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A two-sample Mendelian
randomization analysis: causal
association between chemokines
and pan-carcinoma

Kai Cui1,2†, Na Song1,2†, Yanwu Fan1, Liqun Zeng1, Pingyu Shi1,
Ziwei Wang, Wei Su2* and Haijun Wang1,2*
1Department of Pathology, Xinxiang Medical University, Xinxiang, China, 2Department of Pathology,
Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China

Objective: According to the 2020 data from the World Health Organization
(WHO), cancers stand as one of the foremost contributors to global mortality.
Revealing novel cancer risk factors and protective factors is of paramount
importance in the prevention of disease occurrence. Studies on the
relationship between chemokines and cancer are ongoing; however, due to
the coordination of multiple potential mechanisms, the specific causal
association remains unclear.

Methods: We performed a bidirectional Mendelian randomization analysis to
explore the causal association between serum chemokines and pan-
carcinoma. All data is from the GWAS catalog and IEU Open GWAS database.
The inverse-variance weighted (IVW) method is primarily employed for assessing
the statistical significance of the findings. In addition, the significance threshold
after the multiple hypothesis test (Bonferroni) was 0.0013, and the evidence of a
potential association was considered if the p-value < 0.05, but remained greater
than Bonferroni’s threshold.

Results: The results indicate that CCL1 (odds ratio, OR = 1.18), CCL2 (OR = 1.04),
CCL8 (OR = 1.36), CCL14 (Colorectal, OR = 1.08, Small intestine, OR = 0.77, Lung,
OR = 1.11), CCL15 (OR = 0.85), CCL18 (Breast, OR = 0.95, Prostate, OR = 0.96),
CCL19 (Lung, OR = 0.66, Prostate, OR = 0.92), CCL20 (Lung, OR = 0.53, Thyroid,
OR = 0.76), CCL21 (OR = 0.62), CCL22 (OR = 2.05), CCL23 (OR = 1.31), CCL24
(OR = 1.06), CCL27 (OR = 1.49), CCL28 (OR = 0.74), CXCL5 (OR = 0.95), CXCL9
(OR = 3.60), CXCL12 (Breast, OR = 0.87, Small intestine, OR = 0.58), CXCL13
(Breast, OR = 0.93, Lung, OR = 1.29), CXCL14 (Colon, OR = 1.40) and CXCL17
(OR = 1.07) are potential risk factors for cancers. In addition, there was a reverse
causal association between CCL1 (OR = 0.94) and CCL18 (OR = 0.94) and breast
cancer. Sensitivity analysis results were similar. The results of the other four MR
Methods were consistent with the main results, and the leave-one-out method
showed that the results were not driven by a Single nucleotide polymorphism
(SNP). Moreover, there was no heterogeneity and pleiotropy in our analysis.

Conclusion: Based on the two-sample MR Analysis method, we found that
chemokines might be upstream factors of cancer pathogenesis. These results
might provide new insights into the future use of chemokines as potential targets
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for cancer prevention and treatment. Our results also provide important clues for
tumor prevention, and changes of serum chemokine concentration may be
recognized as one of the features of precancerous lesions in future clinical trials.

KEYWORDS

causal association, pan-carcinoma, GWAS, Mendelian randomization, chemokine

Introduction

A substantial number of new cancer cases are diagnosed
annually, and most of them die from the disease. A significant
proportion of cancer patients, such as those with pancreatic cancer,
were diagnosed at an advanced stage due to a poor prognosis, high
mortality rates, and rapid disease progression (Halbrook et al.,
2023). Fortunately, due to the progress and improvement of
treatment methods, there has been a significant reduction in the
incidence of cervical cancer among vaccinated women. Similarly,
advancements in immunotherapy and targeted therapy have led to a
significant reduction in mortality rates for melanoma, kidney
cancer, and other types of cancer. However, the incidence of
breast, uterine, and prostate cancers continues to exhibit an
upward trend year after year (Siegel et al., 2023). In order to
reduce the incidence of cancer, the discovery of risk factors in
precancerous lesions is particularly important. So far, prospective
studies have identified several factors that can interfere with cancer
risk (Kliemann et al., 2023; Lagou and Karagiannis, 2023; Wang
et al., 2023). For example, processed food intake and obesity can
influence changes in a range of cancer risk indicators. In addition, a
meta-analysis investigated the complexity of aging and cancer risk
(López-Otín et al., 2023). A growing number of factors are proving
to be associated with cancer risk. The discovery of risk factors may
provide potential value for cancer prevention.

In recent years, more and more studies have confirmed the
potential value of chemokines for cancer progression and treatment
(Märkl et al., 2022; Propper and Balkwill, 2022). Chemokines are a
class of cytokines that transport immune cells and are associated
with lymphoid tissue (Schulz et al., 2016; Cambier et al., 2023). In
cancer, however, they promoted the migration of
immunosuppressive cells, such as Tregs, M2 macrophages, and
so on (Moreno Ayala et al., 2023; Zhou et al., 2023).
Furthermore, chemokines promoted cancer progression by
mediating tumor-related pathways such as PI3K/AKT and ERK1/
2 (Zhao et al., 2017). However, it should be noted that not all
chemokines are implicated in tumor progression; indeed, certain
chemokines exhibit anti-tumor effects (Korbecki et al., 2020). Some
studies had found that high-expression chemokines are more
sensitive to cancer immunotherapy (Limagne et al., 2022). Non-
small cell lung cancers with high CXCL10 expression had a better
response when treated with immune checkpoint suppression. In
addition, the chemokine CXCL10 recruited CD4+ and CD8+ T cells
to the tumor via CCR6+ type 3 innate lymphoid cells (Bruchard et al.,
2022). Surprisingly, CXCL10 also promoted tumor cell migration in
mouse models (Hirth et al., 2020), and CXCL10 secreted by
mesenchymal stem cells promoted tumor growth (Timaner et al.,
2018). In addition, the relationship between other chemokines and
tumors is particularly complex. Curiously, if there is a causal
association between chemokines and cancers. Although several

meta-analyses had been conducted to explore causal associations
between chemokines and cancer (Cho and Kim, 2013; Liu et al.,
2018), there had not been a systematic comprehensive study.

The above studies are fuzzy about the association between
chemokines and cancers, which may be influenced by
environmental and other factors. Therefore, it is necessary to
conduct a Mendelian randomization (MR) study between
chemokines and tumors. MR uses genetic variation as
instrumental variables (IVs) to measure potential causal
associations between exposures and outcomes (Cheng et al.,
2022). Single nucleotide polymorphisms (SNPs) were obtained
from genome-wide association studies. The advantage of MR is
to establish a causal association between exposures and outcomes
from a genetic perspective, excluding other external environmental
and confounding factors (Timaner et al., 2018). So, the association
between chemokines and the risk of 14 types of malignancies were
evaluated using two-sample MR Analysis in our study.

Materials and methods

Study design

We conducted a two-sample MR Analysis between cancers and
chemokines using publicly available online data. Including GWAS
Catalog (https://www.ebi.ac.uk/gwas/) and IEU OpenGWAS
(https://gwas.mrcieu.ac.uk/) (Buniello et al., 2019). These
databases have received ethical approval and informed consent,
so no additional instructions are required. Three preconditions must
be met when performing MR analysis (Guyatt et al., 2023). First, the
association hypothesis: IVs must be strongly associated with
chemokines, and F-value is considered as measure indicator of
association. Second, the independence hypothesis: IVs and
confounding factors were independent of each other. In short,
chemokines IVs were not associated with other factors that had a
causal association with the tumors. Third, the exclusivity hypothesis:
IVs influence tumors only through chemokines (Figure 1).

Exposure and outcome data

Chemokines data came from a study on serum proteins in the
GWAS catalog. To explore associations between genetic variants and
serum proteins, Gudjonsson et al. (2022) conducted a GWAS study
involving 5,368 European individuals. We downloaded 38 serum
chemokine protein-associated SNPs from the study as exposure factors.

The outcome factors were 14 cancers, including breast cancer,
lung cancer, gastrointestinal cancer and some other site-specific
tumors. IVs for Breast Cancer were derived from the Breast Cancer
Association Consortium [BCAC (Oncoarray, N = 106,776) (iCOGS,
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N = 89,677), FinnGen database (N = 123,579) (Michailidou et al.,
2017; Kurki et al., 2023). IVs for prostate cancer were obtained from
Schumacher’s GWAS data (N = 140,254) (Schumacher et al., 2018).
Malignant neoplasm of ovary (N = 123,579) and all other tumor IVs
(N = 218,792) were derived from the FinnGen database. All sources
of tumor GWAS information are provided in the Supplementary
Table S1.

Instrumental variable selection

First, the selection of instrumental variables cannot violate the
first hypothesis of Mendelian randomization, so we used the
threshold of p < 5E-8 to screen the IVs strongly related to serum
chemokines. However, some chemokines did not have SNPs with
this threshold, and then the threshold of significance was eased to
p < 5E-6 (Luo et al., 2022; Yu et al., 2023). And the SNPs with F
values less than 10 were excluded (Luo et al., 2021). SNPs with F
statistic >10 are considered to be strongly associated with exposure.
Secondly, there may be linkage disequilibrium (LD) between SNPs.
The LD phenomenon implies non-random transmission of different
alleles to offspring, and it is crucial to maintain LD between various
SNPs prior to conductingMR analysis (Yarmolinsky et al., 2023). To
eliminate LD, the TwoSample MR package was employed in this
study with specific parameters set as r2 = 0.001 and kb = 10,000. The
variable r2 represents the association of LD between SNPs, while kb
represents the region range of LD between SNPs. Third, information
about the SNPs in the outcome was matched according to the
SNPs screened during exposure. In this process, in the absence of
SNP information, substitute proxy SNPs are not utilized. Finally,
SNPs with palindromic structure were removed.

MR analysis

To determine the causal association between serum chemokines
and cancers, a two-sample MR Analysis was performed. A total of
three common MR Analysis methods have been used, including
inverse-variance weighted (IVW) (Huang et al., 2022), MR-Egger
regression (Wu et al., 2020), weighted median (Li et al., 2022),
weighted mode and simple mode methods are supplemented.
According to the survey, the IVW test exhibits superior
advantages compared to additional methods (Lin et al., 2021).
And it has been used as the primary MR Analysis method in
most studies (Yang M. et al., 2023; Yang Y. et al., 2023; Ding
et al., 2023; Li et al., 2023). Similarly, IVW was used as the main test
method in our study, while other methods were used as references.
In addition, the MR-Egger regression test and MR-Presso were used
to verify the existence of horizontal pleiotropy, and p-value < 0.05 is
considered to be horizontal pleiotropy. To ensure the validity of our
findings, we conducted leave-one-out sensitivity analysis to
ascertain whether a single SNP is responsible for driving the
results. Based on the causal relationship between 38 chemokines
and cancer, the more conservative Bonferroni method was used to
correct for significance results. Before correction, p < 0.05 was a
significant result, and after correction, p < 0.0013 was a significant
result. Results with p < 0.05 but higher than 0.0013 were considered
for potential causal associations (Sedgwick, 2014; Larsson et al.,
2017). All statistical tests were performed in two-sample MR and
MR-PRESSO packages. Moreover, Heterogeneity test results were
significant (p < 0.05), which was considered to be heterogeneity
among IVs.

To investigate the bidirectional causal relationship between
cancer and chemokines, we performed a bi-directional Mendelian

FIGURE 1
A flowchart for analyzing causal associations between chemokines and tumors based on Mendelian randomization (MR).
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randomization (bi-MR) analysis. Cancers were used as exposure
variable and chemokines as outcome variable.

Result

SNP data

First, significant SNPs were screened by p-value. Some
chemokines did not detect SNPs with p-values less than 5E-8, in
addition, CCL24 had less than 3 SNPs below this threshold. So, a
significance threshold of 5E-6 was set. After significance screening
(p < 5E-6) and LD filtering (r2 = 0.001, kb = 10,000), a total of
828 SNPs of serum chemokine proteins were obtained. F values of
828 SNPs were calculated, and the values were > 10, suggesting that
there was no weak instrument bias. Information on all SNPs with a
threshold of 5E-6 was shown in Supplementary Table S2 (including
F values). IVW test was used as the mainMRAnalysis method for all
chemokines. The statistical results between 38 chemokines and pan-
carcinoma were shown in Supplementary Table S3. Similar results
were obtained for all sensitivity analyses. The results of
heterogeneity analysis and pleiotropy analysis were shown in
Supplementary Table S4.

Bi-MR Analysis was performed for all results that met the
significance threshold. To ensure sufficient SNPs were available
for MR Analysis, the SNPs threshold was set at 5E-8 for breast

cancer (excluding finn-b-C3_BREAST) and prostate cancer, and 5E-
6 for other malignancies.

In addition, for the results of significance, the p-values of the
heterogeneity test were all > 0.05 and there was no pleiotropy,
Including MR-egger and MR-Presso methods. Moreover, the leave-
one-out sensitivity analysis did not find that causality was
determined by a single SNP (Supplementary Table S5).

Breast cancer

For breast cancer, we investigated the causal association between
chemokines and the disease using three breast cancer GWAS
datasets. The results of MR analysis showed significant causal
association between CXCL13 [OR (95%CI), 0.93 (0.88–0.99), p =
0.021] and breast cancer (ieu-a-1129), CCL2 [OR (95%CI), 1.04
(1.01–1.07), p = 0.021] and breast cancer (ieu-a-1130), and
CCL1 [OR, (95%CI), 1.18 (1.02–1.38), p = 0.030], CCL18 [OR
(95%CI), 0.95 (0.90–0.99), p = 0.031], CXCL5 [OR (95%CI), 0.95
(0.91–1.00), p = 0.030], CXCL12 [OR (95%CI), 0.87 (0.79–0.96), p =
0.004] and breast cancer (finn-b-C3_BREAST) (Figure 2). The
results were not consistent across different GWAS data, which
might be due to different IVs.

Cochrane’s Q test did not provide evidence of heterogeneity
between CCL1 (p = 0.227), CCL2 (p = 0.982), CCL18 (p = 0.221),
CXCL5 (p = 0.533), CXCL12 (p = 0.977), and CXCL13 (p = 0.520)

FIGURE 2
Forest plot for the causal association of chemokines on the risk of tumors derived from IVW. The OR value > 0 is considered a risk factor for tumor.
The OR value < 0 is considered a protective factor for tumor. OR, odds ratio; CI, confidence interval.
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and breast cancer. The intercept of MR-Egger test did not detect
pleiotropy of SNPs for CCL1 (p = 0.779), CCL2 (p = 0.519), CCL18
(p = 0.141), CXCL5 (p = 0.639), CXCL12 (p = 0.800) and CXCL13
(p = 0.643). The MR-Presso test did not detect abnormal SNPs and
there was no pleiotropy between SNPs (CCL1 p = 0.223, CCL2 p =
0.943, CCL18 p = 0.413, CXCL5 p = 0.497, CXCL12 p = 0.968,
CXCL13 p = 0.569). These results suggest that the serum proteins
CCL18, CXCL5, CXCL12, and CXCL13 are protective factors for
breast cancer, while CCL1 and CCL2 are risk factors for breast
cancer.

Intestinal cancer

For intestinal cancer, we investigated the causal association
between chemokines and the disease. The results of MR analysis
showed that significant causal association between CCL14 [OR (95%
CI), 1.083 (1.010–1.161), p = 0.03] and colorectal cancer (finn-b-C3_
COLORECTAL), CXCL14 [OR (95%CI), 1.397 (1.150–1.698), p =
7.98E-04] and colon cancer (finn-b-C3_COLON), CCL22 [OR (95%
CI), 2.051 (1.350–3.116), p = 7.58E-04], CCL28 [OR (95%CI), 0.741
(0.562–0.977), p = 0.03], CCL14 [OR (95%CI), 0.766 (0.607–0.967),
p = 0.03] and CXCL12 [OR (95%CI), 0.576 (0.351–0.946), p = 0.03]
and small intestinal malignant neoplasm (finn-b-C3_SMALL_
INTESTINE) (Figure 2).

Cochrane’s Q test did not provide evidence of heterogeneity
between CCL14 (p = 0.768, p = 0.808), CCL22 (p = 0.502), CCL28
(p = 0.175), CXCL12 (p = 0.530) and CXCL14 (p = 0.534) and
intestinal cancer. The intercept of MR-Egger test did not detect
pleiotropy of SNPs for CCL14 (p = 0.713, p = 0.399), CCL22 (p =
0.220), CCL28 (p = 0.278), CXCL12 (p = 0.938) and CXCL14 (p =
0.867). The MR-Presso test did not detect abnormal SNPs and there
was no pleiotropy between SNPs (CCL14 p = 0.858, p = 0.817,
CCL22 p = 0.577, CCL28 p = 0.182, CXCL12 p = 0.549, CXCL14 p =
0.547). These results suggest that the serum proteins CCL14 is a
protective factor for colorectal cancer, CXCL14 is a risk factor for
colon cancer, CCL14, CCL28 and CXCL12 are protective factors for
malignant neoplasm of small intestine, while CCL22 is a risk factor
for malignant neoplasm of small intestine.

Lung cancer

For lung cancer, we investigated the causal association between
chemokines and the disease. The results of MR analysis showed that
significant causal association between CCL14 [OR (95%CI), 1.111
(1.018–1.220), p = 0.03] and CXCL13 [OR (95%CI), 1.286
(1.047–1.579), p = 0.02] and non-small cell lung cancer (finn-b-
C3_LUNG_NONSMALL), CCL27 [OR (95%CI), 1.493
(1.118–1.994), p = 0.007] and CCL19 [OR (95%CI), 0.660
(0.438–0.993), p = 0.046] and adenocarcinoma (finn-b-C3_
NSCLC_ADENO), CXCL9 [OR (95%CI), 3.597 (1.182–10.953),
p = 0.02], CCL20 [OR (95%CI), 0.527 (0.300–0.925), p = 0.03],
and CCL21 [OR (95%CI), 0.619 (0.438–0.877), p = 0.01] and small
cell lung cancer (finn-b-C3_SCLC) (Figure 2).

Cochrane’s Q test did not provide evidence of heterogeneity
between CCL14 (p = 0.916), CCL19 (p = 0.446), CCL20 (p = 0.130),
CCL21 (p = 0.878), CCL27 (p = 0.762), CXCL9 (p = 0.340) and

CXCL13 (p = 0.770) and lung cancer. The intercept of MR-Egger test
did not detect pleiotropy of SNPs for CCL14 (p = 0.247), CCL19 (p =
0.696), CCL20 (p = 0.732), CCL21 (p = 0.373), CCL27 (p = 0.963),
CXCL9 (p = 0.455) and CXCL13 (p = 0.686). TheMR-Presso test did
not detect abnormal SNPs and there was no pleiotropy between
SNPs (CCL14 p = 0.923, CCL19 p = 0.481, CCL20 p = 0.124,
CCL21 p = 0.898, CCL27 p = 0.764, CXCL9 p = 0.239, CXCL13 p =
784). These results suggest that the serum proteins CCL14, CCL27,
and CXCL13 are risk factors for non-small cell lung cancer, while
CCL19 is a protective factor for non-small cell lung cancer, CXCL9 is
a risk factor for small cell lung cancer, while CCL20 and CCL21 are
protective factors for small cell lung cancer.

Other cancer

For prostate cancer, we investigated the causal association
between chemokines and the disease. The results of MR analysis
showed that significant causal association between CCL18 [OR (95%
CI), 0.961 (0.939–0.984), p = 1.13E-03], CCL19 [OR (95%CI), 0.920
(0.875–0.968), p = 1.20E-03], CCL24 [OR (95%CI), 1.058
(1.009–1.109), p = 0.02] and CXCL17 [OR (95%CI), 1.074
(1.020–1.132), p = 7.83E-03] and prostate cancer (ebi-a-
GCST006085) (Figure 2).

Cochrane’s Q test did not provide evidence of heterogeneity
between CCL18 (p = 0.767), CCL19 (p = 0.093), CCL24 (p = 0.935),
CXCL17 (p = 0.210) and prostate cancer. The intercept of MR-Egger
test did not detect pleiotropy of SNPs for CCL18 (p = 0.429), CCL19
(p = 0.790), CCL24 (p = 0.886) and CXCL17 (p = 0.886). The MR-
Presso test did not detect abnormal SNPs and there was no
pleiotropy between SNPs (CCL18 p = 657, CCL19 p = 0.090,
CCL24 p = 0.937, CXCL17 p = 0.228). These results suggest that
the serum proteins CCL24, CXCL17 are risk factors for prostate
cancer, while CCL18 and CCL19 are protective factors for prostate
cancer.

For liver cancer, we investigated the causal association between
chemokines and the disease. The results of MR analysis showed that
significant causal association between CCL15 [OR (95%CI), 0.848
(0.730–0.985), p = 0.03] and CCL23 [OR (95%CI), 1.306
(1.020–1.673), p = 0.03] and malignant neoplasm of liver (finn-b-
C3_LIVER_INTRAHEPATIC_BILE_DUCTS) (Figure 2).

Cochrane’s Q test did not provide evidence of heterogeneity
between CCL15 (p = 0.698) and CCL23 (p = 0.978) and liver cancer.
The intercept of MR-Egger test did not detect pleiotropy of SNPs for
CCL15 (p = 0.440) and CCL23 (p = 0.672). The MR-Presso test did
not detect abnormal SNPs and there was no pleiotropy between
SNPs (CCL15 p = 0.784, CCL23 p = 0.994). These results suggest that
the serum proteins CCL23 is a risk factor for malignant neoplasm of
liver, while CCL15 is a protective factor for malignant neoplasm of
liver.

For Diffuse large B-cell lymphoma (DLBL), we investigated the
causal association between chemokines and the disease. The results
of MR analysis showed that significant causal association between
CCL8 [OR (95%CI), 1.360 (1.065–1.734), p = 0.01] and Diffuse large
B-cell lymphoma (finn-b-C3_DLBCL) (Figure 2). Cochrane’s Q test
did not provide evidence of heterogeneity between CCL8 (p = 0.293)
and Diffuse large B-cell lymphoma. The intercept of MR-Egger test
did not detect pleiotropy of SNPs for CCL8 (p = 0.099). The
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MR-Presso test did not detect abnormal SNPs and there was no
pleiotropy between SNPs (p = 0.286). These results suggest that the
serum proteins CCL8 is a risk factor for DLBL, For thyroid cancer,
we investigated the causal association between chemokines and the
disease. The results of MR analysis showed that significant causal
association between CCL20 [OR (95%CI), 0.763 (0.614–0.949), p =
0.02] and Malignant neoplasm of thyroid gland (finn-b-C3_
THYROID_GLAND) (Figure 2). Cochrane’s Q test did not
provide evidence of heterogeneity between CCL20 (p = 0.357)
and thyroid cancer. The intercept of MR-Egger test did not
detect pleiotropy of SNPs for CCL20 (p = 0.887). The MR-Presso
test did not detect abnormal SNPs and there was no pleiotropy
between SNPs (p = 0.442). These results suggest that the serum
proteins CCL20 is a protective factor for malignant neoplasm of
thyroid gland.

In addition, the causal association between chemokines and other
tumors had also been analyzed, such asmalignant tumors of the brain,
stomach, pancreas, kidney, ovary, skin, and acute lymphoblastic
leukemia. However, there was no causal association between them.

Bi-causal effects between chemokines and
tumor risk

To explore whether there was reverse causality in the significant
results obtained, we regarded cancer as the exposure factor,

chemokines as the outcome, and cancer-related SNPs (p < 5E-8
or p < 5E-6) as the IVs. In bi-MR, the causal association between
CCL1 [OR (95%CI), 0.94 (0.89–0.99), p = 0.020] and CCL18 [OR
(95%CI), 0.94 (0.89–1.00), p = 0.034] and breast cancer (finn-b-C3_
BREAST) was found (Figure 3). Cochrane’s Q test did not provide
evidence of heterogeneity between CCL1 (p = 0.675) and CCL18 (p =
0.336) and breast cancer. The intercept of MR-Egger test did not
detect pleiotropy of SNPs for CCL1 (p = 0.382) and CCL18 (p =
0.964). The MR-Presso test did not detect abnormal SNPs and there
was no pleiotropy between SNPs (CCL1 p = 0.595, CCL18 p = 0.297).
In addition, MR Analysis showed no causal association between
other significance result (p > 0.05).

Discussion

This was the first comprehensive MR analysis to investigate
the causal association between chemokines and pan-carcinoma. In
two-sample MR Analysis, we initially investigated the causal
association between CCL and CXC chemokines and breast, intestinal,
lung, and other cancers. Based on the genetic variation of serum protein
chemokines and cancers in the publicly available database, it was found
that causal association between chemokines and cancer susceptibility.
Interestingly, there were also causal association between cancers and
partial chemokines. These clues suggest that some chemokines are
upstream to drive or hinder the development of cancers.

FIGURE 3
Forest plot for the reverse causal association of chemokines on the risk of tumors derived from IVW. The OR value > 0 is considered a risk factor for
tumor. The OR value < 0 is considered a protective factor for tumor. OR, odds ratio; CI, confidence interval.
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In our results, there was causal association between
20 chemokines and cancers, as shown in Figure 2. Some studies
on chemokines were consistent with our findings. For CCL
chemokines, previous studies had shown that CCL1 mainly
recruits Tregs to change the tumor microenvironment and
promote the progression of breast cancer stem cells (Xu et al.,
2017; Kuehnemuth et al., 2018). Surprisingly, there was causal
association between CCL1 and breast cancer in bi-MR analysis.
The immunosuppressive mechanism of CCL1-recruited Tregs had
been widely recognized, but Tregs were also key regulators of CD8+

T cells initiation (Pace et al., 2012). In addition, tissue-resident
memory T cells were marker of good prognosis for early triple-
negative breast cancer (Byrne et al., 2020). At the same time, other
studies had shown that CCL1 was also present in human memory
CD8 T cells (Brinza et al., 2016). Although CCL1 promotes tumor
progression through Tregs, Tregs may also trigger the accumulation
of CD8+ T cells. It could be concluded that CCL1 was upstream of
breast cancer, and that breast cancer might also act on
CCL1 through negative feedback. For other chemokines,
according to recent research reports, CCL2 recruits monocytes to
generate vascular endothelial growth factors, thereby facilitating
breast cancer cell extravasation (Qian et al., 2011). There was a
potential association between CCL8 and DLBL, where CCL8 was
involved in the polarization of M2macrophages and affected patient
survival (Lou et al., 2022). Both CCL22 and CCL23 were
immunosuppressive chemokines derived from macrophages,
which had a unique role in inhibiting anti-tumor immunity
(Kamat et al., 2022; Lecoq et al., 2022). In addition, CCL24 was
involved in the biological process of cancer through various
functions such as angiogenesis and M2 macrophage polarization
(Lim, 2021). Moreover, there were some evidences that CCL27 was
associated with development of tumors (Martínez-Rodríguez and
Monteagudo, 2021). As shown inMR Results, CCL1 and CCL2 were
risk factors for breast cancer. CCL8 was a risk factor for DLBL.
CCL22 was a risk factor for small intestine malignancy. CCL23 was a
risk factor for liver and bile duct malignancy. CCL24 was a risk
factor for prostate cancer, and CCL27 was a risk factor for non-small
cell lung cancer. Interestingly, CCL14 was a risk factor in lung cancer
and colorectal cancer and a protective factor in small intestine
tumors. As a chemokine that activates immune cells, studies had
found that CCL14 was strongly correlated with a variety of anti-
tumor immune cells, including CD8+ T cells, in cancers (Gu et al.,
2020). However, other studies had shown that the
CCL14 chemokine signaling pathway promotes cancer
progression, and inhibiting the expression of CCL14 could
reduce the ability of breast cancer to metastasize (Li et al., 2011).
Therefore, CCL14 might have different causal associations between
different cancers.

Besides, six factors had inverse causal associations with cancer,
including CCL15, CCL18, CCL19, CCL20, CCL21, and CCL28. The
study found that the chemokine CCL15 recruits CCR+ CD14+

monocytes in hepatocellular carcinoma, driving multiple tumor-
promoting factors (Liu et al., 2019). In addition, CCL18 had been
reported as a cancer risk factor in both breast and prostate cancer
(Chen et al., 2011; Xu et al., 2014). However, there was an inverse
association between CCL15 and CCL18 and cancers in our analysis.
For other chemokines, the study had demonstrated that
CCL19 exerts a potential stimulatory effect on the response of

CD8+ T cells (Yan et al., 2021). In non-small cell lung cancer,
CCL19 and CXCL11 reduced the receptor activator of nuclear
factor-κB ligand/osteoprotegerin ratio, an indicator of osteoclast
stimulation (Kim et al., 2015). In addition, CCL19 and
CCL21 migrated dendritic cells in prostate cancer to inhibit
cancer progression (Youlin et al., 2018). The same trend was
found in our analysis. CCL19 was a protective factor for prostate
and lung cancer. The roles of CCL20 and CCL28 in small intestinal
and thyroid cancer remain insufficiently investigated, while our
findings demonstrate their potential as protective factors, which
might provide valuable insights for future research endeavors.

Among CXC chemokines, the causal association with cancer had
three positive factors and two negative factors. CXCL9 derived
Th1 responses and limited Th2 infiltration, and it was associated
with favorable prognosis in small cell lung cancer (Yang L. et al.,
2023), however, other studies have reported that CXCL9 binds to
CXCR3 in tumors to promote EMT and cancer cell migration (Neo
and Lundqvist, 2020). In addition, multiple meta-analyses showed
that CXCL12 expression improved the prognosis of breast cancer
patients, which was consistent with our results that CXCL12 had a
reverse causal association with breast cancer (Samarendra et al.,
2017; Liu et al., 2018). Moreover, the studies had shown that
CXCL13 drives an anti-tumor immune response to limit tumor
progression in mouse breast cancer cells (Ma et al., 2021). And TFH
cells that produce CXCL13 played a key role in reversing the
immunosuppressive environment induced by Tregs (Gu-Trantien
et al., 2017). However, another study suggested that CXCL13 may
inhibit tumor growth in breast cancer through CXCR5/ERK
signaling (Xu et al., 2018). Simultaneously, in the context of lung
cancer, CXCL13 was considered to be a carcinogenic cytokine with
significantly enhanced expression levels and facilitating cancer cell
invasion through the epithelial-mesenchymal transition (EMT)
process (Kazanietz et al., 2019). In our results, CXCL13 was a
protective factor in breast cancer and a risk factor in lung cancer.
The expression of CXCL14 in colorectal cancer tissues was correlated
with TNM stage and poor prognosis. In addition, the invasion ability
of cancer cells was also regulated by CXCL14 expression (Zeng et al.,
2013), which suggests the pathogenicity of CXCL14 in colorectal
cancer. One study reported ventral prostate hyperplasia in estrogen
receptor β−/− mice with a possible increased incidence of prostate
cancer, while genetic analysis found a significant increase in CXCL17
(Wu et al., 2017). Therefore, CXCL17 might also be a potential
carcinogen of prostate cancer.

Based on previous studies, some of our results were supported,
but partial studies were not consistent with our results, for example,
the causal association of CCL15 and CCL18 with tumors incidence.
In cancer, the cancer-promoting mechanism of CCL15 was mainly
dependent on the monocytes it recruits, and MR Analysis was to
analyze the causal association between CCL15 and cancer alone,
without involving other factors. The cancer-promoting effect of
monocytes recruited by CCL15 might mask the causal association
between CCL15 and cancer. In addition, CCL18 mainly recruits
Tregs, Th2 and immunosuppressive cells. The effect of
immunosuppressive effects on tumors may be larger than the
causal association between CCL18 and cancer. In our study, the
chemokine concentrations we used were located in the serum, and
different locations of cytokine proteins might also cause different
causal associations.
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In previous analyses, there had not been a comprehensive study to
analyze the causal association between chemokines and cancer. One of
our strengths is to extract the genetic variation of CCL and CXC
chemokines and cancers from a public database for MR Analysis.
Based on our analysis, a variety of chemokines were risk factors and
protective factors for cancers, and there was no heterogeneity and
pleiotropy. Sensitivity analysis also obtained similar results, indicating
that our results are credible and accurate. Despite the inherent advantage
in MR analysis, it was important to acknowledge its limitations as well.
First, we only analyzed the GWAS data of chemokines in serum, and did
not analyze the chemokine concentrations in other liquid/tissue samples,
which might be biased due to different sites. Secondly, chemokine and
cancer GWAS data were obtained from publicly available databases, and
subgroup analyses were not possible due to the lack of detailed clinical
patient information. Third, the GWAS data are from European
populations, and the results may not apply to non-European
populations. Finally, the results of this study should still be treated
with caution, andmore investigations and studies should be conducted to
verify the results and consider their application to clinical trial diagnosis.

Conclusion

In summary, since the causal association between chemokines
and cancer remains uncertain, and there had not been a
comprehensive study to analyze the causal association between
chemokines and cancer in previous studies, hereon, we
performed a comprehensive two-sample MR Analysis.

As mentioned above, our results showed that causal associations of
some chemokines were consistent with previous studies, including
CCL2, CCL14, CCL27, CCL19, CCL21, CXCL13, CXCL14 and
CXCL17. These chemokines possess the potential to serve as serum
diagnostic markers. However, a large number of clinical trials are
needed to verify them. In addition, some results were interesting.
CCL23 was a risk factor in liver cancer and a protective factor in
biliary tract cancer. In colorectal cancer, CCL14 was a risk factor, while
in small intestine tumors it was a protective factor. In addition, as widely
cognitive tumor-suppressor factor, CXCL9 in small cell lung cancer
might be a risk factor. Further study of the underlying mechanisms of
these chemokines may provide new insights into targeted therapies for
tumors. Moreover, our results also provided new potential targets for
tumors, including CCL8, CCL20, CCL28 and CXCL12.

Chemokines in MR results might contribute to tumor
prevention and targeted therapy. At present, the detection of
serum and plasma markers is crucial for cancer prevention and
diagnosis. Based on our results, the serum chemokine
concentrations may become new serum markers and parts of
chemokines may become the potential therapy targets. Therefore,
our results might provide new insights into the future use of
chemokines as potential targets for cancer prevention and
treatment.
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Objective: Numerous studies have highlighted an association between the gut
microbiota (GM) and thyroid tumors. Employing Mendelian randomization
methodology, we seek to elucidate the causal link between the gut microbiota
and thyroid neoplasms.

Methods: We procured data from the Mibiogen database encompassing
211 distinct gut microbiota taxa, alongside extensive genome-wide association
studies (GWAS) summary data for differentiated thyroid carcinoma (DTC). Our
principal analytical approach involved the application of the Inverse-Variance
Weighted method (IVW) within the framework of Mendelian randomization.
Simultaneously, we conducted sensitivity analyses to assess result
heterogeneity, horizontal pleiotropy, and outcome stability.

Results: IVW analysis revealed a dual role of the GM in thyroid carcinoma. The
phylum Actinobacteria (OR, 0.249 [95% CI, 0.121–0.515]; p < 0.001) was
associated with a decreased risk of DTC. Conversely, the genus
Ruminiclostridium9 (OR, 11.276 [95% CI, 4.406–28.860]; p < 0.001), class
Mollicutes (OR, 5.902 [95% CI, 1.768–19.699]; p = 0.004), genus
RuminococcaceaeUCG004 (OR, 3.831 [95% CI, 1.516–9.683]; p = 0.005),
genus Paraprevotella (OR, 3.536 [95% CI, 1.330–9.401]; p = 0.011), and phylum
Tenericutes (OR, 5.902 [95% CI, 1.768–19.699]; p = 0.004) were associated with
an increased risk of DTC.

Conclusion: Our findings underscore that the presence of genus
Ruminiclostridium9, class Mollicutes, genus RuminococcaceaeUCG004, genus
Paraprevotella, and phylum Tenericutes is associated with an elevated risk of DTC,
whereas the presence of the phylum Actinobacteria is linked to a decreased risk.
These discoveries enhance our comprehension of the relationship between the
GM and DTC.

KEYWORDS

gut microbiota, differentiated thyroid carcinoma, heterogeneity assessment, Mendelian
randomization study, causal relationship
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1 Introduction

Thyroid carcinoma, a common endocrine neoplasm of the head
and neck, has experienced a steady increase in incidence, currently
ranking as the fifth most prevalent cancer globally (Bray et al., 2018;
WHO, 2020). Projections suggest that following its current
trajectory, thyroid malignancies will become the fourth most
common cancer in the United States by 2030 (Gonçalves et al.,
2017). In 2020, global age-standardized incidence rates for thyroid
cancer were 10.1 cases per 100,000 females and 3.1 cases per
100,000 males, with corresponding mortality rates of 0.5 and
0.3 cases per 100,000, respectively (Pizzato et al., 2022). An
epidemiological survey covering 24% of the population in China
(Yao et al., 2023) revealed that in 2019, the age-standardized
incidence and mortality rates for thyroid cancer were 2.05 and
0.39 per 100,000, respectively. Over the last 30 years, the
International Agency for Research on Cancer has noted an
increasing incidence of thyroid cancer in diverse populations
worldwide. In the United States, from 1970 to 2013, the annual
growth rate of thyroid cancer incidence was reported to be 3% (Lim
et al., 2017). Fortunately, the mortality rates for both males and
females in most countries exhibit a stable or declining trend (Huang
et al., 2023). DTC accounts for over 90% of all pathological
diagnoses, with papillary carcinoma being its predominant
histological subtype (Gu et al., 2014).The etiology of thyroid
tumors is multifactorial, involving chromosomal mutations,
genetic predisposition (Bonnefond and Davies, 2014), estrogen
levels (Luo et al., 2016), ionizing radiation exposure (Bonnefond
and Davies, 2014), autoimmune thyroid disorders (Khatami, 2009),
and other factors. However, the risk factors for thyroid tumors are
not fully understood, requiring additional research to uncover their
pathogenic mechanisms.

Currently, the National Comprehensive Cancer Network
(NCCN) guidelines recommend primary surgical intervention for
DTC, reserving radioactive iodine-131 treatment for specific patient
subsets (Haddad et al., 2022). Considering the global prevalence of
thyroid tumors and their healthcare burden, as well as their
profound impact on the wellbeing of affected individuals, our
research is dedicated to uncovering the etiological underpinnings
of this affliction.

Humans have coexisted with microorganisms throughout their
existence, hosting a diverse array of microbes within various bodily
niches, including the oral cavity, respiratory tract, gastrointestinal
tract, genitourinary tract, and skin. Among these, the gut harbors the
most intricate microbial ecosystem (Jiang et al., 2022). The human
gut, in particular, teems with an assembly of microbial denizens
numbering in the billions, with bacteria occupying the central stage
(Gill et al., 2006). Such a vast consortium of GM also fulfills
distinctive roles. Presently, microbiota are acknowledged for their
substantial contributions to vitamin synthesis (B-complex vitamins,
folate, vitamin K, among others) (Gu et al., 2016; Fang et al., 2017),
facilitation of dietary fiber digestion, and regulation of immune
responses (Bastiaanssen et al., 2019). Beyond these functions,
microbiota also exhibit intricate associations with various
diseases, encompassing gastrointestinal disorders, psychiatric
illnesses, respiratory maladies, autoimmune conditions, and
significantly, diverse malignancies, including lung, breast,

colorectal, and esophageal cancers (Stebbings et al., 2002; Wang
et al., 2016; Ishaq et al., 2021; Vitale et al., 2021).

A plethora of evidence has pointed toward the association
between GM and thyroid malignancies, including thyroid
carcinoma (Stebbings et al., 2002; Ishaq et al., 2021). (Ejtahed
et al., 2020) Thyroid cancer patients exhibit dysbiosis in the gut
microbiota, characterized by a reduction in the relative abundance of
Faecalibacterium prausnitzii. Interestingly, an increase in the
abundance of Faecalibacterium prausnitzii is observed after
Radioactive Iodine Therapy (RAIT) (Fernandes et al., 2023). Lu
et al. have identified significant alterations in the composition of the
gut microbiota in thyroid cancer patients, with the Bacteroides
enterotype emerging as the predominant bacterial type (Lu et al.,
2022). Furthermore, gene sequencing results indicate a higher
abundance of Firmicutes (Liu et al., 2021). In a study
encompassing 74 patients, high-throughput sequencing was
utilized to compare the microbial structural characteristics of
20 thyroid carcinoma patients, 18 thyroid nodule patients, and
36 healthy controls. The results underscored a close relationship
between thyroid carcinoma, thyroid nodules, and altered microbiota
(Zhang et al., 2019). Despite numerous indications suggesting an
association between GM and thyroid malignancies, our
understanding of this relationship remains incomplete, as these
studies have not yet established causal links between thyroid
tumors and GM.

Mendelian randomization represents an analytical
framework harnessing genetic variation as instrumental
variables (IV) to infer causal relationships between specific
risk factors (i.e., exposures) and particular phenotypes
(i.e., outcomes). Genetic variation, in this context,
predominantly alludes to single nucleotide polymorphisms,
signifying variations in specific nucleotides within the genetic
material. In the realm of clinical investigation, myriad
confounding factors often obscure the precision of our
conclusions, rendering causal inferences tentative at best. The
intrinsic merit of Mendelian randomization lies in its capacity to
circumvent the impracticability of randomized controlled trials,
such as the random allocation of microbiota to study individuals.
Instead, this method leverages the natural grouping of single
nucleotide polymorphisms (SNPs) and employs statistical
techniques to ascertain the influence of SNPs on exposure and
outcomes. nsequently, it helps to clarify causal associations
between exposures and outcomes. Notably, owing to the even
distribution of SNP loci, Mendelian randomization outcomes
remain comparatively impervious to the interference of
confounding factors, thereby conferring results akin to those
derived from randomized controlled trials (Davies et al., 2018).

We utilize Mendelian randomization to disentangle the impact
of confounding factors, enabling a precise evaluation of the causal
relationship between GM and DTC., and Figure 1 provides an
overview of the main research approach in this paper. This
study’s overarching goal resides in employing Mendelian
randomization as a methodological prism, utilizing genetic
variation as instrumental variables to elucidate the causal nexus
between microbiota and DTC. In doing so, we aspire to contribute
novel evidence to the etiological and therapeutic paradigms within
the domain of thyroid pathology.
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2 Methods

2.1 Ethics statement

As the data used in this study comes from publicly available
databases, after obtaining ethical approval from the Affiliated
Hospital of Northwest University, Xi’an NO.3 hospital, the
committee deemed formal ethical approval unnecessary. This
decision was predicated upon the utilization of publicly accessible
data devoid of identifiable patient information.

2.2 Study design

In this study, we define exposure as the GM, the outcome as
malignant thyroid neoplasms, and instrumental variables as single
nucleotide polymorphism (SNP) loci. In accordance with this
premise, we discerned GM significantly associated with malignant
thyroid neoplasms and subsequently proceeded with Mendelian
randomization analysis. Throughout the course of MR analysis,
we adhere to the following assumptions.

1. Associational Hypothesis: That is, SNP loci under investigation
and GM demonstrate robust correlations. In our study, the
significance threshold for the associational hypothesis is set at
P < 1E-5.

2. Independence of SNPs and Confounding Factors: Among the
SNPs ultimately incorporated into the MR study, those SNP loci
exhibiting associations with either tumors or GM were
excluded.

3. Exclusivity of Instrumental Variables’ Impact on Outcomes through
Exposure: Instrumental variables should solely affect outcomes
through the exposure and remain inert to other pathways, such
as confounding. In essence, there should be no pleiotropy.

2.3 Data collection

The data pertaining to GM emanates from the consortium’s
whole-genome association study summary data, Mibiogen. This
dataset encapsulates 211 distinct taxonomic groups within the GM,
spanning six taxonomic levels: kingdom, phylum, class, order, family,
and genus. Access to this data can be procured from the website
(https://mibiogen.gcc.rug.nl/). Notably, eight unidentified bacterial
species were excluded from subsequent microbiota SNP locus
analyses, leaving a total of 203microbial SNPs for further investigation.

Thyroid tumor data, on the other hand, was sourced from
Aleksandra Köhler et al.‘s prospective study (Köhler et al., 2013),
which conducted a comprehensive genome-wide association study
encompassing 701 patients afflicted with DTC. Diagnoses of thyroid
tumors were ascertained through pathological results furnished by
the Cisanello Hospital in Pisa, a prominent Italian referral center for
thyroid disorders.

2.4 Variable selection

To assess the correlation between instrumental variables and
microbiota, a filtration process for employed instrumental
variables was enacted, involving the following steps:

FIGURE 1
Study design concept and framework.
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1. The GM data, having been downloaded from the Mibiogen
website, was validated and subsequently imported into R for
analysis.

2. SNP loci exhibiting a stronger correlation with exposure were
identified and filtered out based on a threshold of P < 1E-5 in the
initial filtration process.

3. Instrumental variables demonstrating linkage disequilibrium
were excluded. A standard of r2 > 0.001 and a physical
distance (Kb) of 10,000 were employed for the removal of
SNP loci exhibiting r2 values exceeding 0.001 with the most
significant SNP within a 10,000 Kb range.

4. F-statistics were computed to assess the strength of instrumental
variables. The calculation of F-statistics was predicated on beta
values and standard errors (SE) for SNPs and exposure. In our
study, all instrumental variables exhibited F-statistics exceeding 10.

5. SNP loci not conforming to the independence assumption were
eliminated. We accessed the Phenoscanner database to identify
secondary phenotypes associated with each SNP, verifying their
correlation with confounding factors. SNP loci associated with
both exposure outcomes were discarded based on criteria of
p-value: < 1E-8 and r̂2 > 0.8. Naturally, SNP loci directly
correlated with thyroid tumors were also excluded. Following
this comprehensive filtration, we gathered information regarding
instrumental variables in outcomes and amalgamated effect sizes,
commencing the MR analysis.

2.5 Statistical analyses

In the course of Mendelian randomization analysis, six distinct
methodologies were employed, namely, IVW, IVW random-effects
model, MR-Egger, MR-Egger bootstrap,WeightedMedian, and Simple
Median. Of these, the IVW analysis results, which calculated both the
unadjusted p-values and the False Discovery Rate (FDR)-corrected
p-values for each SNP locus, served as the primary analytical approach
for this study.Multiple sensitivity analyses were additionally conducted,
serving three primary objectives: firstly, to assess the robustness of the
outcomes; secondly, to evaluate the potential presence of biases,
including pleiotropy and data heterogeneity; and thirdly, to appraise
the scenario where a specific instrumental variable unduly influenced
the outcome.

To quantify heterogeneity in individual causal effects, Cochran’s
Q was computed and subjected to examination, with a significance
threshold of p ≤ 0.05 indicating the presence of pleiotropy. Within
the context of heterogeneity testing, MR-Egger’s intercept and the
Mendelian randomization residual sum and outlier (MR-PRESSO)
method were employed. If the p-value exceeded 0.05, it indicated the
absence of horizontal pleiotropy. All results underwent
comprehensive visualization. To evaluate the scenario where a
specific instrumental variable significantly impacted the outcome,
a leave-one-out analysis was conducted by systematically excluding
each SNP locus and observing the remaining SNPs’ Mendelian
randomization. Finally, a reverse Mendelian randomization
analysis was performed to ascertain the causal direction.

All statistical analyses were executed using the R programming
language (https://www.r-project.org, R version 4.2.1). Statistical
significance was deemed at p < 0.05. The initial date of analysis
commenced in May 2023.

3 Results

3.1 Instrumental variable selection and initial
MR results

Following our criteria, an initial set of 14,569 instrumental
variable loci was established. Supplementary Table S1 provides a
comprehensive breakdown of all microbiota details. By matching
SNPs with thyroid tumor data, we obtained a subset of
3,302 SNPs.

Initial Mendelian randomization analysis yielded insights into
the relationships between 203 GM and thyroid function, as
presented in Supplementary Table S2. Based on the IVW-derived
p-values, an initial selection identified 13 microbiota entities,
namely,: Genus Ruminiclostridium 9 (ID:11357), Class Mollicutes
(ID 3920), Phylum Tenericutes (ID:3919), Genus Ruminococcaceae
UCG004 (ID:11362), Genus Paraprevotella (ID:962), Genus
Ruminococcaceae UCG003 (ID:11361), Family Victivallaceae (ID:
2,255), Genus Candidatus Soleaferrea (ID:11350), Phylum
Actinobacteria (ID:400), However, through rigorous heterogeneity
testing, horizontal pleiotropy assessments, and the exclusion of loci
indirectly or directly related to thyroid tumor diseases, we ultimately
distilled the selection down to six GM entities and 47 SNP loci as
instrumental variables: Genus Ruminiclostridium 9 (ID:11357),
Class Mollicutes (ID:3920), Genus Ruminococcaceae UCG004
(ID:11362), Genus Paraprevotella (ID:962), Phylum
Actinobacteria (ID:400), Phylum Tenericutes (ID:3919).

The secondary features of these aforementioned SNPs were
queried using PhenoScanner and are documented in
Supplementary Table S3. It is noteworthy that these features have
been confirmed as non-pleiotropic factors contributing to thyroid
tumor etiology.

3.2 Detailed Mendelian randomization
analysis results

We conducted Mendelian randomization analysis on the final
set of six GM and 47 SNP loci. IVW results revealed significant
associations as follows: genus Ruminiclostridium9(OR, 11.276, [95%
CI, 4.406–28.860 ]; p < 0.001), class Mollicutes (OR, 5.902, [95% CI,
1.768–19.699]; p = 0.004), genus RuminococcaceaeUCG004(OR,
3.831, [95% CI, 1.516–9.683 ]; p = 0.005), genus Paraprevotella
(OR, 3.536, [95% CI, 1.330–9.401 ]; p = 0.011), phylum Tenericutes
(OR, 5.902 [95% CI, 1.768–19.699 ]; p = 0.004)exhibited an elevated
risk of thyroid tumors, whereas phylum actinobacteria (OR,
0.249 [95% CI, 0.121–0.515]; p < 0.001)demonstrated a decreased
risk of thyroid tumors. These findings are graphically depicted in the
forest plot (Figure 2). Additional MR analysis outcomes are
presented in Supplementary Table S4. In our findings, IVW and
IVW-MRE methods demonstrated consistency, while other
methodologies may yield differing results compared to IVW and
IVW-MRE. We posit that the IVW approach derives an overall
effect by weight-averaging estimates across distinct loci, whereas
IVW-MRE additionally accounts for measurement error, employing
a random-effects model to estimate the total effect. Discrepancies
among other methods may be attributed to sample size, skewness, or
heterogeneity. In case of inconsistencies, pay particular attention to
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the results from IVW and IVW-MRE methods, considering the
unique attributes of alternative methodologies.

To visualize our findings comprehensively, we presented all
results in a scatter plot (Figure 3), where each data point represents
an SNP, the upper and lower lines delineate confidence intervals,
and the horizontal and vertical axes respectively denote the SNP’s
effects on GM and thyroid tumor outcomes. The colored lines
signify the fitting effects of the MR. Intriguingly, IVW and IVW-
MRE methods exhibited remarkable consistency across all results.

3.3 Sensitivity analysis

Initially, we conducted heterogeneity checks on the results
obtained from the selected six bacteria and 47 SNP loci. We
observed that all I2 values for the microbiota were <50%, and the
p-values obtained using two different methods were both greater
than 0.05 (Table 1). This suggests that our results exhibited minimal
heterogeneity. Additionally, the MR-PRESSO outlier test did not
identify any anomalies (Table 1). To assess the horizontal pleiotropy
of SNP loci, we utilized the global test from MRPRESSO and the
MR-Egger intercept test. The p-values for all tests of horizontal
pleiotropy exceeded 0.3, signifying that the impact of instrumental
variables on thyroid cancer is unlikely to be influenced by factors
other than the microbiota (Table 1).

In addition to MR-Egger and MR-PRESSO, we conducted
individual SNP MR estimates (Supplementary Figure S1) and
systematically removed individual SNPs to compute the
remaining SNPs’ Mendelian randomization effects (Figure 4).
Leave-one-out analysis, where each SNP is excluded in turn,
showed that all error bars were consistently on the right or left
of zero in Figure 4. This indicates minimal variation in the overall
error bars, signifying high robustness in the results. The causal
estimates were not driven by any single SNP. In the forest plot of
Supplementary Figure S1, each solid horizontal line represents the
results estimated using the Wald ratio method for individual SNPs,
while the red line represents the composite outcome, reflecting the
risk of thyroid cancer for each microbiota under the IVW method.

3.4 Reverse MR analysis

In the reverse MR analysis, exposure and outcome were
interchanged. However, we did not observe any significant causal

relationship between the outcome and exposure, except in the case
of the Phylum Tenericutes using the MR Egger method, where the
p-value exceeded 0.05 (Table 2).

We conducted a global test for horizontal pleiotropy using the
MR-PRESSO method, and no evidence of horizontal pleiotropy was
detected among the SNPs. Moreover, no outliers were detected in
the outlier test. Hence, we have reasonable grounds to posit that
these various bacteria are causative factors for thyroid tumors, rather
than being outcomes of the condition.

4 Discussion

In spite of the prior research on the relationship between the GM
and thyroid cancer, the concept of the association between DTC and
the GM remains relatively uncharted (Samimi and Haghpanah,
2020). To the best of our knowledge, this study represents the
first causal investigation into the link between the GM and DTC.
Through a Mendelian randomization analysis involving two-sample
datasets, we report that five microbiota entities, namely, genus
Ruminiclostridium 9 (p < 0.001), class Mollicutes (p = 0.004),
genus Ruminococcaceae UCG004 (p = 0.005), genus
Paraprevotella (p = 0.011), and phylum Tenericutes (p = 0.004),
are associated with an increased risk of developing non-
differentiated thyroid carcinoma. Additionally, phylum
Actinobacteria (p < 0.001) appears to be associated with a lower
the risk of non-differentiated thyroid carcinoma.We utilized various
sensitivity analysis techniques to affirm the reliability and robustness
of our findings.

The GM is known to be influenced by a multitude of factors.
Notably, infants born via cesarean section exhibit lower diversity in
their GM(31). Throughout one’s life, the GM remains under the
continual influence of various factors including diet, medication,
genetics, environment, disease, and the use of antibiotics (Maslowski
and Mackay, 2011). This substantiates the significance of the GM as
a potential therapeutic target for diseases.

Most of the research concerning the GM has been concentrated
on gastrointestinal diseases, such as colorectal cancer and
inflammatory bowel disease. In the context of colorectal cancer,
gut bacteria may promote tumorigenesis by influencing bile acid
secretion or undergoing changes in their taxonomic composition.
Decreased bile acid secretion results in gut dysbiosis, accelerating
inflammation and DNA damage, thereby directly contributing to
tumorigenesis (Louis et al., 2014; Ridlon et al., 2014). Furthermore,

FIGURE 2
Forest Plot of Primary MR Analysis Results. NSNP = number of SNPs; OR = odds ratio; P = significance p-value; IVW = Inverse-Variance Weighted
method.
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an increase in Fusobacterium nucleatum, a type of gut bacteria, can
promote colon tumorigenesis through its metabolites and
cytotoxicity, (Wu et al., 2004; Wu et al., 2009), thereby affecting
signaling pathways such as E-cadherin, NF-κB, and STAT3

(Maslowski and Mackay, 2011; Rautava et al., 2012). These
studies suggest that the role of microbiota in tumorigenesis
seems to be associated with DNA damage and the regulation of
local inflammation via metabolic products.

