sepsis (3,940 cases and 2202267 controls), which were obtained from https//r9.finngen.fi/pheno/. Refer to Table 1 for detailed information on data sources.
TABLE 1 | Source of outcome genome-wide association study summary data.
[image: Table 1]MR analysis
In the selection of genomically significant SNPs, we applied stringent thresholds, specifically p < 5 × 10−8, to obtain top independent SNPs strongly correlated with each micronutrient. Within 10,000-kb windows, we eliminated single nucleotide polymorphisms (SNPs) that were in linkage disequilibrium with parameters r2 < 0.001. At the same time, in order to guarantee that the impact of SNPs on exposure aligns with their impact on outcomes for the identical allelic gene, we eliminated palindromic SNPs with moderate frequencies of alleles. To evaluate the statistical power, we calculated the F-statistic for every SNP. All F-statistics for the SNPs exceeded 10, indicating a minimal likelihood of weak instrumentality.
To establish the causal connection between sepsis and micronutrients, we utilized the inverse variance weighting (IVW) technique as our primary analytical method. IVW is a commonly used method in MR studies, combining the wald ratios of each SNP to derive a summary estimate (Pierce and Burgess, 2013). In order to guarantee the dependability of our findings, we performed several sensitivity analyses to confirm if diversity and pleiotropy in genetic instruments could potentially cause bias in MR outcomes. The methods used in these analyses were the weighted median, MR-Egger, MR pleiotropy residual sum, and MR-PRESSO methods. Egger intercept (Bowden et al., 2015) was utilized to evaluate horizontal pleiotropy, while the MR-PRESSO test was employed for outlier identification (Verbanck et al., 2018). Cochran’s Q test was performed to assess heterogeneity in the genetic instruments used across the two cohorts (Greco et al., 2015), with p < 0.05 indicating significant heterogeneity. Finally, for the outcomes of sepsis infection, an MR Steiger test was conducted to examine the directionality of the associations (Hemani et al., 2017).
To examine if the potential genetic tools related to micronutrients were linked to other traits like blood metabolites (Wei et al., 2023), BMI (Wang et al., 2023), insomnia (Thorkildsen et al., 2023), and lifetime smoking (Zhu et al., 2023), we employed PhenoScanner V2. The website http//www.phenoscanner.medschl.cam.ac.uk/ was accessed on 1 November 2023. If necessary, we assessed the correlation between exposure and outcome after excluding these SNPS from the MR analysis to mitigate potential pleiotropic effects.
Multivariable MR was employed to assess whether there was bias in any phenotype due to pleiotropy as identified on PhenoScanner. IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/.) provided genetic diversity for potential pleiotropic traits. We performed a multivariable MR analysis to investigate the effect of Zn on the likelihood of severe sepsis-related death within 28 days. This analysis included mean corpuscular hemoglobin concentration (GWAS identifier: ebi-a-GCST90002328), reticulocyte count (GWAS identifier: ebi-a-GCST90025972), high light scatter reticulocyte count (GWAS identifier: ebi-a-GCST90025970), reticulocyte fraction of red cells (GWAS identifier: ebi-a-GCST90002406), and mean corpuscular volume (GWAS identifier: ebi-a-GCST90025963).
Power statistics
We conducted power calculations using the online platform (https://shiny.cnsgenomics.com/mRnd/) (Brion et al., 2013). Based on the sample sizes used in the meta-analysis, we computed the statistical power for each analysis under a type I error of 5%, and the results are summarized in Table 2. In order to guarantee the strength of our conclusions, we exclusively took into account micronutrients that had an R2 value higher than 1% and/or a statistical power exceeding 50% for at least one sepsis-related outcome (Flatby et al., 2023). This criterion led to the exclusion of copper, folate, selenium, and vitamin B12 from further analysis, as detailed in Supplementary Tables S3, S4.
TABLE 2 | Source of exposure genome-wide association study summary data.
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To perform the primary MR analysis, we carried out a replication analysis by utilizing supplementary sepsis summary data obtained from the FinnGen consortium. The findings from the two groups (UK Biobank and FinnGen) were combined and analyzed using a f random-effects model in METAL (version 2011-03-25) (Willer et al., 2010). Additionally, to further assess whether our MR study was affected by reverse causation, we performed a reverse MR analysis on the association between genetically predicted sepsis and candidate micronutrients. In this reverse MR analysis, susceptibility and severity of sepsis were treated as exposures, and candidate micronutrients were considered as outcomes. We applied the identical rigorous standards for selecting instrumental variables, requiring a significance level of p < 5 × 10−8, and ensuring linkage disequilibrium with r2 < 0.001 within windows of 10,000-kb.
Statistical analysis
The TwoSampleMR package (version 0.5.6) and the R package “MRPRESSO” (version 4.0.3) were utilized for conducting all MR analyses. METAL (version 2011-03-25) (Willer et al., 2010) was utilized for meta-analysis of results. A significance threshold of p < 0.05 was deemed to be of nominal importance, whereas the Bonferroni-adjusted statistical significance threshold (for 9 exposures) was established at p = 0.05/9 = 5.56 × 10−3.
RESULTS
Instrumental variable selection
The number of instrumental variables for circulating micronutrients ranged from 2 to 11. The F-statistics for these SNPs ranged from 25 to 1,497, with a median of 50, surpassing the conventional threshold of 10, suggesting a minimal likelihood of weak instrumentality (see Supplementary Table S4). However, it is noteworthy that one SNP for calcium (rs1550532), two SNPs for magnesium (rs7965584, rs7197653), and one SNP for vitamin D (rs8018720) were unavailable in the outcome datasets for streptococcal septicaemia and puerperal sepsis. Furthermore, the outcome dataset for severe sepsis-related death within 28 days did not include one SNP related to Fe (rs1525892), and two SNPs associated with phosphorus (rs1697421, rs9469578) were excluded due to incompatible alleles.
Primary MR analyses
Using the chosen instrumental variables, we performed an initial evaluation on the association between 9 circulating micronutrients and sepsis likelihood in the UK Biobank discovery set. We identified two independent associations with sepsis for β-carotene and Fe (p < 5.56 × 10−3) (Supplementary Table S5). No heterogeneity was found in the sensitivity analyses, which included Cochran’s Q test and I2 values (β-carotene p = 0.997, Fe p = 0.264). Evaluation of horizontal pleiotropy using MR-Egger suggested insufficient evidence for horizontal pleiotropy (Supplementary Table S6). In the replication set, no significant associations between micronutrients and sepsis were detected, with the relationship between β-carotene and sepsis in the opposite direction compared to the discovery set (p = 0.119, IVW). Following the meta-analysis, a nominal significant correlation was found solely between Fe and the susceptibility to sepsis infection (odds ratio [OR] = 1.083; 95% confidence interval [CI]: 1.00, 1.17; p = 0.048) (Figure 2; Supplementary Table S5).
[image: Figure 2]FIGURE 2 | Forest plot for the meta-analysis of circulating micronutrients levels on the risk of sepsis. Abbreviations: IVW, inverse-variance weighted; Nsnp, number of SNP; OR, odds ratio; CI, confidence interval; Ca, Calcium; Fe, iron, Mg, Magnesium; Zn, zinc.
The risk of sepsis showed no significant correlation with the levels of calcium, β-carotene, magnesium, phosphorus, vitamin B6, vitamin C, vitamin D, and Zn in the bloodstream (Figure 2; Supplementary Table S5).
Secondary MR analyses
In subgroup analyses, we observed associations between three micronutrients and three sepsis-related outcomes. As shown in Figure 3; Supplementary Table S1, we found a nominal significant negative relationship between β-carotene and the likelihood of sepsis death within 28 days (OR = 0.781; 95% CI: 0.611, 0.997; p = 0.047, IVW) and severe sepsis-related death within 28 days (OR = 0.449; 95% CI: 0.253, 0.799; p = 6.48 × 10−3, IVW). The sensitivity analyses (Supplementary Tables S7, S8), which involved the use of Cochran’s Q test and I2 values, indicated the absence of heterogeneity. Additionally, the MR-Egger analysis, with a small intercept, showed minimal influence of horizontal pleiotropy. Likewise, the MR-PRESSO examination did not detect any unusual SNPs or horizontal pleiotropy impacts on sepsis death within 28 days (p = 0.958) or severe sepsis-related death within 28 days (p = 0.64) (Supplementary Table S9). However, the MR-Egger method shows a direction opposite to IVW, and it did not pass our stringent significance threshold. Simultaneously, we also observed a nominal significant negative association between genetically predicted vitamin C and a reduced risk of puerperal sepsis (OR = 0.702; 95% CI: 0.507, 0.971; p = 0.032, IVW). Although sensitivity analysis found no evidence of heterogeneity or pleiotropy, it still did not meet our stringent statistical threshold.
[image: Figure 3]FIGURE 3 | Heatmap showing the causal effects of circulating micronutrients levels on the risk of sepsis-related outcomes by using three method (IVW, MR egger, and weighted median). Abbreviations: Ca, Calcium; Fe, iron, Mg, Magnesium; Zn, zinc. IVW, inverse-variance weighted.
In contrast, there was a strong correlation between the level of Zn and a decreased likelihood of severe sepsis-related death within 28 days (OR = 0.450; 95% CI: 0.263, 0.770; p = 3.58 × 10−3, IVW). Supplementary Table S8 presents the outcomes of sensitivity analyses. Cochran’s Q test indicated no heterogeneity (p = 0.339); however, the restricted number of accessible SNPs (only 2) prevented the execution of MR-PRESSO and Egger regression analyses. Moreover, we employed the Steiger test to validate whether the identified causal relationships were influenced by reverse causation. The results of Steiger do not support the existence of reverse causal effects between candidate micronutrient (β-carotene, vitamin C, and Zn) and sepsis-related outcomes (Supplementary Table S9).
Given the limited availability of only two SNPs for the micronutrient Zn within the threshold of p < 5 × 10−8, which precluded heterogeneity and pleiotropy tests, we conducted a post hoc MR analysis. In this analysis, we included variants at a more liberal threshold (p < 5 × 10−7). As shown in Supplementary Tables S2, S10, the results aligned closely with our initial findings (OR = 0.483; 95% CI: 0.298, 0.783; p = 3.16 × 10−3, IVW), and the p-values for heterogeneity and pleiotropy were both above 0.05, suggesting a minimal likelihood of heterogeneity and pleiotropy.
Confounder and multivariable MR analyses
Although sensitivity analyses did not uncover any indications of bias that would make the MR estimates unreliable, we proceeded to examine the second characteristic linked to the leading SNP for Zn by utilizing the PhenoScanner tool [blood metabolites (Wei et al., 2023), BMI (Wang et al., 2023), insomnia (Thorkildsen et al., 2023), and lifetime smoking (Zhu et al., 2023)]. However, no connections were observed between Zn-related instrumental variables and reported risk factors (Supplementary Table S11). Nonetheless, it is noteworthy that Zn’s rs1532423 was closely associated with mean corpuscular hemoglobin concentration (GWAS identifier: ebi-a-GCST90002328), reticulocyte count (GWAS identifier: ebi-a-GCST90025972), high light scatter reticulocyte count (GWAS identifier: ebi-a-GCST90025970), reticulocyte fraction of red cells (GWAS identifier: ebi-a-GCST90002406), and mean corpuscular volume (GWAS identifier: ebi-a-GCST90025963). Hence, we performed a multivariable MR analysis to examine the association between Zn and potential pleiotropic traits and the likelihood of severe sepsis-related death within 28 days.
After accounting for the impacts of mean corpuscular hemoglobin concentration, reticulocyte count, high light scatter reticulocyte count, reticulocyte fraction of red cells, and mean corpuscular volume in the multivariable MR analysis, we found comparable effects to the primary analysis, suggesting that Zn continued to exhibit a defensive influence on severe sepsis-related death within 28 days (OR = 0.675; 95% CI: 0.508, 0.895; p = 6.421 × 10−3, IVW) (Table 3).
TABLE 3 | Estimated causal effects of zinc on Sepsis (28 day death in critical care) by the multivariable Mendelian randomization analysis.
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In order to further explore the causal efficacy connection between potential micronutrients and outcomes related to sepsis, we performed reverse causal analyses by employing instrumental variables for sepsis-related outcomes. Our objective was to use IVW-MR estimates and select significant independent SNPs with a p < 5 × 10−8 as instrumental variables. This analysis aimed to investigate whether there was any indication of a reverse causal association between the identified Zn and the outcome of severe sepsis-related death within 28 days. As there were no significant independent SNPs identified when considering severe sepsis-related death within 28 days as the variable at a significance level of p < 5 × 10−8 or p < 5 × 10−7, we adjusted the criteria to p < 5 × 10−6 and included linkage disequilibrium with r2 < 0.001 within 10,000-kb windows. Nevertheless, our examination revealed restricted backing for this inverse causal connection (beta = −0.014; 95% CI: −0.115, 0.087; p = 0.783, IVW), as specified in Supplementary Table S12.
DISCUSSION
Drawing on our current knowledge, this study represents the initial comprehensive examination of causal connections between various circulating micronutrients in the blood and the susceptibility, severity, and subtype-specific risks of sepsis. Our research findings indicate one strong correlation and four suggestive associations among four micronutrients and sepsis-related outcomes. In particular, our main finding suggests a strong causal effect connection between genetically forecasted Zn levels in the bloods and a decreased risk of severe sepsis-related death within 28 days. Additionally, four suggestive associations were identified: elevated blood Fe levels indicating a potential link to increased susceptibility to sepsis, higher blood β-carotene levels suggestively associated with decreased risk of severe sepsis-related death within 28 days and sepsis-related death within 28 days, and a suggestively correlation between vitamin C and decreased risk of postpartum sepsis. There is no apparent association between the other five circulating micronutrients and sepsis or related outcomes.
Sepsis is an illness resulting from an infection, which causes dysfunction of organs and ultimately leads to death. Sepsis is a significant worldwide contributor to death, causing approximately 6 million fatalities each year (Evans et al., 2021). Timely identification and medical intervention are vital for individuals who might be susceptible to septicemia. In recent years, the role of circulating micronutrients in blood in disease has garnered increasing attention. Zn, a micronutrient, has been demonstrated to be a vital metal ion for a well-functioning immune system. In the human body, it has a vital function in cellular differentiation, proliferation, and apoptosis mechanisms. According to Gammoh’s research (Gammoh and Rink, 2017), Zn has the ability to control the discharge of inflammatory substances, the production of coenzymes, and the operation of T helper cells, B cells, neutrophils, natural killer cells, and macrophages.
Previous studies have found an association between Zn deficiency and compromised immune function, as well as adverse disease outcomes (Overbeck et al., 2008). Low-dose Zn supplementation has been shown to effectively treat respiratory infections and childhood diarrhea (Dhingra et al., 2020). However, the connection between Zn levels in blood and the risk of human sepsis infection has not been clearly established. Research has observed significantly lower serum Zn concentrations in ICU sepsis patients compared to healthy controls (Hoeger et al., 2017). However, a randomized controlled trial found no notable distinctions between the group that received Zn supplementation and the control group among sepsis patients (Mehta et al., 2013), and it even indicated potential adverse consequences (Braunschweig et al., 1997). The uncertain outcomes could be impacted by methodological deficiencies like limited sample sizes or remaining confounding factors. From a genetic standpoint, our MR study presents proof that genetically anticipated Zn concentrations in the bloodstream offer a safeguarding influence on the severe sepsis-related death within 28 days, despite the fact that the influence of Zn on sepsis and severe sepsis is limited. An animal experiment has identified a potential mechanism behind these findings: Zn can modulate host immune defense by blocking the IKK complex and inducing inhibition of the NF-κB pathway downstream of MAPK (Liu et al., 2013). However, supplementing Zn during infection needs to consider the risk of creating a Zn microenvironment favorable to pathogen growth while interfering with the innate immune system’s ability to chelate free Zn. Our study may suggest that, although Zn is not associated with the risk of severe sepsis, it supports clinical practices of Zn supplementation in critically ill sepsis patients at high risk of mortality. Nevertheless, additional medical investigation is required to authenticate these discoveries.
We additionally discovered a slight positive correlation between genetically anticipated blood Fe levels and the susceptibility of sepsis. Consistent with previous observational studies on sepsis, septic patients had higher serum iron levels compared to healthy volunteers (Akkas et al., 2020). Fe is an essential element in various physiological processes, and deviations in Fe status (such as Fe deficiency or Fe overload) can significantly impact health. Fe status deviation exhibits noticeable gender differences, with females being more prone to Fe deficiency. Prior observational studies have suggested associations between both iron deficiency (Mohus et al., 2018) and high iron status (Brandtner et al., 2020) with an increased risk of infection. According to a recent study using magnetic resonance imaging (MRI), it was found that the addition of Fe is not likely to greatly raise the chances of infection (Butler-Laporte et al., 2023). Conversely, a separate study using the same method indicated a positive association between the predicted increase in serum Fe levels and an elevated risk of sepsis (Mohus et al., 2022). Unfortunately, the latter study only set the significance threshold at p < 0.05 without rigorous correction for multiple testing. It is worth noting that the observed associations do not imply a strong causal relationship, and the impact of Fe on sepsis appears to be relatively mild. Future research endeavors should explore this relationship further, conducting rigorous analyses to validate these findings.
Regarding β-carotene, long considered potent antioxidants within the organism, prior epidemiological studies have proposed a negative correlation between carotenoid intake and cancer incidence (Koklesova et al., 2020). Moreover, cancer patients exhibit a significant increase in carotenoid concentrations after anti-tumor treatment (McMillan et al., 2000). A recent MR study found a protective effect of blood β-carotene against type 2 diabetes (Chen et al., 2023).These findings collectively support the beneficial role of β-carotene in disease occurrence. In our research, we noticed a slight adverse correlation between β-carotene and the likelihood of severe sepsis as well as the mortality rate within 28 days for individuals with severe sepsis. Nevertheless, this discovery could be fortuitous as a result of conducting numerous tests and did not meet our rigorous statistical significance criteria.
Likewise, we observed a suggestive causal effect of higher circulating levels of vitamin C in reducing the risk of puerperal sepsis. Previous observational studies have noted significantly decreased average vitamin C levels in sepsis patients (Carr et al., 2017), prompting discussions on the potential therapeutic role of vitamin C as a crucial antioxidant in sepsis management. A recent review, considering findings from conducted randomized controlled trials, reported positive effects of vitamin C on reducing sepsis mortality in only 2 out of 11 projects (Ammar et al., 2021). Some studies suggest that vitamin C, compared to a placebo, may contribute to mitigating inflammation induced by severe sepsis (Fowler et al., 2014). However, a recent randomized controlled trial yielded inconsistent results, showing that vitamin C did not significantly improve sepsis-related inflammation and vascular damage (Fowler et al., 2019). The heterogeneity in vitamin C treatment regimens, initiation times, and duration of therapy has led to significant variability in results across observational studies. Our MR study did not find causal effects of vitamin C on susceptibility and severity of sepsis at genetic level. However, it revealed a mild protective effect of vitamin C specifically in one subtype of sepsis—postpartum sepsis. Nevertheless, this finding did not meet our stringent statistical thresholds, and given the limited observational studies on postpartum sepsis to date, larger-scale research is needed to further explore this relationship in the future.
Surprisingly, there were no connections discovered between genetically anticipated levels of calcium, magnesium, phosphorus, vitamin D, and vitamin B6 in the bloodstream and the likelihood of sepsis-related consequences. Contrary to a meta-analysis suggesting that vitamin D deficiency increases susceptibility and mortality in sepsis (de Haan et al., 2014). Our study does not support this viewpoint. Additionally, a prospective cohort study found insufficient evidence for vitamin D in predicting sepsis and mortality rates (Ratzinger et al., 2017). A review concluded that there is no clear evidence that selenium supplementation can prevent infection and new infection rates (Zhao et al., 2019). This may suggest that these micronutrients are not crucial risk factors for the development of sepsis and its related outcomes.
Our study has several strengths. This is the initial comprehensive study of MR that examines the association between the levels of 9 micronutrients and the risk of sepsis and its related outcomes. This helps reduce the influence of confounding factors present in observational studies. Furthermore, our examination was limited to people of European origin, reducing the occurrence of population stratification errors. Thirdly, the meta-analysis of summary data from multiple sepsis cohorts reduced random errors, enhancing credibility. However, the study also has limitations. First, some micronutrients’ instrumental variables exhibited varying degrees of low statistical power. Despite all instrumental variables having F-values greater than 10, suggesting a low probability of weak instrument bias, there is still a possibility of some bias remaining. To enhance statistical power, it is imperative to conduct future GWAS on traits related to micronutrients at a larger scale. Second, the study population limited to individuals of European descent may hinder generalization to a broader population. Third, due to sparse subtype data, we could not replicate the associations between Zn and susceptibility or severity subtypes of sepsis. However, our findings suggest a protective trend of Zn against all five sepsis-related outcomes. Larger-scale clinical studies are needed to further confirm these findings and explore underlying mechanisms.
CONCLUSION
To summarize, our research indicates that Zn might have a safeguarding effect in decreasing the likelihood of death within 28 days for patients with severe sepsis, endorsing the medical recommendation of providing Zn supplements to patients who face a high risk of mortality due to severe sepsis. This provides new insights for further research into the role of micronutrients in the prevention and treatment of sepsis.
SCOPE STATEMENT
Previous research has paid limited attention to the role of trace micronutrients in the pathogenesis of sepsis. Therefore, we employed Mendelian randomization analysis to comprehensively investigate the causal relationship between the levels of nine micronutrients (including calcium, β-carotene, iron, magnesium, phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and susceptibility, severity, and subtypes of sepsis. Our research indicates that zinc might have a safeguarding effect in decreasing the likelihood of death within 28 days for patients with severe sepsis, endorsing the medical recommendation of providing zinc supplements to patients who face a high risk of mortality due to severe sepsis. This provides new insights for further research into the role of micronutrients in the prevention and treatment of sepsis.
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An increasing number of studies point to an association between mitochondrial proteins (MPs) and lung cancer (LC). However, the causal relationship between MPs and LC remains unclear. Consequently, our study employed a bidirectional Mendelian randomization (MR) analysis to explore the causal association between MPs and different pathological types of LC. A two-sample MR study was performed using the genome-wide association study (GWAS) data publicly available. We applied the primary inverse variance weighted (IVW) method along with additional MR methods to validate the causality between MPs and different pathological types of LC. To ensure the robustness of our findings, sensitivity analyses were employed. Moreover, we performed a bi-directional MR analysis to determine the direction of the causal association. We identified a total of seven MPs had significant causal relationships on overall LC, lung squamous cell carcinoma (LUSC), and small cell lung carcinoma (SCLC). We found two MPs had significant associations with overall LC, four MPs had significant associations with LUSC, and four MPs had significant associations with SCLC. Additionally, an MP was found to have a nominal relationship with LUSC. Moreover, no causality was found between MPs and lung adenocarcinoma (LUAD). Bidirectional MR showed no reverse effect between identified MPs and different pathological types of LC. In general, our findings of this MR study suggest causal associations of specific MPs with overall LC, LUSC, and SCLC. However, no such causality was found in LUAD.
Keywords: lung cancer, mitochondrial protein, Mendelian randomization, causal relationship, european
1 INTRODUCTION
Cancer stands as one of the primary causes of global mortality. On a worldwide scale, in 2020, it is estimated that approximately 2.2 million new cases of lung cancer (LC) and nearly 1.8 million LC deaths occurred. Meanwhile, LC ranked as the most commonly diagnosed cancer among males and the third most frequently diagnosed cancer among females (Sung et al., 2021). The incidence of new LC cases is projected to rise until 2035 in most countries, which causes a substantial global public health challenge (Luo et al., 2023). The majority of LC patients are diagnosed at an advanced stage of the disease, resulting in a 5-year survival rate of less than 20% (Osuoha et al., 2018; Bade and Dela Cruz, 2020). Hence, it is crucial to identify modifiable protective or risk factors to prevent the occurrence and progression of LC. Smoking is the most established and well-acknowledged risk factor for LC (Leiter et al., 2023). However, as smoking prevalence decreases and the number of LC cases in nonsmokers rises, it becomes increasingly important to investigate a better understanding of LC development (Bade and Dela Cruz, 2020). As a result, further research is gradually focusing on the other risk factors of LC, encompassing environmental exposures, lifestyle, gender, and genetics (Schabath and Cote, 2019).
Mitochondria serve as the central command for cellular metabolism, maintaining equilibrium and stress responses, playing a pivotal role in regulating processes like cell growth, division, differentiation, and apoptosis (Anderson et al., 2019). Previous studies have unveiled an unforeseen complexity and versatility in mitochondrial activities, combining mitochondrial energetics with protein biogenesis, metabolic pathways, and apoptosis (Pfanner et al., 2019). Moreover, recent studies based on proteomics indicated the remarkable importance of retaining mitochondrial proteostasis in guaranteeing the correct function of mitochondria (Wachoski-Dark et al., 2022). Encoded by both nuclear and mitochondrial DNA, mitochondrial proteins (MPs) are susceptible to errors during folding and assembly on account of oxidative stress and post-translational modifications (Stefani, 2004; Santo-Domingo and Demaurex, 2012). This may result in mitochondrial dysfunction, leading to an increase in reactive oxygen species (ROS) with tumor-promoting effect (Bandy and Davison, 1990). Mitochondrial protein quality control (MPQC) employs various pathways and regulators to maintain the quality and quantity of MPs. Dysregulated MPQC results in proteotoxicity and malfunctioning mitochondria, contributing to a range of human diseases, including cancer. Numerous studies have connected the dysfunction of MPQC in the etiology and pathogenesis of multiple types of cancer, including LC (Wallace, 2012; Friedlander et al., 2021). However, due to various objective factors, including technological and methodological constraints, the majority of existing research findings about MPQC rely on the animal or cellular experiments which can be influenced by multiple variables (Friedlander et al., 2021). In summary, the causality of the relationships between MPs and LC, as well as the direction of these causal connections, remains unclear. Therefore, it is crucial to investigate if MPs contribute to the onset of LC or just outcomes of shared risk factors.