FIGURE 3
Scatter Plot of MR Analysis for the Influence of 6 Gut Microbiota on Thyroid Tumors. (A) = genus Ruminiclostridium; (B) = class Mollicutes; (C) =
genus Ruminococcaceae; (D) = genus Paraprevotella; (E) = phylum Actinobacteria; (F) = phylum Tenericutes; MR Test = Statistical analysis methods.
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Microbes can impact thyroid disease through various pathways.
The GM may influence the secretion of thyroid-stimulating
hormones via the hypothalamus-pituitary axis, thereby playing a
role in thyroid diseases (Fröhlich and Wahl, 2019). For instance, in
studies of patients with Hashimoto’s thyroiditis (HT), a form of
hypothyroidism, researchers observed dysbiosis in the patients’GM,

along with overgrowth of certain microbes (Ishaq et al., 2017; Zhao
et al., 2018). This influence is thought to occur because thyroid-
related nutrients need to be acquired through the gut (Knezevic
et al., 2020). Furthermore, in Graves’ disease patients, there is a
higher abundance of Bacteroidaceae and Prevotellaceae and a lower
abundance of Veillonellaceae, Enterobacteriaceae, and

TABLE 1 Heterogeneity and horizontal pleiotropy test results for gut microbiota.

Gut microbes Heterogeneity test MR-PRESSO MR-Egger

IVW p-value MR-
Egger

P Global test P Outlier-
corrected

P Egger intercept test P

Genus Ruminiclostridium 11.357 0.414 10.404 0.406 1.795 0.904 NA NA 0.196 0.361

Class Mollicutes 1.180 0.881 1.171 0.760 1.794 0.892 NA NA 0.146 0.930

Genus Ruminococcaceae 6.376 0.497 6.324 0.388 12.336 0.517 NA NA −0.048 0.831

Genus Paraprevotella 1.656 0.799 0.762 0.859 13.459 0.474 NA NA −0.396 0.414

Phylum Actinobacteria 10.804 0.460 10.761 0.376 8.457 0.501 NA NA 0.039 0.846

Phylum Tenericutes 1.180 0.881 1.171 0.760 2.621 0.82 NA NA 0.146 0.930

Heterogeneity tests were conducted using Cochran Q for both IVW, and MR-Egger, while horizontal pleiotropy was assessed using MR-PRESSO, and the Egger intercept test.

FIGURE 4
MRAnalysis Results Using Leave-One-Out for Different SNP Loci of the 6GutMicrobiota. (A)= genus Ruminiclostridium; (B)= class Mollicutes; (C)=
genus Ruminococcaceae; (D) = genus Paraprevotella; (E) = phylum Actinobacteria; (F) = phylum Tenericutes; MR Test = Statistical analysis methods.
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Lachnospiraceae compared to healthy individuals (Ishaq et al.,
2018). In the realm of researching the relationship between the
GM and thyroid cancer, the first study proposing a potential
connection between thyroid cancer and the GM was published in
2017. Shen et al. employed gas chromatography-time-of-flight mass
spectrometry to analyze the serum of thyroid cancer patients with
and without distant metastases. They found elevated levels of serum
ammonia, pyruvic acid, and γ-aminobutyric acid in patients with
distant metastases, suggesting a potential connection to differences
in GM or diet (Shen et al., 2017). The first study to specifically
investigate the relationship between thyroid cancer and the GM was

conducted by Jing Feng in 2019 (Feng et al., 2019). Feng reported
higher gut microbial richness and α-diversity in patients with TC
compared to healthy controls, but the sample size was limited
(30 patients from Harbin, China, versus 35 healthy controls), and
the study design was observational. In other observational studies,
GM taxa that were found to be increased in abundance in thyroid
cancer patients included Clostridiaceae, Nesterenkonia, and
Streptococcus (Zhang et al., 2019), while decreased taxa primarily
included Lactobacillus (Zhang et al., 2019), Bacteroides, Clostridium,
and Prevotella. These studies shed light on the potential link between
the GM and thyroid cancer.

TABLE 2 Reverse MR analysis of the main results.

Outcome method NSNP b se p-value p-value (MR-PRESSO)

Phylum Tenericutes Inverse variance weighted 328 −0.000413 0.0006304 0.512 0.561

MR Egger 328 −0.002639 0.0011036 0.017

Simple mode 328 −0.001691 0.0019129 0.377

Weighted median 328 −0.000413 0.0009814 0.674

Weighted mode 328 0.0002101 0.0013032 0.872

Phylum Actinobacteria Inverse variance weighted 329 0.0003186 0.0005009 0.525 0.977

MR Egger 329 2.73E-05 0.0008769 0.975

Simple mode 329 −0.001726 0.00158 0.275

Weighted median 329 −0.000538 0.0007755 0.488

Weighted mode 329 −0.001229 0.0011322 0.278

Genus Ruminococcaceae Inverse variance weighted 328 −0.000573 0.0006887 0.405 0.751

MR Egger 328 0.0008787 0.0012057 0.467

Simple mode 328 0.0003512 0.0020584 0.865

Weighted median 328 −3.73E-05 0.0010136 0.971

Weighted mode 328 0.0007602 0.0014312 0.596

Genus Ruminiclostridium Inverse variance weighted 329 0.0002747 0.0005414 0.612 0.126

MR Egger 329 0.0009264 0.0009481 0.329

Simple mode 329 −0.000906 0.0016819 0.591

Weighted median 329 0.0004644 0.0007995 0.561

Weighted mode 329 0.00038 0.0010821 0.726

Genus Paraprevotella Inverse variance weighted 328 −0.000161 0.0007957 0.840 0.781

MR Egger 328 0.0004046 0.0013927 0.772

Simple mode 328 0.001209 0.0021467 0.574

Weighted median 328 −0.000415 0.0011592 0.720

Weighted mode 328 −0.000828 0.001428 0.563

Class Mollicutes Inverse variance weighted 328 −0.000413 0.0006304 0.512 0.555

MR Egger 328 −0.002639 0.0011036 0.017

Simple mode 328 −0.001691 0.0016845 0.316

Weighted median 328 −0.000413 0.0009433 0.661

Weighted mode 328 0.0002101 0.001257 0.867

NSNP = number of SNPs; b = effect size; se = standard error; pval = p-value.
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Our study highlights the significance of five specific microbiota
entities—genus Ruminiclostridium 9, class Mollicutes, genus
Ruminococcaceae UCG004, genus Paraprevotella, phylum
Tenericutes, and phylum Actinobacteria—in relation to DTC.

Genus Ruminiclostridium 9, formerly known as
Ruminoclostridium, is a characteristic bacterium found in the
colon. Research indicates that interactions among colonic
microorganisms are more intricate compared to the duodenum
(Wu et al., 2020). This bacterium is associated with various
diseases; it can reduce the risk of Alzheimer’s disease (OR 0.969,
95% CI 0.943–0.996, p = 0.009) (Ning et al., 2022). Furthermore, it
has a positive correlation with cognitive function (Guo et al., 2021).
In tumor immunology studies, Ruminiclostridium has shown a
negative correlation with CD8+ T cells (Singh et al., 2023). In an
autoimmune model of the central nervous system, medium-chain
fatty acids (MCFAs) produced by this genus counteract the anti-
inflammatory effects of short-chain fatty acids (SCFAs) by
enhancing TH1 and TH17 cell differentiation (Haghikia et al.,
2015).Therefore, certain genera, such as Ruminiclostridium 9,
may contribute to the initiation of DTC through analogous
mechanisms, potentially by reducing short-chain fatty acidsand
modulating the immune response.

Class Mollicutes, representing the smallest self-replicating
bacteria without cell walls, belongs to the phylum Tenericutes
(Chernova et al., 2021). Mollicutes exhibit versatility, as they
have been associated with both decreased relative abundance in
severe depression patients (Zhu et al., 2019) and as a risk factor for
Graves’ disease (Cao et al., 2023). Phylum Tenericutes has also been
linked to various diseases, such as breast cancer (Niccolai et al.,
2023), Crohn’s disease (Russo et al., 2022), lower risk of intrahepatic
cholestasis of pregnancy (Li et al., 2023), and polycystic ovary
syndrome (Li et al., 2023). However, research on the mechanisms
underlying these associations remains limited. Genus
Ruminococcaceae, like Ruminiclostridium, is present in the
colonic mucosa. A decrease in Ruminococcaceae has been
associated with various inflammatory bowel diseases, including
ulcerative colitis and Crohn’s disease (Sokol et al., 2008; Joossens
et al., 2011; Morgan et al., 2012). This bacterium produces short-
chain fatty acids (SCFAs) and other small molecules, which serve as
an energy source for colonic epithelial cells. A deficiency in these
SCFAs may lead to disturbances and dysfunction in colonic mucosa
(Young and Schmidt, 2004; Wong et al., 2006). SCFAs, particularly
butyrate, are known to influence immune regulation and possess
anti-inflammatory properties (Köhling et al., 2017), and butyrate
can inhibit the activity and life cycle of cancer cells (Davie, 2003).
This knowledge, seemingly at odds with our study results, suggests
the involvement of unknown mechanisms. Interestingly, it has also
been identified as a potential etiological factor contributing to
Graves’ Disease (GD) (Cao et al., 2023). This association may be
attributed to the ability of short-chain fatty acids (SCFA) to inhibit
histone deacetylases (HDAC) and activate the re-expression of
transport proteins in thyroid cancer cells, thereby inducing the
differentiation of tumor cells and enhancing iodine uptake (Zhou
et al., 2018; Rathod et al., 2020). Genus Paraprevotella has been the
subject of several studies. It is a polymorphic, anaerobic, non-spore-
forming Gram-negative rod isolated from human feces (Morotomi
et al., 2009). This bacterium exhibits complex effects. On one hand,
it is more abundant in individuals with genetic longevity

(Liu et al., 2023) and correlates with small intestinal mucosal
healing in Crohn’s disease patients (Hattori et al., 2020). On the
other hand, it is more abundant in patients with heart failure and
depression (Gutiérrez-Calabrés et al., 2020) and positively correlates
with the severity of depression (Liśkiewicz et al., 2021). Previous
studies have indicated its utility in distinguishing untreated primary
hypothyroidism patients from healthy individuals.Currently,
Paraprevotella is considered to have a positive correlation with
plasma butyrate and valerate concentrations and contributes to
the regulation of colonic motility, possibly through regulating
fecal butyrate levels and serum IL-8 concentrations. The
Paraprevotella strain proves to be an efficient pancreatic
protease-degrading symbiont. The autolysis of pancreatic
proteases facilitates bacterial invasion and destruction, potentially
culminating in inflammation and injury, thereby creating a
conducive environment for the onset of thyroid cancer.In
summary, Paraprevotella is associated with various diseases, but
its potential impact on human health remains unclear (Morotomi
et al., 2009), and its specific mechanisms are yet to be explored.
Phylum Actinobacteria is one of the most diverse bacterial phyla in
nature (Lewin et al., 2016). Due to its diversity, it has both positive
and negative effects on human health. Actinobacteria includes many
bacteria that produce antibiotics, such as Streptomyces, which is
known for synthesizing eptomycin, kanamycin, chloramphenicol,
and erythromycin (Bérdy, 2005). It also encompasses several human
health-threatening pathogens, such as Mycobacterium tuberculosis,
which causes pulmonary tuberculosis. In the order Bifidobacteriales,
members like Bifidobacterium are known for their beneficial effects
on host health. A lower abundance of these bacteria has been
associated with various diseases (Binda et al., 2018). Some
researchers propose that species of Bifidobacterium in the human
gut may contribute to host health by exerting antibacterial activity
against pathogens and possibly by aiding in the development and
function of the immune system as defensive symbionts (Servin,
2004). This aligns with our research findings. We also postulate that
Actinobacteria may indirectly inhibit the occurrence of thyroid
cancer by suppressing the processes of inflammation and
oxidative stress.

What mechanisms might bacteria employ to induce DTC?
Carcinogenesis primarily relies on two mechanisms: DNA
damage and cell apoptosis, as well as the immune surveillance
against tumor growth (Docimo et al., 2020; Liu et al., 2022).
Intestinal bacteria can impact tumor proliferation through both
of these mechanisms. New mechanisms involving bacteria and their
metabolites or toxins causing direct DNA damage and carcinogenic
mutations have been identified. For instance, infection with
Enterococcus can lead to an increase in hydroxyl free radical
production, resulting in DNA damage (Wang and Huycke, 2007).
Additionally, oxidative stress can disrupt the homeostasis of the host
gut microbiota (Riaz Rajoka et al., 2021). Therefore, drugs targeting
both oxidative stress and gut microbiota may hold prognostic and
therapeutic significance for thyroid cancer.Concerning immune
surveillance, the gut microbiota significantly regulates the balance
within the body and the development of immune cells. It modulates
both innate and adaptive immune systems, particularly outside the
intestinal tract (Maslowski and Mackay, 2011), making it a potential
immune modulator (Pitt et al., 2016). As it is widely known, more
than 70% of the entire immune system is associated with the
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gastrointestinal lymphoid tissues, and the gut microbiota can
regulate immune balance and cell development (Maslowski and
Mackay, 2011; Docimo et al., 2020). Certain metabolic products can
also induce autoimmune reactions, leading to an imbalance in
endocrine homeostasis and the occurrence of autoimmune
diseases (Liu et al., 2022). Microbial dysbiosis can stimulate CD8
(+) T cells to promote chronic inflammation and early T-cell
exhaustion, thereby diminishing the immune capacity against
tumors (Yu et al., 2020). Therefore, the gut microbiota holds
significant potential as a biomarker for predicting immune-
related adverse events (Von Itzstein et al., 2020) and may
influence the progression of thyroid cancer through immune
modulation.In the future, we can develop novel strategies for
diagnosing, predicting prognosis, actively monitoring, and
intervening in DTC by studying the correlation between different
bacterial enterotypes and thyroid cancer.This study also presents
certain limitations. Firstly, we solely analyzed common microbiota
and SNP loci, leaving unidentified microbiota and SNPs
unexamined, thereby limiting our analysis. Secondly, our GWAS
data was derived from individuals of European descent, and we did
not identify other patient characteristics, which may restrict the
generalizability of our conclusions to other populations, given the
varying compositions of microbiota across different countries and
ethnicities. Additionally, while we employed different SNP loci as
“natural groupings,” it is essential to acknowledge the numerous
unknown or potential interactions among distinct SNP loci. Finally,
it is essential to note that this study is an observational investigation,
lacking foundational research to mechanistically substantiate the
observed outcomes. In the future, in addition to requiring more
Genome-Wide Association Studies (GWAS) and microbiota data,
further in-depth research is warranted to elucidate the mechanisms
underlying the association between gut microbiota and thyroid
tumor development. These studies will contribute to enhancing
our understanding of the causal link between thyroid cancer and
the gut microbiota.

In conclusion, our findings indicate a bidirectional role of GM in
thyroid cancer. Genus Ruminiclostridium9, class Mollicutes, genus
RuminococcaceaeUCG004, genus Paraprevotella, and phylum
Tenericutes were associated with an increased risk of
undifferentiated thyroid cancer, while phylum Actinobacteria
(p < 0.001) was associated with a reduced risk of undifferentiated
thyroid cancer. However, the underlying processes involved are
intricate, necessitating further mechanistic research.
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Rheumatoid arthritis and
gastroesophageal reflux disease: a
bidirectional and multivariable
two-sample Mendelian
randomization study

Haifan Wang, Zhihao Chen, Xiaoqian Dang and Haoyu Wang*

Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi,
China

Aims/hypothesis: The association between gastroesophageal reflux disease
(GERD) and rheumatoid arthritis (RA) has been reported by many observational
studies in the Asian population. This study aimed to examine the bidirectional
causal effects between GERD and RA by two-sample Mendelian randomization
(MR) analyses using genetic evidence.

Methods: Two-sample Mendelian randomization analyses were performed to
determine the causal effect of GERD (129,080 cases vs. 602,604 control
participants) on RA (6,236 cases vs. 147,221 control participants) and RA on
GERD, respectively. The inverse-variance weighted (IVW) method was used as
the primary analysis. Weighted median and MR-Egger regression were taken as
supplementary analyses. Cochran’s Q test evaluated the heterogeneity. Horizontal
pleiotropy was detected by estimating the intercept term of MR-Egger regression.
Furthermore, multivariable MR analyses were performed to exclude the influence
of confounding factors, including the years of schooling, BMI, and time spent
watching television, between GERD and RA.

Result: Both univariate MR (UVMR) and multivariable MR (MVMR) provided valid
evidence that RA was causally and positively influenced by GERD (UVMR: OR =
1.49, 95% CI = 1.25–1.76, p = 6.18*10−6; MVMR: OR = 1.69, 95% CI = 1.24–2.31, p =
8.62*10−4), whereas GERD was not influenced by RA (UVMR: OR = 1.03, 95% CI =
1.00–1.06, p = 0.042; MVMR: OR = 1.04, 95% CI = 1.00–1.07, p = 0.0271).

Conclusion: Our comprehensive bidirectional MR analysis found that for the
European population, GERD can induce the occurrence of RA (OR = 1.69, p <
0.00125), whereas RA only has no significant influence on GERD. In particular,
patients with GERD are suffering a 69% increased risk of RA occurrence, which
means GERD is a substantial risk factor for RA.
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rheumatoid arthritis, gastroesophageal reflux disease, Mendelian randomization,
education, BMI

OPEN ACCESS

EDITED BY

Ziheng Wang,
University of Macau, China

REVIEWED BY

Rafael Katayama,
Federal University of São Paulo, Brazil
Tomas Drgon,
United States Food and Drug
Administration, United States

*CORRESPONDENCE

Haoyu Wang,
surgeonwanghaoyu@mail.xjtu.edu.cn

RECEIVED 20 August 2023
ACCEPTED 28 November 2023
PUBLISHED 13 December 2023

CITATION

Wang H, Chen Z, Dang X and Wang H
(2023), Rheumatoid arthritis and
gastroesophageal reflux disease: a
bidirectional and multivariable two-
sample Mendelian randomization study.
Front. Genet. 14:1280378.
doi: 10.3389/fgene.2023.1280378

COPYRIGHT

© 2023 Wang, Chen, Dang and Wang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 13 December 2023
DOI 10.3389/fgene.2023.1280378

27

https://www.frontiersin.org/articles/10.3389/fgene.2023.1280378/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1280378/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1280378/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1280378/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1280378/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1280378&domain=pdf&date_stamp=2023-12-13
mailto:surgeonwanghaoyu@mail.xjtu.edu.cn
mailto:surgeonwanghaoyu@mail.xjtu.edu.cn
https://doi.org/10.3389/fgene.2023.1280378
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1280378


Introduction

Rheumatoid arthritis (RA) mainly affects the joints, with extra-
articular tissues being involved (Smolen et al., 2016). The incidence
of RA is estimated to be approximately 0.1–0.5 per 1,000 person/
year, which varies according to the ethnic group (Tobón et al., 2010).
The extra-articular manifestations revealed the existence of systemic
inflammation in RA (Smolen et al., 2022). Apart from inherited
susceptibility, low socioeconomic status, periodontal diseases, and
microbiome are also the risk factors of RA (Millar et al., 2013; Scher
et al., 2016; Li et al., 2017). Those risk factors may influence systemic
inflammation to induce RA.

Gastroesophageal reflux disease (GERD) is a common disease that
results from the reverse flow of stomach acid into the esophagus (Vakil
et al., 2006). Nearly one-fifth of North American people are suffering
from GERD, which is nearly four times more prevalent than in Asian
populations. This disease causes distressing symptoms, such as
heartburn, inappetence, nausea, and susceptibility to pharyngitis, and
some other diseases (Punjabi et al., 2015). Mechanically, GERD is
primarily caused by abnormal physiology and anatomy changes in the
stomach and esophagus. These changes include an increased pressure
gradient between the abdomen and thorax, dysmotility of the
esophagus, hiatus musculature, and/or the stomach. As a result, the
normal reflux barrier of the LES breaks down (Mikami andMurayama,
2015).

In addition to anatomical and physiological factors,
inflammation occurring in the stomach and esophagus plays a
crucial role in the development of GERD (Punjabi et al., 2015;
Souza et al., 2017; Surdea-Blaga et al., 2019). Consistently, an
association between GERD and systemic inflammatory diseases
has been reported (Chen, 2015; Linz et al., 2017), particularly for
RA (Cryer et al., 2011; Nampei et al., 2013; Lin et al., 2017). In detail,
some observational research found a higher incidence of GERD in
patients with RA (Cryer et al., 2011; Lin et al., 2017). In Japan, more
than 2-fold higher incidence of GERD in patients with RA than that
in normal people has been reported (Lin et al., 2017). Meanwhile, it
has also been reported that patients with GERD exhibit a nearly 3-
fold higher risk of RA than those in the control group in the Taiwan
population (Lin et al., 2017). The bidirectional association between
GERD and RA has been identified. One cohort study performed on
the Asian population reported an HR of 1.49 for RA in patients with
GERD and 1.46 for GERD in patients with RA (Kim et al., 2021).

Mendelian randomization (MR) analysis utilizes single-
nucleotide polymorphisms (SNPs) to find the causality between
risk factors and outcomes (Lawlor et al., 2008). The superiority of
MR lies in the fact that SNPs are determined before the intervention
of the environment. Thus, they can be used as proxies for
phenotypes and diseases (Davey Smith and Hemani, 2014). Due
to its reduced susceptibility to reverse causation and confounding,
MR conclusions are considered more reliable than those of
conventional observational studies (Davey Smith and Hemani,
2014).

The prerequisites for MR are based on three assumptions: first,
IVs should be strongly associated with exposure; second, IVs should
influence the outcome only through the exposure (no horizontal
pleiotropy); and third, IVs should not be associated with
confounders. The two-sample MR tests the causality based on the
GWAS data risk factors, and outcomes are measured in their

respective samples (Boef et al., 2015). After searching in reference
databases, we found that MR has not been applied to explore the
causal effects between GERD and RA.

However, the relationship between GERD and RA has not been
observed in European population and evaluated using the MR
method. In this study, univariate and multivariable bidirectional
two-sample MR analyses were performed to test the reciprocal
causal relationship between GERD and RA.

Methods

Study design

As shown in Figure 1, first, the univariate bidirectional MR analysis
of the causal relationship between GERD and RA was performed.
When exposure was set as GERD, RA was considered to be the
outcome. When exposure was set as RA, GERD was considered to
be the outcome. Furthermore, confounding factors between GERD and
RA were retrieved. In detail, the mutual potential exposure relationship
between GERD and RA was found by batching the processing
TwoSample-MR R script. Then, three confounding factors were
included through the automatic exposure finding R script. Finally,
three confounding factors are selected: years of schooling, BMI, and
time spent watching television.

For UVMR, the exposure SNPs (p < 5 × 10−8, r2 < 0.001, F >
10 for GERD and p < 1 × 10−5, r2<0.001, F > 10 for RA) were selected
as instrumental variables. Furthermore, sensitivity and pleiotropy
analyses were performed to ensure the robustness of the results. For
multivariable MR (MVMR), the selection threshold of the mv_
extract_exposures function in the TwoSample-MR package was set
as default.

Data source

All data involved are publicly available. The RA GWAS data
including 153,457 European individuals (6,236 cases vs.

FIGURE 1
Workflow of this study design is shown in the sketch map.
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147,221 control participants) retrieved from the IEU database (id:
finn-b-M13_RHEUMA) were originally derived from the Finn-gen
Consortium [Trait: Duration of vigorous activity – IEUOpenGWAS
project. 2021. https://gwas.mrcieu.ac.uk/datasets/ukb-b-13932/
(1 December 2020, date last accessed), n.d.]. The GERD GWAS
data including 129,080 cases and 602,604 control of European
individuals were also retrieved from the IEU database (id: ebi-a-
GCST90000514) originally derived from the EBI Consortium. The
F-statistic of SNPs was calculated by the formula to select strong IVs
(F = R2× (N−2)/(1−R2) (Chen et al., 2022). Then, we selected SNPs
with an F-statistic larger than 10 to prevent potential weak
instrument bias. Three confounding factors from GWAS data
were retrieved from the IEU website: body mass index (id:ieu-a-
94), years of schooling (id:ieu-a-1239), and time spent watching TV
(id:ukb-b-5192).

Instrumental variable selection

SNPs were filtrated by the TwoSampleMR packages of R
software. Genome-wide SNPs that are closely associated with
education duration were acquired by the extract_instruments
function (thresholds were set as p < 5 × 10−8, r2 < 0.001,
window size = 10000 kb for GERA, and p < 1 × 10−5, r2<0.001,
window size = 10000 kb for RA).

Statistical analyses

The inverse variance-weighted (IVW) method was
considered as the main MR analysis to initially estimate the
causal relationship of education duration on joint pain and
sciatica with lumbago. The IVW method’s robustness depends
on IV’s pleiotropy. Furthermore, another two MR analyses,
namely, weighted median (WM) and MR-Egger, were selected
as supplementary analyses to detect causalities. The WM method
can estimate unbiased causality, with more than 50% of the
weight coming from valid instrumental variables (Bowden
et al., 2016), whereas MR-Egger estimates consistently account
for pleiotropy when all IVs are invalid with the lowest power
(Bowden et al., 2015). Our MR estimates of the risk of GERD or
RA were presented as follows: odds ratio (OR), 95% confidence
interval [CI]. A two-sided value of p < 0.05 is considered
statistically significant for UVMR and p < 0.0125 for MVMR
(four exposures).

Sensitivity analysis

Cochran’s Q test, MR-Egger intercept tests, leave-one-out
(LOO) analyses, and funnel plots were performed to examine the
presence of pleiotropy in the results. In particular, Cochran’s Q test
was applied to evaluate heterogeneity, which was detected if the
p-value was less than 0.05. The horizontal pleiotropy of both UVMR
and MVMR was appraised by estimating the intercept term derived
from MR-Egger regression. The LOO analysis was performed to
detect any pleiotropy driven by a single SNP. All these MR analyses
were performed using the TwoSampleMR package in R.

Results

Univariate MR result of GERD on RA

The UVMR results of education duration on joint pain are
shown in Figures 2, 3. A total of 75 SNPs were selected as
instrumental variables. Given the IVW method, RA was
casually influenced by GERD (OR = 1.49, 95% confidence
interval [CI] = 1.25–1.76, p = 6.18*10−6), suggesting that
patients with GERD are suffering a 49% increased risk of RA
occurrence. This result was consistent with the weighted median
(OR = 1.49, 95% CI = 1.20–1.86, p = 4.00*10−4). Heterogeneity
was not found in the effect of GERD on RA using Cochran’s Q
test (p = 0.794), and directional pleiotropy is not existent in the
SNPs associated with GERD via MR-Egger regression
(intercept = −0.023 p = 0.3531). The result of leave-one-out
analyses shows that the global effect of GERD on RA was not
dependent on any single IV. The symmetrical funnel plots
suggested that there was no significant bias in SNP selection.

Univariate MR result of RA on GERD

The UVMR results of RA on GERD are shown in Figure 3. Only
15 SNPs were available as instrumental variables. Even the IVWmethod
results show a p-value that is slightly lower than 0.05; effect value β is very
small (0.03–0.04) in all three methods. For the IVWmethod, the GERD
was slightly casually influenced by RA (OR= 1.03, 95% [CI] = 1.00–1.06,
p = 0.0844), suggesting that both weightedmedian (OR = 1.03, 95%CI =
1.00–1.06, p = 0.2793) and MR Egger (OR = 1.04, 95% CI = 0.97–1.12,
p= 0.2793) analyses did not support the above results. Heterogeneity was
not found in the effect of RA on GERD using Cochran’s Q test (p =
0.0.52), and directional pleiotropy is non-existent in SNPs associated
with RA via MR-Egger regression (intercept = −0.0016, p = 0.7486). In
other words, there is no strong enough evidence to support that RA can
induce the occurrence of GERD.

Confounding factors and their effects

For further MVMR analysis, confounding factors are retrieved
through automatic exposure finding the R script, and the two-sample
MR results of those confounding factors are shown in Figure 4. It
implies that all the three factors that were selected are potential
confounding factors with positive two-sample UVMR analysis results.

Multivariable MR analysis between GERD
and RA

The bidirectional MVMR results are shown in Figure 5. After
removing the influence of confounding factors, the causal
relationship of GERD on RA still exists (OR = 1.69, 95% CI =
1.24–2.31, p < 0.0125). Consistent with UVMR, RA only has slight
effects on GERD (OR = 1.04, 95% CI = 1.00–1.07, p = 0.0271). It is
worth mentioning that the years of schooling is an effective
protective factor for GERD (OR = 0.36, 95% CI = 0.31–0.41, p <
0.0125), but BMI (OR = 1.27, 95% CI = 1.18–1.37, p < 0.0125) and

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2023.1280378

29

https://gwas.mrcieu.ac.uk/datasets/ukb-b-13932/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1280378


time spent watching TV (OR = 1.72, 95% CI = 1.33–2.24, p < 0.0125)
are risk factors for GERD. Directional pleiotropy was not detected in
bothMVMR of GERD (intercept = −0.002, p = 0.668) on RA and RA
on GERD (intercept = 0.001, p = 0.130).

Discussion

In order to examine the potential reciprocal causal relationship
between GERD and RA, bidirectional two-sample Mendelian

FIGURE 2
Effects of GERD on RA. (A) Forrest plot, (B) scatterplot, (C) leave-one-out plot, and (D) funnel plot.

FIGURE 3
Univariate two-sample MR analysis between GERD and RA.
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randomization analyses were conducted. The results suggested that
GERD can induce the occurrence of RA, whereas RA has no significant
impact on GERD. In particular, individuals with GERD are at a 69%
higher risk of developing RA, highlighting GERD as a significant risk
factor for this condition. In addition, the impact of three confounding
variables, namely, educational attainment, BMI, and duration of
television viewing, on both GERD and RA has also been identified.

The association between GERD and RA has been reported by
many observational studies, as mentioned in the Introduction part.
Those observational studies reported bidirectional causal
relationships between GERD and RA. However, our bidirectional
two-sample Mendelian randomization analyses only identified the
causal effects of GERD on RA and not vice versa.

There are some potential common risk factors for both GERD and
RA. Inclusion bias may arise when the observational studies fail to
exclude those mutual factors (Thombs et al., 2011). In order to
incorporate confounding factors effectively, this study conducted a
preliminary two-sample MR analysis with GERD and RA as separate
outcomes. This step aimed to screen for common risk factors before
proceeding to the MVMR analysis. Considering the evidence level of
observational studies, MR analysis, and the superiority of MVMR

(Zhou et al., 2023), results of this study are influenced by fewer
confounding factors. When cross-sectional and cohort studies found
the reciprocal association between GERD and RA, those known and
unknown confounding factors are often not excluded.

For instance, a cohort study identifying the reciprocal association
between GERD and RA onlymatched factors, including age, group, sex,
income group, income group, and region of residence (Kim et al., 2021).
However, smoking, BMI, diabetes, etc., are not taken into account,
which can result in selection bias (Punjabi et al., 2015). The control
group selected in those studies often exhibits fewer risk factors of GERD
that are not caused by RA. Coincidentally, the HR (1.49) of RA in
patients with GERD calculated by one cohort study was approximate to
ourUVMR result, but theHR (1.46) of GERD in patients with RA is not
found in our study (Kim et al., 2021). Recently, a meta-analysis research
based on cohort studies has also reported an OR of 1.98 for GERD in
patients with RA (Thongpiya et al., 2023). It is important to note that
the observational studies utilized in the meta-analysis were
predominantly conducted on the Asian population, whereas our MR
analysis is based on the European population. In addition, the
prevalence of GERD in North America is nearly 4-fold in the Asian
population (Chen, 2015). This difference in population may also

FIGURE 4
Univariate two-sample MR analysis of confounding factors’ effects on RA and GERD.

FIGURE 5
Result of MVMR analysis between GERD and RA.

Frontiers in Genetics frontiersin.org05

Wang et al. 10.3389/fgene.2023.1280378

31

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1280378


account for the difference between our study and former observational
research.

On the other hand, patients with RA tend to take more NSAIDS
than their control groups because of the symptom of RA (Burmester
and Pope, 2017; Aletaha and Smolen, 2018; Ben Mrid et al., 2022).
Meanwhile, the common adverse reaction of NSAIDS is
gastrointestinal, which may induce GERD (Altman et al., 2015;
García-Rayado et al., 2018; Bindu et al., 2020). As a result, it is
natural to hypothesize about the causal effects of RA on GERD.
However, our results found no significant effect of RA on GERD,
unlike the obvious effect reported by previous observational studies.

Similarly, for the causal effect of GERD on RA, ORs 1.49 and
1.69 calculated in this study were smaller than the HRs reported by
other observational studies. For instance, a nearly 3-fold risk of RA
susceptibility in patients with GERD than their control groups was
reported by a nested case–control study in the Asian population (Lin
et al., 2017). Even this study has considered many known
confounding factors, including hypertension, diabetes, smoking,
hyperlipidemia, obesity, stroke, and coronary heart disease; when
those factors (p > 0.1 between patients with GERD and their
controls) combined, inclusion bias may also derive.

Mechanistically speaking, the physiological and anatomical
changes, which may not appear directly associated with RA, have
the potential to increase the risk of developing RA due to the
persistent inflammation and immune dysregulation observed in
GERD. However, further basic and clinical studies are required
to substantiate these assumptions. In addition, the MVMR analysis
also revealed that years of schooling is an effective protective factor
for GERD (OR = 0.36, 95% CI = 0.31–0.41, p < 0.0125). Conversely,
BMI (OR = 1.27, 95% CI = 1.18–1.37, p < 0.0125) and time spent
watching TV (OR = 1.72, 95% CI = 1.33–2.24, p < 0.0125) are
identified as risk factors for GERD. The education duration has been
consistently reported as a protective factor for many diseases and
phenotypes, including low back pain, RA, and lifestyle (Jiang et al.,
2015; Saper et al., 2017; Davies et al., 2019; Kari et al., 2020; Zhao
et al., 2022), while excessive high BMI and longer time spent
watching TV have been found to be detrimental to health in
many studies (Antonopoulos et al., 2016; Caballero, 2019;
Raichlen et al., 2022; Sun et al., 2023). Although the effects of
BMI and education on RA are detected in the search of confounding
factors by UVMR searching, the MVMR analysis did not find
significant effects of them on RA. This finding may support the
notion that the previously reported effects of BMI and education on
RA were also generated by bias factors.

The strength of this study is that the confounding factors are
included in the identification of bidirectional causal relationships
between GERD and RA through MR analysis. To the best of our
knowledge, it is the first time to investigate their association using
genetic evidence, despite previous observational studies reporting a
bidirectional association between RA and GERD (Miura et al., 2014).

However, there are several limitations to this study. The GWAS
data used in this study were derived from the European population,
whereas most previous observational studies on the topic are based
on the Asian population. Whether our findings are generalizable to
non-European populations still needs to be confirmed. In addition,
even though the sample of GWAS data used in this study was large,
more extensive and new GWAS data may produce different
conclusions.

Conclusion

In conclusion, our bidirectional MR analysis found that for the
European population, GERD can induce the occurrence of RA
(OR = 1.69, p < 0.00125), whereas RA only has no significant
influence on GERD (OR = 1.04, p > 0.0125). In particular, European
GERD patients are suffering a 69% increased risk of RA occurrence,
which means GERD is a substantial risk factor for RA.
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Background: The causation of Glycemic Traits and risks of Melanoma remains
unknown. We used Mendelian Randomization (MR) to assess the links between
Glycemic Traits and Melanoma.

Method: Pooled data from Genome-Wide Association Studies (GWAS) were
utilized to examine the relationships that exist between Fasting Insulin (n = 26),
2-h Glucose (n = 10), Fasting Glucose (n = 47), HbA1c (n = 68), and Type-2
Diabetes (n = 105) andMelanoma.We evaluated the correlation of these variations
with melanoma risk using Two-Samples MR.

Result: In the IVWmodel, Fasting Glucose (OR = 0.99, 95%CI = 0.993–0.998, p <
0.05, IVW), Type-2 Diabetes (OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW)
and HbA1c (OR = 0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally
associated with a lower risk of Melanoma. In all models analyzed, there was no
apparent causal relationship between Fasting Insulin and Melanoma risk. There
was no obvious causal difference in the IVW analysis of 2-h Glucose and
Melanoma, but its p < 0.05 in MR Egger (OR = 0.99, 95%CI = 0.9883–0.9984,
p < 0.05, MR Egger), and the direction was consistent in other MR analyses,
suggesting that there may be a causal relationship.

Conclusion: The results of this study suggest that a higher risk of Fasting Glucose,
Type-2 Diabetes, 2-h Glucose, and HbA1c may be associated with a lower risk of
Melanoma. However, no causal relationship between fasting insulin and
melanoma was found. These results suggest that pharmacological or lifestyle
interventions that regulate plasma glucose levels in the body may be beneficial in
the prevention of melanoma.
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two-sample mendelian randomization, glycemic traits, melanoma, genome-wide
association study, causality
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1 Introduction

Melanoma is a malignant tumor produced by the malignant
transformation of melanocytes, which has a high probability of
local spread and metastatic spread. Studies have shown that its
incidence increases linearly in young and middle-aged people
aged 25 to 50, and is high in people aged 57 (Carr et al., 2020). It is
less common than other types of skin cancer but accounts for
73 percent of skin cancer-related deaths (Gershenwald and Guy,
2016). Studies have shown that in the next 10 years, the incidence
and mortality of melanoma will continue to rise (Whiteman et al.,
2016). The intervention effect of early surgical treatment and late
radiotherapy and chemotherapy on the prognosis of patients is
not satisfactory, and the results of several clinical trials have
shown that the objective remission rate of patient’s symptoms
after treatment is less than 1% (O’Neill et al., 2006; Atzpodien
et al., 2008; Bhatia et al., 2012). It is particularly important to look
for risk factors to prevent the occurrence of Melanoma.

Several recent studies have shown that obesity is positively
associated with the risk of melanoma (Dusingize et al., 2020;
Larsson and Burgess, 2021). Obese adults have a higher
prevalence of metabolic problems, such as insulin irregularities,
hyperglycemia, and Type-2 Diabetes. Some researches has found
that Type-2 Diabetes may be associated with an increased risk of
Melanoma (Harding et al., 2015; Yuan et al., 2020). However, other
cohort studies and case-control studies have found the opposite
results (Qi et al., 2014; Malavolti et al., 2017). Previous prospective
studies have shown that higher Fasting Glucose is closely related to
the occurrence and development of Melanoma (Stattin et al., 2007).
Recent studies have demonstrated a positive association between
Glycemic Traits and the risk of colorectal cancer (Murphy et al.,
2022a). But the MR studies of the associations between various
Glycemic Traits and melanoma have not yet been reported.

This study used MR to explore the causal relationship between
Glycemic Traits and Melanoma risk. MR is a comparable method to
randomization in randomized controlled trials. When parents with
two or more pairs of qualities cross when alleles are separated, genes
on non-homologous chromosomes operate as free combinations,
according to the law of independent assortment. Since germline
genetic variation, and the random nature of allelic segregation is
fixed at conception, MR analysis is less susceptible to traditional
confounding and reverse causation. In this study, we used GWAS
related to Fasting Glucose, Fasting Insulin, 2-h Glucose, HbA1c, and
Type-2 Diabetes, GWAS data on Melanoma from risk on
United Kingdom Biobank cohort study and FinnGen cohort
study (Mahajan et al., 2018; Chen et al., 2021). Two-sample MR
was used to explore the potential causal influence of the Glycemic
Traits on the risk of Melanoma.

2 Methods

2.1 Study design

MR investigates the link between exposure and illness by
employing genetic variation Single Nucleotide Polymorphisms
(SNPs) as Instrumental Variables IV). IV was extracted from a
disease-specific Genome-Wide Association Studies (GWAS) dataset

for this investigation. The IV in this work should fulfill three criteria:
there should be a high connection between IV and exposure, IV should
only affect the outcomes through exposure, and IV should not have
horizontal pleiotropy. Appropriate SNPs for usage as IVs must be
strongly linked to malignancy (p < 5 × 10−8). To ensure independence,
SNPs were restricted by low linkage disequilibrium (LD, r2 < 0.001,
window size = 10,000 kb) using clumping. By MR GWAS data. from
different sources were analyzed to assess the causal relationship
between glycemic signature and melanoma risk. Assess the strength
of IV using the F statistic (F = beta2/se2), where β is the effect size of the
allele and SE is the standard error (Feng et al., 2022). If F > 10, the
correlation between IV and exposure was considered strong enough to
protect the results of MR analysis from weak instrument bias.
Meanwhile, it will ensure no confounders like UV radiation, light
skin type, the presence of multiple atypical nevi, and a positive family
history using the Phenoscanner (http://www.phenoscanner.medschl.
cam.ac.uk/phenoscanner) website to have a search over each SNP
(Rastrelli et al., 2014; Ugurel and Gutzmer, 2023).

2.2 Data source

Glycemic Traits data come from the largest GWAS to date
(Glucose And Insulin-related Traits Consortium). A GWAS study
of 2 h Glucose, Fasting Glucose, and Fasting Insulin included 63,396
(SNPs= 27,330,879), 200,622 (SNPs= 31,008,728), and 151,013
(SNPs= 29,664,438) participants of European ancestry, respectively
(Chen et al., 2021). The GWAS for Type-2 Diabetes included
74,124 individuals with Type-2 Diabetes and 824,006 controls of
European ancestry (SNPs= 21,000,000) (Mahajan et al., 2018). The
HbA1c GWAS from the United Kingdom biobank (http://www.
nealelab.is/uk-biobank) included 361,194 participants of European
ancestry (SNPs= 1,048,575). The GWAS of Melanoma were obtained
from United Kingdom biobank (https://www.ukbiobank.ac.uk/) and
FinnGen (https://www.finngen.fi/en/access_results), the GWAS of
United Kingdom biobank included 3,598 patients and 459,335 for
controls (SNPs= 9,851,867) of European ancestry, the GWAS of
FinnGen included 393 patients and 180,622 controls (SNPs=
16,380,337) of European ancestry. All study participants gave
written informed consent, and the ethics committee approved all
studies. SNPs data can be found in Supplementary Table S1.

2.3 Method selection

We estimated the relationship between Glycemic Traits and
Melanoma risk using MR Egger, Inverse Variance Weighting
(IVW), weighted Median, Simple Mode, and Weighted Mode MR
methods. The IVW method assumes that all SNPs do not have
horizontal pleiotropy (The impact of genetic variation on results
is solely influenced by exposure of interest) and that all SNPs are
effective tools. The fixed-effect inverse variance weighting (IVW)
method was mainly used as the main analysis method (Kamiza
et al., 2022). The intercept of the MR-Egger test was used to
examine potential pleiotropic effects. Scatterplots are used to
display the findings of several MR procedures. Odds ratios (ORs)
and 95% confidence intervals (CIs) were used to represent the
causal effects of overall and Melanoma. We utilized scatterplots
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to show the genetic relationship between glycemic characteristics
and melanoma risk, and funnel plots to visually analyze the
consistency of MR estimations and potential related biases. R
software was used for these analyses, where the “Two-Sample
MR” and “MR-PRESSO” R packages were used.

2.4 Sensitivity analysis

Pleiotropy was investigated using the MR-Egger approach,
which was used to determine if a single locus impacts numerous
phenotypes. Second, the Leave-one-out sensitivity test was used to
gradually remove the SNPs to ensure that the results were credible.
The Cochran Q statistic was used to standardize heterogeneity
analyses. In addition, MR PRESSO was used to detect and
eliminate anomalous instrumental factors.

3 Results

3.1 MR assessment of glucose traits and
melanoma risk

After a quality control process, we obtained 10 SNPs strongly
associated with 2-h Glucose, 47 SNPs strongly associated with Fasting
Glucose, 26 SNPs associated with Fasting Insulin, and 105 strongly
associated with Type-2 Diabetes from GWAS and 68 SNPs closely
related to Fasting Glucose. The F-statistics of these SNPs were all
greater than 10, indicating that our instrumental variables were closely
related to Glucose Traits. Furthermore, our instrumental variables
were not directly associated with the risk of Melanoma (Table 1).

3.2 Mendelian randomization analysis of the
association between glycemic traits and the
risk of melanoma

IVW provides accurate estimates since the lack of heterogeneity
and directional pleiotropy between exposure and outcome variables.
Focusing primarily on the results of the IVW analysis, we assessed the
causal relationship between these SPNs and melanoma risk with the
Glycemic Traits (Table 2). The results showed that Fasting Glucose
(OR = 0.99, 95%CI = 0.993–0.998, p < 0.05, IVW), Type-2 Diabetes
(OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW) and HbA1c (OR=
0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally associated
with a lower risk of Melanoma. Its orientation is consistent with
several other MR analysis methods (Figures 1A–C). The 2-h Glucose
and Fasting Insulin results showed no apparent causal relationship
with Melanoma risk. Among them, no obvious causal difference was
found in the IVW analysis of 2-h Glucose, but its p < 0.05 in MR
Egger, and the direction was consistent in other MR analyses,
suggesting that there may be a causal relationship (Figure 1D).

3.3 Sensitivity analysis

In MR Egger, the p-values of MR Egger intercepts in each
instrumental variable of Glycemic Traits were greater than 0.05,TA
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suggesting that the intercept does not exist, indicating fasting
There was no horizontal pleiotropy for Fasting Glucose, 2-h
Glucose, Fasting Insulin, HbA1c, and Type-2 Diabetes
(Table 3). However, we found evidence of heterogeneity
between HbA1c and melanoma risk with a p-value of
0.03442561 for the Q statistic. As we used the random-effects
IVW as main result in MR of HbA1c, heterogeneity is acceptable
(Burgess et al., 2019). No heterogeneity was found in the other
analyses. Then we performed the Leave-one-out (Figures 2A–D)
method and MR-PRESSO (Figures 3A–D) to identify and delete

abnormal instrumental variables. The results showed that no
abnormal instrumental variables were found, and the above
results suggested that the MR analysis results were relatively
stable.

4 Discussion

Melanoma is a malignant tumor caused by melanocytes that is
also a very deadly disease due to its high metastatic potential,

TABLE 2 Associated between the Glycemic Traits and risk of Melanoma using two-sample MR.

Glycemic traits MR method OR 95%CI p-value

2-Hour Glucose

MR Egger 0.9911 0.9883–0.9984 <0.05

Weighted Median 0.9980 0.9995–1.0005 0.11

Inverse Variance Weighted 0.9989 0.9996–1.0001 0.31

Simple Mode 0.9984 0.9994–1.0002 0.47

Weighted Mode 0.9977 0.9984–1.0001 0.17

Fasting Glucose

MR Egger 0.9958 0.9901–1.0015 0.16

Weighted Median 0.9978 0.9937–1.0018 0.30

Inverse Variance Weighted 0.9968 0.9938–0.9998 <0.05

Simple Mode 0.9942 0.9860–1.0025 0.13

Weighted Mode 0.9971 0.9929–1.0012 0.16

Fasting Insulin

MR Egger 0.9917 0.9716–1.0121 0.43

Weighted Median 1.0011 0.9941–1.0082 0.76

Inverse Variance Weighted 0.9997 0.9943–1.0051 0.91

Simple Mode 1.0032 0.9906–1.0159 0.62

Weighted Mode 1.0025 0.9925–1.0127 0.67

Type-2 Diabetes

MR Egger 0.9986 0.9972–0.9999 <0.05

Weighted Median 0.9985 0.9975–0.9995 <0.01

Inverse Variance Weighted 0.9989 0.9983–0.9995 <0.01

Simple Mode 0.9978 0.9959–0.9998 <0.05

Weighted Mode 0.9984 0.9973–0.9996 <0.05

HbA1c

MR Egger 0.5199 0.029–9.3293 0.66

Weighted Median 0.4510 0.0496–4.1015 0.46

Inverse Variance Weighted 0.1910 0.0415–0.8788 <0.05

Simple Mode 0.3793 0.004–35.9837 0.65

Weighted Mode 0.8021 0.0863–7.4481 0.85
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accounting for 75% of skin cancer deaths (Davis et al., 2019). People
who have a family history of skin cancer, have a high amount of
common or underdeveloped nevi, or are excessively exposed to UV

light are at high risk for melanoma (Dummer et al., 2009; Guo et al.,
2016). It is still unknown whether endocrine factors can also affect
the occurrence of melanoma (Guo et al., 2016). This study used the

FIGURE 1
Scatter plot of genetic causality between Glycemic Traits and Melanoma using different MR methods. (A) Fasting Glucose (B) Type 2 Diabetes (C)
HbA1c (D) 2-h Glucose. The dark blue line represents MR Egger, the light green line represents simple mode, the dark green line represents Weighted
median, the light blue line represents IVW, and the red line represents Weighted mode.

TABLE 3 Estimates of Egger intercept to evaluate evidence for directional pleiotropy in MR association.

Glycemic traits Egger intercept SE of egger intercept p-value

2-h Glucose 0.00054 0.00025 0.06

Fasting Glucose 0.00003 0.00006 0.69

Fasting Insulin 0.00013 0.00017 0.43

Type 2 Diabetes 0.00002 0.00005 0.64

HbA1c −0.01877 0.02342 0.43

FIGURE 2
Forest map of Melanoma based on Glycemic Traits. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Black dots represent
estimates of causal effects of Glycemic Traits on Melanoma (beta coefficients). The black line represents the estimated 95% confidence interval.
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MR method for the first time to explore the causal relationship
between the characteristics of Fasting Glucose (including 2-h
Glucose, Fasting Glucose, Fasting Insulin, Type-2 Diabetes, and
HbA1c) and the risk of Melanoma from the perspective of genetics.
Overall, we found that Fasting Glucose, Type-2 Diabetes, and higher
HbA1c levels were negatively associated with the risk of Melanoma.
The results of MR Egger suggest that 2-h Glucose may be negatively
related to the risk of Melanoma. But there is no evidence that gene-
predicted Fasting Insulin levels increase the risk of Melanoma. Due
to the use of suitable genetic instrument tools (F-statistics>10 and
r2<0.001) in this study, no significant SNP was detected in the
retention method or MR-PRESSO, and the results were highly
consistent among the 5 MR algorithms. Therefore, we believe
that the results of this study are to some extent reliable. The
results of this study suggest that people with higher Glycemic
Traits levels may be at low risk for melanoma. Patients and high-
risk populations may reduce the risk of melanoma by adjusted
dietary structure regulating Glycemic Traits.

In previous studies, we have noticed that Glycemic Traits exhibit
different causal relationships among different tumors. There is a
positive correlation between plasma glucose index and disease risk
in lung cancer, but there is no significant correlation with colon
cancer (Murphy et al., 2022b; Du et al., 2022). Ameta-analysis shows
that glycemic index will increase the overall risk of cancer, increase
the risk of breast cancer (Long et al., 2022), and is positively
correlated with the risk of bladder cancer and gastric cancer
(Zhu et al., 2020; Kim et al., 2022). Relevant studies have shown
that higher HbA1c levels are associated with an increased risk of
colorectal cancer, pancreatic cancer, respiratory cancer, and female
reproductive tract cancer, and are not associated with an increased
risk of breast cancer, gastrointestinal or urinary systemmalignancies
(Hong et al., 2009; Lu et al., 2015; Hope et al., 2016; Murphy et al.,
2022b), but are linearly associated with overall cancer-related deaths
(Yoo et al., 2022). A study shows that Type-2 Diabetes will increase
the risk of colorectal cancer (Murphy et al., 2022b). The cohort study
and case-control study in Melanoma suggest that Type-2 Diabetes
may be negatively related to the risk of Melanoma (Harding et al.,
2015; Yuan et al., 2020), but the opposite results have appeared in
other studies (Qi et al., 2014; Malavolti et al., 2017). The above
studies suggest that the specific relationship between Glycemic
Traits and Melanoma is still contradictory.

The results of this study suggest that 2-h Glucose (OR = 0.99,
95% CI = 0.984–0.998, p < 0.05, MR Egger), Fasting Glucose
(OR = 0.99, 95% CI = 0.993–0.998, p < 0.05, IVW), Type-2
Diabetes (OR = 0.998, 95% CI = 0.998–0.999, p < 0.01, IVW) and
higher HbA1c level (OR = 0.19, 95% CI = 0.0415–0.8788, p <
0.05, IVW) are all possible negatively related to the risk of
Melanoma. This is different from the manifestation of
Glycemic Traits in causal relationships with other tumors.
This may be due to the reduction of melanocytes in Diabetes
patients, whose melanin content is related to plasma glucose
control in diabetes and obesity (Mackiewicz-Wysocka et al.,
2014). Research shows that people with light skin are about
30 times more likely to suffer from Melanoma than people with
dark skin (Doepner et al., 2022). This is because the
pigmentation of human skin is determined by the transfer of
mature melanin synthesized by epidermal Melanoma cells to the
surrounding keratinocytes. Human Chromatophores synthesize
two types of melanin, namely, eumelanin (EM) and
phaeomelanin (PM). The content of eumelanin is directly
related to skin pigmentation and has a photoprotective effect,
which can protect the skin from ultraviolet rays, thereby
reducing the incidence rate of Melanoma (Upadhyay et al.,
2022). Moreover, a high level of plasma glucose is often
associated with high BMI and obesity. Studies have shown
that obesity is associated with elevated circulating estradiol
levels due to the aromatase activity of adipose tissue
converting androgens into estrogen compounds (Schneider
et al., 1979). In primary Melanoma, there may be high
expression of estrogen receptors β with anti-melanoma-
proliferative, and sending non-classical estrogen signals
through G protein-coupled receptors (de Giorgi et al., 2013;
Marzagalli et al., 2015). This may explain the different causal
relationships between Glycemic Traits in Melanoma and other
tumors.

Insulin is a protein hormone secreted by cells stimulated by
endogenous or exogenous substances such as glucose, lactose, ribose,
arginine, glucagon, etc. Related research suggests that it may be
related to the development of tumors. Lilalutide, an analog of
glucagon-like peptide 1, is a molecule that regulates glucose by
increasing insulin production and inhibiting glucagon secretion. It
can significantly reduce the formation of NET in tumor mice by

FIGURE 3
Funnel plot of Melanoma based on Glycemic Traits genetic variants. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Overall
causal estimates (beta coefficients) of Glycemic Traits and Melanoma estimated by the IVW (light blue line) and MR-Egger (dark blue line) methods are
shown.
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improving the plasma glucose of patients, inhibiting tumor
progression, and enhancing the anti-tumor effect of PD-1
inhibitors (Chen et al., 2022). Insulin is also an important cell
growth factor that can promote cell growth, proliferation, and
migration (Leitner et al., 1997). Higher fasting insulin is
positively correlated with the risk of colorectal cancer (Murphy
et al., 2022b). Extracellular vesicles secreted by breast cancer cells
inhibit insulin secretion through miR-122, thereby damaging
systemic glucose homeostasis and promoting tumor growth (Cao
et al., 2022). However, in this study, the results suggest that there is
no correlation between insulin level and the risk ofMelanoma (OR =
0.99, 95% CI = 0.994–1.005, p = 0.91, IVW). Therefore, the causal
relationship between Insulin and the risk of Melanoma requires
more research.

There are still limitations to this study. Firstly, we restricted the
relevance of the findings to other groups by concentrating on
research subjects with European populations. Secondly, this study
did not consider the impact of gender on MR analysis and did not
conduct further subgroup analysis. Thirdly, to verify the findings,
this study does not analyze additional data sources. Finally, This
study used Mendelian Randomization analysis, which has the
potential for weak instrument bias and pleiotropy. Future
research is needed to address these limitations and to confirm
the findings of this study.

Although previous observational studies can identify the
relationship between Glucose, Type-2 Diabetes, Insulin and the
risk of Melanoma, however, because of research confounding
variables, a causal association cannot be established. In
conclusion, this study used MR technology for the first time to
analyze the causal relationship between Glycemic Traits and
Melanoma and found that there is a negative correlation, and the
underlying mechanism may provide valuable insights for
carcinogenesis.
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Background: Numerous observational studies have investigated the risk of

prostate cancer (PCa) in patients diagnosed with Parkinson’s Disease (PD).

However, the existence of a definitive association remains uncertain.

Methods: Systematic searches were performed on PubMed, Web of Science,

Scopus, and Google Scholar for studies published up to October 1, 2023. For

Mendelian randomized (MR) causal inference, we employed pooled data

from the IPDGC and PRACTICAL Consortium. The inverse variance weighted

(IVW) method served as the principal technique for estimating odds ratios

(ORs) and 95% confidence intervals (CIs) for the associations

under investigation.

Results: Cumulative analysis of nine studies revealed no significant

association between patients diagnosed with PD and the subsequent

incidence of PCa ([relative ratio] RR = 0.89, 95%CI = 0.73 to 1.08, P =

0.237). However, subgroup analyses indicated a reduced occurrence of PCa

in Caucasian patients with PD (RR = 0.81, 95%CI = 0.69 to 0.95, P = 0.011).

MR analyses failed to establish a significant link between increased genetic

susceptibility to PD and the risk of PCa (IVW OR = 1.025, 95%CI = 0.997 to

1.054, P = 0.082). Sensitivity analyses further corroborated the robustness of

these results.

Conclusion: Both observational meta-analysis and MR analysis based on

genetic variation do not support an association between PD patients and the

subsequent risk of PCa. Further research is warranted to unravel the potential

underlying mechanisms linking these two diseases.
frontiersin.org0142

https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1323812/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1323812&domain=pdf&date_stamp=2024-01-04
mailto:zhupingyu@nsmc.edu.cn
mailto:wangnsmc@163.com
https://doi.org/10.3389/fonc.2023.1323812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1323812
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2023.1323812

Frontiers in Oncology
Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42023473527.
KEYWORDS

Parkinson’s disease, prostate cancer, Mendelian randomization, genetic variants,
meta-analysis
1 Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder and increases with age (1). In individuals

with PD, there is a loss of dopaminergic neurons in the substantia nigra

pars compacta, leading to resting tremors, rigidity, motor dysfunction,

and postural instability (2). Numerous cellular pathways, including

mitochondrial dysfunction, excitotoxicity, compromised autophagic

processes, oxidative stress, the accumulation of misfolded proteins,

and genetic mutations, have been postulated as interlinked contributors

to the neurodegenerative processes observed in PD (3).

Epidemiological evidence reveals a noteworthy correlation between

PD and cancer (4–6). One hallmark of tumors is unbridled cell

proliferation and a deficiency in apoptosis, whereas individuals with

PD exhibit an augmented inclination toward cellular apoptosis (7).

Certain studies postulate shared genetic and biological pathways

between PD and cancer. Conversely, males demonstrate greater

susceptibility to PD, implying a hormonal regulatory influence on

PD (8). On the other hand, prostate cancer (PCa), as the second most

common malignancy worldwide, is regulated by sex hormones and

ranks as the sixth leading cause of cancer-related deaths in males (9).

Previous studies on the incidence of PCa in patients with PD have

yielded contentious outcomes (4, 10, 11), and observational studies

cannot infer a causal relationship between PD and prostate cancer, as

this might be influenced by reverse causation or confounding factors.

Mendelian randomization (MR) emerges as a method of

instrumental variable (IV) analysis that harnesses single

nucleotide polymorphisms (SNPs) derived from genome-wide

association studies (GWAS) as tools to deduce causal associations

between two traits (12). MR approximates the inherent attributes of

a RCT and exhibits a reduced susceptibility to the impact of

covariates. Moreover, its operational simplicity and cost-

effectiveness enhance its appeal (13). Consequently, we conducted

an updated meta-analysis and integrated MR studies to investigate

the causal relationship between PD and PCa.
2 Methods

2.1 Meta-analysis

This study adheres to the Preferred Reporting Items for

Systematic Review and Meta-Analysis (PRISMA) guidelines
0243
(Supplementary Table 1) and has been registered with

PROSPERO (CRD42023473527) (14).
2.2 Search strategy

We conducted a comprehensive search of the published literature

for associations between PD and prostate cancer inMEDLINE via the

Cochrane Library, PubMed, Web of Science, Scopus and Google

Scholar databases, up to October 1, 2023. The following strings were

constructed using a combination of medical subject terms and

keywords: [(Parkinson OR Parkinson disease OR PD) AND

(prostate cancer OR prostate carcinomas OR prostate neoplasm)].
2.3 Eligibility criteria

Inclusion criteria were defined as follows: (1) Population-based

study of patients with diagnostic criteria for PD. (2) Cohort or case-

control studies of PD diagnosis prior to PCa; (3) studies that reported

either an odds ratio (OR), relative risk (RR), hazard ratio (HR), or

standardized incidence ratio (SIR) along with the corresponding

confidence interval (CI); (3) original research published in English.

The exclusion criteria comprised: (1) studies lacking relevant exposures

(PD) and outcomes (Pca); (2) studies without meta-analysis data; (3)

reviews, letters, case reports or conference reports. If study populations

overlap, select the newest or most informative published studies.
2.4 Data acquisition and quality evaluation

Two investigators (JY, WL) employed EndNote X9 to identify

and remove duplicate records. They subsequently reviewed both the

titles and full texts of the remaining records for further screening.

Relevant data were extracted and recorded in an Excel spreadsheet,

including the following information: first author, year of

publication, geographical region, duration of follow-up, method of

PD diagnosis, number of cases and controls, adjusted covariates,

risk values for outcome estimates. Two reviewers (XY and YD)

evaluated the risk of bias using the Cochrane Collaboration Risk of

Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool

(15). Moreover, we assessed study quality using the Newcastle-

Ottawa Scale for cohort and case-control studies, with scores
frontiersin.org
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ranging from 0 to 9 (16). The included studies were categorized into

two groups based on their mean quality score: a low-quality group

(<7) and a high-quality group (≥7). In addition, the level of evidence

(LOE) was graded according to the criteria of the Oxford Centre for

Evidence-Based Medicine (17). In cases of disagreements, these

were resolved through negotiation.
2.5 Statistical analysis

Given the low absolute incidence of prostate cancer, the four

types of measurements were estimated to have similar RR values. In

conjunction with previously published meta-analyses, we present

the results using RR (18, 19). Due to the unavoidable high degree of

heterogeneity between publications (P < 0.05, I2 > 50%), pooled

effect sizes were calculated using random effects models. Otherwise,

a fixed-effects model was used (P > 0.5, I2 < 50%). Egger’s test and

funnel plots were utilized to evaluate publication bias. Sensitivity

analyses assess the reliability of results by removing each study in

turn. Furthermore, we performed subgroup analyses considering

time to cancer diagnosis, study type, study quality, population, and

year of publication. Meta-analyses were conducted using Stata 16.0

and considered statistically significant at p < 0.05.
2.6 Mendelian randomization

The study rigorously adhered to the guidelines outlined in the

Strengthening the Reporting of Observational Studies in

Epidemiology Mendelian Randomization (STROBE-MR)

framework (20). MR relies on three essential assumptions: IVs

demonstrate strong correlation with PD, remain unaffected by

confounding variables, and impact Pca solely through the exposure

under investigation. The basic assumptions and MR design flow are

depicted in Figure 1. Since publicly available pooled data were

utilized, ethical approval was not necessary for this study.
2.7 Data source and SNP selection

Summary data for PD were obtained from the comprehensive

GWAS meta-analysis conducted by the International Parkinson’s
Frontiers in Oncology 0344
Disease Genomics Consortium (IPDGC), encompassing 33,674

cases and 449,056 controls of European descent (21). GWAS data

for Pca from Prostate Cancer Association Group to Investigate

Cancer Associated Alterations in the Genome (PRACTICAL)

Consortium (79,148 cases and 61,106 control cases) (22). To

ensure the stability of the causal relationship between exposure

and outcome, IVs were selected based on the following principles:

(1) We established genome-wide significance thresholds for PD at

p < 5×10-8. (2) Cluster analysis was conducted to address linkage

disequilibrium (LD) among the selected IVs (r2 < 0.001, kb =

10,000). (3) Only SNPs with a minor allele frequency (MAF)

exceeding 0.01 were considered. (4) To mitigate bias from weak

IVs. the strength of the IVs was quantified using the F value (b2/SE),
with those having F < 10 being excluded (23). Here, b represents the

effect size of exposure and SE represents the standard error of the

effect size. we also used Phenoscanner to examine potential

confounders (such as body mass index, smoking, alcohol

consumption and vitamin D supplementation) (24) (Table 1).
2.8 Statistical analysis

The primary analysis employed the robust inverse-variance

weighted (IVW) method (25). This method has the strongest

statistical efficacy, but it must be satisfied that all genetic variation

is a valid instrumental variable, and therefore we employed the

weighted median, MR-Egger regression, maximum likelihood and

simple weighted mode methods as validation approaches (26, 27).

Sensitivity analysis assumes a vital role in the assessment of

heterogeneity and potential biases within MR studies. Firstly,

heterogeneity was evaluated through the application of Cochran’s

Q test, which involved calculating the weighted sum of squared

differences between specific variability estimates and the overall

IVW estimate (28). To address potential outliers, the MR Pleiotropy

RESidual Sum and Outlier (MR-PRESSO) method was employed

during data analysis (29). Furthermore, MR-Egger regression was

utilized, and intercepts were assessed to identify potential

horizontal pleiotropy (p < 0.05 was judged significant). in

addition, we performed a leave-one-out analysis to test the

stability of the results. We evaluated heterogeneity among

variant-specific causal estimates and pinpointed outliers through

scatter and funnel plots. Finally, we identified potential
FIGURE 1

The three main assumptions of Mendelian randomization.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1323812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1323812
bidirectional links between SNPs related to the PD and PCa using

the MR Steiger Filtering Test (30). In addition, we performed

multivariate MR (MVMR) analyses to observe the effect of

confounding factors on PCa.

Statistical analyses were executed using R version 4.2.2 with the

“TwoSampleMR” and “MRPRESSO” packages. Odds ratios (ORs)

with 95% confidence intervals (CIs) were used to quantify the MR

analysis, and statistical significance was defined as P < 0.05.
3 Result

3.1 Meta−analysis results

3.1.1 Study characteristics and quality evaluation
After a rigorous examination of online databases, 9 articles (5,

10, 31–37)(8 cohort and 1 case-control) from 2007 to 2019 were

included in the final analysis. Figure 2 illustrates the selection

process, and Table 2 provides detailed information on the

included literature. 6 studies received high-quality ratings.

however, all studies were at low to moderate risk of bias

(Supplementary Table 2).

3.1.2 PCa risk in PD
Pooled analyses overall showed no significant association

between patients with PD and the subsequent risk of PCa (RR =
Frontiers in Oncology 0445
0.89; 95% CI: 0.73 to 1.08; p = 0.237) (Figure 3A). This result held

true across different types of studies (Figure 3B). Interestingly,

within the Caucasian population, patients with PD were found

to have a lower risk of PCa (RR = 0.81; 95% CI: 0.69 to 0.95;

p = 0.011) (Figure 3C).
3.1.3 Sensitivity analysis
Summarized effects remain stable through the successive exclusion

of each study (Supplementary Figure 1). Furthermore, evidence

of significant bias was not found in funnel plots or through Egger’s

(p = 0.963) and Begg’s test (p = 0.297) (Supplementary Figure 2).
3.2 Mendelian randomization results

The a priori calculation of statistical power was conducted

meticulously (38). By setting a at 5%, we attained a substantial

statistical power exceeding 80% in scenarios where the expected OR

concerning PCa were either at or below 1.04 within the context

of PD.
3.2.1 Effect of PD on PCa
The associations between the 21 designated SNPs and PCa are

meticulously delineated in Supplementary Table 3. The range of
TABLE 1 Characteristics of the included GWAS summary studies in Mendelian randomization.

Trait First
author

Consortium Sex/population Sample
size

Number of
(cases/controls)

Year GWAS ID

Exposure

Parkinson’s disease Nalls MA IPDGC Male and
female/European

482,730 33,674/449,056 2019 ieu-b-7

Outcome

Prostate cancer Schumacher PRACTICAL Male/European 140,254 79,148/61,106 2018 ebi-
a-GCST006085

Confounders

Obesity Berndt SI GIANT Male and
female/European

98,697 32,858/65,839 2013 ieu-a-90

Smoking status:
Current

Neale Neale Lab Male and
female/European

336,024 33,928/302,096 2017 ukb-a-225

Ever smoked Ben Elsworth MRC-IEU Male and
female/European

461,066 280,508/180,558 2018 ukb-b-20261

Former
alcohol drinker

Ben Elsworth MRC-IEU Male and
female/European

31,506 16,191/15,315 2018 ukb-b-12654

Triglycerides Willer CJ GLGC Males and
females/Mixed

177,861 NA 2013 ieu-a-302

Vitamin
D supplements

Ben Elsworth MRC-IEU Male and
female/European

460,351 17,879/442,472 2018 ukb-b-12648
GWASs, genome-wide association studies; IPGDC, International Parkinson’s Disease Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated
Alterations in the Genome; GIANT, genetic investigation of anthropometric traits consortium; MRC-IEU, MRC Integrative Epidemiology Unit; GLGC, Global Lipids Genetics Consortium; NA,
not available.
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variance expounded upon by these SNPs in relation to the exposure

variables extended from 0.004 to 0.02. Furthermore, the IVs

demonstrated robust statistical significance (F > 10). After a

rigorous Steiger filtering process, no signs of reverse causality

were found. There is no apparent association between genetic

predisposition to PD and the occurrence of PCa (OR = 1.025;

95% CI: 0.997 to 1.054; P = 0.082), which is consistent with the

overall effect results of the meta-analysis. No heterogeneity was

observed in the sensitivity analysis, and there was no horizontal

pleiotropy detected in the MR-Egger analysis. Additionally, the

MR-PRESSO test did not identify any outliers (Global test p =

0.315) (Figure 4; Supplementary Figure 3). Results between genetic

susceptibility to PD and PCa remained robust in MVMR adjusted

for relevant confounders (Table 3).
4 Discussion

This study has undertaken a comprehensive assessment of the

risk of PCa in patients diagnosed with PD. The results of cumulative

analysis and MR analysis have confirmed the lack of significant

correlation between PD and PCa under genetic prediction. The co-

occurrence of two distinct diseases within the same individual may

stem from shared environmental or genetic factors. Previous studies

have yielded conflicting evidence regarding the relationship

between PD and cancer (5, 37), and several potential explanatory

mechanisms have been proposed.
Frontiers in Oncology 0546
PD, a neurodegenerative disorder, is characterized by the

demise of dopaminergic neurons, distinguishing it from PCa,

which is typified by unrestricted cellular proliferation and a lack

of apoptosis. Interestingly, cells in PD patients exhibit a greater

propensity to undergo apoptosis, which may serve as a defensive

mechanism against cancer progression.

Smoking is recognized as a significant risk factor for various

types of tumors while seemingly reducing the risk of developing

PD (39). Nicotine has been observed to stimulate the release of

dopamine and demonstrate neuronal protection in various

experimental models (40). Although PCa is not typically

associated with smoking, earlier investigations have reported a

decreased risk of PCa among individuals with PD (4, 41). It’s

worth noting that patients diagnosed with PD typically have

higher mortality rates than the general population. Furthermore,

those who do survive are less likely to die from subsequent

cancers (42).

One of the therapeutic strategies for individuals with PD

involves increasing dopamine levels within the central nervous

system, thereby stimulating the sympathetic nerves. Concurrently,

anticholinergic drugs might act on parasympathetic nerves to

alleviate symptoms (43). The stroma of the prostate is heavily

innervated by branches of the autonomic nervous system, which

play a significant role in the growth and sustenance of the prostate

gland (44). A study by Magnon et al. (45) discovered that

sympathetic neurons foster tumor genesis at an early stage, while

parasympathetic fibers drive the dissemination of cancer.
FIGURE 2

Flow chart for meta-analysis and Mendelian randomization analysis.
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Consequently, medications targeting branches of the autonomic

nervous system could potentially offer therapeutic advantages.

Levodopa and other dopaminergic drugs may be administered

following a diagnosis of PD. Current studies indicate that L-Dopa

decarboxylase (DDC) is an androgen receptor co-activator, its

expression increases with the progression of the disease, and its

co-expresses with receptors in prostate cancer cells. The related

drugs enhance anti-tumor activity by inhibiting the DDC pathway

(46). Interestingly, our findings indicate that Caucasian populations

exhibit a lower prevalence of PCa following the onset of PD. Lin

et al. (5)discovered that Taiwanese men diagnosed with PD had an

elevated risk of PCa, a phenomenon attributed to a confluence of

distinctive genetic backgrounds, habits, and/or environmental

exposures. However, in MR analyses conducted on European

populations, no significant causal association was observed

between PD and the risk of subsequent PCa occurrence. This

appears to suggest that the results of meta-analyses may have

been influenced by bias and confounding factors.
Frontiers in Oncology 0647
4.1 Strength and limitation

Our study possesses several strengths. Firstly, we adhered

strictly to PRISMA guidelines in our literature screening and

conducted subgroup analyses and bias assessments. Secondly, our

MR study adhered to the three key hypotheses and utilized a two-

sample approach to explore the causal relationship between PD and

PCa. Sensitivity analyses confirmed the reliability of our results,

while MVMR analyses helped to eliminate confounding bias.

Despite these strengths, our study is not without limitations. For

one, the MR analysis validated results solely for the European

population, which might have resulted in a more homogeneous

association. Furthermore, we did not perform a gender-stratified

analysis, which may have introduced some bias. Moreover, the

results of the meta-analysis were inevitably highly heterogeneous.

Finally, the insufficient sample size may lead to instability in

subgroup effects, and future studies with larger sample sizes are

needed to enhance the reliability of the results.
TABLE 2 Baseline characteristics of the included studies.

Author
(year)

Design Country Mean or
median
follow-
up
(years)

Disease
ascertainment

Sample
size

Adjustment
for covariates

Outcomes NOS LOE

Fois
(31) (2010)

Cohort UK 3.2 Coded 4,355 cases Age, Sex, Time period in
single calendar years and
district of residence

RR 7 2b

Lo
(32) (2010)

Cohort UK 4.3 Medical record
and clinical

692 cases;
761
controls

Age, sex, cigarette smoking,
alcohol consumption, BMI

OR 7 2b

Wirdefeldt
(33) (2014)

Cohort Sweden NA Coded 11,786
cases;
58,930
controls

Age, sex, urbanization HR 6 2b

Becker
(34) (2010)

Case-
control

UK NA Medical records 466 cases;
1864
controls

Age, sex, calendar time, BMI,
smoking status

OR 9 2b

Driver
(35) (2007)

Cohort USA 5.2 Self- report
PD diagnosis

572 cases;
478
controls

Smoking history, alcohol use,
physical activity, BMI

RR 8 2b

Rugbjerg
(36) (2012)

Cohort Denmark 5.7 Coded 20343 cases NA SIR 6 2b

Ong
(10) (2014)

Cohort UK 12 Coded 219,194
cases;
9,015,614
controls

Age, sex, calendar year of
first recorded admission,
region of residence, quintile
of patients’ Index of
Deprivation score

RR 8 2b

Lin
(5) (2015)

Cohort Taiwan 7 Coded 62,023
cases;
124,046
controls

Age, sex HR 6 2b

Park
(37) (2019)

Cohort Korea 6 Coded 52,009
cases;
260,045
controls

Age, sex, hypertension,
diabetes mellitus,
hyperlipidemia, income

HR 8 2b
frontie
BMI, body mass index; HR, hazard ratio; OR, odds ratio; PD, Parkinson disease; RR, relative risk; SIR, standardized incidence ratio; NA, not applicable.
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FIGURE 3

Forest plot of PCa risk in patients with PD and subgroup analysis. (A) overall effect; (B) subgroup analysis of study type; (C) subgroup analysis of
different ethnicities.
FIGURE 4

MR analysis results from PD to PCa risk.
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5 Conclusion

This comprehensive MR and meta-analysis did not

demonstrate an association between PD and PCa risk. The

potential biological pathways contributing to the co-morbidity

between these two diseases certainly warrant further exploration.
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TABLE 3 Complete MVMR results of PD in relevant prostate cancer risk factors.

Adjustments Methods

Parkinson’s Disease

SNPs Causal effect Heterogeneity Pleiotropy

OR (95% CI) P P* Intercept P

Obesity IVW 22 1.05 (0.99-1.13) 0.11 0.066 0.005 0.199

Median 1.01 (0.93-1.09) 0.83

Egger 1.05 (0.99-1.12) 0.12

Smoking status:
Current

IVW

35

1.00 (0.96-1.04) 0.87

< 0.001 0.003 0.522Median 1.01 (0.97-1.05) 0.75

Egger 0.98 (0.91-1.06) 0.65

Ever smoked IVW 90 1.01 (0.98-1.04) 0.60 < 0.001 0.002 0.290

Median 1.02 (0.98-1.07) 0.27

Egger 0.99 (0.95-1.04) 0.81

Former alcohol drinker

IVW 19 1.01 (0.96-1.06) 0.69

< 0.001 0.012 0.358Median 1.01 (0.96-1.05) 0.81

Egger 0.93 (0.78-1.11) 0.45

Triglycerides

IVW

53

0.99 (0.90-1.10) 0.92

< 0.001 0.003 0.365Median 0.99 (0.92-1.08) 0.95

Egger 0.99 (0.89-1.10) 0.79

Vitamin D supplements

IVW 19 1.01 (0.96-1.06) 0.70

< 0.001 0.010 0.445Median 1.04 (0.99-1.08) 0.10

Egger 0.95 (0.80-1.13) 0.54
frontier
*Heterogeneity P < 0.05 indicated potential heterogeneity existing in the IVW model, and the median method was suggested for causal inference in this situation. MVMR, multivariable
Mendelian randomization; SNP, single nucleotide polymorphisms; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; PD Parkinson’s Disease.
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Association between gut
microbiota and glioblastoma: a
Mendelian randomization study

Song Wang1†, Fangxu Yin1†, Zheng Guo1†, Rui Li1, Wei Sun1,
Yuchao Wang1, Yichen Geng2, Chao Sun3* and Daqing Sun1*
1Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China, 2Nursing
College of Binzhou Medical University, Yantai, Shandong, China, 3Department of Orthopedic Surgery,
Tianjin Medical University General Hospital, Tianjin, China

Background: Glioblastoma (GBM) is the most prevalent malignant brain tumor,
significantly impacting the physical and mental wellbeing of patients. Several
studies have demonstrated a close association between gut microbiota and
the development of GBM. In this investigation, Mendelian randomization (MR)
was employed to rigorously evaluate the potential causal relationship between gut
microbiota and GBM.

Methods: We utilized summary statistics derived from genome-wide association
studies (GWAS) encompassing 211 gut microbiota and GBM. The causal
association between gut microbiota and GBM was scrutinized using Inverse
Variance Weighted (IVW), MR-Egger, and Weighted Median (WM) methods.
Cochrane’s Q statistic was employed to conduct a heterogeneity test. MR-
Pleiotropic Residuals and Outliers (MR-PRESSO) were applied to identify and
eliminate SNPs with horizontal pleiotropic outliers. Additionally, Reverse MR
was employed to assess the causal relationship between GBM and pertinent
gut microbiota.

Results: The MR study estimates suggest that the nine gut microbiota remain
stable, considering heterogeneity and sensitivity methods. Among these, the
family.Peptostreptococcaceae and genus.Eubacterium brachy group were
associated with an increased risk of GBM, whereas family.Ruminococcaceae,
genus.Anaerostipes, genus.Faecalibacterium, genus.LachnospiraceaeUCG004,
genus.Phascolarctobacterium, genus.Prevotella7, and genus.Streptococcus
were associated with a reduced risk of GBM. Following Benjamini and
Hochberg (BH) correction, family.Ruminococcaceae (OR = 0.04, 95% CI:
0.01–0.19, FDR = 0.003) was identified as playing a protective role against GBM.

Conclusion: This groundbreaking study is the first to demonstrate that
family.Ruminococcaceae is significantly associated with a reduced risk of GBM.
The modulation of family_Ruminococcaceae for the treatment of GBM holds
considerable potential clinical significance.
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1 Introduction

Glioblastoma (GBM) is one of the most prevalent types of
malignant brain tumors, with an annual incidence ranging from
3 to 6.4 per 100,000 individuals. It constitutes approximately
23.3% of central nervous system tumors and 78.3% of malignant
brain tumors. The 5-year mortality rate ranks second only to
that of pancreatic cancer and lung cancer (Sung et al., 2021;
Ostrom et al., 2023). Typically arising from glial cells or
precursor cells, its clinical manifestations encompass
increased intracranial pressure, neurological and cognitive
impairment, as well as seizures (Omuro and DeAngelis,
2013). According to the World Health Organization (WHO)
classification, gliomas are categorized into four grades, with a
direct correlation between higher grade and poorer prognosis.
Notably, GBM stands out as the most malignant subtype.
Characterized by a suppressive immune microenvironment
and a grim prognosis, GBM stands as one of the most
challenging tumors, prone to recurrence and imposing a
substantial societal burden (Chen et al., 2021).

There is mounting evidence that the immunosuppressive
environment of GBM is not only mediated by the
immunosuppressive cells and molecules described above but
also has many connections to the gut microbiota that
contribute to the development of GBM (5). The human gut
microbiota contains microbes with diverse properties and
functions. Imbalance in the gut microbiota refers to the
inability of bacteria in the human environment to maintain a
dynamic balance, resulting in an imbalance of gut microbiota.
Bacteria in the human environment are unable to maintain
homeostasis, leading to inflammation and immunosuppression,
and the gut microbiota is particularly responsive to the
presence of tumors (Ferreiro et al., 2018; Sepich-Poore et al.,
2021). In recent years, the role of the gut microbiota in
tumors has been extensively studied. In neurodegenerative
diseases and tumors of the central nervous system (CNS),
the gut microbiota establishes interactions between the gut
and the CNS in complex and as yet unclear ways (Fung et al.,
2017).

Given the ethical issues and costs associated with clinical
trials, determining causation becomes challenging (Bothwell
and Podolsky, 2016). Many studies investigating the
relationship between the gut microbiota and tumors have
primarily employed case-control designs, introducing
difficulty in establishing the temporal sequence between
changes in the composition of the gut microbiota and the
onset of tumors (de Clercq et al., 2021; Bellerba et al., 2022;
Reichard et al., 2022). In light of these challenges, Mendelian
randomization (MR) emerges as a robust approach, utilizing
single nucleotide polymorphisms (SNPs) as instrumental
variables (IV) derived from genome-wide association studies
(GWAS) to ascertain causality between exposure and outcome
(Sekula et al., 2016). Consequently, our present study employs
Mendelian randomization methods to analyze the causal
association between gut microbiota and glioblastoma
multiforme (GBM), providing insights for potential clinical
interventions for GBM.

2 Materials and methods

2.1 Study population

As illustrated in Figure 1, our study outlines the two-sample MR
investigation employed to explore the causal association between the
gut microbiota and GBM. Subsequently, rigorous quality controls,
including heterogeneity and gene pleiotropy tests, were executed to
validate the dependability of the causal findings. In enhancing the
precision of causal effect estimation, adherence to three crucial
assumptions is imperative when utilizing SNPs as IVs in MR
analysis (Sung et al., 2021): IVs must be closely aligned with the
exposure factor; (Ostrom et al., 2023) IVs should exhibit no
correlation with confounding factors; (Omuro and DeAngelis,
2013); IVs must exclusively influence outcomes through
exposure, avoiding other pathways (Figure 2).

The main exposure factor in our study is the gut microbiota, and
we investigate human genetics within the context of studying the gut
microbiota. This investigation is conducted as part of an
international consortium known as MiBioGen (Kurilshikov et al.,
2021). Our study encompasses data from the human gut microbiota
of 18,340 European individuals derived from 24 population-based
cohorts. After adjustment for age, sex, technical covariates, and
genetic principal components, spearman’s correlation analysis was
performed to identify genetic loci that affected the covariate-
adjusted abundance of bacterial taxa. Following the exclusion of
15 genera lacking specific species names, we identified 196 bacterial
taxa, comprising 9 phyla, 16 orders, 20 orders, 32 families, and
119 genera.

The outcome variable we focus on is GBM, and the GWAS
dataset associated with GBM came from a publicly available GWAS
meta-analysis that included 91 cases and 218,701 controls of
European ancestry (Sudlow et al., 2015). The GWAS meta-
analysis, a prospective cohort study, systematically gathers
comprehensive genetic and phenotypic data from approximately
500,000 individuals across the UK. Each participant contributes a
wealth of phenotypic and health-related information. Genome-wide
genotype data were collected for all participants by linking health
and medical records to provide comprehensive follow-up
information.

2.2 Selection of instrumental variables

Single nucleotide polymorphisms (SNPs) are the most
frequently utilized genetic variations in MR Analysis, which
mainly refers to the DNA sequence diversity caused by a change
in a single nucleotide at the genomic level. In this study, SNPs
significantly associated with the relative abundance of 196 gut
microbiota were selected as the available instrumental variables
(IVs). Previous studies have shown that the inclusion of multiple
instrumental variables enhances the explanatory power of the
observed variation and enhances the accuracy and reliability of
the analyzed results. Therefore, in this study, the selection of IVs was
based on the results of correlation analysis where significance was
determined at P < 1 × 10−5. The criteria for linkage disequilibrium
were set at R2 < 0.001 and a genetic distance of 10,000 kb, whereby

Frontiers in Genetics frontiersin.org02

Wang et al. 10.3389/fgene.2023.1308263

53

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1308263


FIGURE 1
The study design of the present MR study of the associations of gut microbiota and GBM. Abbreviations: GBM, glioblastoma; LD, linkage
disequilibrium, which used to measure the correlations between SNPs; IVW, Inverse Variance Weighted, the main analyses to evaluate the relationship
between exposure and outcome; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic biases in
the SNPs and correct the pleiotropic effects; MR, Mendelian randomization; SNP, single nucleotide polymorphism, as instrumental variables for the
exposures and outcomes.

FIGURE 2
The study design of the present MR study of the associations of gut microbiota and GBM. Abbreviations: GBM, glioblastoma; LD, linkage
disequilibrium, which used to measure the correlations between SNPs; IVW, Inverse Variance Weighted, the main analyses to evaluate the relationship
between exposure and outcome; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic biases in
the SNPs and correct the pleiotropic effects; MR, Mendelian randomization; SNP, single nucleotide polymorphism, as instrumental variables for the
exposures and outcomes.
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highly correlated SNPs were excluded to ensure the independence of
the included SNPs from each other. Finally, SNPs associated with
the relative abundance of gut microbiota were projected to the
GWAS pooled data of GBM, and the corresponding statistical
parameters were extracted. Utilizing statistical parameters
associated with identical loci in the relative abundance of gut
microbiota and the GWAS results for GBM, the data were
harmonized. This harmonization ensured that the effect values
for both exposure and outcome corresponded to the same effect
allele.

2.3 Statistical analysis

In this study, Inverse Variance Weighted (IVW), MR-Egger,
Weighted Median (WME) were used to estimate the dependent
effects. The IVW method operates under the assumption that all
genetic variants are valid IVs. It employs the ratio method to
calculate the causal effect values for individual instrumental
variables, subsequently summarizing each estimate through a
weighted linear regression to derive the total effect value.
Notably, the main divergence between the MR-Egger method and
the IVWmethod lies in the regression, which takes into account the
presence of an intercept term. Conversely, the WME method
strategically leverages the intermediate effects of all available
genetic variants, obtaining estimates by weighting the inverse
variance of the correlation of each SNP with the outcome.

Since the IVWmethod exhibits higher test efficacy compared to
other MR methods, we chose it as the preferred method for
estimating causal effects in this study. Additionally, for enhanced
result interpretation, the study transformed Beta (β) values obtained
from the results into Odds Ratios (OR), while simultaneously
calculating the 95% confidence intervals (CI). To assess the
association of effect estimates for causality, which might be
influenced by weak instrumental bias, the strength of IV was
evaluated using the F statistic. This statistic was calculated using
the following equation: F = R2 (n-k-1)/k (1-R2), where R2 represents
the variance explained by IV (for each gut microbiota), and n is the
sample size. The value of R2 was estimated using the minor allele
frequency (MAF), and b values were determined by the equation:
R2 = 2 × MAF × (1-MAF) × b2.

In addition, for the purpose of further testing the stability and
reliability of the results, quality control included sensitivity analysis
and heterogeneity testing, as well as a gene multiplicity test.
Sensitivity analysis was performed using the leave-one-out
method, where the combined effect values of the remaining SNPs
were calculated by sequentially deleting individual SNPs, and the
effect of each SNP on the results was assessed. Heterogeneity testing
was conducted using the Cochran Q test to determine the
heterogeneity of the SNPs, aiming to assess the possible bias in
the estimation of the causal effect due to the measurement error of
SNPs caused by different analysis platforms, experimental
conditions, and analyzing populations. Horizontal gene
pleiotropy tests were employed to assess whether IVs affected
outcomes through pathways other than exposure, utilizing
intercept terms from MR-Egger regression. Finally, reverse MR
was performed to analyze whether there was a reverse causal
relationship between GBM and meaningful gut microbiota. MR

analyses and quality control for this study were conducted using
version 4.0.3 of R and additionally version 0.5.6 of the
TwoSampleMR software package.

3 Results

3.1 Two-sample Mendelian randomization

The results of this study involving gut microbiota associated
with GBM are presented in Supplementary Table S1. After a series of
quality control steps, 136 independent SNPs from 9 gut microbiota
were associated with GBM. The F-statistics for the gut microbiota
ranged from 14.58 to 88.42, and all met the threshold of greater than
10, suggesting that they are unlikely to be affected by weak
instrumental bias (Supplementary Table S2). Briefly, we identified
nine gut microbiota associated with GBM. After undergoing BH
correction, the family.Ruminococcaceae was found to play a
protective role against GBM (Table 1). Details of the IVs used
are listed in Supplementary Table S3.

3.2 Causal effects of gut microbiota on GBM

Nine gut microbiota were screened for correlation with GBM
according to the IVW (Figure 3). Among them,
family.Peptostreptococcaceae (OR: 3.83, 95% CI: 1.02–14.35, p =
0.046) and genus.Eubacterium brachy group (OR: 2.85, 95% CI:
1.16–7.01, p = 0.023) were found to increase the risk of GBM, while
family.Ruminococcaceae (OR: 0.04, 95% CI: 0.01–0.19, p = 9.51E-
05), genus.Anaerostipes (OR: 0.16, 95% CI: 0.03–0.83, p = 0.029),
genus.Faecalibacterium (OR: 0.16, 95% CI: 0.04–0.65, p = 0.011),
genus.Lachnospiraceae UCG004 (OR: 0.20, 95% CI: 0.04–0.96, p =
0.045), genus.Phascolarctobacterium (OR: 0.16, 95% CI: 0.03–0.76,
p = 0.021), genus.Prevotella7 (OR: 0.30, 95% CI: 0.13–0.68, p =
0.004), and genus.Streptococcus (OR: 0.21, 95% CI:0.05–0.97, p =
0.046) showed a negative correlation with GBM. However, only
family.Ruminococcaceae was found to be negatively associated with
the risk of GBM after strict BH correction (PFDR = 0.003).

The WME method has suggested that
family.Peptostreptococcaceae (OR: 6.42, 95% CI: 1.09–37.71, p =
0.040) and genus.Eubacterium brachy group (OR: 4.70, 95% CI:
1.46–15.14, p = 0.009) are associated with an increased risk of GBM,
while family.Ruminococcaceae (OR: 0.08, 95% CI: 0.01–0.79, p =
0.031) and genus.Prevotella7 (OR: 0.28, 95% CI: 0.10–0.84, p =
0.023) show a negative correlation with GBM. However, there
was no observed association between genus.Anaerostipes,
genus.Faecalibacterium, genus.Lachnospiraceae UCG004,
genus.Phascolarctobacterium, genus.Streptococcus and GBM
(Figures 3, 4).

Additionally, the MR-Egger regression intercept did not show
evidence of pleiotropy of the gutmicrobiota with GBM (All intercept
p > 0.05) (Table 2; Supplementary Table S3). MRPRESSO regression
did not identify outliers (All intercept p > 0.05).The results of
heterogeneity analysis confirmed the accuracy of the findings
(Table 2; Supplementary Table S4). Meanwhile, the data’s
robustness was further confirmed by the leave-one-out results,
which demonstrated a consistent negative association between
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TABLE 1 Effect estimation of the association between meaningful gut microbiota and risk of GBM in MR analysis. Abbreviations: GBM, glioblastoma; MR,
Mendelian randomization analysis; SNPs, Number of single nucleotide polymorphism. CI, confidence interval; OR, odds ratio; P FDR, p-value was calculated by the
Benjamini-Hochberg method.

Gut microbiota Outcome SNPs Methods OR (95% CI) p-value P FDR

family.Peptostreptococcaceae GBM

13 MR-Egger 2.34 (0.10–52.17) 0.603

13 Weighted median 6.42 (1.09–37.71) 0.040

13 IVW 3.83 (1.02–14.35) 0.046 0.566

family.Ruminococcaceae GBM

9 MR-Egger 0.02 (3.89E-4-0.72) 0.070

9 Weighted median 0.08 (0.01–0.79) 0.031

9 IVW 0.04 (0.01–0.19) 9.51E-5 0.003

genus.Anaerostipes GBM

13 MR-Egger 2.94 (0.01–1058.94) 0.727

13 Weighted median 0.34 (0.04–2.78) 0.312

13 IVW 0.16 (0.03–0.83) 0.029 0.680

genus.Eubacterium brachy group GBM

10 MR-Egger 0.96 (0.03–36.27) 0.984

10 Weighted median 4.70 (1.46–15.14) 0.009

10 IVW 2.85 (1.16–7.01) 0.023 0.680

genus.Faecalibacterium GBM

18 MR-Egger 0.31 (0.02–4.96) 0.434

18 Weighted median 0.18 (0.02–1.52) 0.115

18 IVW 0.16 (0.04–0.65) 0.011 0.632

genus.Lachnospiraceae UCG004 GBM

24 MR-Egger 0.09 (1.42E-4-61.80) 0.491

24 Weighted median 0.32 (0.04–2.53) 0.281

24 IVW 0.20 (0.04–0.96) 0.045 0.758

genus.Phascolarctobacterium GBM

12 MR-Egger 0.03 (1.20E-5-75.19) 0.414

12 Weighted median 0.65 (0.08–5.60) 0.694

12 IVW 0.19 (0.04–0.93) 0.041 0.680

genus.Prevotella7 GBM

27 MR-Egger 0.82 (0.01–92.06) 0.936

27 Weighted median 0.28 (0.10–0.84) 0.023

27 IVW 0.30 (0.13–0.68) 0.004 0.458

genus.Streptococcus GBM

10 MR-Egger 0.02 (6.59E-5- 3.57) 0.159

10 Weighted median 0.27 (0.03–2.16) 0.215

10 IVW 0.21 (0.05–0.97) 0.046 0.758
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family_Ruminococcaceae and GBM risk (Figure 5; Supplementary
Table S5).

3.3 Inverse MR analysis

In the reverse MR, GBM was selected as an exposure factor.
However, the results of the MR study did not support a causal
relationship between GBM and altered gut microbiota (IVW, OR =
1.012, 95% CI: 0.807–1.268, p = 0.921) (Supplementary Table S6).

4 Discussion

Our study is the first to identify the existence of a direct causal
association between gutmicrobiota andGBM, indicating that an elevated
abundance of gut microbiota, such as the family.Ruminococcaceae, is
associated with a reduced risk of developing GBM. Ruminococcus was
one of the first gastrointestinal bacteria to be discovered and plays a
crucial role in metabolism (Mizrahi et al., 2021). A study on the
inflammatory properties of the family.Ruminococcaceae found that it
produces metabolites in the form of glucomannan polysaccharides, and
that these polysaccharides can prime immune system cells (Teng et al.,
2022). During the development of GBM, when the BBB is disrupted in
the body and circulating immune cells are suppressed in a
immunosuppressive environment, gut microbiota such as C.
tumefaciens can further enhance the stimulation of immune system

cell production. Thus, this bacteriummay be a potential protective factor
in the development of GBM.

Genus Faecalibacterium has been reported as one of the major
butyrate producers found in the intestine (Lopez-Siles et al., 2017). In
vitro studies have demonstrated that butyrate exhibits antitumor
effects, such as inhibiting tumor growth by reducing tumor
necrosis factor (TNF) secretion in intestinal epithelial cells and
inducing differentiation and apoptosis of tumor cells. Butyrate, as
a short-chain fatty acid, serves as a histone deacetylase (HDAC)
inhibitor, thereby impeding the activity and life cycle of cancer cells
(Modoux et al., 2022). Moreover, butyrate, as a short-chain fatty acid
and HDAC inhibitor, enhances CPT1A activity to promote induced
regulatory T-cell (iTreg) differentiation. iTreg plays a pivotal role in
immunosuppression and maintaining immune homeostasis in
brain tissue (He et al., 2022). Genus.Anaerostipes also belongs to
butyrate-producing bacteria and exhibits anti-inflammatory and
immunomodulatory functions (Zhang et al., 2016). Within the
genus_LachnospiraceaeUCG004 can reduce tumorigenesis by
modulating the function of tumor immunosurveillance (Carasso
et al., 2021). However, further studies are needed to explore its
potential in terms of GBM risk protection.Therefore, we suggest
that these gut microbiota may play a role in GBM development by
modulating immunity.

A growing body of evidence underscores the pivotal role of the
gut microbiota in tumor therapy, highlighting its key involvement in
both local gut immunity and systemic immunity (Park et al., 2022).
A robust microbiota employs direct and indirect mechanisms to

FIGURE 3
Scatter plots for the causal association between gutmicrobiota and GBM. Abbreviations: GBM, glioblastoma; OR, odds ratio; CI, confidence interval.
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resist the colonization and invasion of harmful microorganisms,
emerging as an integral component of the human defense against
external threats. With this inmind, we focused on exploring whether
changes in gut flora abundance are linked to the development of
GBM as the central theme of this MR. The brain, characterized by a
unique immune environment, establishes a crucial link between
the gut microbiome and brain tumors through the gut-brain axis.
The principal immune privilege in this connection arises from the
presence of the blood-brain barrier (BBB), a highly specialized
membrane barrier comprised of endothelial cells. The BBB
regulates the entry of soluble substances, including antibodies,

metabolites, signaling molecules, and immune cells, into the CNS
(Obermeier et al., 2013). Experimental studies have elucidated
bidirectional communication pathways linking the gut and the
brain, encompassing diverse mechanisms such as neural,
endocrine, and inflammatory pathways. These pathways are
subject to modulation by alterations in gut wall integrity and
BBB permeability. Comparable mechanisms are observed between
the gut flora and GBM. Notably, when GBM manifests, it disrupts
the BBB, facilitating the infiltration of immune cells from the body
into the brain parenchyma. Within this specific microenvironment,
these immune cells might experience a context where their

FIGURE 4
Scatter plots for the causal association between 9 gut microbiota and GBM. (A) A. family.Peptostreptococcaceae; (B) family.Ruminococcaceae; (C)
genus.Anaerostipes; (D) genus.Eubacterium brachy group; (E) genus.Faecalibacterium; (F) genus.Lachnospiraceae UCG004; (G)
genus.Phascolarctobacterium; (H) genus.Prevotella7; (I) genus.Streptococcus.
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functionality becomes suppressed (Oberoi et al., 2016; Zhou et al.,
2017). This immunosuppression potentially hampers the efficacy of
GBM immunotherapy. Hence, there arises a critical consideration:
balancing the composition and abundance of gut microbiota could
attenuate immunosuppression within the microenvironment
surrounding GBM. This modulation may, in turn, potentiate
specific therapeutic effects of GBM.

Gut microbiota may regulate astrocyte activity through
microbial metabolism that activates the astrocytic aromatic
hydrocarbon receptor (AHR). It has been demonstrated that gut
commensal microbiota degrade ichthyosine, producing metabolites
that reach the CNS and activate the AHR in astrocytes, thereby
limiting CNS inflammation (Rothhammer et al., 2018). Aromatic
hydrocarbon receptor signaling intricately regulates peripheral T cell
differentiation. Additionally, peripheral T cells recruited to the CNS

exert control over astrocytic and microglial responses (Rothhammer
and Quintana, 2019). Gramarzki et al. reported that aromatic
hydrocarbon receptors in GBM cells drive TGF-B expression.
Moreover, they highlighted that aromatic hydrocarbon receptor
signaling promotes an immunosuppressive microenvironment in
GBM (Gramatzki et al., 2009). These findings collectively suggest
that gut microbiota may wield a pivotal role in GBM immune
evasion by modulating AHR and, consequently, glioma
development. Furthermore, they propose the potential of gut
microbiota as therapeutic targets for GBM. The microbiota can
regulate local and systemic intestinal immunity, particularly in the
induction and maturation of immune cells in the nervous system.
Gut microbiota dysregulation has been reported to down-regulate
granulocyte macrophage colony-stimulating factor (GM-CSF)
signal transduction, leading to significant expression of reactive

TABLE 2 Heterogeneity and sensitivity analyses of MR. Abbreviations: MR, Mendelian randomization analysis; SNPs, Number of single nucleotide polymorphism;
GBM, Glioblastoma; IVW, Inverse Variance Weighted; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier.

Gut microbiota Outcome Methods Q P Intercept P MR-PRESSO

family.Peptostreptococcaceae GBM

IVW 12.152 0.434 0.044 0.735 0.530

MR-Egger 12.019 0.362

family.Ruminococcaceae GBM

IVW 5.115 0.745 0.082 0.670 0.600

MR-Egger 4.917 0.670

genus.Anaerostipes GBM

IVW 8.193 0.770 −0.191 0.338 0.800

MR-Egger 7.190 0.783

genus.Eubacterium brachy group GBM

IVW 8.011 0.533 0.141 0.562 0.850

MR-Egger 7.645 0.469

genus.Faecalibacterium GBM

IVW 7.745 0.560 −0.083 0.586 0.540

MR-Egger 7.422 0.492

genus.Lachnospiraceae UCG004 GBM

IVW 8.505 0.668 0.051 0.817 0.720

MR-Egger 8.448 0.585

genus.Phascolarctobacterium GBM

IVW 5.796 0.670 0.207 0.530 0.660

MR-Egger 5.359 0.616

genus.Prevotella7 GBM

IVW 5.465 0.858 −0.142 0.683 0.870

MR-Egger 5.287 0.809

genus.Streptococcus GBM

IVW 11.041 0.607 0.207 0.343 0.640

MR-Egger 10.066 0.610
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oxygen species (ROS) in activated immature myelocytes, thereby
increasing the inhibitory activity of MDSC against T cells (Deh et al.,
2019). In addition, dysregulation of the gut microbiota affects the
balance between anti-inflammatory Tregs and pro-inflammatory
Th17 cells (Chen and Tang, 2021), downregulates Foxp3 expression
on tumor cells (Fan et al., 2022), and leads to inhibition of glioma
cell growth and apoptosis.

Changes in the gut microbiota composition alter gut immune-
brain communication and promote GBM development by creating a
tumor-tolerant microenvironment in the CNS (DAlessandro et al.,
2020). Recent studies have shown that after the development of
GBM, a significant increase in the structure of the bacterial flora is

observed, with a significant increase in Bacteroidetes, a decrease in
the level of Bacteroidetes thickeniensis, an increase in the number of
Ackermannia and Verrucomicrobia, and a decrease in the intestinal
metabolites propionic, butyric, and acetic acids (Dono et al., 2020).
Disruption of the gut microbiota further alters the tumor
microenvironment and affects the antitumor efficacy of
chemotherapy (Viaud et al., 2013; Daillère et al., 2016). The
effects of chemotherapy have been shown to be remarkable in
the treatment of tumors. Notably, the microbiota changes
differently at different stages after temozolomide treatment.
Specifically, there is an increase in the number of Ackermannia,
Bifidobacterium, and Verrucomicrobium 7 days after the first

FIGURE 5
Scatter plots for the causal association between 9 gut microbiota and GBM. (A) family.Peptostreptococcaceae; (B) family.Ruminococcaceae; (C)
genus.Anaerostipes; (D) genus.Eubacterium brachy group; (E) genus.Faecalibacterium; (F) genus.Lachnospiraceae UCG004; (G)
genus.Phascolarctobacterium; (H) genus.Prevotella7; (I) genus.Streptococcus.
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temozolomide treatment. Additionally, an increase in the number of
Ackermannia is observed in patients who responded positively to
immunotherapy with PD-1 blockade, suggesting its potential role in
mediating the tumor response to immunotherapy (Routy et al.,
2018).

The strength of this study lies in the identification of a causal
relationship, providing potential gut microbiota candidates for
subsequent functional studies. However, several limitations
should be considered: (Sung et al., 2021): the MR analysis
utilized GWAS data from a European population, necessitating
replication in diverse populations; (Ostrom et al., 2023); the
study included a limited range of gut microbiota; obtaining
GWAS data from additional gut microbiota was crucial for a
more comprehensive exploration of their association with GBM;
(Omuro and DeAngelis, 2013); while MR is a highly efficient causal
analysis method, validating the potential causal link between gut
microbiota and GBM requires animal experiments. Finally, (Chen
et al., 2021), the causal relationship between gut microbiota and
GBM is multifaceted; exploring the etiology and pathogenesis
demands a multi-perspective investigation.
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Genetic causality and site-specific
relationship between sarcopenia
and osteoarthritis: a bidirectional
Mendelian randomization study
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Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,
4College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,
5School of TCM, Macau University of Science and Technology, Macau, China, 6Affiliated Hospital of
Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China

Background: Previous studies demonstrated a controversial relationship between
sarcopenia (SP) and osteoarthritis (OA) and their genetic causality is unclear. Thus,
we conducted a Mendelian randomization (MR) analysis to evaluate the possible
causal association between sarcopenia-related traits (appendicular lean mass
(ALM), grip strength, usual walking pace) and OA.

Method:We used pooled genetic data from the UK Biobank for ALM(n = 450,243),
left-hand grip strength (n = 461,026), right-hand grip strength (n = 461,089) and
usual walking pace (n = 459,915). Moreover, summary statistics for OA were
obtained from the latest study conducted by the Genetics of Osteoarthritis
Consortium, including all OA (n = 826,690), hand OA (n = 303,7782), hip OA
(n = 353,388) and knee OA (n = 396,054). The primary method for estimating
causal effects was the inverse-variance weighted (IVW) method, with the utilizing
of false discovery rate adjusted p values (PFDR). Additional MR methods such as
MR-Egger regression, MR pleiotropy residual sum and outlier (MR-PRESSO),
weighted median were employed as supplementary analyses.

Results: We discovered ALM (odds ratio (OR) = 1.103, 95% confidence interval
(CI) = 1.052–1.156, PFDR = 2.87E-04), hand grip strength (left, IVWOR= 0.823, 95%
CI = 0.712 to 0.952, PFDR = 0.020; right, OR = 0.826, 95% CI = 0.718 to 0.950,
PFDR = 0.020), and usual walking pace (OR = 0.339, 95% CI = 0.204 to 0.564,
PFDR = 2.38E-04) were causally associated with OA risk. In the reverse MR analysis,
we identified a causal effect of OA on ALM (β = −0.258, 95% CI = −0.369 to 0.146,
PFDR = 0.6.07E-06), grip strength (left, β = −0.064, 95% CI = −0.104 to 0.024,
PFDR = 0.002; right, β= −0.055, 95%CI = −0.095 to 0.014, PFDR = 0.008), and usual
walking pace (β = −0.104, 95% CI = −0.147 to 0.061, PFDR = 1.61E-05).
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Conclusion: This present study suggests an obvious causality of SP on OA, with
condition exhibiting site-specific effects, while evidence was also provided for the
causal effect of OA on SP.

KEYWORDS

sarcopenia, osteoarthritis, Mendelian randomization, degenerative musculoskeletal
diseases, causal relationship

Introduction

Sarcopenia (SP) and osteoarthritis (OA) as degenerative
musculoskeletal diseases (DMD) emerged as major challenges for
the aging population (Yin et al., 2023). SP is a muscle disease (muscle
failure) (Cruz-Jentoft et al., 2019), characterized by an accelerated
loss of muscle mass and function (Cruz-Jentoft and Sayer, 2019).
Currently, about 50 million people worldwide suffer from SP, and its
prevalence increases with age (Hida et al., 2014). Some studies have
shown that the global prevalence of SP in people over 60 years old
ranges from 10.00% to 27.00%, and in people over 80 years old is as
high as 50.00% (Therakomen et al., 2020; Petermann-Rocha et al.,
2022). OA is a degenerative disease with clinical manifestations of
chronic pain, joint stiffness, and swelling (Cho et al., 2021), which
afflicts more than 500 million people worldwide and has become the
leading cause of chronic pain and disability in older adults (Wen and
Xiao, 2022). As SP and OA are often diagnosed as comorbidities
clinically, epidemiologic studies are increasingly examining the
relationship between these two prevalent diseases.

Several studies have demonstrated a significant interaction between
SP and OA. SP or its related traits are likely to be associated with
outcomes inOA (predominantly OA of the knee). James SAndrews et al.
showed that ALMand grip strengthmay be related to the development of
KOA in oldermen (Andrews et al., 2021).On the other hand, a systematic
review and meta-analysis showed that the prevalence of sarcopenia was
more than twice as high in patients with osteoarthritis of the knee
compared with controls (Pegreffi et al., 2023). However, there are also
some studies do not agree with the aforementioned notion, and they
consider the interconnection of the two to be highly controversial (Jones
et al., 2021;Mezian et al., 2021; Tzartza et al., 2023). In addition, for ethical
and practical purposes, a causal association between the two diseases
could not be proved by a randomized controlled trial (RCT).