Mendelian randomization (MR) analysis is a widely used method for establishing the causal relationship between exposure factors and outcomes, with the fundamental principle of employing genetic variations as instrumental variables (IVs) to model and evaluate the causality (Sanderson, 2021). The MR approach parallels the design of a randomized controlled trial (RCT) on account of parental alleles being randomly distributed to offspring during gamete formation in Mendel’s law (Emdin et al., 2017). Furthermore, the results of MR studies are more robust against residual confoundings and the bias of reverse causal effects because the genetic variations are randomly assigned during meiosis and are not linked to environmental factors (Boehm and Zhou, 2022).
In our study, we aimed to apply a comprehensive two-sample MR analysis to determine the causal effect between MPs and LC and its various pathological types. By means of employing a bidirectional MR analysis, we could investigate the causality of MPs on LC risk and also determine if LC had a causal effect on MPs. From this foundation, we aimed to elucidate the influence between MPs and different pathological types of LC, ultimately aiding in developing innovative treatment options for LC.
2 METHODS
2.1 Study design
Figure 1 illustrates an overview of the bidirectional MR analyses employed in our study. All IVs selected were guided by three principal assumptions of MR studies. Namely, IVs must demonstrate a strong association with the exposure; IVs impact the outcome solely through the exposure; IVs should not exhibit any association with confounding factors in the relationship between exposure and outcome.
[image: Figure 1]FIGURE 1 | Assumptions and study design of the bidirectional Mendelian randomization study of the causal relationships between 66 mitochondrial proteins and different pathological types of lung cancer. LC, lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell lung carcinoma; SNPs, single nucleotide polymorphisms.
2.2 Genome-wide association study (GWAS) sources
The GWAS data for MPs were sourced from a GWAS study involving a total sample size of 3,301 healthy participants of European descent (Sun et al., 2018). A total of 66 mitochondrial proteins (due to limited data availability) were enrolled in the subsequent MR analysis. The GWAS data for LC were derived from a large-scale GWAS study involving 85,716 individuals with 29,266 cases and 56,450 controls, while the GWAS study ulteriorly categorized LC into specific pathological types as lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and small cell lung carcinoma (SCLC) (McKay et al., 2017). All detailed information on GWAS data for MR analyses is presented in Figure 1. The original GWAS obtained approval from their respective institutions, and all data used for this study are publicly available. Therefore, no additional ethical approval was required.
2.3 Acquisition of IVs
Due to the restricted pool of accessible SNPs, we opted for SNPs with a cutoff of p < 1e-5. Then genetic instruments were excluded on a linkage disequilibrium (LD) threshold of r2 < 0.001 and a window size = 10,000 kb. To assess the statistical strength of each SNP, the F statistics were also calculated, and the SNPs with F statistic <10 were eliminated for weak strength (Brion et al., 2013). We further excluded IVs that exhibited associations with potential confounding traits according to PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/).
2.4 MR analysis
As for the two-sample analyses, we conducted the inverse variance-weighted (IVW) method as the primary approach for examining the bidirectional causal relationships between MPs and different pathological types of LC. Additionally, three complementary MR approaches were employed, including MR-Egger, weighted median (WM), and MR-Pleiotropy residual sum and outlier (MR-PRESSO), to sustain the findings derived from the IVM method. p-values were adjusted for false discovery rate (FDR) method, and Adjusted p-values (adj. P) < 0.05 were considered statistically significant. Also, p-values <0.05 were considered nominally significant.
2.5 Sensitivity analysis
Given that the IVW method could be biased by pleiotropic IVs, sensitivity analyses were employed to address the pleiotropic effects in the causal estimates. To assess potential heterogeneity, Cochrane’s Q test was applied. In cases where heterogeneity was detected p < 0.05, a random-effects IVW analysis was performed to account for the measured heterogeneity. Additionally, the intercept of MR-Egger and MR-PRESSO global test were adopted to estimate the presence of horizontal pleio8tropy in the genetic variants (p < 0.05 indicated potential horizontal pleiotropy) while MR-PRESSO global test demonstrated a greater level of accuracy and assistance compared to MR-Egger in identifying horizontal pleiotropy. Furthermore, a leave-one-out analysis was conducted to determine whether the results were actuated by individual variants. We conducted all our MR analyses using the R software (version 4.3.1).
3 RESULTS
3.1 Acquisition of IVs
After filtering for SNPs with LD, significantly linked to potential confounders (lung function and chronic obstructive pulmonary disease), and other LC-associated traits, a total of 125 SNPs were enrolled as IVs for the ensuing MR analyses, with the F statistics for each SNP being >10, demonstrating the absence of instrument bias (Supplementary Table S1).
3.2 Causal effects of MPs on LC
The results reported that both mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur protein 4 (Ndufs4) (IVW: OR = 0.971, 95% CI: 0.949–0.994, p = 0.015, adj. p = 0.015) and mitochondrial import inner membrane translocase subunit TIM14 (TIMM14/DNAJC19) (IVW: OR = 0.935, 95% CI: 0.887–0.985, p = 0.012, adj. p = 0.023) had a protective causal effect on overall LC (Figure 2). However, we observed no genetic predisposition to MPs demonstrated a causal relationship on LUAD (Supplementary Table S2).
[image: Figure 2]FIGURE 2 | Causal effects of mitochondrial proteins on different pathological types of LC. LC, lung cancer; LUSC, lung squamous cell carcinoma; SCLC, small cell lung carcinoma; SNPs, single nucleotide polymorphisms; MR, Mendelian randomization; MR-PRESSO, MR-pleiotropy residual sum and outlier.
As to LUSC, the findings suggested that mitochondrial steroidogenic acute regulatory protein (StAR) (IVW: OR = 0.878, 95% CI 0.790–0.977, p = 0.017, adj. p = 0.028), mitochondrial Ndufs4 (IVW: OR = 0.955, 95% CI 0.920–0.991, p = 0.015; WM: OR = 0.960, 95% CI 0.920–1.002, p = 0.063, adj. p = 0.037) and mitochondrial DNAJC19 (IVW: OR = 0.908, 95% CI 0.830–0.992, p = 0.033, adj. p = 0.041) had protective causal effects on LUSC. In contrast, mitochondrial NADH dehydrogenase [ubiquinone]1 beta subcomplex subunit 8 (NDUFB8) (IVW: OR = 1.104, 95% CI 1.001–1.218, p = 0.048, adj. p = 0.048) indicated pathogenic causal impacts on LUSC. Besides, mitochondrial sodium/hydrogen exchanger 9B2 (SLC9B2) (IVW: OR = 1.115, 95% CI 1.025–1.212, p = 0.011, adj. p = 0.055) showed a suggestive casual association with the higher risk of LUSC (Figure 2).
In terms of SCLC, we discovered two protective factors, including mitochondrial ADP-ribose pyrophosphatase (NUDT9) (IVW: OR = 0.864, 95% CI 0.784–0.952, p = 0.003, adj. p = 0.012) and mitochondrial Ndufs4 (IVW: OR = 0.928, 95% CI 0.866–0.995, p = 0.035, adj. p = 0.048) and two risk factors, including mitochondrial 39S ribosomal protein L32 (MRPL32) (IVW: OR = 1.186, 95% CI 1.015–1.386, p = 0.032, adj. p = 0.043) and mitochondrial oligoribonuclease (REXO2) (IVW: OR = 1.197, 95% CI 1.015–1.411, p = 0.032, adj. p = 0.043) were causal associated with SCLC (Figure 2).
3.3 Sensitivity analysis
The scatter plot showed that the causal estimates derived by the MR-Egger regression and weighted median approach were consistent in both dimension and direction with IVW method (Supplementary Figure S1). The findings of Cochrane’s Q test indicated no significant heterogeneity (p > 0.05). The results revealed that the MR-Egger regression did not identify any pleiotropic effects for MPs (all p > 0.05). Additionally, the MR-PRESSO global test detected neither horizontal pleiotropic effects nor outlier SNPs (all p > 0.05). Moreover, the leave-one-out analysis validated that no individual SNP solely drove the causality between MPs and different pathological types of LC (Supplementary Figure S2).
3.4 Bidirectional causal associations between identified MPs and LC
To assess any reverse causality between identified MPs and different pathological types of LC, we considered overall LC and its subtypes as the exposure and identified MPs as the outcome. After screening, we employed 119 SNPs associated with different pathological types of LC as IVs (Supplementary Table S3). Finally, the results indicated no evidence for a reverse causal association between identified MPs and different pathological types of LC (Table 1).
TABLE 1 | Causal effects of different pathological types of LC on identified mitochondrial proteins.
[image: Table 1]4 DISCUSSION
To our knowledge, this is the inaugural investigation of the causality between mitochondrial proteins and LC using open-access genetic databases. We employed bidirectional MR analyses to determine the causality between 66 MPs and different pathological types of LC, which enabled us to evaluate the upstream and downstream in the disease progression while avoiding reverse causation. We further ensured the robustness of our MR analyses against pleiotropic influences by implementing a variety of MR approaches, including MR-Egger and MR-PRESSO, to validate our findings. Our results indicated that a total of eight MPs may be potential protective contributors or potential risk factors to the development of overall LC, LUSC, and SCLC, whereas no such causal effect was observed in the case of LUAD. Furthermore, we found no evidence for a reverse causal effect between identified MPs and different pathological types of LC.
The majority of reactive oxygen species (ROS) within cells are produced from the mitochondrial respiratory chain. An overabundance of ROS can result in oxidative stress, causing oxidative harm to proteins and alterations in MP expression (Rabilloud et al., 2001; Poyton et al., 2009). Numerous studies have demonstrated that increased levels of ROS are correlated with the formation and advancement of LC (Weinberg et al., 2010; Jiang et al., 2022). Additionally, examining variations in the mitochondrial proteome is deemed to be an effective method to gauge the degree of mitochondrial damage under oxidative stress conditions (Gibson, 2005). Due to the absence of protective histones and a restricted range of DNA repair mechanisms, mitochondrial DNA (mtDNA) is highly susceptible to oxidative damage (Richter et al., 1988). Instability in mtDNA has been observed in several cancers, including LC (Chatterjee et al., 2006). An observational study suggested that compared to patients without LC, mutation rates in mtDNA were significantly increased in exhaled breath condensate in patients with LC (Yang Ai et al., 2013). After smoking, exposure to radon is the second leading cause of LC (Lorenzo-González et al., 2019). A study found that in radon-induced LC patients, the concentration of cell free mtDNA was significantly increased compared to other participants in the study (Bulgakova et al., 2022). Although these studies suggested a relationship between MPs and LC to some degree, the causal links remain unclear, and the direct association between them still lacks substantial research backing. Our research offered evidence supporting causal associations of MPs with LC and its subtypes by deducing the causality through genetic prediction using MR, which could also mitigate confounders effectively.
The result showed two protective factors in overall LC. Ndufs4 encodes mitochondrial complex I protein (Karamanlidis et al., 2013), while a study revealed deficiency in complex I led to elevated levels of mitochondrial ROS in macrophages in mouse models with myeloid-specific deletion of Ndufs4 (Cai et al., 2023). A similar result of Ndufs4 was also found in LUSC and SCLC, which indicated that Ndufs4 may be a vital protective factor in the development of LC. DNAJC19 plays a crucial role in preserving mitochondrial integrity, and the mutation in DNAJC19 could induce the occurrence of dilated cardiomyopathy and ataxia syndrome (Davey et al., 2006). Paradoxically, the expression of DNAJC19 was increased in NSCLC tissues compared to noncancerous adjacent tissues (Zhou et al., 2021). This conflictive result could be attributed to pathogenic variants in DNAJC19, which can lead to damage to mitochondrial function (Wachoski-Dark et al., 2022). Our finding also indicated the protective causal effect of DNAJC19 on LUSC, which further substantiates that DNAJC19 has a pivotal protective effect against LC.
In terms of LUSC, our study revealed four probable and one possible MPs with causal links, including protective factors of StAR, Ndufs4, and DNAJC19 and risk factors of NDUFB8 and SLC9B2. StAR governs the crucial step that limits the rate of steroid biosynthesis, playing a vital role in the regulation of steroid hormones (Manna et al., 2009). ROS impairs mitochondria, leading to reduced StAR expression and steroidogenesis across various steroid-producing cells. At the same time, hormone deficiencies are considered a primary driver of human aging, which is related to the onset of various tumors (Manna et al., 2016; Jackaman et al., 2017). The selective nitration of NDUFB8 results in the disintegration of mitochondrial supercomplexes, causing the impairment of complex I activity and mitochondrial function. The activity of Complex I is recognized as a crucial factor in controlling mitochondrial respiration. Besides, nitration of NDUFB8 may represent a crucial mechanism in inflammatory conditions, which is a crucial component in the advancement of tumors (Coussens and Werb, 2002; Quintero et al., 2006; Davis et al., 2010). SLC9B2 is a sodium/hydrogen antiporter (Chintapalli et al., 2015). However, our understanding of the precise molecular functions of SLC9B2 remains limited. A previous study suggested the increased expression of SLC9B2 had a positive relationship with Autosomal-dominant polycystic kidney disease (Chapman et al., 2015). The expression level of SLC9B2 was identified significantly upregulated in Crohn’s disease (Ye et al., 2022). We speculate that the inflammation may be one of the reasons for its role as a risk factor for LUSC.
For SCLC, the results identified that NUDT9 and Ndufs4 presented protective causal effects, and MRPL32 and REXO2 showed pathogenic causal effects. Adenosine diphosphate ribose (ADPR) interacts with NUDT9 homology to activate transient receptor potential melastatin 2 (TRPM2) channel (Miller and Cheung, 2016), while the decreased level of TRPM2 was considered to enhance tumor potential metastasis (Gershkovitz et al., 2018). SCLC is well known as a highly aggressive disease, thus this mechanism may explain the association between the protective factor NUDT9 and SCLC. As to risk factors, the current understanding of MRPL32 and REXO2 is limited. Prior studies demonstrated that suppressing MRPL32 could reduce oxygen-glucose deprivation/reperfusion damage (Guan et al., 2020) and that REXO2 was associated with a poorer prognosis in glioma (Wang et al., 2021).
Nevertheless, our study had several constraints. Firstly, increasing the sample size is pivotal for a more accurate determination of the causal relationship between MPs and different pathological types of LC due to the potential biases from the current fairly small MP sample size. Secondly, the participants in GWAS data were predominantly of European populations, which constrained the applicability of our results to other ethnicities and could result in biased conclusions. Finally, our study merely identified causal associations of MPs with LC and its subtypes, further in-depth research is required to clarify the exact mechanisms of the causality.
5 CONCLUSION
In general, we systematically assessed the causality between MPs and different pathological types of LC by performing bidirectional MR analyses. Our study identified a total of seven MPs had significant causal relationships on overall LC, LUSC, and SCLC. Our findings suggested that there were two protective causal associations with LC; two protective causal associations, two causal pathogenic associations, and a nominally protective causal association with LUSC; two protective causal associations and two causal pathogenic associations with SCLC. Additionally, the results demonstrated no MP had a causality link with LUAD, and no evidence supported the reverse causality for identified MPs with LC or its subtypes. This research underscores the causal effects of MPs on the occurrence of LC, suggesting that MPs might be a viable strategy for LC prevention.
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Single-cell transcriptomics and Mendelian randomization reveal LUCAT1’s role in right-sided colorectal cancer risk
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Background: Colorectal cancer (CRC) is a malignancy with high incidence and mortality rates globally, categorized into left-sided and right-sided CRC, each exhibiting significant differences in molecular characteristics, clinical manifestations, and prognosis.
Methods: This study employed single-cell transcriptomic data and various bioinformatics approaches, such as two-sample Mendelian randomization, reverse Mendelian randomization, colocalization analysis, directed filtering, pseudotime analysis, and intercellular communication analysis. It analyzed cellular-level disparities between left-sided and right-sided CRC, identifying distinct subpopulations with characteristic variations. For these cells, two-sample Mendelian randomization was utilized to explore gene-to-one-sided CRC causality.
Results: LUCAT1 was enriched in high-abundance monocyte subpopulations in right-sided CRC and demonstrated potential risk factor status through Mendelian randomization analysis. The specific single-nucleotide polymorphism (SNP) rs10774624 was associated with an increased risk of CRC. Moreover, metabolic pathway analysis revealed that LUCAT1+ monocytes exhibit lower communication activity in the tumor microenvironment and heightened activity in metabolic functions like glycosaminoglycan degradation. Its biological functions are related to the positive regulation of interleukin-6 production and NF-kappa B signaling, among others.
Conclusion: This study confirmed a potential causal relationship between LUCAT1 and right-sided CRC risk through Mendelian randomization analysis. These findings provide novel insights into the pathogenesis of right-sided CRC and may aid in developing early detection and treatment strategies for right-sided CRC.
Keywords: colorectal cancer, single-cell sequencing, Mendelian randomized, LUCAT1, bioinformatics
1 INTRODUCTION
Colorectal cancer (CRC) ranks among the most prevalent and lethal malignancies worldwide (White and Sears, 2023). This neoplasm is categorized into right-sided and left-sided colorectal cancer based on the tumor’s location within the colon. This classification extends beyond mere anatomical delineation, as these subtypes exhibit significant disparities in molecular characteristics, clinical manifestations, treatment responses, and prognoses. Typically, right-sided CRC is more common in older patients and is associated with a poorer prognosis, whereas left-sided CRC often responds better to treatment and shows higher survival rates (Boeckx et al., 2017; Nawa et al., 2008). These differences underscore the need for personalized approaches in the diagnosis, treatment, and management of CRC, highlighting the importance of understanding these variations to optimize treatment strategies, improve patient outcomes, and develop novel therapeutic targets.
Molecularly, right-sided and left-sided CRC demonstrate distinct characteristics. Right-sided CRC is frequently linked with microsatellite instability (MSI) and BRAF mutations, associated with immune evasion and chemotherapy resistance (Takahashi et al., 2016; van der Post and Hansson, 2014; Weiss et al., 2011). Conversely, left-sided CRC often exhibits mutations in the KRAS and p53 genes, aligning with the typical adenoma-carcinoma sequence (Brooks et al., 2001). Additionally, right-sided CRC shows higher genomic and epigenetic heterogeneity, while left-sided CRC is characterized by chromosomal instability (Kajiwara et al., 2023). These molecular features not only influence the tumor’s biological behavior but also critically impact the response to various treatment modalities, playing a pivotal role in clinical decision-making. Thus, a deeper understanding of these molecular differences is crucial for developing more precise and effective treatment approaches.
Lung cancer-associated transcript 1 (LUCAT1), a long non-coding RNA (lncRNA), has garnered attention for its expression and function in various tumors. Initially identified in lung cancer, LUCAT1 has been found to regulate tumor progression in other cancer types as well (Cao et al., 2023). Its roles include promoting tumor cell proliferation, inhibiting apoptosis, enhancing cancer cell migration, and invasion, and participating in epigenetic regulation. LUCAT1 also modulates the activity of microRNAs (miRNAs) by acting as an “miRNA sponge,” indirectly influencing the expression of numerous genes. A more comprehensive understanding of LUCAT1’s role in tumorigenesis may pave the way for developing novel cancer treatment strategies (Xiao et al., 2021).
Single-cell technologies enable researchers to analyze gene expression, molecular characteristics, and cell states at an individual cell level. This is significant for revealing tumor heterogeneity, identifying distinct cell subpopulations, and understanding cell interactions within the tumor microenvironment. Mendelian randomization, an epidemiological method using genetic variants as instrumental variables, assesses causal relationships between exposures and disease outcomes. This approach helps mitigate confounding and reverse causation issues common in traditional observational studies (Lee et al., 2023; Shigemura et al., 2023; Wang H. et al., 2023; Wang M. et al., 2023).
Our study, leveraging single-cell transcriptomic data from right-sided and left-sided CRC obtained from the Gene Expression Omnibus (GEO) database, identifies a subgroup of mononuclear cells that promote tumor development. Through analyzing expression differences with other cell subpopulations, we identified differentially expressed genes in this subgroup. Using these genes as exposure factors and employing bioinformatics methods like Mendelian randomization, colocalization, and directional filtering, we discovered that genetic variations in LUCAT1, a long-chain non-coding RNA, are risk factors for right-sided CRC, potentially linked to the single-nucleotide polymorphism (SNP) rs10774624. These findings offer insights into the molecular mechanisms of right-sided and left-sided CRC and contribute to developing potential targeted therapeutic strategies.
2 MATERIALS AND METHODS
2.1 Data acquisition and preprocessing
The data for this study were sourced from the publicly accessible GEO database, specifically the GSE188711 dataset, which comprises single-cell RNA sequencing data from six colorectal cancer samples, including three from the left side and three from the right side of the colon. We used the Read10X function from the Seurat package to import data in the 10x Genomics format for data preprocessing. Each sample’s data were read from the specified directory and immediately encapsulated into a Seurat object using the CreateSeuratObject function, with parameters set to default except for the project argument, which was uniquely assigned to each sample based on its origin (e.g., L1, L2, and L3 for left-sided samples and R1, R2, and R3 for right-sided samples).
2.2 Quality control and dimension reduction
The Seurat objects corresponding to individual samples were merged into a single dataset using the merge function with the default parameters to facilitate collective analysis. During the quality control (QC) phase, metrics such as the number of gene expression features (nFeature_RNA), the proportion of mitochondrial gene expression (percent.mt), and the proportion of hemoglobin gene expression (percent.HB) were computed for each cell. Cells were then filtered based on the following criteria: cells with gene counts over 200 and under 4,000 and mitochondrial gene expression below 10% to eliminate both dead or dying cells and potential doublets or multiplets.
For dimensionality reduction, we utilized principal component analysis (PCA) using the RunPCA function with features = VariableFeatures (object) to focus on highly variable genes, followed by uniform manifold approximation and projection (UMAP) for visualization purposes, employing the RunUMAP function with the default parameters except for dims = 1:10 to use the first ten principal components (Qi and Zhang, 2023).
2.3 Clustering analysis and single-cell type annotation
Clustering analysis was performed using the FindNeighbors function with default parameters but specifying dims = 1:10 to use the data from the first ten principal components for neighborhood calculation. The FindClusters function was then applied for actual clustering, with the resolution parameter adjusted based on preliminary analyses to optimize cluster granularity. We utilized the SingleR package or cell-type annotation, leveraging the SingleR function with the reference dataset obtained from the HumanPrimaryCellAtlasData function for human samples. Annotation was performed by matching our dataset’s expression profiles with those in the reference, providing a predicted cell type for each cell. In particular, for the detailed analysis of monocyte subpopulations, we isolated monocyte cells and conducted further dimension reduction, clustering, and annotation steps. The FindVariableFeatures function was used to select 2000 highly variable genes, followed by PCA and UMAP for visualization. Harmony was used for batch correction using the RunHarmony function with group.by.vars = “orig.ident,” ensuring the integration of data from different samples without batch effects. The FindAllMarkers function was employed to identify subgroup-specific marker genes, with the parameters set to only.pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25 to focus on genes that were positively expressed in at least 25% of cells within any given cluster with a minimum fold change of 0.25.
This detailed methodology ensures a comprehensive and reproducible approach to analyzing single-cell RNA sequencing data, facilitating the identification of cellular subpopulations and their respective marker genes within the complex landscape of colorectal cancer (Feng et al., 2023).
2.4 Pseudotime and intercellular communication analysis
Leveraging the slingshot package, we conducted trajectory analysis on cells to delineate the developmental pathways of monocyte subtypes. Constructing SingleCellExperiment objects allowed us to convert Seurat objects for analysis with slingshot. Within the scope of the slingshot analysis, we designated “celltype” as the clustering label and employed UMAP for dimensionality reduction. Specific starting clusters [start.clus = c (3,5)] were selected, alongside setting the trajectory shrinkage parameter (shrink = 0.2) to facilitate the refined formation of trajectories. Additionally, trajectory visualization was performed, utilizing color and layout options provided by the RColorBrewer and igraph packages, graphically depicting cell state transitions and developmental trajectories.
In exploring intercellular communication, we initially refined our scRNA-seq dataset through a further filtration process, excluding non-monocyte cell types to concentrate on their communication within the colorectal cancer context. Subsequently, we engaged in a quantitative analysis of cell-to-cell communication using the CellChat package. This step involved the creation of a CellChat object and its integration with the Human Cell Communication Database (CellChatDB.human). Our focus was directed toward the “Secreted Signaling” category of cell communication, selecting supported ligand–receptor pairs from the database. By identifying overexpressed genes and ligand–receptor pairs and projecting these elements onto the PPI network, we could construct and quantify the probabilities of intercellular communication. Furthermore, we filtered the cell communication network, eliminating communications within specific cell groups that had fewer cells, adopting min.cells = 10 as a threshold for analysis. Finally, we depicted the network and bubble plots of cell communication through visualization tools, offering an intuitive presentation of the quantity and patterns of interactions among cell groups.