Mendelian randomization (MR) is a data analysis technique used to
evaluate etiologic inferences in epidemiologic studies. The technique
utilizes genetic variation as an instrumental variable (IV) to estimate
reliable causal associations between exposures and outcomes (Burgess
et al., 2019; Richmond and Davey Smith, 2022). Based on a two-sample
bidirectional MR framework, we examined the potential causality of all
OA, hand OA, hip OA, and knee OA with SP-related traits
(appendicular lean mass (ALM), hand grip strength (left), hand grip
strength (right), and usual walking pace).

Materials and methods

Study design overview

Figure 1 illustrates the design of our bidirectional MR study. We
first estimated the causal effect of SP-related traits on OA and then

assessed the causal effect of OA on SP-related traits. Genetic variants
were considered as IVs only if they met the following three strict core
assumptions. First, genetic variants were highly correlated with
exposure. Second, genetic variants are not associated with
confounding factors. Finally, genetic variation cannot act directly
on the outcome, its effect on the outcome can only be reflected
by exposure.

Data sources for sarcopenia-related traits

All summary-level genetic data for three SP-related traits were
obtained from the UK Biobank (UKB). UKB is a large-scale
repository of biomedical genes and information resources,
containing about half a million people. The repository includes
samples of volunteers’ genetic information, lifestyle choices, and
pedigree data (Sudlow et al., 2015). Identification of ALM, hand grip
strength, and usual walking pace as consensus diagnostic criteria for
SP was based on the report of the European Working Group on
Sarcopenia in Older People (EWGSOP) (Cruz-Jentoft et al., 2010).
In terms of the ALM, pooled data were analyzed for 450,243 UKB
cohort participants, and ALM-related values were quantified and
adjusted (Pei et al., 2020). Grip strength data were obtained from
UKB’s summary of hand grip strength (left and right) for
461,026 and 461,089 European ethnicity (Mitchell et al., 2019),
calibrated to hand size, and adjusted for factors such as age and sex.
Finally, for the “usual walking pace”, data was similarly summarized
from the GWAS summary data collected by the UKB for
459,915 European populations (Mitchell et al., 2019).

Data sources for all and site-specific OA

Summary statistics for all OA and its specific sites were
obtained from the Genetics of Osteoarthritis (GO)
Consortium’s GWAS meta-analysis involving 826,690
individuals (177,517 patients with OA and 649,173 controls)
from nine different populations (Boer et al., 2021). OA was
defined by the GO based on self-reported status, hospital
diagnosis, the 10th edition of the International Classification of
Diseases (ICD-10) code, or TREAT-OA Consortium-defined
radiology definition. The study identified 100 independently
associated risk variants in 11 OA phenotypes and is the most
recent and comprehensive GWAS analysis known for OA. We
selected four phenotypes for analysis based on research needs: all
OA (n = 826,690), hand OA (n = 303,782), hip OA (n = 353,388)
and knee OA (n = 396,054).

Table 1 shows additional details such as phenotypes of all study
participants.
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Selection of IVs

We first ensured that the SNPs of the three SP-related traits were
genome-wide significant (p < 5E-08). Furthermore, to exclude the
SNPs of strong linkage disequilibrium, we carried out an aggregation
with r2 < 0.001 and kb = 10,000 processes. Then, we also assessed the
strength of IVs based on calculated R2 [R2 = 2 * MAF*(1-MAF) *beta

(Cruz-Jentoft et al., 2019)] and F-statistics [F = R (Cruz-Jentoft et al.,
2019)/(1-R2) * (N-K-1)/K] for each SNP (Burgess et al., 2011). In
order to reduce bias, the IVs with F-statistics less than 10 were
excluded (Hemani et al., 2018a), and the SNPs and their related
data such as F-statistics andR2 for subsequent causal analysis are listed
in Supplementary Table S1. In the reverse MR analysis, the SNP
screening process was consistent with the aforementioned procedure.

FIGURE 1
Generalized diagram of the study process. Abbreviations: OA: osteoarthritis; MR: Mendelian randomization;PFDR: The inverse-variance weighted
(IVW) method with false discovery rate (FDR) adjusted p values.

TABLE 1 Data sources used in this study.

Phenotype Sample size (cases/controls) Population GWAS ID or PMID

ALM 450,243 European ebi-a-GCST90000025

hand grip strength (left) 461,026 European ukb-b-7478

hand grip strength (right) 461,089 European ukb-b-10215

usual walking pace 459,915 European ukb-b-4711

All OA 826,690 (177,517/649,173) Mixed 34,822,786

Hand OA 303,782 (20,901/282,881) Mixed 34,822,786

Hip OA 353,388 (36,445/316,943) Mixed 34,822,786

Knee OA 396,054 (62,497/333,557) Mixed 34,822,786

Abbreviations: ALM: appendicular lean mass; OA, osteoarthritis.
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MR analysis

This study used R software (Version 4.3.0) and the two-sample
MR package (Version 0.5.7) for data analysis (Yavorska and Burgess,
2017). We used the random-effects IVW method as the primary
analytical method for MR estimation. This method was considered
the most reliable in the absence of indications of directional
pleiotropy in the selected IVs (Holmes et al., 2017). In addition,
several sensitivity analyses were carried out, including weighted
median (WM), MR-Egger, MR pleiotropy residual sum, and outlier
(MR-PRESSO) test. Within this framework, the WM selected the
median estimate to calculate the causal effects (Burgess et al., 2017).
The MR-Egger regression method effectively tests the null causality
hypothesis and gives consistent estimates of causality even if no
genetic variation is valid. Additionally, the MR-Egger regression
method is robust to horizontal pleiotropy (Bowden et al., 2015). The
MR-PRESSO method detects pleiotropy, removes potentially
pleiotropic IVs (outliers), and provides outlier-adjusted estimates
(Verbanck et al., 2018). In order to correct the problem of multiple
testing relatively gently, the p-value was adjusted using the false
discovery rate (FDR) which is also called q value in the main IVW
MR analysis, and the significance of causal inference was set to less
than 0.05 (Chen et al., 2021). In addition, the statistical power was
calculated with an online sample size and power calculator for MR
(https://sb452.shinyapps.io/power/), and the results are shown in
Supplementary Table S4.

Heterogeneity was assessed using Cochran’s Q test, and p <
0.05 was considered statistically significant (Bowden et al., 2016).

Moreover, we performed pleiotropic tests using MR-Egger intercept
test and MR-PRESSO global testing to ensure that IVs do not
influence the risk of outcome through other confounding factors
or other biological pathways unrelated to exposure (Hemani et al.,
2018b). Furthermore, we performed leave-one-out analyses to
ensure the reliability of associations with individual SNPs.

Results

Overview

Based on the inverse-variance weighted (IVW) method, we
observed significant evidence of a bi-directionally causal
relationship between SP and OA. After FDR correction, most of
the meaningful results were still retained. Additionally, the results
were corroborated using other MR analysis methods.

The causal effects of SP-related traits on OA

After accounting for the independence of the genetic variation,
none of the IVs for ALM, hand grip strength (left), hand grip
strength (right), and usual walking pace that we obtained were
without linkage disequilibrium (kb > 10,000 and r2 < 0.001).
Furthermore, all IVs reached genome-wide significance (p < 5E-
08). Additionally, IVs with an F-statistic of less than 10 were
considered weak instruments and were omitted from the MR

TABLE 2 Sensitivity and IVW analysis of the causal effects of sarcopenia-related traits on osteoarthritis.

Exposures Outcomes No. of IVs Heterogeneity test MR Egger IVW

Cochran’s Q (P) Intercept P OR (95% CI) P PFDR

Appendicular lean mass All OA 188 314.35 (<0.001) 0.002 0.160 1.103 (1.052,1.156) 5.38E-05 2.87E-04

Hand grip strength (left) All OA 40 32.320 (0.767) −0.001 0.827 0.823 (0.712,0.952) 0.009 0.020

Hand grip strength (right) All OA 44 32.080 (0.889) −0.001 0.706 0.826 (0.718,0.950) 0.007 0.020

Usual walking pace All OA 18 63.293 (<0.001) 0.008 0.666 0.339 (0.204,0.564) 2.98E-05 2.38E-04

Appendicular lean mass Hand OA 196 229.148 (0.047) −4.86E-04 0.852 1.123 (1.014,1.243) 0.026 0.052

Hand grip strength (left) Hand OA 52 84.381 (0.002) −0.013 0.213 0.817 (0.535,1.250) 0.352 0.402

Hand grip strength (right) Hand OA 59 63.282 (0.295) −0.008 0.326 0.768 (0.550,1.073) 0.122 0.195

Usual walking pace Hand OA 18 28.491 (0.040) 0.015 0.663 1.026 (0.412,2.556) 0.956 0.956

Appendicular lean mass Hip OA 194 320.495 (<0.001) 0.004 0.070 1.095 (1.001,1.197) 0.048 0.085

Hand grip strength (left) Hip OA 44 31.552 (0.902) 0.003 0.608 1.159 (0.885,1.518) 0.282 0.348

Hand grip strength (right) Hip OA 50 37.682 (0.880) 0.001 0.847 1.194 (0.930,1.534) 0.165 0.240

Usual walking pace Hip OA 16 13.983 (0.527) 0.013 0.546 0.474 (0.272,0.827) 0.008 0.020

Appendicular lean mass Knee OA 205 472.488 (<0.001) 0.001 0.606 1.246 (1.151,1.350) 6.07E-08 9.71E-07

Hand grip strength (left) Knee OA 50 94.915 (<0.001) −0.013 0.051 1.182 (0.902,1.548) 0.226 0.301

Hand grip strength (right) Knee OA 59 135.377 (<0.001) −0.004 0.530 0.991 (0.753,1.305) 0.950 0.956

Usual walking pace Knee OA 18 63.585 (<0.001) 0.010 0.744 0.299 (0.136,0.659) 0.003 0.011

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; PFDR, false discovery rate (FDR) adjusted p values; CI, confidence interval; OA,

osteoarthritis.
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analysis thus reducing the bias in the estimation of the IVs.
Ultimately, we selected 583 SNPs, 127 SNPs, 144 SNPs, and
47 SNPs as IVs for ALM, hand grip strength (left), hand grip
strength (right), and usual walking pace, respectively. Details of
the IVs for SP-related traits are displayed in Supplementary
Tables S1, S2.

As displayed in Table 2, a portion of Cochran’s Q test was used
to detect heterogeneity (p < 0.05), hence we used the IVWmethod in
the random effects model. In the IVWmodel, adjusted for the FDR,
genetically elevated SP-related traits levels were causally associated
with all OA, ALM (Odds ratio (OR) = 1.103, 95% confidence interval
(CI) = 1.052–1.156, PFDR = 2.87E-04), hand grip strength (left, OR =
0.823, 95% CI = 0.712 to 0.952, PFDR = 0.020; right, OR = 0.826, 95%
CI = 0.718 to 0.950, PFDR = 0.020), and usual walking pace (OR =
0.339, 95% CI = 0.204 to 0.564, PFDR = 2.38E-04). The results of the
WM and MR-PRESSO were consistent with the IVW (Table 3). No
evidence of directional pleiotropy in theMR-Egger intercept test was
observed for all IVs (p for intercept >0.05) (Table 2). Leave-one-out
test indicated that SNPs without large effect sizes skewed the
estimates (Supplementary Figure S1).

In the site-specific OA analysis, considering the results of the
heterogeneity test, the IVW in the random effects model was used.
In the IVWmodel, we observed that genetically determined levels of
ALM were causally associated with knee OA (OR = 1.246, 95% CI =
1.151 to 1.350, PFDR = 9.71E-07), usual walking pace was negatively
correlated with hip OA (OR = 0.474, 95% CI = 0.272 to 0.827, PFDR =
0.020) and knee OA (OR = 0.299, 95% CI = 0.136 to 0.659, PFDR =
0.011) (Table 2). Moreover, WM and MR-PRESSO reached similar
causal conclusions, and the MR-Egger effect estimate was in the

same direction as IVW, which was considered supportive (Table 3).
Further, no directional pleiotropy was detected for our selected IVs
on MR-Egger analysis (Table 2). Leave-one-out test results were
consistent with the above (Supplementary Figures S2–S4).

The causal effect of OA on SP-related traits

After similar screening criteria, 25 SNPs, 8 SNPs, 28 SNPs, and
22 SNPs were obtained as IVs for all OA, hand OA, hip OA, and
knee OA, respectively (Supplementary Tables S1, S3). As Table 4
illustrates, heterogeneity was observed (p < 0.05) between the IVs of
all the selected OA and the traits associated with SP. Therefore, we
used the random effects model of IVW. The results of our analysis
showed that the onset and progression of OA could lead to the
worsening of sarcopenia-related traits [ALM (IVW β = −0.258, 95%
CI = −0.369 to −0.146, PFDR = 0.6.07E-06), grip strength (left,
β = −0.064, 95% CI = −0.104 to −0.024, PFDR = 0.002; right,
β = −0.055, 95% CI = −0.095 to −0.014, PFDR = 0.008), and usual
walking pace (β=−0.104, 95%CI =−0.147 to−0.061, PFDR = 1.61E-05)].
The WM and MR-PRESSO suggested similar findings, and the beta
values of the MR-Egger are in the same direction (Table 5). MR-Egger
intercept test did not demonstrate directional pleiotropy for our selected
IVs (Table 4). The results of the leave-one-out- test displayed that
SNPs without large effect sizes resulted in biases in the estimates
(Supplementary Figure S5).

In the site-specific analysis, the results of using the IVWmethod
in the random effects model pointed to a negative causal relationship
between hand OA and grip strength (left, β = −0.102, 95%

TABLE 3 Weighted median, MR Egger and MR PRESSO analysis of the causal effects of sarcopenia-related traits on osteoarthritis.

Exposures Outcomes No. of IVs Weighted median MR Egger MR PRESSO

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Appendicular lean mass All OA 188 1.096 (1.029,1.168) 0.004 1.025 (0.916,1.147) 0.670 1.098 (1.095,1.102) 1.08E-04

Hand grip strength (left) All OA 40 0.896 (0.731,1.098) 0.290 0.888 (0.446,1.769) 0.737 0.823 (0.806,0.841) 0.006

Hand grip strength (right) All OA 44 0.924 (0.754,1.131) 0.442 0.928 (0.500,1.722) 0.814 0.826 (0.811,0.841) 0.003

Usual walking pace All OA 18 0.385 (0.236,0.629) 1.40E-04 0.131 (0.002,9.437) 0.366 0.296 (0.268,0.326) 4.85E-05

Appendicular lean mass Hand OA 196 1.138 (0.984,1.315) 0.081 1.146 (0.906,1.448) 0.257 1.123 (1.115,1.131) 0.027

Hand grip strength (left) Hand OA 52 0.934 (0.551,1.582) 0.799 2.540 (0.415,15.543) 0.318 0.817 (0.771,0.867) 0.356

Hand grip strength (right) Hand OA 59 0.697 (0.439,1.107) 0.126 1.496 (0.384,5.822) 0.564 0.768 (0.736,0.802) 0.127

Usual walking pace Hand OA 18 0.774 (0.272,2.202) 0.631 0.180 (0.001,416.109) 0.670 0.788 (0.658,0.945) 0.552

Appendicular lean mass Hip OA 194 1.048 (0.932,1.179) 0.435 0.921 (0.750,1.132) 0.435 1.095 (1.088,1.102) 0.049

Hand grip strength (left) Hip OA 44 1.185 (0.805,1.746) 0.390 0.863 (0.273,2.727) 0.803 1.159 (1.12,1.2) 0.216

Hand grip strength (right) Hip OA 50 1.241 (0.865,1.78) 0.241 1.079 (0.379,3.076) 0.887 1.194 (1.157,1.232) 0.12

Usual walking pace Hip OA 16 0.538 (0.252,1.147) 0.109 0.105 (0.001,12.883) 0.374 0.474 (0.415,0.542) 0.016

Appendicular lean mass Knee OA 205 1.271 (1.155,1.399) 9.32E-07 1.194 (0.995,1.432) 0.057 1.256 (1.25,1.263) 1.04E-08

Hand grip strength (left) Knee OA 50 0.964 (0.697,1.334) 0.824 3.382 (1.174,9.742) 0.029 1.124 (1.083,1.167) 0.385

Hand grip strength (right) Knee OA 59 0.985 (0.744,1.305) 0.919 1.387 (0.472,4.078) 0.555 1.057 (1.022,1.093) 0.675

Usual walking pace Knee OA 18 0.422 (0.204,0.871) 0.020 0.098 (0.001,74.976) 0.502 0.357 (0.306,0.416) 0.008

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; CI, confidence interval; OA, osteoarthritis.
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CI = −0.149 to −0.055, PFDR = 7.23E-05; right, β = -0.104, 95%
CI = −0.152 to −0.057, PFDR = 7.23E-05). Hip OA (β = −0.025, 95%
CI = −0.038 to −0.013, PFDR = 2.62E-04) and knee OA (β = −0.064,
95% CI = −0.087 to −0.04, PFDR = 1.37E-06), remained significantly
causally and negatively correlated with usual walking pace (Table 4).
In addition, we identified that only knee OA was causally related to
ALM in the available site-specific cohorts (β = −0.179, 95%
CI = −0.281 to −0.076, PFDR = 0.001), the results of all other MR
analysis methods were similar to those of the IVW (Table 5).
Heterogeneity for the associations between the selected IVs of the
knee OA and ALM was not observed, as in the study above no
directional pleiotropy was detected (Table 4). The results of the
leave-one-out test were also consistent with the aforementioned
results (Supplementary Figures S6–S8).

Discussion

We investigated the potential causality between SP-related traits
and OA. Following the FDR correction, the results demonstrated a
possible causal relationship between SP-related traits and all OA, the
usual walking pace and hip OA, the usual walking pace and knee
OA, the ALM and knee OA, respectively. In addition, we found
evidence of their previous reverse causation with each other. The
results also indicated a causal relationship between hand OA and
hand grip strength.

Firstly, SP increases the risk of OA. In recent years, studies
have demonstrated a correlation of varying intensity between SP

and OA (Jin et al., 2017; Vlietstra et al., 2019; Dalle and Koppo,
2020; Godziuk et al., 2021). Decreased muscle strength is the
main feature of SP and previous experiments have demonstrated
that decreased muscle strength or muscle weakness is a risk
factor for the development and progression of OA (Tanaka et al.,
2019; Xu et al., 2020). Andrews et al. discovered that in men
only, the likelihood of knee OA was reduced for each standard
deviation (SD) reduction in ALM (OR per SD reduction: 0.68;
95% CI: 0.47–0.97) (Andrews et al., 2021). Similarly, another
study noted significant ALM or total lean mass and increased fat
mass (FM) were associated with radiographic knee OA (Azuma
et al., 2017). Optimizing medial femoral size is important in
clinical management to reduce the progression of OA and
subsequent knee arthroplasty, which in part reflects the
important impact of SP on the development of OA (Wang
et al., 2012).

In addition, OA has been noted as a risk factor for increasing
the incidence of SP (Kemmler et al., 2015; Dharmakulsakti et al.,
2022). A previous foundational experimental study provided some
mechanistic insights, indicating that knee osteoarthritis induced by
anterior cruciate ligament transection promotes remodeling and
atrophy in the neuromuscular junctions of the quadriceps and
tibialis anterior muscles. These changes were associated with signs
of inflammation and alterations in muscle gene and protein
expression (Cunha et al., 2019). Besides, some studies have
indicated a strong relationship between OA and low skeletal
muscle mass (Berenbaum and van den Berg, 2015; Jeon et al.,
2019). A significant association between OA of the knee and

TABLE 4 Sensitivity and IVW analysis of the causal effects of osteoarthritis on sarcopenia-related traits.

Exposures Outcomes No. of IVs Heterogeneity test MR Egger IVW

Cochran’s Q (P) Intercept P Beta (95% CI) P PFDR

All OA Appendicular lean mass 11 72.193 (<0.001) −0.002 0.891 −0.258 (-0.369, −0.146) 6.07E-06 3.24E-05

All OA Hand grip strength (left) 20 53.312 (<0.001) −0.002 0.676 −0.064 (-0.104, −0.024) 0.002 0.004

All OA Hand grip strength (right) 19 48.792 (<0.001) −0.001 0.758 −0.055 (-0.095, −0.014) 0.008 0.014

All OA Usual walking pace 22 104.602 (<0.001) −0.002 0.673 −0.104 (-0.147, −0.061) 2.01E-06 1.61E-05

Hand OA Appendicular lean mass 7 186.506 (<0.001) 0.010 0.919 0.013 (-0.095,0.122) 0.81 0.810

Hand OA Hand grip strength (left) 8 84.682 (<0.001) −0.007 0.684 −0.102 (-0.149, −0.055) 2.26E-05 7.23E-05

Hand OA Hand grip strength (right) 8 86.489 (<0.001) −0.005 0.759 −0.104 (-0.152, −0.057) 1.84E-05 7.23E-05

Hand OA Usual walking pace 8 26.509 (<0.001) −0.001 0.937 −0.021 (-0.044,0.001) 0.062 0.100

Hip OA Appendicular lean mass 22 366.557 (<0.001) −0.004 0.654 0.047 (-0.006,0.100) 0.08 0.117

Hip OA Hand grip strength (left) 28 266.255 (<0.001) 0.003 0.564 0.013 (-0.015,0.041) 0.359 0.414

Hip OA Hand grip strength (right) 28 309.543 (<0.001) 0.003 0.566 0.011 (-0.019,0.041) 0.474 0.506

Hip OA Usual walking pace 22 45.030 (0.002) 0.001 0.666 −0.025 (-0.038, −0.013) 9.81E-05 2.62E-04

Knee OA Appendicular lean mass 15 316.000 (<0.001) 0.013 0.51 −0.179 (-0.281, −0.076) 0.001 0.001

Knee OA Hand grip strength (left) 19 309.382 (<0.001) 0.003 0.841 0.029 (-0.092,0.034) 0.362 0.414

Knee OA Hand grip strength (right) 19 342.572 (<0.001) 0.003 0.825 0.041 (-0.107,0.025) 0.228 0.304

Knee OA Usual walking pace 20 70.118 (<0.001) 0.007 0.066 −0.064 (-0.087, −0.04) 8.55E-08 1.37E-06

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; PFDR, false discovery rate (FDR) adjusted p values; CI, confidence interval; OA,

osteoarthritis.
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walking pace was observed (p < 0.001, OR:0.073) (Nakamura and
Ogata, 2016). A recent study conducted a more comprehensive
analysis, revealing that the OA group had statistically significantly
worse SP parameters than the control group, with lower
appendicular skeletal muscle mass (p = 0.041), impaired
performance on the 40-m fast walk test (p = 0.020), and
reduced right (p < 0.01) and left (p < 0.01) hand grip strength.
The findings suggest an early onset of sarcopenia in these
individuals (de Almeida et al., 2020).

According to previous studies, bone, muscle, and fat tissue are
connected and interact with each other through molecules. And
SP seems to have a bidirectional relationship with the
maintenance or destruction of joint structures (Spanoudaki
et al., 2023). SP and OA elevate the risk of mutual
development, which is one of the most important reasons for
their frequent coexistence (Peng and Zeng, 2022). A new concept
of “sarcopenic knee OA” has also been proposed (Iijima and
Aoyama, 2021). The study by Jiyong Yang et al. identified a
common network of genetic interactions between KOA and SP,
including 14 common differentially expressed genes, 4 hub genes,
and 10 potential chemical compounds, among other important
findings, which have updated the research results of the
mechanism between OA and SP (Yang et al., 2023).

These previous studies support our view to some extent. Our
study’s methodology thus has some advantages. Firstly, the MR
method can effectively avoid the drawbacks of traditional
observational research methods such as residual confounding
uncertainty and reverse causality. Secondly, the IVs for
SP-related traits were obtained from the existing large GWAS,
and the IVs for OA were obtained from the most recent GWAS.
This allowed for a more precise assessment of effect sizes than would
be possible with individual-level data or findings from studies with
limited sample sizes. Lastly, we performed an analysis of the specific
relationships between individual SP-related traits and the different
sites of OA, which led to a more comprehensive understanding of
the potential link between them.

Nevertheless, our study also has some limitations. Firstly,
due to the lack of data on the large GWAS concerning SP, we
could only use the related traits to analyze the relationship with
OA. Secondly, selecting SNPs from the different large-sample
GWAS studies may increase the risk of sample overlap between
exposure and outcome variables, which may bias the results.
Furthermore, due to the complexity of biological systems,
bidirectional MR assumes that causality happens in one
direction, and feedback loops may exist between the exposure
and the outcome, which might affect the accuracy of the results.

TABLE 5 Weighted median, MR Egger and MR PRESSO analysis of the causal effects of osteoarthritis on sarcopenia-related traits.

Exposures Outcomes No. of IVs Weighted median MR Egger MR-PRESSO

Beta (95% CI) P Beta (95% CI) P Beta (95% CI) P

All OA Appendicular lean mass 11 −0.168 (-0.245, −0.092) 1.66E-
05

−0.193 (-1.104,0.719) 0.689 −0.218 (-0.245, −0.191) 0.002

All OA Hand grip strength (left) 20 −0.085 (-0.124, −0.046) 1.71E-
05

−0.001 (-0.292,0.290) 0.993 −0.064 (-0.073, −0.055) 0.006

All OA Hand grip strength (right) 19 −0.053 (-0.095, −0.012) 0.012 −0.009 (-0.297,0.278) 0.949 −0.055 (-0.064, −0.046) 0.016

All OA Usual walking pace 22 −0.112 (-0.148, −0.076) 1.56E-
09

−0.027 (-0.382,0.328) 0.884 −0.102 (-0.109, −0.094) 2.09E-
05

Hand OA Appendicular lean mass 7 0.014 (-0.019,0.047) 0.403 −0.112 (−2.417,2.192) 0.928 0.01 (0.003,0.017) 0.411

Hand OA Hand grip strength (left) 8 −0.088 (-0.114, −0.062) 3.46E-
11

−0.014 (-0.420,0.391) 0.948 −0.09 (-0.094, −0.085) 0.001

Hand OA Hand grip strength (right) 8 −0.087 (-0.113, −0.061) 5.04E-
11

−0.037 (-0.450,0.376) 0.866 −0.088 (-0.097, −0.079) 0.002

Hand OA Usual walking pace 8 −0.018 (-0.034, −0.001) 0.032 −0.013 (−0.209,0.183) 0.899 −0.021 (-0.024, −0.018) 0.006

Hip OA Appendicular lean mass 22 0.03 (0.002,0.059) 0.036 0.100 (−0.134,0.333) 0.413 0.029 (0.024,0.033) 0.023

Hip OA Hand grip strength (left) 28 0.02 (0.004,0.036) 0.015 −0.026 (−0.159,0.107) 0.706 0.015 (0.012,0.017) 0.035

Hip OA Hand grip strength (right) 28 0.016 (-0.001,0.032) 0.061 −0.031 (−0.175,0.113) 0.678 0.012 (0.009,0.016) 0.176

Hip OA Usual walking pace 22 −0.023 (-0.038, −0.009) 0.001 −0.039 (−0.104,0.026) 0.248 −0.025 (-0.028, −0.022) 0.001

Knee OA Appendicular lean mass 15 −0.083 (-0.139, −0.027) 0.004 −0.439 (−1.198,0.321) 0.278 −0.182 (-0.199, −0.165) 0.001

Knee OA Hand grip strength (left) 19 0.001 (-0.036,0.039) 0.945 −0.090 (−0.679,0.499) 0.768 −0.032 (-0.041, −0.023) 0.127

Knee OA Hand grip strength (right) 19 −0.039 (-0.075, −0.003) 0.035 −0.111 (−0.731,0.509) 0.729 −0.051 (-0.06, −0.042) 0.031

Knee OA Usual walking pace 20 −0.048 (-0.07, −0.027) 7.94E-
06

−0.202 (−0.343, −0.062) 0.011 −0.06 (-0.064, −0.056) 4.83E-
06

Abbreviations: MR, mendelian randomization; IVW, inverse variance weighted; IVs, instrumental variables; CI, confidence interval; OA, osteoarthritis.
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Finally, since a majority of the participants included in the study
were of European ancestry and were not representative of other
racial groups, further magnetic resonance studies are needed to
verify causality.

Conclusion

This present study suggests an obvious causality of SP on OA,
with condition exhibiting site-specific effects, while evidence was
also provided for the causal effect of OA on SP. It presents some
evidence of reciprocal interaction between SP and OA, which
may facilitate the development of novel treatment strategies for
both diseases. However, the causal relationship between the
two conditions still necessitates further investigation and
substantiation through a multitude of studies.
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Genetically predicted circulating
levels of cytokines and the risk of
oral cavity and pharyngeal cancer:
a bidirectional
mendelian-randomization study
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Xiyan Zang1 and Li Gao1*
1Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical
University, Harbin, Heilongjiang, China, 2Department of Cardiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China

Background: Epidemiological research has established associations between
various inflammatory cytokines and the occurrence of oral cancer and
oropharyngeal cancer (OCPC). We performed a Mendelian randomization
(MR) analysis to systematically investigate the causal relationship between
inflammatory cytokines and OCPC.

Methods: We performed a bidirectional two-sample MR analysis using OCPC
from 12 studies (6,034 cases and 6,585 controls) and genome-wide association
study (GWAS) results for 41 serum cytokines from 8,293 Finns, respectively.
Inverse variance weighting was used as the primary MR method and four
additional MR methods (MR Egger, Weighted median, Simple mode, Weighted
mode) were used to examine genetic associations between inflammatory traits
and OCPC, and Cochran’s Q test, MR-Egger intercept, leave-one-out analysis,
funnel plot, and multivariate MR (MVMR) analysis were used to assess the
MR results.

Results: The results suggested a potential association between high gene
expression of Macrophage inflammatory protein-1α (MIP1α/CCL3) and an
increased risk of OCPC (Odds Ratio (OR): 1.71, 95% Confidence Interval (CI):
1.09–2.68, p = 0.019). Increasing the expression levels of the interleukin-7 (IL-7)
gene by 1 standard deviation reduced the risk of OCPC (OR: 0.64, 95%CI:
0.48–0.86, p = 0.003). In addition, multivariate Mendelian randomization
analysis also showed the same results (MIP1α/CCL3, OR: 1.002, 95% CI:
0.919–1.092, p = 0.044; IL-7, OR: 0.997, 95% CI: 0.994–0.999, p = 0.011).
Conversely, there was a positive correlation between genetic susceptibility to
OCPC and an increase in Interleukin-4 (IL-4) (OR: 1.04, 95%CI: 1.00–1.08,
p = 0.027).

Conclusion: Our study systematically assessed the association between
inflammatory cytokines and the risk of OCPC. We identified two upstream
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regulatory factors (IL-7 and CCL3) and one downstream effector factor (IL-4) that
were associated with OCPC, offering potential avenues for the development of
novel treatments.

KEYWORDS

oral cavity and pharyngeal cancer, inflammation factors, cytokines, mendelian
randomization, HNSCC, genome-wide association study

1 Introduction

Based on the latest estimates from Global Cancer Statistics 2020,
Head and Neck Squamous Cell Carcinoma (HNSCC) ranks as the
seventh most prevalent cancer worldwide, with an annual incidence
of over 890,000 new cases and a mortality of over 450,000 (Sung
et al., 2021). Among HNSCC cases, Oral Squamous Cell Carcinoma
(OSCC) and Oropharyngeal Squamous Cell Carcinoma (OPSCC)
are predominant, contributing to a global incidence of over
260,000 cases and over 128,000 deaths, respectively (Siegel et al.,
2020). Despite some advances in the treatment of oral and
oropharyngeal cancer (OCPC), the 10-year survival rate remains
low at below 60%. Even if the treatment is successful, patients may
still experience severe functional impairments, including
compromised abilities in feeding, swallowing, and speech.
Additionally, the recurrence rate remains high (Sung et al., 2021).

Earlier investigations in preclinical settings have indicated that
inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, promote
the growth, invasion, and spread of cancer cells. Additionally, the
transcription factors associated with these cytokines such as NF-kB
and STAT3 show increased expression in most cancer types
(Voronov et al., 2003; Pikarsky et al., 2004; Bierie and Moses,
2006; Luo et al., 2007). For example, inhibiting the activity or
expression of IL-1β can prevent the occurrence of oral cancer by
regulating specific key node genes in the tumor microenvironment
(TME) (Wu et al., 2016). Moreover, mounting evidence indicates an
increased risk of OCPC in the presence of inflammation, and
inflammation commonly accompanies the development of OCPC
(Leon et al., 2015). These observations suggest that the
pharmacological targeting of additional inflammation biomarkers
identified in the epidemiological literature through observational
studies could offer a potentially effective approach for treating
OCPC (Todoric et al., 2016). Nevertheless, the investigations
conducted thus far have primarily concentrated on a limited
range of inflammatory elements and have failed to acknowledge
the impact of additional factors on the changes in inflammation
levels. Hence, it is crucial to ascertain whether the changes in
inflammatory factors cause the onset of tumors or if the tumors
themselves modify the microenvironment, leading to differences in
inflammatory factors. Due to the limited comprehension of the
cause of OCPC, investigating the exact characteristics of the
connections between inflammatory factors and OCPC has
considerable clinical significance.

The dynamic nature of the inflammatory response suggests that
a specific time point’s measurement, whether high or low, might not
precisely represent the overall trend of inflammatory factor
variations. Epidemiological, genetic, and biological investigations
have confirmed the link between inflammatory factors and OCPC.
However, the outcomes derived from these investigations may be

distorted by unforeseen confounding variables or reverse causal
associations, thus complicating the establishment of clear causal
relationships.

Observational studies may hinder an exhaustive comprehension
of the connection between OCPC and inflammation due to their
intrinsic research limitations. Thus, a detailed understanding of the
role of circulating cytokines and their association with OCPC risk
may aid in the development of prevention, prediction, and treatment
strategies. Researchers may achieve a more comprehensive
understanding of the connection between inflammation and
OCPC by addressing these limitations.

Mendelian randomization (MR) is a commonly used tool in
genetic epidemiology (10), which utilizes instrumental variable IV)
variation derived from non-experimental data to assess the causal
impact of exposure (e.g., circulating cytokines) on an outcome (e.g.,
OCPC) (Lawlor et al., 2008). Given the random allocation of alleles
during meiosis, MR can mitigate confounding variables and reverse
causality, thereby offering more robust evidence for causal
inferences (Burgess et al., 2015). The use of two-sample MR
analysis allows researchers to evaluate the associations between
the instrument-exposure and instrument-outcome in two distinct
population samples, thereby improving the applicability and
efficiency of testing (Hartwig et al., 2016). In this study, we
performed an analysis of the genome-wide association study
(GWAS) summary data of 41 inflammatory cytokines to identify
relevant genetic variations. These variations were then further
investigated in relation to OCPC. Specifically, we examined the
correlations between these genetic variations and OCPC by
reversing the exposure and outcome. Our research results not
only provided substantial Supplementary Data for previous
epidemiological investigations but also offered fresh perspectives
on the development and prevention of OCPC.

2 Methods

2.1 Study design

This study used a bidirectional MR approach to assess the causal
relationship between the circulating cytokines and OCPCs. The
study’s overall design is illustrated in Figure 1. To assess the causal
relationship between circulating cytokines and OCPCs, MR analysis
was performed to test the following three hypotheses: 1) Genetic
instruments have a strong association with exposure; 2) Genetic
instruments are not affected by any potential known confounding
factors; 3) The association between the genetic instrument and the
outcome is solely influenced by the exposure (Smith and Ebrahim,
2003). Simultaneously, the reverse MR method is used to examine
potential reverse causal effects. The data used in this study were
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obtained from publicly available large-scale GWAS which can be
accessed through the GWAS Catalog service (https://www.ebi.ac.uk/
gwas/home). The studies included in the initial GWAS had obtained
approval from their respective institutional review boards.

2.2 Genetic instrumental variables for
inflammatory factors

The research used an extensive meta-analysis of GWAS on the
circulating levels of 41 cytokines. This analysis combined
information from three separate cohort studies: FINRISK 1997,
FINRISK 2002, and the Young Finns Study on Cardiovascular
Risk (YFS). This study included a total of 8,293 participants. The
genomic and cytokine data were contributed by 4,608 individuals
from FINRISK 1997, while another 1,705 participants from
FINRISK2002 also provided their cytokine data. Cytokine
quantification was performed by analyzing the EDTA-treated
plasma of FINRISK 1997, the heparinized plasma of FINRISK
2002, and the serum samples from YFS. To control for potential
confounding factors, such as age, sex, body mass index, and genetic
variations, genetic associations were properly adjusted. Specifically,
the top 10 genetic principal components were included using
genomic control correction. Bio-Rad’s pre-mixed Bio-Plex Pro
Human Cytokine 27-plex Assay and 21-plex Assay were used to
measure a total of 41 cytokines in YFS and FINRISK 2002,
respectively. The measurements were performed by the Bio-Plex
200 reader equipped with Bio-Plex 6.0 software. However, it is
important to note that, out of the 41 cytokines, 7 had to be excluded
due to the presence of missing values exceeding 90% (Ahola-Olli
et al., 2017; Kalaoja et al., 2021). A detailed overview of the GWAS

data for the cytokines used in the MR analysis is presented
in Table 1.

2.3 Genetic instrumental variables for OCPC

Using data from the most extensive GWAS to date, we
investigated the impact of inflammatory elements on the
vulnerability to OCPC. By extracting specific variations in single-
nucleotide polymorphisms (SNPs) linked to exposure, we assessed a
total of 6,034 cases and 6,585 controls enrolled in 12 different
epidemiological studies (Lesseur et al., 2016). The Genetic
Associations and Mechanisms of Oncology (GAME-ON) network
is responsible for conducting these studies. Every participant has
provided informed consent, and the relevant institutional review
boards have approved this study. Furthermore, the study includes
data from the European Prospective Investigation into Cancer and
Nutrition (EPIC) study, and the Health and Nutrition 5,000
(HN5000) study, which specifically examines the health and
lifestyle of 5,000 United Kingdom participants. Extensive
information about the study, as well as the genotyping and
imputation methods used, has been previously documented
(Lesseur et al., 2016). The study sample comprised individuals
from Europe (45.3%), North America (43.9%), and South
America (10.8%). The study encompasses diverse types of cancer
identified through the specific International Classification of
Diseases, 10th Revision (ICD-10) codes, such as oral cancer
(C02.0–C02.9, C03.0–C03.9, C04.0–C04.9, C05.0–C06.9) and
oropharyngeal cancer (C01.9, C02.4, C09.0–C10.9). Exclusion
criteria led to the removal of 954 individuals with
hypopharyngeal cancer, unidentifiable codes, or overlapping

FIGURE 1
Illustration of the research design in the bidirectional Mendelian randomization (MR) analysis. Important instrumental variables, including
41 inflammatory cytokines and OCPC, were selected to explore the bidirectional causal relationships. This method is used to detect correlations (solid
line) and violations of the Mendelian randomization assumption (dashed line). This figure was created using BioRender.com.
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TABLE 1 Sample size for each cytokine analyzed in this study acquired from the GWAS.

Cytokines Abbreviation Sample size Number

Chemokines Cutaneous T cell attracting (CCL27) CTACK 3,631 GCST004420

Eotaxin (CCL11) Eotaxin 8,153 GCST004460

Growth regulated oncogene-α (CXCL1) GROα 3,505 GCST004457

Interferon gamma-induced protein 10 (CXCL10) IP10 3,685 GCST004440

Monocyte chemotactic protein-1 (CCL2) MCP1 8,293 GCST004438

Monocyte specific chemokine 3 (CCL7) MCP3 843 GCST004437

Monokine induced by interferon-gamma (CXCL9) MIG 3,685 GCST004435

Macrophage inflammatory protein-1α (CCL3) MIP1α 3,522 GCST004434

Macrophage inflammatory protein-1β (CCL4) MIP1β 8,243 GCST004433

Regulated on Activation, Normal T Cell Expressed and Secreted (CCL5) RANTES 3,421 GCST004431

Stromal cell-derived factor-1 alpha (CXCL12) SDF1α 5,998 GCST004427

Growth factors Beta nerve growth factor βNGF 3,531 GCST004421

Basic fibroblast growth factor bFGF 7,565 GCST004459

Granulocyte colony-stimulating factor GCSF 7,904 GCST004458

Hepatocyte growth factor HGF 8,292 GCST004449

Macrophage colony-stimulating factor MCSF 840 GCST004436

Platelet-derived growth factor BB PDGFbb 8,293 GCST004432

Stem cell factor SCF 8,290 GCST004429

Stem cell growth factor beta SCGFβ 3,682 GCST004428

Vascular endothelial growth factor VEGF 7,118 GCST004422

Interleukins Interleukin-10 IL-10 7,681 GCST004444

Interleukin-12p70 IL-12p70 8,270 GCST004439

Interleukin-13 IL-13 3,557 GCST004443

Interleukin-16 IL-16 3,483 GCST004430

Interleukin-17 IL-17 7,760 GCST004442

Interleukin-18 IL-18 3,636 GCST004441

Interleukin-1 receptor antagonist IL1ra 3,638 GCST004447

Interleukin-1-beta IL-1β 3,309 GCST004448

Interleukin-2 IL-2 3,475 GCST004455

Interleukin-2 receptor, alpha subunit IL2rα 3,677 GCST004454

Interleukin-4 IL-4 8,124 GCST004453

Interleukin-5 IL-5 3,364 GCST004452

Interleukin-6 IL-6 8,189 GCST004446

Interleukin-7 IL-7 3,409 GCST004451

Interleukin-8 (CXCL8) IL-8 3,526 GCST004445

Interleukin-9 IL-9 3,634 GCST004450

Others Interferon-gamma IFN-γ 7,701 GCST004456

Macrophage migration inhibitory factor (glycosylation-inhibiting factor) MIF 3,494 GCST004423

(Continued on following page)
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cancers. To mitigate the effects of heterogeneity in these regions,
GWAS studies were conducted exclusively on individuals with
European ancestry, totaling 11,117 participants. Among these,
there were 5,133 cases, comprising 2,700 cases of oral cancer and
2,433 cases of oropharyngeal cancer. In addition, there were
5,984 control cases (Supplementary Table S1).

2.4 Assessing common risk factors for OCPC

The cytokines-OCPC pathway is a potential target for cancer
prevention and treatment. To identify the possible mediators of this
pathway, we applied MR methods to examine the causal links
between cytokines and common risk factors for OCPC. We used
an existing database to investigate the following risk factors that have
been widely recognized as associated with OCPC: smoking,
drinking, body mass index, type 2 diabetes, hypertension, and
HPV16/18 infection (Argiris et al., 2008; Leemans et al., 2018).
Supplementary Table S2 lists the GWAS summary data for the above
risk factors.

2.5 Selection of genetic instrumental variables

To ensure that the conclusion regarding the causal relationship
between cytokines and the risk of OCPC is authentic and accurate,
we implement various quality control measures in the selection of
optimal genetic instrumental variables. Our approach involves the
selection of SNPs that are closely associated with inflammatory
factors and demonstrate genome-wide significance with a p-value
lower than 5 × 10−8. By focusing on these specific SNPs, we establish
robust instrumental variables for our study (Burgess et al., 2011).We
proceeded to eliminate linkage disequilibrium (LD). Our criteria for
removal included an r2 value below 0.001 and a distance of 5,000 kb.
SNPs exceeding the r2 threshold of 0.001, which includes the most
significant SNP within a 5,000 kb range, were excluded. After
aligning the chosen SNPs with the outcome data, we found that
only ten out of the 41 systemic inflammation factors available
exhibited two or more independent SNPs at a significance level
of p-value less than 5 × 10−8. Additionally, it was found that nine of
them displayed three or more independent SNPs. Since
inflammatory cytokines are a class of cytokines with multiple
functions and interactions, and they may involve multiple genes
and SNPs, a less stringent criterion is needed to capture their genetic
variation. When selecting instrumental variables, we established A
less stringent p-value threshold (5 × 10−6) to capture more SNPs of
inflammatory cytokines (Li et al., 2021; Pan et al., 2023). If there is an
insufficient number of exposure-associated SNPs detected in the
GWAS findings, proxy SNPs exhibiting high LD with a correlation

coefficient (r2 > 0.90) will be employed as alternative substitutes.
These proxy SNPs can be accessed through LDlink (https://ldlink.
nci.nih.gov/) as a resource (Machiela and Chanock, 2015). To
exclude all SNPs associated with exposure and avoid potential
pleiotropic effects, we performed a comprehensive investigation
using the PhenoScanner V2 tool (http://www.phenoscanner.
medschl.cam.ac.uk/) (Staley et al., 2016). Through the
aforementioned steps, we acquired 41 cytokines associated with
inflammation. As an instrumental variable with a significance
threshold of F < 10 is considered weak, we will exclude it from
our study. Detailed information on the identified SNPs is listed in
Supplementary Tables S3 and S4. Furthermore, to uphold the
fundamentals of MR, we shall examine the desired SNPs to
exclude any that exhibit associations with the resulting outcomes.

2.6 MR statistical analysis

To explore the causal relationship between inflammatory
regulators and OCPC, we utilized GWAS data and employed
two-sample MR and multivariate MR methods. Statistical analysis
was conducted using R software (v4.1.3) and the
“MendelianRandomization”, “MVMR” and “MRPRESSO”
software packages. Multivariable MR (MVMR) is mainly used to
evaluate the impact of multiple potential exposures on overall
outcomes and identify potential risk factors (Tian and Burgess,
2023). The relationship between inflammatory factors and OCPC
was examined using the inverse variance weighted (IVW) method.
The instrumental variable method was used to estimate the mean
effects of SNPs by regressing SNP-inflammatory factors on SNP-
OCPC. Additionally, we utilized the weighted median estimator
(WME) and the MR-Egger regression. WME is a statistical method
that applies weights to the empirical distribution function of ratio
estimates for SNPs within the study range, minimizing biases in
estimating causal effects. MR-Egger regression employs weighted
linear regression to estimate the effect of SNP-OCPC, considering
SNP-inflammatory factors, and provides an evaluation of causal
effects, even in the presence of invalid instruments (Bowden et al.,
2015). If the directions of the β-values of other methods are the
same, it may be interpreted as a positive result (Chen et al., 2020).
Moreover, the “Leave-one-out” strategy was employed to visually
illustrate whether a single SNP substantially influences the causal
association. To ensure the dependability of the MR findings, we
performed diverse evaluations of diversity and sensitivity. We
employed Cochran’s Q test to assess heterogeneity among SNPs.
If no indications of heterogeneity were observed, we utilized a fixed-
effect model; otherwise, a random-effects model was implemented.
The Egger-intercept test was carried out for horizontal pleiotropy
examination (Verbanck et al., 2018; Song et al., 2022). The results of

TABLE 1 (Continued) Sample size for each cytokine analyzed in this study acquired from the GWAS.

Cytokines Abbreviation Sample size Number

Tumor necrosis factor-alpha TNFα 3,454 GCST004426

Tumor necrosis factor-beta TNFβ 1,559 GCST004425

TNF-related apoptosis inducing ligand TRAIL 8,186 GCST004424
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the study were presented using odds ratios (ORs) and their
corresponding 95% confidence intervals (CIs). Any results with a
p-value less than 0.05 were considered statistically significant. We
applied the FDR method to correct for multiple testing, which is a
method implemented by the q-value program. It is a commonly used
method for multiple testing correction, which can control the
proportion of false rejections of the null hypothesis among
multiple hypothesis tests. We chose a q-value of less than 0.1 as
the significance level, which is a reasonable choice because it can

reduce the false positive rate while maintaining the statistical power.
When the p-value is less than 0.05 but the q-value is greater than or
equal to 0.1, we consider it a suggestive association result (Storey and
Tibshirani, 2003; Li et al., 2022). The analysis of the MR study
adhered to the guidelines set forth by the Strengthening the
Reporting of Observational Studies in Epidemiology using
Mendelian Randomization (STROBE-MR) statement, which
emphasizes the scientific rigor and reporting standards for
observational studies in epidemiology (Skrivankova et al., 2021).

FIGURE 2
Using SNPs with a significance level of p < 5 × 10−6, we predicted the potential impact of inflammation regulatory factors across the genome on
OCPC. To establish a causal link between circulating cytokine levels and OCPC, we conducted a two-sample Mendelian randomization (MR) analysis
employing the IVW method. By estimating the odds ratio of OCPC for every 1-SD rise in predicted circulating cytokine levels, as determined by genetic
prediction, we derived a 95% confidence interval (CI) value. This approach primarily determines the causal relationship betweenOCPC and the levels
of circulating cytokines. A detailed overview of cytokines is provided in Table 1.
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3 Results

3.1 Causal impact of systemic inflammation
factors on the risk of OCPC

The association between systemic inflammation factors and
OCPC was revealed through gene prediction, supported by the
following findings (Figure 2). The IVW method uncovered a
significant surge in OCPC risk, linked to higher levels of

Macrophage inflammatory protein-1α (MIP1α/CCL3) (OR: 1.71,
95% CI: 1.09–2.68, p = 0.019). Both the MR-Egger heterogeneity test
and Cochran’s Q test failed to identify any signs of heterogeneity,
indicating an absence of variation (p > 0.05). Additionally, by
utilizing the IVW method, increased Interleukin-7 (IL-7) levels
were associated with a decreased likelihood of OCPC(OR: 0.64,
95%CI: 0.48–0.86, p = 0.003). No evidence of heterogeneity or
horizontal pleiotropy was discovered (p > 0.05) (Table 2). Figures
3, 4 show forest plots and scatter plots illustrating the genetic

TABLE 2 Our research examined whether there is a causal relationship between the levels of MIP1α/CCL3 and IL-7 in the circulatory system and OCPC. To
achieve this, we employed genetic prediction techniques. To assess the variation in estimates of individual SNP effects, we used Cochran’s Q test, and we
employed the MR-Egger intercept test to evaluate horizontal pleiotropy.

Cytokines Methods MR results Heterogeneity
test

Horizontal pleiotropy
test

Cochran’s Q test MR-egger intercept
test

SNPs β SE P OR (95% CI) Q df P Intercept SE P

MIP1α/CCL3 IVW 4 0.537 0.229 0.019 1.711 (1.092–2.680) 2.188 3 0.534 0.071 0.118 0.607

MR Egger 4 0.104 0.753 0.903 1.111 (0.254–4.852) 1.824 2 0.402

Weighted median 4 0.459 0.268 0.086 1.583 (0.937–2.674)

Simple mode 4 0.412 0.416 0.395 1.510 (0.668–3.412)

Weighted mode 4 0.369 0.378 0.390 1.446 (0.703–2.975)

IL-7 IVW 12 −0.448 0.151 0.003 0.639 (0.475–0.859) 18.890 11 0.063 −0.055 0.073 0.468

MR Egger 12 −0.191 0.374 0.621 0.826 (0.397–1.720) 17.875 10 0.057

Weighted median 12 −0.469 0.168 0.005 0.626 (0.450–0.870)

Simple mode 12 −0.394 0.319 0.242 0.674 (0.361–1.260)

Weighted mode 12 −0.586 0.246 0.036 0.557 (0.344–0.902)

Abbreviations: SNP, single nucleotide polymorphism; β, effect size of SNP on exposure; SE, standard error; OR, odds ratio; CI, confidence interval; df, degrees of freedom; IVW, inverse variance

weighted.

FIGURE 3
MIP1α/CCL3 and IL-7 related SNPs are depicted in the forest plot for OCPC risk. (A) Forest plot for MIP1α/CCL3 exposure. (B) Forest plot for IL-7
exposure. The X-axis represents the effect estimates of MIP1α/CCL3 and IL-7 on OCPC analyzed using MR. The Y-axis represents the MR effect values for
each SNP site.
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association of MIP1α/CCL3 and IL-7 SNPs with OCPC. The funnel
plot demonstrates overall symmetry, indicating little evidence of
heterogeneity (Supplementary Figure S1). A sensitivity analysis,
using a leave-one-out approach, provided evidence of the lack of
a single SNP with substantial impact on the overall effect. This
verifies the dependability and consistency of the estimation of the
causal effect (Supplementary Figure S3).

Supplementary Table S5 presents the MR outcomes concerning
the prediction of genetic susceptibility to systemic inflammation
factors and OCPC risk assessment. Furthermore, it contains
summaries of the analyses conducted to assess heterogeneity,
pleiotropy, and sensitivity.

3.2 Causal impact of OCPC on the risk of
systemic inflammation factors

To evaluate the reverse causal effects, we conducted a study in
which we identified 12 SNPs that have a significant and independent
association with OCPC. The association reached a significance level
of p < 5 × 10–6. We used a varying number of SNPs for each cytokine
due to the lack of certain SNPs to be used universally. Detailed
information about the number of SNPs used for each cytokine can
be found in Supplementary Table S6. A suggestive association was
observed between genetic susceptibility to OCPC and increased
levels of Interleukin-4 (IL-4) based on the IVW method (OR:
1.04, 95%CI: 1.00–1.08, p = 0.03). No other significant
associations were found, except for IL-4 (Figure 5). Furthermore,
significant results of the MR and sensitivity analysis of OCPC and
cytokines are shown in Table 3. Figures 6, 7 present forest plots and
scatter plots illustrating the causal impact of OCPC-associated SNPs
on IL-4.

3.3 Other factors and MVMR

In univariate MR analysis, while examining the causal
relationship between cytokines and OCPC, we also found that
after removing SNPs associated with confounding factors, there
were still some SNPs that were not only associated with OCPC but
also strongly associated with other risk factors. Therefore, assessing
the causal relationship between cytokines and common risk factors
for OCPC is beneficial to identifying interfering factors that may
mediate the association between cytokines and OCPC. We
combined all SNPs related to MIP1α/CCL3 and IL-7 as cytokine
instrumental variables to find the greatest genetic confounding.
Preliminary results show a potential causal relationship between
cytokines and common OCPC risk factors (including smoking,
drinking, body mass index, and hypertension) (Figure 8,
Supplementary Table S7). To control for pleiotropic pathways,
when we further applied the MVMR model, the results showed
that cytokines still have a potential causal effect on OCPC (MIP1α/
CCL3, OR: 1.002, 95% CI: 0.919–1.092, p = 0.044; IL-7, OR: 0.997,
95% CI: 0.994–0.999, p = 0.011) (Table 4).

4 Discussion

Numerous observational studies have found that the levels of
circulating cytokines are related to the occurrence of OCPC.
However, observational studies may be subject to bias due to
inadequate sample size and confounding factors, resulting in
skewed results. Moreover, there is insufficient genetic evidence to
support this relationship in this field. Therefore, we utilized the latest
GWAS data and adopted a systematic analysis approach to explore
the causal effects of 41 different cytokines on OCPC. Unlike

FIGURE 4
Using various MR methods, the scatter plots demonstrate the genetic correlation between SNP and OCPC for MIP1α/CCL3 and IL-7. (A) The
exposure of MIP1α/CCL3 is illustrated in the scatter plot. (B) The exposure of IL-7 is illustrated in the scatter plot. Each scatter plot illustrates the
associations between the alleles and the risk of the outcome, plotted against the association with one standard deviation of exposure. The effects are
represented by the gray error bars, which indicate the 95% confidence intervals. The IVW, MR Egger, Weighted median, Simple mode, andWeighted
mode were employed for the analysis. The estimated MR effect of each method can be determined by the slope of each line.
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FIGURE 5
The influence of OCPC gene estimation on systemic inflammatory regulators (SNPs reaching p < 5 × 10−6) can lead to causal consequences. The
connection between OCPC and levels of circulating cytokines can be predominantly ascertained through a two-sample Mendelian randomization (MR)
analysis using the IVW technique. The estimated range of the 95% confidence interval (CI) reflects the odds ratio of circulating cytokines for each 1-SD rise
in genetically anticipated OCPC levels. A detailed overview of cytokines can be found in Table 1.

TABLE 3We evaluated the effects of genetic prediction (OCPC) on the levels of circulating IL-4. To assess heterogeneity between individual SNP estimates,
we utilized Cochran’s Q test. The MR-Egger intercept test was employed to investigate horizontal pleiotropy.

Cytokines Methods MR results Heterogeneity
test

Horizontal pleiotropy
test

Cochran’s Q test MR-egger intercept test

SNPs β SE P OR (95% CI) Q df P Intercept SE P

IL-4 IVW 11 0.041 0.018 0.027 1.042 (1.005–1.080) 9.090 10 0.524 0.017 0.017 0.332

MR Egger 11 0.000 0.044 0.996 1.000 (0.918–1.099) 8.040 9 0.530

Weighted median 11 0.008 0.026 0.741 1.009 (0.959–1.060)

Simple mode 11 −0.010 0.048 0.842 0.990 (0.900–1.099)

Weighted mode 11 −0.007 0.045 0.879 0.993 (0.909–1.099)

Abbreviations: SNP, single nucleotide polymorphism; β, effect size of SNP on exposure; SE, standard error; OR, odds ratio; CI, confidence interval; df, degrees of freedom; IVW, inverse variance

weighted.
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traditional MR studies, we not only focused on single cytokines but
also performed bidirectional MR analysis, which can simultaneously
test whether two factors have a causal relationship and what the
causal direction is. In this way, we can identify the cytokines before
or after the disease pathway. In addition, we also used various MR
methods to enhance the robustness of the study and minimize the
interference of pleiotropic effects. The objective of this study was to
systematically assess the potential causal relationship between
41 circulating cytokines and OCPC risk using bidirectional
MR analysis.

The tumor microenvironment and the malignant properties of
tumor cells are crucial factors in shaping the biological behavior of
tumors, directly driving their growth, invasion, and metastasis
(Hanahan and Coussens, 2012). Systemic cytokines are a group
of molecules that play a broad role in controlling inflammation
throughout the body. These cytokines maintain the balance between
pro- and anti-inflammatory processes in the TME, thereby ensuring
that the immune system functions effectively during infection,
injury, or disease while avoiding excessive damage to body tissues
(Zhang et al., 2020; Ozga et al., 2021; Bhat et al., 2022).
Accumulating evidence indicates that chemokines may exert pro-
tumor effects in different types of cancer (Soria and Ben-Baruch,
2008; Levina et al., 2009; Hwang et al., 2012). Our findings show a
positive association between high levels of CCL3 and an elevated risk

of OCPC. CCL3, a chemokine that belongs to the CC chemokine
subfamily, is synthesized by monocytes/macrophages, lymphocytes,
neutrophils, as well as various immune cells including eosinophils,
mast cells, fibroblasts, and dendritic cells. It is also called as
macrophage inflammatory protein-1α (MIP-1α) (Hanahan and
Coussens, 2012). CCL3 plays a pivotal role in recruiting
inflammatory cells under both homeostatic and pathological
conditions. CCL3 may contribute to cancer progression by
stimulating leukocyte accumulation, angiogenesis, and
tumorigenesis. OCPC cells and tissues exhibit overexpression of
CCL3, which correlates with poorer survival rates among OCPC
patients (Silva et al., 2007; da Silva et al., 2017). CCL3 can stimulate
cancer cell growth and migration (da Silva et al., 2017; Hsu et al.,
2013), whereas blocking CCL3 can suppress tumor growth, and
angiogenesis, and increase cell sensitivity to therapeutic drugs (Liao
et al., 2016; Kim et al., 2017). These mechanisms could elucidate the
role of CCL3 in driving the pathophysiology of OCPC.

Research has shown that inflammation in specific organs can
affect the risk of cancer, and inflammatory factors also exist in the
tumor microenvironment to alter the proliferation, survival, and
metastasis of malignant cells. An association between OCPC and
inflammatory cytokines, wound-healing genes, growth factors, and
cell cycle genes has been reported (Perez-Sayans et al., 2009;
Mantovani, 2010). Interestingly, our study suggests that an

FIGURE 6
Forest plot of OCPC-related SNPs and IL-4 risk (The effect estimates of OCPC on IL-4 analyzed throughMR are represented on the X-axis. Each SNP
site’s MR effect values are represented on the Y-axis).
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increase of 1 standard deviation (SD) in the predicted levels of the
IL-7 gene is related to a decreased risk of OCPC. IL-7, an
indispensable cytokine for the adaptive immune system, is
primarily secreted by the bone marrow, thymus, and lymph
nodes. IL-7 plays a crucial role in lymphocyte development and
survival, contributing to the maintenance of immune self-stability in
the body (Fry and Mackall, 2002; Jiang et al., 2005; Hong et al., 2012;
Barata et al., 2019). This effect may be due to the potential role of
active inflammatory responses in decreasing the incidence of OCPC.
Due to the powerful biological effects of IL-7, specifically, its role in
promoting T cell longevity, growth, replication, and preservation of
memory, various scientific groups have used IL-7 as a molecular
enhancer to improve the immune response generated by cancer
vaccines and maintain long-lasting memory reactions against cancer
(Zhao et al., 2022). In conclusion, our study suggests a possible
relationship between IL-7 and inflammatory tumors in OCPC,
which may have some clinical significance for exploring the
pathogenesis of OCPC and reducing its incidence.

We also explored potential mediators in the cytokines-OCPC
pathway. Previous MR studies have shown that MIP1α/CCL3 and
IL-7 are associated with OCPC risk. In observational studies, smoking,
drinking, body mass index, type 2 diabetes, hypertension, and HPV16/
18 infection have been suggested as risk factors for the development of
OCPC. To account for the above potential mediating factors, the
MVMR model was further applied to examine the possibility of the

observed confounders introducing horizontal pleiotropy. However,
MVMR analysis showed that OCPC was no longer significantly
associated with these factors at the conventional 5% level. Therefore,
it seems unlikely that these factors play a substantial role in the pathway
of inflammatory exposure. Notably, MIP1α/CCL3 and IL-7 still have
estimated causal effects on OCPC even if mediating factors
are excluded.

Bidirectional MR analysis during the OCPC stage suggested that
OCPC is potentially associated with alterations in IL-4 levels in blood,
despite the limited available evidence on their correlation. Hypotheses
propose that elevated levels of IL-4 might signify the presence of
analogous immune-suppressing mechanisms within the
microenvironment of OCPC. These mechanisms potentially facilitate
the expansion of tumors and evasion of immune vigilance. Previous
studies have reported significant IL-4 expression in the tumor
microenvironment (Setrerrahmane and Xu, 2017; Gao et al., 2021).
Inhibiting it can alter inflammation and improve the tumor’s response
to immunotherapy (Ito et al., 2017). To sum up, the complex
interactions between the immune system and the tumor are
reflected by the varying IL-4 levels in the blood of patients with
OCPC. These results highlight the importance of immune regulation
and the imbalance of cytokines in the development ofOCPC. Therefore,
additional research is necessary to understand the exact mechanisms
behind these changes in cytokines and how they impact the occurrence,
advancement, and treatment strategies for OCPC.

FIGURE 7
The scatter plot in this passage shows the genetic associations between SNPs related to OCPC and IL-4 using different MRmethods. The gray error
bars represent the 95% confidence intervals of the effects. These scatter plots represent the associations between each allele and the risk of the outcome,
plotted against the association with one standard deviation of exposure. The analysis was conducted using IVW, MR Egger, Weighted median, Simple
mode, and Weighted mode. The slope of each line represents the estimated MR effect of each method.
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FIGURE 8
Causal effects of MIP1α/CCL3 and IL-7 on common risk factors for OCPC.

TABLE 4 MVMR results for OCPC.

Outcome Exposure SNPs, n Or (95% CI) p-value

OCPC MVMR based on MIP1α/CCL3

MIP1α/CCL3 14 1.002 (0.919–1.092) 0.044

Body mass index 455 1.000 (0.862–1.161) 0.076

Smoking initiation 21 1.002 (0.575–1.182) 0.085

Alcoholic drinks per week 6 1.002 (0.575–1.746) 0.283

Hypertension 0 NA NA

MVMR based on IL-7

IL-7 43 0.997 (0.994–0.999) 0.011

Body mass index 129 1.001 (0.783–1.279) 0.125

Smoking initiation 14 1.001 (0.330–3.034) 0.566

Alcoholic drinks per week 2 1.002 (0.254–3.949) 0.700

Hypertension 0 NA NA

Abbreviations: MVMR, multivariable Mendelian randomization; n, number; SNP, single-nucleotide polymorphism; OCPC, oral cavity and pharyngeal cancer; OR, odds ratio; CI, confidence

interval.
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This study is remarkable for its novel use of large-scale GWAS data
to investigate multiple exposure factors related to OCPC risk, which
enhances the stability and accuracy of estimating the effects. Second, the
bidirectional MR design is employed to mitigate confounding factors
and eliminate reverse causality. Third, the MVMR model was further
applied to examine the possibility of introducing horizontal pleiotropy
by common confounders of OCPC. Finally, this study comprehensively
investigates the association betweenOCPC and 41 circulating cytokines,
making it the most extensive MR study to date on this topic. They may
provide oncologists and therapists with new perspectives and
implications for designing more personalized and effective
treatments for patients who may develop or suffer from OCPC. For
example, host genotype could be exploited to enable more precise
diagnosis and treatment by investigating inflammatory exposure factors
in clinical patients. The use of monoclonal antibodies to reduce the
concentration of certain inflammatory factors or exogenous
supplementation of specific inflammatory factors can also be studied
to prevent or treat OCPC. While the MR design offers advantages, this
study also has limitations. First, although GWAS statistical data of
European ancestry were used to mitigate population bias, the
generalizability of our findings across different populations remains
uncertain. Additional GWAS with larger sample sizes are necessary to
validate and update the findings of this study. Moreover, the results of
these studies may be confounded by various factors, including the
production and interplay of cytokines. Despite conducting a MVMR
analysis, it seems that the estimates of time-varying exposure may not
accurately reflect the causal effects within a specific time period. When
the exposure only affects the outcome at a few distinct time points and
the risk factors in the MVMR analysis are the exposure values at these
specific time points, it is possible to obtain a reliable estimation of the
causal effect during these time points. However, if these time points are
not correctly identified, estimates obtained from ambiguousmodels will
be incorrect. This can mislead any inferences made about the
magnitude, existence, or direction of the causal effects. Finally, it is
important to note that all research findings require validation in clinical
and basic research. As a result, caution should be exercised in
interpreting potential causal relationships, and further investigation
of potential physiopathological mechanisms is needed.

5 Conclusion

Our comprehensive MR analysis revealed potential causal
relationships between 41 circulating cytokines and OCPC, providing
new insights into their interactions. The following conclusions were
drawn: MIP1α/CCL3 and IL-7 may be potential factors driving OCPC.
And susceptibility to OCPC may also increase IL-4 levels in prognosis.
However, due to the limitations of our study, including the relatively
small number of OCPC cases and the use of only a single ancestry
population, our findings should be validated in a larger cohort and the
exact underlying biological mechanisms require further investigation.
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randomization study
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Wen Chen2 and Zhengkui Sun2*
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Jiangxi Cancer Hospital, Nanchang, China
Background: Previous research has indicated that there may be a link between

Crohn’s disease (CD) and breast cancer (BC), but the causality remains unclear.

This study aimed to investigate the causal association between CD and BC using

Mendelian randomization (MR) analysis.

Methods: The summary data for CD (5,956 cases/14,927 controls) was obtained

from the International Inflammatory Bowel Disease Genetics Consortium

(IIBDGC). And the summary data for BC (122,977 cases/105,974 controls) was

extracted from the Breast Cancer Association Consortium (BCAC). Based on the

estrogen receptor status, the cases were classified into two subtypes: estrogen

receptor-positive (ER+) BC and estrogen receptor-negative (ER−) BC. We used

the inverse variance weighted method as the primary approach for two-sample

MR. MR-PRESSO method was used to rule out outliers. Heterogeneity and

pleiotropy tests were carried out to improve the accuracy of results.

Additionally, multivariable MR was conducted by adjusting for possible

confounders to ensure the stability of the results.

Results: The two-sample MR indicated that CD increased the risks of overall (OR:

1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95%CI: 1.006-1.034;

p=0.006) and ER− BC (OR: 1.019; 95%CI: 1.000-1.037; p=0.046) after removal of

outliers by MR-PRESSO. This result was reliable in the sensitivity analysis,

including Cochran’s Q and MR-Egger regression. In multivariate MR analyses,

after adjusting for smoking and drinking separately or concurrently, the positive

association between CD and the risks of overall and ER+ BC remained, but it

disappeared in ER− BC. Furthermore, reverse MR analysis suggested that BC did

not have a significant impact on CD risk.

Conclusion: Our findings provide evidence for a possible positive association

between CD and the risk of BC. However, further studies are needed to fully

understand the underlyingmechanisms and establish a stronger causal relationship.
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Crohn’s disease, breast cancer, Mendelian randomization, causal association, risk
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1 Introduction

Crohn’s disease (CD) is a chronic and progressive inflammatory

disease characterized by alternating periods of remission and

relapse (1, 2). CD primarily affects the gastrointestinal tract with

extraintestinal manifestations and related immune dysregulation

(3). Patients with CD are more susceptible to cancer, depression,

and infection (4).

Breast cancer (BC) is the most prevalent malignancy among

women globally, with 684,996 deaths reported in 2020, representing

a substantial threat to their health (5–7). Patients with CD have an

increased risk of digestive tract, skin, bladder, and lung cancers (8, 9),

but the association between CD and BC remains unclear. Chronic

inflammation characterized by sustained immune activation is

associated with promoting the occurrence, growth, and

progression of BC (10–12). Several researchers have investigated

the association between CD and BC. Riegler et al. found first-degree

relatives of patients with CD have a higher risk of developing BC

(13). Further, a study by Pellino et al. showed that CD was an

independent risk factor for BC (OR: 2.76; 95% CI: 1.2-6.2; p=0.017)

(14). In contrast, Gong et al. reported no significant association

between CD and BC risk (15). Hence, there is controversy regarding

the relationship between CD and BC risk. In addition,

immunosuppressive medications are the cornerstone of long-term

maintenance treatment for CD (16). Due to the decreased immune

surveillance, immunosuppression may potentially increase the risk

of cancer (17). A retrospective study attributed the development of

BC in CD patients to immunosuppressive therapy (18). Thus, the

association between CD itself and BC needs to be further

investigated. Moreover, assessing the true causal association

between CD and BC is challenging due to the interference of

common residual confounders and reverse causality in traditional

observational studies.

To overcome these challenges and gain a more nuanced

understanding of the causality between CD and BC, we turned to

Mendelian randomization (MR). MR is a robust statistical method

that harnesses genetic variants as instrumental variables (IVs) to

explore causal connections between exposure and outcome (19, 20).

By capitalizing on the natural random assortment of genetic

variants during conception, MR effectively mimics the

randomized controlled trial (RCT) setting, thereby mitigating

issues like confounding and reverse causation that often plague

observational studies (21–23).
Frontiers in Oncology 0288
2 Materials and methods

2.1 Study design

In order to assess the potential causal association between CD

and BC, we conducted a two-sample MR study. The single

nucleotide polymorphisms (SNPs) selected as IVs were required

to adhere to three following key premises (24): (1) SNPs must be

intensely linked to CD; (2) SNPs must not be linked to confounding

factors; and (3) SNPs should not be directly linked to BC (Figure 1).
2.2 Data source

The summary data for CD (5,956 cases/14,927 controls) was

obtained from the International Inflammatory Bowel Disease

Genetics Consortium (IIBDGC) (25). And the summary data for

BC (122,977 cases/105,974 controls) was extracted from the Breast

Cancer Association Consortium (BCAC). Based on the estrogen

receptor status, the cases were classified into two subtypes: estrogen

receptor-positive (ER+) BC and estrogen receptor-negative (ER−)

BC (26). Table 1 presents details of the exposure and outcomes.
2.3 SNP selection

First, we screened for SNPs that were strongly associated with

exposure at a genome-wide significance level (p < 5×10–8). Second,

we implemented a criterion (r2 < 0.001, kb=10000) to select SNPs

that were independent of linkage disequilibrium (LD) (27). Third,

we excluded SNPs that were not found in the BC dataset and

palindromic SNPs that may cause bias. Next, we harmonized the

exposure and outcome data, ensuring that the effect of the SNP on

the exposure corresponded to the same allele as the effect on the

outcome. Subsequently, we evaluated the possibility of weak

instrumental bias by calculating F-statistics and excluded SNPs

with F-statistics less than 10 (28, 29). The F statistic was calculated

as F = beta2/se2 (30, 31). Finally, the MR-PRESSO method was

conducted to detect outlier SNPs (32), and after excluding these

outlier SNPs, the remaining SNPs were used for subsequent MR

analysis. Figure 2 shows the selection flowchart.
FIGURE 1

Schematic for the MR study design.
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2.4 Two-sample MR analysis

Three commonly used MR methods were applied to estimate

causal effects: inverse variance weighted (IVW) (24), weighted

median (33), and MR-Egger (34). The IVW method is considered

to be the most effective method for assessing causality (35);

therefore, the results were mainly based on the IVW method. We

used odds ratios (ORs) to express the effects of CD on BC risk. If the

result of the IVW method is significant (p < 0.05), even if no

significant result is obtained by the other methods, it can be

considered as a positive result as long as the ORs of the other
Frontiers in Oncology 0389
methods are in the same direction and there is no heterogeneity or

pleiotropy (36).
2.5 Sensitivity analysis

Cochran’s Q test was employed to assess heterogeneity, with p >

0.05 representing the absence of heterogeneity (37). The MR-Egger

regression test was applied to detect horizontal pleiotropy, with a

zero intercept signifying the absence of pleiotropy (p > 0.05) (38).
FIGURE 2

Flowchart of our MR study.
TABLE 1 Detailed information on the exposure and outcomes.

Exposure/Outcome ncase ncontrol Sample size Consortium Ancestry

Crohn’s disease 5,956 14,927 20,883 IIBDGC European

Overall Breast cancer 122,977 105,974 228,951 BCAC European

ER+ Breast cancer 69,501 105,974 175,475 BCAC European

ER− Breast cancer 21,468 105,974 127,442 BCAC European
f

BCAC, Breast Cancer Association Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium.
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2.6 Multivariable MR analysis

Based on the search results on the PhenoScanner website and

possible confounders between CD and BC, we performed

multivariable MR (MVMR) analyses with the addition of

smoking and drinking separately or together to adjust for causal

impacts between exposure and outcome (39).
2.7 Reverse MR analysis

To explore whether BC has any causal effect on CD, we also

conducted a reverse MR analysis (i.e., BC as the exposure and CD as

the outcome) using SNPs related to BC as IVs.
2.8 Statistical analyses

All analyses were performed in R software (version 4.2.3) using

the “TwoSampleMR” (version 0.5.6), “MRPRESSO” (version 1.0),

and “MendelianRandomization” (version 0.7.0) packages (40).
3 Results

3.1 SNP selection

Initially, we extracted 53 genome-wide significant (p<5×10-8)

SNPs associated with CD. No SNPs were ruled out due to LD. Next,

during the extraction of information on IVs and outcome, we

excluded rs11564236 due to the lack of corresponding outcome

data. Additionally, we excluded one palindromic SNP (rs12692254)

while harmonizing the exposure and outcome data. Furthermore,

we removed rs7543234 from the analysis of overall BC due to its

association with the outcome. Finally, potentially outlier SNPs were

excluded using MR-PRESSO. Specifically, rs12194825, rs1873625,

rs2188962, and rs3091315 were excluded from the analysis of

overall BC; rs12194825, rs1873625, rs2188962, and rs7543234

were excluded from the analysis of ER+ BC, and rs1873625 and

rs3091315 were removed from the analysis of ER− BC. The F-

statistics of all SNPs were greater than 10. After removing these

SNPs, 46 SNPs, 47 SNPs, and 49 SNPs were included in the analysis

of overall, ER+, and ER− BC, respectively (Supplementary Sheet).
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3.2 Analyses using the Two-sample MR

Using existing SNPs as IV, the results of the IVW method

showed that CD was positively associated with the risks of overall

(OR: 1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95%

CI: 1.006-1.034; p=0.006), and ER− (OR: 1.019; 95% CI: 1.000-1.037;

p=0.046) BC (Figure 3). The scatterplot depicts the causal estimates

obtained from every SNP (Figure 4). Although the weighted median

and MR-Egger methods did not obtain significant results (p > 0.05),

the direction of the ORs was consistent with the IVW method

(OR > 1). Furthermore, Cochran’s Q and MR-Egger regression

analyses demonstrated that there was no heterogeneity or

horizontal pleiotropy affecting the stability of the results. The

same result was also suggested by the symmetry of the funnel

plots (Figure 5). Therefore, based on the significant IVW results (p

< 0.05), we can conclude that there is a causal effect of CD on BC.

The details of the results are presented in Table 2.
3.3 Analyses using the MVMR

After adjusting for current tobacco smoking and alcoholic

drinks per week separately or together, MVMR analysis revealed

that the positive association between CD and the risks of overall and

ER+ BC remained, but it disappeared in ER− BC. In addition, no

potential horizontal pleiotropy was discovered for the MR-Egger

intercept (Table 3). Results of MVMR suggested that the observed

effects of CD on overall and ER+ BC were stable and not influenced

by potential confounders.
3.4 Reverse MR analysis

In the reverse study (BC on the risk of CD), no genetic effects of

overall BC (OR: 1.082; 95% CI: 0.989-1.183; p=0.085), ER+ BC (OR:

1.039; 95% CI: 0.950-1.136; p=0.405), and ER− BC (OR: 1.033; 95%

CI: 0.924-1.156; p=0.567) on the risk of CD were detected (Table 4).

In all of the analyses, MR-Egger regression did not show IVs had

horizontal pleiotropy. Therefore, genetically predicted BC exerts no

impact on the risk of CD.
FIGURE 3

Forest plot of the impact of Crohn’s disease on breast cancer risk using IVW method (after removing outliers). Het.p refers to the p-value for
heterogeneity; Ple.p refers to the p-value for pleiotropy; OR, odds ratio; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1275913
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1275913
4 Discussion

In this study, we carried out two-sample MR analyses to

appraise the causal relationship of CD with overall, ER+, and ER−

BC for the first time. The results showed that CD increased the risks

of overall, ER+, and ER− BC. We further assessed the robustness of

the results by MVMR analysis. However, in MVMR analysis, CD

only increased the risks of overall and ER+ BC, but not ER− BC. This

suggested a potential impact of smoking and alcohol drinking on

the correlation between CD and ER− BC. Additionally, reverse MR

analysis revealed that BC did not have a significant impact on

CD risk.

However, a recent MR study found no association between CD

and BC risk (41). We analyzed possible reasons for the discrepancy.
Frontiers in Oncology 0591
Their study included only 732 cases of CD, whereas our study

included 5,956 cases. They used a significance threshold of p<5×10-6

for SNP selection, but re-running MR on their data at p<5×10-8

revealed a positive association of CD on BC risk (p=0.016).

Furthermore, we conducted subtype analyses based on estrogen

receptor status and performed MVMR to adjust for possible

confounding factors.

This MR study provides some insights into the association

between CD and BC. Some studies have also revealed an elevated

risk of BC in patients with CD (13, 14). The result of a 20-year

follow-up study indicated that CD patients have a higher risk of

developing BC (42). In addition, a study from Denmark showed BC

patients with CD have a more advanced stage and a worse

chemotherapy prognosis than patients without CD (43).
A

B

C

FIGURE 4

Scatterplots for effects of Crohn’s disease on breast cancer risk (after removing outliers). (A) overall BC; (B) ER+ BC; (C) ER− BC.
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Several possible factors may account for the association between

CD and BC. Existing studies indicated that CD and BC may share

common molecular mechanisms. Recent evidence suggested that

there are 53 overlapping differentially expressed genes between the

CD and BC, with enrichment analyses showing that both diseases

are related to NF-kB signaling pathways and interleukin-17 (IL-17)

(44). It has been shown that inflammation is involved in the process

of development and progression of malignant tumors (45). T helper

17 (Th17) cells are important inflammatory mediators in CD, and

when Th17 cells reach breast tumor tissues, they upregulate a

variety of cytokines including IL-17 and tumor necrosis factor-a
(TNF-a) (46). IL-17 can upregulate the expression of chemokine

CXCL1 in BC cells. This chemokine increases the activation of the

AKT/NF-kB signaling pathway to promote BC growth and
Frontiers in Oncology 0692
metastasis (47). Furthermore, previous studies have indicated that

TNF-a is involved in epithelial-mesenchymal transition (EMT),

thereby promoting tumor metastasis (48). A study conducted on

patients with inflammatory BC demonstrated a direct association

between TNF-a and the presence of tumor cells expressing EMT

markers (49). In addition, there is another potential point of

association between CD and BC that lies in the involvement of

estrogen and the G protein-coupled estrogen receptor (GPER) (50,

51). GPER has been shown to regulate intestinal function,

inflammation, and immune responses, and promote the

occurrence and progression of BC (52, 53).

There is growing interest in the role of the microbiome in health

and disease. Studies in human subjects have revealed distinct

differences in the gut microbiome between patients with CD and
A B

C

FIGURE 5

Funnel plots for effects of Crohn’s disease on breast cancer risk (after removing outliers). (A) overall BC; (B) ER+ BC; (C) ER− BC.
TABLE 2 Assessing the effects of Crohn’s disease on breast cancer risk (after removing outliers).

Outcome MR-PRESSO Outliers Used SNPs method OR (95%CI) P Het.p Ple.p

Overall breast cancer rs12194825, rs1873625, rs2188962, rs3091315 46 IVW 1.020(1.010-1.031) 0.000106 0.449 0.417

weighted median 1.012(0.996-1.029) 0.152

MR-Egger 1.012(0.989-1.035) 0.326

ER+ breast cancer rs12194825, rs1873625, rs2188962, rs7543234 47 IVW 1.019(1.006-1.034) 0.006 0.078 0.939

weighted median 1.015(0.995-1.035) 0.144

MR-Egger 1.018(0.987-1.051) 0.261

ER− breast cancer rs1873625, rs3091315 49 IVW 1.019(1.000-1.037) 0.046 0.437 0.437

weighted median 1.003(0.976-1.031) 0.846

, MR-Egger 1.003(0.962-1.046) 0.874
frontie
Het.p refers to the p-value for heterogeneity; Ple.p refers to the p-value for pleiotropy; OR, odds ratio; CI, confidence interval.
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healthy control subjects (54). Notably, the gut microbiome also

affects the risk of developing BC (55). Dysbiosis of the intestinal

flora has been found to have a direct effect on the dissemination of

breast tumors (56, 57). The gut microbiome may also be involved in

the correlation between CD and the risk of BC, and more relevant

research is needed to confirm this in the future.

Research has demonstrated that chronic psychological stress

can inhibit the anti-tumor effects of the immune system in CD (58).
Frontiers in Oncology 0793
Intestinal inflammation in CD can activate the hypothalamic–

pituitary–adrenal (HPA) axis through the opposite action of the

brain-gut axis, thereby inducing anxiety and depression (59, 60).

Several studies have shown that patients with BC also experience

varying degrees of anxiety and depression (61). Hence, the

mechanisms behind the effects of mental and emotional factors

on CD and BC need to be further explored. The possible

mechanisms for the effect of CD on BC risk are depicted in Figure 6.
TABLE 3 Assessing the effects of Crohn’s disease on breast cancer using IVW multivariable MR.

Outcome Adjustment OR (95%CI) P Egger-Intercept Int.p

Overall breast cancer Current tobacco smoking 1.018(1.003-1.033) 0.019 <0.001 0.976

Alcoholic drinks per week 1.019(1.001-1.037) 0.037 -0.001 0.724

Adjust together 1.017(1.001-1.034) 0.037 -0.001 0.586

ER+ breast cancer Current tobacco smoking 1.023(1.005-1.040) 0.011 0.001 0.560

Alcoholic drinks per week 1.021(1.002-1.041) 0.034 <0.001 0.960

Adjust together 1.021(1.003-1.039) 0.025 <0.001 0.982

ER− breast cancer Current tobacco smoking 1.002(0.980-1.024) 0.864 -0.002 0.555

Alcoholic drinks per week 1.003(0.978-1.028) 0.833 -0.005 0.153

Adjust together 0.998(0.975-1.022) 0.869 -0.003 0.164
frontie
Int.p refers to the p-value derived from the Egger-intercept.
TABLE 4 Assessing the effects of breast cancer on Crohn’s disease using IVW method.

Expose Outcome Used SNPs OR (95%CI) P Egger-Intercept Int.p

Overall breast cancer Crohn’s disease 132 1.082(0.989-1.183) 0.085 0.002 0.790

ER+ breast cancer Crohn’s disease 97 1.039(0.950-1.136) 0.405 -0.006 0.431

ER− breast cancer Crohn’s disease 34 1.033(0.924-1.156) 0.567 -0.018 0.293
Int.p refers to the p-value derived from the Egger-intercept.
FIGURE 6

Diagram of possible mechanisms for the effect of Crohn’s disease on breast cancer risk.
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The strength of our study is that it explored the causality between

CD and BC risk byMR analysis. Compared to previous observational

studies that found CD to be associated with BC, MR studies are less

susceptible to confounders and reverse causation. Besides, our study

utilized a large sample size and SNPs from GWAS, providing

sufficient statistical validity to estimate causality. Furthermore,

sensitivity analyses enhanced the credibility of our results.

Nevertheless, this study has several limitations. First, the GWAS

data for this study included only European populations, which

limits the application of our findings to other populations. Hence,

future studies are required to verify the applicability of our results to

different populations. Second, we cannot stratify the analysis by sex

due to the lack of sex-specific GWAS data. Third, the OR of CD on

BC risk is relatively small, indicating that the enhanced risk is just

modest. Therefore, we don’t recommend that patients with CD be

screened for BC more frequently or earlier than the routine

screening. Finally, MR also has its limitations. (1) SNPs are

generally considered to have lifetime effects, but in specific

situations, the effects of SNPs may vary due to an individual’s

physiological status, environmental factors, or interactions with

other genetic variations. If the genetic variants used in MR analysis

change over time, it could potentially affect the validity of the causal

estimates. (2) Additional adjustments for smoking and alcohol

consumption may lead to collider bias. (3) The MR study can

only analyze the causality and cannot explain the mechanism of CD

on BC risk. Further research is necessary to investigate the

mechanisms behind the link between CD and the risk of BC.
5 Conclusion

Our findings provide evidence for a potential positive

association between CD and the risk of BC. However, further

studies are needed to fully understand the underlying

mechanisms and establish a stronger causal relationship.
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Background: Sepsis, a global health challenge, necessitates a nuanced
understanding of modifiable factors for effective prevention and intervention.
The role of tracemicronutrients in sepsis pathogenesis remains unclear, and their
potential connection, especially with genetic influences, warrants exploration.

Methods: We employed Mendelian randomization (MR) analyses to assess the
causal relationship between genetically predicted blood levels of nine
micronutrients (calcium, β-carotene, iron, magnesium, phosphorus, vitamin C,
vitamin B6, vitamin D, and zinc) and sepsis susceptibility, severity, and subtypes.
The instrumental variables for circulating micronutrients were derived from nine
published genome-wide association studies (GWAS). In the primary MR analysis,
we utilized summary statistics for sepsis from two independent databases (UK
Biobank and FinnGen consortium), for initial and replication analyses.
Subsequently, a meta-analysis was conducted to merge the results. In
secondary MR analyses, we assessed the causal effects of micronutrients on
five sepsis-related outcomes (severe sepsis, sepsis-related death within 28 days,
severe sepsis-related death within 28 days, streptococcal septicaemia, and
puerperal sepsis), incorporating multiple sensitivity analyses and multivariable
MR to address potential heterogeneity and pleiotropy.

Results: The study revealed a significant causal link between genetically
forecasted zinc levels and reduced risk of severe sepsis-related death within
28 days (odds ratio [OR] = 0.450; 95% confidence interval [CI]: 0.263, 0.770; p =
3.58 × 10−3). Additionally, suggestive associations were found for iron (increased
risk of sepsis), β-carotene (reduced risk of sepsis death) and vitamin C (decreased
risk of puerperal sepsis). No significant connections were observed for other
micronutrients.

Conclusion: Our study highlighted that zinc may emerges as a potential
protective factor against severe sepsis-related death within 28 days, providing
theoretical support for supplementing zinc in high-risk critically ill sepsis patients.
In the future, larger-scale data are needed to validate our findings.
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Introduction

Sepsis is a critical health concern marked by an exaggerated
immune response to infection, presenting a global public health
challenge (Cecconi et al., 2018). It routinely precipitates multi-organ
dysfunction, with high incidence and mortality rates (Evans et al.,
2021), thereby imparting a substantial encumbrance upon societal
and global healthcare infrastructures. Notwithstanding, the
susceptibility and severity of sepsis are influenced by a multitude
of factors (Rhee et al., 2017), accentuating the imperativeness of
discerning modifiable factors for the prevention, timely diagnosis,
and efficacious intervention in sepsis.

In recent years, although some factors potentially influencing
sepsis have been identified, such as blood metabolites (Wei et al.,
2023), body mass index (BMI) (Wang et al., 2023), insomnia
(Thorkildsen et al., 2023), lifetime smoking (Zhu et al., 2023), the
role of trace elements in the pathogenesis of sepsis remains unclear.
Simultaneously, understanding the dysregulation of trace element
metabolism in the pathogenesis of sepsis is not comprehensive (Guo
et al., 2023). Numerous micronutrients have been reported to play a
crucial role in the immune system, and their deficiency may severely
impair host immunity, increasing the risk of infection (Gombart
et al., 2020). Some studies emphasize vitamin C as a biological and

theoretical basis for sepsis treatment (Spoelstra-de Man et al., 2018);
however, a randomized controlled trial found no significant
improvement in sepsis-related inflammation and vascular damage
with vitamin C (Fowler et al., 2019). The disparity between these two
study results may be influenced by factors such as sample size,
follow-up time, and confounding variables. Due to the cost and
practical difficulties, conducting sufficiently large randomized
controlled trials is challenging, and there is limited research
providing substantial support for the relationship between
micronutrients and sepsis.

Mendelian randomization (MR) is an approach used to evaluate
the relationship between risk factors and diseases in terms of
causality. When there are no randomized controlled trials (RCTs)
or new RCTs being conducted, MR becomes a valuable alternative
approach that can provide dependable evidence on the causal
connection between exposure and the risk of disease (Zuccolo
and Holmes, 2017). In observational studies, MR utilizes genetic
variation as an instrumental variable (IV) to successfully mitigate
the influence of confounding factors that are difficult to control and
reduces the likelihood of reverse causation.

In this study, we employMRmethod to estimate the relationship
between genetically predicted blood micronutrient levels and the
risk of sepsis-related outcomes. We have selected nine

FIGURE 1
Flow chart for the Mendelian randomized analysis. (A) Data sources. (B) Mendelian randomization analysis. Abbreviations: IVW, inverse-variance
weighted; Ca, Calcium; Fe, Iron; Mg, Magnesium; Zn, Zinc.
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micronutrients associated with infection [calcium (Ca), β-carotene,
iron (Fe), magnesium (Mg), phosphorus, vitamin C, vitamin B6,
vitamin D, zinc (Zn)] and assessed the infection risk of sepsis and its
susceptibility and severity.

Materials and methods

Research design

The inquiry follows the principles specified in the STROBE-MR
guidelines (Supplementary Table S1). Refer to Figure 1 for an
illustrative representation of the study design. In brief, we
performed a comprehensive investigation of MR using data from
16 publicly accessible genome-wide association studies (GWAS) to
obtain summary statistics. The objective was to elucidate the
relationship between circulating micronutrient levels and sepsis.
Of the 16 studies, 9 contributed exposure data, while 7 furnished
outcome data. To reduce potential biases caused by population
stratification, only individuals of European ancestry were included
in the study for both the exposure and outcome data. For the
primary MR analysis, sepsis data were procured from two
independent GWAS consortia, utilized for preliminary and
replicative analyses, culminating in a meta-analysis for result
amalgamation. In secondary MR analyses, we scrutinized the
causal nexus between micronutrients and the severity, as well as
subtypes, of sepsis. Our analytic approach was bidirectional, initially
scrutinizing the influence of circulating micronutrients on the
susceptibility to sepsis and its associated maladies, followed by an
exploration of reverse causality. A schematic overview of the study
methodology is delineated in Figure 1.

The data used in this investigation were obtained from studies
with the explicit consent and ethical endorsement of participants,
eliminating the need for ethical approval from an institutional
review board for the present study.

Data sources for circulating micronutrient

By searching on pubmed website (https//www.ncbi.nlm.nih.
gov/pubmed) (last accessed on 1 March 2023), we obtained
GWAS data related to micronutrients in the European
population. To prevent sample overlap between the exposures
and outcomes in our research, we excluded micronutrients
sourced from these two databases during our micronutrient
search. No genomic studies were found for vitamin B1, B2, B3,
B5, B7, fluoride, chloride, sulfur, and iodine. Exclusion of global
genomic investigations on vitamin K, cobalt, chromium, sodium,
potassium, and molybdenum was based on the lack of significant
findings across the entire genome (Meyer et al., 2010; Dashti et al.,
2014; Ng et al., 2015). A preliminary identification of 15 potential
micronutrients was established: Ca (O’Seaghdha et al., 2013), copper
(Evans et al., 2013), Fe (Benyamin et al., 2014), Mg (Meyer et al.,
2010), selenium (Cornelis et al., 2015), Zn (Evans et al., 2013),
phosphorus (Kestenbaum et al., 2010), beta-carotene (Ferrucci et al.,
2009), folate (Grarup et al., 2013), vitamin A (Mondul et al., 2011),
vitamin B6 (Hazra et al., 2009), vitamin B12 (Grarup et al., 2013),
vitamin C (Zheng et al., 2021), vitamin D (Jiang et al., 2018), and

vitamin E (Major et al., 2011). However, Vitamin A and vitamin E
were not considered in these GWAS because they were controlled
for body mass index (BMI), which could lead to biased genetic
effects caused by BMI adjustments (Aschard et al., 2015). Detailed
information about the GWAS for the 13 candidate exposures was
provided in Supplementary Table S2.

Data sources for sepsis-related outcomes

We used ICD-coded linked secondary care data to identify sepsis
and sepsis-related outcomes. In the UK Biobank (Bycroft et al.,
2018), sepsis and the severity were identified using ICD-10 codes
A02, A39, A40, and A41. In the FinnGen database (Kurki et al.,
2023), codes A40.9, A41, and O85 were used to identify sepsis and its
subtypes, in line with recent literature (Hamilton et al., 2023). Cases
were included if the code appeared in either the primary or
secondary diagnostic position in Hospital Episode Statistics
(HES) data or similar datasets in the devolved nations, as
provided by the UK Biobank.

For our primary MR analysis, we chose sepsis as the primary
outcome. For our study, we used summary statistics data from two
separate cohorts of European ancestry, namely the UK Biobank and
the FinnGen Release 9, which were employed as the outcomes. To
ascertain the association of genetic variations with sepsis, we initially
employed the latest version of sepsis GWAS summary data
(10,154 cases and 454,764 controls) from the UK Biobank. To
validate through replication and meta-analysis, we employed an
additional collection of sepsis summary data (12,301 cases and
332,343 controls) obtained from the FinnGen consortium.

For secondary analyses, we opted for five sepsis-related
outcomes, which encompassed three data points on sepsis
severity obtained from the UK Biobank, severe sepsis (1,380 cases
and 429,985 controls), and sepsis-related death within 28 days
(1896 cases and 484,588 controls) and severe sepsis-related death
within 28 days (347 cases and 431,365 controls). Moreover, the
FinnGen cohort provided two variations of sepsis information,
namely streptococcal septicaemia (2,348 cases and
332,343 controls) and puerperal sepsis (3,940 cases and
2202267 controls), which were obtained from https//r9.finngen.fi/
pheno/. Refer to Table 1 for detailed information on data sources.

MR analysis

In the selection of genomically significant SNPs, we applied
stringent thresholds, specifically p < 5 × 10−8, to obtain top
independent SNPs strongly correlated with each micronutrient.
Within 10,000-kb windows, we eliminated single nucleotide
polymorphisms (SNPs) that were in linkage disequilibrium with
parameters r2 < 0.001. At the same time, in order to guarantee that
the impact of SNPs on exposure aligns with their impact on outcomes
for the identical allelic gene, we eliminated palindromic SNPs with
moderate frequencies of alleles. To evaluate the statistical power, we
calculated the F-statistic for every SNP. All F-statistics for the SNPs
exceeded 10, indicating a minimal likelihood of weak instrumentality.

To establish the causal connection between sepsis and
micronutrients, we utilized the inverse variance weighting (IVW)
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technique as our primary analytical method. IVW is a commonly
usedmethod inMR studies, combining the wald ratios of each SNP to
derive a summary estimate (Pierce and Burgess, 2013). In order to
guarantee the dependability of our findings, we performed several
sensitivity analyses to confirm if diversity and pleiotropy in genetic
instruments could potentially cause bias in MR outcomes. The
methods used in these analyses were the weighted median, MR-
Egger, MR pleiotropy residual sum, andMR-PRESSOmethods. Egger
intercept (Bowden et al., 2015) was utilized to evaluate horizontal
pleiotropy, while the MR-PRESSO test was employed for outlier
identification (Verbanck et al., 2018). Cochran’s Q test was
performed to assess heterogeneity in the genetic instruments used
across the two cohorts (Greco et al., 2015), with p < 0.05 indicating
significant heterogeneity. Finally, for the outcomes of sepsis infection,
an MR Steiger test was conducted to examine the directionality of the
associations (Hemani et al., 2017).

To examine if the potential genetic tools related to micronutrients
were linked to other traits like blood metabolites (Wei et al., 2023),
BMI (Wang et al., 2023), insomnia (Thorkildsen et al., 2023), and
lifetime smoking (Zhu et al., 2023), we employed PhenoScanner V2.
The website http//www.phenoscanner.medschl.cam.ac.uk/ was
accessed on 1 November 2023. If necessary, we assessed the
correlation between exposure and outcome after excluding these
SNPS from the MR analysis to mitigate potential pleiotropic effects.

MultivariableMRwas employed to assess whether there was bias in
any phenotype due to pleiotropy as identified on PhenoScanner. IEU
OpenGWAS project (https://gwas.mrcieu.ac.uk/.) provided genetic
diversity for potential pleiotropic traits. We performed a
multivariable MR analysis to investigate the effect of Zn on the
likelihood of severe sepsis-related death within 28 days. This analysis
included mean corpuscular hemoglobin concentration (GWAS
identifier: ebi-a-GCST90002328), reticulocyte count (GWAS
identifier: ebi-a-GCST90025972), high light scatter reticulocyte count
(GWAS identifier: ebi-a-GCST90025970), reticulocyte fraction of red
cells (GWAS identifier: ebi-a-GCST90002406), and mean corpuscular
volume (GWAS identifier: ebi-a-GCST90025963).

Power statistics

We conducted power calculations using the online platform
(https://shiny.cnsgenomics.com/mRnd/) (Brion et al., 2013). Based
on the sample sizes used in the meta-analysis, we computed the
statistical power for each analysis under a type I error of 5%, and the

results are summarized in Table 2. In order to guarantee the strength
of our conclusions, we exclusively took into account micronutrients
that had an R2 value higher than 1% and/or a statistical power
exceeding 50% for at least one sepsis-related outcome (Flatby et al.,
2023). This criterion led to the exclusion of copper, folate, selenium,
and vitamin B12 from further analysis, as detailed in Supplementary
Tables S3, S4.

Replication and reverse MR analysis

To perform the primary MR analysis, we carried out a
replication analysis by utilizing supplementary sepsis summary
data obtained from the FinnGen consortium. The findings from
the two groups (UK Biobank and FinnGen) were combined and
analyzed using a f random-effects model in METAL (version 2011-
03-25) (Willer et al., 2010). Additionally, to further assess whether
our MR study was affected by reverse causation, we performed a
reverse MR analysis on the association between genetically predicted
sepsis and candidate micronutrients. In this reverse MR analysis,
susceptibility and severity of sepsis were treated as exposures, and
candidate micronutrients were considered as outcomes. We applied
the identical rigorous standards for selecting instrumental variables,
requiring a significance level of p < 5 × 10−8, and ensuring linkage
disequilibrium with r2 < 0.001 within windows of 10,000-kb.

Statistical analysis

The TwoSampleMR package (version 0.5.6) and the R package
“MRPRESSO” (version 4.0.3) were utilized for conducting all MR
analyses. METAL (version 2011-03-25) (Willer et al., 2010) was
utilized for meta-analysis of results. A significance threshold of p <
0.05 was deemed to be of nominal importance, whereas the
Bonferroni-adjusted statistical significance threshold (for
9 exposures) was established at p = 0.05/9 = 5.56 × 10−3.

Results

Instrumental variable selection

The number of instrumental variables for circulating
micronutrients ranged from 2 to 11. The F-statistics for these

TABLE 1 Source of outcome genome-wide association study summary data.

Outcome Source Cases Control Trait/Phenocode Population

Sepsis UK Biobank 10,154 454,764 Sepsis European

Sepsis FinnGen R9 12,301 332,343 AB1_other_sepsis European

severe sepsis UK Biobank 1,380 429,985 Sepsis (critical care) European

sepsis-related death within 28 days UK Biobank 1896 484,588 Sepsis (28 day death) European

severe sepsis-related death within 28 days UK Biobank 347 431,365 Sepsis (28 day death in critical care) European

Streptococcal septicaemia FinnGen R9 2,348 332,343 AB1_strepto_sepsis European

Puerperal sepsis FinnGen R9 3,940 202,267 O15_puerp_sepsis European
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SNPs ranged from 25 to 1,497, with a median of 50, surpassing the
conventional threshold of 10, suggesting a minimal likelihood of
weak instrumentality (see Supplementary Table S4). However, it is
noteworthy that one SNP for calcium (rs1550532), two SNPs for
magnesium (rs7965584, rs7197653), and one SNP for vitamin D
(rs8018720) were unavailable in the outcome datasets for
streptococcal septicaemia and puerperal sepsis. Furthermore, the
outcome dataset for severe sepsis-related death within 28 days did
not include one SNP related to Fe (rs1525892), and two SNPs
associated with phosphorus (rs1697421, rs9469578) were excluded
due to incompatible alleles.

Primary MR analyses

Using the chosen instrumental variables, we performed an initial
evaluation on the association between 9 circulating micronutrients
and sepsis likelihood in the UK Biobank discovery set. We identified
two independent associations with sepsis for β-carotene and Fe (p <
5.56 × 10−3) (Supplementary Table S5). No heterogeneity was found
in the sensitivity analyses, which included Cochran’s Q test and I2

values (β-carotene p = 0.997, Fe p = 0.264). Evaluation of horizontal
pleiotropy using MR-Egger suggested insufficient evidence for
horizontal pleiotropy (Supplementary Table S6). In the
replication set, no significant associations between micronutrients
and sepsis were detected, with the relationship between β-carotene
and sepsis in the opposite direction compared to the discovery set
(p = 0.119, IVW). Following the meta-analysis, a nominal significant
correlation was found solely between Fe and the susceptibility to
sepsis infection (odds ratio [OR] = 1.083; 95% confidence interval
[CI]: 1.00, 1.17; p = 0.048) (Figure 2; Supplementary Table S5).

The risk of sepsis showed no significant correlation with the
levels of calcium, β-carotene, magnesium, phosphorus, vitamin B6,
vitamin C, vitamin D, and Zn in the bloodstream (Figure 2;
Supplementary Table S5).

Secondary MR analyses

In subgroup analyses, we observed associations between three
micronutrients and three sepsis-related outcomes. As shown in
Figure 3; Supplementary Table S1, we found a nominal
significant negative relationship between β-carotene and the
likelihood of sepsis death within 28 days (OR = 0.781; 95% CI:
0.611, 0.997; p = 0.047, IVW) and severe sepsis-related death within
28 days (OR = 0.449; 95% CI: 0.253, 0.799; p = 6.48 × 10−3, IVW).
The sensitivity analyses (Supplementary Tables S7, S8), which
involved the use of Cochran’s Q test and I2 values, indicated the
absence of heterogeneity. Additionally, the MR-Egger analysis, with
a small intercept, showed minimal influence of horizontal
pleiotropy. Likewise, the MR-PRESSO examination did not detect
any unusual SNPs or horizontal pleiotropy impacts on sepsis death
within 28 days (p = 0.958) or severe sepsis-related death within
28 days (p = 0.64) (Supplementary Table S9). However, the MR-
Egger method shows a direction opposite to IVW, and it did not pass
our stringent significance threshold. Simultaneously, we also
observed a nominal significant negative association between
genetically predicted vitamin C and a reduced risk of puerperal
sepsis (OR = 0.702; 95% CI: 0.507, 0.971; p = 0.032, IVW). Although
sensitivity analysis found no evidence of heterogeneity or pleiotropy,
it still did not meet our stringent statistical threshold.

In contrast, there was a strong correlation between the level of
Zn and a decreased likelihood of severe sepsis-related death within
28 days (OR = 0.450; 95% CI: 0.263, 0.770; p = 3.58 × 10−3, IVW).
Supplementary Table S8 presents the outcomes of sensitivity
analyses. Cochran’s Q test indicated no heterogeneity (p = 0.339);
however, the restricted number of accessible SNPs (only 2)
prevented the execution of MR-PRESSO and Egger regression
analyses. Moreover, we employed the Steiger test to validate
whether the identified causal relationships were influenced by
reverse causation. The results of Steiger do not support the
existence of reverse causal effects between candidate

TABLE 2 Source of exposure genome-wide association study summary data.

Exposure Number of SNPs % Of variance explained Population ancestry Pubmed ID

Ca 7 0.841 European 24,068,962

Cu 2 4.6 European 23,720,494

Fe 3 3.04 European 25,352,340

Mg 5 1.49 European 20,700,443

P 5 1.2 European 20,558,539

Se 7 3.65 European 25,343,990

Folate 2 0.41 European 23,754,956

β-carotene 4 8.36 European 19,185,284

Vitamin B6 2 3.07 European 19,744,961

Vitamin B12 10 4.78 European 23,754,956

Vitamin C 11 1.79 European 33,203,707

Vitamin D 6 2.67 European 29,343,764

Zn 2 4.59 European 23,720,494

Abbreviations: Ca, Calcium; Cu, Copper; Fe, Iron; Mg, Magnesium; P, phosphorus; Se, Selenium; Zn, Zinc.
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FIGURE 2
Forest plot for the meta-analysis of circulating micronutrients levels on the risk of sepsis. Abbreviations: IVW, inverse-variance weighted; Nsnp,
number of SNP; OR, odds ratio; CI, confidence interval; Ca, Calcium; Fe, iron, Mg, Magnesium; Zn, zinc.

FIGURE 3
Heatmap showing the causal effects of circulating micronutrients levels on the risk of sepsis-related outcomes by using three method (IVW, MR
egger, and weighted median). Abbreviations: Ca, Calcium; Fe, iron, Mg, Magnesium; Zn, zinc. IVW, inverse-variance weighted.
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micronutrient (β-carotene, vitamin C, and Zn) and sepsis-related
outcomes (Supplementary Table S9).

Given the limited availability of only two SNPs for the
micronutrient Zn within the threshold of p < 5 × 10−8, which
precluded heterogeneity and pleiotropy tests, we conducted a post
hoc MR analysis. In this analysis, we included variants at a more
liberal threshold (p < 5 × 10−7). As shown in Supplementary Tables
S2, S10, the results aligned closely with our initial findings (OR =
0.483; 95% CI: 0.298, 0.783; p = 3.16 × 10−3, IVW), and the p-values
for heterogeneity and pleiotropy were both above 0.05, suggesting a
minimal likelihood of heterogeneity and pleiotropy.

Confounder and multivariable MR analyses

Although sensitivity analyses did not uncover any
indications of bias that would make the MR estimates
unreliable, we proceeded to examine the second characteristic
linked to the leading SNP for Zn by utilizing the PhenoScanner
tool [blood metabolites (Wei et al., 2023), BMI (Wang et al.,
2023), insomnia (Thorkildsen et al., 2023), and lifetime smoking
(Zhu et al., 2023)]. However, no connections were observed
between Zn-related instrumental variables and reported risk
factors (Supplementary Table S11). Nonetheless, it is
noteworthy that Zn’s rs1532423 was closely associated with
mean corpuscular hemoglobin concentration (GWAS
identifier: ebi-a-GCST90002328), reticulocyte count (GWAS
identifier: ebi-a-GCST90025972), high light scatter
reticulocyte count (GWAS identifier: ebi-a-GCST90025970),
reticulocyte fraction of red cells (GWAS identifier: ebi-a-
GCST90002406), and mean corpuscular volume (GWAS
identifier: ebi-a-GCST90025963). Hence, we performed a
multivariable MR analysis to examine the association between
Zn and potential pleiotropic traits and the likelihood of severe
sepsis-related death within 28 days.

After accounting for the impacts of mean corpuscular
hemoglobin concentration, reticulocyte count, high light scatter
reticulocyte count, reticulocyte fraction of red cells, and mean
corpuscular volume in the multivariable MR analysis, we found
comparable effects to the primary analysis, suggesting that Zn
continued to exhibit a defensive influence on severe sepsis-related
death within 28 days (OR = 0.675; 95% CI: 0.508, 0.895; p = 6.421 ×
10−3, IVW) (Table 3).

Reverse MR analyses

In order to further explore the causal efficacy connection
between potential micronutrients and outcomes related to sepsis,
we performed reverse causal analyses by employing instrumental
variables for sepsis-related outcomes. Our objective was to use IVW-
MR estimates and select significant independent SNPs with a p < 5 ×
10−8 as instrumental variables. This analysis aimed to investigate
whether there was any indication of a reverse causal association
between the identified Zn and the outcome of severe sepsis-related
death within 28 days. As there were no significant independent SNPs
identified when considering severe sepsis-related death within
28 days as the variable at a significance level of p < 5 × 10−8 or
p < 5 × 10−7, we adjusted the criteria to p < 5 × 10−6 and included
linkage disequilibrium with r2 < 0.001 within 10,000-kb windows.
Nevertheless, our examination revealed restricted backing for this
inverse causal connection (beta = −0.014; 95% CI: −0.115, 0.087; p =
0.783, IVW), as specified in Supplementary Table S12.