2.5 Metabolic pathway analysis
We employed the scMetabolism package to assess the metabolic activity within specific subpopulations of colorectal cancer cells. Initially, our focus was directed toward the “monocyte_CO2” subpopulation, which was further stratified into “LUCAT1+M” and “LUCAT1−M” subgroups based on the expression of the LUCAT1 gene. Additionally, subpopulations other than “monocyte_CO2” were isolated from the aggregate dataset for subsequent analysis. The scMetabolism package facilitated a quantitative assessment of metabolic activity in these cell subgroups. The specific steps of analysis included the following:
1) Utilizing the sc.metabolism.Seurat function to score metabolic pathways via the AUCell method, without imputation (imputation = F), and setting the number of parallel cores to 2 (ncores = 2). “KEGG” was selected as the metabolism type (metabolism.type = “KEGG”).
2) Certain metabolic pathways (for instance, input.pathway < - rownames (scRNA_metab @assays [["METABOLISM"]][["score"]])[61:90]) were chosen for dot plot visualization to illustrate the variability in pathway activity across different genotypes. Moreover, differential gene expression analysis was conducted using the FindAllMarkers function, identifying genes with significant expression differences between the “LUCAT1+M” and “LUCAT1−IM” subgroups (employing positive markers, with a log fold change threshold set at 0.5). The list of differential genes obtained was then utilized for subsequent functional enrichment analysis.
2.6 Gene conversion and Mendelian randomization preparation
Upon identifying key genes, we used the clusterProfiler and org.Hs.eg.db packages to convert these gene symbols to ENSEMBL IDs. This facilitated subsequent Mendelian randomization analysis, allowing us to extract SNP information related to these genes from publicly available Genome-Wide Association Studies (GWAS databases), serving as instrumental variables for the analysis.
2.7 Two-sample Mendelian randomization and bidirectional Mendelian randomization
In this study, differential genes in the second group of monocytes compared to other cells were used as exposure factors (Table 1), with colorectal cancer (CRC) as the outcome, for causal inference analysis (MR) using “TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR). The Wald ratio was used for genes with only one eQTL available, while inverse-variance weighted MR (MR-IVW) was applied when two or more genetic tools were available. The odds ratio (OR) of increased colorectal cancer risk was expressed for carriers of specific gene polymorphisms (e.g., a particular SNP) compared to non-carriers. For the primary analysis, the Bonferroni correction was applied for multiple testing adjustments, prioritizing results for further analysis with a threshold of 0.05/888 (p < 5.63 × 10−5). Moreover, colorectal cancer was also used as the exposure variable, with high expression of LUCAT1 in right-sided colorectal cancer monocytes as the outcome, for a bidirectional Mendelian randomization analysis, revealing potential bidirectional causal relationships between colorectal cancer onset and genes. Two colorectal cancer datasets from the GWAS database were selected, one as a test set (ebi-a-GCST90018808) and another as a validation set (ebi-a-GCST012879).
TABLE 1 | Results of Mendelian randomization and colocalization with directional filtering.
[image: Table 1]2.8 Colocalization analysis
Bayesian colocalization analysis was employed to assess the likelihood of two traits sharing the same causal variant, using the “Coloc” package (https://github.com/chr1sw) with default settings. As previously described, Bayesian colocalization provides posterior probabilities for five hypotheses regarding whether two traits share a single variant. In this study, we tested hypothesis 4 (PPH4), where LUCAT1 and colorectal cancer were associated with the region through a shared variant. Using the Coloc.abf and Coloc.susie algorithms, a gene was defined as having evidence of colocalization if it met the criterion of a gene-based PPH4 > 80% with at least one algorithm. Following the extraction and organization of relevant SNP data, the locusComparer package was used to create regional association plots, showcasing the association degree of specific gene regions with the occurrence of colorectal cancer. The specific steps of analysis included the following:
1) Employing the vcfR::read.vcfR function to read the “./eqtl-a-ENSG00000119917.vcf” file, obtaining eQTL information for the gene of interest.
2) Utilizing the separate function from the tidyverse package to process genotype data, splitting columns containing multiple pieces of information into separate variables, including effect size (beta), standard error (se), logarithmic p-value (logpvalue), allele frequency (eaf), and sample size (samplesize).
3) Calculating the minor allele frequency (MAF) and filtering data based on chromosomal position to focus on SNPs within specific regions of the gene.
4) Generating regional association plots with the locuscomparer package to visually depict the degree of association between the LUCAT1 gene eQTLs and the colorectal cancer GWAS results.
2.9 Directional filtering
Directional filtering analysis was conducted to evaluate the relative impact of SNPs on LUCAT1 gene expression and colorectal cancer occurrence. This step was achieved by comparing the association strength of SNPs with the exposure and outcome, aiming to ensure that the SNPs used in the analysis were correctly aligned on the causal pathway with the exposure variable. The steiger_filtering and directionality_test functions within the TwoSampleMR package were utilized for this analysis.
2.10 Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis
Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis are pivotal methodologies in bioinformatics for deciphering the biological processes and pathways underlying gene expression data. To investigate the potential biological functions of monocyte_CO2 cells and LUCAT1+ monocytes, we selected the top 100 highly variable genes from these two cellular subpopulations for GO and KEGG enrichment analyses. The org.Hs.eg.db package was utilized for ID conversion, while the clusterProfiler package facilitated the enrichment analyses. All analyses and visualizations were conducted within the R version 4.2.1 environment.
3 RESULTS
3.1 Study design
Our investigation begins with the analysis of cell subpopulations in left- and right-sided colorectal cancer, identifying a notable monocyte_CO2 subpopulation predominance in right-sided cases. This observation is followed by differential gene expression analysis, coupled with cell communication and pseudotime analysis, to delineate gene expression patterns and cellular interactions. We then integrate two-sample Mendelian randomization, reverse Mendelian randomization, and eQTL mapping, refined by colocalization and directional filtering techniques. The study culminates with a focused downstream analysis of LUCAT1+ monocytes to elucidate their potential role in colorectal cancer progression (Figure 1).
[image: Figure 1]FIGURE 1 | Depicts the analysis of colorectal cancer cell subpopulations, revealing a larger number of monocyte_CO2 cells in right-sided cases. It is followed by gene expression and cell interaction studies using Mendelian randomization and eQTL mapping, refined by colocalization and filtering, and ending with a focus on the role of LUCAT1+ monocytes in cancer progression.
3.2 Monocytes, particularly monocyte_CO2, exhibit greater abundancein right-sided colorectal cancer, potentially related to the characteristics of right-sided colorectal cancer
In this investigation, single-cell sequencing data from left- and right-sided colorectal cancer were retrieved from the GEO database, identified as dataset GSE188711. Following stringent quality control (Supplementary Figures S1A, B) and batch-effect normalization (Supplementary Figures S1C–E), we procured high-quality single-cell transcriptomic data. We initially performed dimensionality reduction clustering on individual samples, followed by the presentation of marker expression for each cell cluster post-merging (Supplementary Figures S2, S3). Utilizing UMAP for clustering analysis, we segregated cells within tumor tissues into multiple subgroups, including B cells, T cells, dendritic cells (DCs), endothelial cells, epithelial cells, monocytes, neutrophils, smooth muscle cells, macrophages, and natural killer (NK) cells, each displaying distinct distribution patterns in left- and right-sided colorectal cancer samples (Figure 2A). Cell ratio diagrams further disclosed a notably higher proportion of monocytes in right-sided than left-sided colorectal cancer (Figure 2B). An independent analysis of monocytes indicated a significantly elevated proportion of the monocyte_CO2 subpopulation in right-sided colorectal cancer, signifying that this distinct subpopulation might play an enhanced role in this cancer variant (Figures 2C, D).
[image: Figure 2]FIGURE 2 | Single-cell transcriptomics reveal cellular disparities in left- and right-sided colorectal cancers. (A) Uniform manifold approximation and projection (UMAP) dimensionality reduction clustering identifies multiple cell subpopulations within colorectal cancer tissues, including B cells, T cells, dendritic cells, endothelial cells, epithelial cells, monocytes, neutrophils, smooth muscle cells, macrophages, and natural killer cells. (B) A stacked bar chart illustrates the comparative frequency of occurrence of each cell subpopulation between the two groups. (C) UMAP dimensionality reduction clustering displays the distribution of monocyte subpopulations. (D) Comparative cell proportion plots highlight the variance in monocyte subpopulations between left- and right-sided colorectal cancers. (E) Dotplot diagrams demonstrate the highly variable genes among three monocyte groups.
Further investigation into these monocyte subgroups revealed expression patterns of highly variable genes (Figure 2E). A suite of such genes, including CXCL8, TNFAIP6, CXCL3, and SPP1, were specifically upregulated in the monocyte_CO2 cells. The expression patterns of these genes might correlate with the functional dynamics of monocytes in right-sided colorectal cancer and their contribution to oncogenic processes within the tumor microenvironment. We further analyzed the biological functions enriched by the top 100 highly variable genes in the monocyte_CO2 cells, uncovering potential associations with biological processes such as leukocyte proliferation, mononuclear cell proliferation, lymphocyte proliferation, regulation of leukocyte proliferation, antigen processing and presentation, and MHC protein complex binding (Supplementary Figure S4A).
3.3 Temporal and communicative features of monocyte_CO2 cells
Figure 3A charts the evolutionary trajectory of monocyte subpopulations, transitioning from monocyte_C01 to monocyte_CO2 and monocyte_CO3 over time. Given the dynamic shifts in the tumor microenvironment, monocyte_C01 is hypothesized to represent an initial state from which they differentiate temporally. Subsequent analyses of cellular communication within the right-sided colorectal cancer (R group), in contrast to the left-sided (L group), demonstrated a marked diminution in the communication activity of monocyte_CO2 cells (Figures 3B, C). This phenomenon could reflect the biological heterogeneity between left- and right-sided colorectal cancers, potentially involving changes in cellular communication patterns and immunomodulatory processes pertinent to tumor evolution. Detailed assessments using Dotplot charts (Figures 3D, E) revealed that, against a backdrop of reduced overall cellular communication, interactions between monocyte_CO2 cells and macrophages were relatively intensified. This finding implies the formation of a more cohesive communication network among specific cell subpopulations within the tumor microenvironment, likely an adaptive response to environmental perturbations.
[image: Figure 3]FIGURE 3 | Pseudotime trajectory and intercellular communication of monocytes. (A) The cellular differentiation trajectory plot illustrates the differentiation pathway of monocytes, initiating from C01 and diverging toward C02 and C03. (B, C) The cellular communication network diagrams exhibit the communication dynamics between cells in left- and right-sided colorectal cancers originating from the Monocyte_C02 cells. (D, E) Dotplot diagrams display the expression of ligand–receptor pairs between monocyte_C02 cells, as the point of communication initiation, and other cells.
3.4 eQTL, colocalization, and directional filtering
The intersection of differential genes from monocyte_CO2 cells with those from other major cell classes and monocyte subpopulations was analyzed for Mendelian randomization with colorectal cancer. eQTL analysis identified numerous significant loci with a substantial impact on gene expression and associated colorectal cancer risk. Key gene loci, including LUCAT1, SDC2, and GRAMD1A, exhibited highly significant eQTL effects. Variations at these loci influenced gene expression substantially, with the variation at the LUCAT1 locus particularly demonstrating a robust association with increased colorectal cancer risk (Figure 4A).
[image: Figure 4]FIGURE 4 | eQTL analysis of monocyte_C02 characteristic genes and regional association map of LUCAT1. (A) The volcano plots illustrate the Mendelian randomization (MR) results for the characteristic genes of monocyte_C02 cells in relation to colorectal cancer risk. The MR analysis utilized the Wald ratio or inverse-variance weighted method to evaluate the impact of genetic variations in the monocyte_C02 characteristic genes on colorectal cancer risk. The odds ratio (OR) for an increased risk of colorectal cancer was quantified based on per standard deviation increase in gene levels. “ln” refers to the natural logarithm, and “PVE” represents the proportion of variance explained. (B) The left panel depicts the relationship between the −log10(P) values of eQTLs and those of GWAS. Each point represents a single-nucleotide polymorphism (SNP), with the color indicating different r2 values, reflecting the degree of correlation of the SNP in both eQTL and GWAS studies. The right panel is a regional association plot for SNPs within a specific region on chromosome 12 associated with a particular phenotype. Here, the X-axis represents the chromosomal position, while the Y-axis shows the −log10(P) values of the SNP’s association with the specific phenotype. The color coding is consistent with the left panel, representing the r2 values.
Further colocalization analysis in tandem with GWAS findings pinpointed a specific SNP, rs653178, showing significant correlations in both eQTL analysis for the LUCAT1 gene and GWAS for colorectal cancer risk. The right-sided Manhattan plot reinforced the significant association signal of this SNP with colorectal cancer risk at a specific chromosomal location (Figure 4B). Steiger directional filtering lent additional support to the association directionality between SNP rs10774624 and colorectal cancer risk, suggesting the mutation precedes the cancer’s onset (Table 1).
3.5 Bidirectional and two-sample mendelian randomization study results indicate the relationship between LUCAT1 and the risk of colorectal cancer
In Figure 5A, using the ebi-a-GCST90018808 dataset from the GWAS database for the forward MR analysis indicated a high positive correlation between genetic variation in LUCAT1 and the risk of developing colorectal cancer (ORwr = 2.8365 [1.6750–4.8035], p = 0.0001), signifying a notable elevation in cancer risk. The reverse MR analysis (Figure 5B) assessed the impact of colorectal cancer risk on the LUCAT1 gene. Employing various MR methodologies, like MR Egger and the inverse-variance weighted method, the correlation between colorectal cancer risk and the LUCAT1 gene expression was found to be non-significant, suggesting colorectal cancer is not a direct causative factor for LUCAT1 genetic variation.
[image: Figure 5]FIGURE 5 | Mendelian randomization (MR) analysis of genetic variations in monocyte_C02 characteristic genes and their association with colorectal cancer risk, illustrated through forest plots. (A) This panel employs the Mendelian randomization approach to investigate the causal relationship between genetic variations in monocyte_C02 characteristic genes and the risk of developing colorectal cancer. Analytical methods include MR Egger, weighted median, and inverse-variance weighted approaches. (B) This panel utilizes MR to explore the causal relationship of genetic variations in colorectal cancer on the monocyte_C02 characteristic genes. Each point estimate represents the odds ratio (OR) associated with specific genetic variations and disease risk, accompanied by a 95% confidence interval (CI). The diagram also includes the sample size (nsnp), p-value (pval), and overall effect size (OR and CI) for each method. Statistical significance is typically determined by a p-value <0.05.
For validation, a two-sample MR analysis with dataset ebi-a-GCST012879 (Figure 6) corroborated the initial findings, indicating a positive correlation between increased LUCAT1 expression levels and a higher colorectal cancer risk.
[image: Figure 6]FIGURE 6 | Forest plot of Mendelian randomization (MR) analysis in a validation dataset. To enhance the robustness of the MR analysis, we conducted a two-sample MR analysis using an additional dataset. Each point estimate represents the odds ratio (OR) associated with specific genetic variations and disease risk, including a 95% confidence interval (CI). The diagram also details the sample size (nsnp), p-value (pval), and overall effect size (OR and CI) for each method used. Statistical significance is generally determined by a p-value <0.05.
3.6 Biological traits of LUCAT1+ monocytes
Further exploration into the role of LUCAT1 within the tumor microenvironment revealed that LUCAT1 is predominantly expressed in monocytes and neutrophils (Figure 7A) and is highly expressed in right-sided colorectal cancer (Figure 7B). Echoing previous results, LUCAT1+ monocytes in right-sided colorectal cancer continued to exhibit weaker communication strength (Figure 7C). Dotplot charts of LUCAT1+ monocytes as both communicative sources and target cells showed widespread overexpression of the receptor–ligand pair CD74 and CD44 in LUCAT1+ monocytes, other monocytes, and macrophages, with CD74 and CXCR4 also playing significant roles (Figure 7D). A pseudo-timeline depicted the association between gene expression and timing, with LUCAT1 primarily expressed early in the timeline (Figure 7E). Figure 7F presents metabolic function differences between LUCAT1+ and LUCAT1− monocytes and two other monocyte groups, revealing heightened activity in metabolic functions such as glycosaminoglycan degradation, ubiquinone and other terpenoid-quinone biosynthesis, and thiamine metabolism. We further investigated the biological functions enriched by the top 100 highly variable genes in LUCAT1+ monocytes, revealing that these cells may be implicated in biological processes such as positive regulation of interleukin-6 production, the NF-kappa B signaling pathway, pattern recognition receptor activity, cellular response to lipopolysaccharide, and the integrin complex (Supplementary Figure S4B).
[image: Figure 7]FIGURE 7 | Downstream mechanisms of LUCAT1+ monocytes. (A) Expression of LUCAT1 across various cell subpopulations. Variations in size and color represent the expression level and percentage of LUCAT1 in different cell types. (B) LUCAT1 is highly expressed in monocyte_C02 in right-sided colorectal cancer. (C) Cellular communication network diagram shows the communication intensity of LUCAT1+ monocytes in right-sided colorectal cancer. The nodes represent different cell types, and the line width indicates the strength of communication. (D) Dotplot diagram displays the expression of receptor–ligand pairs involved in communication, where each dot’s size and color signify the expression level and percentage of different genes across various cell types. (E) The pseudo-timeline graph illustrates gene expression changes over time, with the horizontal axis representing time and the vertical axis indicating gene expression levels. (F) The dotplot diagram highlights the metabolic functional differences between LUCAT1+ and LUCAT1− monocytes and other monocytes. Dots of different colors represent the activity of various metabolic pathways.
4 DISCUSSION
Single-cell transcriptomic sequencing, a transformative technology widely employed in biological and medical research in recent years, enables precise analysis of gene expression patterns at the individual cell level (Wang H. et al., 2023; Xie et al., 2023). This approach is particularly vital for revealing cellular heterogeneity in disease states, especially in complex and heterogeneous cancers such as colorectal cancer. Colorectal cancer, a prevalent malignancy, is categorized into left-sided and right-sided types, each differing significantly in molecular characteristics, clinical manifestations, and prognosis (Choi and Kim, 2023; Sustic et al., 2023; Talhouni et al., 2023). For instance, left-sided colorectal cancers are commonly associated with KRAS and BRAF mutations, whereas right-sided cancers are more linked to microsatellite instability and CpG island methylation anomalies (Bond et al., 2023; Kajiwara et al., 2023). Mendelian randomization analysis, a statistical tool, utilizes these genetic variations as natural experiments to establish causative links between specific genetic markers and cancer risk, providing crucial insights into the molecular mechanisms of colorectal cancer and the development of new therapeutic strategies.
Monocytes in tumor tissues, particularly in colorectal cancer, play a complex and multifaceted role. As integral components of the immune system, they can differentiate into various cell types, including macrophages and dendritic cells, each playing intricate roles in the tumor microenvironment (Gan et al., 2023; Wu et al., 2023). On the one hand, certain differentiated monocytes, such as M2-type macrophages, may facilitate tumor growth and metastasis by secreting growth factors, pro-inflammatory cytokines, and angiogenic factors, supporting tumor proliferation and spread (Li et al., 2023; Shen et al., 2023). They may also secrete immunosuppressive molecules, aiding tumors in evading immune surveillance (Batalha et al., 2023; Gawinski et al., 2023). Conversely, some monocytes can differentiate into immunologically active cells like M1-type macrophages and certain dendritic cells, enhancing the immune response against tumor cells (Andreuzzi et al., 2022; Ito et al., 2023).
Our analysis of single-cell transcriptomic data from left- and right-sided colorectal cancers identified a higher prevalence of the monocyte_C02 subgroup in right-sided colorectal cancer. High variability genes in monocyte_C02 cells, including CXCL8, TNFAIP6, CXCL3, and SPP1, indicate a potential role in tumor promotion. Studies suggest CXCL8 can accelerate tumor cell proliferation, epithelial–mesenchymal transition (EMT), angiogenesis, and impede anti-tumor immunity (Ravi et al., 2023). CXCL3, a bioactive protein of low molecular weight, primarily recruits and activates various cells expressing the CXC chemokine receptor (CXCR)12, which is involved in cell migration, invasion, and angiogenesis and plays a crucial role in the development of cardiovascular and pulmonary diseases (Chang et al., 2023; Ji et al., 2023). Research also reveals that SPP1 impacts the tumor microenvironment by promoting inflammatory responses, immune suppression, and regulating extracellular matrix (ECM) remodeling to support tumor growth (Lv et al., 2023; Yu et al., 2023). These findings imply that the monocyte_C02 subgroup may contribute to tumor progression. The study discovered that in right-sided colorectal cancer, the reduction in communication among monocyte_CO2 cells, as well as between monocyte_CO2 cells and neutrophils, was significant. Monocytes and neutrophils can interact and influence each other’s functions within the tumor microenvironment. For instance, they can regulate each other through secreted cytokines, or in certain cases, the activation of one cell type may promote the recruitment of another cell type to the tumor microenvironment. However, this interaction is complex and may vary depending on the type of tumor, specific conditions of the microenvironment, and the host’s immune status. Monocytes can differentiate into tumor-associated macrophages (TAMs), which typically exhibit an M2 polarization state that promotes tumor growth, invasion, and metastasis by secreting growth factors, pro-inflammatory cytokines, and angiogenic factors, thus providing a favorable environment for the tumor. The reduction in communication may slow the progression of monocytes to M2-type macrophages, thereby steering right-sided colorectal cancer in a direction more favorable for immune response (Sawa-Wejksza et al., 2018). Figures 3D, E display the expression of different receptor–ligand pairs across various cell subpopulations, providing rich information on the differences in cellular communication between left- and right-sided colorectal cancers. Notably, the expression of ANXA1-FPR1 between monocytes and between monocytes and neutrophils is reduced in right-sided colorectal cancer. ANXA1 can regulate the function of T cells (especially regulatory T cells, or Tregs) by binding to FPR1, which is crucial for immune evasion in the tumor microenvironment. Specifically, the ANXA1–FPR1 complex may enhance the immunosuppressive function of Treg cells, thereby weakening the immune system’s attack on the tumor (Sawa-Wejksza et al., 2018; Tian et al., 2023). The expression of CD74-CXCR4 is decreased in right-sided colorectal cancer. In some cancers, the expression levels of CD74 and CXCR4 may influence the behavior of tumor cells, including metastasis and invasion. This may indicate a better prognosis for right-sided colorectal cancer (Bian et al., 2023). The biological functions of monocyte_CO2 cells are primarily enriched in processes such as leukocyte proliferation, mononuclear cell proliferation, lymphocyte proliferation, regulation of leukocyte proliferation, antigen processing and presentation, and MHC protein complex binding. Monocytes, including monocytes and certain types of lymphocytes, can further differentiate into macrophages and dendritic cells, which play pivotal roles in tumor immune responses. Macrophages can have either tumor-promoting or tumor-suppressing effects depending on their states within the tumor microenvironment. The proliferation and activation of monocytes are crucial in the tumor immune editing process, as they influence immune responses through cytokine production and antigen presentation. The coordinated action of these immune functions is essential for eliciting effective tumor-specific immune responses. The coordination of immune functions such as MHC protein complex binding, MHC class II protein complex binding, and antigen processing and presentation is crucial for triggering effective tumor-specific immune responses. The ability of immune cells to efficiently recognize and respond to tumor cells largely depends on the effective processing and presentation of tumor antigens, as well as the correct expression and function of MHC molecules. This suggests that the increase in monocyte_CO2 cells is likely related to the immune environment of right-sided colorectal cancer. The reason for this could be that right-sided colorectal cancers often have a higher microsatellite instability (MSI) and BRAF mutation rate, while left-sided cancers are more associated with chromosomal instability pathways. This could also explain why right-sided colorectal cancers tend to have higher immune response rates.
Our two-sample Mendelian randomization and reverse Mendelian randomization analyses identified genetic variations in LUCAT1 as risk factors for colorectal cancer, supported by directional filtering and colocalization analyses. The mutation at the rs10774624 locus was deemed causally related to colorectal cancer onset, and additional colocalization analysis revealed another potential disease risk-related locus sharing genetic variation, rs653178. Although research on these loci is scarce, known biological functions of LUCAT1 and eQTL results suggest a strong promotive effect of its SNPs on colorectal cancer development.