Discussion

Drawing on our current knowledge, this study represents the
initial comprehensive examination of causal connections between
various circulating micronutrients in the blood and the
susceptibility, severity, and subtype-specific risks of sepsis. Our
research findings indicate one strong correlation and four
suggestive associations among four micronutrients and sepsis-
related outcomes. In particular, our main finding suggests a
strong causal effect connection between genetically forecasted Zn
levels in the bloods and a decreased risk of severe sepsis-related
death within 28 days. Additionally, four suggestive associations were
identified: elevated blood Fe levels indicating a potential link to
increased susceptibility to sepsis, higher blood β-carotene levels
suggestively associated with decreased risk of severe sepsis-related
death within 28 days and sepsis-related death within 28 days, and a
suggestively correlation between vitamin C and decreased risk of
postpartum sepsis. There is no apparent association between the
other five circulating micronutrients and sepsis or related outcomes.

Sepsis is an illness resulting from an infection, which causes
dysfunction of organs and ultimately leads to death. Sepsis is a
significant worldwide contributor to death, causing approximately
6 million fatalities each year (Evans et al., 2021). Timely

TABLE 3 Estimated causal effects of zinc on Sepsis (28 day death in critical care) by the multivariable Mendelian randomization analysis.

Exposure Multivariable MR

Nsnp OR (95% CI) P

Mean corpuscular hemoglobin concentration 227 1.537 (0.601, 3.932) 0.370

Reticulocyte fraction of red cells 227 0.335 (0.010, 11.218) 0.541

Mean corpuscular volume 227 0.921 (0.514, 1.652) 0.783

High light scatter reticulocyte count 227 6.106 (0.839, 44.454) 0.074

Reticulocyte count 227 0.462 (0.011, 19.751) 0.687

Zinc 227 0.675 (0.508, 0.895) 6.421E-03

Abbreviations: OR, odds ratio; CI, confidence interval, Nsnp, number of SNP.
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identification and medical intervention are vital for individuals who
might be susceptible to septicemia. In recent years, the role of
circulating micronutrients in blood in disease has garnered
increasing attention. Zn, a micronutrient, has been demonstrated
to be a vital metal ion for a well-functioning immune system. In the
human body, it has a vital function in cellular differentiation,
proliferation, and apoptosis mechanisms. According to
Gammoh’s research (Gammoh and Rink, 2017), Zn has the
ability to control the discharge of inflammatory substances, the
production of coenzymes, and the operation of T helper cells, B cells,
neutrophils, natural killer cells, and macrophages.

Previous studies have found an association between Zn deficiency
and compromised immune function, as well as adverse disease
outcomes (Overbeck et al., 2008). Low-dose Zn supplementation has
been shown to effectively treat respiratory infections and childhood
diarrhea (Dhingra et al., 2020). However, the connection between Zn
levels in blood and the risk of human sepsis infection has not been
clearly established. Research has observed significantly lower serum Zn
concentrations in ICU sepsis patients compared to healthy controls
(Hoeger et al., 2017). However, a randomized controlled trial found no
notable distinctions between the group that received Zn
supplementation and the control group among sepsis patients
(Mehta et al., 2013), and it even indicated potential adverse
consequences (Braunschweig et al., 1997). The uncertain outcomes
could be impacted by methodological deficiencies like limited sample
sizes or remaining confounding factors. From a genetic standpoint, our
MR study presents proof that genetically anticipated Zn concentrations
in the bloodstream offer a safeguarding influence on the severe sepsis-
related death within 28 days, despite the fact that the influence of Zn on
sepsis and severe sepsis is limited. An animal experiment has identified
a potential mechanism behind these findings: Zn can modulate host
immune defense by blocking the IKK complex and inducing inhibition
of the NF-κB pathway downstream of MAPK (Liu et al., 2013).
However, supplementing Zn during infection needs to consider the
risk of creating a Zn microenvironment favorable to pathogen growth
while interfering with the innate immune system’s ability to chelate free
Zn. Our study may suggest that, although Zn is not associated with the
risk of severe sepsis, it supports clinical practices of Zn supplementation
in critically ill sepsis patients at high risk of mortality. Nevertheless,
additional medical investigation is required to authenticate these
discoveries.

We additionally discovered a slight positive correlation between
genetically anticipated blood Fe levels and the susceptibility of
sepsis. Consistent with previous observational studies on sepsis,
septic patients had higher serum iron levels compared to healthy
volunteers (Akkas et al., 2020). Fe is an essential element in various
physiological processes, and deviations in Fe status (such as Fe
deficiency or Fe overload) can significantly impact health. Fe status
deviation exhibits noticeable gender differences, with females being
more prone to Fe deficiency. Prior observational studies have
suggested associations between both iron deficiency (Mohus
et al., 2018) and high iron status (Brandtner et al., 2020) with an
increased risk of infection. According to a recent study using
magnetic resonance imaging (MRI), it was found that the
addition of Fe is not likely to greatly raise the chances of
infection (Butler-Laporte et al., 2023). Conversely, a separate
study using the same method indicated a positive association
between the predicted increase in serum Fe levels and an

elevated risk of sepsis (Mohus et al., 2022). Unfortunately, the
latter study only set the significance threshold at p <
0.05 without rigorous correction for multiple testing. It is worth
noting that the observed associations do not imply a strong causal
relationship, and the impact of Fe on sepsis appears to be relatively
mild. Future research endeavors should explore this relationship
further, conducting rigorous analyses to validate these findings.

Regarding β-carotene, long considered potent antioxidants
within the organism, prior epidemiological studies have proposed
a negative correlation between carotenoid intake and cancer
incidence (Koklesova et al., 2020). Moreover, cancer patients
exhibit a significant increase in carotenoid concentrations after
anti-tumor treatment (McMillan et al., 2000). A recent MR study
found a protective effect of blood β-carotene against type 2 diabetes
(Chen et al., 2023).These findings collectively support the beneficial
role of β-carotene in disease occurrence. In our research, we noticed
a slight adverse correlation between β-carotene and the likelihood of
severe sepsis as well as the mortality rate within 28 days for
individuals with severe sepsis. Nevertheless, this discovery could
be fortuitous as a result of conducting numerous tests and did not
meet our rigorous statistical significance criteria.

Likewise, we observed a suggestive causal effect of higher
circulating levels of vitamin C in reducing the risk of puerperal
sepsis. Previous observational studies have noted significantly
decreased average vitamin C levels in sepsis patients (Carr et al.,
2017), prompting discussions on the potential therapeutic role of
vitamin C as a crucial antioxidant in sepsis management. A recent
review, considering findings from conducted randomized controlled
trials, reported positive effects of vitamin C on reducing sepsis
mortality in only 2 out of 11 projects (Ammar et al., 2021). Some
studies suggest that vitamin C, compared to a placebo, may
contribute to mitigating inflammation induced by severe sepsis
(Fowler et al., 2014). However, a recent randomized controlled
trial yielded inconsistent results, showing that vitamin C did not
significantly improve sepsis-related inflammation and vascular
damage (Fowler et al., 2019). The heterogeneity in vitamin C
treatment regimens, initiation times, and duration of therapy has
led to significant variability in results across observational studies.
Our MR study did not find causal effects of vitamin C on
susceptibility and severity of sepsis at genetic level. However, it
revealed a mild protective effect of vitamin C specifically in one
subtype of sepsis—postpartum sepsis. Nevertheless, this finding did
not meet our stringent statistical thresholds, and given the limited
observational studies on postpartum sepsis to date, larger-scale
research is needed to further explore this relationship in the future.

Surprisingly, there were no connections discovered between
genetically anticipated levels of calcium, magnesium, phosphorus,
vitamin D, and vitamin B6 in the bloodstream and the likelihood of
sepsis-related consequences. Contrary to a meta-analysis suggesting
that vitamin D deficiency increases susceptibility and mortality in
sepsis (de Haan et al., 2014). Our study does not support this
viewpoint. Additionally, a prospective cohort study found
insufficient evidence for vitamin D in predicting sepsis and
mortality rates (Ratzinger et al., 2017). A review concluded that
there is no clear evidence that selenium supplementation can
prevent infection and new infection rates (Zhao et al., 2019).
This may suggest that these micronutrients are not crucial risk
factors for the development of sepsis and its related outcomes.

Frontiers in Genetics frontiersin.org08

Wei et al. 10.3389/fgene.2024.1353118

104

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1353118


Our study has several strengths. This is the initial comprehensive
study of MR that examines the association between the levels of
9 micronutrients and the risk of sepsis and its related outcomes. This
helps reduce the influence of confounding factors present in
observational studies. Furthermore, our examination was limited to
people of European origin, reducing the occurrence of population
stratification errors. Thirdly, the meta-analysis of summary data from
multiple sepsis cohorts reduced random errors, enhancing credibility.
However, the study also has limitations. First, some micronutrients’
instrumental variables exhibited varying degrees of low statistical
power. Despite all instrumental variables having F-values greater
than 10, suggesting a low probability of weak instrument bias,
there is still a possibility of some bias remaining. To enhance
statistical power, it is imperative to conduct future GWAS on
traits related to micronutrients at a larger scale. Second, the study
population limited to individuals of European descent may hinder
generalization to a broader population. Third, due to sparse subtype
data, we could not replicate the associations between Zn and
susceptibility or severity subtypes of sepsis. However, our findings
suggest a protective trend of Zn against all five sepsis-related
outcomes. Larger-scale clinical studies are needed to further
confirm these findings and explore underlying mechanisms.

Conclusion

To summarize, our research indicates that Zn might have a
safeguarding effect in decreasing the likelihood of death within
28 days for patients with severe sepsis, endorsing the medical
recommendation of providing Zn supplements to patients who
face a high risk of mortality due to severe sepsis. This provides
new insights for further research into the role of micronutrients in
the prevention and treatment of sepsis.

Scope statement

Previous research has paid limited attention to the role of trace
micronutrients in the pathogenesis of sepsis. Therefore, we
employed Mendelian randomization analysis to comprehensively
investigate the causal relationship between the levels of nine
micronutrients (including calcium, β-carotene, iron, magnesium,
phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and
susceptibility, severity, and subtypes of sepsis. Our research
indicates that zinc might have a safeguarding effect in decreasing
the likelihood of death within 28 days for patients with severe sepsis,
endorsing the medical recommendation of providing zinc
supplements to patients who face a high risk of mortality due to
severe sepsis. This provides new insights for further research into the
role of micronutrients in the prevention and treatment of sepsis.
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An increasing number of studies point to an association between mitochondrial
proteins (MPs) and lung cancer (LC). However, the causal relationship between
MPs and LC remains unclear. Consequently, our study employed a bidirectional
Mendelian randomization (MR) analysis to explore the causal association between
MPs and different pathological types of LC. A two-sample MR study was
performed using the genome-wide association study (GWAS) data publicly
available. We applied the primary inverse variance weighted (IVW) method
along with additional MR methods to validate the causality between MPs and
different pathological types of LC. To ensure the robustness of our findings,
sensitivity analyses were employed. Moreover, we performed a bi-directional MR
analysis to determine the direction of the causal association. We identified a total
of seven MPs had significant causal relationships on overall LC, lung squamous
cell carcinoma (LUSC), and small cell lung carcinoma (SCLC). We found two MPs
had significant associations with overall LC, four MPs had significant associations
with LUSC, and four MPs had significant associations with SCLC. Additionally, an
MP was found to have a nominal relationship with LUSC. Moreover, no causality
was found between MPs and lung adenocarcinoma (LUAD). Bidirectional MR
showed no reverse effect between identifiedMPs and different pathological types
of LC. In general, our findings of this MR study suggest causal associations of
specific MPs with overall LC, LUSC, and SCLC. However, no such causality was
found in LUAD.
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1 Introduction

Cancer stands as one of the primary causes of global mortality.
On a worldwide scale, in 2020, it is estimated that approximately
2.2 million new cases of lung cancer (LC) and nearly 1.8 million LC
deaths occurred. Meanwhile, LC ranked as the most commonly
diagnosed cancer among males and the third most frequently
diagnosed cancer among females (Sung et al., 2021). The
incidence of new LC cases is projected to rise until 2035 in most
countries, which causes a substantial global public health challenge
(Luo et al., 2023). The majority of LC patients are diagnosed at an
advanced stage of the disease, resulting in a 5-year survival rate of
less than 20% (Osuoha et al., 2018; Bade and Dela Cruz, 2020).
Hence, it is crucial to identify modifiable protective or risk factors to
prevent the occurrence and progression of LC. Smoking is the most
established and well-acknowledged risk factor for LC (Leiter et al.,
2023). However, as smoking prevalence decreases and the number of
LC cases in nonsmokers rises, it becomes increasingly important to
investigate a better understanding of LC development (Bade and
Dela Cruz, 2020). As a result, further research is gradually focusing
on the other risk factors of LC, encompassing environmental
exposures, lifestyle, gender, and genetics (Schabath and Cote, 2019).

Mitochondria serve as the central command for cellular
metabolism, maintaining equilibrium and stress responses,
playing a pivotal role in regulating processes like cell growth,
division, differentiation, and apoptosis (Anderson et al., 2019).
Previous studies have unveiled an unforeseen complexity and
versatility in mitochondrial activities, combining mitochondrial
energetics with protein biogenesis, metabolic pathways, and
apoptosis (Pfanner et al., 2019). Moreover, recent studies based
on proteomics indicated the remarkable importance of retaining
mitochondrial proteostasis in guaranteeing the correct function of
mitochondria (Wachoski-Dark et al., 2022). Encoded by both
nuclear and mitochondrial DNA, mitochondrial proteins (MPs)
are susceptible to errors during folding and assembly on account of
oxidative stress and post-translational modifications (Stefani, 2004;
Santo-Domingo and Demaurex, 2012). This may result in
mitochondrial dysfunction, leading to an increase in reactive
oxygen species (ROS) with tumor-promoting effect (Bandy and
Davison, 1990). Mitochondrial protein quality control (MPQC)
employs various pathways and regulators to maintain the quality
and quantity of MPs. Dysregulated MPQC results in proteotoxicity
andmalfunctioning mitochondria, contributing to a range of human
diseases, including cancer. Numerous studies have connected the
dysfunction of MPQC in the etiology and pathogenesis of multiple
types of cancer, including LC (Wallace, 2012; Friedlander et al.,
2021). However, due to various objective factors, including
technological and methodological constraints, the majority of
existing research findings about MPQC rely on the animal or
cellular experiments which can be influenced by multiple
variables (Friedlander et al., 2021). In summary, the causality of
the relationships between MPs and LC, as well as the direction of
these causal connections, remains unclear. Therefore, it is crucial to
investigate if MPs contribute to the onset of LC or just outcomes of
shared risk factors.

Mendelian randomization (MR) analysis is a widely used
method for establishing the causal relationship between exposure
factors and outcomes, with the fundamental principle of employing

genetic variations as instrumental variables (IVs) to model and
evaluate the causality (Sanderson, 2021). The MR approach parallels
the design of a randomized controlled trial (RCT) on account of
parental alleles being randomly distributed to offspring during
gamete formation in Mendel’s law (Emdin et al., 2017).
Furthermore, the results of MR studies are more robust against
residual confoundings and the bias of reverse causal effects because
the genetic variations are randomly assigned during meiosis and are
not linked to environmental factors (Boehm and Zhou, 2022).

In our study, we aimed to apply a comprehensive two-sample
MR analysis to determine the causal effect between MPs and LC and
its various pathological types. By means of employing a bidirectional
MR analysis, we could investigate the causality of MPs on LC risk
and also determine if LC had a causal effect on MPs. From this
foundation, we aimed to elucidate the influence between MPs and
different pathological types of LC, ultimately aiding in developing
innovative treatment options for LC.

2 Methods

2.1 Study design

Figure 1 illustrates an overview of the bidirectional MR analyses
employed in our study. All IVs selected were guided by three
principal assumptions of MR studies. Namely, IVs must
demonstrate a strong association with the exposure; IVs impact
the outcome solely through the exposure; IVs should not exhibit any
association with confounding factors in the relationship between
exposure and outcome.

2.2 Genome-wide association study
(GWAS) sources

The GWAS data for MPs were sourced from a GWAS study
involving a total sample size of 3,301 healthy participants of
European descent (Sun et al., 2018). A total of 66 mitochondrial
proteins (due to limited data availability) were enrolled in the
subsequent MR analysis. The GWAS data for LC were derived
from a large-scale GWAS study involving 85,716 individuals with
29,266 cases and 56,450 controls, while the GWAS study ulteriorly
categorized LC into specific pathological types as lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
and small cell lung carcinoma (SCLC) (McKay et al., 2017). All
detailed information on GWAS data for MR analyses is presented in
Figure 1. The original GWAS obtained approval from their
respective institutions, and all data used for this study are
publicly available. Therefore, no additional ethical approval
was required.

2.3 Acquisition of IVs

Due to the restricted pool of accessible SNPs, we opted for SNPs
with a cutoff of p < 1e-5. Then genetic instruments were excluded on
a linkage disequilibrium (LD) threshold of r2 < 0.001 and a window
size = 10,000 kb. To assess the statistical strength of each SNP, the F
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statistics were also calculated, and the SNPs with F statistic <10 were
eliminated for weak strength (Brion et al., 2013). We further
excluded IVs that exhibited associations with potential
confounding traits according to PhenoScanner (http://www.
phenoscanner.medschl.cam.ac.uk/).

2.4 MR analysis

As for the two-sample analyses, we conducted the inverse
variance-weighted (IVW) method as the primary approach for
examining the bidirectional causal relationships between MPs
and different pathological types of LC. Additionally, three
complementary MR approaches were employed, including MR-
Egger, weighted median (WM), and MR-Pleiotropy residual sum
and outlier (MR-PRESSO), to sustain the findings derived from the
IVM method. p-values were adjusted for false discovery rate (FDR)
method, and Adjusted p-values (adj. P) < 0.05 were considered
statistically significant. Also, p-values <0.05 were considered
nominally significant.

2.5 Sensitivity analysis

Given that the IVW method could be biased by pleiotropic IVs,
sensitivity analyses were employed to address the pleiotropic effects
in the causal estimates. To assess potential heterogeneity, Cochrane’s
Q test was applied. In cases where heterogeneity was detected p <
0.05, a random-effects IVW analysis was performed to account for
the measured heterogeneity. Additionally, the intercept of MR-
Egger and MR-PRESSO global test were adopted to estimate the
presence of horizontal pleio8tropy in the genetic variants (p <
0.05 indicated potential horizontal pleiotropy) while MR-PRESSO
global test demonstrated a greater level of accuracy and assistance
compared to MR-Egger in identifying horizontal pleiotropy.

Furthermore, a leave-one-out analysis was conducted to
determine whether the results were actuated by individual
variants. We conducted all our MR analyses using the R software
(version 4.3.1).

3 Results

3.1 Acquisition of IVs

After filtering for SNPs with LD, significantly linked to potential
confounders (lung function and chronic obstructive pulmonary
disease), and other LC-associated traits, a total of 125 SNPs were
enrolled as IVs for the ensuing MR analyses, with the F statistics for
each SNP being >10, demonstrating the absence of instrument bias
(Supplementary Table S1).

3.2 Causal effects of MPs on LC

The results reported that both mitochondrial NADH
dehydrogenase [ubiquinone]iron-sulfur protein 4 (Ndufs4) (IVW:
OR = 0.971, 95% CI: 0.949–0.994, p = 0.015, adj. p = 0.015) and
mitochondrial import inner membrane translocase subunit TIM14
(TIMM14/DNAJC19) (IVW: OR = 0.935, 95% CI: 0.887–0.985, p =
0.012, adj. p = 0.023) had a protective causal effect on overall LC
(Figure 2). However, we observed no genetic predisposition to
MPs demonstrated a causal relationship on LUAD
(Supplementary Table S2).

As to LUSC, the findings suggested that mitochondrial
steroidogenic acute regulatory protein (StAR) (IVW: OR = 0.878,
95% CI 0.790–0.977, p = 0.017, adj. p = 0.028), mitochondrial
Ndufs4 (IVW: OR = 0.955, 95% CI 0.920–0.991, p = 0.015; WM:
OR = 0.960, 95% CI 0.920–1.002, p = 0.063, adj. p = 0.037) and
mitochondrial DNAJC19 (IVW: OR = 0.908, 95% CI 0.830–0.992,

FIGURE 1
Assumptions and study design of the bidirectional Mendelian randomization study of the causal relationships between 66 mitochondrial proteins
and different pathological types of lung cancer. LC, lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell
lung carcinoma; SNPs, single nucleotide polymorphisms.
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p = 0.033, adj. p = 0.041) had protective causal effects on LUSC. In
contrast, mitochondrial NADH dehydrogenase [ubiquinone]1 beta
subcomplex subunit 8 (NDUFB8) (IVW: OR = 1.104, 95% CI
1.001–1.218, p = 0.048, adj. p = 0.048) indicated pathogenic
causal impacts on LUSC. Besides, mitochondrial sodium/
hydrogen exchanger 9B2 (SLC9B2) (IVW: OR = 1.115, 95% CI
1.025–1.212, p = 0.011, adj. p = 0.055) showed a suggestive casual
association with the higher risk of LUSC (Figure 2).

In terms of SCLC, we discovered two protective factors,
including mitochondrial ADP-ribose pyrophosphatase (NUDT9)
(IVW: OR = 0.864, 95% CI 0.784–0.952, p = 0.003, adj. p = 0.012)
and mitochondrial Ndufs4 (IVW: OR = 0.928, 95% CI 0.866–0.995,
p = 0.035, adj. p = 0.048) and two risk factors, including
mitochondrial 39S ribosomal protein L32 (MRPL32) (IVW:
OR = 1.186, 95% CI 1.015–1.386, p = 0.032, adj. p = 0.043) and
mitochondrial oligoribonuclease (REXO2) (IVW: OR = 1.197, 95%
CI 1.015–1.411, p = 0.032, adj. p = 0.043) were causal associated with
SCLC (Figure 2).

3.3 Sensitivity analysis

The scatter plot showed that the causal estimates derived by the
MR-Egger regression and weighted median approach were
consistent in both dimension and direction with IVW method
(Supplementary Figure S1). The findings of Cochrane’s Q test
indicated no significant heterogeneity (p > 0.05). The results
revealed that the MR-Egger regression did not identify any
pleiotropic effects for MPs (all p > 0.05). Additionally, the MR-
PRESSO global test detected neither horizontal pleiotropic effects

nor outlier SNPs (all p > 0.05). Moreover, the leave-one-out analysis
validated that no individual SNP solely drove the causality between
MPs and different pathological types of LC
(Supplementary Figure S2).

3.4 Bidirectional causal associations
between identified MPs and LC

To assess any reverse causality between identified MPs and
different pathological types of LC, we considered overall LC and its
subtypes as the exposure and identified MPs as the outcome. After
screening, we employed 119 SNPs associated with different
pathological types of LC as IVs (Supplementary Table S3).
Finally, the results indicated no evidence for a reverse causal
association between identified MPs and different pathological
types of LC (Table 1).

4 Discussion

To our knowledge, this is the inaugural investigation of the
causality between mitochondrial proteins and LC using open-access
genetic databases. We employed bidirectional MR analyses to
determine the causality between 66 MPs and different
pathological types of LC, which enabled us to evaluate the
upstream and downstream in the disease progression while
avoiding reverse causation. We further ensured the robustness of
our MR analyses against pleiotropic influences by implementing a
variety ofMR approaches, includingMR-Egger andMR-PRESSO, to

FIGURE 2
Causal effects of mitochondrial proteins on different pathological types of LC. LC, lung cancer; LUSC, lung squamous cell carcinoma; SCLC, small
cell lung carcinoma; SNPs, single nucleotide polymorphisms; MR, Mendelian randomization; MR-PRESSO, MR-pleiotropy residual sum and outlier.
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TABLE 1 Causal effects of different pathological types of LC on identified mitochondrial proteins.

Exposure Outcome Method nSNP OR (95%CI) p-
value

adj. p-
value

LC

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

50 1.048
(0.933–1.176)

0.430 0.860

MR Egger 50 1.083
(0.824–1.424)

0.570 0.570

Weighted median 50 0.981
(0.831–1.157)

0.816 1

Mitochondrial import inner membrane translocase subunit
TIM14

Inverse variance
weighted

50 1.034
(0.897–1.191)

0.649 0.649

MR Egger 50 1.193
(0.856–1.664)

0.303 0.606

Weighted median 50 1.012
(0.851–1.204)

0.894 0.894

LUSC

Mitochondrial steroidogenic acute regulatory protein Inverse variance
weighted

39 0.952
(0.879–1.031)

0.226 0.377

MR Egger 39 1.121
(0.949–1.326)

0.188 0.470

Weighted median 39 0.991
(0.879–1.117)

0.881 0.881

Mitochondrial NADH dehydrogenase [ubiquinone]1 beta
subcomplex subunit 8

Inverse variance
weighted

39 0.995
(0.916–1.081)

0.911 0.911

MR Egger 39 0.971
(0.814–1.159)

0.747 0.747

Weighted median 39 1.030
(0.914–1.161)

0.626 1.000

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

39 0.993
(0.907–1.086)

0.872 1.000

MR Egger 39 0.889
(0.736–1.072)

0.226 0.377

Weighted median 39 1.023
(0.909–1.151)

0.706 0.883

Mitochondrial sodium/hydrogen exchanger 9B2 Inverse variance
weighted

39 0.948
(0.876–1.027)

0.191 0.478

MR Egger 39 0.834
(0.706–0.986)

0.041 0.205

Weighted median 39 0.967
(0.858–1.089)

0.579 1.000

Mitochondrial import inner membrane translocase subunit
TIM14

Inverse variance
weighted

39 1.073
(0.987–1.167)

0.098 0.490

MR Egger 39 1.093
(0.915–1.306)

0.333 0.416

Weighted median 39 1.082
(0.964–1.213)

0.180 0.900

SCLC

Mitochondrial ADP-ribose pyrophosphatase Inverse variance
weighted

30 1.004
(0.945–1.067)

0.902 0.902

(Continued on following page)
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validate our findings. Our results indicated that a total of eight MPs
may be potential protective contributors or potential risk factors to
the development of overall LC, LUSC, and SCLC, whereas no such
causal effect was observed in the case of LUAD. Furthermore, we
found no evidence for a reverse causal effect between identified MPs
and different pathological types of LC.

The majority of reactive oxygen species (ROS) within cells are
produced from the mitochondrial respiratory chain. An
overabundance of ROS can result in oxidative stress, causing
oxidative harm to proteins and alterations in MP expression
(Rabilloud et al., 2001; Poyton et al., 2009). Numerous studies
have demonstrated that increased levels of ROS are correlated
with the formation and advancement of LC (Weinberg et al.,
2010; Jiang et al., 2022). Additionally, examining variations in the
mitochondrial proteome is deemed to be an effective method to
gauge the degree of mitochondrial damage under oxidative stress
conditions (Gibson, 2005). Due to the absence of protective histones
and a restricted range of DNA repair mechanisms, mitochondrial
DNA (mtDNA) is highly susceptible to oxidative damage (Richter
et al., 1988). Instability in mtDNA has been observed in several
cancers, including LC (Chatterjee et al., 2006). An observational
study suggested that compared to patients without LC, mutation
rates in mtDNA were significantly increased in exhaled breath
condensate in patients with LC (Yang Ai et al., 2013). After
smoking, exposure to radon is the second leading cause of LC
(Lorenzo-González et al., 2019). A study found that in radon-
induced LC patients, the concentration of cell free mtDNA was
significantly increased compared to other participants in the study

(Bulgakova et al., 2022). Although these studies suggested a
relationship between MPs and LC to some degree, the causal
links remain unclear, and the direct association between them
still lacks substantial research backing. Our research offered
evidence supporting causal associations of MPs with LC and its
subtypes by deducing the causality through genetic prediction using
MR, which could also mitigate confounders effectively.

The result showed two protective factors in overall LC.
Ndufs4 encodes mitochondrial complex I protein (Karamanlidis
et al., 2013), while a study revealed deficiency in complex I led to
elevated levels of mitochondrial ROS in macrophages in mouse
models with myeloid-specific deletion of Ndufs4 (Cai et al., 2023). A
similar result of Ndufs4 was also found in LUSC and SCLC, which
indicated that Ndufs4 may be a vital protective factor in the
development of LC. DNAJC19 plays a crucial role in preserving
mitochondrial integrity, and the mutation in DNAJC19 could
induce the occurrence of dilated cardiomyopathy and ataxia
syndrome (Davey et al., 2006). Paradoxically, the expression of
DNAJC19 was increased in NSCLC tissues compared to
noncancerous adjacent tissues (Zhou et al., 2021). This conflictive
result could be attributed to pathogenic variants in DNAJC19, which
can lead to damage to mitochondrial function (Wachoski-Dark
et al., 2022). Our finding also indicated the protective causal
effect of DNAJC19 on LUSC, which further substantiates that
DNAJC19 has a pivotal protective effect against LC.

In terms of LUSC, our study revealed four probable and one
possible MPs with causal links, including protective factors of StAR,
Ndufs4, and DNAJC19 and risk factors of NDUFB8 and SLC9B2.

TABLE 1 (Continued) Causal effects of different pathological types of LC on identified mitochondrial proteins.

Exposure Outcome Method nSNP OR (95%CI) p-
value

adj. p-
value

MR Egger 30 1.026
(0.904–1.165)

0.693 0.924

Weighted median 30 0.987
(0.911–1.070)

0.757 1.000

Mitochondrial 39S ribosomal protein L32 Inverse variance
weighted

30 0.968
(0.911–1.029)

0.298 0.596

MR Egger 30 0.905
(0.797–1.027)

0.134 0.536

Weighted median 30 0.940
(0.869–1.017)

0.123 0.492

Mitochondrial NADH dehydrogenase [ubiquinone]iron-sulfur
protein 4

Inverse variance
weighted

30 1.057
(0.995–1.123)

0.074 0.296

MR Egger 30 1.033
(0.910–1.173)

0.619 1.000

Weighted median 30 1.043
(0.957–1.137)

0.334 0.668

Mitochondrial Oligoribonuclease Inverse variance
weighted

30 0.995
(0.936–1.057)

0.869 1.000

MR Egger 30 0.975
(0.858–1.109)

0.708 0.708

Weighted median 30 1.005
(0.922–1.096)

0.901 0.901

LC, lung cancer. LUAD, lung adenocarcinoma. LUSC, lung squamous cell carcinoma. SCLC, small cell lung carcinoma. SNPs, single nucleotide polymorphisms. MR, Mendelian randomization.

adj. p-values, Adjusted p-values.
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StAR governs the crucial step that limits the rate of steroid
biosynthesis, playing a vital role in the regulation of steroid
hormones (Manna et al., 2009). ROS impairs mitochondria,
leading to reduced StAR expression and steroidogenesis across
various steroid-producing cells. At the same time, hormone
deficiencies are considered a primary driver of human aging,
which is related to the onset of various tumors (Manna et al.,
2016; Jackaman et al., 2017). The selective nitration of
NDUFB8 results in the disintegration of mitochondrial
supercomplexes, causing the impairment of complex I activity
and mitochondrial function. The activity of Complex I is
recognized as a crucial factor in controlling mitochondrial
respiration. Besides, nitration of NDUFB8 may represent a
crucial mechanism in inflammatory conditions, which is a crucial
component in the advancement of tumors (Coussens and Werb,
2002; Quintero et al., 2006; Davis et al., 2010). SLC9B2 is a sodium/
hydrogen antiporter (Chintapalli et al., 2015). However, our
understanding of the precise molecular functions of
SLC9B2 remains limited. A previous study suggested the
increased expression of SLC9B2 had a positive relationship with
Autosomal-dominant polycystic kidney disease (Chapman et al.,
2015). The expression level of SLC9B2 was identified significantly
upregulated in Crohn’s disease (Ye et al., 2022). We speculate that
the inflammation may be one of the reasons for its role as a risk
factor for LUSC.

For SCLC, the results identified that NUDT9 and
Ndufs4 presented protective causal effects, and MRPL32 and
REXO2 showed pathogenic causal effects. Adenosine diphosphate
ribose (ADPR) interacts with NUDT9 homology to activate
transient receptor potential melastatin 2 (TRPM2) channel
(Miller and Cheung, 2016), while the decreased level of
TRPM2 was considered to enhance tumor potential metastasis
(Gershkovitz et al., 2018). SCLC is well known as a highly
aggressive disease, thus this mechanism may explain the
association between the protective factor NUDT9 and SCLC. As
to risk factors, the current understanding of MRPL32 and REXO2 is
limited. Prior studies demonstrated that suppressing MRPL32 could
reduce oxygen-glucose deprivation/reperfusion damage (Guan et al.,
2020) and that REXO2 was associated with a poorer prognosis in
glioma (Wang et al., 2021).

Nevertheless, our study had several constraints. Firstly,
increasing the sample size is pivotal for a more accurate
determination of the causal relationship between MPs and
different pathological types of LC due to the potential biases
from the current fairly small MP sample size. Secondly, the
participants in GWAS data were predominantly of European
populations, which constrained the applicability of our
results to other ethnicities and could result in biased
conclusions. Finally, our study merely identified causal
associations of MPs with LC and its subtypes, further in-
depth research is required to clarify the exact mechanisms of
the causality.

5 Conclusion

In general, we systematically assessed the causality between
MPs and different pathological types of LC by performing

bidirectional MR analyses. Our study identified a total of
seven MPs had significant causal relationships on overall LC,
LUSC, and SCLC. Our findings suggested that there were two
protective causal associations with LC; two protective causal
associations, two causal pathogenic associations, and a
nominally protective causal association with LUSC; two
protective causal associations and two causal pathogenic
associations with SCLC. Additionally, the results
demonstrated no MP had a causality link with LUAD, and
no evidence supported the reverse causality for identified
MPs with LC or its subtypes. This research underscores the
causal effects of MPs on the occurrence of LC, suggesting that
MPs might be a viable strategy for LC prevention.
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Single-cell transcriptomics and
Mendelian randomization reveal
LUCAT1’s role in right-sided
colorectal cancer risk
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Background: Colorectal cancer (CRC) is a malignancy with high incidence and
mortality rates globally, categorized into left-sided and right-sided CRC, each
exhibiting significant differences in molecular characteristics, clinical
manifestations, and prognosis.

Methods: This study employed single-cell transcriptomic data and various
bioinformatics approaches, such as two-sample Mendelian randomization,
reverse Mendelian randomization, colocalization analysis, directed filtering,
pseudotime analysis, and intercellular communication analysis. It analyzed
cellular-level disparities between left-sided and right-sided CRC, identifying
distinct subpopulations with characteristic variations. For these cells, two-
sample Mendelian randomization was utilized to explore gene-to-one-sided
CRC causality.

Results: LUCAT1 was enriched in high-abundance monocyte subpopulations in
right-sided CRC and demonstrated potential risk factor status throughMendelian
randomization analysis. The specific single-nucleotide polymorphism (SNP)
rs10774624 was associated with an increased risk of CRC. Moreover,
metabolic pathway analysis revealed that LUCAT1+ monocytes exhibit lower
communication activity in the tumor microenvironment and heightened
activity in metabolic functions like glycosaminoglycan degradation. Its
biological functions are related to the positive regulation of interleukin-6
production and NF-kappa B signaling, among others.

Conclusion: This study confirmed a potential causal relationship between
LUCAT1 and right-sided CRC risk through Mendelian randomization analysis.
These findings provide novel insights into the pathogenesis of right-sided CRC
and may aid in developing early detection and treatment strategies for
right-sided CRC.
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1 Introduction

Colorectal cancer (CRC) ranks among the most prevalent and
lethal malignancies worldwide (White and Sears, 2023). This
neoplasm is categorized into right-sided and left-sided colorectal
cancer based on the tumor’s location within the colon. This
classification extends beyond mere anatomical delineation, as
these subtypes exhibit significant disparities in molecular
characteristics, clinical manifestations, treatment responses, and
prognoses. Typically, right-sided CRC is more common in older
patients and is associated with a poorer prognosis, whereas left-sided
CRC often responds better to treatment and shows higher survival
rates (Boeckx et al., 2017; Nawa et al., 2008). These differences
underscore the need for personalized approaches in the diagnosis,
treatment, and management of CRC, highlighting the importance of
understanding these variations to optimize treatment strategies,
improve patient outcomes, and develop novel therapeutic targets.

Molecularly, right-sided and left-sided CRC demonstrate distinct
characteristics. Right-sided CRC is frequently linked with
microsatellite instability (MSI) and BRAF mutations, associated
with immune evasion and chemotherapy resistance (Takahashi
et al., 2016; van der Post and Hansson, 2014; Weiss et al., 2011).
Conversely, left-sided CRC often exhibits mutations in the KRAS and
p53 genes, aligning with the typical adenoma-carcinoma sequence
(Brooks et al., 2001). Additionally, right-sided CRC shows higher
genomic and epigenetic heterogeneity, while left-sided CRC is
characterized by chromosomal instability (Kajiwara et al., 2023).
These molecular features not only influence the tumor’s biological
behavior but also critically impact the response to various treatment
modalities, playing a pivotal role in clinical decision-making. Thus, a
deeper understanding of these molecular differences is crucial for
developing more precise and effective treatment approaches.

Lung cancer-associated transcript 1 (LUCAT1), a long non-
coding RNA (lncRNA), has garnered attention for its expression and
function in various tumors. Initially identified in lung cancer,
LUCAT1 has been found to regulate tumor progression in other
cancer types as well (Cao et al., 2023). Its roles include promoting
tumor cell proliferation, inhibiting apoptosis, enhancing cancer cell
migration, and invasion, and participating in epigenetic regulation.
LUCAT1 also modulates the activity of microRNAs (miRNAs) by
acting as an “miRNA sponge,” indirectly influencing the expression
of numerous genes. A more comprehensive understanding of
LUCAT1’s role in tumorigenesis may pave the way for
developing novel cancer treatment strategies (Xiao et al., 2021).

Single-cell technologies enable researchers to analyze gene
expression, molecular characteristics, and cell states at an
individual cell level. This is significant for revealing tumor
heterogeneity, identifying distinct cell subpopulations, and
understanding cell interactions within the tumor
microenvironment. Mendelian randomization, an epidemiological
method using genetic variants as instrumental variables, assesses
causal relationships between exposures and disease outcomes. This
approach helps mitigate confounding and reverse causation issues
common in traditional observational studies (Lee et al., 2023;
Shigemura et al., 2023; Wang H. et al., 2023; Wang M. et al., 2023).

Our study, leveraging single-cell transcriptomic data from right-
sided and left-sided CRC obtained from the Gene Expression
Omnibus (GEO) database, identifies a subgroup of mononuclear

cells that promote tumor development. Through analyzing
expression differences with other cell subpopulations, we identified
differentially expressed genes in this subgroup. Using these genes as
exposure factors and employing bioinformatics methods like
Mendelian randomization, colocalization, and directional filtering,
we discovered that genetic variations in LUCAT1, a long-chain non-
coding RNA, are risk factors for right-sided CRC, potentially linked to
the single-nucleotide polymorphism (SNP) rs10774624. These
findings offer insights into the molecular mechanisms of right-
sided and left-sided CRC and contribute to developing potential
targeted therapeutic strategies.

2 Materials and methods

2.1 Data acquisition and preprocessing

The data for this study were sourced from the publicly accessible
GEO database, specifically the GSE188711 dataset, which comprises
single-cell RNA sequencing data from six colorectal cancer samples,
including three from the left side and three from the right side of the
colon. We used the Read10X function from the Seurat package to
import data in the 10x Genomics format for data preprocessing.
Each sample’s data were read from the specified directory and
immediately encapsulated into a Seurat object using the
CreateSeuratObject function, with parameters set to default
except for the project argument, which was uniquely assigned to
each sample based on its origin (e.g., L1, L2, and L3 for left-sided
samples and R1, R2, and R3 for right-sided samples).

2.2 Quality control and dimension reduction

The Seurat objects corresponding to individual samples were
merged into a single dataset using the merge function with the
default parameters to facilitate collective analysis. During the quality
control (QC) phase, metrics such as the number of gene expression
features (nFeature_RNA), the proportion of mitochondrial gene
expression (percent.mt), and the proportion of hemoglobin gene
expression (percent.HB) were computed for each cell. Cells were
then filtered based on the following criteria: cells with gene counts
over 200 and under 4,000 and mitochondrial gene expression below
10% to eliminate both dead or dying cells and potential doublets or
multiplets.

For dimensionality reduction, we utilized principal component
analysis (PCA) using the RunPCA function with features =
VariableFeatures (object) to focus on highly variable genes,
followed by uniform manifold approximation and projection
(UMAP) for visualization purposes, employing the RunUMAP
function with the default parameters except for dims = 1:10 to
use the first ten principal components (Qi and Zhang, 2023).

2.3 Clustering analysis and single-cell type
annotation

Clustering analysis was performed using the FindNeighbors
function with default parameters but specifying dims = 1:10 to
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use the data from the first ten principal components for
neighborhood calculation. The FindClusters function was then
applied for actual clustering, with the resolution parameter
adjusted based on preliminary analyses to optimize cluster
granularity. We utilized the SingleR package or cell-type
annotation, leveraging the SingleR function with the reference
dataset obtained from the HumanPrimaryCellAtlasData function
for human samples. Annotation was performed by matching our
dataset’s expression profiles with those in the reference, providing a
predicted cell type for each cell. In particular, for the detailed
analysis of monocyte subpopulations, we isolated monocyte cells
and conducted further dimension reduction, clustering, and
annotation steps. The FindVariableFeatures function was used to
select 2000 highly variable genes, followed by PCA and UMAP for
visualization. Harmony was used for batch correction using the
RunHarmony function with group.by.vars = “orig.ident,” ensuring
the integration of data from different samples without batch effects.
The FindAllMarkers function was employed to identify subgroup-
specific marker genes, with the parameters set to only.pos = TRUE,
min.pct = 0.25, and logfc.threshold = 0.25 to focus on genes that
were positively expressed in at least 25% of cells within any given
cluster with a minimum fold change of 0.25.

This detailed methodology ensures a comprehensive and
reproducible approach to analyzing single-cell RNA sequencing
data, facilitating the identification of cellular subpopulations and
their respective marker genes within the complex landscape of
colorectal cancer (Feng et al., 2023).

2.4 Pseudotime and intercellular
communication analysis

Leveraging the slingshot package, we conducted trajectory
analysis on cells to delineate the developmental pathways of
monocyte subtypes. Constructing SingleCellExperiment objects
allowed us to convert Seurat objects for analysis with slingshot.
Within the scope of the slingshot analysis, we designated “celltype”
as the clustering label and employed UMAP for dimensionality
reduction. Specific starting clusters [start.clus = c (3,5)] were
selected, alongside setting the trajectory shrinkage parameter
(shrink = 0.2) to facilitate the refined formation of trajectories.
Additionally, trajectory visualization was performed, utilizing color
and layout options provided by the RColorBrewer and igraph
packages, graphically depicting cell state transitions and
developmental trajectories.

In exploring intercellular communication, we initially refined
our scRNA-seq dataset through a further filtration process,
excluding non-monocyte cell types to concentrate on their
communication within the colorectal cancer context.
Subsequently, we engaged in a quantitative analysis of cell-to-cell
communication using the CellChat package. This step involved the
creation of a CellChat object and its integration with the Human Cell
Communication Database (CellChatDB.human). Our focus was
directed toward the “Secreted Signaling” category of cell
communication, selecting supported ligand–receptor pairs from
the database. By identifying overexpressed genes and
ligand–receptor pairs and projecting these elements onto the PPI
network, we could construct and quantify the probabilities of

intercellular communication. Furthermore, we filtered the cell
communication network, eliminating communications within
specific cell groups that had fewer cells, adopting min.cells =
10 as a threshold for analysis. Finally, we depicted the network
and bubble plots of cell communication through visualization tools,
offering an intuitive presentation of the quantity and patterns of
interactions among cell groups.

2.5 Metabolic pathway analysis

We employed the scMetabolism package to assess the metabolic
activity within specific subpopulations of colorectal cancer cells.
Initially, our focus was directed toward the “monocyte_CO2”
subpopulation, which was further stratified into “LUCAT1+M”

and “LUCAT1−M” subgroups based on the expression of the
LUCAT1 gene. Additionally, subpopulations other than
“monocyte_CO2” were isolated from the aggregate dataset for
subsequent analysis. The scMetabolism package facilitated a
quantitative assessment of metabolic activity in these cell
subgroups. The specific steps of analysis included the following:

1) Utilizing the sc.metabolism.Seurat function to score metabolic
pathways via the AUCell method, without imputation
(imputation = F), and setting the number of parallel cores
to 2 (ncores = 2). “KEGG” was selected as the metabolism type
(metabolism.type = “KEGG”).

2) Certain metabolic pathways (for instance, input.pathway < -
rownames (scRNA_metab @assays [["METABOLISM"]]
[["score"]])[61:90]) were chosen for dot plot visualization to
illustrate the variability in pathway activity across different
genotypes. Moreover, differential gene expression analysis was
conducted using the FindAllMarkers function, identifying
genes with significant expression differences between the
“LUCAT1+M” and “LUCAT1−IM” subgroups (employing
positive markers, with a log fold change threshold set at
0.5). The list of differential genes obtained was then utilized
for subsequent functional enrichment analysis.

2.6 Gene conversion and Mendelian
randomization preparation

Upon identifying key genes, we used the clusterProfiler and
org.Hs.eg.db packages to convert these gene symbols to ENSEMBL
IDs. This facilitated subsequent Mendelian randomization analysis,
allowing us to extract SNP information related to these genes from
publicly available Genome-Wide Association Studies (GWAS
databases), serving as instrumental variables for the analysis.

2.7 Two-sample Mendelian randomization
and bidirectional Mendelian randomization

In this study, differential genes in the second group of
monocytes compared to other cells were used as exposure factors
(Table 1), with colorectal cancer (CRC) as the outcome, for causal
inference analysis (MR) using “TwoSampleMR” (https://github.
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com/MRCIEU/TwoSampleMR). The Wald ratio was used for genes
with only one eQTL available, while inverse-variance weighted MR
(MR-IVW) was applied when two or more genetic tools were
available. The odds ratio (OR) of increased colorectal cancer risk
was expressed for carriers of specific gene polymorphisms (e.g., a
particular SNP) compared to non-carriers. For the primary analysis,
the Bonferroni correction was applied for multiple testing
adjustments, prioritizing results for further analysis with a
threshold of 0.05/888 (p < 5.63 × 10−5). Moreover, colorectal
cancer was also used as the exposure variable, with high
expression of LUCAT1 in right-sided colorectal cancer
monocytes as the outcome, for a bidirectional Mendelian
randomization analysis, revealing potential bidirectional causal
relationships between colorectal cancer onset and genes. Two
colorectal cancer datasets from the GWAS database were
selected, one as a test set (ebi-a-GCST90018808) and another as
a validation set (ebi-a-GCST012879).

2.8 Colocalization analysis

Bayesian colocalization analysis was employed to assess the
likelihood of two traits sharing the same causal variant, using the
“Coloc” package (https://github.com/chr1sw) with default settings.
As previously described, Bayesian colocalization provides posterior
probabilities for five hypotheses regarding whether two traits share a
single variant. In this study, we tested hypothesis 4 (PPH4), where
LUCAT1 and colorectal cancer were associated with the region
through a shared variant. Using the Coloc.abf and Coloc.susie
algorithms, a gene was defined as having evidence of
colocalization if it met the criterion of a gene-based PPH4 > 80%
with at least one algorithm. Following the extraction and
organization of relevant SNP data, the locusComparer package
was used to create regional association plots, showcasing the
association degree of specific gene regions with the occurrence of
colorectal cancer. The specific steps of analysis included
the following:

1) Employing the vcfR::read.vcfR function to read the “./eqtl-a-
ENSG00000119917.vcf” file, obtaining eQTL information for
the gene of interest.

2) Utilizing the separate function from the tidyverse package to
process genotype data, splitting columns containing multiple
pieces of information into separate variables, including effect
size (beta), standard error (se), logarithmic p-value
(logpvalue), allele frequency (eaf), and sample size
(samplesize).

3) Calculating the minor allele frequency (MAF) and filtering
data based on chromosomal position to focus on SNPs within
specific regions of the gene.

4) Generating regional association plots with the locuscomparer
package to visually depict the degree of association between the
LUCAT1 gene eQTLs and the colorectal cancer GWAS results.

2.9 Directional filtering

Directional filtering analysis was conducted to evaluate the
relative impact of SNPs on LUCAT1 gene expression and
colorectal cancer occurrence. This step was achieved by
comparing the association strength of SNPs with the exposure
and outcome, aiming to ensure that the SNPs used in the
analysis were correctly aligned on the causal pathway with the
exposure variable. The steiger_filtering and directionality_test
functions within the TwoSampleMR package were utilized for
this analysis.

2.10 Gene ontology enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis

Gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis are pivotal methodologies in bioinformatics
for deciphering the biological processes and pathways underlying
gene expression data. To investigate the potential biological
functions of monocyte_CO2 cells and LUCAT1+ monocytes, we
selected the top 100 highly variable genes from these two cellular
subpopulations for GO and KEGG enrichment analyses. The
org.Hs.eg.db package was utilized for ID conversion, while the
clusterProfiler package facilitated the enrichment analyses. All
analyses and visualizations were conducted within the R version
4.2.1 environment.

3 Results

3.1 Study design

Our investigation begins with the analysis of cell subpopulations
in left- and right-sided colorectal cancer, identifying a notable
monocyte_CO2 subpopulation predominance in right-sided cases.
This observation is followed by differential gene expression analysis,
coupled with cell communication and pseudotime analysis, to
delineate gene expression patterns and cellular interactions. We
then integrate two-sample Mendelian randomization, reverse
Mendelian randomization, and eQTL mapping, refined by
colocalization and directional filtering techniques. The study
culminates with a focused downstream analysis of LUCAT1+

TABLE 1 Results of Mendelian randomization and colocalization with directional filtering.

Symbol SNP Mendelian randomization (Wald
ratio)

Steiger filtering Colocalization PPH4 (coloc.abf/
coloc.susie)

LUCAT1 rs10774624 2.8365 (1.6750,4.8035) Passed
(3.20151 × 10−5)

9.297435e−01/0.00025
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monocytes to elucidate their potential role in colorectal cancer
progression (Figure 1).

3.2 Monocytes, particularly monocyte_CO2,
exhibit greater abundancein right-sided
colorectal cancer, potentially related to the
characteristics of right-sided
colorectal cancer

In this investigation, single-cell sequencing data from left- and
right-sided colorectal cancer were retrieved from the GEO database,
identified as dataset GSE188711. Following stringent quality control
(Supplementary Figures S1A, B) and batch-effect normalization
(Supplementary Figures S1C–E), we procured high-quality single-
cell transcriptomic data. We initially performed dimensionality
reduction clustering on individual samples, followed by the
presentation of marker expression for each cell cluster post-
merging (Supplementary Figures S2, S3). Utilizing UMAP for
clustering analysis, we segregated cells within tumor tissues into
multiple subgroups, including B cells, T cells, dendritic cells (DCs),
endothelial cells, epithelial cells, monocytes, neutrophils, smooth

muscle cells, macrophages, and natural killer (NK) cells, each
displaying distinct distribution patterns in left- and right-sided
colorectal cancer samples (Figure 2A). Cell ratio diagrams further
disclosed a notably higher proportion of monocytes in right-sided
than left-sided colorectal cancer (Figure 2B). An independent
analysis of monocytes indicated a significantly elevated
proportion of the monocyte_CO2 subpopulation in right-sided
colorectal cancer, signifying that this distinct subpopulation
might play an enhanced role in this cancer variant (Figures 2C, D).

Further investigation into these monocyte subgroups revealed
expression patterns of highly variable genes (Figure 2E). A suite of
such genes, including CXCL8, TNFAIP6, CXCL3, and SPP1, were
specifically upregulated in the monocyte_CO2 cells. The expression
patterns of these genes might correlate with the functional dynamics of
monocytes in right-sided colorectal cancer and their contribution to
oncogenic processes within the tumor microenvironment. We further
analyzed the biological functions enriched by the top 100 highly variable
genes in the monocyte_CO2 cells, uncovering potential associations
with biological processes such as leukocyte proliferation, mononuclear
cell proliferation, lymphocyte proliferation, regulation of leukocyte
proliferation, antigen processing and presentation, and MHC protein
complex binding (Supplementary Figure S4A).

FIGURE 1
Depicts the analysis of colorectal cancer cell subpopulations, revealing a larger number ofmonocyte_CO2 cells in right-sided cases. It is followed by
gene expression and cell interaction studies using Mendelian randomization and eQTLmapping, refined by colocalization and filtering, and ending with a
focus on the role of LUCAT1+ monocytes in cancer progression.
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3.3 Temporal and communicative features
of monocyte_CO2 cells

Figure 3A charts the evolutionary trajectory of monocyte
subpopulations, transitioning from monocyte_C01 to
monocyte_CO2 and monocyte_CO3 over time. Given the
dynamic shifts in the tumor microenvironment, monocyte_
C01 is hypothesized to represent an initial state from which
they differentiate temporally. Subsequent analyses of cellular
communication within the right-sided colorectal cancer (R
group), in contrast to the left-sided (L group), demonstrated a
marked diminution in the communication activity of monocyte_

CO2 cells (Figures 3B, C). This phenomenon could reflect the
biological heterogeneity between left- and right-sided colorectal
cancers, potentially involving changes in cellular communication
patterns and immunomodulatory processes pertinent to tumor
evolution. Detailed assessments using Dotplot charts (Figures
3D, E) revealed that, against a backdrop of reduced overall
cellular communication, interactions between monocyte_
CO2 cells and macrophages were relatively intensified. This
finding implies the formation of a more cohesive
communication network among specific cell subpopulations
within the tumor microenvironment, likely an adaptive
response to environmental perturbations.

FIGURE 2
Single-cell transcriptomics reveal cellular disparities in left- and right-sided colorectal cancers. (A) Uniformmanifold approximation and projection
(UMAP) dimensionality reduction clustering identifies multiple cell subpopulations within colorectal cancer tissues, including B cells, T cells, dendritic
cells, endothelial cells, epithelial cells, monocytes, neutrophils, smooth muscle cells, macrophages, and natural killer cells. (B) A stacked bar chart
illustrates the comparative frequency of occurrence of each cell subpopulation between the two groups. (C) UMAP dimensionality reduction
clustering displays the distribution of monocyte subpopulations. (D) Comparative cell proportion plots highlight the variance in monocyte
subpopulations between left- and right-sided colorectal cancers. (E) Dotplot diagrams demonstrate the highly variable genes among three
monocyte groups.
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3.4 eQTL, colocalization, and
directional filtering

The intersection of differential genes from monocyte_
CO2 cells with those from other major cell classes and
monocyte subpopulations was analyzed for Mendelian
randomization with colorectal cancer. eQTL analysis identified
numerous significant loci with a substantial impact on gene
expression and associated colorectal cancer risk. Key gene loci,
including LUCAT1, SDC2, and GRAMD1A, exhibited highly
significant eQTL effects. Variations at these loci influenced gene
expression substantially, with the variation at the LUCAT1 locus
particularly demonstrating a robust association with increased
colorectal cancer risk (Figure 4A).

Further colocalization analysis in tandem with GWAS findings
pinpointed a specific SNP, rs653178, showing significant
correlations in both eQTL analysis for the LUCAT1 gene and

GWAS for colorectal cancer risk. The right-sided Manhattan plot
reinforced the significant association signal of this SNP with
colorectal cancer risk at a specific chromosomal location
(Figure 4B). Steiger directional filtering lent additional support to
the association directionality between SNP rs10774624 and
colorectal cancer risk, suggesting the mutation precedes the
cancer’s onset (Table 1).

3.5 Bidirectional and two-sample mendelian
randomization study results indicate the
relationship between LUCAT1 and the risk of
colorectal cancer

In Figure 5A, using the ebi-a-GCST90018808 dataset from the
GWAS database for the forward MR analysis indicated a high
positive correlation between genetic variation in LUCAT1 and

FIGURE 3
Pseudotime trajectory and intercellular communication of monocytes. (A) The cellular differentiation trajectory plot illustrates the differentiation
pathway of monocytes, initiating from C01 and diverging toward C02 and C03. (B, C) The cellular communication network diagrams exhibit the
communication dynamics between cells in left- and right-sided colorectal cancers originating from the Monocyte_C02 cells. (D, E) Dotplot diagrams
display the expression of ligand–receptor pairs between monocyte_C02 cells, as the point of communication initiation, and other cells.
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the risk of developing colorectal cancer (ORwr =
2.8365 [1.6750–4.8035], p = 0.0001), signifying a notable
elevation in cancer risk. The reverse MR analysis (Figure 5B)
assessed the impact of colorectal cancer risk on the
LUCAT1 gene. Employing various MR methodologies, like MR
Egger and the inverse-variance weighted method, the correlation
between colorectal cancer risk and the LUCAT1 gene expression was
found to be non-significant, suggesting colorectal cancer is not a
direct causative factor for LUCAT1 genetic variation.

For validation, a two-sample MR analysis with dataset ebi-a-
GCST012879 (Figure 6) corroborated the initial findings, indicating
a positive correlation between increased LUCAT1 expression levels
and a higher colorectal cancer risk.

3.6 Biological traits of LUCAT1+ monocytes

Further exploration into the role of LUCAT1 within the tumor
microenvironment revealed that LUCAT1 is predominantly
expressed in monocytes and neutrophils (Figure 7A) and is highly
expressed in right-sided colorectal cancer (Figure 7B). Echoing
previous results, LUCAT1+ monocytes in right-sided colorectal
cancer continued to exhibit weaker communication strength
(Figure 7C). Dotplot charts of LUCAT1+ monocytes as both
communicative sources and target cells showed widespread
overexpression of the receptor–ligand pair CD74 and CD44 in
LUCAT1+ monocytes, other monocytes, and macrophages, with
CD74 and CXCR4 also playing significant roles (Figure 7D). A

FIGURE 4
eQTL analysis of monocyte_C02 characteristic genes and regional association map of LUCAT1. (A) The volcano plots illustrate the Mendelian
randomization (MR) results for the characteristic genes of monocyte_C02 cells in relation to colorectal cancer risk. TheMR analysis utilized theWald ratio
or inverse-variance weighted method to evaluate the impact of genetic variations in the monocyte_C02 characteristic genes on colorectal cancer risk.
The odds ratio (OR) for an increased risk of colorectal cancer was quantified based on per standard deviation increase in gene levels. “ln” refers to the
natural logarithm, and “PVE” represents the proportion of variance explained. (B) The left panel depicts the relationship between the −log10(P) values of
eQTLs and those of GWAS. Each point represents a single-nucleotide polymorphism (SNP), with the color indicating different r2 values, reflecting the
degree of correlation of the SNP in both eQTL and GWAS studies. The right panel is a regional association plot for SNPs within a specific region on
chromosome 12 associated with a particular phenotype. Here, the X-axis represents the chromosomal position, while the Y-axis shows the −log10(P)
values of the SNP’s association with the specific phenotype. The color coding is consistent with the left panel, representing the r2 values.
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pseudo-timeline depicted the association between gene expression
and timing, with LUCAT1 primarily expressed early in the timeline
(Figure 7E). Figure 7F presents metabolic function differences
between LUCAT1+ and LUCAT1− monocytes and two other
monocyte groups, revealing heightened activity in metabolic
functions such as glycosaminoglycan degradation, ubiquinone and
other terpenoid-quinone biosynthesis, and thiamine metabolism. We

further investigated the biological functions enriched by the top
100 highly variable genes in LUCAT1+ monocytes, revealing that
these cells may be implicated in biological processes such as positive
regulation of interleukin-6 production, the NF-kappa B signaling
pathway, pattern recognition receptor activity, cellular
response to lipopolysaccharide, and the integrin complex
(Supplementary Figure S4B).

FIGURE 5
Mendelian randomization (MR) analysis of genetic variations inmonocyte_C02 characteristic genes and their associationwith colorectal cancer risk,
illustrated through forest plots. (A) This panel employs the Mendelian randomization approach to investigate the causal relationship between genetic
variations in monocyte_C02 characteristic genes and the risk of developing colorectal cancer. Analytical methods include MR Egger, weighted median,
and inverse-variance weighted approaches. (B) This panel utilizes MR to explore the causal relationship of genetic variations in colorectal cancer on
the monocyte_C02 characteristic genes. Each point estimate represents the odds ratio (OR) associated with specific genetic variations and disease risk,
accompanied by a 95% confidence interval (CI). The diagram also includes the sample size (nsnp), p-value (pval), and overall effect size (OR and CI) for
each method. Statistical significance is typically determined by a p-value <0.05.
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4 Discussion

Single-cell transcriptomic sequencing, a transformative
technology widely employed in biological and medical research
in recent years, enables precise analysis of gene expression
patterns at the individual cell level (Wang H. et al., 2023; Xie
et al., 2023). This approach is particularly vital for revealing
cellular heterogeneity in disease states, especially in complex and
heterogeneous cancers such as colorectal cancer. Colorectal cancer, a
prevalent malignancy, is categorized into left-sided and right-sided
types, each differing significantly in molecular characteristics,
clinical manifestations, and prognosis (Choi and Kim, 2023;

Sustic et al., 2023; Talhouni et al., 2023). For instance, left-sided
colorectal cancers are commonly associated with KRAS and BRAF
mutations, whereas right-sided cancers are more linked to
microsatellite instability and CpG island methylation anomalies
(Bond et al., 2023; Kajiwara et al., 2023). Mendelian
randomization analysis, a statistical tool, utilizes these genetic
variations as natural experiments to establish causative links
between specific genetic markers and cancer risk, providing
crucial insights into the molecular mechanisms of colorectal
cancer and the development of new therapeutic strategies.

Monocytes in tumor tissues, particularly in colorectal cancer,
play a complex and multifaceted role. As integral components of the

FIGURE 6
Forest plot of Mendelian randomization (MR) analysis in a validation dataset. To enhance the robustness of the MR analysis, we conducted a two-
sample MR analysis using an additional dataset. Each point estimate represents the odds ratio (OR) associated with specific genetic variations and disease
risk, including a 95% confidence interval (CI). The diagram also details the sample size (nsnp), p-value (pval), and overall effect size (OR and CI) for each
method used. Statistical significance is generally determined by a p-value <0.05.
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immune system, they can differentiate into various cell types,
including macrophages and dendritic cells, each playing intricate
roles in the tumor microenvironment (Gan et al., 2023; Wu et al.,
2023). On the one hand, certain differentiated monocytes, such as
M2-type macrophages, may facilitate tumor growth and metastasis
by secreting growth factors, pro-inflammatory cytokines, and
angiogenic factors, supporting tumor proliferation and spread (Li

et al., 2023; Shen et al., 2023). They may also secrete
immunosuppressive molecules, aiding tumors in evading immune
surveillance (Batalha et al., 2023; Gawinski et al., 2023). Conversely,
some monocytes can differentiate into immunologically active cells
like M1-type macrophages and certain dendritic cells, enhancing the
immune response against tumor cells (Andreuzzi et al., 2022; Ito
et al., 2023).

FIGURE 7
Downstream mechanisms of LUCAT1+ monocytes. (A) Expression of LUCAT1 across various cell subpopulations. Variations in size and color
represent the expression level and percentage of LUCAT1 in different cell types. (B) LUCAT1 is highly expressed in monocyte_C02 in right-sided
colorectal cancer. (C) Cellular communication network diagram shows the communication intensity of LUCAT1+ monocytes in right-sided colorectal
cancer. The nodes represent different cell types, and the line width indicates the strength of communication. (D) Dotplot diagram displays the
expression of receptor–ligand pairs involved in communication, where each dot’s size and color signify the expression level and percentage of different
genes across various cell types. (E) The pseudo-timeline graph illustrates gene expression changes over time, with the horizontal axis representing time
and the vertical axis indicating gene expression levels. (F) The dotplot diagram highlights the metabolic functional differences between LUCAT1+ and
LUCAT1− monocytes and other monocytes. Dots of different colors represent the activity of various metabolic pathways.

Frontiers in Genetics frontiersin.org11

Shang et al. 10.3389/fgene.2024.1357704

127

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1357704


Our analysis of single-cell transcriptomic data from left- and
right-sided colorectal cancers identified a higher prevalence of the
monocyte_C02 subgroup in right-sided colorectal cancer. High
variability genes in monocyte_C02 cells, including CXCL8,
TNFAIP6, CXCL3, and SPP1, indicate a potential role in tumor
promotion. Studies suggest CXCL8 can accelerate tumor cell
proliferation, epithelial–mesenchymal transition (EMT),
angiogenesis, and impede anti-tumor immunity (Ravi et al.,
2023). CXCL3, a bioactive protein of low molecular weight,
primarily recruits and activates various cells expressing the CXC
chemokine receptor (CXCR)12, which is involved in cell migration,
invasion, and angiogenesis and plays a crucial role in the
development of cardiovascular and pulmonary diseases (Chang
et al., 2023; Ji et al., 2023). Research also reveals that
SPP1 impacts the tumor microenvironment by promoting
inflammatory responses, immune suppression, and regulating
extracellular matrix (ECM) remodeling to support tumor growth
(Lv et al., 2023; Yu et al., 2023). These findings imply that the
monocyte_C02 subgroup may contribute to tumor progression. The
study discovered that in right-sided colorectal cancer, the reduction
in communication among monocyte_CO2 cells, as well as between
monocyte_CO2 cells and neutrophils, was significant. Monocytes
and neutrophils can interact and influence each other’s functions
within the tumor microenvironment. For instance, they can regulate
each other through secreted cytokines, or in certain cases, the
activation of one cell type may promote the recruitment of
another cell type to the tumor microenvironment. However, this
interaction is complex and may vary depending on the type of
tumor, specific conditions of the microenvironment, and the host’s
immune status. Monocytes can differentiate into tumor-associated
macrophages (TAMs), which typically exhibit an M2 polarization
state that promotes tumor growth, invasion, and metastasis by
secreting growth factors, pro-inflammatory cytokines, and
angiogenic factors, thus providing a favorable environment for
the tumor. The reduction in communication may slow the
progression of monocytes to M2-type macrophages, thereby
steering right-sided colorectal cancer in a direction more
favorable for immune response (Sawa-Wejksza et al., 2018).
Figures 3D, E display the expression of different receptor–ligand
pairs across various cell subpopulations, providing rich information
on the differences in cellular communication between left- and
right-sided colorectal cancers. Notably, the expression of
ANXA1-FPR1 between monocytes and between monocytes and
neutrophils is reduced in right-sided colorectal cancer.
ANXA1 can regulate the function of T cells (especially regulatory
T cells, or Tregs) by binding to FPR1, which is crucial for immune
evasion in the tumor microenvironment. Specifically, the
ANXA1–FPR1 complex may enhance the immunosuppressive
function of Treg cells, thereby weakening the immune system’s
attack on the tumor (Sawa-Wejksza et al., 2018; Tian et al., 2023).
The expression of CD74-CXCR4 is decreased in right-sided
colorectal cancer. In some cancers, the expression levels of
CD74 and CXCR4 may influence the behavior of tumor cells,
including metastasis and invasion. This may indicate a better
prognosis for right-sided colorectal cancer (Bian et al., 2023).
The biological functions of monocyte_CO2 cells are primarily
enriched in processes such as leukocyte proliferation,
mononuclear cell proliferation, lymphocyte proliferation,

regulation of leukocyte proliferation, antigen processing and
presentation, and MHC protein complex binding. Monocytes,
including monocytes and certain types of lymphocytes, can
further differentiate into macrophages and dendritic cells, which
play pivotal roles in tumor immune responses. Macrophages can
have either tumor-promoting or tumor-suppressing effects
depending on their states within the tumor microenvironment.
The proliferation and activation of monocytes are crucial in the
tumor immune editing process, as they influence immune responses
through cytokine production and antigen presentation. The
coordinated action of these immune functions is essential for
eliciting effective tumor-specific immune responses. The
coordination of immune functions such as MHC protein
complex binding, MHC class II protein complex binding, and
antigen processing and presentation is crucial for triggering
effective tumor-specific immune responses. The ability of
immune cells to efficiently recognize and respond to tumor cells
largely depends on the effective processing and presentation of
tumor antigens, as well as the correct expression and function of
MHC molecules. This suggests that the increase in monocyte_
CO2 cells is likely related to the immune environment of right-
sided colorectal cancer. The reason for this could be that right-sided
colorectal cancers often have a higher microsatellite instability (MSI)
and BRAF mutation rate, while left-sided cancers are more
associated with chromosomal instability pathways. This could
also explain why right-sided colorectal cancers tend to have
higher immune response rates.

Our two-sample Mendelian randomization and reverse
Mendelian randomization analyses identified genetic variations in
LUCAT1 as risk factors for colorectal cancer, supported by
directional filtering and colocalization analyses. The mutation at
the rs10774624 locus was deemed causally related to colorectal
cancer onset, and additional colocalization analysis revealed
another potential disease risk-related locus sharing genetic
variation, rs653178. Although research on these loci is scarce,
known biological functions of LUCAT1 and eQTL results suggest
a strong promotive effect of its SNPs on colorectal cancer
development.

To further explore the potential role of LUCAT1, we
conducted separate analyses of the functions of LUCAT1+ and
LUCAT1− monocytes in tumor tissues. LUCAT1 expression was
found to be higher in right-sided colorectal cancer, supporting
the hypothesis that LUCAT1 is a risk factor that may contribute
to the development of right-sided colorectal cancer. Generally,
LUCAT1+ monocytes demonstrated weaker communication
strength than LUCAT1− monocytes, which could be attributed
to the typically better prognosis of right-sided colorectal cancer,
leading to lower levels of malignancy cell communication.
Moreover, monocyte_C02 cells showed the most robust
communication with other monocytes, likely linked to
monocyte differentiation processes, especially involving MIF
interactions with CD74 and CD44. In tumorigenesis, MIF-
CD74 interactions are known to promote tumor cell growth
and survival, with the expression levels of MIF being closely
tied to tumor aggressiveness and prognosis in certain types of
cancer. MIF-CD44 interactions are also crucial in affecting
cell–ECM interactions, particularly important in the migration
and metastasis of tumor cells. The pronounced activity of
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LUCAT1 in the early stages of monocyte differentiation may be
associated with its role in facilitating malignant differentiation
and the onset of tumors. An analysis of differential metabolic
pathways revealed increased activity in glycosaminoglycan
degradation in LUCAT1+ monocytes. Glycosaminoglycans
(GAGs), crucial biomolecules containing uronic acid and
amino sugar residues, disrupt cell–cell adhesion during tumor
cell dissociation and invasion. The modification of cadherin
(E-cadherin) by β1,6 N-acetylglucosaminyltransferase V (GnT-
V), which adds β1,6-N-acetylglucosamine (β1,6GlcNAc)-
branched N-glycans, impairs cell adhesion and aids in tumor
cell invasion. Additionally, the α2,6-sialylation terminal
structure interferes with tumor cell adhesion (Ahn et al., 2009;
Shen et al., 2022). The biological functions of LUCAT1+

monocytes are markedly enriched in pathways, including
positive regulation of interleukin-6 production, NF-kappa B
signaling, pattern recognition receptor activity, cellular
response to lipopolysaccharide, and integrin complexes.
Among these, IL-6 is a multifunctional cytokine that plays a
pivotal role in the initiation and progression of tumors. Elevated
levels of IL-6 are associated with various types of cancers,
contributing to the proliferation, survival, and migration of
tumor cells. IL-6 facilitates inflammatory reactions and the
formation of the tumor microenvironment by activating the
JAK/STAT3 signaling pathway, which aids in tumor growth
and immune evasion (Johnson et al., 2018). The NF-κB
signaling pathway is crucial in the regulation of inflammatory
and immune responses. This pathway is often activated in cancer,
enhancing tumor cell proliferation, survival, and invasion while
inhibiting apoptosis. Activation of NF-κB is also intimately
connected with the recruitment of inflammatory cells within
the tumor microenvironment and the generation of tumor-
promoting inflammation (Lee et al., 2007). Pattern recognition
receptors (PRRs) play an essential role in innate immunity by
recognizing pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs). Within
the tumor microenvironment, activation of PRRs can promote
inflammatory responses that may favor the proliferation and
survival of tumor cells. Integrins, as receptors on the cell surface,
mediate interactions between cells and the extracellular matrix
(ECM) that are crucial for cell migration, proliferation, and
survival (Amarante-Mendes et al., 2018). In cancer, integrin
activation can enhance the invasiveness and metastatic
potential of tumor cells, remodeling the tumor
microenvironment through interactions with the ECM. This
further suggests that the expression of LUCAT1 may facilitate
the progression of tumors.

5 Conclusion

Through single-cell transcriptomic sequencing, we
discovered that the monocyte_C02 subpopulation is more
prevalent in right-sided colorectal cancer, and its highly
expressed genes, such as CXCL8, TNFAIP6, CXCL3, and
SPP1, may be implicated in tumor growth promotion.
Notably, we observed that the expression of LUCAT1 in these
monocytes could be associated with the occurrence of colorectal

cancer, with Mendelian randomization analysis further
indicating a direct link between genetic variations in
LUCAT1 and colorectal cancer risk. Additionally, LUCAT1+

monocytes were found to be more active in right-sided
colorectal cancer, potentially influencing the
glycosaminoglycan degradation pathway, thereby disrupting
cell adhesion and facilitating tumor cell invasion. In summary,
LUCAT1 is not only a risk factor for the development of
colorectal cancer but may also participate in the progression
of the disease by modulating the functions of monocytes and the
interactions within the tumor microenvironment.

This provides a new perspective in uncovering and
understanding the complex biological mechanisms of right-sided
colorectal cancer and offers valuable insights for developing
potential therapeutic strategies targeting LUCAT1. Future
advancements in these findings may contribute to promoting
more personalized cancer treatment approaches, particularly
tailored therapies for different subtypes of left- and right-sided
colorectal cancer, ultimately improving patient prognosis.
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Associations of dietary factors
with gastric cancer risk: insights
from NHANES 2003–2016 and
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analyses
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Background: Gastric cancer (GC) continues to be one of the leading causes of
cancer-related deaths globally. Diet significantly influences the incidence and
progression of GC. However, the relationship between dietary intake and GC is
inconsistent.

Methods: A study was conducted with adults who participated in the National
Health and Nutrition Examination Survey (NHANES) from 2003 to 2016 to
investigate possible associations between 32 dietary factors and GC. To
further detect potential causal relationships between these dietary factors
and the risk of GC, a two-sample Mendelian randomization (MR) analysis was
conducted. The primary method employed was the inverse variance
weighted (IVW) analysis, and its results were further validated by four
other methods.

Results:Of the 35,098 participants surveyed, 20 had a history of GC. Based on the
results of weighted logistic multivariate analysis, it was observed that there was a
positive correlation between total fat intake [odds ratio (OR) = 1.09, 95%
confidence interval (CI): (1.01–1.17), p = 0.03] and GC as well as negative
association of dietary monounsaturated fatty acids (MUFAs) intake [OR = 0.83,
95% CI: (0.76–0.92), p < 0.001]. Further evaluations of the odds of GC across the
quartiles of dietary MUFAs showed that the top quartile of total MUFA intake was
associated with a lower likelihood of GC in three different models [model1: OR =
0.03, 95% CI: (0.00–0.25), p < 0.01; model2: OR = 0.04, 95% CI: (0.00–0.38), p =
0.01; model3: OR = 0.04, 95% CI: (0.00–0.40), p = 0.01]. For the MR analyses,
genetic instruments were selected from the IEU Open GWAS project; IVW
analysis showed that GC risk was not associated with MUFAs [OR = 0.82, 95%
CI: (0.59–1.14), p = 0.23] or the ratio of MUFAs to total fatty acids [OR = 1.00, 95%
CI: (0.75–1.35), p = 0.98]. Similar results were observed when using the other
MR methods.
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Conclusion: The NHANES study revealed that consuming MUFAs was linked to a
lower risk of GC, although the results of MR analyses do not provide evidence of a
causal relationship. Additional research is therefore necessary to clarify
these findings.

KEYWORDS

gastric cancer, dietary factors, NHANES, MUFA, Mendelian randomization

Introduction

The rapidly growing global incidence of gastric cancer (GC)
presents a significant public health challenge as it remains one of the
leading cause of cancer-related mortality (Siegel et al., 2023). Despite
advancements in early screening and therapeutic approaches,
patients with advanced GC still have poor prognosis (Thrift
et al., 2023). The development of GC is multifactorial and
involves influences from factors, such as diet, environment, and
genetics, with the dietary factors being of particular significance
(Bouras et al., 2022). Based on reflection of an old Chinese proverb
that “illness comes from the mouth,” it is imperative to look into the
associations between dietary factors and GC. By gaining a deeper
understanding of their relationship, efforts can be made to modify
dietary patterns to potentially reduce the incidence of GC.

Recent studies have identified several dietary factors that may be
associated with GC; of these, high glucose levels in the body are
believed to be linked to greater incidence of malignancies, including
GC (Tay et al., 2021). Similarly, increased fat intake has been
identified as another important dietary habit that is carcinogenic
and potentially related to GC (Kyrgiou et al., 2017). Protein is a
fundamental component necessary for body composition and is
regarded as a pivotal nutrient for GC patients (Ouyang et al., 2018;
Kubota et al., 2020). Furthermore, multiple studies have highlighted
the strong positive association between high salt consumption and
GC, particularly with respect to salt-preserved foods (Kurosawa
et al., 2006; D’Elia et al., 2012). For instance, a recent study reported
that high intake of salted fish was linked to an elevated risk of GC
(Bouras et al., 2022). On the other hand, high consumption of
vitamin C, carotenoids, and other antioxidants, which have the
potential to mitigate oxidative damage, has been reported to confer
protective effects against the incidence of GC (Kong et al., 2014; Kim
et al., 2018; Chen et al., 2021). However, a recent clinical trial found
no significant interactions between vitamin supplements and GC
incidence (Guo et al., 2020). Nevertheless, it is important to note that
most current studies concentrate on a single dietary factor while
neglecting the complexity, diversity, and interactions of different
dietary intakes. As a result, these reports on the associations between
dietary factors and GC may be one-sided. Therefore, it is imperative
to shift the focus toward examining food groups or dietary patterns
by taking into account multiple dietary factors and conducting
comprehensive studies to gain a more holistic understanding of
the associations between diet and GC.

Mendelian randomization (MR) is an approach that utilizes
genetic variants as instrumental variables (IVs) and offers several
advantages over observational studies; it has the potential to
circumvent residual confounding and reverse causality, thereby
providing a more reliable approach for evaluating causal
relationships (Boyko, 2013; Sekula et al., 2016). Therefore, MR

was employed in this study to further investigate the causal
relationships between some dietary factors of interest and the
risk of GC.

Thus, this study aims to investigate the links between dietary
factors and the risk of GC by integrating an observational study and
two-sample MR analyses. The main goal of this work was to
establish a theoretical basis for the prevention and treatment of
GC through the improvement of dietary habits.

Methods

Study design and population in NHANES

The data for this cross-sectional study were extracted from the
National Health and Nutrition Examination Survey (NHANES), a
multistage stratified composite design survey on the health and
nutritional information of a representative selection of the non-
institutionalized U.S. population, conducted by the National Centers
for Health Statistics (NCHS) of the Centers for Disease Control and
Prevention (CDC). The observations from seven consecutive
NHANES surveys (2003–2004, 2005–2006, 2007–2008,
2009–2010, 2011–2012, 2013–2014, and 2015–2016) were
combined into a single analytic sample; thus, a total of
35,098 eligible participants above the age of 18 years, who were
interviewed regarding their medical conditions and dietary intakes,
were included in this study. The participants who had incomplete
information were excluded (n = 6,809).

Variable selection in NHANES

The diagnoses of GC were defined using two items on the
Medical Status Questionnaire: “Have you ever been told by a
doctor or other health professional that you had cancer or
malignancy?” and “What kind of cancer was it?” Answers that
indicated only “stomach cancer” were classified as the outcome
variables. Some demographic covariates, including age, sex, race,
education, smoking status, weight, and bodymass index (BMI), were
also assessed.

The study participants were asked by trained interviewers to
recall two consecutive 24-h dietary periods (day 1 and day 2) to
assess the total dietary intakes through comprehensive reference to
the NHANES. The present study only included dietary recalls for
day 1 as those for day 2 had more missing values. A total of
32 dietary factors from the dietary questionnaire in the NHANES
database were included in this study as follows: energy (kcal),
protein (g), carbohydrate (g), total sugars (g), dietary fibers (g),
total fat (g), saturated fatty acids (SFAs, g), monounsaturated fatty
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acids (MUFAs, g), polyunsaturated fatty acids (PUFAs, g),
cholesterol (mg), vitamin A (µg), retinol (µg), alpha-carotene
(µg), beta-carotene (µg), vitamin B1 (thiamin, mg), vitamin B2
(riboflavin, mg), vitamin B3 (niacin, mg), vitamin B6 (mg), folate
(µg), vitamin B12 (µg), vitamin C (µg), vitamin E (mg), vitamin K
(µg), calcium (mg), phosphorus (mg), magnesium (mg), iron (mg),
zinc (mg), copper (mg), sodium (mg), potassium (mg), and
selenium (µg).

Data sources for genetic instruments

The genome-wide association study (GWAS) data analyzed in the
present study was obtained from the IEU open GWAS project
supported by the MRC Integrative Epidemiology Unit (IEU) at the
University of Bristol, collated and analyzed GWAS data from the UK
Biobank, FinnGen biobank, and published articles. The single-
nucleotide polymorphisms (SNPs) at the genome-wide significance
level (p < 5 × 10−8) used in this study included MUFAs (GWAS ID:
met-d-MUFA, sample size: 114,999, number of SNPs: 12,321,875,
population: European, gender: both) and ratio of MUFAs to total fatty
acids (GWAS ID: met-d-MUFA_pct, sample size: 114,999, number of
SNPs: 12,321,875, population: European, gender: both). The data on
SNPs associated with GC (GWAS ID: finn-b-C3_STOMACH, sample
size: 218,792, samples with GC: 633, number of SNPs: 16,380,466,
population: European, gender: both) were also extracted from the IEU
open GWAS project (https://gwas.mrcieu.ac.uk/).

Genetic instrument selection

The SNPs in linkage disequilibrium (defined as r2 > 0.001 or
clump distance <10,000 kb) and those having weaker associations
with exposure were excluded, leaving 66 independent SNPs as the
IVs for MUFAs and 66 for the ratio of MUFAs to total fatty acids.
The F-statistic was used to ensure strong association between the
SNPs and exposure. The detailed information on the selected SNPs
is presented in Supplementary Tables S1,S2.

Statistical analysis

The data in the current study were obtained and statistically
evaluated using R 4.1.1 (R Foundation, Vienna, Austria). The
NHANES study population was divided into two groups in
accordance with the presence or absence of a history of GC, and
characteristics were determined for comparison between the groups.
Continuous variables were expressed in terms of the median and
interquartile range (IQR) as they did not obey a normal
distribution. Significance differences between the two groups were
evaluated using the Wilcoxon rank-sum test. Frequency and percent
were used to describe the categorical variables, and the distribution of
the categorical variables was appropriately compared using the Pearson
chi-squared test.

Considering the stratified multistage probabilistic sampling
approach of the NHANES, the “survey” package was used to adjust
the complex sampling weights in the analyses. The two-year cycle
weights were divided by seven to reflect the 14 survey years. Weighted

logistic multivariate analysis was used to explore the associations
between the dietary factors and GC. Three different models were
used to decrease the influences of the confounders, where the first
model was the crudemodel; the secondmodel was adjusted for age, sex,
and race, and the third model was adjusted for age, sex, race, education,
smoking status, and BMI. The odds ratio (OR) and 95% confidence
interval (CI) were used to assess the associations.

For the MR analyses, the “TwoSampleMR” package was used to
conduct the inverse variance weighted (IVW) analysis as the
primary method of assessing the causal effect between MUFAs
and GC risk. The IVW model is considered to have the strongest
ability to detect causation in the two-sample MR analysis (Hartwig
et al., 2017). MR–Egger, weighted-median, simple mode, and
weighted mode were also implemented to validate the results
from the IVW analysis. The possible heterogeneity and
directional pleiotropy were assessed through the Cochrane Q test
and intercept fromMR–Egger (Qian et al., 2020). The leave-one-out
sensitivity analysis was also conducted, and a p-value <0.05 (two-
sided) was considered to be statistically significant in this study.

Results

Characteristics of included participants

A total of 35,098 individuals (weighted n = 219,465,579) over
18 years of age were selected for this study through the NHANES
database. The flowchart illustrating the selection process of the

FIGURE 1
Flowchart of the NHANES study participants.

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2024.1377434

134

https://gwas.mrcieu.ac.uk/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1377434


participants is depicted in Figure 1. Among these participants,
20 people representing 105,634 individuals reported having a
history of GC. The characteristics of these individuals were then
stratified based on the presence or absence of GC, as shown in
Table 1. The analysis revealed that individuals with GC were older
(53 vs 46 years, p < 0.0001), had lower weights (67.40 vs 79.30 kg, p =
0.02), and had lower educational attainment (p = 0.03) compared to
those without GC.

Dietary intakes and risk of GC

Table 2 represents the dietary intakes of the participants with
and without GC. Individuals with GC consumed less energy

(p < 0.001), carbohydrates (p = 0.01), dietary fibers (p <
0.0001), total fats (p = 0.03), MUFAs (p < 0.01), PUFAs (p =
0.04), vitamin B1 (p < 0.0001), vitamin B3 (p < 0.0001), vitamin B6
(p < 0.0001), folate (p < 0.0001), vitamin E (p < 0.0001), vitamin K
(p < 0.0001), phosphorus (p = 0.01), magnesium (<0.0001), iron
(p < 0.0001), zinc (p < 0.01), copper (p = 0.01), sodium (p = 0.02),
and selenium (p = 0.03).

The correlations between the aforementioned dietary intakes
and risk of GC via logistic regression analysis after adjustment for
multiple potential confounders are described in Table 3. The
dietary total fat intake [OR = 1.09, 95% CI: (1.01–1.17), p = 0.03]
was positively associated with GC; meanwhile, dietary MUFA
intake [OR = 0.83, 95% CI: (0.76–0.92), p < 0.001] was negatively
associated with GC. After adjusting for age, sex, and race

TABLE 1 General characteristics of the adults included in this study stratified by the presence or absence of a history of GC.

Variable Total (unweighted n = 35,098,
weighted n = 219,465,579)

GC (unweighted n = 20,
weighted n = 105,634)

No GC (unweighted n = 35,078,
weighted n = 219,359,945)

p-value

Age
(median (IQR))

46 (32.59) 53 (48.67) 46 (32.59) < 0.0001

Sex (%) 0.06

Male 48.16 22.06 48.17

Female 51.84 77.94 51.83

Race (%) 0.51

Non-Hispanic
Black

11.34 20.95 11.34

Non-Hispanic
White

68.44 71.97 68.44

Mexican
American

8.48 3.53 8.49

Other Hispanic 4.9 0 4.9

Other race 6.84 3.56 6.84

Education (%) 0.03

Less than high
school

16.97 27.5 16.96

High school
graduate

23.64 6.51 23.65

Some college 31.6 58.87 31.59

College graduate
or above

27.79 7.12 27.8

Smoking
status (%)

0.9

No 78.36 76.9 78.36

Yes 21.64 23.1 21.64

Weight
(median (IQR))

79.20 (67.00.93.70) 67.40 (67.40.81.40) 79.30 (67.00.93.70) 0.02

BMI
(median (IQR))

27.61 (24.03.32.20) 25.90 (24.40.28.20) 27.61 (24.02.32.20) 0.1

Data are expressed as median (IQR) for skewed variables and percentage (%) for categorical variables. p-value for skewed variables was assessed by the Wilcoxon rank-sum test, and p-value for

the categorical variables was determined using the Pearson chi-squared test.

The bold values mean p < 0.05.
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(model2) as well as age, sex, race, education, smoking status, and
BMI (model3), the dietary total fat intake [model2: OR = 1.08,
95% CI: (1.01–1.16), p = 0.02; model3: OR = 1.08, 95% CI:
(1.01–1.16), p = 0.03] was still associated with higher odds of
GC, and the dietary MUFA intake [model2: OR = 0.83, 95% CI:
(0.75–0.91), p < 0.001; model3: OR = 0.83, 95% CI: (0.76–0.92),
p < 0.001] was still associated with a lower risk of GC. The

average total fat intake of the participants with GC in this study
was still within the 25%–35% range recommended by the
2020–2025 Dietary Guidelines for Americans (Phillips, 2021).
Despite the positive association between total fat intake and GC,
it is important to note that the lower daily energy intakes of those
with GC than without GC may have contributed to this
relationship. Therefore, it is plausible that this association

TABLE 2 Comparison of dietary intakes of persons with and without self-reported GC.

Variable Total GC No GC p-value

Energy (kcal) 1,988.00 (1,479.00–2,649.00) 1,615.00 (1,038.00–1615.00) 1,989.00 (1,479.00–2,649.00) < 0.001

Proteins (g) 75.81 (54.17–103.46) 51.95 (44.83–97.60) 75.82 (54.19–103.48) 0.15

Carbohydrates (g) 236.50 (171.86–319.67) 192.76 (94.95,218.33) 236.56 (171.88–319.74) 0.01

Total sugars (g) 99.26 (61.94–150.26) 111.15 (38.91,111.15) 99.26 (61.98–150.26) 0.41

Dietary fibers (g) 14.70 (9.70–21.30) 9.10 (5.60–9.30) 14.70 (9.70–21.30) < 0.0001

Total fats (g) 74.42 (50.20–105.17) 56.02 (29.94–71.58) 74.44 (50.20–105.17) 0.03

SFAs (g) 23.69 (15.21–35.20) 17.39 (15.33–26.14) 23.69 (15.21–35.20) 0.19

MUFAs (g) 26.49 (17.38–38.30) 21.63 (9.29–22.84) 26.50 (17.38–38.30) 0.002

PUFAs (g) 15.82 (10.02–23.87) 10.90 (2.47–15.98) 15.82 (10.02–23.87) 0.04

Cholesterol (mg) 223.00 (131.00–380.00) 272.00 (185.00–556.00) 223.00 (131.00–380.00) 0.47

Vitamin A (µg) 494.00 (274.00–812.00) 464.00 (464.00–857.00) 494.00 (274.00–812.00) 0.43

Retinol (µg) 334.00 (171.00–566.00) 443.00 (321.00–453.00) 334.00 (171.00–566.00) 0.08

Alpha carotene (µg) 47.00 (10.00–244.00) 13.00 (0.00–158.00) 47.00 (11.00–244.00) 0.48

Beta carotene (µg) 779.00 (300.00–2,312.00) 555.00 (214.00–4,768.00) 779.00 (300.00–2,312.00) 0.78

Vitamin B1 (mg) 1.46 (1.02–2.03) 0.95 (0.63–1.13) 1.46 (1.02–2.03) < 0.0001

Vitamin B2 (mg) 1.97 (1.36–2.73) 2.04 (1.88–2.06) 1.97 (1.36–2.73) 0.51

Vitamin B3 (mg) 22.73 (15.89–31.80) 13.24 (13.24–18.81) 22.74 (15.90–31.81) < 0.0001

Vitamin B6 (mg) 1.77 (1.18–2.54) 0.91 (0.65–1.45) 1.77 (1.18–2.54) < 0.0001

Folate (µg) 354.00 (240.00–511.00) 247.00 (170.00–287.00) 354.00 (240.00–512.00) < 0.0001

Vitamin B12 (µg) 3.96 (2.25–6.47) 2.79 (2.77–4.28) 3.96 (2.25–6.47) 0.15

Vitamin C (mg) 53.40 (21.90–115.60) 26.90 (9.30–110.50) 53.50 (21.90–115.60) 0.38

Vitamin E (mg) 6.72 (4.30–10.27) 4.18 (1.81–4.69) 6.72 (4.31–10.27) < 0.0001

Vitamin K (µg) 63.80 (35.80–119.30) 34.10 (25.00–49.30) 63.80 (35.80–119.40) < 0.0001

Ca (mg) 834.00 (546.00–1,223.00) 810.00 (571.00–1,009.00) 834.00 (546.00–1,223.00) 0.55

P (mg) 1,263.00 (915.00–1,717.00) 966.00 (943.00–1,286.00) 1,263.00 (915.00–1,717.00) 0.01

Mg (mg) 275.00 (198.00–370.00) 179.00 (179.00–264.00) 275.00 (198.00–370.00) < 0.0001

Fe (mg) 13.27 (9.33–18.92) 8.80 (5.47–10.69) 13.28 (9.33–18.92) < 0.0001

Zn (mg) 10.17 (6.97–14.71) 6.47 (5.14–9.87) 10.17 (6.98–14.71) 0.002

Cu (mg) 1.14 (0.82–1.58) 0.55 (0.54–1.00) 1.14 (0.82–1.58) 0.01

Na (mg) 3,217.00 (2,287.00–4,406.00) 2,856.00 (1,902.00–3,101.00) 3,218.00 (2,287.00–4,408.00) 0.02

K (mg) 2,535.00 (1,820.00–3,365.00) 1,492.00 (1,350.00–2,531.00) 2,536.00 (1,821.00–3,365.00) 0.06

Se (µg) 101.90 (70.40–142.10) 80.40 (63.30–103.80) 101.90 (70.40–142.20) 0.03

p-value was determined by the Wilcoxon rank-sum test, median (IQR).

The bold values mean p < 0.05.
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may be influenced by the differences in daily energy intakes
between the two groups.

MUFAs intake and GC

To further study the associations between MUFAs and risk of
GC, the above three models were used to evaluate the odds of GC
across the quartiles (Q1: <16.512 g, Q2: 16.512–25.429 g, Q3:
25.429–37.203 g, Q4: >37.203 g) of total intake of MUFAs
(Table 4). In all three models, the top quartile of total MUFA
intake had over 90% lower likelihood of GC [model1: OR = 0.03,
95% CI: (0.00–0.25), p < 0.01; model2: OR = 0.04, 95% CI:
(0.00–0.38), p = 0.01; model3: OR = 0.04, 95% CI: (0.00–0.40),
p = 0.01]. These results indicate that a diet rich inMUFAsmight play
a protective role against GC.

The stability of the correlation betweenMUFAs and GC risk was
further confirmed in different populations (Table 5). Analyses
stratified by race show that MUFA intake was associated with
lower GC risk in black participants [OR = 0.96, 95% CI:
(0.92–0.99), p = 0.02] and white participants [OR = 0.92, 95%

CI: (0.84–1.00), p = 0.05]. In stratified analyses based on smoking
status, MUFAs were significantly correlated with GC risk in non-
smokers [OR = 0.94, 95% CI: (0.89–1.00), p = 0.04]. Stratification by
BMI showed that MUFAs were significantly associated with lower
GC risk only in people with healthy weights [BMI: 18.5–25, OR =
0.89, 95% CI: (0.87–0.91), p < 0.0001]. Overall, the findings of this
study indicate that a high dietary intake of MUFAs decreases the
risk of GC.

Causal relationship between MUFAs and
GC risk

The cross-sectional study design of NHANES prevented the
establishment of a causal relationship between the dietary factors
and risk of GC. To avoid this limitation, MR analyses were
conducted, and details of these SNPs are given in Supplementary
Tables S1,S2. The F-statistic for each SNP was above 10. From the
results of the IVW analyses, there were no genetic instruments
associated withMUFAs or ratio of MUFAs to total fatty acids having
a causal relationship with GC risk. The pooled ORs for GC risk in

TABLE 3 Associations between dietary intakes and GC.

Variable Model1 Model2 Model3

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Energy (kcal) 0.9972 (0.9918–1.0027) 0.3180 0.9978 (0.9928–1.0027) 0.3724 0.9976 (0.9922–1.0031) 0.3838

Carbohydrates (g) 1.0073 (0.9834–1.0318) 0.5471 1.0072 (0.9850–1.0299) 0.5227 1.0071 (0.9831–1.0317) 0.5596

Dietary fibers (g) 0.9574 (0.8970–1.0220) 0.1885 0.9495 (0.8813–1.0230) 0.1708 0.9605 (0.8836–1.0441) 0.3393

Total fats (g) 1.0866 (1.0099–1.1691) 0.0266 1.0818 (1.0114–1.1572) 0.0226 1.0820 (1.0069–1.1627) 0.0321

MUFAs (g) 0.8343 (0.7572–0.9192) <0.001 0.8302 (0.7546–0.9135) <0.001 0.8338 (0.7562–0.9194) <0.001

PUFAs (g) 0.9688 (0.8677–1.0817) 0.5695 0.9701 (0.8634–1.0898) 0.6049 0.9727 (0.8636–1.0955) 0.6439

Vitamin B1 (mg) 0.8809 (0.1363–5.6913) 0.8929 0.8134 (0.1107–5.9757) 0.8373 0.8181 (0.1002–6.6778) 0.8495

Vitamin B3 (mg) 0.9955 (0.8870–1.1172) 0.9378 1.0059 (0.9016–1.1222) 0.9151 1.0069 (0.9113–1.1125) 0.8914

Vitamin B6 (mg) 0.6444 (0.3578–1.1605) 0.1413 0.6016 (0.3416–1.0592) 0.0776 0.5989 (0.3137–1.1432) 0.1185

Folate (µg) 0.9995 (0.9957–1.0034) 0.8137 1.0000 (0.9962–1.0037) 0.9899 0.9999 (0.9957–1.0041) 0.9707

Vitamin E (mg) 0.9831 (0.8378–1.1535) 0.8325 0.9804 (0.8212–1.1705) 0.8249 0.9847 (0.8317–1.1659) 0.8565

Vitamin K (µg) 0.9927 (0.9790–1.0065) 0.2951 0.9916 (0.9754–1.0080) 0.3073 0.9917 (0.9765–1.0072) 0.2897

P (mg) 1.0010 (0.9982–1.0038) 0.4776 1.0011 (0.9984–1.0037) 0.4293 1.0011 (0.9984–1.0039) 0.4174

Mg (mg) 1.0026 (0.9943–1.0109) 0.5358 1.0023 (0.9947–1.0100) 0.5479 1.0018 (0.9948–1.0089) 0.6067

Fe (mg) 0.9477 (0.8548–1.0507) 0.3037 0.9304 (0.8349–1.0367) 0.1885 0.9317 (0.8549–1.0153) 0.1053

Zn (mg) 1.0073 (0.9242–1.0979) 0.8666 1.0141 (0.9226–1.1146) 0.7695 1.0142 (0.9312–1.1047) 0.743

Cu (mg) 0.8428 (0.0795–8.9384) 0.8859 0.7847 (0.0777–7.9216) 0.8353 0.7996 (0.1129–5.6627) 0.8207

Na (mg) 1.0002 (0.9995–1.0008) 0.5906 1.0003 (0.9996–1.0009) 0.4116 1.0003 (0.9997–1.0009) 0.3561

Se (µg) 1.0046 (0.9786–1.0313) 0.7304 1.0043 (0.9785–1.0308) 0.7433 1.0042 (0.9792–1.0298) 0.7414

OR, odds ratio; CI, confidence interval.

Model1: crude model.

Model2: adjusted for age, sex, and race.

Model3: adjusted for age, sex, race, education, smoking status, and BMI.

The bold values mean p < 0.05.
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genetically predicted per unit change were 0.82 (95% CI: 0.59–1.14;
p = 0.23) and 1.00 (95%CI: 0.75–1.35; p = 0.98) forMUFAs and ratio
of MUFAs to total fatty acids, respectively (Table 6; Figure 2). There
was no evidence of heterogeneity or pleiotropy of the
aforementioned IVW analysis (Supplementary Table S3).

Four other MR methods (MR–Egger, weighted-median, simple
mode, and weighted mode) were conducted, and similar results were
observed to those of the IVW analyses (Table 6; Figure 2). For both
genetic instruments, MR-PRESSO was conducted, and no outliers
were found in this study. The leave-one-out sensitivity analysis
showed that the overall result could change upon removing

rs964184 for both MUFAs and ratio of MUFAs to total fatty
acids as well as rs174564 for MUFAs (Supplementary Figure S1).

Discussion

Numerous studies have unequivocally demonstrated the strong
relationships between dietary intake and risk of developing various
types of cancers, including lung cancer (Sun et al., 2016), breast
cancer (De Cicco et al., 2019), and colorectal cancer (Thanikachalam
and Khan, 2019). While some studies have underscored the
significant roles of specific nutrients, such as cholesterol (Pih
et al., 2021), nitrates (Poorolajal et al., 2020), salt (Wu et al.,
2021), and alcohol (Laszkowska et al., 2021), in the incidence
and progression of GC, a common tendency in these
investigations is the exclusive focus on individual dietary factors
that neglects the intricate interplay and complexities of different
dietary intakes. It is important to recognize that modifications to a
single dietary factor can invariably lead to compensatory changes in
other dietary characteristics. Thus, the present cross-sectional study
sought to address this deficiency by examining the NHANES
database to elucidate the relationships between 32 dietary factors
and risk of GC. The findings from a weighted logistic multivariate
analysis reveal a noteworthy association between the intake of
MUFAs and reduced risk of GC [OR = 0.8343, 95% CI:
(0.7572–0.9192), p < 0.001]. This underscores the significance of
considering the comprehensive dietary landscape for understanding
the multiple factors at play in the development of GC.

Extensive research has been conducted on MUFAs owing to
their potential health benefits (Snaebjornsson et al., 2020). Foods
such as olive oil, avocados, nuts, and seeds, which are common
components of the Mediterranean diet, have abundant quantities of
MUFAs, and this diet is renowned for its benefits against
cardiovascular diseases, obesity, and malignancies (Davis et al.,
2015; Schwingshackl et al., 2017; Morze et al., 2021). Current
studies advocate the restriction of SFAs and incorporation of
higher proportions of MUFAs and PUFAs into a healthy diet
(Sacks et al., 2017). Moreover, a recent comprehensive meta-
analysis involving 3,202,496 participants revealed an inverse
association between the Mediterranean diet and mortality rates of
several cancers, including GC, highlighting the potential role of

TABLE 5 Subgroup analysis of the associations between MUFAs and GC.

Variable OR (95% CI) p-value

Age

<60 0.9493 (0.8969–1.0049) 0.0726

>60 0.9071 (0.8156–1.0088) 0.0718

Race

Non-Hispanic Black 0.9572 (0.9220–0.9938) 0.0227

Non-Hispanic White 0.9169 (0.8411–0.9995) 0.0488

Mexican American 1.0251 (0.9768–1.0758) 0.3103

Other Hispanic 0.9987 (0.9956–1.0019) 0.4225

Other race 0.9823 (0.9059–1.0653) 0.6637

Smoking status

No 0.9416 (0.8894–0.9969) 0.0388

Yes 0.9325 (0.8330–1.0440) 0.2228

BMI

Underweight 0.8893 (0.8702–0.9088) <0.0001

Healthy weight 0.9733 (0.9350–1.0133) 0.1855

Overweight 0.9304 (0.8538–1.0138) 0.0988

Obese 0.9479 (0.8383–1.0719) 0.3904

The bold values mean p < 0.05.

TABLE 4 Odds ratios and 95% confidence intervals for GC according to the daily dietary MUFA intake level.

Variable Model1 Model2 Model3

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Q1 ref ref ref

Q2 0.9168 (0.1380–6.0891) 0.9277 0.9990 (0.1497–6.6683) 0.9992 1.0181 (0.1508–6.8718) 0.9852

Q3 0.2512 (0.0583–1.0819) 0.0634 0.3106 (0.0727–1.3281) 0.1135 0.3393 (0.0797–1.4449) 0.1419

Q4 0.0260 (0.0028–0.2451) 0.0017 0.0400 (0.0043–0.3762) 0.0053 0.0426 (0.0045–0.4048) 0.0065

P for trend 0.0023 0.0119 0.0156

OR: odds ratio; CI: confidence interval.

Model1: crude model.

Model2: adjusted for age, sex, and race.

Model3: adjusted for age, sex, race, education, smoking status, and BMI.

The bold values mean p < 0.05.
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MUFAs in protecting against GC (Morze et al., 2021). Additionally,
two separate studies found that dietary MUFAs were linked to a
reduced risk of pancreatic cancer (Nkondjock et al., 2005; Banim
et al., 2018). The potential antitumor effects of MUFAs may be
attributed to their antioxidant properties, capacity to reduce chronic
inflammation, and cholesterol-lowering properties (Farag and Gad,
2022; Wan et al., 2022; Guo et al., 2023). Furthermore, in the present
NHANES observational study, after adjusting for potential
confounders, the authors observed a protective effect of a high-
MUFAs diet against GC, consistent with the findings of the
aforementioned studies. These findings collectively suggest the
potential of MUFAs in mitigating the risk of certain types of
cancer while emphasizing their value as a component of a
health-promoting diet.

However, some studies have reported conflicting results
regarding the association between MUFAs and cancer risk. A
large-scale case-controlled study revealed that increased MUFA
intake was linked to higher odds of breast cancer (Sasanfar et al.,
2022). Similarly, another study reported a positive association

between dietary MUFA intake and pancreatic cancer (Gong
et al., 2010). Therefore, evidence regarding the relationship
between dietary MUFAs and cancer risk remains inconclusive. It
is worth noting that there have been no cohort studies to investigate
the association between dietary MUFAs and GC to date. This
indicates the need for further research to clarify the impacts of
MUFA consumption on GC risk.

The primary limitation of an observational study is the
challenge of establishing a causal relationship. To address this
limitation, two-sample MR analyses were conducted to
investigate any potential causal relationships between MUFAs
or ratio of MUFAs to total fatty acids and the risk of GC. The
initial findings from the IVW analysis do not support a causal
relationship between MUFAs or ratio of MUFAs to total fatty
acids and GC. Furthermore, this study incorporated four
additional MR analyses, all of which consistently aligned with
the findings of the IVW analysis, thereby enhancing the
robustness of the findings. Despite the seemingly
contradictory results between the NHANES observational

TABLE 6 Causal relationship between MUFAs and GC risk based on different MR methods.

Exposure MR method OR 95% CI p-value

MUFAs IVW 0.8214 0.5939–1.1360 0.2344

MR–Egger 1.0091 0.5932–1.7165 0.9735

Weighted-median 1.0375 0.6203–1.7354 0.8883

Simple mode 0.7523 0.2980–1.8992 0.5493

Weighted mode 1.1843 0.6340–2.2122 0.5978

Ratio of MUFAs to total fatty acids IVW 1.0039 0.7475–1.3482 0.9794

MR–Egger 1.2926 0.8252–2.0246 0.2668

Weighted-median 1.3905 0.8750–2.2095 0.1630

Simple mode 1.1772 0.5234–2.6480 0.6946

Weighted mode 1.3437 0.8680–2.0803 0.1902

OR, odds ratio; CI, confidence interval.

FIGURE 2
Scatter plots of the genetic associations between (A) MUFAs and (B) ratio of MUFAs to total fatty acids and GC.
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study and MR analyses, it would be premature to conclusively
label MUFAs as “ineffective” in mitigating GC risk. The
complexity of dietary factor interactions and metabolism in
the human body suggests that compensatory mechanisms may
occur when the intake of a specific dietary factor is altered over a
short period of time. In light of this intricate interplay, it is more
prudent to view each dietary factor as an integral component,
akin to individual bricks contributing to the construction of a
“great wall” that safeguards against malignancies such as GC.

To the best of the authors’ knowledge, this study is an initial
attempt to examine the correlations between dietary MUFAs intake
and risk of GC by integrating an observational study with two-
sample MR analyses, thereby enhancing the reliability of the
findings. Although the results derived from the MR analyses do
not substantiate a causal role, it remains imperative to further
investigate whether increased consumption of MUFA-rich foods
exerts a protective effect against GC.

Despite the findings of this study, several limitations should be
considered. First, the relatively lower incidence of GC in the USA
compared to East Asia implies a need for further analyses using
databases of Asian participants and GWAS to bolster the findings.
Second, the use of self-reported 24-h dietary recall data in NHANES
may not be fully representative of the participants’ long-term dietary
intakes. Third, the absence of information on GC staging,
histological findings, surgical history, and fatalities among the
study participants precludes subgroup analyses based on the
cancer stages, potentially affecting the results. Lastly, this study
did not delineate the MUFAs based on their derivation from animal
or plant sources, introducing the possibility of biases.

Conclusion

In conclusion, the results of the present study show no evidence
to support a causal link between MUFA intake and gastric cancer
risk. Larger studies are therefore required to explore the potential
associations between GC risk and animal- or plant-derived MUFAs.
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2Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf,
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Introduction: Head and neck cancer (HNC) is a complex disease, and multiple

risk factors can lead to its progression. Observational studies indicated that

herpes simplex virus (HSV) may be correlated with the risk of HNC. However,

the causal effects and direction between them were still unclear.

Methods: This study utilized a Mendelian randomization (MR) approach for

causality assessment between HSV infection and Head and neck cancer based

on the latest public health data and Genome-Wide Association Study (GWAS)

data. The causal effects were estimated using IVW, weighted median, and MR-

Egger. A reverse MR analysis was subsequently performed. CochransQ test, MR‐

Egger intercept test, leave one out analysis, and the funnel plot were all used in

sensitivity analyses.

Results: Genetically predicted higher level of HSV-1 IgG was causally related to

HNC (OR=1.0019, 95%CI=1.0003–1.0036, p=0.0186, IVW) and oral and

oropharyngeal cancer (OR=1.0018, 95%CI=1.0004–1.0033, p=0.0105, IVW).

The reverse MR analysis did not demonstrate a reverse causal relationship

between HSV and HNC. However, HSV-2 infection was not causally related to

HNC data and oropharyngeal cancer data. Sensitivity analysis was performed and

revealed no heterogeneity and horizontal pleiotropy.