To further explore the potential role of LUCAT1, we conducted separate analyses of the functions of LUCAT1+ and LUCAT1− monocytes in tumor tissues. LUCAT1 expression was found to be higher in right-sided colorectal cancer, supporting the hypothesis that LUCAT1 is a risk factor that may contribute to the development of right-sided colorectal cancer. Generally, LUCAT1+ monocytes demonstrated weaker communication strength than LUCAT1− monocytes, which could be attributed to the typically better prognosis of right-sided colorectal cancer, leading to lower levels of malignancy cell communication. Moreover, monocyte_C02 cells showed the most robust communication with other monocytes, likely linked to monocyte differentiation processes, especially involving MIF interactions with CD74 and CD44. In tumorigenesis, MIF-CD74 interactions are known to promote tumor cell growth and survival, with the expression levels of MIF being closely tied to tumor aggressiveness and prognosis in certain types of cancer. MIF-CD44 interactions are also crucial in affecting cell–ECM interactions, particularly important in the migration and metastasis of tumor cells. The pronounced activity of LUCAT1 in the early stages of monocyte differentiation may be associated with its role in facilitating malignant differentiation and the onset of tumors. An analysis of differential metabolic pathways revealed increased activity in glycosaminoglycan degradation in LUCAT1+ monocytes. Glycosaminoglycans (GAGs), crucial biomolecules containing uronic acid and amino sugar residues, disrupt cell–cell adhesion during tumor cell dissociation and invasion. The modification of cadherin (E-cadherin) by β1,6 N-acetylglucosaminyltransferase V (GnT-V), which adds β1,6-N-acetylglucosamine (β1,6GlcNAc)-branched N-glycans, impairs cell adhesion and aids in tumor cell invasion. Additionally, the α2,6-sialylation terminal structure interferes with tumor cell adhesion (Ahn et al., 2009; Shen et al., 2022). The biological functions of LUCAT1+ monocytes are markedly enriched in pathways, including positive regulation of interleukin-6 production, NF-kappa B signaling, pattern recognition receptor activity, cellular response to lipopolysaccharide, and integrin complexes. Among these, IL-6 is a multifunctional cytokine that plays a pivotal role in the initiation and progression of tumors. Elevated levels of IL-6 are associated with various types of cancers, contributing to the proliferation, survival, and migration of tumor cells. IL-6 facilitates inflammatory reactions and the formation of the tumor microenvironment by activating the JAK/STAT3 signaling pathway, which aids in tumor growth and immune evasion (Johnson et al., 2018). The NF-κB signaling pathway is crucial in the regulation of inflammatory and immune responses. This pathway is often activated in cancer, enhancing tumor cell proliferation, survival, and invasion while inhibiting apoptosis. Activation of NF-κB is also intimately connected with the recruitment of inflammatory cells within the tumor microenvironment and the generation of tumor-promoting inflammation (Lee et al., 2007). Pattern recognition receptors (PRRs) play an essential role in innate immunity by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Within the tumor microenvironment, activation of PRRs can promote inflammatory responses that may favor the proliferation and survival of tumor cells. Integrins, as receptors on the cell surface, mediate interactions between cells and the extracellular matrix (ECM) that are crucial for cell migration, proliferation, and survival (Amarante-Mendes et al., 2018). In cancer, integrin activation can enhance the invasiveness and metastatic potential of tumor cells, remodeling the tumor microenvironment through interactions with the ECM. This further suggests that the expression of LUCAT1 may facilitate the progression of tumors.
5 CONCLUSION
Through single-cell transcriptomic sequencing, we discovered that the monocyte_C02 subpopulation is more prevalent in right-sided colorectal cancer, and its highly expressed genes, such as CXCL8, TNFAIP6, CXCL3, and SPP1, may be implicated in tumor growth promotion. Notably, we observed that the expression of LUCAT1 in these monocytes could be associated with the occurrence of colorectal cancer, with Mendelian randomization analysis further indicating a direct link between genetic variations in LUCAT1 and colorectal cancer risk. Additionally, LUCAT1+ monocytes were found to be more active in right-sided colorectal cancer, potentially influencing the glycosaminoglycan degradation pathway, thereby disrupting cell adhesion and facilitating tumor cell invasion. In summary, LUCAT1 is not only a risk factor for the development of colorectal cancer but may also participate in the progression of the disease by modulating the functions of monocytes and the interactions within the tumor microenvironment.
This provides a new perspective in uncovering and understanding the complex biological mechanisms of right-sided colorectal cancer and offers valuable insights for developing potential therapeutic strategies targeting LUCAT1. Future advancements in these findings may contribute to promoting more personalized cancer treatment approaches, particularly tailored therapies for different subtypes of left- and right-sided colorectal cancer, ultimately improving patient prognosis.
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Associations of dietary factors with gastric cancer risk: insights from NHANES 2003–2016 and mendelian randomization analyses
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Background: Gastric cancer (GC) continues to be one of the leading causes of cancer-related deaths globally. Diet significantly influences the incidence and progression of GC. However, the relationship between dietary intake and GC is inconsistent.
Methods: A study was conducted with adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2016 to investigate possible associations between 32 dietary factors and GC. To further detect potential causal relationships between these dietary factors and the risk of GC, a two-sample Mendelian randomization (MR) analysis was conducted. The primary method employed was the inverse variance weighted (IVW) analysis, and its results were further validated by four other methods.
Results: Of the 35,098 participants surveyed, 20 had a history of GC. Based on the results of weighted logistic multivariate analysis, it was observed that there was a positive correlation between total fat intake [odds ratio (OR) = 1.09, 95% confidence interval (CI): (1.01–1.17), p = 0.03] and GC as well as negative association of dietary monounsaturated fatty acids (MUFAs) intake [OR = 0.83, 95% CI: (0.76–0.92), p < 0.001]. Further evaluations of the odds of GC across the quartiles of dietary MUFAs showed that the top quartile of total MUFA intake was associated with a lower likelihood of GC in three different models [model1: OR = 0.03, 95% CI: (0.00–0.25), p < 0.01; model2: OR = 0.04, 95% CI: (0.00–0.38), p = 0.01; model3: OR = 0.04, 95% CI: (0.00–0.40), p = 0.01]. For the MR analyses, genetic instruments were selected from the IEU Open GWAS project; IVW analysis showed that GC risk was not associated with MUFAs [OR = 0.82, 95% CI: (0.59–1.14), p = 0.23] or the ratio of MUFAs to total fatty acids [OR = 1.00, 95% CI: (0.75–1.35), p = 0.98]. Similar results were observed when using the other MR methods.
Conclusion: The NHANES study revealed that consuming MUFAs was linked to a lower risk of GC, although the results of MR analyses do not provide evidence of a causal relationship. Additional research is therefore necessary to clarify these findings.
Keywords: gastric cancer, dietary factors, NHANES, MUFA, Mendelian randomization
INTRODUCTION
The rapidly growing global incidence of gastric cancer (GC) presents a significant public health challenge as it remains one of the leading cause of cancer-related mortality (Siegel et al., 2023). Despite advancements in early screening and therapeutic approaches, patients with advanced GC still have poor prognosis (Thrift et al., 2023). The development of GC is multifactorial and involves influences from factors, such as diet, environment, and genetics, with the dietary factors being of particular significance (Bouras et al., 2022). Based on reflection of an old Chinese proverb that “illness comes from the mouth,” it is imperative to look into the associations between dietary factors and GC. By gaining a deeper understanding of their relationship, efforts can be made to modify dietary patterns to potentially reduce the incidence of GC.
Recent studies have identified several dietary factors that may be associated with GC; of these, high glucose levels in the body are believed to be linked to greater incidence of malignancies, including GC (Tay et al., 2021). Similarly, increased fat intake has been identified as another important dietary habit that is carcinogenic and potentially related to GC (Kyrgiou et al., 2017). Protein is a fundamental component necessary for body composition and is regarded as a pivotal nutrient for GC patients (Ouyang et al., 2018; Kubota et al., 2020). Furthermore, multiple studies have highlighted the strong positive association between high salt consumption and GC, particularly with respect to salt-preserved foods (Kurosawa et al., 2006; D'Elia et al., 2012). For instance, a recent study reported that high intake of salted fish was linked to an elevated risk of GC (Bouras et al., 2022). On the other hand, high consumption of vitamin C, carotenoids, and other antioxidants, which have the potential to mitigate oxidative damage, has been reported to confer protective effects against the incidence of GC (Kong et al., 2014; Kim et al., 2018; Chen et al., 2021). However, a recent clinical trial found no significant interactions between vitamin supplements and GC incidence (Guo et al., 2020). Nevertheless, it is important to note that most current studies concentrate on a single dietary factor while neglecting the complexity, diversity, and interactions of different dietary intakes. As a result, these reports on the associations between dietary factors and GC may be one-sided. Therefore, it is imperative to shift the focus toward examining food groups or dietary patterns by taking into account multiple dietary factors and conducting comprehensive studies to gain a more holistic understanding of the associations between diet and GC.
Mendelian randomization (MR) is an approach that utilizes genetic variants as instrumental variables (IVs) and offers several advantages over observational studies; it has the potential to circumvent residual confounding and reverse causality, thereby providing a more reliable approach for evaluating causal relationships (Boyko, 2013; Sekula et al., 2016). Therefore, MR was employed in this study to further investigate the causal relationships between some dietary factors of interest and the risk of GC.
Thus, this study aims to investigate the links between dietary factors and the risk of GC by integrating an observational study and two-sample MR analyses. The main goal of this work was to establish a theoretical basis for the prevention and treatment of GC through the improvement of dietary habits.
METHODS
Study design and population in NHANES
The data for this cross-sectional study were extracted from the National Health and Nutrition Examination Survey (NHANES), a multistage stratified composite design survey on the health and nutritional information of a representative selection of the non-institutionalized U.S. population, conducted by the National Centers for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC). The observations from seven consecutive NHANES surveys (2003–2004, 2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, and 2015–2016) were combined into a single analytic sample; thus, a total of 35,098 eligible participants above the age of 18 years, who were interviewed regarding their medical conditions and dietary intakes, were included in this study. The participants who had incomplete information were excluded (n = 6,809).
Variable selection in NHANES
The diagnoses of GC were defined using two items on the Medical Status Questionnaire: “Have you ever been told by a doctor or other health professional that you had cancer or malignancy?” and “What kind of cancer was it?” Answers that indicated only “stomach cancer” were classified as the outcome variables. Some demographic covariates, including age, sex, race, education, smoking status, weight, and body mass index (BMI), were also assessed.
The study participants were asked by trained interviewers to recall two consecutive 24-h dietary periods (day 1 and day 2) to assess the total dietary intakes through comprehensive reference to the NHANES. The present study only included dietary recalls for day 1 as those for day 2 had more missing values. A total of 32 dietary factors from the dietary questionnaire in the NHANES database were included in this study as follows: energy (kcal), protein (g), carbohydrate (g), total sugars (g), dietary fibers (g), total fat (g), saturated fatty acids (SFAs, g), monounsaturated fatty acids (MUFAs, g), polyunsaturated fatty acids (PUFAs, g), cholesterol (mg), vitamin A (µg), retinol (µg), alpha-carotene (µg), beta-carotene (µg), vitamin B1 (thiamin, mg), vitamin B2 (riboflavin, mg), vitamin B3 (niacin, mg), vitamin B6 (mg), folate (µg), vitamin B12 (µg), vitamin C (µg), vitamin E (mg), vitamin K (µg), calcium (mg), phosphorus (mg), magnesium (mg), iron (mg), zinc (mg), copper (mg), sodium (mg), potassium (mg), and selenium (µg).
Data sources for genetic instruments
The genome-wide association study (GWAS) data analyzed in the present study was obtained from the IEU open GWAS project supported by the MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, collated and analyzed GWAS data from the UK Biobank, FinnGen biobank, and published articles. The single-nucleotide polymorphisms (SNPs) at the genome-wide significance level (p < 5 × 10−8) used in this study included MUFAs (GWAS ID: met-d-MUFA, sample size: 114,999, number of SNPs: 12,321,875, population: European, gender: both) and ratio of MUFAs to total fatty acids (GWAS ID: met-d-MUFA_pct, sample size: 114,999, number of SNPs: 12,321,875, population: European, gender: both). The data on SNPs associated with GC (GWAS ID: finn-b-C3_STOMACH, sample size: 218,792, samples with GC: 633, number of SNPs: 16,380,466, population: European, gender: both) were also extracted from the IEU open GWAS project (https://gwas.mrcieu.ac.uk/).
Genetic instrument selection
The SNPs in linkage disequilibrium (defined as r2 > 0.001 or clump distance <10,000 kb) and those having weaker associations with exposure were excluded, leaving 66 independent SNPs as the IVs for MUFAs and 66 for the ratio of MUFAs to total fatty acids. The F-statistic was used to ensure strong association between the SNPs and exposure. The detailed information on the selected SNPs is presented in Supplementary Tables S1,S2.
Statistical analysis
The data in the current study were obtained and statistically evaluated using R 4.1.1 (R Foundation, Vienna, Austria). The NHANES study population was divided into two groups in accordance with the presence or absence of a history of GC, and characteristics were determined for comparison between the groups. Continuous variables were expressed in terms of the median and interquartile range (IQR) as they did not obey a normal distribution. Significance differences between the two groups were evaluated using the Wilcoxon rank-sum test. Frequency and percent were used to describe the categorical variables, and the distribution of the categorical variables was appropriately compared using the Pearson chi-squared test.
Considering the stratified multistage probabilistic sampling approach of the NHANES, the “survey” package was used to adjust the complex sampling weights in the analyses. The two-year cycle weights were divided by seven to reflect the 14 survey years. Weighted logistic multivariate analysis was used to explore the associations between the dietary factors and GC. Three different models were used to decrease the influences of the confounders, where the first model was the crude model; the second model was adjusted for age, sex, and race, and the third model was adjusted for age, sex, race, education, smoking status, and BMI. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the associations.
For the MR analyses, the “TwoSampleMR” package was used to conduct the inverse variance weighted (IVW) analysis as the primary method of assessing the causal effect between MUFAs and GC risk. The IVW model is considered to have the strongest ability to detect causation in the two-sample MR analysis (Hartwig et al., 2017). MR–Egger, weighted-median, simple mode, and weighted mode were also implemented to validate the results from the IVW analysis. The possible heterogeneity and directional pleiotropy were assessed through the Cochrane Q test and intercept from MR–Egger (Qian et al., 2020). The leave-one-out sensitivity analysis was also conducted, and a p-value <0.05 (two-sided) was considered to be statistically significant in this study.
RESULTS
Characteristics of included participants
A total of 35,098 individuals (weighted n = 219,465,579) over 18 years of age were selected for this study through the NHANES database. The flowchart illustrating the selection process of the participants is depicted in Figure 1. Among these participants, 20 people representing 105,634 individuals reported having a history of GC. The characteristics of these individuals were then stratified based on the presence or absence of GC, as shown in Table 1. The analysis revealed that individuals with GC were older (53 vs 46 years, p < 0.0001), had lower weights (67.40 vs 79.30 kg, p = 0.02), and had lower educational attainment (p = 0.03) compared to those without GC.
[image: Figure 1]FIGURE 1 | Flowchart of the NHANES study participants.
TABLE 1 | General characteristics of the adults included in this study stratified by the presence or absence of a history of GC.
[image: Table 1]Dietary intakes and risk of GC
Table 2 represents the dietary intakes of the participants with and without GC. Individuals with GC consumed less energy (p < 0.001), carbohydrates (p = 0.01), dietary fibers (p < 0.0001), total fats (p = 0.03), MUFAs (p < 0.01), PUFAs (p = 0.04), vitamin B1 (p < 0.0001), vitamin B3 (p < 0.0001), vitamin B6 (p < 0.0001), folate (p < 0.0001), vitamin E (p < 0.0001), vitamin K (p < 0.0001), phosphorus (p = 0.01), magnesium (<0.0001), iron (p < 0.0001), zinc (p < 0.01), copper (p = 0.01), sodium (p = 0.02), and selenium (p = 0.03).
TABLE 2 | Comparison of dietary intakes of persons with and without self-reported GC.
[image: Table 2]The correlations between the aforementioned dietary intakes and risk of GC via logistic regression analysis after adjustment for multiple potential confounders are described in Table 3. The dietary total fat intake [OR = 1.09, 95% CI: (1.01–1.17), p = 0.03] was positively associated with GC; meanwhile, dietary MUFA intake [OR = 0.83, 95% CI: (0.76–0.92), p < 0.001] was negatively associated with GC. After adjusting for age, sex, and race (model2) as well as age, sex, race, education, smoking status, and BMI (model3), the dietary total fat intake [model2: OR = 1.08, 95% CI: (1.01–1.16), p = 0.02; model3: OR = 1.08, 95% CI: (1.01–1.16), p = 0.03] was still associated with higher odds of GC, and the dietary MUFA intake [model2: OR = 0.83, 95% CI: (0.75–0.91), p < 0.001; model3: OR = 0.83, 95% CI: (0.76–0.92), p < 0.001] was still associated with a lower risk of GC. The average total fat intake of the participants with GC in this study was still within the 25%–35% range recommended by the 2020–2025 Dietary Guidelines for Americans (Phillips, 2021). Despite the positive association between total fat intake and GC, it is important to note that the lower daily energy intakes of those with GC than without GC may have contributed to this relationship. Therefore, it is plausible that this association may be influenced by the differences in daily energy intakes between the two groups.
TABLE 3 | Associations between dietary intakes and GC.
[image: Table 3]MUFAs intake and GC
To further study the associations between MUFAs and risk of GC, the above three models were used to evaluate the odds of GC across the quartiles (Q1: <16.512 g, Q2: 16.512–25.429 g, Q3: 25.429–37.203 g, Q4: >37.203 g) of total intake of MUFAs (Table 4). In all three models, the top quartile of total MUFA intake had over 90% lower likelihood of GC [model1: OR = 0.03, 95% CI: (0.00–0.25), p < 0.01; model2: OR = 0.04, 95% CI: (0.00–0.38), p = 0.01; model3: OR = 0.04, 95% CI: (0.00–0.40), p = 0.01]. These results indicate that a diet rich in MUFAs might play a protective role against GC.
TABLE 4 | Odds ratios and 95% confidence intervals for GC according to the daily dietary MUFA intake level.
[image: Table 4]The stability of the correlation between MUFAs and GC risk was further confirmed in different populations (Table 5). Analyses stratified by race show that MUFA intake was associated with lower GC risk in black participants [OR = 0.96, 95% CI: (0.92–0.99), p = 0.02] and white participants [OR = 0.92, 95% CI: (0.84–1.00), p = 0.05]. In stratified analyses based on smoking status, MUFAs were significantly correlated with GC risk in non-smokers [OR = 0.94, 95% CI: (0.89–1.00), p = 0.04]. Stratification by BMI showed that MUFAs were significantly associated with lower GC risk only in people with healthy weights [BMI: 18.5–25, OR = 0.89, 95% CI: (0.87–0.91), p < 0.0001]. Overall, the findings of this study indicate that a high dietary intake of MUFAs decreases the risk of GC.
TABLE 5 | Subgroup analysis of the associations between MUFAs and GC.
[image: Table 5]Causal relationship between MUFAs and GC risk
The cross-sectional study design of NHANES prevented the establishment of a causal relationship between the dietary factors and risk of GC. To avoid this limitation, MR analyses were conducted, and details of these SNPs are given in Supplementary Tables S1,S2. The F-statistic for each SNP was above 10. From the results of the IVW analyses, there were no genetic instruments associated with MUFAs or ratio of MUFAs to total fatty acids having a causal relationship with GC risk. The pooled ORs for GC risk in genetically predicted per unit change were 0.82 (95% CI: 0.59–1.14; p = 0.23) and 1.00 (95% CI: 0.75–1.35; p = 0.98) for MUFAs and ratio of MUFAs to total fatty acids, respectively (Table 6; Figure 2). There was no evidence of heterogeneity or pleiotropy of the aforementioned IVW analysis (Supplementary Table S3).
TABLE 6 | Causal relationship between MUFAs and GC risk based on different MR methods.
[image: Table 6][image: Figure 2]FIGURE 2 | Scatter plots of the genetic associations between (A) MUFAs and (B) ratio of MUFAs to total fatty acids and GC.
Four other MR methods (MR–Egger, weighted-median, simple mode, and weighted mode) were conducted, and similar results were observed to those of the IVW analyses (Table 6; Figure 2). For both genetic instruments, MR-PRESSO was conducted, and no outliers were found in this study. The leave-one-out sensitivity analysis showed that the overall result could change upon removing rs964184 for both MUFAs and ratio of MUFAs to total fatty acids as well as rs174564 for MUFAs (Supplementary Figure S1).
DISCUSSION
Numerous studies have unequivocally demonstrated the strong relationships between dietary intake and risk of developing various types of cancers, including lung cancer (Sun et al., 2016), breast cancer (De Cicco et al., 2019), and colorectal cancer (Thanikachalam and Khan, 2019). While some studies have underscored the significant roles of specific nutrients, such as cholesterol (Pih et al., 2021), nitrates (Poorolajal et al., 2020), salt (Wu et al., 2021), and alcohol (Laszkowska et al., 2021), in the incidence and progression of GC, a common tendency in these investigations is the exclusive focus on individual dietary factors that neglects the intricate interplay and complexities of different dietary intakes. It is important to recognize that modifications to a single dietary factor can invariably lead to compensatory changes in other dietary characteristics. Thus, the present cross-sectional study sought to address this deficiency by examining the NHANES database to elucidate the relationships between 32 dietary factors and risk of GC. The findings from a weighted logistic multivariate analysis reveal a noteworthy association between the intake of MUFAs and reduced risk of GC [OR = 0.8343, 95% CI: (0.7572–0.9192), p < 0.001]. This underscores the significance of considering the comprehensive dietary landscape for understanding the multiple factors at play in the development of GC.
Extensive research has been conducted on MUFAs owing to their potential health benefits (Snaebjornsson et al., 2020). Foods such as olive oil, avocados, nuts, and seeds, which are common components of the Mediterranean diet, have abundant quantities of MUFAs, and this diet is renowned for its benefits against cardiovascular diseases, obesity, and malignancies (Davis et al., 2015; Schwingshackl et al., 2017; Morze et al., 2021). Current studies advocate the restriction of SFAs and incorporation of higher proportions of MUFAs and PUFAs into a healthy diet (Sacks et al., 2017). Moreover, a recent comprehensive meta-analysis involving 3,202,496 participants revealed an inverse association between the Mediterranean diet and mortality rates of several cancers, including GC, highlighting the potential role of MUFAs in protecting against GC (Morze et al., 2021). Additionally, two separate studies found that dietary MUFAs were linked to a reduced risk of pancreatic cancer (Nkondjock et al., 2005; Banim et al., 2018). The potential antitumor effects of MUFAs may be attributed to their antioxidant properties, capacity to reduce chronic inflammation, and cholesterol-lowering properties (Farag and Gad, 2022; Wan et al., 2022; Guo et al., 2023). Furthermore, in the present NHANES observational study, after adjusting for potential confounders, the authors observed a protective effect of a high-MUFAs diet against GC, consistent with the findings of the aforementioned studies. These findings collectively suggest the potential of MUFAs in mitigating the risk of certain types of cancer while emphasizing their value as a component of a health-promoting diet.
However, some studies have reported conflicting results regarding the association between MUFAs and cancer risk. A large-scale case-controlled study revealed that increased MUFA intake was linked to higher odds of breast cancer (Sasanfar et al., 2022). Similarly, another study reported a positive association between dietary MUFA intake and pancreatic cancer (Gong et al., 2010). Therefore, evidence regarding the relationship between dietary MUFAs and cancer risk remains inconclusive. It is worth noting that there have been no cohort studies to investigate the association between dietary MUFAs and GC to date. This indicates the need for further research to clarify the impacts of MUFA consumption on GC risk.
The primary limitation of an observational study is the challenge of establishing a causal relationship. To address this limitation, two-sample MR analyses were conducted to investigate any potential causal relationships between MUFAs or ratio of MUFAs to total fatty acids and the risk of GC. The initial findings from the IVW analysis do not support a causal relationship between MUFAs or ratio of MUFAs to total fatty acids and GC. Furthermore, this study incorporated four additional MR analyses, all of which consistently aligned with the findings of the IVW analysis, thereby enhancing the robustness of the findings. Despite the seemingly contradictory results between the NHANES observational study and MR analyses, it would be premature to conclusively label MUFAs as “ineffective” in mitigating GC risk. The complexity of dietary factor interactions and metabolism in the human body suggests that compensatory mechanisms may occur when the intake of a specific dietary factor is altered over a short period of time. In light of this intricate interplay, it is more prudent to view each dietary factor as an integral component, akin to individual bricks contributing to the construction of a “great wall” that safeguards against malignancies such as GC.
To the best of the authors’ knowledge, this study is an initial attempt to examine the correlations between dietary MUFAs intake and risk of GC by integrating an observational study with two-sample MR analyses, thereby enhancing the reliability of the findings. Although the results derived from the MR analyses do not substantiate a causal role, it remains imperative to further investigate whether increased consumption of MUFA-rich foods exerts a protective effect against GC.
Despite the findings of this study, several limitations should be considered. First, the relatively lower incidence of GC in the USA compared to East Asia implies a need for further analyses using databases of Asian participants and GWAS to bolster the findings. Second, the use of self-reported 24-h dietary recall data in NHANES may not be fully representative of the participants’ long-term dietary intakes. Third, the absence of information on GC staging, histological findings, surgical history, and fatalities among the study participants precludes subgroup analyses based on the cancer stages, potentially affecting the results. Lastly, this study did not delineate the MUFAs based on their derivation from animal or plant sources, introducing the possibility of biases.
CONCLUSION
In conclusion, the results of the present study show no evidence to support a causal link between MUFA intake and gastric cancer risk. Larger studies are therefore required to explore the potential associations between GC risk and animal- or plant-derived MUFAs.
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Introduction

Head and neck cancer (HNC) is a complex disease, and multiple risk factors can lead to its progression. Observational studies indicated that herpes simplex virus (HSV) may be correlated with the risk of HNC. However, the causal effects and direction between them were still unclear.





Methods

This study utilized a Mendelian randomization (MR) approach for causality assessment between HSV infection and Head and neck cancer based on the latest public health data and Genome-Wide Association Study (GWAS) data. The causal effects were estimated using IVW, weighted median, and MR-Egger. A reverse MR analysis was subsequently performed. Cochrans Q test, MR‐Egger intercept test, leave one out analysis, and the funnel plot were all used in sensitivity analyses.





Results

Genetically predicted higher level of HSV-1 IgG was causally related to HNC (OR=1.0019, 95%CI=1.0003–1.0036, p=0.0186, IVW) and oral and oropharyngeal cancer (OR=1.0018, 95%CI=1.0004–1.0033, p=0.0105, IVW). The reverse MR analysis did not demonstrate a reverse causal relationship between HSV and HNC. However, HSV-2 infection was not causally related to HNC data and oropharyngeal cancer data. Sensitivity analysis was performed and revealed no heterogeneity and horizontal pleiotropy.





Conclusion

Collectively, a significant association was noted between HSV infection and increased risk of HNC, providing valuable insights into the etiology of this malignancy. Further in-depth study is needed to validate these findings and elucidate the underpinning mechanisms.





Keywords: head and neck cancer, herpes simplex virus, Mendelian randomization, causal effect, hsv, oral and oropharyngeal cancer




1 Introduction

Head and neck cancer (HNC) is a complicated and multi-factorial disease that consists of a heterogeneous group of malignant tumors in the upper respiratory tract, covering the oral cavity, pharynx, throat, and nasal cavity (1). It is an important global health burden and is responsible for a considerable proportion of morbidity and mortality relevant to cancers on global scale. Despite advances in treatment modalities, the prognosis of this malignancy is still poor, which emphasizes the demand for a deeper understanding of its etiology and identification of new risk factors (2).

Herpes simplex virus (HSV) infection is triggered by two distinct serotypes, HSV-1 and HSV-2, showing a high prevalence in the general population. HSV-1 mainly infects the lip and mouth areas, resulting in recurrent oral lesions, commonly referred to as cold sores, while HSV-2 primarily causes genital herpes (3). In addition to the well-known manifestations, HSV infection is also linked to multiple diseases, including cancer. Several studies have discussed the potential link between HSV infection and the progression of HNC and have proposed direct and indirect mechanisms (4).

Previous epidemiological investigations have reported the relationships between HSV infection and HNC, especially oropharyngeal cancer. However, the nature of these relationships and potential causal associations remain undefined (5). Observational studies have inherent limitations, such as confounding factors and reverse causality, which hinders their ability to definitively establish causality. Rigorous and innovative research designs are required to overcome these challenges and clarify the causal role of HSV infection in HNC (6).

Mendelian randomization (MR) analysis, an instrumental variable approach with genetic variants serving as instrumental variables (IVs), represents a powerful tool for assessing causality in epidemiological studies (7). Though random assignment of genetic variants during the gamete formation process and their correlations with relevant exposures, the MR analysis can provide strong evidence for causality (8). In terms of HSV infection and HNC, the MR analysis offers a unique opportunity to overcome the limitations of observational studies and clarify the potential causal mechanism of their associations (9).

Therefore, in this study, a comprehensive MR analysis was carried out to explore the causality between HSV infection and the development of HNC, particularly oropharyngeal cancer. By utilizing large-scale genomic data and HSV infection-related genetic tools, we probed into whether HSV-1 and HSV-2 infections were causally relevant to the risk of HNC (10).

The results of this study were of great significance for understanding the etiology of HNC and may pave the way for targeted interventions to attenuate the burden of this malignancy. By elucidating the causal implication of HSV infection in HNC, we could identify prevention strategies and treatments specifically targeting HSV-related pathways (11). Ultimately, these insights may contribute to the improvement of patient prognosis, early detection, and personalized management of HNC (12).




2 Materials and methods

To study the causal relation between HSV and HNC, we conducted a bidirectional two-sample Mendelian randomization (TSMR) study in accordance with the latest STROBE-MR (Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization) guidelines (13). MR is a powerful analytical method that assesses the causality in observational studies using genetic variants as IVs.

The TSMR analysis consisted of two major procedures: estimating the genetic association with exposure (HSV infection) and estimating the genetic association with outcome (HNC). These estimated values were then combined for assessing the causal impact of the exposure on the outcome (14).

Three key assumptions must be met to ensure the validity of MR analysis:

	Strong IV association: the selected IVs should be closely linked to the exposure variable (HSV infection). We identified genetic variants that had previously been validated and demonstrated to be strongly associated with HSV infection on the ground of large-scale genome-wide association studies (GWAS) or other credible sources (15).

	Independence of IVs: the IVs adopted in the analysis should be independent of any confounding factors that might affect the outcome (HNC). We carefully selected IVs that had been proven to be independent of known confounding factors through extensive literature review and consultation with experts in the field (16).

	Exclusion restriction assumption: IVs should affect the outcomes only via the association with the exposure variable (HSV infection). This assumption guaranteed that IVs would not have a direct impact on outcomes independent of their impact on HSV infection (17).



To evaluate the strength of IVs and prevent the impact of weak instruments on causality, we calculated statistical values using the formula: F=β2_exposure/SE2_exposure. Weak IVs were defined as F<10, indicating limited statistical power to reliably estimate the causal effect (18).

The data adopted in this article were publicly available to researchers worldwide, so no additional ethical approval and informed consent were required. We gained the summary statistics of necessary genetic associations between HSV infection and HNC from publicly available GWAS datasets and consortia (19).

According to the latest STROBE-MR guidelines, this paper conducted a bidirectional TSMR study to observe the causal relation between HSV and HNC. MR study must meet three principal assumptions: IVs should be strongly linked to exposure; (2) IVs should be independent of any possible confounders; (3) IVs affected the outcomes only via the exposure (Figure 1A). To avoid the impact of weak IVs on causality, the statistical values of IVs were calculated based on the formula F=β 2 exposure/SE 2 exposure. A weak IV was defined if F<10. The data utilized in the present study were publicly available to global researchers (20). Hence, no additional ethical approval and informed consent were required. The procedures of the experimental design are presented in Figure 1B.




Figure 1 | Experimental design and assumptions. (A) Three key assumptions of MR analysis. (B) Flow chart of experimental design.





2.1 HSV infection data

Butler et al. conducted a GWAS analysis on infectious pathogens in 2020, which enrolled 8735 individuals, and serum samples were provided for the detection of antibody levels against a variety of antigens, including HSV IgG1 antibody and IgG2 antibody. Antibody detection was done using a Luminex 100 platform (Luminex Corporation, Austin, TX, USA) at a dilution of 1:1000 using a fluorescent bead-based multiplex serology technique. This approach provided the median fluorescence intensity (MFI), which allowed standardized quantification of antibodies in the samples obtained by detecting the fluorescence signal that was emitted by the analyte-trap complex. This approach and the selection of seropositive threshold had been validated for multiple infectious pathogens. The MFI seropositive threshold of the HSV IgG1 antibody and IgG2 antibody was 150. There were 6199 cases diagnosed as HSV-1 positive and 1382 cases diagnosed as HSV2 positive. The study of Butler et al. was currently the largest GWAS study on HSV serological tests (21).

The database used to obtain HSV information was from the study conducted by Butler et al. in 2020. In their study, Butler et al. carried out a GWAS analysis of infectious pathogens, including HSV, using a dataset consisting of 8735 individuals who offered serum samples for antibody detection against various antigens (22).

The fluorescent bead-based multiplex serology technology was adopted for antibody detection on the Luminex 100 platform manufactured by Luminex company (Austin, TX, USA). Serum samples were diluted at a ratio of 1:1000, and antibody levels were measured using MFI. MFI provided standardized quantification of the antibody concentration in the samples via the detection of the fluorescence emitted by the analyte-trap complex (23).

To determine the seropositivity of HSV, a specific threshold was established according to the effective criteria of multiple infectious diseases. In the present study, the seropositive threshold of the HSV IgG1 antibody and IgG2 antibody was set at 150 MFI. Therefore, 6199 individuals were diagnosed as HSV-1 positive, and 1382 were diagnosed as HSV-2 positive. It was worth noting that this GWAS analysis on HSV serological detection conducted by Butler et al. represented the largest such study to date.

Using the comprehensive dataset provided by Butler et al., this study adopted the information on HSV serology positivity to explore the causal relation between HSV infection and the development of HNC. The large sample size and validated serological detection methods used in the study of Butler et al. contributed to the robustness and reliability of our analysis and enhanced the validity of the research results presented in this paper.




2.2 HNC data

UK Biobank is currently the largest GWAS database in the world, and the research population involves volunteers across the UK. The datasets, including HNC, Laryngeal cancer, Oral and oropharyngeal cancer, Oral cavity cancer, and Oropharyngeal cancer, were downloaded from UKB at https://biobank.ndph.ox.ac.uk/ukb/search.cgi (24), Details and data sources are given in Table 1.


Table 1 | General description of data sources involved in the MR analysis.






2.3 Selection of IVs

Linkage disequilibrium (LD) thresholds were adopted for the extracted SNP (r2 < 0.001, 10000 kb) to avoid the effect of LD so as to ensure independence between IVs at each exposure. Palindromic alleles were eliminated. Additionally, the F statistic was utilized to assess the strength of the IV-exposure correlation. A value of F statistic > 10 was deemed to be strong enough to avoid weak IV-induced bias. In order to satisfy the second assumption of MR, we further searched these SNPs in the PhenoScanner database (http://www.phenoscanner.medschl.cam.ac.uk/) and excluded SNPs related to other putative confounding factors (smoking, drinking frequency, etc.).




2.4 TSMR analysis

TSMR analysis was employed to analyze the causality between HSV infection on head and neck squamous carcinoma. MR methods included inverse variance weighted (IVW), MR-Egger, and weighted median (WM). As the most common MR method that could estimate the causal effect by integrating the ratio estimate of each SNP, the IVW method was the major analysis method used in this study. The MR-Egger intercept test could evaluate the horizontal pleiotropy in the MR analysis through the intercept of MR-Egger regression (horizontal pleiotropy was defined as p<0.05). After sequentially eliminating the SNP locus, the leave-one-out analysis used the remaining SNP loci for MR analysis to test whether there was bias caused by a specific SNP locus, and it adopted the IVW method for calculation. In MR analysis, the symmetry of the funnel plot was able to evaluate the reliability of associations. We applied the IVW method to assess the influence of all genetic variables on the outcomes. The Cochran Q test of IVW was employed to evaluate the heterogeneity between SNPs, and p>0.1 suggested no heterogeneity among genetic tools. Mendelian randomization-pleiotropy residual sum and outlier (MR-PRESSO) consisted of three parts: i) detection of horizontal pleiotropy; ii) correction of pleiotropy by eliminating detection outliers (genetic variants with horizontal pleiotropy); iii) comparison of the differences in causal relations before and after correction. Eventually, reverse TSMR analysis was performed with HNC as exposure and HSV infection as an outcome. MR analyses were accomplished by the “TwoSampleMR” and “MR-PRESSO” packages (R version 4.1.2). Power analysis was performed using mRnd (https://shiny.cnsgenomics.com/mRnd/). All analyses were based upon public data with no need for additional ethical approval and informed consent of participants since these had been obtained at the initial release (25).





3 Results



3.1 HSV-1 infections might related to HNC

Through the aforementioned screening conditions, 44 SNPs were found to be significantly associated with HSV infection, including 22 in HSV-1 and 22 in HSV-2, with F statistic values >10. No confounding factors of HNC were found after searching at Phenoscannerv2. The details for SNPs are described in Supplementary Table 1. As revealed by the positive MR analysis, HSV-1 IgG was causally related to HNC (OR=1.0019, 95%CI=1.0003–1.0036, p=0.0186, IVW), and oral and oropharyngeal cancer (OR=1.0018, 95%CI=1.0004–1.0033, p=0.0105, IVW) (Table 2). All causal effects of HSV on HNC assessed by the three MR methods were visualized in the scatter plot, wherein a slope greater than zero indicated a positive correlation (Figure 2). However, HSV-2 infection was not causally related to HNC data and oropharyngeal cancer data. The results of post-hoc power calculations were shown in Supplementary Table 2.


Table 2 | TSMR analysis of the causal relation between HSV and head and neck cancer.






Figure 2 | Scanner plots for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral and oropharyngeal cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.






3.2 Sensitivity analysis revealed no heterogeneity and horizontal pleiotropy

The robustness of the aforementioned causal associations was validated based on the data from the sensitivity analysis. The heterogeneity test revealed no heterogeneity in the MR analysis (Cochran’s Q statistic, p>0.05). The MR-Egger regression analysis failed to provide evidence for horizontal pleiotropy (MR-Egger intercept<0.01, p>0.05). The MR-PRESSO global test suggested that no noticeable outliers were able to drive the causal effect (p>0.05) (Table 3). The leave-one-out analysis further displayed no single SNP driving the causal effect (Figure 3), and the symmetry data of the funnel plot exhibited no significant heterogeneity (Figure 4).


Table 3 | Results of the sensitivity analysis.






Figure 3 | Plots of leave-one-out analyses for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral and oropharyngeal cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.






Figure 4 | Funnel plots for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral and oropharyngeal cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.



In light of the results of the reverse MR analysis, no significant causal relations were noted between HNC and oropharyngeal cancer and HSV infection.





4 Discussion

According to the IVW genetically predicted HSV-1 was found to be positively associated with HNC risk, especially oral and oropharyngeal cancer. The methods of Inverse Variance Weighting (IVW) are deemed dependable in instances where Mendelian randomization analyses are unaffected by pleiotropy and heterogeneity. Complementarily, the Weighted Median (WM) approach is frequently employed alongside IVW. This WM technique prioritizes the estimation of causal effects by weighing and ranking the effect estimates from all instrumental variables, ultimately determining the causal effect based on the median value. In large sample sizes, the stability of each instrumental variable’s estimate enhances the reliability of the median estimate. Conversely, in smaller samples, the median may exhibit greater variability due to the more volatile nature of the estimates. This paper, which investigates HSV-1 and HSV-2, operates with smaller sample sizes, potentially leading to more fluctuating results. Consequently, the primary focus of this study is on the outcomes derived from the IVW method.

Our MR analysis offered convincing evidence supporting the role of HSV-1 as a hazardous factor for HNC, especially oral and oropharyngeal cancer. However, no causal association was observed between HSV-2 infection and HNC, including oral and oropharyngeal cancer. These findings provided valuable insights into the etiology of these malignancies and were of great significance for clinical practice and future research (26).

The association between HSV-1 and HNC was consistent with previous epidemiological studies, which reported a higher rate of HSV-1 infection in patients with oral and oropharyngeal cancer compared with controls (27). HSV-1 is a common virus that mainly infects oral and oropharyngeal mucosa, resulting in recurrent oral ulcers or cold sores. The virus establishes latency in the trigeminal ganglion and can reactivate periodically, leading to virus shedding and potential transmission to others (28).

The mechanism by which HSV-1 leads to the progression of HNC is multifactorial and complex. HSV-1 infection will trigger a series of immune responses, resulting in the activation of various inflammatory mediators. Sustained or repeated viral replication and shedding can lead to chronic inflammation in the oral and oropharyngeal mucosa, which in turn will promote tissue damage and genetic changes, key events in the initiation and development of cancers. Inflammatory mediators, encompassing cytokines, chemokines, and growth factors, are released in the immune response to HSV-1 infection, creating an environment conducive to cell transformation. These molecules can induce DNA damage, disrupt cell signaling pathways, and accelerate abnormal cell proliferation and survival (29). Additionally, chronic inflammation induces the release of reactive oxygen species (ROS) and reactive nitrogen species (RNs), possibly resulting in DNA damage and genomic instability, which is a hallmark of cancer development. HSV-1 has evolved several strategies to evade and modulate the host immune response, which may have a significant impact on cancer development (30). Through multiple immune evasion mechanisms, such as interfering with antigen expression, this virus can down-regulate the major histocompatibility complex (MHC) molecules and inhibit the activation and function of immune cells, including T cells and natural killer (NK) cells. Dysregulation of immune checkpoints, such as PD-1 and CTLA-4, is another key mechanism by which HSV-1 may facilitate carcinogenesis (31). HSV-1 infection can up-regulate immune checkpoint molecules on T cells, which causes cell dysfunction and impaired anti-tumor immune response. Immune checkpoint ligands, such as PD-L1 expressed by infected or malignant cells, can interact with immune checkpoint receptors on T cells, which further inhibits the immune response and stimulates the immune evasion of virus or tumor cells (32). HSV-1 infection disrupts multiple pathways engaged in cell proliferation, apoptosis, and immune response. Multiple virus-encoded proteins can manipulate the cellular signaling network, creating a favorable environment for the replication and persistence of the virus. For example, HSV-1 proteins, such as ICP0, ICP4, and ICP27, can affect host gene expression and block cellular signaling pathways, including p53, NF-κB, and MAPK-mediated signaling pathways. These alterations in cell signals can lead to dysregulation of cell proliferation, inhibition of apoptosis, and evasion from immune surveillance, contributing to the survival and growth of viruses and potentially transformed cells (33).

On the contrary, our study found no significant causal association between HSV-2 infection and HNC, including oral and oropharyngeal cancer. This finding was in agreement with several previous investigations (34). Thompson et al. conducted a systematic review and meta-analysis of the existing literature and believed that there was insufficient evidence to support the direct link between HSV-2 infection and HNC. Furthermore, Chen et al. failed to unravel a significant association between HSV-2 seropositivity and the risk of oropharyngeal cancer in a large prospective cohort study. Overall, combined with these studies, our study demonstrated that different from HSV-1, HSV-2 infection might not be an important dangerous factor for HNC (35).

It was worth noting that HSV-1 and HSV-2 exhibited different associations with HNC, which might be attributed to their different biological characteristics and modes of transmission. HSV-1 mainly infects oral and oropharyngeal mucosa, while HSV-2 mainly affects genital and anal regions. Different anatomic regions of infection may lead to different carcinogenic potentials of these two viruses. Additionally, differences in viral gene expression, immune response, and cytotaxis may also contribute to different associations (36).

However, several studies have reported conflicting results on the relationship between HSV-1 and HNC. For instance, a case-control study by Roberts et al. reported no significant association between HSV-1 seropositivity and the risk of oropharyngeal cancer. Likewise, Brown et al. failed to observe a significant relationship between HSV-1 infection and the risk of HNC in a population-based cohort study. These contradictory results might be attributed to diverse factors, including study design, sample size, population characteristics, and different HSV-1 detection methods (37).

Taken together, our research result was basically consistent with prior studies, that was, HSV-1 infection was a risk factor for HNC, especially oral and oropharyngeal cancer. Our study did not show a causal association between HSV-2 infection and HNC, which was supported by the existing literature, highlighting the importance of distinguishing these two HSV types in evaluating their potential roles in carcinogenesis.

According to the literature review, this is the first Mendelian randomization study on HSV infection and the risk of head and neck cancer. This article analyzes the association between the two at the genetic level. However, there are still some limitations in this study. First, the GWAS data on HSV are limited, and it is impossible to use multiple data sets to verify our results. Second, the study population is all Europeans, so it is impossible to predict the relationship between HSV and head and neck cancer in other populations.