Conclusion: Collectively, a significant association was noted between HSV

infection and increased risk of HNC, providing valuable insights into the

etiology of this malignancy. Further in-depth study is needed to validate these

findings and elucidate the underpinning mechanisms.
KEYWORDS

head and neck cancer, herpes simplex virus, Mendelian randomization, causal effect,
hsv, oral and oropharyngeal cancer
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1 Introduction

Head and neck cancer (HNC) is a complicated and multi-

factorial disease that consists of a heterogeneous group of malignant

tumors in the upper respiratory tract, covering the oral cavity,

pharynx, throat, and nasal cavity (1). It is an important global

health burden and is responsible for a considerable proportion of

morbidity and mortality relevant to cancers on global scale. Despite

advances in treatment modalities, the prognosis of this malignancy

is still poor, which emphasizes the demand for a deeper

understanding of its etiology and identification of new risk

factors (2).

Herpes simplex virus (HSV) infection is triggered by two

distinct serotypes, HSV-1 and HSV-2, showing a high prevalence

in the general population. HSV-1 mainly infects the lip and mouth

areas, resulting in recurrent oral lesions, commonly referred to as

cold sores, while HSV-2 primarily causes genital herpes (3). In

addition to the well-known manifestations, HSV infection is also

linked to multiple diseases, including cancer. Several studies have

discussed the potential link between HSV infection and the

progression of HNC and have proposed direct and indirect

mechanisms (4).

Previous epidemiological investigations have reported the

relationships between HSV infection and HNC, especially

oropharyngeal cancer. However, the nature of these relationships

and potential causal associations remain undefined (5).

Observational studies have inherent limitations, such as

confounding factors and reverse causality, which hinders their

ability to definitively establish causality. Rigorous and innovative

research designs are required to overcome these challenges and

clarify the causal role of HSV infection in HNC (6).

Mendelian randomization (MR) analysis, an instrumental

variable approach with genetic variants serving as instrumental

variables (IVs), represents a powerful tool for assessing causality in

epidemiological studies (7). Though random assignment of genetic

variants during the gamete formation process and their correlations

with relevant exposures, the MR analysis can provide strong

evidence for causality (8). In terms of HSV infection and HNC,

the MR analysis offers a unique opportunity to overcome the

limitations of observational studies and clarify the potential causal

mechanism of their associations (9).

Therefore, in this study, a comprehensive MR analysis was

carried out to explore the causality between HSV infection and the

development of HNC, particularly oropharyngeal cancer. By

utilizing large-scale genomic data and HSV infection-related

genetic tools, we probed into whether HSV-1 and HSV-2

infections were causally relevant to the risk of HNC (10).

The results of this study were of great significance for

understanding the etiology of HNC and may pave the way for

targeted interventions to attenuate the burden of this malignancy.

By elucidating the causal implication of HSV infection in HNC, we

could identify prevention strategies and treatments specifically

targeting HSV-related pathways (11). Ultimately, these insights

may contribute to the improvement of patient prognosis, early

detection, and personalized management of HNC (12).
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2 Materials and methods

To study the causal relation between HSV and HNC, we

conducted a bidirectional two-sample Mendelian randomization

(TSMR) study in accordance with the latest STROBE-MR

(Strengthening the Reporting of Observational Studies in

Epidemiology Using Mendelian Randomization) guidelines (13).

MR is a powerful analytical method that assesses the causality in

observational studies using genetic variants as IVs.

The TSMR analysis consisted of two major procedures:

estimating the genetic association with exposure (HSV infection)

and estimating the genetic association with outcome (HNC). These

estimated values were then combined for assessing the causal

impact of the exposure on the outcome (14).

Three key assumptions must be met to ensure the validity of

MR analysis:
Strong IV association: the selected IVs should be closely linked

to the exposure variable (HSV infection). We identified

genetic variants that had previously been validated and

demonstrated to be strongly associated with HSV infection

on the ground of large-scale genome-wide association

studies (GWAS) or other credible sources (15).

Independence of IVs: the IVs adopted in the analysis should be

independent of any confounding factors that might affect

the outcome (HNC). We carefully selected IVs that had

been proven to be independent of known confounding

factors through extensive literature review and

consultation with experts in the field (16).

Exclusion restriction assumption: IVs should affect the

outcomes only via the association with the exposure

variable (HSV infection). This assumption guaranteed

that IVs would not have a direct impact on outcomes

independent of their impact on HSV infection (17).
To evaluate the strength of IVs and prevent the impact of weak

instruments on causality, we calculated statistical values using the

formula: F=b2_exposure/SE2_exposure. Weak IVs were defined as

F<10, indicating limited statistical power to reliably estimate the

causal effect (18).

The data adopted in this article were publicly available to

researchers worldwide, so no additional ethical approval and

informed consent were required. We gained the summary statistics

of necessary genetic associations between HSV infection and HNC

from publicly available GWAS datasets and consortia (19).

According to the latest STROBE-MR guidelines, this paper

conducted a bidirectional TSMR study to observe the causal

relation between HSV and HNC. MR study must meet three

principal assumptions: IVs should be strongly linked to exposure;

(2) IVs should be independent of any possible confounders; (3) IVs

affected the outcomes only via the exposure (Figure 1A). To avoid

the impact of weak IVs on causality, the statistical values of IVs were

calculated based on the formula F=b 2 exposure/SE 2 exposure. A

weak IV was defined if F<10. The data utilized in the present study

were publicly available to global researchers (20). Hence, no
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additional ethical approval and informed consent were required.

The procedures of the experimental design are presented

in Figure 1B.
2.1 HSV infection data

Butler et al. conducted a GWAS analysis on infectious

pathogens in 2020, which enrolled 8735 individuals, and serum

samples were provided for the detection of antibody levels against a

variety of antigens, including HSV IgG1 antibody and IgG2

antibody. Antibody detection was done using a Luminex 100

platform (Luminex Corporation, Austin, TX, USA) at a dilution

of 1:1000 using a fluorescent bead-based multiplex serology

technique. This approach provided the median fluorescence

intensity (MFI), which allowed standardized quantification of

antibodies in the samples obtained by detecting the fluorescence

signal that was emitted by the analyte-trap complex. This approach

and the selection of seropositive threshold had been validated for

multiple infectious pathogens. The MFI seropositive threshold of

the HSV IgG1 antibody and IgG2 antibody was 150. There were

6199 cases diagnosed as HSV-1 positive and 1382 cases diagnosed

as HSV2 positive. The study of Butler et al. was currently the largest

GWAS study on HSV serological tests (21).
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The database used to obtain HSV information was from the

study conducted by Butler et al. in 2020. In their study, Butler et al.

carried out a GWAS analysis of infectious pathogens, including

HSV, using a dataset consisting of 8735 individuals who

offered serum samples for antibody detection against various

antigens (22).

The fluorescent bead-based multiplex serology technology was

adopted for antibody detection on the Luminex 100 platform

manufactured by Luminex company (Austin, TX, USA). Serum

samples were diluted at a ratio of 1:1000, and antibody levels were

measured using MFI. MFI provided standardized quantification of

the antibody concentration in the samples via the detection of the

fluorescence emitted by the analyte-trap complex (23).

To determine the seropositivity of HSV, a specific threshold was

established according to the effective criteria of multiple infectious

diseases. In the present study, the seropositive threshold of the HSV

IgG1 antibody and IgG2 antibody was set at 150 MFI. Therefore,

6199 individuals were diagnosed as HSV-1 positive, and 1382 were

diagnosed as HSV-2 positive. It was worth noting that this GWAS

analysis on HSV serological detection conducted by Butler et al.

represented the largest such study to date.

Using the comprehensive dataset provided by Butler et al., this

study adopted the information on HSV serology positivity to

explore the causal relation between HSV infection and the
A

B

FIGURE 1

Experimental design and assumptions. (A) Three key assumptions of MR analysis. (B) Flow chart of experimental design.
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development of HNC. The large sample size and validated

serological detection methods used in the study of Butler et al.

contributed to the robustness and reliability of our analysis and

enhanced the validity of the research results presented in this paper.
2.2 HNC data

UKBiobank is currently the largest GWAS database in the world,

and the research population involves volunteers across the UK. The

datasets, including HNC, Laryngeal cancer, Oral and oropharyngeal

cancer, Oral cavity cancer, and Oropharyngeal cancer, were

downloaded from UKB at https://biobank.ndph.ox.ac.uk/ukb/

search.cgi (24), Details and data sources are given in Table 1.
2.3 Selection of IVs

Linkage disequilibrium (LD) thresholds were adopted for the

extracted SNP (r2 < 0.001, 10000 kb) to avoid the effect of LD so as

to ensure independence between IVs at each exposure. Palindromic

alleles were eliminated. Additionally, the F statistic was utilized to

assess the strength of the IV-exposure correlation. A value of F

statistic > 10 was deemed to be strong enough to avoid weak IV-

induced bias. In order to satisfy the second assumption of MR, we

further searched these SNPs in the PhenoScanner database (http://

www.phenoscanner.medschl.cam.ac.uk/) and excluded SNPs

related to other putative confounding factors (smoking, drinking

frequency, etc.).
2.4 TSMR analysis

TSMR analysis was employed to analyze the causality between

HSV infection on head and neck squamous carcinoma. MR

methods included inverse variance weighted (IVW), MR-Egger,

and weighted median (WM). As the most common MR method

that could estimate the causal effect by integrating the ratio estimate

of each SNP, the IVW method was the major analysis method used

in this study. The MR-Egger intercept test could evaluate the

horizontal pleiotropy in the MR analysis through the intercept of

MR-Egger regression (horizontal pleiotropy was defined as p<0.05).

After sequentially eliminating the SNP locus, the leave-one-out

analysis used the remaining SNP loci for MR analysis to test

whether there was bias caused by a specific SNP locus, and it

adopted the IVW method for calculation. In MR analysis, the
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symmetry of the funnel plot was able to evaluate the reliability of

associations. We applied the IVW method to assess the influence of

all genetic variables on the outcomes. The Cochran Q test of IVW

was employed to evaluate the heterogeneity between SNPs, and

p>0.1 suggested no heterogeneity among genetic tools. Mendelian

randomization-pleiotropy residual sum and outlier (MR-PRESSO)

consisted of three parts: i) detection of horizontal pleiotropy; ii)

correction of pleiotropy by eliminating detection outliers (genetic

variants with horizontal pleiotropy); iii) comparison of the

differences in causal relations before and after correction.

Eventually, reverse TSMR analysis was performed with HNC as

exposure and HSV infection as an outcome. MR analyses were

accomplished by the “TwoSampleMR” and “MR-PRESSO”

packages (R version 4.1.2). Power analysis was performed using

mRnd (https://shiny.cnsgenomics.com/mRnd/). All analyses were

based upon public data with no need for additional ethical approval

and informed consent of participants since these had been obtained

at the initial release (25).
3 Results

3.1 HSV-1 infections might related to HNC

Through the aforementioned screening conditions, 44 SNPs

were found to be significantly associated with HSV infection,

including 22 in HSV-1 and 22 in HSV-2, with F statistic values

>10. No confounding factors of HNC were found after searching at

Phenoscannerv2. The details for SNPs are described in

Supplementary Table 1. As revealed by the positive MR analysis,

HSV-1 IgG was causally related to HNC (OR=1.0019, 95%

CI=1.0003–1.0036, p=0.0186, IVW), and oral and oropharyngeal

cancer (OR=1.0018, 95%CI=1.0004–1.0033, p=0.0105, IVW)

(Table 2). All causal effects of HSV on HNC assessed by the three

MR methods were visualized in the scatter plot, wherein a slope

greater than zero indicated a positive correlation (Figure 2).

However, HSV-2 infection was not causally related to HNC data

and oropharyngeal cancer data. The results of post-hoc power

calculations were shown in Supplementary Table 2.
3.2 Sensitivity analysis revealed no
heterogeneity and horizontal pleiotropy

The robustness of the aforementioned causal associations was

validated based on the data from the sensitivity analysis. The
TABLE 1 General description of data sources involved in the MR analysis.

Year Trait Consortium Sample size Case Number of SNPs Population

2021 Head and neck cancer UK Biobank 373122 1,106 9655080 European

2021 Oral and oropharyngeal cancer UK Biobank 372855 839 9185233 European

2020 HSV-1 IgG Butler-Laporte G 9724 8735 9170312 European

2020 HSV-2 IgG Butler-Laporte G 9724 8535 9170312 European
MR, Mendelian randomization.
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heterogeneity test revealed no heterogeneity in the MR analysis

(Cochran’s Q statistic, p>0.05). The MR-Egger regression analysis

failed to provide evidence for horizontal pleiotropy (MR-Egger

intercept<0.01, p>0.05). The MR-PRESSO global test suggested that

no noticeable outliers were able to drive the causal effect (p>0.05)

(Table 3). The leave-one-out analysis further displayed no single SNP

driving the causal effect (Figure 3), and the symmetry data of the

funnel plot exhibited no significant heterogeneity (Figure 4).

In light of the results of the reverse MR analysis, no significant

causal relations were noted between HNC and oropharyngeal

cancer and HSV infection.
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4 Discussion

According to the IVW genetically predicted HSV-1 was found

to be positively associated with HNC risk, especially oral and

oropharyngeal cancer. The methods of Inverse Variance

Weighting (IVW) are deemed dependable in instances where

Mendelian randomization analyses are unaffected by pleiotropy

and heterogeneity. Complementarily, the Weighted Median (WM)

approach is frequently employed alongside IVW. This WM

technique prioritizes the estimation of causal effects by weighing

and ranking the effect estimates from all instrumental variables,
B

C D
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FIGURE 2

Scanner plots for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral and oropharyngeal
cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.
TABLE 2 TSMR analysis of the causal relation between HSV and head and neck cancer.

Exposures Outcomes SNPs Methods OR 95% CI p

HSV-1 (IgG) Head and neck cancer 21 MR-Egger 1.0034 0.9996–1.0073 0.0909

Weighted median 1.0022 0.9998–1.0045 0.0651

IVW 1.0019 1.0003–1.0036 0.0186

Oral and oropharyngeal cancer 21 MR-Egger 1.0033 1.0008–1.0066 0.0584

Weighted median 1.0016 0.9995–1.0037 0.1248

IVW 1.0018 1.0004–1.0033 0.0105

HSV-2 (IgG) Head and neck cancer 22 MR-Egger 0.9996 0.9949–1.0042 0.8724

Weighted median 1.0007 0.9977–1.0037 0.6417

IVW 1.0006 0.9985–1.0027 0.5621

Oral and oropharyngeal cancer 22 MR-Egger 0.9997 0.9956–1.0037 0.8951

Weighted median 1.0008 0.9984–1.0031 0.4997

IVW 1.0006 0.9988–1.0024 0.5025
HSV, herpes simplex virus; IVW, inverse-variance weighted; OR, Odds ratio; CI, confidence interval.
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ultimately determining the causal effect based on the median value.

In large sample sizes, the stability of each instrumental variable’s

estimate enhances the reliability of the median estimate.

Conversely, in smaller samples, the median may exhibit greater

variability due to the more volatile nature of the estimates. This

paper, which investigates HSV-1 and HSV-2, operates with smaller

sample sizes, potentially leading to more fluctuating results.

Consequently, the primary focus of this study is on the outcomes

derived from the IVW method.

Our MR analysis offered convincing evidence supporting the

role of HSV-1 as a hazardous factor for HNC, especially oral and

oropharyngeal cancer. However, no causal association was
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observed between HSV-2 infection and HNC, including oral and

oropharyngeal cancer. These findings provided valuable insights

into the etiology of these malignancies and were of great

significance for clinical practice and future research (26).

The association between HSV-1 and HNC was consistent with

previous epidemiological studies, which reported a higher rate of

HSV-1 infection in patients with oral and oropharyngeal cancer

compared with controls (27). HSV-1 is a common virus that mainly

infects oral and oropharyngeal mucosa, resulting in recurrent oral

ulcers or cold sores. The virus establishes latency in the trigeminal

ganglion and can reactivate periodically, leading to virus shedding

and potential transmission to others (28).
TABLE 3 Results of the sensitivity analysis.

Exposure Outcome Heterogeneit MR‐Egger regression MR-PRESSO

Method Q Q-Pvalue Intercept p_intercept Global
test P

HSV-1 Head and neck
cancer (UKB)

MR-Egger 19.69031 0.413425
8.67618E-05 0.407185 0.95

IVW 20.43493 0.431035

Oral and oropharyngeal
cancer (UKB)

MR-Egger 16.94983 0.593267
8.76034E-05 0.330346 0.99

IVW 17.94784 0.590844

HSV-2 Head and neck
cancer (UKB)

MR-Egger 20.25135 0.442309
4.50223E-05 0.642206 0.09

IVW 20.4767 0.491272

Oral and oropharyngeal
cancer (UKB)

MR-Egger 12.59259 0.894172
4.02205E-05

0.632071
0.46

IVW 12.82903 0.914494
B
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FIGURE 3

Plots of leave-one-out analyses for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral
and oropharyngeal cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.
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The mechanism by which HSV-1 leads to the progression of

HNC is multifactorial and complex. HSV-1 infection will trigger a

series of immune responses, resulting in the activation of various

inflammatory mediators. Sustained or repeated viral replication and

shedding can lead to chronic inflammation in the oral and

oropharyngeal mucosa, which in turn will promote tissue damage

and genetic changes, key events in the initiation and development of

cancers. Inflammatory mediators, encompassing cytokines,

chemokines, and growth factors, are released in the immune

response to HSV-1 infection, creating an environment conducive to

cell transformation. These molecules can induce DNA damage,

disrupt cell signaling pathways, and accelerate abnormal cell

proliferation and survival (29). Additionally, chronic inflammation

induces the release of reactive oxygen species (ROS) and reactive

nitrogen species (RNs), possibly resulting in DNA damage and

genomic instability, which is a hallmark of cancer development.

HSV-1 has evolved several strategies to evade and modulate the

host immune response, which may have a significant impact on

cancer development (30). Through multiple immune evasion

mechanisms, such as interfering with antigen expression, this virus

can down-regulate the major histocompatibility complex (MHC)

molecules and inhibit the activation and function of immune cells,

including T cells and natural killer (NK) cells. Dysregulation of

immune checkpoints, such as PD-1 and CTLA-4, is another key

mechanism by which HSV-1 may facilitate carcinogenesis (31). HSV-

1 infection can up-regulate immune checkpoint molecules on T cells,

which causes cell dysfunction and impaired anti-tumor immune

response. Immune checkpoint ligands, such as PD-L1 expressed by

infected or malignant cells, can interact with immune checkpoint

receptors on T cells, which further inhibits the immune response and

stimulates the immune evasion of virus or tumor cells (32). HSV-1

infection disrupts multiple pathways engaged in cell proliferation,

apoptosis, and immune response. Multiple virus-encoded proteins

can manipulate the cellular signaling network, creating a favorable

environment for the replication and persistence of the virus. For

example, HSV-1 proteins, such as ICP0, ICP4, and ICP27, can affect
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host gene expression and block cellular signaling pathways, including

p53, NF-kB, and MAPK-mediated signaling pathways. These

alterations in cell signals can lead to dysregulation of cell

proliferation, inhibition of apoptosis, and evasion from immune

surveillance, contributing to the survival and growth of viruses and

potentially transformed cells (33).

On the contrary, our study found no significant causal

association between HSV-2 infection and HNC, including oral

and oropharyngeal cancer. This finding was in agreement with

several previous investigations (34). Thompson et al. conducted a

systematic review and meta-analysis of the existing literature and

believed that there was insufficient evidence to support the direct

link between HSV-2 infection and HNC. Furthermore, Chen et al.

failed to unravel a significant association between HSV-2

seropositivity and the risk of oropharyngeal cancer in a large

prospective cohort study. Overall, combined with these studies,

our study demonstrated that different from HSV-1, HSV-2

infection might not be an important dangerous factor for

HNC (35).

It was worth noting that HSV-1 and HSV-2 exhibited different

associations with HNC, which might be attributed to their different

biological characteristics and modes of transmission. HSV-1 mainly

infects oral and oropharyngeal mucosa, while HSV-2 mainly affects

genital and anal regions. Different anatomic regions of infection

may lead to different carcinogenic potentials of these two viruses.

Additionally, differences in viral gene expression, immune response,

and cytotaxis may also contribute to different associations (36).

However, several studies have reported conflicting results on the

relationship between HSV-1 and HNC. For instance, a case-control

study by Roberts et al. reported no significant association between

HSV-1 seropositivity and the risk of oropharyngeal cancer.

Likewise, Brown et al. failed to observe a significant relationship

between HSV-1 infection and the risk of HNC in a population-

based cohort study. These contradictory results might be attributed

to diverse factors, including study design, sample size, population

characteristics, and different HSV-1 detection methods (37).
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FIGURE 4

Funnel plots for the two-sample Mendelian randomization analyses. (A) HSV-1 and head and neck cancer; (B) HSV-1 and Oral and oropharyngeal
cancer; (C) HSV-2 and head and neck cancer; (D) HSV-2 and Oral and oropharyngeal cancer.
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Taken together, our research result was basically consistent with

prior studies, that was, HSV-1 infection was a risk factor for HNC,

especially oral and oropharyngeal cancer. Our study did not show a

causal association between HSV-2 infection and HNC, which was

supported by the existing literature, highlighting the importance of

distinguishing these two HSV types in evaluating their potential

roles in carcinogenesis.

According to the literature review, this is the first Mendelian

randomization study on HSV infection and the risk of head and

neck cancer. This article analyzes the association between the two at

the genetic level. However, there are still some limitations in this

study. First, the GWAS data on HSV are limited, and it is impossible

to use multiple data sets to verify our results. Second, the study

population is all Europeans, so it is impossible to predict the

relationship between HSV and head and neck cancer in

other populations.
5 Conclusions

In this study, MR analysis was adopted to assess whether HSV

infection was causally linked to the development of HNC. We noted

a significant causal relation between HSV-1 infection and the

progression of HNC, particularly oral and oropharyngeal cancer,

but no such causal relation was found between HSV-2 infection

and HNC.
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Objective: Previous research has demonstrated thatmetabolites play a significant
role in modulating disease phenotypes; nevertheless, the causal association
between metabolites and malignant malignancies of bones and joint cartilage
(MNBAC)has not been fully elucidated.

Methods: This study used two-sample Mendelian randomization (MR) to explore
the causal correlation between 1,400 metabolites and MNBAC. Data from recent
genome-wide association studies (GWAS) involving 8,299 individuals were
summarized. The GWAS summary data for metabolites were acquired from
the IEU Open GWAS database, while those for MNBAC were contributed by
the Finnish Consortium. We employed eight distinct MR methodologies: simple
mode, maximum likelihood estimator, MR robust adjusted profile score, MR-
Egger, weighted mode, weighted median, MR-PRESSO and inverse variance
weighted to scrutinize the causal association between metabolites
engendered by each gene and MNBAC. Consequently, we evaluated outliers,
horizontal pleiotropy, heterogeneity, the impact of single nucleotide
polymorphisms (SNPs), and adherence to the normal distribution assumption
in the MR analysis.

Results: Our findings suggested a plausible causative relationship between
N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and
MNBAC. We observed a nearly significant causal association between FMet
levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds
ratio (OR) = 3.22; 95% CI [1.16–8.92]). Moreover, we ascertained a significant
causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI
[0.25–0.70]). These results indicate a potential causative relationship between
FMet, C24 level and MNBAC.

Conclusion: The occurrence of MNBAC may be causally related to metabolites.
This might unveil new possibilities for investigating early detection and treatment
of MNBAC.
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1 Introduction

Malignant malignancies of bones and joint cartilage (MNBAC)
is a rare but severe type of tumor. The phrase “bone tumors” refers to
all cancers, including primary, secondary, and metastatic tumors,
originating from skeletal or other bone tissue components (Yang
et al., 2023). Primary MNBAC include osteosarcoma,
chondrosarcoma,malignant, lymphoma,osteofibrosarcoma,
myeloma,Ewing’ssarcoma,and chordoma (Choi and Ro, 2021).
MNBAC predominantly occurs in the mobile segments of the
long bones, referred to as metaphysis, encompassing the
proximal tibia, proximal humerus, and distal femur (Chou et al.,
2014). The major clinical symptoms of MNBAC are pain, swelling,
and functional impairment (Xia et al., 2018). Osteosarcoma is the
most common primary MNBAC, accounting for approximately 1%
of all malignancies in the United States (Suehara et al., 2019).
Osteosarcoma frequently exhibits aggressive growth and
metastasizes to adjacent tissues and other locations. Ewing
sarcoma (ES), the second most frequent bone tumor in teenagers,
flourishes in a mechanically active microenvironment (Marturano-
Kruik et al., 2018), It typically occurs in children and adolescents and
originates in the bone marrow or soft tissues. Conventional methods
for treating bone tumors include surgical resection, radiotherapy,
and chemotherapy (Beane et al., 2017). Reconstruction of the
affected area post-resection is a crucial phase that significantly
impacts the overall outcome and patient wellbeing (Hu et al.,
2023a; Hu et al., 2023b; Hu et al., 2022). Radiotherapy may be
used to reduce tumor size preoperatively, prevent recurrence after
surgery, and control metastases (Jones et al., 2018). Chemotherapy is
often combined with surgery and radiation therapy to eliminate
potential micrometastatic lesions (Wang et al., 2019). Although
malignant bone tumors are relatively rare, they pose a significant
threat to the patient’s life and physical function. Therefore,
exploring new targets for screening, prevention, and treatment of
MNBAC is essential.

Metabolites are tiny compounds that act as intermediates and
products of metabolic reactions. Multiple factors affect the levels of
these metabolites, including genetics, dietary patterns, lifestyle
choices, gut microbiota composition and pathological conditions
(Noronha et al., 2019). Metabolites could influence the risk of
maladies and be the focus of therapeutic intervention (Noronha
et al., 2019). A better understanding of the causative function of
metabolites in disease etiology can lead to more controllable
therapeutic targets. Common genetic metabolites serve as
discriminating agents in the pathogenesis of various complicated
illnesses. These metabolites interact with environmental variables
such as lifestyle choices, potentially influencing an individual’s
susceptibility to specific disease phenotypes (Li et al., 2019). To
date, GWAS has identified several metabolite-related loci in
human urine and blood specimens (Cai et al., 2021). Moreover,
these loci correlated with the progression and prognosis of
respiratory disorders (Chang et al., 2023), gastrointestinal maladies
(Kim et al., 2019), cardiovascular conditions (Mihuta et al., 2023),
endocrine dysregulation (Tan et al., 2023), as well as tumor diseases
(Gubser andKallies, 2020). However, limited studies have investigated
the association between 1,400 metabolites and MNBAC.

Using GWAS, we can scrutinize genetic variations within
extensive populations and juxtapose them with diverse metabolite

concentrations, disease ramifications, and other pertinent attributes
to elucidate the involvement of metabolites in disease consequences
(Tang et al., 2019). Numerous metabolite levels have shown high
heritability, providing the opportunity to perform Mendelian
randomization (MR) (Civelek and Lusis, 2014). MR is an
instrumental variable analysis approach utilizing genetic
variations as tools to evaluate causal connections between
potentially modifiable exposures, such as single nucleotide
polymorphisms (SNPs), and clinically significant outcomes; it has
been extensively employed to investigate causal inference in
epidemiological studies (Liu et al., 2023a; Liu et al., 2023b; Xiang
et al., 2021).

This study explored the causal relationship between
1,400 metabolites and MNBAC employing MR analysis coupled with
metabolomics using GWAS data of MNBAC as the outcome file and
GWAS data of 1,400 metabolites as the exposure file. Furthermore, this
study identified relevant metabolites, providing novel insights into early
detection and therapeutic strategies for MNBAC.

2 Methods

2.1 The flowchart and assumption of MR

The causal links between 1,400 metabolites and MNBAC were
examined using a two-sample MR analysis. Summary-level GWASs
data were used for the metabolites and MNBAC. The flowchart of
this study is displayed in Figure 1. Furthermore, to ensure the
accuracy of the findings, the MR analysis must adhere to three
fundamental hypotheses: (1) The instrumental variables (IVs)
employed exhibited a robust association with metabolites. (2)
The selected IVs and confounding factors that influenced both
the metabolites and MNBAC were mutually independent. (3)
The absence of horizontal pleiotropy was ensured: IVs solely
influenced MNBAC through metabolites (Davey Smith and
Hemani, 2014) (Figure 1). Moreover, the results obtained were
reported following the MR-STROBE protocol (Choi et al., 2022).

2.2 Exposure sources of 1,400 metabolites

Metabolic data were derived from the extensive GWAS analysis
conducted by Chen et al. in the esteemed journal “Nature Genetics”
(Chen et al., 2023). This investigation amalgamated 309 metabolite
ratios and 1,091 individual metabolites from a cohort of
8,299 participants within the esteemed Canadian Longitudinal
Study of Aging (CLSA). The CLSA cohort comprised nearly
2.1 million SNPs and 452 blood metabolites. Comprehensive
GWAS summary statistics are accessible for direct retrieval from
the European GWAS (GWAS ID: met-a) under the accession
number GCST90199621-902010209, encompassing data for
1,400 metabolites.

2.3 Outcome sources of MNBAC

The GWAS summary data for MNBAC were obtained from the
FinnGen studies, which are available through their website (https://
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r9.finngen.fi/) and included individuals of European ancestry, both
men and women. SAIGE (https://github.com/weizhouUMICH/
SAIGE) was utilized to conduct the GWAS analysis,
incorporating 20175454 variable SNPs across a cohort of
377,277 participants. After adjustments for factors such as age,
gender, high genotypic individual deletions (>5%), excessive
heterozygosity (4SD), and non-Finnish lineage, a subset of
206 MNBAC cases and 287,137 controls were selected for
scrutiny. MNBAC was defined using the ICD-10 code M13.
Further information on the data can be found on the
FinnGen website.

2.4 Statistical analysis

Statistical analysis was executed utilizing R software (version
4.3.1). The “TwoSampleMR” software was employed to performMR
analysis of the causal relationship between metabolites and
MNBAC. P < 0.05 ordinarily signifies the statistically significance
of the findings, thus indicating that such a correlation may be
regarded as evidence of causality (Xiang et al., 2021).

2.4.1 IVs selection
Meticulous selection of the approved IVs was imperative for

enhancing the robustness of MR analysis. Initially, we pursued
stringent criteria characterized by formidable values of 1 × 10−5

and 5 × 10−8. The SNPs used in the MR test adhered to the principles
of Mendelian inheritance: parental alleles were randomly allocated
to offspring, impervious to acquired traits. Therefore, these alleles
exhibited a high degree of independence and were potentially
unrelated to confounding factors. The universal standards for
SNP screening encompassed two thresholds: P < 1 × 10−5 and
P < 5 × 10−8, signifying their statistically significant inclusion in the
research. Lastly, we used Steiger filtration to eliminate any IVs that
may lead to causal inversion.

2.4.2 Statistical analyses for MR
We examined the two cohorts using 1,400 metabolites as the

exposure and MNBAC as the outcome in this study. MR analyses
were executed using the “Two Sample MR” software package, with
IVW analysis employed to synthesize the effects of multiple loci and
evaluate numerous SNPs (Yan et al., 2023). Without horizontal
pleiotropy, the IVW test was used as the principal method for
assessing causal effects to obtain unbiased estimates (Du et al., 2023).
The presence or absence of heterogeneity determined the existence
of fixed or random effects. The effect estimates were presented as
odds ratios (ORs) and 95% confidence intervals (CI).

In addition to MR analysis, the maximum likelihood estimator
(MLE), MR robust adjusted profile score (MR-RAPS), MR-Egger
test (Bowden et al., 2015) and the weighted median (WM) approach
(Bowden et al., 2016) were employed. WM data were utilized to
determine substantial causation. The absence of horizontal
pleiotropy was established if P > 0.05. The basic model and MR-
PRESSO analyses were used as part of the sensitivity analyses (Liu K.
et al., 2022). The F statistic was calculated using aggregated data
levels to ascertain IV exposure correlations. If F > 10, the
correlations were considered sufficiently robust to mitigate the
weak IVs bias. Within the IVW framework, the Cochrane Q
statistic was utilized to evaluate heterogeneity among SNP
estimates. Additionally,we validated the robustness of the data
using the simple mode and the leave-one-out method (Liu K.
et al., 2022).

3 Result

3.1 The study design of MR

The causal links between MNBAC and 1,400 metabolites were
unveiled through a two-sample MR analysis. The categorization of
metabolites and MNBAC conformed to the aggregated data

FIGURE 1
MR analyses process and major assumptions.
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acquired from the GWASs. Figure 1 depicts the flowchart outlining
the MR investigation involving the metabolites and MNBAC.

3.2 Selection of IVs related to MNBAC

We meticulously selected IVs linked to MNBAC from a pool of
2.1 million SNPs associated with 1,400 metabolites. Subsequent to a
quality control procedure integrating the Linkage Disequilibrium
(LD) effect and retrogression method, we utilized a P < 1 × 10−5 for
the calculations, resulting in the identification of 30,276 SNPs,
2295 SNP-metabolites, and IVs for MNBAC (threshold 1 × 10−5).
Each SNP demonstrated adequate validity (F-values ranging from
19.51 to 2,298.39, all F > 10) (Table 1). The most significant
information of the IVs is presented in Supplementary Table S1
(P < 1 × 10−5). Additionally, to establish the robustness of the results,
we adopted a more stringent threshold of 5 × 10−8 for the analysis,
which identified 2295 SNP metabolites and IVs for MNBAC
(F-values ranging between 29.71 and 2,298.39, all F > 10).

Significant data regarding IVs were provided within the specifics.
Supplementary Table S2 outlines the primary information of the IVs
(P < 5 × 10−8).

3.3 MR analyses results (P < 1 × 10−5)

We evaluated the influence of 1,400 metabolites on bone tumor
risk at a threshold of 1 × 10−5, and found suggestive evidence of
causality (P < 0.05) for five metabolites. These included
N-formylmethionine (FMet) levels (P = 0.001; OR = 3.789; 95%
CI [1.670–8.593]),isoursodeoxycholate levels (P = 0.010; OR = 0.183;
95% CI [0.058–0.576]), methionine sulfone levels (P = 0.032; OR =
1.749; 95%CI [1.048–2.921]), methyl glucopyranoside (alpha + beta)
levels (P = 0.044; OR = 1.451; 95% CI [1.009–2.085]), and
lignoceroylcarnitine (C24) levels (P = 0.006, OR = 0.268; 95% CI
[0.115–0.625]). Table 1 and Figure 2 presented these findings.
Notably, three of these metabolites, namely, methyl
glucopyranoside (alpha + beta) levels, fMet levels, and

TABLE 1 Causal results of MR analysis between metabolites and MNBAC with threshold of P < 1 ⅹ 10–5.

Exposure method nsnp pval Or (95%CI)

N-formylmethionine levels MR Egger 20 13.46 × 10−2 3.19 (0.74, 13.60)

N-formylmethionine levels Weighted median 20 0.14 × 10−2 3.79 (1.67, 8.59)

N-formylmethionine levels Inverse variance weighted 20 2.36 × 10−2 2.04 (1.10, 3.78)

N-formylmethionine levels Simple mode 20 63.71 × 10−2 0.66 (0.11, 3.64)

N-formylmethionine levels Weighted mode 20 1.60 × 10−2 3.65 (1.39, 9.53)

Isoursodeoxycholate levels MR Egger 17 1.09 × 10−2 0.18 (0.05, 0.57)

Isoursodeoxycholate levels Weighted median 17 6.90 × 10−2 0.31 (0.13, 0.72)

Isoursodeoxycholate levels Inverse variance weighted 17 4.43 × 10−2 0.49 (0.24, 0.98)

Isoursodeoxycholate levels Simple mode 17 15.02 × 10−2 0.27 (0.04, 1.47)

Isoursodeoxycholate levels Weighted mode 17 3.67 × 10−2 0.22 (0.06, 0.81)

Methionine sulfone levels MR Egger 29 4.69 × 10−2 1.97 (1.04, 3.73)

Methionine sulfone levels Weighted median 29 3.24 × 10−2 1.74 (1.04, 2.92)

Methionine sulfone levels Inverse variance weighted 29 4.80 × 10−2 1.42 (1.00, 2.03)

Methionine sulfone levels Simple mode 29 30.17 × 10−2 1.75 (0.62, 5.01)

Methionine sulfone levels Weighted mode 29 3.92 × 10−2 1.78 (1.05, 3.02)

Methyl glucopyranoside (alpha + beta) levels MR Egger 22 5.72 × 10−2 1.41 (1.01, 1.96)

Methyl glucopyranoside (alpha + beta) levels Weighted median 22 4.41 × 10−2 1.45 (1.01, 2.09)

Methyl glucopyranoside (alpha + beta) levels Inverse variance weighted 22 0.30 × 10−2 1.49 (1.14, 1.93)

Methyl glucopyranoside (alpha + beta) levels Simple mode 22 8.12 × 10−2 2.15 (0.94, 4.89)

Methyl glucopyranoside (alpha + beta) levels Weighted mode 22 2.71 × 10−2 1.40 (1.06, 1.86)

Lignoceroylcarnitine (C24) levels MR Egger 21 0.66 × 10−2 0.27 (0.12, 0.63)

Lignoceroylcarnitine (C24) levels Weighted median 21 0.77 × 10−2 0.48 (0.28, 0.82)

Lignoceroylcarnitine (C24) levels Inverse variance weighted 21 0.06 × 10−2 0.50 (0.34, 0.74)

Lignoceroylcarnitine (C24) levels Simple mode 21 93.49 × 10−2 0.96 (0.37, 2.47)

Lignoceroylcarnitine (C24) levels Weighted mode 21 3.26 × 10−2 0.52 (0.29, 0.90)
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methionine sulfone levels, were particularly associated with high-
risk factors for bone and joint cancer. Additionally,
isoursodeoxycholate concentrations and C24 levels, might be
linked to low-risk bone tumor. These findings were validated
using five different methods (Supplementary Table S3).

3.4 Heterogeneity analysis (P < 1 × 10−5)

Supplementary Table S5 lists the results of multiplicity and
heterogeneity assessments for all metabolites. Through sensitivity
analyses,we verified the effect of accurate MR results on metabolites
of MNBAC. Notably, FMet levels (P = 0.51), Isoursodeoxycholate
levels (P = 0.06), Methionine sulfone levels (P = 0.24), Methyl
glucopyranoside (alpha + beta) levels (P = 0.58), and C24 levels
showed no evidence of horizontal pleiotropy in relation to bone

tumors (P = 0.11) (Table 2). Meanwhile, no heterogeneity was
observed in FMet levels (MR-Egger: P = 0.26; IVW: P = 0.29),
Isoursodeoxycholate levels (MR-Egger: P = 0.15; IVW: P = 0.05),
Methionine sulfone levels (MR-Egger: P = 0.55; IVW: P = 0.53), and
Methyl glucopyranoside (alpha + beta) levels (MR-Egger: P = 0.12;
IVW: P = 0.13) (Table 2). Furthermore, the leave-one-out analysis
showed no meaningful difference. in casual estimation of FMet
levels. Methionine sulfone levels Isoursodeoxycholate levels. Methyl
glucopyranoside (alpha + beta) levels and C24 levels on
MNBAC (Figure 3).

To validate the accuracy of MR Egger regression, we further
validated the significant MR results using MLE, MR-PRESSO, MR-
RAPS. We found no evidence of heterogeneity in FMet levels (P =
0.295), isoursodeoxycholate levels (P = 0.074), methionine sulfone
levels (P = 0.622), methyl glucopyranoside (alpha + beta) levels (P =
0.238), and C24 levels (P = 0.519), indicating the lack of horizontal

FIGURE 2
Causal analysis 562 results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). The color corresponding to the P value is based
on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color (OR = 0,
white; OR = 1, red; OR = 2, blue; OR = 3, green).
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pleiotropy (Table 2). Moreover, data robustness was reinforced
through sample-by-sample exclusion analysis, which
demonstrated consistent IVW results for lack of heterogeneity
and pleiotropy. Based on these findings, there appeared to be a
suggestive causal correlation between FMet levels,
isoursodeoxycholate levels, methionine sulfone levels, methyl
glucopyranoside (alpha + beta) levels, and C24 levels with MNBAC.

3.5 Results of MR analysis (P < 5 × 10-8)

Supplementary Table S4 presents the results pertaining FMet
levels and MNBAC, illustrating a notable causal significance for
FMet levels in MR analyses (IVW: OR = 3.12, 95%CI [1.16–8.92],
P = 0.05; WM: OR = 3.22, 95%CI [1.16–8.92], P = 0.02; MR Egger:
OR = 55.32, 95%CI [1.74–1750.53], P = 0.26). Furthermore, there
was a significant causal relationship between the metabolite levels of
C24 and MNBAC (IVW: OR = 0.42; 95%CI [0.25–0.70]; P = 0.0009;

WM: OR = 0.47; 95% CI [0.26–0.85]; P = 0.01; MR Egger: OR = 0.42;
95%CI [0.26–0.85]; P = 0.01) (Table 3; Figure 4).

3.6 Heterogeneity analysis (P < 5 × 10−8)

Supplementary Table S6 displays the pleiotropy and
heterogeneity test results for metabolisms. Heterogeneity analysis
results of C24 levels (MR Egger: P = 0.24; IVW: P = 0.41) and
multiplicity analysis (MR Egger: P = 0.34; MR-PRESSO: P = 0.31)
verified reliability of the results. Likewise, the scrutiny of
heterogeneity in FMet levels (MR Egger: P = 0.62; IVW: P =
0.21) and the multiplicity analysis (MR-PRESSO: NA; MR Egger:
P = 0.34) verified the accuracy of the data (Table 4). Concurrently,
the findings of sample-by-sample exclusion further validated the
robustness of the data (Figure 4). Unfortunately, due to the overly
stringent 5 × 10−8 threshold, only FMet levels and C24 levels were
obtained with fewer instrumental variables. Notably, C24 levels

TABLE 2 MR results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.

Exposure Method Q Q-
pval

Method Q Q_pval egger_intercept pval MR-
PRESSO

N-formylmethionine levels IVW 21.85 0.29 MR Egger 21.32 0.26 −0.06 0.51 0.29

Isoursodeoxycholate levels IVW 25.92 0.05 MR Egger 20.34 0.16 0.143 0.06 0.07

Methionine sulfone levels IVW 26.70 0.53 MR Egger 25.29 0.55 −0.05 0.24 0.62

Methyl glucopyranoside (alpha + beta)
levels

IVW 28.05 0.13 MR Egger 27.63 0.11 0.02 0.58 0.23

LC (C24) levels IVW 18.32 0.56 MR Egger 15.61 0.68 0.11 0.11 0.51

FIGURE 3
The leave-one-out results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). (A) N-formylmethionine levels (B).
Isoursodeoxycholate levels (C). Methionine sulfone levels (D). Methyl glucopyranoside (alpha + beta) levels (E). Lignoceroylcarnitine (C24) levels.
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exhibited a significant correlation with MNBAC, while FMet levels
approached significance in terms of causal inference. In addition,the
leave-one-out analysis showed some difference. in casual estimation
of FMet levels and C24 levels on MNBAC (Figure 5; Supplementary
Figure S2). Furthermore, due to an insufficiency of IVs, the
multiplicity assessment for FMet levels was unattainable via
MR-PRESSO.

3.7 Further validation of the MR results

To further ascertain the causal relationship between metabolites
and MNBAC, we employed additional methods to validate the
results. Under the threshold of P < 1 × 10−5, the outcomes of
MR-PRESSO, MR-RAPS, and MLE provided additional
substantiation of the causal nexus between FMet levels,
Methionine sulfone levels, Isoursodeoxycholate levels, C24 levels,
and Methyl glucopyranoside (alpha + beta) levels with bone tumors
(Table 5). The results from MR-RAPS and MLE confirmed the
causal relationship between FMet levels and MNBAC, albeit not
verified by MR-PRESSO. Meanwhile, C24 levels were further
validated by MR-PRESSO, MR-RAPS, and MLE at a threshold of
P < 5 × 10−8 (Table 6).

3.8 Ethics statement

This summary-level data utilized in this study are de-identified
public data and are accessible to download. Each GWAS in this
study received ethical approval from their respective universities.

4 Discussion

This research conducted an MR analysis to investigate the
potential causal relationship between 1,400 metabolites and
MNBAC. By investigating the association from a host genetic
perspective, we aimed to validate the role of these metabolites in
altering susceptibility to MNBAC. Five MRmethods were employed
for the analysis. Although some of the results from various analytical
approaches were inconsistent, these differences did not significantly
influence our findings. The random effects IVW technique exhibited
superior statistical power compared to the other approaches, hence
it was selected as the major analytical approach in this work. While
there was a potential causal relationship, and multiple corrections
are too strict, they were also close to being corrected. The results of
this study suggested that the two metabolites may be linked to a
lower risk of MNBAC, while the three metabolites are related to a
higher risk of MNBAC. Our findings open up possibilities for
identifying novel biomarkers that can be utilized in future
MNBAC studies. Moreover, our results indicated potential
avenues for MNBAC prevention and treatment, including the
targeted manipulation of specific metabolite levels. Notably,the
cross-sectional aspect of this study made it difficult to find a
definitive connection between metabolites and MNBAC.
However, using MR analysis, we provided valuable insights into
the potential causative association and highlight the significance of
these metabolites in influencing susceptibility to MNBAC.

As the most prevalent type of MNBAC, osteosarcoma generates
severe symptoms and poses a threat to individuals of all ages due to
malignant neoplasia (Quintero Escobar et al., 2020). Several studies
on osteosarcoma have examined aberrant metabolisms. The

TABLE 3 Causal Results of MR analysis between metabolites and MNBAC with threshold of P < 5 ⅹ 10–8.

Exposure Method nsnp pval Or (95%CI)

N-formylmethionine levels levels MR Egger 3 26.34 × 10−2 55.32 (1.74, 1750.53)

N-formylmethionine levels levels Weighted median 3 2.40 × 10−2 3.22 (1.16, 8.92)

N-formylmethionine levels levels IVW 3 5.18 × 10−2 3.12 (0.99, 9.87)

N-formylmethionine levels levels Simple mode 3 17.29 × 10−2 5.55 (1.10, 27.95)

N-formylmethionine levels levels Weighted mode 3 16.06 × 10−2 3.90 (1.14, 13.27)

Lignoceroylcarnitine (C24) levels MR Egger 4 42.81 × 10−2 0.42 (0.07, 2.31)

Lignoceroylcarnitine (C24) levels Weighted median 4 13.57 × 10−2 0.47 (0.26, 0.85)

Lignoceroylcarnitine (C24) levels IVW 4 0.09 × 10−2 0.42 (0.25, 0.70)

Lignoceroylcarnitine (C24) levels Simple mode 4 19.35 × 10−2 0.49 (0.22, 1.12)

Lignoceroylcarnitine (C24) levels Weighted mode 4 10.33 × 10−2 0.47 (0.25, 0.89)

TABLE 4 MR results of sensitivity analysis, with threshold of P < 5 ⅹ 10–8.

Exposure Method Q Q_pval Method Q Q_pval Egger intercept pval MR-presso

N-fet levels IVW 3.09 0.21 MR Egger 0.23 0.62 −0.46 0.33 NA

LC (C24) levels IVW 2.82 0.41 MR Egger 2.82 0.24 −0.004 0.98 0.30
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development and progression of osteosarcoma is closely related to
cellular metabolites (Velayutham et al., 2023). A promising natural
metabolite, stylolite, has been discovered to activate vascular
endothelial growth factor receptor 2 (VEGFR2)and trigger its
downstream signaling pathways. This activation promotes
endothelial cell proliferation and angiogenesis while hindering
the growth and invasion of osteosarcoma cells, simultaneously
enhancing the sensitivity to chemotherapy drugs. Moreover,
particular metabolites such as zoledronic acid induce iron-
induced death in osteosarcoma cells by reducing coenzyme Q
levels and stimulating heme oxygenase 1(HMOX1)expression
(Ren et al., 2022). In vitro experiments involving osteosarcoma
stem cells have revealed comparable declines in metabolites
associated with the tricarboxylic acid (TCA) cycle (Zhong et al.,
2019). These reductions stem from impaired mitochondrial function
and are accompanied by diminished glutamine, aspartate, and

glutathione levels (Ren et al., 2020; Zhong et al., 2019).
Metabolite-based biomarkers for osteosarcoma exhibit potential
for diagnosis and monitoring disease progression (Fan et al.,
2021). These substances have been linked to developing and
regulating glucose metabolism and cellular regulatory
mechanisms in osteosarcoma. In conclusion, metabolites play a
vital role in MNBAC research. Here, we evaluated the effects of
1,400 metabolites on MNBAC risk and identified five metabolites
that showed suggestive causal relationships with MNBAC, which
were validated using more than five methods. These metabolites
included the FMet levels, methionine sulfone levels, methyl
glucopyranoside (alpha + beta) levels, isoursodeoxycholic acid
levels, and C24 levels. Among them, our finding of significant
causality between C24 levels and MNBAC is novel. The FMet
levels showed near-significant results. This study is the first to
discover the correlation between 1,400 metabolites and MNBAC.

FIGURE 4
MR analysis 566 results of 1,400metabolites andMNBAC (genome-wide statistical significance, P < 5 × 10−8). The color corresponding to the P value
is based on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color
(OR = 0, #CCCC00; OR = 1, #088247; OR = 2, #11AA4D; OR = 3, #58CDD9; OR = 10, #FF6666).
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FIGURE 5
The leave-one-out results of 1,400 metabolites and MNBAC (P < 5 × 10−8); (A) N-formylmethionine levels (B). Lignoceroylcarnitine (C24) levels.

TABLE 5 MR Results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.

Exposure Method Or (95%CI) p-val

N-formylmethionine levels MR-PRESSO 1.93 (1.43, 2.63) 4.31 × 10−2

N-formylmethionine levels MR-RAPs 1.98 (1.47, 2.67) 2.19 × 10−2

N-formylmethionine levels MLE 1.97 (1.47, 2.65) 2.07 × 10−2

Methionine sulfone levels MR-PRESSO 1.46 (1.24, 1.72) 2.87 × 10−2

Methionine sulfone levels MR-RAPs 1.47 (1.23, 1.76) 3.08 × 10−2

Methionine sulfone levels MLE 1.47 (1.23, 1.75) 2.89 × 10−2

Isoursodeoxycholate levels MR-PRESSO 0.51 (0.36, 0.71) 5.93 × 10−2

Isoursodeoxycholate levels MR-RAPs 0.49 (0.37, 0.65) 1.08 × 10−2

Isoursodeoxycholate levels MLE 0.52 (0.39, 0.68) 1.84 × 10−2

Lignoceroylcarnitine (C24) levels MR-PRESSO 0.52 (0.43, 0.62) 1.03 × 10−3

Lignoceroylcarnitine (C24) levels MR-RAPs 0.51 (0.42, 0.61) 2.81 × 10−4

Lignoceroylcarnitine (C24) levels MLE 0.52 (0.43, 0.62) 3.16 × 10−4

Methyl glucopyranoside (alpha + beta) levels MR-PRESSO 1.48 (1.30, 1.69) 6.31 × 10−3

Methyl glucopyranoside (alpha + beta) levels MR-RAPs 1.49 (1.31, 1.70) 1.93 × 10−3

Methyl glucopyranoside (alpha + beta) levels MLE 1.50 (1.32, 1.70) 1.33 × 10−3

TABLE 6 MR results of sensitivity analysis with threshold of P < 5 ⅹ 10–8.

Exposure Method Or (95%CI) P-val

N-formylmethionine levels MR-PRESSO Not enough intrumental variables NA

N-formylmethionine levels MR-RAPs 3.19 (1.96, 5.19) 1.69 × 10−2

N-formylmethionine levels MLE 3.19 (1.97, 5.19) 1.66 × 10−2

Lignoceroylcarnitine (C24) levels MR-PRESSO 0.48 (0.35, 0.66) 8.26 × 10−2

Lignoceroylcarnitine (C24) levels MR-RAPs 0.48 (0.37, 0.62) 3.70 × 10−3

Lignoceroylcarnitine (C24) levels MLE 0.48 (0.37, 0.62) 3.70 × 10−3
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C24 is a long-chain fatty acid derivative that participates in the
metabolism of fatty acids, particularly in the beta-oxidation process
within the mitochondria (Abd-Allah et al., 2009). Abnormal fatty
acid metabolism may be associated with tumor growth and survival,
thus, changes in C24 levels may reflect alterations in tumor
metabolic status in osteosarcoma cells, Researchers have found a
link between the concentration of C24 in serum and the risk of
MNBAC development, with higher concentrations associated with
lower risks (Liu T. et al., 2022), Similarly, a study on the testing dose
of C24 reported that it can reverse fatigue symptoms in MNBAC
patients with C24 deficiency (Farahzadi et al., 2023). Our research
has identified a noteworthy inverse relationship between C24 levels
and MNBAC, indicating a possible function of C24 in inhibiting
tumor growth. Assessing C24 levels could potentially assist in
identifying patients at high risk of MNBAC and serve as a
biomarker for tracking disease progression and evaluating
treatment efficacy.

FMet, an amino acid that typically corresponds to the start
codon, signifies the initiation of polypeptide chain synthesis. The
role of FMet in protein degradation processes is also significant,
particularly in the activity of peptidyl deformalize (PDF) (Silver,
2011). In osteosarcoma cells, PDF activity may be upregulated,
thereby affecting protein stability and intracellular signal
transduction (Lee et al., 2004; Pietzke et al., 2020). In our study,
the significant positive correlation between the FMet levels and
MNBAC indicated a potential role of FMet in promoting tumor
growth. Similarly, in another 11,966 individuals, FMet levels may
resulted in all-cause mortality and the risk of human cancer.
including MNBAC. suggesting a substantial connection between
FMet and the risk of MNBAC (Cai et al., 2021), In another cancer
study, FMet was utilized as a drug precursor, converted into formic
acid through the activity of PDF enzyme (Yu et al., 2015).

This study had several limitations. First, like other MR
researches on metabolites, although our study satisfies the MR
assumptions (IVs is closely related to the metabolite), there may
be other mechanisms or factors in some cases that result in a
correlation between IVs and the target variable, rather than a
causal relationship. Second, our study’s sample sizes was modest,
which may alter the dependability of our results. Given that GWAS
only included European ancestry participants, our findings may not
be applicable to other racial populations. Third, the multiple
statistical correction employed was overly strict and conservative,
potentially overlooking the metabolites that may have a causal
relationship with MNBAC. While there is potential for a causal
relationship, and the multiple corrections were overly strict, they
approach correction. Therefore, we considered biological
plausibility and did not rely solely on the results of the multiple-
hypothesis testing. Finally, due to the insufficient availability of an
ample number of IVs in this study, the implementation of reverse
MR analysis and multivariable Mendelian randomization analyses
(MVMR) was precluded. In future research, we plan to undertake
GWAS investigations specifically targeting FMet levels and
C24 levels to secure a robust set of IVs. This will facilitate a
more thorough validation of the causal relationship between
metabolites and MNBAC through the application of reverse MR
analysis and MVMR.

Concludingly, this study confirmed the causal link between
metabolites and MNBAC species, including and FMet levels.
These metabolites have the potential to serve as new biomarkers
or treatment targets for MNBAC and novel strategies for its
treatment and prevention.
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