5 Conclusions

In this study, MR analysis was adopted to assess whether HSV infection was causally linked to the development of HNC. We noted a significant causal relation between HSV-1 infection and the progression of HNC, particularly oral and oropharyngeal cancer, but no such causal relation was found between HSV-2 infection and HNC.
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Objective: Previous research has demonstrated that metabolites play a significant role in modulating disease phenotypes; nevertheless, the causal association between metabolites and malignant malignancies of bones and joint cartilage (MNBAC)has not been fully elucidated.Methods: This study used two-sample Mendelian randomization (MR) to explore the causal correlation between 1,400 metabolites and MNBAC. Data from recent genome-wide association studies (GWAS) involving 8,299 individuals were summarized. The GWAS summary data for metabolites were acquired from the IEU Open GWAS database, while those for MNBAC were contributed by the Finnish Consortium. We employed eight distinct MR methodologies: simple mode, maximum likelihood estimator, MR robust adjusted profile score, MR-Egger, weighted mode, weighted median, MR-PRESSO and inverse variance weighted to scrutinize the causal association between metabolites engendered by each gene and MNBAC. Consequently, we evaluated outliers, horizontal pleiotropy, heterogeneity, the impact of single nucleotide polymorphisms (SNPs), and adherence to the normal distribution assumption in the MR analysis.Results: Our findings suggested a plausible causative relationship between N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and MNBAC. We observed a nearly significant causal association between FMet levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds ratio (OR) = 3.22; 95% CI [1.16–8.92]). Moreover, we ascertained a significant causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI [0.25–0.70]). These results indicate a potential causative relationship between FMet, C24 level and MNBAC.Conclusion: The occurrence of MNBAC may be causally related to metabolites. This might unveil new possibilities for investigating early detection and treatment of MNBAC.Keywords: mendelian randomization, causality, metabolites, neoplasm, bone, articular, cartilage
1 INTRODUCTION
Malignant malignancies of bones and joint cartilage (MNBAC) is a rare but severe type of tumor. The phrase “bone tumors” refers to all cancers, including primary, secondary, and metastatic tumors, originating from skeletal or other bone tissue components (Yang et al., 2023). Primary MNBAC include osteosarcoma, chondrosarcoma,malignant, lymphoma,osteofibrosarcoma, myeloma,Ewing’ssarcoma,and chordoma (Choi and Ro, 2021). MNBAC predominantly occurs in the mobile segments of the long bones, referred to as metaphysis, encompassing the proximal tibia, proximal humerus, and distal femur (Chou et al., 2014). The major clinical symptoms of MNBAC are pain, swelling, and functional impairment (Xia et al., 2018). Osteosarcoma is the most common primary MNBAC, accounting for approximately 1% of all malignancies in the United States (Suehara et al., 2019). Osteosarcoma frequently exhibits aggressive growth and metastasizes to adjacent tissues and other locations. Ewing sarcoma (ES), the second most frequent bone tumor in teenagers, flourishes in a mechanically active microenvironment (Marturano-Kruik et al., 2018), It typically occurs in children and adolescents and originates in the bone marrow or soft tissues. Conventional methods for treating bone tumors include surgical resection, radiotherapy, and chemotherapy (Beane et al., 2017). Reconstruction of the affected area post-resection is a crucial phase that significantly impacts the overall outcome and patient wellbeing (Hu et al., 2023a; Hu et al., 2023b; Hu et al., 2022). Radiotherapy may be used to reduce tumor size preoperatively, prevent recurrence after surgery, and control metastases (Jones et al., 2018). Chemotherapy is often combined with surgery and radiation therapy to eliminate potential micrometastatic lesions (Wang et al., 2019). Although malignant bone tumors are relatively rare, they pose a significant threat to the patient’s life and physical function. Therefore, exploring new targets for screening, prevention, and treatment of MNBAC is essential.
Metabolites are tiny compounds that act as intermediates and products of metabolic reactions. Multiple factors affect the levels of these metabolites, including genetics, dietary patterns, lifestyle choices, gut microbiota composition and pathological conditions (Noronha et al., 2019). Metabolites could influence the risk of maladies and be the focus of therapeutic intervention (Noronha et al., 2019). A better understanding of the causative function of metabolites in disease etiology can lead to more controllable therapeutic targets. Common genetic metabolites serve as discriminating agents in the pathogenesis of various complicated illnesses. These metabolites interact with environmental variables such as lifestyle choices, potentially influencing an individual’s susceptibility to specific disease phenotypes (Li et al., 2019). To date, GWAS has identified several metabolite-related loci in human urine and blood specimens (Cai et al., 2021). Moreover, these loci correlated with the progression and prognosis of respiratory disorders (Chang et al., 2023), gastrointestinal maladies (Kim et al., 2019), cardiovascular conditions (Mihuta et al., 2023), endocrine dysregulation (Tan et al., 2023), as well as tumor diseases (Gubser and Kallies, 2020). However, limited studies have investigated the association between 1,400 metabolites and MNBAC.
Using GWAS, we can scrutinize genetic variations within extensive populations and juxtapose them with diverse metabolite concentrations, disease ramifications, and other pertinent attributes to elucidate the involvement of metabolites in disease consequences (Tang et al., 2019). Numerous metabolite levels have shown high heritability, providing the opportunity to perform Mendelian randomization (MR) (Civelek and Lusis, 2014). MR is an instrumental variable analysis approach utilizing genetic variations as tools to evaluate causal connections between potentially modifiable exposures, such as single nucleotide polymorphisms (SNPs), and clinically significant outcomes; it has been extensively employed to investigate causal inference in epidemiological studies (Liu et al., 2023a; Liu et al., 2023b; Xiang et al., 2021).
This study explored the causal relationship between 1,400 metabolites and MNBAC employing MR analysis coupled with metabolomics using GWAS data of MNBAC as the outcome file and GWAS data of 1,400 metabolites as the exposure file. Furthermore, this study identified relevant metabolites, providing novel insights into early detection and therapeutic strategies for MNBAC.
2 METHODS
2.1 The flowchart and assumption of MR
The causal links between 1,400 metabolites and MNBAC were examined using a two-sample MR analysis. Summary-level GWASs data were used for the metabolites and MNBAC. The flowchart of this study is displayed in Figure 1. Furthermore, to ensure the accuracy of the findings, the MR analysis must adhere to three fundamental hypotheses: (1) The instrumental variables (IVs) employed exhibited a robust association with metabolites. (2) The selected IVs and confounding factors that influenced both the metabolites and MNBAC were mutually independent. (3) The absence of horizontal pleiotropy was ensured: IVs solely influenced MNBAC through metabolites (Davey Smith and Hemani, 2014) (Figure 1). Moreover, the results obtained were reported following the MR-STROBE protocol (Choi et al., 2022).
[image: Figure 1]FIGURE 1 | MR analyses process and major assumptions.
2.2 Exposure sources of 1,400 metabolites
Metabolic data were derived from the extensive GWAS analysis conducted by Chen et al. in the esteemed journal “Nature Genetics” (Chen et al., 2023). This investigation amalgamated 309 metabolite ratios and 1,091 individual metabolites from a cohort of 8,299 participants within the esteemed Canadian Longitudinal Study of Aging (CLSA). The CLSA cohort comprised nearly 2.1 million SNPs and 452 blood metabolites. Comprehensive GWAS summary statistics are accessible for direct retrieval from the European GWAS (GWAS ID: met-a) under the accession number GCST90199621-902010209, encompassing data for 1,400 metabolites.
2.3 Outcome sources of MNBAC
The GWAS summary data for MNBAC were obtained from the FinnGen studies, which are available through their website (https://r9.finngen.fi/) and included individuals of European ancestry, both men and women. SAIGE (https://github.com/weizhouUMICH/SAIGE) was utilized to conduct the GWAS analysis, incorporating 20175454 variable SNPs across a cohort of 377,277 participants. After adjustments for factors such as age, gender, high genotypic individual deletions (>5%), excessive heterozygosity (4SD), and non-Finnish lineage, a subset of 206 MNBAC cases and 287,137 controls were selected for scrutiny. MNBAC was defined using the ICD-10 code M13. Further information on the data can be found on the FinnGen website.
2.4 Statistical analysis
Statistical analysis was executed utilizing R software (version 4.3.1). The “TwoSampleMR” software was employed to perform MR analysis of the causal relationship between metabolites and MNBAC. P < 0.05 ordinarily signifies the statistically significance of the findings, thus indicating that such a correlation may be regarded as evidence of causality (Xiang et al., 2021).
2.4.1 IVs selection
Meticulous selection of the approved IVs was imperative for enhancing the robustness of MR analysis. Initially, we pursued stringent criteria characterized by formidable values of 1 × 10−5 and 5 × 10−8. The SNPs used in the MR test adhered to the principles of Mendelian inheritance: parental alleles were randomly allocated to offspring, impervious to acquired traits. Therefore, these alleles exhibited a high degree of independence and were potentially unrelated to confounding factors. The universal standards for SNP screening encompassed two thresholds: P < 1 × 10−5 and P < 5 × 10−8, signifying their statistically significant inclusion in the research. Lastly, we used Steiger filtration to eliminate any IVs that may lead to causal inversion.
2.4.2 Statistical analyses for MR
We examined the two cohorts using 1,400 metabolites as the exposure and MNBAC as the outcome in this study. MR analyses were executed using the “Two Sample MR” software package, with IVW analysis employed to synthesize the effects of multiple loci and evaluate numerous SNPs (Yan et al., 2023). Without horizontal pleiotropy, the IVW test was used as the principal method for assessing causal effects to obtain unbiased estimates (Du et al., 2023). The presence or absence of heterogeneity determined the existence of fixed or random effects. The effect estimates were presented as odds ratios (ORs) and 95% confidence intervals (CI).
In addition to MR analysis, the maximum likelihood estimator (MLE), MR robust adjusted profile score (MR-RAPS), MR-Egger test (Bowden et al., 2015) and the weighted median (WM) approach (Bowden et al., 2016) were employed. WM data were utilized to determine substantial causation. The absence of horizontal pleiotropy was established if P > 0.05. The basic model and MR-PRESSO analyses were used as part of the sensitivity analyses (Liu K. et al., 2022). The F statistic was calculated using aggregated data levels to ascertain IV exposure correlations. If F > 10, the correlations were considered sufficiently robust to mitigate the weak IVs bias. Within the IVW framework, the Cochrane Q statistic was utilized to evaluate heterogeneity among SNP estimates. Additionally,we validated the robustness of the data using the simple mode and the leave-one-out method (Liu K. et al., 2022).
3 RESULT
3.1 The study design of MR
The causal links between MNBAC and 1,400 metabolites were unveiled through a two-sample MR analysis. The categorization of metabolites and MNBAC conformed to the aggregated data acquired from the GWASs. Figure 1 depicts the flowchart outlining the MR investigation involving the metabolites and MNBAC.
3.2 Selection of IVs related to MNBAC
We meticulously selected IVs linked to MNBAC from a pool of 2.1 million SNPs associated with 1,400 metabolites. Subsequent to a quality control procedure integrating the Linkage Disequilibrium (LD) effect and retrogression method, we utilized a P < 1 × 10−5 for the calculations, resulting in the identification of 30,276 SNPs, 2295 SNP-metabolites, and IVs for MNBAC (threshold 1 × 10−5). Each SNP demonstrated adequate validity (F-values ranging from 19.51 to 2,298.39, all F > 10) (Table 1). The most significant information of the IVs is presented in Supplementary Table S1 (P < 1 × 10−5). Additionally, to establish the robustness of the results, we adopted a more stringent threshold of 5 × 10−8 for the analysis, which identified 2295 SNP metabolites and IVs for MNBAC (F-values ranging between 29.71 and 2,298.39, all F > 10). Significant data regarding IVs were provided within the specifics. Supplementary Table S2 outlines the primary information of the IVs (P < 5 × 10−8).
TABLE 1 | Causal results of MR analysis between metabolites and MNBAC with threshold of P < 1 ⅹ 10–5.
[image: Table 1]3.3 MR analyses results (P < 1 × 10−5)
We evaluated the influence of 1,400 metabolites on bone tumor risk at a threshold of 1 × 10−5, and found suggestive evidence of causality (P < 0.05) for five metabolites. These included N-formylmethionine (FMet) levels (P = 0.001; OR = 3.789; 95%CI [1.670–8.593]),isoursodeoxycholate levels (P = 0.010; OR = 0.183; 95% CI [0.058–0.576]), methionine sulfone levels (P = 0.032; OR = 1.749; 95%CI [1.048–2.921]), methyl glucopyranoside (alpha + beta) levels (P = 0.044; OR = 1.451; 95% CI [1.009–2.085]), and lignoceroylcarnitine (C24) levels (P = 0.006, OR = 0.268; 95% CI [0.115–0.625]). Table 1 and Figure 2 presented these findings. Notably, three of these metabolites, namely, methyl glucopyranoside (alpha + beta) levels, fMet levels, and methionine sulfone levels, were particularly associated with high-risk factors for bone and joint cancer. Additionally, isoursodeoxycholate concentrations and C24 levels, might be linked to low-risk bone tumor. These findings were validated using five different methods (Supplementary Table S3).
[image: Figure 2]FIGURE 2 | Causal analysis 562 results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). The color corresponding to the P value is based on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color (OR = 0, white; OR = 1, red; OR = 2, blue; OR = 3, green).
3.4 Heterogeneity analysis (P < 1 × 10−5)
Supplementary Table S5 lists the results of multiplicity and heterogeneity assessments for all metabolites. Through sensitivity analyses,we verified the effect of accurate MR results on metabolites of MNBAC. Notably, FMet levels (P = 0.51), Isoursodeoxycholate levels (P = 0.06), Methionine sulfone levels (P = 0.24), Methyl glucopyranoside (alpha + beta) levels (P = 0.58), and C24 levels showed no evidence of horizontal pleiotropy in relation to bone tumors (P = 0.11) (Table 2). Meanwhile, no heterogeneity was observed in FMet levels (MR-Egger: P = 0.26; IVW: P = 0.29), Isoursodeoxycholate levels (MR-Egger: P = 0.15; IVW: P = 0.05), Methionine sulfone levels (MR-Egger: P = 0.55; IVW: P = 0.53), and Methyl glucopyranoside (alpha + beta) levels (MR-Egger: P = 0.12; IVW: P = 0.13) (Table 2). Furthermore, the leave-one-out analysis showed no meaningful difference. in casual estimation of FMet levels. Methionine sulfone levels Isoursodeoxycholate levels. Methyl glucopyranoside (alpha + beta) levels and C24 levels on MNBAC (Figure 3).
TABLE 2 | MR results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.
[image: Table 2][image: Figure 3]FIGURE 3 | The leave-one-out results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). (A) N-formylmethionine levels (B). Isoursodeoxycholate levels (C). Methionine sulfone levels (D). Methyl glucopyranoside (alpha + beta) levels (E). Lignoceroylcarnitine (C24) levels.
To validate the accuracy of MR Egger regression, we further validated the significant MR results using MLE, MR-PRESSO, MR-RAPS. We found no evidence of heterogeneity in FMet levels (P = 0.295), isoursodeoxycholate levels (P = 0.074), methionine sulfone levels (P = 0.622), methyl glucopyranoside (alpha + beta) levels (P = 0.238), and C24 levels (P = 0.519), indicating the lack of horizontal pleiotropy (Table 2). Moreover, data robustness was reinforced through sample-by-sample exclusion analysis, which demonstrated consistent IVW results for lack of heterogeneity and pleiotropy. Based on these findings, there appeared to be a suggestive causal correlation between FMet levels, isoursodeoxycholate levels, methionine sulfone levels, methyl glucopyranoside (alpha + beta) levels, and C24 levels with MNBAC.
3.5 Results of MR analysis (P < 5 × 10-8)
Supplementary Table S4 presents the results pertaining FMet levels and MNBAC, illustrating a notable causal significance for FMet levels in MR analyses (IVW: OR = 3.12, 95%CI [1.16–8.92], P = 0.05; WM: OR = 3.22, 95%CI [1.16–8.92], P = 0.02; MR Egger: OR = 55.32, 95%CI [1.74–1750.53], P = 0.26). Furthermore, there was a significant causal relationship between the metabolite levels of C24 and MNBAC (IVW: OR = 0.42; 95%CI [0.25–0.70]; P = 0.0009; WM: OR = 0.47; 95% CI [0.26–0.85]; P = 0.01; MR Egger: OR = 0.42; 95%CI [0.26–0.85]; P = 0.01) (Table 3; Figure 4).
[image: Figure 4]FIGURE 4 | MR analysis 566 results of 1,400 metabolites and MNBAC (genome-wide statistical significance, P < 5 × 10−8). The color corresponding to the P value is based on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color (OR = 0, #CCCC00; OR = 1, #088247; OR = 2, #11AA4D; OR = 3, #58CDD9; OR = 10, #FF6666).
TABLE 3 | Causal Results of MR analysis between metabolites and MNBAC with threshold of P < 5 ⅹ 10–8.
[image: Table 3]3.6 Heterogeneity analysis (P < 5 × 10−8)
Supplementary Table S6 displays the pleiotropy and heterogeneity test results for metabolisms. Heterogeneity analysis results of C24 levels (MR Egger: P = 0.24; IVW: P = 0.41) and multiplicity analysis (MR Egger: P = 0.34; MR-PRESSO: P = 0.31) verified reliability of the results. Likewise, the scrutiny of heterogeneity in FMet levels (MR Egger: P = 0.62; IVW: P = 0.21) and the multiplicity analysis (MR-PRESSO: NA; MR Egger: P = 0.34) verified the accuracy of the data (Table 4). Concurrently, the findings of sample-by-sample exclusion further validated the robustness of the data (Figure 4). Unfortunately, due to the overly stringent 5 × 10−8 threshold, only FMet levels and C24 levels were obtained with fewer instrumental variables. Notably, C24 levels exhibited a significant correlation with MNBAC, while FMet levels approached significance in terms of causal inference. In addition,the leave-one-out analysis showed some difference. in casual estimation of FMet levels and C24 levels on MNBAC (Figure 5; Supplementary Figure S2). Furthermore, due to an insufficiency of IVs, the multiplicity assessment for FMet levels was unattainable via MR-PRESSO.
TABLE 4 | MR results of sensitivity analysis, with threshold of P < 5 ⅹ 10–8.
[image: Table 4][image: Figure 5]FIGURE 5 | The leave-one-out results of 1,400 metabolites and MNBAC (P < 5 × 10−8); (A) N-formylmethionine levels (B). Lignoceroylcarnitine (C24) levels. 
3.7 Further validation of the MR results
To further ascertain the causal relationship between metabolites and MNBAC, we employed additional methods to validate the results. Under the threshold of P < 1 × 10−5, the outcomes of MR-PRESSO, MR-RAPS, and MLE provided additional substantiation of the causal nexus between FMet levels, Methionine sulfone levels, Isoursodeoxycholate levels, C24 levels, and Methyl glucopyranoside (alpha + beta) levels with bone tumors (Table 5). The results from MR-RAPS and MLE confirmed the causal relationship between FMet levels and MNBAC, albeit not verified by MR-PRESSO. Meanwhile, C24 levels were further validated by MR-PRESSO, MR-RAPS, and MLE at a threshold of P < 5 × 10−8 (Table 6).
TABLE 5 | MR Results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.
[image: Table 5]TABLE 6 | MR results of sensitivity analysis with threshold of P < 5 ⅹ 10–8.
[image: Table 6]3.8 Ethics statement
This summary-level data utilized in this study are de-identified public data and are accessible to download. Each GWAS in this study received ethical approval from their respective universities.
4 DISCUSSION
This research conducted an MR analysis to investigate the potential causal relationship between 1,400 metabolites and MNBAC. By investigating the association from a host genetic perspective, we aimed to validate the role of these metabolites in altering susceptibility to MNBAC. Five MR methods were employed for the analysis. Although some of the results from various analytical approaches were inconsistent, these differences did not significantly influence our findings. The random effects IVW technique exhibited superior statistical power compared to the other approaches, hence it was selected as the major analytical approach in this work. While there was a potential causal relationship, and multiple corrections are too strict, they were also close to being corrected. The results of this study suggested that the two metabolites may be linked to a lower risk of MNBAC, while the three metabolites are related to a higher risk of MNBAC. Our findings open up possibilities for identifying novel biomarkers that can be utilized in future MNBAC studies. Moreover, our results indicated potential avenues for MNBAC prevention and treatment, including the targeted manipulation of specific metabolite levels. Notably,the cross-sectional aspect of this study made it difficult to find a definitive connection between metabolites and MNBAC. However, using MR analysis, we provided valuable insights into the potential causative association and highlight the significance of these metabolites in influencing susceptibility to MNBAC.
As the most prevalent type of MNBAC, osteosarcoma generates severe symptoms and poses a threat to individuals of all ages due to malignant neoplasia (Quintero Escobar et al., 2020). Several studies on osteosarcoma have examined aberrant metabolisms. The development and progression of osteosarcoma is closely related to cellular metabolites (Velayutham et al., 2023). A promising natural metabolite, stylolite, has been discovered to activate vascular endothelial growth factor receptor 2 (VEGFR2)and trigger its downstream signaling pathways. This activation promotes endothelial cell proliferation and angiogenesis while hindering the growth and invasion of osteosarcoma cells, simultaneously enhancing the sensitivity to chemotherapy drugs. Moreover, particular metabolites such as zoledronic acid induce iron-induced death in osteosarcoma cells by reducing coenzyme Q levels and stimulating heme oxygenase 1(HMOX1)expression (Ren et al., 2022). In vitro experiments involving osteosarcoma stem cells have revealed comparable declines in metabolites associated with the tricarboxylic acid (TCA) cycle (Zhong et al., 2019). These reductions stem from impaired mitochondrial function and are accompanied by diminished glutamine, aspartate, and glutathione levels (Ren et al., 2020; Zhong et al., 2019). Metabolite-based biomarkers for osteosarcoma exhibit potential for diagnosis and monitoring disease progression (Fan et al., 2021). These substances have been linked to developing and regulating glucose metabolism and cellular regulatory mechanisms in osteosarcoma. In conclusion, metabolites play a vital role in MNBAC research. Here, we evaluated the effects of 1,400 metabolites on MNBAC risk and identified five metabolites that showed suggestive causal relationships with MNBAC, which were validated using more than five methods. These metabolites included the FMet levels, methionine sulfone levels, methyl glucopyranoside (alpha + beta) levels, isoursodeoxycholic acid levels, and C24 levels. Among them, our finding of significant causality between C24 levels and MNBAC is novel. The FMet levels showed near-significant results. This study is the first to discover the correlation between 1,400 metabolites and MNBAC.
C24 is a long-chain fatty acid derivative that participates in the metabolism of fatty acids, particularly in the beta-oxidation process within the mitochondria (Abd-Allah et al., 2009). Abnormal fatty acid metabolism may be associated with tumor growth and survival, thus, changes in C24 levels may reflect alterations in tumor metabolic status in osteosarcoma cells, Researchers have found a link between the concentration of C24 in serum and the risk of MNBAC development, with higher concentrations associated with lower risks (Liu T. et al., 2022), Similarly, a study on the testing dose of C24 reported that it can reverse fatigue symptoms in MNBAC patients with C24 deficiency (Farahzadi et al., 2023). Our research has identified a noteworthy inverse relationship between C24 levels and MNBAC, indicating a possible function of C24 in inhibiting tumor growth. Assessing C24 levels could potentially assist in identifying patients at high risk of MNBAC and serve as a biomarker for tracking disease progression and evaluating treatment efficacy.
FMet, an amino acid that typically corresponds to the start codon, signifies the initiation of polypeptide chain synthesis. The role of FMet in protein degradation processes is also significant, particularly in the activity of peptidyl deformalize (PDF) (Silver, 2011). In osteosarcoma cells, PDF activity may be upregulated, thereby affecting protein stability and intracellular signal transduction (Lee et al., 2004; Pietzke et al., 2020). In our study, the significant positive correlation between the FMet levels and MNBAC indicated a potential role of FMet in promoting tumor growth. Similarly, in another 11,966 individuals, FMet levels may resulted in all-cause mortality and the risk of human cancer. including MNBAC. suggesting a substantial connection between FMet and the risk of MNBAC (Cai et al., 2021), In another cancer study, FMet was utilized as a drug precursor, converted into formic acid through the activity of PDF enzyme (Yu et al., 2015).
This study had several limitations. First, like other MR researches on metabolites, although our study satisfies the MR assumptions (IVs is closely related to the metabolite), there may be other mechanisms or factors in some cases that result in a correlation between IVs and the target variable, rather than a causal relationship. Second, our study’s sample sizes was modest, which may alter the dependability of our results. Given that GWAS only included European ancestry participants, our findings may not be applicable to other racial populations. Third, the multiple statistical correction employed was overly strict and conservative, potentially overlooking the metabolites that may have a causal relationship with MNBAC. While there is potential for a causal relationship, and the multiple corrections were overly strict, they approach correction. Therefore, we considered biological plausibility and did not rely solely on the results of the multiple-hypothesis testing. Finally, due to the insufficient availability of an ample number of IVs in this study, the implementation of reverse MR analysis and multivariable Mendelian randomization analyses (MVMR) was precluded. In future research, we plan to undertake GWAS investigations specifically targeting FMet levels and C24 levels to secure a robust set of IVs. This will facilitate a more thorough validation of the causal relationship between metabolites and MNBAC through the application of reverse MR analysis and MVMR.
Concludingly, this study confirmed the causal link between metabolites and MNBAC species, including and FMet levels. These metabolites have the potential to serve as new biomarkers or treatment targets for MNBAC and novel strategies for its treatment and prevention.
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Exposure Method Or (95%Cl) P-val

N-formylmethionine levels MR-PRESSO ‘ Not enough intrumental variables NA

N-formylmethionine levels | MRRAPS ‘ 3.19 (196, 5.19) 169 x 10
N-formylmethionine levels MLE ‘ 3.19 (197, 5.19) 166 x 10
Lignoceroylcarnitine (C24) levels MR-PRESSO ‘ 048 (035, 0.66) 826 x 107
Lignoceroylcarnitine (C24) levels MR-RAPs ‘ 048 (037, 062) 370 x 107
Lignoceroylcarnitine (C24) levels MLE ‘ 048 (037, 062) 370 x 107
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Exposure

OR (95%Cl)

p-
value

adj. p-
value

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur Inverse variance 50 1048 0430 0.860
protein 4 weighted (0.933-1.176)
MR Egger 50 1083 0570 0570
(0.824-1424)
Weighted median 50 0981 0816 1
(0.831-1.157)
Mitochondrial import inner membrane translocase subunit Inverse variance 50 1034 0.649 0.649
TIM14 weighted (0.897-1.191)
MR Egger 50 1193 0303 0.606
(0.856-1.664)
Weighted median 50 1012 0.894 0.894
(0.851-1.204)
Lusc
Mitochondrial steroidogenic acute regulatory protein Inverse variance 39 0952 0226 0377
weighted (0.879-1.031)
MR Egger 39 1121 0.188 0470
(0.949-1326)
Weighted median 39 0991 0.881 0881
(0.879-1.117)
Mitochondrial NADH dehydrogenase [ubiquinone]1 beta Inverse variance 39 0995 0911 0911
subcomplex subunit § weighted (0.916-1.081)
MR Egger 39 0971 0747 0747
(0.814-1.159)
Weighted median 39 1030 0.626 1000
(0.914-1.161)
Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur Inverse variance 39 0993 0872 1000
protein 4 weighted (0.907-1.086)
MR Egger 39 0.889 0226 0377
(0.736-1.072)
Weighted median 39 1023 0.706 0.883
(0.909-1.151)
Mitochondrial sodium/hydrogen exchanger 9B2 Inverse variance 39 0.948 0.191 0478
weighted (0.876-1.027)
MR Egger 39 0.834 0.041 0205
(0.706-0.986)
Weighted median 39 0.967 0579 1.000
(0.858-1.089)
Mitochondrial import inner membrane translocase subunit Inverse variance 39 1073 0.098 0490
TIM14 weighted (0.987-1.167)
MR Egger 39 1093 0333 0416
(0.915-1.306)
Weighted median 39 1082 0.180 0900
(0.964-1213)
SCLC
Mitochondrial ADP-ribose pyrophosphatase Inverse variance 30 1004 0902 0902
weighted (0.945-1.067)
MR Egger 30 1026 0.693 0924
(0.904-1.165)
Weighted median 30 0.987 0757 1000
(0.911-1.070)
Mitochondrial 395 ribosomal protein L32 Inverse variance 30 0.968 0298 0596
weighted (0.911-1.029)
MR Egger 30 0905 0134 0536
(0.797-1.027)
Weighted median 30 0940 0123 0492
(0.869-1.017)
Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur Inverse variance 30 1057 0.074 0296
protein 4 weighted (0.995-1.123)
MR Egger 30 1033 0.619 1000
(0.910-1.173)
Weighted median 30 1043 0334 0.668
(0.957-1.137)
Mitochondrial Oligoribonuclease Inverse variance 30 0.995 0.869 1000
weighted (0.936-1.057)
MR Egger 30 0975 0.708 0708
(0.858-1.109)
Weighted median 30 1005 0901 0.901

(0.922-1.096)

LG, lung cancer. LUAD, lung adenocarcinoma, LUSC, lung squamous cell carcinoma. SCLC, small cell lng carcinoma. SNPs,single nucleotide polymorphisms. MR, Mendelian randomization.
adlf; e, Adiniied Hvilass.
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Exposure Metho r (95%Cl)

N-formylmethionine levels MR-PRESSO 193 (143, 263) 431 %107
N-formylmethionine levels | MRRAPS 1.98 (147, 267) 219 x 10
N-formylmethionine levels MLE 197 (147, 265) 207 % 107
Methionine sulfone levels MR-PRESSO 146 (124, 1.72) 287 x 107
Methionine sulfone levels MR-RAPs 147 (123, 1.76) 308 x 107
Methionine sulfone levels MLE 147 (123, 175) 289 x 107
Isoursodeoxycholate levels MR-PRESSO 051 (036, 0.71) 593 x 107
Isoursodeoxycholate levels MR-RAPs 049 (037, 0.65) 108 x 107
Isoursodeoxycholate levels MLE 052 (0.39, 0.68) 184 x 10
Lignoceroylcarnitine (C24) levels MR-PRESSO 052 (043, 062) 103 x 107
Lignoceroylcarnitine (C24) levels MR-RAPs 051 (042, 061) 281 x 100
Lignoceroylcarnitine (C24) levels MLE 052 (043, 062) 316 x 10™
Methyl glucopyranoside (alpha + beta) levels MR-PRESSO 148 (130, 1.69) 631 %107
Methyl glucopyranoside (alpha + beta) levels MR-RAPs 149 (131, 1.70) 193 x 10°
Methyl glucopyranoside (alpha + beta) levels MLE 150 (132, 1.70) 133 % 10°
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Exposure Method Q Q_pval Method Q Q_pval Egger intercept (L MR-presso

N-fet levels W 300 021 MR Egger 0.23 062 ‘ ~046 ‘ 033 NA

‘ LC (C24) levels | IVW 282 | 041 MR Egger 282 024 ‘ ~0.004 ‘ 098 030
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Exposure

N-formylmethionine levels levels
N-formylmethionine levels levels
N-formylmethionine levels levels
N-formylmethionine levels levels
N-formylmethionine levels levels
Lignoceroylcarnitine (C24) levels
Lignoceroylcarnitine (C24) levels
Lignoceroylcarnitine (C24) levels
Lignoceroylcarnitine (C24) levels

Lignoceroylcarnitine (C24) levels

Method

MR Egger
Weighted median
W

Simple mode
Weighted mode
MR Egger
Weighted median
vw

Simple mode

Weighted mode

pval

2634 % 107
240 x 107
518 x 107
17.29 x 10
16.06 x 107
4281 x 10
1357 x 107
0.09 x 107
1935 x 107

1033 x 10

Or (95%Cl)
55.32 (1.74, 1750.53)
322 (116, 8.92)
312 (0.99, 9.87)
5.55 (1.10, 27.95)
390 (114, 13.27)
042 (0,07, 231)
047 (0.26, 0.85)
042 (0.25, 0.70)
049 (022, 1.12)

047 (025, 0.89)
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Exposure Method Q Q_pval egger_intercept MR-

1561 068 011 011 051

PRESSO
N-formylmethionine levels wvw 2185 | 029 MR Egger | 2132 026 -0.06 051 029 ‘
Isoursodeoxycholate levels wvw 2592 005 O Egger | 2034 016 o 006 007
Methionine sulfone levels wvw 2670 053 MR Egger | 2529 055 -0.05 024 062
Methyl glucopyranoside (alpha + beta)  IVW 2805 013 MR Egger | 2763 0.1 002 058 023 ‘
levels
|

LC (C24) levels ww 1832 | 056 MR Egger
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Exposure method nsnp pval r (95%Cl)
N-formylmethionine levels MR Egger 20 1346 x 107 3.19 (074, 13.60)
N-formylmethionine levels Welghwd median 20 0.14 x 107 3.79 (1.67, 8.59)
N-formylmethionine levels Inverse variance weighted 20 236 % 107 2,04 (110, 3.78)
N-formylmethionine levels Simple mode 20 6371 %10 0.6 (0.1, 3.64)
N-formylmethionine levels | Weighted mode 20 160 x 10° 3.65 (139, 9.53)
Isoursodeoxycholate levels MR Egger |17 | 109 x 10 0.18 (0.05, 057)
Isoursodeoxycholate levels Weighted median 17 [0 x 102 031 (013, 072)
Isoursodeoxycholate levels Inverse variance weighted i 443 % 107 049 (024, 0.98)
Isoursodeoxycholate levels Simple mode i [ 1502 x 10 027 (004, 147)
Isoursodeoxycholate levels Weighted mode 17 w0 0.22 (006, 081)
Methionine sulfone levels MR Egger 29 4.69 % 10 197 (104, 3.73)
Methionine sulfone levels Weighted median 29 | 32x 107 174 (104, 2.92)
Methionine sulfone levels Inverse variance weighted 29 480 x 10 142 (1,00, 2.03)
Methionine sulfone levels Simple mode B 3017 x 10 1.75 (062, 5.01)
Methionine sulfone levels Weighted mode 29 392 x 107 178 (1,05, 3.02)
Methyl glucopyranoside (alpha + beta) levels MR Egger | 2 572 % 107 141 (101, 196)
Methyl glucopyranoside (alpha + beta) levels Weighted median n |44 x 100 145 (101, 2.09)
Methyl glucopyranoside (alpha + beta) levels Inverse variance weighted 2 030 x 107 149 (114, 1.93)
Methyl glucopyranoside (alpha + beta) levels Simple mode » 812 % 107 2.15 (094, 4.89)
Methyl glucopyranoside (alpha + beta) levels Weighted mode |2 271 x 10 1.40 (106, 1.86)
Lignoceroylcarnitine (C24) levels MR Egger 21 | 066 x 107 027 (012, 063)
Lignoceroylcarnitine (C24) levls Weighted median a [ 077 x10° 0.48 (0.28, 0.82)
Lignoceroylcarnitine (C24) levels Inverse variance weighted 21 005 107 0.50 (034, 0.74)
Lignoceroylcarnitine (C24) levels Simple mode 21 93.49 x 107 0.96 (037, 247)
Lignoceroylcarnitine (C24) levels Weighted mode 21 326 x 107 0,52 (029, 090)
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Modell Model2 Model3

OR (95% CI) OR (95% CI) OR (95% CI)
Energy (keal) 09972 (0.9918-1.0027) 03180 0.9978 (0.9928-1.0027) 0.3724 09976 (0.9922-1.0031) 03838
Carbohydrates (g) 1.0073 (0.9834-1.0318) 0.5471 1.0072 (0.9850-1.0299) 05227 1.0071 (0.9831-1.0317) 05596
Dietary fibers (g) 09574 (0.8970-1.0220) 0.1885 0.9495 (0.8813-1.0230) 0.1708 09605 (0.8836-1.0441) 03393
Total fats (g) 1.0866 (1.0099-1.1691) 0.0266 1.0818 (1.0114-1.1572) 0.0226 1.0820 (1.0069-1.1627) 0.0321
MUFAs (g) 0.8343 (0.7572-0.9192) <0.001 0.8302 (0.7546-0.9135) <0.001 08338 (0.7562-0.9194) <0.001
’ PUFAs (g) 0.9688 (0.8677-1.0817) | 0.5695 | 0.9701 (0.8634-1.0898) 1 0.6049 09727 (0.8636-1.0955) | 0.6439
Vitamin B (mg) 0.8809 (0.1363-5.6913) 0.8929 0.8134 (0.1107-5.9757) 0.8373 08181 (0.1002-6.6778) 0.8495
Vitamin B3 (mg) 09955 (0.8870-1.1172) 0.9378 1.0059 (0.9016-1.1222) 09151 1.0069 (0.9113-1.1125) 0.8914
Vitamin B6 (mg) 0.6444 (0.3578-1.1605) | 0.1413 | 0.6016 (0.3416-1.0592) 0.0776 05989 (0.3137-1.1432) 0.1185
Folate (ug) 0.9995 (0.9957-1.0034) 0.8137 1.0000 (0.9962-1.0037) 0.9899 09999 (0.9957-1.0041) 09707
Vitamin E (mg) 09831 (0.8378-1.1535) 0.8325 [ 0.9804 (0.8212-1.1705) 0.8249 09847 (0.8317-1.1659) 0.8565
Vitamin K (ug) 09927 (0.9790-1.0065) 0.2951 0.9916 (0.9754-1.0080) 0.3073 09917 (0.9765-1.0072) 02897
P (mg) 1.0010 (0.9982-1.0038) 04776 10011 (0.9984-1.0037) 0.4293 10011 (0.9984-1.0039) 04174
Mg (mg) 1.0026 (0.9943-1.0109) 0.5358 1.0023 (0.9947-1.0100) 0.5479 1.0018 (0.9948-1.0089) 0.6067
Fe (mg) 0.9477 (0.8548-1.0507) | 0.3037 0.9304 (0.8349-1.0367) 0.1885 [ 09317 (0.8549-1.0153) 0.1053
Zn (mg) 1.0073 (0.9242-1.0979) 0.8666 1.0141 (0.9226-1.1146) 0.7695 1.0142 (0.9312-1.1047) 0743
Cu (mg) 0.8428 (0.0795-8.9384) 0.8859 07847 (0.0777-7.9216) 0.8353 07996 (0.1129-5.6627) 0.8207
Na (mg) 1.0002 (0.9995-1.0008) 0.5906 1.0003 (0.9996-1.0009) 0.4116 1.0003 (0.9997-1.0009) 03561
Se (ng) 1.0046 (0.9786-1.0313) 0.7304 1.0043 (0.9785-1.0308) 07433 1.0042 (0.9792-1.0298) 07414

OR, odds ratio; CI, confidence interval.
Modell: crude model.

Model2: adjusted for age, sex, and race.

Model3: adjusted for age, sex, race, education, smoking status, and BML.
The hold valoes:seas 52 005,
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Gut microbes

Heterogeneity test

IVW  p-value

MR-
Egger

MR-PRESSO

Global test

3

Outlier-
corrected

MR-Egger

Egger intercept test

B

Genus Ruminiclostridium | 11.357 | 0.414 10404 0406 | 1.795 0.904 | NA NA | 0.196 0.361
Class Mollicutes 1180 | 0.881 1171 0760 | 1.794 0.892 | NA NA | 0.146 0.930
Genus Ruminococcaceae | 6376 [ 0.497 6324 0388 | 12336 0517 | NA NA | -0.048 0.831
Genus Paraprevotella 1656 | 0.799 0762 0859 | 13.459 0474 | NA NA | -039 0.414
Phylum Actinobacteria 10804 [ 0.460 10761 0376 | 8.457 0501 | NA NA [ 0.039 0.846
Phylum Tenericutes 1180 | 0.881 1171 0760 | 2.621 082 | NA NA | 0.146 0.930
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Modell Model2 Model3

OR (95% CI) p-value OR (95% CI) OR (95% ClI) p-value
Q ref \ ‘ ref ref
Q@ 09168 (01380-60891) ‘ 09277 ‘ 0.9990 (0.1497-6.6683) 09992 10181 (0.1508-6.8718) 09852
@ 0.2512 (0.0583-1.0819) ‘ 0.0634 ‘ 03106 (0.0727-1.3281) 01135 0.3393 (0.0797-1.4449) 0.1419
[ 00260 (00028-02151) ‘ 0.0017 ‘ 0.0400 (0.0043-03762) 0.0053 00126 (00015-0.1018) | 0.0065
P for trend | 00023 | 0.0119 | 0.0156

OR: odds ratio; Cl: confidence interval.

Modell: crude model.

Model2: adjusted for age, sex, and race.

Model3: adjusted for age, sex, race, education, smoking status, and BML.
The bold values mean p < 0.05.
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Outcome method NSNP b se p-value alue (MR-PRESSO)
Phylum Tenericutes Inverse variance weighted 328 0000413 0.0006304 0512 0561
MR Egger 328 0002639 0.0011036 0017
Simple mode 328 ~0.001691 00019129 0377
Weighted median 328 0000413 0.0009814 0674
Weighted mode 328 00002101 0.0013032 0872
Phylum Actinobacteria Inverse variance weighted 329 00003186 0.0005009 0525 0977
MR Egger 329 273E-05 0.0008769 0975
Simple mode 329 0001726 0.00158 0275
Weighted median 329 0000538 0.0007755 0488
Weighted mode 329 0001229 00011322 0278
Genus Ruminococcaceae Inverse variance weighted 328 0000573 0.0006887 0405 0751
MR Egger 328 00008787 0.0012057 0467
Simple mode 328 00003512 0.0020584 0865
Weighted median 328 ~373E-05 0.0010136 0971
Weighted mode 328 00007602 00014312 059
Genus Ruminiclostridium Inverse variance weighted 329 00002747 0.0005414 0612 0126
MR Egger 329 00009264 0.0009481 0329
Simple mode 329 0000906 0.0016819 0591
Weighted median 329 00004644 0.0007995 0.561
Weighted mode 329 0.00038 0.0010821 0726
Genus Paraprevotella Inverse variance weighted 328 0000161 0.0007957 0840 0781
MR Egger 328 00004046 00013927 0772
Simple mode 328 0001209 0.0021467 0574
Weighted median 328 0000415 0.0011592 0720
Weighted mode 328 0000828 0.001428 0563
Class Mollicutes Inverse variance weighted 328 0000413 0.0006304 0512 0555
MR Egger 328 0002639 0.0011036 0017
Simple mode 328 0001691 0.0016845 0316
Weighted median 328 0000413 0.0009433 0661
Weighted mode 328 00002101 0.001257 0867

NSNP = number of SNPs;
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OR (95% CI)

<60 | 0.9493 (0.8969-1.0049) 00726
>60 | 0.9071 (0.8156-1.0088) 00718

Race
Non-Hispanic Black | 0.9572 (0.9220-0.9938) 0.0227
Non-Hispanic White = 0.9169 (0.8411-0.9995) 0.0488
Mexican American | 10251 (0.9768-1.0758) 03103
Other Hispanic | 0.9987 (0.9956-1.0019) 04225
Other race | 0.9823 (0.9059-1.0653) 06637

Smoking status

No | 0.9416 (0.8894-0.9969) 0.0388
Yes | 0.9325 (0.8330-1.0440) 02228
BMI
Underweight | 0.8893 (0.8702-0.9088) <0.0001
Healthy weight | 0.9733 (0.9350-1.0133) 0.1855
Overweight | 0.9304 (0.8538-1.0138) 0.0988
Obese | 09479 (0.8383-1.0719) 03904

The bold values mean p < 0.05.






OPS/images/fgene-14-1280378/crossmark.jpg
©

|





OPS/images/fgene-15-1377434/fgene-15-1377434-g001.gif
Paricpanss of
NHANES 20032016
=0

Escuded paricipanis
e
weasish

w07

Excludedpartcpants
bl ik mcompite s
)

Inciaded Paricpan
a-sso0)






OPS/images/fgene-15-1377434/fgene-15-1377434-g002.gif





OPS/images/fgene-15-1377434/fgene-15-1377434-t001.jpg
Total (unweighted n = 35,098, GC (unweighted n = 20, No GC (unweighted n = 35,078,

weighted n = 219,465,579) weighted n = 105,634) weighted n = 219,359,945)
Age 46 (32.59) 53 (48.67) 46 (32.59) <0.0001
(median (IQR))
Sex (%) 006
Male | 48.16 206 4817
Female | 5184 77.94 5183
Race (%) 051
Non-Hispanic | 11.34 2095 1134
Black
Non-Hispanic | 68.44 7197 68.44
White
Mexican | 848 353 849
American
Other Hispanic | 49 0 49
Other race | 6.84 356 684
Education (%) 0.03
Less than high | 1697 7.5 16.96
school
High school | 23.64 651 23.65
graduate
Some college | 316 58.87 3159
College graduate | 27.79 7.12 278
or above
Smoking 09
status (%)
No | 7836 769 78.36
Yes | 2164 231 2164
Weight 79.20 (67.00.93.70) 67.40 (67.40.81.40) 79.30 (67.00.93.70) 0.02
(median (IQR))
BMI 27.61 (24.03.32220) 25.90 (24.40.28.20) 27.61 (24.02.32220) o1
(median (IQR))

Data are expressed as median (IQR) for skewed variables and percentage (%) for categorical variables. p-value for skewed variables was assessed by the Wilcoxon rank-sum test, and p-value for
the categorical variables was determined using the Pearson chi-squared test.
T Daldl sales Maaus 3. B8,
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Variable

Total
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Energy (kcal) 1,988.00 (1,479.00-2,649.00) 1,615.00 (1,038.00-1615.00) 1,989.00 (1,479.00-2,649.00) <0.001
Proteins (g) s (54.17-103.46) 51.95 (44.83-97.60) 75.82 (54.19-103.48) 015
Carbohydrates (g) 236,50 (171.86-319.67) 192.76 (94.95,218.33) 236.56 (171.88-319.74) 0.01
Total sugars (g) 99.26 (61.94-150.26) 11115 (38.91,111.15) 99.26 (61.98-150.26) 041
Dietary fibers (g) 1470 (9.70-21.30) 9.10 (5.60-9.30) 14.70 (9.70-21.30) <0.0001
Total fats (g) 7442 (5020-105.17) 56.02 (29.94-7158) 7444 (50.20-105.17) 0.03
SFAs (g) 2369 (15.21-35.20) 17.39 (15.33-26.14) 23.69 (15.21-35.20) 019
MUFASs () 2619 (17.38-38.30) 21.63 (9.29-22.84) 2650 (17.38-38.30) 0.002
PUFAs (g) 1582 (10.02-23.87) 10.90 (2.47-15.98) 15.82 (10.02-23.87) 0.04
Cholesterol (mg) 223.00 (131.00-380.00) 272.00 (185.00-556.00) 223.00 (131.00-380.00) 047
Vitamin A (ug) ) (274.00-812.00) 464.00 (464.00-857.00) 494,00 (274.00-812.00) L os
Retinol (ug) 334.00 (171.00-566.00) 443.00 (321.00-453.00) 334.00 (171.00-566.00) 0.08
Alpha carotene (ug) 700 (10.00-244.00) 13.00 (0.00-158.00) 47.00 (11.00-244.00) 048
Beta carotene (jg) 779.00 (300.00-2,312.00) 555.00 (214.00-4,768.00) 779.00 (300.00-2,312.00) 078
Vitamin BI (mg) 146 (1.02-2.03) 095 (0.63-1.13) 1.46 (1.02-2.03) <0.0001
Vitamin B2 (mg) 197 (1.36-2.73) 2.04 (1.88-2.06) 1.97 (1.36-2.73) 051
Vitamin B3 (mg) 27 (15.89-31.80) 13.24 (13.24-18.81) 2274 (15.90-31.81) <0.0001
Vitamin B6 (mg) 1.77 (1.18-2.54) 0.91 (0.65-1.45) 1.77 (1.18-2.54) < 0.0001
Folate (ug) 3500 (240.00-511.00) 247.00 (170.00-287.00) 354,00 (240.00-512.00) <0.0001
Vitamin B12 (ug) 396 (225-647) 2.79 (277-4.28) 396 (2.25-6.47) 015
Vitamin C (mg) 5340 (21.90-115.60) 26.90 (9.30-110.50) 53.50 (21.90-115.60) 038
Vitamin E (mg) 672 (430-1027) 4.18 (1.81-4.69) 6.72 (4.31-10.27) <0.0001
Vitamin K (ug) 63.80 (35.80-119.30) 34.10 (25.00-49.30) 63.80 (35.80-119.40) <0.0001
Ca (mg) 834,00 (546.00-1,223.00) 810.00 (571.00-1,009.00) 834.00 (546.00-1,223.00) 055

P (mg) 1,263.00 (915.00-1,717.00) 966.00 (943.00-1,286.00) 1,263.00 (915.00-1,717.00) 0.01

Mg (mg) 275.00 (198.00-370.00) 179.00 (179.00-264.00) 275.00 (198.00-370.00) <0.0001
Fe (mg) 1327 (933-1892) 8.80 (547-10.69) 13.28 (9.33-18.92) <0.0001
Zn (mg) 10.17 (697-14.71) 647 (5.14-9.87) o (698-14.71) | 0.002
Cu (mg) 114 (0.82-158) 0.55 (0.54-1.00) 1.14 (0.82-1.58) 0.01

Na (mg) | 3,217.00 (2,287.00-4,406.00) 2,856.00 (1,902.00-3,101.00) 3,218.00 (2,287.00-4,408.00) 0.02

K (mg) 2,535.00 (1,820.00-3,365.00) 1,492.00 (1,350.00-2,531.00) 2,536.00 (1,821.00-3,365.00) 006

Se (ug) ) (70.40-142.10) 80.40 (63.30-103.80) 101.90 (70.40-142.20) |00

p-value was determined by the Wilcoxon rank-sum test, median (IQR).

The bold values mean p < 0.05.
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Exposure/Outcome ncase ncontrol Sample size Cons Ances

Crohn’s disease 5,956 14,927 20,883 IBDGC European
Overall Breast cancer » 122,977 105,974 228,951 BCAC European
ER" Breast cancer 69,501 105,974 175,475 BCAC European
ER™ Breast cancer 21,468 105,974 127,442 BCAC European

BCAG, Breast Cancer Association Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium.





OPS/images/fgene-14-1299930/crossmark.jpg
©

|





OPS/images/fonc.2023.1275913/table2.jpg
Outcome MR-PRESSO Outliers Used SNPs

OR (95%Cl) P Hetp Ple.p

Overall breast cancer | 1512194825, rs1873625, rs2188962, rs3091315 46 wvw 1.020(1.010-1.031) ' 0.000106  0.449 0.417
weighted median 1.012(0.996-1.029) 0.152
MR-Egger 1.012(0.989-1.035) = 0.326

ER" breast cancer 1512194825, rs1873625, rs2188962, rs7543234 47 ww 1.019(1.006-1.034) | 0.006 0.078 0.939

weighted median 1.015(0.995-1.035) 0.144
MR-Egger 1.018(0.987-1.051) 0.261

ER™ breast cancer rs1873625, rs3091315 49 ww 1.019(1.000-1.037) 0.046 0.437 0.437
weighted median 1.003(0.976-1.031) = 0.846

> MR-Egger 1.003(0.962-1.046) = 0.874

Het.p refers to the p-value for heterogeneity; Ple.p refers to the p-value for pleiotropy; OR, odds ratio; CI, confidence interval.
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com Exposure SNPs, n

ocec MVMR based on MIP1a/CCL3
MIP1a/CCL3 | 14 1.002 (0.919-1.092) 0.044
Body mass index 455 1.000 (0.862-1.161) 0076
Smoking initiation 21 [ 1.002 (0.575-1.182) 0.085
Alcoholic drinks per week 6 1.002 (0.575-1.746) 0283
Hypertension 0 NA NA

MVMR based on IL-7

L7 43 0,997 (0.994-0.999) 0011
Body mass index 129 1001 (0.783-1279) 0125
Smoking initiation 14 1001 (0.330-3.034) 0566
Alcoholic drinks per week 2 1.002 (0.254-3.949) [ 0700
Hypertension 0 NA NA

Abbreviations: MVMR, multivariable Mendelian randomization; n, number; SNP, single-nuclcotide polymorphism; OCPC, oral cavity and pharyngeal cancer; OR, odds ratios CI, confidence
RSy
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Exposure: Crohn's disease Outcome: Breast Cancer

Data Source: Data Source:

GWAS of 20,883 European individuals GWAS of 228,951 European individuals
(5,956 cases/14,927 controls) (122,977 cases/105,974 controls)

SNPs Selection:
SNPs reached genome-wide significance (p <5 x 10-%)
Linkage disequilibrium-pruned (threshold at r> < 0.001 and kb =10000)
SNPs not found in the outcome GWAS were removed
Palindromic SNPs exclusion
SNPs with the F-statistic < 10 were excluded

Genetic Variants Harmonization

MR-PRESSO

Two-sample MR: Sensitivity analysis:
\ Inverse variance weighted ' Cochran's Q-test

\ Weighted median \' Egger regression test
v MR-Egger

IVW —multivariable MR
Reverse MR analysis
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Outcome

Trait/Phenocode

Population

Sepsis
Sepsis

severe sepsis

sepsis-related death within 28 days

severe sepsis-related death within 28 days
Streptococcal septicaemia

Puerperal sepsis

UK Biobank
FinnGen R9
UK Biobank

UK Biobank

UK Biobank

FinnGen R9

FinnGen R9

10,154

12301

1,380

1896

347

2348

3940

454,764
332,343
429,985
484,588
431,365
332,343

202,267

Sepsis
ABI_other_sepsis

Sepsis (critical care)

Sepsis (28 day death)

Sepsis (28 day death in critical care)
ABI_strepto_sepsis

O15_puerp_sepsis

European
European
European
European
European
European

European
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Exposure Number of SN Of variance explained Population ancestry Pubmed ID

Ca 7 0841 European 24,068,962
Cu 3 46 European 23,720,494

Fe 3 304 I European 25,352,340

Mg 5 149 European 20,700,443

13 5 12 European 20,558,539

Se 7 365 | European 25,343,990

Folate 2 041 European 23,754,956
p-carotene 4 836 [ European 19,185,284
Vitamin B6 I 2 307 European 19744961
Vitamin B12 10 478 European 23,754,956
Vitamin C 11 | 179 European 33,203,707

| Vitamin D 6 267 | European 29,343,764
Zn 2 459 European 23,720,494
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Exposure

Multivariable MR

OR (95% CI)

Mean corpuscular hemoglobin concentration 27 1,537 (0601, 3.932) 0370
Reticulocyte fraction of red cells 27 0335 (0010, 11.218) 0.541
Mean corpuscular volume 227 0921 (0.514, 1.652) 0.783
High light scatter reticulocyte count 27 6.106 (0839, 44.454) 0.074

7 Reticulocyte count 27 0462 (0011, 19751) 0.687
Zinc 27 0675 (0508, 0.895) 6.421E-03

Abbreviations: OR, odds ratio; Cl, confidence interval, Nsnp, number of SNP.
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Expose Qutcome Used SNPs (95%Cl) P Egger-Intercept

Overall breast cancer Crohn’s disease 132 1.082(0.989-1.183) 0.085 0.002 0.790
ER" breast cancer Crohn’s disease 97 1.039(0.950-1.136) 0.405 -0.006 0431
ER” breast cancer Crohn’s disease 34 1.033(0.924-1.156) 0.567 -0.018 0.293

Int.p refers to the p-value derived from the Egger-intercept.
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QOutcome Adjustme 95%Cl) [ Egger-Intercept Int.
Overall breast cancer Current tobacco smoking 1.018(1.003-1.033) 0.019 <0.001 0.976
Alcoholic drinks per week 1.019(1.001-1.037) 0.037 -0.001 0.724
Adjust together 1.017(1.001-1.034) 0.037 -0.001 0.586
ER" breast cancer Current tobacco smoking 1.023(1.005-1.040) 0.011 0.001 0.560
| Alcoholic drinks per week [ 1.021(1.002-1.041) 0.034 <0.001 0.960
Adjust together 1.021(1.003-1.039) 0.025 <0.001 0.982
ER™ breast cancer Current tobacco smoking 1.002(0.980-1.024) 0.864 -0.002 0.555
Alcoholic drinks per week 1.003(0.978-1.028) 0.833 -0.005 0.153
Adjust together 0.998(0.975-1.022) 0.869 -0.003 0.164

Intp refers to the p-value derived from the Egger-intercept.
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Exposures Outcomes No. of IVs  Heterogeneity test MR Egger vw

Cochran’s Q (P) Intercept Beta (95% Cl)

All OA Appendicular lean mass 1 72.193 (<0.001) 0002 | 0891 | 0258 (0369,-0.146)  GO7E-06  324E-05
All OA Hand grip strength (left) 20 53312 (<0.001) So0e 0676 | -0064 (0104, 0020) 0002 0004
All OA Hand grip strength (right) 19 w2 co0on | o001 0758 | -0.055 (-0.095, -0.014) 0008 0014
All OA Usual walking pace 2 104602 (<000) | 0002 | 0675 0104 (0147, -0061) 20106 | L6IE0S
Hand OA Appendicular lean mass 7 186506 (<0.001) 0010 0919 | 0013 (:0.0950.122) 081 0810
Hand OA | Hand grip strength (lef) 8 BAGR (0000 | 007 | 0684 | 0102 (0149, 0055) 226505 72305
Hand OA  Hand grip strength (right) 8 86.489 (<0.001) | oos oz | -oaoe (-0.152, -0057) | 184E-05 | 723E-05
Hand OA Usual walking pace 8 26.509 (<0.001) -0.001 0937 | ~0.021 (-0.044,0.001) 0.062 0.100
Hip OA Appendicular lean mass 2 366557 (<0.001) ~0004 | 0654 0.047 (0.0060.100) 008 o7 |
Hip OA Hand grip strength (left) 28 266.255 (<0.001) 0.003 0564 | 0.013 (-0.0150041) 0359 0414
Hip OA Hand grip strength (right) 28 309.543 (<0.001) 0.003 0566 | 0.011 (0.0190041) 0474 0506 |
Hip OA Usual walking pace 2 45.030 (0.002) 0.001 0666 | 0025 (0038, -0013) | 9BIE05 | 262504
Knee OA Appendicular lean mass 15 316,000 (<0.001) [ oo 051 | -0179 (-0.281,-0.076)  0.001 0001
Knee OA Hand grip strength (left) 19 309.382 (<0.001) 0.003 0841 | 0.029 (-0.092,0.034) 0362 0414
KneeOA  Hand grip strength (right) 19 342572 (<0.001) 0.003 05 | 0041 (0.1070025) 0228 0304
Knee OA Usual walking pace 20 70.118 (<0.001) 0.007 0066 | -0.064 (-0.087, -0.04) = 8.55E-08  137E-06

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighteds IVs, instrumental variables; Py, false discovery rate (FDR) adjusted p values; CI, confidence interval; OA,
T g
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Exposures Qutcomes No. of IVs Weighted median MR Egger MR-PRESSO

Beta (95% CI) P Beta (95% ClI) Beta (95% Cl)

All OA Appendicular lean mass 1 -0.168 (-0.245,-0.092)  1.66E- = -0.193 (-1.1040.719)  0.689 -0218(-0245,-0.191)  0.002
05

All OA Hand grip strength (left) 20 -0085(-0.124,-0.046)  171E-  -0.001 (-0.292,0.290)  0.993  -0.064(-0.073,-0055)  0.006
05

All OA Hand grip strength (right) 19 -0.053 (-0.095,-0.012)  0.012 -0.009 (-0.297,0278) | 0.949 = -0.055 (-0.064,-0.046) | 0.016

All OA Usual walking pace 2 -0.112(-0.148,-0.076)  1.56E- = -0.027 (-0.382,0.328)  0.884  -0.102(-0.109,-0.094) = 2.09E-

09 05

Hand OA Appendicular lean mass 7 0.014 (-0.019,0.047) 0403 | -0.112 (-24172.192) | 0.928 [ 0.1 (0.003,0.017) 0411

Hand OA Hand grip strength (left) 8 -0088 (-0.114,-0.062)  346E- = -0.014 (-0.420,0.391) 0948  -0.09 (-0.094, ~0.085) = 0.001
11

Hand OA  Hand grip strength (right) 8 -0087 (-0.113,-0.061)  504E- = -0.037 (-0.450,0.376)  0.866 -0.088 (-0.097,-0.079) = 0.002
11

Hand OA Usual walking pace 8 -0018(-0.034,-0.001)  0.032 = -0.013 (-0209,0.183) = 0.899  -0.021(-0.024,-0018)  0.006

Hip OA Appendicular lean mass 2 003 (0.002,0.059) 0.036 0.100 (-0.134,0.333) | 0.413  0.029 (0.024,0.033) 0023

Hip OA Hand grip strength (left) [ 28 0.02 (0.004,0.036) 0015 | -0.026 (-0.159,0.107) | 0.706  0.015 (0.012,0.017) 0035

Hip OA Hand grip strength (right) 28 0.016 (-0.001,0.032) 0061 | -0.031(-0.1750.113) | 0.678  0.012 (0.009,0.016) 0.176

Hip OA Usual walking pace 2 -0023 (-0.038,-0.009)  0.001 = -0.039 (-0.1040.026) 0248 -0.025(-0.028,-0.022) = 0.001

Knee OA Appendicular lean mass 15 -0083(-0.139,-0.027)  0.004 = -0.439 (-1.1980.321) 0278 -0.182(-0.199,-0.165)  0.001

Knee OA Hand grip strength (left) 19 0.001 (-0.036,0.039) 0945 | -0.090 (-0.679,0.499) | 0.768 = -0.032(-0.041,-0.023) = 0.127

" KneeOA T Hand grip strength (right) o oo (-0.075,-0.003)  0.035 C m (-0.731,0.509) 079 | ~o0s1 (-0.06, ~0.042) | oon

Knee OA Usual walking pace [ 20 -0.048 (-0.07, -0.027) = 794E- [ -0202 (~0.343,-0.062) | 0.011 | ~0.06 (-0.064, ~0.056) | 4.83E-

06 06

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; CI, confidence interval; OA, osteoarthrit
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Phenotype Sample size (cases/c Populatio GWAS ID or PMID
ALM | 450,243 European ebi-a-GCST90000025

hand grip strength (left) ‘ 461,026 European ukb-b-7478

» hand grip strength (right) ‘ 461,089 European ukb-b-10215
usual walking pace ‘ 159915 European ukb-b-4711

All OA | 826,690 (177,517/649,173) Mixed 34,822,786

Hand OA | 303,782 (20,901/282,881) Mixed 34,822,786

Hip OA ‘ 353,388 (36,445/316943) Mixed 34,822,786

Knee OA ‘ 396,054 (62,497/333,557) Mixed 34,822,786

Abbreviations: ALM: appendicular lean mass; OA, osteoarthritis.
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Exposures

Outcomes

No. of IVs

Heterogeneity test

Cochran’s Q (P)

MR Egger

Intercept

R (95% Cl)

2.87E-04

Appendicular lean mass All OA 188 314.35 (<0.001) 0.002 0160 | 1103 (1.052,1.156) | 5.38E-05
Hand grip strength (left) All OA 40 32320 (0.767) ~0.001 0827 | 0.823 (0.712,0.952) 0.009 0.020
Hand grip strength (right) All OA 44 32.080 (0.889) -0.001 0706 0.826 (0.718,0.950) 0.007 0.020
Usual walking pace All OA 18 63.293 (<0.001) 0.008 0666 0339 (0.204,0.564) | 298E-05 & 238E-04
Appendicular lean mass Hand OA 196 229.148 (0.047) ~486E-04 | 0852 1123 (1.014,1243) 0.026 0.052
Hand grip strength (left) Hand OA 52 84381 (0.002) -0.013 0213 0.817 (0.535,1.250) 0352 0.402
Hand grip strength (right) Hand OA 59 63.282 (0.295) ~0.008 0326 0.768 (0.550,1.073) 0122 0.195
Usual walking pace Hand OA 18 28491 (0.040) 0015 0663 1.026 (0.412,2.556) 0956 0.956
Appendicular lean mass Hip OA 194 320.495 (<0.001) 0.004 0070 1.095 (1.001,1.197) 0.048 0.085
Hand grip strength (left) Hip OA 44 31552 (0.902) 0.003 0608 1159 (0.885,1.518) 0282 0.348
Hand grip strength (right) Hip OA 50 37.682 (0.880) 0.001 0847 1.194 (0.930,1.534) 0.165 0.240
Usual walking pace Hip OA 16 13.983 (0.527) 0013 0546 0.474 (0.272,0.827) 0.008 0.020
Appendicular lean mass Knee OA 205 472.488 (<0.001) 0.001 0606 1246 (1.151,1.350) | 6.07E-08 | 971E-07
Hand grip strength (left) Knee OA 50 94.915 (<0.001) -0.013 0051 1182 (0.902,1.548) 0226 0.301
Hand grip strength (right) Knee OA 59 135.377 (<0.001) ~0.004 0530 0991 (0.753,1.305) 0.950 0.956
Usual walking pace Knee OA 18 63.585 (<0.001) 0010 0744 0299 (0.136,0.659) 0.003 0.011

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighteds IVs, instrumental variables; Py, false discovery rate (FDR) adjusted p values; CI, confidence interval; OA,

T g
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Exposures Outcomes  No. of IVs Weighted median MR Egger MR PRESSO

OR (95% Cl) 2 OR (95% ClI) OR (95% ClI)

Appendicular lean mass All OA 188 1096 (1029,1168) | 0.004 1025 (0916,1147) 0670 1098 (1.095,1.102) ~ 1LOSE-04
Hand grip strength (left) All OA 0 0896 (0.731,1098) | 0290 0888 (0446,1.769) | 0737 0823 (0.806,0841) | 0006
Hand grip strength (right) All OA 44 0924 (0754,1.131) | 0442 0928 (0500,1722) | 0814 0826 (0.811,0841) | 0003

Usual walking pace All OA 18 0385 (02360629) | 140E-04 0131 (0.0029437) | 0366 0296 (0268,0326) = 4.85E-05
Appendicular lean mass Hand OA 19 1138 (0.984,1315) | 0081 1146 (0906,1448) | 0257 | 1123 (L1I5,1131) | 0027
Hand grip strength (left) Hand OA 52 0934 (0551,1582) | 0799 2540 (041515543) | 0318 0817 (0771,0867) 0356
Hand grip strength (right) =~ Hand OA 59 0697 (0.439,1.107) o 1496 (03845822) | 0564 0768 (0736,0802) 0127
Usual walking pace Hand OA 18 0774 (02722202) | 0631 0180 (0.001,416.109) = 0670 0788 (0.658,0945) 0552
Appendicular lean mass Hip OA 194 1048 (0932,1179) | 0435 0921 (0750,1132) | 0435 | 1095 (L0BBLI02) | 0049
Hand grip strength (left) Hip OA 44 1185 (0.805,1.746) | 0390 0863 (02732.727) | 0803 | 1159 (L12,1.2) 0216
Hand grip strength (right) Hip OA 50 1241 (0865,178) | 0241 1079 (03793076) | 0887 | 1194 (1L157,1232) 012
Usual walking pace Hip OA 16 0538 (02520147) | 0109 | 0105 QO0LIZSKY) | 0374 0474 (0415058 | 0016

Appendicular lean mass Knee OA 205 1271 (1155,0399) | 93E07 1194 (09951432) | 0057 1256 (1251263 104E08
Hand grip strength (left) Knee OA 50 0964 (0.697,1334) | 0.824 3382 (11749742) | 0029 1124 (L083,1167) | 0385
Hand grip strength (right) ~ Knee OA 59 0985 (0.744,1.305) | 0.919 1367 Q724079 | 0555 1057 (L022,109%) 0675
Usual walking pace Knee OA 18 0422 02040871) | 0020 | 0098 (000174976) | 0502 0357 (0306.0416) 0,008

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; CI, confidence interval; OA, osteoarthrit
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Gut microbiota Outcome Methods Intercept
family. Peptostreptococcaceae GBM
| vw 12152 0434 0044 0735 0530
MR-Egger 12019 0362
family. Ruminococcaceae GBM
w 5115 0745 0082 0.670 0,600
MR-Egger 4917 0670
genus. Anaerostipes GBM.
| W 8193 0770 ~0.191 0338 0800
MR-Egger 7.190 0783
genus. Eubacterium brachy group GBM [
| vw 8011 0533 0141 0.562 0850
MR-Egger 7.645 0469
‘genus. Faecalibacterium GBM.
ww 7.745 0.560 0083 0586 0540
MR-Egger 7422 0492
genus.Lachnospiraceae UCGO04 | GBM
ww 8505 0.668 0051 0817 0720
MR-Egger 8448 0.585
genus. Phascolarctobacterium G
vw 5796 0.670 0207 0530 0,660
MR-Egger 5359 0616
genus.Prevotella? GBM
ww 5465 0858 ~0.142 0.683 0870
MR-Egger 5287 0809
genus.Streptococcus GBM.
W 11041 0.607 0207 0343 0640
MR-Egger 10.066 0610
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Cytol Abbreviation Sample size Numbel
Chemokines Cutaneous T cell attracting (CCL27) CTACK 3,631 GCST004420
Eotaxin (CCL11) Eotaxin 8,153 GCST004460
Growth regulated oncogene-a (CXCL1) GROa 3,505 GCST004457
Interferon gamma-induced protein 10 (CXCL10) 1P10 3,685 GCST004440
Monocyte chemotactic protein-1 (CCL2) MCP1 8,293 GosToouss
Monocyte specific chemokine 3 (CCL7) MCP3 843 GCST004437
Monokine induced by interferon-gamma (CXCL9) MIG 3,685 GCST004435
Macrophage inflammatory protein-la (CCL3) MIPla 352 GCST004434
Macrophage inflammatory protein-18 (CCL4) MIP1B 8243 GCST004433
Regulated on Activation, Normal T Cell Expressed and Secreted (CCLS) | RantEs s GCST004431
Stromal cell-derived factor-1 alpha (CXCL12) SDFla 5,998 GCST004427
Growth factors | Beta nerve growth factor BNGF 3,531 Gostooua
Basic fibroblast growth factor bEGF 7,565 GCST004459
Granulocyte colony-stimulating factor GCSE 7,904 GCST004458
Hepatocyte growth factor HGF 8,202 GCST004449
Macrophage colony-stimulating factor MCSF 840 GCST004436
Platelet-derived growth factor BB PDGEbb 8,293 GCST004432 |
Stem cell factor SCE 8,290 GCST004429
Stem cell growth factor beta SCGFp 3,682 GCST004428
Vascular endothelial growth factor VEGF 7,118 GCST004422
Interleukins Interleukin-10 1L-10 7,681 GCST004444
Interleukin-12p70 IL-12p70 8,270 GCST004439
Interleukin-13 1L-13 3,557 GCST004443
Interleukin-16 IL-16 3,483 GCST004430
Interleukin-17 117 7,760 GCST004442
Interleukin-18 IL-18 3,636 GCST004441
Interleukin-1 receptor antagonist ILira 3,638 GCST004447
Interleukin-1-beta IL-18 3,309 GCST004448
Interleukin-2 L2 3475 GCST004455
Interleukin-2 receptor, alpha subunit IL2ra 3,677 GCST004454
Interleukin-4 IL4 8124 GCST004453
Interleukin-5 s 3,364 GCST004452
Interleukin-6 1L-6 8,189 GCST004446
Interleukin-7 L7 3,409 GCST004451
Interleukin-§ (CXCL8) L8 3,52 GCST004445
Interleukin-9 L9 3,63 GCST004450
Others Interferon-gamma IEN-y 7,701 GosToouss
Macrophage migration inhibitory factor (glycosylation-inhibiting factor) MIF 3,494 GCST004423
Tumor necrosis factor-alpha TNFa 3454 GCST004426
Tumor necrosis factor-beta TNEB 1,559 GCST004425
TNF-related apoptosis inducing ligand TRAIL s GCST004424
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Methods

Cytokines

MR results

Heterogeneity
test

Cochran’s Q test

Horizontal pleiotropy
test

MR-egger intercept

test
P OR (95% ClI) [e] df P Intercept S
MIP1a/CCL3, vw 4 0537 | 0229 | 0019 | L711(1.092-2680) = 2188 3 | 0534 0071 0118 | 0607
MR Egger 4 0.104 0753 | 0.903 1111 (0.254-4.852) 1.824 2 0.402 |
Weighted median 4 0459 0268 0086 1583 (0.937-2.674) ‘
Simple mode 4 0412 | 0416 | 0395 | 1510 (0.668-3412)
Weighted mode 4 0369 | 0378 0390 | 1446 (0.703-2.975)
L7 | ww 12 Coats | 0151 0003 | 0639 04750859 1880 11 0063 ooss | oo | odes
MR Egger 12 o191 | 0374 0s1 | 0826(0397-1720) | 17875 | 10 | 0057
Weighted median 12 0469 | 0168 0005 0,626 (0450-0870)
Simple mode 12 ~0394 0319 0242 | 0.674 (0.361-1260)
Weighted mode 12 ~0586 0246 0036 | 0.557 (0.344-0902)

Abbreviations: SNP, single nucleotide polymorphisms , effect size of SNP on exposure; SE, standard error; OR, odds ratio; CI, confidence interval; f, degrees of freedom; IVW, inverse variance

wilded.
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Cytokines Methods MR results Heterogeneity Horizontal pleiotropy
test test

Cochran'sQtest MR-egger intercept test

OR (95% CI) Q df Intercept S B
L4 W 1 0041 | 0018 = 0027 | 1042 (1.005-1.080) ‘ 909 10 ‘ 0524 0017 0017 0332
MR Egger 1 0000 | 0044 099 | 1.000 (0.918-1.09) ‘ 8040 9 ‘ 0530
Weighted median 1 0008 | 0026 | 0741 | 1009 (0959-1060) ‘ ‘
Simple mode 1 0010 | 0048 | 0882 | 099 (0.900-10%9) | ‘
Weighted mode 1 007 | 0085 | 0879 0993 (0909-10%9) \ ‘

Abbreviations: SNP, single nucleotide polymorphisms f, ffect size of SNP on exposure; SE, standard error; OR, odds ratio; CI, confidence interval; f, degrees of freedom; IVW, inverse variance
i
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Exposure Heterogeneit MR-Egger regression MR-PRESSO

Method Q Q-Pvalue Intercept @ p_intercept Global
test P
HSV-1 Head and neck MR-Egger 19.69031 0.413425
cancer (UKB) 8.67618E-05 0.407185 0.95
wvw 20.43493 | 0.431035
Oral and oropharyngeal MR-Egger 16.94983 | 0.593267
cancer (UKB) 8.76034E-05 | 0.330346 0.99
vw 17.94784 = 0.590844
HSV-2 Head and neck MR-Egger 2025135 | 0.442309
cancer (UKB) 4.50223E-05  0.642206 0.09
ww 20.4767 0491272
Oral and oropharyngeal MR-Egger 12.59259 | 0.894172 0.632071
cancer (UKB) 4.02205E-05 0.46

ww 12.82903 | 0.914494
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Exposures QOutcomes SNPs Methods
HSV-1 (IgG) Head and neck cancer 21 MR-Egger
Weighted median
wvw
Oral and oropharyngeal cancer 21 MR-Egger
V Weighted median
wvw
HSV-2 (IgG) Head and neck cancer 22 MR-Egger
Weighted median
wvw
Oral and oropharyngeal cancer 22 MR-Egger
Weighted median

ww

HSV, herpes simplex virus; IVW, inverse-variance weighted; OR, Odds ratio; CI, confidence interval.
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0.9996-1.0073
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Ye: Trait Consortiu Sample size se Number of SNPs Population

2021 Head and neck cancer UK Biobank 373122 1,106 9655080 European
2021 Oral and oropharyngeal cancer UK Biobank 372855 839 9185233 European
2020 HSV-1IgG Butler-Laporte G 9724 8735 9170312 European
2020 HSV-2 IgG Butler-Laporte G 9724 8535 9170312 European

MR, Mendelian randomization.
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Fois
(31) (2010)

Lo
(32) (2010)

Wirdefeldt
(33) (2014)

Becker
(34) (2010)

Driver
(35) (2007)

Rugbjerg
(36) (2012)

Ong
(10) (2014)

Lin
(5) (2015)

Park
(37) (2019)

Design

Cohort

Cohort

Cohort

Case-
control

Cohort

Cohort

Cohort

Cohort

Cohort

Country

UK

Sweden

USA

Denmark

UK

Taiwan

Korea

Mean or
median
follow-

up
(years)

32

43

NA

NA

52

57

Disease
ascertainment

Coded

Medical record

and clinical

Coded

Medical records

Self- report

PD diagnosis

Coded

Coded

Coded

Coded

4,355 cases

692 cases;
761
controls

11,786
cases;
58,930
controls

466 cases;
1864
controls

572 cases;
478
controls

20343 cases

219,194
cases;
9,015,614
controls

62,023
cases;
124,046
controls

52,009
cases;
260,045
controls

Adjustment
for covariates

Age, Sex, Time period in
single calendar years and
district of residence

Age, sex, cigarette smoking,
alcohol consumption, BMI

Age, sex, urbanization

Age, sex, calendar time, BMI,
smoking status

Smoking history, alcohol use,
physical activity, BMI

NA

Age, sex, calendar year of
first recorded admission,
region of residence, quintile
of patients’ Index of
Deprivation score

Age, sex

Age, sex, hypertension,
diabetes mellitus,
hyperlipidemia, income

OR

HR

OR

RR

SIR

RR

HR

HR

BMLI, body mass index; HR, hazard ratio; OR, odds ratio; PD, Parkinson disease; RR, relative risk; SIR, standardized incidence ratio; NA, not applicable.

2b

2b

2b

2b

2b

2b

2b

2b

2b
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Parkinson's Disease

Adjustments Methods Causal effect Heterogeneity Pleiotropy
OR (95% Cl) f2i Intercept

Obesity vw 22 1.05 (0.99-1.13) 0.11 0.066 0.005 0.199
Median 1.01 (0.93-1.09) 0.83
Egger 1.05 (0.99-1.12) 0.12
Smoking status: VW 1.00 (0.96-1.04) 0.87

Current

Median 35 1.01 (0.97-1.05) 075 <0.001 0.003 0522
Egger 0.98 (0.91-1.06) 0.65

Ever smoked vw 90 1.01 (0.98-1.04) 0.60 <0.001 I 0.002 0290
Median ‘ 1.02 (0.98-1.07) 027
Egger 0.99 (0.95-1.04) 081
vw 19 1.01 (0.96-1.06) 0.69

Former alcohol drinker Median 1.01 (0.96-1.05) 0.81 <0.001 0.012 0358
Egger 0.93 (0.78-1.11) 045
vw 099 (0.90-1.10) 092

Triglycerides Median 53 0.99 (0.92-1.08) 095 <0.001 0.003 0365
Egger 0.99 (0.89-1.10) 079
vw ‘ 19 1.01 (0.96-1.06) 0.70

Vitamin D supplements Median 1.04 (0.99-1.08) 0.10 <0.001 0.010 0445
Egger 0.95 (0.80-1.13) 054

*Heterogeneity P < 0.05 indicated potential heterogeneity existing in the IVW model, and the median method was suggested for causal inference in this situation. MVMR, multivariable
Mendelian randomization; SNP, single nucleotide polymorphisms; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; PD Parkinson’s Disease.
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Consortium  Sex/population Number of GWAS ID
(cases/controls)

Exposure

Parkinson’s disease Nalls MA IPDGC Male and 482,730 33,674/449,056 2019 ieu-b-7
female/European

Outcome

Prostate cancer Schumacher PRACTICAL Male/European 140,254 79,148/61,106 2018 ebi-

a-GCST006085

Confounders

Obesity Berndt SI GIANT Male and 98,697 32,858/65,839 2013 ieu-a-90
female/European

Smoking status: Neale Neale Lab Male and 336,024 33,928/302,096 2017 ukb-a-225

Current female/European

Ever smoked Ben Elsworth MRC-IEU Male and 461,066 280,508/180,558 2018 ukb-b-20261
female/European

Former Ben Elsworth | MRC-IEU Male and 31,506 16,191/15,315 2018 ukb-b-12654

alcohol drinker female/European

Triglycerides Willer CJ GLGC Males and 177,861 NA 2013 ieu-a-302
females/Mixed

Vitamin Ben Elsworth MRC-IEU Male and 460,351 17,879/442,472 2018 ukb-b-12648

D supplements female/European

GWASs, genome-wide association studies; IPGDC, International Parkinson’s Disease Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated
Alterations in the Genome; GIANT, genetic investigation of anthropometric traits consortium; MRC-IEU, MRC Integrative Epidemiology Unit; GLGC, Global Lipids Genetics Consortium; NA,

not available.





